VAPOR INTRUSION REPORT

Former Doro Cleaners

(Site No. 915238) Cheektowaga, New York

> New York State Department of Environmental Conservation

Work Assignment No. D007621-6

February 2014

Table of Contents

Section 1 Introduction	1-1
1.1 Background	1-1
1.2 Overview	
Section 2 Sub-Slab Soil Vapor Point Installation, Sampling and Analysis	2-1
2.1 Sub-Slab Vapor Point Installation	2-1
2.2 Sub-Slab Soil Vapor Sampling and Analysis	2-1
Section 3 Indoor Air and Outdoor Ambient Air Sampling and Analysis	3-1
3.1 Indoor Air Sampling and Analysis	3-1
3.2 Outdoor Ambient Air Sampling and Analysis	3-1
Section 4 Vapor Intrusion Sampling Results	4-1
4.1 Sub-Slab Vapor, Indoor Air and Outdoor Ambient Air Sampling Results	4-1
4.1.1 SV-1 – Front Building	4-1
4.1.2 SV-2 – Back Building	4-2
4.1.3 SV-3	4-3
4.1.4 SV-4	4-3
4.1.5 SV-5	
4.2 Data Validation Findings	4-4
Section 5 Summary and Conclusions	5-1
5.1 SV-1 – Front Building	5-1
5.2 SV-2 – Back Building	
5.3 SV-3	5-1
5.4 SV-4	5-1
5.5 SV-5	5-1
5.6 Conclusions	5-1

Appendices

Appendix A - Field Log Book Notes

Appendix B – Photo Log

Appendix C - NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form

Appendix D - Sub-Slab Indoor and Outdoor Ambient Air Analytical Summary Report

Appendix E - Data Usability Summary Report

List of Tables

- Table 1 Sub-Slab Soil Vapor, Indoor Air and Outdoor Ambient Air Sample Information Summary
- Table 2 Vapor Sampling Results
- Table 3 Soil Vapor Intrusion Recommendations Based on NYSDOH Decision Matrices

List of Figures

Figure 1 – Site Location Map

Figure 2 – Sample Location Plan

Figure 3 – Vapor Intrusion Exceedances

Section 1

Introduction

1.1 Background

The Former Doro Dry Cleaners Site, herein referred to as "Site", is a 1.8 acre area including two attached buildings totaling approximately 10,500 square feet. The smaller of the two buildings is a two-story brick front block building with a store front facing Genesee Street and office space on the second floor. The larger building is a one-story brick front block building warehouse/storage area, which housed the dry cleaning operations. The buildings are currently being used for storage, with the intent of a new tenant occupying the building. Asphalt parking areas are located to the south and west of the buildings. An open grassy area, approximately 55-feet wide by 960-feet long, extends from the north side of the building to New York State Route 33, Kensington Expressway.

A residential area is located immediately adjacent to the northwest of the Site. A vacant commercial building and SweetWorks, a candy manufacturing facility, are located to the east of the Site. Tread City Tire and Wheel is located on Genesee Street to the west of the Site and a small shopping plaza and another residential area are located across Genesee Street to the south of the Site. A Site Location Map is included as **Figure 1**.

According to the Phase I Environmental Site Assessment conducted by Fifty-six Services, Inc. in December 2008, the Site operated as a dry cleaning facility (Doro Cleaners) for approximately 40 years starting in the 1950's. The buildings were vacant at the time of the Phase I Environmental Assessment and were used for storage.

A former gas station was identified immediately west of the Site across Colden Court on Genesee Street. The property is now Tread City Tire and Wheel. No historical spills were reported to NYSDEC in the area of the Site and no petroleum bulk storage (PBS) or chemical bulk storage (CBS) records were found for the site.

The New York State Department of Environmental Conservation (NYSDEC) assigned Site Number 9-15-238 to the Site under the State Superfund Program and listed the Site on the Registry of Inactive Hazardous Waste Sites as a Class 2 site after investigation work began in 2008. Contaminants of concern at the Site include the chlorinated volatile organic compounds (CVOCs) tetrachloroethylene (PCE) and its breakdown products of trichloroethylene (TCE), *cis*-1,2-dichloroethylene (*cis*-1,2-DCE) and vinyl chloride (VC).

1.2 Overview

CDM Smith conducted a vapor intrusion investigation between April 22 and April 23, 2013 at four structures both on- and off-site. The purpose of the vapor intrusion investigation was to determine if VOCs in the groundwater are impacting the indoor air quality of the structures on- and off-site. To determine if VOCs are present, sub-slab vapor samples were collected beneath the structures and indoor air samples were collected inside the structure. Outdoor ambient air samples were collected to determine background VOC concentrations in the area. The investigation included collecting sub-slab vapor samples, indoor air samples and outdoor ambient air samples from three off-site structures and

both of the attached on-site structures. CDM Smith subcontracted the air analyses to the off-site, Con-Test Analytical Laboratory, an ELAP certified laboratory located in East Longmeadow, Massachusetts and third-party data validation was completed by Environmental Quality Associates (EQA), located in Middletown, New York.

Based on the soil and groundwater data collected during Phase 1 of CDM Smith's investigation, CDM Smith selected the locations to be sampled and confirmed them with the NYSDEC project manager, who in turn confirmed the locations with the New York State Department of Health (NYSDOH). Subslab soil vapor and indoor air samples were collected from all four of the sample locations. Three outdoor ambient air samples were collected, one outside of each residence and one in between the onsite and off-site commercial structures. The locations of the structures sampled are identified **on Figure 2**. **Table 1** provides a summary of the vapor intrusion sample information.

The following sections provide a summary of the sampling methodology and sample results. Copies of the field notes are provided in **Appendix A**, photo documentation is provided in **Appendix B**, NYSDOH Indoor Air Quality Questionnaire Building Inventory Forms are provided in **Appendix C**, and the Data Validation Report is provided in **Appendix D**.

Section 2

Sub-Slab Soil Vapor Point Installation, Sampling and Analysis

2.1 Sub-Slab Vapor Point Installation

Five sub-slab vapor points were installed by CDM Smith personnel between April 22, 2013 and April 23, 2013 at four different structures (**Figure 2**) both on- and off-site in accordance with *NYSDOH Guidance for Evaluating Soil Vapor Intrusion in New York State* guidance document (NYSDOH, October 2006). Specifically, two samples were collected at residential locations shown on **Figure 2**, two samples were collected from the on-site structure, and one sample was collected from the adjacent commercial structure.

Prior to installing the sub-slab vapor points, photos were taken of the building floor (**Appendix B**), the floor was inspected and any penetrations (sumps or drains) or cracks were noted on the *Indoor Air Quality Questionnaire and Building Inventory*. A chemical inventory was also completed as part of the *Indoor Air Quality Questionnaire and Building Inventory* to document any chemicals present that may impact the sample results. A copy of the completed questionnaire for each location is provided in **Appendix C**.

The sub-slab sample points were installed by using a hammer drill with a 1.25-inch diameter bit to drill a hole to a depth of approximately three-inches beneath the concrete slab. When the drilling was complete, the area around the borehole was cleaned of all concrete dust and dirt. A 3/8-inch outer diameter, ¼-inch inner diameter Teflon® lined tubing was extended about 2-inches into the sub-slab void space. The annular space between the borehole and the sample tubing was sealed with electrical conduit putty to prevent ambient air infiltration. The putty label indicated that it contained no VOCs.

2.2 Sub-Slab Soil Vapor Sampling and Analysis

Prior to sampling, the sealed sample point was tested for potential surface air infiltration using a helium tracer gas test. The procedure for helium tracer gas testing was conducted in accordance with the NYSDOH guidance document as follows:

- The soil vapor sampling tube is run through the hole in the prepared enclosure that is placed over the borehole.
- Helium gas is released through a sample port into the enclosure until a concentration of greater than 80 percent (%) is reached. The Helium enriched environment is monitored and confirmed with a Dielectric multi-gas detector inserted into a second sample port.
- After confirming 80% helium in the enclosure, the soil vapor sampling tube is purged using the low-flow air sample pump, purging at a rate of not more than 0.2 liters per minute and screening for the presence of helium using a helium gas detector and for VOCs using a MiniRae photo ionization detector (PID). Tracer gas testing was performed at all sample locations.

No helium detections were observed during tracer gas tests. **Table 1** provides a summary of the subslab vapor sample identification, trace gas test reading, PID reading, and the canister and regulator numbers used at each sample location. One duplicate sample was collected from the sub-slab vapor point at the SV-2 SS1 location and is identified as DUP-2.

All sub-slab, indoor air, and outdoor ambient air samples were collected using a 6-Liter Summa canister equipped with a 24-hour lab calibrated regulator. Sample collection was terminated for all samples before the canister vacuum reached zero inches of mercury. The canister vacuum levels at the start and end of sample collection was recorded on the sample label, on the NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form (**Appendix C**), and on the sample chain of custody form. The Summa canister sample tag was labeled with sample identification, the start and end time of sample collection, date, project identification and requested laboratory analysis. A sample information summary is included as **Table 1**. The sub-slab soil vapor samples were submitted to Contest for VOC analysis using EPA Method TO-15. The results are discussed in **Section 4** and a summary analytical report is provided in **Appendix D**.

Section 3

Indoor Air and Outdoor Ambient Air Sampling and Analysis

3.1 Indoor Air Sampling and Analysis

CDM Smith collected five indoor air samples. Two samples were collected at residential locations shown on **Figure 2**, (identified as SV-4 and SV-5), two samples were collected from the on-site structure (identified as SV-1 and SV-2), and one sample was collected from the adjacent commercial structure (identified as SV-3). All samples were collected from the lowest level of the structure, either the basement if present or the ground floor. Indoor air samples were co-located with sub-slab samples.

The indoor air samples were collected with 6-liter Summa canisters equipped with 24-hour laboratory-calibrated flow regulators. Summa canisters were placed in such a location as to collect a representative sample from the breathing zone at approximately three feet above the floor. CDM Smith completed the NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form for each sample location as part of the indoor air sampling. Copies of the completed forms are provided in **Appendix C**.

3.2 Outdoor Ambient Air Sampling and Analysis

Three outdoor ambient air samples were collected, one for each residential sample location (identified as SV-4 OA and SV-5 OA) and one located in between the on-site and off-site commercial structures. The outdoor ambient air samples were collected with 6-liter Summa canisters equipped with 24-hour laboratory-calibrated flow regulators. Sample canisters were placed in a location where they would be out of elements and could not be tampered with.

Section 4

Vapor Intrusion Sampling Results

4.1 Sub-Slab Vapor, Indoor Air and Outdoor Ambient Air Sampling Results

Five sub-slab vapor samples, four indoor air samples, three outdoor ambient air samples, and two duplicate samples were analyzed by Con-test by EPA Method TO-15 to determine the extent of soil vapor intrusion and the impacts to air quality.

A total of 16 different VOCs were detected in the 12 samples that were collected. Of the 16 compounds detected, 6 were chlorinated including PCE and TCE, VC and *cis*-1,2-DCE. Two compounds commonly associated with gasoline (ethyl benzene and ethanol) were also detected at varying concentrations in multiple samples collected.

There are currently no standards, criteria or guidance values for sub-slab or general soil vapor samples. Therefore, comparisons made to the NYSDOH Vapor Intrusion guidance and EPA 2001 BASE Database serve as guidelines and are for reference purposes only.

The results for TCE and carbon tetrachloride were compared to Matrix 1 of the NYSDOH soil vapor guidance. The results for PCE, and 1,1,1-trichloroethane (1,1,1-TCA) were compared to Matrix 2 of the NYSDOH soil vapor guidance. Indoor air and ambient air results were also compared to NYSDOH Guidance Appendix C Table C2- *EPA 2001 Building Assessment and Survey Evaluation (BASE) Database, SUMMA canister method, 90th percentile* (EPA BASE 90th percentile). These values provide background concentrations of VOCs expected in typical indoor and outdoor locations. Sub-slab air concentrations were also compared to NYSDOH Table 3.1 *Air Guideline Values*.

The analytical results can be found in **Table 2** and the analytical summary report is included as Appendix D. Below is a summary of the compounds detected by sampling location.

4.1.1 SV-1 - Front Building

The SV-1 samples were collected on the west side of the front on-site building (**Figure 2**). Sub-slab sample SV-1 SS2 and indoor air sample SV-1 IA2 were collected at the SV-1 location. The outdoor air sample collected at location SV-2, SV-2 OA, is for the same building as SV-1 and can serve as the outdoor air sample of SV-1.

The sub-slab sample, SV-1 SS2, exceeded the NYSDOH Air Guideline Value for PCE (100 $\mu g/m^3$) at 150 $\mu g/m^3$.

The indoor air sample SV-1 IA2 exceeded the *EPA BASE 90th percentile* concentration for 1,2,4-trimethylbenzene (9.5 μ g/m³) at 11.0 μ g/m³, *cis*-1,2-DCE (1.9 μ g/m³) at 4.50 μ g/m³, ethylbenzene (5.7 μ g/m³) at 7.70 μ g/m³, hexane (10.2 μ g/m³) at 26.00 μ g/m³, m,p-xylene (22.2 μ g/m³) at 28.00 μ g/m³, o-xylene (7.9 μ g/m³) at 10.00 μ g/m³, PCE (15.9 μ g/m³) at 200.00 μ g/m³, toluene (43 μ g/m³) at 46.00 μ g/m³, and TCE (4.2 μ g/m³) at 5.4 μ g/m³.

The results for TCE and carbon tetrachloride were compared to Matrix 1 of the NYSDOH Soil Vapor Guidance. The following actions are suggested by the matrix:

- Based on the concentration of TCE detected in the indoor air sample SV-1 IA2 (5.40 μg/m³) and detection in the sub-slab greater than 5 μg/m³, NYSDOH guidance suggests reasonable and practical actions should be implemented to identify source(s) and reduce exposures.
- Based on the concentration of carbon tetrachloride detected in the indoor air sample SV-1 IA2 (0.43 μg/m³) and detection in the sub-slab less than 5 μg/m³, NYSDOH guidance suggests reasonable and practical actions should be implemented to identify source(s) and reduce exposures.

The results for PCE and 1,1,1-TCA were compared to Matrix 2 of the NYSDOH soil vapor guidance. The following actions are suggested by the matrix:

Based on the concentration of PCE detected in the sub-slab sample SV-1 SS2 of 150 μ g/m³ and detection of indoor air greater than 100 μ g/m³, NYSDOH guidance suggests mitigation to minimize potential exposures associated with soil vapor intrusion.

No further action is suggested by the matrix for 1,1,1-TCA (non-detect). **Table 3** provides a summary of the recommended action by sample location as compared to the NYSDOH matrices.

4.1.2 SV-2 - Back Building

The SV-2 samples were collected on the east side of the rear on-site building (**Figure 2**). Sub-slab sample SV-2 SS1 and outdoor air sample SV-2 OA were collected at the SV-2 location. The indoor air sample collected at location SV-1, SV-1 IA2, is in the same building with SV-2, so can serve for comparison with the SV-2 sub-slab sample, SV-2 SS1.

The sub-slab sample exceeded the NYSDOH Air Guideline Value for PCE (100 μ g/m³) at 190 μ g/m³ and TCE (5.00 μ g/m³) at 5.9 μ g/m³.

The outdoor air sample exceeded the *EPA BASE 90th percentile* concentration for ethyl acetate (1.5 $\mu g/m^3$) at 2.10 $\mu g/m^3$.

The results for TCE and carbon tetrachloride were compared to Matrix 1 of the NYSDOH Soil Vapor Guidance. The following actions are suggested by the matrix:

- Based on the concentration of TCE detected in the indoor air sample SV-1 IA2 (5.40 μg/m³) and detection in the sub-slab greater than 5 μg/m³, NYSDOH guidance suggests mitigation to minimize potential exposures associated with soil vapor intrusion.
- Based on the concentration of carbon tetrachloride detected in the indoor air sample SV-1 IA2 (0.43 μg/m³) and detection in the sub-slab less than 5 μg/m³, NYSDOH guidance suggests reasonable and practical actions should be implemented to identify source(s) and reduce exposures.

The results for PCE and 1,1,1-TCA were compared to Matrix 2 of the NYSDOH soil vapor guidance. The following actions are suggested by the matrix:

Based on the concentration of PCE detected in the sub-slab sample SV-2 SS1 of 190 μg/m³ and detection of indoor air greater than 100 μg/m³, NYSDOH guidance suggests mitigation to minimize potential exposures associated with soil vapor intrusion.

No further action is suggested by the matrix for 1,1,1-TCA (non-detect). **Table 3** provides a summary of the recommended action by sample location as compared to the NYSDOH matrices.

4.1.3 SV-3

The SV-3 samples were collected from the central west part of the commercial building located adjacent to the Site to the east (**Figure 2**). Indoor air sample SV-3 IA and sub-slab sample SV-3 SS were collected at the SV-3 location. The outdoor air sample collected at location SV-2, SV-2 OA, is located in between the on-site building and the off-site building, therefore SV-2 OA, so can serve for as the outdoor air sample for location SV-3.

The indoor air sample SV-3 IA exceeded the *EPA BASE 90th percentile* concentration for ethyl acetate $(5.4 \,\mu\text{g/m}^3)$ at $6.8 \,\mu\text{g/m}^3$ and naphthalene $(5.1 \,\mu\text{g/m}^3)$ at $5.3 \,\mu\text{g/m}^3$.

The sub-slab sample, SV-3 SS, did not exceed the NYSDOH Air Guideline Value for any contaminants.

The results for TCE and carbon tetrachloride were compared to Matrix 1 of the NYSDOH Soil Vapor Guidance. The following actions are suggested by the matrix:

Based on the concentration of carbon tetrachloride detected in the indoor air sample SV-3 IA $(0.45 \ \mu g/m^3)$ and detection in the sub-slab less than $5 \ \mu g/m^3$, NYSDOH guidance suggests reasonable and practical actions should be implemented to identify source(s) and reduce exposures.

The results for PCE and 1,1,1-TCA were compared to Matrix 2 of the NYSDOH Soil Vapor Guidance. No further action is suggested by the matrices for 1,1,1-TCA (non-detect), PCE (non-detect), and TCE (non-detect). **Table 3** provides a summary of the recommended action by sample location as compared to the NYSDOH matrices.

4.1.4 SV-4

The SV-4 samples were collected from a private residence located northwest of the Site (**Figure 2**). Indoor air sample SV-4 IA, outdoor air sample SV-4 OA, and sub-slab sample SV-4 SS were collected at the SV-4 location.

The outdoor air sample SV-4 OA exceeded the *EPA BASE 90th percentile* concentration for ethyl acetate (1.5 $\mu g/m^3$) at 8.70 $\mu g/m^3$.

The indoor air sample SV-4 IA exceeded the *EPA BASE 90th percentile* concentration for ethanol (210.0 $\mu g/m^3$) at 220.0 $\mu g/m^3$ and ethyl acetate (5.4 $\mu g/m^3$) at 44 $\mu g/m^3$.

The results for TCE and carbon tetrachloride were compared to Matrix 1 of the NYSDOH Soil Vapor Guidance. The following actions are suggested by the matrix:

Based on the concentration of carbon tetrachloride detected in the indoor air sample SV-4 IA (0.46 μg/m³) and detection in the sub-slab less than 5 μg/m³, NYSDOH guidance suggests reasonable and practical actions should be implemented to identify source(s) and reduce exposures.

The results for PCE and 1,1,1-TCA were compared to Matrix 2 of the NYSDOH Soil Vapor Guidance. No further action is suggested by the matrices for 1,1,1-TCA (non-detect), PCE (non-detect), and TCE (non-detect). **Table 3** provides a summary of the recommended action by sample location as compared to the NYSDOH matrices.

4.1.5 SV-5

The SV-5 samples were collected from a private residence located northwest of the Site (**Figure 2**). Indoor air sample SV-5 IA, outdoor air sample SV-5 OA, and sub-slab sample SV-5 SS were collected at the SV-5 location.

The indoor air sample SV-5 IA exceeded the *EPA BASE 90th percentile* concentration for ethanol (210.0 $\mu g/m^3$) at 500.0 $\mu g/m^3$.

The outdoor air sample exceeded the *EPA BASE 90th percentile* concentration for ethyl acetate (1.5 $\mu g/m^3$) at 1.7 $\mu g/m^3$.

The sub-slab results did not exceed the NYSDOH Air Guideline Value for any of the contaminants.

The results for TCE and carbon tetrachloride were compared to Matrix 1 of the NYSDOH Soil Vapor Guidance. The following actions are suggested by the matrix:

Based on the concentration of carbon tetrachloride detected in the indoor air sample SV-5 IA (0.46 μg/m³) and detection in the sub-slab less than 5 μg/m³, NYSDOH guidance suggests reasonable and practical actions should be implemented to identify source(s) and reduce exposures.

The results for PCE and 1,1,1-TCA were compared to Matrix 2 of the NYSDOH soil vapor guidance. The following actions are suggested by the matrix:

Based on the concentration of 1,1,1-TCA detected in the indoor air sample SV-5 IA (7.1 $\mu g/m^3$) and detection in the sub-slab sample less than 100 $\mu g/m^3$, NYSDOH guidance suggests reasonable and practical actions should be implemented to identify source(s) and reduce exposures.

No further action is suggested by the matrices for PCE (non-detect) and TCE (non-detect). **Table 3** provides a summary of the recommended action by sample location as compared to the NYSDOH matrices.

4.2 Data Validation Findings

Data validation was completed by Environmental Quality Associates (EQA) of Middleton, New York. A complete copy of the Data Usability Summary Report (DUSR) is provided in **Appendix E**. The DUSR states that the air sample data is usable as reported with the following qualifications:

- Positive results for MIBK, acetone and IPA were qualified as estimated values (J) in associated samples, with indication of high bias. No positives were reported for 1,1,2,2-tetrachloroethane and therefore no qualifiers were assigned for this compound; and
- Freon-113 was qualified as estimated (UJ or J) in all SDG air samples, with indication of low bias due to reduced sensitivity relative to average ICAL RRF.

Section 5

Summary and Conclusions

The NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York is based on the relationship between sub-slab and indoor air vapor samples collected at each location. **Table 3** shows the recommended action for each location and the following sections provide a summary of the soil vapor intrusion investigation conducted in both the on-site and off-site sampling locations.

5.1 SV-1, 3466 Genesee St. – Front Building

SV-1 samples were collected from the front portion of the on-site building. Based on the NYSDOH matrices, the identified COCs for this sample location are TCE, carbon tetrachloride, and PCE. The NYSDOH matrix for PCE suggests mitigation to reduce exposure for this structure.

5.2 SV-2, 3466 Genesee St. – Back Building

SV-2 samples were collected from the back portion of the on-site building. Based on the NYSDOH matrices, the identified COCs for this sample location are TCE, PCE, and carbon tetrachloride. The NYSDOH matrices for TCE and PCE suggest mitigation to reduce exposure for this structure.

5.3 SV-3

SV-3 samples were collected from one location inside an off-site building. Based on the NYSDOH matrices, the identified COC for this sample location is carbon tetrachloride. The NYSDOH matrix for carbon tetrachloride suggests reasonable and practical action should be taken to identify source(s) and reduce exposure, as concentrations are likely due to sources other than soil vapor intrusion.

5.4 SV-4

SV-4 samples were collected from one location at an off-site residence. Based on the NYSDOH matrices, the identified COC for this sample location is carbon tetrachloride. The NYSDOH matrix for carbon tetrachloride suggests reasonable and practical action should be taken to identify source(s) and reduce exposure, as concentrations are likely due to sources other than soil vapor intrusion.

5.5 SV-5

SV-5 samples were collected from one location at an off-site residence. Based on the NYSDOH matrices, the identified COCs for this sample location are carbon tetrachloride and 1,1,1-TCA. The NYSDOH matrices for carbon tetrachloride and 1,1,1-TCA suggest reasonable and practical action should be taken to identify source(s) and reduce exposure, as concentrations are likely due to sources other than soil vapor intrusion.

5.6 Conclusions

The vapor samples collected from sub-slab, indoor air and outdoor ambient air at two off-site residential locations (SV-4 and SV-5), one off-site commercial structure (SV-3), and the on-site commercial structure (SV-1 and SV-2) indicate the presence of VOCs.

The sub-slab and indoor air results of the off-site residential locations (SV-4 and SV-5) and the off-site commercial structure (SV-3) do not suggest that vapor intrusion attributable to the site is affecting nearby structures. The results further indicate that soil vapor mitigation is not warranted at any of those locations at this time.

The sub-slab and indoor air results from the two sample locations in the on-site structure (SV-1 and SV-2) do suggest that vapor intrusion attributable to the groundwater contamination detected on-site is affecting air quality in the on-site structure. It is recommended that the vapor intrusion be mitigated in both the front and rear portions of the on-site building.

Location Buffalo, NY Date 4/122/13 Project/Client Former Doro Cleaners SUI Sampling Heather Hallett Heather Hallett 12:30 Arrived at SV-4 Eric Rosenzweig + Heather Italiett, CDM Smith. Dave Locey, NYS DEC on-site weather: sumy, 550F light breeze from west Private home, Anthony Schwab, owner let us in 13:04 Colden SS sample 24-hr to-15 Sample set up 13:05 SV-4 IA sample set up 13:06 SV-4 OA Sample Det up 14:10 Arrived at SV-5 Arlene Walkowski let us Moones Owner asked to not use existing hole in foundation near hot water heater for sample. Got break - through ~ 35% during helium test Retested, good seal 13:38 SV-5 SS 24hr to =15 sample set up Hearther Hellett

Location Bufferlo, NY Date 4/22/13 73 Project/Client Tormer Noro Cleaners SUI sampline 13:39 SV-5 LA sample Set up
13:40 SV-5 OA sample set up 14:10 Arrived at SV-3 commercial building used by candy company for storage 14:38 SV-3 SS 24 hr regulator 64 summa TO-15 started 14:39 SV-3 EA Started
14:40 SV-3 OA Started 15:00 SV-1 ; arrived Former Doro Cleaners building, Commercial, now used for Storage, Basil Korbut and Terry onsite 15:26 SV-2 301 24-hr regulator TO-15 GL summa Boardes 15:35 SV-1 352 + DUPZ started 15:38 SV-1 SAZ + DUP) Started 15:45 SV-2 OA started 16:20 CDU smith off-site, staying over nign+ in Buffalo orea Dave Locey, NYSDEC off-size

Location Buffelo, Ny Date 4/23/13 Project/Client Former Doro Cleaners SUI Sampling 12:15 Heather Hallett + Errc Rosen Zwerg on - site at SV-4 wearner: sunny Goof light breeze from west, waiting for home owner to arrive. Dave Locey NYSDEC on-side 12:30 collected summa caniblers at SV-4 13:10 left SV-4 , after parening hole with concrete Arrived at SV-5 , to 13:25 collect summer canisters 13:50 left SV-5 after patering hole 14:25 Arrived at SV-3 to collect summas and paten hore outdoor air sampe was never storted yesterday, no outdoor air sample 15:28 Arrived at SV-1/SV-2 Collect summas and Paten holo 15:54 Left SV-1/SV-2 and drove back to Lamam, CDM smith offsite Dave Locey off-stre 20:20 Henther Hallet + Eric Rosenzweity arrive at albany office and unload ever ment

Location	Date	75
Project / Client	CA STARTER	

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Doro Dry	Cleaners		Site Code:	915238	Operable Unit:OU2
Building Code:		Building Nar	ne:		
Address: SV-5				Apt/Suite No	D:
City: Cheektowaga		State:NY	Zip: 14225	County: E	Crie
Contact Information					
Preparer's Name: Heath	ner Hallett and Eric	Rosenzweig	J	_ Phone No:_	(518) 782-4500
Preparer's Affiliation:				Company Co	de:
Purpose of Investigation:				Date of Insp	ection: Apr 22, 2013
Contact Name: Arlene	Walkowski			Affiliation:	OWNER
Phone No: (716) 633	-6062 Alt. Phone	e No:		Email:	
Number of Occupants (tota	l): 1 Number o	of Children: 0			
Occupant Interviewed?		X Owner O	ccupied?	-	▼ Owner Interviewed?
Owner Name (if different):_				Owner Phone	<u>:</u>
Owner Mailing Address:					
					,
Foundation Description	on				
Foundation Type: BAS	SEMENT		Foundation Dept	h (bgs):	5 Unit: FEET
Foundation Floor Material:	POURED CONCRETE		Foundation Floor	Thickness:	6 Unit: INCHES
Foundation Wall Material:	POURED CONCRETE		Foundation Wall	Thickness:	5 Unit: INCHES
▼ Floor penetrations? I	Describe Floor Penetrations:_	Small flo	or drain, sump	o, hole ne	ar the back of the $lacktriangle$
Wall penetrations?	Describe Wall Penetrations:				
Basement is: PARTIALLY	FINISHED Basement is:	DRY	⋉ Sump	s/Drains? W	ater In Sump?: YES
	ition (cracks, seepage, etc.):_	Small cra			
Radon Mitigation Syste	m Installed?	☐ VOC Mitig	gation System Insta	lled?	Mitigation System On?
Heating/Cooling/Ven	tilation Systems				_
	CED AIR	Heat Fuel Type:	GAS		▼ Central A/C Present?
Vented Appliances					
Water Heater Fuel Type:	GAS		Clothes Dryer Fue		GAS
Water Htr Vent Location:	OUTSIDE		Dryer Vent Location	on:	DUTSIDE

New York State Department of Environmental Conservation

		PI	RODUCT INV	ENTORY			
Building Nam	ne:		Bldg (Code:	Date:	Apr 22, 2	2013
Bldg Address	: SV-5				Apt/Suite	No:	
Bldg City/Sta	te/Zip: Cheektowaga NY,	14225					
Make and Mo	odel of PID: Mini Rae 3000)		Date of Ca	libration:	Apr 22,	2013
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredie	nts	PID Reading	COC Y/N?
Basement	Rustoloeum wood finish		good			0	
basement	Grease		good			0	
basement	lock fluid		good			0	
basement	one lube		good			0	
basement	STP silicone spray		good			0	
basement	PB Blaster		good			0.2	×
basement	spray paint		good			0	
basement	liquid wrench		good			0	X
basement	CLR		good			0	
basement	Mineral spirit		good			1.7	
basement	spot remover		good			0	
basement	paints		good			0	
basement	bleach		good			0	
basement	ammonia		good			0	

Product Inventory Complete? Yes Were there any elevated PID readings taken on site? Yes $\overline{\times}$ Proc
--

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Doro Dry Cleaners	Site Code: 915238 Operable Unit: 0U2
Building Code: Building Nam	me:
Address: SV-5	Apt/Suite No:
City: Cheektowaga State:	e:_NY
Factors Affecting Indoor Air Quailty	
Frequency Basement/Lowest Level is Occupied?: SELDOM	Floor Material: CEMENT
☐ Inhabited? ☐ HVAC System On? ☐ E	Bathroom Exhaust Fan?
Alternate Heat Source:	Is there smoking in the building?
X Air Fresheners? Description/Location of Air Freshener	r:spray/basement
Cleaning Products Used Recently?: Description of Cleaning Produ	ucts:
Cosmetic Products Used Recently?: Description of Cosmetic Produ	ucts:
New Carpet or Furniture? Location of New Carpet/Furniture:	
Recent Dry Cleaning? Location of Recently Dry Cleaned Fabr	orics:
Recent Painting/Staining? Location of New Painting:	
Solvent or Chemical Odors? Describe Odors (if any):	
☐ Do Any Occupants Use Solvents At Work? If So, List Solvents Used	
Recent Pesticide/Rodenticide? Description of Last Use:	
Describe Any Household Activities (chemical use,/storage, unvented ap	opliances, hobbies, etc.) That May Affect Indoor Air Quality:
Any Prior Testing For Radon? If So, When?:	
Any Prior Testing For VOCs? If So, When?:	
Sampling Conditions	
Weather Conditions: SUNNY	Outdoor Temperature: 55 °F
Current Building Use: RANCH HOME	Barometric Pressure: NM in(hg)
Product Inventory Complete? Yes Building Questionna	aire Completed?

