

Feasibility Study Report Lackawanna Incinerator Site (915206) Lackawanna, New York Work Assignment D007624-10

Prepared for

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7017

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315) 431-4610

> November 2015 Version: FINAL EA Project No. 14907.10

Feasibility Study Report Lackawanna Incinerator Site (915206) Lackawanna, New York Work Assignment D007624-10

Prepared for

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7017

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315) 431-4610

Donald F. Conan, PE Vice President

James C. Hayward

James C. Hayward, PE Senior Engineer

11 November 2015 Date

11 November 2015 Date

November 2015 Version: FINAL EA Project No. 14907.10

Date

TABLE OF CONTENTS

LIST O	F FIG	<u>Pa</u> URES	<u>ige</u> v
LIST O	F TAB	BLES	vii
LIST O	F ACR	RONYMS AND ABBREVIATIONS	viii
1.	INTRO	DDUCTION AND PROJECT OVERVIEW 1	1-1
	1.1 1.2 1.3	PURPOSE AND SCOPE	l-1 l-1 l-2
		 1.3.1 Lackawanna Incinerator Site Location 1.3.2 Lackawanna Incinerator Site History 1.3.3 Current Land Use of Site and Adjoining Areas 1.3.4 Physiography 1.3.5 Site Geology 1.3.6 Site Hydrology/Hydrogeology 	1-2 1-2 1-3 1-3 1-4 1-4
2.	SUMM	AARY OF REMEDIAL INVESTIGATION AND EXPOSURE ASSESSMENT2	2-1
	2.1	SURFACE AND SUBSURFACE SOIL	2-1
		2.1.1On-site Area22.1.2Smokes Creek Corridor22.1.3Baker Hall Property2	2-2 2-2 2-2
	2.2 2.3 2.4 2.5	GROUNDWATER2SURFACE WATER AND SEDIMENT2STORMWATER OUTFALLS2HUMAN HEALTH EXPOSURE ASSESSMENT2	2-3 2-3 2-4 2-4
3.	DEVE	LOPMENT OF REMEDIAL ACTION OBJECTIVES	3-1
	3.1 3.2 3.3	MEDIA CLEANUP GOALS	3-1 3-2 3-2
		3.3.2 Action-Specific Applicable or Relevant and Appropriate Requirements	5-4 3-4

		3.3.3	Location-Specific Applicable or Relevant and Appropriate
			Requirements
4.	GENH	ERAL R	ESPONSE ACTIONS
	4.1	NO A	CTION
	4.2	INSTI	TUTIONAL CONTROLS
	4.3	REMO	DVAL
	4.4	TREA	TMENT
	4.5	DISPO	OSAL
	4.6	CONT	CAINMENT 4-2
	4.7	ELIM	INATION OF EXPOSURE
5.	IDEN	TIFICA	TION AND SCREENING OF TECHNOLOGIES
	5.1	SCRE	ENING CRITERIA5-1
		5.1.1	Effectiveness
		5.1.2	Implementability
		5.1.3	Cost
	5.2	SCRE	ENING SUMMARY5-1
		5.2.1 5.2.2	Technologies Not Retained for Further Analysis
6	RCOL		ND DEVELODMENT OF DEMEDIAL ALTEDNATIVES
0.	SCOP	TING AI	ND DEVELOPMENT OF REMEDIAL ALTERNATIVES
	6.1	ON-S	TE AREA SURFACE AND SUBSURFACE SOIL ALTERNATIVES6-1
		6.1.1	On-Site Area Alternative 1: No Action
		6.1.2	On-Site Area Alternatives 2A and 2B: Soil/Fill Excavation to
			Unrestricted Use SCOs with Disposal Off-Site, Demolition and Removal of Both Incinerator Buildings or the Southern Incinerator Building Only 6- 2
		613	On-Site Area Alternative 3: No Action with Site Management 6-3
		6.1.4	On-Site Area Alternatives 4A and 4B: Partial Excavation (Ramp) to
		0.1.1	Commercial Use SCOs. Demolition and Removal of Incinerator
			Building(s), and Re-Grading and Covering of Remaining Impacted Soil
			with a Soil Cover
		6.1.5	On-Site Area Alternatives 5A and 5B: Partial Excavation (Ramp) to
			Commercial Use SCOs, Demolition and Removal of Incinerator
			Building(s), and Re-Grading and Covering of Remaining Impacted Soil
			with Asphalt
		6.1.6	On-Site Area Alternatives 6A and 6B: Soil/Fill Excavation to Commercial Use SCOs with Disposal Off-Site, Demolition and Removal

7.

8.

	(of Both Incinerator Buildings or the Southern Incinerator Building Only 6- 5
6.2	SMOKE	ES CREEK CORRIDOR
	6.2.1 6.2.2	Alternative 1: No Action
	6.2.3	Smokes Creek Alternative 3: Excavation of Asphalt and Contaminated Soil to Unrestricted Use SCOs with Disposal Off-Site
6.3	BAKER	R HALL PROPERTY
	6.3.1 I 6.3.2 I	Baker Hall Property Alternative 1: No Further Action
COST	TING ANI	D EVALUATION CRITERIA
7.1 7.2	COST A CRITEF	ASSUMPTIONS7-1 RIA USED FOR ANALYSIS OF ALTERNATIVES7-1
DETA	AILED AN	NALYSIS OF ALTERNATIVES AND RECOMMENDATIONS
8.1	COMPA	ARISON OF ON-SITE AREA ALTERNATIVES
	8.1.1 0 8.1.2 2 8.1.3 1 8.1.4 1 8.1.5 2 8.1.6 1 8.1.7 0 8.1.8 1 8.1.9 0	Overall Protection of Public Health and the Environment8-2Standards, Criteria, and Guidance8-2Long-Term Effectiveness and Permanence8-2Reduction of Toxicity, Mobility, or Volume of Contamination8-3Short-Term Impacts and Effectiveness8-3Implementability8-3Cost-Effectiveness8-4Land Use8-4Community Acceptance8-4
8.2	COMPA	ARISON OF SMOKES CREEK CORRIDOR ALTERNATIVES
	8.2.1 (8.2.2 S 8.2.3 I 8.2.4 I 8.2.5 S 8.2.6 I 8.2.7 (Overall Protection of Public Health and the Environment8-4Standards, Criteria, and Guidance8-5Long-Term Effectiveness and Permanence8-5Reduction of Toxicity, Mobility, or Volume of Contamination8-5Short-Term Impacts and Effectiveness8-5Implementability8-6Cost-Effectiveness8-6

		8.2.8 8.2.9	Land Use Community Acceptance	8-6 8-6
	8.3	COM	PARISON OF BAKER HALL PROPERTY ALTERNATIVES	8-6
		8.3.1	Overall Protection of Public Health and the Environment	8-6
		8.3.2	Standards, Criteria, and Guidance	8-6
		8.3.3	Long-Term Effectiveness and Permanence	8-7
		8.3.4	Reduction of Toxicity, Mobility, or Volume of Contamination	8-7
		8.3.5	Short-Term Impacts and Effectiveness	8-7
		8.3.6	Implementability	8-7
		8.3.7	Cost-Effectiveness	8-8
		8.3.8	Land Use	8-8
		8.3.9	Community Acceptance	8-8
	8.4	PREF	ERRED COMBINED REMEDIAL ALTERNATIVE FOR THE	
		LACK	XAWANNA INCINERATOR SITE	8-8
9.	REFE	RENCE	ES	9-1
APPE	NDIX A	A: TE	ECHNOLOGY SCREENING LETTER	

APPENDIX B: COSTS

LIST OF FIGURES

Number	Title
1-1	Site location
1-2	Site-related areas
1-3	Existing site features
1-4	Topographic quadrangle map - 1965
2-1	RI inorganic soil results – On-site Area
2-2	RI inorganic soil results – Smokes Creek Corridor
2-3	RI inorganic soil results – Baker Hall Property
2-4	Baker Hall supplemental delineation XRF exceedances for lead and arsenic
2-5	Groundwater inorganic results
2-6	Stormwater outfall, Smokes Creek surface water, and sediment inorganic results
3-1	Interpreted extent of lead in soil/fill
6-1	Arsenic and lead in soil exceedance depth contours On-site Area
6-2	On-site Area Alternative 2A final conditions
6-3	On-site Area Alternative 2B final conditions
6-4	On-site Area Alternatives 4A and 4B final conditions
6-5	On-site Area Alternatives 4A and 4B cross sections
6-6	On-site Area Alternative 5A and 5B final conditions
6-7	On-site Area Alternative 5A and 5B cross sections
6-8	On-site Area Alternative 6A final conditions
6-9	On-site Area Alternative 6A cross section

LIST OF FIGURES (CONTINUED)

Number	Title
6-10	On-site Area Alternative 6B final conditions
6-11	On-site Area Alternative 6B cross conditions
6-12	Arsenic and lead in soil exceedance depth contours, Smokes Creek Corridor
6-13	Smokes Creek Corridor Alternative 2A final conditions
6-14	Smokes Creek Corridor Alternative 2A cross sections
6-15	Smokes Creek Corridor Alternative 2B final conditions
6-16	Smokes Creek Corridor Alternative 2B cross sections
6-17	Smokes Creek Corridor Alternative 3 final conditions
6-18	Smokes Creek Corridor Alternative 3 cross sections
6-19	Arsenic and lead in soil exceedance depth contours, Baker Hall Property
6-20	Baker Hall Property Alternative 2 final conditions

LIST OF TABLES

Number	<u>Title</u>
2-1	Summary of inorganic exceedances - On-site Area
2-2	Summary of soil inorganic concentration exceedances – Baker Hall Property
2-3	Summary of soil inorganic concentration exceedances - Smokes Creek Corridor
5-1	Technology screening matrix
7-1	Alternative cost summary
8-1A	Alternative evaluation summary – On-site Area
8-1B	Alternative evaluation summary - Smokes Creek Corridor
8-1C	Alternative evaluation summary - Baker Hall Property

LIST OF ACRONYMS AND ABBREVIATIONS

μg/L	Microgram(s) per liter
amsl	Above mean sea level
ARARs	Appropriate or relevant and applicable requirements
bgs	Below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
DER	Division of Environmental Remediation
DPW	Department of Public Works
EA	EA Engineering, P.C. and Its Affiliate EA Science and Technology
EPA	United States Environmental Protection Agency
FS	Feasibility study
ft	Foot or feet
ft ²	Square foot or square feet
GRA	General response actions
in.	Inch(es)
IRM	Interim remedial measure
mi	Mile(s)
mg/kg	Milligrams per kilogram
No.	Number
NYCRR	New York Code of Rules and Regulations
NYSDEC	New York State Department of Environmental Conservation
РСВ	Polychlorinated biphenyl
RAO	Remedial action objectives
RCRA	Resource Conservation and Recovery Act
RI	Remedial investigation
SCG	Standards, Criteria, and Guidance
SCO	Soil cleanup objectives
XRF	X-ray fluorescence
yd ³	Cubic yards

1. INTRODUCTION AND PROJECT OVERVIEW

EA Engineering, P.C. and its affiliate EA Science and Technology (EA), under Contract to the New York State Department of Environmental Conservation (NYSDEC) (Work Assignment No. D007624-10) were tasked to perform a remedial investigation (RI) and feasibility study (FS) at the Lackawanna Incinerator site (NYSDEC Site Number (No.) 915206) located in the City of Lackawanna, Erie County, New York (Figure 1-1). The site is listed as a Class "2" site in the State Registry of Inactive Hazardous Waste Sites (list of State Superfund sites), meaning that the site represents a significant threat to public health or the environment, and action is required. The site consists of one operable unit; however, for the purposes of the RI and FS, the Lackawanna Incinerator site has been divided into the following areas (Figure 1-2):

- On-site Area: The incinerator property contains the former incinerator buildings.
- Smokes Creek Corridor: This area includes a recreational path and Smokes Creek, located immediately north and northeast of the On-site Area.
- Baker Hall Property: This area includes the northern, undeveloped portion of the parcel that adjoins the site to the east.

1.1 PURPOSE AND SCOPE

This FS Report has been prepared to develop and evaluate alternatives for remedial action, and determine which alternative is the most protective of public health and the environment, and conforms to relevant and appropriate standards, criteria and guidance (SCGs) for the Lackawanna Incinerator site.

The FS was prepared in accordance with the most recent versions of the *Guidance for Conducting Remedial Investigations and Feasibility Studies under Comprehensive Environmental Response, Compensation, and Liability Act* (United States Environmental Protection Agency [EPA] 1988) and Division of Environmental Remediation (DER)-10, *Technical Guidance for Site Investigation and Remediation* (NYSDEC 2010), and focused on remedial alternatives proven effective at addressing site-related contamination.

1.2 REPORT ORGANIZATION

The FS report has been organized as follows:

- *Section 1*—Introduction and Project Overview
- Section 2—Summary of RI and Exposure Assessment
- Section 3—Development of Remedial Action Objectives (RAOs)
- Section 4—General Response Actions (GRAs)
- Section 5—Identification and Screening of Technologies
- Section 6—Scoping and Development of Remedial Alternatives
- *Section* 7—Costing and Evaluation Criteria

- Section 8—Detailed Analysis of Alternatives and Recommendations
- Section 9—References.

1.3 BACKGROUND

1.3.1 Lackawanna Incinerator Site Location

The Lackawanna Incinerator site is located at 2960 South Park Avenue in the City of Lackawanna, Erie County, New York. The incinerator area is a 2.5-acre area, partially bounded by a perimeter fence, situated within a larger, city-owned parcel of land. Main access to the site is from Reddon Street, off of South Park Avenue. The site's main features are two brick multi-story buildings that housed municipal solid waste incinerators (the southern and northern buildings), and a large soil ramp that was used to access the third floor of the northern building (Figure 1-3). The remainder of the site is generally open space. The southern portion of the property consists primarily of an unpaved area with a framed shed that is currently used to house equipment for the City of Lackawanna Department of Public Works (DPW).

The site is located in a mixed-use area including industrial, commercial, and residential properties. The property is bounded to the west by the Lackawanna Veterans Stadium, to the south by the remaining area of the DPW property, to the east by a parcel (the northern area which is undeveloped) owned by the Baker Hall Victory Services, and to the north by a paved walking path open to the public that runs parallel to the southern bank of Smokes Creek. Numerous single-family residential properties are located south and southwest of the site. Holy Cross Cemetery is located north of the site, on the northern side of Smokes Creek.

1.3.2 Lackawanna Incinerator Site History

The incinerators were primarily used to burn municipal trash, although some medical waste from Our Lady of Victory Hospital, was intermittently burned (Malcolm Pirnie 2005). Operations at the site began in 1927 at the southern incinerator building (Figure 1-3). The southern incinerator was decommissioned in 1950, and operations shifted to a newly constructed replacement incinerator located in the north-central portion of the site. The first floor of the southern incinerator was filled with ash material after it was decommissioned in 1950.

The northern incinerator building is three stories tall. During operation, garbage trucks entered the third floor, via two overhead garage doors, and dumped material into the incinerators located on the second floor. Following combustion, ash from the incinerators was loaded into dump trucks that entered the ground floor on the western side of the building and exited to the east. Dump trucks accessed the third floor of the incinerator via a soil ramp. Initially, the ramp was constructed from a mix of soil and steel foundry slag. The ramp was widened through the addition of street sweepings, and discarded refractory brick from the incinerator chimneys following routine repair and maintenance activities (Malcolm Pirnie 2005). Operation of the northern incinerator ceased in 1980.

1.3.3 Current Land Use of Site and Adjoining Areas

On-site Area

The current primary use of the site is for materials staging and equipment/vehicle storage for the City of Lackawanna's DPW facilities, which adjoins the site to the south. Piles of waste road material, soil, and mulch, as well as excess piping, chain-link fencing, brick, cinder blocks, and scrap metal, are located throughout the site. A small shed structure, located along the southern site boundary, is used for storage

The main (second) floor of the southern incinerator was used as a woodworking shop until 2012, when the City of Lackawanna Department of Buildings and Codes condemned the southern incinerator, due in part to brick failure on the incinerator stack. The first floor of the northern incinerator is currently used by the City Animal Control Officer for the temporary caging of animals. The second floor contains the intact incinerator equipment for two incinerator trains, in addition to some automotive parts and scrap metal. The third floor currently contains truck parts, automotive repair tools, and approximately a dozen barrels with unknown contents which remain from a former period of use as an auto body shop. Various chemicals and cleaners are stored throughout the northern building.

Smokes Creek Corridor

The approximately 5.5-acre Smokes Creek Corridor is adjacent to the north of the On-site Area and Baker Hall Property, and is separated from these areas by chain-link fencing. Smokes Creek Corridor encompasses the southern bank of the north branch of Smokes Creek including a paved walking path which runs approximately 2,200 feet (ft) along the southern bank of Smokes Creek. Public access to the paved walking path is at its western extent, near the Lackawanna Veterans Stadium entrance, and at its eastern extent, through a park owned by the City of Lackawanna.

Baker Hall Property

The 17-acre Baker Hall Property, which includes the Baker Victory Services Orphan Home and Intermediate Care Facilities for the developmentally disabled, is located immediately east and southeast of the site. The northern portion of the Baker Hall Property, approximately 10 acres, is currently an overgrown vacant field with emergent woods, while the remaining southern portion of the property includes residential group homes.

1.3.4 Physiography

The site is located within the Erie-Ontario Lowlands physiographic province and is within the United States Geological Survey Buffalo SE, New York, 7.5-minute topographic quadrangle map, dated 1965 (Figure 1-4). The nearest surface water feature is Smokes Creek, which is adjacent to the paved walking path north of the site. Smokes Creek flows west approximately 2.7 miles (mi) until it discharges to Lake Erie.

A topographic survey of the site and adjoining areas was completed during the RI field activities. Site elevations range from approximately 594 to 615 ft above mean sea level (amsl). The natural grade at the site, prior to ramp construction, was generally level, with elevations ranging from about 590 to 593 ft amsl, based on historical topographic maps. North of the site, the ground surface elevation along the paved walking path is generally level at 592 ft amsl, and slopes down to Smokes Creek with a surface water elevation of approximately 580 ft amsl. A relatively narrow floodplain terrace (approximately 10-ft wide) is present from the water's edge to approximately 582 ft amsl.

1.3.5 Site Geology

Overburden at the site consists of fill material underlain by Pleistocene glaciolacustrine deposits. Native material at the site is overlain by fill materials consisting of reworked silt and clay intermixed with varying amounts of slag and gravel, as well as trace amounts of glass, cinders, brick, and ash. A review of the geologic map of New York, Niagara Sheet published by the University of the State of New York, the State Education Department, dated 1970, identifies the native material underlying the site as glaciolacustrine deposits overlying shale and mudrock of the Levanna Shale Member of the Skaneateles Formation.

The observed fill material consisted of a mix of sand, gravel, silt, clay, glass, ash, cinders, slag, wood, brick, coal, and metal fragments. The fill material was typically dense and ranged from dry to moist. In some on-site and adjacent off-site areas a portion of the fill material is likely derived from former incinerator operations, based on the presence of cinders or gravel-sized rounded glass (that appears to have been melted and subsequently hardened).

Glaciolacustrine deposits encountered in soil borings completed during the RI consisted primarily of reddish brown to gray laminated silt, clay, silty clay, and clayey silt of moderate to high plasticity. Consistency of the unit decreased from hard/stiff to softer with depth due to an increase in moisture content with depth. Horizontal and vertical laminations and fractures were observed in the glaciolacustrine deposits. Lenses containing varying amounts of fine to very fine sand were encountered in some borings, but were not consistent throughout the site. Till consisting of clay and silt with some fine sand and gravel was encountered at one location near the northwestern On-site Area boundary. Bedrock was not observed in any of the borings installed to a maximum depth of 28 ft below ground surface (bgs) during the RI or previous investigations.

1.3.6 Site Hydrology/Hydrogeology

Surface water drainage at the site flows radially from the elevated fill ramp to drainage ditches and two stormwater catch basins, which drain northward into Smokes Creek. The northern incinerator has a French drain that may be connected to this storm system. A third outfall located north of the adjacent Baker Hall Property discharges to Smokes Creek. Historically, the incinerators were quenched with water after a batch-combustion took place. The associated wastewater reportedly ran into a drain system, potentially entering the storm sewer network and eventually Smokes Creek. Smokes Creek generally flows west approximately 2.7 mi downstream to its discharge point at Lake Erie.

Shallow groundwater flow at the site is generally north towards Smokes Creek. The local water table exists within the underlying glaciolacustrine deposits from approximately 6 to 10 ft bgs, excluding the area of the fill mound. Saturated soil was observed at a depth of approximately 10 ft bgs in the soil ramp, which may be indicative of perched water in the ramp area. The glaciolacustrine silt and clay serves as a confining unit.

2. SUMMARY OF REMEDIAL INVESTIGATION AND EXPOSURE ASSESSMENT

The following sections briefly summarize the environmental impacts at the Lackawanna Incinerator site as determined during the RI (EA 2014). Media that were evaluated during the RI included surface and subsurface soil/fill material within all three areas (On-site Area, Smokes Creek Corridor, and Baker Hall Property), as well as the Lackawanna Veterans Stadium (located to the west of the site), On-site Area groundwater and stormwater, and Smokes Creek surface water/sediment.

This section is organized by area and media of potential concern. The impacts associated with the environmental media are based on analytical results, and their comparison with the appropriate SCGs based on site use:

- Soil—6 New York Code of Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs Soil Cleanup Objectives (SCOs) (NYSDEC 2006).
- Surface Water and Groundwater—NYCRR Part 703.5 Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations, as presented in the Division of Water Technical and Operational Guidance Series 1.1.1, (NYSDEC 1998, as amended).
- Sediment—Screening and Assessment of Contaminated Sediment (NYSDEC 2014).

A full analysis of all data collected during the RI is included in the RI Report (EA 2014). However, the results of the Lackawanna Veterans Stadium soil and groundwater sampling activities contained no exceedances of the applicable SCOs; therefore, Lackawanna Veterans Stadium results are not discussed further in this report.

2.1 SURFACE AND SUBSURFACE SOIL

RI soil delineation efforts were driven based on current zoning and future anticipated use to assess the nature and extent of site-related contamination in each of the three areas: On-site Area, Smokes Creek Corridor, and Baker Hall Property. RI data were compared to SCOs that were selected to identify areas that may require remediation sufficient for the current and future anticipated use of the property, which may also require institutional controls (e.g., land-use restrictions) as applicable to the on-site area. The supplemental SCOs were selected based on land use and background concentrations. Background concentrations of lead for the site were identified based on six surface soil samples collected from east and west of the site. Background concentrations of lead ranged from 38.2 to 148 milligrams per kilogram (mg/kg), which exceeds the unrestricted use SCO of 63 mg/kg.

Area of Concern	Applicable SCO (Based on Current Land Use)
On-site Area	Commercial Use
Smokes Creek Corridor	Commercial Use
Baker Hall Property	Restricted Residential Use

The following table identifies the supplemental SCOs selected for each area of concern.

2.1.1 On-site Area

Surface and subsurface soil results from the RI indicate that several inorganic constituents are present at concentrations that exceed Commercial SCOs (NYSDEC 2010) in soil/fill material at the site. Inorganic constituents that exceed Commercial SCOs include arsenic, barium, cadmium, copper, cyanide, lead, and nickel (Table 2-1). In general, the most elevated concentrations were present in the ramp area where the ash/fill materials are thickest, and in the area north of the northern incinerator building (Figure 2-1). Soil concentrations that exceeded Commercial SCOs in the On-site Area were generally observed at depths ranging from 1 to 3 ft bgs. In the ramp area, inorganic soil concentrations greater than Commercial SCOs were observed at depths ranging from approximately 14 ft bgs (SB-11) to 22 ft bgs (SB-13).

2.1.2 Smokes Creek Corridor

Surface and subsurface soil results from the RI indicate that incinerator-related inorganic constituents (primarily arsenic, barium, cadmium, copper, and lead) were present at concentrations that exceed Commercial Use SCOs (NYSDEC 2006, 2010) in the soil/fill material at the Smokes Creek Corridor (Table 2-3). The site-related contamination in the Smokes Creek Corridor was observed in the soil/fill material adjacent to the recreational path, which adjoins the northern boundary of the On-site Area and the Baker Hall Property (Figure 2-2). Soil contamination was identified throughout the recreational path which is approximately 2,200-ft long.

2.1.3 Baker Hall Property

Surface and subsurface soil results from the RI indicated that a similar suite of inorganic constituents that were observed in the On-site Area were also present at concentrations that exceeded Restricted Residential SCOs (NYSDEC 2006) in the soil/fill material at the Baker Hall Property (Table 2-2). The incinerator-related contamination at the Baker Hall Property is associated with soil/fill material, which was thickest in the northwestern corner of the property where it was observed to extend from the ground surface to as much as 4 ft bgs (Figures 2-3 and 2-4). The impacted soil/fill thinned to approximately 2-ft thick to the south along the western property line, which is shared with the former incinerator site, and along the northern property line, which is shared with the creek path. Following completion of the RI, an interim remedial measure (IRM) was completed which involved removal of soil/fill exceeding Restricted Residential SCOs. This is described in Section 6.3 of this report.

2.2 GROUNDWATER

The RI groundwater program included the installation of seven groundwater monitoring wells, and the completion of two rounds of groundwater sampling. The following table provides a summary of the frequency that groundwater concentrations exceeded the groundwater quality standards.

	Groundwater Standards and	No. of			
	Guidance Values ^(a)	Exceedances /	Concentration	Location of Maximum	
Constituents	(µg/L)	No. of Samples	Range (µg/L)	Concentration	
	N	ovember 2012 San	npling Event		
Antimony	3	6/7	4.56-6.08	MW-03A (west of ramp)	
Chromium	50	1/7	293	MW-04 (upgradient)	
Iron	300	6/7	728-15,000	MW 07 (downgradiant)	
Lead	25	1/7	30.5	MW-07 (downgradient)	
Magnesium	35,000	6/7	35,100-53,200	MW-03A (west of ramp)	
Manganese	300	3/7	338-364	MW-04 (upgradient)	
Nickel	100	2/7	123–195		
Sodium	20,000	7/7	27,400-214,000	MW-03A (west of ramp)	
		April 2013 Samp	ling Event		
Arsenic	24	2/7	30.2–43.7	MW-07 (downgradient)	
Iron	300	7/7	653-14,200	MW 08 (downgradiant)	
Magnesium	35,000	6/7	41,700-72,800	MW-08 (downgradient)	
Sodium	20,000	7/7	33,400-254,000	MW-03A (west of ramp)	
(a) NYSDEC 1998, as amended.					
NOTE: $\mu g/L = Micrograms per liter$					
Inorganic constituents analyzed by EPA Method 6000/7000 series.					
Table includes only those target analyte list metals that exceeded the standard or guidance value in					
one or more samples.					

Elevated concentrations of arsenic and lead, which are two of the incinerator-related inorganic constituents (arsenic, barium, cadmium, copper, and lead), were detected in monitoring well (MW-07) located along the downgradient On-site Area boundary, north of the ramp (Figure 2-5). Each compound was only detected in one of two monitoring events; however, their presence may indicate that a limited amount of leaching of inorganic compounds is occurring from the On-site Area impacted soil. Several other inorganic constituents (antimony, chromium, iron, magnesium, manganese, nickel, and sodium) exceeded Class GA standards and guidance values in both On-site Area site monitoring wells and the background monitoring well, which suggests that those constituents are unlikely to be related to On-site Area impacted soil.

2.3 SURFACE WATER AND SEDIMENT

Surface water and sediment samples collected during the RI within the Smokes Creek channel do not appear to be impacted by site-specific contaminants (Figure 2-6). Aluminum (surface water) and nickel (sediment) were the only constituents detected at concentrations exceeding the surface water standards and guidance values or sediment guidance values, respectively (NYSDEC 1998,

2006, and 2010). Neither aluminum nor nickel was identified as an incinerator-related contaminant of concern.

2.4 STORMWATER OUTFALLS

Two inorganic constituents (cyanide and selenium), which are likely related to the On-site Area soil contamination, were detected at concentrations that slightly exceeded Class C surface water standards in stormwater samples collected from the two outfalls located north of the former incinerator site. These outfall pipes, which appear to be connected to the stormwater drainage system, discharge to the floodplain (i.e., above the normal creek stage).

The surface soil samples collected downslope of the stormwater outfall locations that discharge from the On-site Area did not contain any inorganic constituents in exceedance of Commercial Use SCOs.

2.5 HUMAN HEALTH EXPOSURE ASSESSMENT

A qualitative assessment of human health exposure pathways for all impacted media was completed using analytical data obtained during the RI. Media evaluated include surface and subsurface soil/fill material, groundwater, surface water, and sediment. The exposure assessment concluded that surface and subsurface soil/fill has the greatest potential to impact current and future human receptors, due to concentrations of contaminants and exposure pathways including incidental ingestion and dermal absorption. Current potentially exposed populations include City of Lackawanna DPW workers, site visitors, and recreationists utilizing the Smokes Creek recreational path or fishing. Future potentially exposed populations include construction workers who could have direct contact with surface and subsurface soil (incidental ingestion and dermal absorption). There is also a potential for inhalation of contaminant-laden particulates by construction workers.

Although metals were detected in groundwater samples at concentrations exceeding the NYSDEC Class GA criteria, there is currently no groundwater usage at or in the immediate vicinity of the site (e.g., potable or industrial wells), and no expected future use of groundwater, as connection to a public water supply is available. Site groundwater flows to the north and discharges to Smokes Creek. Elevated concentrations of metals were observed in sediment samples collected from Smokes Creek, but the concentrations were similar to the range detected in background soil samples which indicates that they might be ubiquitous in the area, and not a result of migration from on-site soil contamination. Surface water in Smokes Creek did not contain concentrations of incinerator-related contaminants exceeding SCGs, as discussed in Section 2.3.

3. DEVELOPMENT OF REMEDIAL ACTION OBJECTIVES

Goals for the remedial program have been established through the remedy selection process stated in 6 NYCRR Part 375 (NYSDEC 2006). The remedial goal for all remedial actions is considered to be the restoration of the site to the pre-disposal/pre-release conditions to the extent practicable and legal. RAOs are defined as the operable unit or media-specific objectives for the protection of public health and the environment, and are developed based on contaminant-specific SCGs (described in Section 2) to address contamination identified at a site. Although multiple media were evaluated during the RI, including surface water, sediment, groundwater, and indoor air, only soil (surface and subsurface) was determined to be impacted.

Soil	Specific RAOs
RAOs for Public Health	• Prevent ingestion/direct contact with contaminated soil.
Protection	• Prevent inhalation exposure to contaminants volatilizing
	from soil.
RAOs for Environmental	• Prevent migration of contaminants that would result
Protection	surface water or sediment contamination.
	• Prevent impacts to biota from ingestion/direct contact
	with soil causing toxicity or impacts from
	bioaccumulation through the terrestrial food chain.

3.1 MEDIA CLEANUP GOALS

The media cleanup goals for soil are based on New York State SCGs, the site-specific risk assessment, contaminants of concern, site characteristics, and feasible actions. The contaminants of concern for soil at the Lackawanna Incinerator site identified during the RI are inorganic constituents, primarily arsenic, barium, cadmium, copper, and lead. These goals can be achieved by either removing the soil contamination, or preventing impacts to human or ecological receptors via ingestion/direct contact with impacted soil.

The proposed cleanup goals for soil/fill at the Lackawanna Incinerator site are specified by area in the following table.

	On-Site Area and Smokes Creek		
	Corridor	Baker Hall Property	All Areas
Constituents	Commercial	Restricted Residential	Unrestricted Use
Arsenic	16	16	13
Barium	400	400	350
Cadmium	9.3	4.3	2.5
Chromium	1,500	180	30
Copper	270	270	50
Cyanide, Total	27	27	27
Lead	1,000	400	63
Mercury	2.8	0.81	0.18
Nickel	310	310	30
Selenium	1,500	180	3.9
Silver	1,500	180	2
Zinc	10,000	10,000	109
Note: All SCOs are	provided in parts per milli	on (ppm).	

3.2 EXTENT OF IMPACT TO ENVIRONMENTAL MEDIA

The extent of soil that exceeded SCOs (based primarily on arsenic and lead concentrations) is shown on Figure 3-1. The estimated volume of fill material by area is summarized in the following table.

		Estimated Volume of Impacted Material	
Area of Concern	Soil Cleanup Objective	Cubic Yards (yd ³)	Tons ^(a)
On-site Area	Commercial	23,100	37,000
	Unrestricted Use	30,100	48,200
Smokes Creek Corridor	Commercial	2,450	4,000 ^(b)
	Unrestricted Use	7,100	11,450 ^(b)
Baker Hall Property ^(c)	Restricted Residential	7,200	11,550
	Unrestricted Use	16,450	26,300

(a) Estimates assume that 1 yd^3 of material is approximately equal to 1.6 tons.

(b) Smokes Creek Corridor volume includes asphalt; assumes 1 yd³ of asphalt is approximately equal to 1.9 tons.

(c) Refined estimate based on the supplemental delineation activities conducted on the Baker Hall Property.

3.3 POTENTIALLY APPLICABLE OR RELEVANT AND APPOPRIATE REQUIREMENTS

Applicable or relevant and appropriate requirements (ARARs) are local, state, and federal regulations, including environmental laws and regulations that are used in the selection of remedial alternatives, as well as other non-environmental laws and regulations, such as the Occupational Safety and Health Act. The development and evaluation of remedial alternatives

presented in Section 6 include a comparison of alternative site remedies to ARARs. The recommended remedial action for the site must satisfy all ARARs unless specific waivers have been granted.

EPA defines "applicable" and "relevant and appropriate" in the revised National Contingency Plan, codified at 40 Code of Federal Regulations (CFR) 300.5 as follows:

- *Applicable Requirements*—substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstances at a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site.
- *Relevant and Appropriate Requirements*—standards of control that address problems or situations sufficiently similar to those encountered at a CERCLA site that their use is well suited to the particular site.

To determine whether a requirement is relevant and appropriate, characteristics of the remedial action, the hazardous substances present, and the physical characteristics of the site must be compared to those addressed in the statutory or regulatory requirement. In some cases, a requirement may be relevant, but not appropriate. In other cases, only part of a requirement will be considered relevant and appropriate. When it has been determined that a requirement is both relevant and appropriate, the requirement must be complied to the same degree as if it were applicable (EPA 1988).

ARARs for remedial action alternatives at the Lackawanna Incinerator site can be generally classified into one of the following three functional groups: chemical, action, or location-specific.

To-be-considered materials (e.g., federal/state criteria, advisories, and guidance values) are non-promulgated advisories or guidance issued by federal or state government, which are not legally binding, and therefore, do not have the status of potential ARARs:

- Federal criteria, advisories, and guidance documents
- State of New York criteria, advisories, and guidance documents.

Federal and state guidance documents or criteria that are not generally enforceable, but are advisory, do not have the status of potential ARARs. Guidance documents or advisories to be considered in determining the necessary level of cleanup for protection of human health or the environment may be used where no specific ARARs exist for a chemical or situation, or where such ARARs are not sufficient to afford protection.

Federal and state requirements for soil, water, and air were considered to determine if they were ARARs, based on site characteristics, site location, and the alternatives considered. The

following sections summarize the specific federal, state, and local ARARs for the remedial actions that may be taken at the Lackawanna Incinerator site, and for the types of technologies that will be developed into remedial alternatives. As identified at the beginning of Section 3, soil is the only impacted media at the Lackawanna Incinerator site; in addition, the contaminants of concern identified during the RI consist of inorganic constituents, primarily arsenic and lead. Thus, each of the following ARARs has been chosen for its potential applicability or relevance and appropriateness.

3.3.1 Chemical-Specific Applicable or Relevant and Appropriate Requirements

Chemical-specific requirements are established health- or risk-based numerical values or methodologies that establish cleanup levels or discharge limits in environmental media for specific substances or pollutants. Cleanup standards for impacted soil are defined in 6 NYCRR Part 375 Environmental Remediation Programs with SCOs specified based on current and/or future land use.

3.3.2 Action-Specific Applicable or Relevant and Appropriate Requirements

Action-specific ARARs set controls or restrictions on the design, implementation, and performance levels of activities related to the management of hazardous substances, pollutants, or contaminants. The potential action-specific ARARs include:

- *Occupational Safety and Health Act, 29 CFR 1910*—Site activities will be conducted under appropriate Occupational Safety and Health Act standards.
- Department of Transportation Rules for Hazardous Materials Transport, 49 CFR, Parts 107, 171.1-500—Addresses requirements for marking, manifesting, handling, and transport of hazardous materials; applicable if offsite treatment or disposal of wastes is required
- *Solid Waste Management Facilities, 6 NYCRR Part 360*—Provides standards and regulations for permitting and operating solid waste management facilities
- *Waste Transporter Permits, 6 NYCRR Part 364*—Provides standards and regulations for waste transporters
- *Hazardous Waste Management System: General, 6 NYCRR Part 370*—Provides standards and regulations for the state hazardous waste management system
- *Identification and Listing of Hazardous Wastes, 6 NYCRR Part 371*—Provides standards and regulations for the identification and listing of hazardous wastes
- Hazardous Waste Manifest System and Related Standards for Generators, Transporters, and Facilities, 6 NYCRR Part 372—Provides standards, regulations, and

guidelines for the manifest system, as well as additional standards for generators, transporters, and facilities

- *Resource Conservation and Recovery Act (RCRA) Toxicity Characteristic Criteria, 40 CFR Part 261.24*—All waste generated during the removal alternative will be characterized and handled per RCRA regulations, as implemented by WAC 173-303.
- *Land Disposal Restrictions, 6 NYCRR Part 376*—Pertains to alternatives that require land disposal of hazardous wastes.

3.3.3 Location-Specific Applicable or Relevant and Appropriate Requirements

Location-specific ARARs must be considered when developing alternatives because these types of ARARs may affect or restrict remedial activities. Generally, location-specific requirements serve to protect the individual site characteristics, resources, and specific environmental features. The potential location-specific ARARs include:

- *Protection of Waters, 6 NYCRR Part 608*—Provides standards, regulations, and guidelines for the protection of waters within the state
- Freshwater Wetlands Permitting, Requirements, Classification, and Implementation, 6 NYCRR Parts 662 through 665—Provides standards, regulations, and guidelines.

4. GENERAL RESPONSE ACTIONS

In general, remedial technologies fit into one or more category of GRAs. GRAs are generic, medium-specific, remedial actions that will satisfy the RAOs discussed earlier. GRAs may include no action, institutional controls, containment, removal, treatment, disposal, monitoring, or a combination thereof (EPA 1988). The development of remedial alternatives for this FS begins with the identification of GRAs that can meet RAOs. These GRAs are then screened based on their effectiveness, implementability, and cost, and developed into remedial alternatives to address impacted media at the site (i.e., soil). GRAs for soil at the Lackawanna Incinerator site (including no action, site management, containment, removal, treatment, and disposal) are detailed in the following sections.

4.1 NO ACTION

The no action alternative is included for use as the baseline alternative against which other remedial alternatives are compared.

4.2 INSTITUTIONAL CONTROLS

Site management (also known as institutional controls) involves the placement of a restriction on the use of property that limits human or environmental exposure, provides notice to any individual who might come in contact with the site, or prevents actions that would interfere with the effectiveness of a remedial program, or with the effectiveness and/or integrity of site management activities at or pertaining to a site.

4.3 REMOVAL

Physical removal of impacted fill would be conducted by excavation, using standard construction equipment (i.e., excavators) to remove material from the ground and load it into transport mechanisms (i.e., trucks) for off-site treatment or disposal.

4.4 TREATMENT

Treatment subjects contaminants to processes that alter their state, transform them to innocuous forms, or immobilize them. Potentially applicable treatment technologies for soil at this site include *in situ* biological treatment, *in situ* soil flushing, *in situ* or *ex situ* solidification, *in situ* or *ex situ* chemical stabilization, *ex situ* acid leaching, and *ex situ* vitrification.

- Biological treatment involves the use of plants to treat the impacted media. This can be achieved through phytoextraction, which involves the physical removal of contaminants from the soil through plant.
- Soil flushing is the use of water or other suitable aqueous solution to flush contaminants from soil. The fluid is then extracted *in situ*.

- Stabilization is achieved through the use of amendments that are mixed into the soil matrix, and reduce the toxicity and mobility of the contaminants. This results in the production of a monolith of waste with high structural integrity, and can be done *in situ* or *ex situ*.
- Acid leaching is the use of potentially hazardous acid to remove inorganic contaminants from soil.
- Vitrification is the use of electric current to convert contaminants to an inert, solid form. Following vitrification, the contaminants are trapped within the treated area, eliminating mobility.

4.5 DISPOSAL

Disposal involves transporting the soil to a landfill. The soil would either be placed in a lined landfill cell or used for daily cover, based on characterization results.

4.6 CONTAINMENT

Contaminated soil and fill could be contained by installing an impermeable cover over the waste mass. The existing physical setting would require consolidation and grading of on-site fill.

4.7 ELIMINATION OF EXPOSURE

Elimination of exposure to contaminated soil and fill would be accomplished by installing a soil cover layer over the waste mass. As with containment, the existing physical setting would require consolidation and grading of on-site fill.

5. IDENTIFICATION AND SCREENING OF TECHNOLOGIES

The potentially applicable technologies identified earlier are screened using the process defined in DER-10, Technical Guidance for Site Investigation and Remediation (NYSDEC 2010). Three preliminary screening criteria (i.e., effectiveness, implementability, and cost) were used to screen the remedial technologies identified earlier for each media of concern.

5.1 SCREENING CRITERIA

5.1.1 Effectiveness

Effectiveness is a measure of the ability of an option to: (1) reduce toxicity, mobility, or volume of contamination, (2) minimize residual risks, (3) afford long-term protection, (4) comply with ARARs, (5) minimize short-term impacts, and (6) achieve protectiveness in a limited duration. Technologies that offer significantly less effectiveness than other proposed technologies may be eliminated from the alternative development process. Options that do not provide adequate protection of human health and the environment likewise may be eliminated from further consideration.

5.1.2 Implementability

Implementability is a measure of the technical feasibility and availability of the option and the administrative feasibility of implementing it (e.g., obtaining permits for off-site activities, right-of-ways, or construction). Options that are technically or administratively infeasible or that would require equipment, specialists, or facilities that are not available within a reasonable period may be eliminated from further consideration.

