DATA USABILITY SUMMARY REPORT (DUSR)

DATA USABILITY SUMMARY REPORT

Volatile Organics by SW-846 Method 8260

Laboratory SDG: Data Package # 12L0266

Sample Identification

Field Sample	Lab ID	Matrix
ID		
TB-1	12L0266-01	Water
B-16 (12-14FT)	12L0266-02	Soil
B-24 (0-4FT)	12L0266-03	Soil
B-17 (8-10FT)	12L0266-04	Soil
B-18 (6-8FT)	12L0266-05	Soil
B-23 (0-2FT)	12L0266-06	Soil
B-20 (12-14FT)	12L0266-07	Soil
B-20 (0-2FT)	12L0266-08	Soil

I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE

The laboratory submitted required deliverables. It is noted that the electronic copy was not bookmarked thoroughly for content, and no Table of Contents was included.

II. TECHNICAL DATA VALIDATION

The quality control elements that were reviewed are listed below:

Holding Times
Blanks (Method/Equipment)
Reported Results
Accuracy
Precision
Instrument Performance and Calibration

Holding Times

Prescribed holding times for all samples were met.

Blanks (Method/Equipment)

All blanks were reported free of contamination.

Reported Results

Reported positive results in field samples were qualitatively verified from raw data chromatograms and spectral match.

Accuracy

Surrogate recoveries and internal standard responses were within limits. No MS/MSD samples were identified for this SDG. Blank Spike (LCS) and LCS Duplicate samples were reported.

Precision

No MS/MSD samples were identified for this SDG. LCS Duplicate samples were reported. No field duplicate samples for were identified for this SDG.

Instrument Performance and Calibration

Calibration parameters were within acceptable limits, with the following exceptions: target compounds 1,2-dibromo-3-chloropropane (DBCP), 1,4-dioxane, acetone, 2-butanone (MEK), tert-butyl alcohol (TBA) and tetrahydrofuran (THF) presented relative response factor (RRF) values below the method limits; target compounds acetone, DBCP, methylene chloride (MeCl₂), naphthalene and trans-1,4-dichlorobutene presented %D values above the method limit, with reduced sensitivity.

1,4-dioxane and TBA were qualified as estimated non-detects (UJ) in all SDG soil samples. Acetone, DBCP, MEK and THF were qualified as estimated non-detects (UJ) in all samples except -01 (Trip Blank). Indication of low bias due to low calibration RRF values. Acetone, methylene chloride, naphthalene and trans-1,4-dichlorobutene were qualified as estimated non-detects (UJ) in all SDG soil samples. DBCP was qualified as an estimated non-detect (UJ) in the trip blank sample. Indication of low bias due to CCV %D values above limit, with reduced sensitivity.

DATA USABILITY SUMMARY REPORT (DUSR)

DATA USABILITY SUMMARY REPORT TCL Organics

by SW-846 Methods 8260, 8270, 8081 & 8082 TCL Metals & Inorganics by SW-846 Methods 6010, 7471 & 9014

Laboratory SDG: Data Package # 12L0362

Sample Identification

Field Sample			
ID	Lab ID	Analysis	Matrix
TB-2	12L0362-01	VOC	Water
FB-1	12L0362-02	VOC	Water
B-15 (4-8ft)	12L0362-03	TCL / TAL	Soil
B-13 (8-12ft)	12L0362-04	VOC	Soil
B-28 (4-6ft)	12L0362-05	VOC	Soil
B-14 (8-12ft)	12L0362-06	VOC	Soil
B-32 (8-10ft)	12L0362-07	VOC	Soil
B-33 (2-4ft)	12L0362-08	VOC	Soil
B-30 (6-8ft)	12L0362-09	VOC	Soil
B-12 (8-12ft)	12L0362-10	VOC	Soil
B-11 (6-8ft)	12L0362-11	VOC	Soil
B-29 (10-12ft)	12L0362-12	TCL / TAL	Soil
DUP-1	12L0362-13	VOC	Soil
B-29 (4-6ft)	12L0362-14	VOC	Soil
B-34 (4-6ft)	12L0362-15	VOC	Soil

I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE

The laboratory submitted required deliverables. It is noted that the electronic copy was not bookmarked thoroughly for content, and no Table of Contents was included.

II. TECHNICAL DATA VALIDATION

The quality control elements that were reviewed are listed below:

Holding Times

Blanks (Method/Equipment)

Reported Results

Accuracy

Precision

Instrument Performance and Calibration

Any analytical fractions which presented QC outliers resulting in data qualifiers are discussed in the applicable sections below.

Holding Times

Prescribed holding times for all samples were met.

Blanks (Method/Equipment)

All blanks were reported free of contamination, or in the case of method blanks, any associated positive analytes were above 10x blank values and no data qualification was necessary.

Reported Results

Reported TCL Organics positive results in field samples were qualitatively verified from raw data chromatograms and spectral match (for GC-MS analytes) and second-column confirmation (for GC-ECD analytes. Reported TAL Metals and cyanide positive results in field samples were verified by raw data assessment.

Accuracy

Surrogate recoveries and internal standard responses (as applicable) were within limits in all TCL samples.

Volatile Organics (VOC)

The following compounds presented recoveries below limits in both MS and MSD which resulted in qualification in parent sample 12L0362-10: dichloro- difluoromethane (Freon-12), naphthalene, 1,2,3-trichlorobenzene and 1,2,4-trichloro-benzene. The following compounds presented recoveries below limits in both LCS and LCSD which resulted in qualification in the noted associated samples: Freon-12, samples 12L0362-01 and 02; chloromethane, samples 12L0362-13 and 14. The noted compounds were qualified as estimated non-detects (UJ) in the associated samples, with indication of low bias due to low MS/MSD and/or low LCS/LCSD recoveries.

Semivolatile Organics (SVOC)

The following compounds presented recoveries below limits in both LCS and LCSD which resulted in qualification in the noted associated samples: benzoic acid and benzidine, samples 12L0362-03 and -12. The noted compounds were qualified as estimated non-detects (UJ) in the associated samples, with indication of low bias due to low LCS/LCSD recoveries. Note: although the LCSD recovery for benzidine was 46.5%, the average of the LCS (31%) and LCSD recoveries was below the lower recovery limit of 40% (at 39%), and the RPD value exceeded the limit of 30% (at 40%).

Precision

Volatile Organics (VOC)

The following compounds presented MS/MSD RPD values which exceeded 30%: 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene and 1,3,5-trichlorobenzene. Since no positives

for these compounds were found in the parent sample, no data qualifiers were assigned. No MS/MSD samples were requested for analysis for the other TCL analytical fractions. LCS Duplicate samples were reported.

VOC sample DUP-1 is the field duplicate of B-29 (10-12'). Both samples were reported positive (at 200x dilution) for tetrachloroethene, with RPD calculated at 24%. The field duplicate sample was not requested for analysis for the other analytical fractions.

Instrument Performance and Calibration

Volatile Organics (VOC)

Calibration parameters were within acceptable limits, with the following exceptions: target compounds 1,2-dibromo-3-chloropropane (DBCP), 1,4-dioxane, acetone, 2-butanone (MEK), tert-butyl alcohol (TBA) and tetrahydrofuran (THF) presented relative response factor (RRF) values below the method limits; target compounds acetone, chloromethane, naphthalene, 2,2-dichloropropane, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, trans-1,3-dichloropropene and trans-1,4-dichlorobutene presented %D values above the method limit, with reduced sensitivity.

DBCP, acetone and MEK were qualified as estimated values (UJ or J) in samples 12L0362- (03-11 inclusive) and -15. 1,4-dioxane and TBA were qualified as estimated values (UJ or J) in samples 12L0362-(01-15 inclusive). THF was qualified as estimated (UJ) in samples 12L0362-(03-11 inclusive), (13-15 inclusive). Indication of low bias due to low calibration RRF values.

Acetone, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene were qualified as estimated values (UJ or J) in sample 12L-0362-12. 2,2-dichloropropane and *trans*-1,3-dichloropropene were qualified as estimated values (UJ or J) in samples 12L0362-01,-02 and -12. Chloromethane and *trans*-1,4-dichlorobutene were qualified as estimated values (UJ or J) in samples 12L0362-13 and -14. Naphthalene was qualified as an estimated value (UJ or J) in samples 12L0362-(03-12 inclusive) and -15. Indication of low bias due to CCV %D values above limit, with reduced sensitivity.

Semivolatile Organics (SVOC)

The laboratory flagged target compound pentachloronitrobenzene as presenting a low RRF value of 0.034. However, this compound does not have a listed minimum RRF, and similar compounds typically are allowed a minimum RRF of 0.010, and the RRFs were consistent (RSD=5.6%) from low to high concentration. Therefore, no validation qualifiers were assigned for this compound by the reviewer.

DATA USABILITY SUMMARY REPORT (DUSR)

DATA USABILITY SUMMARY REPORT

TCL Organics

by SW-846 Methods 8260, 8270, 8081 & 8082 TCL Metals & Inorganics by SW-846 Methods 6010, 6020, 7470, 7471 & 9014

Laboratory SDG: Data Package # 12L0409

Sample Identification

Field Sample			
ID -	Lab ID	Analysis	Matrix
B-40 (10-12ft)	12L0409-01	TCL / TAL	Soil
B-31 (6-8ft)	12L0409-02	VOC	Soil
B-35 (6-8ft)	12L0409-03	VOC	Soil
B-41 (10-12ft)	12L0409-04	VOC	Soil
DUP-2	12L0409-05	VOC	Soil
B-37 (10-12ft)	12L0409-06	VOC	Soil
B-19 (6-8ft)	12L0409-07	VOC	Soil
B-21 (0-2ft)	12L0409-08	VOC	Soil
TB-3	12L0409-09	VOC	Water
FB-2	12L0409-10	VOC	Water
B-27	12L0409-11	VOC	Water
B-28	12L0409-12	VOC	Water
B-18	12L0409-13	VOC	Water
B-23	12L0409-14	TCL / TAL	Water
B-17	12L0409-15	VOC	Water
B-11	12L0409-16	VOC	Water
DUP-3	12L0409-17	VOC	Water
B-36	12L0409-18	VOC	Water
B-35	12L0409-19	VOC	Water

I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE

The laboratory submitted required deliverables. It is noted that the electronic copy was not bookmarked thoroughly for content, and no Table of Contents was included.

II. TECHNICAL DATA VALIDATION

The quality control elements that were reviewed are listed below:

Holding Times

Blanks (Method/Equipment)

Reported Results

Accuracy

Precision

Instrument Performance and Calibration

Any analytical fractions which presented QC outliers resulting in data qualifiers are discussed in the applicable sections below.

Holding Times

Aqueous sample B-23 (Lab ID 12L0409-14) was extracted one day beyond the 5-day holding time from VTSR for both Pesticides and PCB analyses. All Pesticide target analytes were qualified as estimated values (UJ or J); all PCB target analytes (Arochlors) were qualified as estimated values (UJ). Indication of potential low bias due to extraction holding time exceedance.

Blanks (Method/Equipment)

All blanks were reported free of contamination, or in the case of method blanks, any associated positive analytes were above 10x blank values and no data qualification was necessary.

Reported Results

Reported TCL Organics positive results in field samples were qualitatively verified from raw data chromatograms and spectral match (for GC-MS analytes) and second-column confirmation (for GC-ECD analytes). Reported TAL Metals positive results in field samples were verified by raw data assessment.

Accuracy

Surrogate recoveries and internal standard responses (as applicable) were within limits in all TCL samples.

Volatile Organics (VOC)

The following compounds presented recoveries below limits in soil MS/MSD which resulted in qualification in parent sample 12L0409-08: dichlorodifluoromethane (Freon-12), naphthalene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene. The following compounds presented recoveries below limits in aqueous MS/MSD which resulted in qualification in parent sample 12L0409-15: chloromethane and Freon-12. The following compounds presented recoveries below limits in soil LCS/LCSD which resulted in qualification in the noted associated samples: Freon-12, sample 12L0409-01. The noted compounds were qualified as estimated non-detects (UJ) in the associated samples, with indication of low bias due to low MS/MSD and/or low LCS/LCSD recoveries.

Semivolatile Organics (SVOC)

The following compounds presented recoveries below limits in both LCS and LCSD which resulted in qualification in the noted associated samples: benzoic acid (12L0409-01); N-nitroso-dimethylamine, benzidine (12L0409-14).

The noted compounds were qualified as estimated non-detects (UJ) in the associated samples, with indication of low bias due to low LCS/LCSD recoveries.

Metals

The recoveries for sodium (Na) in aqueous batch LCS/LCSD B064640BS1 and BS2 were 0%. These LCS were spiked at 2.0 mg/L, which is the RL value for sodium. The reported positive result for Na in associated aqueous sample B-23 was qualified as estimated (J), with indication of low bias.

Precision

Volatile Organics (VOC)

The following compounds presented MS/MSD RPD values which exceeded 30% in parent sample 12L0409-08: N-butylbenzene, hexachlorobutadiene, naphthalene,1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene and tetrachloroethene. Since tetrachloroethene was positive in the parent sample, tetrachloroethene was qualified in 12L0409-08 only. No data qualifiers were assigned to the other compounds as they were non-detects.

No MS/MSD samples were requested for analysis for the other TCL analytical fractions. LCS Duplicate samples were reported.

VOC soil sample DUP-2 is the field duplicate of B-40 (10-12'). Both samples were reported positive (at 5000x and 500x dilution, respectively) for tetrachloroethene, with RPD calculated at 82%. VOC aqueous sample DUP-3 is the field duplicate of B-28. Both samples were reported positive for cis-1,2-dichloroethene, trichloroethene and tetrachloroethene, while only DUP-3 was reported positive for vinyl chloride and benzene. RPD values for cis-1,2-dichloroethene, trichloroethene and tetrachloroethene were 144%, 126% and 107%, respectively. The results for the above compounds in the associated parent and duplicate samples only were qualified as estimated (J or UJ) with indeterminate bias direction.

The field duplicate samples were not requested for analysis for the other analytical fractions.

Instrument Performance and Calibration

Volatile Organics (VOC)

Calibration parameters were within acceptable limits, with the following exceptions: target compounds 1,2-dibromo-3-chloropropane (DBCP), 1,4-dioxane, acetone, 2-butanone (MEK), tert-butyl alcohol (TBA) and tetrahydrofuran (THF) presented relative response factor (RRF) values for soil sample calibration below the method limits. Target compounds 1,4-dioxane, TBA and THF presented relative response factor (RRF) values for aqueous sample calibration below the method limits.

1,4-Dioxane and TBA were qualified as estimated values (UJ or J) in soil samples 12L0409- (01-08 inclusive). Acetone, DBCP, MEK and THF were qualified as estimated values (UJ or J) in soil samples 12L0409-(02-08 inclusive). 1,4-Dioxane and THF were qualified as estimated values (UJ or J) in water samples 12L0409- (09-19 inclusive). TBA was qualified as an estimated value (UJ or J) in water samples 12L0409- (11-19 inclusive). Indication of low bias due to low calibration RRF values.

Target compounds naphthalene, 2,2-dichloropropane, 1,2,3-trichlorobenzene and trans-1,3-dichloropropene presented soil CCV %D values above the method limit, with reduced sensitivity.

Target compounds naphthalene, chloromethane, bromoform, DBCP, 1,2,3-trichlorobenzene and trans-1,4-dichlorobutene presented aqueous CCV %D values above the method limit, with reduced sensitivity.

2,2-Dichloropropane and *trans*-1,3-dichloropropene were qualified as estimated values (UJ or J) in soil sample 12L0409-01; naphthalene was qualified as an estimated value (UJ or J) in soil samples 12L0409- (02-08 inclusive); 1,2,3-trichlorobenzene was qualified as an estimated value (UJ or J) in soil samples 12L0409- (02-06 inclusive) and -08. Naphthalene, chloromethane, bromoform, DBCP, 1,2,3-trichlorobenzene and *trans*-1,3-dichlorobutene were qualified as estimated values (UJ or J) in water samples 12L0409- (11-19 inclusive). Indication of low bias due to CCV %D values above limit, with reduced sensitivity.

Semivolatile Organics (SVOC)

The laboratory flagged target compound pentachloronitrobenzene as presenting a low RRF value of 0.034. However, this compound does not have a listed minimum RRF, and similar compounds typically are allowed a minimum RRF of 0.010, and the RRFs were consistent (RSD=5.6%) from low to high concentration. Therefore, no validation qualifiers were assigned for this compound by the reviewer.

The aqueous Initial Calibration %RSD for 2,4-dinitrophenol exceeded the limit and the compound was calibrated via linear regression, which is an acceptable option; however the R-value was below the minimum limit of 0.99. Target compounds 4-nitrophenol, benzo(ghi)perylene and benzidine presented aqueous CCV %D values above the method limit, with reduced sensitivity.

Target compounds 2,4-dinitrophenol,4-nitrophenol, benzo(ghi)perylene and benzidine were qualified as estimated values (UJ or J) in water sample 12L0409-14. Indication of low bias due to CCV %D values above limit, with reduced sensitivity, and reduced sensitivity (2,4-dinitrophenol) due to IC non-linearity.

DATA USABILITY SUMMARY REPORT (DUSR)

DATA USABILITY SUMMARY REPORT

Volatile Organics by SW-846 Method 8260

Laboratory SDG: Data Package # 12L0458

Sample Identification

Field Sample	Lab ID	Matrix
ID		
B-26 (6-8ft)	12L0458-01	Soil
B-27 (3-4ft)	12L0458-02	Soil
B-22 (0-4ft)	12L0458-03	Soil
B-25 (5-6ft)	12L0458-04	Soil
Cistern (soil)	12L0458-05	Soil
Cistern (GW)	12L0458-06	Water
CB-2	12L0458-07	Water
CB-1	12L0458-08	Water
B-14	12L0458-09	Water
FB-3	12L0458-10	Water
TB-4	12L0458-11	Water

I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE

The laboratory submitted required deliverables. It is noted that the electronic copy was not bookmarked thoroughly for content, and no Table of Contents was included.

II. TECHNICAL DATA VALIDATION

The quality control elements that were reviewed are listed below:

Holding Times
Blanks (Method/Equipment)
Reported Results
Accuracy
Precision

Instrument Performance and Calibration

ny volatile samples or OC samples which presented OC outliers resulting in da

Any volatile samples or QC samples which presented QC outliers resulting in data qualifiers are discussed in the applicable sections below.

Holding Times

Prescribed holding times for all samples were met.

Blanks (Method/Equipment)

All blanks were reported free of contamination.

Reported Results

Reported positive results in field samples were qualitatively verified from raw data chromatograms and spectral match.

Accuracy

Surrogate recoveries and internal standard responses were within limits. No MS/MSD samples were identified for this SDG.

Blank Spike (LCS) and LCS Duplicate samples were reported. The following compounds presented recoveries below limits in soil LCS/LCSD which resulted in qualification in the noted associated samples: chloromethane and *trans*-1,4-dichlorobutene, sample 12L0458-05. The following compounds presented recoveries below limits in aqueous LCS/LCSD which resulted in qualification in the noted associated samples: Freon-12, samples 12L0458-10 and -11; chloromethane and *trans*-1,4-dichlorobutene, samples 12L0458-06, -07, -08 and -09. The noted compounds were qualified as estimated values (UJ or J) in the associated samples, with indication of low bias due to low LCS/LCSD recoveries.

Precision

No MS/MSD samples were identified for this SDG. LCS Duplicate samples were reported. No field duplicate samples for were identified for this SDG.

Instrument Performance and Calibration

Calibration parameters were within acceptable limits, with the following exceptions:

IC (soils): target compounds 1,2-dibromo-3-chloropropane (DBCP), 1,4-dioxane, acetone, 2-butanone (MEK), tert-butyl alcohol (TBA) and tetrahydrofuran (THF) presented relative response factor (RRF) values below the method limits. IC (H_2O): Target compounds 1,4-dioxane, TBA and THF presented relative response factor (RRF) values below the method limits.

Target compounds DBCP, 1,4-dioxane, acetone, MEK,TBA and THF were qualified as estimated (UJ or J) in soil samples 12L0458-01, -02 and -04, and 1,4-dioxane, TBA and THF were qualified as estimated (UJ or J) in soil sample 12L0458-05.

Target compounds 1,4-dioxane, TBA and THF were qualified as estimated (UJ or J) in water samples 12L0458- (06-09, inclusive). 1,4-Dioxane and TBA were qualified as estimated (UJ or J) in water samples 12L0458-11 and -12. Indication of low bias due to low calibration RRF values.

Target compounds bromoform, chloromethane, naphthalene, *trans*-1,3-dichloropropene and *trans*-1,4-dichlorobutene presented soil CCV %D values above the method limit, with reduced sensitivity.

Target compounds bromoform, chloromethane, 2,2-dichloropropane, *trans*-1,3-dichloropropene and *trans*-1,4-dichlorobutene presented aqueous CCV %D values above the method limit, with reduced sensitivity.

Naphthalene was qualified as an estimated value (UJ or J) in soil samples 12L0458-01, -02 and -04; bromoform, chloromethane, *trans*-1,3-dichloropropene and *trans*-1,4-dichlorobutene were qualified as estimated values (UJ or J) in soil sample 12L0458-05. Bromoform, chloromethane, *trans*-1,3-dichloropropene and *trans*-1,4-dichlorobutene were qualified as estimated values (UJ or J) in water samples 12L0458- (06-09 inclusive); 2,2-dichloropropane and *trans*-1,3-dichloropropene were qualified as estimated values (UJ or J) in water samples 12L0458-11 and -12. Indication of low bias due to CCV %D values above limit.

DATA USABILITY SUMMARY REPORT FORMER DORO CLEANERS, BUFFALO, NEW YORK

Client:

CDM Smith, Inc., Latham, New York

SDG:

13C0408

Laboratory:

Con-Test Analytical Laboratory, East Longmeadow, Massachusetts

Site:

Former Doro Cleaners, Buffalo, New York

Date:

October 17, 2013

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	FB-1_3-13-13	13C0408-01	Water
2	B-46_3-13-13	13C0408-02	Water
3	B-54_3-13-13	13C0408-03	Water
4	B-48_3-13-13	13C0408-04	Water
5	B-47_3-13-13	13C0408-05	Water
6	B-50_3-13-13	13C0408-06	Water
7	B-51_3-13-13	13C0408-07	Water
8,	B-53_3-13-13	13C0408-08	Water
9	B-44_3-13-13	13C0408-09	Water
9MS	B-44_3-13-13MS	13C0408-09MS	Water
9MSD	B-44_3-13-13MSD	13C0408-09MSD	Water
10	B-52_3-13-13	13C0408-10	Water
11	B-45_3-13-13	13C0408-11	Water
12	FD-01_3-13-13	13C0408-12	Water

A Data Usability Summary Review was performed on the analytical data for eleven water samples and one aqueous field blank sample collected March 13, 2013 by CDM Smith at the Former Doro Cleaners site in Buffalo, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".

Specific method references are as follows:

<u>Analysis</u>

Method References

VOCs

USEPA SW-846 Method 8260C

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision
- Tentatively Identified Compounds (TICs)

Overall Usability Issues:

There were several rejections of data. This data cannot be used in the decision-making process for this project.

tert-Butyl alcohol and 1,4-dioxane were rejected in all samples due to low initial calibration RRF values.

Overall the remaining data is acceptable for the intended purposes as qualified for the following deficiencies.

- Seven compounds were qualified as estimated in one sample due to low MS/MSD recoveries.
- Six compounds were qualified as estimated in all samples due to high continuing calibration %D values.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organics Compounds (VOCs)

Holding Times

All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

MS/MSD Sample ID	Compound	MS %R/MSD %R/ RPD	Qualifier
9	Acetone	49.8%/51.1%/OK	None - See CCAL
	Acrylonitrile	55.2%/55.6%/OK	J/UJ
	2-Butanone (MEK)	43.1%/43.5%/OK	
	tert-Butyl alcohol (TBA)	49.6%/52.5%/OK	None - See ICAL
	1,2-Dibromo-3-chloropropane	46.7%/46.8%/OK	J/UJ
	trans-1,4-Dichloro-2-butene	46.1%/46.4%/OK	None - See CCAL
	1,4-Dioxane	62.4%/60.0%/OK	None - See ICAL
	2-Hexanone	49.1%/48.3%/OK	None - See CCAL
	Methylene chloride	57.9%/53.8%/OK	None - See CCAL
	4-Methyl-2-pentanone (MIBK)	52.1%/52.1%/OK	None - See CCAL
	Naphthalene	47.9%/54.9%OK	J/UJ
	Tetrahydrofuran	49.4%/ 56.8%/OK	
	1,2,3-Trichlorobenzene	54.8%/61.3%/OK	
	1,2,3-Trichloropropane	69.4%/OK/OK	

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

Field Blank

Field blank results are summarized below.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB-1_3-13-13	None - ND	-	-	-	-

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The following table presents compounds that exceeded 20 percent relative standard deviation (%RSD) and/or average RRF values <0.05 in the initial calibration (ICAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %RSD may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

ICAL Date	Compound	%RSD/RRF	Qualifier	Affected Samples
03/11/13	tert-Butyl alcohol	0.026 RRF	J/R	All Samples
	1,4-Dioxane	0.002 RRF	J/R	

Continuing Calibration

• The following table presents compounds that exceeded 20 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
03/19/13	Acetone	24.5%	J/UJ	All Samples
	Chloromethane	25.6%	J/UJ	
	tert-Butyl alcohol	0.026 RRF	None	See ICAL
	trans-1,4-Dichloro-2-butene	29.6%	J/UJ	All Samples
	1,4-Dioxane	0.002 RRF	None	See ICAL
	2-Hexanone	22.7%	J/UJ	All Samples
	Methylene chloride	41.0%	J/UJ	
	4-Methyl-2-pentanone	22.7%	J/UJ	

Compound Quantitation

All criteria were met.

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

Field duplicate results are summarized below.

		VOC		
Compound	B-53_3-13-13 ug/L	FD-01_3-13-13 ug/L	RPD	Qualifier
Toluene	0.040U	1.3	NC	None

Tentatively Identified Compounds (TICs)

TICs were not reported.

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Aug Weaper Dated: 10/21/13

5 of 6

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

1-FORMI **ANALYSIS DATA SHEET**

FB-1_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13C0408-01 File ID:

ve078016.D NW
03/19/13 17:20 01713

Sampled: Solids:

03/13/13 13:00

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

Initial/Final:

5 mL / 5 mL

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: G	CMSVOA5
CAS	NO.	COMPOUND		COI	NC. (μg/L)	MDL	RL	Q
67-64	4-1	Acetone				0.54	50 UJ	∨-05
107-	13-1	Acrylonitrile				0.51	5.0	
994-	05-8	tert-Amyl Methyl Et	ther (TAME)			0.11	0.50	
71-4	3-2	Benzene				0.050	1.0	
108-	86-1	Bromobenzene				0.10	1.0	
74-9	7-5	Bromochlorometha	ne			0.10	1.0	
75-2	7-4	Bromodichlorometh	hane			0.080	0.50	
75-2	5-2	Bromoform				0.25	1.0	
74-8	3-9	Bromomethane				0.38	5.0	
78-9	3-3	2-Butanone (MEK)				0.41	20	
75-6	5-0	tert-Butyl Alcohol (ТВА)			3.5	20 R	∀-16
104-	51-8	n-Butylbenzene				0.050	2.0	
135-	98-8	sec-Butylbenzene				0.050	2.0	
98-0	6-6	tert-Butylbenzene				0.050	1.0	
637-	92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.070	0.50	
75-1	5-0	Carbon Disulfide				0.050	4.0	
56-2	3-5	Carbon Tetrachlori	ide			0.090	5.0	
108-	90-7	Chlorobenzene				0.050	1.0	
124-	48-1	Chlorodibromomet	hane			0.12	0.50	
75-0	0-3	Chloroethane				0.33	2.0	
67-6	6-3	Chloroform				0.040	2.0	
74-8	7-3	Chloromethane				0.13	2.0 UJ	¥ -05
95-4	9-8	2-Chlorotoluene				0.050	1.0	
106-	43-4	4-Chlorotoluene				0.050	1.0	
96-1	2-8	1,2-Dibromo-3-chlo	oropropane (DBC	P)		0.48	5.0	

1 - FORM I **ANALYSIS DATA SHEET**

FB-1_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-01

File ID:

ve078016.D

Sampled:

03/13/13 13:00

Prepared:

Preparation:

03/15/13 09:05 SW-846 5030B Analyzed:

03/19/13 17:20

Solids: Initial/Final:

5 mL / 5 mL

Dilution:

1

n:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: G0	CMSVOA!
CAS NO	Э.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
106-93	-4	1,2-Dibromoethane	e (EDB)			0.14	0.50	
74-95-	3	Dibromomethane				0.080	1.0	
95-50-	1	1,2-Dichlorobenzer	пе			0.060	1.0	
541-73	-1	1,3-Dichlorobenzer	ne			0.060	1.0	
106-46	-7	1,4-Dichlorobenzer	ne			0.11	1.0	
110-57	'-6	trans-1,4-Dichloro-2	2-butene			0.77	2.0 UJ	V-05
75-71-	8	Dichlorodifluorome	thane (Freon 12)			0.040	2.0	
75-34-	3	1,1-Dichloroethane	•			0.090	1.0	
107-06	-2	1,2-Dichloroethane					1.0	
75-35-	4	1,1-Dichloroethyler	ne			0.10	1.0	
156-59	-2	cis-1,2-Dichloroeth	ylene			0.050	1.0	
156-60	-5	trans-1,2-Dichloroe	ethylene			0.070	1.0	
78-87-	5	1,2-Dichloropropan	ie .			0.20	1.0	
142-28	-9	1,3-Dichloropropan	ne			0.080	0.50	
594-20)-7	2,2-Dichloropropan	ne			0.13	1.0	
563-58	3-6	1,1-Dichloropropen	ne			0.10	2.0	
10061	-01-5	cis-1,3-Dichloropro	pene			0.070	0.50	
10061	-02-6	trans-1,3-Dichlorop	propene			0.12	0.50	
60-29-	7	Diethyl Ether				0.10	2.0	
108-20)-3	Diisopropyl Ether (DIPE)			0.030	0.50	
123-91	-1	1,4-Dioxane				3.5	50 R	V-16
100-41	-4	Ethylbenzene				0.050	1.0	
87 - 68-	3	Hexachlorobutadie	ene			0.26	0.50	
591-78	3-6	2-Hexanone (MBK))			0.66	10 UJ	¥ 05
98-82-	8	Isopropylbenzene	(Cumene)			0.060	1.0	

1 - FORM I ANALYSIS DATA SHEET

FB-1_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-01

File ID:

ve078016.D

Sampled:

03/13/13 13:00

Prepared:

Preparation:

03/15/13 09:05

Analyzed:

03/19/13 17:20

Solids:

SW-846 5030B

Dilution:

1

Initial/Final:

 $5 \, \text{mL} \, / \, 5 \, \text{mL}$

h: B	3069146 Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCI	MSVOA
CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL		Q
99-87-6	p-Isopropyltolue	ne (p-Cymene)	_		0.060	1.0		
1634-04-4	Methyl tert-Buty	l Ether (MTBE)			0.050	1.0		
75-09-2	Methylene Chlor	ride			2.3		UJ	V-05
108-10-1	4-Methyl-2-pent	anone (MIBK)			0.22	10	UJ	- ∀-05
91-20-3	Naphthalene				0.21	2.0		
103-65-1	n-Propylbenzen	е			0.040	1.0		
100-42-5	Styrene				0.060	1.0		
630-20-6	1,1,1,2-Tetrachl	oroethane			0.080	1.0		
79-34-5	1,1,2,2-Tetrachl	oroethane			0.18	0.50		
127-18-4	Tetrachloroethy	lene			0.14	1.0		
109-99-9	Tetrahydrofuran	ı			1.0	10		
108-88-3	Toluene				0.040	1.0		
87-61-6	1,2,3-Trichlorob	enzene			0.22	5.0		
120-82-1	1,2,4-Trichlorob	enzene			0.11	1.0		
108-70-3	1,3,5-Trichlorob	enzene			0.40	1.0		
71-55-6	1,1,1-Trichloroe	thane			0.050	1.0		
79-00-5	1,1,2-Trichloroe	thane			0.080	1.0		
79-01-6	Trichloroethyler	ne			0.12	1.0		
75-69-4	Trichlorofluoron	nethane (Freon 11)			0.070	2.0		
96-18-4	1,2,3-Trichlorop	ropane			0.21	2.0		
76-13-1	1,1,2-Trichloro-	1,2,2-trifluoroethane	e (Freon 1		0.11	2.0		
95-63-6	1,2,4-Trimethyll	penzene			0.060	1.0		
108-67-8	1,3,5-Trimethyll	penzene			0.060	1.0		
75-01-4	Vinyl Chloride				0.16	2.0		
108383/1	06423 m+p Xylene				0.070	2.0		

1 - FORM I ANALYSIS DATA SHEET

FB-1_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13C0408-01

File ID:

ve078016.D

Sampled:

03/13/13 13:00

Prepared:

Preparation:

03/15/13 09:05

Analyzed:

03/19/13 17:20

Solids:

SW-846 5030B

Dilution:

1

Initial/Final:

5 mL / 5 mL

Batch: B069146

Sequence:

S004000

Calibration:

1300039

Instrument:

GCMSVOA5

CAS NO.