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Building Code:	Ac	ddress: SV-5					
Sampling Information							
Sampler Name(s):	HH ER		Sampler Comp	oany Code:			
Sample Collection Date	Apr 22, 2013		Date Samples	Sent To Lab:Apr	24, 2013		
Sample Chain of Custo	dy Number: NA		Outdoor Air Sa	ample Location ID: $\frac{SV}{-}$	7–5		
SUMMA Canister I	nformation						
Sample ID:	SV-5 SS	SV-5 IA	SV-5 OA				
Location Code:							
Location Type:	SUBSLAB	BASEMENT	OUTDOOR				
Canister ID:	1627	5300	1343				
Regulator ID:	3519	3521	3522				
Matrix:	Subslab Soil Vap	Indoor Air	Ambient Outd				
Sampling Method:	SUMMA AIR SAMPLII	SUMMA AIR SA	SUMMA AIR SA				
Sampling Area Inf	o						
Slab Thickness (inches):	7						
Sub-Slab Material:	DIRT						
Sub-Slab Moisture:	DAMP						
Seal Type:	CLAY						
Seal Adequate?:	×						
Sample Times and	Vacuum Readings						
Sample Start Date/Time:	4/22/13 1338	4/22/13 1339	4/22/13 1340				
Vacuum Gauge Start:	-29	-29.5	-30				
Sample End Date/Time:	4/23/13 1338	4/23/13 1339	4/23/13 1340				
Vacuum Gauge End:	-7.5	- 7	-6				
Sample Duration (hrs):	24	24	24				
Vacuum Gauge Unit:	in(hg)	in(hg)	in(hg)				
Sample QA/QC Rea	adings						
Vapor Port Purge:	$\overline{\times}$						
Purge PID Reading:	0.0						
Purge PID Unit:	ppm						
Tracer Test Pass:	\times						
Sample start	and end times should	be entered using	the following form	nat: MM/DD/YYY	Y HH:MM		

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

	click the box with the blue etch should be in a standar		v to upload a sketch of the lowest building level . Clear Image
		Des	sign Sketch
	Design Ske		es and Recommended Symbology
■ Identify a			, and outdoor air samples on the layout sketch.
	•		ifiable features, and include on the layout sketch.
	oom use (bedroom, living room, ne locations of the following feat		out sketch, using the appropriate symbols:
B or F	Boiler or Furnace	o Ot	ther floor or wall penetrations (label appropriately)
HW FP	Hot Water Heater Fireplaces		erimeter Drains (draw inside or outside outer walls as appropriate) reas of broken-up concrete
ws	Wood Stoves	• ss-1 Lo	ocation & label of sub-slab samples
W/D S	Washer / Dryer Sumps		ocation & label of indoor air samples ocation & label of outdoor air samples
@	Floor Drains		ocation and label of any pressure field test holes.

New York State Department of Environmental Conservation

FIRST FLOOR BUILDING LAYOUT SKETCH Please click the box with the blue border below to upload a sketch of the first floor of the building. Clear Image The sketch should be in a standard image format (.jpg, .png, .tiff) Design Sketch Design Sketch Guidelines and Recommended Symbology ■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch. ■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch ■ Identify the locations of the following features on the layout sketch, using the appropriate symbols: B or F Boiler or Furnace 0 Other floor or wall penetrations (label appropriately) HW Hot Water Heater XXXXXX Perimeter Drains (draw inside or outside outer walls as appropriate) FP ###### Fireplaces Areas of broken-up concrete WS Wood Stoves SS-1 Location & label of sub-slab samples W/D Washer / Dryer Location & label of indoor air samples IA-1 s Sumps Location & label of outdoor air samples OA-1 Floor Drains Location and label of any pressure field test holes. @ PFFT-1

New York State Department of Environmental Conservation

OUTDOOR PLOT LAYOUT SKETCH Please click the box with the blue border below to upload a sketch of the outdoor plot of the building as well as the surrounding area. The sketch should be in a standard image format (.jpg, .png, .tiff) Clear Image Design Sketch Design Sketch Guidelines and Recommended Symbology ■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch. ■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch ■ Identify the locations of the following features on the layout sketch, using the appropriate symbols: B or F Boiler or Furnace 0 Other floor or wall penetrations (label appropriately) HW Hot Water Heater XXXXXX Perimeter Drains (draw inside or outside outer walls as appropriate) FP ###### Fireplaces Areas of broken-up concrete WS Wood Stoves SS-1 Location & label of sub-slab samples W/D Washer / Dryer Location & label of indoor air samples IA-1 s Sumps Location & label of outdoor air samples OA-1 Floor Drains Location and label of any pressure field test holes. @ PFFT-1

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

Please click the box with the blue border below to upload a sketch of the lowest building level . The sketch should be in a standard image format (.jpg, .png, .tiff)

Clear Image

Design Sketch Guidelines and Recommended Symbology

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	XXXXXXX	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	######	Areas of broken-up concrete
WS	Wood Stoves	• SS-1	Location & label of sub-slab samples
W/D	Washer / Dryer	● IA-1	Location & label of indoor air samples
S	Sumps	• OA-1	Location & label of outdoor air samples
@	Floor Drains	• PFET-1	Location and label of any pressure field test holes.

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Doro Dry C	Cleaner		Site Code:	915238	Operable Unit:
Building Code:		_ Building Nan	ne:		
Address: SV-4				Apt/Suite No:	NA
City: Cheektowaga		State: NY	Zip: 14225	County: Er	rie
Contact Information					
Preparer's Name: Heath	er Hallett and Eric R	osenzweig		_ Phone No:	(518) 782-4500
Preparer's Affiliation:				Company Cod	e:
Purpose of Investigation:				Date of Inspec	ction: Apr 22, 2013
Contact Name: Anthony	y Schwab			Affiliation:	OWNER
Phone No: (716) 686-	-0573 Alt. Phone	No:		Email:	
Number of Occupants (total	l): 1 Number of	Children: 0			
Occupant Interviewed?		Owner Oc	ccupied?	-	X Owner Interviewed?
Owner Name (if different):				Owner Phone:	
Owner Mailing Address:					
Building Details					
Bldg Type (Res/Com/Ind/Mix	xed): RESIDENTIAL			Bldg Size (S/M	1/L): SMALL
If Commercial or Industrial F	acility, Select Operations:		If Residential Sel	•	pe:
Number of Floorer 1	Approx Voor Construction		RANCH HOM	E ng Insulated?	Attached Garage?
	Approx. Year Constructio ightness' and Airflows(e.g., resi				Attached darage:
Describe Overall building Ti	gritiess and Airnows(e.g., resi	uits of smoke t	ests):		
na					
Foundation Descriptio	on				
Foundation Type: BAS	SEMENT		Foundation Dept	h (bgs):	Unit: FEET
Foundation Floor Material:	POURED CONCRETE		Foundation Floor	-	Unit: INCHES
Foundation Wall Material:	POURED CONCRETE		Foundation Wall	Thickness: 6	
▼ Floor penetrations? □	Describe Floor Penetrations:	4 INCH FLO	OOR DRAIN, FE	W MINOR CRA	CKS
▼ Wall penetrations? □	Describe Wall Penetrations:	in front o	f house in sm	all crack i	n foundation wall
Basement is: UNFINISHE		DRY	⊠ Sump	s/Drains? Wa	ter In Sump?: YES
Describe Foundation Condit			mall cracks in		
Radon Mitigation Syster	n Installed?	☐ VOC Mitig	ation System Insta	lled?	Mitigation System On?
Heating/Cooling/Ven	tilation Systems				
Heating System: FORCE	ED AIR H	eat Fuel Type:	GAS		Central A/C Present?
Vented Appliances					
Water Heater Fuel Type:	GAS		Clothes Dryer Fue		AS
Water Htr Vent Location:	OUTSIDE		Dryer Vent Location	on: NO	ONE

New York State Department of Environmental Conservation

PRODUCT INVENTORY							
Building Nam	e:		Bldg (Code:	Date:	Apr 23, 2	2013
Bldg Address:	SV-4				_ Apt/Suite l	No: NA	
Bldg City/Stat	ce/Zip: Cheektowaga NY,	14225					
Make and Mo	del of PID: Mini Rae 3000)		Date of Co	alibration:	Apr 22,	2013
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredie	ents	PID Reading	COC Y/N?
Basement	paint		good			0	
Basement	Spray paint		good			0	
Basement	waterproofing spray for cloths		good			0	
Basement	Draino		good			0	
Basement	Lime-away		good			0	
Basement	Bleach		good			0	

Product Inventory Complete?	Yes	Were there any elevated PID readings taken on site?	No	▼ Products with COC?
-----------------------------	-----	---	----	----------------------

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Doro Dry Cle	eaner	S	ite Code: 915	5238 Opera	able Unit:	
Building Code:	Build	ling Name:				
Address: SV-4				Apt/Suite No:	NA	
City: Cheektowaga		_ State: NY	Zip: 14225	County:_	Erie	
Factors Affecting Indoo	or Air Quailty					
Frequency Basement/Lowest	Level is Occupied?: ALMOST	NEVER	Floor Material	: CEMENT		
☐ Inhabited?	HVAC System On?	☐ Bathro	om Exhaust Fan	? K	itchen Exhaust Fan?	
Alternate Heat Source:				Is there smoking i	in the building?	
X Air Fresheners?	Description/Location of Air Fr	eshener: ki	tchen Spray	,		
Cleaning Products Used R	ecently?: Description of Cleanin	ng Products:				
Cosmetic Products Used Recently?: Description of Cosmetic Products:						
New Carpet or Furniture?	Location of New Carpet/Furni	ture:				
Recent Dry Cleaning?	Location of Recently Dry Clear	ned Fabrics:				
Recent Painting/Staining?	Location of New Painting:					
Solvent or Chemical Odors? Describe Odors (if any):						
Do Any Occupants Use Solvents At Work? If So, List Solvents Used:						
Recent Pesticide/Rodention	cide? Description of Last Use:					
Describe Any Household Activities (chemical use,/storage, unvented appliances, hobbies, etc.) That May Affect Indoor Air Quality:						
Any Prior Testing For Radon? If So, When?:						
Any Prior Testing For VOC	If So, When?:					
Sampling Conditions						
Weather Conditions: SU	JNNY	Outdo	oor Temperature	: 55	°F	
Current Building Use:	ANCH HOME	Baron	netric Pressure:		in(hg)	
Product Inventory Complete? Yes Building Questionnaire Completed?						

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Building Code: Address: SV-4								
Sampling Information								
Sampler Name(s):	HH ER Sampler Company Code:							
Sample Collection Date	e: Apr 22, 2013 Date Samples Sent To Lab: Apr 24, 2013							
Sample Chain of Custody Number: NA Outdoor Air Sample Location ID: SV-4 OA								
SUMMA Canister Information								
Sample ID:	SV-4 SS	SV-4 IA	SV-4 OA					
Location Code:								
Location Type:	SUBSLAB	BASEMENT	OUTDOOR					
Canister ID:	1805	1340	1649					
Regulator ID:	3518	3520	3517					
Matrix:	Subslab Soil Vap	Indoor Air	Ambient Outd					
Sampling Method:	SUMMA AIR SAMPLII	SUMMA AIR SA	SUMMA AIR SA					
Sampling Area Info								
Slab Thickness (inches):	6							
Sub-Slab Material:	DIRT							
Sub-Slab Moisture:	DRY							
Seal Type:	WAX							
Seal Adequate?:								
Sample Times and Vacuum Readings								
Sample Start Date/Time:	4/22/13 1304	4/22/13 1305	4/22/13 1306					
Vacuum Gauge Start:	-30	-30	-30					
Sample End Date/Time:	4/23/13 1304	4/22/13 1305	4/22/13 1333					
Vacuum Gauge End:	-8.5	-6.5	-3					
Sample Duration (hrs):	24	24	23.4					
Vacuum Gauge Unit:	psi	in(hg)	in(hg)					
Sample QA/QC Readings								
Vapor Port Purge:	X							
Purge PID Reading:	0.0							
Purge PID Unit:	ppm							
Tracer Test Pass:	X							
Sample start	and end times should	he entered using	the following form	mat: MM/DD/VVV	√ HH·MM			

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

					border be				lowest building level .	Clear Image
						Design Sk	etch			
			D	esign Sk				ended Syn	nbology	
	■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.									
■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketc										
	-	•		_			•		ate symbols:	
	B or F	Boiler or	Furnace	-	0	Other floo	or or wall pe	enetrations ((label appropriately)	
	HW FP	Hot Wat Fireplac	er Heater es		**************************************		r Drains (dr broken-up (r outside outer walls as appro	priate)
	WS W/D	Wood S Washer			SS-1IA-1			ub-slab san ndoor air sai		
	S	Sumps	, Diyei		• OA-1			utdoor air s		
	@	Floor Dr	ains		• PFET-1	Location	and label o	f any pressu	ure field test holes.	

New York State Department of Environmental Conservation

FIRST FLOOR BUILDING LAYOUT SKETCH Please click the box with the blue border below to upload a sketch of the first floor of the building. Clear Image The sketch should be in a standard image format (.jpg, .png, .tiff) Design Sketch Design Sketch Guidelines and Recommended Symbology ■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch. ■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch ■ Identify the locations of the following features on the layout sketch, using the appropriate symbols: B or F Boiler or Furnace 0 Other floor or wall penetrations (label appropriately) HW Hot Water Heater XXXXXX Perimeter Drains (draw inside or outside outer walls as appropriate) FP ###### Fireplaces Areas of broken-up concrete WS Wood Stoves SS-1 Location & label of sub-slab samples W/D Washer / Dryer Location & label of indoor air samples IA-1 s Sumps Location & label of outdoor air samples OA-1 Floor Drains Location and label of any pressure field test holes. @ PFFT-1

New York State Department of Environmental Conservation

OUTDOOR PLOT LAYOUT SKETCH Please click the box with the blue border below to upload a sketch of the outdoor plot of the building as well as the surrounding area. The sketch should be in a standard image format (.jpg, .png, .tiff) Clear Image Design Sketch Design Sketch Guidelines and Recommended Symbology ■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch. ■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch ■ Identify the locations of the following features on the layout sketch, using the appropriate symbols: B or F Boiler or Furnace 0 Other floor or wall penetrations (label appropriately) HW Hot Water Heater XXXXXX Perimeter Drains (draw inside or outside outer walls as appropriate) FP ###### Fireplaces Areas of broken-up concrete WS Wood Stoves SS-1 Location & label of sub-slab samples W/D Washer / Dryer Location & label of indoor air samples IA-1 s Sumps Location & label of outdoor air samples OA-1 Floor Drains Location and label of any pressure field test holes. @ PFFT-1

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

Please click the box with the blue border below to upload a sketch of the lowest building level . The sketch should be in a standard image format (.jpg, .png, .tiff)

Clear Image

Design Sketch Guidelines and Recommended Symbology

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketc
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

BorF	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)				
HW	Hot Water Heater	xxxxxxx	Perimeter Drains (draw inside or outside outer walls as appropriate)				
FP	Fireplaces	######	Areas of broken-up concrete				
ws	Wood Stoves	• SS-1	Location & label of sub-slab samples				
W/D	Washer / Dryer	• JA-1	Location & label of indoor air samples				
S	Sumps	• OA-1	Location & label of outdoor air samples				
@ Floor Drains		• PFET-I	Location and label of any pressure field test holes.				

Site Name: Doro Dry Cleaners	Site Code: 915238 Operable Unit:					
Building Code: Building N	lame:					
Address: SV-1/SV-2 1 of 2	Apt/Suite No:					
City: Cheektowaga State: NY	Zip: 14225 County: Erie					
Contact Information						
Preparer's Name: Heather Hallett and Eric Rosenzwei	g Phone No: (518)782-4500					
Preparer's Affiliation:	Company Code:					
Purpose of Investigation:	Date of Inspection:					
Contact Name: Basil Korbut	Affiliation: OWNER					
Phone No: (716) 827-3770 Alt. Phone No:	Email:					
Number of Occupants (total): 2 Number of Children:	0					
Occupant Interviewed?	Occupied? X Owner Interviewed?					
Owner Name (if different):	Owner Phone:					
Owner Mailing Address:						
Building Details						
Bldg Type (Res/Com/Ind/Mixed): COMMERCIAL/MIXED	Bldg Size (S/M/L): MEDIUM					
If Commercial or Industrial Facility, Select Operations: DRY CLEANER	If Residential Select Structure Type:					
Number of Floors: Approx. Year Construction:	Building Insulated?					
Describe Overall Building 'Tightness' and Airflows(e.g., results of smok	e tests):					
Poor, leaky garage doors, open front door, gar during & sampling	age door open before we arrived, closed					
Foundation Description						
Foundation Type: NO BASEMENT/SLAB	Foundation Depth (bgs): Unit: FEET					
Foundation Floor Material: POURED CONCRETE	Foundation Floor Thickness: 10 Unit: INCHES					
Foundation Wall Material: CONCRETE BLOCK	Foundation Wall Thickness:					
Floor penetrations? Describe Floor Penetrations: lrg cist	ern, trench, floor drains					
Wall penetrations? Describe Wall Penetrations: Several 1	holes, wall fan on east wall					
Basement is: Basement is:	Sumps/Drains? Water In Sump?:					
	ge cracks					
	tigation System Installed? Mitigation System On?					
Heating/Cooling/Ventilation Systems						
Heating System: FORCED AIR Heat Fuel Typ	e: GAS Central A/C Present?					
Vented Appliances						
Water Heater Fuel Type: NONE	Clothes Dryer Fuel Type: NO CLOTHES DRYER					
Water Htr Vent Location: NONE	Dryer Vent Location: NONE					

New York State Department of Environmental Conservation

PRODUCT INVENTORY								
Building Nam	e:		Bldg C	ode:	Date:	Apr 22, 2	2013	
Bldg Address	SV-1/SV-2 1 of 2				Apt/Suite	No:		
Bldg City/Stat	e/Zip: Cheektowaga NY,	14225						
Make and Mo	del of PID: Mini Rae 3000)		Date of	Calibration:	Apr 22,	2013	
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingred	ients	PID Reading	COC Y/N?	
Back part of bu	Paints		good			0		
Back part of bu	Paint thinner		good			0		
Back part of bu	Mineral spirits		good			0		
Back part of bu	Rust oleum pint		good			0		
Back part of bu	Spray lubricant		good			0		
Back part of bu	steel polish		good			0		
Back part of bu	brake part cleaner		good			0		
Back part of bu	frosted glass spray		good			0		
Back part of bu	gasoline can		good			0		

Product Inventory Complete? Ye	es	Were there any elevated PID readings taken on site?	No	Products with CO
--------------------------------	----	---	----	------------------

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Site Name: Doro Dry Cleaners	Site Code: 91523	8 Operak	ole Unit:
Building Code: Building Name:			
Address: SV-1/SV-2 1 of 2		Apt/Suite No:	
City: Cheektowaga State: N	Zip: 14225	County:	Erie
Factors Affecting Indoor Air Quailty			
Frequency Basement/Lowest Level is Occupied?: ALMOST NEVER	Floor Material:	CEMENT	
☐ Inhabited? ☐ HVAC System On? ☐ Bath	room Exhaust Fan?	☐ Kit	chen Exhaust Fan?
Alternate Heat Source: GAS	☐ Is t	there smoking in	the building?
Air Fresheners? Description/Location of Air Freshener:			
Cleaning Products Used Recently?: Description of Cleaning Products:			
Cosmetic Products Used Recently?: Description of Cosmetic Products			
New Carpet or Furniture? Location of New Carpet/Furniture:			
Recent Dry Cleaning? Location of Recently Dry Cleaned Fabrics:			
Recent Painting/Staining? Location of New Painting: Indoor wa	lls recently pa	ainted	
Solvent or Chemical Odors? Describe Odors (if any):			
Do Any Occupants Use Solvents At Work? If So, List Solvents Used:			
Recent Pesticide/Rodenticide? Description of Last Use:			
Describe Any Household Activities (chemical use,/storage, unvented applian	nces, hobbies, etc.) Th	at May Affect Ind	loor Air Quality:
Any Prior Testing For Radon? If So, When?:			
Any Prior Testing For VOCs? If So, When?:			
Sampling Conditions			
Weather Conditions: SUNNY Our	door Temperature:	55	°F
Current Building Use: DRY CLEANER Bar	ometric Pressure:	nm	in(hg)
Product Inventory Complete? Yes Building Questionnaire	Completed?		

New York State Department of Environmental Conservation

Building Code:	Ac	ddress: 3466 Gen	esee St 1 of 2	Cheektowaga, NY	14225					
Sampling Information										
Sampler Name(s):	Sampler Name(s): HH and ER Sampler Company Code:									
Sample Collection Date	e: Apr 22, 2013		Date Samples	Sent To Lab:Apr	24, 2013					
Sample Chain of Custody Number: NA Outdoor Air Sample Location ID: 3466 Genes										
SUMMA Canister II	nformation									
Sample ID:	SV-2 SS1	SV-1 IA2	SV-1 SS2	SV-1 Dup 1	SV-2 OA					
Location Code:										
Location Type:	SUBSLAB	FIRST FLOOR	SUBSLAB	FIRST FLOOR	OUTDOOR					
Canister ID:	1271	1813	1458	1843	1105					
Regulator ID:	3345	3516	3514	3515	3511					
Matrix:	Subslab Soil Vap	Indoor Air	Subslab Soil	Indoor Air	Ambient Outd					
Sampling Method:	SUMMA AIR SAMPLII	SUMMA AIR SA	SUMMA AIR SA	SUMMA AIR SA	SUMMA AIR SA					
Sampling Area Inf	o									
Slab Thickness (inches):	10		6							
Sub-Slab Material:	DIRT		DIRT							
Sub-Slab Moisture:	DRY		DRY							
Seal Type:	WAX		WAX							
Seal Adequate?:	X		X							
Sample Times and	Vacuum Readings									
Sample Start Date/Time:	4/22/13 1526	4/22/13 1538	4/22/13 1535	4/22/13 1535	4/22/13 1545					
Vacuum Gauge Start:	-28.5	-29.5	-29	-29	-28					
Sample End Date/Time:	4/23/13 1526	4/23/13 1538	4/23/13 1535	4/23/13 1535	4/23/13 1545					
Vacuum Gauge End:	-7	-7	-5	-8	-4					
Sample Duration (hrs):	24	24	24	24	24					
Vacuum Gauge Unit:	in(hg)	in(hg)	in(hg)	in(hg)	in(hg)					
Sample QA/QC Rea	adings									
Vapor Port Purge:	×		×							
Purge PID Reading:	0.4		1.2							
Purge PID Unit:	ppm		ppm							
Tracer Test Pass:	×		X							
Sample start and end times should be entered using the following format: MM/DD/YYYY HH:MM										

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

	Please	click the box with the	e blue border be	low to upload a	sketch of the lo	west building level .	Clear Imag
	The sk	etch should be in a st	andard image fo	ormat (.jpg, .png,	.tiff)		Clear IIIIag
				Design Sketch			
L		Dosid			mandad Cumbu	alogu,	
	- Identify a	and label the locations of		lines and Recom		-	
							+++
		the distance of all samp				e iayout sketch.	
	•	oom use (bedroom, living					
	■ Identify the last of the	ne locations of the followi	ng features on the	layout sketch, usin	g the appropriate	symbols:	
	B or F	Boiler or Furnace	0	Other floor or wal			+ + +
	HW FP	Hot Water Heater Fireplaces	XXXXXXX ######	Perimeter Drains Areas of broken-u		ıtside outer walls as appı	ropriate)
	WS	Wood Stoves	###### ● SS-1	Location & label of		es	-
	W/D	Washer / Dryer	● IA-1	Location & label of			
	s	Sumps	• OA-1	Location & label of			-
	@	Floor Drains	● PFET-1	Location and labe			

	FIF	RST FLOOR I	BUILDING LAYO	OUT SKETCH		
Dlagge		اه ما بده امید ما دیاد	to	ala af tha fivet fla		
	click the box with the b tch should be in a stan				or of the building.	Clear Image
THE SKE	teri siloulu de ili a stari	idald illiage for	imat (.jpg, .prig, .tiii	,		
			Design Sketch			
	Design	n Sketch Guide	lines and Recomme	ended Symbology	у	
■ Identify a	nd label the locations of al	ll sub-slab indoo	r air and outdoor air s	amples on the lavou		
	the distance of all sample				out sketch.	
■ Identify ro	oom use (bedroom, living r	room, den, kitche	n, etc.) on the layout s	sketc		
■ Identify th	ne locations of the following	g features on the	layout sketch, using t	he appropriate symb	ools:	
B or F	Boiler or Furnace	0	Other floor or wall pe	enetrations (label ap	propriately)	
HW	Hot Water Heater	xxxxxxx	*		outer walls as appropri	ate)
FP	Fireplaces	#####	Areas of broken-up			
WS	Wood Stoves	• SS-1	Location & label of s	•		
W/D	Washer / Dryer	• IA-1	Location & label of in			
S	Sumps	• OA-1	Location & label of o		taat balas	
@	Floor Drains	● PFET-1	Location and label of	any pressure field	test noies.	

New York State Department of Environmental Conservation

OUTDOOR PLOT LAYOUT SKETCH Please click the box with the blue border below to upload a sketch of the outdoor plot of the building as well as the surrounding area. The sketch should be in a standard image format (.jpg, .png, .tiff) Clear Image Design Sketch Design Sketch Guidelines and Recommended Symbology ■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch. ■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch ■ Identify the locations of the following features on the layout sketch, using the appropriate symbols: B or F Boiler or Furnace 0 Other floor or wall penetrations (label appropriately) HW Hot Water Heater XXXXXX Perimeter Drains (draw inside or outside outer walls as appropriate) FP ###### Fireplaces Areas of broken-up concrete WS Wood Stoves SS-1 Location & label of sub-slab samples W/D Washer / Dryer Location & label of indoor air samples IA-1 s Sumps Location & label of outdoor air samples OA-1 Floor Drains Location and label of any pressure field test holes. @ PFFT-1

Site Name: Doro Dry Cleaners	Site Code: 915238	Operable Unit:				
Building Code: Buildin	Name:					
Address: SV-1/SV-2 2 of 2	Apt/Sı	uite No:				
City: Cheektowaga State:	Zip: 14225 Count	y:Erie				
Contact Information						
Preparer's Name: Heather Hallett and Eric Rosenzw	eig Phone	e No: (518)782-4500				
Preparer's Affiliation:	Compa	ny Code:				
Purpose of Investigation:	Date o	of Inspection: Apr 22, 2013				
Contact Name: Basil Korbut	Affilia	otion: OWNER				
Phone No: (716) 827-3770 Alt. Phone No:	Email	l:				
Number of Occupants (total): 2 Number of Children	0					
Occupant Interviewed?	er Occupied?	▼ Owner Interviewed?				
Owner Name (if different):	Owner	Phone:				
Owner Mailing Address:						
Building Details						
Bldg Type (Res/Com/Ind/Mixed): COMMERCIAL/MIXED	Bldg S	ize (S/M/L): MEDIUM				
If Commercial or Industrial Facility, Select Operations: DRY CLEANER	If Residential Select Struc	cture Type:				
Number of Floors: 1 Approx. Year Construction:	Building Insula	ated? Attached Garage?				
Describe Overall Building 'Tightness' and Airflows(e.g., results of sn	oke tests):					
Poor, leaky garage doors, open front door, g	arage door open before	we arrived, closed				
Foundation Description						
Foundation Type: NO BASEMENT/SLAB	Foundation Depth (bgs):	Unit: FEET				
Foundation Floor Material: POURED CONCRETE	Foundation Floor Thickne	ess: 10 Unit: INCHES				
Foundation Wall Material: CONCRETE BLOCK	Foundation Wall Thickness	SS:				
Floor penetrations? Describe Floor Penetrations: lrg c:	stern, trench, floor d	rains				
▼ Wall penetrations? Describe Wall Penetrations: Several	holes, wall fan on ea	ast wall				
Basement is: Basement is:	Sumps/Drains	Water In Sump?:				
Describe Foundation Condition (cracks, seepage, etc.) :Some _ :	arge cracks					
Radon Mitigation System Installed?	Mitigation System Installed?	Mitigation System On?				
Heating/Cooling/Ventilation Systems						
Heating System: FORCED AIR Heat Fuel	ype: GAS	Central A/C Present?				
Vented Appliances						
Water Heater Fuel Type: NONE	Clothes Dryer Fuel Type:	NO CLOTHES DRYER				
Water Htr Vent Location: NONE	Dryer Vent Location:	NONE				

New York State Department of Environmental Conservation

PRODUCT INVENTORY								
Building Nam	e:		Bldg C	ode:	Date:	Apr 22, 2	2013	
Bldg Address:	SV-1/SV-2 2 of 2				Apt/Suite	No:		
Bldg City/Stat	e/Zip: Cheektowaga NY,	14225						
Make and Mo	del of PID: Mini Rae 3000)		Date of 0	Calibration:_	Apr 22,	2013	
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingred	ients	PID Reading	COC Y/N?	
Back part of bu	Paints		good			0		
Back part of bu	Paint thinner		good			0		
Back part of bu	Mineral spirits		good			0		
Back part of bu	Rust oleum pint		good			0		
Back part of bu	Spray lubricant		good			0		
Back part of bu	steel polish		good			0		
Back part of bu	brake part cleaner		good			0		
Back part of bu	frosted glass spray		good			0		
Back part of bu	gasoline can		good			0		

Product Inventory Complete?	Yes	Were there any elevated PID readings taken on site? No	Products with COC?
-----------------------------	-----	--	--------------------

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Site Name: Doro Dry Cleaners	Site Code: 9152	Opera	ble Unit:
Building Code: Building Name:			
Address: SV-1/SV-2 2 of 2		_ Apt/Suite No:	
City: Cheektowaga State: NY	Zip:_ 14225	_ County:_	Erie
Factors Affecting Indoor Air Quailty			
Frequency Basement/Lowest Level is Occupied?: ALMOST NEVER	Floor Material:	CEMENT	
☐ Inhabited? ☐ HVAC System On? ☐ Bathro	oom Exhaust Fan?	☐ Kit	chen Exhaust Fan?
Alternate Heat Source: GAS		s there smoking ir	n the building?
Air Fresheners? Description/Location of Air Freshener:			
Cleaning Products Used Recently?: Description of Cleaning Products:_			
Cosmetic Products Used Recently?: Description of Cosmetic Products:			
New Carpet or Furniture? Location of New Carpet/Furniture:			_
Recent Dry Cleaning? Location of Recently Dry Cleaned Fabrics:_			_
Recent Painting/Staining? Location of New Painting: Indoor wa	lls recently	painted	
Solvent or Chemical Odors? Describe Odors (if any):			
Do Any Occupants Use Solvents At Work? If So, List Solvents Used:			
Recent Pesticide/Rodenticide? Description of Last Use:			
Describe Any Household Activities (chemical use,/storage, unvented applian	ces, hobbies, etc.)	hat May Affect Inc	door Air Quality:
Any Prior Testing For Radon? If So, When?:			
Any Prior Testing For VOCs? If So, When?:			
Sampling Conditions			
	loor Temperature:	55	°F
Current Building Use: DRY CLEANER Baro	metric Pressure:	nm	in(hg)
Product Inventory Complete? Yes	ompleted?		

New York State Department of Environmental Conservation

Building Code:	A	ddress: 3466 Ger	nesee St 2 of 2	Cheektowaga, N	Y 14225
Sampling Information	tion				
Sampler Name(s):	HH and ER		Sampler Com	pany Code:	
Sample Collection Date	e: Apr 22, 2013		Date Samples	Sent To Lab: Apı	24, 2013
Sample Chain of Custo	dy Number:		Outdoor Air S	ample Location ID:	3466 Genes
SUMMA Canister II	nformation				
Sample ID:	SV-1 Dup 2				
Location Code:					
Location Type:	SUBSLAB				
Canister ID:	1503				
Regulator ID:	3513				
Matrix:	Subslab Soil Vapo				
Sampling Method:	SUMMA AIR SAMPLII				
Sampling Area Info	o				
Slab Thickness (inches):	6				
Sub-Slab Material:	DIRT				
Sub-Slab Moisture:	DRY				
Seal Type:	WAX				
Seal Adequate?:	×				
Sample Times and	Vacuum Readings				
Sample Start Date/Time:	4/22/13 1533				
Vacuum Gauge Start:	-27				
Sample End Date/Time:	4/23/13 1533				
Vacuum Gauge End:	-5				
Sample Duration (hrs):	24				
Vacuum Gauge Unit:	in(hg)				
Sample QA/QC Rea	adings				
Vapor Port Purge:					
Purge PID Reading:	1.2				
Purge PID Unit:	ppm				
Tracer Test Pass:	X				
Sample start	and end times should	d be entered using	g the following for	mat: MM/DD/YYY	Y HH:MM

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

	Please	click the box with the	e blue border be	low to upload a	sketch of the lo	west building level .	Clear Imag
	The sk	etch should be in a st	andard image fo	ormat (.jpg, .png,	.tiff)		Clear IIIIag
				Design Sketch			
L		Dosid			mandad Cumbu	alogu,	
	- Identify a	and label the locations of		lines and Recom		-	
							+++
		the distance of all samp				e iayout sketch.	
	•	oom use (bedroom, living					
	■ Identify the last of the	ne locations of the followi	ng features on the	layout sketch, usin	g the appropriate	symbols:	
	B or F	Boiler or Furnace	0	Other floor or wal			+ + +
	HW FP	Hot Water Heater Fireplaces	XXXXXXX ######	Perimeter Drains Areas of broken-u		ıtside outer walls as appı	ropriate)
	WS	Wood Stoves	###### ● SS-1	Location & label of		es	-
	W/D	Washer / Dryer	● IA-1	Location & label of			
	s	Sumps	• OA-1	Location & label of			-
	@	Floor Drains	● PFET-1	Location and labe			

	FIF	RST FLOOR I	BUILDING LAYO	OUT SKETCH		
Dlagge		اه ما بده امید ما دیار	to	ala af tha fivet fla		
	click the box with the b tch should be in a stan				or of the building.	Clear Image
THE SKE	teri siloulu de ili a stari	idald illiage for	imat (.jpg, .prig, .tiii	,		
			Design Sketch			
	Design	n Sketch Guide	lines and Recomme	ended Symbology	у	
■ Identify a	nd label the locations of al	ll sub-slab indoo	r air and outdoor air s	amples on the lavou		
	the distance of all sample				out sketch.	
■ Identify ro	oom use (bedroom, living r	room, den, kitche	n, etc.) on the layout s	sketc		
■ Identify th	ne locations of the following	g features on the	layout sketch, using t	he appropriate symb	ools:	
B or F	Boiler or Furnace	0	Other floor or wall pe	enetrations (label ap	propriately)	
HW	Hot Water Heater	xxxxxxx	*		outer walls as appropri	ate)
FP	Fireplaces	#####	Areas of broken-up			
WS	Wood Stoves	• SS-1	Location & label of s	•		
W/D	Washer / Dryer	• IA-1	Location & label of in			
S	Sumps	• OA-1	Location & label of o		taat balas	
@	Floor Drains	● PFET-1	Location and label of	any pressure field	test noies.	