5.1.3 Cost

Qualitative relative costs for implementing the remedy are considered. Technologies that cost more to implement, but that offer no benefit in effectiveness or implementability over other technologies, may be excluded from the alternative development process.

5.2 SCREENING SUMMARY

5.2.1 Technologies Not Retained for Further Analysis

From the list of technologies potentially applicable for remediation of the chemicals and media of concern at this site, a few technologies were excluded from further consideration because they were considered ineffective, not implementable at this site, or too costly relative to the other technologies under consideration (Table 5-1). The reasons for exclusion are detailed below.

Phytoremediation was not retained because it would require a long time-frame with limited effectiveness. The site is currently used by the DPW and would need continued availability for use. The Smokes Creek Corridor is currently used as a recreational path and would need to be restored as a recreational path following remediation. The Baker Hall Property is currently

under development. In addition, phytoremediation is generally used for lower levels of contamination than what exists at the site.

Solidification was not retained because it would lead to an increase in volume of fill and post-remediation use for this expansion is limited. Also, typically solidification is used *in situ* for the stabilization of deep contamination that is impacting groundwater. The majority of the contamination on-site is above grade and groundwater does not appear to be impacted by site related contamination.

Soil flushing was not retained due to the high relative cost and unknown level of effectiveness. Soil flushing is an emerging technology which has not been widely implemented.

Acid leaching and vitrification were not retained due to difficulty of implementation. These technologies also require a long time-frame for implementation with a significantly higher cost than other retained technologies.

5.2.2 Technologies Retained for Further Analysis

Technologies that will be retained for further evaluation are removal, disposal, and containment. Removal (full or partial) would be implemented through the excavation of impacted soil using an excavator and some hand digging (i.e., within the gas line right-of-way on the Baker Hall Property). Disposal would be implemented through loading and transporting excavated soil to appropriate disposal facilities; soil would be characterized and accepted by the disposal facility prior to transport. Containment would be implemented through the placement of a 1.5–2 ft soil cover (depending on site use) or asphalt pavement over remaining impacted soil.

6. SCOPING AND DEVELOPMENT OF REMEDIAL ALTERNATIVES

Scoping for the FS was completed based on correspondence between EA and the NYSDEC. EA performed the alternative comparison in accordance with DER-10 (NYSDEC 2010) and the EPA publication *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA* (EPA 1540IG-891004) (EPA 1988). The results of the technology screening process were summarized in a letter dated January 24, 2014 from EA to NYSDEC; a copy of the letter is provided in Appendix A. The screening of alternatives was designed to provide a basis for an overall assessment of applicable technologies based on impacted media identified at the site and related areas during the RI.

The scoping and development of the technologies/alternatives selected during the previous step of the FS process and during later discussions with NYSDEC are described below. Separate sets of alternatives are presented for each area; however, the proposed remedy for this site will take a comprehensive approach, combining the recommended remedy for all three areas. There are known dependencies on adjacent parcels for each area, which will be acknowledged and discussed further in the presentation of the recommended comprehensive remedy in Section 8.4.

6.1 ON-SITE AREA SURFACE AND SUBSURFACE SOIL ALTERNATIVES

The extent and volume of soil requiring remediation was determined based on data collected during the RI (EA 2014) (Figure 6-1). The Commercial Use remedial action area encompasses the ramp that leads up to the northern incinerator building, as well as surface and shallow subsurface soil to the east and northeast of the building. The Unrestricted Use remedial action area encompasses the Commercial Use area and additional shallow soil west of the ramp.

Five alternatives have been considered for this area, including a "No Action" alternative as Alternative 1. With the exception of Alternative 1, each alternative is presented with two options: Option A includes the demolition and disposal of both incinerator buildings, while Option B includes the demolition and disposal of only the southern incinerator building. Under Option B, the northern building would remain available for use by the DPW; therefore, access to the western entrance of the building would need to be maintained.

Further delineation is recommended within the On-site Area to determine the final impacted area limits. A pre-design investigation and a 20 percent volume contingency have been built into each alternative to account for this.

6.1.1 On-Site Area Alternative 1: No Action

The no action alternative is evaluated as a procedural requirement and as a basis for comparison. This alternative would leave the area in its present condition.

6.1.2 On-Site Area Alternatives 2A and 2B: Soil/Fill Excavation to Unrestricted Use SCOs with Disposal Off-Site, Demolition and Removal of Both Incinerator Buildings or the Southern Incinerator Building Only

On-site Area Alternative 2 involves excavation and removal of the ramp that leads up to the northern incinerator building, removal of both incinerator buildings (Alternative 2A) or only the southern incinerator building (Alternative 2B). The excavated area would be restored to smooth grades using clean fill from an off-site source, eliminating the ramp and depressions near the northern incinerator building for Alternative 2A, or sloping down toward the storm drain west of the northern incinerator building for Alternative 2B. Approximately 30,100 yd³ of impacted soil would be removed from the site under these Alternatives. Figure 6-2 depicts the proposed excavation extents under Alternative 2A. Figure 6-3 shows the proposed excavation extents under Alternative 2B.

Pre-design activities would include:

- A storm sewer investigation would take place at the site prior to the remedial design process of this alternative. Such an investigation would involve mapping the existing storm sewer west of the northern incinerator building to determine inputs to the storm sewer outside of the proposed cover footprint, to determine whether or not the storm sewer can be decommissioned and removed, or if upgrades would be required to maintain stormwater flow.
- A pre-design delineation investigation would be completed to verify the horizontal extent of soil impacts using x-ray fluorescence (XRF) field analyses.
- The incinerator building(s), as well as materials within the building(s), would be characterized for disposal. Characterization would include sampling for polychlorinated biphenyls (PCBs), asbestos, and lead, as well as sampling the ash that is contained within the bottom floor of the southern incinerator building.

When confirmation sample analytical results indicate all soil containing lead exceeding Unrestricted Use SCOs has been removed, the site would be restored with the following:

- Clean fill from an off-site source would be used to achieve final grades, consisting of a gradual slope to the north (Alternative 2A, Figure 6-2) or toward the storm drain west of the northern incinerator building (Alternative 2B, Figure 6-3). The area west of the northern incinerator would be returned to pre-remediation grades for both alternatives.
- Final restoration would include 6 inches (in.) of topsoil and seed over all disturbed areas. For Alternative 2B, the asphalt road would be replaced.

Final grading for Alternative 2A would require approximately 13,000 yd³ of clean backfill to be transported to the site in order to bring the elevations level with surrounding elevations; the

depressions from the northern incinerator building and access drive would need to be filled in to prevent ponding and promote positive drainage. Final grading for Alternative 2B would require only 9,800 yd³ of clean backfill because these depressions would not be filled in, and stormwater runoff could be routed to the existing storm drain west of the northern incinerator building.

6.1.3 On-Site Area Alternative 3: No Action with Site Management

On-site area Alternative 3 involves no physical work being done at the site. Site management would involve placement of an environmental easement on the site to provide an effective and enforceable means of limiting the use of a property to a level that has been determined to be safe.

6.1.4 On-Site Area Alternatives 4A and 4B: Partial Excavation (Ramp) to Commercial Use SCOs, Demolition and Removal of Incinerator Building(s), and Re-Grading and Covering of Remaining Impacted Soil with a Soil Cover

On-site Area Alternative 4 involves excavation and removal of part of the ramp that leads up to the northern incinerator building, removal of both incinerator buildings (Alternative 4A) or only the southern incinerator building (Alternative 4B), re-grading, and covering of remaining impacted soil/fill exceeding Commercial SCOs with a soil cover (Figures 6-4 and 6-5). The former ramp area would be graded with a gentle slope toward the Smokes Creek Corridor area under Alternative 4A, or towards the existing storm drain to the west of the northern incinerator building under Alternative 4B. The soil cover would consist of 6 in. of clean soil and 6 in. of clean topsoil to prevent human exposure to remaining impacted soil. A demarcation layer of geotextile would be placed on top of the remaining impacted soil prior to placement of the soil cover. Installation of the soil cover would prevent exposure; however, because contamination would remain on-site under this alternative, a Land Use Restriction in the form of an Environmental Easement, as well as long-term monitoring would be necessary.

Pre-design activities would include:

- A storm sewer investigation would take place at the site prior to the remedial design process of this alternative. Such an investigation would involve mapping the existing storm sewer west of the northern incinerator building to determine inputs to the storm sewer outside of the proposed cover footprint, to determine whether or not the storm sewer can be decommissioned and removed, or if upgrades would be required to maintain stormwater flow.
- A pre-design delineation investigation would be completed to verify the horizontal extent of soil impacts using XRF field analyses.
- The incinerator building(s), as well as materials within the building(s), would be characterized for disposal. Characterization would include sampling for PCBs, asbestos, and lead; as well as sampling the ash that is contained within the bottom floor of the southern incinerator building.

EA Project No. 14907.10

Remedial action implementation would include the following activities:

- The building(s) would each be demolished and disposed of off-site at the appropriate disposal facilities. Based on high concentrations of metals in ash samples (Malcolm Pirnie 2005), it is assumed that the ash material from within the southern building would be disposed of as hazardous waste.
- Impacted ramp materials would be partially removed and partially re-graded to subgrade elevations as necessary to create a gradual slope toward the Smokes Creek Corridor area. Grading for Alternative 4B will promote drainage toward the existing storm drain west of the northern incinerator building.

Restoration would include the following activities:

- Depending on the results of the storm sewer investigation and the final conditions, the existing western storm drain would be either decommissioned (Alternative 4A) or repaired (Alternative 4B).
- Geotextile followed by 6 in. of clean soil from an off-site source and 6 in. of clean topsoil and seed would be placed over remaining impacted soil.
- Long-term monitoring would consist of periodic cover inspection and groundwater sampling.

Final grading for Alternative 4A would result in the removal of approximately 15,300 yd³ of impacted soil to achieve proposed final subgrade elevations. Final grading for Alternative 4B would result in the removal of approximately 16,050 yd³ of impacted soil to achieve final subgrade elevations. Due to the presence of the northern incinerator building under Alternative 4B, final grading will be different for these alternatives. Under Alternative 4A, the former footprint of the northern incinerator building, as well as the depressions on either side of it, will be filled in with impacted material; this results in different removal quantities. Soil would be transported to an approved disposal facility; for costing purposes, it is assumed that 10 percent of the material would be disposed of as hazardous material.

6.1.5 On-Site Area Alternatives 5A and 5B: Partial Excavation (Ramp) to Commercial Use SCOs, Demolition and Removal of Incinerator Building(s), and Re-Grading and Covering of Remaining Impacted Soil with Asphalt

On-site Area Alternatives 5A and 5B are similar to Alternatives 4A and 4B, in that they involve excavation and removal of part of the ramp that leads up to the northern incinerator building, removal of both incinerator buildings (Alternative 5A) or only the northern incinerator building (Alternative 5B), re-grading, and covering of remaining impacted soil/fill exceeding Commercial SCOs (Figures 6-6 and 6-7). The difference between Alternatives 4A/4B and Alternatives 5A/5B is that the cover would consist of asphalt rather than soil.

	Version: FINAL
EA Engineering, P.C. and Its Affiliate	Page 6-5
EA Science and Technology	November 2015

The asphalt cover would consist of 6 in. of compacted subbase material, 4 in. of asphalt binder course, and 2 in. of top course. Installation of asphalt over impacted fill would prevent exposure to remaining contamination and provide a resilient surface that would not be damaged by typical site use by the DPW; however, because contamination would remain on the property under this alternative, a Land Use Restriction in the form of an Environmental Easement would be necessary, as well as long-term monitoring.

For the most part, these alternatives would be implemented in the same manner as Alternatives 4A and 4B. Final grading for Alternative 5B would promote runoff to the east and west of the northern incinerator building, to avoid inundating the southern wall of the northern incinerator building with stormwater runoff. Under Alternative 5B, final grading would consist of a mild ridge running north-south in the former ramp area, to shed stormwater east and west of the remaining northern incinerator building. This ridge creates a larger impacted soil storage area than the flatter grades of Alternative 5A, which results in a lower removal volume for Alternative 5B. These nuances in the final conditions would result in the removal of approximately 16,500 yd³ of impacted soil to achieve proposed final subgrade elevations for Alternative 5B. As with Alternatives 4A and 4B, soil would be transported to an approved disposal facility; for costing purposes, it is assumed that 10 percent of the material would be disposed of as hazardous material.

6.1.6 On-Site Area Alternatives 6A and 6B: Soil/Fill Excavation to Commercial Use SCOs with Disposal Off-Site, Demolition and Removal of Both Incinerator Buildings or the Southern Incinerator Building Only

Under these alternatives, impacted soil exceeding commercial SCOs would be excavated and disposed of off-site. Similar to Alternatives 4A, 4B, 5A, and 5B, the excavated area would be restored to smooth grades, eliminating the ramp and depressions near the northern incinerator building for Alternative 6A, or sloping down toward the storm drain west of the northern incinerator building for Alternative 6B. Figures 6-8 and 6-9 depict the proposed excavation extents and final conditions under Alternative 6A. Figures 6-10 and 6-11 show the proposed excavation extents and final conditions under Alternative 6B.

Pre-design and demolition activities would be implemented the same as Alternatives 4A, 4B, 5A, and 5B. Following building demolition and disposal, approximately 23,100 yd³ of impacted soil and fill from the ramp area and northeast corner of the site, would be excavated to the elevations identified on Figures 6-8 and 6-10. As with Alternatives 4A, 4B, 5A, and 5B, soil would be transported to an approved disposal facility; for costing purposes, it is assumed that 10 percent of the material would be disposed of as hazardous material.

EA Project No. 14907.10

When confirmation samples indicate that no further excavation is necessary, the following restoration activities would be implemented:

- Clean fill from an off-site source would be used to achieve final grades, consisting of a gradual slope to the north (Alternative 6A, Figure 6-8) or toward the storm drain west of the northern incinerator building (Alternative 6B, Figure 6-10).
- Final restoration would include 6 in. of topsoil and seed over all disturbed areas. For Alternative 6B, the asphalt road would be replaced.

Final grading for Alternative 6A would require approximately 7,000 yd³ of clean backfill to be transported to the site in order to bring the elevations level with surrounding elevations, the depressions from the northern incinerator building, and access drive would need to be filled in to prevent ponding and promote positive drainage. Final grading for Alternative 6B would require only 3,800 yd³ of clean backfill because these depressions would not be filled in, and stormwater runoff could be routed to the existing storm drain west of the northern incinerator building. Because contaminants exceeding unrestricted use SCOs would remain on the property under this alternative, a Land Use Restriction in the form of an Environmental Easement would be necessary, as well as long-term monitoring.

6.2 SMOKES CREEK CORRIDOR

The Smokes Creek Corridor surface and subsurface remediation areas were determined based on data presented in the RI (EA 2014). The areas and remediation depths included in the impacted soil volumes address exceedances of both Commercial Use SCOs and Unrestricted Use SCOs (Figure 6-12). For the majority of the length of the recreational path to be remediated, contamination is within the 0-2 ft depth interval. In the area directly north of the northern incinerator building and some distance east and west of that area, contamination is within the 0-4 ft depth interval.

Prior to the remedial design process, a survey of the entire length of the Smokes Creek Corridor remediation area would be necessary to calculate more accurate excavation and backfill volumes. Volumes used in the costing of these alternatives in this FS are estimates based on limited existing survey data. A 20 percent volume contingency has been built into each alternative to account for this.

6.2.1 Alternative 1: No Action

The no action alternative is evaluated as a procedural requirement and as a basis for comparison. This alternative would leave the Smokes Creek Corridor in its present condition.

6.2.2 Smokes Creek Corridor Alternatives 2A and 2B: Partial Removal of Contaminated Soil to Commercial Use SCOs with Soil and Asphalt Cover of Remaining Contaminated Soil/Fill

This alternative is aimed at removing some impacted soil, and covering the remaining soil and fill exceeding the Commercial SCOs along the Smokes Creek Corridor to prevent contact. Under Alternative 2A, soil to a depth of 1 ft on either side of the asphalt recreational path, as well as the wedge of impacted soil/fill along the side slope contamination area would be removed and disposed of off-site; under Alternative 2B, the asphalt recreational path and impacted soil beneath the path to a total depth of 1 ft would be removed in addition to the soil being removed under Alternative 2A. Under both alternatives, a hot spot measuring 30 ft by 30 ft by 4 ft deep will be removed at the eastern extent of the proposed excavation. Remaining contaminated soil/fill would be covered with a non-woven geotextile demarcation layer. Site restoration under Alternative 2A consists of placing a soil cover (consisting of 6 in. of clean fill and 6 in. of clean topsoil) over the remaining soil/fill and returning the side slope to original grades with clean fill and topsoil. Site restoration under Alternative 2B involves the same soil cover and an engineered asphalt cover to replace the asphalt recreational path. Both the asphalt and soil cover would serve as barriers to prevent contact with remaining contamination, and prevent erosion and sedimentation of impacted soil into Smokes Creek; however, because contamination would remain on the property under these alternatives, long term monitoring would be necessary. The excavation depths and proposed cap areas are shown on Figures 6-13 and 6-14 for Alternative 2A and Figures 6-15 and 6-16 for Alternative 2B.

Prior to design activities, the existing basemap would be updated by a land surveyor licensed in the State of New York with a full survey of the remediation area. Remediation volumes would be revised based on the full survey.

Remedial action implementation for Alternative 2A would include the following activities:

- A total of approximately 1,760 yd³ of impacted soil would be excavated and disposed of offsite. This would include:
 - The top 1 ft of impacted soil/fill on either side of the asphalt path
 - The impacted wedge of soil along the side slope.
- For the purpose of this FS, EA estimates that 10 percent of the excavated soil is hazardous and would be disposed of at a permitted hazardous waste landfill. The remainder of the soil would be disposed of at a general waste landfill, following acceptance.

Remedial action implementation for Alternative 2B would include the following activities:

• A total of approximately 2,350 yd³ of impacted soil and 100-yd³ of asphalt would be excavated from the Smokes Creek Corridor and disposed of off-site.

Restoration would include the following activities:

- Clean common fill with topsoil and seed or asphalt (for Alternative 2B) would be used to return excavated areas to original grades. The soil cover over remaining impacts would consist of 6 in. of clean common fill and 6 in. of topsoil.
- Seeded areas on the side slope would be stabilized using biodegradable erosion control blankets.
- Long-term monitoring would consist of periodic cap inspection and surface water sampling.

6.2.3 Smokes Creek Alternative 3: Excavation of Asphalt and Contaminated Soil to Unrestricted Use SCOs with Disposal Off-Site

This alternative includes excavation and off-site disposal of soil from along the Smokes Creek Corridor remediation area at a commercial landfill. This alternative is aimed at removing the soil exceeding the Unrestricted Use SCOs from along the Smokes Creek Corridor.

The excavated area would be completely restored to pre-remediation grades with the re-installation of the asphalt recreational path. Figures 6-17 and 6-18 depict the proposed final conditions under this alternative. As with Alternatives 2A and 2B, the existing basemap would be updated by a land surveyor licensed in the State of New York with a full survey of the remediation area prior to design.

Remedial action implementation would include the following activities:

- Approximately 6,900 yd³ of soil would be excavated to a maximum depth of 4 ft bgs along the Smokes Creek Corridor. Approximately 200-yd³ of asphalt would be removed and disposed of off-site.
- As with Alternatives 2A and 2B, EA estimates that 10 percent of the excavated soil is hazardous and would be disposed of at a permitted hazardous waste landfill. The remainder of the soil would be disposed of at a general waste landfill, following acceptance.
- Confirmation soil samples would be collected at a rate of one per 900-square feet (ft²⁾ on the excavation bottom and one per 30-linear ft along excavation side walls.

Restoration would include the following activities:

• The recreational path area would be restored to pre-remediation grades using an approved backfill source and asphalt.
• Final restoration would be the same as Alternatives 2A and 2B, with topsoil, seed, and erosion control blankets along the side slope.

6.3 BAKER HALL PROPERTY

The Baker Hall Property surface and subsurface remediation areas were determined based on data presented in the RI (EA 2014) and additional data gathered during the supplemental delineation field activities that took place from October 29 to 31, 2014. The supplemental delineation results are provided as an appendix to the RI (EA 2014). The areas and remediation depths included in the impacted soil volumes address the areas of concern within the Baker Hall Property (Figure 6-19) that exceed Restricted Residential and Unrestricted Use SCOs. There is a 4-ft deep area in the northwest corner of the property close to the northern incinerator building that exceed both Unrestricted Use and Restricted Residential SCOs; a small area in the northwest corner exceeds Unrestricted Use down to 6 ft. The remaining remediation area is 2-ft deep. The area that exceeds Unrestricted Use SCOs extends further to the east than the Restricted Residential exceedences. A storm sewer is known to transect the remediation areas and runs parallel to the western property line to Smokes Creek north of the property. A gas line also runs parallel to the storm sewer and cuts to the east approximately 170 ft south of the northern fence line.

An IRM was completed from November 13, 2014 to May 28, 2015 to address soil and fill exceeding Restricted Residential SCOs. A total of 12,769 tons of impacted soil was excavated and disposed of off-site at a commercial landfill. The site was restored with clean fill and topsoil. Full details of the IRM construction activities are in the IRM Construction Completion Report (EA 2015).

6.3.1 Baker Hall Property Alternative 1: No Further Action

The no further action alternative is evaluated as a procedural requirement and as a basis for comparison. This alternative would leave the site in its present condition.

6.3.2 Baker Hall Property Alternative 2: Remaining Soil/Fill Excavation to Unrestricted Use SCOs with Disposal Off-Site

This alternative includes excavation and off-site disposal of remaining soil exceeding the Unrestricted Use SCOs (NYSDEC 2006) from the Baker Hall Property at a commercial landfill including the soil within the gas line right-of-way. A small amount of soil from around the gas line would require localized hand-digging to prevent damage to the utility. The storm sewer is expected to be below the impacted areas; however, the potential exists that part of it is within the excavation areas. Excavation above the storm sewer would need to be completed with care; if the sewer is encountered during excavation activities, impacted soil removal would be completed with hand digging. The excavated area would be restored to pre-remediation grades. Figure 6-20 depicts the proposed final conditions under this alternative.

EA Project No. 14907.10

Remedial action implementation would include the following activities:

- Approximately 7,100 yd³ of soil would be excavated south, east, and focused areas within previously excavated areas.
- The soil would be disposed of at a general waste landfill, following acceptance.
- Confirmation soil samples would be collected from the excavation bottoms and excavation side walls.

Restoration would include the following activities:

- The site would be returned to original grades using an approved backfill source.
- Backfill would be compacted in 1-ft lifts within excavations using a drum roller.
- Areas within 10 ft on either side of the gas line would be compacted using a walk-behind plate compactor.
- All disturbed areas would be restored with topsoil and seed.

7. COSTING AND EVALUATION CRITERIA

7.1 COST ASSUMPTIONS

Cost assumptions were prepared for each alternative using EPA's *Guide to Developing and Documenting Cost Estimates during the Feasibility Study* (EPA 1996). Net present value of the project costs was estimated using an interest rate of 5 percent. The cost assumptions were calculated using the most common products, and application methods available for a remedial alternative. The EPA guidance was used in conjunction with *DER-10 Technical Guidance for Site Investigation and Remediation* (NYSDEC 2010).

Cost estimates were prepared for each alternative based on the assumptions detailed in Section 6. Appendix B shows the detailed cost estimates developed. A summary of the costs for all alternatives is provided in Table 7-1.

7.2 CRITERIA USED FOR ANALYSIS OF ALTERNATIVES

The criteria to which potential remedial alternatives are compared (and used during this detailed analysis) are defined in 6 NYCRR Part 375 (NYSDEC 2006) and are listed below:

- Overall protectiveness of public health and the environment
- Conformance to SCGs
- Long-term effectiveness and permanence
- Reduction in toxicity, mobility, or volume of contamination through treatment
- Short-term impacts and effectiveness
- Implementability
- Cost-effectiveness
- Land use
- Community acceptance.

A description of the criteria and how alternatives are evaluated against them follows.

Overall Protectiveness of Public Health and the Environment—This criterion is an overall evaluation of each alternative's ability to protect public health and the environment.

Conformance to Standards, Criteria, and Guidance—Compliance with SCGs addresses whether a remedy would meet environmental laws, regulations, and other standards and criteria. The SCGs were presented in Section 3.

Long-Term Effectiveness and Permanence—This criterion evaluates the long-term effectiveness of the remedial alternatives after implementation. If wastes or treated residuals remain On-site after the recommended remedy has been implemented, the following items are evaluated: (1) magnitude of the remaining risks, (2) adequacy of the engineering and/or institutional controls intended to limit the risk, and (3) reliability of these controls.

Reduction of Toxicity, Mobility, or Volume of Contamination through Treatment—The degree to which the alternative permanently reduces the toxicity, mobility, or volume of hazardous substances including the adequacy of the alternative in destroying the hazardous substances, reduction or elimination of hazardous substance releases and sources of releases, degree of irreversibility of waste treatment process, and characteristics and quantity of treatment residuals generated. Preference is given to alternatives that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the site.

Short-Term Impacts and Effectiveness—Evaluation of the short-term effectiveness for an alternative includes consideration of the risk to human health, and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks. Impacts from remedial action implementation include vehicle traffic, temporary relocation of residences/buildings, temporary closure of public facilities, odor, open excavations; and noise, dust, and safety concerns associated with extensive heavy equipment activity. The greatest short-term risk to human health is related to safety and general construction activity.

Implementability—The technical and administrative feasibility of implementing each alternative is evaluated. Technical feasibility includes the difficulties associated with construction of the remedy and the ability to monitor its effectiveness. For administrative feasibility, the availability of the necessary personnel and materials is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, institutional controls, and so forth.

Cost-Effectiveness—Capital costs and annual operation, maintenance, and monitoring costs are estimated for each alternative and compared on a present worth basis. Although cost-effectiveness is the last balancing criterion evaluated, where two or more alternatives have met the requirements of the other criteria, it can be used as the basis for the final decision.

Land Use—The current and anticipated future use of the site will be considered. Land use must comply with applicable zoning laws and maps.

Community Acceptance—Public comments will be considered after the close of the public comment period.

8. DETAILED ANALYSIS OF ALTERNATIVES AND RECOMMENDATIONS

The purpose of this FS was to develop, screen, and evaluate potential remedial alternatives for the Lackawanna Incinerator site. Remedies were identified and screened in accordance with EPA (1988 and 1996) and NYSDEC (1998, 2006, 2010) guidance. The comparison of alternatives and recommendations are described below, and summarized in Tables 8-1A, 8-1B, and 8-1C. A combined alternative to achieve pre-disposal conditions on-site and at the adjacent areas was developed to address the impacted area as a whole with cross-boundary dependencies taken into consideration.

The following remedial alternatives are considered for this FS:

- **On-Site Area Alternative 1**—No action
- **On-Site Area Alternative 2A**—Soil/fill excavation to unrestricted Use SCOs with disposal off-site, demolition and removal of both incinerator buildings
- **On-Site Area Alternative 2B**—Soil/fill excavation to unrestricted Use SCOs with disposal off-site, demolition and removal of the southern incinerator building
- **On-Site Area Alternative 3**—No action with site management
- **On-Site Area Alternative 4A**—partial excavation (ramp) to commercial Use SCOs, demolition and removal of both incinerator buildings, and re-grading and isolation of remaining impacted soil with a soil cover
- **On-Site Area Alternative 4B**—Partial excavation (ramp) to commercial Use SCOs, demolition and removal of the southern incinerator building, and re-grading and isolation of remaining impacted soil with a soil cover
- **On-Site Area Alternative 5A**—Partial excavation (ramp) to commercial Use SCOs, demolition and removal of both incinerator buildings, and re-grading and isolation of remaining impacted soil with asphalt
- **On-Site Area Alternative 5B**—Partial excavation (ramp) to commercial Use SCOs, demolition and removal of the southern incinerator building, and re-grading and isolation of remaining impacted soil with asphalt
- **On-Site Area Alternative 6A**—Soil/fill excavation to commercial Use SCOs, with disposal off-site, demolition and removal of both incinerator buildings
- **On-Site Area Alternative 6B**—soil/fill excavation to commercial Use SCOs, with disposal off-site, demolition and removal of the southern incinerator building

- Smokes Creek Corridor Alternative 1—No action
- Smokes Creek Corridor Alternative 2A—Partial removal of contaminated soil on both sides of asphalt path to commercial Use SCOs and isolation of remaining contaminated soil/fill with soil
- **Smokes Creek Corridor Alternative 2B**—Partial removal of asphalt and contaminated soil to commercial Use SCOs and isolation of remaining contaminated soil/fill with soil and asphalt
- **Smokes Creek Corridor Alternative 3**—Excavation of asphalt and contaminated soil to unrestricted Use SCOs with disposal off-site
- Baker Hall Property Alternative 1—No further action
- **Baker Hall Property Alternative 2**—Remaining soil/fill excavation to unrestricted Use SCOs with disposal off-site.

8.1 COMPARISON OF ON-SITE AREA ALTERNATIVES

8.1.1 Overall Protection of Public Health and the Environment

This criterion is an overall evaluation of each alternative's ability to protect public health and the environment.

Alternative 1 does not fulfill this criterion. Through isolation with various cover types, Alternatives 4A–5B close off the soil exposure pathway; thereby, preventing human contact with remaining contamination. Alternatives 2A and 6A fulfill this criterion by completely removing the contaminants exceeding respective SCGs from the site, while contamination may remain underneath the northern incinerator building with Alternatives 2B and 6B.

8.1.2 Standards, Criteria, and Guidance

Compliance with SCGs addresses whether a remedy will meet environmental laws, regulations, and other standards and criteria.

Alternative 1 does not meet this criterion. Alternatives 4A–5B will fulfill this criterion by removing some and containing remaining soil exceeding SCGs. Alternatives 2A and 6A fulfill this criterion by removing all soil exceeding respective SCGs, while contamination may remain underneath the northern incinerator building with Alternatives 2B and 6B.

8.1.3 Long-Term Effectiveness and Permanence

This criterion evaluates the long-term effectiveness of the remedial alternatives after implementation. If fill or treated residuals remain on-site after the recommended remedy has

been implemented, the following items are evaluated: (1) the magnitude of the remaining risks, (2) the adequacy of the engineering and/or institutional controls intended to limit the risk, and (3) the reliability of these controls.

Alternative 1 will not provide long-term effectiveness or permanence. Alternatives 4A–5B would fulfill this criterion; both alternatives involve leaving impacted soil/fill on-site and would require long-term monitoring. Alternatives 2A and 6A would fulfill this criterion because contaminants at concentrations exceeding respective SCGs would be permanently removed from the site, while contamination may remain underneath the northern incinerator building with Alternatives 2B and 6B.

8.1.4 Reduction of Toxicity, Mobility, or Volume of Contamination

Preference is given to alternatives that permanently and significantly reduce the toxicity, mobility, or volume of contamination at the site.

Alternative 1 will not reduce the toxicity, mobility, or volume of contamination. Alternatives 4A-5B will fulfill this criterion by reducing the volume and mobility of contamination via soil removal and soil containment. Alternatives 2A and 6A will fulfill this criterion via removal of contamination exceeding respective SCGs, while contamination may remain underneath the northern incinerator building with Alternatives 2B and 6B.

8.1.5 Short-Term Impacts and Effectiveness

This criterion evaluates the potential short-term adverse impacts of the remedial action upon the community, the workers, and the environment during the construction and/or implementation. The length of time needed to achieve the remedial objectives is also estimated and compared against the other alternatives.

Alternative 1 does not pose additional risk to the community, workers, or environment, as there are no construction activities involved. Alternatives 2A, 2B, and 4A–6B pose increased short-term risks to the public during excavation and grading, through the production of dust; these effects can be reduced through the implementation of standard dust mitigation construction practices. Workers can potentially be exposed to impacted media during excavation activities involved in Alternatives 2A, 2B and 4A–6B. Risks can be minimized by implementing health and safety controls, including the use of appropriate personal protective equipment.

8.1.6 Implementability

This criterion evaluates the technical and administrative feasibility of implementing each alternative.

All alternatives are implementable and have been used nationally. However, excavation of the ramp area under alternatives 2B, 4B, 5B, and 6B pose potential implementability issues, as the ramp may provide structural support to the northern incinerator building on-site.

8.1.7 Cost-Effectiveness

This criterion evaluates estimated capital costs, as well as annual operation, maintenance, and monitoring costs, on a present-worth basis.

Alternative 1 is the least expensive, but is also the least effective. Alternatives 4A and 5A are similar in cost, as are Alternatives 4B and 5B; however, Alternatives 4B and 5B are as effective as Alternatives 4A and 5A at a lesser cost. Alternatives 2A and 6A are the most effective to achieve respective SCOs and the most expensive. Alternatives 2B and 6B are less effective, but also cost less than their respective counterparts.

8.1.8 Land Use

Alternative 1 would not affect the future use of the site since contamination would remain. Impacted fill would remain on-site for Alternatives 4A–5B. Alternatives 4A and 4B involve a soil cover, and land use would be limited. Alternatives 5A and 5B involve a more resilient asphalt cover, and land use could be similar to the current use (DPW equipment/materials storage). Alternatives 6A and 6B involve the removal of fill with concentrations of metals exceeding commercial SCGs; however, the northern incinerator with potential contamination underneath would remain under Alternative 6B, which would limit future land use. Alternatives 2A and 2B involve the removal of fill with concentrations of metals exceeding unrestricted use SCGs; however, as with Alternative 6B, the northern incinerator with potential contamination underneath would remain under Alternative 2B, which would limit future land use.

8.1.9 Community Acceptance

This criterion evaluates concerns of the community regarding the investigation and the evaluation of alternatives. The Lackawanna Incinerator site remedial approach has not been presented to the community for comment at this point.

Alternative 6A is recommended because it fulfills the screening criteria at the lowest cost, and does not require monitoring and maintenance.

8.2 COMPARISON OF SMOKES CREEK CORRIDOR ALTERNATIVES

8.2.1 Overall Protection of Public Health and the Environment

This criterion is an overall evaluation of each alternative's ability to protect public health and the environment.

Alternative 1 does not fulfill this criterion. Alternatives 2A and 2B fulfill this criterion by removing some and containing remaining contaminants. Alternative 3 fulfills this criterion by completely removing the contaminants from the site.

8.2.2 Standards, Criteria, and Guidance

Compliance with SCGs addresses whether a remedy will meet environmental laws, regulations, and other standards and criteria.

Alternative 1 does not meet this criterion. Alternatives 2A and 2B will fulfill this criterion by removing some and containing remaining soil exceeding SCGs. Alternative 3 fulfills this criterion by removing all soil exceeding SCGs.

8.2.3 Long-Term Effectiveness and Permanence

This criterion evaluates the long-term effectiveness of the remedial alternatives after implementation. If wastes or treated residuals remain on-site after the recommended remedy has been implemented, the following items are evaluated: (1) the magnitude of the remaining risks, (2) the adequacy of the engineering and/or institutional controls intended to limit the risk, and (3) the reliability of these controls.

Alternative 1 will not provide long-term effectiveness or permanence. Alternatives 2A and 2B would fulfill this criterion; these alternatives involve leaving impacted soil/fill on-site, and would require long-term monitoring. Alternative 3 would fulfill this criterion because known contaminants would be completely removed.

8.2.4 Reduction of Toxicity, Mobility, or Volume of Contamination

Preference is given to alternatives that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the site.

Alternative 1 will not reduce the toxicity, mobility, or volume of contamination. Alternative 2A and 2B will fulfill this criterion by reducing the volume of contamination and by reducing mobility. Alternative 3 will fulfill this criterion by removal of contamination.

8.2.5 Short-Term Impacts and Effectiveness

This criterion evaluates the potential short-term adverse impacts of the remedial action upon the community, the workers, and the environment during the construction and/or implementation. The length of time needed to achieve the remedial objectives is also estimated and compared against the other alternatives.

Alternative 1 does not pose additional risk to the community, workers, or environment, as there are no construction activities involved. Alternatives 2A, 2B and 3 pose increased short-term risks to the public during excavation, grading, and other site activities through the production of dust; these effects can be reduced through the implementation of standard dust mitigation construction practices. Workers can potentially be exposed to impacted media during excavation activities involved in Alternatives 2A, 2B and 3. Risks can be minimized by implementing health and safety controls, including the use of appropriate personal protective equipment.

8.2.6 Implementability

This criterion evaluates the technical and administrative feasibility of implementing each alternative.

All alternatives are implementable and have been used nationally; however, Alternative 2A would be the most difficult to implement due to equipment and space limitations.

8.2.7 Cost-Effectiveness

This criterion evaluates estimated capital costs, and annual operation, maintenance, and monitoring costs on a present-worth basis.

Alternative 1 is the least expensive, but is also the least effective. Alternative 3 costs 50 percent more than Alternative 2A, and more than twice as much as Alternative 2B, but it is also the most effective.

8.2.8 Land Use

Alternative 1 would not affect the future use of the site since contamination would remain. Impacted fill would remain on-site for Alternatives 2A and 2B; however, the recreational path would remain or be replaced, in kind, and the land use would not change. Alternative 3 involves removal of impacted fill and replacement of the asphalt path, in kind, and the land use would not change.

8.2.9 Community Acceptance

This criterion evaluates concerns of the community regarding the investigation and the evaluation of alternatives. The Lackawanna Incinerator site remedial approach has not been presented to the community for comment at this point.

8.3 COMPARISON OF BAKER HALL PROPERTY ALTERNATIVES

8.3.1 Overall Protection of Public Health and the Environment

This criterion is an overall evaluation of each alternative's ability to protect public health and the environment.

Both alternatives fulfill this criterion as long as site use is limited to residential use. In the event site use changes, Alternative 2 will fulfill the criterion by removing the contaminants exceeding the Unrestricted use SCOs.

8.3.2 Standards, Criteria, and Guidance

Compliance with SCGs addresses whether a remedy will meet environmental laws, regulations, and other standards and criteria.

Both alternatives fulfill this criterion for the respective SCGs. Soil exceeding restricted residential SCGs was removed during the IRM. Alternative 2 involves removal of soil exceeding Unrestricted use SCGs.

8.3.3 Long-Term Effectiveness and Permanence

This criterion evaluates the long-term effectiveness of the remedial alternatives after implementation. If wastes or treated residuals remain on-site after the recommended remedy has been implemented, the following items are evaluated: (1) the magnitude of the remaining risks, (2) the adequacy of the engineering and/or institutional controls intended to limit the risk, and (3) the reliability of these controls.

Both Alternatives 1 and 2 would fulfill this criterion because known contaminants exceeding respective SCGs have been and would be completely removed.

8.3.4 Reduction of Toxicity, Mobility, or Volume of Contamination

Preference is given to alternatives that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the site.

Both Alternatives 1 and 2 will fulfill this criterion by full removal of contamination exceeding respective SCGs.

8.3.5 Short-Term Impacts and Effectiveness

This criterion evaluates the potential short-term adverse impacts of the remedial action upon the community, the workers, and the environment during construction and/or implementation. The length of time needed to achieve the remedial objectives is also estimated and compared against the other alternatives.

Alternative 1 does not pose additional risk to the community, workers, or environment, as there are no construction activities involved. Alternative 2 pose increased short-term risks to the public during excavation through the production of dust; these effects can be reduced through the implementation of standard dust mitigation construction practices.

8.3.6 Implementability

This criterion evaluates the technical and administrative feasibility of implementing each alternative.

Both alternatives are implementable and have been used nationally.

8.3.7 Cost-Effectiveness

This criterion evaluates estimated capital costs, as well as annual operation, maintenance, and monitoring costs on a present-worth basis.

Alternative 1 is the least expensive. Alternative 2 is the most expensive, but land use would not be limited in the future.

8.3.8 Land Use

Alternative 1 would not change the current use of the site since contamination exceeding the appropriate SCGs has already been removed. Alternative 2 would not limit the future use of the site since contamination exceeding the most stringent SCGs would be removed.

8.3.9 Community Acceptance

This criterion evaluates concerns of the community regarding the investigation and the evaluation of alternatives. The Lackawanna Incinerator site remedial approach has not been presented to the community for comment at this point.

8.4 PREFERRED COMBINED REMEDIAL ALTERNATIVE FOR THE LACKAWANNA INCINERATOR SITE

Based on the objective to cleanup On-Site soil and Smokes Creek Corridor soil to Commercial Use SCOs, and the Baker Hall Property to Restricted Residential Use SCOs (NYSDEC 2006) the recommended remedial strategy is summarized in the following table:

Area	Alternative Description	Total Cost
On-Site Area	Alternative 6A: Soil/fill excavation with disposal	\$4,267,000
	off-site, demolition and removal of both	
	incinerator buildings	
Smokes Creek Corridor	Alternative 2B: Partial removal of contaminated	\$947,000
	soil to commercial Use SCOs with soil and asphalt	
	cover of remaining contaminated soil/fill	
Baker Hall Property	Alternative 1: No further action	\$0
	Total	\$5,214,000

This combination of alternatives would involve demolition and off-site disposal of both incinerator buildings, as well as excavation and off-site disposal of all soil exceeding the appropriate SCOs for the on-site area. Soil exceeding restricted residential SCOs has already been removed from the Baker Hall Property. The top ft of soil exceeding Commercial Use SCOs, as well as the hot spot identified at the eastern extent of the remedial area, would be removed from the Smokes Creek Corridor. Following excavation, confirmation soil samples would be collected from the excavation side walls and bottoms (as applicable) at a rate of one per 30-linear ft (side walls) and 900-ft² (bottom), to verify that impacts have been removed. All excavations would be backfilled with clean common fill from off-site, followed by topsoil and

seed, with the asphalt recreational path along Smokes Creek being restored in kind. In the On-site Area, the ramp that currently leads up to the northern incinerator building would be removed, and final grades would gently slope toward Smokes Creek, thereby reducing the overall volume of backfill that would be required. This combination would not require long-term monitoring or maintenance because impacted soil would be removed from all of the areas.