COMPOUND

CONC. (µg/L)

Q

95-47-6

o-Xylene

0.050

MDL

1.0

RL

1 - FORM I **ANALYSIS DATA SHEET**

B-46_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078017.D

Matrix:

Ground Water

Laboratory ID:

13C0408-02

File ID:

Sampled:

Initial/Final:

03/13/13 11:25

Prepared:

Preparation:

03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

03/19/13 17:46

1

Solids:

5 mL / 5 mL

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ıment: G	CMSVOA5
	CAS NO.	COMPOUND		С	ONC. (μg/L)	MDL	RL	Q
	67-64-1	Acetone				0.54	50 UJ	V-05-
	107-13-1	Acrylonitrile				0.51	5.0	
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.11	0.50	
	71-43-2	Benzene				0.050	1.0	
	108-86-1	Bromobenzene				0.10	1.0	
	74-97-5	Bromochlorometha	ne			0.10	1.0	
	75-27-4	Bromodichlorometh	nane			0.080	0.50	
	75-25-2	Bromoform				0.25	1.0	
	74-83-9	Bromomethane				0.38	5.0	
	78-93-3	2-Butanone (MEK)				0.41	20	
	75-65-0	tert-Butyl Alcohol (7	ТВА)			3.5	20 R	416
	104-51-8	n-Butylbenzene				0.050	2.0	
	135-98-8	sec-Butylbenzene				0.050	2.0	
	98-06-6	tert-Butylbenzene				0.050	1.0	
	637-92-3	tert-Butyl Ethyl Ethe	er (TBEE)			0.070	0.50	
	75-15-0	Carbon Disulfide				0.050	4.0	
	56-23-5	Carbon Tetrachlori	de			0.090	5.0	
	108-90-7	Chlorobenzene				0.050	1.0	
	124-48-1	Chlorodibromometl	hane			0.12	0.50	
	75-00-3	Chloroethane				0.33	2.0	
	67-66-3	Chloroform				0.040	2.0	
	74-87-3	Chloromethane				0.13	2.0 U	€¥ -05
	95-49-8	2-Chlorotoluene				0.050	1.0	
	106-43-4	4-Chlorotoluene				0.050	1.0	
	96-12-8	1,2-Dibromo-3-chlo	propropane (DBCI	P)		0.48	5.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-46_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Solids:

Batch:

Ground Water

Laboratory ID:

13C0408-02

File ID:

ve078017.D

Sampled:

03/13/13 11:25

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

03/19/13 17:46 1

Initial/Final:

5 mL / 5 mL

B069146

Sequence:

S004000

Calibration:

1300039

Instrument:

Datch.	D009140	Sequence:	5004000	Calibration:	1300039	instru	illient. ac	MOVOAS
	CAS NO.	COMPOUND	·	co	NC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane	(EDB)			0.14	0.50	
	74-95-3	Dibromomethane				0.080	1.0	
	95-50-1	1,2-Dichlorobenzen	е			0.060	1.0	
	541-73-1	1,3-Dichlorobenzen	е			0.060	1.0	
	106-46-7	1,4-Dichlorobenzen	e			0.11	1.0	
	110-57-6	trans-1,4-Dichloro-2	2-butene			0.77	2.0 UJ	<u>V-05-</u>
	75-71-8	Dichlorodifluoromet	hane (Freon 12)			0.040	2.0	
	75-34-3	1,1-Dichloroethane				0.090	1.0	
	107-06-2	1,2-Dichloroethane				0.090	1.0	
	75-35-4	1,1-Dichloroethylen	е			0.10	1.0	
	156-59-2	cis-1,2-Dichloroethy	/lene			0.050	1.0	
	156-60-5	trans-1,2-Dichloroe	thylene			0.070	1.0	
	78-87-5	1,2-Dichloropropan	е			0.20	1.0	
	142-28-9	1,3-Dichloropropan	е			0.080	0.50	
	594-20-7	2,2-Dichloropropan	е			0.13	1.0	
	563-58-6	1,1-Dichloropropen	е			0.10	2.0	
	10061-01-5	cis-1,3-Dichloropro	pene			0.070	0.50	
	10061-02-6	trans-1,3-Dichlorop	ropene			0.12	0.50	
	60-29-7	Diethyl Ether				0.10	2.0	
	108-20-3	Diisopropyl Ether ([OIPE)			0.030	0.50	
	123-91-1	1,4-Dioxane				3.5	50 R	V 16-
	100-41-4	Ethylbenzene				0.050	1.0	
	87-68-3	Hexachlorobutadie	ne			0.26	0.50	
	591-78-6	2-Hexanone (MBK)				0.66	10 U J	<u>V-05</u>
	98-82-8	Isopropylbenzene (Cumene)			0.060	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-46_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078017.D

Matrix:

Ground Water

Laboratory ID:

13C0408-02

File ID: Analyzed:

03/19/13 17:46

Sampled: Solids:

03/13/13 11:25

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B

Dilution:

1

Initial/Final: Batch:	5 mL / 5 ml B069146	- Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCMSVOA5
CA	S NO.	COMPOUND		CON		MDL	RL	Q
99.	-87-6	p-Isopropyltoluene	(p-Cymene)			0.060	1.0	
16	34-04-4	Methyl tert-Butyl E	ther (MTBE)			0.050	1.0	
75	-09-2	Methylene Chloride	Э			2.3	5.0 V	معَلتِ کا
10	8-10-1	4-Methyl-2-pentane	one (MIBK)			0.22	10 V	17 4-05
91	-20-3	Naphthalene				0.21	2.0	
10	3-65-1	n-Propylbenzene				0.040	1.0	
10	0-42-5	Styrene				0.060	1.0	
63	0-20-6	1,1,1,2-Tetrachloro	oethane			0.080	1.0	
79	-34-5	1,1,2,2-Tetrachloro	oethane			0.18	0.50	
12	7-18-4	Tetrachloroethylen	e			0.14	1.0	
10	9-99-9	Tetrahydrofuran				1.0	10	
10	8-88-3	Toluene				0.040	1.0	
87	'-61-6	1,2,3-Trichloroben	zene			0.22	5.0	
12	0-82-1	1,2,4-Trichloroben	zene			0.11	1.0	
10	8-70-3	1,3,5-Trichloroben	zene			0.40	1.0	
71	-55-6	1,1,1-Trichloroetha	ane			0.050	1.0	
79	-00-5	1,1,2-Trichloroetha	ane			0.080	1.0	
79	-01-6	Trichloroethylene				0.12	1.0	
75	5-69-4	Trichlorofluoromet	hane (Freon 11)			0.070	2.0	
96	5-18-4	1,2,3-Trichloroprop	pane			0.21	2.0	
76	S-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.11	2.0	
95	5-63-6	1,2,4-Trimethylber	nzene			0.060	1.0	
10)8-67-8	1,3,5-Trimethylber	nzene			0.060	1.0	
75	5-01-4	Vinyl Chloride				0.16	2.0	
10)8383/106423	m+p Xylene				0.070	2.0	

1-FORMI **ANALYSIS DATA SHEET**

B-46_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-02

File ID:

ve078017.D

03/19/13 17:46

Sampled:

03/13/13 11:25

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

1

Solids: Initial/Final:

5 mL / 5 mL

Batch:

B069146

Sequence:

S004000

Calibration:

1300039

Instrument:

CAS NO.	COMPOUND	CONC. (μg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.050	1.0	

1 - FORM I ANALYSIS DATA SHEET

B-54_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Solids:

Ground Water

Laboratory ID:

13C0408-03

File ID:

ve078018.D

Sampled:

03/13/13 11:05

Prepared:

Preparation:

03/15/13 09:05 SW-846 5030B Analyzed:
Dilution:

03/19/13 18:13

3 18:13 (0/17/13

Initial/Final:

5 mL / 5 mL

Batch: B069146

Sequence:

S004000

Calibration:

1300039

Instrument:

atcn:	B069146	Sequence:	S004000	Calibration:	1300039	IIISUU	ment: GCI	MSVOA5
	CAS NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL	Q
	67-64-1	Acetone				0.54	50 UJ	¥-05
	107-13-1	Acrylonitrile				0.51	5.0	
	994-05-8	tert-Amyl Methyl Et	ther (TAME)			0.11	0.50	
	71-43-2	Benzene				0.050	1.0	
	108-86-1	Bromobenzene				0.10	1.0	
	74-97-5	Bromochlorometha	ane			0.10	1.0	
	75-27-4	Bromodichloromet	hane			0.080	0.50	
	75-25-2	Bromoform				0.25	1.0	
	74-83-9	Bromomethane				0.38	5.0	
	78-93-3	2-Butanone (MEK))			0.41	20	
	75-65-0	tert-Butyl Alcohol (TBA)			3.5	20 R	¥ -16 -
	104-51-8	n-Butylbenzene				0.050	2.0	
	135-98-8	sec-Butylbenzene				0.050	2.0	
	98-06-6	tert-Butylbenzene				0.050	1.0	
	637-92-3	tert-Butyl Ethyl Eth	ner (TBEE)			0.070	0.50	
	75-15-0	Carbon Disulfide				0.050	4.0	
	56-23-5	Carbon Tetrachlor	ide			0.090	5.0	
	108-90-7	Chlorobenzene				0.050	1.0	
	124-48-1	Chlorodibromomet	thane			0.12	0.50	
	75-00-3	Chloroethane				0.33	2.0	
	67-66-3	Chloroform				0.040	2.0	
	74-87-3	Chloromethane				0.13	2.0 UJ	¥ -05
	95-49-8	2-Chlorotoluene				0.050	1.0	
	106-43-4	4-Chlorotoluene				0.050	1.0	
	96-12-8	1,2-Dibromo-3-chl	oropropane (DBC	P)		0.48	5.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-54_3-13-13

Laboratory: Con-Test Analytical Laboratory Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078018.D

Matrix: Sampled: **Ground Water** 03/13/13 11:05 Laboratory ID: 13C0408-03 File ID: Analyzed:

03/19/13 18:13

Solids:

Preparation:

Prepared:

03/15/13 09:05 SW-846 5030B

Dilution:

Initial/Final:

 $5 \, mL / 5 \, mL$

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instrument: G		CMSVOA5	
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q	
	106-93-4	1,2-Dibromoethane	(EDB)			0.14	0.50		
	74-95-3	Dibromomethane				0.080	1.0		
	95-50-1	1,2-Dichlorobenzene	е			0.060	1.0		
	541-73-1	1,3-Dichlorobenzen	е			0.060	1.0		
	106-46-7	1,4-Dichlorobenzen	е			0.11	1.0		
	110-57-6	trans-1,4-Dichloro-2	-butene			0.77	2.0 U 3	7 V-05	
	75-71-8	Dichlorodifluorometl	hane (Freon 12)			0.040	2.0		
	75-34-3	1,1-Dichloroethane				0.090	1.0		
	107-06-2	1,2-Dichloroethane				0.090	1.0		
	75-35-4	1,1-Dichloroethylene	е			0.10	1.0		
	156-59-2	cis-1,2-Dichloroethy	lene			0.050	1.0		
	156-60-5	trans-1,2-Dichloroet	hylene			0.070	1.0		
	78-87-5	1,2-Dichloropropane	e			0.20	1.0		
	142-28-9	1,3-Dichloropropane	e			0.080	0.50		
	594-20-7	2,2-Dichloropropane	e			0.13	1.0		
	563-58-6	1,1-Dichloropropene	e			0.10	2.0		
	10061-01-5	cis-1,3-Dichloroprop	oene			0.070	0.50		
	10061-02-6	trans-1,3-Dichloropr	ropene			0.12	0.50		
	60-29-7	Diethyl Ether				0.10	2.0		
	108-20-3	Diisopropyl Ether (D	IPE)			0.030	0.50		
	123-91-1	1,4-Dioxane				3.5	50 R	V-16-	
	100-41-4	Ethylbenzene				0.050	1.0		
	87-68-3	Hexachlorobutadier	ne			0.26	0.50		
	591-78-6	2-Hexanone (MBK)				0.66	10 U	J 1.05-	
	98-82-8	Isopropylbenzene (Cumene)			0.060	1.0		

1 - FORM I **ANALYSIS DATA SHEET**

B-54_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078018.D

Matrix: Sampled: **Ground Water** 03/13/13 11:05 Laboratory ID: Prepared:

Preparation:

13C0408-03 03/15/13 09:05

SW-846 5030B

File ID: Analyzed:

Dilution:

03/19/13 18:13

Solids: Initial/Final:

5 mL / 5 mL

1

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: GC	MSVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	99-87-6	p-Isopropyltoluene	(p-Cymene)			0.060	1.0	
	1634-04-4	Methyl tert-Butyl Et	ther (MTBE)			0.050	1.0	
	75-09-2	Methylene Chloride	e			2.3	5.0 りょ	V - 05
	108-10-1	4-Methyl-2-pentand	one (MIBK)			0.22	10 UJ	∨-0 5
	91-20-3	Naphthalene				0.21	2.0	
	103-65-1	n-Propylbenzene				0.040	1.0	
	100-42-5	Styrene				0.060	1.0	
	630-20-6	1,1,1,2-Tetrachlord	ethane			0.080	1.0	
	79-34-5	1,1,2,2-Tetrachloro	ethane			0.18	0.50	
	127-18-4	Tetrachloroethylen	е			0.14	1.0	
	109-99-9	Tetrahydrofuran				1.0	10	
	108-88-3	Toluene				0.040	1.0	
	87-61-6	1,2,3-Trichloroben:	zene			0.22	5.0	
	120-82-1	1,2,4-Trichloroben	zene			0.11	1.0	
	108-70-3	1,3,5-Trichloroben	zene			0.40	1.0	
	71-55-6	1,1,1-Trichloroetha	ane			0.050	1.0	
	79-00-5	1,1,2-Trichloroetha	ane			0.080	1.0	
	79-01-6	Trichloroethylene				0.12	1.0	
	75-69-4	Trichlorofluoromet	hane (Freon 11)			0.070	2.0	
	96-18-4	1,2,3-Trichloroprop	oane			0.21	2.0	
	76-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.11	2.0	
	95-63-6	1,2,4-Trimethylber	nzene			0.060	1.0	
	108-67-8	1,3,5-Trimethylber	nzene			0.060	1.0	
	75-01-4	Vinyl Chloride				0.16	2.0	
	108383/106423	m+p Xylene				0.070	2.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-54_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-03

File ID:

ve078018.D

Sampled:

03/13/13 11:05

Prepared:

03/15/13 09:05

Analyzed:

03/19/13 18:13

Solids:

Batch:

Preparation:

SW-846 5030B

Dilution:

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

B069146 Sequence: S004000

Calibration:

1300039

Instrument:

CAS NO.	COMPOUND	CONC. (μg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.050	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-48_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-04

File ID:

ve078019.D

Sampled:

03/13/13 12:00

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed:

Dilution:

03/19/13 18:39

Solids: Initial/Final:

5 mL / 5 mL

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instrument: G		GCMSVOA5	
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	9	
	67-64-1	Acetone				0.54	50 U	r v.es-	
	107-13-1	Acrylonitrile				0.51	5.0		
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.11	0.50		
	71-43-2	Benzene				0.050	1.0		
	108-86-1	Bromobenzene				0.10	1.0		
	74-97-5	Bromochlorometha	ne			0.10	1.0		
	75-27-4	Bromodichlorometh	nane			0.080	0.50		
	75-25-2	Bromoform				0.25	1.0		
	74-83-9	Bromomethane				0.38	5.0		
	78-93-3	2-Butanone (MEK)				0.41	20		
	75-65-0	tert-Butyl Alcohol (7	ГВА)			3.5	20 R	- 1/-16	
	104-51-8	n-Butylbenzene				0.050	2.0		
	135-98-8	sec-Butylbenzene				0.050	2.0		
	98-06-6	tert-Butylbenzene				0.050	1.0		
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.070	0.50		
	75-15-0	Carbon Disulfide				0.050	4.0		
	56-23-5	Carbon Tetrachlori	de			0.090	5.0		
	108-90-7	Chlorobenzene				0.050	1.0		
	124-48-1	Chlorodibromomet	hane			0.12	0.50		
	75-00-3	Chloroethane				0.33	2.0		
	67-66-3	Chloroform				0.040	2.0		
	74-87-3	Chloromethane				0.13	2.0 u °	J V 05 -	
	95-49-8	2-Chlorotoluene				0.050	1.0		
	106-43-4	4-Chlorotoluene				0.050	1.0		
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBC	P)		0.48	5.0		

1 - FORM I **ANALYSIS DATA SHEET**

B-48_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-04

File ID:

Dilution:

ve078019.D

Sampled:

Solids:

03/13/13 12:00

Prepared:

Preparation:

03/15/13 09:05 SW-846 5030B Analyzed:

03/19/13 18:39

Initial/Final:

5 mL / 5 mL

B0601/6

atch:	B069146	Sequence: S0	: S004000 Calibration:		1300039	Instrument: GC		MSVOA5	
	CAS NO.	COMPOUND		CON	C. (μg/L)	MDL	RL	Q	
	106-93-4	1,2-Dibromoethane (EDB	3)			0.14	0.50		
	74-95-3	Dibromomethane				0.080	1.0		
	95-50-1	1,2-Dichlorobenzene				0.060	1.0		
	541-73-1	1,3-Dichlorobenzene				0.060	1.0		
	106-46-7	1,4-Dichlorobenzene				0.11	1.0		
	110-57-6	trans-1,4-Dichloro-2-bute	ene			0.77	2.0 UJ	V-05	
	75-71-8	Dichlorodifluoromethane	(Freon 12)			0.040	2.0		
	75-34-3	1,1-Dichloroethane				0.090	1.0		
	107-06-2	1,2-Dichloroethane				0.090	1.0		
	75-35-4	1,1-Dichloroethylene				0.10	1.0		
	156-59-2	cis-1,2-Dichloroethylene				0.050	1.0		
	156-60-5	trans-1,2-Dichloroethylen	ne			0.070	1.0		
	78-87-5	1,2-Dichloropropane				0.20	1.0		
	142-28-9	1,3-Dichloropropane				0.080	0.50		
	594-20-7	2,2-Dichloropropane				0.13	1.0		
	563-58-6	1,1-Dichloropropene				0.10	2.0		
	10061-01-5	cis-1,3-Dichloropropene				0.070	0.50		
	10061-02-6	trans-1,3-Dichloropropen	ne			0.12	0.50		
	60-29-7	Diethyl Ether				0.10	2.0		
	108-20-3	Diisopropyl Ether (DIPE)				0.030	0.50		
	123-91-1	1,4-Dioxane				3.5	50 R	V-16	
	100-41-4	Ethylbenzene				0.050	1.0		
	87-68-3	Hexachlorobutadiene				0.26	0.50		
	591-78-6	2-Hexanone (MBK)				0.66	10 ひづ	_ ⊻-05-	
	98-82-8	Isopropylbenzene (Cume	ene)			0.060	1.0		

1 - FORM I **ANALYSIS DATA SHEET**

B-48_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Solids:

Ground Water

Laboratory ID:

13C0408-04

File ID:

ve078019.D

Sampled:

03/13/13 12:00

Prepared:

Preparation:

03/15/13 09:05 SW-846 5030B Analyzed:

Dilution:

03/19/13 18:39

1

Initial/Final:

ch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCM	ISVOAS
CAS	١٥.	COMPOUND		CON	C. (μg/L)	MDL	RL		Q
99-87	7-6	p-Isopropyltoluene	(p-Cymene)			0.060	1.0		
1634	-04-4	Methyl tert-Butyl Et	her (MTBE)			0.050	1.0		
75-09	9-2	Methylene Chloride				2.3	5.0	U J	∀-05
108-	10-1	4-Methyl-2-pentano	ne (MIBK)			0.22	10	U J	V-05
91-20)-3	Naphthalene				0.21	2.0		
103-6	S5-1	n-Propylbenzene				0.040	1.0		
100-4	12-5	Styrene				0.060	1.0		
630-2	20-6	1,1,1,2-Tetrachloro	ethane			0.080	1.0		
79-34	1- 5	1,1,2,2-Tetrachloro	ethane			0.18	0.50		
127-	18-4	Tetrachloroethylen	e			0.14	1.0		
109-9	99-9	Tetrahydrofuran				1.0	10		
108-8	38-3	Toluene				0.040	1.0		
87 - 6	1-6	1,2,3-Trichlorobenz	ene			0.22	5.0		
120-8	32-1	1,2,4-Trichlorobenz	ene			0.11	1.0		
108-	70-3	1,3,5-Trichlorobenz	ene			0.40	1.0		
71-5	5-6	1,1,1-Trichloroetha	ne			0.050	1.0		
79-00	0-5	1,1,2-Trichloroetha	ne			0.080	1.0		
79-0	1-6	Trichloroethylene				0.12	1.0		
75-69	9-4	Trichlorofluorometh	nane (Freon 11)			0.070	2.0		
96-18	8-4	1,2,3-Trichloroprop	ane			0.21	2.0		
76-1	3-1	1,1,2-Trichloro-1,2,	2-trifluoroethane	(Freon 1		0.11	2.0		
95-6	3-6	1,2,4-Trimethylben	zene			0.060	1.0		
108-	67-8	1,3,5-Trimethylben	zene			0.060	1.0		
75-0	1-4	Vinyl Chloride				0.16	2.0		
1083	83/106423	m+p Xylene				0.070	2.0		

1 - FORM I **ANALYSIS DATA SHEET**

B-48_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078019.D

Matrix:

Ground Water

Laboratory ID: 13C0408-04 File ID:

Sampled:

03/13/13 12:00

Prepared:

03/15/13 09:05

Analyzed:

03/19/13 18:39

Solids:

Preparation:

Sequence:

SW-846 5030B

Dilution:

Initial/Final:

5 mL / 5 mL

B069146 Batch:

S004000

Calibration:

1300039

Instrument:

GCMSVOA5

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.050	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-47_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078020.D

Matrix: Sampled: **Ground Water**

Laboratory ID:

13C0408-05

File ID:

03/13/13 11:45

Prepared:

03/15/13 09:05

Analyzed:

03/19/13 19:05

Solids:

Preparation:

SW-846 5030B

Dilution:

Initial/Final:	5 mL / 5 mL							
Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCMSVOA5
CAS N	0.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	9
67-64-1	Acetone		0.54	50 UJ	V -05
107-13-1	Acrylonitrile		0.51	5.0	
994-05-8	tert-Amyl Methyl Ether (TAME)		0.11	0.50	
71-43-2	Benzene		0.050	1.0	
108-86-1	Bromobenzene		0.10	1.0	
74-97-5	Bromochloromethane		0.10	1.0	
75-27-4	Bromodichloromethane		0.080	0.50	
75-25-2	Bromoform		0.25	1.0	
74-83-9	Bromomethane		0.38	5.0	
78-93-3	2-Butanone (MEK)		0.41	20	
75-65-0	tert-Butyl Alcohol (TBA)		3.5	20 R	¥16
104-51-8	n-Butylbenzene		0.050	2.0	
135-98-8	sec-Butylbenzene		0.050	2.0	
98-06-6	tert-Butylbenzene		0.050	1.0	
637-92-3	tert-Butyl Ethyl Ether (TBEE)		0.070	0.50	
75-15-0	Carbon Disulfide		0.050	4.0	
56-23-5	Carbon Tetrachloride		0.090	5.0	
108-90-7	Chlorobenzene		0.050	1.0	
124-48-1	Chlorodibromomethane		0.12	0.50	
75-00-3	Chloroethane		0.33	2.0	
67-66-3	Chloroform		0.040	2.0	
74-87-3	Chloromethane		0.13	2.0 UJ	V -05
95-49-8	2-Chlorotoluene		0.050	1.0	
106-43-4	4-Chlorotoluene		0.050	1.0	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)		0.48	5.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-47_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13C0408-05 File ID:

ve078020.D

1

Sampled:

03/13/13 11:45

Prepared:

Preparation:

03/15/13 09:05

SW-846 5030B

Analyzed:

Dilution:

03/19/13 19:05

Solids:

itch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: G	CMSVOA
CAS	NO.	COMPOUND		CON	C. (µg/L)	MDL	RL	Q
106-9	93-4	1,2-Dibromoethane	e (EDB)			0.14	0.50	
74-9	5-3	Dibromomethane				0.080	1.0	
95-50	0-1	1,2-Dichlorobenzer	ne			0.060	1.0	
541-	73-1	1,3-Dichlorobenzer	ne			0.060	1.0	
106-	46-7	1,4-Dichlorobenzer	ne			0.11	1.0	
110-	57-6	trans-1,4-Dichloro-	2-butene			0.77	2.0 UJ	V-05-
75-7	1-8	Dichlorodifluorome	thane (Freon 12)			0.040	2.0	
75-3	4-3	1,1-Dichloroethane	•			0.090	1.0	
107-	06-2	1,2-Dichloroethane	•			0.090	1.0	
75-3	5-4	1,1-Dichloroethyler	ne			0.10	1.0	
156-	59-2	cis-1,2-Dichloroeth	ylene			0.050	1.0	
156-	60-5	trans-1,2-Dichloroe	ethylene			0.070	1.0	
78-8	7-5	1,2-Dichloropropar	ne			0.20	1.0	
142-	28-9	1,3-Dichloropropar	пе			0.080	0.50	
594-	20-7	2,2-Dichloropropar	пе			0.13	1.0	
563-	58-6	1,1-Dichloroproper	пе			0.10	2.0	
1006	61-01-5	cis-1,3-Dichloropro	ppene			0.070	0.50	
1006	61-02-6	trans-1,3-Dichlorop	oropene			0.12	0.50	
60-2	9-7	Diethyl Ether				0.10	2.0	
108-	20-3	Diisopropyl Ether (DIPE)			0.030	0.50	
123-	91-1	1,4-Dioxane				3.5	50 R	V-16
100-	41-4	Ethylbenzene				0.050	1.0	
87-6	8-3	Hexachlorobutadie	ene			0.26	0.50	
591-	78-6	2-Hexanone (MBK	()			0.66	10 UJ	V-05
98-8	2-8	Isopropylbenzene	(Cumene)			0.060	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-47_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-05

File ID:

ve078020.D

Sampled:

03/13/13 11:45

Prepared:

Preparation:

03/15/13 09:05

Analyzed:

03/19/13 19:05

Solids:

SW-846 5030B

Dilution:

nitial/Final: Batch:	5 mL / 5 ml B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: GC	MSVOA5
CAS	NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
99-87	7-6	p-Isopropyltoluene	(p-Cymene)			0.060	1.0	
1634	-04-4	Methyl tert-Butyl Et	her (MTBE)			0.050	1.0	
75-09	9-2	Methylene Chloride	•			2.3	5.0 UJ	¥-05-
108-1	10-1	4-Methyl-2-pentano	one (MIBK)			0.22	10 UJ	V-05
91-20	0-3	Naphthalene				0.21	2.0	
103-6	65-1	n-Propylbenzene				0.040	1.0	
100-4	42- 5	Styrene				0.060	1.0	
630-2	20-6	1,1,1,2-Tetrachloro	ethane			0.080	1.0	
79-34	4-5	1,1,2,2-Tetrachloro	ethane			0.18	0.50	
127-	18-4	Tetrachloroethylen	е			0.14	1.0	
109-9	99-9	Tetrahydrofuran				1.0	10	
108-	88-3	Toluene				0.040	1.0	
87-6	1-6	1,2,3-Trichloroben	zene			0.22	5.0	
120-	82-1	1,2,4-Trichlorobena	zene			0.11	1.0	
108-	70-3	1,3,5-Trichloroben	zene			0.40	1.0	
7 1- 5	5-6	1,1,1-Trichloroetha	ane			0.050	1.0	
79-0	0-5	1,1,2-Trichloroetha	ane			0.080	1.0	
79-0	1-6	Trichloroethylene				0.12	1.0	
75-6	9-4	Trichlorofluoromet	hane (Freon 11)			0.070	2.0	
96-1	8-4	1,2,3-Trichloroprop	oane			0.21	2.0	
76-1	3-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	e (Freon 1		0.11	2.0	
95-6	3-6	1,2,4-Trimethylber	nzene			0.060	1.0	
108-	67-8	1,3,5-Trimethylber	nzene			0.060	1.0	
75-0	1-4	Vinyl Chloride				0.16	2.0	
1083	883/106423	m+p Xylene				0.070	2.0	

1 - FORM I ANALYSIS DATA SHEET

B-47_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

)

Matrix:

Ground Water

Laboratory ID:

13C0408-05

File ID: Analyzed: ve078020.D 03/19/13 19:05

1,2/13

Sampled: Solids: 03/13/13 11:45

Prepared:
Preparation:

03/15/13 09:05 SW-846 5030B

Dilution:

1

(01, . . .

Initial/Final:

Batch:

5 mL / 5 mL

B069146

Sequence:

S004000

Calibration:

1300039

Instrument:

RL

1.0

GCMSVOA5

Q

CAS NO. COMPOUND CONC. (μg/L) MDL
95-47-6 ο-Xylene 0.050

1 - FORM I **ANALYSIS DATA SHEET**

B-50_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078027.D

Matrix:

Ground Water

Laboratory ID:

13C0408-06

File ID: Analyzed:

Sampled: Solids:

03/13/13 10:35

Prepared: Preparation:

03/15/13 09:05 SW-846 5030B

Dilution:

03/19/13 22:09

1

NW 10/17/13

Initial/Final:

5 ml /5 ml

tch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: GC	MSVOA5
CAS	NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
67-64	4-1	Acetone				0.54	50 UJ	¥ -05
107-1	13-1	Acrylonitrile				0.51	5.0	
994-0	05-8	tert-Amyl Methyl E	ther (TAME)			0.11	0.50	
71-43	3-2	Benzene				0.050	1.0	
108-8	86-1	Bromobenzene				0.10	1.0	
74-97	7-5	Bromochlorometha	ane			0.10	1.0	
75-27	7-4	Bromodichloromet	hane			0.080	0.50	
75-25	5-2	Bromoform				0.25	1.0	
74-83	3-9	Bromomethane				0.38	5.0	
78-93	3-3	2-Butanone (MEK))			0.41	20	
75-6	5-0	tert-Butyl Alcohol ((TBA)			3.5	20 R	V -16 -
104-	51-8	n-Butylbenzene				0.050	2.0	
135-9	98-8	sec-Butylbenzene				0.050	2.0	
98-0	6-6	tert-Butylbenzene				0.050	1.0	
637-	92-3	tert-Butyl Ethyl Eth	ner (TBEE)			0.070	0.50	
75-1	5-0	Carbon Disulfide				0.050	4.0	
56-2	3-5	Carbon Tetrachlor	ide			0.090	5.0	
108-	90-7	Chlorobenzene				0.050	1.0	
124-	48-1	Chlorodibromome	thane			0.12	0.50	
75-0	0-3	Chloroethane				0.33	2.0	
67-6	6-3	Chloroform				0.040	2.0	
74-8	7-3	Chloromethane				0.13	2.0 UJ	V -05
95-4	9-8	2-Chlorotoluene				0.050	1.0	
106-	43-4	4-Chlorotoluene				0.050	1.0	
96-1	2-8	1,2-Dibromo-3-chl	loropropane (DBC	P)		0.48	5.0	

1 - FORM I ANALYSIS DATA SHEET

B-50_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Solids:

Ground Water

Laboratory ID:

13C0408-06

File ID:

ve078027.D

Sampled:

03/13/13 10:35

Prepared:

Preparation:

03/15/13 09:05 SW-846 5030B Analyzed: Dilution: 03/19/13 22:09

1

3 22:09

Initial/Final:

tch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: G	CMSVOA5
CAS	S NO.	COMPOUND		CO	NC. (μg/L)	MDL	RL	Q
106	5-93-4	1,2-Dibromoethane	(EDB)		-	0.14	0.50	
74-	95-3	Dibromomethane				0.080	1.0	
95-	50-1	1,2-Dichlorobenzen	е			0.060	1.0	
54 ⁻	1-73-1	1,3-Dichlorobenzen	е			0.060	1.0	
106	6-46-7	1,4-Dichlorobenzen	e			0.11	1.0	
110	0-57-6	trans-1,4-Dichloro-2	2-butene			0.77	2.0 UJ	V-05-
75-	·71 - 8	Dichlorodifluoromet	hane (Freon 12)			0.040	2.0	
75-	-34-3	1,1-Dichloroethane				0.090	1.0	
10	7-06-2	1,2-Dichloroethane				0.090	1.0	
75	-35-4	1,1-Dichloroethylen	e			0.10	1.0	
15	6-59-2	cis-1,2-Dichloroethy	ylene		53	0.050	1.0	
15	6-60-5	trans-1,2-Dichloroe	thylene			0.070	1.0	
78	-87-5	1,2-Dichloropropan	е			0.20	1.0	
14:	2-28-9	1,3-Dichloropropan	е			0.080	0.50	
59	4-20-7	2,2-Dichloropropan	е			0.13	1.0	
56	3-58-6	1,1-Dichloropropen	е			0.10	2.0	
10	061-01-5	cis-1,3-Dichloropro	pene			0.070	0.50	
10	061-02-6	trans-1,3-Dichlorop	ropene			0.12	0.50	
60	-29-7	Diethyl Ether				0.10	2.0	
10	8-20-3	Diisopropyl Ether (I	DIPE)			0.030	0.50	
12	3-91-1	1,4-Dioxane				3.5	50 R	<u>V-16</u>
10	0-41-4	Ethylbenzene				0.050	1.0	
87	-68-3	Hexachlorobutadie	ne			0.26	0.50	
59	1-78-6	2-Hexanone (MBK))			0.66	10 U.	J ¥ =05
98	-82-8	Isopropylbenzene ((Cumene)			0.060	1.0	

1 - FORM I ANALYSIS DATA SHEET

B-50_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client: Matrix: CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078027.D

Sampled:

Ground Water

Laboratory ID:

13C0408-06 03/15/13 09:05 File ID: Analyzed:

03/19/13 22:09

NM 10/17/13

Solids:

03/13/13 10:35

Preparation:

Prepared:

SW-846 5030B

Dilution:

nitial/Final: atch:	5 mL / 5 mL B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCN	ISVOA5
CAS	NO.	COMPOUND		CO	NC. (μg/L)	MDL	RL		Q
99-8	7-6	p-Isopropyltoluene	(p-Cymene)			0.060	1.0		
1634	1-04-4	Methyl tert-Butyl Et	her (MTBE)			0.050	1.0		
75-0	9-2	Methylene Chloride	•			2.3	5.0 (IJ	V-05
108-	10-1	4-Methyl-2-pentano	one (MIBK)			0.22	10 i	UJ	<u>V-05</u>
91-2	20-3	Naphthalene				0.21	2.0		
103-	-65-1	n-Propylbenzene				0.040	1.0		
100-	-42-5	Styrene				0.060	1.0		
630-	-20-6	1,1,1,2-Tetrachloro	ethane			0.080	1.0		
79-3	34-5	1,1,2,2-Tetrachloro	ethane			0.18	0.50		
127-	-18-4	Tetrachloroethylen	е			0.14	1.0		
109-	-99-9	Tetrahydrofuran				1.0	10		
108-	-88-3	Toluene				0.040	1.0		
87-6	61-6	1,2,3-Trichlorobenz	zene			0.22	5.0		
120-	-82-1	1,2,4-Trichlorobena	zene			0.11	1.0		
108-	-70-3	1,3,5-Trichlorobena	zene			0.40	1.0		
71-5	55-6	1,1,1-Trichloroetha	ne			0.050	1.0		
79-0	00-5	1,1,2-Trichloroetha	ne			0.080	1.0		
79-0	01-6	Trichloroethylene				0.12	1.0		
75-6	69-4	Trichlorofluorometh	nane (Freon 11)			0.070	2.0		
96-1	18-4	1,2,3-Trichloroprop	ane			0.21	2.0		
76-1	13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.11	2.0		
95-6	63-6	1,2,4-Trimethylben	zene			0.060	1.0		
108	- 67-8	1,3,5-Trimethylben	zene			0.060	1.0		
75-0	01-4	Vinyl Chloride			8.5	0.16	2.0		
108	383/106423	m+p Xylene				0.070	2.0		

1-FORMI **ANALYSIS DATA SHEET**

B-50_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13C0408-06 File ID:

ve078027.D

03/19/13 22:09

Sampled: Solids:

03/13/13 10:35

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

Initial/Final:

5 mL / 5 mL

B069146 Batch:

Sequence:

S004000

Calibration:

1300039

Instrument:

GCMSVOA5

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene	-	0.050	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-51_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13C0408-07 File ID:

ve078021.D

Sampled: Solids:

03/13/13 10:15

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

03/19/13 19:31

1

Initial/Final:

 $5 \, \text{mL} \, / \, 5 \, \text{mL}$

atch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: G0	CMSVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	67-64-1	Acetone				0.54	50 UJ	V-05
	107-13-1	Acrylonitrile				0.51	5.0	
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.11	0.50	
	71-43-2	Benzene				0.050	1.0	
	108-86-1	Bromobenzene				0.10	1.0	
	74-97-5	Bromochlorometha	ne			0.10	1.0	
	75-27-4	Bromodichlorometh	nane			0.080	0.50	
	75-25-2	Bromoform				0.25	1.0	
	74-83-9	Bromomethane				0.38	5.0	
	78-93-3	2-Butanone (MEK)				0.41	20	
	75-65-0	tert-Butyl Alcohol (TBA)			3.5	20 R	V-10-
	104-51-8	n-Butylbenzene				0.050	2.0	
	135-98-8	sec-Butylbenzene				0.050	2.0	
	98-06-6	tert-Butylbenzene				0.050	1.0	
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.070	0.50	
	75-15-0	Carbon Disulfide				0.050	4.0	
	56-23-5	Carbon Tetrachlori	de			0.090	5.0	
	108-90-7	Chlorobenzene				0.050	1.0	
	124-48-1	Chlorodibromomet	hane			0.12	0.50	
	75-00-3	Chloroethane				0.33	2.0	
	67-66-3	Chloroform				0.040	2.0	
	74-87-3	Chloromethane				0.13	2.0 U J	¥ -05 -
	95-49-8	2-Chlorotoluene				0.050	1.0	
	106-43-4	4-Chlorotoluene				0.050	1.0	
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBCI	P)		0.48	5.0	

1-FORMI **ANALYSIS DATA SHEET**

B-51_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-07

File ID: Analyzed: ve078021.D

03/19/13 19:31

Sampled: Solids:

03/13/13 10:15

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B

Dilution:

Initial/Final: Batch:

5 mL / 5 mL

B069146

Sequence:

S004000

Calibration:

1300039

Instrument:

GCMSVOA5

	•				
CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
106-93-4	1,2-Dibromoethane (EDB)		0.14	0.50	
74-95-3	Dibromomethane		0.080	1.0	
95-50-1	1,2-Dichlorobenzene		0.060	1.0	
541-73-1	1,3-Dichlorobenzene		0.060	1.0	
106-46-7	1,4-Dichlorobenzene		0.11	1.0	
110-57-6	trans-1,4-Dichloro-2-butene		0.77	2.0 UJ	V-05-
75-71-8	Dichlorodifluoromethane (Freon 12)		0.040	2.0	
75-34-3	1,1-Dichloroethane		0.090	1.0	
107-06-2	1,2-Dichloroethane		0.090	1.0	
75-35-4	1,1-Dichloroethylene		0.10	1.0	
156-59-2	cis-1,2-Dichloroethylene		0.050	1.0	
156-60-5	trans-1,2-Dichloroethylene		0.070	1.0	
78-87-5	1,2-Dichloropropane		0.20	1.0	
142-28-9	1,3-Dichloropropane		0.080	0.50	
594-20-7	2,2-Dichloropropane		0.13	1.0	
563-58-6	1,1-Dichloropropene		0.10	2.0	
10061-01-5	cis-1,3-Dichloropropene		0.070	0.50	
10061-02-6	trans-1,3-Dichloropropene		0.12	0.50	
60-29-7	Diethyl Ether		0.10	2.0	
108-20-3	Diisopropyl Ether (DIPE)		0.030	0.50	
123-91-1	1,4-Dioxane		3.5	50 R	V-16
100-41-4	Ethylbenzene		0.050	1.0	
87-68-3	Hexachlorobutadiene		0.26	0.50	
591-78-6	2-Hexanone (MBK)		0.66	10 UJ	¥- 05
98-82-8	Isopropylbenzene (Cumene)		0.060	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-51_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-07

File ID:

Sampled:

03/13/13 10:15

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

ve078021.D NW 03/19/13 19:31 10 17 13

Solids: Initial/Final:

5 mL / 5 mL

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: G0	CMSVOA5
	CAS NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL	Q
	99-87-6	p-Isopropyltoluene	(p-Cymene)			0.060	1.0	
	1634-04-4	Methyl tert-Butyl Et	her (MTBE)			0.050	1.0	
	75-09-2	Methylene Chloride	:			2.3	5.0 UT	V-05
	108-10-1	4-Methyl-2-pentano	one (MIBK)			0.22	10 UJ	V-05
	91-20-3	Naphthalene				0.21	2.0	
	103-65-1	n-Propylbenzene				0.040	1.0	
	100-42-5	Styrene				0.060	1.0	
	630-20-6	1,1,1,2-Tetrachloro	ethane			0.080	1.0	
	79-34-5	1,1,2,2-Tetrachloro	ethane			0.18	0.50	
	127-18-4	Tetrachloroethylen	е			0.14	1.0	
	109-99-9	Tetrahydrofuran				1.0	10	
	108-88-3	Toluene			1.2	0.040	1.0	
	87-61-6	1,2,3-Trichlorobena	zene			0.22	5.0	
	120-82-1	1,2,4-Trichloroben	zene			0.11	1.0	
	108-70-3	1,3,5-Trichlorobena	zene			0.40	1.0	
	71-55-6	1,1,1-Trichloroetha	ne			0.050	1.0	
	79-00-5	1,1,2-Trichloroetha	ne			0.080	1.0	
	79-01-6	Trichloroethylene				0.12	1.0	
	75-69-4	Trichlorofluorometh	nane (Freon 11)			0.070	2.0	
	96-18-4	1,2,3-Trichloroprop	ane			0.21	2.0	
	76-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.11	2.0	
	95-63-6	1,2,4-Trimethylben	zene			0.060	1.0	
	108-67-8	1,3,5-Trimethylben	zene			0.060	1.0	
	75-01-4	Vinyl Chloride				0.16	2.0	
	108383/106423	m+p Xylene				0.070	2.0	

1-FORMI **ANALYSIS DATA SHEET**

B-51_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-07

File ID: Analyzed: ve078021.D 03/19/13 19:31

Sampled: Solids:

03/13/13 10:15

Preparation:

Prepared:

Sequence:

03/15/13 09:05 SW-846 5030B

Dilution:

Initial/Final:

5 mL / 5 mL

B069146 Batch:

S004000

Calibration:

1300039

Instrument:

GCMSVOA5

CA	AS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95	5-47-6	o-Xylene		0.050	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-53_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078022.D

Matrix:

Ground Water

Laboratory ID:

Prepared:

13C0408-08 03/15/13 09:05 File ID: Analyzed:

03/19/13 19:58

Sampled: Solids:

03/13/13 09:00

Preparation:

SW-846 5030B

Dilution:

1

Initial/Final:

atch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ıment: G	CMSVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	67-64-1	Acetone				0.54	50 UJ	V =0 5
	107-13-1	Acrylonitrile				0.51	5.0	
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.11	0.50	
	71-43-2	Benzene				0.050	1.0	
	108-86-1	Bromobenzene				0.10	1.0	
	74-97-5	Bromochlorometha	ne			0.10	1.0	
	75-27-4	Bromodichlorometh	nane			0.080	0.50	
	75-25-2	Bromoform				0.25	1.0	
	74-83-9	Bromomethane				0.38	5.0	
	78-93-3	2-Butanone (MEK)				0.41	20	
	75-65-0	tert-Butyl Alcohol (7	ГВА)			3.5	20 R	V 16
	104-51-8	n-Butylbenzene				0.050	2.0	
	135-98-8	sec-Butylbenzene				0.050	2.0	
	98-06-6	tert-Butylbenzene				0.050	1.0	
	637-92-3	tert-Butyl Ethyl Ethe	er (TBEE)			0.070	0.50	
	75-15-0	Carbon Disulfide				0.050	4.0	
	56-23-5	Carbon Tetrachlori	de			0.090	5.0	
	108-90-7	Chlorobenzene				0.050	1.0	
	124-48-1	Chlorodibromometl	hane			0.12	0.50	
	75-00-3	Chloroethane				0.33	2.0	
	67-66-3	Chloroform				0.040	2.0	
	74-87-3	Chloromethane				0.13	2.0 Uブ	V-05-
	95-49-8	2-Chlorotoluene				0.050	1.0	
	106-43-4	4-Chlorotoluene				0.050	1.0	
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBCF	P)		0.48	5.0	

1-FORMI **ANALYSIS DATA SHEET**

B-53_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-08

File ID:

ve078022.D

Sampled:

03/13/13 09:00

Prepared:

Preparation:

03/15/13 09:05

SW-846 5030B

Analyzed:

03/19/13 19:58

1

Solids: Initial/Final:

5 mL / 5 mL

Dilution:

Batch:	B069146	Sequence: S0	004000	Calibration:	1300039	Instru	ment: (GCMSVOA5
	CAS NO.	COMPOUND		CON	C. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (EDB)	3)			0.14	0.50	
	74-95-3	Dibromomethane				0.080	1.0	
	95-50-1	1,2-Dichlorobenzene				0.060	1.0	
	541-73-1	1,3-Dichlorobenzene				0.060	1.0	
	106-46-7	1,4-Dichlorobenzene				0.11	1.0	
	110-57-6	trans-1,4-Dichloro-2-bute	ne			0.77	2.0 U	V=05-
	75-71-8	Dichlorodifluoromethane	(Freon 12)			0.040	2.0	
	75-34-3	1,1-Dichloroethane				0.090	1.0	
	107-06-2	1,2-Dichloroethane				0.090	1.0	
	75-35-4	1,1-Dichloroethylene				0.10	1.0	
	156-59-2	cis-1,2-Dichloroethylene				0.050	1.0	
	156-60-5	trans-1,2-Dichloroethylen	ne			0.070	1.0	
	78-87-5	1,2-Dichloropropane				0.20	1.0	
	142-28-9	1,3-Dichloropropane				0.080	0.50	
	594-20-7	2,2-Dichloropropane				0.13	1.0	
	563-58-6	1,1-Dichloropropene				0.10	2.0	
	10061-01-5	cis-1,3-Dichloropropene				0.070	0.50	
	10061-02-6	trans-1,3-Dichloropropen	ne			0.12	0.50	
	60-29-7	Diethyl Ether				0.10	2.0	
	108-20-3	Diisopropyl Ether (DIPE)				0.030	0.50	
	123-91-1	1,4-Dioxane				3.5	50 R	¥ -16
	100-41-4	Ethylbenzene				0.050	1.0	
	87-68-3	Hexachlorobutadiene				0.26	0.50	
	591-78-6	2-Hexanone (MBK)				0.66	10 U	J V -05
	98-82-8	Isopropylbenzene (Cume	ene)			0.060	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-53_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078022.D

Matrix:

Ground Water

Laboratory ID:

Prepared:

Preparation:

13C0408-08

File ID:

Sampled:

03/13/13 09:00

5 mL / 5 mL

03/15/13 09:05

Analyzed:

03/19/13 19:58

Solids: Initial/Final:

SW-846 5030B

Dilution:

GCMSVO45

Batch:	B069146	Sequence:	S004000	Calibration	1:	1300039	Instru	ment:	GC	MSVOA5
C	AS NO.	COMPOUND			CONC. (μg/L)	MDL	RL		9
9	9-87-6	p-Isopropyltoluene (p	o-Cymene)				0.060	1.0		
1	634-04-4	Methyl tert-Butyl Ethe	er (MTBE)				0.050	1.0		
7	75-09-2	Methylene Chloride					2.3	5.0	UJ	V-05
1	08-10-1	4-Methyl-2-pentanon	e (MIBK)				0.22	10	UJ	. V-05
9	1-20-3	Naphthalene					0.21	2.0		
1	03-65-1	n-Propylbenzene					0.040	1.0		
1	00-42-5	Styrene					0.060	1.0		
6	30-20-6	1,1,1,2-Tetrachloroe	thane				0.080	1.0		
7	9-34-5	1,1,2,2-Tetrachloroe	thane				0.18	0.50		
1	27-18-4	Tetrachloroethylene					0.14	1.0		
1	09-99-9	Tetrahydrofuran					1.0	10		
1	08-88-3	Toluene					0.040	1.0		
8	37-61-6	1,2,3-Trichlorobenze	ene				0.22	5.0		
1	20-82-1	1,2,4-Trichlorobenze	ene				0.11	1.0		
1	08-70-3	1,3,5-Trichlorobenze	ene				0.40	1.0		
7	71-55-6	1,1,1-Trichloroethan	е				0.050	1.0		
7	79-00-5	1,1,2-Trichloroethan	е				0.080	1.0		
7	79-01-6	Trichloroethylene					0.12	1.0		
7	75-69-4	Trichlorofluorometha	ne (Freon 11)				0.070	2.0		
9	96-18-4	1,2,3-Trichloropropa	ne				0.21	2.0		
7	⁷ 6-13-1	1,1,2-Trichloro-1,2,2	-trifluoroethane	(Freon 1			0.11	2.0		
9	95-63-6	1,2,4-Trimethylbenze	ene				0.060	1.0		
1	108-67-8	1,3,5-Trimethylbenze	ene				0.060	1.0		
7	75-01-4	Vinyl Chloride					0.16	2.0		
1	108383/106423	m+p Xylene					0.070	2.0		

1 - FORM I **ANALYSIS DATA SHEET**

B-53_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-08

File ID:

ve078022.D

Sampled: Solids:

03/13/13 09:00

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

03/19/13 19:58 1

Initial/Final:

5 mL / 5 mL

Batch: B069146 Sequence:

S004000

Calibration:

1300039

Instrument:

GCMSVOA5

CAS NO.	COMPOUND	CONC. (μg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.050	1.0	

1 - FORM I ANALYSIS DATA SHEET

B-44_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

Prepared:

13C0408-09

File ID:

ve078023.D

03/19/13 20:24 10 13

Sampled: Solids:

Initial/Final:

03/13/13 08:30

5 mL / 5 mL

Preparation:

03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

1

.

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: G	CMSVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	67-64-1	Acetone			_	0.54	50 UJ 1	M S-97A, V-05
	107-13-1	Acrylonitrile				0.51	5.0 UJ	M S-07 A
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.11	0.50	
	71-43-2	Benzene				0.050	1.0	
	108-86-1	Bromobenzene				0.10	1.0	
	74-97-5	Bromochlorometha	ne			0.10	1.0	
	75-27-4	Bromodichlorometh	nane			0.080	0.50	
	75-25-2	Bromoform				0.25	1.0	
	74-83-9	Bromomethane				0.38	5.0	
	78-93-3	2-Butanone (MEK)				0.41	20 UJ	MS-07A
	75-65-0	tert-Butyl Alcohol (TBA)			3.5	20 R	M S-07A, ∀-16
	104-51-8	n-Butylbenzene				0.050	2.0	
	135-98-8	sec-Butylbenzene				0.050	2.0	
	98-06-6	tert-Butylbenzene				0.050	1.0	
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.070	0.50	
	75-15-0	Carbon Disulfide				0.050	4.0	
	56-23-5	Carbon Tetrachlori	de			0.090	5.0	
	108-90-7	Chlorobenzene				0.050	1.0	
	124-48-1	Chlorodibromomet	hane			0.12	0.50	
	75-00-3	Chloroethane				0.33	2.0	
	67-66-3	Chloroform				0.040	2.0	
	74-87-3	Chloromethane				0.13	2.0 UJ	¥ 05
	95-49-8	2-Chlorotoluene				0.050	1.0	
	106-43-4	4-Chlorotoluene				0.050	1.0	
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBC	P)		0.48	5.0 して	M S-07A

1 - FORM I ANALYSIS DATA SHEET

B-44_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-09

Dullalo, IVI

ve078023.D

Sampled:

Solids:

03/13/13 08:30

Prepared:

Preparation:

03/15/13 09:05

SW-846 5030B

Analyzed:

Dilution:

File ID:

03/19/13 20:24

1

01713

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

atch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCMSVOA5
CAS	NO.	COMPOUND		CON	C. (μg/L)	MDL	RL	Q
106-9	93-4	1,2-Dibromoethane (EDB)			0.14	0.50	
74-95	5-3	Dibromomethane				0.080	1.0	
95-50	0-1	1,2-Dichlorobenzene	:			0.060	1.0	
541-7	73-1	1,3-Dichlorobenzene	•			0.060	1.0	
106-4	16- 7	1,4-Dichlorobenzene	:			0.11	1.0	
110-	57-6	trans-1,4-Dichloro-2-	butene			0.77	2.0	IJ MS-07A, V-05
75-7	1-8	Dichlorodifluorometh	ane (Freon 12)			0.040	2.0	
75-34	4-3	1,1-Dichloroethane				0.090	1.0	
107-	06-2	1,2-Dichloroethane				0.090	1.0	
75-3	5-4	1,1-Dichloroethylene	:			0.10	1.0	
156-	59-2	cis-1,2-Dichloroethyl	ene			0.050	1.0	
156-	60-5	trans-1,2-Dichloroeth	nylene			0.070	1.0	
78-8	7-5	1,2-Dichloropropane				0.20	1.0	
142-	28-9	1,3-Dichloropropane				0.080	0.50	
594-	20-7	2,2-Dichloropropane				0.13	1.0	
563-	58-6	1,1-Dichloropropene				0.10	2.0	
1006	61-01-5	cis-1,3-Dichloroprop	ene			0.070	0.50	
1006	61-02-6	trans-1,3-Dichloropro	opene			0.12	0.50	
60-2	9-7	Diethyl Ether				0.10	2.0	
108-	20-3	Diisopropyl Ether (D	IPE)			0.030	0.50	
123-	91-1	1,4-Dioxane				3.5	50	R MS -07A, V-16
100-	41-4	Ethylbenzene				0.050	1.0	
87-6	8-3	Hexachlorobutadien	е			0.26	0.50	
591-	78-6	2-Hexanone (MBK)				0.66	10 (1J MS-07A, V-05
98-8	2-8	Isopropylbenzene (C	Cumene)			0.060	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-44_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-09

File ID:

ve078023.D

Sampled: Solids:

03/13/13 08:30

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

03/19/13 20:24

Initial/Final:

5 mL / 5 mL

tch: B	069146 Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCMSVOA5
CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
99-87-6	p-Isopropyltoluen	e (p-Cymene)			0.060	1.0	
1634-04-4	Methyl tert-Butyl I	Ether (MTBE)			0.050	1.0	
75-09-2	Methylene Chlorid	de			2.3	5.0 k .	J M S-07A, V-0 5
108-10-1	4-Methyl-2-pentar	none (MIBK)			0.22	10	MS-07A, V-0
91-20-3	Naphthalene				0.21	2.0	MS-07A
103-65-1	n-Propylbenzene				0.040	1.0	
100-42-5	Styrene				0.060	1.0	
630-20-6	1,1,1,2-Tetrachlo	roethane			0.080	1.0	
79-34-5	1,1,2,2-Tetrachlo	roethane			0.18	0.50	
127-18-4	Tetrachloroethyle	ne			0.14	1.0	
109-99-9	Tetrahydrofuran				1.0	10 U	J - MS-07A
108-88-3	Toluene				0.040	1.0	
87-61-6	1,2,3-Trichlorobe	nzene			0.22	5.0 U	J MS-07A
120-82-1	1,2,4-Trichlorobe	nzene			0.11	1.0	
108-70-3	1,3,5-Trichlorobe	nzene			0.40	1.0	
71-55-6	1,1,1-Trichloroeth	nane			0.050	1.0	
79-00-5	1,1,2-Trichloroeth	nane			0.080	1.0	
79-01-6	Trichloroethylene	•			0.12	1.0	
75-69-4	Trichlorofluorome	thane (Freon 11)			0.070	2.0	
96-18-4	1,2,3-Trichloropro	ppane			0.21	2.0	
76-13-1	1,1,2-Trichloro-1,	2,2-trifluoroethane	(Freon 1		0.11	2.0	
95-63-6	1,2,4-Trimethylbe	enzene			0.060	1.0	
108-67-8	1,3,5-Trimethylbe	enzene			0.060	1.0	
75-01-4	Vinyl Chloride				0.16	2.0	
108383/10	6423 m+p Xylene				0.070	2.0	

1 - FORM I ANALYSIS DATA SHEET

B-44_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

6078023 D

Matrix: Sampled: **Ground Water**

 $5 \, mL / 5 \, mL$

Laboratory ID:

13C0408-09

File ID: Analyzed:

VEU/6023.D

3/19/13 20:24

Solids:

Initial/Final:

03/13/13 08:30 Prepared: Preparation:

03/15/13 09:05 SW-846 5030B

Dilution:

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCMSVOA5
	CAS NO.	COMPOUND		CON	C. (μg/L)	MDL	RL	Q
	95-47-6	o-Xvlene				0.050	1.0	

1-FORMI **ANALYSIS DATA SHEET**

B-52_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078024.D

Matrix:

Ground Water

Laboratory ID:

13C0408-10

File ID:

Sampled:

03/13/13 09:50

Prepared:

Preparation:

03/15/13 09:05

SW-846 5030B

Analyzed: Dilution:

03/19/13 20:50

Solids: Initial/Final:

5 mL / 5 mL

itch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCI	MSVOA5
CAS	Ю.	COMPOUND		COI	NC. (μg/L)	MDL	RL		Q
67-64	-1	Acetone	-		68	0.54	50	UJ	V -05
107-1	3-1	Acrylonitrile				0.51	5.0		
994-0	5-8	tert-Amyl Methyl Et	her (TAME)			0.11	0.50		
71-43	- 2	Benzene				0.050	1.0		
108-8	6-1	Bromobenzene				0.10	1.0		
74-97	-5	Bromochlorometha	ne			0.10	1.0		
75-27	-4	Bromodichlorometh	nane			0.080	0.50		
75-25	-2	Bromoform				0.25	1.0		
74-83	-9	Bromomethane				0.38	5.0		
78-93	-3	2-Butanone (MEK)				0.41	20		
75-65	-0	tert-Butyl Alcohol (7	ТВА)			3.5	20	R	-V-16-
104-5	1-8	n-Butylbenzene				0.050	2.0		
135-9	8-8	sec-Butylbenzene				0.050	2.0		
98-06	i - 6	tert-Butylbenzene				0.050	1.0		
637-9	2-3	tert-Butyl Ethyl Ethe	er (TBEE)			0.070	0.50)	
75-15	i - 0	Carbon Disulfide				0.050	4.0		
56-23	- 5	Carbon Tetrachlori	de			0.090	5.0		
108-9	0-7	Chlorobenzene				0.050	1.0		
124-4	8-1	Chlorodibromometl	hane			0.12	0.50)	
75-00)-3	Chloroethane				0.33	2.0		
67-66	i-3	Chloroform				0.040	2.0		
74-87	'-3	Chloromethane				0.13	2.0	UJ	¥ -0 5
95-49	9-8	2-Chlorotoluene				0.050	1.0		
106-4	3-4	4-Chlorotoluene				0.050	1.0		
96-12	2-8	1,2-Dibromo-3-chlo	propropane (DBCI	P)		0.48	5.0		

1 - FORM I **ANALYSIS DATA SHEET**

B-52_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078024.D

Matrix: Sampled: **Ground Water** 03/13/13 09:50 Laboratory ID:

Prepared:

Sequence:

Preparation:

13C0408-10

File ID:

03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

03/19/13 20:50

1

Solids:

5 mL / 5 mL

Initial/Final: Batch:

B069146

S004000

Calibration:

1300039

Instrument:

GCMSVOA5

NW 10/13/13

CAS NO.	COMPOUND	CONC. (μg/L)	MDL	RL	Q
106-93-4	1,2-Dibromoethane (EDB)		0.14	0.50	
74-95-3	Dibromomethane		0.080	1.0	
95-50-1	1,2-Dichlorobenzene		0.060	1.0	
541-73-1	1,3-Dichlorobenzene		0.060	1.0	
106-46-7	1,4-Dichlorobenzene		0.11	1.0	
110-57-6	trans-1,4-Dichloro-2-butene		0.77	2.0 UJ	V-05-
75-71-8	Dichlorodifluoromethane (Freon 12)		0.040	2.0	
75-34-3	1,1-Dichloroethane		0.090	1.0	
107-06-2	1,2-Dichloroethane		0.090	1.0	
75-35-4	1,1-Dichloroethylene		0.10	1.0	
156-59-2	cis-1,2-Dichloroethylene		0.050	1.0	
156-60-5	trans-1,2-Dichloroethylene		0.070	1.0	
78-87-5	1,2-Dichloropropane		0.20	1.0	
142-28-9	1,3-Dichloropropane		0.080	0.50	
594-20-7	2,2-Dichloropropane		0.13	1.0	
563-58-6	1,1-Dichloropropene		0.10	2.0	
10061-01-5	cis-1,3-Dichloropropene		0.070	0.50	
10061-02-6	trans-1,3-Dichloropropene		0.12	0.50	
60-29-7	Diethyl Ether		0.10	2.0	
108-20-3	Diisopropyl Ether (DIPE)		0.030	0.50	
123-91-1	1,4-Dioxane		3.5	50R	V -16
100-41-4	Ethylbenzene		0.050	1.0	
87-68-3	Hexachlorobutadiene		0.26	0.50	
591-78-6	2-Hexanone (MBK)		0.66	10 4 J	V-05
98-82-8	Isopropylbenzene (Cumene)		0.060	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-52_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-10

File ID: Analyzed: ve078024.D

03/19/13 20:50

Sampled: Solids:

03/13/13 09:50 Prepared: Preparation: 03/15/13 09:05 SW-846 5030B

Dilution:

1

Initial/Final:

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment: G	CMSVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	99-87-6	p-Isopropyltoluene	(p-Cymene)			0.060	1.0	
	1634-04-4	Methyl tert-Butyl Et	her (MTBE)			0.050	1.0	
	75-09-2	Methylene Chloride	;			2.3	5.0 UJ	∀-05
	108-10-1	4-Methyl-2-pentano	one (MIBK)			0.22	10 UJ	¥ 05
	91-20-3	Naphthalene				0.21	2.0	
	103-65-1	n-Propylbenzene				0.040	1.0	
	100-42-5	Styrene				0.060	1.0	
	630-20-6	1,1,1,2-Tetrachloro	ethane			0.080	1.0	
	79-34-5	1,1,2,2-Tetrachloro	ethane			0.18	0.50	
	127-18-4	Tetrachloroethylene	е			0.14	1.0	
	109-99-9	Tetrahydrofuran				1.0	10	
	108-88-3	Toluene				0.040	1.0	
	87-61-6	1,2,3-Trichlorobenz	zene			0.22	5.0	
	120-82-1	1,2,4-Trichlorobenz	zene			0.11	1.0	
	108-70-3	1,3,5-Trichlorobenz	zene			0.40	1.0	
	71-55-6	1,1,1-Trichloroetha	ne			0.050	1.0	
	79-00-5	1,1,2-Trichloroetha	ne			0.080	1.0	
	79-01-6	Trichloroethylene				0.12	1.0	
	75-69-4	Trichlorofluorometh	nane (Freon 11)			0.070	2.0	
	96-18-4	1,2,3-Trichloroprop	ane			0.21	2.0	
	76-13-1	1,1,2-Trichloro-1,2,	2-trifluoroethane	(Freon 1		0.11	2.0	
	95-63-6	1,2,4-Trimethylben	zene			0.060	1.0	
	108-67-8	1,3,5-Trimethylben	zene			0.060	1.0	
	75-01-4	Vinyl Chloride				0.16	2.0	
	108383/106423	m+p Xylene				0.070	2.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-52_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Solids:

Ground Water

Laboratory ID:

13C0408-10

File ID:

ve078024.D 03/19/13 20:50 0 17/13

Sampled:

03/13/13 09:50

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

Initial/Final:

5 mL / 5 mL

Batch: B069146 Sequence:

S004000

Calibration:

1300039

Instrument:

GCMSVOA5

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.050	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

B-45_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078025.D

Matrix:

Solids:

Ground Water

Laboratory ID:

13C0408-11

File ID:

Sampled:

03/13/13 09:25

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

03/19/13 21:16

Initial/Final:

5 mL / 5 mL

1

tch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCMSVOA5
CAS N	Э.	COMPOUND		COI	NC. (μg/L)	MDL	RL	Q
67-64-	1	Acetone			72	0.54	50 U	J ¥0 5
107-13	3–1	Acrylonitrile				0.51	5.0	
994-05	5-8	tert-Amyl Methyl E	ther (TAME)			0.11	0.50	
71-43-	2	Benzene				0.050	1.0	
108-86	5-1	Bromobenzene				0.10	1.0	
74-97-	5	Bromochlorometha	ane			0.10	1.0	
75-27-	4	Bromodichloromet	thane			0.080	0.50	
75-25-	2	Bromoform				0.25	1.0	
74-83-	9	Bromomethane				0.38	5.0	
78-93-	3	2-Butanone (MEK)			0.41	20	
75-65-	0	tert-Butyl Alcohol ((TBA)			3.5	20 R	V 16
104-51	I - 8	n-Butylbenzene				0.050	2.0	
135-98	3-8	sec-Butylbenzene				0.050	2.0	
98-06-	6	tert-Butylbenzene				0.050	1.0	
637-92	2-3	tert-Butyl Ethyl Eth	ner (TBEE)			0.070	0.50	
75-15-	0	Carbon Disulfide				0.050	4.0	
56-23-	5	Carbon Tetrachlor	ride			0.090	5.0	
108-90)-7	Chlorobenzene				0.050	1.0	
124-48	3-1	Chlorodibromome	thane			0.12	0.50	
75-00-	3	Chloroethane				0.33	2.0	
67-66-	3	Chloroform				0.040	2.0	
74-87-	3	Chloromethane				0.13	2.0 U	J 105
95-49-	8	2-Chlorotoluene				0.050	1.0	
106-43	3-4	4-Chlorotoluene				0.050	1.0	
96-12-	8	1,2-Dibromo-3-chl	loropropane (DBC)	P)		0.48	5.0	

1 - FORM I ANALYSIS DATA SHEET

B-45_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078025.D

Matrix:

Ground Water

Laboratory ID:

Prepared:

Preparation:

13C0408-11 03/15/13 09:05 File ID: Analyzed:

03/19/13 21:16

1913/13

Sampled: Solids: 03/13/13 09:25

SW-846 5030B

Dilution:

1

Initial/Final:

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCM	ISVOA5
	CAS NO.	COMPOUND		CON	C. (μg/L)	MDL	RL		Q
	106-93-4	1,2-Dibromoethane	(EDB)			0.14	0.50		
	74-95-3	Dibromomethane				0.080	1.0		
	95-50-1	1,2-Dichlorobenzen	е			0.060	1.0		
	541-73-1	1,3-Dichlorobenzen	е			0.060	1.0		
	106-46-7	1,4-Dichlorobenzen	е			0.11	1.0		
	110-57-6	trans-1,4-Dichloro-2	-butene			0.77	2.0	UJ	V-05-
	75-71-8	Dichlorodifluoromet	hane (Freon 12)			0.040	2.0		
	75-34-3	1,1-Dichloroethane				0.090	1.0		
	107-06-2	1,2-Dichloroethane				0.090	1.0		
	75-35-4	1,1-Dichloroethylen	е			0.10	1.0		
	156-59-2	cis-1,2-Dichloroethy	lene			0.050	1.0		
	156-60-5	trans-1,2-Dichloroet	hylene			0.070	1.0		
	78-87-5	1,2-Dichloropropane	Э			0.20	1.0		
	142-28-9	1,3-Dichloropropane	е			0.080	0.50		
	594-20-7	2,2-Dichloropropane	Э			0.13	1.0		
	563-58-6	1,1-Dichloropropene	Э			0.10	2.0		
	10061-01-5	cis-1,3-Dichloroprop	oene			0.070	0.50		
	10061-02-6	trans-1,3-Dichloropi	ropene			0.12	0.50		
	60-29-7	Diethyl Ether				0.10	2.0		
	108-20-3	Diisopropyl Ether (D	IPE)			0.030	0.50		
	123-91-1	1,4-Dioxane				3.5	50	R	¥ -18-
	100-41-4	Ethylbenzene				0.050	1.0		
	87-68-3	Hexachlorobutadier	ne			0.26	0.50		
	591-78-6	2-Hexanone (MBK)				0.66	10	47	V-05-
	98-82-8	Isopropylbenzene (Cumene)			0.060	1.0		

1 - FORM I **ANALYSIS DATA SHEET**

B-45_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078025.D

Matrix:

Ground Water

Laboratory ID:

13C0408-11

File ID:

03/19/13 21:16

Sampled: Solids:

03/13/13 09:25

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

Initial/Final:

5 mL / 5 mL

B060146

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCN	ISVOA5
	CAS NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL		Q
	99-87-6	p-Isopropyltoluene	(p-Cymene)			0.060	1.0		
	1634-04-4	Methyl tert-Butyl Et	her (MTBE)			0.050	1.0		
	75-09-2	Methylene Chloride	•			2.3	5.0		∨-05
	108-10-1	4-Methyl-2-pentano	one (MIBK)			0.22	10	UJ	¥ -05
	91-20-3	Naphthalene				0.21	2.0		
	103-65-1	n-Propylbenzene				0.040	1.0		
	100-42-5	Styrene				0.060	1.0		
	630-20-6	1,1,1,2-Tetrachloro	ethane			0.080	1.0		
	79-34-5	1,1,2,2-Tetrachloro	ethane			0.18	0.50		
	127-18-4	Tetrachloroethylen	е			0.14	1.0		
	109-99-9	Tetrahydrofuran				1.0	10		
	108-88-3	Toluene				0.040	1.0		
	87-61-6	1,2,3-Trichlorobena	zene			0.22	5.0		
	120-82-1	1,2,4-Trichlorobena	zene			0.11	1.0		
	108-70-3	1,3,5-Trichlorobena	zene			0.40	1.0		
	71-55-6	1,1,1-Trichloroetha	ine			0.050	1.0		
	79-00-5	1,1,2-Trichloroetha	ine			0.080	1.0		
	79-01-6	Trichloroethylene				0.12	1.0		
	75-69-4	Trichlorofluorometl	hane (Freon 11)			0.070	2.0		
	96-18-4	1,2,3-Trichloroprop	oane			0.21	2.0		
	76-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.11	2.0		
	95-63-6	1,2,4-Trimethylben	zene			0.060	1.0		
	108-67-8	1,3,5-Trimethylben	zene			0.060	1.0		
	75-01-4	Vinyl Chloride				0.16	2.0		
	108383/106423	m+p Xylene				0.070	2.0		

1 - FORM I **ANALYSIS DATA SHEET**

B-45_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13C0408-11

File ID:

ve078025.D

03/19/13 21:16

Sampled:

03/13/13 09:25

Prepared:

03/15/13 09:05

Analyzed:

Solids:

Preparation:

SW-846 5030B

Dilution:

MDL

Initial/Final: Batch:

5 mL / 5 mL

B069146

Sequence:

S004000

Calibration:

1300039

CONC. (µg/L)

Instrument:

GCMSVOA5

Q

CAS NO. 95-47-6

o-Xylene

COMPOUND

0.050

1.0

RL

1 - FORM I **ANALYSIS DATA SHEET**

FD-01_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078026.D

Matrix:

Ground Water

Laboratory ID:

13C0408-12

File ID:

Dilution:

Sampled:

03/13/13 00:00

Prepared: Preparation: 03/15/13 09:05 SW-846 5030B Analyzed:

03/19/13 21:43

Solids: Initial/Final:

5 mL / 5 mL

Batch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ment:	GCN	MSVOA5
	CAS NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL		Q
	67-64-1	Acetone			_	0.54	50 l	ЛJ	. <u>¥=05</u> -
	107-13-1	Acrylonitrile				0.51	5.0		
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.11	0.50		
	71-43-2	Benzene				0.050	1.0		
	108-86-1	Bromobenzene				0.10	1.0		
	74-97-5	Bromochlorometha	ne			0.10	1.0		
	75-27-4	Bromodichlorometh	nane			0.080	0.50		
	75-25-2	Bromoform				0.25	1.0		
	74-83-9	Bromomethane				0.38	5.0		
	78-93-3	2-Butanone (MEK)				0.41	20		
	75-65-0	tert-Butyl Alcohol (TBA)			3.5	20 🔑		V-10
	104-51-8	n-Butylbenzene				0.050	2.0		
	135-98-8	sec-Butylbenzene				0.050	2.0		
	98-06-6	tert-Butylbenzene				0.050	1.0		
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.070	0.50		
	75-15-0	Carbon Disulfide				0.050	4.0		
	56-23-5	Carbon Tetrachlori	de			0.090	5.0		
	108-90-7	Chlorobenzene				0.050	1.0		
	124-48-1	Chlorodibromomet	hane			0.12	0.50		
	75-00-3	Chloroethane				0.33	2.0		
	67-66-3	Chloroform				0.040	2.0		
	74-87-3	Chloromethane				0.13	2.0	NJ	¥-05
	95-49-8	2-Chlorotoluene				0.050	1.0		
	106-43-4	4-Chlorotoluene				0.050	1.0		
	96-12-8	1,2-Dibromo-3-chlo	propropane (DBC)	P)		0.48	5.0		

1 - FORM I ANALYSIS DATA SHEET

FD-01_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

0079026 D

Matrix:

Ground Water

Laboratory ID:

13C0408-12

File ID:

ve078026.D

3/10/17/13

Sampled: Solids: 03/13/13 00:00

Prepared:
Preparation:

03/15/13 09:05 SW-846 5030B Analyzed: Dilution:

03/19/13 21:4

1

10/1/411/9

Initial/Final:

itch:	B069146	Sequence:	S004000	Calibration:	1300039	Instru	ıment: GC	MSVOA5
CAS NO).	COMPOUND		CON	C. (µg/L)	MDL	RL	Q
106-93	-4	1,2-Dibromoethane	e (EDB)			0.14	0.50	
74-95-3	3	Dibromomethane				0.080	1.0	
95-50-1		1,2-Dichlorobenzer	ne			0.060	1.0	
541-73	-1	1,3-Dichlorobenzer	ne			0.060	1.0	
106-46	-7	1,4-Dichlorobenzer	ne			0.11	1.0	
110-57	-6	trans-1,4-Dichloro-	2-butene			0.77	2.0 UJ	∨-05
75-71-8	3	Dichlorodifluorome	thane (Freon 12)			0.040	2.0	
75-34-3	3	1,1-Dichloroethane	•			0.090	1.0	
107-06	-2	1,2-Dichloroethane	:			0.090	1.0	
75-35-4	1	1,1-Dichloroethyler	пе			0.10	1.0	
156-59	-2	cis-1,2-Dichloroeth	ylene			0.050	1.0	
156-60	-5	trans-1,2-Dichloroe	ethylene			0.070	1.0	
78-87-	5	1,2-Dichloropropar	ne			0.20	1.0	
142-28	-9	1,3-Dichloropropar	пе			0.080	0.50	
594-20	- 7	2,2-Dichloropropar	ne			0.13	1.0	
563-58	-6	1,1-Dichloroproper	ne			0.10	2.0	
10061-	01-5	cis-1,3-Dichloropro	ppene			0.070	0.50	
10061-	02-6	trans-1,3-Dichlorop	oropene			0.12	0.50	
60-29-	7	Diethyl Ether				0.10	2.0	
108-20	-3	Diisopropyl Ether (DIPE)			0.030	0.50	
123-91	-1	1,4-Dioxane				3.5	50 R	٧-16-
100-41	-4	Ethylbenzene				0.050	1.0	
87-68-	3	Hexachlorobutadie	ene			0.26	0.50	
591-78	-6	2-Hexanone (MBK)			0.66	10 YJ	V -05
98-82-	8	Isopropylbenzene	(Cumene)			0.060	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

FD-01_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: Prepared:

13C0408-12 03/15/13 09:05 File ID: Analyzed: ve078026.D 03/19/13 21:43

Sampled: Solids:

03/13/13 00:00

Preparation: SW-846 5030B Dilution:

1

Initial/Final:

ch: B069146	Sequence: S004000 C	Calibration: 1300039	Instru	ment: GCMSVOA5
CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL Q
99-87-6	p-Isopropyltoluene (p-Cymene)		0.060	1.0
1634-04-4	Methyl tert-Butyl Ether (MTBE)		0.050	1.0
75-09-2	Methylene Chloride		2.3	5.0 UJ V-05
108-10-1	4-Methyl-2-pentanone (MIBK)		0.22	10 UJ 1/05
91-20-3	Naphthalene		0.21	2.0
103-65-1	n-Propylbenzene		0.040	1.0
100-42-5	Styrene		0.060	1.0
630-20-6	1,1,1,2-Tetrachloroethane		0.080	1.0
79-34-5	1,1,2,2-Tetrachloroethane		0.18	0.50
127-18-4	Tetrachloroethylene		0.14	1.0
109-99-9	Tetrahydrofuran		1.0	10
108-88-3	Toluene	1.3	0.040	1.0
87-61-6	1,2,3-Trichlorobenzene		0.22	5.0
120-82-1	1,2,4-Trichlorobenzene		0.11	1.0
108-70-3	1,3,5-Trichlorobenzene		0.40	1.0
71-55-6	1,1,1-Trichloroethane		0.050	1.0
79-00-5	1,1,2-Trichloroethane		0.080	1.0
79-01-6	Trichloroethylene		0.12	1.0
75-69-4	Trichlorofluoromethane (Freon 11)		0.070	2.0
96-18-4	1,2,3-Trichloropropane		0.21	2.0
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freor	n 1 [.]	0.11	2.0
95-63-6	1,2,4-Trimethylbenzene		0.060	1.0
108-67-8	1,3,5-Trimethylbenzene		0.060	1.0
75-01-4	Vinyl Chloride		0.16	2.0
108383/106423	m+p Xylene		0.070	2.0

1 - FORM I **ANALYSIS DATA SHEET**

FD-01_3-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13C0408

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve078026.D

Matrix:

Ground Water

Laboratory ID:

13C0408-12 03/15/13 09:05 File ID: Analyzed:

03/19/13 21:43

Sampled: Solids:

03/13/13 00:00

Prepared: Preparation:

SW-846 5030B

Dilution:

1

Initial/Final: Batch:

5 mL / 5 mL

B069146

Sequence:

S004000

Calibration:

1300039

Instrument:

GCMSVOA5

CAS NO. 95-47-6

o-Xylene

COMPOUND

CONC. (µg/L)

MDL

RL

Q

0.050 1.0

DATA USABILITY SUMMARY REPORT FORMER DORO CLEANERS, BUFFALO, NEW YORK

Client:

CDM Smith, Inc., Latham, New York

SDG:

13G0937

Laboratory:

Con-Test Analytical Laboratory, East Longmeadow, Massachusetts

Site:

Former Doro Cleaners, Buffalo, New York

Date:

October 21, 2013

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-06-7-23-13	13G0937-01	Soil
2	TB-01-07-23-13	13G0937-02	Water
3	B-55-07-23-13	13G0937-03	Soil
4	FD-01-7-23-13	13G0937-04	Soil
5	FB-01-7-23-13	13G0937-05	Water
6	FB-2-7-23-13	13G0937-06	Water

A Data Usability Summary Review was performed on the analytical data for three soil samples, one aqueous trip blank sample, and two aqueous field blank samples collected July 23, 2013 by CDM Smith at the Former Doro Cleaners site in Buffalo, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".

Specific method references are as follows:

<u>Analysis</u>

Method References

VOCs

USEPA SW-846 Method 8260C

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries

- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision
- Tentatively Identified Compounds (TICs)

Overall Usability Issues:

There were several rejections of data. This data cannot be used in the decision-making process for this project.

tert-Butyl alcohol and 1,4-dioxane were rejected in all samples due to low initial calibration RRF values.

Overall the remaining data is acceptable for the intended purposes as qualified for the following deficiencies.

- Several compounds were qualified as estimated in all samples due to high continuing calibration %D values.
- Two compounds were qualified as estimated in two samples due to poor field duplicate precision.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organics Compounds (VOCs)

Holding Times

All samples were analyzed within 14 days for preserved water and soil samples.

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

A MS/MSD sample was not analyzed.

Laboratory Control Samples

• The following table presents LCS percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

	LCS ID	Compound	%R	Qualifier	Affected Samples
ſ	B077701-BS1	B077701-BS1 Bromomethane		None	All Associated ND
		Trichlorofluoromethane	135%	None	
	B077818-BS1	Methylene chloride	143%	None	All Associated ND

Method Blank

• The method blanks were free of contamination.

Field Blank

Field blank results are summarized below.

Blank ID	Compound	Conc.	Action Level	Qualifier	Affected Samples
		ug/L	ug/L		
TB-01-07-23-13	None - ND	-	-	1	-
FB-01-07-23-13	None - ND	-	-	-	-
FB-02-07-23-13	Tetrachloroethene	4.0	40	None	All ND

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The following table presents compounds that exceeded 20 percent relative standard deviation (%RSD) and/or average RRF values <0.05 in the initial calibration (ICAL). A low RRF indicates poor indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %RSD may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

ICAL Date	Compound	%RSD/RRF	Qualifier	Affected Samples
07/23/13	tert-Butyl alcohol	0.046 RRF	J/R	All Samples
	1,4-Dioxane	0.003 RRF	J/R	

Continuing Calibration

• The following table presents compounds that exceeded 20 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
07/29/13	07/29/13 Acrylonitrile		J/UJ	2, 5, 6
	Bromomethane	131%	J/UJ	
	Carbon disulfide	21.7%	J/UJ	
	2,2-Dichloropropane	25.8%	J/UJ	
	1,4-Dioxane	0.029 RRF	None	See ICAL
	Methylene chloride	39.8%	J/UJ	2, 5, 6
	1,3,5-Trichlorobenzene	20.7%	J/UJ	
07/30/13	1,4-Dioxane	0.029 RRF	None	See ICAL
	tert-Butyl alcohol	0.038 RRF	None	
	Acrylonitrile	26.8%	J/UJ	1, 3, 4
	Bromomethane	109%	J/UJ	
	1,2,3-Trichlorobenzene	21.4%	J/UJ	
	1,2,4-Trichlorobenzene	22.2%	J/UJ	
	1,3,5-Trichlorobenzene	27.3%	J/UJ	
	Trichlorofluoromethane	28.8%	J/UJ	
	1,1,2-Trichloro-1,2,2-trifluoroethane	28.9%	J/UJ	

Compound Quantitation

• Several samples were analyzed at various dilutions due to high concentrations of target compounds.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. For a high RPD >100% for soil samples, results are considered estimated and qualified (J). A high %RPD may indicate a potential bias due to poor laboratory instrument precision.

VOC							
Compound	B-55-07-23-13 mg/kg	FD-01-7-23-13 mg/kg	RPD	Qualifier			
cis-1,2-Dichloroethylene	4.1	2.7U	NC	None			
Trichloroethylene	12	1.6	153%	J			
Tetrachloroethylene	2600	120	182%	J			

Tentatively Identified Compounds (TICs)

TICs were not reported.

Please contact the u	indersigned at (757) 564-0090 if you hav	e any questions or need further
information.	Λ, ΄΄	7 1
Signed:	Many Weaver	Dated: 10/21/13

Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

1 - FORM I **ANALYSIS DATA SHEET**

MW-06-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB211020.D

Matrix:

Soil

Laboratory ID:

13G0937-01

File ID:

Sampled: Solids:

07/23/13 13:25

Prepared: Preparation: 07/30/13 06:10 SW-846 5035

Analyzed: Dilution:

07/31/13 00:15

2

Initial/Final: Batch:

90.90 13.6 g / 16.24 mL B077701

Sequence:

S004488

Calibration:

1300079

Instrument:

Batch:	B0///01	Sequence: S004488	Calibration:	1300079	Instru	ment: G	CMSVOA2
	CAS NO.	COMPOUND	CONC.	(mg/Kg dry)	MDL	RL	Q
	67-64-1	Acetone			0.071	6.6	_
	107-13-1	Acrylonitrile			0.067	0.66 UJ	V-05
	994-05-8	tert-Amyl Methyl Ether (TAME)			0.014	0.066	
	71-43-2	Benzene			0.0066	0.13	
	108-86-1	Bromobenzene			0.013	0.13	
	74-97-5	Bromochloromethane			0.013	0.13	
	75-27-4	Bromodichloromethane			0.011	0.13	
	75-25-2	Bromoform			0.033	0.13	
	74-83-9	Bromomethane			0.050	0.26 リン	T
	78-93-3	2-Butanone (MEK)			0.054	2.6	
	75-65-0	tert-Butyl Alcohol (TBA)			0.46	2.6 R	V -16
	104-51-8	n-Butylbenzene			0.0066	0.13	
	135-98-8	sec-Butylbenzene			0.0066	0.13	
	98-06-6	tert-Butylbenzene			0.0066	0.13	
	637-92-3	tert-Butyl Ethyl Ether (TBEE)			0.0092	0.066	
	75-15-0	Carbon Disulfide			0.0066	0.66	
	56-23-5	Carbon Tetrachloride			0.012	0.13	
	108-90-7	Chlorobenzene			0.0066	0.13	
	124-48-1	Chlorodibromomethane			0.016	0.066	
	75-00-3	Chloroethane			0.043	0.26	
	67-66-3	Chloroform			0.0053	0.26	
	74-87-3	Chloromethane			0.017	0.26	
	95-49-8	2-Chlorotoluene			0.0066	0.13	
	106-43-4	4-Chlorotoluene			0.0066	0.13	
	96-12-8	1,2-Dibromo-3-chloropropane (DBCP)			0.063	0.66	
			Page 4	3 of 320 BC	79318_0	1 08/22/13	3 09:49:34

1 - FORM I **ANALYSIS DATA SHEET**

MW-06-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB211020.D

Matrix: Sampled: Soil

Laboratory ID:

13G0937-01

File ID:

07/23/13 13:25

13.6 g / 16.24 mL

Prepared:

07/30/13 06:10

Analyzed:

07/31/13 00:15

Solids:

90.90

Preparation:

SW-846 5035

Dilution:

2

Initial/Final:

RL 0.066	Q
0.066	
0.13	
9 0.13	
9 0.13	
0.13	
0.26	
3 0.26	
0.13	
0.13	
0.13	
6 0.13	
2 0.13	
0.13	
0.066	5
7 0.13	
0.26	
2 0.13	
0.66	i
3 0.26	
9 0.066	6
6.6	R R-05, V-16-
6 0.13	i e
4 0.13	i e
7 1.3	
<u>9 0.13</u>	·
3 3 6 7	3 0.26 39 0.066 6 6.6 66 0.13 4 0.13

1 - FORM I ANALYSIS DATA SHEET

MW-06-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB211020.D

Matrix: Sampled: Soil

Laboratory ID:

13G0937-01

File ID:

V DZ 11020.D

Solids:

07/23/13 13:25

Prepared:

07/30/13 06:10

Analyzed:

07/31/13 00:15

d16/13

Initial/Final:

90.90

13.6 g / 16.24 mL

Preparation:

SW-846 5035

Dilution:

2

Batch:	B077701	Sequence:	S004488	Calibration:	1300079	Instru	ment:	GCMSVOA2
CAS	S NO.	COMPOUND		CONC.	(mg/Kg dry)	MDL	RL	Q
99-	87-6	p-Isopropyltoluene	(p-Cymene)			0.0079	0.13	
163	34-04-4	Methyl tert-Butyl Eth	ner (MTBE)			0.0066	0.13	
75-	-09-2	Methylene Chloride				0.29	1.3	
108	3-10-1	4-Methyl-2-pentano	ne (MIBK)			0.029	1.3	
91-	-20-3	Naphthalene				0.028	0.26	
103	3-65-1	n-Propylbenzene				0.0053	0.13	
100	0-42-5	Styrene				0.0079	0.13	
630	0-20-6	1,1,1,2-Tetrachloro	ethane			0.011	0.13	
79-	-34-5	1,1,2,2-Tetrachloro	ethane			0.024	0.066	
127	7-18-4	Tetrachloroethylene	•		5.9	0.018	0.13	
109	9-99-9	Tetrahydrofuran				0.13	1.3	
108	8-88-3	Toluene				0.0053	0.13	
87-	-61-6	1,2,3-Trichlorobenz	ene			0.029	0.66	UJ V-05
120	0-82-1	1,2,4-Trichlorobenz	ene			0.014	0.13	¥ -05
108	8-70-3	1,3,5-Trichlorobenz	ene			0.053	0.66	V +05
71-	-55-6	1,1,1-Trichloroetha	ne			0.0066	0.13	
79-	-00-5	1,1,2-Trichloroetha	ne			0.011	0.13	
79-	-01-6	Trichloroethylene			0.49	0.016	0.13	
75-	-69-4	Trichlorofluorometh	ane (Freon 11)			0.0092	0.26	UJ
96-	-18-4	1,2,3-Trichloroprop	ane			0.028	0.26	
76-	-13-1	1,1,2-Trichloro-1,2,	2-trifluoroethane	(Freon 1		0.014	0.13	uJ
95-	-63-6	1,2,4-Trimethylben	zene			0.0079	0.13	
108	8-67-8	1,3,5-Trimethylben	zene			0.0079	0.13	
75-	-01-4	Vinyl Chloride				0.021	0.26	
108	8383/106423	m+p Xylene				0.0092	0.26	

Page 45 of 320 B079318_01 08/22/13 09:49:34

1 - FORM I **ANALYSIS DATA SHEET**

MW-06-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB211020.D

Matrix:

Soil

Laboratory ID:

13G0937-01

File ID:

07/31/13 00:15

Sampled: Solids:

07/23/13 13:25

Prepared: Preparation: 07/30/13 06:10 SW-846 5035

Analyzed: Dilution:

2

Initial/Final:

Batch:

13.6 g / 16.24 mL

B077701

90.90

Sequence:

S004488

Calibration:

1300079

Instrument:

GCMSVOA2

Q

CAS NO.

COMPOUND

CONC. (mg/Kg dry)

95-47-6

o-Xylene

0.0066

MDL

0.13

RL

1 - FORM I **ANALYSIS DATA SHEET**

TB-01-07-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB210011.D

Matrix:

Trip Blank Water

Laboratory ID:

13G0937-02

File ID:

Sampled: Solids:

07/23/13 13:57

Prepared: Preparation: 07/29/13 11:09 SW-846 5030B Analyzed: Dilution:

07/29/13 14:57

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

1

Batch:	B077818	Sequence:	S004469	Calibration:	1300078	Instru	ment:	GC	MSVOA2
C/	AS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL		Q
6	7-64-1	Acetone				4.7	50		
10	07-13-1	Acrylonitrile				0.58	5.0	ИJ	V-05
99	94-05-8	tert-Amyl Methyl Ether	r (TAME)			0.091	0.50		
7	1-43-2	Benzene				0.079	1.0		
1	08-86-1	Bromobenzene				0.044	1.0		
7-	4-97-5	Bromochloromethane				0.22	1.0		
7	5-27-4	Bromodichloromethan	ne			0.088	1.0		
7	5-25-2	Bromoform				0.21	1.0		
7-	4-83-9	Bromomethane				0.94	2.0	UJ	
7	8-93-3	2-Butanone (MEK)				2.4	20		
7	5-65-0	tert-Butyl Alcohol (TBA	A)			2.2	20	R	V-16
1	04-51-8	n-Butylbenzene				0.054	1.0		
1:	35-98-8	sec-Butylbenzene				0.084	1.0		
9	8-06-6	tert-Butylbenzene				0.096	1.0		
6	37-92-3	tert-Butyl Ethyl Ether ((TBEE)			0.075	0.50		
7	5-15-0	Carbon Disulfide				1.0	5.0	uЈ	
5	6-23-5	Carbon Tetrachloride				0.10	5.0		
1	08-90-7	Chlorobenzene				0.12	1.0		
1	24-48-1	Chlorodibromomethar	ne			0.054	0.50		
7	5-00-3	Chloroethane				0.16	2.0		
6	7-66-3	Chloroform				0.14	2.0		
7	4-87-3	Chloromethane				0.32	2.0		
9	5-49-8	2-Chlorotoluene				0.070	1.0		
1	06-43-4	4-Chlorotoluene				0.074	1.0		
9	6-12-8	1,2-Dibromo-3-chloro	propane (DBCP)			0.34	5.0		
				Page 5	2 of 320 B0	79318_0	1 08/22	2/13 (09:49:34

1 - FORM I **ANALYSIS DATA SHEET**

TB-01-07-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Trip Blank Water

Laboratory ID: 13G0937-02 File ID:

VB210011.D

Sampled:

07/23/13 13:57

Prepared:

Preparation:

07/29/13 11:09 SW-846 5030B Analyzed: Dilution:

07/29/13 14:57

Solids: Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Batch:	B077818	Sequence: S004	469 Calibration	: 1300078	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CONC. (µg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (EDB)			0.089	0.50	
	74-95-3	Dibromomethane			0.070	1.0	
	95-50-1	1,2-Dichlorobenzene			0.076	1.0	
	541-73-1	1,3-Dichlorobenzene			0.079	1.0	
	106-46-7	1,4-Dichlorobenzene			0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2-butene			0.12	2.0	
	75-71-8	Dichlorodifluoromethane (Fro	eon 12)		0.12	2.0	
	75-34-3	1,1-Dichloroethane			0.16	1.0	
	107-06-2	1,2-Dichloroethane			0.19	1.0	
	75-35-4	1,1-Dichloroethylene			0.21	1.0	
	156-59-2	cis-1,2-Dichloroethylene			0.15	1.0	
	156-60-5	trans-1,2-Dichloroethylene			0.15	1.0	
	78-87-5	1,2-Dichloropropane			0.11	1.0	
	142-28-9	1,3-Dichloropropane			0.099	0.50	
	594-20-7	2,2-Dichloropropane			0.072	1.0 U	J
	563-58-6	1,1-Dichloropropene			0.13	2.0	
	10061-01-5	cis-1,3-Dichloropropene			0.062	1.0	
	10061-02-6	trans-1,3-Dichloropropene			0.056	5.0	
	60-29-7	Diethyl Ether			0.22	2.0	
	108-20-3	Diisopropyl Ether (DIPE)			0.18	0.50	
	123-91-1	1,4-Dioxane			26	50	V-18-
	100-41-4	Ethylbenzene			0.092	1.0	
	87-68-3	Hexachlorobutadiene			0.17	1.0	
	591-78-6	2-Hexanone (MBK)			1.5	10	
	98-82-8	Isopropylbenzene (Cumene)			0.11	1.0	
			Pag	e 53 of 320 B	079318_0	1 08/22/	13 09:49:34

1 - FORM I **ANALYSIS DATA SHEET**

TB-01-07-23-13

Laboratory: Con-Test Analytical Laboratory Work Order:

13G0937

Client: CDM Smith, Inc. - NY Project:

Buffalo, NY

Matrix:

Trip Blank Water

Laboratory ID: 13G0937-02 File ID:

VB210011.D

Sampled:

07/23/13 13:57

Prepared:

07/29/13 11:09

Analyzed:

07/29/13 14:57

Solids:

Preparation:

SW-846 5030B

Dilution:

Initial/Final:

5 mL / 5 mL

1

Batch:	B077818	Sequence:	S004469	69 Calibration:		Instrument: GCI		GCN	MSVOA2	
	CAS NO.	COMPOUND		CON	VC. (μg/L)	MDL	RL		Q	
	99-87-6	p-Isopropyltoluene	(p-Cymene)			0.12	1.0		_	
	1634-04-4	Methyl tert-Butyl Et	her (MTBE)			0.090	1.0			
	75-09-2	Methylene Chloride)			3.2	10 U	び		
	108-10-1	4-Methyl-2-pentano	one (MIBK)			1.5	10			
	91-20-3	Naphthalene				0.12	2.0			
	103-65-1	n-Propylbenzene				0.094	1.0			
	100-42-5	Styrene				0.12	1.0			
	630-20-6	1,1,1,2-Tetrachloro	ethane			0.12	1.0			
	79-34-5	1,1,2,2-Tetrachloro	ethane			0.12	0.50			
	127-18-4	Tetrachloroethylen	е			0.080	1.0			
	109-99-9	Tetrahydrofuran				1.1	10			
	108-88-3	Toluene				0.090	1.0			
	87-61-6	1,2,3-Trichloroben	zene			0.14	5.0			
	120-82-1	1,2,4-Trichloroben:	zene			0.12	1.0			
	108-70-3	1,3,5-Trichlorobena	zene			0.14	5.0	UJ	.V-05-	
	71-55-6	1,1,1-Trichloroetha	ine			0.094	1.0			
	79-00-5	1,1,2-Trichloroetha	ine			0.12	1.0			
	79-01-6	Trichloroethylene				0.077	1.0			
	75-69-4	Trichlorofluoromet	hane (Freon 11)			0.15	2.0			
	96-18-4	1,2,3-Trichloroprop	oane			0.12	2.0			
	76-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.092	1.0			
	95-63-6	1,2,4-Trimethylber	zene			0.18	1.0			
	108-67-8	1,3,5-Trimethylber	zene			0.10	1.0			
	75-01-4	Vinyl Chloride				0.13	2.0			
	108383/106423	m+p Xylene				0.18	2.0			

1 - FORM I ANALYSIS DATA SHEET

TB-01-07-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Trip Blank Water

13G0937-02

File ID:

VB210011.D

Sampled:

07/23/13 13:57

Prepared:

Preparation:

Laboratory ID:

07/29/13 11:09

SW-846 5030B

Analyzed:

Dilution:

07/29/13 14:57

10/16/13

Solids: Initial/Final:

Batch:

5 mL / 5 mL B077818

Sequence:

S004469

Calibration:

1300078

Instrument:

1

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.11	1.0	

1 - FORM I ANALYSIS DATA SHEET

B-55-07-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

M

Matrix: Sampled: Soil

Laboratory ID:

13G0937-03 07/30/13 06:10 File ID:

VB211021.D

1 M 1 M | 1

Solids:

91.80

Prepared:
Preparation:

SW-846 5035

Analyzed: Dilution: 07/31/13 00:46 40

10/16/19

Initial/Final:

13.1 g / 16.07 mL

07/23/13 16:10

h: B07770	Sequence: S004488	Calibration:	1300079	Instru	ıment: GC	MSVOA2
CAS NO.	COMPOUND	CONC.	(mg/Kg dry)	MDL	RL	Q
67-64-1	Acetone			1.4	130	
107-13-1	Acrylonitrile			1.4	13 UJ	∀-05
994-05-8	tert-Amyl Methyl Ether (TAME)			0.29	1.3	
71-43-2	Benzene			0.13	2.7	
108-86-1	Bromobenzene			0.27	2.7	
74-97-5	Bromochloromethane			0.27	2.7	
75-27-4	Bromodichloromethane			0.21	2.7	
75-25-2	Bromoform			0.67	2.7	
74-83-9	Bromomethane			1.0	5.3 UJ	
78-93-3	2-Butanone (MEK)			1.1	53	
75-65-0	tert-Butyl Alcohol (TBA)			9.4	53 R	∀-16
104-51-8	n-Butylbenzene			0.13	2.7	
135-98-8	sec-Butylbenzene			0.13	2.7	
98-06-6	tert-Butylbenzene			0.13	2.7	
637-92-3	tert-Butyl Ethyl Ether (TBEE)			0.19	1.3	
75-15-0	Carbon Disulfide			0.13	13	
56-23-5	Carbon Tetrachloride			0.24	2.7	
108-90-7	Chlorobenzene			0.13	2.7	
124-48-1	Chlorodibromomethane			0.32	1.3	
75-00-3	Chloroethane			0.88	5.3	
67-66-3	Chloroform			0.11	5.3	
74-87-3	Chloromethane			0.35	5.3	
95-49-8	2-Chlorotoluene			0.13	2.7	
106-43-4	4-Chlorotoluene			0.13	2.7	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)			1.3	13	09:49:

1-FORMI **ANALYSIS DATA SHEET**

B-55-07-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

07/23/13 16:10

Project:

Buffalo, NY

Matrix:

Soil

Laboratory ID:

13G0937-03

File ID:

VB211021.D 07/31/13 00:46

Sampled: Solids:

91.80

Prepared: Preparation: 07/30/13 06:10 SW-846 5035

Analyzed: Dilution:

40

Initial/Final:

13.1 g / 16.07 mL

Batch:	B077701	Sequence: S0	004488	Calibration:	1300079	Instrun	nent:	GCMSVOA2
	CAS NO.	COMPOUND		CONC.	(mg/Kg dry)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (EDB))			0.37	1.3	-
	74-95-3	Dibromomethane				0.21	2.7	
	95-50-1	1,2-Dichlorobenzene				0.16	2.7	
	541-73-1	1,3-Dichlorobenzene				0.16	2.7	
	106-46-7	1,4-Dichlorobenzene				0.29	2.7	
	110-57-6	trans-1,4-Dichloro-2-buter	ne			2.1	5.3	
	75-71-8	Dichlorodifluoromethane ((Freon 12)			0.11	5.3	
	75-34-3	1,1-Dichloroethane				0.24	2.7	
	107-06-2	1,2-Dichloroethane				0.24	2.7	
	75-35-4	1,1-Dichloroethylene				0.27	2.7	
	156-59-2	cis-1,2-Dichloroethylene			4.1	0.13	2.7	
	156-60-5	trans-1,2-Dichloroethylen	ie			0.19	2.7	
	78-87-5	1,2-Dichloropropane				0.53	2.7	
	142-28-9	1,3-Dichloropropane				0.21	1.3	
	594-20-7	2,2-Dichloropropane				0.35	2.7	
	563-58-6	1,1-Dichloropropene				0.27	5.3	
	10061-01-5	cis-1,3-Dichloropropene				0.19	2.7	
	10061-02-6	trans-1,3-Dichloropropene	е			0.32	13	
	60-29-7	Diethyl Ether				0.27	5.3	
	108-20-3	Diisopropyl Ether (DIPE)				0.080	1.3	
	123-91-1	1,4-Dioxane				9.4	130 🗗	R -05, V-1 6
	100-41-4	Ethylbenzene				0.13	2.7	
	87-68-3	Hexachlorobutadiene				0.69	2.7	
	591-78-6	2-Hexanone (MBK)				1.8	27	
	98-82-8	Isopropylbenzene (Cume	ene)			0.16	2.7	-
				Page 6	0 of 320 B07	9318_01	08/22/	13 09:49:34

1 - FORM I **ANALYSIS DATA SHEET**

B-55-07-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Soil

Laboratory ID:

13G0937-03

File ID:

VB211021.D

Sampled:

07/23/13 16:10

Prepared:

07/30/13 06:10

Analyzed:

07/31/13 00:46

Solids:

91.80

Preparation:

SW-846 5035

Dilution:

40

: B07770	1 Sequence: S004488 C	Calibration:	1300079	Instru	ment: G	CMSVOA
CAS NO.	COMPOUND	CONC. (r	mg/Kg dry)	MDL	RL	9
99-87-6	p-Isopropyltoluene (p-Cymene)			0.16	2.7	
1634-04-4	Methyl tert-Butyl Ether (MTBE)			0.13	2.7	
75-09-2	Methylene Chloride			6.0	27	
108-10-1	4-Methyl-2-pentanone (MIBK)			0.59	27	
91-20-3	Naphthalene			0.56	5.3	
103-65-1	n-Propylbenzene			0.11	2.7	
100-42-5	Styrene			0.16	2.7	
630-20-6	1,1,1,2-Tetrachloroethane			0.21	2.7	
79-34-5	1,1,2,2-Tetrachloroethane			0.48	1.3	
109-99-9	Tetrahydrofuran			2.7	27	
108-88-3	Toluene			0.11	2.7	
87-61-6	1,2,3-Trichlorobenzene			0.59	13 นุฮ	√- 0 :
120-82-1	1,2,4-Trichlorobenzene			0.29	2.7	₩0
108-70-3	1,3,5-Trichlorobenzene			1.1	13	V-0 :
71-55-6	1,1,1-Trichloroethane			0.13	2.7	
79-00-5	1,1,2-Trichloroethane			0.21	2.7	
79-01-6	Trichloroethylene	•	12	0.32	2.7 J	
75-69-4	Trichlorofluoromethane (Freon 11)			0.19	5.3 レフ	•
96-18-4	1,2,3-Trichloropropane			0.56	5.3	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freo	n 1 ⁻		0.29	2.7 UJ	
95-63-6	1,2,4-Trimethylbenzene			0.16	2.7	
108-67-8	1,3,5-Trimethylbenzene			0.16	2.7	
75-01-4	Vinyl Chloride			0.43	5.3	
108383/106423	m+p Xylene			0.19	5.3	
95-47-6	o-Xylene			0.13	2.7	

1 - FORM I ANALYSIS DATA SHEET

B-55-07-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Soil

Laboratory ID:

13G0937-03RE1

File ID:

VB212020.D

Sampled:

07/23/13 16:10

Prepared:

07/31/13 06:36

Analyzed:

07/31/13 20:44

Solids:

Batch:

91.80

Preparation:

SW-846 5035

Dilution:

400

والعااها

Initial/Final:

13.1 g / 16.07 mL B077786

Sequence:

S004489

Calibration:

1300079

Instrument:

CAS NO.	COMPOUND	CONC. (mg/Kg dry)	MDL	RL	Q
127-18-4	Tetrachloroethylene	2600	3.7	27 J	

1 - FORM I **ANALYSIS DATA SHEET**

FD-01-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Soil

Laboratory ID:

13G0937-04

File ID:

VB211022.D

Analyzed:

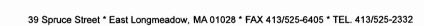
07/31/13 01:16

Sampled: Solids:

91.50

Prepared: Preparation: 07/30/13 06:10 SW-846 5035

Dilution:


20

Initial/Final:

15.06 g / 16.28 mL

07/23/13 00:00

Batch: B	077701 Sequence:	Sequence: S004488 C		1300079	Instrument: (GCMSVOA2	
CAS NO.	COMPOUND		CONC.	(mg/Kg dry)	MDL	RL	Q	
67-64-1	Acetone				0.64	59		
107-13-1	Acrylonitrile				0.60	5.9 UI	V-05	
994-05-8	tert-Amyl Methyl E	ther (TAME)			0.13	0.59		
71-43-2	Benzene				0.059	1.2		
108-86-1	Bromobenzene				0.12	1.2		
74-97-5	Bromochlorometha	ane			0.12	1.2		
75-27-4	Bromodichloromet	hane			0.095	1.2		
75-25-2	Bromoform				0.30	1.2		
74-83-9	Bromomethane				0.45	2.4 UJ		
78-93-3	2-Butanone (MEK))			0.48	24		
75-65-0	tert-Butyl Alcohol ((TBA)			4.1	24 R	∨-16	
104-51-8	n-Butylbenzene				0.059	1.2		
135-98-8	sec-Butylbenzene				0.059	1.2		
98-06-6	tert-Butylbenzene				0.059	1.2		
637-92-3	tert-Butyl Ethyl Eth	ner (TBEE)			0.083	0.59		
75-15-0	Carbon Disulfide				0.059	5.9		
56-23-5	Carbon Tetrachlor	ide			0.11	1.2		
108-90-7	Chlorobenzene				0.059	1.2		
124-48-1	Chlorodibromome	thane			0.14	0.59		
75-00-3	Chloroethane				0.39	2.4		
67-66-3	Chloroform				0.047	2.4		
74-87-3	Chloromethane				0.15	2.4		
95-49-8	2-Chlorotoluene				0.059	1.2		
106-43-4	4-Chlorotoluene				0.059	1.2		
96-12-8	1,2-Dibromo-3-chl	loropropane (DBCI	P)		0.57	5.9		

FD-01-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Soil

Laboratory ID:

13G0937-04

File ID:

VB211022.D

Sampled: Solids: 07/23/13 00:00

Prepared:

07/30/13 06:10

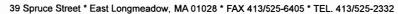
Analyzed:

07/31/13 01:16

16 NW

Initial/Einal

91.50


Preparation:

SW-846 5035

Dilution:

20

Initial/F Batch:	Final: 15.06 g / 1 B077701	Sequence: S004488	Calibration:	1300079	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND	CONC.	(mg/Kg dry)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (EDB)			0.17	0.59	
	74-95-3	Dibromomethane			0.095	1.2	
	95-50-1	1,2-Dichlorobenzene			0.071	1.2	
	541-73-1	1,3-Dichlorobenzene			0.071	1.2	
	106-46-7	1,4-Dichlorobenzene			0.13	1.2	
	110-57-6	trans-1,4-Dichloro-2-butene			0.91	2.4	
	75-71-8	Dichlorodifluoromethane (Freon 12)			0.047	2.4	
	75-34-3	1,1-Dichloroethane			0.11	1.2	
	107-06-2	1,2-Dichloroethane			0.11	1.2	
	75-35-4	1,1-Dichloroethylene			0.12	1.2	
	156-59-2	cis-1,2-Dichloroethylene			0.059	1.2	
	156-60-5	trans-1,2-Dichloroethylene			0.083	1.2	
	78-87-5	1,2-Dichloropropane			0.24	1.2	
	142-28-9	1,3-Dichloropropane			0.095	0.59	
	594-20-7	2,2-Dichloropropane			0.15	1.2	
	563-58-6	1,1-Dichloropropene			0.12	2.4	
	10061-01-5	cis-1,3-Dichloropropene			0.083	1.2	
	10061-02-6	trans-1,3-Dichloropropene			0.14	5.9	
	60-29-7	Diethyl Ether			0.12	2.4	
	108-20-3	Diisopropyl Ether (DIPE)			0.035	0.59	
	123-91-1	1,4-Dioxane			4.1	59	R-05, V-16
	100-41-4	Ethylbenzene			0.059	1.2	
	87-68-3	Hexachlorobutadiene			0.31	1.2	
	591-78-6	2-Hexanone (MBK)			0.78	12	
	98-82-8	Isopropylbenzene (Cumene)			0.071	1.2	
			Page 7	3 of 320 B0	79318_0	1 08/22	2/13 09:49:34

1-FORMI **ANALYSIS DATA SHEET**

FD-01-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Soil

Laboratory ID:

13G0937-04

File ID:

VB211022.D

Sampled:

07/23/13 00:00

Prepared:

07/30/13 06:10

Analyzed:

07/31/13 01:16

Solids:

91.50

Preparation:

SW-846 5035

Dilution:

20

Initial/Final:

15.06 g / 16.28 mL B077701

atch:	B077701	Sequence: S004488 C	alibration:	1300079	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND	CONC.	(mg/Kg dry)	MDL	RL	Q
	99-87-6	p-Isopropyltoluene (p-Cymene)			0.071	1.2	
	1634-04-4	Methyl tert-Butyl Ether (MTBE)			0.059	1.2	
	75-09-2	Methylene Chloride			2.6	12	
	108-10-1	4-Methyl-2-pentanone (MIBK)			0.26	12	
	91-20-3	Naphthalene			0.25	2.4	
	103-65-1	n-Propylbenzene			0.047	1.2	
	100-42-5	Styrene			0.071	1.2	
	630-20-6	1,1,1,2-Tetrachloroethane			0.095	1.2	
	79-34-5	1,1,2,2-Tetrachloroethane			0.21	0.59	
	127-18-4	Tetrachloroethylene		120	0.17	1.2	J
	109-99-9	Tetrahydrofuran			1.2	12	
	108-88-3	Toluene			0.047	1.2	
	87-61-6	1,2,3-Trichlorobenzene			0.26	5.9 L	J 2-05
	120-82-1	1,2,4-Trichlorobenzene			0.13	1.2	У -05
	108-70-3	1,3,5-Trichlorobenzene			0.47	5.9	¥ 05
	71-55-6	1,1,1-Trichloroethane			0.059	1.2	
	79-00-5	1,1,2-Trichloroethane			0.095	1.2	
	79-01-6	Trichloroethylene		1.6	0.14	1.2	J
	75-69-4	Trichlorofluoromethane (Freon 11)			0.083	2.4	リ
	96-18-4	1,2,3-Trichloropropane			0.25	2.4	
	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	1 ¹		0.13	1.2 U	IJ
	95-63-6	1,2,4-Trimethylbenzene			0.071	1.2	
	108-67-8	1,3,5-Trimethylbenzene			0.071	1.2	
	75-01-4	Vinyl Chloride			0.19	2.4	
	108383/106423	m+p Xylene			0.083	2.4	

1-FORMI **ANALYSIS DATA SHEET**

FD-01-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB211022.D

Matrix:

Soil

Laboratory ID:

13G0937-04

File ID:

Sampled:

07/23/13 00:00

Prepared:

07/30/13 06:10

Analyzed:

07/31/13 01:16

Solids: Initial/Final:

Batch:

91.50 15.06 g / 16.28 mL Preparation:

SW-846 5035

Dilution:

20

GCMSVOA2

Q

CAS NO.

B077701

Sequence:

COMPOUND

S004488

Calibration:

1300079

CONC. (mg/Kg dry)

Instrument:

95-47-6

o-Xylene

0.059

MDL

1.2

RL

1-FORMI **ANALYSIS DATA SHEET**

FB-01-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB210012.D

Matrix:

Ground Water

Laboratory ID:

13G0937-05

File ID:

Sampled: Solids:

07/23/13 14:15

Prepared: Preparation: 07/29/13 11:09 SW-846 5030B Analyzed:

07/29/13 15:28

1

Initial/Final:

5 mL / 5 mL

Dilution:

Batch:	B077818	Sequence:	S004469	Calibration:	1300078	Instru	ment:	GCN	MSVOA2
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL		Q
	67-64-1	Acetone				4.7	50		
	107-13-1	Acrylonitrile				0.58	5.0	UJ	V-05
	994-05-8	tert-Amyl Methyl Eth	her (TAME)			0.091	0.50		
	71-43-2	Benzene				0.079	1.0		
	108-86-1	Bromobenzene				0.044	1.0		
	74-97-5	Bromochloromethan	ne			0.22	1.0		
	75-27-4	Bromodichlorometh	ane			0.088	1.0		
	75-25-2	Bromoform				0.21	1.0		
	74-83-9	Bromomethane				0.94	2.0	UJ	
	78-93-3	2-Butanone (MEK)				2.4	20		
	75-65-0	tert-Butyl Alcohol (T	ГВА)			2.2	20	R	V-16
	104-51-8	n-Butylbenzene				0.054	1.0		
	135-98-8	sec-Butylbenzene				0.084	1.0		
	98-06-6	tert-Butylbenzene				0.096	1.0		
	637-92-3	tert-Butyl Ethyl Ethe	er (TBEE)			0.075	0.50)	
	75-15-0	Carbon Disulfide				1.0	5.0	иJ	
	56-23-5	Carbon Tetrachlorio	de			0.10	5.0		
	108-90-7	Chlorobenzene				0.12	1.0		
	124-48-1	Chlorodibromometh	hane			0.054	0.50)	
	75-00-3	Chloroethane				0.16	2.0		
	67-66-3	Chloroform				0.14	2.0		
	74-87-3	Chloromethane				0.32	2.0		
	95-49-8	2-Chlorotoluene				0.070	1.0		
	106-43-4	4-Chlorotoluene				0.074	1.0		
	96-12-8	1,2-Dibromo-3-chlo	propropane (DBCP)		0.34	5.0		

1 - FORM I **ANALYSIS DATA SHEET**

FB-01-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13G0937-05 File ID:

VB210012.D

Sampled:

07/23/13 14:15

Prepared: Preparation: 07/29/13 11:09 SW-846 5030B Analyzed:

1

07/29/13 15:28

Solids: Initial/Final:

5 mL / 5 mL

Dilution:

ch:	B077818	Sequence:	S004469	Calibration:	1300078	Instru	ment:	GCMSVOA2
CAS N	0.	COMPOUND		CON	C. (μg/L)	MDL	RL	Q
106-93	3-4	1,2-Dibromoethane	(EDB)			0.089	0.50	
74-95-	3	Dibromomethane				0.070	1.0	
95-50-	1	1,2-Dichlorobenzen	ie			0.076	1.0	
541-73	3-1	1,3-Dichlorobenzen	ie			0.079	1.0	
106-46	6-7	1,4-Dichlorobenzen	ie			0.046	1.0	
110-57	7-6	trans-1,4-Dichloro-2	2-butene			0.12	2.0	
75-71-	8	Dichlorodifluoromet	thane (Freon 12)			0.12	2.0	
75-34-	3	1,1-Dichloroethane				0.16	1.0	
107-06	6-2	1,2-Dichloroethane				0.19	1.0	
75-35-	-4	1,1-Dichloroethylen	ie			0.21	1.0	
156-59	9-2	cis-1,2-Dichloroethy	ylene			0.15	1.0	
156-60	0-5	trans-1,2-Dichloroe	thylene			0.15	1.0	
78-87-	-5	1,2-Dichloropropan	e			0.11	1.0	
142-28	8-9	1,3-Dichloropropan	е			0.099	0.50	
594-20	0-7	2,2-Dichloropropan	е			0.072	1.0 🕻	ゴ
563-58	8-6	1,1-Dichloropropen	e			0.13	2.0	
10061	-01-5	cis-1,3-Dichloropro	pene			0.062	1.0	
10061	-02-6	trans-1,3-Dichlorop	ropene			0.056	5.0	
60-29-	-7	Diethyl Ether				0.22	2.0	
108-2	0-3	Diisopropyl Ether (I	DIPE)			0.18	0.50	
123-9	1-1	1,4-Dioxane				26	50 f	₹ 10
100-4	1-4	Ethylbenzene				0.092	1.0	
87-68	-3	Hexachlorobutadie	ne			0.17	1.0	
591-7	8-6	2-Hexanone (MBK))			1.5	10	
98-82	-8	Isopropylbenzene ((Cumene)			0.11	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

FB-01-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Solids:

Ground Water

Laboratory ID:

13G0937-05

File ID:

VB210012.D

Sampled:

07/23/13 14:15

Prepared:

Preparation:

07/29/13 11:09

SW-846 5030B

Analyzed:

07/29/13 15:28

Initial/Final:

5 mL / 5 mL

Dilution:

Batch:	B077818	Sequence:	S004469	Calibration:	alibration: 1300078		Instrument: GC		MSVOA2	
	CAS NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL	Q		
	99-87-6	p-Isopropyltoluene	(p-Cymene)			0.12	1.0			
	1634-04-4	Methyl tert-Butyl E	ther (MTBE)			0.090	1.0			
	75-09-2	Methylene Chloride	е			3.2	10 <i>U</i>	ゴ		
	108-10-1	4-Methyl-2-pentane	one (MIBK)			1.5	10			
	91-20-3	Naphthalene				0.12	2.0			
	103-65-1	n-Propylbenzene				0.094	1.0			
	100-42-5	Styrene				0.12	1.0			
	630-20-6	1,1,1,2-Tetrachlord	oethane			0.12	1.0			
	79-34-5	1,1,2,2-Tetrachloro	oethane			0.12	0.50			
	127-18-4	Tetrachloroethylen	ie			0.080	1.0			
	109-99-9	Tetrahydrofuran				1.1	10			
	108-88-3	Toluene				0.090	1.0			
	87-61-6	1,2,3-Trichloroben	zene			0.14	5.0			
	120-82-1	1,2,4-Trichloroben	zene			0.12	1.0			
	108-70-3	1,3,5-Trichloroben	zene			0.14	5.0	UJ 40	5	
	71-55-6	1,1,1-Trichloroetha	ane			0.094	1.0			
	79-00-5	1,1,2-Trichloroetha	ane			0.12	1.0			
	79-01-6	Trichloroethylene				0.077	1.0			
	75-69-4	Trichlorofluoromet	hane (Freon 11)			0.15	2.0			
	96-18-4	1,2,3-Trichloroprop	pane			0.12	2.0			
	76-13-1	1,1,2-Trichloro-1,2	2,2-trifluoroethane	(Freon 1		0.092	1.0			
	95-63-6	1,2,4-Trimethylber	nzene			0.18	1.0			
	108-67-8	1,3,5-Trimethylber	nzene			0.10	1.0			
	75-01-4	Vinyl Chloride				0.13	2.0			
	108383/106423	m+p Xylene				0.18	2.0			

1 - FORM I ANALYSIS DATA SHEET

FB-01-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13G0937-05

File ID:

VB210012.D

Sampled:

07/23/13 14:15

Prepared:

07/29/13 11:09

Analyzed:

07/29/13 15:28

Solids:

Batch:

Preparation:

SW-846 5030B

Dilution:

1

MDL

10/1011

Initial/Final:

5 mL / 5 mL

B077818

Sequence:

S004469

Calibration:

1300078

Instrument:

GCMSVOA2

CAS NO.

COMPOUND

CONC. (µg/L)

ilisti ulliciti

Q

95-47-6

o-Xylene

0.11

1.0

RL

1 - FORM I ANALYSIS DATA SHEET

FB-02-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB210013.D

Matrix:

Ground Water

Laboratory ID:

13G0937-06

File ID:

VD2 100 15.D

Sampled: Solids: 07/23/13 16:34

Prepared:
Preparation:

07/29/13 11:09 SW-846 5030B Analyzed: Dilution: 07/29/13 15:59

1

10/10/13

Initial/Final:

5 mL / 5 mL

tch: B0	77818 Sequence: S004469	Calibration:	1300078	Instru	ment:	GCMSVOA
CAS NO.	COMPOUND	CON	IC. (μg/L)	MDL	RL	Q
67-64-1	Acetone			4.7	50	
107-13-1	Acrylonitrile			0.58	5.0 🕻	NJ Y-05-
994-05-8	tert-Amyl Methyl Ether (TAME)			0.091	0.50	
71-43-2	Benzene			0.079	1.0	
108-86-1	Bromobenzene			0.044	1.0	
74-97-5	Bromochloromethane			0.22	1.0	
75-27-4	Bromodichloromethane			0.088	1.0	
75-25-2	Bromoform			0.21	1.0	
74-83-9	Bromomethane			0.94	2.0	イブ
78-93-3	2-Butanone (MEK)			2.4	20	
75-65-0	tert-Butyl Alcohol (TBA)			2.2	20	R 1/16
104-51-8	n-Butylbenzene			0.054	1.0	
135-98-8	sec-Butylbenzene			0.084	1.0	
98-06-6	tert-Butylbenzene			0.096	1.0	
637-92-3	tert-Butyl Ethyl Ether (TBEE)			0.075	0.50	
75-15-0	Carbon Disulfide			1.0	5.0	1J
56-23-5	Carbon Tetrachloride			0.10	5.0	
108-90-7	Chlorobenzene			0.12	1.0	
124-48-1	Chlorodibromomethane			0.054	0.50	
75-00-3	Chloroethane			0.16	2.0	
67-66-3	Chloroform			0.14	2.0	
74-87-3	Chloromethane			0.32	2.0	
95-49-8	2-Chlorotoluene			0.070	1.0	
106-43-4	4-Chlorotoluene			0.074	1.0	
96-12-8	1,2-Dibromo-3-chloropropane (l	DBCP)		0.34	5.0	

1-FORMI **ANALYSIS DATA SHEET**

FB-02-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB210013.D

Matrix:

Ground Water

Laboratory ID: 13G0937-06 File ID:

Sampled: Solids:

07/23/13 16:34

Prepared:

Preparation:

07/29/13 11:09 SW-846 5030B Analyzed:

Dilution:

07/29/13 15:59

Initial/Final:

5 mL / 5 mL

Batch:	B077818	Sequence: S0044	69 Calibration:	1300078	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND	COI	NC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (EDB)			0.089	0.50	
	74-95-3	Dibromomethane			0.070	1.0	
	95-50-1	1,2-Dichlorobenzene			0.076	1.0	
	541-73-1	1,3-Dichlorobenzene			0.079	1.0	
	106-46-7	1,4-Dichlorobenzene			0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2-butene			0.12	2.0	
	75-71-8	Dichlorodifluoromethane (Fre	on 12)		0.12	2.0	
	75-34-3	1,1-Dichloroethane			0.16	1.0	
	107-06-2	1,2-Dichloroethane			0.19	1.0	
	75-35-4	1,1-Dichloroethylene			0.21	1.0	
	156-59-2	cis-1,2-Dichloroethylene			0.15	1.0	
	156-60-5	trans-1,2-Dichloroethylene			0.15	1.0	
	78-87-5	1,2-Dichloropropane			0.11	1.0	
	142-28-9	1,3-Dichloropropane			0.099	0.50	
	594-20-7	2,2-Dichloropropane			0.072	1.0 U	ゴ
	563-58-6	1,1-Dichloropropene			0.13	2.0	
	10061-01-5	cis-1,3-Dichloropropene			0.062	1.0	
	10061-02-6	trans-1,3-Dichloropropene			0.056	5.0	
	60-29-7	Diethyl Ether			0.22	2.0	
	108-20-3	Diisopropyl Ether (DIPE)			0.18	0.50	
	123-91-1	1,4-Dioxane			26	50 <i>R</i>	1/-16-
	100-41-4	Ethylbenzene			0.092	1.0	
	87-68-3	Hexachlorobutadiene			0.17	1.0	
	591-78-6	2-Hexanone (MBK)			1.5	10	
	98-82-8	Isopropylbenzene (Cumene)			0.11	1.0	
			Page 8	39 of 320 B0	79318_0	1 08/22/	13 09:49:34

1 - FORM I **ANALYSIS DATA SHEET**

FB-02-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB210013.D

1

Matrix:

Ground Water

Laboratory ID:

13G0937-06 07/29/13 11:09 File ID: Analyzed:

Sampled: Solids:

07/23/13 16:34

Prepared:

SW-846 5030B

Dilution:

07/29/13 15:59

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Preparation:

Batch:	B077818	Sequence: S004469	Calibration:	1300078	Instru	ment: Go	CMSVOA2
	CAS NO.	COMPOUND	CO	NC. (μg/L)	MDL	RL	Q
	99-87-6	p-Isopropyltoluene (p-Cymene)			0.12	1.0	
	1634-04-4	Methyl tert-Butyl Ether (MTBE)			0.090	1.0	
	75-09-2	Methylene Chloride			3.2	10 UJ	
	108-10-1	4-Methyl-2-pentanone (MIBK)			1.5	10	
	91-20-3	Naphthalene			0.12	2.0	
	103-65-1	n-Propylbenzene			0.094	1.0	
	100-42-5	Styrene			0.12	1.0	
	630-20-6	1,1,1,2-Tetrachloroethane			0.12	1.0	
	79-34-5	1,1,2,2-Tetrachloroethane			0.12	0.50	
	127-18-4	Tetrachloroethylene		4.0	0.080	1.0	
	109-99-9	Tetrahydrofuran			1.1	10	
	108-88-3	Toluene			0.090	1.0	
	87-61-6	1,2,3-Trichlorobenzene			0.14	5.0	
	120-82-1	1,2,4-Trichlorobenzene			0.12	1.0	
	108-70-3	1,3,5-Trichlorobenzene			0.14	_{5.0} UJ	₩-05
	71-55-6	1,1,1-Trichloroethane			0.094	1.0	
	79-00-5	1,1,2-Trichloroethane			0.12	1.0	
	79-01-6	Trichloroethylene			0.077	1.0	
	75-69-4	Trichlorofluoromethane (Freon 11)			0.15	2.0	
	96-18-4	1,2,3-Trichloropropane			0.12	2.0	
	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Fred	on 1 [.]		0.092	1.0	
	95-63-6	1,2,4-Trimethylbenzene			0.18	1.0	
	108-67-8	1,3,5-Trimethylbenzene			0.10	1.0	
	75-01-4	Vinyl Chloride			0.13	2.0	
	108383/106423	m+p Xylene			0.18	2.0	
			Page 9	90 of 320 B0	79318_0	1 08/22/13	09:49:34

1 - FORM I **ANALYSIS DATA SHEET**

FB-02-7-23-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13G0937

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB210013.D

Matrix:

Ground Water

Laboratory ID:

13G0937-06

File ID:

Sampled:

07/23/13 16:34

Prepared:

07/29/13 11:09

Analyzed:

07/29/13 15:59

Solids:

Preparation:

SW-846 5030B

Dilution:

Initial/Final: Batch:

5 mL / 5 mL

B077818

Sequence:

S004469

Calibration:

1300078

CONC. (µg/L)

Instrument:

GCMSVOA2

Q

CAS NO. 95-47-6

o-Xylene

COMPOUND

0.11

MDL

1.0

RL

DATA USABILITY SUMMARY REPORT FORMER DORO CLEANERS, BUFFALO, NEW YORK

Client:

CDM Smith, Inc., Latham, New York

SDG:

13H0490

Laboratory:

Con-Test Analytical Laboratory, East Longmeadow, Massachusetts

Site:

Former Doro Cleaners, Buffalo, New York

Date:

October 18, 2013

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-01_08-13-13	13H0490-01	Water
2	MW-02_08-13-13	13H0490-02	Water
3	MW-08_08-13-13	13H0490-03	Water
4	MW-03_08-13-13	13H0490-04	Water
5*	TB-01_08-13-13	13H0490-05	Water
6*	FB-01_08-13-13	13H0490-06	Water
7	MW-07_08-13-13	13H0490-07	Water
7MS†	MW-07_08-13-13MS	13H0490-07MS	Water
7MSD†	MW-07_08-13-13MSD	13H0490-07MSD	Water
8	MW-05_08-13-13	13H0490-08	Water
8MSβ	MW-05_08-13-13MS	13H0490-08MS	Water
8MSDß	MW-05_08-13-13MSD	13H0490-08MSD	Water
9*	TB-02_08-13-13	13H0490-09	Water

^{* -} VOC Only

β - Nitrite as N Only

A Data Usability Summary Review was performed on the analytical data for six water samples, one aqueous field blank sample, and two aqueous trip blank samples collected August 13, 2013 by CDM Smith at the Former Doro Cleaners site in Buffalo, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".

Specific method references are as follows:

<u>Analysis</u>	<u>Method References</u>
VOCs	USEPA SW-846 Method 8260C
Iron	USEPA Method 6010C
Ferrous Iron	Standard Method SM3500 Fe D
Alkalinity	Standard Method SM2320B
Chloride	Standard Method SM4500 CL B
Nitrate	Standard Method SM4500 NO3 F
Nitrite	Standard Method SM4500 NO2 B
Sulfate	ASTM Method D516-90, 02
Sulfide	Standard Method SM4500S-E
Total Organic Carbon	Standard Method 5310B
Specific Conductance	Standard Method SM2510B

^{†-} TOC only

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B;
- SOP Number HW-2, Revision 13, September 2006: Evaluation of Metals Data for the CLP Program based on ILMO5.3;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Inorganics

- Data Completeness
- Holding times and sample preservation
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Initial and continuing calibration verifications
- ICS Check Sample
- Compound Quantitation
- ICP Serial Dilution
- Field Duplicate sample precision

Overall Usability Issues:

There were several rejections of data. This data cannot be used in the decision-making process for this project.

• tert-Butyl alcohol and 1,4-dioxane were rejected in all samples due to low initial calibration RRF values.

• Naphthalene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene were rejected in one sample due to low continuing calibration RRF values.

Overall the remaining data is acceptable for the intended purposes as qualified for the following deficiencies.

- Several compounds were qualified as estimated in all samples due to high continuing calibration %D values.
- Iron was qualified as nondetected in one sample due to method blank contamination.
- Sulfide was qualified as estimated in all samples due to a low LCS recovery.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

 The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organics Compounds (VOCs)

Holding Times

All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

A MS/MSD sample was not analyzed.

Laboratory Control Samples

• The following table presents LCS percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

LCS ID	Compound	%R	Qualifier	Affected Samples
B078839-BS1	Bromomethane	33.1%	None	See CCAL

Method Blank

• The method blanks were free of contamination.

Field Blank

Field blank results are summarized below.

Blank ID	Compound	Conc.	Action Level	Qualifier	Affected Samples
	-	ug/L	ug/L		
TB-01_08-13-13	None - ND	-	-	-	-
FB-01_08-13-13	None - ND	_	-	-	-
TB-02_08-13-13	None - ND	-	-	_	-

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The following table presents compounds that exceeded 20 percent relative standard deviation (%RSD) and/or average RRF values <0.05 in the initial calibration (ICAL). A low RRF indicates poor indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %RSD may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

ICAL Date	Compound	%RSD/RRF	Qualifier	Affected Samples
08/13/13	tert-Butyl alcohol (TBA)	0.038 RRF	J/R	All Samples
	1,4-Dioxane	0.003 RRF	J/R	_

Continuing Calibration

The following table presents compounds that exceeded 20 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
08/15/13	Bromomethane	149%	J/UJ	5, 6
	tert-Butyl alcohol (TBA)	0.036 RRF	None	See ICAL
	Carbon disulfide	25.2%	J/UJ	5, 6
	1,4-Dioxane	24.0%/0.002 RRF	None	See ICAL
08/19/13	Bromomethane	43.9%	J/UJ	1-4, 7, 8
	tert-Butyl alcohol (TBA)	0.039 RRF	None	See ICAL
	Carbon disulfide	23.1%	J/UJ	1-4, 7, 8
	2,2-Dichloropropane	24.1%	J/UJ	
	1,4-Dioxane	0.002 RRF	None	See ICAL
08/21/13	Bromomethane	23.7%	J/UJ	9
	tert-Butyl alcohol (TBA)	0.003 RRF	None	See ICAL
	Carbon disulfide	21.8%	J/UJ	9
	trans-1,2-Dichloroethene	24.6%	J/UJ	
	2,2-Dichloropropane	20.5%	J/UJ	
	1,4-Dioxane	29.4%	None	See ICAL
	Methylene chloride	22.9%	J/UJ	9
	Naphthalene	0.019 RRF	J/R	
	Tetrahydrofuran	20.3%	J/UJ	
	1,3,5-Trichlorobenzene	27.5%	J/UJ	
	1,2,3-Trichlorobenzene	0.007 RRF	J/R	
	1,2,4-Trichlorobenzene	0.042 RRF	J/R	

Compound Quantitation

• EDS Sample ID #7 was analyzed at a 2X dilution due to high concentrations of target compounds.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

• Field duplicate samples were not analyzed.

Tentatively Identified Compounds (TICs)

TICs were not reported.

Metals (Iron)

Holding Times

All samples were prepared and analyzed within 180 days for iron.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

A MS/MSD sample was not analyzed.

Duplicate Sample Analysis

• The duplicate sample exhibited acceptable RPD values.

Laboratory Control Samples

The LCS sample exhibited acceptable recoveries.

Method Blank

• The following table lists method blanks with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. Detected sample concentrations less than ten times (10x) the highest associated blank (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U).

Metals (Iron)						
Blank ID	Compound	Conc.	Qualifier	Affected Samples		
		mg/L		-		
B078766-BLK1	Iron	0.028	U	7		

Field Blank

Field QC samples were not analyzed.

Initial Calibration Verification

All initial calibration criteria were met.

Continuing Calibration Verification

• All continuing calibration criteria were met.

<u>Interference Check Sample</u>

• All criteria were met.

Compound Quantitation

• All criteria were met.

ICP Serial Dilution

• ICP serial dilution percent differences (%D) were within acceptance limits.

Field Duplicate Sample Precision

• Field duplicate samples were not analyzed.

Ferrous Iron, Alkalinity, Chloride, Nitrate, Nitrite, Sulfate, Sulfide, Total Organic Carbon, Specific Conductance

Holding Times

• All samples were prepared and analyzed within the recommended time for each analysis.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD sample exhibited acceptable %R and RPD values.

Duplicate Sample Analysis

• The duplicate sample exhibited acceptable RPD values.

Laboratory Control Samples

• The following table presents LCS percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

LCS ID	Compound	%R	Qualifier	Affected Samples
B078828-BS1	Sulfide	40.3%	J/UJ	All Samples

Method Blank

• The method blanks were free of contamination.

Field Blank

Field QC samples were not analyzed.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

• All continuing calibration criteria were met.

Compound Quantitation

• All samples were analyzed at various dilutions due to high concentrations of wet chemistry parameters.

Field Duplicate Sample Precision

• Field duplicate samples were not analyzed.