New York State Department of Environmental Conservation

OUTDOOR PLOT LAYOUT SKETCH Please click the box with the blue border below to upload a sketch of the outdoor plot of the building as well as the surrounding area. The sketch should be in a standard image format (.jpg, .png, .tiff) Clear Image Design Sketch Design Sketch Guidelines and Recommended Symbology ■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch. ■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch ■ Identify the locations of the following features on the layout sketch, using the appropriate symbols: B or F Boiler or Furnace 0 Other floor or wall penetrations (label appropriately) HW Hot Water Heater XXXXXX Perimeter Drains (draw inside or outside outer walls as appropriate) FP ###### Fireplaces Areas of broken-up concrete WS Wood Stoves SS-1 Location & label of sub-slab samples W/D Washer / Dryer Location & label of indoor air samples IA-1 s Sumps Location & label of outdoor air samples OA-1 Floor Drains Location and label of any pressure field test holes. @ PFFT-1

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

Please click the box with the blue border below to upload a sketch of the lowest building level. The sketch should be in a standard image format (.jpg, .png, .tiff)

Clear Image

Design Sketch Guidelines and Recommended Symbology

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketc
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)
Hot Water Heater	XXXXXXX	Perimeter Drains (draw inside or outside outer walls as appropriate)
Fireplaces	######	Areas of broken-up concrete
Wood Stoves	• SS-1	Location & label of sub-slab samples
Washer / Dryer	• IA-1	Location & label of indoor air samples
Sumps	• OA-1	Location & label of outdoor air samples
Floor Drains	• PFET-1	Location and label of any pressure field test holes.
	Hot Water Heater Fireplaces Wood Stoves Washer / Dryer Sumps	Hot Water Heater Fireplaces Wood Stoves Washer / Dryer Sumps **Example 1

Site Name: Doro Dry cl	eaners		Site Code:	915238	Operable Unit:
Building Code:		Building Na	me:		
Address: SV-3				Apt/Suite No	o:
City: Cheektowaga		State: NY	Zip: 14225	County: E	rie
Contact Information					
Preparer's Name: Heather	r Hallett and Eric R	osenzweig		_ Phone No:	(518) 782-4500
Preparer's Affiliation:				Company Co	de:
Purpose of Investigation:				Date of Inspe	ection: Apr 22, 2013
Contact Name: Beth DeL	illis			Affiliation:	MANAGER
Phone No: (716) 995-9	121 Alt. Phone I	No:		Email:	
Number of Occupants (total):	Number of	Children:		_	
▼ Occupant Interviewed?		Owner O	ccupied?		Owner Interviewed?
Owner Name (if different):	Phillip Terranova, 3	500 Genes	ee Associates	Owner Phone	2: (716) 634-4545
Owner Mailing Address: 35	Genesee St, Cheekto	owaga, NY	14225		
Building Details					
Bldg Type (Res/Com/Ind/Mixe	ed): COMMERCIAL/MIX	ED		Bldg Size (S/	M/L): LARGE
If Commercial or Industrial Factorial FOOD SERVICE	cility, Select Operations:		If Residential Sel	ect Structure T	ype:
Number of Floors: 1	Approx. Year Constructio	n:	Buildiı	ng Insulated?	Attached Garage?
Describe Overall Building 'Tigl	htness' and Airflows(e.g., resu	ults of smoke	tests):		
Foundation Description	l				
Foundation Type: NO BA	ASEMENT/SLAB		Foundation Dept	h (bgs):	Unit: FEET
Foundation Floor Material:	POURED CONCRETE		Foundation Floor	Thickness:	6 Unit: INCHES
Foundation Wall Material:			Foundation Wall	Thickness:	5
Floor penetrations? De	scribe Floor Penetrations:				
Wall penetrations? De	scribe Wall Penetrations:				
Basement is:	Basement is:		☐ Sump	os/Drains? W	ater In Sump?:
Describe Foundation Condition	on (cracks, seepage, etc.):				
Radon Mitigation System	Installed?	☐ VOC Mitig	gation System Insta	lled?	☐ Mitigation System On?
Heating/Cooling/Venti	lation Systems				
Heating System: FORCE	D AIR H	eat Fuel Type	: GAS		▼ Central A/C Present?
Vented Appliances					
Water Heater Fuel Type:	GAS		Clothes Dryer Fue	l Туре:	
Water Htr Vent Location:	OUTSIDE		Dryer Vent Location	on:	

New York State Department of Environmental Conservation

PRODUCT INVENTORY											
Building Nam	e:		Bldg C	lode:	Date:	Apr 22, 2	2013				
Bldg Address:	SV-3				Apt/Suite	No:					
Bldg City/Stat	e/Zip: Cheektowaga NY,	14225									
Make and Mo	del of PID: Mini Rae 3000			Date	of Calibration:	Apr 22,	2013				
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ing	redients	PID Reading	COC Y/N?				
West wall	Air freshener (Automatic)		good			0.0					

Product Inventory Complete?	Yes	Were there any elevated PID readings taken on site? No)	Г	Products with COC
-----------------------------	-----	--	---	---	-------------------

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Site Name: Doro Dry cleaners		Site Code	e: 915238	Operat	ole Unit:
Building Code:	Building N	ame:			
Address: SV-3			A	pt/Suite No:	
City: Cheektowaga	Sta	te: NY Zip:	14225	County:	Erie
Factors Affecting Indoor Air Qua	nilty				
Frequency Basement/Lowest Level is Occu	upied?: OCCASIONALL	Y Floor	Material:	INOLEUM/VII	NYL
Inhabited? X HVAC S	System On?	Bathroom Exh	aust Fan?	☐ Kite	chen Exhaust Fan?
Alternate Heat Source:			☐ Is th	ere smoking in	the building?
Air Fresheners? Descript	ion/Location of Air Freshen	er:			
Cleaning Products Used Recently?:	Description of Cleaning Pro	ducts:			
Cosmetic Products Used Recently?:	Description of Cosmetic Pro	ducts:			
New Carpet or Furniture? Location	n of New Carpet/Furniture:_				
Recent Dry Cleaning? Location	of Recently Dry Cleaned Fa	abrics:			
Recent Painting/Staining? Location	n of New Painting:				
Solvent or Chemical Odors? Describe	e Odors (if any):				
Do Any Occupants Use Solvents At Wo	ork? If So, List Solvents Us	ed:			
Recent Pesticide/Rodenticide? Desc	ription of Last Use: Pest	cicide man d	comes with	traps. de	oes not use
Describe Any Household Activities (chemic	cal use,/storage, unvented a	appliances, hobl	oies, etc.) That	: May Affect Ind	loor Air Quality:
Any Prior Testing For Radon? If So	o, When?:				
Any Prior Testing For VOCs? If So	o, When?:				
Sampling Conditions					,
Weather Conditions: SUNNY		Outdoor Tem	perature:	60	°F
Current Building Use: FOOD SERVI	CE	Barometric P	ressure:		in(hg)
Product Inventory Complete? Yes	⊠ Building Question	naire Complete	d?		

Building Code:	Ac	Idress: SV-3					
Sampling Informa	tion						
Sampler Name(s):	HH & ER		Sampler Comp	mpany Code:			
Sample Collection Date	e: Apr 22, 2013		Date Samples	Sent To Lab:Apr 24, 2013			
Sample Chain of Custo	dy Number:		Outdoor Air Sa	ample Location ID:	SV-3 OA		
SUMMA Canister I	nformation						
Sample ID:	SV-3 SS	SV-3 IA					
Location Code:							
Location Type:	SUBSLAB	FIRST FLOOR					
Canister ID:	1258	1312					
Regulator ID:	3524	3346					
Matrix:	Subslab Soil Vap	Indoor Air					
Sampling Method:	SUMMA AIR SAMPLII	SUMMA AIR SA					
Sampling Area Inf	o						
Slab Thickness (inches):	6						
Sub-Slab Material:	DIRT						
Sub-Slab Moisture:	DRY						
Seal Type:	CLAY						
Seal Adequate?:	×						
Sample Times and	Vacuum Readings						
Sample Start Date/Time:	4/22/13 1438	4/22/13 1439					
Vacuum Gauge Start:	-29	-30					
Sample End Date/Time:	4/23/13 1438	4/23/13 1439					
Vacuum Gauge End:	-7	-7					
Sample Duration (hrs):	24	24					
Vacuum Gauge Unit:	in(hg)	in(hg)					
Sample QA/QC Rea	adings						
Vapor Port Purge:	\boxtimes						
Purge PID Reading:	0.0						
Purge PID Unit:	ppm						
Tracer Test Pass:	\times						
Sample start	and end times should	he entered using th	ne following forr	nat: MM/DD/YYY	Y HH:MM		

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

	click the box with the blue etch should be in a standar		v to upload a sketch of the lowest building level . Clear Image
		Des	sign Sketch
	Design Ske		es and Recommended Symbology
■ Identify a			, and outdoor air samples on the layout sketch.
	•		ifiable features, and include on the layout sketch.
	oom use (bedroom, living room, ne locations of the following feat		out sketch, using the appropriate symbols:
B or F	Boiler or Furnace	o Ot	ther floor or wall penetrations (label appropriately)
HW FP	Hot Water Heater Fireplaces		erimeter Drains (draw inside or outside outer walls as appropriate) reas of broken-up concrete
ws	Wood Stoves	• ss-1 Lo	ocation & label of sub-slab samples
W/D S	Washer / Dryer Sumps		ocation & label of indoor air samples ocation & label of outdoor air samples
@	Floor Drains		ocation and label of any pressure field test holes.

New York State Department of Environmental Conservation

FIRST FLOOR BUILDING LAYOUT SKETCH Please click the box with the blue border below to upload a sketch of the first floor of the building. Clear Image The sketch should be in a standard image format (.jpg, .png, .tiff) Design Sketch Design Sketch Guidelines and Recommended Symbology ■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch. ■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch ■ Identify the locations of the following features on the layout sketch, using the appropriate symbols: B or F Boiler or Furnace 0 Other floor or wall penetrations (label appropriately) HW Hot Water Heater XXXXXX Perimeter Drains (draw inside or outside outer walls as appropriate) FP ###### Fireplaces Areas of broken-up concrete WS Wood Stoves SS-1 Location & label of sub-slab samples W/D Washer / Dryer Location & label of indoor air samples IA-1 s Sumps Location & label of outdoor air samples OA-1 Floor Drains Location and label of any pressure field test holes. @ PFFT-1

New York State Department of Environmental Conservation

OUTDOOR PLOT LAYOUT SKETCH Please click the box with the blue border below to upload a sketch of the outdoor plot of the building as well as the surrounding area. The sketch should be in a standard image format (.jpg, .png, .tiff) Clear Image Design Sketch Design Sketch Guidelines and Recommended Symbology ■ Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch. ■ Measure the distance of all sample locations from identifiable features, and include on the layout sketch. ■ Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch ■ Identify the locations of the following features on the layout sketch, using the appropriate symbols: B or F Boiler or Furnace 0 Other floor or wall penetrations (label appropriately) HW Hot Water Heater XXXXXX Perimeter Drains (draw inside or outside outer walls as appropriate) FP ###### Fireplaces Areas of broken-up concrete WS Wood Stoves SS-1 Location & label of sub-slab samples W/D Washer / Dryer Location & label of indoor air samples IA-1 s Sumps Location & label of outdoor air samples OA-1 Floor Drains Location and label of any pressure field test holes. @ PFFT-1

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

Please click the box with the blue border below to upload a sketch of the lowest building level . The sketch should be in a standard image format (.jpg, .png, .tiff)

Clear Image

Design Sketch Guidelines and Recommended Symbology

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketc
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

BorF	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	XXXXXXX	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	######	Areas of broken-up concrete
WS	Wood Stoves	● SS-1	Location & label of sub-slab samples
W/D	Washer / Dryer	• IA-1	Location & label of indoor air samples
S	Sumps	• OA-1	Location & label of outdoor air samples
@	Floor Drains	• PFET-1	Location and label of any pressure field test holes.

May 3, 2013

Heather Hallett CDM Smith, Inc. - NY 11 British American Boulevard, Suite 200 Latham, NY 12110

Project Location: Former Doro Cleaners, Buffalo

Client Job Number:

Project Number: 0897-915238 94461 Laboratory Work Order Number: 13D1071

Enclosed are results of analyses for samples received by the laboratory on April 26, 2013. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Paula E. Blakeborough Project Manager

Page 1 of 56 13D1071_1 Contest_Final 05 03 13 1551

CDM Smith, Inc. - NY REPORT DATE: 5/3/2013

11 British American Boulevard, Suite 200

Latham, NY 12110

ATTN: Heather Hallett

PURCHASE ORDER NUMBER: D-006131-2

PROJECT NUMBER: 0897-915238 94461

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 13D1071

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Former Doro Cleaners, Buffalo

FIELD SA	AMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
SV-4	OA	13D1071-01	Ambient Air		EPA TO-15	
SV-4	SS	13D1071-02	Sub Slab		EPA TO-15	
SV-4	IA	13D1071-03	Indoor air		EPA TO-15	
SV-5	SS	13D1071-04	Sub Slab		EPA TO-15	
SV-5	IA	13D1071-05	Indoor air		EPA TO-15	
SV-5	OA	13D1071-06	Ambient Air		EPA TO-15	
SV-3	SS	13D1071-07	Sub Slab		EPA TO-15	
SV-3	IA	13D1071-08	Indoor air		EPA TO-15	
SV-2	SS1	13D1071-09	Sub Slab		EPA TO-15	
SV-1	IA2	13D1071-10	Indoor air		EPA TO-15	
SV-1	SS2	13D1071-11	Sub Slab		EPA TO-15	
DUP 1		13D1071-12	Air		EPA TO-15	
SV-2	OA	13D1071-13	Ambient Air		EPA TO-15	
DUP 2		13D1071-14	Air		EPA TO-15	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA TO-15

Qualifications:

Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.

Analyte & Samples(s) Qualified:

1,1,2,2-Tetrachloroethane

B071996-BS1

Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

4-Methyl-2-pentanone (MIBK), Acetone, Isopropanol

IA], 13D1071-04[SV-5 SS], 13D1071-05[SV-5 13D1071-02[SV-4 SS], 13D1071-03[SV-4 IA], 13D1071-07[SV-3 SS], 13D1071-10[SV-1 $IA2],\,13D1071-12[DUP\,\,1],\,13D1071-14[DUP\,\,2],\,B071996-BS1,\,B071996-DUP1,\,13D1071-01[\,\,SV-4071996-BS1],\,B071996-DUP1,\,B071996-BS1]$ OA], 13D1071-06[SV-5 OA], 13D1071-08[SV-3 SS1], 13D1071-11[SV-1 IA], 13D1071-09[SV-2 SS2], 13D1071-13[SV-2 OA], 13D1071-05RE1[SV-5 IAI

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)

13D1071-01[SV-4 OA], 13D1071-02[SV-4 SS], 13D1071-03[SV-4 IA], 13D1071-04[SV-5 SS], 13D1071-05[SV-5 IA], 13D1071-06[SV-5 OA], 13D1071-07[SV-3 SS], 13D1071-08[SV-3 IA], 13D1071-09[SV-2 SS1], 13D1071-10[SV-1 IA2], 13D1071-11[SV-1 SS2], 13D1071-12[DUP 1], 13D1071-13[SV-2 OA], 13D1071-14[DUP 2], B071996-BLK1, B071996-BS1, B071996-DUP1, S004129-CCV1

 $The \ results \ of \ analyses \ reported \ only \ relate \ to \ samples \ submitted \ to \ the \ Con-Test \ Analytical \ Laboratory \ for \ testing.$

Culu

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Michael A. Erickson Laboratory Director

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013

Field Sample #: SV-4

Sample ID: 13D1071-01

Sample Matrix: Ambient Air

Sampled: 4/23/2013 12:33

Sample Description/Location: Sub Description/Location: Canister ID: 1649 Canister Size: 6 liter Flow Controller ID: 3520

Sample Type: 24 hr

Work Order: 13D1071 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -3 Receipt Vacuum(in Hg): -4.1 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	ppbv			ug/m3			Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst	
Acetone	3.1	1.4	L-05	7.4	3.3	0.702	4/28/13 23:44	TPH	
Benzene	0.13	0.035		0.42	0.11	0.702	4/28/13 23:44	TPH	
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/28/13 23:44	TPH	
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/28/13 23:44	TPH	
Bromoform	ND	0.035		ND	0.36	0.702	4/28/13 23:44	TPH	
Bromomethane	ND	0.035		ND	0.14	0.702	4/28/13 23:44	TPH	
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/28/13 23:44	TPH	
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/28/13 23:44	TPH	
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/28/13 23:44	TPH	
Carbon Tetrachloride	0.074	0.035		0.47	0.22	0.702	4/28/13 23:44	TPH	
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/28/13 23:44	TPH	
Chloroethane	ND	0.035		ND	0.093	0.702	4/28/13 23:44	TPH	
Chloroform	ND	0.035		ND	0.17	0.702	4/28/13 23:44	TPH	
Chloromethane	0.63	0.070		1.3	0.14	0.702	4/28/13 23:44	TPH	
Cyclohexane	ND	0.035		ND	0.12	0.702	4/28/13 23:44	TPH	
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/28/13 23:44	TPH	
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/28/13 23:44	TPH	
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/28/13 23:44	TPH	
1,3-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/28/13 23:44	TPH	
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/28/13 23:44	TPH	
Dichlorodifluoromethane (Freon 12)	0.29	0.035		1.4	0.17	0.702	4/28/13 23:44	TPH	
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/28/13 23:44	TPH	
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/28/13 23:44	TPH	
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/28/13 23:44	TPH	
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/28/13 23:44	TPH	
trans-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/28/13 23:44	TPH	
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/28/13 23:44	TPH	
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/28/13 23:44	TPH	
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/28/13 23:44	TPH	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/28/13 23:44	TPH	
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/28/13 23:44	TPH	
Ethanol	2.4	1.4		4.5	2.6	0.702	4/28/13 23:44	TPH	
Ethyl Acetate	2.4	0.035		8.7	0.13	0.702	4/28/13 23:44	TPH	
Ethylbenzene	ND	0.035		ND	0.15	0.702	4/28/13 23:44	TPH	
4-Ethyltoluene	ND	0.035		ND	0.17	0.702	4/28/13 23:44	TPH	
Heptane	ND	0.035		ND	0.14	0.702	4/28/13 23:44	TPH	
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/28/13 23:44	TPH	

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013

Field Sample #: SV-4 OA

Sample ID: 13D1071-01

Sample Matrix: Ambient Air

Sampled: 4/23/2013 12:33

Sample Description/Location: Sub Description/Location: Canister ID: 1649 Canister Size: 6 liter Flow Controller ID: 3520 Sample Type: 24 hr Work Order: 13D1071 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -3 Receipt Vacuum(in Hg): -4.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

EPA	TO	-15
-----	----	-----

	ppbv			ug/ı	m3		Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst	
Hexane	ND	1.4		ND	4.9	0.702	4/28/13 23:44	TPH	
2-Hexanone (MBK)	ND	0.035		ND	0.14	0.702	4/28/13 23:44	TPH	
Isopropanol	ND	1.4		ND	3.4	0.702	4/28/13 23:44	TPH	
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/28/13 23:44	TPH	
Methylene Chloride	0.48	0.35		1.7	1.2	0.702	4/28/13 23:44	TPH	
4-Methyl-2-pentanone (MIBK)	ND	0.035		ND	0.14	0.702	4/28/13 23:44	TPH	
Naphthalene	ND	0.035		ND	0.18	0.702	4/28/13 23:44	TPH	
Propene	ND	1.4		ND	2.4	0.702	4/28/13 23:44	TPH	
Styrene	ND	0.035		ND	0.15	0.702	4/28/13 23:44	TPH	
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/28/13 23:44	TPH	
Tetrachloroethylene	ND	0.035		ND	0.24	0.702	4/28/13 23:44	TPH	
Tetrahydrofuran	ND	0.035		ND	0.10	0.702	4/28/13 23:44	TPH	
Toluene	0.46	0.035		1.8	0.13	0.702	4/28/13 23:44	TPH	
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/28/13 23:44	TPH	
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/28/13 23:44	TPH	
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/28/13 23:44	TPH	
Trichloroethylene	ND	0.035		ND	0.19	0.702	4/28/13 23:44	TPH	
Trichlorofluoromethane (Freon 11)	0.16	0.035		0.93	0.20	0.702	4/28/13 23:44	TPH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.054	0.035	V-05	0.41	0.27	0.702	4/28/13 23:44	TPH	
1,2,4-Trimethylbenzene	ND	0.035		ND	0.17	0.702	4/28/13 23:44	TPH	
1,3,5-Trimethylbenzene	ND	0.035		ND	0.17	0.702	4/28/13 23:44	TPH	
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/28/13 23:44	TPH	
Vinyl Chloride	ND	0.035		ND	0.090	0.702	4/28/13 23:44	TPH	
m&p-Xylene	0.073	0.070		0.32	0.30	0.702	4/28/13 23:44	TPH	
o-Xylene	ND	0.035		ND	0.15	0.702	4/28/13 23:44	TPH	
Surrogates	% Reco			0/ DE/	C Limits				

4-Bromofluorobenzene (1) 91.7 70-130 4/28/13 23:44

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013

Date Received: 4/26/2013

Field Sample #: SV-4 SS

Sample ID: 13D1071-02

Sample Matrix: Sub Slab

Sampled: 4/23/2013 13:04

Sample Description/Location: Sub Description/Location: Canister ID: 1805 Canister Size: 6 liter Flow Controller ID: 3518 Sample Type: 24 hr Work Order: 13D1071

Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -8.5 Receipt Vacuum(in Hg): -9.1 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	pp	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	15	1.4	L-05	36	3.3	0.702	4/29/13 9:29	ТРН
Benzene	0.20	0.035		0.64	0.11	0.702	4/29/13 9:29	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 9:29	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 9:29	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 9:29	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 9:29	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 9:29	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 9:29	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 9:29	TPH
Carbon Tetrachloride	0.081	0.035		0.51	0.22	0.702	4/29/13 9:29	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 9:29	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 9:29	TPH
Chloroform	0.060	0.035		0.29	0.17	0.702	4/29/13 9:29	TPH
Chloromethane	0.75	0.070		1.5	0.14	0.702	4/29/13 9:29	TPH
Cyclohexane	ND	0.035		ND	0.12	0.702	4/29/13 9:29	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 9:29	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 9:29	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 9:29	TPH
1,3-Dichlorobenzene	0.060	0.035		0.36	0.21	0.702	4/29/13 9:29	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 9:29	TPH
Dichlorodifluoromethane (Freon 12)	1.0	0.035		5.1	0.17	0.702	4/29/13 9:29	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 9:29	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 9:29	TPH
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 9:29	TPH
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 9:29	TPH
trans-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 9:29	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 9:29	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 9:29	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 9:29	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 9:29	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 9:29	TPH
Ethanol	110	40		210	75	20	4/29/13 14:44	TPH
Ethyl Acetate	4.0	0.035		14	0.13	0.702	4/29/13 9:29	TPH
Ethylbenzene	0.32	0.035		1.4	0.15	0.702	4/29/13 9:29	TPH
4-Ethyltoluene	0.16	0.035		0.78	0.17	0.702	4/29/13 9:29	TPH
Heptane	0.15	0.035		0.63	0.14	0.702	4/29/13 9:29	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 9:29	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013

Field Sample #: SV-4 SS

Sample ID: 13D1071-02 Sample Matrix: Sub Slab Sampled: 4/23/2013 13:04 Sample Description/Location: Sub Description/Location: Canister ID: 1805 Canister Size: 6 liter Flow Controller ID: 3518 Sample Type: 24 hr Work Order: 13D1071

Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -8.5 Receipt Vacuum(in Hg): -9.1 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	pp	bv		ug/m3			Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst	
Hexane	ND	1.4		ND	4.9	0.702	4/29/13 9:29	TPH	
2-Hexanone (MBK)	0.15	0.035		0.62	0.14	0.702	4/29/13 9:29	TPH	
Isopropanol	5.8	1.4	L-05	14	3.4	0.702	4/29/13 9:29	TPH	
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 9:29	TPH	
Methylene Chloride	1.3	0.35		4.5	1.2	0.702	4/29/13 9:29	TPH	
4-Methyl-2-pentanone (MIBK)	0.16	0.035	L-05	0.66	0.14	0.702	4/29/13 9:29	TPH	
Naphthalene	0.11	0.035		0.58	0.18	0.702	4/29/13 9:29	TPH	
Propene	ND	1.4		ND	2.4	0.702	4/29/13 9:29	TPH	
Styrene	0.060	0.035		0.25	0.15	0.702	4/29/13 9:29	TPH	
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 9:29	TPH	
Tetrachloroethylene	0.11	0.035		0.74	0.24	0.702	4/29/13 9:29	TPH	
Tetrahydrofuran	0.039	0.035		0.12	0.10	0.702	4/29/13 9:29	TPH	
Toluene	1.5	0.035		5.8	0.13	0.702	4/29/13 9:29	TPH	
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 9:29	TPH	
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 9:29	TPH	
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 9:29	TPH	
Trichloroethylene	ND	0.035		ND	0.19	0.702	4/29/13 9:29	TPH	
Trichlorofluoromethane (Freon 11)	0.60	0.035		3.4	0.20	0.702	4/29/13 9:29	TPH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.085	0.035	V-05	0.65	0.27	0.702	4/29/13 9:29	TPH	
1,2,4-Trimethylbenzene	0.76	0.035		3.7	0.17	0.702	4/29/13 9:29	TPH	
1,3,5-Trimethylbenzene	0.20	0.035		0.99	0.17	0.702	4/29/13 9:29	TPH	
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 9:29	TPH	
Vinyl Chloride	0.044	0.035		0.11	0.090	0.702	4/29/13 9:29	TPH	
m&p-Xylene	1.0	0.070		4.4	0.30	0.702	4/29/13 9:29	TPH	
o-Xylene	0.44	0.035		1.9	0.15	0.702	4/29/13 9:29	TPH	
Surrogates	% Reco	very		% REC	C Limits				
4-Bromofluorobenzene (1)		85.8		70-	-130		4/29/13 14:44		
4-Bromofluorobenzene (1)		94.8		70-	-130		4/29/13 9:29		

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013

Field Sample #: SV-4

Sample ID: 13D1071-03

Sample Matrix: Indoor air

Sampled: 4/23/2013 13:05

Sample Description/Location: Sub Description/Location: Canister ID: 1340 Canister Size: 6 liter Flow Controller ID: 3517 Sample Type: 24 hr Work Order: 13D1071

Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -6.5 Receipt Vacuum(in Hg): -7.8 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

Analyte Results RL Flag Results RL Dilution Analyzed	Analyst
Acetone 9.8 1.4 L-05 23 3.3 0.702 4/29/13 0:29	TPH
Benzene 0.12 0.035 0.38 0.11 0.702 4/29/13 0:29	TPH
Benzyl chloride ND 0.035 ND 0.18 0.702 4/29/13 0:29	TPH
Bromodichloromethane ND 0.035 ND 0.24 0.702 4/29/13 0:29	TPH
Bromoform ND 0.035 ND 0.36 0.702 4/29/13 0:29	TPH
Bromomethane ND 0.035 ND 0.14 0.702 4/29/13 0:29	TPH
1,3-Butadiene ND 0.035 ND 0.078 0.702 4/29/13 0:29	TPH
2-Butanone (MEK) ND 1.4 ND 4.1 0.702 4/29/13 0:29	TPH
Carbon Disulfide ND 0.35 ND 1.1 0.702 4/29/13 0:29	TPH
Carbon Tetrachloride 0.074 0.035 0.46 0.22 0.702 4/29/13 0:29	TPH
Chlorobenzene ND 0.035 ND 0.16 0.702 4/29/13 0:29	TPH
Chloroethane ND 0.035 ND 0.093 0.702 4/29/13 0:29	TPH
Chloroform 0.058 0.035 0.28 0.17 0.702 4/29/13 0:29	TPH
Chloromethane 0.75 0.070 1.5 0.14 0.702 4/29/13 0:29	TPH
Cyclohexane ND 0.035 ND 0.12 0.702 4/29/13 0:29	TPH
Dibromochloromethane ND 0.035 ND 0.30 0.702 4/29/13 0:29	TPH
1,2-Dibromoethane (EDB) ND 0.035 ND 0.27 0.702 4/29/13 0:29	TPH
1,2-Dichlorobenzene ND 0.035 ND 0.21 0.702 4/29/13 0:29	TPH
1,3-Dichlorobenzene ND 0.035 ND 0.21 0.702 4/29/13 0:29	TPH
1,4-Dichlorobenzene ND 0.035 ND 0.21 0.702 4/29/13 0:29	TPH
Dichlorodifluoromethane (Freon 12) 1.2 0.035 6.1 0.17 0.702 4/29/13 0:29	TPH
1,1-Dichloroethane ND 0.035 ND 0.14 0.702 4/29/13 0:29	TPH
1,2-Dichloroethane ND 0.035 ND 0.14 0.702 4/29/13 0:29	TPH
1,1-Dichloroethylene ND 0.035 ND 0.14 0.702 4/29/13 0:29	TPH
cis-1,2-Dichloroethylene ND 0.035 ND 0.14 0.702 4/29/13 0:29	TPH
trans-1,2-Dichloroethylene ND 0.035 ND 0.14 0.702 4/29/13 0:29	TPH
1,2-Dichloropropane ND 0.035 ND 0.16 0.702 4/29/13 0:29	TPH
cis-1,3-Dichloropropene ND 0.035 ND 0.16 0.702 4/29/13 0:29	TPH
trans-1,3-Dichloropropene ND 0.035 ND 0.16 0.702 4/29/13 0:29	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) ND 0.035 ND 0.25 0.702 4/29/13 0:29	TPH
1,4-Dioxane ND 0.035 ND 0.13 0.702 4/29/13 0:29	TPH
Ethanol 120 40 220 75 20 4/29/13 12:51	TPH
Ethyl Acetate 12 0.035 44 0.13 0.702 4/29/13 0:29	TPH
Ethylbenzene 0.071 0.035 0.31 0.15 0.702 4/29/13 0:29	TPH
4-Ethyltoluene ND 0.035 ND 0.17 0.702 4/29/13 0:29	TPH
Heptane ND 0.035 ND 0.14 0.702 4/29/13 0:29	TPH
Hexachlorobutadiene ND 0.035 ND 0.37 0.702 4/29/13 0:29	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013 Field Sample #: SV-4 IA Sample ID: 13D1071-03 Sample Matrix: Indoor air

Sampled: 4/23/2013 13:05

Sample Description/Location: Sub Description/Location: Canister ID: 1340 Canister Size: 6 liter Flow Controller ID: 3517 Sample Type: 24 hr

Work Order: 13D1071 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -6.5 Receipt Vacuum(in Hg): -7.8 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