Implementing the combined alternative rather than the individual alternatives separately could provide 5-10 percent cost savings due to the following gained efficiencies in implementation:

- Combined pre-design effort would facilitate development of a comprehensive basemap update for all three parcels, a complete survey for underground utilities or other obstructions, and reduces/consolidates the efforts for developing planning documents.
- Mobilization/staging would allow for a single mobilization of required equipment and establishment of a centralized staging area, within the On-site Area, to minimize disruption to the adjoining parcels.
- Boundary conditions would prevent double-handling of impacted soil along common parcel boundaries. Additionally, the excavation could be sequenced from the least impacted area (Smokes Creek Corridor) to the most impacted area (On-site Area) to minimize traffic through "clean" areas.
- Schedule/coordination would allow for a reduction in the remediation timeframe of 1–3 months, reduce the number of meetings required to coordinate with stakeholders, and minimize the disruption to the surrounding community.

9. REFERENCES

- EA Engineering, P.C. and Its Affiliate EA Science and Technology (EA). 2014. Remedial Investigation/Feasibility Study Work Plan for the Lackawanna Incinerator Site (915206), Erie County, Lackawanna, New York. June.
- ——. 2015. Interim Remedial Measure Construction Completion Report, Former Lackawanna Incinerator Site, (9152060, Erie County, Lackawanna, New York. September.
- Malcolm Pirnie. 2005. Draft Site Investigation/Remedial Alternatives Report, Former Incinerator Site, Lackawanna, New York.
- New York State Department of Environmental Conservation (NYSDEC). 1998. NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards (Class GA). June.
- -----. 2006. 6 New York Code of Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs – Soil Cleanup Objectives (SCOs). December 14.
- ——. 2010. DER-10 Technical Guidance for Site Investigation and Remediation. May.
- ——. 2014. Screening and Assessment of Contaminated Sediment (June 24).
- United States Environmental Protection Agency (EPA). 1988. *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA*. EPA 1540IG-891004.
- ——. 1996. A Guide to Developing and Documenting Cost Estimates During the Feasibility Study. EPA 542-F-96-007. EPA Office of Solid Waste and Emergency Response. April.

Figures

N Arsenic Barium Cadmiun Copper	0-2' 2-4' 4-6' 6.43 12.4 9.95 91.2 J 99.8 J 76.5 J n 2.16 1.32 1.27 26.6 J 24.4 J 22.7 J 0.545 NA NA	6-8' 8-10' 10.8 5.6 72.9J 50.2 J 1.45 0.97 21.1J 21 J NA NA	MW-070-2'Arsenic15Barium480Cadmium8.5Copper240 JCyanideNA	2-4' 4-6' 14 15 1,200J 320 3.1J 1.5 190J 110J 170J NA	6-8' 11 93 0.720 U 30 J NA	MW-02A Arsenic Barium Cadmium Copper	0-1' 24 430 6.5 360	2-3' 28 900 6.6 00 650	6-7' 13 99 .720 U (33	8-10' 14 76 0.710 U 30	A B Ca	SB-14 rsenic aarium dmium opper	0-2' 7.65 J 50.7 J 0.740 J 25.2 J	4-6' 8.98 J 72.3 J 1.29 22.4 J	6-8' 4.75 J 50.9 J 1.03 27.1 J	8-10' 7.5 J 80.5 J 1.2 23 J	10-12' 7.83 J 73 J 1.34 23.2 J		
Lead Nickel	99.7 27.9 21.8 30.3 48.2 44.6 MW-06 0-2'	23.1 21.2 45.2 35.8 2-4' 4-6'	Lead 750 J Nickel 65 J	660 J 440 J 32 J 32 J	15 J 31 J	Lead Nickel	2,300 J 85	1,500 J 130	19 J 37	16J 32	SS-14	Variide (Lead Vickel 0-2"	34.1 33.7	NA 22.9 40.9	NA 19.8 41.9	NA 23.3 44.8	NA 23.3 44.3		
	Arsenic10Barium87Cadmium1.4Copper37Cyanide150 J	14 10 110 110 0.740 U 0.740 U 31 32 NA NA		G	5-02 SS/SB	HIB I	•			SB-13	Cadmium Copper Lead	22 J 406 J 2,330 J	0-12'	12-14'	16-18'	20-22'	23-	25'	
SB-16 2-4' Arsenic 3.76 J	Lead 200 J Nickel 25 4-6' 6-8' 8-10' 9.3 J 24.2 J 5.21	18 J 16 J 37 39 ' 10-12' 12-14' 12.6 8.46								Arsenic Barium Copper	19.7 9 584 J 1 42.7 1 309 J 33	10 1 0.06 3 06 J 3 33 3 2.2 J 6	21.5 397 J 17.1 684 J	10.2 88.3 J 1.62 28.6 J	11.8 281 J 3.98 178 J	51.5 1,500 J 19.5 1,510 J	6.2 76. 0.9	3 3 J 7 J	
Barium 262 J Cadmium 2.39 Copper 6.59 J Cyanide NA	92.1J 94.6J 66.4J 1.14 1.78 1.0 23.3J 25.2J 24J NA NA NA	J 56.2 J 72.7 J 1.14 1.37 19.6 J 23.2 J NA NA		1	SS/SB-17	SS/SB-1	2		SB-	Cyanide Lead Nickel 12 0-1	NA 0. 5,470 4 147 4 2' 8-10'	197 J 3.9 2 1.8 2 10-12	NA 2,040 342 2 2 12-:	NA 35.5 50.2 14' 14-	NA 789 50.7 -16'	0.711 6,820 59 16-18'	N/ 20 38	A 3 3	
Lead 96.4 Nickel 13.3	25 26.7 20.7 42.8 73.5 35.5 SB-17 0-2 Arsenic 7.1 Barium 71.7	23 23.5 38.6 45.6 '' 4-6' 6-8' 8 11.7 J 9.81 J 6 '' 98.7 J 87.8 J 8	3-10' 10-12' 5.59J 7.93J 87.3J 56.8J		MW-03A SS/SP-13				Arse Bari Cadm Cop Cyan	enic 6.5 ium 73. nium 0.66 per 20. nide 0.3	8.13 J 5 J 173 J 60 J 1.95 7 J 63.5 J 842 NA	10.5 101. 1.68 30.2 NA	J 11.5 J 73 B 1.4 J 23.5 N/	5 J 9.4 J 14 I5 4. 8 J 67 A N	48 J 45 J 42 .2 J	10.4 J 113 J 1.73 27.8 J NA			
	Cadmium 2.22 Copper 25.6 Cyanide NA Lead 133	5 1.65 1.63 6J 26.7 J 23.7 J 2 NA NA 3 31.3 26	0.79 1.28 11.1J 22.4J NA NA 27.6 22.5					55-01	Lea Nick SB-1:	ad 66. kel 22. 1 0-2'	7 J 464 3 J 35.8 ' 2-4'	51.9 44.2 4-6'	25. 2 43. 6-8'	.4 8: .9 36 8-10	10 5. 3	112 43.4 0-12'	12-14'	14-16' 1	<u>16-18'</u>
Unrestricted ConstituentUnrestricted Use SCO (mg/kg)Commercial SCO (mg/kg)Arsenic1316Barium350400	Nickel 31.	SB-18 0-2' Arsenic 3.39 J	50 39.4 8-10' 10-12' 11.7 J 7.08 J			Du V			Arsen Bariur Cadmin Coppe Cyanio	m 96.4 m 96.4 um 0.78 er 16.9 de NA	J 7.54 J 4 333 3 2.57 J 58.3 J NA	8.49 J 109 0.76 64 J 0.152 J	6.1 J 195 1.97 38.4 J NA	8.27 120 1.13 J 24.7 NA	J])] 3	11.3 J 288 1.55 107 J NA	14.4 J 588 3.73 139 J NA	74.6 0.47 23.6 J 2 NA	9.07 J 72.6 0.68 21.7 J NA
Cadmium 2.500 9.3 Copper 50 270 Cyanide 27 27 Lead 63 1000 Nickel 30 310		Barlum 65.9 J Cadmium 1.33 J Copper 23.1 J Cyanide 0.273 J Lead 81.1 J	68J 65.5 J 0.970 J 1.24 J 25.8 J 26.8 J NA NA 20.5 22.1	MW-03A 0-2 Arsenic 4.5 Barium 70	- U 101	2	MW-04	MW-04 Arsenic	Lead Nicke 0-2' 15	26.7. el 38.4 4-6' 12	J 630 J J 38.2 J	246 J 30.7 J	266 J 34.6 J	901. 41.1		421 J 88.6 J	4,120 J 41.3 J	25.3 J 2 47.8 J	23.6 J 39 J
Note: Soil analytical results compa of Rules and Regulations (NYCRF Remediation Programs Soil Clean On-Site results compared to Unres SCOs. Only locations with results Exceedances of Unrestricted Use Commericial SCOs are shaded in	ared to 6 New York Code R) Part 375 Environmental up Objectives (SCOs). stricted Use and Commerical s exceeding SCOs are shown are bolded . Exceedances of gray.	Nickel 11.9J	34.5 J 38.7 J	Barium 70 Cadmium 0.77 Copper 45 Cyanide NA Lead 76. Nickel 11				Barium Cadmium Copper Cyanide Lead Nickel	92 1.1 28J NA 130J 11J	83 0.740 U 33 J NA 19 J 37 J		The second se							調整
*	Legend Monitoring We Surface Soil	ell On-Site Area		LACK	AWANNA IN FEASIB LACKA	NCINERATO SILITY STUD AWANNA, N	PR (SITE PY REPO EW YOR	NO. 91520 PRT RK	06)		I RI Inor (FIGURE ganic Sc Dn-Site A	2-1 bil Resul ∖rea	lts		0 50) 100 1 ii	n = 110 ft	■ Fe 200
de	Soil Boring	Service Layer Credits: Sourc cubed, USDA, USGS, AEX, and the GIS User Community	e: Esri, DigitalGlobe, GeoEye, i Getmapping, Aerogrid, IGN, IGi /	i- P PROJECT MGR: JMB	DESIGNED BY: HAW	CREATED BY HAW	Y: CHECK	KED BY: S EM AS	SCALE: SHOWN	DATE: NOV 201	PROJE	ECT NO: 0710	FIL 14907.10 - Incinerator	.E NO: - Lackawanr / GIS/MXD/F	na FS		ھے	NEW YORK STATE OF OPPORTUNITY	Dep Env Con

SS/SB-36 0-2" 0-1' Arsenic 6.11 6.57 Barium 67.9 J 72.8 J Cadmium 1.89 J 2.09 J Copper 25 J 22.9 J Lead 105 101 SS/SB-34 Arsenic Barium Cadmium Copper 25 J Lead 105 101	MW-08 0-2' 2- Arsenic 18.0 80 Barium 250 8,8 Cadmium 1.90 5. Copper 130.J 41 Lead 320.J 79 0-2" 0-1' 1-2' 9.70 6.16 11.2 133.J 102.J 249.J 3.02.J 2.14.J 3.75.J 54.2.J 38.4.J 103.J 238 136 356	SD-06FP 0-6" Arsenic 6.53 Barium 91.2 J Cadmium 0.9 Copper 43.8 J Lead 97.1 Lead 97.1 SS/SB-38 0-1' Arsenic 6.99 Barium 86.5 J Cadmium 1.94 Copper 29.8 Lead 65.9	S/SB-39 0-1' Arsenic 8.48 Barium 91.9J admium 2.34 Copper 36.6 Lead 71.9	SS/SB-510-2Arsenic18.Barium630Cadmium10.Copper110Lead1,60SS-39A0-2"Arsenic10.4 JDBarium97.6 DCadmium4.89 UDCopper53.8 DLead114 D	" 0-1' 1-2' 9 20.7 10.5 6 350 125 1 12.9 2.66 0 104 25.8 30 1,310 79.6 SS/SB-52 0 Arsenic 2 Barium 1, Cadmium 1 Copper 3 Lead 2,	SS/SB-55 Arsenic Barium Cadmium Copper Lead -2" 0-1' 6.9 21.7 020 718 8.4 20.3 371 427 090 3,530	0-2" 0-1 21.2 18.4 348 300 7.34 6.6 240 205 960 1,78 960 1,78 8a Cad Co La	' 1-2' 2-3 4 6.33 42.2 0 72.1 787 7 1.87 47.5 6 89.3 484 0 339 8,21 SB-56 0-2" 0 senic 8.40 9 rium 103 1 mium 1.53 2 pper 49.5 5 ead 151 1	SS/SB-58 0-2" Arsenic 10.53 Barium 98.2 Cadmium 1.33 Copper 43.8 Lead 101 5.4 41	
	SD412FP	Smokes Greek								
SS/SB-35 0-2" 1 Arsenic 8.03 2 Barium 105 J 44 Cadmium 2.49 J 15 Copper 46.8 J 44 Lead 177 1, Note: Soil analytical results comp Regulations (NYCRR) Part 375 E Soil Cleanup Objectives (SCOs). Smokes Creek Corridor results co Use SCOs. Only locations with re Unrestricted exceedances are bo 0	SD-11FP SD-10F	SS/SB-43 0-2" 0-1' Arsenic 22 D 21.8 D Barium 561 D 1,010 D Cadmium 6.6 D 4.55 JD Copper 804 D 513 D Lead 1,780 D 1,380 D 598 J SS/SB- 1,820 Arsen 1,880 Earlur Copper 804 Lead	1-2' 9.72 JD 509 D 2.14 JD 173 D 976 D -46 0-2" 0-1 38.1 D 24.8 m 542 D wm 542 D er 712 D 480 d 1,890 D 1,890 D	SS/SB-50 0-2" Arsenic 11.7 Barium 1,200 Cadmium 6.92 Copper 81.3 Lead 2,720 1 3D D D O D O	0-1' 1-2' 13.8 6.83 600 116 5.61 1.85 54.8 10.2 54.8 10.2 55/SB-53 0-2" Arsenic 17.9 Barium 362 Cadmium 10.2 Copper 239 Lead 1,460	SS/SB-54 0- Arsenic 23 Barium 44 Cadmium 18 Copper 8,14 Lead 1,2 0-1' 1-2' 29.5 37.6 498 411 27.7 17.5 407 394 1,620 1,170	2" 0-1' 3.7 34.5 58 473 3.1 23.3 30 D 588 240 1,670	1-2' 34.8 598 57.5 1,470 3,340 SS/SB-57 0-2" Arsenic 9.55 Barium 90.4 Cadmium 0.957 Copper 38.5 Lead 82.1	SS/SB-59 0-2" Arsenic 12.0 Barium 79.0 Cadmium 1.38 Copper 38.8 Lead 71.7 0-1' 9.48 89.1 1.38 34.4 79.5 Constitu Arsen Bariuu Copper 1.38 34.4 79.5 Constitu Arsen Bariuu Cadmiu Cadmiu	SS/SB-60 0-2" Arsenic 9.13 Barium 108 Cadmium 1.29 Copper 41.9 Lead 72.4 Lead 72.4 Vinrestricted Commercial Use SCO (mg/kg) Commercial ic 13 16 m 350 400 um 2.5 9.3 er 50 270 63 1000
	Legend Monitoring Well Smoke	es Creek Area	LACKAWANNA I	INCINERATOR (SITE	NO. 915206)		FIGURE 2-2		0 100 200	Feet) 400
*	Surface Soil		FEASI LACK	BILITY STUDY REPO (AWANNA, NEW YOI	ORT RK	RI Inorganic Soil Results Smokes Creek Corridor			1 Inch	
de te	Soil Boring Service Layer Cred cubed, USDA, USC IGP. and the GIS L	ts: Source: Esri, DigitalGlobe, GeoEye, i- S, AEX, Getmapping, Aerogrid, IGN, ser Community	JECT MGR: DESIGNI JMB ALI	ED BY: CREATED BY: CH	HECKED BY: SCALE: MEM AS SHOWN	DATE: NOV 2015	PROJECT NO: .	FILE NO: 14907.10 - Lackawanna		Department of Environmental Conservation

A CONTRACTOR OF STREET, STREET	and the second second
SS/SB-58	0-2"
Arsenic	10.53
Barium	98.2
Cadmium	1.33
Copper	43.8
Lead	101
A DESCRIPTION OF	A CONTRACTOR OF

SS/SB-08	0-2"	0-2'	2-4'	4-6'	SS/SB-23	0-2"	0-2'		142912	542 A.	1.1	N
Arsenic	14.5	14.9 J	26.6 J	4.41 J	Arsenic	20.8	32.5	SS/SB-	22 0-2"	0-2'		
Barium	217 J	462 J	443 J	99.5 J	Barium	706 J	960 J	Arsen	ic 25.4	5.45	2001	
Cadmium	6.27 J	11.2 J	5.7 J	1.07 J	Cadmium	8.99	6.36	Bariu	m 721	226		
Copper	166 J	170 J	213 J	19.9 J	Copper	433 J	1.010 J	Cadmi	um 11.1 J	1.5 J		Ŷ
Lead	2.180	1.220	869	66.6	Lead	2.460	2.030	Сорре	er 553 J	67.2 J	3 1	
Mercury	0.228	0.198	0.021	0.048	Mercury	0.37	0.062	Lead	2,420	387		
	0.2'	2 2'	0.021			Constanting of the	of the second	Mercu	iry 0.374	0.306		
Arsonic	18.0	0 10					/				SS/SB-41	0-2"
Barium	800	150									Arsenic	8.34
Cadmium	7.60	1.60		Real		/		Se 100		Contractors	Barium	109 J
Conner	460	37.0					distant in				Cadmium	2.31
Lead	1.600 J	940 J					Professional States	/	No. of Lot of Lot	12060	Copper	18.6
Mercury	0.860	0.120		12.5	-						Lead	102
	0.2"	0.2'		V 🔺	N. N. STOR				dana.		Mercury	0.077
Arconic	12 1	0-2		X	and the second			SS/SB	44	SS/SB-47	,	
Barium	208 1	110				S						S
Cadmium	6 87 1	1 0/	1 4	∖ 🔶 .			1. 1.	1990	State .			State.
Conner	115	18.3.1	S COS			Similari	100		- Harrison			903797
Lead	965 1	218	1 Street			in. 🖂	A	SS/SB-4	5			
Mercury	0.695 1	0.442	1			1.1					SS/SE	3-49
ivici cury	0.0557					12. 编述			9			
SS/SB-25	0-2"	0-1'	i beat				<u>S</u>	S/SB-42	0-2"			
Arsenic	9.20	8.59	記号橋				A	vrsenic	6.91			
Barium	125 J	104 J	ALC NO				E	Barium	90.9 J		2011	
Cadmium	0.72	0.2101	Star.				Ca	admium	2.00	 	3-48 0	-1'
Load	32.3 J	30.7J	C. Alte					Looper	24.1	Arse	nic 4	17
Mercupy	0 122	0 112	10					Lead	90.0	Bari	um 8	30
Wercury	0.152	0.113				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		hercury	0.087	Cadm	nium 13	3.6
S	S/SB-10	0-2"	SS-26	0-2"	SS-27	0-2"	SS/SB-24	0-2"	0-2'	Сор	per 5	53
	Arsenic	9.39	Arsenic	7.82	Arsenic	5.43	Arsenic	16.5	11.0	Lea	ad 1 ,4	440
	Barium	214 J	Barium	157	Barium	67.0	Barium	806 J	403 J	Mer	cury 0.	285
<u> </u>	admium	3.1J	Cadmium	2.02	Cadmium	1.00	Cadmium	9.03	1.93		ne as	
1	Copper	91.91	Copper	56.0	Copper	18.8	Copper	197 J	51.9 J	20 C		
	Lead	595 J	Lead	236 J	Leau	102 J	Lead	1,710	1,020	1911		
	viercury	0.265 J	wercury	0.033 J	IVIETCUTY	0.08	Mercury	0.563	0.130	110		
Note: Soil a	nalvtical	results comp	ared to 6 Ne	w York Co	de		Unrestricted	Restricted	1.10	1.00 50		
of Rules an	d Regula	tions (NYCR	R) Part 375	Environmer	ntal		Use SCO	Residential			the second	and the second
Remediatio	n Prograr	ns Soil Clear	nup Objectiv	es (SCOs).		Constituent	(mg/kg)	(mg/kg)	n .	100	AN PROPERTY	
On-Site res	ults comp	ared to Unre	stricted Use	and Restri	cted	Arsenic	13	16	man			-
Residential	Use SCC	s. Only loca	tions with re	sults excee	eding	Barium Cadmium	350 2.5	400				
Exceedance	snown. E es of Res	tricted Resid	ential Use S	ieu use are COs are	e poldea.	Copper	50	270	Similar .			5
shaded in gr	ay.					Lead	63	400	and a second			- All
		Here and the	State of Lot	K K A		wercury	0.18	0.81				* * *
		Le	gend						0 75	450		Feet
	3	4	Monito	orina Well	Bak	er Hall Pr	operty		0 /5	150 1 in - 150		300
\mathbf{X}			• • •	0.1						1 in = 150	π	
Surface Soil Service Layer Credits: Source: Esri, DigitalGlobe, GeoEy										obe, GeoEye,		
	to	and the	📄 🛛 Soil B	oring				l	I-cubed, USDA, L IGP, and the GIS	User Commun	amapping, Ae nity	erogria, IGN,
		-	N									_
	"	NEW YORK	Department	d LAC	KAWANNA		RATOR (SI	TE NO. 9	15206)	FI	GURE 2-	3 Dec::#-
		1 and and and	Conservation	1			οι υμά κε 1Δ ΝΕ\λ/ ν	NRK NOKI		KI INOIG Raker	Hall Pro	Results
					LAU					Dakel		perty
PROJECT		DESIGNED B	Y: CREATE	D BY: CH	HECKED BY:	SCALE	: D	ATE:	PROJECT	NO:	FILE N	NO:
JMB HAW HAW M					MEM	AS SHO	WN NO	V 2015)15 1490710 Incinerator/ GIS/MXD/FS			

- anic		-	' and	Arcol		^16	l e	bod	Arcenic		
senic 6	A13	<u>ר</u>	252	Arsei 16	110	0-1'		76	4150110		
0			232	10					4.5		
Arser	nic				P15		-d	Arcon	-		- 200
64				al-cod		18	5	16.9			
15					2-3	10.		10.5			
					B13	Lea	h	Arsen	ic		- Delle -
					0-1'	7(5	6.7			
					 			Arsor	vic D		
					0-1'	71	2				Constant of the
					1-2'	41	2	22	<u></u>		
-				10-21	3-4'	30	.2	13.7	, 197		100
	a start of				C15		he	Arser	aic		5.25
	The second				1-2'		30 7	13.	2		
						A Second					
		BS)	Lead	Arser	nic		Colors I	1		Contraction of
		0-1	1'	127	5						Contra de
		1-7	2'	16.9	53			-			
		-	B10	Lead	Ar	senic		Serie St.			A
			0-1'	150		LOD					
						D11	T	Lead	Arseni	ic	-
						0-1'	T	104	8.6		
	1.100					C12	T	Lead	Arseni	ic.	1
						0-0.5		405	11	- Internet	
						0-1'	T	458	12		
						1-2'	T	326	<lod< td=""><td></td><td></td></lod<>		
						2-3'	t	13.1	15.5		8 (S.
ad	Arseni		H16	Lead	A h	rsenic			and!		
07	11	- I -	1-2'	20.4	<u>i</u>	14.2					
6	Lead	Ars	enic								(Constant)
1'	107									1000	- 1 - 5
Ť	heal	Arse	nic						and the second		and the
. 	Leau 69	AISC 7.	2 mic							1000	-
╼┯┷╸			·								
+	Lead	Arsen									-
<u></u>	505	. 1									
.eaa	Arsen										
<u>с499</u> ол	4.1										
											. 19 87
	10										
	20										
1 man	2.5										
415em	10										
0.0	- C										and the second
	100										
	1										
											100
										State of	
											and the
										-	
		3							DEFE	-	-
	1			a la					1.16	4	2

100	Same .		114-116-	Sec. 1987		S-1000	Contraction of the	100135	2 (B) (A)	0.00213	Sec.	NUMBER OF	No. Use
N			11/2	29/2012		-	MW-07	11/28/2012	4/17/2013	3	Star -		11 - The second
	P	/W-08	Total	Dissolved	4/17/2013	1000	Antimony	(<12.5 UJ)	(<25 U)	1		S TRA	3-2-34
4	Ant	imony	5.62 J	5.4 J	(<25 U)	196.2	Arsenic	12.3 J	43.7	and the second			
9	Ars	enic	2.9 J	(<5 UJ)	17	of the second second second	Chromium	(<175 U)	9.3 J		These		- Contractor
S-10	Chr	omium	7.68 J	1.62 J	27.7 J	1 - A.	Iron	15,000	3,380 J	11	250 101		1.1
L	Iron	ו	949	27.7 J	14,200 J	2. A. Y. C. C.	Lead	30.5 J	18.4	N 2 4	and and	and the second second	and the second s
States and	Lea	a	(<3 UJ)	(<3 UJ)	1/		Magnesium	43,500	57,100 J	101.1224		Contraction and an	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER
	IVIa Ma	gnesium	52,200	53,200 J	201 1	ueir -	Manganese	338 J	99.1 J			Street, Street, St.	
in the second	Nic	kel	5 89 1	(<10,00)	2913	Size and	Nickel	123	9.08 J	198127	diam'r.	well-submitte	0.0000000
	Soc	lium	29,600	31,100 J	33,400 J	distant"	Sodium	35,300	54,800 J	1000		and the second	Stanis
	-			Colorado de		0	/		100	Con the		N.W.	And St.
The second second			<₹	States of the local division of the			and the second			MW-02A	11/29/20	12 4/17/2013	a state
-	1000	diam'r.		1000	C- 70				ALS AR	Antimony	5.48 J	(<25 U)	100 200
		T	1.00		Pro the second	-	1.154			Arsenic	9.3 J	16.4	1.00
		1	State of the	1 4 CON	1000	10	Mande	THE L	2 54	Iron	(<05 U)	22.8 J	Nº COL
	11	/28/2012		\mathbf{h}		-		12 34			4,200	2 89 1	100
MW-06	Total	Diss	olved 4/	16/2013			1100	SAL ST.	10 3 20	Magnesium	30.600	48,800 1	
Antimony	12.5 UJ	6.2	27 J (<25 U)	1 1			131 C	and the	Manganese	147 J	106 J	1000
Arsenic	13.6 J	5	5J	30.2	l l l l l l l l l l l l l l l l l l l					Nickel	(<44 U)	13.8J	
Chromium	(<69.9 L	l) (<2.	.5 U)	11.2			1 2000			Sodium	30,800	57,500 J	1005
lead	7 08 1	(<2		261		(A)	2× 20			1000	dian'	100	
Magnesium	37.600	31.3	2001 3	34,300	ii ii	. 16+			•	20.366		-HOPT (1984	2 N 28
Manganese	283 J	15	58J	125	ii ii	- 94	18 20	1 B		MW-05	11/29/20	12 4/17/2013	Sec. Sec.
Nickel	(<52.2 L	l) (<24	1.6 U)	22.3			21.00			Antimony	4.84 J	(<25 U)	Contraction of the second
Sodium	48,800	43,0	600 J 3	88,200				駿 🔄		Arsenic	8.4 J	18.7	demande stagts
WARES .	Ee ni	n en s		1000	11/1	ii.	1.002			Chromium	10 J	7.18 J	
	414/ 024	11/20/	2012 4/10	/2012	11	ii Ii	100 - 20	98. HU.		heal	(<3111)	(<611)	
	vivv-03A	11/28/2		0/2013	1.1	ii.		13 676		Magnesium	27 800	44 800 1	20.000
	sonic	12.3		37	6					Manganese	50 1	121	and the
	romium	(<74.7	2 2	58 1				100		Nickel	6.8 J	(<20 U)	1000
Irc	on	(<993	U) 6	55		ii.	Ë====n			Sodium	32,000	47,500 J	A CONTRACTOR
Le	ad	(<31		6 U)			A Participant	44	1000	OF FREE		1 1 1 1	100
M	agnesium	53,00	00 41	,700			, , , , , , , , , , , , , , , , , , ,	20. 1. 1	1.11	1.1.1.1.1.1.1			Station of
M	anganese	342	J 6	9.9			#		1000				The fail
Ni	ckel	(<20.7	7 U) 10).7 J			<u>//</u>						
So	odium	214,0	00 254	1,000	and the	ļ					a same	1400.20	
	-18	18 1	ALC: NO	C States	A CARD DATE	4		12 . 6.		15.		1000	1.00
100	A. 6	3.12	and a second	1						CONT.		CELES OF	201 255
NYSDEC	Class GA	12	St Sal	6 8	FL_CH (Sec.	1			11/28	/2012		
Standards a	nd Guidar	nce	i car	MINT OFFICE	Server .	- 新聞第一	1 Action		MW-04	Total	Dissolved	4/17/2013	I RAVE TO T
Values	s (µg/L)	3%			-	a sale	- Directory		Antimony	4.56 J	6.34 J	(<25 U)	
Antimony	3	-	- nor	and the state				n /	Arsenic	6.9 J	(<5 UJ)	(<10 U)	a with
Arsenic	25	1.0			N article				Chromium	293 J	(<2.5 U)	21.5 J	
Chromium	50	4.5				Concernant I	States of the local division of the local di		Iron	12,300	(<25 U)	723 J	74254
Iron	300				and the second second	7202	Mar and		Lead	7.26 J	(<3 UJ)	5.09 J	
Lead	25		100 - 12 -		and the second second	12.4	4		Manganese	364 1	37,200 J	187 I	ALC: NO
Magnesium	35,000)		10/18 16		or other Designation		14 20 10	Nickel	195	(<10 U)	17.2]	240.78-
Manganese	300		Well ID	Date Sampled	100			N 24	Sodium	27,400 J	<u>3</u> 2,700 J	38,700 J	and the second
Sodium	100		Analyte	Result (µg/L)					12500	2.0.55	ALC: N	Carrier and	C. B. UT.
Soulum	20,000		The second second	1. 69		6	dester 1			100 A 2	-	all and	Battle Long
			Lege	nd									
		}				Note: Bol	d indicates ex	ceedance	of 💻				Feet
4	3	2	-	Monitoring	Well	NYSDEC	Class GA Sta	andards and	1 0	50	100		200
		}		On-Site Are	a	Guidance	Values for in	organics.	Ŭ		1 in - 1	، ۱۵۵ (۱	
			6====			J = Estima	ated value				1 111 -		
	Z	5 10	L	Soil Ramp		U = The c	onstituent wa	s not detect	ted;	Service Layer C	redits: Sour	ce: Esri, DigitalG	obe, GeoEye,
		to to		Tay Parcelo		u_1e_{associ}	Red Value IS	ine reportin	ig limit. _i	-cubed, USDA,	USGS, AE	X, Getmapping, A	erogrid, IGN,
					•	µy/∟ – mio	Jograms per	11(6)	I	GP, and the GI	S USER COM	munity	
	R	0	1			<u>< \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>				0152061			2-5
	5	STATE	VYORK D	epartment of	LAU			ים עחוודא		. 910200)	0		2-0 norgania
		OPPO C	C	onservation	5						G		norganic s
		5-	0.5			L/-		N/A, IN⊑VV				INC SUIL	5
		DESIG					SOM E.				NO	FILE N	NO:
PROJECT	NGK:	DESIGN	NED BY:	UKEATED B		EN BA:	SUALE:		1⊑: 2015	PRUJEUI 140071	NU: 0	14907.10 - La	ackawanna
IMP		ц,	- VV		-					1			

FILE PATH: \\WARWICK\WARWICKFP\PR0JECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-2] 10/27/15

FILE PATH: \\WARWICK\WARWICKP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-3] 10/27/15

FILE PATH: \\WARWICK\WARWICKFP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-4] 10/27/15

FILE PATH: \\WARWICK\WARWICKFP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-5] 10/27/15

FILE PATH: \\WARWICK\WARWICKP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-6] 10/27/15

FILE PATH: \\WARWICK\WARWICKFP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-7] 10/27/15

FILE PATH: \\WARWICK\WARWICKFP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-9] 10/27/15

XCAVATION	TOPSOIL WITH SEED	4+50 4+50	580 EL	6 6 6 O 10 C	630		
<u>LEGEND:</u> — — — EXI — PR — BO	ISTING SURFACE OPOSED FINAL SURF. TTOM OF IMPACTED	ACE SOIL	AREA TO BE CUT BACKFILL			SOURCE: Survey by Popli, / And Engineering & October 4, 2012.	ARCHITECTURE ∉ L.S., P.C. ON
	R STATE OPPOR	VORK Department Environment Conservation	of LACKAWANNA INC FEASIBIL Lack	INERATOR (SITE NO. 9 ITY STUDY REPORT fawanna, new york	0	FIGURE 6–9 N–SITE AREA ALTERI CROSS SECTIC	NATIVE 6A N
project mgr JMB	designed by MEM	created by DPA	checked by JH	scale AS SHOWN	date NOV 2015	PROJECT NO. 14907.10	FILE NO. Lackawanna—Figures

FILE PATH: \\WARWICK\WARWICKFP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-10] 10/27/15

FILE PATH: \\WARWICK\WARWICKFP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-11] 10/27/15

	SOIL WITH SEED TO BOTTOM /ATION		4+50	ELEVATIO	6 620 N	5 7 0	
<u>LEGEND:</u> — — — EXI: — PRG — – – BO ^T	STING SURFACE DPOSED FINAL SURF, ITOM OF IMPACTED 3	ACE SOIL	AREA TO BE CUT BACKFILL			SOURCE: SURVEY BY POPLI, / AND ENGINEERING & OCTOBER 4, 2012.	ARCHITECTURE α L.S., P.C. ON
	R STATE (STATE (STATE (STATE (YORK Department Environment Conservation	of LACKAWANNA INC FEASIBIL Lack	INERATOR (SITE NO. 9 ITY STUDY REPORT fawanna, new york	15206)	FIGURE 6–1 N–SITE AREA ALTERN CROSS SECTIOI	1 VATIVE 6B NS
project mgr JMB	designed by MEM	created by DPA	checked by JH	scale AS SHOWN	date NOV 2015	PROJECT NO. 14907.10	^{FILE} NO. Lackawanna—Figures

	Excavation Areas 0-2 ft. Impact Depth 0-4 ft. Impact Depth	LACKAW	ANNA INCIN FEASIBILIT LACKAWA	erator (s y study re NNA, new `	ITE NO. 9152 EPORT YORK	206)	Smo	FIGURE 6-13 Smokes Creek Corr Alternative 2A Final Conditions		
Handle		Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i- cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, and the GIS User Community	PROJECT MGR: JMB	DESIGNED BY: ALK	CREATED BY: HAW	CHECKED BY: MEM	SCALE: AS SHOWN	DATE: NOV 2015	PROJECT NO: 14907.10	14 Inc

FILE PATH: \\WARWICK\WARWICKFP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-14] 10/27/15

	Excavation Areas 0-2 ft. Impact Depth 0-4 ft. Impact Depth	n	LACKAW	ANNA INCIN FEASIBILIT LACKAWA	ERATOR (S Y STUDY RE NNA, NEW Y	ITE NO. 9152 EPORT YORK	206)	Smo	FIGURE 6-15 okes Creek Co Alternative 21 Final Conditio	5 orri B ns
Freedo		Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i- cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, and the GIS User Community	PROJECT MGR: JMB	DESIGNED BY: ALK	CREATED BY: HAW	CHECKED BY: MEM	SCALE: AS SHOWN	DATE: NOV 2015	PROJECT NO: 14907.10	14 Inc

FILE PATH: \\WARWICK\WARWICKFP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-16] 10/27/15

	Excavation Areas 0-2 ft. Impact Depth 0-4 ft. Impact Depth	LACKAW	/ANNA INCIN FEASIBILIT LACKAWA	ERATOR (S Y STUDY RE NNA, NEW `	ITE NO. 9152 EPORT YORK	206)	Sm	FIGURE 6-1 okes Creek C Alternative (Final Conditic	7 orrido 3 ons	
Jane		Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i- cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, and the GIS User Community	PROJECT MGR: JMB	DESIGNED BY: ALK	CREATED BY: HAW	CHECKED BY: MEM	SCALE: AS SHOWN	DATE: NOV 2015	PROJECT NO: 14907.10	14907 Incine

FILE PATH: \\WARWICK\WARWICKFP\PROJECTS\14907.10 - LACKAWANNA\CAD\14907.10-LACKAWANNA-FIGURES.DWG [FIG 6-18] 10/27/15

Tables

TABLE 2-1 SUMMARY OF INORGANIC EXCEEDANCES – ON-SITE AREA

		Unrestricted Use			
	Concentration	SCOs ^(a)	Frequency Exceeding	Commercial SCOs ^(a)	Frequency Exceeding
Constituents	Range (mg/kg)	(mg/kg)	Unrestricted Use SCOs	(mg/kg)	Commercial SCOs
		SURF	ACE SOIL		
Barium	24.4 - 399	350	1 of 10	400	0 of 10
Cadmium	0.400 - 22.0	2.5	4 of 10	9.3	1 of 10
Chromium	8.32 - 513	30	3 of 10	1,500	0 of 10
Copper	13.2 - 406	50	4 of 10	270	1 of 10
Lead	28.5 - 2,330	63	7 of 10	1,000	1 of 10
Manganese	163 - 4,190	1,600	2 of 10	10,000	0 of 10
Mercury	0.03 - 0.326	0.18	2 of 10	2.8	0 of 10
Nickel	11.8 - 80.6	30	3 of 10	310	0 of 10
Selenium	2.21 - 14.8	3.9	5 of 10	6,800	0 of 10
Zinc	67.9 - 1,840	109	7 of 10	10,000	0 of 10
		SUBSU!	RFACE SOIL		
Arsenic	1.51 - 51.5	13	13 of 68	16	7 of 68
Barium	21.3 - 1,500	350	8 of 68	400	7 of 68
Cadmium	0.170 - 42.7	2.5	11 of 68	9.3	3 of 68
Chromium	5.87 - 134	30	12 of 68	1,500	0 of 68
Copper	4.47 - 1,510	50	15 of 68	270	5 of 68
Cyanide, Total	0.096 - 170	27	4 of 68	27	4 of 13
Lead	9.70 - 6,820	63	26 of 68	1,000	6 of 68
Mercury	0.011 - 1.0	0.18	7 of 68	2.8	0 of 68
Nickel	5.17 - 342	30	54 of 68	310	1 of 68
Silver	0.3 - 26	2.0	15 of 68	1,500	0 of 68
Zinc	20.8 - 4,910	109	33 of 68	10,000	0 of 68
(a) NYSDEC Division of E Use SCOs. NOTE: mg/kg	Environmental Remediatio	n. 2006. 6 New York Code	of Rules and Regulations Part	375 Environmental Remediat	tion Programs, Commercial

NYSDEC = New York State Department of Environmental Conservation

SCO = Soil Cleanup Objective

TABLE 2-2 SUMMARY OF SOIL INORGANIC CONCENTRATION
EXCEEDANCES – BAKER HALL PROPERTY

Constituents	Concentration Range	Unrestricted Use SCOs ^(a) (mg/kg)	Frequency Exceeding	Restricted Residential SCOs ^(a) (mg/kg)	Frequency Exceeding Restricted Residential
Constituents	(ing/ing)	SURF	ACE SOIL	(116, 16)	5005
Arsenic	5 13 - 25 1	13	5 of 1/	16	3 of 1/
Barium	55.8 - 806	350	1 of 14	400	3 of 14
Cadmium	0 720 - 11 1	25	6 of 14	400	5 of 14
Chromium	11.3 - 135	30	6 of 14	180	0 of 14
Copper	11.5 - 155	50	7 of 14	270	2 of 14
Lead	54.0 - 2.460	63	11 of 14	400	6 of 14
Mercury	0.033 - 0.695	0.18	6 of 14	0.81	0 of 14
Nickel	9 99 - 141	30	6 of 14	310	0 of 14
Selenium	0.60 - 11.3	3.9	5 of 14	180	0 of 14
Silver	0.10 - 5.35	2.0	3 of 14	180	0 of 14
Zinc	108 - 2,170	109	14 of 14	10,000	0 of 14
		SUBSUI	RFACE SOIL	,	
Arsenic	2.89 - 41.7	13	5 of 45	16	4 of 45
Barium	29.7 - 960	350	6 of 45	400	6 of 45
Cadmium	0.210 - 13.6	2.5	5 of 45	4.3	5 of 45
Chromium	5.63 - 87.4	30	4 of 45	180	0 of 45
Copper	3.06 - 1,010	50	7 of 45	270	3 of 45
Lead	5.04 - 2,030	63	28 of 45	400	18 of 45
Mercury	0.006 - 0.86	0.18	5 of 45	0.81	1 of 45
Nickel	9.59 - 121	30	19 of 45	310	0 of 45
Selenium	0.22 - 11	3.9	1 of 45	180	0 of 45
Silver	0.16 - 4.13	2.0	4 of 45	180	0 of 45
Zinc	28.5 - 4,180	109	12 of 45	10,000	0 of 45
(a) NYSDEC Division of Restricted Unrestricted U	of Environmental Remediati Jse and Commercial Use SC	on. 2006. 6 New York Coc COs. December.	le of Rules and Regulations P	art 375 Environmental Reme	ediation Programs.