EFA 1 U-13	EPA	TO-1	5
------------	-----	------	---

	pp	bv		ug/m3			Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Hexane	ND	1.4		ND	4.9	0.702	4/29/13 0:29	TPH
2-Hexanone (MBK)	0.11	0.035		0.45	0.14	0.702	4/29/13 0:29	TPH
Isopropanol	11	1.4	L-05	27	3.4	0.702	4/29/13 0:29	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 0:29	TPH
Methylene Chloride	0.73	0.35		2.5	1.2	0.702	4/29/13 0:29	TPH
4-Methyl-2-pentanone (MIBK)	0.12	0.035	L-05	0.48	0.14	0.702	4/29/13 0:29	TPH
Naphthalene	0.044	0.035		0.23	0.18	0.702	4/29/13 0:29	TPH
Propene	ND	1.4		ND	2.4	0.702	4/29/13 0:29	TPH
Styrene	0.043	0.035		0.18	0.15	0.702	4/29/13 0:29	TPH
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 0:29	TPH
Tetrachloroethylene	0.055	0.035		0.38	0.24	0.702	4/29/13 0:29	TPH
Tetrahydrofuran	ND	0.035		ND	0.10	0.702	4/29/13 0:29	TPH
Toluene	0.48	0.035		1.8	0.13	0.702	4/29/13 0:29	TPH
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 0:29	TPH
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 0:29	TPH
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 0:29	TPH
Trichloroethylene	ND	0.035		ND	0.19	0.702	4/29/13 0:29	TPH
Trichlorofluoromethane (Freon 11)	0.54	0.035		3.1	0.20	0.702	4/29/13 0:29	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.060	0.035	V-05	0.46	0.27	0.702	4/29/13 0:29	TPH
1,2,4-Trimethylbenzene	0.081	0.035		0.40	0.17	0.702	4/29/13 0:29	TPH
1,3,5-Trimethylbenzene	ND	0.035		ND	0.17	0.702	4/29/13 0:29	TPH
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 0:29	TPH
Vinyl Chloride	ND	0.035		ND	0.090	0.702	4/29/13 0:29	TPH
m&p-Xylene	0.18	0.070		0.76	0.30	0.702	4/29/13 0:29	TPH
o-Xylene	0.065	0.035		0.28	0.15	0.702	4/29/13 0:29	TPH
Surrogates	% Reco	very		% REG	C Limits			
4-Bromofluorobenzene (1)		86.7		70	-130		4/29/13 12:51	
4-Bromofluorobenzene (1)		93.3		70-	-130		4/29/13 0:29	

Surrogates	% Recovery	% REC Limits	
4-Bromofluorobenzene (1)	86.7	70-130	4/29/13 12:51
4-Bromofluorobenzene (1)	93.3	70-130	4/29/13 0:29

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013

Date Received: 4/26/2013
Field Sample #: SV-5 SS
Sample ID: 13D1071-04
Sample Matrix: Sub Slab
Sampled: 4/23/2013 13:38

Sample Description/Location: Sub Description/Location: Canister ID: 1627 Canister Size: 6 liter Flow Controller ID: 3519 Sample Type: 24 hr Work Order: 13D1071

Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -7.5 Receipt Vacuum(in Hg): -7.5 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	pp	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	12	1.4	L-05	29	3.3	0.702	4/29/13 8:44	TPH
Benzene	0.18	0.035		0.58	0.11	0.702	4/29/13 8:44	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 8:44	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 8:44	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 8:44	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 8:44	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 8:44	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 8:44	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 8:44	TPH
Carbon Tetrachloride	0.072	0.035		0.45	0.22	0.702	4/29/13 8:44	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 8:44	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 8:44	TPH
Chloroform	0.084	0.035		0.41	0.17	0.702	4/29/13 8:44	TPH
Chloromethane	0.63	0.070		1.3	0.14	0.702	4/29/13 8:44	TPH
Cyclohexane	ND	0.035		ND	0.12	0.702	4/29/13 8:44	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 8:44	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 8:44	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 8:44	TPH
1,3-Dichlorobenzene	0.051	0.035		0.31	0.21	0.702	4/29/13 8:44	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 8:44	TPH
Dichlorodifluoromethane (Freon 12)	0.29	0.035		1.4	0.17	0.702	4/29/13 8:44	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 8:44	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 8:44	TPH
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 8:44	TPH
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 8:44	TPH
trans-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 8:44	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 8:44	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 8:44	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 8:44	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 8:44	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 8:44	TPH
Ethanol	190	40		360	75	20	4/27/13 15:23	TPH
Ethyl Acetate	0.46	0.035		1.7	0.13	0.702	4/29/13 8:44	TPH
Ethylbenzene	0.22	0.035		0.96	0.15	0.702	4/29/13 8:44	TPH
4-Ethyltoluene	0.12	0.035		0.58	0.17	0.702	4/29/13 8:44	TPH
Heptane	0.16	0.035		0.64	0.14	0.702	4/29/13 8:44	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 8:44	TPH

ANALYTICAL RESULTS

EPA TO-15

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013

Field Sample #: SV-5 SS

Sample ID: 13D1071-04

Sample Matrix: Sub Slab

Sampled: 4/23/2013 13:38

Sample Description/Location: Sub Description/Location: Canister ID: 1627 Canister Size: 6 liter Flow Controller ID: 3519 Sample Type: 24 hr Work Order: 13D1071 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -7.5 Receipt Vacuum(in Hg): -7.5 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

ppi	bv		ug/r	n3		Date/Time	
Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
ND	1.4		ND	4.9	0.702	4/29/13 8:44	TPH
0.067	0.035		0.28	0.14	0.702	4/29/13 8:44	TPH
10	1.4	L-05	25	3.4	0.702	4/29/13 8:44	TPH
ND	0.035		ND	0.13	0.702	4/29/13 8:44	TPH
1.4	0.35		4.9	1.2	0.702	4/29/13 8:44	TPH
0.098	0.035	L-05	0.40	0.14	0.702	4/29/13 8:44	TPH
0.094	0.035		0.49	0.18	0.702	4/29/13 8:44	TPH
ND	1.4		ND	2.4	0.702	4/29/13 8:44	TPH
0.088	0.035		0.38	0.15	0.702	4/29/13 8:44	TPH
ND	0.035		ND	0.24	0.702	4/29/13 8:44	TPH
ND	0.035		ND	0.24	0.702	4/29/13 8:44	TPH
ND	0.035		ND	0.10	0.702	4/29/13 8:44	TPH
1.9	0.035		7.1	0.13	0.702	4/29/13 8:44	TPH
ND	0.035		ND	0.26	0.702	4/29/13 8:44	TPH
1.0	0.035		5.4	0.19	0.702	4/29/13 8:44	TPH
ND	0.035		ND	0.19	0.702	4/29/13 8:44	TPH
ND	0.035		ND	0.19	0.702	4/29/13 8:44	TPH
0.25	0.035		1.4	0.20	0.702	4/29/13 8:44	TPH
0.084	0.035	V-05	0.65	0.27	0.702	4/29/13 8:44	TPH
0.57	0.035		2.8	0.17	0.702	4/29/13 8:44	TPH
0.15	0.035		0.75	0.17	0.702	4/29/13 8:44	TPH
ND	0.70		ND	2.5	0.702	4/29/13 8:44	TPH
0.078	0.035		0.20	0.090	0.702	4/29/13 8:44	TPH
0.69	0.070		3.0	0.30	0.702	4/29/13 8:44	TPH
0.31	0.035		1.4	0.15	0.702	4/29/13 8:44	TPH
	Results ND 0.067 10 ND 1.4 0.098 0.094 ND 0.088 ND ND 1.9 ND 1.0 ND 1.0 ND 0.25 0.084 0.57 0.15 ND 0.078	ND 1.4 0.067 0.035 10 1.4 ND 0.035 1.4 0.35 0.098 0.035 0.094 0.035 ND 1.4 0.088 0.035 ND 0.035 0.25 0.035 0.084 0.035 0.57 0.035 ND 0.70 0.078 0.035 0.69 0.070	Results RL Flag ND 1.4	Results RL Flag Results ND 1.4 ND 0.067 0.035 0.28 10 1.4 L-05 25 ND 0.035 ND 1.4 0.35 4.9 0.098 0.035 L-05 0.40 0.094 0.035 L-05 0.49 ND 1.4 ND 0.038 ND 0.035 ND ND 0.035 ND ND 0.035 ND 1.9 0.035 ND ND 0.035 ND 1.0 0.035 ND ND 0.035 ND 0.05 <td>Results RL Flag Results RL ND 1.4 ND 4.9 0.067 0.035 0.28 0.14 10 1.4 L-05 25 3.4 ND 0.035 ND 0.13 1.4 0.35 4.9 1.2 0.098 0.035 L-05 0.40 0.14 0.094 0.035 0.49 0.18 ND 1.4 ND 2.4 0.088 0.035 ND 0.24 ND 0.035 ND 0.24 ND 0.035 ND 0.10 1.9 0.035 ND 0.10 1.9 0.035 ND 0.10 1.9 0.035 ND 0.26 1.0 0.035 ND 0.19 ND 0.035 ND 0.19 ND 0.035 ND 0.19 ND 0.19 0.25 <</td> <td>Results RL Flag Results RL Dilution ND 1.4 ND 4.9 0.702 0.067 0.035 0.28 0.14 0.702 10 1.4 L-05 25 3.4 0.702 ND 0.035 ND 0.13 0.702 1.4 0.35 4.9 1.2 0.702 0.098 0.035 L-05 0.40 0.14 0.702 0.094 0.035 L-05 0.49 0.18 0.702 ND 1.4 ND 2.4 0.702 0.088 0.035 ND 0.24 0.702 ND 0.035 ND 0.24 0.702 ND 0.035 ND 0.10 0.702 ND 0.035 ND 0.10 0.702 ND 0.035 ND 0.19 0.702 ND 0.035 ND 0.19 0.702 ND</td> <td>Results RL Flag Results RL Dilution Analyzer ND 1.4 ND 4.9 0.702 4/29/13 8:44 0.067 0.035 0.28 0.14 0.702 4/29/13 8:44 10 1.4 L-05 25 3.4 0.702 4/29/13 8:44 ND 0.035 ND 0.13 0.702 4/29/13 8:44 0.098 0.035 L-05 0.49 0.14 0.702 4/29/13 8:44 0.094 0.035 L-05 0.40 0.14 0.702 4/29/13 8:44 0.094 0.035 L-05 0.49 0.18 0.702 4/29/13 8:44 0.088 0.035 D.38 0.15 0.702 4/29/13 8:44 ND 0.035 ND 0.24 0.702 4/29/13 8:44 ND 0.035 ND 0.10 0.702 4/29/13 8:44</td>	Results RL Flag Results RL ND 1.4 ND 4.9 0.067 0.035 0.28 0.14 10 1.4 L-05 25 3.4 ND 0.035 ND 0.13 1.4 0.35 4.9 1.2 0.098 0.035 L-05 0.40 0.14 0.094 0.035 0.49 0.18 ND 1.4 ND 2.4 0.088 0.035 ND 0.24 ND 0.035 ND 0.24 ND 0.035 ND 0.10 1.9 0.035 ND 0.10 1.9 0.035 ND 0.10 1.9 0.035 ND 0.26 1.0 0.035 ND 0.19 ND 0.035 ND 0.19 ND 0.035 ND 0.19 ND 0.19 0.25 <	Results RL Flag Results RL Dilution ND 1.4 ND 4.9 0.702 0.067 0.035 0.28 0.14 0.702 10 1.4 L-05 25 3.4 0.702 ND 0.035 ND 0.13 0.702 1.4 0.35 4.9 1.2 0.702 0.098 0.035 L-05 0.40 0.14 0.702 0.094 0.035 L-05 0.49 0.18 0.702 ND 1.4 ND 2.4 0.702 0.088 0.035 ND 0.24 0.702 ND 0.035 ND 0.24 0.702 ND 0.035 ND 0.10 0.702 ND 0.035 ND 0.10 0.702 ND 0.035 ND 0.19 0.702 ND 0.035 ND 0.19 0.702 ND	Results RL Flag Results RL Dilution Analyzer ND 1.4 ND 4.9 0.702 4/29/13 8:44 0.067 0.035 0.28 0.14 0.702 4/29/13 8:44 10 1.4 L-05 25 3.4 0.702 4/29/13 8:44 ND 0.035 ND 0.13 0.702 4/29/13 8:44 0.098 0.035 L-05 0.49 0.14 0.702 4/29/13 8:44 0.094 0.035 L-05 0.40 0.14 0.702 4/29/13 8:44 0.094 0.035 L-05 0.49 0.18 0.702 4/29/13 8:44 0.088 0.035 D.38 0.15 0.702 4/29/13 8:44 ND 0.035 ND 0.24 0.702 4/29/13 8:44 ND 0.035 ND 0.10 0.702 4/29/13 8:44

Surrogates	% Recovery	% REC Limits	
4-Bromofluorobenzene (1)	89.0	70-130	4/27/13 15:23
4-Bromofluorobenzene (1)	94.9	70-130	4/29/13 8:44

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo
Date Received: 4/26/2013

Field Sample #: SV-5 IA

Sample ID: 13D1071-05 Sample Matrix: Indoor air Sampled: 4/23/2013 13:39 Sample Description/Location: Sub Description/Location: Canister ID: 1856 Canister Size: 6 liter Flow Controller ID: 3521 Sample Type: 24 hr Work Order: 13D1071

Initial Vacuum(in Hg): -29.5 Final Vacuum(in Hg): -7 Receipt Vacuum(in Hg): -8.6 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	pp	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	16	1.4	L-05	37	3.3	0.702	4/29/13 1:15	TPH
Benzene	0.14	0.035		0.44	0.11	0.702	4/29/13 1:15	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 1:15	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 1:15	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 1:15	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 1:15	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 1:15	TPH
2-Butanone (MEK)	2.1	1.4		6.1	4.1	0.702	4/29/13 1:15	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 1:15	TPH
Carbon Tetrachloride	0.073	0.035		0.46	0.22	0.702	4/29/13 1:15	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 1:15	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 1:15	TPH
Chloroform	0.078	0.035		0.38	0.17	0.702	4/29/13 1:15	TPH
Chloromethane	0.64	0.070		1.3	0.14	0.702	4/29/13 1:15	TPH
Cyclohexane	ND	0.035		ND	0.12	0.702	4/29/13 1:15	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 1:15	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 1:15	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 1:15	TPH
1,3-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 1:15	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 1:15	TPH
Dichlorodifluoromethane (Freon 12)	0.25	0.035		1.2	0.17	0.702	4/29/13 1:15	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 1:15	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 1:15	TPH
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 1:15	TPH
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 1:15	TPH
trans-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 1:15	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 1:15	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 1:15	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 1:15	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 1:15	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 1:15	TPH
Ethanol	260	40		500	75	20	4/29/13 13:28	TPH
Ethyl Acetate	0.76	0.035		2.7	0.13	0.702	4/29/13 1:15	TPH
Ethylbenzene	0.070	0.035		0.30	0.15	0.702	4/29/13 1:15	TPH
4-Ethyltoluene	ND	0.035		ND	0.17	0.702	4/29/13 1:15	TPH
Heptane	0.12	0.035		0.51	0.14	0.702	4/29/13 1:15	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 1:15	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo
Date Received: 4/26/2013

Field Sample #: SV-5 IA

Sample ID: 13D1071-05

Sample Matrix: Indoor air

Sampled: 4/23/2013 13:39

Sample Description/Location: Sub Description/Location: Canister ID: 1856 Canister Size: 6 liter Flow Controller ID: 3521 Sample Type: 24 hr Work Order: 13D1071 Initial Vacuum(in Hg): -29.5 Final Vacuum(in Hg): -7 Receipt Vacuum(in Hg): -8.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

			EPA TO-15						
	pp	bv		ug/	m3		Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst	
Hexane	ND	1.4		ND	4.9	0.702	4/29/13 1:15	TPH	
2-Hexanone (MBK)	0.19	0.035		0.78	0.14	0.702	4/29/13 1:15	TPH	
Isopropanol	31	20	L-05	76	49	20	4/29/13 13:28	TPH	
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 1:15	TPH	
Methylene Chloride	1.0	0.35		3.6	1.2	0.702	4/29/13 1:15	TPH	
4-Methyl-2-pentanone (MIBK)	0.11	0.035	L-05	0.44	0.14	0.702	4/29/13 1:15	TPH	
Naphthalene	ND	0.035		ND	0.18	0.702	4/29/13 1:15	TPH	
Propene	ND	1.4		ND	2.4	0.702	4/29/13 1:15	TPH	
Styrene	0.098	0.035		0.42	0.15	0.702	4/29/13 1:15	TPH	
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 1:15	TPH	
Tetrachloroethylene	ND	0.035		ND	0.24	0.702	4/29/13 1:15	TPH	
Tetrahydrofuran	ND	0.035		ND	0.10	0.702	4/29/13 1:15	TPH	
Toluene	1.3	0.035		4.8	0.13	0.702	4/29/13 1:15	TPH	
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 1:15	TPH	
1,1,1-Trichloroethane	1.3	0.035		7.1	0.19	0.702	4/29/13 1:15	TPH	
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 1:15	TPH	
Trichloroethylene	ND	0.035		ND	0.19	0.702	4/29/13 1:15	TPH	
Trichlorofluoromethane (Freon 11)	0.22	0.035		1.2	0.20	0.702	4/29/13 1:15	TPH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.068	0.035	V-05	0.52	0.27	0.702	4/29/13 1:15	TPH	
1,2,4-Trimethylbenzene	0.093	0.035		0.46	0.17	0.702	4/29/13 1:15	TPH	
1,3,5-Trimethylbenzene	ND	0.035		ND	0.17	0.702	4/29/13 1:15	TPH	
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 1:15	TPH	
Vinyl Chloride	ND	0.035		ND	0.090	0.702	4/29/13 1:15	TPH	
m&p-Xylene	0.17	0.070		0.73	0.30	0.702	4/29/13 1:15	TPH	
o-Xylene	0.060	0.035		0.26	0.15	0.702	4/29/13 1:15	TPH	
Surrogates	% Recov	very		% RE	C Limits				
4-Bromofluorobenzene (1)		88.3		70	-130		4/29/13 13:28		
4-Bromofluorobenzene (1)		94.5		70	-130		4/29/13 1:15		

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013 **Field Sample #:** SV-5 **OA**

Field Sample #: SV-5 **Cample ID: 13D1071-06**Sample Matrix: Ambient Air
Sampled: 4/23/2013 13:40

Sample Description/Location: Sub Description/Location: Canister ID: 1343 Canister Size: 6 liter Flow Controller ID: 3522 Sample Type: 24 hr Work Order: 13D1071

Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -6 Receipt Vacuum(in Hg): -6.4 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		bv		ug/ı			Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	4.0	1.4	L-05	9.5	3.3	0.702	4/29/13 2:00	TPH
Benzene	0.11	0.035		0.36	0.11	0.702	4/29/13 2:00	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 2:00	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 2:00	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 2:00	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 2:00	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 2:00	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 2:00	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 2:00	TPH
Carbon Tetrachloride	0.066	0.035		0.41	0.22	0.702	4/29/13 2:00	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 2:00	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 2:00	TPH
Chloroform	ND	0.035		ND	0.17	0.702	4/29/13 2:00	TPH
Chloromethane	0.66	0.070		1.4	0.14	0.702	4/29/13 2:00	TPH
Cyclohexane	ND	0.035		ND	0.12	0.702	4/29/13 2:00	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 2:00	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 2:00	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 2:00	TPH
1,3-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 2:00	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 2:00	TPH
Dichlorodifluoromethane (Freon 12)	0.28	0.035		1.4	0.17	0.702	4/29/13 2:00	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 2:00	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 2:00	TPH
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 2:00	TPH
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 2:00	TPH
trans-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 2:00	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 2:00	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 2:00	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 2:00	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 2:00	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 2:00	TPH
Ethanol	4.4	1.4		8.4	2.6	0.702	4/29/13 2:00	TPH
Ethyl Acetate	0.46	0.035		1.7	0.13	0.702	4/29/13 2:00	TPH
Ethylbenzene	ND	0.035		ND	0.15	0.702	4/29/13 2:00	TPH
4-Ethyltoluene	ND	0.035		ND	0.17	0.702	4/29/13 2:00	TPH
Heptane	ND	0.035		ND	0.14	0.702	4/29/13 2:00	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 2:00	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013 Field Sample #: SV-5 OA Sample ID: 13D1071-06

Sample Matrix: Ambient Air Sampled: 4/23/2013 13:40

Sample Description/Location: Sub Description/Location: Canister ID: 1343 Canister Size: 6 liter Flow Controller ID: 3522 Sample Type: 24 hr

Work Order: 13D1071 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -6 Receipt Vacuum(in Hg): -6.4 Flow Controller Type: Fixed-Orifice Flow Controller Calibration

RPD Pre and Post-Sampling: <20%

		1	EPA 10-15					
	pp	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Hexane	ND	1.4		ND	4.9	0.702	4/29/13 2:00	TPH
2-Hexanone (MBK)	0.063	0.035		0.26	0.14	0.702	4/29/13 2:00	TPH
Isopropanol	ND	1.4		ND	3.4	0.702	4/29/13 2:00	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 2:00	TPH
Methylene Chloride	ND	0.35		ND	1.2	0.702	4/29/13 2:00	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.035		ND	0.14	0.702	4/29/13 2:00	TPH
Naphthalene	ND	0.035		ND	0.18	0.702	4/29/13 2:00	TPH
Propene	ND	1.4		ND	2.4	0.702	4/29/13 2:00	TPH
Styrene	ND	0.035		ND	0.15	0.702	4/29/13 2:00	TPH
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 2:00	TPH
Tetrachloroethylene	ND	0.035		ND	0.24	0.702	4/29/13 2:00	TPH
Tetrahydrofuran	ND	0.035		ND	0.10	0.702	4/29/13 2:00	TPH
Toluene	0.15	0.035		0.58	0.13	0.702	4/29/13 2:00	TPH
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 2:00	TPH
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 2:00	TPH
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 2:00	TPH
Trichloroethylene	ND	0.035		ND	0.19	0.702	4/29/13 2:00	TPH
Trichlorofluoromethane (Freon 11)	0.17	0.035		0.98	0.20	0.702	4/29/13 2:00	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.059	0.035	V-05	0.45	0.27	0.702	4/29/13 2:00	TPH
1,2,4-Trimethylbenzene	0.044	0.035		0.22	0.17	0.702	4/29/13 2:00	TPH
1,3,5-Trimethylbenzene	ND	0.035		ND	0.17	0.702	4/29/13 2:00	TPH
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 2:00	TPH
Vinyl Chloride	ND	0.035		ND	0.090	0.702	4/29/13 2:00	TPH
m&p-Xylene	ND	0.070		ND	0.30	0.702	4/29/13 2:00	TPH
o-Xylene	ND	0.035		ND	0.15	0.702	4/29/13 2:00	ТРН
Surrogates	% Reco	very		% REC	C Limits			
4-Bromofluorobenzene (1)		91.7		70-	-130		4/29/13 2:00	

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013

Field Sample #: SV-3

Sample ID: 13D1071-07

Sample Matrix: Sub Slab

Sampled: 4/23/2013 14:38

Sample Description/Location: Sub Description/Location: Canister ID: 1258 Canister Size: 6 liter Flow Controller ID: 3524 Sample Type: 24 hr Work Order: 13D1071 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -7

Receipt Vacuum(in Hg): -7
Flow Controller Type: Fixed-Orifice

Flow Controller Calibration
RPD Pre and Post-Sampling: <20%

	pp	bv	ug/m3			Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	17	1.4	L-05	40	3.3	0.702	4/29/13 7:59	TPH
Benzene	0.22	0.035		0.70	0.11	0.702	4/29/13 7:59	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 7:59	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 7:59	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 7:59	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 7:59	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 7:59	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 7:59	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 7:59	TPH
Carbon Tetrachloride	0.046	0.035		0.29	0.22	0.702	4/29/13 7:59	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 7:59	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 7:59	TPH
Chloroform	ND	0.035		ND	0.17	0.702	4/29/13 7:59	TPH
Chloromethane	0.67	0.070		1.4	0.14	0.702	4/29/13 7:59	TPH
Cyclohexane	ND	0.035		ND	0.12	0.702	4/29/13 7:59	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 7:59	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 7:59	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 7:59	TPH
1,3-Dichlorobenzene	0.074	0.035		0.45	0.21	0.702	4/29/13 7:59	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 7:59	TPH
Dichlorodifluoromethane (Freon 12)	0.27	0.035		1.3	0.17	0.702	4/29/13 7:59	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 7:59	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 7:59	TPH
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 7:59	TPH
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 7:59	TPH
trans-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 7:59	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 7:59	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 7:59	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 7:59	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 7:59	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 7:59	TPH
Ethanol	93	40		170	75	20	4/27/13 14:45	TPH
Ethyl Acetate	2.4	0.035		8.5	0.13	0.702	4/29/13 7:59	TPH
Ethylbenzene	0.28	0.035		1.2	0.15	0.702	4/29/13 7:59	TPH
4-Ethyltoluene	0.15	0.035		0.76	0.17	0.702	4/29/13 7:59	TPH
Heptane	0.16	0.035		0.65	0.14	0.702	4/29/13 7:59	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 7:59	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013

Date Received: 4/26/2013

Field Sample #: SV-3 SS

Sample ID: 13D1071-07

Sample Matrix: Sub Slab

Sampled: 4/23/2013 14:38

Sample Description/Location: Sub Description/Location: Canister ID: 1258 Canister Size: 6 liter Flow Controller ID: 3524 Sample Type: 24 hr Work Order: 13D1071 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -7 Receipt Vacuum(in Hg): -8.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration

RPD Pre and Post-Sampling: <20%

			27.7.7.0 10							
	• • •	bv		ug/i			Date/Time			
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst		
Hexane	ND	1.4		ND	4.9	0.702	4/29/13 7:59	TPH		
2-Hexanone (MBK)	0.13	0.035		0.52	0.14	0.702	4/29/13 7:59	TPH		
Isopropanol	4.0	1.4	L-05	9.9	3.4	0.702	4/29/13 7:59	TPH		
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 7:59	TPH		
Methylene Chloride	1.0	0.35		3.6	1.2	0.702	4/29/13 7:59	TPH		
4-Methyl-2-pentanone (MIBK)	0.14	0.035	L-05	0.58	0.14	0.702	4/29/13 7:59	TPH		
Naphthalene	0.23	0.035		1.2	0.18	0.702	4/29/13 7:59	TPH		
Propene	ND	1.4		ND	2.4	0.702	4/29/13 7:59	TPH		
Styrene	0.045	0.035		0.19	0.15	0.702	4/29/13 7:59	TPH		
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 7:59	TPH		
Tetrachloroethylene	0.046	0.035		0.31	0.24	0.702	4/29/13 7:59	TPH		
Tetrahydrofuran	0.059	0.035		0.17	0.10	0.702	4/29/13 7:59	TPH		
Toluene	1.7	0.035		6.3	0.13	0.702	4/29/13 7:59	TPH		
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 7:59	TPH		
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 7:59	TPH		
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 7:59	TPH		
Trichloroethylene	ND	0.035		ND	0.19	0.702	4/29/13 7:59	TPH		
Trichlorofluoromethane (Freon 11)	0.21	0.035		1.2	0.20	0.702	4/29/13 7:59	TPH		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.079	0.035	V-05	0.60	0.27	0.702	4/29/13 7:59	TPH		
1,2,4-Trimethylbenzene	0.77	0.035		3.8	0.17	0.702	4/29/13 7:59	TPH		
1,3,5-Trimethylbenzene	0.20	0.035		0.98	0.17	0.702	4/29/13 7:59	TPH		
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 7:59	TPH		
Vinyl Chloride	0.11	0.035		0.27	0.090	0.702	4/29/13 7:59	TPH		
m&p-Xylene	0.92	0.070		4.0	0.30	0.702	4/29/13 7:59	TPH		
o-Xylene	0.42	0.035		1.8	0.15	0.702	4/29/13 7:59	TPH		
Surrogates	% Reco	very		% REG	C Limits					
4-Bromofluorobenzene (1)		89.2		70	-130		4/27/13 14:45			
4-Bromofluorobenzene (1)		95.3		70	-130		4/29/13 7:59			

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

IA

Date Received: 4/26/2013
Field Sample #: SV-3
Sample ID: 13D1071-08
Sample Matrix: Indoor air
Sampled: 4/23/2013 14:39

Sample Description/Location: Sub Description/Location: Canister ID: 1312 Canister Size: 6 liter Flow Controller ID: 3346 Sample Type: 24 hr Work Order: 13D1071 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -7 Receipt Vacuum(in Hg): -8 Flow Controller Type: Fixed-Orifice Flow Controller Calibration

Flow Controller Calibration

RPD Pre and Post-Sampling: <20%

	pp	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	15	1.4	L-05	36	3.3	0.702	4/29/13 2:45	TPH
Benzene	0.18	0.035		0.57	0.11	0.702	4/29/13 2:45	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 2:45	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 2:45	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 2:45	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 2:45	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 2:45	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 2:45	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 2:45	TPH
Carbon Tetrachloride	0.072	0.035		0.45	0.22	0.702	4/29/13 2:45	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 2:45	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 2:45	TPH
Chloroform	ND	0.035		ND	0.17	0.702	4/29/13 2:45	TPH
Chloromethane	0.65	0.070		1.3	0.14	0.702	4/29/13 2:45	TPH
Cyclohexane	ND	0.035		ND	0.12	0.702	4/29/13 2:45	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 2:45	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 2:45	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 2:45	TPH
1,3-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 2:45	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 2:45	TPH
Dichlorodifluoromethane (Freon 12)	0.26	0.035		1.3	0.17	0.702	4/29/13 2:45	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 2:45	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 2:45	TPH
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 2:45	TPH
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 2:45	TPH
trans-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 2:45	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 2:45	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 2:45	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 2:45	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 2:45	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 2:45	TPH
Ethanol	18	1.4		34	2.6	0.702	4/29/13 2:45	TPH
Ethyl Acetate	1.9	0.035		6.8	0.13	0.702	4/29/13 2:45	TPH
Ethylbenzene	0.065	0.035		0.28	0.15	0.702	4/29/13 2:45	TPH
4-Ethyltoluene	ND	0.035		ND	0.17	0.702	4/29/13 2:45	TPH
Heptane	0.098	0.035		0.40	0.14	0.702	4/29/13 2:45	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 2:45	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013 Field Sample #: SV-3 IA Sample ID: 13D1071-08 Sample Matrix: Indoor air Sampled: 4/23/2013 14:39

Sample Description/Location: Sub Description/Location: Canister ID: 1312 Canister Size: 6 liter Flow Controller ID: 3346 Sample Type: 24 hr

Work Order: 13D1071

Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -7 Receipt Vacuum(in Hg): -8 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

			EPA 10-15					
	pp	bv		ug/ı	n3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Hexane	ND	1.4		ND	4.9	0.702	4/29/13 2:45	TPH
2-Hexanone (MBK)	0.17	0.035		0.71	0.14	0.702	4/29/13 2:45	TPH
Isopropanol	1.4	1.4	L-05	3.5	3.4	0.702	4/29/13 2:45	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 2:45	TPH
Methylene Chloride	0.41	0.35		1.4	1.2	0.702	4/29/13 2:45	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.035		ND	0.14	0.702	4/29/13 2:45	TPH
Naphthalene	1.0	0.035		5.3	0.18	0.702	4/29/13 2:45	TPH
Propene	ND	1.4		ND	2.4	0.702	4/29/13 2:45	TPH
Styrene	0.036	0.035		0.15	0.15	0.702	4/29/13 2:45	TPH
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 2:45	TPH
Tetrachloroethylene	ND	0.035		ND	0.24	0.702	4/29/13 2:45	TPH
Tetrahydrofuran	ND	0.035		ND	0.10	0.702	4/29/13 2:45	TPH
Toluene	0.81	0.035		3.0	0.13	0.702	4/29/13 2:45	TPH
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 2:45	TPH
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 2:45	TPH
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 2:45	TPH
Trichloroethylene	ND	0.035		ND	0.19	0.702	4/29/13 2:45	TPH
Trichlorofluoromethane (Freon 11)	0.18	0.035		1.0	0.20	0.702	4/29/13 2:45	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.061	0.035	V-05	0.47	0.27	0.702	4/29/13 2:45	TPH
1,2,4-Trimethylbenzene	0.072	0.035		0.36	0.17	0.702	4/29/13 2:45	TPH
1,3,5-Trimethylbenzene	ND	0.035		ND	0.17	0.702	4/29/13 2:45	TPH
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 2:45	TPH
Vinyl Chloride	ND	0.035		ND	0.090	0.702	4/29/13 2:45	TPH
m&p-Xylene	0.20	0.070		0.85	0.30	0.702	4/29/13 2:45	TPH
o-Xylene	0.078	0.035		0.34	0.15	0.702	4/29/13 2:45	ТРН
Surrogates	% Reco	% Recovery		% REC	C Limits			
4-Bromofluorobenzene (1)		94.2		70-	-130		4/29/13 2:45	

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013 **Field Sample #:** SV-2

SS1

Sample ID: 13D1071-09 Sample Matrix: Sub Slab

Sampled: 4/23/2013 15:26

Sample Description/Location: Sub Description/Location: Canister ID: 1271 Canister Size: 6 liter Flow Controller ID: 3345

Sample Type: 24 hr

Work Order: 13D1071

Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): -7 Receipt Vacuum(in Hg): -9.6

Flow Controller Type: Fixed-Orifice Flow Controller Calibration

RPD Pre and Post-Sampling: <20%

	ppbv		ug/m3			Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	14	1.4	L-05	34	3.3	0.702	4/29/13 7:15	TPH
Benzene	2.7	0.035		8.6	0.11	0.702	4/29/13 7:15	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 7:15	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 7:15	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 7:15	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 7:15	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 7:15	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 7:15	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 7:15	TPH
Carbon Tetrachloride	0.048	0.035		0.30	0.22	0.702	4/29/13 7:15	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 7:15	TPH
Chloroethane	0.10	0.035		0.26	0.093	0.702	4/29/13 7:15	TPH
Chloroform	0.036	0.035		0.18	0.17	0.702	4/29/13 7:15	TPH
Chloromethane	0.77	0.070		1.6	0.14	0.702	4/29/13 7:15	TPH
Cyclohexane	0.95	0.035		3.3	0.12	0.702	4/29/13 7:15	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 7:15	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 7:15	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 7:15	TPH
1,3-Dichlorobenzene	0.046	0.035		0.28	0.21	0.702	4/29/13 7:15	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 7:15	TPH
Dichlorodifluoromethane (Freon 12)	0.27	0.035		1.4	0.17	0.702	4/29/13 7:15	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 7:15	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 7:15	TPH
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 7:15	TPH
cis-1,2-Dichloroethylene	1.7	0.035		6.8	0.14	0.702	4/29/13 7:15	TPH
trans-1,2-Dichloroethylene	0.067	0.035		0.26	0.14	0.702	4/29/13 7:15	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 7:15	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 7:15	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 7:15	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 7:15	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 7:15	TPH
Ethanol	86	40		160	75	20	4/27/13 14:07	TPH
Ethyl Acetate	0.72	0.035		2.6	0.13	0.702	4/29/13 7:15	TPH
Ethylbenzene	1.8	0.035		7.9	0.15	0.702	4/29/13 7:15	TPH
4-Ethyltoluene	0.59	0.035		2.9	0.17	0.702	4/29/13 7:15	TPH
Heptane	2.3	0.035		9.5	0.14	0.702	4/29/13 7:15	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 7:15	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013 **Field Sample #:** SV-2

SS1

Sample ID: 13D1071-09 Sample Matrix: Sub Slab

Sampled: 4/23/2013 15:26

Sample Description/Location: Sub Description/Location: Canister ID: 1271 Canister Size: 6 liter Flow Controller ID: 3345

Sample Type: 24 hr

Work Order: 13D1071

Initial Vacuum(in Hg): -28.5 Final Vacuum(in Hg): -7

Receipt Vacuum(in Hg): -9.6 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	рр	ppbv ug/m3			Date/Time			
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Hexane	7.8	1.4		28	4.9	0.702	4/29/13 7:15	TPH
2-Hexanone (MBK)	0.31	0.035		1.3	0.14	0.702	4/29/13 7:15	TPH
Isopropanol	3.2	1.4	L-05	8.0	3.4	0.702	4/29/13 7:15	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 7:15	TPH
Methylene Chloride	0.69	0.35		2.4	1.2	0.702	4/29/13 7:15	TPH
4-Methyl-2-pentanone (MIBK)	0.18	0.035		0.76	0.14	0.702	4/29/13 7:15	TPH
Naphthalene	0.10	0.035		0.55	0.18	0.702	4/29/13 7:15	TPH
Propene	ND	1.4		ND	2.4	0.702	4/29/13 7:15	TPH
Styrene	0.037	0.035		0.16	0.15	0.702	4/29/13 7:15	TPH
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 7:15	TPH
Tetrachloroethylene	28	0.035		190	0.24	0.702	4/29/13 7:15	TPH
Tetrahydrofuran	0.33	0.035		0.97	0.10	0.702	4/29/13 7:15	TPH
Toluene	14	0.035		51	0.13	0.702	4/29/13 7:15	TPH
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 7:15	TPH
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 7:15	TPH
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 7:15	TPH
Trichloroethylene	1.1	0.035		5.9	0.19	0.702	4/29/13 7:15	TPH
Trichlorofluoromethane (Freon 11)	1.8	0.035		10	0.20	0.702	4/29/13 7:15	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.069	0.035	V-05	0.53	0.27	0.702	4/29/13 7:15	TPH
1,2,4-Trimethylbenzene	2.1	0.035		10	0.17	0.702	4/29/13 7:15	TPH
1,3,5-Trimethylbenzene	0.52	0.035		2.6	0.17	0.702	4/29/13 7:15	TPH
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 7:15	TPH
Vinyl Chloride	0.13	0.035		0.33	0.090	0.702	4/29/13 7:15	TPH
m&p-Xylene	6.8	0.070		29	0.30	0.702	4/29/13 7:15	TPH
o-Xylene	2.4	0.035		10	0.15	0.702	4/29/13 7:15	ТРН
Surrogates	% Reco	very		% REG	C Limits			
4-Bromofluorobenzene (1)		90.3		70-	-130		4/27/13 14:07	
4-Bromofluorobenzene (1)		101		70	-130		4/29/13 7:15	

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013

Field Sample #: SV-1 IA2

Sample ID: 13D1071-10 Sample Matrix: Indoor air

Sampled: 4/23/2013 15:38

Sample Description/Location: Sub Description/Location: Canister ID: 1813 Canister Size: 6 liter

Canister Size: 6 liter Flow Controller ID: 3516 Sample Type: 24 hr Work Order: 13D1071

Initial Vacuum(in Hg): -29.5 Final Vacuum(in Hg): -7

Receipt Vacuum(in Hg): -7.1 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	pp	bv		ug/ı	n3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	9.9	1.4	L-05	23	3.3	0.702	4/29/13 3:30	TPH
Benzene	2.5	0.035		7.9	0.11	0.702	4/29/13 3:30	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 3:30	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 3:30	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 3:30	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 3:30	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 3:30	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 3:30	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 3:30	TPH
Carbon Tetrachloride	0.068	0.035		0.43	0.22	0.702	4/29/13 3:30	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 3:30	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 3:30	TPH
Chloroform	ND	0.035		ND	0.17	0.702	4/29/13 3:30	TPH
Chloromethane	0.67	0.070		1.4	0.14	0.702	4/29/13 3:30	TPH
Cyclohexane	0.90	0.035		3.1	0.12	0.702	4/29/13 3:30	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 3:30	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 3:30	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 3:30	TPH
1,3-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 3:30	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 3:30	TPH
Dichlorodifluoromethane (Freon 12)	0.27	0.035		1.3	0.17	0.702	4/29/13 3:30	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 3:30	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 3:30	TPH
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 3:30	TPH
cis-1,2-Dichloroethylene	1.1	0.035		4.5	0.14	0.702	4/29/13 3:30	TPH
trans-1,2-Dichloroethylene	0.042	0.035		0.17	0.14	0.702	4/29/13 3:30	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 3:30	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 3:30	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 3:30	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 3:30	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 3:30	TPH
Ethanol	42	40		79	75	20	4/29/13 14:06	TPH
Ethyl Acetate	0.68	0.035		2.5	0.13	0.702	4/29/13 3:30	TPH
Ethylbenzene	1.8	0.035		7.7	0.15	0.702	4/29/13 3:30	TPH
4-Ethyltoluene	0.58	0.035		2.8	0.17	0.702	4/29/13 3:30	TPH
Heptane	2.3	0.035		9.6	0.14	0.702	4/29/13 3:30	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 3:30	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013

Field Sample #: SV-1

Sample ID: 13D1071-10 Sample Matrix: Indoor air

Sampled: 4/23/2013 15:38

IA2

Sub Description/Location: Canister ID: 1813 Canister Size: 6 liter Flow Controller ID: 3516

Sample Description/Location:

Sample Type: 24 hr

Work Order: 13D1071

Initial Vacuum(in Hg): -29.5 Final Vacuum(in Hg): -7

Receipt Vacuum(in Hg): -7.1 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	ppbv ug/m3			Date/Time				
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Hexane	7.4	1.4		26	4.9	0.702	4/29/13 3:30	TPH
2-Hexanone (MBK)	0.28	0.035		1.2	0.14	0.702	4/29/13 3:30	TPH
Isopropanol	1.8	1.4	L-05	4.3	3.4	0.702	4/29/13 3:30	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 3:30	TPH
Methylene Chloride	0.64	0.35		2.2	1.2	0.702	4/29/13 3:30	TPH
4-Methyl-2-pentanone (MIBK)	0.28	0.035	L-05	1.1	0.14	0.702	4/29/13 3:30	TPH
Naphthalene	0.26	0.035		1.4	0.18	0.702	4/29/13 3:30	TPH
Propene	ND	1.4		ND	2.4	0.702	4/29/13 3:30	TPH
Styrene	ND	0.035		ND	0.15	0.702	4/29/13 3:30	TPH
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 3:30	TPH
Tetrachloroethylene	30	0.035		200	0.24	0.702	4/29/13 3:30	TPH
Tetrahydrofuran	0.11	0.035		0.31	0.10	0.702	4/29/13 3:30	TPH
Toluene	12	0.035		46	0.13	0.702	4/29/13 3:30	TPH
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 3:30	TPH
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 3:30	TPH
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 3:30	TPH
Trichloroethylene	1.0	0.035		5.4	0.19	0.702	4/29/13 3:30	TPH
Trichlorofluoromethane (Freon 11)	2.2	0.035		12	0.20	0.702	4/29/13 3:30	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.066	0.035	V-05	0.51	0.27	0.702	4/29/13 3:30	TPH
1,2,4-Trimethylbenzene	2.3	0.035		11	0.17	0.702	4/29/13 3:30	TPH
1,3,5-Trimethylbenzene	0.53	0.035		2.6	0.17	0.702	4/29/13 3:30	TPH
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 3:30	TPH
Vinyl Chloride	0.051	0.035		0.13	0.090	0.702	4/29/13 3:30	TPH
m&p-Xylene	6.5	0.070		28	0.30	0.702	4/29/13 3:30	TPH
o-Xylene	2.4	0.035		10	0.15	0.702	4/29/13 3:30	ТРН
Surrogates	% Reco	very		% REC	C Limits			
4-Bromofluorobenzene (1)		85.6		70-	-130		4/29/13 14:06	
4-Bromofluorobenzene (1)		96.1		70-	-130		4/29/13 3:30	

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013

Field Sample #: SV-1 SS2

Sample ID: 13D1071-11 Sample Matrix: Sub Slab

Sampled: 4/23/2013 15:35

Sample Description/Location: Sub Description/Location: Canister ID: 1458 Canister Size: 6 liter

Flow Controller ID: 3514

Sample Type: 24 hr

Work Order: 13D1071

Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -5 Receipt Vacuum(in Hg): -6.4

Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	pp	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	12	1.4	L-05	28	3.3	0.702	4/29/13 6:29	TPH
Benzene	1.9	0.035		5.9	0.11	0.702	4/29/13 6:29	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 6:29	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 6:29	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 6:29	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 6:29	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 6:29	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 6:29	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 6:29	TPH
Carbon Tetrachloride	0.066	0.035		0.41	0.22	0.702	4/29/13 6:29	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 6:29	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 6:29	TPH
Chloroform	ND	0.035		ND	0.17	0.702	4/29/13 6:29	TPH
Chloromethane	0.56	0.070		1.2	0.14	0.702	4/29/13 6:29	TPH
Cyclohexane	0.60	0.035		2.1	0.12	0.702	4/29/13 6:29	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 6:29	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 6:29	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 6:29	TPH
1,3-Dichlorobenzene	0.036	0.035		0.22	0.21	0.702	4/29/13 6:29	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 6:29	TPH
Dichlorodifluoromethane (Freon 12)	0.29	0.035		1.4	0.17	0.702	4/29/13 6:29	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 6:29	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 6:29	TPH
1,1-Dichloroethylene	0.039	0.035		0.16	0.14	0.702	4/29/13 6:29	TPH
cis-1,2-Dichloroethylene	1.1	0.035		4.2	0.14	0.702	4/29/13 6:29	TPH
trans-1,2-Dichloroethylene	0.048	0.035		0.19	0.14	0.702	4/29/13 6:29	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 6:29	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 6:29	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 6:29	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 6:29	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 6:29	TPH
Ethanol	90	40		170	75	20	4/27/13 13:29	TPH
Ethyl Acetate	1.1	0.035		4.0	0.13	0.702	4/29/13 6:29	TPH
Ethylbenzene	1.2	0.035		5.1	0.15	0.702	4/29/13 6:29	TPH
4-Ethyltoluene	0.35	0.035		1.7	0.17	0.702	4/29/13 6:29	TPH
Heptane	1.6	0.035		6.5	0.14	0.702	4/29/13 6:29	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 6:29	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013

Field Sample #: SV-1 SS2

Sample ID: 13D1071-11 Sample Matrix: Sub Slab

Sampled: 4/23/2013 15:35

Sample Description/Location: Sub Description/Location: Canister ID: 1458 Canister Size: 6 liter

Flow Controller ID: 3514 Sample Type: 24 hr

Work Order: 13D1071

Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -5

Receipt Vacuum(in Hg): -6.4 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration

RPD Pre and Post-Sampling: <20%

EPA	TO	-15
-----	----	-----

	ppbv ug/s		m3		Date/Time			
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Hexane	5.6	1.4		20	4.9	0.702	4/29/13 6:29	TPH
2-Hexanone (MBK)	ND	0.035		ND	0.14	0.702	4/29/13 6:29	TPH
Isopropanol	2.9	1.4	L-05	7.2	3.4	0.702	4/29/13 6:29	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 6:29	TPH
Methylene Chloride	0.89	0.35		3.1	1.2	0.702	4/29/13 6:29	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.035		ND	0.14	0.702	4/29/13 6:29	TPH
Naphthalene	0.11	0.035		0.60	0.18	0.702	4/29/13 6:29	TPH
Propene	ND	1.4		ND	2.4	0.702	4/29/13 6:29	TPH
Styrene	ND	0.035		ND	0.15	0.702	4/29/13 6:29	TPH
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 6:29	TPH
Tetrachloroethylene	22	0.035		150	0.24	0.702	4/29/13 6:29	TPH
Tetrahydrofuran	0.045	0.035		0.13	0.10	0.702	4/29/13 6:29	TPH
Toluene	9.1	0.035		34	0.13	0.702	4/29/13 6:29	TPH
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 6:29	TPH
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 6:29	TPH
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 6:29	TPH
Trichloroethylene	0.84	0.035		4.5	0.19	0.702	4/29/13 6:29	TPH
Trichlorofluoromethane (Freon 11)	1.6	0.035		8.7	0.20	0.702	4/29/13 6:29	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.072	0.035	V-05	0.55	0.27	0.702	4/29/13 6:29	TPH
1,2,4-Trimethylbenzene	1.3	0.035		6.2	0.17	0.702	4/29/13 6:29	TPH
1,3,5-Trimethylbenzene	0.32	0.035		1.6	0.17	0.702	4/29/13 6:29	TPH
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 6:29	TPH
Vinyl Chloride	0.068	0.035		0.17	0.090	0.702	4/29/13 6:29	TPH
m&p-Xylene	4.3	0.070		19	0.30	0.702	4/29/13 6:29	TPH
o-Xylene	1.5	0.035		6.5	0.15	0.702	4/29/13 6:29	ТРН
Surrogates	% Reco	very		% RE	C Limits			
4-Bromofluorobenzene (1)		92.4		70	-130		4/27/13 13:29	
4-Bromofluorobenzene (1)		96.5		70	-130		4/29/13 6:29	

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013

Date Received: 4/26/2013 Field Sample #: DUP 1 Sample ID: 13D1071-12 Sample Matrix: Air Sampled: 4/22/2013 00:00 Sample Description/Location: Sub Description/Location: Canister ID: 1843 Canister Size: 6 liter Flow Controller ID: 3515 Sample Type: 24 hr Work Order: 13D1071 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -8 Receipt Vacuum(in Hg): -8.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration

RPD Pre and Post-Sampling: <20%

	ppbv ug/n		ug/m3		Date/Time			
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	9.8	1.4	L-05	23	3.3	0.702	4/29/13 5:44	TPH
Benzene	2.5	0.035		7.9	0.11	0.702	4/29/13 5:44	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 5:44	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 5:44	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 5:44	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 5:44	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 5:44	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 5:44	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 5:44	TPH
Carbon Tetrachloride	0.071	0.035		0.45	0.22	0.702	4/29/13 5:44	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 5:44	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 5:44	TPH
Chloroform	ND	0.035		ND	0.17	0.702	4/29/13 5:44	TPH
Chloromethane	0.67	0.070		1.4	0.14	0.702	4/29/13 5:44	TPH
Cyclohexane	0.91	0.035		3.1	0.12	0.702	4/29/13 5:44	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 5:44	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 5:44	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 5:44	TPH
1,3-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 5:44	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 5:44	TPH
Dichlorodifluoromethane (Freon 12)	0.27	0.035		1.3	0.17	0.702	4/29/13 5:44	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 5:44	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 5:44	TPH
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 5:44	TPH
cis-1,2-Dichloroethylene	1.1	0.035		4.5	0.14	0.702	4/29/13 5:44	TPH
trans-1,2-Dichloroethylene	0.048	0.035		0.19	0.14	0.702	4/29/13 5:44	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 5:44	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 5:44	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 5:44	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 5:44	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 5:44	TPH
Ethanol	40	40		76	75	20	4/27/13 12:51	TPH
Ethyl Acetate	0.63	0.035		2.3	0.13	0.702	4/29/13 5:44	TPH
Ethylbenzene	1.8	0.035		7.7	0.15	0.702	4/29/13 5:44	TPH
4-Ethyltoluene	0.58	0.035		2.8	0.17	0.702	4/29/13 5:44	TPH
Heptane	2.3	0.035		9.5	0.14	0.702	4/29/13 5:44	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 5:44	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013 Field Sample #: DUP 1 Sample ID: 13D1071-12

Sample Matrix: Air Sampled: 4/22/2013 00:00 Sample Description/Location: Sub Description/Location: Canister ID: 1843 Canister Size: 6 liter Flow Controller ID: 3515 Sample Type: 24 hr Work Order: 13D1071 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -8 Receipt Vacuum(in Hg): -8.6 Flow Controller Type: Fixed-Orifice Flow Controller Calibration

RPD Pre and Post-Sampling: <20%

			EPA TO-15					
	pp	bv		ug/i	m3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Hexane	7.5	1.4		26	4.9	0.702	4/29/13 5:44	TPH
2-Hexanone (MBK)	ND	0.035		ND	0.14	0.702	4/29/13 5:44	TPH
Isopropanol	1.7	1.4	L-05	4.3	3.4	0.702	4/29/13 5:44	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 5:44	TPH
Methylene Chloride	0.73	0.35		2.5	1.2	0.702	4/29/13 5:44	TPH
4-Methyl-2-pentanone (MIBK)	0.26	0.035	L-05	1.1	0.14	0.702	4/29/13 5:44	TPH
Naphthalene	0.23	0.035		1.2	0.18	0.702	4/29/13 5:44	TPH
Propene	ND	1.4		ND	2.4	0.702	4/29/13 5:44	TPH
Styrene	ND	0.035		ND	0.15	0.702	4/29/13 5:44	TPH
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 5:44	TPH
Tetrachloroethylene	30	0.035		210	0.24	0.702	4/29/13 5:44	TPH
Tetrahydrofuran	0.11	0.035		0.33	0.10	0.702	4/29/13 5:44	TPH
Toluene	12	0.035		47	0.13	0.702	4/29/13 5:44	TPH
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 5:44	TPH
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 5:44	TPH
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 5:44	TPH
Trichloroethylene	1.0	0.035		5.4	0.19	0.702	4/29/13 5:44	TPH
Trichlorofluoromethane (Freon 11)	2.3	0.035		13	0.20	0.702	4/29/13 5:44	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.067	0.035	V-05	0.52	0.27	0.702	4/29/13 5:44	TPH
1,2,4-Trimethylbenzene	2.2	0.035		11	0.17	0.702	4/29/13 5:44	TPH
1,3,5-Trimethylbenzene	0.52	0.035		2.6	0.17	0.702	4/29/13 5:44	TPH
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 5:44	TPH
Vinyl Chloride	0.048	0.035		0.12	0.090	0.702	4/29/13 5:44	TPH
m&p-Xylene	6.6	0.070		29	0.30	0.702	4/29/13 5:44	TPH
o-Xylene	2.4	0.035		10	0.15	0.702	4/29/13 5:44	TPH
Surrogates	% Reco	very		% REG	C Limits			
4-Bromofluorobenzene (1)		95.6		70-	-130		4/29/13 5:44	
4-Bromofluorobenzene (1)		91.2		70	-130		4/27/13 12:51	

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013

Field Sample #: SV-2

Sample ID: 13D1071-13

Sample Matrix: Ambient Air

Sampled: 4/23/2013 15:45

Sample Description/Location: Sub Description/Location: Canister ID: 1105 Canister Size: 6 liter Flow Controller ID: 3511 Sample Type: 24 hr Work Order: 13D1071 Initial Vacuum(in Hg): -28 Final Vacuum(in Hg): -4

Receipt Vacuum(in Hg): -6.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration

RPD Pre and Post-Sampling: <20%

	ppbv			ug/m3		Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	3.6	1.4	L-05	8.6	3.3	0.702	4/29/13 4:14	TPH
Benzene	0.12	0.035		0.39	0.11	0.702	4/29/13 4:14	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 4:14	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 4:14	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 4:14	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 4:14	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 4:14	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 4:14	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 4:14	TPH
Carbon Tetrachloride	0.071	0.035		0.45	0.22	0.702	4/29/13 4:14	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 4:14	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 4:14	TPH
Chloroform	ND	0.035		ND	0.17	0.702	4/29/13 4:14	TPH
Chloromethane	0.65	0.070		1.3	0.14	0.702	4/29/13 4:14	TPH
Cyclohexane	ND	0.035		ND	0.12	0.702	4/29/13 4:14	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 4:14	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 4:14	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 4:14	TPH
1,3-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 4:14	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 4:14	TPH
Dichlorodifluoromethane (Freon 12)	0.30	0.035		1.5	0.17	0.702	4/29/13 4:14	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 4:14	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 4:14	TPH
1,1-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 4:14	TPH
cis-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 4:14	TPH
trans-1,2-Dichloroethylene	ND	0.035		ND	0.14	0.702	4/29/13 4:14	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 4:14	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 4:14	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 4:14	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 4:14	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 4:14	TPH
Ethanol	2.7	1.4		5.1	2.6	0.702	4/29/13 4:14	TPH
Ethyl Acetate	0.59	0.035		2.1	0.13	0.702	4/29/13 4:14	TPH
Ethylbenzene	ND	0.035		ND	0.15	0.702	4/29/13 4:14	TPH
4-Ethyltoluene	ND	0.035		ND	0.17	0.702	4/29/13 4:14	TPH
Heptane	ND	0.035		ND	0.14	0.702	4/29/13 4:14	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 4:14	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013

Field Sample #: SV-2 OA
Sample ID: 13D1071-13
Sample Matrix: Ambient Air
Sampled: 4/23/2013 15:45

Sample Description/Location: Sub Description/Location: Canister ID: 1105 Canister Size: 6 liter Flow Controller ID: 3511 Sample Type: 24 hr Work Order: 13D1071

Initial Vacuum(in Hg): -28 Final Vacuum(in Hg): -4 Receipt Vacuum(in Hg): -6.1 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

EPA	TO	-15
-----	----	-----

	pp	ppbv ug/m3			Date/Time			
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Hexane	ND	1.4		ND	4.9	0.702	4/29/13 4:14	TPH
2-Hexanone (MBK)	ND	0.035		ND	0.14	0.702	4/29/13 4:14	TPH
Isopropanol	ND	1.4		ND	3.4	0.702	4/29/13 4:14	TPH
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 4:14	TPH
Methylene Chloride	0.65	0.35		2.2	1.2	0.702	4/29/13 4:14	TPH
4-Methyl-2-pentanone (MIBK)	ND	0.035		ND	0.14	0.702	4/29/13 4:14	TPH
Naphthalene	ND	0.035		ND	0.18	0.702	4/29/13 4:14	TPH
Propene	ND	1.4		ND	2.4	0.702	4/29/13 4:14	TPH
Styrene	ND	0.035		ND	0.15	0.702	4/29/13 4:14	TPH
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 4:14	TPH
Tetrachloroethylene	0.11	0.035		0.73	0.24	0.702	4/29/13 4:14	TPH
Tetrahydrofuran	ND	0.035		ND	0.10	0.702	4/29/13 4:14	TPH
Toluene	0.21	0.035		0.80	0.13	0.702	4/29/13 4:14	TPH
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 4:14	TPH
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 4:14	TPH
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 4:14	TPH
Trichloroethylene	ND	0.035		ND	0.19	0.702	4/29/13 4:14	TPH
Trichlorofluoromethane (Freon 11)	0.19	0.035		1.1	0.20	0.702	4/29/13 4:14	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.067	0.035	V-05	0.51	0.27	0.702	4/29/13 4:14	TPH
1,2,4-Trimethylbenzene	ND	0.035		ND	0.17	0.702	4/29/13 4:14	TPH
1,3,5-Trimethylbenzene	ND	0.035		ND	0.17	0.702	4/29/13 4:14	TPH
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 4:14	TPH
Vinyl Chloride	ND	0.035		ND	0.090	0.702	4/29/13 4:14	TPH
m&p-Xylene	0.088	0.070		0.38	0.30	0.702	4/29/13 4:14	TPH
o-Xylene	0.038	0.035		0.16	0.15	0.702	4/29/13 4:14	TPH
Surrogates	% Reco	very		% REG	C Limits			

4-Bromofluorobenzene (1) 93.6 70-130 4/29/13 4:14

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo

Date Received: 4/26/2013
Field Sample #: DUP 2
Sample ID: 13D1071-14
Sample Matrix: Air
Sampled: 4/22/2013 00:00

Sample Description/Location: Sub Description/Location: Canister ID: 1503 Canister Size: 6 liter Flow Controller ID: 3513 Sample Type: 24 hr Work Order: 13D1071

Initial Vacuum(in Hg): -27 Final Vacuum(in Hg): -5 Receipt Vacuum(in Hg): -7.3 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	pp	bv		ug/ı	m3		Date/Time	
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Acetone	12	1.4	L-05	29	3.3	0.702	4/29/13 4:59	TPH
Benzene	1.8	0.035		5.8	0.11	0.702	4/29/13 4:59	TPH
Benzyl chloride	ND	0.035		ND	0.18	0.702	4/29/13 4:59	TPH
Bromodichloromethane	ND	0.035		ND	0.24	0.702	4/29/13 4:59	TPH
Bromoform	ND	0.035		ND	0.36	0.702	4/29/13 4:59	TPH
Bromomethane	ND	0.035		ND	0.14	0.702	4/29/13 4:59	TPH
1,3-Butadiene	ND	0.035		ND	0.078	0.702	4/29/13 4:59	TPH
2-Butanone (MEK)	ND	1.4		ND	4.1	0.702	4/29/13 4:59	TPH
Carbon Disulfide	ND	0.35		ND	1.1	0.702	4/29/13 4:59	TPH
Carbon Tetrachloride	0.068	0.035		0.43	0.22	0.702	4/29/13 4:59	TPH
Chlorobenzene	ND	0.035		ND	0.16	0.702	4/29/13 4:59	TPH
Chloroethane	ND	0.035		ND	0.093	0.702	4/29/13 4:59	TPH
Chloroform	ND	0.035		ND	0.17	0.702	4/29/13 4:59	TPH
Chloromethane	0.55	0.070		1.1	0.14	0.702	4/29/13 4:59	TPH
Cyclohexane	0.58	0.035		2.0	0.12	0.702	4/29/13 4:59	TPH
Dibromochloromethane	ND	0.035		ND	0.30	0.702	4/29/13 4:59	TPH
1,2-Dibromoethane (EDB)	ND	0.035		ND	0.27	0.702	4/29/13 4:59	TPH
1,2-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 4:59	TPH
1,3-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 4:59	TPH
1,4-Dichlorobenzene	ND	0.035		ND	0.21	0.702	4/29/13 4:59	TPH
Dichlorodifluoromethane (Freon 12)	0.27	0.035		1.3	0.17	0.702	4/29/13 4:59	TPH
1,1-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 4:59	TPH
1,2-Dichloroethane	ND	0.035		ND	0.14	0.702	4/29/13 4:59	TPH
1,1-Dichloroethylene	0.039	0.035		0.15	0.14	0.702	4/29/13 4:59	TPH
cis-1,2-Dichloroethylene	1.0	0.035		4.1	0.14	0.702	4/29/13 4:59	TPH
trans-1,2-Dichloroethylene	0.044	0.035		0.18	0.14	0.702	4/29/13 4:59	TPH
1,2-Dichloropropane	ND	0.035		ND	0.16	0.702	4/29/13 4:59	TPH
cis-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 4:59	TPH
trans-1,3-Dichloropropene	ND	0.035		ND	0.16	0.702	4/29/13 4:59	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035		ND	0.25	0.702	4/29/13 4:59	TPH
1,4-Dioxane	ND	0.035		ND	0.13	0.702	4/29/13 4:59	TPH
Ethanol	77	40		150	75	20	4/27/13 12:13	TPH
Ethyl Acetate	0.62	0.035		2.2	0.13	0.702	4/29/13 4:59	TPH
Ethylbenzene	1.1	0.035		4.9	0.15	0.702	4/29/13 4:59	TPH
4-Ethyltoluene	0.36	0.035		1.8	0.17	0.702	4/29/13 4:59	TPH
Heptane	1.6	0.035		6.4	0.14	0.702	4/29/13 4:59	TPH
Hexachlorobutadiene	ND	0.035		ND	0.37	0.702	4/29/13 4:59	TPH

ANALYTICAL RESULTS

Project Location: Former Doro Cleaners, Buffalo Date Received: 4/26/2013 Field Sample #: DUP 2 Sample ID: 13D1071-14

Sample Matrix: Air Sampled: 4/22/2013 00:00 Sample Description/Location: Sub Description/Location: Canister ID: 1503 Canister Size: 6 liter Flow Controller ID: 3513 Sample Type: 24 hr

Work Order: 13D1071

Initial Vacuum(in Hg): -27 Final Vacuum(in Hg): -5 Receipt Vacuum(in Hg): -7.3 Flow Controller Type: Fixed-Orifice

Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	pp	bv		ug/i	m3		Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst	
Hexane	5.4	1.4		19	4.9	0.702	4/29/13 4:59	TPH	
2-Hexanone (MBK)	0.22	0.035		0.90	0.14	0.702	4/29/13 4:59	TPH	
Isopropanol	2.3	1.4	L-05	5.7	3.4	0.702	4/29/13 4:59	TPH	
Methyl tert-Butyl Ether (MTBE)	ND	0.035		ND	0.13	0.702	4/29/13 4:59	TPH	
Methylene Chloride	0.68	0.35		2.3	1.2	0.702	4/29/13 4:59	TPH	
4-Methyl-2-pentanone (MIBK)	0.21	0.035	L-05	0.88	0.14	0.702	4/29/13 4:59	TPH	
Naphthalene	0.14	0.035		0.75	0.18	0.702	4/29/13 4:59	TPH	
Propene	ND	1.4		ND	2.4	0.702	4/29/13 4:59	TPH	
Styrene	ND	0.035		ND	0.15	0.702	4/29/13 4:59	TPH	
1,1,2,2-Tetrachloroethane	ND	0.035		ND	0.24	0.702	4/29/13 4:59	TPH	
Tetrachloroethylene	23	0.035		150	0.24	0.702	4/29/13 4:59	TPH	
Tetrahydrofuran	ND	0.035		ND	0.10	0.702	4/29/13 4:59	TPH	
Toluene	8.5	0.035		32	0.13	0.702	4/29/13 4:59	TPH	
1,2,4-Trichlorobenzene	ND	0.035		ND	0.26	0.702	4/29/13 4:59	TPH	
1,1,1-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 4:59	TPH	
1,1,2-Trichloroethane	ND	0.035		ND	0.19	0.702	4/29/13 4:59	TPH	
Trichloroethylene	0.85	0.035		4.6	0.19	0.702	4/29/13 4:59	TPH	
Trichlorofluoromethane (Freon 11)	1.5	0.035		8.3	0.20	0.702	4/29/13 4:59	TPH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.065	0.035	V-05	0.49	0.27	0.702	4/29/13 4:59	TPH	
1,2,4-Trimethylbenzene	1.5	0.035		7.3	0.17	0.702	4/29/13 4:59	TPH	
1,3,5-Trimethylbenzene	0.38	0.035		1.8	0.17	0.702	4/29/13 4:59	TPH	
Vinyl Acetate	ND	0.70		ND	2.5	0.702	4/29/13 4:59	TPH	
Vinyl Chloride	0.067	0.035		0.17	0.090	0.702	4/29/13 4:59	TPH	
m&p-Xylene	4.2	0.070		18	0.30	0.702	4/29/13 4:59	TPH	
o-Xylene	1.5	0.035		6.5	0.15	0.702	4/29/13 4:59	ТРН	
Surrogates	% Reco	very		% RE	C Limits				
4-Bromofluorobenzene (1)		91.6		70	-130		4/27/13 12:13		
4-Bromofluorobenzene (1)		94.6		70	-130		4/29/13 4:59		