NOTE: mg/kg = Milligrams per kilogram

NYSDEC = New York State Department of Environmental Conservation

SCO = Soil Cleanup Objective

Cons	tituents	Concentration Range (mg/kg)	Unrestricted Use SCOs ^(a) (mg/kg)	Frequency Exceeding Unrestricted Use SCOs	Commercial SCOs ^(a) (mg/kg)	Frequency Exceeding Commercial SCOs	
		•	SURFA	CE SOIL			
Arsenic		6.11 - 38.1	13	9 of 22	16	8 of 22	
Barium		67.4 - 1,200	350	9 of 22	400	7 of 22	
Cadmium		0.957 - 18.4	2.5	11 of 22	9.3	4 of 22	
Chromium		12.8 - 85.6	30	11 of 22	1,500	0 of 22	
Copper		18.6 - 8,180	50	12 of 22	270	5 of 22	
Lead		42.0 - 2,720	63	20 of 22	1,000	7 of 22	
Manganese		389 - 2,490	1,600	1 of 22	10,000	0 of 22	
Mercury		0.044 - 0.851	0.18	7 of 22	2.8	0 of 22	
Nickel		16.5 - 143	30	20 of 22	310	0 of 22	
Selenium		0.390 - 9.00	3.9	2 of 22	6,800	0 of 22	
Silver		0.135 - 12.0	2.0	5 of 22	1,500	0 of 22	
Zinc		88.8 - 2,730	109	20 of 22	10,000	0 of 22	
			SUBSURF	ACE SOIL			
Arsenic		4.00 - 80.0	13	19 of 64	16	16 of 64	
Barium		47.6 - 8,800	350	19 of 64	400	15 of 64	
Cadmium		0.165 - 57.5	2.5	21 of 64	9.3	10 of 64	
Chromium		11.7 - 146	30	20 of 64	1,500	0 of 64	
Copper		10.2 - 1,820	50	25 of 64	270	13 of 64	
Cyanide, Tot	al	0.052 - 110	27	2 of 5	27	1 of 64	
Lead		10.88 - 8,210	63	34 of 64	1,000	13 of 64	
Mercury		0.008 - 2.09	0.18	17 of 64	2.8	0 of 64	
Nickel		19.9 - 250	30	63 of 64	310	0 of 64	
Selenium		0.470 - 13.0	3.9	5 of 64	6,800	0 of 64	
Silver		0.150 - 19.1	2.0	14 of 64	1,500	0 of 64	
Zinc		54.7 - 2,830	109	44 of 64	10,000	0 of 64	
(b) NYSDEC Use SCOs. NOTE:	Division of Env mg/kg NYSDEC	ironmental Remediation. 20 = Milligrams per kilogram = New York State Departr	006. 6 New York Code of	Rules and Regulations Part	375 Environmental Remedi	ation Programs, Unrestricted	
	SCO	= Soil Cleanup Objective					

TABLE 2-3 SUMMARY OF SOIL INORGANIC CONCENTRATION EXCEEDANCES – SMOKES CREEK CORRIDOR

TABLE 5-1 TECHNOLOGY SCREENING MATRIX

Technology	Process Options	Effectiveness in Addressing RAOs	Key Factors	Cost	Status	
		1	No Action			1
No Action	NA	Ineffective	Easily implemented	NA	None	Retained per NCP
		[Site Management			[
Engineering and Institutional Controls	Land use restrictions	Effective for human health risk RAOs associated with contact of fill	Easily implemented	Requires regulatory and public acceptance of restricted/diminished resource use.	Low	Retained for potential combination with other technologies.
			In situ Biological Treatment			
Phytoremediation	Phytoremediation Reliance on natural processes and chemical change Ineffective due to high concentration range of metails impacts to site soil Difficult to implement; requires planting of appropriate species and subsequent harvest for disposal, demonstration of natural processes causing attenuation, and subsequent monitoring Require		Requires regulatory and public acceptance of short-term restrictions on resource use.	Moderate	Not retained.	
		1	Isolation		1	1
Cap or Cover	Soil cover	Effectively addresses RAOs associated with contact of fill.	Moderately difficult to implement; requires import of soil for placement; monitoring of cover thickness; and periodic maintenance and monitoring.	Site layout would require grading. Part of site is active; would require coordination with DPW.	Moderate	Retain for consideration.
	Impermeable cover (e.g., clay, asphalt, plastic, etc.)	Effectively addresses RAOs.	Moderately difficult to implement; requires periodic maintenance and monitoring.	Site layout would require and grading. Part of site is active; would require coordination with DPW.	High	Retain for consideration.
		In	Situ Physical/Chemical Treatment			1
In situ Stabilization	Addition of amendments/reagents to soil/fill to convert contaminants to stable compounds with reduced or eliminated leaching potential; requires <i>in situ</i> mixing	Effective for risk-based RAOs and partially effective for source control; would require leachability testings to measure the immobility of contaminants	Moderately difficult to implement, requires import and availability of suitable materials/reagents (i.e., activated carbon, gypsum, apatite, etc.) and periodic monitoring.	Causes significant disturbance to site that may hinder future use; volume increase with bulk can be significant.	Moderate	Not retained.
Soil Flushing	Extraction of contaminants from soil with water or other suitable aqueous solutions; soil flushing process includes injection or infiltration process of extraction fluid through soil.	Effectively addresses RAOs	Considered an emerging technology, has not been widely implemented; moderately difficult to implement; addition of environmentally compatible solvents may be used to increase effective solubility of some COCs; however, flushing solution may alter the physical/chemical properties of the soil system; technology offers the potential for recovery of metala and can mobilize a wide range of organic and inorganic contaminants from coarse-grained soils;		High	Not retained.
		1	Removal		1	1
Excavation	Mechanical excavation used to remove soil/fill material	Will address relevant RAOs, assuming use of handling treatment/disposal options discussed below	Implementable for all areas; soil ramp would be removed; creek side slopes would need to be restored to original grades with clean fill.	Part of site is active; would require coordination with DPW.	High	Retain for consideration
	1	Ex	c-situ Physical/Chemcial Treatment	Γ		Γ
Solidification or Stabilization	Amendments added to modify physical and chemical properties of material to facilitate handling and disposal	Effective at immobilizing inorganics within fill.	Relatively easy to implement; can be performed on small batches as material is staged for transport; requires import and addition of amendments; result is decreased water content and toxicity and mobility of contaminants; volume increase.	Requires use of amendments to achieve stabilization	Moderate	Not retained.
<i>Ex situ</i> chemical treatment	Acid leaching used to remove inorganics from soil/fill	Permeability of fill may hinder effectiveness.	Difficult to implement; requires establishment of a designated treatment facility using potentially hazardous chemicals to remove inorganics from fill.	Requires long term use of facilities for soil/fill treatment and disposal or recycling of leached fluids; rate of treatment may limit rate of excavation and disposal; requires use and maintenance of specialized equipment and chemicals	High	Not retained.
	Vitrification used to convert inorganic contaminants to inert forms	Permeability of fill may hinder effectiveness.	Difficult to implement; requires establishment of a designated treatment facility using high temperature processes to vitrify soil/fill	Requires long term use of facilities for soil/fill treatment and disposal; rate of treatment may limit rate of excavation and disposal; requires use and maintenance of specialized equipment	High	Not retained.
			Disposal			
Off-site Disposal	Off-site commercial landfill	May be required for excavation options to meet RAOs	Low degree of difficulty to implement; requires identification of landfills capable of accepting material; landfill capacity and permitting may limit excavation and disposal rates.	Long range transport may be required dependent on landfill capacity/location; extensive site work and earthwork to accommodate transportation of material.	High	Retain for consideration
NOTE: RAO = Remedial Action O NA = Not Applicable NCP = National Contigenc COC = Contaminant of Co DPW = Department of Pub	bjective cy Plan oncern lic Works					

Lackawanna Incinerator (915206) Lackawanna, New York

Alternative	Description	Total Cost (Net Present Value)	Capital Cost	Annual Cost (Years 1-5)	Annual Cost (Years 6-30)
	ON	-SITE AREA			
2A	Soil/Fill Excavation to Unrestricted Use SCOs with Disposal Off-Site, Demolition and Removal of Both Incinerator Buildings	\$6,069,000	\$6,069,000	\$0	\$0
2B	Soil/Fill Excavation to UU with Disposal Off-Site, Demolition and Removal of the Southern Incinerator Building	\$5,583,000	\$5,583,000	\$0	\$0
3	No Action with Site Management	\$25,000	\$25,000	\$0	\$0
4A	Partial Excavation (Ramp), Demolition and Removal of Both Incinerator Buildings, and Re-Grading and Covering of Remaining Contaminated Soil with a Soil Cover	\$3,155,000	\$2,969,000	\$15,000	\$11,000
4B	Partial Excavation (Ramp), Demolition and Removal of the Southern Incinerator Building, and Re-Grading and Covering of Remaining Contaminated Soil with a Soil Cover	\$2,718,000	\$2,643,000	\$7,000	\$4,000
5A	Partial Excavation (Ramp), Demolition and Removal of Both Incinerator Buildings, and Re-Grading and Covering of Remaining Contaminated Soil with Asphalt	\$3,438,000	\$3,379,000	\$6,000	\$3,000
5B	Partial Excavation (Ramp), Demolition and Removal of the Southern Incinerator Building, and Re-Grading and Covering of Remaining Contaminated Soil with Asphalt	\$2,907,000	\$2,848,000	\$6,000	\$3,000
6A	Soil/Fill Excavation to Commercial with Disposal Off-Site, Demolition and Removal of Both Incinerator Buildings	\$4,267,000	\$4,267,000	\$0	\$0
6B	Soil/Fill Excavation to Commercial with Disposal Off-Site, Demolition and Removal of the Southern Incinerator Building	\$3,807,000	\$3,807,000	\$0	\$0
	SMOKES (CREEK CORRIDOR			
2A	Partial Removal of Contaminated Soil on Both Sides of Asphalt Path to Commercial Use SCOs and Isolation of Remaining Contaminated Soil/Fill with Soil	\$733,000	\$643,000	\$8,000	\$5,000
28	Partial Removal of Asphalt and Contaminated Soil to Commercial Use SCOs and Isolation of Remaining Contaminated Soil/Fill with Soil and Asphalt	\$947,000	\$857,000	\$8,000	\$5,000
3	Excavation of Asphalt and Contaminated Soil to Unrestricted Use SCOs with Disposal Off-Site	\$1,548,000	\$1,548,000	\$0	\$0

TABLE 7-1 ALTERNATIVE COST SUMMARY

2	Remaining Soil/Fill Excavation to Unrestricted Use SCOs with Disposal Off- Site	\$1,271,000	\$1,271,000	\$0	\$0
---	---	-------------	-------------	-----	-----

TABLE 8-1A ALTERNATIVE EVALUATION SUMMARY, ON-SITE AREA

	Alternative 1	Alternative 2A Soil/Fill Excavation to Unrestricted	Alternative 2B Soil/Fill Excavation to Unrestricted	Alternative 3	Alternative 4A Partial Excavation (Ramp), Demolition and Removal of Both	Alternative 4B Partial Excavation (Ramp), Demolition and Removal of the	Alternative 5A Partial Excavation (Ramp), Demolition and Removal of Both	Alternative 5B Partial Excavation (Ramp), Demolition and Removal of Southern	Alternative 6A Soil/Fill Excavation to Commercial	Alternative 6B Soil/Fill Excavation to Commercial
	No Action	Use SCOs with Disposal Off-Site, Demolition and Removal of Both Incinerator Buildings	Use SCOs with Disposal Off-Site, Demolition and Removal of the Southern Incinerator Building	No Action with Site Management	Incinerator Buildings, and Re-Grading and Isolation of Remaining Impacted Soil with a Soil Cover	Southern Incinerator Building, and R Grading and Isolation of Remaining Impacted Soil with a Soil Cover	Incinerator Buildings, and Re- Grading and Isolation of Remaining Impacted Soil with Asphalt	Incinerator Building, and Re-Grading and Isolation of Remaining Impacted Soil with Asphalt	SCOs with Disposal Off-Site, Demolition and Removal of Both Incinerator Buildings	SCOs with Disposal Off-Site, Demolition and Removal of the Southern Incinerator Building
(1) Overall Protection	of the Public Health and the Environme	ent								
	There is no reduction of risk with this	Eliminates potential for human contact	Eliminates potential for human contact	There is a slight reduction of risk. An	Prevents human contact and reduces	Prevents human contact and reduces	Prevents human contact and reduces	Prevents human contact and reduces	Eliminates potential for human contact	Eliminates potential for human contact
	continue to pose unacceptable risk to all receptors.	groundwater and surface water through complete removal of contamination.	groundwater and surface water through complete removal of contamination.	determined to be safe.	n groundwater and surface water.	groundwater and surface water.	groundwater and surface water.	groundwater and surface water.	groundwater and surface water through complete removal of contamination.	groundwater and surface water through complete removal of contamination.
(2) Standards, Criteri	ia and Guidance (SCGs)			1	1		1			
	Does not meet SCG criteria.	Will meet SCG criteria.	Will meet SCG criteria.	Will not meet SCG criteria.	Will meet SCG criteria.	Will meet SCG criteria.	Will meet SCG criteria.	Will meet SCG criteria.	Will meet SCG criteria.	Will meet SCG criteria.
(3) Long-Term Effect	This alternative will not provide long	Effectively addresses PAOs through	Effectively addresses PAOs through	The accoment would be in place long	When designed and implemented	When designed and implemented	When designed and implemented	When designed and implemented	Effectively addresses PAOs through	Effectively addresses PAOs through
	term effectiveness or permanence. This alternative offers no controls.	s source removal.	source removal.	term.	properly, effectively eliminates exposure and prevents transport; however, requires long-term monitoring/maintenance.	properly, effectively eliminates exposure and prevents transport; however, requires long-term monitoring/maintenance.	properly, effectively eliminates exposure and prevents transport; however, requires long-term monitoring/maintenance.	and prevents transport; however, requires long-term monitoring/maintenance.	source removal.	source removal.
(4) Reduction of Toxic	city Mobility or Volume of Contaminat	lion								
Amount of Hazardous	None	Will reduce the volume and mobility of	Will reduce the volume and mobility of	None	Will reduce the volume and mobility of	Will reduce the volume and mobility of	Will reduce the volume and mobility of	Will reduce the volume and mobility of	Will reduce the volume and mobility of	Will reduce the volume and mobility of
Materials Destroyed, Treated, or Removed		contamination via soil removal.	contamination via soil removal;		contamination via soil removal; however, residual source will remain beneath the cover.	contamination via soil removal; however, residual source will remain beneath the cover.	contamination via soil removal; however, residual source will remain beneath the cover.	contamination via soil removal; however, residual source will remain beneath the cover.	contamination via soil removal.	contamination via soil removal;
Degree of Expected	None	Contaminated soil will be disposed of in	Contaminated soil will be disposed of in	None	Some contaminated soil will be disposed	Some contaminated soil will be disposed	Some contaminated soil will be disposed	Some contaminated soil will be disposed	Contaminated soil will be disposed of in	Contaminated soil will be disposed of in
Reductions in Toxicity, Mobility, or Volume		permitted facilities that use measures to	permitted facilities that use measures to		of in permitted facilities that use measures	s of in permitted facilities that use	of in permitted facilities that use	of in permitted facilities that use	permitted facilities that use measures to	permitted facilities that use measures to reduce or eliminate the risk of toxic
woonity, or wounte		mobility.	mobility.		mobility.	of toxic mobility.	of toxic mobility.	of toxic mobility.	mobility.	mobility.
Irreversible Treatment?	No	Not reversible.	Not reversible.	No	Partially reversible. Remaining fill could	Partially reversible. Remaining fill could	Partially reversible. Remaining fill could	Partially reversible. Remaining fill could	Not reversible.	Not reversible.
Pasiduals Pamaining	Var	None above SCOs	None above SCOs	Var	be un-covered. Residuals will remain under cover	be un-covered. Residuals will remain under cover	be un-covered. Residuals will remain under cover	be un-covered. Residuals will remain under cover	None above SCOs	None above SCOs
After Treatment	103	None above Sees.	None above Sees.	105	Residuals will remain under cover.	Residuals will remain under cover.	Residuals will remain under cover.	Residuals will remain under cover.	Noir above SCOS.	None above Sees.
(5) Short-Term Impac	ct and Effectiveness	x x x x x x	.			x x x x x x		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Community Protection	There is no action and therefore, no additional risk to the community.	Increased short-term risks to the public during excavation activities and transpo	Increased short-term risks to the public rt during excavation activities and transpor	There is a slight reduction of risk to the t community.	Increased short-term risks to the public during excavation activities and transport	Increased short-term risks to the public during excavation activities and transport	Increased short-term risks to the public t during excavation activities and transpor	Increased short-term risks to the public during excavation activities and transport	Increased short-term risks to the public during excavation activities and transpo	Increased short-term risks to the public rt during excavation activities and transpo
		of equipment and materials to and from	of equipment and materials to and from		of equipment and materials to and from	of equipment and materials to and from	of equipment and materials to and from	of equipment and materials to and from	of equipment and materials to and from	of equipment and materials to and from
		site. Dust may be produced during	site. Dust may be produced during	4	site. Dust may be produced during	site. Dust may be produced during	site. Dust may be produced during	site. Dust may be produced during	site. Dust may be produced during	site. Dust may be produced during
		through standard construction practices.	through standard construction practices.		through standard construction practices.	through standard construction practices.	through standard construction practices.	through standard construction practices.	through standard construction practices.	through standard construction practices.
Worker Protection	There is no action and therefore no	Workers can potentially be exposed to	Workers can potentially be exposed to	There is no action and therefore no	Workers can potentially be exposed to	Workers can potentially be exposed to	Workers can potentially be exposed to	Workers can potentially be exposed to	Workers can potentially be exposed to	Workers can potentially be exposed to
	workers will be present on site.	contaminated media during excavation and grading activities. Work around	contaminated media during excavation and grading activities. Work around	workers will be present on site.	contaminated media during excavation activities. Work around heavy equipment	contaminated media during activities. Work around heavy equipment and	contaminated media during excavation and grading activities. Work around	contaminated media during excavation and grading activities. Work around	contaminated media during excavation and grading activities. Work around	contaminated media during excavation and grading activities. Work around
		heavy equipment carries potential risk to	heavy equipment carries potential risk to		carries potential risk to workers. Risks	electrical power carries potential risk to	heavy equipment carries potential risk to	heavy equipment carries potential risk to	heavy equipment carries potential risk to	heavy equipment carries potential risk to
		workers. Risks can be minimized by implementing health and safety controls.	workers. Risks can be minimized by implementing health and safety controls.		can be minimized by implementing health and safety controls.	workers. Risks can be minimized by implementing controls.	workers. Risks can be minimized by implementing health and safety controls.	workers. Risks can be minimized by implementing health and safety controls.	workers. Risks can be minimized by implementing health and safety controls.	workers. Risks can be minimized by implementing health and safety controls.
Environmental Impacts	There are no short-term impacts	Wastes produced will include	Wastes produced will include	There are no short-term impacts	Wastes produced will include	Wastes produced will include	Wastes produced will include	Wastes produced will include	Wastes produced will include	Wastes produced will include
PP	associated with this alternative.	contaminated PPE. Wastes will be	contaminated PPE. Wastes will be	associated with this alternative.	contaminated PPE. Wastes will be	contaminated PPE. Wastes will be	contaminated PPE. Wastes will be	contaminated PPE. Wastes will be	contaminated PPE. Wastes will be	contaminated PPE. Wastes will be
TT TT CLASS	NY / / I	managed in compliance with ARARs.	managed in compliance with ARARs.	NY	managed in compliance with ARARs.	managed in compliance with ARARs.	managed in compliance with ARARs.	managed in compliance with ARARs.	managed in compliance with ARARs.	managed in compliance with ARARs.
Complete (Field Construction Time)	No action taken	Approximately 11 months	Approximately 10 months	No construction	Approximately 9 months	Approximately 8 months	Approximately 9 months	Approximately / months	Approximately 10 months	Approximately 9 months
(6) Implementability	Not Applicable	Excavation demolition and dispersel	Excavation demolition and disposed	Site Management can be implayed	Excavation disposal domalition and	Excavation disposal damalition and	Excavation disposal damplition and	Excavation disposal domalition and	Excavation demolition and dispersi	Excavation demolition and disper-1
Operate	Not Applicable.	alternatives can be implemented, and have been used nationally.	alternatives can be implemented, and have been used nationally.	and have been used nationally.	Excavation, disposal, demonitori, and containment alternatives can be implemented, and have been used nationally	excavation, disposal, demonstront, and containment alternatives can be implemented, and have been used nationally	excavation, asposal, demonition, and containment alternatives can be implemented, and have been used nationally	excavation, disposal, demontion, and containment alternatives can be implemented, and have been used nationally	alternatives can be implemented, and have been used nationally.	alternatives can be implemented, and have been used nationally.
Monitoring Requiremen	nts Not Applicable.	Soil shall be sampled and analyzed to confirm removal of impacted area.	Soil shall be sampled and analyzed to confirm removal of impacted area.	None	Soil shall be sampled and analyzed to confirm removal of impacted area.	Soil shall be sampled and analyzed to confirm removal of impacted area.	Soil shall be sampled and analyzed to confirm removal of impacted area.	Soil shall be sampled and analyzed to confirm removal of impacted area.	Soil shall be sampled and analyzed to confirm removal of impacted area.	Soil shall be sampled and analyzed to confirm removal of impacted area.
Availability of Equipme and Specialists	nt Not Applicable.				Equipment and special	lists are available for the implementation of	all of these technologies.			
Ability to Obtain Approvals and Coordinate with Other Agencies	Not Applicable.				Ability to obtain app	rovals and coordinate with other agencies a	assumed to be possible.			
(7) Cost Effectiveness										
Cost	\$0	\$6,069,000	\$5,583,000	\$25,000	\$3,155,000	\$2,718,000	\$3,438,000	\$2,907,000	\$4,267,000	\$3,807,000
(8) Land Use	Not Applicable	Unrestricted Lise	Unrestricted Use	Not Applicable	Commercial	Commercial	Commercial	Commercial	Commercial	Commercial
(9) Community Accer	not Applicable.	Unrestricted Use	Untestricted Use	not Applicable	Commerciai	Commerciai	Continercial	Commerciai	Commerciai	Commercian
, community recep	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
NOTE:	RAO				= Remedial Action Objective					
	PPE				 Soil Cleanup Objective Personal protective equipment 					
	ARAR				= Applicable or Relevant and Appropriate Re	equirement				

EA Project No.: 14907.10 Version: FINAL Table 8-1B, Page 1 November 2015

TABLE 8-1B ALTERNATIVE EVALUATION SUMMARY, SMOKES CREEK CORRIDOR

	Alternative 1	Alternative 2A	Alternative 2B	Alternativa 3			
	Anerhauve 1	Anternative 2A	Anternative 2B	Anternative 5			
		Partial Removal of Contaminated Soil on Both Sides	Partial Removal of Asphalt and Contaminated Soil				
		of Asphalt Path to Commercial SCOs and Isolation	to Commercial SCOs and Isolation of Remaining	Excavation of Asphalt and Contaminated Soil to			
	No Action	of Remaining Contaminated Soil/Fill with Soil	Contaminated Soil/Fill with Soil and Asphalt	Unrestricted Use SCOs with Disposal Off-Site			
(1) Overall Protection o	f the Public Health and the Environmer	nt					
	There is no reduction of risk with this	Prevents human contact and reduces potential migration	Prevents human contact and reduces potential migration	Removal of source reduces potential migration of			
	alternative. The soil pathways would	of contaminants to groundwater and surface water.	of contaminants to groundwater and surface water.	contaminants to groundwater and surface water.			
	continue to pose unacceptable risk to all						
	receptors.						
(2) Standards, Criteria	and Guidance (SCGs)						
	Does not meet SCG criterion.	Will meet SCG criteria.	Will meet SCG criteria.	Will meet SCG criteria.			
(3) Long-Term Effective	eness and Permanence						
	This alternative will not provide long-	When designed and implemented properly, effectively	When designed and implemented properly, effectively	Effectively addresses RAOs through source removal.			
	term effectiveness or permanence. This	eliminates exposure and prevents transport; however,	eliminates exposure and prevents transport; however,				
	alternative otters no controls.	requires long-term monitoring/maintenance.	requires long-term monitoring/maintenance.				
(4) Reduction of Toxicit	ty, Mobility, or Volume of Contaminatio						
Amount of Hazardous	None	Will reduce the volume and mobility of contamination	Will reduce the volume and mobility of contamination	Will reduce the volume and mobility of contamination			
Treated or Removed		via soli removal; nowever, residual contamination will	via soli removal; nowever, residual contamination will	via son removal.			
ricaled, or Removed		remain beneaur the cover.	remain beneaur the cover.				
D (D)							
Degree of Expected	None	Some contaminated soil will be disposed of in permitted	Some contaminated soil will be disposed of in permitted	Contaminated soil will be disposed of in permitted			
Reductions in Toxicity, Mobility, or Volume		facilities that use measures to reduce or eliminate the	risk of toxic mobility	racilities that use measures to reduce or eliminate the			
woonity, or volume		lisk of toxic mobility.	lisk of toxic mobility.	lisk of toxic mobility.			
Irreversible Treatment?	No	Partially reversible. Remaining fill could be un-	Partially reversible. Remaining fill could be un-	Not reversible.			
-		covered.	covered.				
Residuals Remaining	Yes	Residuals will remain under cover.	Residuals will remain under cover.	None.			
After Treatment							
(5) Short-Term Impact	and Effectiveness						
Community Protection	There is no action and therefore, no	Increased short-term risks to the public during	Increased short-term risks to the public during	Increased short-term risks to the public during			
	additional risk to the community.	excavation activities and transport of equipment and	excavation activities and transport of equipment and	excavation activities and transport of equipment and			
		materials to and from site. Dust will be produced	materials to and from site. Dust will be produced	materials to and from site. Dust will be produced			
		during excavation activities. These can be mitigated	during excavation activities. These can be mitigated	during excavation activities. These can be mitigated			
		through standard construction practices.	through standard construction practices.	through standard construction practices.			
Worker Protection	There is no action and therefore no	Workers can potentially be exposed to contaminated	Workers can potentially be exposed to contaminated	Workers can potentially be exposed to contaminated			
	workers will be present on site.	media during excavation activities. Work around heavy	media during excavation activities. Work around heavy	media during excavation activities. Work around heavy			
		equipment carries potential risk to workers. Risks can	equipment carries potential risk to workers. Risks can	equipment carries potential risk to workers. Risks can			
		be minimized by implementing health and safety	be minimized by implementing health and safety	be minimized by implementing health and safety			
		controis.	controis.	controls.			
Environmental Impacts	There are no short-term impacts	Wastes produced will include contaminated PPE.	Wastes produced will include contaminated PPE.	Wastes produced will include contaminated PPE.			
	associated with this alternative.	wastes will be managed in compliance with ARARs.	wastes will be managed in compliance with ARARS.	wastes will be managed in compliance with ARARs.			
Time Until Action	No action taken	Approximately 3 months	Approximately 3 months	Approximately 4 months			
Complete (Field		reproximately 5 months	Approximately 5 months	Approximatery + months			
Construction Time)							
(6) Implementability							
Ability to Construct and	Not Applicable.	Excavation, disposal, and containment alternatives can	Excavation, disposal, and containment alternatives can	Excavation and disposal alternatives can be			
Operate	**	be implemented, and have been used nationally.	be implemented, and have been used nationally.	implemented, and have been used nationally.			
		-	-				
Monitoring	Not Applicable.	Soil shall be sampled and analyzed to confirm partial	Soil shall be sampled and analyzed to confirm partial	Soil shall be sampled and analyzed to confirm removal			
Requirements		removal of impacted area.	removal of impacted area.	of impacted area.			
Availability of	Not Applicable.			haar taalu ala siya			
Equipment and Specialists		Equipment and	specialists are available for the implementation of all of t	nese technologies.			
Ability to Obtain	Not Applicable						
Approvals and	rot Applicable.						
Coordinate with Other		Ability to obta	ain approvals and coordinate with other agencies assume	d to be possible.			
Agencies							
(7) Cost Effectiveness	•						
Cost	\$0	\$733.000	\$947.000	\$1,548,000			
(8) Land Use	ψυ	¢,55,000	φ247,000	ψ1,5-10,000			
(b) Land Use	Not Applicable	Commercial	Commercial	Unrestricted			
(9) Community Accord	ance						
() Community Accepta		TBD	TBD	TBD			
NOTE	RAO	= Remedial Acrion Objective	100	100			
NOIL.	PPE	= Personal protective equipment					
	ARAR	= Applicable or Relevant and Appropriate Requirement					
	TBD	= To be determined					

Lackawanna Incinerator (915206) Lackawanna, New York

TABLE 8-1C ALTERNATIVE EVALUATION SUMMARY, BAKER HALL PROPERTY

	Alternative 1	Alternative 2
	No Action	Remaining Soil/Fill Excavation to Unrestricted Use SCOs with Disposal Off-Site
(1) Overall Protection of	f the Public Health and the Environment	
	There is no reduction of risk with this alternative. The soil pathways would continue to pose unacceptable risk to all receptors.	Eliminates potential for human contact and migration of contaminants to groundwater and surface water through complete removal of contamination.
(2) Standards, Criteria a	and Guidance (SCGs)	
	Does not meet SCG criterion.	Will meet SCG criteria.
(3) Long-Term Effective	eness and Permanence	
	term effectiveness or permanence. This alternative offers no controls.	Effectively addresses RAOs through source removal.
(4) Reduction of Toxicit	y, Mobility, or Volume of Contamination	1
Amount of Hazardous Materials Destroyed, Treated, or Removed	None	Will reduce the volume and mobility of contamination via soil removal.
Degree of Expected Reductions in Toxicity, Mobility, or Volume	None	Contaminated soil will be disposed of in permitted facilities that use measures to reduce or eliminate the risk of toxic mobility.
Irreversible Treatment?	No	Not reversible.
Residuals Remaining After Treatment	Yes	None.
(5) Short-Term Impact a	and Effectiveness	
Community Protection	There is no action and therefore, no additional risk to the community.	Increased short-term risks to the public during excavation activities and transport of equipment and materials to and from site. Dust will be produced during excavation activities. These can be mitigated through standard construction practices.
Worker Protection	There is no action and therefore no workers will be present on site.	Workers can potentially be exposed to contaminated media during excavation and grading activities. Work around heavy equipment carries potential risk to workers. Risks can be minimized by implementing health and safety controls.
Environmental Impacts	There are no short-term impacts associated with this alternative.	Wastes produced will include contaminated PPE. Wastes will be managed in compliance with ARARs. Limited short term environmental impacts associated with implementation and air emissions.
Time Until Action Complete (Field	No action taken	Approximately 4 months
() Implemental "		
(b) Implementability	Not Applicable	Execution and disposal alternatives are be
Operate		implemented, and have been used nationally
Monitoring Requirements	Not Applicable.	Soil shall be sampled and analyzed to confirm removal of impacted area.
Availability of Equipment and Specialists	Not Applicable.	Equipment and specialists are available for excavation and disposal.
Ability to Obtain Approvals and Coordinate with Other Agencies	Not Applicable.	Ability to obtain approvals and coordinate with other agencies assumed to be possible.
(7) Cost Effectiveness		
Cost	\$0	\$1,271,000
(8) Land Use		
	Not Applicable.	Unrestricted Use
(9) Community Accepta	nce	
	TBD	TBD
NOTE:	RAO PPE	= Remedial Acrion Objective= Personal protective equipment
	ARAR TBD	 Applicable or Relevant and Appropriate Requirement To be determined

Appendix A

Technology Screening Letter

6712 Brooklawn Parkway, Suite 104 Syracuse, NY 13211-2158 Telephone: 315-431-4610 Fax: 315-431-4280 www.eaest.com

January 24, 2014

DRAFT

Mr. David Gardner New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7017

RE: Contract/Work Assignment No: D007624-10 Site/Spill No/Pin: Lackawanna Incinerator Site (915206) Remedial Action Objectives and Feasibility Study Technology Screening

Dear Mr. Gardner:

EA Engineering, P.C., and its affiliate EA Science and Technology (EA) is providing the Department with this technology screening review letter to facilitate development of the feasibility study (FS) being prepared for the Lackawanna Incinerator site (915206), located in Lackawanna, New York. The FS is being conducted in accordance with the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) *Technical Guidance for Site Investigation and Remediation* (2010)¹.

INTRODUCTION

The former Lackawanna Incinerator site is located at 2960 South Park Avenue, in the City of Lackawanna, Erie County, New York (Figure 1). The site is situated on a 1.57-acre, city-owned parcel of land that is partially bounded by a perimeter fence. The main access to the site is located on Reddon Street, off of South Park Avenue. The site's main features are two brick multi-story buildings that housed municipal solid waste incinerators (the southern building and the northern building), and a large soil ramp that was used to access the third floor of the northern building. The remainder of the site is generally open space. The southern portion of the property consists primarily of an unpaved area with a framed shed that is currently used to house equipment for the City Department of Public Works (DPW).

The site is located in a mixed use area including industrial, commercial, and residential properties (Figure 2). The property is bounded to the west by the Lackawanna Veterans' Stadium, to the south by the DPW, to the east by a partially developed parcel owned by the Baker Hall Victory Services (Baker Hall Property), and to the north by a paved walking path open to the public that runs parallel to the southern shore of Smokes Creek. Numerous single-family

¹ NYSDEC. 2010. DER-10 / Technical Guidance for Site Investigation and Remediation. May 3.

residential properties are located south and southwest of the site. Holy Cross Cemetery is located to the north of the site, on the north side of Smokes Creek.

The remedial goal for all remedial actions is considered to be the restoration of the site to the predisposal/pre-release conditions to the extent practicable. Remedial action objectives (RAOs) are defined as the medium-specific or area-specific cleanup objectives to provide protection of public health and the environment. The RAOs are based on contaminant-specific standards, criteria, and guidance (SCGs) for impacted media as defined in the remedial investigation (RI). The RI results were compared to medium-specific SCGs, as well as SCGs selected due to the current and reasonably ascertainable future land use and potential human and ecological receptors. The SCGs used to evaluate the RI data included:

- NYSDEC Class GA groundwater and Class C surface water standards and guidance values, as presented in the Division of Water Technical and Operational Guidance Series 1.1.1, 1998, as amended.
- NYSDEC Division of Fish, Wildlife, Marine Resources Draft freshwater guidance values, as presented in Sediment Screening and Assessment of Contaminated Sediments, January 2013.
- 6 New York Code of Rules and Regulations (NYCRR) Part 375, Environmental Remediation Programs Soil Cleanup Objectives (SCOs), for each site area, based on the current and future use: on-site soil to Commercial SCOs, the Stadium and Baker Hall Property soils to Restricted Residential SCOs, and the Smokes Creek Corridor soils to Protection of Ecological Resources SCOs.

REMEDIAL INVESTIGATION SUMMARY

The RI was conducted using a phased approach, to delineate the extent of site-related impacts. Impacts associated with the operation of the two former municipal waste incinerators include the remaining incinerator buildings, on-site ash fill material, as well as ash fill material along the south side of Smokes Creek, and extending to the east onto the adjacent Baker Hall Property. Site soil contamination appears to be related to the integration of ash in the ramp and the transport of ash from the incinerator buildings. Due to historical site use, runoff, and erosion, the ash has been reworked and distributed offsite, resulting in site-related impacts to the north and east along the southern bank of Smokes Creek and the paved recreational path, and to the east in the northern portion of the Baker Hall Property. For the purpose of this FS screening evaluation, they will be divided into four areas: on-site, Lackawanna Veterans' Stadium, Baker Hall Property, and Smokes Creek Corridor. Currently, these areas are considered one operable unit.

Mr. David Gardner NYSDEC January 24, 2014 Page 3

On-Site Area

Based on a comparison of on-site media to SCGs, the contaminants of potential concern (COPCs) at the site include inorganic constituents and polycyclic aromatic hydrocarbons (PAHs). The primary medium of concern is soil; however, and to a lesser extent, limited impacts to groundwater and surface water have also been identified, due to leaching of water through impacted soil.

Soil

Surface and subsurface soil results indicate that several inorganic constituents, primarily arsenic and lead are present at elevated concentrations greater than the Commercial SCOs in the soil/fill material at the site. The soil/fill material ranges from 0 to 4 ft of general fill in the western portion of the site, to over 22 ft of soil/ash fill material in the ramp area. In general, the most elevated exceedances were observed in the ramp area, where the ash/fill materials are also thickest, and in the area north of the northern incinerator building. The on-site soil concentrations exceeding the Commercial SCOs are summarized in the following table.

	Commercial	No. of Exceedances /	Range of Exceedances								
Constituent	SCO (mg/kg)	No. of Samples	(mg/kg)								
SURFACE SOIL											
Cadmium	9.3	1 / 10	22								
Copper	270	1 / 10	406								
Lead	1,000	1 / 10	2,330								
	SUBSURFA	CE SOIL									
Arsenic	16	7 / 68	19.7–51.5								
Barium	400	7 / 68	430-1,500								
Cadmium	9.3	3 / 68	17.1–42.7								
Copper	270	5 / 68	309-1,510								
Cyanide, Total	27	3 / 68	66–170								
Lead	1,000	6 / 68	1,500-6,820								
Nickel	310	1 / 68	342								

In addition, ash material stored in the first level of the southern incinerator building contained lead at 22,000 mg/kg, based on testing conducted in 2005, and is assumed to be characteristic hazardous. Subsurface soil/fill material did not exhibit hazardous waste characteristics, based on the toxicity characteristic leaching procedure metals results from four samples collected from the ramp. The estimated volume of fill material contained on-site is approximately 22,000 yd³ or 35,000 tons using as an estimate that 1 yd³ of fill material is approximately equal to 1.6 tons.

Groundwater

Monitoring wells installed during the RI primarily screen the silt and clay unit, which directly underlies the fill material at the site. The hydrogeologic data evaluated during the RI indicates

that limited saturation is present within the fill materials, although localized zones may be associated with perched water or infiltration. Based on groundwater elevations, shallow groundwater flow is toward Smokes Creek. Drinking water in the area is obtained from Lake Erie and the Niagara River.

Groundwater analytical results indicated concentrations of several inorganic constituents (antimony, arsenic, chromium, iron, lead, magnesium, manganese, nickel, and sodium) above the Class GA standards and guidance values at each monitoring well location. Arsenic and lead were the only inorganic constituents not detected above standards at upgradient monitoring well, which suggests that on-site subsurface fill material may act as a source of elevated inorganic concentrations affecting groundwater quality at the site.

Lackawanna Veterans Stadium

No Restricted Residential SCO exceedances were observed in samples collected from the stadium property. One constituent (chromium at 40.5 J mg/kg) exceeded the more stringent Residential SCO (36 mg/kg) in one surface soil sample (located west of the southwestern corner of the former incinerator site).

Baker Hall Property

While the northern portion of the adjacent Baker Hall Property is currently vacant, multi-unit residential development is planned. Several inorganic constituents and PAHs were detected at concentrations exceeding the Restricted Residential SCOs. Surface and subsurface soil results indicate that several inorganic constituents, primarily arsenic and lead are present at elevated concentrations greater than the Restricted Residential SCOs in the soil/fill material at the property. The site-related impacts at the Baker Hall Property are associated with soil/fill material, which are thickest in the northwestern corner of the property (2–4-ft thick), east of the northern incinerator building. The impacted fill extends at a reduced thickness (0–2-ft thick) along the western property line shared with the former incinerator site, and along the northern property line. The inorganic exceedances of Restricted Residential SCOs are summarized in the following table.

Constituent	Restricted Residential SCO (mg/kg)	No. of Exceedances / No. of Samples	Range of Exceedances (mg/kg)									
SURFACE SOIL												
Arsenic	16	3 / 14	16.5-25.4									
Barium	400	3 / 14	706-806									
Cadmium	4.3	5 / 14	6.27-11.1									
Copper	270	2 / 14	433–553									
Lead	400	6 / 14	595-2,460									
	SUBSURFA	CE SOIL										
Arsenic	16	4 / 42	18.0-41.7									
Barium	400	6 / 42	403–960									
Cadmium	4.3	5 / 42	5.7-13.6									
Copper	270	3 / 42	460-1,010									
Lead	400	7 / 42	869-2,030									
Mercury	0.81	1 / 42	0.860									

Several PAHs were detected at four locations at low parts per million concentrations slightly exceeding the Restricted Residential SCOs. In general, PAHs were observed in a subset of locations (along the northwestern Baker Hall Property boundary) where lead concentrations also exceeded the SCO.

Based on the results of the RI, the estimated volume of impacted soil/fill material at the Baker Hall Property is approximately 6,000 yd³ or 9,600 tons, using as an estimate that 1 yd³ of fill material is approximately equal to 1.6 tons. The composited soil/fill material sample obtained from the Baker Hall Property and analyzed for complete waste characterization parameters was not indicative of hazardous waste.

Smokes Creek Corridor

Stormwater and shallow groundwater from the former incinerator site discharge to Smokes Creek. Several inorganic constituents were detected above the Protection of Ecological Resources SCOs in soil samples collected along the recreational path and the creek floodplain.

Stormwater Outfalls

Two inorganic constituents (total cyanide and selenium) were detected at concentrations exceeding the Class C surface water standards in water samples collected from the two drain pipes north of the former incinerator site. These pipes discharge to the floodplain (i.e., above the normal creek stage). No organic compounds were detected in the water samples collected from the stormwater outfalls.

In floodplain soil samples collected immediately downslope from the pipe discharge locations, two inorganic constituents (lead and zinc) were detected above the Protection of Ecological Resources SCOs. At the eastern discharge location, both lead and zinc exceeded the SCO; while

at the western discharge location, zinc was the only inorganic exceedance. Similar concentrations for lead and zinc were also observed at the storm sewer outfall, just upstream of the site. Several PAHs were also detected above SCOs in the storm sewer soil sample.

Surface Water

Inorganic constituents were detected in each of the five surface water samples collected from Smokes Creek. Of these detections, aluminum was the only constituent detected above Class C standards. Total cyanide was not detected in surface water.

Sediment

Inorganic constituents were detected in sediment samples collected from Smokes Creek. Of these detections, nickel was the only constituent detected above the sediment guidance values (23–49 mg/kg for Class B sediment). These concentrations are similar to background soil concentrations. Total cyanide was detected in only one sediment sample, located north of the central portion of the site.

FEASIBILITY STUDY

The criteria and initial screening to be used to develop the FS Report are summarized below:

- Pursuant to DER-10 (NYSDEC 2010)¹, remedial goals for the site are defined by the applicable regulations for New York State Inactive Hazardous Waste Disposal Site Remedial Program (State Superfund Program or SSF), as defined by Environmental Conservation Law (ECL), Article 27, Title 13.
- RAOs are medium objectives for the protection of public health and the environment, and are developed based on contaminant-specific SCGs to address contamination identified at a site. NYSDEC has developed generic RAOs for various media that will be used during the development of the FS and remedy selection process. The RAOs for impacted media identified at the site are listed in Table 1.

EA completed the technology screening in accordance with DER-10 (NYSDEC 2010)¹ and the 1988 U.S. Environmental Protection Agency (EPA) publication *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA* (EPA 1540IG-891004) (EPA 1988)². The basis of the screening was designed to evaluate applicable technologies based on impacted media identified at the site during the RI.

² EPA. 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (EPA 1540IG-891004). October.

SITE CONSIDERATIONS

In addition to media impacts identified during the RI, there are a number of operational, environmental, and physical constraints that have a significant influence on the implementability of a potential remedial alternative. The considerations for each area are identified below.