Surrogates	% Recovery	% REC Limits	
4-Bromofluorobenzene (1)	91.6	70-130	4/27/13 12:13
4-Bromofluorobenzene (1)	94.6	70-130	4/29/13 4:59

Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-15				Pre-Dil	Pre-Dil	Default	Actual	
Lab Number [Field ID]	Batch	Pressure Dilution	Pre Dilution	Initial mL	Final mL	Injection mL	Injection mL	Date
13D1071-01	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-02	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-02RE1	B071996	1.5	1	N/A	1000	400	30	04/28/13
13D1071-03	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-03RE1	B071996	1.5	1	N/A	1000	400	30	04/28/13
13D1071-04	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-05	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-05RE1	B071996	1.5	1	N/A	1000	400	30	04/28/13
13D1071-06	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-07	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-08	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-09	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-10	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-10RE1	B071996	1.5	1	N/A	1000	400	30	04/28/13
13D1071-11	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-12	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-13	B071996	1.5	1	N/A	1000	400	855	04/28/13
13D1071-14	B071996	1.5	1	N/A	1000	400	855	04/28/13

Prep Method: TO-15 Prep-EPA TO-15				Pre-Dil	Pre-Dil	Default	Actual	
Lab Number [Field ID]	Batch	Pressure Dilution	Pre Dilution	Initial mL	Final mL	Injection mL	Injection mL	Date
13D1071-04RE1	B071997	1.5	1	N/A	1000	400	30	04/26/13
13D1071-07RE1	B071997	1.5	1	N/A	1000	400	30	04/26/13
13D1071-09RE1	B071997	1.5	1	N/A	1000	400	30	04/26/13
13D1071-11RE1	B071997	1.5	1	N/A	1000	400	30	04/26/13
13D1071-12RE1	B071997	1.5	1	N/A	1000	400	30	04/26/13
13D1071-14RE1	B071997	1.5	1	N/A	1000	400	30	04/26/13

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Air Toxics by EPA Compendium Methods - Quality Control												
Analyte	ppby		ug/m3	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Floor		
Analyte	Results	RL	Results RL	ppbv	Resuit	%REC	Limits	KPD	Limit	Flag		
Batch B071996 - TO-15 Prep												
Blank (B071996-BLK1)				Prepared & A	Analyzed: 04	/28/13						
Acetone	ND	1.0										
Benzene	ND	0.025										
Benzyl chloride	ND	0.025										
Bromodichloromethane	ND	0.025										
Bromoform	ND	0.025										
Bromomethane	ND	0.025										
1,3-Butadiene	ND	0.025										
2-Butanone (MEK)	ND	1.0										
Carbon Disulfide	ND	0.25										
Carbon Tetrachloride	ND	0.025										
Chlorobenzene	ND	0.025										
Chloroethane	ND	0.025										
Chloroform	ND	0.025										
Chloromethane	ND	0.050										
Cyclohexane	ND	0.025										
Dibromochloromethane	ND	0.025										
1,2-Dibromoethane (EDB)	ND	0.025										
1,2-Dichlorobenzene	ND	0.025										
1,3-Dichlorobenzene	ND	0.025										
1,4-Dichlorobenzene	ND	0.025										
Dichlorodifluoromethane (Freon 12)	ND	0.025										
1,1-Dichloroethane	ND	0.025										
1,2-Dichloroethane	ND	0.025										
1,1-Dichloroethylene	ND	0.025										
cis-1,2-Dichloroethylene	ND	0.025										
trans-1,2-Dichloroethylene	ND	0.025										
1,2-Dichloropropane	ND	0.025										
cis-1,3-Dichloropropene	ND	0.025										
trans-1,3-Dichloropropene	ND	0.025										
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.025										
1,4-Dioxane	ND	0.025										
Ethanol	ND	1.0										
Ethyl Acetate	ND	0.025										
Ethylbenzene	ND	0.025										
4-Ethyltoluene	ND	0.025										
Heptane	ND	0.025										
Hexachlorobutadiene	ND	0.025										
Hexane	ND	1.0										
2-Hexanone (MBK)	ND	0.025										
Isopropanol	ND	1.0										
Methyl tert-Butyl Ether (MTBE)	ND	0.025										
Methylene Chloride	ND	0.25										
4-Methyl-2-pentanone (MIBK)	ND	0.025										
Naphthalene	ND	0.025										
Propene	ND	1.0										

ND

Styrene

0.025

QUALITY CONTROL

Analyte	ppbv Results	RL	ug/m3 Results RL	Spike Level ppbv	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch B071996 - TO-15 Prep										
Blank (B071996-BLK1)				Prepared &	Analyzed: 04	1/28/13				
1,1,2,2-Tetrachloroethane	ND 0	0.025								
Tetrachloroethylene	ND 0	0.025								
Fetrahydrofuran	ND 0	0.025								
Γoluene	ND 0	0.025								
,2,4-Trichlorobenzene	ND 0	0.025								
,1,1-Trichloroethane	ND 0	0.025								
,1,2-Trichloroethane	ND 0	0.025								
richloroethylene	ND 0	0.025								
Crichlorofluoromethane (Freon 11)	ND 0	0.025								
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	ND 0	0.025								V-05
,2,4-Trimethylbenzene	ND 0	0.025								
,3,5-Trimethylbenzene	ND 0	0.025								
/inyl Acetate	ND (0.50								
/inyl Chloride	ND 0	0.025								
n&p-Xylene	ND 0	0.050								
-Xylene	ND 0	0.025								
urrogate: 4-Bromofluorobenzene (1)	7.22			8.00		90.2	70-130			
CS (B071996-BS1)				Prepared &	Analyzed: 04	1/28/13				
acetone	6.96			5.00		139 *	70-130			L-05
enzene	4.96			5.00		99.2	70-130			
enzyl chloride	6.25			5.00		125	70-130			
romodichloromethane	6.00			5.00		120	70-130			
Bromoform	5.26			5.00		105	70-130			
Bromomethane	4.50			5.00		89.9	70-130			
,3-Butadiene	5.54			5.00		111	70-130			
-Butanone (MEK)	4.75			5.00		95.0	70-130			
Carbon Disulfide	4.48			5.00		89.6	70-130			
Carbon Tetrachloride	5.17			5.00		103	70-130			
hlorobenzene	5.25			5.00		105	70-130			
Chloroethane	5.70			5.00		114	70-130			
Chloroform	4.20			5.00		84.1	70-130			
Chloromethane	5.44			5.00		109	70-130			
Cyclohexane	5.10			5.00		102	70-130			
Dibromochloromethane	5.14			5.00		103	70-130			
,2-Dibromoethane (EDB)	5.26			5.00		105	70-130			
,2-Dichlorobenzene	6.08			5.00		122	70-130			
,3-Dichlorobenzene	6.12			5.00		122	70-130			
,4-Dichlorobenzene	5.91			5.00		118	70-130			
Dichlorodifluoromethane (Freon 12)	4.59			5.00		91.7	70-130			
,1-Dichloroethane	4.49			5.00		89.8	70-130			
,2-Dichloroethane	4.65			5.00		92.9	70-130			
,1-Dichloroethylene	4.30			5.00		86.0	70-130			
is-1,2-Dichloroethylene	4.74			5.00		94.7	70-130			
rans-1,2-Dichloroethylene	4.49			5.00		89.8	70-130			
,2-Dichloropropane	6.18			5.00		124	70-130			
				Danie	21 -f F	C 42D40	71 10	onto at F	inal 05 0	2 42 45

1,3,5-Trimethylbenzene

Surrogate: 4-Bromofluorobenzene (1)

Vinyl Acetate

Vinyl Chloride

m&p-Xylene

o-Xylene

5.81

4.28

5.37

11.7

5.85

8.16

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyte Results RL Results RL ppbv	Source N/PEC	%REC	DDD	RPD	El
Cis-1,3-Dichloropropene 5.91 5.00 1,2-Dichloropropene 6.31 5.00 1,2-Dichloropropene 6.31 5.00 1,2-Dichloropropene 5.92 5.00 1,2-Dichloro-1,1,2,2-tetrafluoroethane 5.02 5.00 1,4-Dioxane 5.51 5.00 1,4-Dioxane 5.51 5.00 1,4-Dioxane 5.21 5.00 1,4-Dioxane 5.22 5.00 1,4-Dioxane 5.00 1,4-Dio	Result %REC	Limits	RPD	Limit	Flag
cis-1,3-Dichloropropene 5.91 5.00 trans-1,3-Dichloropropene 6.31 5.00 1,2-Dichloropropene 5.02 5.00 (Freon 114) 1,4-Dioxane 5.51 5.00 Ethanol 5.21 5.00 Ethyl Acetate 5.27 5.00 Ethyl Acetate 5.27 5.00 Ethyl Indiana 5.00 Ethyl Indiana 5.00 Heptane 5.98 5.00 Heptane 5.98 5.00 Hexachlorobutadiene 6.18 5.00 Hexane 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 Tetrachloroethylene 5.01 5.00 Tetrachloroethylene 5.01 5.00 Tetrachloroethylene 5.01 5.00 Tetrachloroethylene 5.01 5.00 Toluene 5.24 5.00 T,1,1-Trichloroethane 5.12 5.00					_
trans-1,3-Dichloropropene 6.31 5.00 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) 1,4-Dioxane 5.51 5.00 Ethanol 5.21 5.00 Ethyl Acetate 5.27 5.00 Ethyl Locetate 5.43 5.00 Ethyl Locetate 5.58 5.00 Ethyl Locetate 5.58 5.00 Heptane 5.98 5.00 Heptane 5.98 5.00 Hexachlorobutadiene 6.18 5.00 Hexachlorobutadiene 6.18 5.00 Hexane 5.05 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 Tetrachloroethylene 5.01 5.00 Tetrachloroethylene 5.01 5.00 Tetrachloroethylene 5.01 5.00 Tetrachloroethylene 5.01 Toluene 5.24 5.00 1,1,1-Trichloroethane 5.12 5.00	nalyzed: 04/28/13				
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) 5.02 1,4-Dioxane 5.51 5.00 Ethanol 5.21 5.00 Ethyl Acetate 5.27 5.00 Ethyl Iboluene 5.43 5.00 4-Ethyltoluene 5.58 5.00 Heptane 5.98 5.00 Hexachlorobutadiene 6.18 5.00 Hexane 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methylene Chloride 4.61 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrachloroethylene 5.01 5.00 Tetrachloroethylene 5.24 5.00 Toluene 5.24 5.00 1,1,1-Trichloroethane <td< td=""><td>118</td><td>70-130</td><td></td><td></td><td></td></td<>	118	70-130			
(Freon 114) 1,4-Dioxane 5.51 5.00 Ethanol 5.21 5.00 Ethyl Acetate 5.27 5.00 Ethylbenzene 5.43 5.00 4-Ethyltoluene 5.58 5.00 Heptane 5.98 5.00 Hexachlorobutadiene 6.18 5.00 Hexane 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methylene Chloride 4.61 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Styrene 5.79 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,1,1-Trichloroethane 6.23 5.00	126	70-130			
Ethanol 5.21 5.00 Ethyl Acetate 5.27 5.00 Ethylbenzene 5.43 5.00 4-Ethyltoluene 5.58 5.00 Heptane 5.98 5.00 Hexachlorobutadiene 6.18 5.00 Hexane 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methyl-2-pentanone (MIBK) 6.94 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrachloroethylene 5.01 5.00 Toluene 5.24 5.00 1,1,1-Trichloroethane 5.12 5.00	100	70-130			
Ethyl Acetate 5.27 5.00 Ethylbenzene 5.43 5.00 4-Ethyltoluene 5.58 5.00 Heptane 5.98 5.00 Hexachlorobutadiene 6.18 5.00 Hexane 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methyl-2-pentanone (MIBK) 6.94 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichloroethane 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	110	70-130			
Ethylbenzene 5.43 5.00 4-Ethyltoluene 5.58 5.00 Heptane 5.98 5.00 Hexachlorobutadiene 6.18 5.00 Hexane 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methylene Chloride 4.61 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	104	70-130			
4-Ethyltoluene 5.58 5.00 Heptane 5.98 5.00 Hexachlorobutadiene 6.18 5.00 Hexane 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachydrofuran 4.60 5.00 Toluene 5.24 5.00 1,1,1-Trichlorobenzene 5.00 1,1,1-Trichloroethane 5.20 1,1,1-Trichloroethane 5.00	105	70-130			
Heptane 5.98 5.00 Hexachlorobutadiene 6.18 5.00 Hexane 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methylene Chloride 4.61 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	109	70-130			
Hexachlorobutadiene 6.18 5.00 Hexane 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methylene Chloride 4.61 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	112	70-130			
Hexane 5.05 5.00 2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methylene Chloride 4.61 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	120	70-130			
2-Hexanone (MBK) 6.44 5.00 Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methylene Chloride 4.61 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	124	70-130			
Isopropanol 7.09 5.00 Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methylene Chloride 4.61 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	101	70-130			
Methyl tert-Butyl Ether (MTBE) 4.21 5.00 Methylene Chloride 4.61 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	129	70-130			
Methylene Chloride 4.61 5.00 4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	142 *	70-130			L-0:
4-Methyl-2-pentanone (MIBK) 6.94 5.00 Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	84.2	70-130			
Naphthalene 5.27 5.00 Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	92.2	70-130			
Propene 5.99 5.00 Styrene 5.79 5.00 1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	139 *	70-130			L-0:
Styrene 5.79 1,1,2,2-Tetrachloroethane 6.68 Tetrachloroethylene 5.01 Tetrahydrofuran 4.60 Toluene 5.24 1,2,4-Trichlorobenzene 6.23 1,1,1-Trichloroethane 5.12 5.00	105	70-130			
1,1,2,2-Tetrachloroethane 6.68 5.00 Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	120	70-130			
Tetrachloroethylene 5.01 5.00 Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	116	70-130			
Tetrahydrofuran 4.60 5.00 Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	134 *	70-130			L-0
Toluene 5.24 5.00 1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	100	70-130			
1,2,4-Trichlorobenzene 6.23 5.00 1,1,1-Trichloroethane 5.12 5.00	92.1	70-130			
1,1,1-Trichloroethane 5.12 5.00	105	70-130			
	125	70-130			
1,1,2-Trichloroethane 5.56 5.00	102	70-130			
	111	70-130			
Trichloroethylene 5.36 5.00	107	70-130			
Trichlorofluoromethane (Freon 11) 4.00 5.00	80.0	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 3.76 5.00 113)	75.1	70-130			V-0:
1,2,4-Trimethylbenzene 6.13 5.00	123	70-130			

5.00

5.00

5.00

10.0

5.00

8.00

116

85.5

107

117

117

102

70-130

70-130

70-130

70-130

70-130

70-130

QUALITY CONTROL

Analyte	Results	bbv RL	Results	/m3 RL	Spike Level ppbv	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch B071996 - TO-15 Prep											
Duplicate (B071996-DUP1)		Sour	ce: 13D1071	-02	Prepared: 04	/28/13 Anal	yzed: 04/29/1	13			
Acetone	15	1.4	35	3.3		15			0.673	25	L-0
Benzene	0.20	0.035	0.63	0.11		0.20			0.704	25	
Benzyl chloride	ND	0.035	ND	0.18		ND				25	
Bromodichloromethane	ND	0.035	ND	0.24		ND				25	
Bromoform	ND	0.035	ND	0.36		ND				25	
Bromomethane	ND	0.035	ND	0.14		ND				25	
1,3-Butadiene	ND	0.035	ND	0.078		ND				25	
2-Butanone (MEK)	0.91	1.4	2.7	4.1		0.93			2.51	25	
Carbon Disulfide	ND	0.35	ND	1.1		ND				25	
Carbon Tetrachloride	0.080	0.035	0.50	0.22		0.081			0.873	25	
Chlorobenzene	ND	0.035	ND	0.16		ND				25	
Chloroethane	ND	0.035	ND	0.093		ND				25	
Chloroform	0.060	0.035	0.29	0.17		0.060			0.00	25	
Chloromethane	0.73	0.070	1.5	0.14		0.75			1.81	25	
Cyclohexane	ND	0.035	ND	0.12		ND				25	
Dibromochloromethane	ND	0.035	ND	0.30		ND				25	
1,2-Dibromoethane (EDB)	ND	0.035	ND	0.27		ND				25	
1,2-Dichlorobenzene	ND	0.035	ND	0.21		ND				25	
1,3-Dichlorobenzene	0.057	0.035	0.34	0.21		0.060			4.82	25	
,4-Dichlorobenzene	ND	0.035	ND	0.21		ND				25	
Dichlorodifluoromethane (Freon 12)	1.1	0.035	5.2	0.17		1.0			1.61	25	
,1-Dichloroethane	ND	0.035	ND	0.14		ND				25	
1,2-Dichloroethane	ND	0.035	ND	0.14		ND				25	
1,1-Dichloroethylene	ND	0.035	ND	0.14		ND				25	
cis-1,2-Dichloroethylene	ND	0.035	ND	0.14		ND				25	
trans-1,2-Dichloroethylene	ND	0.035	ND	0.14		ND				25	
1,2-Dichloropropane	ND	0.035	ND	0.16		ND				25	
cis-1,3-Dichloropropene	ND	0.035	ND	0.16		ND				25	
trans-1,3-Dichloropropene	ND	0.035	ND	0.16		ND				25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.035	ND	0.25		ND				25	
(Freon 114)	ND	0.055	110	0.23		1,12				20	
1,4-Dioxane	ND	0.035	ND	0.13		ND				25	
Ethyl Acetate	3.9	0.035	14	0.13		4.0			2.72	25	
Ethylbenzene	0.31	0.035	1.4	0.15		0.32			0.895	25	
4-Ethyltoluene	0.16	0.035	0.76	0.17		0.16			2.24	25	
Heptane	0.15	0.035	0.62	0.14		0.15			1.39	25	
Hexachlorobutadiene	ND	0.035	ND	0.37		ND				25	
Hexane	0.47	1.4	1.7	4.9		0.48			1.76	25	
2-Hexanone (MBK)	0.15	0.035	0.62	0.14		0.15			0.462	25	
sopropanol	5.7	1.4	14	3.4		5.8			2.18	25	L-
Methyl tert-Butyl Ether (MTBE)	ND	0.035	ND	0.13		ND				25	
Methylene Chloride	1.3	0.35	4.4	1.2		1.3			1.93	25	
4-Methyl-2-pentanone (MIBK)	0.16	0.035	0.67	0.14		0.16			0.866	25	L-
Naphthalene	0.11	0.035	0.59	0.18		0.11			0.627	25	
Propene	ND	1.4	ND	2.4		ND				25	
Styrene	0.058	0.035	0.25	0.15		0.060			2.38	25	
1,1,2,2-Tetrachloroethane	ND	0.035	ND	0.24		ND				25	
3 2 2 2		==			Dogg		6 12D10	71 1 0	ontoct E	inal 05 (12 12

QUALITY CONTROL

	pp	bv	ug/	/m3	Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag
Batch B071996 - TO-15 Prep											
Duplicate (B071996-DUP1)		Sour	ce: 13D1071-	-02	Prepared: 04/	28/13 Anal	yzed: 04/29/	13			
Tetrachloroethylene	0.11	0.035	0.75	0.24		0.11			0.639	25	
Tetrahydrofuran	0.046	0.035	0.13	0.10		0.039			14.9	25	
Toluene	1.5	0.035	5.8	0.13		1.5			0.956	25	
1,2,4-Trichlorobenzene	ND	0.035	ND	0.26		ND				25	
1,1,1-Trichloroethane	ND	0.035	ND	0.19		ND				25	
1,1,2-Trichloroethane	ND	0.035	ND	0.19		ND				25	
Trichloroethylene	ND	0.035	ND	0.19		ND				25	
Trichlorofluoromethane (Freon 11)	0.58	0.035	3.3	0.20		0.60			3.22	25	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.082	0.035	0.63	0.27		0.085			3.36	25	V-0
1,2,4-Trimethylbenzene	0.76	0.035	3.7	0.17		0.76			0.277	25	
1,3,5-Trimethylbenzene	0.21	0.035	1.0	0.17		0.20			1.72	25	
Vinyl Acetate	ND	0.70	ND	2.5		ND				25	
Vinyl Chloride	0.044	0.035	0.11	0.090		0.044			0.00	25	
m&p-Xylene	1.0	0.070	4.4	0.30		1.0			0.276	25	
o-Xylene	0.45	0.035	2.0	0.15		0.44			2.04	25	
Surrogate: 4-Bromofluorobenzene (1)	7.61				8.00		95.1	70-130			
Duplicate (B071996-DUP2)		Sour	ce: 13D1071-	-02RE1	Prepared: 04/	28/13 Anal	yzed: 04/29/	13			
Ethanol	120	40	230	75		110			10.0	25	
Surrogate: 4-Bromofluorobenzene (1)	7.22				8.00		90.2	70-130			
Batch B071997 - TO-15 Prep											
Blank (B071997-BLK1)					Prepared & A	analyzed: 04	/26/13				
Ethanol	ND	1.0									
Surrogate: 4-Bromofluorobenzene (1)	7.60				8.00		95.0	70-130			

QUALITY CONTROL

	ppb	ppbv ug/m3			Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag
Batch B071997 - TO-15 Prep											
LCS (B071997-BS1)	Prepared & Analyzed: 04/26/13										
Ethanol	5.35				5.00		107	70-130			
Surrogate: 4-Bromofluorobenzene (1)	7.80				8.00		97.5	70-130			_

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
L-01	Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
L-05	Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for th compound is likely to be biased on the high side.
V-05	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.

INTERNAL STANDARD AREA AND RT SUMMARY

			Reference	Reference		Area %		RT Diff	
Internal Standard	Response	RT	Response	RT	Area %	Limits	RT Diff	Limit	Q
Calibration Check (S004129-CCV1)	1		Lab File ID: B042	802.D		Analyzed: 04/2	8/13 18:44		
Bromochloromethane (1)	271114	8.279	241397	8.28	112	60 - 140	-0.0010	+/-0.50	
1,4-Difluorobenzene (1)	377926	10.166	438709	10.172	86	60 - 140	-0.0060	+/-0.50	
Chlorobenzene-d5 (1)	363457	14.937	404360	14.947	90	60 - 140	-0.0100	+/-0.50	
LCS (B071996-BS1)	•		Lab File ID: B042	803.D	•	Analyzed: 04/2	8/13 19:25		
Bromochloromethane (1)	271682	8.282	271114	8.279	100	60 - 140	0.0030	+/-0.50	
1,4-Difluorobenzene (1)	385079	10.168	377926	10.166	102	60 - 140	0.0020	+/-0.50	
Chlorobenzene-d5 (1)	367063	14.939	363457	14.937	101	60 - 140	0.0020	+/-0.50	
Blank (B071996-BLK1)	•		Lab File ID: B042	807.D		Analyzed: 04/2	8/13 22:15		
Bromochloromethane (1)	261217	8.278	271114	8.279	96	60 - 140	-0.0010	+/-0.50	
1,4-Difluorobenzene (1)	363512	10.165	377926	10.166	96	60 - 140	-0.0010	+/-0.50	
Chlorobenzene-d5 (1)	339904	14.936	363457	14.937	94	60 - 140	-0.0010	+/-0.50	
(13D1071-01)	•		Lab File ID: B042	809.D	•	Analyzed: 04/2	8/13 23:44		
Bromochloromethane (1)	249755	8.274	271114	8.279	92	60 - 140	-0.0050	+/-0.50	
1,4-Difluorobenzene (1)	337707	10.167	377926	10.166	89	60 - 140	0.0010	+/-0.50	
Chlorobenzene-d5 (1)	316413	14.932	363457	14.937	87	60 - 140	-0.0050	+/-0.50	
(13D1071-03)	•		Lab File ID: B042	810.D	•	Analyzed: 04/29	9/13 00:29		
Bromochloromethane (1)	256660	8.274	271114	8.279	95	60 - 140	-0.0050	+/-0.50	
1,4-Difluorobenzene (1)	351750	10.167	377926	10.166	93	60 - 140	0.0010	+/-0.50	
Chlorobenzene-d5 (1)	334123	14.938	363457	14.937	92	60 - 140	0.0010	+/-0.50	
(13D1071-05)	•		Lab File ID: B042	811.D	Analyzed: 04/29/13 01:15				
Bromochloromethane (1)	265663	8.279	271114	8.279	98	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	368519	10.166	377926	10.166	98	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	356288	14.937	363457	14.937	98	60 - 140	0.0000	+/-0.50	
(13D1071-06)	•		Lab File ID: B042	812.D	•	Analyzed: 04/2	9/13 02:00		
Bromochloromethane (1)	278440	8.274	271114	8.279	103	60 - 140	-0.0050	+/-0.50	
1,4-Difluorobenzene (1)	403308	10.167	377926	10.166	107	60 - 140	0.0010	+/-0.50	
Chlorobenzene-d5 (1)	378350	14.932	363457	14.937	104	60 - 140	-0.0050	+/-0.50	
(13D1071-08)	•		Lab File ID: B042	813.D		Analyzed: 04/29	9/13 02:45		
Bromochloromethane (1)	271259	8.279	271114	8.279	100	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	394539	10.166	377926	10.166	104	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	374723	14.931	363457	14.937	103	60 - 140	-0.0060	+/-0.50	
(13D1071-10)			Lab File ID: B042	814.D	•	Analyzed: 04/2	9/13 03:30	-	
Bromochloromethane (1)	292440	8.279	271114	8.279	108	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	444451	10.166	377926	10.166	118	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	421418	14.937	363457	14.937	116	60 - 140	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

10. 10.	D.	D.T.	Reference	Reference	A 0/	Area %	D.T. D. CC	RT Diff	
Internal Standard	Response	RT	Response	RT	Area %	Limits	RT Diff	Limit	Q
(13D1071-13)			Lab File ID: B0428	315.D	T	Analyzed: 04/29	9/13 04:14		
Bromochloromethane (1)	295086	8.273	271114	8.279	109	60 - 140	-0.0060	+/-0.50	
1,4-Difluorobenzene (1)	468564	10.166	377926	10.166	124	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	436004	14.931	363457	14.937	120	60 - 140	-0.0060	+/-0.50	
(13D1071-14)			Lab File ID: B0428	316.D		Analyzed: 04/29	9/13 04:59		
Bromochloromethane (1)	300667	8.276	271114	8.279	111	60 - 140	-0.0030	+/-0.50	
1,4-Difluorobenzene (1)	470015	10.169	377926	10.166	124	60 - 140	0.0030	+/-0.50	
Chlorobenzene-d5 (1)	445108	14.934	363457	14.937	122	60 - 140	-0.0030	+/-0.50	
(13D1071-12)			Lab File ID: B0428	317.D		Analyzed: 04/29	9/13 05:44		
Bromochloromethane (1)	304759	8.28	271114	8.279	112	60 - 140	0.0010	+/-0.50	
1,4-Difluorobenzene (1)	480882	10.166	377926	10.166	127	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	454197	14.931	363457	14.937	125	60 - 140	-0.0060	+/-0.50	
(13D1071-11)			Lab File ID: B0428	318.D		Analyzed: 04/2	9/13 06:29		
Bromochloromethane (1)	303902	8.278	271114	8.279	112	60 - 140	-0.0010	+/-0.50	
1,4-Difluorobenzene (1)	496827	10.165	377926	10.166	131	60 - 140	-0.0010	+/-0.50	
Chlorobenzene-d5 (1)	463842	14.936	363457	14.937	128	60 - 140	-0.0010	+/-0.50	
(13D1071-09)			Lab File ID: B0428	319.D		Analyzed: 04/2	9/13 07:15		
Bromochloromethane (1)	309011	8.278	271114	8.279	114	60 - 140	-0.0010	+/-0.50	
1,4-Difluorobenzene (1)	503041	10.165	377926	10.166	133	60 - 140	-0.0010	+/-0.50	
Chlorobenzene-d5 (1)	449584	14.936	363457	14.937	124	60 - 140	-0.0010	+/-0.50	
(13D1071-07)			Lab File ID: B0428	320.D		Analyzed: 04/2	9/13 07:59		
Bromochloromethane (1)	311597	8.277	271114	8.279	115	60 - 140	-0.0020	+/-0.50	
1,4-Difluorobenzene (1)	505595	10.164	377926	10.166	134	60 - 140	-0.0020	+/-0.50	
Chlorobenzene-d5 (1)	473946	14.935	363457	14.937	130	60 - 140	-0.0020	+/-0.50	
(13D1071-04)			Lab File ID: B0428	321.D		Analyzed: 04/29	9/13 08:44		
Bromochloromethane (1)	305606	8.279	271114	8.279	113	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	492275	10.166	377926	10.166	130	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	461609	14.931	363457	14.937	127	60 - 140	-0.0060	+/-0.50	
(13D1071-02)			Lab File ID: B0428	322.D	1	Analyzed: 04/29	9/13 09:29	1	
Bromochloromethane (1)	305570	8.279	271114	8.279	113	60 - 140	0.0000	+/-0.50	\Box
1,4-Difluorobenzene (1)	497750	10.165	377926	10.166	132	60 - 140	-0.0010	+/-0.50	
Chlorobenzene-d5 (1)	465118	14.93	363457	14.937	128	60 - 140	-0.0070	+/-0.50	
Duplicate (B071996-DUP1)			Lab File ID: B0428	323.D		Analyzed: 04/29	9/13 10:16		
Bromochloromethane (1)	312312	8.274	271114	8.279	115	60 - 140	-0.0050	+/-0.50	
1,4-Difluorobenzene (1)	498973	10.167	377926	10.166	132	60 - 140	0.0010	+/-0.50	
Chlorobenzene-d5 (1)	465072	14.932	363457	14.937	128	60 - 140	-0.0050	+/-0.50	\Box

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q	
(13D1071-03RE1)			Lab File ID: B0428	325.D		Analyzed: 04/29/13 12:51				
Bromochloromethane (1)	326922	8.275	271114	8.279	121	60 - 140	-0.0040	+/-0.50		
1,4-Difluorobenzene (1)	466194	10.161	377926	10.166	123	60 - 140	-0.0050	+/-0.50		
Chlorobenzene-d5 (1)	418972	14.926	363457	14.937	115	60 - 140	-0.0110	+/-0.50		
(13D1071-05RE1)			Lab File ID: B0428	326.D		Analyzed: 04/29	9/13 13:28			
Bromochloromethane (1)	281900	8.277	271114	8.279	104	60 - 140	-0.0020	+/-0.50		
1,4-Difluorobenzene (1)	404955	10.164	377926	10.166	107	60 - 140	-0.0020	+/-0.50		
Chlorobenzene-d5 (1)	353569	14.929	363457	14.937	97	60 - 140	-0.0080	+/-0.50		
(13D1071-10RE1)			Lab File ID: B0428	327.D		Analyzed: 04/29	9/13 14:06			
Bromochloromethane (1)	296038	8.277	271114	8.279	109	60 - 140	-0.0020	+/-0.50		
1,4-Difluorobenzene (1)	412943	10.164	377926	10.166	109	60 - 140	-0.0020	+/-0.50		
Chlorobenzene-d5 (1)	370723	14.929	363457	14.937	102	60 - 140	-0.0080	+/-0.50		
(13D1071-02RE1)			Lab File ID: B0428	328.D		Analyzed: 04/29	9/13 14:44			
Bromochloromethane (1)	290030	8.278	271114	8.279	107	60 - 140	-0.0010	+/-0.50		
1,4-Difluorobenzene (1)	386697	10.164	377926	10.166	102	60 - 140	-0.0020	+/-0.50		
Chlorobenzene-d5 (1)	351014	14.929	363457	14.937	97	60 - 140	-0.0080	+/-0.50		
Duplicate (B071996-DUP2)			Lab File ID: B0428	329.D		Analyzed: 04/29	9/13 15:22			
Bromochloromethane (1)	255803	8.278	271114	8.279	94	60 - 140	-0.0010	+/-0.50		
1,4-Difluorobenzene (1)	350784	10.164	377926	10.166	93	60 - 140	-0.0020	+/-0.50		
Chlorobenzene-d5 (1)	303118	14.929	363457	14.937	83	60 - 140	-0.0080	+/-0.50		

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Calibration Check (S004130-CCV1)	•		Lab File ID: B0420	602.D		Analyzed: 04/2	6/13 15:22		
Bromochloromethane (1)	328969	8.28	241397	8.28	136	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	525058	10.166	438709	10.172	120	60 - 140	-0.0060	+/-0.50	
Chlorobenzene-d5 (1)	496007	14.931	404360	14.947	123	60 - 140	-0.0160	+/-0.50	
LCS (B071997-BS1)	•		Lab File ID: B0426	603.D		Analyzed: 04/2	6/13 16:00		
Bromochloromethane (1)	327043	8.279	328969	8.28	99	60 - 140	-0.0010	+/-0.50	
1,4-Difluorobenzene (1)	518128	10.166	525058	10.166	99	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	495543	14.931	496007	14.931	100	60 - 140	0.0000	+/-0.50	
Blank (B071997-BLK1)	•	•	Lab File ID: B0420	507.D	•	Analyzed: 04/2	6/13 18:42		
Bromochloromethane (1)	310112	8.28	328969	8.28	94	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	484194	10.167	525058	10.166	92	60 - 140	0.0010	+/-0.50	
Chlorobenzene-d5 (1)	450428	14.938	496007	14.931	91	60 - 140	0.0070	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q			
DUP 2 (13D1071-14RE1)	1 -		Lab File ID: B042	631.D		Analyzed: 04/2	//13 12:13	<u>l</u>				
Bromochloromethane (1)	263512	8.28	328969	8.28	80	60 - 140	0.0000	+/-0.50	\Box			
1,4-Difluorobenzene (1)	371118	10.167	525058	10.166	71	60 - 140	0.0010	+/-0.50				
Chlorobenzene-d5 (1)	350272	14.938	496007	14.931	71	60 - 140	0.0070	+/-0.50				
DUP 1 (13D1071-12RE1)		Lab File ID: B042632.D A					Analyzed: 04/27/13 12:51					
Bromochloromethane (1)	258935	8.278	328969	8.28	79	60 - 140	-0.0020	+/-0.50				
1,4-Difluorobenzene (1)	355475	10.165	525058	10.166	68	60 - 140	-0.0010	+/-0.50				
Chlorobenzene-d5 (1)	333013	14.936	496007	14.931	67	60 - 140	0.0050	+/-0.50				
(13D1071-11RE1)			Lab File ID: B042	633.D	I.	Analyzed: 04/2	7/13 13:29					
Bromochloromethane (1)	258779	8.279	328969	8.28	79	60 - 140	-0.0010	+/-0.50				
1,4-Difluorobenzene (1)	351919	10.166	525058	10.166	67	60 - 140	0.0000	+/-0.50				
Chlorobenzene-d5 (1)	330590	14.931	496007	14.931	67	60 - 140	0.0000	+/-0.50				
(13D1071-09RE1)			Lab File ID: B0420	634.D		Analyzed: 04/2	7/13 14:07					
Bromochloromethane (1)	252118	8.279	328969	8.28	77	60 - 140	-0.0010	+/-0.50				
1,4-Difluorobenzene (1)	339145	10.166	525058	10.166	65	60 - 140	0.0000	+/-0.50				
Chlorobenzene-d5 (1)	320865	14.931	496007	14.931	65	60 - 140	0.0000	+/-0.50				
(13D1071-07RE1)	- 1		Lab File ID: B042	635.D		Analyzed: 04/2	7/13 14:45					
Bromochloromethane (1)	248390	8.279	328969	8.28	76	60 - 140	-0.0010	+/-0.50				
1,4-Difluorobenzene (1)	331340	10.166	525058	10.166	63	60 - 140	0.0000	+/-0.50				
Chlorobenzene-d5 (1)	312493	14.931	496007	14.931	63	60 - 140	0.0000	+/-0.50				
(13D1071-04RE1)	1	Lab File ID: B042636.D				Analyzed: 04/2	7/13 15:23					
Bromochloromethane (1)	246270	8.279	328969	8.28	75	60 - 140	-0.0010	+/-0.50				
1,4-Difluorobenzene (1)	324393	10.166	525058	10.166	62	60 - 140	0.0000	+/-0.50				
Chlorobenzene-d5 (1)	309950	14.931	496007	14.931	62	60 - 140	0.0000	+/-0.50				

CONTINUING CALIBRATION CHECK EPA TO-15

S004129-CCV1

COMPOUND Acetone Benzene Benzyl chloride	TYPE A A	STD 5.00	CCV	ICAL	CCV	MIN (#)	CCV	I D CT
Benzene	+	5.00				νιιιν (π)	CCV	LIMIT (#)
	A		6.19	0.8283546	1.025906	0.05	23.8	30
Benzyl chloride		5.00	4.57	0.9413508	0.8610913	0.05	-8.5	30
	A	5.00	5.46	0.9366321	1.023007	0.05	9.2	30
Bromodichloromethane	A	5.00	5.55	0.6896837	0.7653138	0.05	11.0	30
Bromoform	A	5.00	4.61	0.6450373	0.5949667	0.05	-7.8	30
Bromomethane	A	5.00	4.17	0.6831357	0.5699684	0.05	-16.6	30
1,3-Butadiene	A	5.00	5.13	0.3631511	0.3726609	0.05	2.6	30
2-Butanone (MEK)	A	5.00	4.19	1.545372	1.293873	0.05	-16.3	30
Carbon Disulfide	A	5.00	3.66	1.787941	1.308999	0.05	-26.8	30
Carbon Tetrachloride	A	5.00	4.67	0.5349463	0.4999921	0.05	-6.5	30
Chlorobenzene	A	5.00	4.64	0.7508891	0.6970574	0.05	-7.2	30
Chloroethane	A	5.00	5.29	0.2783443	0.2945182	0.05	5.8	30
Chloroform	A	5.00	3.80	1.212155	0.9218262	0.05	-24.0	30
Chloromethane	A	5.00	5.17	0.5418058	0.5603252	0.05	3.4	30
Cyclohexane	A	5.00	4.69	0.3674421	0.3447024	0.05	-6.2	30
Dibromochloromethane	A	5.00	4.62	0.7473385	0.6899963	0.05	-7.7	30
1,2-Dibromoethane (EDB)	A	5.00	4.74	0.6600501	0.6262397	0.05	-5.1	30
1,2-Dichlorobenzene	A	5.00	5.29	0.6481301	0.6853961	0.05	5.7	30
1,3-Dichlorobenzene	A	5.00	5.37	0.7015668	0.7536605	0.05	7.4	30
1,4-Dichlorobenzene	A	5.00	5.18	0.7096668	0.73474	0.05	3.5	30
Dichlorodifluoromethane (Freon 12)	A	5.00	4.24	1.429498	1.213423	0.05	-15.1	30
1,1-Dichloroethane	A	5.00	4.09	1.092829	0.8936993	0.05	-18.2	30
1,2-Dichloroethane	A	5.00	4.23	0.7865236	0.6655031	0.05	-15.4	30
1,1-Dichloroethylene	A	5.00	3.96	0.9569238	0.7585473	0.05	-20.7	30
cis-1,2-Dichloroethylene	A	5.00	4.23	0.8321314	0.7036332	0.05	-15.4	30
trans-1,2-Dichloroethylene	A	5.00	4.03	0.8759026	0.7063597	0.05	-19.4	30
1,2-Dichloropropane	A	5.00	5.80	0.360087	0.4179781	0.05	16.1	30
cis-1,3-Dichloropropene	A	5.00	5.45	0.523818	0.5710028	0.05	9.0	30
trans-1,3-Dichloropropene	A	5.00	5.73	0.4919749	0.5635093	0.05	14.5	30
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon	I A	5.00	4.68	1.685769	1.577869	0.05	-6.4	30
1,4-Dioxane	A	5.00	4.98	0.193588	0.1926557	0.05	-0.5	30
Ethanol	A	5.00	5.22	0.1820862	0.1901193	0.05	4.4	30
Ethyl Acetate	A	5.00	4.46	0.1888158	0.1684251	0.05	-10.8	30
Ethylbenzene	A	5.00	4.85	1.243091	1.205262	0.05	-3.0	30
4-Ethyltoluene	A	5.00	5.05	1.17607	1.188441	0.05	1.1	30
Heptane	A	5.00	5.70	0.2781826	0.3168282	0.05	13.9	30
Hexachlorobutadiene		5.00	4.99	0.3871347	0.3861012	0.05	-0.3	30
Hexane	A	5.00	4.54	0.7062516	0.6418732	0.05	-9.1	30

Page 44 of 56 13D1071_1 Contest_Final 05 03 13 1551

CONTINUING CALIBRATION CHECK EPA TO-15

S004129-CCV1

		CONC.	. (ppbv)	RESPONSE FACTOR		% DIFF / DRIFT		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
2-Hexanone (MBK)	A	5.00	5.27	0.9700782	1.022418	0.05	5.4	30
Isopropanol	A	5.00	6.11	0.8060302	0.9844597	0.05	22.1	30
Methyl tert-Butyl Ether (MTBE)	A	5.00	3.78	1.499911	1.133404	0.05	-24.4	30
Methylene Chloride	A	5.00	4.20	0.8355231	0.7022935	0.05	-15.9	30
4-Methyl-2-pentanone (MIBK)	A	5.00	6.00	0.9094714	1.091507	0.05	20.0	30
Naphthalene	A	5.00	4.04	1.246215	1.007538	0.05	-19.2	30
Propene	A	5.00	5.64	0.4557526	0.5136201	0.05	12.7	30
Styrene	A	5.00	5.10	0.6679813	0.6812844	0.05	2.0	30
1,1,2,2-Tetrachloroethane	A	5.00	6.01	0.9452754	1.136152	0.05	20.2	30
Tetrachloroethylene	A	5.00	4.45	0.4528223	0.4029087	0.05	-11.0	30
Tetrahydrofuran	A	5.00	4.01	0.2562512	0.2055932	0.05	-19.8	30
Toluene	A	5.00	4.73	0.957834	0.9055399	0.05	-5.5	30
1,2,4-Trichlorobenzene	A	5.00	4.93	0.4479159	0.4419296	0.05	-1.3	30
1,1,1-Trichloroethane	A	5.00	4.72	0.5392166	0.5094246	0.05	-5.5	30
1,1,2-Trichloroethane	A	5.00	4.99	0.3705677	0.3715389	0.05	0.3	30
Trichloroethylene	A	5.00	4.98	0.3742704	0.372475	0.05	-0.5	30
Trichlorofluoromethane (Freon 11)	A	5.00	3.62	1.248934	0.9035786	0.05	-27.7	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113	A	5.00	3.38	1.044253	0.7048312	0.05	-32.5	30 *
1,2,4-Trimethylbenzene	A	5.00	5.27	0.9274325	0.9772116	0.05	5.4	30
1,3,5-Trimethylbenzene	A	5.00	5.14	0.9520193	0.9785191	0.05	2.8	30
Vinyl Acetate	A	5.00	3.90	1.995075	1.555431	0.05	-22.0	30
Vinyl Chloride	A	5.00	4.99	0.5783172	0.5772981	0.05	-0.2	30
m&p-Xylene	A	10.0	10.4	1.013541	1.050878	0.05	3.7	30
o-Xylene	A	5.00	5.28	0.9589857	1.011716	0.05	5.5	30

[#] Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

^{*} Values outside of QC limits

CONTINUING CALIBRATION CHECK EPA TO-15

S004130-CCV1

		CONC. (ppbv)		RESPONSE FACTOR			% DIFF / DRIFT	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Ethanol	A	5.00	5.32	0.1820862	0.1938712	0.05	6.5	30

[#] Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

^{*} Values outside of QC limits

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA TO-15 in Air	
Acetone	AIHA
Benzene	AIHA,FL,NJ,NY,VA
Benzyl chloride	AIHA,FL,NJ,NY,VA
Bromodichloromethane	AIHA,NJ,VA
Bromoform	AIHA,NJ,VA
Bromomethane	AIHA,FL,NJ,NY
1,3-Butadiene	AIHA,NJ,VA
2-Butanone (MEK)	AIHA,FL,NJ,NY,VA
Carbon Disulfide	AIHA,NJ,VA
Carbon Tetrachloride	AIHA,FL,NJ,NY,VA
Chlorobenzene	AIHA,FL,NJ,NY,VA
Chloroethane	AIHA,FL,NJ,NY,VA
Chloroform	AIHA,FL,NJ,NY,VA
Chloromethane	AIHA,FL,NJ,NY,VA
Cyclohexane	AIHA,NJ,VA
Dibromochloromethane	AIHA,NY
1,2-Dibromoethane (EDB)	AIHA,NJ,NY
1,2-Dichlorobenzene	AIHA,FL,NJ,NY,VA
1,3-Dichlorobenzene	AIHA,NJ,NY
1,4-Dichlorobenzene	AIHA,FL,NJ,NY,VA
Dichlorodifluoromethane (Freon 12)	AIHA,NY
1,1-Dichloroethane	AIHA,FL,NJ,NY,VA
1,2-Dichloroethane	AIHA,FL,NJ,NY,VA
1,1-Dichloroethylene	AIHA,FL,NJ,NY,VA
cis-1,2-Dichloroethylene	AIHA,FL,NY,VA
trans-1,2-Dichloroethylene	AIHA,NJ,NY,VA
1,2-Dichloropropane	AIHA,FL,NJ,NY,VA
cis-1,3-Dichloropropene	AIHA,FL,NJ,NY,VA
trans-1,3-Dichloropropene	AIHA,NY
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,NJ,VA
1,4-Dioxane	AIHA,NJ,VA
Ethanol	AIHA
Ethyl Acetate	AIHA
Ethylbenzene	AIHA,FL,NJ,NY,VA
4-Ethyltoluene	AIHA,NJ
Heptane	AIHA,NJ,NY,VA
Hexachlorobutadiene	AIHA,NJ,NY,VA
Hexane	AIHA,FL,NJ,NY,VA
2-Hexanone (MBK)	AIHA
Isopropanol	AIHA,NY
Methyl tert-Butyl Ether (MTBE)	AIHA,FL,NJ,NY,VA
Methylene Chloride	AIHA,FL,NJ,NY,VA
4-Methyl-2-pentanone (MIBK)	AIHA,FL,NJ,NY
Naphthalene	NY
Propene	AIHA
Styrene	AIHA,FL,NJ,NY,VA
1,1,2,2-Tetrachloroethane	AIHA,FL,NJ,NY,VA

CERTIFICATIONS

Certifications

Certified Analyses included in this Report

Analyte

Vinyl Acetate

Vinyl Chloride

m&p-Xylene o-Xylene

EPA TO-15 in Air Tetrachloroethylene AIHA,FL,NJ,NY,VA Tetrahydrofuran AIHA AIHA,FL,NJ,NY,VA Toluene 1,2,4-Trichlorobenzene AIHA,NJ,NY,VA 1,1,1-Trichloroethane AIHA,FL,NJ,NY,VA 1,1,2-Trichloroethane AIHA,FL,NJ,NY,VA Trichloroethylene AIHA,FL,NJ,NY,VA Trichlorofluoromethane (Freon 11) AIHA,NY 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) AIHA,NJ,NY,VA 1,2,4-Trimethylbenzene AIHA,NJ,NY 1,3,5-Trimethylbenzene AIHA,NJ,NY

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2014
MA	Massachusetts DEP	M-MA100	06/30/2013
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2013
NY	New York State Department of Health	10899 NELAP	04/1/2014
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2014
RI	Rhode Island Department of Health	LAO00112	12/30/2013
NC	North Carolina Div. of Water Quality	652	12/31/2013
NJ	New Jersey DEP	MA007 NELAP	06/30/2013
FL	Florida Department of Health	E871027 NELAP	06/30/2013
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2013
WA	State of Washington Department of Ecology	C2065	02/23/2014
ME	State of Maine	2011028	06/9/2013
VA	Commonwealth of Virginia	460217	12/14/2013
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2012

AIHA,FL,NJ,NY,VA

AIHA,FL,NJ,NY,VA AIHA,FL,NJ,NY,VA

AIHA,FL,NJ,NY,VA

8	
K	SORATORY
٣	LABOR
Ċ	TICAL
8	ANALYTIC
=	-
=	

Fax: 413-525-6405

AIR SAMPLE CHAIN OF CUSTODY Phone: 413-525-2332

1001001

39 SPRUCE ST

RECORD

EAST LONGMEADOW, MA 01028

1991

Page L of 2

F				_	_			II di			$\overline{}$						_	_	~11		_	_
3		0 90		uị <u>-</u>	-]: _]:	ıţGa	Cor	<u>ا</u> ا	17() l C	131	99	Jo 6t		Ь	İΊ	6	2	2	4	8	
	Ħ	sign, da ne vellov	ır record	isters ar	lers mus	hin 14 d	Cilian	isters w	a minim	iter ite prior	-	Flow	Contro	35	35	35	3519	3521	3522	3524	33%	
	Please fill out	completely, sign, da	copy for your record	Summa canisters ar	flow controllers mu	returned within 14 d	will apply.	Summa canisters w	retained for a minim	or 14 days after sampling date prior	cleaning.	Summa	Canister ID	1649	5081	1340	1627	5338	1343	1258	1312	
Ī		-	1 10 1	•	œ	မ ပ	o	۵.	-	۵ -	0 0	, w	- o	13	18	83	رځې	2,0	1/2	ر پې	100	
	6	Т	11	ш.	- 1	_ ~	_	-	L _	٥	o o	, 3	- 0	_	B	65/28	79	7	9-	-1	1	
	Hg .	-	_	_	- .	- 6	_	•	٦ -	Ф	s c	, ,	- 0	-30-3	-30 A.S.A.	-30	52-12-	T-88-	-30 -6	-29	-30-7	
		(0)																				
		ANALYSIS	REQUESTED																			
		₹ 	訓																			
		ৰ	H							8	/ -	0	_	×	×	×	X	X	\times	X	×	
									(3	(A)		Matrix Code*	AMB	35	IA	SS	IA	AMB	SS	IA	
									7	通	SI			4	٧,	ר	0,	1.3	A	01	H	
						_			S	DO N	FUM	Volume	Liters or M ³									NTS:
									立	>	SING	٥	Š									MME
1					1		ENT		Sm	O GIS KEY	N OS	3ate	n. or fin.									CLIENT COMMENTS:
0	,	00					딩		×	_ B	WH	Flow Rate	M³/Min. or L / Min.									CIEN
133/01	12	Telephone:(518) 782-4500				100	MEMAIL CIWEBSITE CLIENT		EMAIL HAILEH HOCOM SMith.	ш	ONLY USE WHEN USING FUMBS	_										0
٦		22	3446	7		100	WE		7	PDF	ONE	Total	Minutes Sampled				Á					
		M	76			40)			1+					inin	243	Wir.	13	203	50	113	13	
		518	0.			VED	EMA		let	XCEL	nple	Stop	Date Time	23/33	123/	123,	123/	123	123	123	123	
		one:(#		# 0	i i	4		Ha	Format: X EXCEL	Date Sampled			200	3 4	34	33 4	40	3 4	83 6	13 4	
Ē		lepho	Project #	1	Client PO	DATA DE	OFAX	* ×	Jail:	mat:	Date	Start	e te	20	3.0	22/1	12/	3:33	3,4	127	127	
ans.c	_		Pr	Č	5	Č		a ta	ᇤ	Po		0,	Date Time	345	3	1/2	11/2	7/2 1/2	1/1	1/2	1/4	
Email: imo@contestiabs.com	www.contestlabs.com		7	2	Î		Ι,	2 Hours	ì.	ī												
000	stlab		B					, V.	7													
	conte		100	1	9	7		3	5													
ä	ww.		7	× .	211	10		00	7	1			ab#									
	>		Rotteh Angeloan Blill		atham, NY 12110	Hollott That boll	‡	From Closnon Saffalfax #:	T	1			Media Lab#	S	S	S	S	S		2		
		4	7	1	Ź	#	1	E C	F. DAGON THURSO H		(ses)	te	_	\ <u>'</u>	· ,			0,	0.7	-	V)	
		CDMSmit	2		ξ.	- >	3	Ã	12/1		onrpo	proposal date	_		S	+	5	A	4	SS	TA	
		15	7	7	12	4	3	3	202		ling p	ropos	ptior	DA	SS	TA	SS	TA	DA	S	, ,	
		Ž	P	2	X	60	3	٤	Š		or Bil	٦	escri	~								
		S	=	: .	Z	1	7		1	4	1? (F		e D									ts:
		me:						ion:			videc		Sample Description	SV-4	SV-4	SV-4	SV-5	SV-5	SV-5	SV-3	SV-3	nmer
_		ny Na	1.2			;	÷	ocat	BV:		Il Pro	SS					\(\sigma_1 \)	S	S	S	S	y Co
		Company Name:	Address:			Attontion.		Project Location:	Sampled Bv:		Proposal Provided? (For Billing purposes)	X yes	Field ID	~	20	2	5	p	90	12	2	Laboratory Comments:
-		රි	Ad			4	č	Pro	Sai		Pro		Fie	Q	0	0	0	9	*	7	9	Lab

*** TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS NYSDEC Contract Royes INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT.

AIHA, NELAC & WBE/DBE Certified

C=cassette F= filter

BL = BLANK D = DUP

P=PUF T=tube

IA= INDOOR AIR

SG= SOIL GAS

*Matrix Code:

Special Requirements

SS = SUB SLAB

AMB=AMBIENT

Enhanced Data Package V ONSDEC EDD (Surchage Applies)

Other __

322

Date/Tume

Relinquished by: (signature)

nature)

Received by: (signature)

RUSH *

10-Day 7-Day

Required Detection Limits:

Other:_

□ *72-Hr □ *4-Day.

Date/Time:

0 *24-Hr 0 *48-Hr

Data Enhancement/RCP? ☐ Y ☐ N

Regulations:

Furnaround **

Date/Times 1/2/1/

Relinguished by: (signature)

**Media Codes: S=summa can TB=tedlar bag

1	OH
	HAI
	ABOH,
	וֹר נ
	5
0	٩Ľ
Ŭ	Š
-	
\equiv	Ξ
\equiv	

AIR SAMPLE CHAIN OF CUSTODY Phone: 413-525-2332

RECORD

EAST LONGMEADOW, MA 01028 39 SPRUCE ST

Page 2 of 2

02 03 13 1221

completely, sign, da and retain the yellor

Please fill out

Hg .

Summa canisters a flow controllers mu

copy for your recor

190101 Email: info@contestlabs.com

Telephone:(5/8) 182-4500 Client PO# Project # www.contestlabs.com

REQUESTED ANALYSIS 51 W/SOCC CategoryB Email: Halleff H. CONSMITG. Com MEMAIL DWEBSITE CLIENT DATA DELIVERY (check one): DFAX MEMAIL DWEBSITE Fax #: Project Location: Former Doro Cleanurs Buffalo 1 Brttsh Amenican Blud E ROSENZWEIG, HHAVIEH Heather Hallet CDMSmith atham, NY Company Name: Sampled By: Attention: Address:

GIS KEY X PDF Format: A EXCEL

A OTHER DO ONLY USE WHEN USING PUMPS Volume Flow Rate Total Date Sampled Stop Start

Proposal Provided? (For Billing purposes)

proposal date

X yes

Sample Description

Field ID

1301051

sampling date prior

cleaning.

of 14 days after

Summa canisters w retained for a minin

of receipt or rental returned within 14

will apply.

96 to 08

Contro

Canister

Ω

Flow

Summa

01

Matrix

Code* SS

332

1721 4.9

35/

18 13

July 7-812

FA

SS

Liters or M³/Min. or L/Min. Minutes Sampled Date Date

Time 15:2 Time Media Lab #

5

587

SV-2

00

TA2 382

SV-1

4122113 4123/13

S

SV-2

M

DUP 1

SV-1

0

DUPZ

7

3515

-29-818-1843

×

35/3

27-5 1211 1503

×

AMB

3511

2011 19/16/82

3514

85/1 119 5-162

Enhanced Data Package XY ON (Surchage Applies) NYSDEC Contract Rates CategonB Special Requirements Data Enhancement/RCP? DY DN Required Detection Limits:_ Regulations: Furnaround ** □ *72-Hr □ *4-Day □ *24-Hr □ *48-Hr 10-Day 7-Day Other RUSH *

**Media Codes:

S=summa can

TB=tedlar bag

IA= INDOOR AIR

SG= SOIL GAS

*Matrix Code:

CLIENT COMMENTS:

T=tube F= filter

SS = SUB SLAB

AMB=AMBIENT

P-PUF

* TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS o = Other O = other INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT. *Approval Required

Date/Time:

Received by: (signature)

Date/Time

Relinquisped by: (signature)

_aboratory Comments:

AIHA, NELAC & WBE/DBE Certified

C=cassette

BL = BLANK D = DUP

FedEx.

Ship (P/U) date Thur 4/25/20	13			Actual delivery : Fri 4/26/2013 1:23 pm
LATHAM, NY (JS		livered or by: BFERRARA	EAST LONGMEADOW, MA US
4 Piece s	hipment			
Travel His	tory			
Date/Time	Activity			Location
- 4/26/2013	3 - Friday			
1:23 pm	Delivered			East Longmeadow, MA
6:11 am	On FedEx v	shicle for delivery		CHICOPEE, MA
5:43 am	At local Fedi	Ex facility		CHICOPEE, MA
2:36 am	Left FedEx of	origin facility	//e	RENSSELAER, NY
- 4/25/2013	3 - Thursday			
7:45 pm	Arrived at Fe	edEx location		RENSSELAER, NY
2.52 pm	Picked up			RENSSELAER, NY
- 4/24/2013	- Wednesd	ay		
11:27 am	Shipment inf	ormation sent to FedEx		
				Local Scan Time
Shipment	Facts			
Tracking nun	nber	9612019343575615003743	Service	FedEx Ground
Reference		0897-94461- TASK2.FIELD.P1	Master tracking number	343575615003712
Weight		15 lbs	Dimensions	22x18x13 in.
Total pieces Purchase ord	ler	4	Total shipment weight	60 lbs / 27.2 kgs
number	(6)	3735	Packaging	Package

AIR Only Receipt Checklist

39 Spruce St. East Longmeadow, MA. 01028

> P: 413-525-2332 F: 413-525-6405

CLIENT NAME: C D	WITH REC	CEIVED BY: MA	DATE: 4/26/13
1) Was the chain(s) of custody relinquis	hed and signed?	Yes	No
2) Does the chain agree with the sample If not, explain:	es?	Wes	No No
3) Are all the samples in good condition If not, explain:	?	Yes) No
4) Are there any samples "On Hold"?		Yes	No Stored where:
5) Are there any RUSH or SHORT HOLD	ING TIME sample:	s? Yes	No)
Who was notified	Date	Time	
6) Location where samples are stored:	AIR (A)	Webseroon to Unit	subcontract samples? Yes No s only) if not already approved re:
			。 (1)
Contain	ers receiv	ed at Con-7	est
		# of Containers	Types (Size, Duration)
Summa Cans		14	6 4
Tedlar Bags	l'a		~
Tubes			
Regulators		19	ZUhr.
Restrictors	4.14	1	
Tubing			
Other			
Unused Summas:		Unused Regulators:	3512 3414 3525 3686 3523
d) Was all and disc.	4 22 1 2 2		7.7

1) Was all media (used & unused checked into the WASP?

2) Were all returned summa cans, Restrictors, & Regulators documented as returned in the Air Lab Inbound/Outbound Excel Spreadsheet?