On-Site Area

- The site, including the northern incinerator building, is actively used by the Lackawanna DPW. Coordination will be an important consideration for any remedial alternative, not including "No Action," selected for the site.
- The southern incinerator building would need to be demolished to enable access to contaminated fill for any of the remedial alternatives except for "No Action." The building would need to be inspected for asbestos prior to demolition.
- The northern incinerator building would remain on-site for all of the proposed remedial alternatives. As a result, accessibility would be altered due to the removal of the existing soil ramp. In addition, a structural assessment would need to be completed to evaluate the structural integrity of the building following ramp removal and during excavation surrounding the building.
- Storm grates and sewers encountered during excavation or stabilization would need to be evaluated to determine whether or not they are serving the intended purpose of providing drainage from the site and if they need to remain or be removed.

Baker Hall Property

- There is a known 8-in. high-density polyethylene high pressure gas main and 3 ft storm sewer line within the areas of known contamination on the Baker Hall Property.
- Sensitive habitats potentially exist in the northern area of the Baker Hall Property.

Smokes Creek Corridor

- Contamination of the Smokes Creek recreational path extends to the southern bank of Smokes Creek. Creek diversion and/or restoration may be necessary for some remedial alternatives.
- Storm grates and sewers encountered during excavation or stabilization would need to be evaluated to determine whether or not they are serving the intended purpose of providing drainage from the site and if they need to remain or be removed.

TECHNOLOGY SCREENING

The technology screening assessed applicable technologies based on area-specific media and contaminants, as well as with the following five categories:

- Compliance with RAO
- Effectiveness
- Implementability
- Reduction of toxicity, mobility, and volume
- Cost.

The technology screening table attached (Table 2) to this letter provides a review of each screened technology for potentially addressing surface and subsurface soil/fill material based upon the above listed criteria. EA has evaluated multiple technologies known to be effective in the remediation of inorganic contaminants in soil/fill.

Based on the screening matrix, EA proposes to develop the FS evaluating the remedial alternatives presented in Table 3. As noted above, demolition of the southern incinerator building and structural assessment of the northern incinerator building is recommended prior to implementation of any of the alternatives included in the screening matrix except for "No Action."

Please provide concurrence and/or comments with the proposed remedial alternatives so that EA may move forward with preparation of the FS for the former Lackawanna Incinerator site. If you have any questions, please do not hesitate to contact me at (315) 431-4610.

Sincerely,

EA SCIENCE AND TECHNOLOGY

Jennifer Martin Bouchard Project Manager

EA ENGINEERING, P.C.

Chris Canonica, P.E. Vice President

Appendix B

Costs

TECHNOLOGY		L	LOCATION			DIA	Estimat	ed Cost to Imj	\$6,069,000		
On-Site Alternative 2A Soil/Fill Excavation to Unrestricted SCOs with Disposal Off-Site		Lackawa Lac	Lackawanna Incinerator Site Lackawanna, NY		So	il		Co	11 	months months	
Demolition and Removal of Both Incinerator Build	ings		,	 T				Post Remedia	tion Monitoring	0 Combined Unit	years
Description	Data Source	Quar Ouantity	ntities Ouantity	Material	Material	Cost Break	down (if available Labor) Equipment	Equipment	Costs	Option
	(Means ¹ or Other)	Amount	Unit	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C	APITAL C	COST							\$6,069,000
		(totals rou	inded to ne	arest tho	usand)						
Construction Activities Pre-Design Characterization Study		1			\$8,486	5	\$132,200		\$34,747	\$96,239	\$4,509,377
Driller Mob/Demob	quote- SJB	1	ls	\$ -	\$ -	\$ -	\$ -	\$ -	s -	\$ 300	\$300
Geoprobe/Crew for Soil Borings Sample Collection	quote- SJB	2	day hr	\$ - \$	\$ - \$ 50	\$ - \$ 85.00	\$ - \$ 850	\$ - \$	\$ - \$	\$ 850	\$1,700
XRF Unit	recent quote	2	day	¢ -	\$ 50	\$ 85.00	\$ 850	3 -	ş -	\$ 500	\$1,000
Sample Analysis for TCLP Lead and Zinc (5% of total samples)	Life Science Laboratories	4	sample	\$ -	s -	\$ -	\$ -	\$ -	\$ -	\$ 593.48	\$2,374
Sewer investigation/Mapping - Labor Topographic Survey	02 21 23 09 0020	2.5	acre	\$ - \$ 20.94	\$ -	\$ 85.00 \$ 597.77	\$ 1,360 \$ 1,494	\$ - \$ 23	\$ - \$ 58	\$ - \$ -	\$1,360 \$1,605
Reporting	Engineer's Estimate	1	ls	\$ -	s -	\$-	\$ -	\$-	s -	\$ 5,000	\$5,000
Utility Locator (based on recent bids)	recent quote	1.0	day	\$ -	\$ -	\$-	\$ -	\$-	\$ -	\$ 2,465	\$2,465
Work Plan Preparation (Including QAPP, FAP and HASP) Erosion & Sediment Control Plan		1.0	ls ls	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 15,000 \$ 15,000	\$15,000 \$15,000
Silt Fence Monitoring Well Abandonment	31 25 13.10 1000 recent quote-	1,000	lf	\$ 0.81	\$ 810	\$ -	\$ -	\$ -	\$ -	\$ -	\$810
Sewer/Storm Drain Demolition	EnviroTrac 02 31 13.33 2900	150 750	lf lf	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 22 \$ 11	\$3,300 \$8,250
Trenching 6-10ft with 3/4 CY excavator Fence Demolition	31 23 16.13 0500 02 41 13.62 1100	1,667 1,010.00	bcy lf	\$ -	\$ -	\$ 4.65	\$ 7,750	\$ 3	\$ 5,233	\$ 2.30	\$12,983 \$2,323
Fence Post Removal Sewer/Storm Drain Reconstruction	02 4113621000	101.00	each							\$ 22.99	\$2,322
PVC Sewer Pipe, 8" diameter, 13" lengths PVC Sewer Pipe, 10" diameter, 13" lengths	<i>33 31 13.25 2080</i> <i>33 31 13 25 2120</i>	700	lf lf	\$ 7.23 \$ 11.93	\$ 5,061 \$ 1,790	\$ 5.06 \$ 6.15	\$ 3,542 \$ 923	\$ - \$ -	s - s -		\$8,603 \$2,712
Install manhoes concrete, precast, 4' ID, 8' deep	33 49 13.10 0600	1 000	ea	\$ 646.68	\$ \$ 647	\$ 1,622.55	\$ 1,623 \$ 220	\$ - \$ 1	\$ - \$ 560		\$2,269
Consolidation of ramp materials to incinerator toolprint, 200 HP Dozer, 50 Hauf	recent quote- The	1,000	icy	ъ -	<u>з</u> -	\$ 0.55	\$ 350	\$ 1	\$ 500		\$890
	Service Group	1	pad	\$-	\$ -	\$-	\$ -	\$ -	s -	\$ 11,344	\$11,344
Decontamination Pad	Environmental Service Group	1	pad	\$ -	s -	\$ -	s -	\$ -	s -	\$ 6,687	\$6,687
Ramp & Building Demolition Access Road Demolition	32 01 15.71 5330	400	sy	\$ -	\$ -	\$ -	\$ -	s -	\$ -	\$ 1.10	\$440
Sample Collection (from building)	Life Sciences quote	18	hr	\$ - \$ -	\$ - \$ -	\$ 85.00 \$	\$ 1,488	\$ - \$ -	\$ - \$ -	\$ 65	\$1,488 \$2,275
Sample Analysis for Lead & Asbestos (TAL Inorganics)	Life Sciences quote	35	sample	\$-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 75	\$2,625
Concrete Foundation / Slab Demolition - 12"	02 41 16.17 1000	5,633	lf	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 16	\$92,600
Brick Wall Demolition Smoke Stack Demolition	02 41 16.13 0650 02 41 16.13 0650	1,898 3,818	cf cf	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	s - s -	\$ 0.38 \$ 0.38	\$721 \$14,508
South Incinerator Demolition Concrete Foundation / Slab Demolition - 12"	02 41 16.17 1000	2,258	lf	\$ -	\$ -	\$ -	\$ -	\$ -	s -	\$ 16	\$37,113
Brick Wall Demolition Smoke Stack Demolition	02 41 16.13 0650 02 41 16.13 0650	1,365 3,818	cf cf	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0.38 \$ 0.38	\$519 \$14,508
Asbestos Abatement Transportation and Disposal		1	ls	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$50,000
Masonry Disposal	Quote from Modern Landfill	653.95	ton	s -	s -	\$ -	\$ -	\$ -	s -	\$ 71.00	\$46,431
Building Ash Hazardous Waste Disposal	Quote from Modern Landfill	342	ton	\$ -	s -	\$ -	\$ -	\$ -	\$ -	\$ 140.00	\$47,817
Drum Disposal (Waste Oil)	Quote from Modern Landfill	10	drum	\$ -	s -	\$-	\$ -	\$ -	s -	\$ 90.00	\$900
General Waste Disposal	Quote from Modern Landfill	100	ton	\$-	s -	\$ -	\$-	\$-	s -	\$ 37.68	\$3,768
Metal Disposal / Recycling	Quote from Modern Landfill Quoto from Modorn	50	ton	\$ -	\$ -	\$ -	\$ -	\$ -	s -	\$ 37.68	\$1,884
C&D Waste Disposal	Landfill	859	ton	\$-	\$ -	\$ -	\$ -	\$ -	s -	\$ 71.00	\$61,019
Community Air Monitoring (Dust)	recent quote - Pine Environmental	8	mo	s -	s -	\$ 13,600.00	\$ 108,800	\$ 3,420	\$ 27,360	\$ -	\$136,160
Dust Control, Light Asphalt demolition - does not include disposal	31 23 23.20 2500 02 41 13 17 5010	32 5 713 22	day sv	\$ - \$ -	s -	\$ - \$ -	\$ - \$ -	\$ - \$ -	s - s -	\$ 996 \$ 564	\$31,882 \$32,223
Soil-Excavator, hydraulic, crawler mtd. 3.5 CY cap = 350 CY/hr	31 23 16.42 5500	30,100	bcy	÷ \$-	- S -	- \$ -		\$ -	\$ - \$	\$ 1	\$39,130
Haul Road Maintenance	31 23 23.20 0500 31 23 23.20 2600	34,613	day	s - \$ -	<u> </u>	\$ - \$ -	\$ - \$ -	s - \$ -	s - s -	\$ 1,343	\$126,343
Maintain Stockpile, 700HP Dozer, 50tt Haul Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.46 6010 31 23 16.43 4700	30,100 34,615	lcy	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	s - s -	\$ 2 \$ 1	\$55,384 \$44,307
Decontamination Dad Maintenance	recent quote- The Environmental	160	dav	¢	s	¢	Ŷ	s	s	\$ \$	\$1.338
Decontainination r ad Waintenance	recent quote- The	100	uay	ۍ م ب	<u>э</u> -	э -	љ -	3 -	ş -	ф 0	\$1,556
Staging and Stockpile Area Maintenance	Service Group	160	day	\$ - \$ 20.9/	\$ - \$ 26	\$ - \$ 597.77	\$ - \$ 747	\$ - \$ 23	\$ - \$ 29	\$ 7	\$1,146
Confirmation Sampling	02 21 23 07 0020	1.25		\$ 20.94	÷ ⇒ 20	¢ 01.00	¢ 747	\$ <u>2</u> 5	\$ <u>27</u>	¢	\$3.070
Lab Analyses - TAL Metals	Life Science	147	sample	s -	\$ 50	\$ 21.00	\$ 5,081	s -	\$ 839.01	\$ -	\$3,970
Decontamination Water Samples	Life Science	10	sample	\$ -	\$ -	\$ 21	\$ 213	\$ 67	\$ 667	\$ -	\$880
Decon Water Lab Analyses - TCL PCBs Hazardous Soil Disposal	Laboratories	10	sample	\$ -	\$ -		\$ -		s -	\$ 50	\$500
Soil Characterization Sampling (1 sample per 500 CY, per CWM)	Life Science laboratories	61	sample	\$-	s -	\$ -	\$ -	\$ -	s -	\$ 593	\$36,202
Hazardous Soil Disposal	CWM CWM	4,816	ton ton	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	s - s -	\$ 140 \$ 20	\$674,240 \$93,912
Demurrage (assume 5 hours per week of loading)	CWM CWM	10	hour	÷ -	- S -	- \$ -	\$ - \$	\$ - \$	\$ - \$	\$ 85 \$ 33 808	\$850
Non-Hazardous Soil Disposal	Basant quata ESC	1		φ -	φ -	ф -	ф -	- پ ڊ	ф -	\$ 55,608	\$55,808
Soil transportation and disposal	plus 10%	43,344	ton	\$ -	\$ -	\$-	\$ -	\$-	\$ -	\$ 38	\$1,633,202
Sumla and Transmitting of NVS Contified Clear Deals Fill Material	Depart moto ESC	17.046	1								
Supply and Transportation of NYS Certified Clean Back Fill Material	from Seven Springs	17,946	lcy	\$ 28.00	\$ 502,483	\$ -	\$ -	\$ -	s -		\$502,483
Backfill 300HP Dozer, 150' haul Compacting backfill, 12" lift, 2 passes w/ drum roller	<i>31 23 23.14 5220</i> <i>31 23 23.23 5060</i>	17,946 6,941	icy ecy	\$ - \$ -	s - s -	\$ - \$ -	\$ - \$ -	s - s -	s - \$ -	\$ 1 \$ 0	\$25,124 \$1,943
	Recent quote- ESG	2,157									
Topsoil Finishing grading slopes, gentle	from Seven Springs 31 22 16.10 3300	208	lcy sy	\$ 44.50 \$ -	\$ 96,003 \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 45 \$ 0	\$192,007
Utility mix, 7#/M.S.F., Hydro or air seeding, with mulch and fertilizer Topographic Survey	32 92 19.14 5400 02 21 23 09 0020	2	msf acre	\$ - \$ 20.94	\$ 	\$ - \$ 597.77	\$ - \$ 747	\$ - \$ 23	\$ - \$ 29	\$ 65	\$147
Asphalt Parking Lot - Irregular shaped, replaced in kind Base	32 11 26 13 1600	052	ecv	\$	\$	\$	\$	\$	\$	\$ 05	¢002 ¢01 110
Binder	32 12 16.13 0200	5,713	sy	÷ -	\$ - \$	\$ -	\$ -			\$ 20 \$ · · ·	\$113,979
Fencing Installation	32 12 10.13 0380 32 31 13.20 0800	3,/13	sy lf	ф -	φ -	- ¢	ф –	ۍ و. ا	ф -	φ 11 \$ 28	\$65,645
Image: Non-International Content of Total Costs of Site Work, Treatment										\$1,014,776	\$101,478 \$101,478
Contingency											\$691,628
15% of Total Construction Activities				<u> </u>	+					\$4,610,854	\$691,628
Professional/Technical Services											\$766,594
570 Project Management 6% Remedial Design										\$4,509,377	\$225,468.83 \$270,562.60
6% Construction Management			1								\$270,562.60

TECHNOLOGY		LOCATION			MEDIA			Estimat	ed Cost to Im	\$5,	583,000		
On-Site Alternative 2B Soil/Fill Excavation to Unrestricted SCOs with Disposal Off-Site		Lackawanna Incinerator Site Lackawanna, NY		Soil				Co	- 10	months months			
Demolition and Removal of the Southern Incinerator I	Building			1						Post Remedia	ation Monitoring	Combined Uni	years
Description	Data Source	Quan Quantity	u uantity	Ma	terial	Material	1	Cost Breakd	lown (if available Labor	e) Equipment	Equipment	Costs	Option
	(Means ¹ or Other)	Amount	Unit	Unit	t Cost	Total Cost		Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C	APITAL C	COST		•							\$5,583,000
		(totals rou	inded to ne	earest	t thous	sand)							
Construction Activities Pre-Design Characterization Study		1				\$8,48	6		\$116,774		\$31,119	\$96,21	5 \$4,161,301
Driller Mob/Demob	quote- SJB	1	ls	\$	-	s -	\$	<u> </u>	\$ -	s -	\$ -	\$ 300	\$300
Geoprobe/Crew for Soil Borings	quote- SJB	2	day	\$	-	\$ -	\$	-	\$ -	\$ -	÷ -	\$ 850	\$1,700
XRF Unit	recent quote	2	ni day	\$	-	\$ 50	13	83.00	\$ 850	ə -	з -	\$ 500	\$1,000
Sample Analysis for TCLP Lead and Zinc (20% of total samples)	Life Science Laboratories	4	sample	\$	-	s -	\$	- ii	\$ -	\$ -	\$ -	\$ 593	\$2,374
Sewer Investigation/Mapping - Labor Topographic Survey	02 21 23 09 0020	16	hrs acre	\$ \$	- 20.94	\$ - \$ 52	\$ 2 \$	5 85.00 5 597.77	\$ 1,360 \$ 1,494	\$ - \$ 23	\$ - \$ 58	\$ -	\$1,360 \$1,605
Reporting	Engineer's Estimate	1	ls	\$	-	s -	\$	- S	\$ -	\$ -	\$ -	\$ 5,000	\$5,000
Utility Locator (based on recent bids)	recent quote	1	day	\$	-	\$ -	\$	š -	\$ -	\$ -	\$ -	\$ 2,465	\$2,465
Work Plan Preparation (Including QAPP, FAP and HASP) Erosion & Sediment Control Plan		1	ls ls	\$ \$	-	\$ - \$ -	\$	6 - 6 -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 15,000 \$ 15,000	\$15,000 \$15,000
Silt Fence	31 25 13.10 1000 recent quote-	1,000	lf	\$	0.81	\$ 810	0 \$	3 -	\$ -	\$ -	\$ -	\$ -	\$810
Monitoring Well Abandonment Sewer/Storm Drain Demolition	EnviroTrac 02 31 13.33 2900	150 750	lf lf	\$ \$	-	\$ - \$ -	\$ \$	6 - 6 -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 22 \$ 11	\$3,300 \$8,250
Trenching 6-10ft with 3/4 CY excavator Fence Demolition	<i>31 23 16.13 0500</i> <i>02 41 13.62 1100</i>	1,667	bcy lf	\$	-	\$ -	\$	4.65	\$ 7,750	\$ 3	\$ 5,233	\$ 2.30	\$12,983 \$2,323
Fence Post Removal	02 4113621000	101	each									\$ 22.99	\$2,322
PVC Sewer Pipe, 8" diameter, 13" lengths	33 31 13.25 2080	700	lf	\$	7.23	\$ 5,061	1 \$	5.06	\$ 3,542	\$ -	\$-		\$8,603
PVC Sewer Pipe, 10" diameter, 15" lengths Install manholes- concrete, precast, 4' ID, 8' deep	33 31 13.25 2120 33 49 13.10 0600	150	ea	\$ \$6	11.93 i46.68	\$ 1,790 \$ 647	7 \$	6.15 6 1,622.55	\$ 923 \$ 1,623	\$ - \$ -	\$ - \$ -		\$2,712 \$2,269
Consolidation of ramp materials to incinerator footprint, 200 HP Dozer, 50' Haul	31 23 23.14 4000 recent quote- The	1,000	lcy	\$	-	\$ -	\$	6 0.33	\$ 330	\$ 1	\$ 560		\$890
Stockpile and Staging Area	Environmental Service Group	1	pad	\$	-	\$ -	\$	- 6	\$ -	\$-	\$ -	\$ 11,344	\$11,344
Decontamination Pad	recent quote- The Environmental	1	nad	¢		ç	¢		¢	¢	¢	\$ 6.69	\$6.697
Ramp & Building Demolition	Service Group	1	pau	ۍ ۵	-		4	-		ۍ -	ۍ - د	3 0,08	\$0,087
Ramp Demolition Sample Collection (from building)	32 01 15.71 5330	400	sy hr	\$ \$	-	s - s -	\$	s - s 85.00	\$ - \$ 425	\$ - \$ -	\$ - \$ -	\$ 1.1	\$440 \$425
Sample Analysis for PCBs (TCL PCBs) Sample Analysis for Lead & Asbestos (TAL Inorganics)	Life Sciences quote Life Sciences quote	10 10	sample sample	\$ \$	-	\$ - \$ -	\$	<u> </u>	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 65 \$ 75	\$650 \$750
South Incinerator Demolition Concrete Foundation / Slab Demolition - 12"	02 41 16.17 1000	2,258	lf	\$	-	\$ -	\$		\$ -	\$ -	\$ -	\$ 16	\$37,113
Brick Wall Demolition	02 41 16.13 0650 02 41 16 13 0650	1,365	cf cf	\$ \$	-	s - s -	\$	s -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0.38 \$ 0.38	\$519 \$14 508
Asbestos Abatement	02 11 10:15 0050	1	ls	\$	-	\$ -	\$	3 -	\$ -	\$ -	\$ -	\$ -	\$50,000
Masonry Disposal	Quote from Modern	310.97	ton	\$		\$ -	¢		\$ -	\$ -	\$ -	\$ 71.00	\$22.079
Building Ash Hazardous Waste Disposal	Quote from Modern	342	ton	\$	_	s -	4	, - } -	s -	\$ -	\$ -	\$ 140.00	\$47,817
Drum Disposal (Waste Oil)	Quote from Modern Landfill	5	drum	\$	-	\$ -	\$		\$ -	\$ -	\$ -	\$ 90.00	\$450
General Waste Disposal	Quote from Modern Landfill	100	ton	\$	-	s -	\$	s -	\$ -	\$ -	\$ -	\$ 37.68	\$3,768
Metal Disposal / Recycling	Quote from Modern Landfill	25	ton	\$	-	s -	\$	š -	\$-	\$ -	\$ -	\$ 37.68	\$942
C&D Waste Disposal	Quote from Modern Landfill	226	ton	\$	-	\$ -	\$	-	\$ -	\$ -	\$ -	\$ 71.00	\$16,028
Excavation Community Air Monitoring (Dust)	recent quote - Pine												
Dust Control, Light	Environmental 31 23 23.20 2500	28	mo day	\$ \$	-	s - s -	5	5 13,600.00	\$ 95,200 \$ -	\$ 3,420 \$ -	\$ 23,940 \$ -	\$ - \$ 996	\$119,140 \$27,896
Soil-Excavator, hydraulic, crawler mtd. 3.5 CY cap = 350 CY/hr 34CY off-road 20min. Wait 2,000ft cycle	31 23 16.42 5500 31 23 23.20 6300	30,100 34,615	bcy lcy	\$ \$	-	\$ - \$ -	\$ \$	<u> </u>	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 1 \$ 4	\$39,130 \$126,345
Haul Road Maintenance Maintain Stockpile, 700HP Dozer, 50ft Haul	31 23 23.20 2600 31 23 16.46 6010	28 30,100	day bcy	\$ \$	-	\$ - \$ -	\$ \$	<u> </u>	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 1,343 \$ 2	\$37,595 \$55,384
Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.43 4700 recent quote- The	34,615	lcy	\$	-	\$ -	\$	- S	\$ -	\$ -	\$ -	\$ 1	\$44,307
Decontamination Pad Maintenance	Environmental Service Group	5	day	\$	-	s -	\$	- S	\$ -	\$ -	\$ -	\$ 5	\$42
	recent quote- The Environmental												
Staging and Stockpile Area Maintenance Topographic Survey	Service Group 02 21 23 09 0020	28	day acre	\$ \$	- 20.94	\$ - \$ 26	\$ 5 \$	5 - 5 597.77	\$ - \$ 747	\$ - \$ 23	\$ - \$ 29	\$ 7	\$200
Confirmation Sampling Grab Samples- 1 per 900 square feet, 1 per 30 lf along side walls plus 20% OA/O	0	110	sample	\$	-	\$ 50	0 \$	5 21.00	\$ 2.318	5.72	\$ 631.26	s -	\$3.000
Lab Analyses - TAL Metals	Life Science Laboratories	132	sample	\$	-	s -		-	\$ -	\$ -	\$ -	\$ 75	\$9,935
Decontamination Water Samples	Life Science	10	sample	\$	-	\$ -	\$	5 21	\$ 213	\$ 67	\$ 667	\$ -	\$880
Decon Water Lab Analyses - TCL PCBs Hazardous Soil Disposal	Laboratories	10	sample	\$	-	\$ -			\$ -		\$ -	\$ 50	\$500
Soil Characterization Sampling (1 sample per 500 CY, per CWM)	Life Science laboratories	61.00	sample	\$	-	s -	\$	š -	\$ -	\$ -	\$ -	\$ 593	\$36,202
Hazardous Soil Disposal Transportation using dumps	CWM CWM	4,816 4,816	ton ton	\$ \$	-	\$ - \$ -	\$	- -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 140 \$ 20	\$674,240 \$93,912
Demurrage (assume 5 hours per week of loading)	CWM	10	hour	\$	-	\$ - \$	\$		s -	- \$-	÷ -	\$ 85	\$850
Non-Hazardous Soil Disposal	C WM	1	13	¢	-	ъ -	4	-	ş -	ۍ د ۱	ъ -	\$ 55,800	\$55,808
Soil transportation and disposal	plus 10%	43,344	ton	\$	-	\$ -	\$	- S	\$-	\$-	\$ -	\$ 38	\$1,633,202
	D												
Supply and Transportation of NYS Certified Clean Back Fill Material	from Seven Springs	13,611	icy	\$	28.00	\$ 381,117	7 \$	- 6	\$ -	\$-	\$ -		\$381,117
Backfill 300HP Dozer, 150' haul Compacting backfill, 12" lift, 2 passes w/ drum roller	31 23 23.14 5220 31 23 23.23 5060	13,611 11,836	lcy ecy	\$ \$	-	<u>\$</u> - \$-	\$	<u> </u>	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 1 \$ 0	\$19,056
	Recent quote- ESG	2,232											
Topsoil Finishing grading slopes gentle	from Seven Springs	9 706	lcy sv	\$ \$	44.50	\$ 99,341 \$ -	1 \$	<u> </u>	\$ - \$ -	s - s -	\$ - \$ -	\$ 45	\$198,682 \$2.038
Utility mix, 7#/M.S.F., Hydro or air seeding, with mulch and fertilizer	32 92 19.14 5400	87	msf	\$	-	\$ - \$ -	\$	-	\$ - \$ 747	\$ -	\$ - \$ -	\$ 65	\$5,705
Fencing Installation	32 31 13.20 0800	500	lf	¢	20.94	\$ 20	5 4	5 391.11	\$ 141	\$ 23	\$ 29	\$ 28	\$802
Asphalt Parking Lot and Road Replacement Base	32 11 26.13 1600	1,039	ecy	\$	-	\$ -	\$	- S	\$ -	\$ -	\$ -	\$ 85	\$88,534
Binder Top	32 12 16.13 0200 32 12 16.13 0380	6,113 6,113	sy sy	\$ \$	-	\$ - \$ -	\$	<u> </u>	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 20 \$ 11	\$121,959 \$70,241
Fencing Installation Mobilization and Demobilization	32 31 13.20 0800	1,010	lf				-					\$ 28	\$27,795 \$78,541
7% of Total Costs of Site Work, Treatment							1					\$1,122,016.1	9 \$78,541
Contingency				1			1				 	¢4 320 S	\$635,976
							╞					\$4,239,84	\$635,976
rroressional/ Lechnical Services				-			╉					e	\$707,421
6% Remedial Design							╞					\$4,161,30	\$208,065
6% Construction Management			I			l					I	1	\$249,678
TOTAL ESTIMATED NPV TECHNOLOGY COST (0	Capital + Lifetim	e O&M +	- Post Rei	medi	ation	n Monitoring	;)						\$5,583,000

TECHNOLOGY	LOCATION	MEDIA	Estimated Cost to Implement	\$5,583,000		
On-Site Alternative 2B		Lackawanna Incinerator Site	Soil	Construction Time:	10 months	
Soil/Fill Excavation to Unrestricted SCOs with Disp	osal Off-Site	Lackawanna, NY		Operation Time:	- months	
Demolition and Removal of the Southern Incinerat	or Building			Post Remediation Monitoring	0 years	
Assumptions:		-				
Working condition is Safety Level:		D/C (Labor productivity:	82% ; Equipment pro	oductivity: 100%)		
Weighted Average of city cost index (Buffalo, NY)		101.4% (not applicable for costs	derived from vendor quotes).			
Costs are loaded with a profit factor		10%				
Inflation		3% per year			Labor	
Soil Sampling Assumptions		1	times sampled	0.25 hrs/sample	\$85 Cost per hr	
		20%	added for QA/QC samples	1 worker sampling		
Characterization Cost	Table A (per CWM)	\$593.48 per sample			2 hrs / well sampling	
Analytical cost	TAL Metals	\$75.00 per sample			2 worker per gw sample	
For each sampling event, assumed:		\$50 for materials (gloves, note	books, etc.)	-		
Disposal						
Lead contaminated soil as a "listed" waste- incineration		\$275 per ton	5,157.55 tons hazardous d	disposal (assume 10% hazardous, add building ash material	s)	
			22 tons per load	234 loads for haz dispo	osal	
Lead contaminated soil as non-haz		\$39.87 per ton	44,006 tons non-haz disp	posal, incl. build 2,000 loads for non-haz	disposal	
			materials			
Concrete		3,300 lbs per cy				
		150 lbs per cf				
Brick		120 lbs per cf				
Fypical Rental Rates - Includes G&A and 10% Profit						
Mini-Rae Survey Mode PID		\$96.08 per day		20 loads per day		
Truck/SUV (1/2 ton or smaller)		\$70.74 per day		20 working days per r	nonth	
Horiba U-10 Water Quality Meter		\$73.77 per day				
Submersible Pump		\$42.16 per day	55019 SF Asphalt (Road	d and Parking Lot)		
2 in Pump Control Box		\$72.27 per day	3 assumed thicknes	ss (in)		
Generator: 110 V		\$57.24 per day	509.4351852 CY Asphalt			
Level D PPE		\$11.91 per day				
				10 hours per working	ng day	
Work day consists of:		10 hrs		1 months for pre-c	design characterization	
				2 months for site pre	p/restoration	
Notes				1 month for demoliti	ion	
sy square yard	mo	month		10 months to complet	ion	
cubic yard	ls	lump sum		150 ft/day drilling		
cy loose cubic yard	O&M	Operation and maintenance				
bcy bank cubic yard	H&S	Health and Safety				
If linear feet						
sf square feet						
msf 1,000 square feet						

TECHNOLOGY On Site Alternative 44		I	OCATIO)N	a •4	ME	DIA	Estimat	ed Cost to Im	\$3,1	.55,000	
On-Site Alternative 4A Partial Excavation (Ramp), Demolition and Removal of Both Incinerator	r Buildings	Lackawa Lac	nna Incin ckawanna	erato , NY	or Site	S	oil		Co	nstruction Time: Operation Time:	-	months months
Regrading/Containment of Remaining Contamination with Soil Co	over	0		Т			Cost Break	dorum (if originality)	Post Remedia	ation Monitoring	30 Combined Unit	years
Description	Data Source	Quantity	Quantity	М	laterial	Material	Labor	Labor	Equipment	Equipment	Costs	Option
	(Means ¹ or Other)	Amount	Unit	Un	nit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C	CAPITAL	cos	T							\$2,969,000
		(totals rou	unded to r	ieare	st thou	sand)	1					
Construction Activities Pre-Design Investigation		1				\$54,061	l	\$109,042		\$27,097	\$78,899	\$2,172,194
Driller						*						
Mob/Demob Geoprobe/Crew for Soil Borings	quote- SJB quote- SJB	1 2	ls day	\$ \$	-	<u>s</u> -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 300 \$ 850	\$300 \$1,700
Sample Collection XRF Unit	recent quote	60	hrs day			\$ 50	\$85	\$ 5,100	\$ -	\$ -	\$ 500	\$5,150 \$1,000
Sample Analysis for TCLP Lead and Zinc (20% of total samples)	Life Science Laboratories	4	sample	\$	-	\$ -	s -	\$ -	\$ -	s -	\$ 593.48	\$2,374
Sewer Investigation/Mapping - Labor	02 21 23 09 0020	16	hrs	\$	-	\$ - \$ 52	\$ 85.00 \$ 597.77	\$ 1,360 \$ 1,494	\$ - \$ 23	\$ - \$ 58	\$ -	\$1,360
Reporting	Engineer's Estimate	2	ls	\$	20.94	\$ 52	\$ 591.11	\$ 1,474	\$ 25	\$	\$ 5,000	\$1,005
Site Preparation		1.0	1	\$		÷	÷	¢	¢	¢	\$ 3,000	\$10,000
Work Plan Preparation (Including QAPP, FAP and HASP)	recent quote	1.0	ls	\$	-	s - \$ -	\$ - \$ -	s - \$ -	\$ - \$ -	\$ - \$ -	\$ 2,465 \$ 15,000	\$2,465
Erosion & Sediment Control Plan Silt Fence	31 25 13.10 1000	1 300	ls lf	\$ \$	- 0.81	\$ - \$ 243	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 15,000 \$ -	\$15,000 \$243
Monitoring Well Abandonment	recent quote- EnviroTrac	60	lf	\$	-	\$-	s -	\$ -	\$ -	\$ -	\$ 22	\$1,320
Sewer/Storm Drain Demolition Trenching 6-10ft with 3/4 CY excavator	02 31 13.33 2900 31 23 16.13 0500	750 1,666.67	lf bcy	\$ \$	-	\$ - \$ -	\$ - \$ 4.65	\$ - \$ 7,750	\$ - \$ 3	\$ - \$ 5,233	\$ 11	\$8,250 \$12,983
Fence Demolition Fence Post Removal	02 41 13.62 1100 02 41 1362 1000	500.00 50.00	lf each								\$ 2.30 \$ 22.99	\$1,150 \$1,150
Sewer/Storm Drain Reconstruction DVC Source Directory 12" Jonatha	22 21 12 25 2080	700	16	¢	7.02	¢ 5.061	\$ 5.06	\$ - \$ 2.542	¢	¢	+	£9,602
PVC Sewer Pipe, 8 diameter, 15 lengths PVC Sewer Pipe, 10" diameter, 13" lengths	33 31 13.25 2120	150	lf	\$	11.93	\$ 5,061 \$ 1,790	\$ 5.06	\$ 3,542 \$ 923	\$ - \$ -	\$ - \$ -		\$2,712
Install manholes- concrete, precast, 4' ID, 8' deep Consolidation of ramp materials to incinerator footprint, 200 HP Dozer, 50' Haul	33 49 13.10 0600 31 23 23.14 4000	1,000	ea lcy	\$ \$	646.68 -	\$ 647 \$ -	\$ 1,622.55 \$ 0.33	\$ 1,623 \$ 330	\$ - \$ 1	\$ - \$ 560		\$2,269 \$890
Stockpile and Staging Area	recent quote- The Environmental											
	Service Group recent quote- The	1	pad	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 11,344	\$11,344
Decontamination Pad	Environmental Service Group	1	pad	\$	-	\$-	\$ -	\$ -	\$ -	\$ -	\$ 6,687	\$6,687
Ramp & Building Demolition Access Road Demolition	32 01 15.71 5330	400	sy	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1	\$440
Sample Collection (from building)		18	hr	\$	-	\$ -	\$ 85.00	\$ 1,488	\$ -	\$ -		\$1,488
Sample Analysis for PCBs (TCL PCBs)	Life Sciences quote	35	sample	\$	-	\$ -	\$ -	\$ -	\$-	\$ -	\$ 65	\$2,275
Sample Analysis for Lead & Asbestos (TAL Inorganics)	Life Sciences quote	35	sample	\$	-	\$ -	\$ -	\$ -	\$-	\$ -	\$ 75	\$2,625
North Incinerator Demolition Concrete Foundation / Slab Demolition - 12"	02 41 16.17 1000	5,633	lf	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 16	\$92,600
Brick Wall Demolition Smoke Stack Demolition	02 41 16.13 0650 02 41 16.13 0650	1,898 3,818	cf cf	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0.38 \$ 0.38	\$721 \$14,508
South Incinerator Demolition Concrete Foundation / Slab Demolition - 12"	02 41 16.17 1000	2.258	lf	\$	-	\$ -	\$ -	s -	\$ -	s -	\$ 16	\$37.113
Brick Wall Demolition	02 41 16.13 0650	1,365	cf	\$	-	\$ - \$	\$ - \$	\$ - \$	\$ - \$	\$ - \$	\$ 0.38 \$ 0.38	\$519 \$14 508
Asbestos Abatement	02 41 10.15 0050	1	ls	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$50,000
Transportation and Disposal Masonry Disposal	Quote from Modern			¢		*	<i>c</i>	¢	¢	<u></u>	¢ 71.00	¢16.101
Building Ash Hazardous Waste Disposal	Landfill Quote from Modern	653.95	ton	\$	-	\$ - ¢	s -	\$ - ¢	s -	s -	\$ 71.00	\$46,431
Drum Disposal (Waste Oil)	Landfill Quote from Modern	10	drum	\$	-	s -	s -	s -	s -	s -	\$ 90.00	\$900
General Waste Disposal	Quote from Modern	100	ton	\$	-	\$ -	s -	s -	\$ -	\$ -	\$ 37.68	\$3,768
Metal Disposal / Recycling	Quote from Modern	50	ton	\$	-	\$ -	\$	\$ -	\$	\$ -	\$ 37.68	\$1,884
C&D Waste Disposal	Quote from Modern Landfill	859	ton	\$	-	\$ -	\$ -	\$ -	\$ -	s -	\$ 71.00	\$61,019
Excavation	recent auote - Pine											
Community Air Monitoring (Dust) Dust Control, Light	Environmental 31 23 23.20 2500	6 24	mo day	\$ \$	-	\$ - \$ -	\$ 13,600.00 \$ -	\$ 81,600 \$ -	\$ 3,420 \$ -	\$ 20,520 \$ -	\$ - \$ 996	\$102,120 \$23,911
Soil-Excavator, hydraulic, crawler mtd. 3.5 CY cap = 350 CY/hr 34CV off read 20min Wait 2 000ft cycla	<i>31 23 16.42 5500</i>	15,303	bcy	\$	-	\$\$	\$ - \$	\$ - \$	\$ - \$	\$ - \$	\$ 1 \$ 4	\$19,894 \$64,236
Hail Road Maintenance - Assume 1 x per week	31 23 23.20 0500 31 23 23.20 2600	24	day	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1,343	\$32,224
Maintain Stockpile, 700HP Dozer, 50ft Haul Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.46 6010 31 23 16.43 4700	15,303 17,599	lcy	\$ \$	-	s - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 2 \$ 1	\$28,158 \$22,527
	recent quote- The Environmental	_										
Decontamination Pad Maintenance	Service Group recent quote- The	5	day	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 8	\$42
Staging and Stockpile Area Maintenance	Service Group	24	day	\$	-	\$ -	\$ -	\$-	\$ -	\$ -	\$ 7	\$172
Decontamination Water Samples	02 21 23 09 0020	1.25	sample	\$	- 20.94	\$ 26 \$ -	\$ 597.77 \$ 21	\$ 747 \$ 213	\$ 23 \$ 67	\$ 29 \$ 667	\$ -	\$802
Decon Water Lab Analyses - TCL PCBs	Life Science Laboratories	10	sample	\$	-	\$ -		\$ -	\$ -	\$ -	\$ 50	\$500
Hazardous Soil Disposal (10%)	Life Science			¢		*	<i>c</i>	¢	¢	<u></u>	¢ 502	
Soil Characterization Sampling (1 sample per 500 CY, per CWM) Hazardous Soil Disposal	laboratories CWM	2,449	ton	\$	-	s - s -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 593 \$ 140	\$4,541 \$342,796
Transportation using dumps Demurrage (assume 5 hours per week of loading)	CWM CWM	2,449 10.00	ton hour	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 20 \$ 85	\$47,747 \$850
Fuel Surcharge- 36% of Transportation Non-Hazardous Soil Disposal	CWM	1	ls	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 17,189	\$17,189
Soil transportation and disposal	Recent quote- ESG plus 10%	22,037	ton	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 38	\$830,349
Capping	,											
Supply and Transportation of NYS Certified Clean Back Fill Material	Recent quote- ESG	1,397	lcy	¢	20.00	¢	<i>.</i>	¢	¢	<u>_</u>		620.110
Backfill 300HP Dozer, 150' haul	<i>from Seven Springs</i> 31 23 23.14 5220	1,397	lcy	\$	- 28.00	\$ 39,119 \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 1	\$39,119 \$1,956
Finishing grading slopes, gentle Compacting backfill, 12" lift, 2 passes w/ drum roller	31 22 16.10 3300 31 23 23.23 5060	6,074 1,215	sy ecy	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0 \$ 0	\$1,276 \$340
Geotextile (Non woven) Topographic Survey	<i>31 32 19.16 1550</i> <i>02 21 23 09 0020</i>	6,074	sy acre	\$ \$	1.16 20.94	\$ 7,046 \$ 26	\$ 0.35 \$ 597.77	\$ 2,126 \$ 747	\$ - \$ 23	\$ - \$ 29		\$9,172 \$802
Site Restoration				Ŷ	20.71	φ 20	• • • • • • • • • • • • • • • • • • • •	φ <i>γ</i> ι <i>γ</i>	ψ 25	φ 2/		0002
	Recent quote- ESG	1,397										
Topsoil Finishing grading slopes, gentle	from Seven Springs 31 22 16.10 3300	6,074	lcy sy	\$ \$	44.50 -	\$ 62,172 \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0	\$62,172 \$1,276
Utility mix, 7#/M.S.F., Hydro or air seeding, with mulch and fertilizer	32 92 19.14 5400 recent quote-	54.67	msf	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 65	\$3,570
Monitoring Well Development	EnviroTrac recent quote -	60	hour	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 94	\$5,640
Topographic Survey	Pohatcong 02 21 23 09 0020	1	acre	\$ \$	- 20.94	\$ - \$ 26	\$ - \$ <u>5</u> 97.77	\$ - \$ 747	\$ - \$ 23	\$ - \$ 29	\$ 200	\$1,200 \$802
Fencing Installation Environmental Easement	32 31 13.20 0800	500	lf	+							\$ 28	\$13,760
Legal		1	ls	1							\$ 15,000	\$15,000
Surveyor - Monument Installation Mobilization and Demobilization		1	15								» 10,000	\$10,000 \$66,708
10% of Total Costs of Site Work, Treatment											\$667,076	\$66,708
Contingency 15% of Total Construction Activities				F							\$2,238 902	\$335,835 \$335,835
Professional/Technical Corvices				1							,_,250,702	\$260.070
5% Project Manazement			1	+			1			1	\$2 172 104	\$108 610
6% Remedial Design				1							,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\$130,332
0% Construction Management		1	1	1		1	1	1	1	1	1	\$130,332