Laboratory Comments: 1649 1805 1340	3520 3518 3517 3519
1627 1856 1343 1258 1312 1268 1312	2521 2822 3524 3346
1503 1813 1458 1843 1106	3511 2012

	ed:	4/11/2013	3	Batch #:	130	CC0201
Certification	Type:	Batch Certified 🗸		Individual Certified		
Media Type:		Summa Canister 🔽		Flow Controllers		
Aedia IDs:	B(C1856	BC	C1343	ВС	C1312
ote:Two ID's nisters and flo		gether, for example BC213 ers.	6/BC3145, re	presents matched pairs of	certified sum	nma
		¬-		7		٠
	<0.80	Propene	< 0.04	Vinyl acetate	< 0.02	Dibromchloromethane
	<0.02	Dichlorodifluoromethane Chloromethane	<0.80	Hexane Ethyl acetate	<0.02	1,2-Dibromomethane
	<0.04	Freon 114	<0.02	Ethyl acetate Chloroform	<0.02	Tetrachloroethylene Chlorobenzene
	I <0.02	110011114	< 0.02	Chiorotolini	< 0.02	Cilioropenzene
		Vinyl chlorida	.0.02	Tetrohydrofiren	.0.02	Ethylhenzono
	< 0.02	Vinyl chloride	<0.02	Tetrahydrofuran	<0.02	Ethylbenzene m.p.Xylenes
	<0.02 <0.02	1.3-Butadiene	< 0.02	1,2-Dichloroethane	< 0.04	m,p-Xylenes
	<0.02 <0.02 <0.02	1.3-Butadiene Bromomethane	<0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane	<0.04 <0.02	m,p-Xylenes Bromoform
	<0.02 <0.02 <0.02 <0.02	1.3-Butadiene Bromomethane Chloroethane	<0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene	<0.04 <0.02 <0.02	m,p-Xylenes Bromoform Styrene
	<0.02 <0.02 <0.02 <0.02 <0.08	1.3-Butadiene Bromomethane	<0.02 <0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride	<0.04 <0.02 <0.02 <0.02	m,p-Xylenes Bromoform Styrene o-Xylene
	<0.02 <0.02 <0.02 <0.02 <0.02 <0.08	1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone	<0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane	<0.04 <0.02 <0.02 <0.02 <0.02	m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethan
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02	1.3-Butadiene Bromomethane Chloroethane Acrolein	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride	<0.04 <0.02 <0.02 <0.02 <0.02 <0.02	m,p-Xylenes Bromoform Styrene o-Xylene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.80	1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane	<0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethan 4-Ethyltoluene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02	1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane	<0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethan 4-Ethyltoluene 1,3,5-Trimethylbenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.80 <0.02 <0.80 <0.02	1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene	<0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethan 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02	1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane	<0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethan 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.20 <0.20	1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate	<0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethan 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02	1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane	<0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethan 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK	<0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethan 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene 1,1-Dichloroethane	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK c-1,3-Dichloropropylene	<0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04	m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethan 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene 1,1-Dichloroethylene 1,1-Dichloroethane MTBE	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002	1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK c-1,3-Dichloropropylene t-1,3-Dichloropropylene	<0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethan 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene Naphthalene

TPH 4/29/13

Analyst Initials/Date:

Date Analyzed:		4/11/20	13		Batch #:	130	CC0202
Certification	Type:	Batch Certified [I I		Individual Certified		
Media Type:		Summa Canister [✓		Flow Controllers		
Media IDs:	ВС	C1258		BC	1271		
Tote:Two ID's anisters and f	-	gether, for example BC2 lers.	136/BC3	145, rep	presents matched pairs of	f certified su	mma
	<0.80	Propene	-(0.04	Vinyl acetate	<0.02	Dibromchloromethane
	<0.02	Dichlorodifluoromethane	-	0.80	Hexane	<0.02	1,2-Dibromomethane
	<0.02	Chloromethane		0.02	Ethyl acetate	<0.02	Tetrachloroethylene
	\0.0 4			7.02		<0.02	_
	<0.02	Freon 114	<(າ ທ2 📗	Chloroform	<0.02	Chlorobenzene
	<0.02			0.02		<0.02	
	< 0.02	Freon 114 Vinyl chloride 1.3-Butadiene	<(0.02	Chloroform Tetrahydrofuran 1,2-Dichloroethane	< 0.02	Ethylbenzene
	<0.02 <0.02	Vinyl chloride	<(0.02	Tetrahydrofuran	<0.02 <0.04	
	<0.02 <0.02 <0.02	Vinyl chloride 1.3-Butadiene	<(0.02	Tetrahydrofuran 1,2-Dichloroethane	<0.02 <0.04 <0.02	Ethylbenzene m,p-Xylenes
	<0.02 <0.02 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane	<(<(<(0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane	<0.02 <0.04 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform
	<0.02 <0.02 <0.02 <0.02 <0.08	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane	<() <() <() <()).02).02).02).02).02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene	<0.02 <0.04 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein	<(<(<(<(<(0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone	<() <() <() <() <()	0.02 0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethar
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.80	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane	<() <() <() <() <() <() <() <()	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethar 4-Ethyltoluene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol	<() <() <() <() <() <() <() <() <() <()	0.02 0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethar 4-Ethyltoluene 1,3,5-Trimethylbenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene	<() <() <() <() <() <() <() <() <() <()	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethar 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.80 <0.02 <0.20	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride	<() <() <() <() <() <() <() <() <() <()	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethar 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113	<() <() <() <() <() <() <() <() <() <()	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethar 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.20 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide	<() <() <() <() <() <() <() <() <() <()	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethar 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.20 <0.20 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene	<() <() <() <() <() <() <() <() <() <()	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethar 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene 1,1-Dichloroethane	<() <() <() <() <() <() <() <() <() <()	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK c-1,3-Dichloropropylene	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04 <0.04	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethar 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.80 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene 1,1-Dichloroethylene MTBE	<() <() <() <() <() <() <() <() <() <()	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK c-1,3-Dichloropropylene t-1,3-Dichloropropylene	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroethar 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Naphthalene

TPH 4/29/13

Analyst Initials/Date:

Page 54 of 56 13D1071_1 Contest_Final 05 03 13 1551

Date Analyzed:		4/14/	2013		Batch #	: 13	3CC0207
Certification	Type:	Batch Certified	✓		Individual Certified		
Media Type:		Summa Canister	✓		Flow Controllers		
Media IDs:	ВС	1649		ВС	C1805	I	3C1340
	ВС	1813	_	ВС	C1458	H	BC1843
	ВС	1105	-	ВС	C1503		
Note:Two ID's anisters and fl			 C2136/F	3C3145, re	presents matched pairs of	of certified su	ımma
J nits:	PPBv						
	< 0.80	Propene	Γ	<0.04	Vinyl acetate	< 0.02	Dibromchloromethane
	< 0.02	Dichlorodifluoromethan	e	< 0.80	Hexane	< 0.02	1,2-Dibromomethane
	< 0.04	Chloromethane	Ī	< 0.02	Ethyl acetate	< 0.02	Tetrachloroethylene
	< 0.02	Freon 114	Ī	< 0.02	Chloroform	< 0.02	Chlorobenzene
	< 0.02	Vinyl chloride	Ī	< 0.02	Tetrahydrofuran	< 0.02	Ethylbenzene
	< 0.02	1.3-Butadiene	Ī	< 0.02	1,2-Dichloroethane	< 0.04	m,p-Xylenes
	< 0.02	Bromomethane	Γ	< 0.02	1,1,1-Trichloroethane	< 0.02	Bromoform
	< 0.02	Chloroethane	Ī	< 0.02	Benzene	< 0.02	Styrene
	< 0.08	Acrolein	ſ	< 0.02	Carbon Tetrachloride	< 0.02	o-Xylene
			г		—I		
	< 0.80	Acetone		< 0.02	Cyclohexane	< 0.02	1,1,2,2-Tetrachloroetha
	<0.80 <0.02	Acetone Trichlorofluoromethane	-	<0.02 <0.02	Cyclohexane 1,2-Dichloropropane	<0.02 <0.02	
	———	_	ŀ		.		4-Ethyltoluene
	< 0.02	Trichlorofluoromethane	-	< 0.02	1,2-Dichloropropane	< 0.02	4-Ethyltoluene 1,3,5-Trimethylbenzene
	<0.02 <0.80	Trichlorofluoromethane Ethanol		<0.02 <0.02	1,2-Dichloropropane Bromodichloromethane	<0.02 <0.02	4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene
	<0.02 <0.80 <0.02	Trichlorofluoromethane Ethanol 1,1-Dichloroethylene	-	<0.02 <0.02 <0.02	1,2-Dichloropropane Bromodichloromethane Trichloroethylene	<0.02 <0.02 <0.02	4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene
	<0.02 <0.80 <0.02 <0.20	Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride	-	<0.02 <0.02 <0.02 <0.02	1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane	<0.02 <0.02 <0.02 <0.02	4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene
	<0.02 <0.80 <0.02 <0.20 <0.02	Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113	- - - - -	<0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate	<0.02 <0.02 <0.02 <0.02 <0.02	4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene
	<0.02 <0.80 <0.02 <0.20 <0.02 <0.02	Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide	-	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene
	<0.02 <0.80 <0.02 <0.20 <0.02 <0.02 <0.02	Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene	-	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene
	<0.02 <0.80 <0.02 <0.20 <0.02 <0.02 <0.02 <0.02	Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene 1,1-Dichloroethane	- - - - - -	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK c-1,3-Dichloropropylene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04	4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Naphthalene
	<0.02 <0.80 <0.02 <0.20 <0.02 <0.02 <0.02 <0.02 <0.02	Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene 1,1-Dichloroethane MTBE	-	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK c-1,3-Dichloropropylene t-1,3-Dichloropropylene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04 <0.04	4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Naphthalene

TPH 4/29/13

Analyst Initials/Date:

	ed:	4/22/2013	3	Batch #:	13C	CC0211
Certification	Type:	Batch Certified 🗵		Individual Certified		
Iedia Type:	•	Summa Canister 🗵		Flow Controllers		
Iedia IDs:	ВС	C1627				
nisters and f	low controlle	ers.				
	< 0.80	Propene	< 0.04	Vinyl acetate	< 0.02	Dibromchloromethane
	< 0.02	Dichlorodifluoromethane	< 0.80	Hexane	< 0.02	1,2-Dibromomethane
	< 0.04	Chloromethane	< 0.02	Ethyl acetate	< 0.02	Tetrachloroethylene
	< 0.02	Freon 114	< 0.02	Chloroform	< 0.02	Chlorobenzene
	<0.02 <0.02	Vinyl chloride	<0.02 <0.02	Tetrahydrofuran	<0.02 <0.02	Ethylbenzene
	-	Vinyl chloride 1.3-Butadiene		Tetrahydrofuran 1,2-Dichloroethane		Ethylbenzene m,p-Xylenes
	<0.02 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane	<0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane	<0.02 <0.04 <0.02	Ethylbenzene m,p-Xylenes Bromoform
	<0.02 <0.02 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane	<0.02 <0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene	<0.02 <0.04 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene
	<0.02 <0.02 <0.02 <0.02 <0.08	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein	<0.02 <0.02 <0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride	<0.02 <0.04 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha 4-Ethyltoluene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.80	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha 4-Ethyltoluene 1,3,5-Trimethylbenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.20 <0.20 <0.20	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Benzyl chloride 1,4-Dichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene 1,1-Dichloroethylene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 <0.002 <0.002 <0.002	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK c-1,3-Dichloropropylene	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene
	<0.02 <0.02 <0.02 <0.02 <0.08 <0.80 <0.02 <0.80 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Vinyl chloride 1.3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane Ethanol 1,1-Dichloroethylene Methylene chloride Freon 113 Carbon disulfide t-1,2-Dichloroethylene 1,1-Dichloroethane MTBE	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.002	Tetrahydrofuran 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride Cyclohexane 1,2-Dichloropropane Bromodichloromethane Trichloroethylene 1,4-Dioxane Methylmethacrylate Heptane MIBK c-1,3-Dichloropropylene t-1,3-Dichloropropylene	<0.02 <0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.04	Ethylbenzene m,p-Xylenes Bromoform Styrene o-Xylene 1,1,2,2-Tetrachloroetha 4-Ethyltoluene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Benzyl chloride 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Naphthalene

TPH 4/29/13

Analyst Initials/Date:

DATA USABILITY SUMMARY REPORT (DUSR)

DATA USABILITY SUMMARY REPORT

Volatile Organics

by EPA Compendium Method TO-15 Laboratory SDG: Data Package # 13D1071

Sample Identification

Field S	Sample ID	Lab ID	Matrix
SV-4	OA	13D1071-01	Air
SV-4	SS	13D1071-02	Air
SV-4	IA	13D1071-03	Air
SV-5	OA	13D1071-04	Air
SV-5	SS	13D1071-05	Air
SV-5	IA	13D1071-06	Air
SV-3	SS	13D1071-07	Air
SV-3	IA	13D1071-08	Air
SV-2	SS1	13D1071-09	Air
SV-1	IA2	13D1071-10	Air
SV-1	SS2	13D1071-11	Air
DUP 1	•	13D1071-12	Air
SV-2	OA	13D1071-13	Air
DUP 2		13D1071-14	Air

I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE

The laboratory submitted required deliverables. It is noted that the electronic copy was not bookmarked thoroughly for content, and no Table of Contents was included.

II. TECHNICAL DATA VALIDATION

The quality control elements that were reviewed are listed below:

Holding Times

Blanks

Reported Results

Accuracy

Precision

Instrument Performance and Calibration

Holding Times

Prescribed holding times for all samples were met. Canister pressures pre- and post-sampling were recorded on the chain-of-custody and were acceptable.

Blanks

All method blanks were reported free of contamination below the analyte PQL values.

Reported Results

Reported positive results in field samples were qualitatively verified from raw data chromatograms and spectral match.

Accuracy

Surrogate recoveries and internal standard responses were within limits. It is noted that NYSDEC and method guidance do not require surrogate spikes for TO-15 canister samples.

Blank Spike (LCS) samples were reported; the following target compound recoveries exceeded the upper limits: 4-methyl-2-pentanone (MIBK), acetone, isopropanol (IPA), and 1,1,2,2-tetrachloroethane.

Positive results for MIBK, acetone and IPA were qualified as estimated values (J) in associated samples, with indication of high bias. No positives were reported for 1,1,2,2-tetrachloroethane and therefore no qualifiers were assigned for this compound.

Precision

Samples SV-1 IA-2 and SV-2 SS1 were identified as the parent samples of field duplicate samples DUP-1 and DUP-2. RPD values for positive target compounds in field duplicates were within laboratory limits, as were laboratory duplicate RPD values for sample SV-4 SS.

Instrument Performance and Calibration

Calibration parameters were within acceptable limits, with the following exception: target compound Freon-113 presented %D value above the method limit of 30%, with reduced sensitivity.

Freon-113 was qualified as estimated (UJ or J) in all SDG air samples, with indication of low bias due to reduced sensitivity relative to average ICAL RRF.

Com

Lab ID: Con-Test Lab Job No.: 13D1071 Site ID: Fmr. Doro Cleaners

Calibration or QC Check	Minimum Frequency	Acceptance Criteria	QC Non-Compliance Description	Data Qualification Action ¹
Sample Preservation	All samples	Certified clean & leak-free canisters per method Acceptable pressures	None found	
Holding Times	All samples	Analysis within 30 days from collection	None found	
MS Tuning	Every 24 hours, prior to calibrations	Method TO-15, Sect. 10.4 and Table 3 criteria	None found	
Initial Calibration	Prior to sample analysis, and whenever continuing calibrations fail to meet acceptance criteria (minimum 5 levels)	RSD of mean RRF each target must be ≤ 30.0% Note: Linear regression is optional for targets w/ RSD >30%; r must be >0.99	None found	
Retention Time Windows	Each sample analyzed	Relative retention time (RRT) of each positive analyte within ± 0.06 of associated IS RRT	None found	
Continuing Calibration Verification (CCV)	Daily, before sample analysis, and after each successive 24 hours of	Response %D for each Target must be < 30.0% %D = RRFc - RRFi *100	Freon-113 (-32.5%) CCV 04/28 13D1071-01-14; LCS, DUP-1, DUP-2	Flag Freon-113 in associated samples as estimated (UJ or J) with indication of low bias
	sample analysis	RRFi %D = <u>True - Found</u> *100 True Value	None found CCV 04/26 13D1071-(04,07,09,11)RE; LCS, (DUP-1,DUP-2)RE	n/a
Method Blank (certified clean canister; w/ ultra-pure zero air)	After ICV or CCV, before sample analysis, minimum once per 24-hour period	No analytes detected ≥ PQL* for method blank * PQL = 3x MDL	04/28/13 B071996-BLK1 All targets <pql 13D1071-01-14; LCS, DUP-1, DUP-2 04/26/13 B071997-BLK1 EtOH <pql 13D1071-(04,07,09,11)RE; LCS, (DUP-1,DUP-2)RE</pql </pql 	

Notes:

Data Reviewer: Chris Taylor For: CDM-Smith / NYSDEC

¹ See DV report for details.

CALIBRATION AND QC SUMMARY EPA METHOD TO-15, GC-MS VOLATILES

Lab ID: Con-Test Lab Job No.: 13D1071 Site ID: Fmr. Doro Cleaners

Calibration or QC Check	Minimum Frequency	Acceptance Criteria	eria Description			
Surrogates	Note: per NYSDEC and method guidance, use of surrogates for TO-15 is not required	All surrogates recovered within 70 - 130% of expected (true) value, or recovery within laboratory-derived statistical limits	None found			
Internal Standards (IS)	Every sample, blank and standard	Retention time (RT): ± 20 seconds max from CCAL or average of ICAL	None found			
		IS area: max. ± 40% from corresponding CCAL	None found			
Laboratory Control Sample (LCS) aka Laboratory- Fortified Blank (LFB) aka Blank Spike	Once per each analytical batch (should include all reported analytes), and should be prepared independently from calibration standards	All analytes recovered within 70 - 130% of expected (true) value, or recovery within laboratory-derived statistical limits	B071996-BS1 Acetone, IPA, MI tetrachloroethane		Flag positives only for noted compounds in associated samples as estimated (J) with indication of high bias	
Field Duplicates	As submitted to laboratory and identified to reviewer	Not established; use lab- derived limits.	DUP 1	SV-1 IA2	n/a All RPD values w/in lab limits	
		Calculate RPD values and report.	DUP 2	SV-2 SS1	n/a All RPD values w/in lab limits	
Lab Duplicates	As analyzed by laboratory	Not established; use lab- derived limits.	B071996-DUP1 None found	SV-4 SS		

Notes:

Data Reviewer: Chris Taylor For: CDM-Smith / NYSDEC

¹ See DV report for details.

Table 1 NYSDEC Work Assignment # D007621-6 Former Doro Dry Cleaners Site No. 9-15-238 Sub-Slab Soil Vapor, Indoor Air and Outdoor Ambient Air Sample Information Summary

	Start	End					Helium Tracer Test Reading	Start Vac	End Vac (in.	PID Reading
Sample ID	Date	Date	Start Time	Stop Time	Canister #	Regulator #	(ppm)	(in. of Hg)	of Hg)	(ppm)
SV-5 SS	4/22/2013	4/23/2012	1338	1338	1627	3519	0	-29	-7.5	0
SV-5 IA	4/22/2013	4/23/2013	1339	1339	5300	3521	NA	-29.5	-7	NA
SV-5 OA	4/22/2013	4/23/2013	1340	1340	1343	3522	NA	-30	-6	NA
SV-4 SS	4/22/2013	4/23/2013	1304	1304	1805	3518	0	-30	-6.5	0
SV-4 IA	4/22/2013	4/23/2013	1305	1305	1340	3520	NA	-30	-6.5	NA
SV-4 OA	4/22/2013	4/23/2013	1306	1333	1649	3517	NA	-30	-3	NA
SV-2 SS1	4/22/2013	4/23/2013	1526	1526	1271	3345	0	-28.5	-7	0
SV-1 IA2	4/22/2013	4/23/2013	1538	1538	1813	3516	NA	-29.5	-7	NA
SV-1 SS2	4/22/2013	4/23/2013	1535	1535	1458	3514	0	-29	-5	0
Dup 1 (SV-1 IA2)	4/22/2013	4/23/2013	1535	1535	1843	3515	0	-29	-8	0
SV-2 OA	4/22/2013	4/23/2013	1545	1545	1105	3511	NA	-28	-4	NA
Dup 2 (SV-2 SS1)	4/22/2013	4/23/2013	1533	1533	1503	3513	0	-27	-5	0
SV-3 SS	4/22/2013	4/23/2013	1438	1438	1258	3524	0	-29	-30	0
SV-3 IA	4/22/2013	4/23/2013	1439	1439	1312	3346	NA	-30	-7	NA

Notes

IA - Indoor Air Sample

OA - Ambient Outdoor Air Sample

SS - Sub Slab Sample

NA - Not Applicable

PID - Photoionization Detector

PPM - Part per Million

in. of Hg - Inches of Mercury

Table 2

Vapor Sampling Results

Former Doro Dry Cleaners - Site No. 9-15-238 NYSDEC Work Assignment No. D007621-6

	Sample Identification					071-01	13D10	71-02	13D1071-03		13D10	71-04	13D1071-05 SV-5 IA		13D1071-06 SV-5 OA		13D1071-07 SV-3 SS	
Sample Location					SV-4	4 OA	SV-	4 SS	SV-	4 IA	SV-5 SS							
	Sample Date		23-Apr-13		23-A	pr-13	23-Apr-13		23-Apr-13		23-Apr-13		23-Apr-13		23-Apr-13			
	Indoor Air	Outdoor Air																
	Statistical	Statistical	Air Guideline															
Chemical Name ¹	Value ²	Value ³	Value ⁴	Unit														
1,1,1-Trichloroethane	20.60	2.60	NL	ug/m ³	ND	U	ND	U	ND	U	5.40		7.10		ND	U	ND	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NL	NL	NL	ug/m ³	0.05	J	0.65	J	0.46	J	0.65	J	0.52	J	0.45	J	0.60	J
1,1-Dichloroethene	1.4	1.4	NL	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
1,2,4-Trimethylbenzene	9.5	5.8	NL	ug/m ³	ND	U	3.70		0.40		2.80		0.46		0.22		3.80	
1,3,5-Trimethylbenzene	3.7	2.7	NL	ug/m ³	ND	U	0.99		ND	U	0.75		ND	U	ND	U	0.98	
1,3-Dichlorobenzene	2.4	2.2	NL	ug/m ³	ND	U	0.36		ND	U	0.31		ND	U	ND	U	0.45	
2-Butanone (MEK)	12	11.3	NL	ug/m ³	ND	U	ND		ND	U	ND	U	6.10		ND	U	ND	U
2-Hexanone (MBK)	NL	NL	NL	ug/m ³	ND	U	0.62		0.45		0.28		0.78		0.26		0.52	
4-Ethyltoluene	3.6	3	NL	ug/m ³	ND	U	0.78		ND	U	0.58		ND	U	ND	U	0.76	
4-Methyl-2-pentanone (MIBK)	6	1.9	NL	ug/m ³	ND	U	0.66	J	0.48	J	0.40	J	0.44	J	ND	U	0.58	J
Acetone	98.9	43.7	NL	ug/m ³	7.40	J	36.00	J	23.00	J	29.00	J	37.00	J	9.50	J	70.00	J
Benzene	9.4	6.6	NL	ug/m ³	0.42		0.64		0.38		0.58		0.44		0.36		0.70	
Carbon tetrachloride	1.3	0.7	NL	ug/m³	0.47		0.51		0.46		0.45		0.46		0.41		0.29	
Chloroethane	1.1	1.2	NL	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Chloroform	1.1	0.6	NL	ug/m ³	ND	U	0.29		0.28		0.41		0.38		ND	U	ND	U
Chloromethane	3.7	3.7	NL	ug/m ³	1.30		1.50		1.50		1.30		1.30		1.40		1.40	
cis-1,2-Dichloroethene	1.9	1.8	NL	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Cyclohexane	NL	NL	NL	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Dichlorodifluoromethane (Freon 12)	16.5	8.1	NL	ug/m ³	1.40		5.10		6.10		1.40		1.20		1.40		1.30	
Ethanol	210.0	57.0	NL	ug/m ³	4.50		210.00		220.00		360.00		500.00		8.40		170.00	
Ethyl Acetate	5.4	1.5	NL	ug/m ³	8.70		14.00		44.00		1.70		2.70		1.70		8.50	
Ethylbenzene	5.7	3.5	NL	ug/m ³	ND	U	1.40		0.31		0.96		0.30		ND	U	1.20	
Heptane	NL	NL	NL	ug/m ³	ND	U	0.63		ND	U	0.64		0.51		ND	U	0.65	
Hexachlorobutadiene	6.8	6.4	NL	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Hexane*	10.2	6.4	NL	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Isopropanol	NL	NL	NL	ug/m ³	ND	U	14.00	J	27.00	J	25.00	J	76.00	J	ND	U	9.90	J
m,p-Xylene	22.2	12.8	NL	ug/m ³	0.07		4.40		0.76		3.00		0.73		ND	U	4.00	
Methylene chloride	10	6.1	60.00	ug/m ³	0.48		4.50		2.50		4.90		3.60		ND	U	3.60	
Naphthalene	5.1	4.9	NL	ug/m ³	ND	U	0.58		0.23		0.49		ND	U	ND	U	1.20	
o-Xylene	7.9	4.6	NL	ug/m ³	ND	U	1.90		0.28		1.40		0.26		ND	U	1.80	
Styrene	1.9	1.3	NL	ug/m ³	ND	U	0.25		0.18		0.38		0.42		ND	U	0.19	
Tetrachloroethene	15.9	6.5	100.00	ug/m ³	ND	U	0.74		0.38		ND	U	ND	U	ND	U	0.31	
Tetrahydrofuran	NL	NL	NL	ug/m ³	ND	U	0.12		ND	U	ND	U	ND	U	ND	U	0.17	
Toluene	43	33.7	NL	ug/m ³	0.46		5.80		1.80		7.10		4.80		0.58		6.30	
trans-1,2-Dichloroethene	NL	NL	NL	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Trichloroethene	4.2	1.3	5.00	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Trichlorofluoromethane (Freon 11)	18.1	4.3	NL	ug/m ³	0.16		3.40		3.10		1.40		1.20		0.95		1.20	
Vinyl Chloride	1.9	1.8	NL	ug/m³	ND	U	0.11		ND	U	0.20		ND	U	ND	U	0.27	

Notes:

1 - EPA Method TO-15

2 - Final New York State Department of Health Soil Vapor Intrusion Guidance, October 2006. Appendix C Table C2 - EPA 2001: Building assessment and survey evaluation (BASE) database, SUMMA® cainster method, 90th percentile for indoor air.

3 - Final New York State Department of Health Soil Vapor Intrusion Guidance, October 2006. Appendix C Table C2 - EPA 2001: Building assessment and survey evaluation (BASE) database, SUMMA® cainster method, 90th percentile for outdoor air.

4 - Final NYSDOH Soil Vapor Intrusion Guidance, October 2006. Table 3.1 Air Guideline Values Derived by the NYSDOH.

* - Value for n-Hexane

Acronyms:

bgs - below ground surface

NL - not listed ug/m³- microgram per meters cubed

Lab Qualifiers:

U - non-detect J - estimated

Color Legend:

Yellow - Exceedance

Table 2

Vapor Sampling Results

Former Doro Dry Cleaners - Site No. 9-15-238 NYSDEC Work Assignment No. D007621-6

	Sample Identificatior Sample Locatior			Identification	13D10	071-08	13D1	1071-09	13D1	071-10	13D1	1071-11	13D1071-13		
				SV-	3 IA	SV-	2 SS1	SV-	1 IA2	SV-	-1 SS2	SV-2 OA			
				Sample Date	23-Apr-13		23-Apr-13		23-Apr-13		23-Apr-13		23-Apr-13		
	Indoor Air	Outdoor Air													
	Statistical	Statistical	Air Guideline												
Chemical Name ¹	Value ²	Value ³	Value ⁴	Unit											
1,1,1-Trichloroethane	20.60	2.60	NL	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NL	NL	NL	ug/m ³	0.47	J	0.53	J	0.51	J	0.55	J	0.51	J	
1,1-Dichloroethene	1.4	1.4	NL	ug/m ³	ND	U	ND	U	ND	U	0.16		ND	U	
1,2,4-Trimethylbenzene	9.5	5.8	NL	ug/m ³	0.36		10.00		11.00		6.20		ND	U	
1,3,5-Trimethylbenzene	3.7	2.7	NL	ug/m ³	ND	U	2.60		2.60		1.60		ND	U	
1,3-Dichlorobenzene	2.4	2.2	NL	ug/m ³	ND	U	0.28		ND	U	0.22		ND	U	
2-Butanone (MEK)	12	11.3	NL	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	
2-Hexanone (MBK)	NL	NL	NL	ug/m ³	0.71		1.30		1.20		ND	U	ND	U	
4-Ethyltoluene	3.6	3	NL	ug/m ³	ND	U	2.90		2.80		1.70		ND	U	
4-Methyl-2-pentanone (MIBK)	6	1.9	NL	ug/m ³	ND	U	0.76		1.10	J	ND	U	ND	U	
Acetone	98.9	43.7	NL	ug/m ³	36.00	J	34.00	J	23.00	J	28.00	J	8.60	J	
Benzene	9.4	6.6	NL	ug/m ³	0.57		8.60		7.90		5.90		0.39		
Carbon tetrachloride	1.3	0.7	NL	ug/m ³	0.45		0.30		0.43		0.41		0.45		
Chloroethane	1.1	1.2	NL	ug/m³	ND	U	0.26		ND	U	ND	U	ND	U	
Chloroform	1.1	0.6	NL	ug/m ³	ND	U	0.18		ND	U	ND	U	ND	U	
Chloromethane	3.7	3.7	NL	ug/m³	1.30		1.60		1.40		1.20		1.30		
cis-1,2-Dichloroethene	1.9	1.8	NL	ug/m ³	ND	U	6.80		4.50		4.20		ND	U	
Cyclohexane	NL	NL	NL	ug/m ³	ND	U	3.30		3.10		2.10		ND	U	
Dichlorodifluoromethane (Freon 12)	16.5	8.1	NL	ug/m ³	1.30		1.40		1.30		1.40		1.50		
Ethanol	210.0	57.0	NL	ug/m ³	34.00		160.00		79.00		170.00		5.10		
Ethyl Acetate	5.4	1.5	NL	ug/m ³	6.80		2.60		2.50		4.00		2.10		
Ethylbenzene	5.7	3.5	NL	ug/m ³	0.28		7.90		7.70		5.10		ND	U	
Heptane	NL	NL	NL	ug/m ³	0.40		9.50		9.60		6.50		ND	U	
Hexachlorobutadiene	6.8	6.4	NL	ug/m ³	ND	U	ND	U	ND	U	ND	U	ND	U	
Hexane*	10.2	6.4	NL	ug/m ³	ND	U	28.00		26.00		20.00		ND	U	
Isopropanol	NL	NL	NL	ug/m ³	3.50	J	8.00	J	4.30	J	7.20	J	ND	U	
m,p-Xylene	22.2	12.8	NL	ug/m ³	0.85		29.00		28.00		19.00		0.38		
Methylene chloride	10	6.1	60.00	ug/m ³	1.40		2.40		2.20		3.10		2.20		
Naphthalene	5.1	4.9	NL	ug/m ³	5.30		0.55		1.40		0.60		ND	U	
o-Xylene	7.9	4.6	NL	ug/m ³	0.34		10.00		10.00		6.50		0.16		
Styrene	1.9	1.3	NL	ug/m ³	0.15		0.16		ND	U	ND	U	ND	U	
Tetrachloroethene	15.9	6.5	100.00	ug/m ³	ND	U	190.00		200.00		150.00		0.73		
Tetrahydrofuran	NL	NL	NL	ug/m³	ND	U	0.97		0.31		0.13		ND	U	
Toluene	43	33.7	NL	ug/m³	3.00		51.00		46.00		34.00		0.80		
trans-1,2-Dichloroethene	NL	NL	NL	ug/m ³	ND	U	0.26		0.17		0.19		ND	U	
Trichloroethene	4.2	1.3	5.00	ug/m³	ND	U	5.90		5.40		4.50		ND	U	
Trichlorofluoromethane (Freon 11)	18.1	4.3	NL	ug/m ³	1.00		10.00		12.00		8.70		1.10		
Vinyl Chloride	1.9	1.8	NL	ug/m³	ND	U	0.33		0.13		0.17		ND	U	

Notes:

1 - EPA Method TO-15

2 - Final New York State Department of Health Soil Vapor Intrusion Guidance, October 2006. Appendix C Table C2 - EPA Building assessment and survey evaluation (BASE) database, SUMMA* cainster method, 90th percentile for indoor air.

- 3 Final New York State Department of Health Soil Vapor Intrusion Guidance, October 2006. Appendix C Table C2 EPA Building assessment and survey evaluation (BASE) database, SUMMA® cainster method, 90th percentile for outdoor air
- 4 Final NYSDOH Soil Vapor Intrusion Guidance, October 2006. Table 3.1 Air Guideline Values Derived by the NYSDOH.
- * Value for n-Hexane

Acronyms:

bgs - below ground surface

NL - not listed ug/m³- microgram per meters cubed

Lab Qualifiers:

U - non-detect J - estimated

Color Legend:

Yellow - Exceedance

Table 3 NYSDEC Work Assignment # D007621-6 Former Doro Dry Cleaners Site No. 9-15-238

Soil Vapor Intrusion Recommendations Based on NYSDOH Decision Matrices¹

Location	Compound	Sub-Slab Air Concentrations	Indoor Air Concentrations	Outdoor Air Concentrations ²	Action Recommended ³	Final Action Recommended ³			
SV-1	PCE	150	200	0.73	Mitigation				
Front Building,	TCE	4.5	5.4	ND	Reasonable Action	Based on PCE results, mitigation is needed to minimiz			
Cheektowaga, New York	Carbon Tetrachloride	0.41	0.43	0.45	Reasonable Action	current or potential exposures associated with soil vapor intrusion.			
	1,1,1-TCA	ND	ND	ND	No Further Action				
SV-2	PCE	190	200	0.73	Mitigation				
Rear Building,	TCE	5.9	5.4	ND	Mitigation	Based on PCE and TCE mitigation is needed to			
Cheektowaga, New York	Carbon Tetrachloride	0.3	0.43	0.45	Reasonable Action	minimize current or potential exposures associated with soil vapor intrusion.			
	1,1,1-TCA	ND	ND	ND	No Further Action	·			
SV-3	PCE	0.31	ND	0.73	No Further Action	Based on carbon tetrachloride results reasonable and			
Cheektowaga, New York	TCE	ND	ND	ND	No Further Action	practical action should be taken to identify source(s)			
	Carbon Tetrachloride	0.29	0.45	0.45	Reasonable Action	and reduce exposure, as concentrations are likely due			
	1,1,1-TCA	ND	ND	ND	No Further Action	to sources other than soil vapor intrusion.			
SV-4	PCE	0.74	0.38	ND	No Further Action	Based on carbon tetrachloride results reasonable and			
Cheektowaga, New York	TCE	ND	ND	ND	No Further Action	practical action should be taken to identify source(s)			
	Carbon Tetrachloride	0.51	0.46	0.47	Reasonable Action	and reduce exposure, as concentrations are likely due			
	1,1,1-TCA	ND	ND	ND	No Further Action	to sources other than soil vapor intrusion.			
SV-5	PCE	ND	ND ND		No Further Action	Based on carbon tetrachloride and 1,1,1-TCA results			
Cheektowaga, New York	TCE	ND	ND	ND	No Further Action	reasonable and practical action should be taken to identify source(s) and reduce exposure, as			
	Carbon Tetrachloride	0.45	0.46	0.41	Reasonable Action	concentrations are likely due to sources other than soil			
	1,1,1-TCA	5.4	7.1	ND	Reasonable Action	vapor intrusion.			

Notes:

- 1. "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", NYSDOH, October 2006
- 2. Outdoor ambient air sample SV-2 OA was used for comparison with SV-1, SV-2, and SV-3 sub-slab and indoor air samples
- 3. Action levels based on NYSDOH Matrix 1 for TCE and carbon tetrachloride and Matrix 2 for PCE and 1,1,1-TCA,

All Concentrations in μg/m³

PCE = Tetrachloroethene

TCE = Trichloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

ND = indicates the compound was not detected at or above the quanititation limit

Legend

Soil Vapor Sampling Locations

Sample Location Plan

75 37.5 0 75 Feet

Figure 2 Former Doro Dry Cleaners Cheektowaga, NY

Legend

SVI LocationsSite Boundary

Vapor Intrusion Analytical Results

37.5 0 75 Feet

Figure 3
Former Doro Dry Cleaners
Feet Cheektowaga, NY

CDM Smith