TECHNOLOGY		I	OCATIO	N	MEDIA			Estimat	ed Cost to Imp	\$3,155,000		
On-Site Alternative 4A		Lackawanna Incinerator Site			•	So	oil		Cor	struction Time:	9	months
Partial Excavation (Ramp), Demolition and Removal of Both Incinerator	r Buildings	Lao	ckawanna,	NY					(Operation Time:	-	months
Regrading/Containment of Remaining Contamination with Soil Co	over			Γ					Post Remedia	tion Monitoring	30 Combined Unit	years
		Quar	ntities				Cost Break	down (if available)			Costs	
Description	Data Source	Quantity	Quantity	Material		Material	Labor	Labor	Equipment	Equipment		Option
LONG TERM MONITORING	(Means or Other)	Amount	Unit	Unit Cost		Total Cost	Unit Cost	Total Cost	A NINILAL L TM	Total Cost	1 5)	10tal Cost
LONG TERM MONITORING									ANNUAL LIM	COST (TRS	(<u>20</u>)	\$13,000
									I IFFTIME I T	M (NPV)	0-30)	\$186.400
Monitoring, Sampling, Testing and Analysis (Per Event)		1	1	T	Т			1				\$100,400
Assume 20% of combined sampling event for on-site and off-site												\$3,202
Site Monitoring												
Inspection of soil cover		1	hr	¢	¢		\$ 85.00	¢ 950	¢ 424	\$ 424		£1.074
Materials	Engineer's Estimate	1	event	\$ 50.00)	-	\$ 85.00	\$ 850	\$ 424	\$ 424		\$1,274
Mobilization/Demobilization of Field Sampling Crew	Engineer s Estimate	1	event	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 680	\$680
Reporting		10	hr	\$ 85.00) \$	850	\$ -	\$ -	\$ -	\$-	\$ -	\$850
Laboratory analysis	Life Science											
Metals and VOCs, plus 20% QA/QC	Laboratories	8	ea	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 174	\$348
Maintenance- Cap Maintenance												
Mowing brush, tractor with rotary mower, Medium density 2x per year	32 01 90.19 1670	55	msf	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 74.80	\$4,089
Lifetime Long Term Monitoring (Net Present Value)												
Years of Semi-Annual Monitoring Years of Annual Monitoring					_							
5% Discount Factor (per NYSDEC)												
					_			1				1
TOTAL ESTIMATED NPV TECHNOLOGY COST (Capital + Life	etime O&M + P	ost Reme	diation M	Ionitorir	ng)							\$3,155,000
Assumptions:		DIG] æ. 1		_	000/	1		1000/	٦.		
Working condition is Safety Level:		D/C 101.49/	(Labor pro	ductivity:	ta dar	82%	; Equipment pro	ductivity:	100%	D		
Costs are loaded with a profit factor		101.4 /0	(not applica	ible for cost	is uei	riveu ironi venu	ioi quotes).					
Inflation		3%	per year									Labor
Estimated number of soil samples		12	samples	1	tim	ies sampled		0.25	hrs/sample		\$85	Cost per hr
				20%	add	led for QA/QC sa	amples	1	worker sampling		-	
Characterization Cost	Table A (per CWM)	\$593.48	per sample								2	hrs / well sampling
For each sampling event, assumed:	TAL Metals	\$75.00	for materials	(gloves, not	teboo	oks, etc.)					4	worker per gw sample
Disposal			-			. ,	_					
Lead contaminated soil as hazardous waste- incineration		\$275	per ton			26,490	tons material disp	osed of off-site (haz	and non-haz)	1		
Land contaminated soil as non-har		\$30.87	nor top			22	tons per load		1,204	loads total		
Lead contaminated son as non-naz		\$37.07	per ton									
		3,300	lbs per cy									
		150	lbs per cf									
Brick		120	lbs per cf									
Typical Rental Rates - Includes G&A and 10% Profit		¢07.09				16	•/		20	1 d d		
Truck/SUV (1/2 ton or smaller)		\$90.00	per day			1.0	tons/cy		20	working days pe	r month	
Horiba U-10 Water Ouality Meter		\$73.77	per day						20	working days pe	r monui	
Submersible Pump		\$42.16	per day									
2 in Pump Control Box		\$72.27	per day									
Generator: 110 V		\$57.24	per day									
Level D PPE		\$11.91	per day						10	hours not work	ing day	
Work day consists of:		10	hrs						10	months for pre	-design characte	rization
									2	months for site p	rep/restoration	
Excavation With Concrete and Asphalt:		-							2	months for demo	olition	
Concrete and Asphalt:	0.0%	% of excavat	tion volume						9	months to compl	letion	
Excavation Area:	43,560	st	11.500	٦,					150	ft/day drilling		
Excavated Weight:	15,000	tons	11,500	icy								
Roll-off dumpster can hold approximately:	12	tons										
		-										
Notes												
sy square yard	mo lo	month										
cy cupic yard	is O&M	Operation on	d maintenarce	a.								
bcy bank cubic yard	H&S	Health and	Safety	-								
lf linear feet			-									
sf square feet												
msf 1,000 square feet												

TECHNOLOGY]	LOCATIO	Ň	MED	IA	Estimat	ed Cost to Imj	\$2,7	18,000	
On-Site Alternative 4B	thorn Incincrator	Lackawanna Incinerator Site			Soi	1		Co	onstruction Time:	7	months
Partial Excavation (Ramp), Demolition and Removal of the Sou and Regrading/Containment of Remaining Contamination w	vith Soil Cover	Lackawanna, NY						Post Remedia	Operation Time: ation Monitoring	- 30	months years
		Qua	ntities			Cost Break	down (if available))		Combined Unit	
Description	Data Source	Quantity	Quantity	Material	Material	Labor	Labor	Equipment	Equipment	Costs	Option
	(Means ¹ or Other)	Amount	Unit	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C	CAPITAL C	COST							\$2,643,000
		(totals ro	unded to ne	earest thou	sand)						
Construction Activities		1	L		\$41,527		\$74,131		\$19,795	\$80,358	\$1,936,772
Pre-Design Characterization Study											
Mob/Demob	quote- SJB	1	ls	\$ -	\$ -	\$ -	\$ -	\$-	\$-	\$ 300	\$300
Geoprobe/Crew for Soil Borings Sample Collection	quote- SJB	2	day	\$ - \$ -	\$ - \$ 50	\$ - \$ 85.00	\$ - \$ 850	\$ - \$ -	\$ - \$ -	\$ 850	\$1,700 \$900
XRF Unit	recent quote	2	day	•	ф <i>5</i> 0	\$ 05100	¢ 000	÷	Ψ	\$ 500	\$1,000
Sample Analysis for TCLP Lead and Zinc (20% of total samples)	Life Science Laboratories	4	sample	s -	\$-	\$-	\$ -	\$-	\$-	\$ 593.48	\$2,374
Sewer Investigation/Mapping - Labor	02 21 23 09 0020	16	hrs	\$ - \$ 20.94	\$ - \$ 52	\$ 85.00 \$ 597.77	\$ 1,360 \$ 1,494	\$ - \$ 23	\$ - \$ 58	\$ -	\$1,360
Reporting	Engineer's Estimate	5	le	\$ 20.74	¢ 52	¢ 571.11	¢ 1,474	¢ 25	¢ 50	\$ 5,000	\$5,000
Site Preparation	0	1	15	5 -	\$ -	s -	\$ -	\$ -	ۍ کې ا	\$ 5,000	\$5,000
Utility Locator (based on recent bids) Work Plan Prenaration (Including OAPP FAP and HASP)	recent quote	1.0	day Is	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 2,465 \$ 15,000	\$2,465 \$15,000
Erosion & Sediment Control Plan		1.0	ls	\$-	\$-	\$ -	\$-	\$-	\$-	\$ 15,000	\$15,000
Silt Fence	31 25 13.10 1000 recent quote-	300	lf	\$ 0.81	\$ 243	\$ -	\$ -	\$ -	\$ -	\$ -	\$243
Sewer/Storm Drain Demolition	EnviroTrac 02 31 13 33 2900	60 750	lf lf	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 22 \$ 11	\$1,320 \$8,250
Trenching 6-10ft with 3/4 CY excavator	31 23 16.13 0500	1,666.67	bcy	\$ -	\$ -	\$ 4.65	\$ 7,750	\$ 3	\$ 5,233	φ 11	\$12,983
Fence Demolition	02 41 13.62 1100	500.00	lf each							\$ 2.30 \$ 22.99	\$1,150
Sewer/Storm Drain Reconstruction	02 4113021000	50.00	each							\$ 22.99	\$1,150
PVC Sewer Pipe, 8" diameter, 13" lengths	33 31 13.25 2080	700	lf 1f	\$ 7.23	\$ 5,061	\$ 5.06	\$ 3,542	\$ -	\$ -		\$8,603
Install manholes- concrete, precast, 4' ID, 8' deep	33 49 13.10 0600	150	ea	\$ 11.93 \$ 646.68	\$ 1,790 \$ 647	\$ 6.15 \$ 1,622.55	\$ 923 \$ 1,623	s - s -	\$ - \$ -		\$2,712
Consolidation of ramp materials to incinerator footprint, 200 HP Dozer, 50' Haul	31 23 23.14 4000	175	lcy	\$-	\$-	\$ 0.33	\$ 58	\$ 1	\$ 98		\$156
Stockpile and Staging Area	Environmental			<u>_</u>	<i>.</i>	<i>.</i>	¢	¢	<u>_</u>		* 11.211
	Service Group recent quote- The	1	pad	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 11,344	\$11,344
Decontamination Pad	Environmental Service Group	1	pad	s -	s -	s -	s -	s -	s -	\$ 6.687	\$6.687
Ramp & Building Demolition	Service Group		r	•	Ψ	Ŷ	Ŷ	÷	Ψ	\$ 0,007	\$0,007
Access Road Demolition Sample Collection (from building)	32 01 15.71 5330	400	sy hr	\$ - \$ -	\$ - \$ -	\$ - \$ 85.00	\$ - \$ 425	\$ - \$ -	\$ - \$ -	\$ 1	\$440 \$425
Sample Analysis for PCRs (TCL PCRs)	Life Sciences quote		in .	ф -	ψ -	\$ 05.00	φ 4 25	÷ -	φ -		φ 1 23
	Life Sciences quoie	10	sample	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 65	\$650
Sample Analysis for Lead & Asbestos (TAL Inorganics)	Life Sciences quote	10	sample	\$-	\$-	\$-	\$-	\$-	\$-	\$ 75	\$750
South Incinerator Demolition Concrete Foundation / Slab Demolition - 12"	02 41 16.17 1000	2.258	lf	s -	\$ -	s -	s -	s -	s -	\$ 16	\$37.113
Brick Wall Demolition	02 41 16.13 0650	1,365	cf	\$ -	\$-	\$ -	\$-	\$-	\$-	\$ 0.38	\$519
Smoke Stack Demolition	02 41 16.13 0650	3,818	cf	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0.38 \$	\$14,508
Transportation and Disposal		1	15	ۍ دو. ا	φ -	ۍ چې	ф -	ۍ د ډ	ۍ چې	э -	\$30,000
Masonry Disposal	Quote from Modern Landfill	310.97	ton	s -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 71.00	\$22,079
Building Ash Hazardous Waste Disposal	Quote from Modern	342	ton	s -	s -	s -	s -	s -	s -	\$ 140.00	\$47 817
Drum Disposal (Waste Oil)	Quote from Modern	542	dama	ф -	φ -	ф -	÷ -	÷ -	φ -	\$ 140.00	\$47,017
General Waste Disposal	Landfill Quote from Modern	5	arum	5 -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 90.00	\$450
	Landfill Quote from Modern	100	ton	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 37.68	\$3,768
Metal Disposal / Recycling	Landfill Quota from Modarn	25	ton	\$ -	\$-	\$-	\$ -	\$ -	\$ -	\$ 37.68	\$942
C&D Waste Disposal	Quole from Modern Landfill	226	ton	\$-	\$-	\$-	\$-	\$-	\$-	\$ 71.00	\$16,028
Excavation	recent quote - Pine										
Dust Control Light	Environmental	4	mo dav	\$ - \$ -	\$ - \$ -	\$ 13,600.00 \$	\$ 54,400 \$	\$ 3,420 \$	\$ 13,680 \$	\$ - \$ 996	\$68,080
Soil-Excavator, hydraulic, crawler mtd. 3.5 CY cap = 350 CY/hr	31 23 16.42 5500	16,045	bcy	ş -	\$ -	\$ -	\$ -	\$ -	s -	\$ 990 \$ 1	\$13,941
34CY off-road 20min. Wait 2,000ft cycle	31 23 23.20 6300	18,452	lcy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 4 \$ 1.242	\$67,349
Maintain Stockpile, 700HP Dozer, 50ft Haul	<i>31 23 25.20 2000</i> <i>31 23 16.46 6010</i>	16,045	bcy	s - s -	\$ - \$ -	s - \$ -	\$ - \$ -	s - \$ -	\$ - \$ -	\$ 1,343 \$ 2	\$29,523
Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.43 4700	18,452	lcy	\$ -	\$-	\$-	\$-	\$-	\$ -	\$ 1	\$23,618
	Environmental			<u>_</u>	<i>.</i>	<i>.</i>	¢	¢	<u>_</u>	.	<i></i>
Decontamination Pad Maintenance	Service Group recent quote- The	5	day	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 8	\$42
Staging and Stockpile Area Maintenance	Environmental Service Group	16	dav	s -	s -	s -	s -	s -	s -	\$ 7	\$115
Topographic Survey	02 21 23 09 0020	1.25	acre	\$ 20.94	\$ 26	\$ 597.77	\$ 747	\$ 23	\$ 29	φ ,	\$802
Decontamination Water Samples	Life Science	10	sample	\$ -	\$ -	\$ 21	\$ 213	\$ 67	\$ 667	\$ -	\$880
Decon Water Lab Analyses - TCL PCBs	Laboratories	10	sample	\$ -	\$-		\$ -		\$-	\$ 50	\$500
Hazardous Soli Disposal	Life Science										
Soil Characterization Sampling (1 sample per 500 CY, per CWM) Hazardous Soil Disposal	laboratories CWM	24 2,567	sample	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 593 \$ 140	\$13,947 \$359,408
Transportation using dumps	CWM	2,567	ton	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 20	\$50,060
Demurrage (assume 5 hours per week of loading) Fuel Surcharge- 36% of Transportation	CWM CWM	10.00	hour ls	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 85 \$ 18,022	\$850 \$18,022
Non-Hazardous Soil Disposal										,.	
Soil transportation and disposal	Recent quote- ESG plus 10%	22,037	ton	s -	\$-	\$-	\$ -	\$-	\$-	\$ 38	\$830,349
Capping											
Supply and Transportation of NYS Certified Clean Back Fill Material	Recent quote- ESG	1,201	lcy								
Real-Fill 2001D Degar 150' have	from Seven Springs	1 201	lav	\$ 28.00	\$ 33,633	\$ -	\$ -	\$ -	\$ -	¢ 1	\$33,633
Finishing grading slopes, gentle	31 22 16.10 3300	5,222	sy	s -	\$ -	\$ - \$ -	\$ - \$ -	s - \$ -	\$ -	\$ 1 \$ 0	\$1,082
Compacting backfill, 12" lift, 2 passes w/ drum roller	31 23 23.23 5060	1,044	ecy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 0 \$ 2	\$292 \$10.445
Topographic Survey	02 21 23 09 0020	1.25	acre	\$ 20.94	\$ - \$ 26	\$ 597.77	\$ - \$ 747	\$ - \$ 23	\$ -	\$ 2	\$10,445
Site Restoration											
	Recent quote- ESG	601									
Topsoil	from Seven Springs		lcy	\$ 44.50	\$ 26,726	\$ -	\$-	\$ -	\$ -		\$26,726
Finishing grading slopes, gentle Utility mix, 7#/M.S.F., Hydro or air seeding, with mulch and fertilizer	31 22 16.10 3300 32 92 19.14 5400	5,222	sy msf	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0 \$ 65	\$1,097 \$341
Monitoring Well Installation	recent quote-	60	lf	s ·	\$	s	\$	s	s	\$ 04	\$5.640
Monitoring Well Development	Enviro1 rac recent quote -	6	hour	φ -	φ -	÷ -	φ -		φ -	φ <u>94</u>	\$3,640
Asphalt Road Replacement	Pohatcong	0		\$ -	\$ -	\$ -	\$ -	5 -	\$-	\$ 200	\$1,200
Base	32 11 26.13 1600	68	ecy	\$ -	\$ -	\$ -	\$-	\$ -	\$ -	\$ 85	\$5,793
Binder Top	32 12 16.13 0200 32 12 16.13 0380	400	sy sy	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$- \$-	\$ 20 \$ 11	\$7,980 \$4 596
Topographic Survey	02 21 23 09 0020	1.25	acre	\$ 20.94	\$ 26	\$ 597.77	\$ 747	\$ 23	\$ 29		\$802
Fencing Installation	32 31 13.20 0800	500	lf							\$ 28	\$13,760
Legal		1	ls	L						\$ 15,000	\$15,000
Surveyor - Monument Installation		1	ls							\$ 10,000	\$10,000
TECHNOLOGY		I	OCATION	I	MEI	DIA	Estimat	ted Cost to Imp	plement	\$2,7	18,000
---	--	---	--	---------------------------------	--	-----------------------------------	-----------------------	------------------------	---	--	---
On-Site Alternative 4B		Lackawa	Lackawanna Incinerat		So	il		Co	nstruction Time:	7	months
Partial Excavation (Ramp), Demolition and Removal of the Sou	thern Incinerator	Lac	kawanna, l	NY				Doct Domodie	Operation Time:	- 20	months
and Regrading/Containment of Remaining Contamination V	Ath Son Cover	0				C (D)		Post Remedia	ation Monitoring	SU Combined Unit	years
Description	Data Samua	Quar	Orantita	Matarial	Matarial	Cost Brea	down (if available	e) E-minut	Emin	Costs	Ortion
Description	(Means ¹ or Other)	Amount	Unit	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
Mobilization and Demobilization											\$53,784
10% of Total Costs of Site Work, Treatment										\$537,845	\$53,784
Contingency											\$298.583
15% of Total Construction Activities										\$1,990,556	\$298,583
Professional/Technical Services											\$320 251
											¢527,251
Project Management										\$1,936,772	\$96,839
6% Construction Management											\$116,200
LONG TERM MONITORING			•		•			ANNUAL LTM	COST (YRS	1-5)	\$7,000
								ANNUAL LTM	I COST (YRS	6-30)	\$4,000
			•					LIFETIME LT	M (NPV)		\$74,500
Monitoring, Sampling, Testing and Analysis (Per Event)											\$2.202
Assume 20% of combined sampling event for on-site and off-site Site Monitoring											\$5,202
Inspection of soil cover		1	hr			\$ 85.00					
Groundwater sampling for 1 event - Includes collection of field parameters	Fusin son's Fatimate	5	well	\$ - \$ 50.00	\$ -	\$ 85.00	\$ 850	\$ 424	\$ 424		\$1,274
Materials Mobilization/Demobilization of Field Sampling Crew	Engineer's Estimate	1	event	\$ 50.00 \$ -	\$ -	\$ -	\$ -	\$-	\$ -	\$ 680	\$680
Reporting		10	hr	\$ 85.00	\$ 850	\$ -	\$ -	\$ -	\$-	\$-	\$850
Laboratory analysis	Life Science										
Metals and VOCs, plus 20% QA/QC	Laboratories	8	ea	\$-	\$ -	\$ -	\$ -	\$ -	\$-	\$ 174	\$348
Maintenance- Cap Maintenance	22 01 00 10 1670	5	mef	¢	¢					\$ 74.90	\$201
Lifetime Long Term Monitoring (Net Present Value)	32 01 90.19 16/0	5	msi	\$ -	\$ -					\$ /4.80	\$391
5 Years of Semi-Annual Monitoring											
25 Years of Annual Monitoring											
TOTAL ESTIMATED NPV TECHNOLOGY COST (C	apital + Lifetime	O&M + 1	Post Remo	ediation 1	Monitoring)						\$2,718,000
Assumptions: Working condition is Safety Level: Weighted Average of city cost index (Buffalo, NY) Costs are loaded with a profit factor Inflation Estimated number of soil samples		D/C 101.4% 10% 3%	(Labor prod (not applical per year samples	uctivity: ble for costs 1	82% derived from vende times sampled	; Equipment p or quotes).	roductivity:	100%])	\$85	Labor Cost per hr
Characterization Cost Analytical cost For each sampling event, assumed:	Table A (per CWM) TAL Metals	\$593.48 \$75.00 \$50	per sample per sample for materials	20%	added for QA/QC s books, etc.)	amples	1	worker sampling		2	hrs / well sampling worker per gw sample
Disposal Lead contaminated soil as a "listed" waste- incineration Lead contaminated soil as non-haz		\$275 \$39.87	per ton		25,607 22	tons material di tons per load	sposed of off-site (I	haz and non-haz) 1,164	loads total		
Concrete		3,300 150	lbs per cy lbs per cf								
Typical Rental Rates - Includes G&A and 10% Profit Mini-Rae Survey Mode PID Truck/SUV (1/2 ton or smaller) Horiba U-10 Water Quality Meter Submersible Pump 2 in Pump Control Box Generator: 110 V Level D PPE		\$96.08 \$70.74 \$73.77 \$42.16 \$72.27 \$57.24 \$11.91	per day per day per day per day per day per day per day per day					20 20) loads per day) working days pe	r month	
Work day consists of:		10	hrs					10 1 2	hours per work months for pre months for site p	ing day e-design characte prep/restoration	rization
Excavation With Concrete and Asphalt: Concrete and Asphalt: Excavation Area: Excavation Volume: Excavated Weight: Roll-off dumpster can hold approximately:	0.0% 43,560 10,000 15,000 12	% of excavati sf cy tons tons	ion volume 11,500	lcy				1 7 150	months for demo months to compl ft/day drilling	olition letion	
Notes											
sy square yard cy cubic yard lcy loose cubic yard bcy bank cubic yard lf linear feet sf square feet msf 1,000 square feet	mo ls O&M H&S	month lump sum Operation and Health and S	d maintenance Safety								

TECHNOLOGY	Y		LOCATION		MEDIA		Estimated Cost to Implement			\$3,438,000	
On-Site Alternative 5A Partial Excavation (Ramp), Demolition and Removal of Bot	h Incinerators	Lackawa Lac	nna Incine kawanna,	rator Site NY	Soi	1		Сог	struction Time: Operation Time:	-	months months
Regrading/Containment of Remaining Contamination wi	th Asphalt	-		1				Post Remedia	tion Monitoring	30 Combined Unit	years
Description	Data Source	Quan Quantity	Quantity	Material	Material	Cost Break	down (if available Labor) Equipment	Equipment	Costs	Option
	(Means ¹ or Other)	Amount	Unit	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C	APITAL (COST							\$3,379,000
		(totals ro	inded to no	earest thou	isand)						
Construction Activities Pre-Design Characterization Study		1			\$14,941		\$104,792		\$27,097	\$81,020	\$2,476,461
Driller Meh Demek	curata CID	1	1	6	¢	¢	¢	¢	¢	¢ 200	\$200
Geoprobe/Crew for Soil Borings	quote- SJB quote- SJB	2	ls day	\$ - \$ -	\$ - \$ -	\$ - \$ -	s - \$ -	\$ - \$ -	\$ - \$ -	\$ 300 \$ 850	\$300
Sample Collection XRF Unit	recent quote	10	hr day	\$ -	\$ 50	\$ 85.00	\$ 850	\$ -	\$ -	\$ 500	\$900
Sample Analysis for TCLP Lead and Zinc (20% of total samples)	Life Science Laboratories	4	sample	\$ -	s -	\$ -	\$ -	\$ -	\$ -	\$ 593.48	\$2,374
Sewer Investigation/Mapping - Labor Topographic Survey	02 21 23 09 0020	16	hrs	\$ - \$ 20.94	\$ - \$ 52	\$ 85.00 \$ 597.77	\$ 1,360 \$ 1,494	\$ - \$ 23	\$ - \$ 58	\$ -	\$1,360 \$1,605
Reporting	Engineer's Estimate	2.5	ls	\$ 20.94	\$ <u>52</u>	\$ 591.11	\$ 1,494	\$ -	\$ -	\$ 5.000	\$1,003
Site Preparation		1.0		¢	¢	¢	¢	¢	¢	¢ 0,000	\$2,000
Work Plan Preparation (Including QAPP, FAP and HASP)	recent quote	1.0	ls	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 2,465 \$ 15,000	\$2,465
Erosion & Sediment Control Plan Silt Fence	31 25 13.10 1000	1 300	ls lf	\$ - \$ 0.81	\$ - \$ 243	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 15,000 \$ -	\$15,000 \$243
Monitoring Well Abandonment	recent quote- EnviroTrac	60	lf	s -	\$ -	\$ -	\$-	\$ -	\$-	\$ 22	\$1,320
Sewer/Storm Drain Demolition Trenching 6-10ft with 3/4 CY excavator	02 31 13.33 2900 31 23 16.13 0500	750 1,667	lf bcy	\$ - \$ -	\$ - \$ -	\$ - \$ 4.65	\$ - \$ 7,750	\$ - \$ 3	\$ - \$ 5,233	\$ 11	\$8,250 \$12,983
Fence Demolition	02 41 13.62 1100 02 4113621000	500.00	lf each							\$ 2.30 \$ 22.99	\$1,150 \$1,150
Sever/Storm Drain Reconstruction	22 21 12 25 2080	700	16	¢ 7.00	¢ 5.001	¢ 500	¢ 2.542	¢	¢	\$ 22.57	\$1,100
PVC Sewer Pipe, 8' diameter, 13' lengths PVC Sewer Pipe, 10'' diameter, 13'' lengths	33 31 13.25 2080 33 31 13.25 2120	150	lf lf	\$ 7.23 \$ 11.93	\$ 5,061 \$ 1,790	\$ 5.06 \$ 6.15	\$ 3,542 \$ 923	\$ - \$ -	\$ - \$ -		\$8,603
Install manholes- concrete, precast, 4' ID, 8' deep Consolidation of ramp materials to incinerator footprint, 200 HP Dozer, 50' Haul	<i>33 49 13.10 0600</i> <i>31 23 23.14 4000</i>	1,000	ea lcy	\$ 646.68 \$ -	\$ 647 \$ -	\$ 1,622.55 \$ 0.33	\$ 1,623 \$ 330	\$ - \$ 1	\$ - \$ 560		\$2,269 \$890
Stockpile and Staging Area	recent quote- The Environmental										
	Service Group recent quote- The	1	pad	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 11,344	\$11,344
Decontamination Pad	Environmental Service Group	1	pad	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 6,687	\$6,687
Ramp & Building Demolition Access Road Demolition	32 01 15.71 5330	400	sy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1	\$440
Sample Collection (from building)		18	hr	\$ -	\$ -	\$ 85.00	\$ 1,488	\$ -	\$ -		\$1,488
Sample Analysis for PCBs (TCL PCBs)	Life Sciences quote	35	sample	\$ -	\$ -	\$ -	\$ -	\$ -	\$-	\$ 65	\$2,275
Sample Analysis for Lead & Asbestos (TAL Inorganics)	Life Sciences quote	35	sample	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 75	\$2,625
North Incinerator Demolition Concrete Foundation / Slab Demolition - 12"	02 41 16.17 1000	5,633	lf	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 16	\$92,600
Brick Wall Demolition Smoke Stack Demolition	02 41 16.13 0650 02 41 16.13 0650	1,898 3,818	cf cf	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0.38 \$ 0.38	\$721 \$14,508
South Incinerator Demolition	02 41 16 17 1000	2 258	lf	\$.	\$	\$ _	\$ _	\$ -	\$ _	\$ 16	\$37.113
Brick Wall Demolition	02 41 16.13 0650	1,365	cf	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 0.38	\$519
Asbestos Abatement	02 41 10.13 0050	3,818	ci ls	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0.38 \$ -	\$14,508 \$50,000
Transportation and Disposal Masonry Disposal	Quote from Modern										
Building Ash Hazardous Waste Disposal	Landfill Quote from Modern	653.95	ton	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 71.00	\$46,431
Drum Disposal (Waste Oil)	Landfill Quote from Modern	342	drum	\$ - ¢	\$ -	\$ - ¢	\$ - ¢	<u>\$</u>	\$ - ¢	\$ 140.00	\$47,817
General Waste Disposal	Landfill Quote from Modern	100	ton	s -	s -	\$ - ¢	s -	s -	\$ - ¢	\$ 90.00	\$900
Metal Disposal / Recycling	Quote from Modern	50	ton	\$ - \$ -	\$ -	\$ -	\$ -	s -	\$ -	\$ 37.68	\$1,884
C&D Waste Disposal	Quote from Modern Landfill	859	ton	s -	\$ <u>-</u>	\$ -	\$ -	\$ -	\$ -	\$ 71.00	\$61,019
Excavation	recent auote - Pine										
Community Air Monitoring (Dust) Dust Control, Light	Environmental 31 23 23.20 2500	6 24.00	mo day	\$ - \$ -	\$ - \$ -	\$ 13,600.00 \$ -	\$ 81,600 \$ -	\$ 3,420 \$ -	\$ 20,520 \$ -	\$ - \$ 996	\$102,120 \$23,911
Soil-Excavator, hydraulic, crawler mtd. 3.5 CY cap = 350 CY/hr	31 23 16.42 5500	16,518	bcy	\$ - ¢	\$ - ¢	- \$-	- \$-	\$ - ¢	- \$-	\$ 1 \$ 1	\$21,473
Haul Road Maintenance	31 23 23.20 8300 31 23 23.20 2600	24	day	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$	\$ - \$ -	\$ 4 \$ 1,343	\$69,555 \$32,224
Maintain Stockpile, 700HP Dozer, 50ft Haul Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.46 6010 31 23 16.43 4700	16,518 18,995	bcy lcy	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 2 \$ 1	\$30,393 \$24,314
	recent quote- The Environmental	_									
Decontamination Pad Maintenance	Service Group recent quote- The	5	day	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 8	\$42
Staging and Stockpile Area Maintenance	Environmental Service Group	24	day	\$ -	\$ -	\$ -	\$ -	<u>\$</u> -	\$ -	\$ 7	\$172
Topographic Survey Decontamination Water Samples	02 21 23 09 0020	1.25	acre sample	\$ 20.94 \$ -	\$ 26 \$ -	\$ 597.77 \$ 21	\$ 747 \$ 213	\$ 23 \$ 67	\$ 29 \$ 667	\$ -	\$802 \$880
Decon Water Lab Analyses - TCL PCBs	Life Science Laboratories	10	sample	\$ -	\$ -		\$ -		\$-	\$ 50	\$500
Hazardous Soil Disposal	Life Science										
Soil Characterization Sampling (1 sample per 500 CY, per CWM) Hazardous Soil Disposal	laboratories CWM	8 2,643	sample ton	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 593 \$ 140	\$4,901 \$369,998
Transportation using dumps Demurrage (assume 5 hours per week of loading)	CWM CWM	2,643 6.00	ton hour	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 20 \$ 85	\$51,535 \$510
Fuel Surcharge- 36% of Transportation Non-Hazardous Soil Disposal	CWM	1	ls	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 18,553	\$18,553
Soil transportation and disposal	Recent quote- ESG	23.786	ton	s -	s -	s -	s -	s -	s -	\$ 38	\$896.241
Capping Einiching grading slopes gentle	31.22.16.10.3300	6.074	ev.	s	2	\$	\$	\$	\$	\$ 0	\$1.276
Geotextile (Non woven)	31 32 19.16 1550	6,074	sy	\$ 1.16	\$ 7,046	\$ 0.35	\$ 2,126	\$ -	\$ -	÷ 0	\$9,172
Asphalt Cover Construction Base Base Base Base Base Base Base Base	32 11 26.13 1600	1,012	ecy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 85	\$86,247
Binder Top	32 12 16.13 0200 32 12 16.13 0380	6,074 6,074	sy sy	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 20 \$ 11	\$121,185 \$69,795
Topographic Survey Site Restoration	02 21 23 09 0020	1.25	acre	\$ 20.94	\$ 26	\$ 597.77	\$ 747	\$ 23	\$ 29		\$802
	Pagant quota ESC	230									
Topsoil	from Seven Springs	230	lcy	\$ 44.50	\$ 10,235	\$ -	\$-	\$ -	\$ -		\$10,235
Unity mix, /#/M.S.F., Hydro or air seeding, with mulch and fertilizer Monitoring Well Installation	32 92 19.14 5400 recent quote-	11 60	mst lf	\$ - ¢	s -	s -	\$ - ¢	s -	s -	\$ 65	\$718
Monitoring Well Development	Enviro1rac recent quote - Pohateorra	6	hour	s -	э - s	ф –	թ – Տ	9 - \$	ф –	* 94 \$ 200	\$5,640
Topographic Survey	02 21 23 09 0020	2.50	acre	\$ 20.94	\$ 52	\$ 597.77	\$ 1,494	\$ 23	\$ 58	÷ 200	\$1,200
rencing Installation Environmental Easement	32 31 13.20 0800	500	11							\$ 28	\$13,760
Legal Surveyor - Monument Installation		1	ls ls							\$ 15,000 \$ 10.000	\$15,000 \$10.000
Mobilization and Demobilization										¢054.722	\$95,473
										۵ ۶ ۶4,733	\$95,473
15% of Total Construction Activities										\$2,571,934	\$385,790 \$385,790
Professional/Technical Services											\$420,998
5% Project Management										\$2,476,461	\$123,823
6% Remedial Design 6% Construction Management											\$148,588 \$148,588

TECHNOLOGY		I	LOCATIO	N	MEDIA			Estimat	ed Cost to Imp	\$3,4	38,000	
On-Site Alternative 5A			nna Incine	rator Site	So	il			Cor	struction Time:	9	months
Partial Excavation (Ramp), Demolition and Removal of Bo	th Incinerators	Lac	kawanna,	NY					(Operation Time:	-	months
Regrading/Containment of Remaining Contamination w	rith Asphalt								Post Remedia	tion Monitoring	30	years
		Quar	ntities			Cost	Break	down (if available	e)		Combined Unit Costs	
Description	Data Source (Means ¹ or Other)	Quantity Amount	Quantity Unit	Material Unit Cost	Material Total Cost	Lab Unit C	or Cost	Labor Total Cost	Equipment Unit Cost	Equipment Total Cost	Unit Cost	Option Total Cost
LONG TERM MONITORING	1 · · · ·								ANNUAL LTM	COST (YRS	1-5)	\$6.000
									ANNUAL LTM	COST (YRS	6-30)	\$3,000
									LIFETIME LT	M (NPV)		\$59,100
Monitoring, Sampling, Testing and Analysis (Per Event)				[1						
Assume 20% of combined sampling event for on-site and off-site												\$3,202
Site Monitoring		1	1			¢	05.00					
Inspection of soil cover Groundwater sampling for 1 event - Includes collection of field parameters		5	nr well	\$ -	\$ _	\$	85.00	\$ 850	\$ 424	\$ 424	\$ 509	\$1 274
Materials	Engineer's Estimate	1	event	\$ 50.00	Ŷ	Ψ	00.00	\$ 050	ф <u>121</u>	φ 121	¢ 507	\$50
Mobilization/Demobilization of Field Sampling Crew	~	1	event	\$ -	\$ -	\$	-	\$ -	\$ -	\$-	\$ 680	\$680
Reporting		10	hr	\$ 85.00	\$ 850	\$	-	\$ -	\$ -	\$ -	\$ -	\$850
Laboratory analysis	Life Science											
Metals and VOCs, plus 20% QA/QC	Laboratories	8	ea	\$ -	\$ -	\$	-	\$ -	\$ -	\$-	\$ 174	\$348
Lifetime Long Term Monitoring (Net Present Value)												
5 Years of Semi-Annual Monitoring												
25 Years of Annual Monitoring												
5% Discount Factor (per NYSDEC)						I						
TOTAL ESTIMATED NPV TECHNOLOGY COST	Capital + Lifetin	ne O&M	+ Post R	emediatio	on Monitorin	g)						\$3,438,000
					· · · · ·	8/						
Assumptions:			-			-						
Working condition is Safety Level:		D/C	(Labor pro	luctivity:	82%	; Equipn	nent pr	oductivity:	100%)		
Weighted Average of city cost index (Buffalo, NY)		101.4%	o (not applica	ble for costs	derived from vend	or quotes).					
Inflation		3%	per vear									Labor
Estimated number of soil samples		12	samples	1	times sampled			0.25	hrs/sample		\$85	Cost per hr
			-	20%	added for QA/QC s	samples		1	worker sampling			
Characterization Cost	Table A (per CWM)	\$593.48	per sample								2	hrs / well sampling
Analytical cost For each campling event assumed:	I AL Metals	\$75.00	for materials	(gloves note	books atc.)						2	worker per gw sample
Disposal		φυσ	for materials	(gioves, not	2000k3, etc.)							
Lead contaminated soil as a "listed" waste- incineration		\$275	per ton		28,433	tons mate	erial dis	sposed of off-site (haz and non-haz)			
		440.0			22	tons per l	load		1,292	loads total		
Lead contaminated soil as non-haz		\$39.87	per ton									
Concrete		3,300	lbs per cy									
		150	lbs per cf									
Brick		120	lbs per cf									
Typical Rental Rates - Includes G&A and 10% Profit		¢07.00							20	1		
Mini-Rae Survey Mode PID Truck/SUV (1/2 ton or smaller)		\$96.08	per day						20	working days per	r month	
Horiba U-10 Water Quality Meter		\$73.77	per day						20	working days pe	monui	
Submersible Pump		\$42.16	per day									
2 in Pump Control Box		\$72.27	per day									
Generator: 110 V		\$57.24	per day									
Level D PPE		\$11.91	per day						10	hours per work	ing day	
Work day consists of:		10	hrs						1	months for pre	-design characte	erization
									2	months for site p	prep/restoration	
Excavation With Concrete and Asphalt:	0.00/								2	months for demo	olition	
Excavation Area:	43.560	sf	ion volume						150	ft/day drilling	lettoli	
Excavation Volume:	10,000	су	11,500	lcy								
Excavated Weight:	15,000	tons										
Roll-off dumpster can hold approximately:	12	tons										
Notes												
sy square yard	mo	month										
cy cubic yard	ls	lump sum										
lcy loose cubic yard	O&M	Operation an	d maintenanc	e								
bcy bank cubic yard	H&S	Health and	Safety									
n inca leet sf square feet												
msf 1,000 square feet												

TECHNOLOGY		I	OCATIO	N	MEI	DIA	Estimat	ed Cost to Imp	olement	\$2,9	07,000
On-Site Alternative 5B Partial Excavation (Ramp), Demo and Removal of the South	ern Incinerator	Lackawa Lac	nna Incine ckawanna,	rator Site NY	So	il		Co	nstruction Time: Operation Time:	- 7	months months
and Regrading/Containment of Remaining Contamination	with Asphalt		,					Post Remedia	ation Monitoring	0	years
2		Quar	ntities			Cost Break	down (if available)			Combined Unit Costs	
Description	(Means ¹ or Other)	Quantity Amount	Quantity Unit	Material Unit Cost	Material Total Cost	Labor Unit Cost	Labor Total Cost	Equipment Unit Cost	Equipment Total Cost	Unit Cost	Option Total Cost
		TOTAL		COST	•						¢2 040 000
REMEDIAL ACTION		(totals rot	inded to ne	cost earest thou	(sand)						\$2,848,000
Construction Activities		1			\$13.947		\$76.229		\$20.257	\$79.447	\$2,094,012
Pre-Design Characterization Study					<i><i><i>ψ</i>13,747</i></i>		¢70,22>		φ 20,2 07	φι γ τη	φ 2 ,094,012
Driller Mob/Demob	quote- SJB	1	ls	\$ -	s -	s -	s -	\$ -	s -	\$ 300	\$300
Geoprobe/Crew for Soil Borings	quote- SJB	2	day	\$ -	\$ - 50	\$ -	\$ -	\$ -	\$ -	\$ 850	\$1,700
XRF Unit	recent quote	2	day	ş -	\$ 30	\$ 85.00	\$ 830	3 -	ъ –	\$ 500	\$900
Sample Analysis for TCLP Lead and Zinc (20% of total samples)	Life Science Laboratories	4	sample	\$ -	\$ -	s -	s -	\$ -	\$ -	\$ 593	\$2,374
Sewer Investigation/Mapping - Labor Topographic Survey	02 21 23 09 0020	16	hrs acre	\$ - \$ 20.94	\$ - \$ 52	\$ 85.00 \$ 597.77	\$ 1,360 \$ 1,494	\$ - \$ 23	\$ - \$ 58	\$ -	\$1,360
Reporting	Engineer's Estimate	1	ls	\$ -	\$ <u>-</u>	\$ -	\$ -	<u>s</u> -	\$ -	\$ 5.000	\$5,000
Site Preparation		1.0		÷	÷	- -	-	-	*	÷ 0,000	***
Work Plan Preparation (Including QAPP, FAP and HASP)	recent quote	1.0	day ls	\$ - \$ -	\$ - \$ -	s - s -	s - s -	s - s -	s - s -	\$ 2,465 \$ 15,000	\$2,465 \$15,000
Erosion & Sediment Control Plan Silt Fence	31 25 13.10 1000	1 300	ls lf	\$ - \$ 0.81	\$ - \$ 243	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 15,000 \$ -	\$15,000 \$243
Monitoring Well Abandonment	recent quote- EnviroTrac	60	lf	\$ -	s -	\$ -	\$ -	\$ -	\$ -	\$ 22	\$1,320
Sewer/Storm Drain Demolition	02 31 13.33 2900	750	lf	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 11	\$8,250
Fence Demolition	02 41 13.62 1100	500.00	lf	\$ -	\$ -	\$ 4.65	\$ 7,750	\$ 3	\$ 5,255	\$ 2.30	\$12,983
Fence Post Removal Sewer/Storm Drain Reconstruction	02 4113621000	50.00	each							\$ 22.99	\$1,150
PVC Sewer Pipe, 8" diameter, 13" lengths PVC Sewer Pipe, 10" diameter, 13" lengths	<i>33 31 13.25 2080</i>	700	lf lf	\$ 7.23 \$ 11.02	\$ 5,061 \$ 1,700	\$ 5.06	\$ 3,542 \$ 022	\$ - \$	\$ - \$		\$8,603
Install manholes- concrete, precast, 4' ID, 8' deep	33 49 13.10 0600	150	ea	\$ 646.68	\$ 647	\$ 1,622.55	\$ 1,623	\$ -	\$ -		\$2,712
Consolidation of ramp materials to incinerator footprint, 200 HP Dozer, 50' Haul	31 23 23.14 4000 recent quote- The	1,000	lcy	\$ -	\$ -	\$ 0.33	\$ 330	\$ 1	\$ 560		\$890
Stockpile and Staging Area	Environmental Service Group	1	pad	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	<u>\$</u> 11,344	\$11,344
Decontamination Pad	recent quote- The Environmental		<u> </u>								
Ramp & Building Demolition	Service Group	1	pad	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 6,687	\$6,687
Acess Road Demolition	32 01 15.71 5330	400	sy	\$ -	\$ -	\$ -	\$ - 6 105	\$ -	\$ -	\$ 1	\$440
Sample Collection (from building)	Life Sciences quote	5	nr	\$ -	\$ -	\$ 85.00	\$ 425	\$ -	\$ -		\$425
	Life Sciences quoie	10	sample	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 65	\$650
Sample Analysis for Lead & Asbestos (TAL Inorganics)	Life Sciences quote	10	sample	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 75	\$750
Concrete Foundation / Slab Demolition - 12"	02 41 16.17 1000	2,258	lf	\$ -	\$ -	s -	\$ -	\$ -	\$ -	\$ 16	\$37,113
Brick Wall Demolition Smoke Stack Demolition	02 41 16.13 0650 02 41 16.13 0650	1,365 3,818	cf cf	\$ - \$ -	s - s -	s - s -	s - s -	\$ - \$ -	\$ - \$ -	\$ 0.38 \$ 0.38	\$519 \$14,508
Asbestos Abatement		1	ls	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$50,000
I ransportation and Disposal Masonry Disposal	Quote from Modern	210.05		¢	<u>^</u>	¢	<u>_</u>	¢	¢	* 71.00	¢00.070
Building Ash Hazardous Waste Disposal	Landfill Quote from Modern	310.97	ton	\$ -	\$ -	\$ -	s -	s -	\$ -	\$ 71.00	\$22,079
Drum Disposal (Waste Oil)	Landfill Quote from Modern	342	ton	\$ -	\$ -	\$ -	\$ -	<u>s</u> -	\$ -	\$ 140.00	\$47,817
General Waste Disposal	Landfill Quote from Modern	5	drum	\$ -	\$ <u>-</u>	\$ -	\$ -	\$ -	\$ -	\$ 90.00	\$450
Matal Disposal / Pagualing	Landfill Quote from Modern	100	ton	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 37.68	\$3,768
ChD Waste Disposal	Landfill Quote from Modern	25	ton	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 37.68	\$942
Excavation	Landfill	226	ton	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 71.00	\$16,028
Community Air Monitoring (Dust)	recent quote - Pine Environmental	4	mo	s -	s -	\$ 13.600.00	\$ 54.400	\$ 3.420	\$ 13.680	\$ -	\$68.080
Dust Control, Light	31 23 23.20 2500	16	day	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 996	\$15,941
Soil-Excavator, hydraulic, crawler mtd. 3.5 CY cap = 350 CY/hr 34CY off-road 20min. Wait 2,000ft cycle	31 23 16.42 5500 31 23 23.20 6300	15,133	lcy	\$ - \$ -	\$ - \$ -	s - s -	s - s -	s - s -	s - s -	\$ 1 \$ 4	\$19,673 \$63,522
Haul Road Maintenance Maintain Stockpile, 700HP Dozer, 50ft Haul	31 23 23.20 2600 31 23 16.46 6010	16	day bcv	\$ - \$ -	\$ - \$ -	s - s -	s - s -	\$ - \$ -	\$ - \$ -	\$ 1,343 \$ 2	\$21,483 \$27,845
Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.43 4700	17,403	lcy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1	\$22,276
Decentemination Red Maintenance	Environmental	5	dav	¢	ç	¢	¢	¢	¢	¢ 0	\$42
	service Group recent quote- The	5	uay	э -	ə -	ф -	э -	<u>ه</u> -	ф <u>-</u>	\$ 0	\$ 4 2
Staging and Stockpile Area Maintenance	Environmental Service Group	16	day	\$ -	s -	s -	\$-	\$-	\$ -	\$ 7	\$115
Topographic Survey Decontamination Water Samples	02 21 23 09 0020	1.25	acre sample	\$ 20.94 \$ -	\$ 26 \$ -	\$ 597.77 \$ 21	\$ 747 \$ 213	\$ 23 \$ 67	\$ 29 \$ 667	\$ -	\$802 \$880
Decon Water Lab Analyses - TCL PCBs	Life Science Laboratories	10	sample	\$ -	\$ -		\$ -		\$ -	\$ 50	\$500
Hazardous Soil Disposal	Life Science										
Soil Characterization Sampling (1 sample per 500 CY, per CWM)	laboratories CWM	8	sample	\$ - \$	\$ - \$	s -	s -	<u>s</u> -	s -	\$ 593 \$ 140	\$4,491
Transportation using dumps	CWM	2,421	ton	\$ -	s -	\$ -	s - \$ -	ب -	\$ -	\$ 140 \$ 20	\$338,985 \$47,216
Demurrage (assume 5 hours per week of loading) Fuel Surcharge- 36% of Transportation	CWM CWM	10.00	hour ls	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 85 \$ 16.998	\$850 \$16.998
Non-Hazardous Soil Disposal	Recent quote FSC			1						,//0	
Soil transportation and disposal	plus 10%	21,792	ton	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 38	\$821,118
Finishing grading slopes, gentle	31 22 16.10 3300	5,217	sy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 0	\$1,096
Geotextile (Non woven) Asphalt Cover Construction & Road Replacement	31 32 19.16 1550	5,217	sy	\$ 1.16	\$ 6,052	\$ 0.35	\$ 1,826	\$ -	\$ -		\$7,878
Base	32 11 26.13 1600	938	ecy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 85	\$79,867
Binder Top	32 12 16.13 0200 32 12 16.13 0380	5,617	sy sy	\$ - \$ -	\$ - \$ -	s - s -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 20 \$ 11	\$112,061 \$64,541
Topographic Survey Retaining walls	02 21 23 09 0020	1.25	acre	\$ 20.94	\$ 26	\$ 597.77	\$ 747	\$ 23	\$ 29		\$802
Site Restoration											
	Recent quote- ESG	230									
Topsoil Utility mix 7#/M S F Hydro or air seeding with mulch and fertilizer	from Seven Springs	11	lcy msf	\$ 44.50 \$ -	\$ 10,235 \$ -	s - s -	s - s -	\$ - \$ -	\$ - \$ -	\$ 65	\$10,235 \$718
Monitoring Well Installation	recent quote-	60	lf	s -	s -	s -	s -	s -	\$ -	\$ Q1	\$5 640
Monitoring Well Development	recent quote -	6	hour	s -	s -	s -	s -	s -	s -	\$ 200	\$1 200
Topographic Survey	02 21 23 09 0020	2.50	acre	\$ 20.94	\$ 52	\$ 597.77	\$ 1,494	\$ 23	\$ 58	. 200	\$1,605
Fencing Installation Environmental Easement	32 31 13.20 0800	500	lf							\$ 28	\$13,760
Legal		1	ls	1						\$ 15,000	\$15,000
Mobilization and Demobilization		1	15							¢ 10,000	\$10,000 \$73,310
10% of Total Costs of Site Work, Treatment				<u> </u>						\$733,096	\$73,310
Contingency				1						¢0.167.005	\$325,098
1370 or 1 otal Construction Activities										\$2,167,322	\$325,098
Professional/Technical Services			<u> </u>	<u> </u>							\$355,982
5% Project Management 6% Remedial Design										\$2,094,012	\$104,701
6% Construction Management			1	1	1		1				\$125,641

TECHNOLOGY]	LOCATIO	N	MEI	DIA	Estimated Cost to Implement			\$2,907,000	
On-Site Alternative 5B		Lackawa	Lackawanna Incinerator Site			oil	Construction Time			7	months
Partial Excavation (Ramp), Demo and Removal of the South	ern Incinerator	La	ckawanna,	NY					Operation Time:	-	months
and Regrading/Containment of Remaining Contamination	with Asphalt								ation Monitoring	0 Combined Unit	years
		Qua	ntities			Cost Break	down (if available	:)		Combined Unit Costs	
Description	Data Source (Means ¹ or Other)	Quantity Amount	Quantity Unit	Material Unit Cost	Material Total Cost	Labor Unit Cost	Labor Total Cost	Equipment Unit Cost	Equipment Total Cost	Unit Cost	Option Total Cost
LONG TERM MONITORING	•		•		•			ANNUAL LTM	COST (YRS	1-5)	\$6,000
								ANNUAL LTM	I COST (YRS	6-30)	\$3,000
								LIFETIME LT	M (NPV)		\$59,100
Monitoring, Sampling, Testing and Analysis (Per Event)											
Assume 20% of combined sampling event for on-site and off-site											\$3,202
Site Monitoring		1	h			¢ 95.00					
Inspection of soil cover Groundwater sampling for 1 event - Includes collection of field parameters		5	well	s -	s -	\$ 85.00 \$ 85.00	\$ 850	\$ 424	\$ 424	\$ 509	\$1 274
Materials	Engineer's Estimate	1	event	\$ 50.00	-			-			\$50
Mobilization/Demobilization of Field Sampling Crew		1	event	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 680	\$680
Reporting		10	hr	\$ 85.00	\$ 850	\$ -	\$ -	\$ -	\$ -	\$ -	\$850
Laboratory analysis	Life Science										
Metals and VOCs, plus 20% QA/QC	Laboratories	8	ea	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 174	\$348
Lifetime Long Term Monitoring (Net Present Value)											
5 Years of Semi-Annual Monitoring											
25 Years of Annual Monitoring											
5% Discount Factor (per NYSDEC)											
		0.014									#2 005 000
TOTAL ESTIMATED NPV TECHNOLOGY COST (Capital + Lifetin	ie O&M -	+ Post Rei	nediation	n Monitoring)						\$2,907,000
Assumptions:											
Working condition is Safety Level:		D/C	(Labor proc	luctivity:	82%	; Equipment pro	oductivity:	100%	D		
Weighted Average of city cost index (Buffalo, NY)		101.4%	6 (not applica	ble for costs	derived from vendo	or quotes).			-		
Costs are loaded with a profit factor		10%	(o								* .
Inflation Estimated number of soil samples		3%	6 per year 2 samples	1	times sampled		0.25	hrs/sample		\$85	Labor Cost per hr
			samples	20%	added for QA/QC s	amples	1	worker sampling		φθe	cost per m
Characterization Cost	Table A (per CWM)	A) \$593.48 per sample 2 hrs / well sampling							hrs / well sampling		
Analytical cost	TAL Metals	\$75.0	per sample	(1)	1					2	worker per gw sample
For each sampling event, assumed: Disposal		<u>حۇ</u>	or materials	(gloves, noter	DOOKS, etc.)						
Lead contaminated soil as a "listed" waste- incineration		\$27	5 per ton		25,216	tons material disp	osed of off-site (ha	z and non-haz)			
			_		22	tons per load		1,146	loads total		
Lead contaminated soil as non-haz		\$39.8	7 per ton								
Concrete		3,300	lbs per cv								
		150	lbs per cf								
Brick		120	lbs per cf								
Typical Rental Rates - Includes G&A and 10% Profit		****									
Mini-Rae Survey Mode PID Truck/SUV (1/2 ton or smaller)		\$96.0	8 per day 4 per day					20) loads per day	month	
Horiba U-10 Water Quality Meter		\$73.7	7 per day					20	working days per	monui	
Submersible Pump		\$42.1	6 per day								
2 in Pump Control Box		\$72.2	7 per day								
Generator: 110 V		\$57.2	4 per day								
Level D PPE		\$11.9	per day					10) hours per work	ing day	
Work day consists of:		10	hrs					1	months for pre	-design characte	rization
								2	2 months for site p	rep/restoration	
Excavation With Concrete and Asphalt:	0.00/	0/ -6	: 1					1	month for demoli	ition	
Excavation Area:	43.560	sf	ion volume					150	ft/day drilling	euon	
Excavation Volume:	10,000	cy	11,500	lcy				100			
Excavated Weight:	15,000	tons									
Roll-off dumpster can hold approximately:	12	tons									
Notes											
sy square yard	mo	month									
cy cubic yard	ls	lump sum									
lcy loose cubic yard	O&M	Operation an	d maintenance								
bcy bank cubic yard	H&S	Health and	Safety								
sf square feet											
msf 1,000 square feet											

TECHNOLOGY		I	LOCATION	N	MEI	DIA	Estimat	ed Cost to Imple	ement	\$4,2	67,000
On-Site Alternative 6A	Off Site	Lackawa	nna Incine	rator Site	So	il		Constr	ruction Time:	10	months
Demolition and Removal of Both Incinerator Build	ings	La	ckawanna,	NY				Ope Post Remediation	eration Time: on Monitoring	- 0	months years
	0	Qua	ntities			Cost Break	down (if available))	0	Combined Unit	-
Description	Data Source	Quantity	Quantity	Material	Material	Labor	Labor	Equipment	Equipment	Costs	Option
	(Means ¹ or Other)	Amount	Unit	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C	APITAL C	COST							\$4,267,000
		(totals rou	unded to ne	arest thou	sand)		1	ГГ			
Construction Activities		1			\$7,919		\$117,215		\$30,950	\$88,371	\$3,161,257
Pre-Design Characterization Study							, í			,	
Driller Mob/Demob	quote- SJB	1	ls	s -	s -	s -	\$ -	\$ - \$	-	\$ 300	\$300
Geoprobe/Crew for Soil Borings	quote- SJB	2	day	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 850	\$1,700
XRF Unit	recent quote	10	nr day	\$ -	\$ 50	\$ 85.00	\$ 850	\$ - \$	-	\$ 500	\$900
Sample Analysis for TCLP Lead and Zinc (20% of total samples)	Life Science Laboratories	4	sample	s -	s -	s -	s -	s - s	-	\$ 593	\$2.374
Sewer Investigation/Mapping - Labor	Laboratories	16	hrs	\$ -	\$ -	\$ 85.00	\$ 1,360	\$ - \$	-	\$ -	\$1,360
Topographic Survey	02 21 23 09 0020	2.5	acre	\$ 20.94	\$ 52	\$ 597.77	\$ 1,494	\$ 23 \$	58	\$ -	\$1,605
Reporting Site Preparation	Engineer's Estimate	1	ls	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 5,000	\$5,000
Utility Locator (based on recent bids)	recent quote	1.0	day	\$ -	\$-	\$-	\$-	\$ - \$	-	\$ 2,465	\$2,465
Work Plan Preparation (Including QAPP, FAP and HASP) Erosion & Sediment Control Plan		1.0	ls ls	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ \$ - \$	-	\$ 15,000 \$ 15,000	\$15,000
Silt Fence	31 25 13.10 1000	300	lf	\$ 0.81	\$ 243	\$ -	\$-	\$ - \$	-	\$ -	\$243
Monitoring Well Abandonment	recent quote- EnviroTrac	60	lf	\$ -	\$ -	\$ -	\$ -	s - s	-	\$ 22	\$1,320
Sewer/Storm Drain Demolition Trenching 6-10ft with 3/4 CY excavator	02 31 13.33 2900	750	lf bcy	\$ - \$ -	\$ - \$ -	\$ - \$ 4.65	\$ - \$ 7,750	\$ - \$ \$ 3 \$	- 5 233	\$ 11	\$8,250
Fence Demolition	02 41 13.62 1100	500.00	lf	Ŷ	Ŷ	• 1105	¢ 1,750	ф У ф	0,200	\$ 2.30	\$1,150
Fence Post Removal Sewer/Storm Drain Reconstruction	02 4113621000	50.00	each							\$ 22.99	\$1,150
PVC Sewer Pipe, 8" diameter, 13" lengths	33 31 13.25 2080	700	lf If	\$ 7.23	\$ 5,061	\$ 5.06	\$ 3,542	\$ - \$	-		\$8,603
r vC Sewer Pipe, 10" diameter, 15" lengths Install manholes- concrete, precast, 4' ID, 8' deep	55 51 13.25 2120 33 49 13.10 0600	150	и ea	\$ 11.93 \$ 646.68	\$ 1,790 \$ 647	\$ 6.15 \$ 1,622.55	> 923 \$ 1,623	5 - \$ \$ - \$	-		\$2,712
Consolidation of ramp materials to incinerator footprint, 200 HP Dozer, 50' Haul	31 23 23.14 4000	1,000	lcy	\$ -	\$ -	\$ 0.33	\$ 330	\$ 1 \$	560		\$890
Stockpile and Staging Area	Environmental		nad	¢	¢	¢	¢	¢ ^		¢ 11.044	\$11 A.
	Service Group recent quote- The		pau	ۍ د ا	a -	φ -	– بې	ه - \$	-	φ 11,344	\$11,344
Decontamination Pad	Environmental <u>Service</u> Group	1	pad	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 6,687	\$6,687
Ramp & Building Demolition	22.01.15.71.5220	400	en l	¢	¢	¢	¢	e e		¢ 1	\$440
Sample Collection (from building)	52 01 15.71 5550	18	hr	\$ - \$ -	s - \$ -	\$ 85.00	\$ 1,488	s - s	-	\$ 1	\$1,488
Sample Analysis for PCBs (TCL PCBs)	Life Sciences quote	35	sample	\$ - \$ -	s - s -	s - s -	\$ - \$ -	<u>\$</u> - <u>\$</u>	-	\$ 65 \$ 75	\$2,275
North Incinerator Demolition	Life Sciences quoie		sample	φ -		<u>-</u> پ	<u>-</u> پ	φ - φ	_	φ 15	\$2,025
Concrete Foundation / Slab Demolition - 12" Brick Wall Demolition	02 41 16.17 1000	5,633 1,898	lf cf	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ \$ - \$	-	\$ 16 \$ 0.38	\$92,600
Smoke Stack Demolition	02 41 16.13 0650	3,818	cf	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 0.38	\$14,508
South Incinerator Demolition Concrete Foundation / Slab Demolition - 12"	02 41 16.17 1000	2,258	lf	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 16	\$37,113
Brick Wall Demolition	02 41 16.13 0650	1,365	cf	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 0.38	\$519
Smoke Stack Demolition Asbestos Abatement	02 41 16.13 0650	3,818	cī ls	\$ - \$ -	<u>s</u> -	<u>\$</u> - \$-	<u>\$</u> - \$-	s - s s - s	-	\$ 0.38 \$ -	\$14,508
Transportation and Disposal	Quota from Modarn										
Masonry Disposal	Landfill	653.95	ton	\$ -	\$-	\$-	\$-	\$ - \$	-	\$ 71.00	\$46,431
Building Ash Hazardous Waste Disposal	Quote from Modern Landfill	342	ton	\$ -	\$-	s -	\$-	\$ - \$	-	\$ 140.00	\$47,817
Drum Disposal (Waste Oil)	Quote from Modern Landfill	10	drum	\$ -	\$ -	s -	\$-	\$ - \$	-	\$ 90.00	\$900
General Waste Disposal	Quote from Modern Landfill	100	ton	\$ -	s -	\$ -	\$ -	s - s	-	\$ 37.68	\$3,768
Metal Disposal / Recycling	Quote from Modern Landfill	50	ton	s -	s -	s -	\$ -	s - s	-	\$ 37.68	\$1,884
C&D Waste Disposal	Quote from Modern	850	ton	\$	s	\$	\$	2 2 2		\$ 71.00	\$61.019
Excavation	Lanajiii	857		φ -		<u>-</u> پ	<u>-</u> پ	φ - φ		\$ 71.00	\$01,017
Community Air Monitoring (Dust)	recent quote - Pine Environmental	7	mo	\$ -	\$-	\$ 13,600.00	\$ 95,200	\$ 3,420 \$	23,940	\$-	\$119,140
Dust Control, Light Soil-Excavator, hydraulic, crawler mtd, 3.5 CV cap = 350 CV/hr	<i>31 23 23.20 2500</i> <i>31 23 16 42 5500</i>	28	day bcy	\$ - \$ -	<u>s</u> -	<u>s</u> -	\$ - \$ -	<u>\$</u> - <u>\$</u>	-	\$ 996 \$ 1	\$27,896 \$30,030
34CY off-road 20min. Wait 2,000ft cycle	31 23 23.20 6300	26,565	lcy	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 4	\$96,962
Haul Road Maintenance Maintain Stockpile, 700HP Dozer, 50ft Haul	31 23 23.20 2600 31 23 16.46 6010	28 23,100	day bcy	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ \$ - \$	-	\$ 1,343 \$ 2	\$37,595 \$42,504
Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.43 4700	26,565	lcy	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 1	\$34,003
December 2018	recent quote- The Environmental		dar	¢.	¢	¢	¢	¢ .		¢ -	
Decontamination Pad Maintenance	Service Group recent quote- The	5	day	\$ -	s -	\$ -	\$ -	\$ - \$	-	\$ 8	\$42
Staging and Stockpile Area Maintenance	Environmental Service Group	28	day	s -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 7	\$200
Topographic Survey	02 21 23 09 0020	1.25	acre	\$ 20.94	\$ 26	\$ 597.77	\$ 747	\$ 23 \$	29		\$802
Grab Samples- 1 per 900 square feet, 1 per 30 lf along side walls plus 20% QA/QC	2	81	sample	\$ -	\$ 50	\$ 21.00	\$ 1,697	\$ 6 \$	461.96	\$ -	\$2,209
Lab Analyses - TAL Metals	Life Science Laboratories	97	sample	\$ -	\$ -	\$ -	\$ -	\$ - \$	_	\$ 75	\$7,271
Decontamination Water Samples	Lifa Saianaa	10	sample	\$ -	\$-	\$ 21	\$ 213	\$ 67 \$	667	\$-	\$880
Decon Water Lab Analyses - TCL PCBs	Laboratories	10	sample	\$ -	\$ -		\$ -	\$	-	\$ 50	\$500
Hazardous Soil Disposal	Life Science										
Soil Characterization Sampling (1 sample per 500 CY, per CWM) Hazardous Soil Disposal	laboratories CWM	47.00 3.696	sample ton	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ \$ - \$	-	\$ 593 \$ 140	\$27,894 \$517,440
Transportation using dumps	CWM	3,696	ton	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 20	\$72,072
Demurrage (assume 5 hours per week of loading) Fuel Surcharge- 36% of Transportation	CWM CWM	10	hour ls	\$ - \$ -	\$ - \$ -	s - s -	\$ - \$ -	s - s s - s	-	\$ 85 \$ 25,946	\$850 \$25,946
Non-Hazardous Soil Disposal	Pacant quota_FSG										
Soil transportation and disposal	plus 10%	33,264	ton	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 38	\$1,253,388
Site Restoration											
Supply and Transportation of NYS Certified Clean Back Fill Material	Recent quote- ESG	7,982	lcy	¢ 28.00	£ 222.494	e.	¢	e e			\$222.484
Backfill 300HP Dozer, 150' haul	<i>31 23 23.14 5220</i>	7,982	lcy	\$ 28.00	\$ 225,464 \$ -	s - \$ -	\$ -	s - s	-	\$ 1	\$11,174
Compacting backfill, 12" lift, 2 passes w/ drum roller	31 23 23.23 5060	6,941	ecy	\$ -	\$-	\$ -	\$-	\$ - \$	-	\$ 0	\$1,943
	Recent quote- ESG	1,293									
Topsoil Finishing grading slopes, gentle	from Seven Springs 31 22 16.10 3300	8,095	lcy sy	\$ 44.50 \$ -	\$ 57,533 \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ \$ - \$	-	\$ 45 \$ 0	\$115,066
Utility mix, 7#/M.S.F., Hydro or air seeding, with mulch and fertilizer	32 92 19.14 5400	73	msf	\$ -	\$ -	\$ -	\$ -	\$ - \$	-	\$ 65	\$4,758
Iopographic Survey Fencing Installation	02 21 23 09 0020 32 31 13.20 0800	1.25	acre lf	\$ 20.94	\$ 26	\$ 597.77	\$ 747	\$ 23 \$	29	\$ 28	\$802 \$13.760
Mobilization and Demobilization										\$021 T	\$82,128
10% or 1 otal Costs of Site Work, Treatment										\$821,276	\$82,128
Contingency										\$2 242 295	\$486,508
1070 of Fotal Construction Activities										φ <i>3</i> ,243,383	\$486,508
Professional/Technical Services											\$537,414
5% Project Management 6% Remedial Design										\$3,161,257	\$158,062.85
6% Construction Management			-	1							\$189,675.42

TECHNOLOGY		LOCATION	MEDIA	Estimated Cost to Implement	\$4,267,000
On-Site Alternative 6A		Lackawanna Incinerator Site	Soil	Construction Time:	10 months
Soil/Fill Excavation to Commercial SCOs with Disposal	l Off-Site	Lackawanna, NY		Operation Time:	- months
Demolition and Removal of Both Incinerator Build	lings	,		Post Remediation Monitoring	0 years
TOTAL ESTIMATED NPV TECHNOLOGY COST (0	Capital Cost)				\$4,267,000
Assumptions:					
Working condition is Safety Level:		D/C (Labor productivity:	82% ; Equipment pro	ductivity: 100%)	
Weighted Average of city cost index (Buffalo, NY)		101.4% (not applicable for costs d	erived from vendor quotes).		
Costs are loaded with a profit factor		10%			
Inflation		3% per year	_		Labor
Estimated number of soil samples		12 samples 1 t	times sampled	0.25 hrs/sample	\$85 Cost per hr
		20%	added for QA/QC samples	1 worker sampling	
Characterization Cost	Table A (per CWM)	\$593.48 per sample			2 hrs / well sampling
Analytical cost	I AL Metals	\$75.00 per sample	1	l	2 worker per gw sample
For each sampling event, assumed:		\$50 for materials (gloves, noteb	ooks, etc.)		
Lead contaminated soil as a "listed" waste- incineration		\$275 per ton	4.037.55 tons hazardous di	isposal (assume 10% hazardous, add building ash material	s)
		<u> </u>	22 tons per load	184 loads for haz disp	osal
Lead contaminated soil as non-haz		\$39.87 per ton	34,927 tons for non-haz d	lisposal, incl. 1,588 loads for non-haz	disposal
			build materials		
Concrete		3,300 Ibs per cy		1.6 tons/cy	
		150 lbs per cf			
Brick		120 lbs per cf			
Typical Rental Rates - Includes G&A and 10% Profit					
Mini-Rae Survey Mode PID		\$96.08 per day		20 loads per day	
Truck/SUV (1/2 ton or smaller)		\$70.74 per day		20 working days per	month
Horiba U-10 Water Quality Meter		\$73.77 per day			
Submersible Pump		\$42.16 per day			
2 in Pump Control Box		\$72.27 per day			
Generator: 110 V		\$57.24 per day			
Level D PPE		\$11.91 per day		10 hours per worki	ng dav
Work day consists of:		10 hrs		1 months for pre-	design characterization
···· ····				2 months for site pr	ep/restoration
Excavation With Concrete and Asphalt:				2 months for demol	ition
Concrete and Asphalt:	0.0%	% of excavation volume		10 months to comple	etion
Excavation Area:	43,560	sf		150 ft/day drilling	
Excavation Volume:	10,000	cy 11,500 lcy			
Excavated Weight:	15,000	tons			
Roll-off dumpster can hold approximately:	12	tons			
Notes					
SV square vard	mo	month			
cy cubic yard	ls	lump sum			
lcy loose cubic yard	O&M	Operation and maintenance			
bcy bank cubic yard	H&S	Health and Safety			
lf linear feet		-			
sf square feet					
msf 1,000 square feet					

TECHNOLOGY		I	OCATIO	N		MED	DIA	Estimat	ed Cost to Imp	olement	\$3,8	307,000
Soil/Fill Excavation to Commercial SCOs with Disposal	Off-Site	Lackawa Lac	nna Incine kawanna,	rator Site NY		Sol	1		Col	Operation Time:	-	months months
Demolition and Removal of the Southern Incinerator I	Building	Ouar	tities				Cost Break	down (if available	Post Remedia	ation Monitoring	0 Combined Unit	years
Description	Data Source	Quantity	Quantity	Material	Materi	ial	Labor	Labor	Equipment	Equipment	Costs	Option
	(Means ¹ or Other)	Amount	Unit	Unit Cost	Total C	ost	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C	APITAL (COST arest thou	(breau							\$3,807,000
Construction Activities		1			(7 010		\$102.227		\$27.441	\$99.354	\$2 841 247
Pre-Design Characterization Study		1			4	,919		\$102,227		\$27,441	\$60, <i>33</i> 4	\$2,041,347
Driller Mob/Demob	quote- SJB	1	ls	\$ -	\$	-	\$ -	\$-	\$ -	\$ -	\$ 300	\$300
Geoprobe/Crew for Soil Borings Sample Collection	quote- SJB	2 10	day hr	\$ - \$ -	\$ \$	- 50	\$ - \$ 85.00	\$ - \$ 850	\$ - \$ -	\$ - \$ -	\$ 850	\$1,700 \$900
XRF Unit	recent quote Life Science	2	day								\$ 500	\$1,000
Sewer Investigation/Mapping - Labor	Laboratories	4	sample hrs	\$ - \$ -	\$ \$	-	\$ - \$ 85.00	\$ - \$ 1,360	\$ - \$ -	\$ - \$ -	\$ 593 \$ -	\$2,374 \$1,360
Topographic Survey	02 21 23 09 0020	3	acre	\$ 20.94	\$	52	\$ 597.77	\$ 1,494	\$ 23	\$ 58		\$1,605
Reporting Site Preparation	Engineer's Estimate	1	ls	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 5,000	\$5,000
Utility Locator (based on recent bids) Work Plan Preneration (Including OAPP, FAP and HASP)	recent quote	1.0	day Is	\$ - ¢	\$	-	\$ - \$	\$ - ¢	\$ -	\$ - \$	\$ 2,465 \$ 15,000	\$2,465
Erosion & Sediment Control Plan	21.25.12.10.1000	1.0	ls	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 15,000	\$15,000
Silt Fence Monitoring Well Abandonment	31 25 13.10 1000 recent quote-	300	lf	\$ 0.81	\$	243	s -	s -	\$ - ¢	s -	\$ - \$ -2	\$243
Sewer/Storm Drain Demolition	Enviro1rac 02 31 13.33 2900	750	lf	\$ - \$ -	\$	-	s - s -	\$ - \$ -	\$ - \$	\$ - \$	\$ 22 \$ 11	\$1,520
Fence Demolition	31 23 16.13 0500 02 41 13.62 1100	1,667 500.00	bcy lf	\$ -	\$	-	\$ 4.65	\$ 7,750	\$ 3	\$ 5,233	\$ 2.30	\$12,983 \$1,150
Fence Post Removal Sewer/Storm Drain Reconstruction	02 4113621000	50.00	each								\$ 22.99	\$1,150
PVC Sewer Pipe, 8" diameter, 13" lengths PVC Sewer Pipe, 10" diameter, 13" lengths	33 31 13.25 2080 33 31 13.25 2120	700 150	lf lf	\$ 7.23 \$ 11.93	\$ \$	5,061 1,790	\$ 5.06 \$ 6.15	\$ 3,542 \$ 923	\$ - \$ -	\$ - \$ -		\$8,603 \$2,712
Install manholes - concrete, precast, 4' ID, 8' deep Consolidation of ramp materials to incinerator footprint 200 HP Dozer 50' Haul	33 49 13.10 0600 31 23 23 14 4000	1 000	ea	\$ 646.68	\$	647	\$ 1,622.55	\$ 1,623 \$ 220	\$ - \$ 1	\$ - \$ 560		\$2,269
Consolidation of ramp materials to inclusive rootprint, 200 Hr Dozer, 30 Hau	recent quote- The	1,000	ку	ъ -	\$	-	\$ 0.55	\$ 550	\$ 1	\$ 500		\$890
Stockpile and Staging Area	Service Group	1	pad	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 11,344	\$11,344
Decontamination Pad	Environmental Service Group	1	pad	s -	\$	-	s -	s -	s -	s -	\$ 6.687	\$6.687
Ramp & Building Demolition	32 01 15 71 5330	400	ev	¢	¢		¢	¢	¢	¢	¢ 11	\$440
Sample Collection (from building)	52 01 15.71 5550	400 5	hr	\$ - \$	\$	-	\$ 85.00	\$ 425	\$ -	s - \$ -	\$ 1.1	\$440
Sample Analysis for PCBs (TCL PCBs) Sample Analysis for Lead & Asbestos (TAL Inorganics)	Life Sciences quote Life Sciences quote	10	sample sample	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 65 \$ 75	\$650 \$750
South Incinerator Demolition Concrete Foundation / Slab Demolition - 12"	02 41 16.17 1000	2,258	lf	\$ -	\$	-	\$ -	s -	\$ -	\$ -	\$ 16	\$37,113
Brick Wall Demolition	02 41 16.13 0650	1,365	cf cf	\$ - \$ -	\$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0.38 \$ 0.38	\$519 \$14 508
Asbestos Abatement	02 41 10.15 0050	1	ls	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ -	\$50,000
Transportation and Disposal Masonry Disposal	Quote from Modern	210.07	top	¢	¢		6	¢	¢	¢	¢ 71.00	\$22.070
Building Ash Hazardous Waste Disposal	Landfill Quote from Modern Landfill	310.97	ton	\$ - \$	\$	-	s -	s -	s -	s -	\$ 140.00	\$22,079
Drum Disposal (Waste Oil)	Quote from Modern	5	drum	s -	s	-	s -	s -	s -	s -	\$ 90.00	\$450
General Waste Disposal	Quote from Modern	100	ton	\$ -	\$	-	\$ -	\$	\$ -	\$ -	\$ 37.68	\$3,768
Metal Disposal / Recycling	Quote from Modern Landfill	25	ton	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 37.68	\$942
C&D Waste Disposal	Quote from Modern Landfill	226	ton	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 71.00	\$16,028
Excavation	recent quote - Pine											
Dust Control, Light	Environmental 31 23 23.20 2500	6 24	mo day	\$ - \$ -	\$ \$	-	\$ 13,600.00 \$ -	\$ 81,600 \$ -	\$ 3,420 \$ -	\$ 20,520 \$ -	\$ - \$ 996	\$102,120 \$23,911
Soil-Excavator, hydraulic, crawler mtd. 3.5 CY cap = 350 CY/hr 34CY off-road 20min. Wait 2.000ft cycle	31 23 16.42 5500 31 23 23.20 6300	23,100 26,565	bcy lcy	\$ - \$ -	\$ \$	-	\$ - \$ -	s - s -	\$ - \$ -	\$ - \$ -	\$ 1 \$ 4	\$30,030 \$96,962
Haul Road Maintenance Maintain Stocknike 200HD Dozar, 50ft Haul	31 23 23.20 2600 31 23 16 46 6010	24	day	\$ - ¢	\$	-	\$ - \$	- \$-	\$ -	- \$ -	\$ 1,343 \$ 2	\$32,224
Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.43 4700	26,565	lcy	\$ -	\$	-	\$ -	s -	\$ -	\$ -	\$ <u>2</u> \$ 1	\$34,003
Decontamination Pad Maintananca	Environmental	5	dav	¢	¢		¢	¢	s	¢	¢ 9	\$42
Decontainination Fau Maintenance	recent quote- The	5	uay	ф -	9	-	ф -	э -	<i>ф</i> -	φ -	\$ 0	342
Staging and Stockpile Area Maintenance	Service Group	24	day	\$ - \$ 20.04	\$	-	\$ - \$ 507.77	\$ - \$ 747	\$ - \$ 22	\$ - \$ 20	\$ 7	\$172
Confirmation Sampling	02 21 25 09 0020	1.23	acre	\$ 20.94	ې	20	\$ 371.11	3 141	\$ 23	\$ 29		\$802
Grab Samples- 1 per 900 square feet, 1 per 30 lf along side walls plus 20% QA/QC Lab Analyses - TAL Metals	Life Science	65 78	sample	\$ -	\$	50	\$ 21.00	\$ 1,371	5.72	\$ 373.34	\$ -	\$1,794
Decontamination Water Samples	Laboratories	10	sample	\$ - \$ -	\$	-	\$ <u>-</u> \$ 21	\$ - \$ 213	\$ - \$ 67	\$ <u>-</u> \$ 667	\$ 75 \$ -	\$5,876
Decon Water Lab Analyses - TCL PCBs	Life Science Laboratories	10	sample	\$ -	\$	-		\$ -		\$ -	\$ 50	\$500
Hazardous Soil Disposal	Life Science											
Soil Characterization Sampling (1 sample per 500 CY, per CWM) Hazardous Soil Disposal	laboratories CWM	47 3,696	sample ton	\$ - \$ -	\$ \$	-	s - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 593 \$ 140	\$27,894 \$517,440
Transportation using dumps Demurrage (assume 5 hours per week of loading)	CWM CWM	3,696 10	ton hour	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 20 \$ 85	\$72,072 \$850
Fuel Surcharge- 36% of Transportation	CWM	1	ls	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 25,946	\$25,946
Soil transportation and disposal	Recent quote- ESG plus 10%	33,264	ton	s -	\$	-	s -	s -	s -	s -	\$ 38	\$1,253,388
Site Restoration	pm3 1070											
Supply and Transportation of NYS Certified Clean Back Fill Material	Recent quote- ESG	4,335	lcy									
Backfill 300HP Dozer, 150' haul	from Seven Springs 31 23 23.14 5220	4,335	lcy	\$ 28.00 \$ -	\$ 12 \$	- 21,371	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 1	\$121,371 \$6,069
Compacting backfill, 12" lift, 2 passes w/ drum roller	31 23 23.23 5060	3,769	ecy	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 0	\$1,055
Tancoil	Recent quote- ESG	1,195	lav	\$ 44.50	¢ .	52 177	¢	¢	ç	¢	¢ 15	\$106.252
Finishing grading slopes, gentle	31 22 16.10 3300	6,235	sy	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 0	\$1,309
Utility mix, 7#/M.S.F., Hydro or air seeding, with mulch and fertilizer Topographic Survey	32 92 19.14 5400 02 21 23 09 0020	47	mst acre	\$ - \$ 20.94	\$ \$	- 26	\$ - \$ 597.77	\$ - \$ 747	\$ - \$ 23	\$ - \$ 29	\$ 65	\$3,054 \$802
Fencing Installation Asphalt Road Replacement	32 31 13.20 0800	500	lf	<u> </u>]					\$ 28	
Base Binder	32 11 26.13 1600 32 12 16.13 0200	68 400	ecy sy	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 85 \$ 20	\$5,793 \$7 980
Top Fencing Installation	32 12 16.13 0380 32 31 13 20 0800	400	sy If	\$ -	\$	-	\$ -	\$ -	\$ -	\$ -	\$ 11 \$ 20	\$4,596
Mobilization and Demobilization	52 51 15.20 0600	500									φ 28	\$13,760 \$48,822
7% of Total Costs of Site Work, Treatment											\$697,461.94	\$48,822
Contingency 15% of Total Construction Activities					<u> </u>						\$2,890.169	\$433,525 \$433,525
Professional/Technical Services												\$483 020
5% Project Management											\$2.841.347	\$142.067
6% Remedial Design												\$170,481
0% Construction Management			l	I	I				L		l	\$170,481
TOTAL ESTIMATED NPV TECHNOLOGY COST (0	Capital + Lifetim	e O&M +	Post Re	nediation	n Monitor	ring)						\$3,807,000

		-											
TECHNOLOGY		1	LOCATIO	N		ME	MEDIA		Estimat	ed Cost to Imp	olement	\$1,271,000	
Baker Hall Alternative 2		Lackawa	nna Incine	rato	r Site	Se	oil			Cor	nstruction Time:	4	months
Remaining Soil/Fill Excavation to Unrestricted Use SCOs with	Disposal Off-Site	La	ckawanna,	NY							Operation Time:	-	months
										Post Remedia	tion Monitoring	0	years
		Oua	ntities					Cost Breakd	lown (if available))		Combined Unit	
Description	Data Source	Ouantity	Ouantity	М	aterial	Material	Т	Labor	Labor	Equipment	Equipment	Costs	Option
Ĩ	(Means1 or Other)	Amount	Unit	Ur	it Cost	Total Cost		Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C (totals rot	CAPITAL (COS' eare:	T st thou	sand)							\$1,271,000
Construction Activities		1		_		\$44,030	0		\$38,202		\$32,194	\$99,141	\$990,520
Pre-Design Characterization Study Site Preparation				_			+						
Survey/Boundaries & Markers	01 71 23.13 1100	1	dav			s -	\$	\$ 1,190.25	\$ 1.190	\$ 76	\$ 76		\$1.266
Topographic Survey	02 21 23 09 0020	1.0	acre	\$	20.94	\$ 21	1 \$	597.77	\$ 598	\$ 23	\$ 23		\$642
Utility Locator (based on recent bids)	recent quote	1.0	day	\$	-	\$ -	ş	\$ -	\$ -	\$ -	\$ -	\$ 2,465	\$2,465
Erosion & Sediment Control Plan		1	ls	\$	-	\$ -	\$	s -	\$ -	\$ -	\$ -	\$ 15,000	\$15,000
Work Plan Preparation (Including QAPP, FAP and HASP)	21 25 12 10 1000	1.0	ls 1¢	\$	-	\$ -	\$	\$ - \	\$ -	\$ -	\$ -	\$ 15,000	\$15,000
Silt Fence	recent quote- The	1,000	11	\$	0.81	\$ 810) 3	• -	s -	5 -	s -	\$ -	\$810
Stockpile and Staging Area	Environmental Service Group recent auote- The	1	pad	\$	-	\$ -	\$	ş -	\$ -	\$ -	\$ -	\$ 11,344	\$11,344
Decontamination Pad	Environmental												
Exception	Service Group	1	pad	\$	-	\$ -	\$	ş -	\$ -	\$ -	\$ -	\$ 6,687	\$6,687
	recent quote - Pine												
Community Air Monitoring (Dust)	Environmental	2	mo	\$	-	\$ -	\$	\$ 13,600.00	\$ 27,200	\$ 3,420	\$ 6,840	\$ -	\$34,040
Dust Control, Light	31 23 23.20 2500	8	day	\$	-	\$ -	\$	<u>-</u>	\$ -	\$ -	\$ -	\$ 996	\$7,970
Soil-Excavator, hydraulic, crawler mtd. 3.5 CY cap = 350 CY/hr 34CY off-road 20min Wait 2 000ft cycle	31 23 16.42 5500	/,088	lcy	\$	-	s -	3	> -	s - s -	s - s -	s -	\$ I \$ 4	\$9,215
Haul Road Maintenance	31 23 23.20 2600	8,152	day	\$	-	\$ -	4	, - 5 -	\$ -	\$ -	ş -	\$ 1,343	\$10,741
Maintain Stockpile, 700HP Dozer, 50ft Haul	31 23 16.46 6010	7,088	bcy	\$	-	\$ -	\$	s -	\$ -	\$ -	\$ -	\$ 2	\$13,043
Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.43 4700	8,152	lcy	\$	-	\$ -	ş	s -	\$ -	\$ -	\$ -	\$ 1	\$10,434
Decontamination Pad Maintenance	recent quote- The Environmental Service Group	5	day	\$	-	\$ -	ş	§ -	\$ -	\$ -	\$ -	\$ 8	\$42
Staging and Stockpile Area Maintenance	recent quote- The Environmental Service Group	8	day	\$	-	s -	\$	5 -	\$ -	s -	s -	\$ 7	\$57
Topographic Survey	02 21 23 09 0020	3	acre	\$	20.94	\$ 52	2 \$	597.77	\$ 1,494	\$ 23	\$ 58		\$1,605
Confirmation Sampling													
Grab Samples- 1 per 900 square feet, 1 per 30 lf along side walls plus 20% QA/QO	2	368	sample	\$	-	\$ 50) §	\$ 21.00	\$ 7,720	\$ 67	\$ 24,529.21	\$ -	\$32,299
Lab Analyses - TAL Metals	Life Science Laboratories	368	sample	\$	-	\$ -	\$	s -	s -	s -	s -	\$ 75	\$27,570
Decontamination Water Samples		10	sample	\$	-	\$ -	\$	s -	\$ -	\$ 67	\$ 667	\$ -	\$667
Decon Water Lab Analyses - TCL PCBs	Life Science	10	sample	¢		¢			¢	¢	¢	\$ 50	\$500
Non-Hazardous Soil Disposal	Laboratories			Ģ	-	д -			- э́		э -	\$ 50	\$500
··· ··································	Recent quote- ESG												
Soil transportation and disposal	plus 10%	11,341	ton	\$	-	\$ -	\$	s -	\$ -	\$ -	\$ -	\$ 37.68	\$427,345
Site Restoration													
Supply and Transportation of NYS Certified Clean Back Fill Material	Recent quote- ESG	1,539	lcy										
	from Seven Springs			\$	28.00	\$ 43,096	5 \$	s -	\$ -	\$ -	\$ -		\$43,096
Backfill 300HP Dozer, 150' haul	31 23 23.14 5220	1,539	lcy	\$	-	\$ -	\$	<u>-</u>	\$ -	\$ -	\$ -	\$ 1.40	\$2,155
Grading by dozer Compacting backfill 12" lift 2 passes w/ drum roller	31 23 23.20 2300	1,539	lcy	\$	-	s -	3	- 6	\$ - \$	\$ - \$	s -	\$ 2.23 \$ 0.28	\$3,432
Walk behind Plate Compactor	01 54 33.30 1300	1,556	day	\$	-	s -	4	5 <u>261.47</u>	\$ 1,307	\$ 49	\$ 244	\$ 0.28	\$1,551
	Recent quote- ESG	5,750							, , , , , , ,				
Topsoil	from Seven Springs	20.000	lcy	\$	44.50	\$ 255,875	5 \$	<u>-</u>	\$ -	\$ -	\$ -	¢ 0.01	\$255,875
Finishing grading slopes, gentle Utility mix 7#/MSE. Hydro or air seeding, with mulch and fertilizer	31 22 16.10 3300	270.00	sy msf	\$	-	s -	3	> -	s -	s -	s -	\$ 0.21 \$ 65.31	\$6,300
Topographic Survey	02 21 23 09 0020	2.5	acre	φ		φ	4	, -	÷ -	÷.		\$ 641.99	\$1,605
Mobilization and Demobilization 5% of Total Costs of Site Work, Treatment												\$232,452	\$11,623 \$11,623
Contingonor				_									\$100.214
10% of Total Construction Activities												\$1.002.142	\$100,214
												\$1,002,112	\$100,211
Professional/Technical Services													\$168,388
5% Project Management												\$990.520	\$40 525 08
6% Remedial Design												\$770,520	\$59,431,17
6% Construction Management													\$59,431.17
TOTAL ESTIMATED NPV TECHNOLOGY COST (C	Capital + Lifetim	e O&M +	Post Re	ned	iation	Monitoring))						\$1,271,000
Assumptions: Working condition is Safety Level: Weighted Average of city cost index (Buffalo, NY) Costs are loaded with a profit factor Inflation Estimated number of soil samples		D/C 101.4% 10% 3% 74	(Labor pro (not applica) per year samples	ducti ^r able f	vity: or costs 1 20%	82% derived from vend times sampled added for QA/QC :]; i lor o	Equipment pro quotes). 1ples	ductivity: 0.25	100% hrs/sample worker sampling	þ	\$85	Labor Cost per hr
Characterization Cost	Table A (per CWM)	\$593.48	per sample									2	hrs / well sampling
Analytical cost For each sampling event, assumed:	TAL Metals	\$75.00	per sample for material	s (glo	ves, note	books, etc.)						2	worker per gw sample

Lead contaminated soil as a "listed" waste- incineration

Lead contaminated soil as non-haz

Truck/SUV (1/2 ton or smaller)

Horiba U-10 Water Quality Meter

Concrete

Typical Rental Rates - Includes G&A and 10% Profit Mini-Rae Survey Mode PID

3,300 lbs per cy **\$96.08** per day **\$70.74** per day **\$73.77** per day

20 loads per day 20 working days per month

0 loads for haz disposal 516 loads for non-haz disposal

tons soil hazardous
22 tons per load
11,341 tons soil for non-haz disposal

- tons concrete for disposal

ork day consists of:	10 hrs
Level D PPE	\$11.91 per day
Generator: 110 V	\$57.24 per day
2 in Pump Control Box	\$72.27 per day
Submersible Pump	\$42.16 per day

Work day co of:

Excavation With Concrete and Asphalt:

- Concrete and Asphalt:
- Excavation Area: Excavation Volume:
- Excavated Weight:
- Roll-off dumpster can hold approximately:

mo ls O&M

H&S

0.0%	% of excavati	on volume
270,000	sf	
7,088	су	8,152 lcy
11,341	tons	
12	tons	

\$275 per ton

\$39.87 per ton

Notes

- sy square yard cy cubic yard lcy loose cubic yard bcy bank cubic yard
- lf linear feet sf square feet
- sf square feet msf 1,000 square feet

10 hours per working day 2 months for site prep/restoration 4 months to completion

month
lump sum
Operation and maintenance
Health and Safety

TECHNOLOGY		I	OCATION	N		MF	EDI	A	Estimat	ed Cost to Imp	olement	\$7.	33,000
Smokes Creek Alternative 2A Partial Removal of Contaminated Soil		Lackawanna Incinerator Site Lackawanna, NY			Soil			Construction Time: Operation Time			-	months months	
On Both Sides of Asphalt Path to Commercial Se	COs	Quantities		Cost Break			Post Remediation Monitor			0 Combined Unit	years		
Description	Data Source	Quar Quantity	Quantity	Mate	erial	Material		Labor	Labor	Equipment	Equipment	Costs	Option
	(Means ¹ or Other)	Amount	Unit	Unit	Cost	Total Cost		Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C (totals rou	APITAL C Inded to ne	COST arest 1	thous	sand)							\$643,000
Construction Activities		1				\$38,39	98		\$43,811		\$11,009	\$56,254	\$476,926
Pre-Design Characterization Study Site Preparation													
Topographic Survey	02 21 23 09 0020	2	acre	\$ 2	20.94	\$ 3'	7 5	\$ 597.77	\$ 1,046	\$ 23	\$ 41	\$ 0.155	\$1,123
Monitoring Well Abandonment	recent quote-	1.0	lf	\$	-	s -		s -	s -	s -	s -	\$ 2,465	\$2,405
Erosion & Sediment Control Plan	Enviro1 rac	1	ls	\$	-	\$ - \$		s -	\$ -	s -	\$ -	\$ 15,000	\$15,000
Work Plan Preparation (Including QAPP, FAP and HASP) Silt Fence	31 25 13.10 1000	1.0 1,998	ls lf	\$ \$	- 0.81	\$ - \$ 1,61	8 5	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 15,000 \$ -	\$15,000 \$1,618
Fence Demolition Fence Post Removal	02 41 13.62 1100 02 4113621000	1,998 200	lf each									\$ 2.30 \$ 22.99	\$4,595 \$4,598
Stockpile and Staging Area	recent quote- The Environmental												
	Service Group recent quote- The	1	pad	\$	-	\$ -	5	\$ -	\$ -	\$ -	\$ -	\$ 11,343.50	\$11,344
Decontamination Pad	Environmental Service Group	1	pad	\$	-	\$ -	5	\$ -	\$ -	\$ -	\$ -	\$ 6,686.70	\$6,687
Excavation	recent quote - Pine						_						
Community Air Monitoring (Dust) Dust Control, Light - once per week	Environmental 31 23 23.20 2500	3	mo day	\$ \$	-	\$ - \$ -	5	\$ 13,600.00 \$ -	\$ 40,800 \$ -	\$ 3,420 \$ -	\$ 10,260 \$ -	\$ - \$ 996.30	\$51,060 \$11,956
Soil-Excavator, hydraulic, crawler mtd. 3.5 CY cap = 350 CY/hr	31 23 16.42 5500	1,758	bcy	\$	-	\$ -	5	\$ -	\$ -	\$ -	\$ -	\$ 1.30 \$ 2.65	\$2,285
Haul Road Maintenance	31 23 23.20 8300 31 23 23.20 2600	12	day	\$ \$	-	\$ - \$ -	5	s - \$ -	s - \$ -	\$ - \$ -	\$ - \$ -	\$ 5.65 \$ 1,342.68	\$6,416
Maintain Stockpile, 700HP Dozer, 50ft Haul Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.46 6010 31 23 16.43 4700	1,758 2,022	bcy lcy	\$ \$	-	\$ - \$ -		s - s -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 1.84 \$ 1.28	\$3,235 \$2,588
Decontamination Pad Maintenance	recent quote- The Environmental Service Group	90	day	\$	-	\$ -	Ş	\$ -	\$ -	\$ -	\$ -	\$ 8.36	\$752
Storing and Stocknills Area Maintanance	Environmental	00	dav	¢		¢		¢	¢	¢	¢	\$ 716	\$644
Topographic Survey	02 21 23 09 0020	1.75	acre	\$ 2	20.94	\$ 3'	7 5	\$	\$ 1,046	\$ 23	\$ 41	\$ 7.10	\$1,123
Confirmation Sampling Decontamination Water Samples		10	sample	\$	-	\$ -	5	\$ -	\$ -	66.73	\$ 667	\$ -	\$667
Decon Water Lab Analyses - TAL Metals	Life Science Laboratories	10	sample	\$	-	\$ -			s -	\$ -	\$ -	\$ 495.00	\$4,950
Hazardous Soil Disposal	Life Science												
Soil Characterization Sampling (1 sample per 500 CY, per CWM) Hazardous Soil Disposal	laboratories CWM	4 281	sample ton	\$ \$	-	\$ - \$ -		\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 593.48 \$ 140.00	\$2,400 \$39,377
Transportation using dumps	CWM CWM	281	ton	\$	-	\$ - \$		s -	\$ - \$	\$ - \$	\$ - \$	\$ 19.50 \$ 85.00	\$5,485 \$425
Fuel Surcharge- 36% of Transportation	CWM	1	ls	\$	-	\$ -		\$ -	\$ -	\$ -	\$ -	\$ 1,974.48	\$1,974
Non-Hazardous Soli Disposal	Recent quote- ESG	0.501		¢		¢		¢	¢	<u>^</u>	¢	â <u>27</u> .co	¢05.000
Soil transportation and disposal Site Restoration	plus 10%	2,531	ton	\$	-	\$ -		\$ -	\$ -	\$ -	\$ -	\$ 37.68	\$95,382
Geotextile (non-woven)	31 32 19.16 1550	2,624	sy	\$	1.16	\$ 3,04	4 5	\$ 0.35	\$ 918	\$ -	\$ -		\$3,962
Supply and Transportation of NYS Certified Clean Back Fill Material	Recent quote- ESG from Seven Springs	1,224	lcy	\$ 3	27.50	\$ 33.66	3 5	s -	s -	s -	s -		\$33.663
Backfill 300HP Dozer, 150' haul	31 23 23.14 5220	1,224	lcy	\$	-	\$ -		- \$ -	\$ - ¢	\$ -	\$ - ¢	\$ 1.40 \$ 2.22	\$1,714
Compacting backfill, 12" lift, 2 passes w/ drum roller	31 23 23.23 5060 31 23 23.23 5060	1,224	ecy	\$	-	\$ - \$		s - \$ -	s -	\$ -	\$ -	\$ 2.23 \$ 0.28	\$2,750
	Recent quote- ESG	797											
Topsoil Finishing grading slopes, gentle	from Seven Springs 31 22 16.10 3300	4,255	lcy sy	\$ 4 \$	- 44.50	\$ 35,48 \$ -	8 5	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0.21	\$35,488 \$893
Erosion Control Blankets Utility mix 7#/MSE Hydro or air seeding with mulch and fertilizer	32 92 19 14 5400	1,324	sy msf	\$ \$	-	\$ - \$ -		\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 2.08 \$ 65.31	\$2,754 \$2,501
Monitoring Well Replacement	recent quote-	22	lf	\$	_	\$		\$	\$	\$ _	\$ _	\$ 94.00	\$2,001
Topographic Survey	02 21 23 09 0020	1.75	acre	\$ 2	20.94	\$ 3'	7 5	\$	\$ 1,046	\$ 23	\$ 41	\$ 94.00	\$1,123
Fencing Installation Environmental Easement	32 31 13.20 0800	1,998	lt									\$ 27.52	\$54,985
Legal Surveyor - Monument Installation		1	ls ls				_					\$ 15,000 \$ 10,000	\$15,000
Mobilization and Demobilization												* 10,000	\$11,746
5% of Total Costs of Site Work, Treatment												\$234,927	\$11,746
Contingency 15% of Total Construction Activities							-					\$488,672	\$73,301 \$73,301
Professional/Technical Services							_						\$81.077
5% Project Management												\$476.926	\$23,846
6% Remedial Design													\$28,616
LONG TERM MONITORING				<u> </u>			_			ANNUAL LTM	COST (YRS 1	1-5)	\$28,010 \$8,000
										ANNUAL LTM	COST (YRS (5-30)	\$5,000
Monitoring, Sampling, Testing and Analysis (Per Event)		1	I	1		[LIFETIME LTN	4 (NPV)		\$89,900
Assume 20% of combined sampling event for on-site and off-site Site Monitoring													\$2,350
Inspection of soil cover		1	hr				5	\$ 85.00	6				
Groundwater sampling for 1 event - Includes collection of field parameters		1	well	\$	-	\$ -	5	\$ 85.00 \$ -	\$ -	\$ -	\$ -	\$ -	\$0
Materials Mobilization/Demobilization of Field Sampling Crew	Engineer's Estimate	1	event event	\$ \$	- 50.00	\$ -	5	\$	\$	\$ -	\$	\$ 680	\$50 \$680
Reporting Laboratory analysis		10	hr	\$ 8	85.00	\$ 85	0 5	\$ -	\$ -	\$ -	\$ -	\$ -	\$850
GW Analyses - Metals	Life Science Laboratories	1	ea	\$	-	s -	5	s -	s -	s -	s -	\$ 100	\$100
Surface water Analyses - Metals	Life Science Laboratories	5	ea	\$	-	\$ -	ļ	s -	\$ -	s -	\$ -	\$ 100	\$500
Maintenance- Cap Maintenance	32 01 00 10 1670	20	msf	¢		\$	Ť					\$ 74.00	¢1.470
Lifetime Long Term Monitoring (Net Present Value)	32 01 90.19 10/0	20	11151	\$	-	φ -	\pm					φ /4.80	\$1,4/2
5 Years of Semi-Annual Monitoring 25 Years of Annual Monitoring				-			+						
5% Discount Factor (per NYSDEC)							1						
TOTAL ESTIMATED NPV TECHNOLOGY COST (Capital + Lifetim	e O&M +	Post Ren	nedia	tion	Monitoring))						\$733,000

TECHNOLOGY		LOCATION	MEDIA	Estimated Cost to Implement	\$733,000
Smokes Creek Alternative 2A		Lackawanna Incinerator Site	Soil	Construction Time:	3 months
Partial Removal of Contaminated Soil		Lackawanna, NY		Operation Time:	- months
On Both Sides of Asphalt Path to Commercial SC	COs	,		Post Remediation Monitoring	0 years
Assumptions:					
Working condition is Safety Level:		D/C (Labor productivity:	82% ; Equipment pro	oductivity: 100%)	
Weighted Average of city cost index (Buffalo, NY)		101.4% (not applicable for costs	derived from vendor quotes).	· · · · · · · · · · · · · · · · · · ·	
Costs are loaded with a profit factor		10%			
Inflation		3% per year	_		Labor
Estimated number of soil samples		12 samples 1	times sampled	0.25 hrs/sample	\$85 Cost per hr
		20%	added for QA/QC samples	1 worker sampling	2 hrs / well
Characterization Cost	Table A (per CWM)	\$593.48 per sample			2 workers / gw well
Analytical cost	TAL Metals	\$75.00 per sample			
For each sampling event, assumed:		\$50 for materials (gloves, note	books, etc.)		
Disposal					
Lead contaminated soil as a "listed" waste- incineration		\$275 per ton	281 tons soil hazardou	us (assume 10% hazardous)	
		* 20.05	22 tons per load	13 loads for haz disp	posal
Lead contaminated soil as non-haz		\$39.87 per ton	2,531 tons soil for non-	haz disposal IIS loads for non-haz	disposal
Conarata		3 300 lbs por ov	tons concrete for	diaporal	
Typical Rental Rates - Includes C&A and 10% Profit		3,300 los per cy	- tons concrete for	uisposai	
Mini-Rae Survey Mode PID		\$96.08 per day		20 loads per day	
Truck/SUV (1/2 ton or smaller)		\$70.74 per day		20 working days per	month
Horiba U-10 Water Quality Meter		\$73.77 per day		20 working days per	inoitii
Submersible Pump		\$42.16 per day			
2 in Pump Control Box		\$72.27 per day			
Generator: 110 V		\$57.24 per day			
Level D PPE		\$11.91 per day			
				10 hours per worki	ing day
Work day consists of:		10 hrs		2 months for site p	rep/restoration
				0 months loading	5
Excavation With Concrete and Asphalt:				3 months to complete	etion
Concrete and Asphalt:	0.0%	% of excavation volume		150 ft/day drilling	
Excavation Area:	43,560	sf			
Excavation Volume:	10,000	cy 11,500 lcy			
Excavated Weight:	15,000	tons			
Roll-off dumpster can hold approximately:	12	tons			
Notos					
Notes	mo	month			
sy square yard	le	lump sum			
lev loose cubic yard	0&M	Operation and maintenance			
bcy bank cubic yard	H&S	Health and Safety			
If linear feet					
sf square feet					
msf 1,000 square feet					
nor 1,000 square rett					

TECHNOLOGY		I	OCATIO	N		MEDIA			Estimated Cost to Implement			\$947,000	
Smokes Creek Alternative 2B Partial Removal of Asphalt and Contaminated Soil to Com	mercial SCOs and	Lackawa Lac	nna Incine kawanna,	erato NY	r Site	So	oil	Construction Operatio		nstruction Time: Operation Time:	3	months	
Covering of of Remaining Contaminated Soil/Fill with S	oil and Asphalt		,							Post Remedia	ation Monitoring	0 Combined Unit	years
Description	Data Source	Quar	ntities Quantity	М	laterial	Material		Cost Breakd	lown (if available	e) Equipment	Equipment	Costs	Option
Discipitori	(Means ¹ or Other)	Amount	Unit	Ur	nit Cost	Total Cost		Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C	APITAL	cos	Т								\$857,000
		(totals rou	inded to n	eares	st thou	sand)							
Construction Activities Pre-Design Characterization Study		1				\$40,833	3		\$44,545		\$11,009	\$56,977	\$635,344
Site Preparation	02.21.22.00.0020			¢	20.04	¢ 27	¢	507.77	¢ 1.046	* 22	0 41		£1.122
Topographic Survey Utility Locator (based on recent bids)	02 21 23 09 0020 recent quote	1.0	acre day	\$ \$	- 20.94	\$ 37 \$ -	\$	- 597.77	\$ 1,046 \$ -	\$ 23 \$ -	\$ 41 \$ -	\$ 2,465	\$1,123 \$2,465
Monitoring Well Abandonment	recent quote- EnviroTrac	22	lf	\$	-	\$ -	\$	-	\$-	\$ -	\$ -	\$ 22.00	\$484
Erosion & Sediment Control Plan Work Plan Preparation (Including QAPP, FAP and HASP)		1.0	ls ls	\$ \$	-	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 15,000 \$ 15,000	\$15,000 \$15,000
Silt Fence Fence Demolition	31 25 13.10 1000 02 41 13.62 1100	1,998 1,998	lf lf	\$	0.81	\$ 1,618	\$	-	\$ -	\$ -	\$ -	\$ - \$ 2.30	\$1,618 \$4,595
Fence Post Removal	02 4113621000 recent quote- The	200	each				_					\$ 22.99	\$4,598
Stockpile and Staging Area	Environmental Service Group	1	pad	\$	-	\$-	\$	-	\$ -	\$-	\$ -	\$ 11,343.50	\$11,344
Decontamination Pad	recent quote- The Environmental					<u>^</u>	•		<u>^</u>	<u>^</u>		A	A.C. (07
Path Demolition	Service Group	1	pad	\$	-	\$ -	\$	-	\$ -	\$ -	\$ -	\$ 6,686.70	\$6,687
Asphalt Demolition	32 01 15.71 5330 Quote from Modern	1,829	sy	\$	-	\$ -	\$	-	\$ -	\$ -	\$ -	\$ 1.10	\$2,012
Excavation	Landfill	184	ton									\$ 71.00	\$13,067
Community Air Monitoring (Dust)	recent quote - Pine Environmental	3	mo	\$	-	\$-	\$	13,600.00	\$ 40,800	\$ 3,420	\$ 10,260	\$ -	\$51,060
Dust Control, Light Soil-Excavator, hydraulic, crawler mtd. 3.5 CY cap = 350 CY/hr	31 23 23.20 2500 31 23 16.42 5500	12.00 2,435	day bcy	\$ \$	-	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 996.30 \$ 1.30	\$11,956 \$3,165
34CY off-road 20min. Wait 2,000ft cycle Haul Road Maintenance	31 23 23.20 6300 31 23 23.20 2600	2,800 12	lcy dav	\$ \$	-	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 3.65 \$ 1.342.68	\$8,887 \$16,112
Maintain Stockpile, 700HP Dozer, 50ft Haul	31 23 16.46 6010 31 23 16 42 4700	2,435	bcy	\$	-	\$ -	\$	-	\$ -	\$ -	\$ -	\$ 1.84	\$4,480
Excavator Loadout, 4.5 CY bucket, 80% fill factor	recent quote- The	2,800	Icy	\$	-	\$ -	\$	-	\$ -	\$ -	5 -	\$ 1.28	\$3,384
Decontamination Pad Maintenance	Service Group	90	day	\$	-	\$-	\$	-	\$-	\$-	\$ -	\$ 8.36	\$752
Staging and Stockpile Area Maintenance	Environmental Service Group	90	day	\$	-	\$ -	\$	-	\$ -	\$-	\$ -	\$ 7.16	\$644
Topographic Survey	02 21 23 09 0020	1.75	acre	\$	20.94	\$ 37	\$	597.77	\$ 1,046	\$ 23	\$ 41		\$1,123
Decontamination Water Samples	Life Saimon	10	sample	\$	-	\$-	\$	-	\$-	66.73	\$ 667	\$-	\$667
Decon Water Lab Analyses - TAL Metals	Life Science Laboratories	10	sample	\$	-	\$ -			\$ -	\$ -	\$ -	\$ 495.00	\$4,950
Soil Characterization Sampling (1 sample per 500 CY, per CWM)	Life Science	6	sample	\$		\$ -	\$		\$ -	\$ -	\$ -	\$ 593.48	\$3 323
Hazardous Soil Disposal	CWM	374	ton	\$	-	\$ -	\$	-	\$ -	\$ -	\$ -	\$ 140.00 \$ 10.50	\$52,357
Demurrage (assume 5 hours per week of loading)	CWM CWM	5	ton hour	\$ \$	-	\$ - \$ -	\$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 19.50 \$ 85.00	\$7,293 \$425
Fuel Surcharge- 36% of Transportation Non-Hazardous Soil Disposal	CWM	1	ls	\$	-	\$ -	\$	-	\$ -	\$ -	\$ -	\$ 2,625.34	\$2,625
Soil transportation and disposal	Recent quote- ESG plus 10%	3,550	ton	\$	-	\$ -	\$	-	\$-	\$-	\$ -	\$ 37.68	\$133,759
Site Restoration Geotextile (non-woven)	31 32 19.16 1550	4,723	sy	\$	1.16	\$ 5,479	\$	0.35	\$ 1,653	\$ -	\$ -		\$7,132
Supply and Transportation of NYS Certified Clean Back Fill Material	Recent quote- ESG	1,224	lcy										
Backfill 300HP Dozer. 150' haul	from Seven Springs	1.224	lev	\$ \$	27.50	\$ 33,663 \$ -	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 1.40	\$33,663 \$1,714
Grading by dozer	<u>31 23 23 23 23 5060</u>	1,224	lcy	\$	-	- \$-	\$	-	\$ - \$	\$ - \$	\$ - \$	\$ 2.23 \$ 0.28	\$2,730
Compacting odeknin, 12 mit, 2 passes w/ urun tonet	51 25 25.25 5000	1,004	ecy	φ	-	φ -	φ	-	φ -	φ -	ф -	\$ 0.28	\$278
Topsoil	Recent quote- ESG from Seven Springs	797	lcy	\$	44.50	\$ 35,488	\$	-	\$-	\$-	\$ -		\$35,488
Finishing grading slopes, gentle Erosion Control Blankets	31 22 16.10 3300	4,255 1,324	sy sy	\$ \$	-	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 0.21 \$ 2.08	\$893 \$2,754
Utility mix, 7#/M.S.F., Hydro or air seeding, with mulch and fertilizer Asphalt Cover Construction	32 92 19.14 5400	38.29	msf	\$	-	\$ -	\$	-	\$ -	\$-	\$ -	\$ 65.31	\$2,501
Aspiral Cover Construction Base	32 11 26.13 1600	292	ecy	\$	-	\$ -	\$	-	\$-	\$ -	\$ -	\$ 85.19	\$24,838
Binder Top	32 12 16.13 0200 32 12 16.13 0380	1,749 1,749	sy sy	\$ \$	-	\$ - \$ -	\$ \$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 19.95 \$ 11.49	\$34,899 \$20,100
Monitoring Well Replacement	recent quote- EnviroTrac	22	lf	\$	-	\$-	\$	-	\$-	\$-	\$-	\$ 94.00	\$2,068
Topographic Survey Fencing Installation	02 21 23 09 0020 32 31 13.20 0800	1.75 1,998	acre lf	\$	20.94	\$ 37	\$	597.77	\$ 1,046	\$ 23	\$ 41	\$ 27.52	\$1,123 \$54,985
Environmental Easement		1	le									¢ 15.000	¢15.000
Surveyor - Monument Installation		1	ls									\$ 15,000 \$ 10,000	\$15,000
Solution Solution 5% of Total Costs of Site Work, Treatment												\$324,827	\$16,241 \$16,241
Contingency													\$97,738
15% of Total Construction Activities												\$651,585	\$97,738
Professional/Technical Services													\$108,008
5% Project Management 6% Remedial Design												\$635,344	\$31,767
6% Construction Management													\$38,121
LONG TERM MONITORING										ANNUAL LTM	I COST (YRS I COST (YRS	1-5) 6-30)	\$8,000 \$5.000
			-				-			LIFETIME LT	M (NPV)		\$89,900
Monitoring, Sampling, Testing and Analysis (Per Event) Assume 20% of combined sampling event for on-site and off-site													\$2,350
Site Monitoring Inspection of soil cover		1	hr				\$	85.00					
Surface water sampling for 1 event	are	1	sample	\$	_	\$	\$ \$	85.00	\$ - \$ -	\$	\$	\$	\$0
Materials	Engineer's Estimate	1	event	\$	50.00	ф Ф	φ		φ •	÷	¢	¢	\$50
Reporting		10	hr	\$ \$	- 85.00	\$ - \$ 850	\$	-	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 680 \$ -	\$680
Laboratory analysis	Life Science	1	63										
GW Analyses - Metals	Laboratories Life Science	1 5	ea	\$	-	\$ -	\$	-	\$ -	\$ -	\$ -	\$ 100	\$100
Surface water Analyses - Metals Maintenance- Cap Maintenance	Laboratories			\$	-	\$-	\$	-	\$ -	\$-	\$ -	\$ 100	\$500
Mowing brush, tractor with rotary mower, Medium density 2x per year Lifetime Long Term Monitoring (Net Present Value)	32 01 90.19 1670	20	msf	\$	-	\$ -	F					\$ 74.80	\$1,472
5 Years of Semi-Annual Monitoring 25 Years of Annual Monitoring							1						
5% Discount Factor (per NYSDEC)													
TOTAL ESTIMATED NPV TECHNOLOGY COST	(Capital + Lifetin	ne O&M +	- Post Re	emed	liatio	n Monitoring))						\$947.000
													,,

TECHNOLOGY		J	LOCATIO	N	MED	JIA	Estimat	ed Cost to Im	plement	\$1,5	548,000
Smokes Creek Alternative 3 Exceptation of Aspholt and Contaminated Soil to Upress	triated Use SCOs	Lackawanna Incinerator Site			Soi	1		Co	4	months	
excavation of Aspnait and Contaminated Soli to Unrest with Disposal Off-Site	tricted Use SCOs	La	ckawanna,	NY				Post Remedi	Operation Time: ation Monitoring	- 0	months vears
*		Qua	ntities		•	Cost Break	kdown (if available)		Combined Unit	
Description	Data Source	Quantity	Quantity	Material	Material	Labor	Labor	Equipment	Equipment	Costs	Option
	(Means ¹ or Other)	Amount	Unit	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost	Unit Cost	Total Cost
REMEDIAL ACTION		TOTAL C	APITAL C	OST							\$1 548 000
		(totals ro	inded to ne	arest thou	sand)						φ1,540,000
					\$101.055		\$ 50.40 7		\$20.701	¢(1.500	¢1 150 25
Site Preparation			-		\$121,375		\$58,480		\$20,701	\$61,729	\$1,150,27
Topographic Survey	02 21 23 09 0020	1.75	acre	\$ 20.94	\$ 37	\$ 597.77	\$ 1,046	\$ 23	\$ 41		\$1,12
Utility Locator (based on recent bids)	recent quote recent quote-	1.0	day	\$ -	\$ -	\$ -	\$ -	\$-	\$ -	\$ 2,465	\$2,40
Monitoring Well Abandonment	EnviroTrac	22	lf le	\$ - ¢	\$ -	\$ -	\$ - ¢	\$ - ¢	\$ - \$	\$ 22	\$48
Work Plan Preparation (Including QAPP, FAP and HASP)		1.0	ls	s - \$ -	\$ -	\$ -	\$ -	s -	s -	\$ 15,000 \$ 15,000	\$15,0
Silt Fence	31 25 13.10 1000	1,968	lf 1f	\$ 0.81	\$ 1,594	\$ -	\$-	\$-	\$ -	\$ -	\$1,5
Fence Deniontion Fence Post Removal	02 41 13:02 1100	1,908	each							\$ 22.99	\$4,5
Stocknile and Staging Area	recent quote- The Environmental										
Storaphe and Staging Field	Service Group	1	pad	\$ -	\$ -	\$-	\$-	\$-	\$ -	\$ 11,343.50	\$11,3
Decontamination Pad	recent quote- 1 ne Environmental										
Path Demolition	Service Group	1	pad	\$ - \$ -	\$ - \$ -	\$ - \$ -	s - s -	s - s -	s - s -	\$ 6,686.70 \$ -	\$6,6
Asphalt Demolition	32 01 15.71 5330	1,829	sy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 1.10	\$2,0
Asphalt Disposal	Quote from Modern Landfill	393	ton							\$ 71	\$27,9
Excavation	recent aunte - Pine										
Community Air Monitoring (Dust)	Environmental	4	mo	\$ -	\$ -	\$ 13,600.00	\$ 54,400	\$ 3,420	\$ 13,680	\$ -	\$68,0
Dust Control, Light Soil-Excavator, hydraulic, crawler mtd. 3.5 CY can = 350 CY/hr	31 23 23.20 2500 31 23 16.42 5500	16 6.898	day bcy	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ 996.30 \$ 1.30	\$15,94 \$8 9
34CY off-road 20min. Wait 2,000ft cycle	31 23 23.20 6300	7,932	lcy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 3.65	\$28,9
Haul Road Maintenance Maintain Stocknile, 700HP Dozer, 50ft Haul	31 23 23.20 2600	16 6 809	day bcy	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$ - \$ -	s - s -	\$ - \$ -	\$ 1,342.68 \$ 1.84	\$21,48
Excavator Loadout, 4.5 CY bucket, 80% fill factor	31 23 16.43 4700	7,932	lcy	\$ -	\$ -	\$ -	\$ -	ş -	\$ -	\$ 1.28	\$10,1
	recent quote- The Environmental										
Decontamination Pad Maintenance	Service Group	5	day	\$ -	\$-	\$-	\$-	\$-	\$ -	\$ 8.36	\$4
	Environmental										
Staging and Stockpile Area Maintenance Topographic Survey	Service Group 02 21 23 09 0020	16	day acre	\$ - \$ 20.94	\$ - \$ 37	\$ - \$ 597.77	\$ - \$ 1.046	\$ - \$ 23	\$ - \$ 41	\$ 7.16	\$1.
Confirmation Sampling							. ,				
Grab Samples- 1 per 900 square feet plus 20% QA/QC	Life Science	94	sample	\$ -	\$ 50	\$ 21.00	\$ 1,974	\$ 67	\$ 6,272.61	\$ -	\$8,2
Lab Analyses - TAL Metals	Laboratories	94	sample	\$ -	\$ -	\$ -	\$ -	s -	s -	\$ 75.00	\$7,0
Decontamination Water Samples	Life Science	10	sample	\$ -	5 -	\$ 2	\$ 20	\$ 6/	\$ 667	s -	\$6
Hazardous Soil Disposal	Laboratories	10	sampie	\$ -	\$ -		\$ -	\$-	\$ -	\$ 50.00	\$50
	Life Science	14.00		¢	¢	¢	¢	¢	¢	6 502.40	eo 20
Soil Characterization Sampling (1 sample per 500 C Y, per CWM) Hazardous Soil Disposal	CWM	14.00	ton	\$ - \$ -	<u> </u>	s - s -	s - \$ -	s - s -	\$ - \$ -	\$ 593.48 \$ 140.00	\$8,30
Transportation using dumps	CWM	1,104	ton	\$-	\$ -	\$-	\$ -	\$ -	\$ -	\$ 19.50	\$21,52
Demurrage (assume 5 hours per week of loading) Fuel Surcharge- 36% of Transportation	CWM	5	ls	\$ - \$ -	s - s -	\$ - \$ -	\$ - \$ -	s - s -	\$ - \$ -	\$ 85.00 \$ 7,747.27	\$42 \$7,74
Non-Hazardous Soil Disposal	D										
Soil transportation and disposal	plus 10%	9,932	ton	\$ -	\$ -	\$ -	\$-	\$ -	\$ -	\$ 37.68	\$374,25
Site Restoration											
Supply and Transportation of NYS Certified Clean Back Fill Material	Recent quote- ESG	4,273	lcy								
Packfill 2004D Dozer 150' have	from Seven Springs	4 272	lov	\$ 28.00	\$ 119,657	\$ - \$	\$ - \$	\$ - \$	\$ - \$	\$ 1.40	\$119,65
Grading by dozer	31 23 23.20 2300	4,273	lcy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 2.23	\$9,53
Compacting backfill, 12" lift, 2 passes w/ drum roller	31 23 23.23 5060	3,716	ecy	\$ -	\$ -	\$ -	\$ -	\$-	\$ -	\$ 0.28	\$1,04
	Recent quote- ESG	797									
Topsoil	from Seven Springs	1.055	lcy	\$ 44.50	\$ 35,488	\$ -	\$ -	\$ -	s -	¢ 0.01	\$35,48
Erosion Control Blankets	31 22 16.10 3300	4,255	sy sy	\$ - \$ -	\$ - \$ -	s - s -	s - s -	s - s -	s - s -	\$ 0.21 \$ 2.08	\$2,75
Utility mix, 7#/M.S.F., Hydro or air seeding, with mulch and fertilizer	32 92 19.14 5400	38	msf	\$ -	\$ -	\$-	\$-	\$-	\$ -	\$ 65.31	\$2,50
Asphalt Cover Construction Base	32 11 26.13 1600	194	ecy	\$ -	\$ -	\$ -	s -	s -	s -	\$ 85.19	\$16,54
Binder	32 12 16.13 0200	1,749	sy	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ 19.95	\$34,89
top Monitoring Well Replacement	32 12 16.13 0380 recent quote-	1,749	sy 1f	\$ -	\$ -	5 -	3 -	3 -	s -	\$ 11.49	\$20,10
Tonographic Survey	EnviroTrac 02 21 23 00 0020	1.75	acre	\$ - \$ 20.04	\$ - \$ 27	\$ - \$ 507.77	\$ - \$ 1.04c	\$ - \$??	\$ - \$ 41	\$ 94.00	\$2,06
Fencing Installation	32 31 13.20 0800	1,968	lf	\$ 20.94	\$ 37	\$ 591.11	\$ 1,040	\$ 25	3 41	\$ 27.52	\$54,15
Mobilization and Demobilization										0522.011.00	\$26,15
370 or rotar Costs of Site work, freatment			1		1			<u> </u>	+	\$525,011.66	\$26,15
Contingency										64 4 m - 10	\$176,46
1370 or 10tal Construction Activities					1				+	\$1,176,424	\$176,46
Professional/Technical Services					1						\$195,54
5% Project Management										\$1,150,274	\$57,5
6% Remedial Design 6% Construction Management											\$69,01
o / v Construction initializagement			1			1	I		1	I	\$09,01
FOTAL ESTIMATED NPV TECHNOLOGY COST											\$1,548,000
Assumptions:											
Working condition is Safety Level:		D/C	(Labor prod	luctivity:	82%	; Equipment pr	oductivity:	100%	•		
Weighted Average of city cost index (Buffalo, NY)		101.4%	o (not applica	ble for costs	derived from vendo	r quotes).		-			
Costs are loaded with a profit factor Inflation		10%	per year								Labor
Estimated number of soil samples		12	amples 2	1	times sampled		0.25	hrs/sample		\$85	Cost per hr
Characterization Cost	Table A (per CWM)	\$593.48	per sample	20%	added for QA/QC sa	umples	1	worker sampling		2	nrs / well workers / gw well
Analytical cost	TAL Metals	\$75.00	per sample	<i>.</i> .							
For each sampling event, assumed: Disposal		\$50	for materials	(gloves, note	books, etc.)						
Lead contaminated soil as a "listed" waste- incineration		\$275	per ton		1,104	tons soil hazarde	ous (assume 10% ha	zardous)	-		
Lead contaminated soil as non-baz		\$20.0	ner ton		22	tons per load	-haz diepocal	50	loads for haz disp	posal z disposal	
Leau contaminateu son as non-naz		\$39.87	per ton		10,141	tons soil for non	-naz utsposat	461	10aus 10r non-haz	. uisposai	

Concrete		3,300 lbs per cy	 tons concrete for disposal 	
Typical Rental Rates - Includes G&A and 10% Profit				
Mini-Rae Survey Mode PID		\$96.08 per day		20 loads per day
Truck/SUV (1/2 ton or smaller)		\$70.74 per day		20 working days per month
Horiba U-10 Water Quality Meter		\$73.77 per day		
Submersible Pump		\$42.16 per day		
2 in Pump Control Box		\$72.27 per day		
Generator: 110 V		\$57.24 per day		
Level D PPE		\$11.91 per day		
				10 hours per working day
Work day consists of:		10 hrs		2 months for site prep/restoration
				1.28 months for disposal
Excavation With Concrete and Asphalt:				4 months to completion
Concrete and Asphalt:	0.0	% of excavation volume		150 ft/day drilling
Excavation Area:	43,56	0 sf		
Excavation Volume:	10,00	0 cy 11,500 lcy		
Excavated Weight:	15,00	0 tons		
Roll-off dumpster can hold approximately:	1	2 tons		
Notes				
sy square yard	mo	month		
cy cubic yard	ls	lump sum		
lcy loose cubic yard	O&M	Operation and maintenance		
bcy bank cubic yard	H&S	Health and Safety		
If linear feet				
sf square feet				
msf 1.000 square feet				