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Nancy Weave

Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

1 - FORM I ANALYSIS DATA SHEET

MW-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-01

File ID:

VB231018.D

08/19/13 17:30

10/18/13

Sampled: Solids:

Initial/Final:

08/13/13 08:25

5 mL / 5 mL

Preparation:

Prepared:

08/15/13 08:23 SW-846 5030B Analyzed: Dilution:

: B078	839 Sequence: S004588	Calibration:	1300088		ment: G	CMSVOA
CAS NO.	COMPOUND	CONC). (μg/L)	MDL	RL	Q
67-64-1	Acetone			4.7	50	
107-13-1	Acrylonitrile			0.58	5.0	
994-05-8	tert-Amyl Methyl Ether (TAME)			0.091	0.50	
71-43-2	Benzene			0.079	1.0	
108-86-1	Bromobenzene			0.044	1.0	
74-97-5	Bromochloromethane			0.22	1.0	
75-27-4	Bromodichloromethane			0.088	1.0	
75-25-2	Bromoform			0.21	1.0	
74-83-9	Bromomethane			0.94	2.0 UJ	- R-0 5
78-93-3	2-Butanone (MEK)			2.4	20	`,
75-65-0	tert-Butyl Alcohol (TBA)			2.2	20 R	V-16
104-51-8	n-Butylbenzene			0.054	5.0	
135-98-8	sec-Butylbenzene			0.084	1.0	
98-06-6	tert-Butylbenzene			0.096	1.0	
637-92-3	tert-Butyl Ethyl Ether (TBEE)			0.075	0.50	
75-15-0	Carbon Disulfide		*	1.0	4.0 U	T
56-23-5	Carbon Tetrachloride			0.10	5.0	
108-90-7	Chlorobenzene			0.12	1.0	
124-48-1	Chlorodibromomethane			0.054	0.50	
75-00-3	Chloroethane			0.16	2.0	
67-66-3	Chloroform			0.14	2.0	
74-87-3	Chloromethane			0.32	2.0	
95-49-8	2-Chlorotoluene			0.070	1.0	
106-43-4	4-Chlorotoluene			0.074	1.0	
96-12-8	1,2-Dibromo-3-chloropropane (DBCF	P)		0.34	5.0	

1 - FORM I ANALYSIS DATA SHEET

MW-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-01

File ID:

VB231018.D

Sampled:

08/13/13 08:25

Prepared:

Preparation:

08/15/13 08:23

SW-846 5030B

Analyzed:

Dilution:

08/19/13 17:30

Solids:

Initial/Final:

5 mL / 5 mL

Batch: B078839

Sequence

\$004588

Calibuatian

1300088

Instrument:

1

Batch:	B078839	Sequence:	S004588	Calibration:	1300088	Instrument: G		GCMSVOA2
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (EDB)			0.089	0.50	
	74-95-3	Dibromomethane				0.070	1.0	
	95-50-1	1,2-Dichlorobenzene				0.076	1.0	
	541-73-1	1,3-Dichlorobenzene				0.079	1.0	
	106-46-7	1,4-Dichlorobenzene				0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2-	butene			0.12	2.0	
	75-71-8	Dichlorodifluorometh	ane (Freon 12)			0.12	2.0	
	75-34-3	1,1-Dichloroethane				0.16	1.0	
	107-06-2	1,2-Dichloroethane				0.19	1.0	
	75-35-4	1,1-Dichloroethylene				0.21	1.0	
	156-59-2	cis-1,2-Dichloroethyl	ene			0.15	1.0	
	156-60-5	trans-1,2-Dichloroeth	ylene			0.15	1.0	
	78-87-5	1,2-Dichloropropane				0.11	1.0	
	142-28-9	1,3-Dichloropropane				0.099	0.50	
	594-20-7	2,2-Dichloropropane				0.072	1.0 i	灯
	563-58-6	1,1-Dichloropropene				0.13	2.0	
	10061-01-5	cis-1,3-Dichloroprope	ene			0.062	2.0	
	10061-02-6	trans-1,3-Dichloropro	opene			0.056	5.0	
	60-29-7	Diethyl Ether				0.22	2.0	
	108-20-3	Diisopropyl Ether (DI	IPE)			0.18	0.50	
	123-91-1	1,4-Dioxane				26	50 🖡	2 418
	100-41-4	Ethylbenzene				0.092	1.0	
	87-68-3	Hexachlorobutadiene	е			0.17	1.0	
	591-78-6	2-Hexanone (MBK)				1.5	10	
	98-82-8	Isopropylbenzene (C	cumene)			0.11	1.0	

1 - FORM I ANALYSIS DATA SHEET

MW-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13H0490-01

File ID:

VB231018.D

Sampled:

08/13/13 08:25

Prepared:

08/15/13 08:23

Analyzed:

VB231016.D

08/19/13 17:30

Solids:

Preparation:

SW-846 5030B

Dilution:

Batch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
CAS	NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL	<u> </u>
99-8	7-6	p-Isopropyltoluene	(p-Cymene)			0.12	1.0	
1634	1-04-4	Methyl tert-Butyl Et	her (MTBE)			0.090	1.0	
75-0	9-2	Methylene Chloride				3.2	5.0	
108-	10-1	4-Methyl-2-pentano	one (MIBK)			1.5	10	
91-2	.0-3	Naphthalene				0.12	5.0	
103-	-65-1	n-Propylbenzene				0.094	1.0	
100-	42-5	Styrene				0.12	1.0	
630-	-20-6	1,1,1,2-Tetrachloro	ethane			0.12	2.0	
79-3	34-5	1,1,2,2-Tetrachloro	ethane			0.12	0.50	
127	-18-4	Tetrachloroethylen	е			0.080	1.0	
109	-99-9	Tetrahydrofuran				1.1	10	
108	-88-3	Toluene				0.090	1.0	
87-6	61-6	1,2,3-Trichlorobena	zene			0.14	5.0	
120	-82-1	1,2,4-Trichloroben	zene			0.12	5.0	
108	-70-3	1,3,5-Trichloroben:	zene			0.14	1.0	
71-5	55-6	1,1,1-Trichloroetha	ne			0.094	1.0	
79-0	00-5	1,1,2-Trichloroetha	ne			0.12	1.0	
79-0	01-6	Trichloroethylene				0.077	1.0	
75-6	69-4	Trichlorofluoromet	hane (Freon 11)			0.15	2.0	
96-	18-4	1,2,3-Trichloroprop	oane			0.12	2.0	
76-	13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.092	1.0	
95-0	63-6	1,2,4-Trimethylber	nzene			0.18	1.0	
108	-67-8	1,3,5-Trimethylber	nzene			0.10	1.0	
75-0	01-4	Vinyl Chloride				0.13	2.0	
108	383/106423	m+p Xylene				0.18	2.0	

1 - FORM I **ANALYSIS DATA SHEET**

MW-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-01

File ID:

VB231018.D

Sampled:

08/13/13 08:25

Prepared:

Preparation:

08/15/13 08:23

SW-846 5030B

Analyzed:

Dilution:

08/19/13 17:30

Solids: Initial/Final:

5 mL / 5 mL

B078839

Sequence:

Calibration:

Instrument:

1

Batch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	C. (μg/L)	MDL	RL	Q
<u></u>	95-47-6	o-Xylene				0.11	1.0	

1 - FORM I ANALYSIS DATA SHEET

MW-02_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-02

File ID:

VB231019.D

Sampled:

08/13/13 09:45

Prepared:

08/15/13 08:23

Analyzed:

08/19/13 18:01

Solids:

Preparation:

SW-846 5030B

Dilution:

1

1918113

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Batch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	lC. (μg/L)	MDL	RL	Q
	67-64-1	Acetone				4.7	50	
	107-13-1	Acrylonitrile				0.58	5.0	
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.091	0.50	
	71-43-2	Benzene				0.079	1.0	
	108-86-1	Bromobenzene				0.044	1.0	
	74-97-5	Bromochlorometha	ne			0.22	1.0	
	75-27-4	Bromodichlorometh	nane			0.088	1.0	
	75-25-2	Bromoform				0.21	1.0	
	74-83-9	Bromomethane				0.94	2.0 U	J A-05
	78-93-3	2-Butanone (MEK)				2.4	20	
	75-65-0	tert-Butyl Alcohol (ТВА)			2.2	20 R	V-10-
	104-51-8	n-Butylbenzene				0.054	5.0	
	135-98-8	sec-Butylbenzene				0.084	1.0	
	98-06-6	tert-Butylbenzene				0.096	1.0	
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.075	0.50	
	75-15-0	Carbon Disulfide				1.0	4.0 i	IJ
	56-23-5	Carbon Tetrachlori	de			0.10	5.0	
	108-90-7	Chlorobenzene				0.12	1.0	
	124-48-1	Chlorodibromomet	hane			0.054	0.50	
	75-00-3	Chloroethane				0.16	2.0	
	67-66-3	Chloroform				0.14	2.0	
	74-87-3	Chloromethane				0.32	2.0	
	95-49-8	2-Chlorotoluene				0.070	1.0	
	106-43-4	4-Chlorotoluene				0.074	1.0	
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBCF	P)		0.34	5.0	

1-FORMI **ANALYSIS DATA SHEET**

MW-02_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13H0490-02 File ID:

VB231019.D

Sampled:

08/13/13 09:45

Prepared:

08/15/13 08:23

Analyzed:

08/19/13 18:01

Solids:

Preparation:

SW-846 5030B

Dilution:

Initial/Final:

5 mL / 5 mL

atch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane ((EDB)			0.089	0.50	
	74-95-3	Dibromomethane				0.070	1.0	
	95-50-1	1,2-Dichlorobenzene)			0.076	1.0	
	541-73-1	1,3-Dichlorobenzene)			0.079	1.0	
	106-46-7	1,4-Dichlorobenzene)			0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2-	-butene			0.12	2.0	
	75-71-8	Dichlorodifluorometh	nane (Freon 12)			0.12	2.0	
	75-34-3	1,1-Dichloroethane				0.16	1.0	
	107-06-2	1,2-Dichloroethane				0.19	1.0	
	75-35-4	1,1-Dichloroethylene	;			0.21	1.0	
	156-59-2	cis-1,2-Dichloroethyl	lene			0.15	1.0	
	156-60-5	trans-1,2-Dichloroetl	hylene			0.15	1.0	
	78-87-5	1,2-Dichloropropane	;			0.11	1.0	
	142-28-9	1,3-Dichloropropane	•			0.099	0.50	
	594-20-7	2,2-Dichloropropane	;			0.072	1.0 L	IJ
	563-58-6	1,1-Dichloropropene	;			0.13	2.0	
	10061-01-5	cis-1,3-Dichloroprop	ene			0.062	2.0	
	10061-02-6	trans-1,3-Dichloropr	opene			0.056	5.0	
	60-29-7	Diethyl Ether				0.22	2.0	
	108-20-3	Diisopropyl Ether (D	IPE)			0.18	0.50	
	123-91-1	1,4-Dioxane				26	50 R	V-10
	100-41-4	Ethylbenzene				0.092	1.0	
	87-68-3	Hexachlorobutadien	е			0.17	1.0	
	591-78-6	2-Hexanone (MBK)				1.5	10	
	98-82-8	Isopropylbenzene (C	Cumene)			0.11	1.0	

1 - FORM I ANALYSIS DATA SHEET

MW-02_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13H0490-02

File ID:

VB231019.D

Sampled:

08/13/13 09:45

Prepared:

08/15/13 08:23

Analyzed:

08/19/13 18:01

Solids:

Preparation:

SW-846 5030B

Dilution:

1

0/18/13

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

ch: B078	S839 Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA:
CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	9
99-87-6	p-Isopropyltoluene	(p-Cymene)	_		0.12	1.0	
1634-04-4	Methyl tert-Butyl E	ther (MTBE)			0.090	1.0	
75-09-2	Methylene Chloride	е			3.2	5.0	
108-10-1	4-Methyl-2-pentane	one (MIBK)			1.5	10	
91-20-3	Naphthalene				0.12	5.0	
103-65-1	n-Propylbenzene				0.094	1.0	
100-42-5	Styrene				0.12	1.0	
630-20-6	1,1,1,2-Tetrachlord	ethane			0.12	2.0	
79-34-5	1,1,2,2-Tetrachloro	oethane			0.12	0.50	
127-18-4	Tetrachloroethylen	e			0.080	1.0	
109-99-9	Tetrahydrofuran				1.1	10	
108-88-3	Toluene				0.090	1.0	
87-61-6	1,2,3-Trichloroben	zene			0.14	5.0	
120-82-1	1,2,4-Trichloroben	zene			0.12	5.0	
108-70-3	1,3,5-Trichloroben	zene			0.14	1.0	
71-55-6	1,1,1-Trichloroetha	ane			0.094	1.0	
79-00-5	1,1,2-Trichloroetha	ane			0.12	1.0	
79-01-6	Trichloroethylene				0.077	1.0	
75-69-4	Trichlorofluoromet	hane (Freon 11)			0.15	2.0	
96-18-4	1,2,3-Trichloroprop	oane			0.12	2.0	
76-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1 ⁻		0.092	1.0	
95-63-6	1,2,4-Trimethylber	nzene			0.18	1.0	
108-67-8	1,3,5-Trimethylber	nzene			0.10	1.0	
75-01-4	Vinyl Chloride				0.13	2.0	
108383/1064	23 m+p Xylene				0.18	2.0	

1 - FORM I ANALYSIS DATA SHEET

MW-02_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

Preparation:

13H0490-02

File ID:

VB231019.D

Sampled:

08/13/13 09:45

Prepared:

08/15/13 08:23

SW-846 5030B

Analyzed:

08/19/13 18:01

1

.

Solids: Initial/Final:

Batch:

5 mL / 5 mL

B078839

Sequence:

S004588

Calibration:

1300088

Dilution:

Instrument:

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene	-	0.11	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

MW-08_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-03

File ID:

VB231020.D

Sampled:

08/13/13 11:00

Prepared:

Preparation:

08/15/13 08:23 SW-846 5030B Analyzed:

Dilution:

08/19/13 18:32 WW

Solids:

Initial/Final:

5 mL / 5 mL

Batch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA	42
	CAS NO.	COMPOUND		CON	IC. (µg/L)	MDL	RL	Q	
	67-64-1	Acetone	_			4.7	50		
	107-13-1	Acrylonitrile				0.58	5.0		
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.091	0.50		
	71-43-2	Benzene				0.079	1.0		
	108-86-1	Bromobenzene				0.044	1.0		
	74-97-5	Bromochlorometha	ne			0.22	1.0		
	75-27-4	Bromodichlorometh	nane			0.088	1.0		
	75-25-2	Bromoform				0.21	1.0		
	74-83-9	Bromomethane				0.94	2.0	UT -P-05	5
	78-93-3	2-Butanone (MEK)				2.4	20		
	75-65-0	tert-Butyl Alcohol (7	ГВА)			2.2	20	R 4-18	3
	104-51-8	n-Butylbenzene				0.054	5.0		
	135-98-8	sec-Butylbenzene				0.084	1.0		
	98-06-6	tert-Butylbenzene				0.096	1.0		
	637-92-3	tert-Butyl Ethyl Ethe	er (TBEE)			0.075	0.50		
	75-15-0	Carbon Disulfide				1.0	4.0	UJ	
	56-23-5	Carbon Tetrachlorid	de			0.10	5.0		
	108-90-7	Chlorobenzene				0.12	1.0		
	124-48-1	Chlorodibromometh	hane			0.054	0.50		
	75-00-3	Chloroethane				0.16	2.0		
	67-66-3	Chloroform				0.14	2.0		
	74-87-3	Chloromethane				0.32	2.0		
	95-49-8	2-Chlorotoluene				0.070	1.0		
	106-43-4	4-Chlorotoluene				0.074	1.0		
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBCI	P)		0.34	5.0		

1 - FORM I **ANALYSIS DATA SHEET**

MW-08_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-03

File ID:

VB231020.D

Sampled:

Solids:

08/13/13 11:00

Prepared:

Preparation:

08/15/13 08:23

Analyzed:

5 mL / 5 mL

SW-846 5030B

Dilution:

08/19/13 18:32 1

Initial/Final:

atch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
CAS	NO.	COMPOUND		CC	NC. (μg/L)	MDL	RL	Q
106	-93-4	1,2-Dibromoethane	(EDB)		_	0.089	0.50	
74-9	95-3	Dibromomethane				0.070	1.0	
95-5	50-1	1,2-Dichlorobenzen	ie			0.076	1.0	
541	-73-1	1,3-Dichlorobenzen	ie			0.079	1.0	
106	-46-7	1,4-Dichlorobenzen	ie			0.046	1.0	
110	-57-6	trans-1,4-Dichloro-2	2-butene			0.12	2.0	
75-7	71-8	Dichlorodifluorome	thane (Freon 12)			0.12	2.0	
75-3	34-3	1,1-Dichloroethane				0.16	1.0	
107	-06-2	1,2-Dichloroethane				0.19	1.0	
75-3	35-4	1,1-Dichloroethyler	ie			0.21	1.0	
156	-59-2	cis-1,2-Dichloroeth	ylene		1.4	0.15	1.0	
156	-60-5	trans-1,2-Dichloroe	thylene			0.15	1.0	
78-	37-5	1,2-Dichloropropan	e			0.11	1.0	
142	-28-9	1,3-Dichloropropan	e			0.099	0.50	
594	-20-7	2,2-Dichloropropan	e			0.072	1.0 U	J
563	-58-6	1,1-Dichloropropen	ie			0.13	2.0	
100	61-01-5	cis-1,3-Dichloropro	pene			0.062	2.0	
100	61-02-6	trans-1,3-Dichlorop	oropene			0.056	5.0	
60-	29-7	Diethyl Ether				0.22	2.0	
108	-20-3	Diisopropyl Ether (DIPE)			0.18	0.50	
123	-91-1	1,4-Dioxane				26	50 R	<u>16-</u>
100	-41-4	Ethylbenzene				0.092	1.0	
87-	68-3	Hexachlorobutadie	ne			0.17	1.0	
591	-78-6	2-Hexanone (MBK))			1.5	10	
98-	82-8	Isopropylbenzene	(Cumene)			0.11	1.0	

1-FORMI **ANALYSIS DATA SHEET**

MW-08_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-03

File ID:

VB231020.D

Sampled:

08/13/13 11:00

Prepared:

08/15/13 08:23

Analyzed:

08/19/13 18:32

Solids:

Preparation:

SW-846 5030B

Dilution:

Initial/Final:

5 mL / 5 mL

Batch:	B078839	Sequence:	S004588 Calibration:	1300088	Instrument:		GCMSVOA2	
(CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
_	99-87-6	p-Isopropyltoluene	(p-Cymene)			0.12	1.0	
	1634-04-4	Methyl tert-Butyl Et	her (MTBE)			0.090	1.0	
	75-09-2	Methylene Chloride				3.2	5.0	
	108-10-1	4-Methyl-2-pentano	ne (MIBK)			1.5	10	
	91-20-3	Naphthalene				0.12	5.0	
	103-65-1	n-Propylbenzene				0.094	1.0	
	100-42-5	Styrene				0.12	1.0	
	630-20-6	1,1,1,2-Tetrachloro	ethane			0.12	2.0	
	79-34-5	1,1,2,2-Tetrachloro	ethane			0.12	0.50	
	127-18-4	Tetrachloroethylene	e			0.080	1.0	
	109-99-9	Tetrahydrofuran				1.1	10	
	108-88-3	Toluene				0.090	1.0	
	87-61-6	1,2,3-Trichlorobenz	ene			0.14	5.0	
	120-82-1	1,2,4-Trichlorobenz	ene			0.12	5.0	
	108-70-3	1,3,5-Trichlorobenz	ene			0.14	1.0	
	71-55-6	1,1,1-Trichloroetha	ne			0.094	1.0	
	79-00-5	1,1,2-Trichloroetha	ne			0.12	1.0	
	79-01 - 6	Trichloroethylene				0.077	1.0	
	75-69-4	Trichlorofluorometh	nane (Freon 11)			0.15	2.0	
	96-18-4	1,2,3-Trichloroprop	ane			0.12	2.0	
	76-13-1	1,1,2-Trichloro-1,2,	2-trifluoroethane	(Freon 1 ⁻		0.092	1.0	
	95-63-6	1,2,4-Trimethylben	zene			0.18	1.0	
	108-67-8	1,3,5-Trimethylben	zene			0.10	1.0	
	75-01-4	Vinyl Chloride				0.13	2.0	
	108383/106423	m+p Xylene				0.18	2.0	

1-FORMI **ANALYSIS DATA SHEET**

MW-08_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-03

File ID:

VB231020.D

Sampled:

Solids:

08/13/13 11:00

Prepared:

Preparation:

08/15/13 08:23

Analyzed:

08/19/13 18:32

SW-846 5030B

Dilution:

Initial/Final:

5 mL / 5 mL Batch:

B078839

Sequence:

S004588

Calibration:

1300088

Instrument:

CAS NO.	COMPOUND	CONC. (μg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.11	1.0	

1-FORMI **ANALYSIS DATA SHEET**

MW-03_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-04

File ID:

VB231021.D

Sampled:

08/13/13 12:00

Prepared: Preparation: 08/15/13 08:23 SW-846 5030B Analyzed: Dilution:

08/19/13 19:03

Solids: Initial/Final:

5 mL / 5 mL

Batch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCN	/ISVOA2
	CAS NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL		Q
	67-64-1	Acetone				4.7	50		
	107-13-1	Acrylonitrile				0.58	5.0		
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.091	0.50		
	71-43-2	Benzene				0.079	1.0		
	108-86-1	Bromobenzene				0.044	1.0		
	74-97-5	Bromochlorometha	ne			0.22	1.0		
	75-27-4	Bromodichlorometh	nane			0.088	1.0		
	75-25-2	Bromoform				0.21	1.0		
	74-83-9	Bromomethane				0.94	2.0	UJ	R-05
	78-93-3	2-Butanone (MEK)				2.4	20		
	75-65-0	tert-Butyl Alcohol (TBA)			2.2	20	R	¥ 1 5
	104-51-8	n-Butylbenzene				0.054	5.0		
	135-98-8	sec-Butylbenzene				0.084	1.0		
	98-06-6	tert-Butylbenzene				0.096	1.0		
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.075	0.50		
	75-15-0	Carbon Disulfide				1.0	4.0	4 J	
	56-23-5	Carbon Tetrachlori	ide			0.10	5.0		
	108-90-7	Chlorobenzene				0.12	1.0		
	124-48-1	Chlorodibromomet	hane			0.054	0.50		
	75-00-3	Chloroethane				0.16	2.0		
	67-66-3	Chloroform				0.14	2.0		
	74-87-3	Chloromethane				0.32	2.0		
	95-49-8	2-Chlorotoluene				0.070	1.0		
	106-43-4	4-Chlorotoluene				0.074	1.0		
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBC	P)		0.34	5.0		

1-FORMI **ANALYSIS DATA SHEET**

MW-03_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

Prepared:

Preparation:

13H0490-04

VB231021.D

File ID: Analyzed:

08/19/13 19:03

Sampled: Solids:

08/13/13 12:00

08/15/13 08:23 SW-846 5030B

Dilution:

Initial/Final:

5 mL / 5 mL

atch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane	(EDB)			0.089	0.50	
	74-95-3	Dibromomethane				0.070	1.0	
	95-50-1	1,2-Dichlorobenzen	е			0.076	1.0	
	541-73-1	1,3-Dichlorobenzen	е			0.079	1.0	
	106-46-7	1,4-Dichlorobenzen	е			0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2	2-butene			0.12	2.0	
	75-71-8	Dichlorodifluoromet	hane (Freon 12)			0.12	2.0	
	75-34-3	1,1-Dichloroethane				0.16	1.0	
	107-06-2	1,2-Dichloroethane				0.19	1.0	
	75-35-4	1,1-Dichloroethylen	е			0.21	1.0	
	156-59-2	cis-1,2-Dichloroethy	ylene			0.15	1.0	
	156-60-5	trans-1,2-Dichloroe	thylene			0.15	1.0	
	78-87-5	1,2-Dichloropropan	е			0.11	1.0	
	142-28-9	1,3-Dichloropropan	е			0.099	0.50	
	594-20-7	2,2-Dichloropropan	е			0.072	1.0 U	丁
	563-58-6	1,1-Dichloropropen	е			0.13	2.0	
	10061-01-5	cis-1,3-Dichloropro	pene			0.062	2.0	
	10061-02-6	trans-1,3-Dichlorop	ropene			0.056	5.0	
	60-29-7	Diethyl Ether				0.22	2.0	
	108-20-3	Diisopropyl Ether ([DIPE)			0.18	0.50	
	123-91-1	1,4-Dioxane				26	50 R	¥ -16
	100-41-4	Ethylbenzene				0.092	1.0	
	87-68-3	Hexachlorobutadie	ne			0.17	1.0	
	591-78-6	2-Hexanone (MBK)				1.5	10	
	98-82-8	Isopropylbenzene (Cumene)			0.11	1.0	

1 - FORM I ANALYSIS DATA SHEET

MW-03_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-04

File ID: VB231021.D

Sampled:

08/13/13 12:00

5 mL / 5 mL

Prepared:

08/15/13 08:23

Analyzed:

08/19/13 19:03

Solids:

Initial/Final:

Preparation:

SW-846 5030B

Dilution:

1

Batch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL	Q
	99-87-6	p-Isopropyltoluene	(p-Cymene)			0.12	1.0	
	1634-04-4	Methyl tert-Butyl Et	ther (MTBE)			0.090	1.0	
	75-09-2	Methylene Chloride	•			3.2	5.0	
	108-10-1	4-Methyl-2-pentane	one (MIBK)			1.5	10	
	91-20-3	Naphthalene				0.12	5.0	
	103-65-1	n-Propylbenzene				0.094	1.0	
	100-42-5	Styrene				0.12	1.0	
	630-20-6	1,1,1,2-Tetrachlord	ethane			0.12	2.0	
	79-34-5	1,1,2,2-Tetrachloro	ethane			0.12	0.50	
	127-18-4	Tetrachloroethylen	е			0.080	1.0	
	109-99-9	Tetrahydrofuran				1.1	10	
	108-88-3	Toluene				0.090	1.0	
	87-61-6	1,2,3-Trichloroben	zene			0.14	5.0	
	120-82-1	1,2,4-Trichloroben	zene			0.12	5.0	
	108-70-3	1,3,5-Trichloroben	zene			0.14	1.0	
	71-55-6	1,1,1-Trichloroetha	ane			0.094	1.0	
	79-00-5	1,1,2-Trichloroetha	ane			0.12	1.0	
	79-01-6	Trichloroethylene				0.077	1.0	
	75-69-4	Trichlorofluoromet	hane (Freon 11)			0.15	2.0	
	96-18-4	1,2,3-Trichloroprop	pane			0.12	2.0	
	76-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.092	1.0	
	95-63-6	1,2,4-Trimethylber	nzene			0.18	1.0	
	108-67-8	1,3,5-Trimethylber	nzene			0.10	1.0	
	75-01-4	Vinyl Chloride				0.13	2.0	
	108383/106423	m+p Xylene				0.18	2.0	

1 - FORM I ANALYSIS DATA SHEET

MW-03_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-04

File ID:

VB231021.D

Sampled:

08/13/13 12:00

Prepared: Preparation: 08/15/13 08:23

Analyzed:

08/19/13 19:03

Solids:

Batch:

SW-846 5030B

Dilution:

.

0/18113

Initial/Final:

 $5 \, mL \, / \, 5 \, mL$

B078839

Sequence:

S004588

Calibration:

1300088

Instrument:

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.11	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

TB-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Trip Blank Water

Laboratory ID: 13H0490-05 File ID:

VB227035.D

Sampled:

08/13/13 13:15

5 mL / 5 mL

Prepared:

08/15/13 08:23

Analyzed:

08/16/13 01:28

Solids:

Preparation:

SW-846 5030B

Dilution:

Initial/Final:

Batch:	B078920	Sequence:	S004587	Calibration:	1300088	Instru	ment:	GCMS\	VOA2
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL		Q
	67-64-1	Acetone				4.7	50		
	107-13-1	Acrylonitrile				0.58	5.0		
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.091	0.50		
	71-43-2	Benzene				0.079	1.0		
	108-86-1	Bromobenzene				0.044	1.0		
	74-97-5	Bromochlorometha	ne			0.22	1.0		
	75-27-4	Bromodichlorometh	nane			0.088	1.0		
	75-25-2	Bromoform				0.21	1.0		
	74-83-9	Bromomethane				0.94	2.0 U	J	205
	78-93-3	2-Butanone (MEK)				2.4	20		
	75-65-0	tert-Butyl Alcohol (TBA)			2.2	20 <i>R</i>	<u> </u>	/-16-
	104-51-8	n-Butylbenzene				0.054	5.0		
	135-98-8	sec-Butylbenzene				0.084	1.0		
	98-06-6	tert-Butylbenzene				0.096	1.0		
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.075	0.50		
	75-15-0	Carbon Disulfide				1.0	4.0 i	リゴ	
	56-23-5	Carbon Tetrachlori	de			0.10	5.0		
	108-90-7	Chlorobenzene				0.12	1.0		
	124-48-1	Chlorodibromomet	hane			0.054	0.50		
	75-00-3	Chloroethane				0.16	2.0		
	67-66-3	Chloroform				0.14	2.0		
	74-87-3	Chloromethane				0.32	2.0		
	95-49-8	2-Chlorotoluene				0.070	1.0		
	106-43-4	4-Chlorotoluene				0.074	1.0		
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBCI	P)		0.34	5.0		

1-FORMI **ANALYSIS DATA SHEET**

TB-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Trip Blank Water

Laboratory ID:

Prepared:

Preparation:

13H0490-05

SW-846 5030B

File ID:

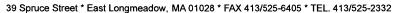
VB227035.D

Sampled:

Solids:

08/13/13 13:15

08/15/13 08:23


Analyzed: Dilution:

08/16/13 01:28

Initial/Final:

5 mL / 5 mL

Batch:	B078920	Sequence:	S004587	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	C. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane ((EDB)			0.089	0.50	
	74-95-3	Dibromomethane				0.070	1.0	
	95-50-1	1,2-Dichlorobenzene	•			0.076	1.0	
	541-73-1	1,3-Dichlorobenzene	•			0.079	1.0	
	106-46-7	1,4-Dichlorobenzene)			0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2-	-butene			0.12	2.0	
	75-71-8	Dichlorodifluorometh	nane (Freon 12)			0.12	2.0	
	75-34-3	1,1-Dichloroethane				0.16	1.0	
	107-06-2	1,2-Dichloroethane				0.19	1.0	
	75-35-4	1,1-Dichloroethylene)			0.21	1.0	
	156-59-2	cis-1,2-Dichloroethyl	lene			0.15	1.0	
	156-60-5	trans-1,2-Dichloroeth	hylene			0.15	1.0	
	78-87-5	1,2-Dichloropropane	•			0.11	1.0	
	142-28-9	1,3-Dichloropropane	•			0.099	0.50	
	594-20-7	2,2-Dichloropropane	•			0.072	1.0	
	563-58-6	1,1-Dichloropropene)			0.13	2.0	
	10061-01-5	cis-1,3-Dichloroprop	ene			0.062	2.0	
	10061-02-6	trans-1,3-Dichloropre	opene			0.056	5.0	
	60-29-7	Diethyl Ether				0.22	2.0	
	108-20-3	Diisopropyl Ether (D	IPE)			0.18	0.50	
	123-91-1	1,4-Dioxane				26	50 R	
	100-41-4	Ethylbenzene				0.092	1.0	
	87-68-3	Hexachlorobutadien	е			0.17	1.0	
	591-78-6	2-Hexanone (MBK)				1.5	10	
	98-82-8	Isopropylbenzene (C	Cumene)			0.11	1.0	

1 - FORM I ANALYSIS DATA SHEET

TB-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Trip Blank Water

Laboratory ID:

13H0490-05

File ID:

VB227035.D

Sampled: Solids: 08/13/13 13:15

Prepared:

Preparation:

08/15/13 08:23 SW-846 5030B Analyzed:

Dilution:

08/16/13 01:28

1

0/18/13

Initial/Final:

 $5 \, mL / 5 \, mL$

Batch:	B078920	Sequence:	S004587	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CO	NC. (μg/L)	MDL	RL	Q
	99-87-6	p-Isopropyltoluene	(p-Cymene)			0.12	1.0	
	1634-04-4	Methyl tert-Butyl Et	her (MTBE)			0.090	1.0	
	75-09-2	Methylene Chloride	•			3.2	5.0	
	108-10-1	4-Methyl-2-pentano	one (MIBK)			1.5	10	
	91-20-3	Naphthalene				0.12	5.0	
	103-65-1	n-Propylbenzene				0.094	1.0	
	100-42-5	Styrene				0.12	1.0	
	630-20-6	1,1,1,2-Tetrachloro	ethane			0.12	2.0	
	79-34-5	1,1,2,2-Tetrachloro	ethane			0.12	0.50	
	127-18-4	Tetrachloroethylen	е			0.080	1.0	
	109-99-9	Tetrahydrofuran				1.1	10	
	108-88-3	Toluene				0.090	1.0	
	87-61-6	1,2,3-Trichlorobena	zene			0.14	5.0	
	120-82-1	1,2,4-Trichlorobena	zene			0.12	5.0	
	108-70-3	1,3,5-Trichlorobena	zene			0.14	1.0	
	71-55-6	1,1,1-Trichloroetha	ine			0.094	1.0	
	79-00-5	1,1,2-Trichloroetha	ine			0.12	1.0	
	79-01-6	Trichloroethylene				0.077	1.0	
	75-69-4	Trichlorofluorometh	hane (Freon 11)			0.15	2.0	
	96-18-4	1,2,3-Trichloroprop	oane			0.12	2.0	
	76-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.092	1.0	
	95-63-6	1,2,4-Trimethylben	zene			0.18	1.0	
	108-67-8	1,3,5-Trimethylben	zene			0.10	1.0	
	75-01-4	Vinyl Chloride				0.13	2.0	
	108383/106423	m+p Xylene				0.18	2.0	

1 - FORM I ANALYSIS DATA SHEET

TB-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Trip Blank Water

Laboratory ID:

13H0490-05

File ID:

VB227035.D

Sampled:

Initial/Final:

08/13/13 13:15

Prepared:

08/15/13 08:23

Analyzed:

08/16/13 01:28

Solids:

5 mL / 5 mL

Preparation:

SW-846 5030B

Dilution:

Batch:	B078920	Sequence:	S004587	Calibration:	1300088	Instru	ıment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	95-47-6	o-Xylene	_			0.11	1.0	

1-FORMI **ANALYSIS DATA SHEET**

FB-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-06

File ID:

VB227036.D

Sampled:

08/13/13 13:20

Prepared:

Preparation:

08/15/13 08:23 SW-846 5030B Analyzed: Dilution:

08/16/13 01:59

Solids: Initial/Final:

5 mL / 5 mL

atch:	B078920	Sequence:	S004587	Calibration:	1300088	Instru	ment:	GCMSVOA2
C	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	67-64-1	Acetone			_	4.7	50	
	107-13-1	Acrylonitrile				0.58	5.0	
9	994-05-8	tert-Amyl Methyl Etl	her (TAME)			0.091	0.50	
	71-43-2	Benzene				0.079	1.0	
	108-86-1	Bromobenzene				0.044	1.0	
•	74-97-5	Bromochlorometha	ne			0.22	1.0	
	75-27-4	Bromodichlorometh	nane			0.088	1.0	
	75-25-2	Bromoform				0.21	1.0	
	74-83-9	Bromomethane				0.94	2.0	1J R-05-
	78-93-3	2-Butanone (MEK)				2.4	20	
•	75-65-0	tert-Butyl Alcohol (7	ГВА)			2.2	20	ک ۷-16
	104-51-8	n-Butylbenzene				0.054	5.0	
	135-98-8	sec-Butylbenzene				0.084	1.0	
	98-06-6	tert-Butylbenzene				0.096	1.0	
	637-92-3	tert-Butyl Ethyl Ethe	er (TBEE)			0.075	0.50	
	75-15-0	Carbon Disulfide				1.0	4.0	灯
	56-23-5	Carbon Tetrachlorid	de			0.10	5.0	
	108-90-7	Chlorobenzene				0.12	1.0	
	124-48-1	Chlorodibromometh	nane			0.054	0.50	
	75-00-3	Chloroethane				0.16	2.0	
	67-66-3	Chloroform				0.14	2.0	
	74-87-3	Chloromethane				0.32	2.0	
	95-49-8	2-Chlorotoluene				0.070	1.0	
	106-43-4	4-Chlorotoluene				0.074	1.0	
	96-12-8	1,2-Dibromo-3-chlo	ropropane (DBC	P)		0.34	5.0	

1 - FORM I ANALYSIS DATA SHEET

FB-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-06

File ID:

VB227036.D

Sampled:

08/13/13 13:20

Prepared:

08/15/13 08:23

Analyzed:

08/16/13 01:59

Solids:

Preparation:

SW-846 5030B

Dilution:

1

10/18/13

Initial/Final:

5 mL / 5 mL

Batch:	B078920	Sequence: S0	04587 C	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CONC.	(μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (EDB))			0.089	0.50	
	74-95-3	Dibromomethane				0.070	1.0	
	95-50-1	1,2-Dichlorobenzene				0.076	1.0	
	541-73-1	1,3-Dichlorobenzene				0.079	1.0	
	106-46-7	1,4-Dichlorobenzene				0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2-buter	ne			0.12	2.0	
	75-71-8	Dichlorodifluoromethane ((Freon 12)			0.12	2.0	
	75-34-3	1,1-Dichloroethane				0.16	1.0	
	107-06-2	1,2-Dichloroethane				0.19	1.0	
	75-35-4	1,1-Dichloroethylene				0.21	1.0	
	156-59-2	cis-1,2-Dichloroethylene				0.15	1.0	
	156-60-5	trans-1,2-Dichloroethylene	е			0.15	1.0	
	78-87-5	1,2-Dichloropropane				0.11	1.0	
	142-28-9	1,3-Dichloropropane				0.099	0.50	
	594-20-7	2,2-Dichloropropane				0.072	1.0	
	563-58-6	1,1-Dichloropropene				0.13	2.0	
	10061-01-5	cis-1,3-Dichloropropene				0.062	2.0	
	10061-02-6	trans-1,3-Dichloropropene	е			0.056	5.0	
	60-29-7	Diethyl Ether				0.22	2.0	
	108-20-3	Diisopropyl Ether (DIPE)				0.18	0.50	
	123-91-1	1,4-Dioxane				26	50 R	V-05, V-16
	100-41-4	Ethylbenzene				0.092	1.0	
	87-68-3	Hexachlorobutadiene				0.17	1.0	
	591-78-6	2-Hexanone (MBK)				1.5	10	
	98-82-8	Isopropylbenzene (Cumer	ne)			0.11	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

FB-01_08-13-13

Con-Test Analytical Laboratory Laboratory:

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13H0490-06 File ID:

VB227036.D

Sampled:

08/13/13 13:20

Prepared:

08/15/13 08:23

Analyzed:

08/16/13 01:59

Solids:

Preparation:

SW-846 5030B

Dilution:

Initial	/Final:	5

itial/Final: atch:	5 mL / 5 ml B078920	L Sequence:	S004587	Calibration:	1300088	Inetru	ment:	GCMSVOA2
CAS I		COMPOUND			C. (μg/L)	MDL	RL	Q.
99-87	7-6	p-Isopropyltoluene	(p-Cymene)			0.12	1.0	
1634	-04-4	Methyl tert-Butyl Et	ther (MTBE)			0.090	1.0	
75-09	9-2	Methylene Chloride	9			3.2	5.0	
108-	10-1	4-Methyl-2-pentand	one (MIBK)			1.5	10	
91-20)- 3	Naphthalene				0.12	5.0	
103-6	65-1	n-Propylbenzene				0.094	1.0	
100-4	12- 5	Styrene				0.12	1.0	
630-2	20-6	1,1,1,2-Tetrachlord	ethane			0.12	2.0	
79-34	1- 5	1,1,2,2-Tetrachloro	ethane			0.12	0.50	
127-	18-4	Tetrachloroethylen	е			0.080	1.0	
109-9	99-9	Tetrahydrofuran				1.1	10	
108-	88-3	Toluene				0.090	1.0	
87 - 6	1-6	1,2,3-Trichloroben	zene			0.14	5.0	
120-	82-1	1,2,4-Trichloroben	zene			0.12	5.0	
108-	70-3	1,3,5-Trichloroben:	zene			0.14	1.0	
71-5	5-6	1,1,1-Trichloroetha	ane			0.094	1.0	
79-0	0-5	1,1,2-Trichloroetha	ane			0.12	1.0	
79 - 0	1-6	Trichloroethylene				0.077	1.0	
75-69	9-4	Trichlorofluoromet	hane (Freon 11)			0.15	2.0	
96-1	8-4	1,2,3-Trichloroprop	oane			0.12	2.0	
76-1	3-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.092	1.0	
95-6	3-6	1,2,4-Trimethylben	nzene			0.18	1.0	
108-	67-8	1,3,5-Trimethylber	nzene			0.10	1.0	
75-0	1-4	Vinyl Chloride				0.13	2.0	
1083	83/106423	m+p Xylene				0.18	2.0	

1-FORMI **ANALYSIS DATA SHEET**

FB-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-06

File ID:

VB227036.D

Sampled:

Initial/Final:

08/13/13 13:20

Prepared:

Preparation:

08/15/13 08:23

SW-846 5030B

Analyzed:

08/16/13 01:59

Solids:

Batch:

5 mL / 5 mL

B078920

S004587

Sequence:

Calibration:

1300088

Dilution:

Instrument:

1

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.11	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

MW-07_08-13-13

Laboratory: **Con-Test Analytical Laboratory** Work Order:

13H0490

CDM Smith, Inc. - NY Client:

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13H0490-07 File ID:

VB231022.D

Sampled:

Solids:

08/13/13 14:10

Prepared:

Preparation:

08/15/13 08:23 SW-846 5030B Analyzed:

Dilution:

2

08/19/13 19:33

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Batch:	B078839	Sequence:	S004588	Calibration: 1300088		Instru	ment: G0	GCMSVOA2	
(CAS NO.	COMPOUND		CON	VC. (μg/L)	MDL	RL	Q	
	67-64-1	Acetone				9.4	100		
	107-13-1	Acrylonitrile				1.2	10		
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.18	1.0		
	71-43-2	Benzene				0.16	2.0		
	108-86-1	Bromobenzene				0.088	2.0		
	74-97-5	Bromochlorometha	ne			0.45	2.0		
	75-27-4	Bromodichlorometh	nane			0.18	2.0		
	75-25-2	Bromoform				0.42	2.0		
	74-83-9	Bromomethane				1.9	4.0 UJ	.B-05	
	78-93-3	2-Butanone (MEK)				4.7	40		
	75-65-0	tert-Butyl Alcohol (1	TBA)			4.3	40 R	V-16	
	104-51-8	n-Butylbenzene				0.11	10		
	135-98-8	sec-Butylbenzene				0.17	2.0		
	98-06-6	tert-Butylbenzene				0.19	2.0		
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.15	1.0		
	75-15-0	Carbon Disulfide				2.0	8.0 UJ	-	
	56-23-5	Carbon Tetrachlori	de			0.20	10		
	108-90-7	Chlorobenzene				0.24	2.0		
	124-48-1	Chlorodibromomet	hane			0.11	1.0		
	75-00-3	Chloroethane				0.32	4.0		
	67-66-3	Chloroform				0.29	4.0		
	74-87-3	Chloromethane				0.65	4.0		
	95-49-8	2-Chlorotoluene				0.14	2.0		
	106-43-4	4-Chlorotoluene				0.15	2.0		
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBC	P)		0.68	10		

1-FORMI **ANALYSIS DATA SHEET**

MW-07_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-07

File ID:

VB231022.D

Sampled:

08/13/13 14:10

Prepared:

Preparation:

08/15/13 08:23

SW-846 5030B

Analyzed:

Dilution:

08/19/13 19:33

2

Solids: Initial/Final:

5 mL / 5 mL

Batch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (I	EDB)			0.18	1.0	
	74-95-3	Dibromomethane				0.14	2.0	
	95-50-1	1,2-Dichlorobenzene				0.15	2.0	
	541-73-1	1,3-Dichlorobenzene				0.16	2.0	
	106-46-7	1,4-Dichlorobenzene				0.092	2.0	
	110-57-6	trans-1,4-Dichloro-2-l	butene			0.24	4.0	
	75-71-8	Dichlorodifluorometha	ane (Freon 12)			0.24	4.0	
	75-34-3	1,1-Dichloroethane				0.32	2.0	
	107-06-2	1,2-Dichloroethane				0.39	2.0	
	75-35-4	1,1-Dichloroethylene				0.42	2.0	
	156-59-2	cis-1,2-Dichloroethyle	ene		130	0.29	2.0	
	156-60-5	trans-1,2-Dichloroeth	ylene			0.30	2.0	
	78-87-5	1,2-Dichloropropane				0.22	2.0	
	142-28-9	1,3-Dichloropropane				0.20	1.0	
	594-20-7	2,2-Dichloropropane				0.14	2.0 U	J
	563-58-6	1,1-Dichloropropene				0.26	4.0	
	10061-01-5	cis-1,3-Dichloroprope	ene			0.12	4.0	
	10061-02-6	trans-1,3-Dichloropro	pene			0.11	10	
	60-29-7	Diethyl Ether				0.44	4.0	
	108-20-3	Diisopropyl Ether (DI	PE)			0.36	1.0	
	123-91-1	1,4-Dioxane				53	100 🖡	¥-16
	100-41-4	Ethylbenzene				0.18	2.0	
	87-68-3	Hexachlorobutadiene)			0.34	2.0	
	591-78-6	2-Hexanone (MBK)				3.0	20	
	98-82-8	Isopropylbenzene (C	umene)			0.23	2.0	

1 - FORM I **ANALYSIS DATA SHEET**

MW-07_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-07

File ID:

VB231022.D

Sampled:

08/13/13 14:10

Prepared:

Preparation:

08/15/13 08:23

Analyzed:

08/19/13 19:33

Solids:

SW-846 5030B

Dilution:

2

Initial/Final:

5 mL / 5 mL D070020

tch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
CAS NO	Э.	COMPOUND		СО	NC. (μg/L)	MDL	RL	Q
99-87-6	6	p-Isopropyltoluene	(p-Cymene)			0.25	2.0	
1634-0	4-4	Methyl tert-Butyl Et	her (MTBE)			0.18	2.0	
75-09-2	2	Methylene Chloride)			6.4	10	
108-10	-1	4-Methyl-2-pentano	one (MIBK)			2.9	20	
91-20-3	3	Naphthalene				0.24	10	
103-65	-1	n-Propylbenzene				0.19	2.0	
100-42	-5	Styrene				0.24	2.0	
630-20	-6	1,1,1,2-Tetrachloro	ethane			0.24	4.0	
79-34-	5	1,1,2,2-Tetrachloro	ethane			0.25	1.0	
127-18	-4	Tetrachloroethylen	е		9.6	0.16	2.0	
109-99	-9	Tetrahydrofuran				2.1	20	
108-88	-3	Toluene				0.18	2.0	
87-61-	6	1,2,3-Trichloroben	zene			0.28	10	
120-82	·-1	1,2,4-Trichloroben	zene			0.24	10	
108-70	-3	1,3,5-Trichloroben	zene			0.28	2.0	
71-55-	6	1,1,1-Trichloroetha	ine			0.19	2.0	
79-00-	5	1,1,2-Trichloroetha	ine			0.23	2.0	
79-01-	6	Trichloroethylene			6.4	0.15	2.0	
75 - 69-	4	Trichlorofluoromet	hane (Freon 11)			0.29	4.0	
96-18-	4	1,2,3-Trichloroprop	oane			0.24	4.0	
76-13-	1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.18	2.0	
95-63-	6	1,2,4-Trimethylber	zene			0.36	2.0	
108-67	7-8	1,3,5-Trimethylber	zene			0.20	2.0	
75-01-	4	Vinyl Chloride			44	0.27	4.0	
10838	3/106423	m+p Xylene				0.36	4.0	

1 - FORM I ANALYSIS DATA SHEET

MW-07 08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

13H0490-07

File ID:

VB231022.D

Sampled:

08/13/13 14:10

Laboratory ID: Prepared:

08/15/13 08:23

Analyzed:

08/19/13 19:33

Solids:

Batch:

Preparation:

SW-846 5030B

Dilution:

2

10/18/15

Initial/Final:

 $5\,mL/5\,mL$

B078839

Sequence:

S004588

Calibration:

1300088

Instrument:

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.22	2.0	

1-FORMI **ANALYSIS DATA SHEET**

MW-05_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-08 File ID:

VB231023.D

Sampled:

08/13/13 15:25

Prepared:

Preparation:

08/15/13 08:23

SW-846 5030B

Analyzed:

Dilution:

08/19/13 20:04

Solids:

Initial/Final:

5 mL / 5 mL

n: B	078839 Sequence:	S004588	Calibration:	1300088	Instru	ment: GC	MSVOA
CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
67-64-1	Acetone				4.7	50	
107-13-1	Acrylonitrile				0.58	5.0	
994-05-8	tert-Amyl Methyl E	ther (TAME)			0.091	0.50	
71-43-2	Benzene				0.079	1.0	
108-86-1	Bromobenzene				0.044	1.0	
74-97-5	Bromochlorometha	ine			0.22	1.0	
75-27-4	Bromodichloromet	hane			0.088	1.0	
75-25-2	Bromoform				0.21	1.0	
74-83-9	Bromomethane				0.94	2.0 UJ	.R . 05
78-93-3	2-Butanone (MEK)				2.4	20	
75-65-0	tert-Butyl Alcohol (TBA)			2.2	20 R	V-16
104-51-8	n-Butylbenzene				0.054	5.0	
135-98-8	sec-Butylbenzene				0.084	1.0	
98-06-6	tert-Butylbenzene				0.096	1.0	
637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.075	0.50	
75-15-0	Carbon Disulfide				1.0	4.0 UJ	•
56-23-5	Carbon Tetrachlor	de			0.10	5.0	
108-90-7	Chlorobenzene				0.12	1.0	
124-48-1	Chlorodibromomet	hane			0.054	0.50	
75-00-3	Chloroethane				0.16	2.0	
67-66-3	Chloroform				0.14	2.0	
74-87-3	Chloromethane				0.32	2.0	
95-49-8	2-Chlorotoluene				0.070	1.0	
106-43-4	4-Chlorotoluene				0.074	1.0	
96-12-8	1,2-Dibromo-3-chl	oropropane (DBCI	P)		0.34	5.0	

1 - FORM I **ANALYSIS DATA SHEET**

MW-05_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-08

File ID:

VB231023.D

Sampled:

08/13/13 15:25

Prepared:

Preparation:

08/15/13 08:23

SW-846 5030B

Analyzed:

08/19/13 20:04

1

Solids:

Batch:

Initial/Final:

5 mL / 5 mL

B078839

Sequence:

S004588

Calibration:

1300088

Dilution:

Instrument:

alcii.	D070833	Sequence. 3004308		Calibration: 1900000				
	CAS NO.	COMPOUND		СО	NC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (E	DB)			0.089	0.50	
	74-95-3	Dibromomethane				0.070	1.0	
	95-50-1	1,2-Dichlorobenzene				0.076	1.0	
	541-73-1	1,3-Dichlorobenzene				0.079	1.0	
	106-46-7	1,4-Dichlorobenzene				0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2-b	utene			0.12	2.0	
	75-71-8	Dichlorodifluorometha	ne (Freon 12)			0.12	2.0	
	75-34-3	1,1-Dichloroethane				0.16	1.0	
	107-06-2	1,2-Dichloroethane				0.19	1.0	
	75-35-4	1,1-Dichloroethylene				0.21	1.0	
	156-59-2	cis-1,2-Dichloroethyle	ne		4.9	0.15	1.0	
	156-60-5	trans-1,2-Dichloroethy	/lene			0.15	1.0	
	78-87-5	1,2-Dichloropropane				0.11	1.0	
	142-28-9	1,3-Dichloropropane				0.099	0.50	
	594-20-7	2,2-Dichloropropane				0.072	1.0 U	J
	563-58-6	1,1-Dichloropropene				0.13	2.0	
	10061-01-5	cis-1,3-Dichloroprope	ne			0.062	2.0	
	10061-02-6	trans-1,3-Dichloropro	pene			0.056	5.0	
	60-29-7	Diethyl Ether				0.22	2.0	
	108-20-3	Diisopropyl Ether (DIF	PE)			0.18	0.50	
	123-91-1	1,4-Dioxane				26	50 R	. V -16
	100-41-4	Ethylbenzene				0.092	1.0	
	87-68-3	Hexachlorobutadiene				0.17	1.0	
	591-78-6	2-Hexanone (MBK)				1.5	10	
	98-82-8	Isopropylbenzene (Cu	umene)			0.11	1.0	

1 - FORM I ANALYSIS DATA SHEET

MW-05_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-08

File ID:

VB231023.D

Sampled:

08/13/13 15:25

Prepared:

Preparation:

08/15/13 08:23

Analyzed:

08/19/13 20:04

Solids:

5 mL / 5 mL

SW-846 5030B

Dilution:

1

OIL

Initial/Final:

Batch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL	Q
	99-87-6	p-Isopropyltoluene	(p-Cymene)		_	0.12	1.0	
	1634-04-4	Methyl tert-Butyl Eth	ner (MTBE)			0.090	1.0	
	75-09-2	Methylene Chloride				3.2	5.0	
	108-10-1	4-Methyl-2-pentano	ne (MIBK)			1.5	10	
	91-20-3	Naphthalene				0.12	5.0	
	103-65-1	n-Propylbenzene				0.094	1.0	
	100-42-5	Styrene				0.12	1.0	
	630-20-6	1,1,1,2-Tetrachloro	ethane			0.12	2.0	
	79-34-5	1,1,2,2-Tetrachloro	ethane			0.12	0.50	
	127-18-4	Tetrachloroethylene)		27	0.080	1.0	
	109-99-9	Tetrahydrofuran				1.1	10	
	108-88-3	Toluene				0.090	1.0	
	87-61-6	1,2,3-Trichlorobenz	ene			0.14	5.0	
	120-82-1	1,2,4-Trichlorobenz	ene			0.12	5.0	
	108-70-3	1,3,5-Trichlorobenz	ene			0.14	1.0	
	71-55-6	1,1,1-Trichloroetha	ne			0.094	1.0	
	79-00-5	1,1,2-Trichloroetha	ne			0.12	1.0	
	79-01-6	Trichloroethylene			8.9	0.077	1.0	
	75-69-4	Trichlorofluorometh	ane (Freon 11)			0.15	2.0	
	96-18-4	1,2,3-Trichloroprop	ane			0.12	2.0	
	76-13-1	1,1,2-Trichloro-1,2,	2-trifluoroethane	(Freon 1 ⁻		0.092	1.0	
	95-63-6	1,2,4-Trimethylben	zene			0.18	1.0	
	108-67-8	1,3,5-Trimethylben	zene			0.10	1.0	
	75-01-4	Vinyl Chloride				0.13	2.0	
	108383/106423	m+p Xylene				0.18	2.0	

1 - FORM I **ANALYSIS DATA SHEET**

MW-05_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-08

File ID:

VB231023.D

Sampled:

Initial/Final:

08/13/13 15:25

Prepared:

08/15/13 08:23

Analyzed:

08/19/13 20:04

Solids:

5 mL / 5 mL

Preparation:

SW-846 5030B

Dilution:

1

GCMSVOA2

Batch:	B078839	Sequence:	S004588	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	CONC. (µg/L)			Q
	95-47-6	o-Xylene				0.11	1.0	

1 - FORM I ANALYSIS DATA SHEET

TB-02_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client: Matrix: CDM Smith, Inc. - NY

Project:

Buffalo, NY

VB233018.D

1

Sampled:

Trip Blank Water

Laboratory ID:

13H0490-09

File ID:

Solids:

08/13/13 15:45

Prepared:
Preparation:

08/16/13 08:35 SW-846 5030B Analyzed: Dilution: 08/21/13 13:44

0/18/13

Initial/Final:

 $5\,\text{mL}/5\,\text{mL}$

Batch:	B079026	Sequence:	S004589	Calibration:	1300088	Instru	ment:	GCN	MSVOA2
	CAS NO.	COMPOUND		CC	DNC. (μg/L)	MDL	RL		Q
	67-64-1	Acetone				4.7	50		
	107-13-1	Acrylonitrile				0.58	5.0		
	994-05-8	tert-Amyl Methyl Ethe	er (TAME)			0.091	0.50		
	71-43-2	Benzene				0.079	1.0		
	108-86-1	Bromobenzene				0.044	1.0		
	74-97-5	Bromochloromethane	е			0.22	1.0		
	75-27-4	Bromodichlorometha	ne			0.088	1.0		
	75-25-2	Bromoform				0.21	1.0		
	74-83-9	Bromomethane				0.94	2.0 1	UJ	
	78-93-3	2-Butanone (MEK)				2.4	20		
	75-65-0	tert-Butyl Alcohol (TE	BA)			2.2	20	R	-16-
	104-51-8	n-Butylbenzene				0.054	5.0		
	135-98-8	sec-Butylbenzene				0.084	1.0		
	98-06-6	tert-Butylbenzene				0.096	1.0		
	637-92-3	tert-Butyl Ethyl Ether	(TBEE)			0.075	0.50		
	75-15-0	Carbon Disulfide				1.0	4.0	UJ	
	56-23-5	Carbon Tetrachloride	e			0.10	5.0		
	108-90-7	Chlorobenzene				0.12	1.0		
	124-48-1	Chlorodibromometha	ane			0.054	0.50		
	75-00-3	Chloroethane				0.16	2.0		
	67-66-3	Chloroform				0.14	2.0		
	74-87-3	Chloromethane				0.32	2.0		
	95-49-8	2-Chlorotoluene				0.070	1.0		
	106-43-4	4-Chlorotoluene				0.074	1.0		
	96-12-8	1,2-Dibromo-3-chlore	opropane (DBCF	P)		0.34	5.0		

1 - FORM I **ANALYSIS DATA SHEET**

TB-02_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Trip Blank Water

Laboratory ID: 13H0490-09 File ID:

VB233018.D

Sampled:

08/13/13 15:45

Prepared:

Preparation:

08/16/13 08:35

SW-846 5030B

Analyzed:

Dilution:

08/21/13 13:44

1

Solids: Initial/Final:

5 mL / 5 mL

Batch:	B079026	Sequence:	S004589	Calibration:	1300088	Instru	ment:	GCMSVOA2
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (E	DB)			0.089	0.50	
	74-95-3	Dibromomethane				0.070	1.0	
	95-50-1	1,2-Dichlorobenzene				0.076	1.0	
	541-73-1	1,3-Dichlorobenzene				0.079	1.0	
	106-46-7	1,4-Dichlorobenzene				0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2-bi	utene			0.12	2.0	
	75-71 - 8	Dichlorodifluorometha	ne (Freon 12)			0.12	2.0	
	75-34-3	1,1-Dichloroethane				0.16	1.0	
	107-06-2	1,2-Dichloroethane				0.19	1.0	
	75-35-4	1,1-Dichloroethylene				0.21	1.0	
	156-59-2	cis-1,2-Dichloroethyler	ne			0.15	1.0	
	156-60-5	trans-1,2-Dichloroethy	lene			0.15	1.0 U	J
	78-87-5	1,2-Dichloropropane				0.11	1.0	
	142-28-9	1,3-Dichloropropane				0.099	0.50	
	594-20-7	2,2-Dichloropropane				0.072	1.0 U	ブ
	563-58-6	1,1-Dichloropropene				0.13	2.0	
	10061-01-5	cis-1,3-Dichloroproper	ne			0.062	2.0	
	10061-02-6	trans-1,3-Dichloroprop	ene			0.056	5.0	
	60-29-7	Diethyl Ether				0.22	2.0	
	108-20-3	Diisopropyl Ether (DIP	E)			0.18	0.50	
	123-91-1	1,4-Dioxane				26	50 A	. V 05, V-16
	100-41-4	Ethylbenzene				0.092	1.0	
	87-68-3	Hexachlorobutadiene				0.17	1.0	
	591-78-6	2-Hexanone (MBK)				1.5	10	
	98-82-8	Isopropylbenzene (Cu	mene)			0.11	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

TB-02_08-13-13

SW-846 5030B

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Trip Blank Water

Laboratory ID: 13H0490-09 File ID:

VB233018.D

Sampled: Solids:

08/13/13 15:45

08/16/13 08:35

Analyzed:

08/21/13 13:44

1

Initial/Final:

5 mL / 5 mL

Prepared:

Preparation:

Dilution:

9/L) MDL 0.12 0.090 3.2 1.5	1.0 1.0 5.0 UJ	Q
0.090 3.2 1.5	1.0 5.0 UJ	
3.2 1.5	5.0 UJ	
1.5	-	
	10	
0.12	5.0 R	
0.094	1.0	
0.12	1.0	
0.12	2.0	
0.12	0.50	
0.080	1.0	
1.1	10 UJ	
0.090	1.0	
0.14	5.0 R	
0.12	5.0 R	
0.14	1.0 UJ	-∨-05
0.094	1.0	
0.12	1.0	
0.077	1.0	
0.15	2.0	
0.12	2.0	
0.092	1.0	
0.18	1.0	
0.10	1.0	
0.13	2.0	
0.18	2.0	
	0.12 0.12 0.080 1.1 0.090 0.14 0.12 0.14 0.094 0.12 0.077 0.15 0.12 0.092 0.18 0.10 0.13	0.094 1.0 0.12 1.0 0.12 2.0 0.12 0.50 0.080 1.0 1.1 10 UJ 0.090 1.0 0.14 5.0 R 0.12 5.0 R 0.14 1.0 UJ 0.094 1.0 0.12 1.0 0.077 1.0 0.15 2.0 0.12 2.0 0.092 1.0 0.18 1.0 0.10 1.0 0.13 2.0

1 - FORM I **ANALYSIS DATA SHEET**

TB-02_08-13-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0490

Client:

Matrix:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

File ID:

VB233018.D

Sampled:

Trip Blank Water 08/13/13 15:45

Prepared:

Preparation:

Laboratory ID:

13H0490-09 08/16/13 08:35

SW-846 5030B

Analyzed:

Dilution:

08/21/13 13:44

Solids:

5 mL / 5 mL

Initial/Final: Batch: B079026

S004589 Sequence:

Calibration:

1300088

Instrument:

GCMSVOA2

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene		0.11	1.0	

3			
% ⊕			
	,		

1 - FORM I ANALYSIS DATA SHEET

MW-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

CDM Smith, Inc. - NY

Client: Matrix:

Ground Water

Sampled:

08/13/13 08:25

% Solids:

0.00

SDG:

13H0490

Project:

Buffalo, NY

Laboratory ID:

13H0490-01

10/18/13

CAS NO.	Analyte	 sentration mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
7439-89-6	Iron	0.51	0.026	0.050	1		B078766	08/15/13 18:59	SW-846 6010C

2

1 - FORM I ANALYSIS DATA SHEET

MW-02_08-13-13

Laboratory:

Con-Test Analytical Laboratory

SDG:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-02

Sampled:

08/13/13 09:45

% Solids:

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
7439-89-6	Iron	1.1	0.026	0.050	1		B078766	08/15/13 19:04	SW-846 6010C

1 - FORM I ANALYSIS DATA SHEET

MW-08_08-13-13

Laboratory:

Con-Test Analytical Laboratory

CDM Smith, Inc. - NY

Client: Matrix:

Ground Water

Sampled:

08/13/13 11:00

% Solids:

0.00

SDG:

13H0490

Project:

Buffalo, NY

Laboratory ID:

13H0490-03

IDIIR/13 NM

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
7439-89-6	Iron	1.8	0.026	0.050	1		B078766	08/15/13 19:29	SW-846 6010C

1 - FORM I ANALYSIS DATA SHEET

MW-03_08-13-13

Laboratory:

Con-Test Analytical Laboratory

SDG:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water 08/13/13 12:00

Laboratory ID:

13H0490-04

10/18/13

Sampled: % Solids:

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
7439-89-6	Iron	2.2	0.026	0.050	1		B078766	08/15/13 19:35	SW-846 6010C

7

1 - FORM I ANALYSIS DATA SHEET

MW-07_08-13-13

Laboratory:

Con-Test Analytical Laboratory

CDM Smith, Inc. - NY

Client: Matrix:

Ground Water

Sampled:

08/13/13 14:10

% Solids:

0.00

SDG:

13H0490

Project:

Buffalo, NY

Laboratory ID:

13H0490-07

10/18/13 VM

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
7439-89-6	Iron	0.087 U	0.026	0.050	1		B078766	08/15/13 19:40	SW-846 6010C

1 - FORM I ANALYSIS DATA SHEET

MW-05_08-13-13

Laboratory:

Con-Test Analytical Laboratory

SDG:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-08

0/18/13

Sampled:

08/13/13 15:25

% Solids:

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
7439-89-6	Iron		0.026	0.050	1		B078766	08/15/13 19:45	SW-846 6010C

1 - FORM I ANALYSIS DATA SHEET

MW-01_08-13-13

Laboratory:

Con-Test Analytical Laboratory

SDG:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water 08/13/13 08:25

Laboratory ID:

13H0490-01

11813

Sampled: % Solids:

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
471-34-1	Alkalinity	400	0.79	1.0	1		B078962	08/16/13 11:00	SM18-20 2320B
16887-00-6	Chloride	150	3.5	5.0	5		B079056	08/21/13 13:10	SM18-20 4500 CL B
NA	Ferrous Iron		0.12	0.20	1		B079077	08/19/13 14:45	SM18-20 3500 Fe D
14797-55-8	Nitrate as N		0.030	0.050	1		B079065	08/19/13 09:58	SM 18-20 4500 NO3
14797-65-0	Nitrite as N	0.37	0.015	0.050	5		В078797	08/14/13 14:25	SM 18-20 4500 NO2
14808-79-8	Sulfate	130	8.0	10	5		B078870	08/15/13 15:45	ASTM D516-90, 02
184-96-258	Sulfide		1.9	2.0	147	J 1 1-03-	B078828	08/15/13 11:10	SM18-20
NA	Total Organic Carbon	12	0.67	1.0	. 1		B079021	08/19/13 08:22	SM 5310B
CAS NO.	Analyte	Concentration (µmhos/cm)	MDL	RL	DF	Q	Batch	Analyzed	Method
SC	Specific conductance	1200		2.0	1		B078961	08/16/13 12:15	SM18-20 2510B

1 - FORM I ANALYSIS DATA SHEET

MW-02_08-13-13

Laboratory:

Con-Test Analytical Laboratory

SDG:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-02

10/18/13 M

Sampled:

08/13/13 09:45

% Solids:

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
471-34-1	Alkalinity	290	0.79	1.0	1		B078962	08/16/13 11:00	SM18-20 2320B
16887-00-6	Chloride	350	3.5	5.0	5		B079056	08/21/13 13:10	SM18-20 4500 CL B
NA	Ferrous Iron	0.30	0.12	0.20	1		B079077	08/19/13 14:45	SM18-20 3500 Fe D
14797-55-8	Nitrate as N		0.030	0.050	1		B079065	08/19/13 09:58	SM 18-20 4500 NO3
14797-65-0	Nitrite as N		0.0030	0.010	1		B078797	08/14/13 14:25	SM 18-20 4500 NO2
14808-79-8	Sulfate	23	1.6	2.0	1		B078870	08/15/13 15:45	ASTM D516-90, 02
184-96-258	Sulfide		1.9	2.0	1 U J	1-03-	B078828	08/15/13 11:10	SM18-20
NA	Total Organic Carbon	2.2	0.67	1.0	1		B079021	08/19/13 08:22	SM 5310B
CAS NO.	Analyte	Concentration (µmhos/cm)	MDL	RL	DF	Q	Batch	Analyzed	Method
SC	Specific conductance	1500		2.0	1		B078961	08/16/13 12:15	SM18-20 2510B

1 - FORM I ANALYSIS DATA SHEET

MW-08_08-13-13

Laboratory:

Con-Test Analytical Laboratory

SDG:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-03

Sampled:

08/13/13 11:00

% Solids:

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
471-34-1	Alkalinity	430	0.79	1.0	1		B078962	08/16/13 11:00	SM18-20 2320B
16887-00-6	Chloride	180	3.5	5.0	5		B079056	08/21/13 13:10	SM18-20 4500 CL E
NA	Ferrous Iron	0.21	0.12	0.20	1		B079077	08/19/13 14:45	SM18-20 3500 Fe D
14797-55-8	Nitrate as N		0.030	0.050	1		B079065	08/19/13 09:58	SM 18-20 4500 NO3
14797-65-0	Nitrite as N		0.0030	0.010	1		B078797	08/14/13 14:25	SM 18-20 4500 NO2
14808-79-8	Sulfate	100	8.0	10	5		B078870	08/15/13 15:45	ASTM D516-90, 02
184-96-258	Sulfide		1.9	2.0	1 UJ	∫ 1-03-	B078828	08/15/13 11:10	SM18-20
NA	Total Organic Carbon	5.3	0.67	1.0	1		B079021	08/19/13 08:22	SM 5310B
CAS NO.	Analyte	Concentration (µmhos/cm)	MDL	RL	DF	Q	Batch	Analyzed	Method
SC	Specific conductance	1300		2.0	1		B078961	08/16/13 12:15	SM18-20 2510B

1 - FORM I ANALYSIS DATA SHEET

MW-03_08-13-13

Laboratory:

Con-Test Analytical Laboratory

SDG:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-04

Sampled:

08/13/13 12:00

% Solids:

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
471-34-1	Alkalinity	620	0.79	1.0	1		B078962	08/16/13 11:00	SM18-20 2320B
16887-00-6	Chloride	95	3.5	5.0	5		B079056	08/21/13 13:10	SM18-20 4500 CL I
NA	Ferrous Iron	1.9	0.25	0.40	2		B079077	08/19/13 14:45	SM18-20 3500 Fe I
14797-55-8	Nitrate as N		0.030	0.050	1		B079065	08/19/13 09:58	SM 18-20 4500 NO
14797-65-0	Nitrite as N	0.020	0.0030	0.010	1		B078797	08/14/13 14:25	SM 18-20 4500 NO
14808-79-8	Sulfate	120	8.0	10	5		B078870	08/15/13 15:45	ASTM D516-90, 02
184-96-258	Sulfide		1.9	2.0	1 U J	93- ما `	B078828	08/15/13 11:10	SM18-20
NA	Total Organic Carbon	7.3	0.67	1.0	1		B079021	08/19/13 08:22	SM 5310B
CAS NO.	Analyte	Concentration (µmhos/cm)	MDL	RL	DF	Q	Batch	Analyzed	Method
SC	Specific conductance	1400		2.0	1		B078961	08/16/13 12:15	SM18-20 2510E

7

1 - FORM I ANALYSIS DATA SHEET

MW-07_08-13-13

Laboratory:

Con-Test Analytical Laboratory

SDG:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0490-07

Sampled:

08/13/13 14:10

% Solids:

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
471-34-1	Alkalinity	560	0.79	1.0	1		B078962	08/16/13 11:00	SM18-20 2320B
16887-00-6	Chloride	190	3.5	5.0	5		B079056	08/21/13 13:10	SM18-20 4500 CL B
NA	Ferrous Iron		0.12	0.20	1		В079077	08/19/13 14:45	SM18-20 3500 Fe D
14797-55-8	Nitrate as N		0.030	0.050	1		B079065	08/19/13 09:58	SM 18-20 4500 NO3
14797-65-0	Nitrite as N		0.0030	0.010	1		B078797	08/14/13 14:25	SM 18-20 4500 NO2
14808-79-8	Sulfate	31	1.6	2.0	1		B078870	08/15/13 15:45	ASTM D516-90, 02
184-96-258	Sulfide		1.9	2.0	1UJ	-69- 1	B078828	08/15/13 11:10	SM18-20
NA	Total Organic Carbon	4.7	0.67	1.0	1		B079021	08/19/13 08:22	SM 5310B
CAS NO.	Analyte	Concentration (μmhos/cm)	MDL	RL	DF	Q	Batch	Analyzed	Method
SC	Specific conductance	1500		2.0	1		B078961	08/16/13 12:15	SM18-20 2510B

1 - FORM I ANALYSIS DATA SHEET

MW-05_08-13-13

Laboratory:

Con-Test Analytical Laboratory

SDG:

13H0490

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix: Sampled: Ground Water 08/13/13 15:25

Laboratory ID:

13H0490-08

% Solids:

/0	Julius.	0.00

						_			
CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
471-34-1	Alkalinity	340	0.79	1.0	1		B078962	08/16/13 11:00	SM18-20 2320B
16887-00-6	Chloride	39	0.70	1.0	1		B079056	08/21/13 13:10	SM18-20 4500 CL B
NA	Ferrous Iron		0.12	0.20	1		B079077	08/19/13 14:45	SM18-20 3500 Fe D
14797-55-8	Nitrate as N	1.5	0.030	0.050	1		B079065	08/19/13 09:58	SM 18-20 4500 NO3
14797-65-0	Nitrite as N		0.0030	0.010	1		B078797	08/14/13 14:25	SM 18-20 4500 NO2
14808-79-8	Sulfate	77	3.2	4.0	2		B078870	08/15/13 15:45	ASTM D516-90, 02
184-96-258	Sulfide		1.9	2.0	1 U J	T 1-03 -	B078828	08/15/13 11:10	SM18-20
NA	Total Organic Carbon	3.0	0.67	1.0	1		B079021	08/19/13 08:22	SM 5310B
CAS NO.	Analyte	Concentration (µmhos/cm)	MDL	RL	DF	Q	Batch	Analyzed	Method
SC	Specific conductance	790		2.0	1		B078961	08/16/13 12:15	SM18-20 2510B

DATA USABILITY SUMMARY REPORT FORMER DORO CLEANERS, BUFFALO, NEW YORK

Client:

CDM Smith, Inc., Latham, New York

SDG:

13H0569

Laboratory:

Con-Test Analytical Laboratory, East Longmeadow, Massachusetts

Site:

Former Doro Cleaners, Buffalo, New York

Date:

October 17, 2013

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-04_08-14-13	13H0569-01	Water
2	MW-06_08-14-13	13H0569-02	Water
2MS†	MW-06_08-14-13MS	13H0569-02MS	Water
2MSD†	MW-06_08-14-13MSD	13H0569-02MSD	Water
3*	FB-02_08-14-13	13H0569-03	Water
4*	TB-03_08-14-13	13H0569-04	Water
5*	FD-01_08-14-13	13H0569-05	Water

A Data Usability Summary Review was performed on the analytical data for three water samples, one aqueous field blank sample, and one aqueous trip blank sample collected August 14, 2013 by CDM Smith at the Former Doro Cleaners site in Buffalo, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".

Specific method references are as follows:

<u>Analysis</u>	Method References
VOCs	USEPA SW-846 Method 8260C
Iron	USEPA Method 6010C
Ferrous Iron	Standard Method SM3500 Fe D
Alkalinity	Standard Method SM2320B
Chloride	Standard Method SM4500 CL B
Nitrate	Standard Method SM4500 NO3 F
Nitrite	Standard Method SM4500 NO2 B
Sulfate	ASTM Method D516-90, 02
Sulfide	Standard Method SM4500S-E
Total Organic Carbon	Standard Method 5310B
Specific Conductance	Standard Method SM2510B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

 SOP Number HW-24, Revision 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B;

- SOP Number HW-2, Revision 13, September 2006: Evaluation of Metals Data for the CLP Program based on ILMO5.3;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Inorganics

- Data Completeness
- Holding times and sample preservation
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Initial and continuing calibration verifications
- ICS Check Sample
- Compound Quantitation
- ICP Serial Dilution
- Field Duplicate sample precision

Overall Usability Issues:

There were several rejections of data. This data cannot be used in the decision-making process for this project.

tert-Butyl alcohol and 1,4-dioxane were rejected in all samples due to low initial calibration RRF values.

Overall the remaining data is acceptable for the intended purposes as qualified for the following deficiencies.

- Two compounds were qualified as estimated in one sample due to low MS/MSD recoveries.
- Several compounds were qualified as estimated in all samples due to high continuing calibration %D values.

Sulfide was qualified as estimated in two samples due to a low LCS recovery.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

 The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organics Compounds (VOCs)

Holding Times

All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

MS/MSD Sample ID	Compound	MS %R/MSD %R/ RPD	Qualifier
2	Bromomethane	41.3%/43.6%/OK	None - See CCAL
	tert-Butyl alcohol (TBA)	134%150%OK	None - See ICAL
	Chloromethane	33.8%/26.0%/OK	None - See CCAL
	1,2-Dibromo-3-chloropropane	157%/152%/OK	None - ND
	Dichlorodifluoromethane	61.4%/61.3%/OK	J/UJ
	2,2-Dichloropropane	64.0%/59.5%/OK	J/UJ
	Naphthalene	171%/171%/OK	None - ND - See CCAL
	1,2,3-Trichlorobenzene	164%/166%/OK	

Laboratory Control Samples

• The following table presents LCS percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

LCS ID	Compound	%R	Qualifier	Affected Samples
B079226-BS1	Bromomethane	39.0%	None	See CCAL
	Chloromethane	26.8%	None	
B079321-BS1	Chloromethane	32.2%	None	See CCAL
	Naphthalene	136%	None	All ND
-	1,2,3-Trichlorobenzene	141%	None	

Method Blank

• The method blanks were free of contamination.

Field Blank

Field blank results are summarized below.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB-02_08-14-13	None - ND	-	-	-	-
TB-03_08-14-13	None - ND	-	_	_	-

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The following table presents compounds that exceeded 20 percent relative standard deviation (%RSD) and/or average RRF values <0.05 in the initial calibration (ICAL). A low RRF indicates poor indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %RSD may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

ICAL Date	Compound	%RSD/RRF	Qualifier	Affected Samples
05/17/13	tert-Butyl alcohol (TBA)	0.017 RRF	J/R	All Samples
	1,4-Dioxane	0.017 RRF	J/R	

Continuing Calibration

• The following table presents compounds that exceeded 20 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
08/21/13	Bromomethane	22.6%	J/UJ	1, 3-5
	tert-Butyl alcohol (TBA)	0.018 RRF	None	See ICAL
	Chloromethane	59.8%	J/UJ	1, 3-5
	1,4-Dioxane	0.017 RRF	None	See ICAL
	Naphthalene	22.9%	J/UJ	1, 3-5
	1,2,3-Trichlorobenzene	28.6%	J/UJ	
08/22/13	Bromomethane	42.5%	J/UJ	2
	tert-Butyl alcohol (TBA)	0.017 RRF	None	See ICAL
	Chloromethane	46.1%	J/UJ	2
	1,4-Dioxane	0.015 RRF	None	See ICAL
	Naphthalene	23.2%	J/UJ	2
	1,2,3-Trichlorobenzene	24.9%	J/UJ	

Compound Quantitation

- EDS Sample ID #1 was analyzed at a 250X dilution due to high concentrations of target compounds.
- EDS Sample ID #s 2 and 5 were analyzed at a 500X dilution due to high concentrations of target compounds.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

Field duplicate samples are summarized below.

VOCs							
Compound	FD-01_08-14-13 ug/L	RPD	Qualifier				
cis-1,2-Dichloroethylene	22000	23000	4%	None			

Tentatively Identified Compounds (TICs)

• TICs were not reported.

Metals (Iron)

Holding Times

• All samples were prepared and analyzed within 180 days for iron.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD sample exhibited acceptable %R and RPD values.

Duplicate Sample Analysis

• The duplicate sample exhibited acceptable RPD values.

Laboratory Control Samples

The LCS sample exhibited acceptable recoveries.

Method Blank

• The method blanks were free of contamination.

Field Blank

Field QC samples were not analyzed.

Initial Calibration Verification

All initial calibration criteria were met.

Continuing Calibration Verification

All continuing calibration criteria were met.

Interference Check Sample

• All criteria were met.

Compound Quantitation

• All criteria were met.

ICP Serial Dilution

• ICP serial dilution percent differences (%D) were within acceptance limits.

Field Duplicate Sample Precision

• Field duplicate samples were not analyzed.

Ferrous Iron, Alkalinity, Chloride, Nitrate, Nitrite, Sulfate, Sulfide, Total Organic Carbon, Specific Conductance

Holding Times

All samples were prepared and analyzed within the recommended time for each analysis.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD sample exhibited acceptable %R and RPD values.

Duplicate Sample Analysis

• The duplicate sample exhibited acceptable RPD values.

Laboratory Control Samples

• The following table presents LCS percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

LCS ID	Compound	%R	Qualifier	Affected Samples
B079053-BS1	Sulfide	56.4%	J/UJ	1, 2

Method Blank

The method blanks were free of contamination.

Field Blank

Field QC samples were not analyzed.

Initial Calibration Verification

All initial calibration criteria were met.

Continuing Calibration Verification

All continuing calibration criteria were met.

Compound Quantitation

• All samples were analyzed at various dilutions due to high concentrations of wet chemistry parameters.

Field Duplicate Sample Precision

Field duplicate samples were not analyzed.

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

October 17, 2013

Nancy Weaver
Senior Chemist

Dated: 10/21/13

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

	*			
1				
		•		
	·			

1 - FORM I **ANALYSIS DATA SHEET**

MW-04_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0569-01

File ID:

ve233014.D

Sampled:

08/14/13 09:20

Prepared:

Preparation:

08/21/13 10:39

SW-846 5030B

Analyzed:

Dilution:

08/21/13 13:07

Solids:

Initial/Final:

5 mL / 5 mL

250

Batch:	B079226	Sequence:	S004570	Calibration:	1300053	Instr	ument:	GCMS	SVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL		Q
	67-64-1	Acetone				1200	12000		
	107-13-1	Acrylonitrile				140	1200		
	994-05-8	tert-Amyl Methyl Et	her (TAME)			23	120		
	71-43-2	Benzene				20	250		
	108-86-1	Bromobenzene				11	250		
	74-97-5	Bromochlorometha	ne			56	250		
	75-27-4	Bromodichlorometh	nane			22	120		
	75-25-2	Bromoform				52	250		
	74-83-9	Bromomethane				240	500 i	15.	V-05
	78-93-3	2-Butanone (MEK)				590	5000		
	75-65-0	tert-Butyl Alcohol (TBA)			540	5000	R	V-16-
	104-51-8	n-Butylbenzene				14	250		
	135-98-8	sec-Butylbenzene				21	250		
	98-06-6	tert-Butylbenzene				24	250		
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			19	120		
	75-15-0	Carbon Disulfide				260	1000		
	56-23-5	Carbon Tetrachlori	de			25	1200		
	108-90-7	Chlorobenzene				30	250		
	124-48-1	Chlorodibromomet	hane			14	120		
	75-00-3	Chloroethane				40	500		
	67-66-3	Chloroform				36	500		
	74-87-3	Chloromethane				81	500	リ ブ La	04, V-0
	95-49-8	2-Chlorotoluene				18	250		
	106-43-4	4-Chlorotoluene				18	250		
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBCI	P)		84	1200		

1 - FORM I **ANALYSIS DATA SHEET**

MW-04_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0569-01

File ID:

ve233014.D

Sampled:

08/14/13 09:20

Prepared: Preparation: 08/21/13 10:39 SW-846 5030B Analyzed: Dilution:

08/21/13 13:07

250

Solids: Initial/Final:

5 mL / 5 mL

Batch:	B079226	Sequence:	S004570	Calibration:	1300053	Instru	ıment:	GCMSVOA5
	CAS NO.	COMPOUND		СО	NC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (I	EDB)			22	120	
	74-95-3	Dibromomethane				18	250	
	95-50-1	1,2-Dichlorobenzene				19	250	
	541-73-1	1,3-Dichlorobenzene				20	250	
	106-46-7	1,4-Dichlorobenzene				12	250	
	110-57-6	trans-1,4-Dichloro-2-	butene			30	500	
	75-71-8	Dichlorodifluorometh	ane (Freon 12)			30	500	
	75-34-3	1,1-Dichloroethane				40	250	
	107-06-2	1,2-Dichloroethane				48	250	
	75-35-4	1,1-Dichloroethylene				52	250	
	156-59-2	cis-1,2-Dichloroethyle	ene		15000	37	250	
	156-60-5	trans-1,2-Dichloroeth	ylene			38	250	
	78-87-5	1,2-Dichloropropane				28	250	
	142-28-9	1,3-Dichloropropane				25	120	
	594-20-7	2,2-Dichloropropane				18	250	
	563-58-6	1,1-Dichloropropene				32	500	
	10061-01-5	cis-1,3-Dichloroprope	ene			16	120	
	10061-02-6	trans-1,3-Dichloropro	pene			14	120	
	60-29-7	Diethyl Ether				56	500	
	108-20-3	Diisopropyl Ether (DI	IPE)			45	120	
	123-91-1	1,4-Dioxane				6600	12000	2 1/16-
	100-41-4	Ethylbenzene				23	250	
	87-68-3	Hexachlorobutadiene	Э			42	120	
	591-78-6	2-Hexanone (MBK)				380	2500	
	98-82-8	Isopropylbenzene (C	Sumene)			28	250	

1 - FORM I **ANALYSIS DATA SHEET**

MW-04_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0569-01

File ID:

ve233014.D

Sampled:

08/14/13 09:20

Prepared:

Preparation:

08/21/13 10:39 SW-846 5030B Analyzed: Dilution:

08/21/13 13:07

250

Solids:

nitial/Final:	5 mL / 5 mL	•						(oha.
satch:	B079226	Sequence:	S004570	Calibration:	1300053	Instru ————	ument:	GCMSVOA5
CAS N	0.	COMPOUND	_	CON	IC. (μg/L)	MDL	RL	Q
99-87-	6	p-Isopropyltoluene	(p-Cymene)			31	250	
1634-0)4-4	Methyl tert-Butyl Et	ther (MTBE)			22	250	
75-09-	2	Methylene Chloride	•			800	1200	
108-10)-1	4-Methyl-2-pentano	one (MIBK)			370	2500	
91-20-	3	Naphthalene				30	500	UJ
103-65	5-1	n-Propylbenzene				24	250	
100-42	2-5	Styrene				30	250	
630-20)-6	1,1,1,2-Tetrachloro	ethane			30	250	
79-34-	5	1,1,2,2-Tetrachloro	ethane			31	120	
127-18	3-4	Tetrachloroethylen	е			20	250	
109-99	9-9	Tetrahydrofuran				270	2500	
108-88	3-3	Toluene				22	250	
87-61-	-6	1,2,3-Trichlorobenz	zene			35	1200	リブ
120-82	2-1	1,2,4-Trichlorobenz	zene			30	250	
108-70	0-3	1,3,5-Trichlorobena	zene			34	250	
71-55-	-6	1,1,1-Trichloroetha	nne			24	250	
79-00-	-5	1,1,2-Trichloroetha	nne			29	250	
79-01-	-6	Trichloroethylene				19	250	
75 - 69-	-4	Trichlorofluorometh	hane (Freon 11)			37	500	
96-18-	-4	1,2,3-Trichloroprop	oane			30	500	
76-13-	-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		23	250	
95-63-	-6	1,2,4-Trimethylben	zene			45	250	
108-67	7-8	1,3,5-Trimethylben	zene			25	250	
75-01-	-4	Vinyl Chloride			3500	33	500	
10838	3/106423	m+p Xylene				45	500	

1 - FORM I ANALYSIS DATA SHEET

MW-04_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Matrix:

•

13H0569-01

Buffalo, NY File ID:

ve233014.D

Sampled:

Ground Water

Laboratory ID: Prepared:

Preparation:

08/21/13 10:39

Analyzed:

08/21/13 13:07

Solids:

Batch:

08/14/13 09:20

SW-846 5030B

Dilution:

250

10/17/13

Initial/Final:

5 mL / 5 mL

B079226

Sequence:

S004570

Calibration:

1300053

Instrument:

GCMSVOA5

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene		28	250	

1 - FORM I **ANALYSIS DATA SHEET**

MW-06_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve234010.D

Matrix:

Ground Water

Laboratory ID:

13H0569-02

File ID:

Sampled: Solids:

08/14/13 10:50

Prepared: Preparation: 08/22/13 08:49 SW-846 5030B

Analyzed: Dilution:

08/22/13 13:15

500

Initial/Final:

5 mL / 5 mL

Batch:	B079321	Sequence: S004572		Calibration: 1300053		Instrument:		GCMSVOA5	
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q	
	67-64-1	Acetone				2300	25000		
	107-13-1	Acrylonitrile				290	2500		
	994-05-8	tert-Amyl Methyl Et	her (TAME)			46	250		
	71-43-2	Benzene				40	500		
	108-86-1	Bromobenzene				22	500		
	74-97-5	Bromochlorometha	ne			110	500		
	75-27-4	Bromodichlorometh	nane			44	250		
	75-25-2	Bromoform				100	500		
	74-83-9	Bromomethane				470	1000	リブ M S-07A	
	78-93-3	2-Butanone (MEK)				1200	10000		
	75-65-0	tert-Butyl Alcohol (*	TBA)			1100	10000	R MS 15, V-16	
	104-51-8	n-Butylbenzene				27	500		
	135-98-8	sec-Butylbenzene				42	500		
	98-06-6	tert-Butylbenzene				48	500		
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			38	250		
	75-15-0	Carbon Disulfide				510	2000		
	56-23-5	Carbon Tetrachlori	de			50	2500		
	108-90-7	Chlorobenzene				60	500		
	124-48-1	Chlorodibromomet	hane			27	250		
	75-00-3	Chloroethane				80	1000		
	67-66-3	Chloroform				72	1000		
	74-87-3	Chloromethane				160	1000	1J. _{04, MS 09, V} .0:	
	95-49-8	2-Chlorotoluene				35	500		
	106-43-4	4-Chlorotoluene				37	500		
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBC	P)		170	2500	MS-15-	

1 - FORM I **ANALYSIS DATA SHEET**

MW-06_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Matrix:

Project: 13H0569-02

Buffalo, NY

ve234010.D

Sampled:

Ground Water 08/14/13 10:50 Laboratory ID: Prepared:

Preparation:

08/22/13 08:49

SW-846 5030B

File ID: Analyzed:

Dilution:

08/22/13 13:15

Solids:

Initial/Final:

5 mL / 5 mL

500

Batch:	B079321	Sequence:	S004572	Calibration:	1300053	Instru	ment: G	CMSVOA5
	CAS NO.	COMPOUND		(CONC. (µg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane	(EDB)			44	250	
	74-95-3	Dibromomethane				35	500	
	95-50-1	1,2-Dichlorobenzene	е			38	500	
	541-73-1	1,3-Dichlorobenzene	е			40	500	
	106-46-7	1,4-Dichlorobenzene	е			23	500	
	110-57-6	trans-1,4-Dichloro-2	-butene			60	1000	
	75-71-8	Dichlorodifluorometh	nane (Freon 12)			60	1000 U	MS-07A
	75-34-3	1,1-Dichloroethane				79	500	
	107-06-2	1,2-Dichloroethane				97	500	
	75-35-4	1,1-Dichloroethylene	е			100	500	
	156-59-2	cis-1,2-Dichloroethy	lene		22000	74	500	
	156-60-5	trans-1,2-Dichloroet	hylene			75	500	
	78-87-5	1,2-Dichloropropane	e			56	500	
	142-28-9	1,3-Dichloropropane	e			50	250	
	594-20-7	2,2-Dichloropropane	e			36	500 U	MS-07A
	563-58-6	1,1-Dichloropropene	Э			64	1000	
	10061-01-5	cis-1,3-Dichloroprop	ene			31	250	
	10061-02-6	trans-1,3-Dichloropr	ropene			28	250	
	60-29-7	Diethyl Ether				110	1000	
	108-20-3	Diisopropyl Ether (D	IPE)			90	250	
	123-91-1	1,4-Dioxane				13000	25000 R	V-16-
	100-41-4	Ethylbenzene				46	500	
	87-68-3	Hexachlorobutadier	ne			85	250	
	591-78-6	2-Hexanone (MBK)				760	5000	
	98-82-8	Isopropylbenzene (Cumene)			56	500	

1 - FORM I **ANALYSIS DATA SHEET**

MW-06_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0569-02

File ID:

ve234010.D

Sampled:

08/14/13 10:50

Prepared: Preparation: 08/22/13 08:49

SW-846 5030B

Analyzed:

Dilution:

08/22/13 13:15

500

Solids: Initial/Final:

5 mL / 5 mL

Batch:	B079321	Sequence:	S004572	Calibration:	1300053	Instru	ıment:	GCMSVOA5
	CAS NO.	COMPOUND		CON	NC. (µg/L)	MDL	RL	Q
	99-87-6	p-Isopropyltoluene	(p-Cymene)			62	500	
	1634-04-4	Methyl tert-Butyl Et	her (MTBE)			45	500	
	75-09-2	Methylene Chloride)			1600	2500	
	108-10-1	4-Methyl-2-pentano	one (MIBK)			730	5000	
	91-20-3	Naphthalene				60	1000 L	IJ MS-15-
	103-65-1	n-Propylbenzene				47	500	
	100-42-5	Styrene				60	500	
	630-20-6	1,1,1,2-Tetrachloro	ethane			60	500	
	79-34-5	1,1,2,2-Tetrachloro	ethane			62	250	
	127-18-4	Tetrachloroethylen	е			40	500	
	109-99-9	Tetrahydrofuran				540	5000	
	108-88-3	Toluene				45	500	
	87-61-6	1,2,3-Trichlorobena	zene			70	2500	1J MS-15
	120-82-1	1,2,4-Trichlorobena	zene			59	500	
	108-70-3	1,3,5-Trichlorobena	zene			69	500	
	71-55-6	1,1,1-Trichloroetha	ine			47	500	
	79-00-5	1,1,2-Trichloroetha	ine			58	500	
	79-01-6	Trichloroethylene				38	500	
	75-69-4	Trichlorofluoromet	hane (Freon 11)			74	1000	
	96-18-4	1,2,3-Trichloroprop	oane			60	1000	
	76-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		46	500	
	95-63-6	1,2,4-Trimethylber	zene			90	500	
	108-67-8	1,3,5-Trimethylber	zene			50	500	
	75-01-4	Vinyl Chloride				66	1000	
	108383/106423	m+p Xylene				90	1000	

1 - FORM I **ANALYSIS DATA SHEET**

MW-06_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

500

Matrix:

Ground Water

Laboratory ID:

13H0569-02

File ID:

ve234010.D

Sampled:

Initial/Final:

08/14/13 10:50

Prepared: Preparation: 08/22/13 08:49 SW-846 5030B Analyzed:

Dilution:

08/22/13 13:15

Solids:

Batch:

 $5 \, mL / 5 \, mL$

B079321

Sequence:

S004572

Calibration:

1300053

Instrument:

CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
95-47-6	o-Xylene		55	500	

1 - FORM I ANALYSIS DATA SHEET

FB-02_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0569-03 File ID:

ve233011.D

Sampled:

08/14/13 10:10

5 mL / 5 mL

Prepared:

08/21/13 10:39

Analyzed:

08/21/13 11:48

Solids:

Initial/Final:

Preparation:

SW-846 5030B

Dilution:

1

Batch:	B079226	Sequence:	S004570	Calibration:	1300053	Instru	ment:	GCMSVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	67-64-1	Acetone			_	4.7	50	
	107-13-1	Acrylonitrile				0.58	5.0	
	994-05-8	tert-Amyl Methyl Etl	her (TAME)			0.091	0.50	
	71-43-2	Benzene				0.079	1.0	
	108-86-1	Bromobenzene				0.044	1.0	
	74-97-5	Bromochlorometha	ne			0.22	1.0	
	75-27-4	Bromodichlorometh	nane			0.088	0.50	
	75-25-2	Bromoform				0.21	1.0	
	74-83-9	Bromomethane				0.94	2.0 L	(J V05
	78-93-3	2-Butanone (MEK)				2.4	20	
	75-65-0	tert-Butyl Alcohol (1	ГВА)			2.2	20 f	2 4-18-
	104-51-8	n-Butylbenzene				0.054	1.0	
	135-98-8	sec-Butylbenzene				0.084	1.0	
	98-06-6	tert-Butylbenzene				0.096	1.0	
	637-92-3	tert-Butyl Ethyl Ethe	er (TBEE)			0.075	0.50	
	75-15-0	Carbon Disulfide				1.0	4.0	
	56-23-5	Carbon Tetrachlori	de			0.10	5.0	
	108-90-7	Chlorobenzene				0.12	1.0	
	124-48-1	Chlorodibromomet	hane			0.054	0.50	
	75-00-3	Chloroethane				0.16	2.0	
	67-66-3	Chloroform				0.14	2.0	
	74-87-3	Chloromethane				0.32	2.0	イブ L -04, V-05
	95-49-8	2-Chlorotoluene				0.070	1.0	
	106-43-4	4-Chlorotoluene				0.074	1.0	
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBC	P)		0.34	5.0	

1-FORMI **ANALYSIS DATA SHEET**

FB-02_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13H0569-03 File ID:

ve233011.D

Sampled:

08/14/13 10:10

Prepared:

Preparation:

08/21/13 10:39

Analyzed:

08/21/13 11:48 NW

Solids:

Initial/Final:

5 mL / 5 mL

SW-846 5030B

Dilution:

Batch:	B079226	Sequence: S	6004570	Calibration:	1300053	Instru	ment:	GCMSVOA5
	CAS NO.	COMPOUND		co	DNC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane (EDI	В)			0.089	0.50	
	74-95-3	Dibromomethane				0.070	1.0	
	95-50-1	1,2-Dichlorobenzene				0.076	1.0	
	541-73-1	1,3-Dichlorobenzene				0.079	1.0	
	106-46-7	1,4-Dichlorobenzene				0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2-but	ene			0.12	2.0	
	75-71-8	Dichlorodifluoromethane	e (Freon 12)			0.12	2.0	
	75-34-3	1,1-Dichloroethane				0.16	1.0	
	107-06-2	1,2-Dichloroethane				0.19	1.0	
	75-35-4	1,1-Dichloroethylene				0.21	1.0	
,	156-59-2	cis-1,2-Dichloroethylene	•			0.15	1.0	
	156-60-5	trans-1,2-Dichloroethyle	ne			0.15	1.0	
	78-87-5	1,2-Dichloropropane				0.11	1.0	
	142-28-9	1,3-Dichloropropane				0.099	0.50	
	594-20-7	2,2-Dichloropropane				0.072	1.0	
	563-58-6	1,1-Dichloropropene				0.13	2.0	
	10061-01-5	cis-1,3-Dichloropropene				0.062	0.50	
	10061-02-6	trans-1,3-Dichloroprope	ne			0.056	0.50	
	60-29-7	Diethyl Ether				0.22	2.0	
	108-20-3	Diisopropyl Ether (DIPE))			0.18	0.50	
	123-91-1	1,4-Dioxane				26	50 F	<u>√</u> 46
	100-41-4	Ethylbenzene				0.092	1.0	
	87-68-3	Hexachlorobutadiene				0.17	0.50	
	591-78-6	2-Hexanone (MBK)				1.5	10	
	98-82-8	Isopropylbenzene (Cum	ene)			0.11	1.0	

1-FORMI **ANALYSIS DATA SHEET**

FB-02_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13H0569-03 File ID:

ve233011.D

Sampled:

08/14/13 10:10

Prepared:

08/21/13 10:39

Analyzed:

08/21/13 11:48

Solids:

Preparation:

SW-846 5030B

Dilution:

1

Initial/Final:

5 mL / 5 mL

atch: Bo	079226 Sequence:	S004570	Calibration:	1300053	Instru	ment:	GCMSVOA5
CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
99-87-6	p-Isopropyltoluene	e (p-Cymene)			0.12	1.0	
1634-04-4	Methyl tert-Butyl E	Ether (MTBE)			0.090	1.0	
75-09-2	Methylene Chloric	le			3.2	5.0	
108-10-1	4-Methyl-2-pentar	none (MIBK)			1.5	10	
91-20-3	Naphthalene				0.12	2.0	
103-65-1	n-Propylbenzene				0.094	1.0	
100-42-5	Styrene				0.12	1.0	
630-20-6	1,1,1,2-Tetrachlor	roethane			0.12	1.0	
79-34-5	1,1,2,2-Tetrachlor	roethane			0.12	0.50	
127-18-4	Tetrachloroethyle	ne			0.080	1.0	
109-99-9	Tetrahydrofuran				1.1	10	
108-88-3	Toluene				0.090	1.0	
87-61-6	1,2,3-Trichlorober	nzene			0.14	5.0 U	J
120-82-1	1,2,4-Trichlorobe	nzene			0.12	1.0	
108-70-3	1,3,5-Trichlorobe	nzene			0.14	1.0	
71-55-6	1,1,1-Trichloroeth	nane			0.094	1.0	
79-00-5	1,1,2-Trichloroeth	nane			0.12	1.0	
79-01-6	Trichloroethylene				0.077	1.0	
75-69-4	Trichlorofluorome	thane (Freon 11)			0.15	2.0	
96-18-4	1,2,3-Trichloropro	ppane			0.12	2.0	
76-13-1	1,1,2-Trichloro-1,	2,2-trifluoroethane	(Freon 1		0.092	1.0	
95-63-6	1,2,4-Trimethylbe	enzene			0.18	1.0	
108-67-8	1,3,5-Trimethylbe	enzene			0.10	1.0	
75-01-4	Vinyl Chloride				0.13	2.0	
108383/1	06423 m+p Xylene				0.18	2.0	

1 - FORM I **ANALYSIS DATA SHEET**

FB-02_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0569-03

File ID:

ve233011.D

Sampled:

Initial/Final:

08/14/13 10:10

Prepared:

08/21/13 10:39

Analyzed:

08/21/13 11:48

Solids:

5 mL / 5 mL

Preparation:

SW-846 5030B

Dilution:

1

Batch:	B079226	Sequence:	S004570	Calibration:	1300053	Instru	ment:	GCMSVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	95-47-6	o-Xylene				0.11	1.0	

1 - FORM I ANALYSIS DATA SHEET

TB-03_08-14-13

Con-Test Analytical Laboratory

Work Order:

13H0569

Client: CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix: Trip Blank Water

Laboratory ID:

13H0569-04

File ID:

ve233012.D

Sampled:

Initial/Final:

Laboratory:

08/14/13 10:05

5 mL / 5 mL

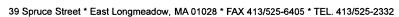
Prepared: 08/21/13 10:39

Analyzed:

08/21/13 12:14

Solids:

Preparation:


SW-846 5030B

Dilution:

CMCVOAF

Batch:	B079226	Sequence:	S004570	Calibration:	1300053	Instru	ment:	GCMSVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	67-64-1	Acetone			-	4.7	50	
	107-13-1	Acrylonitrile				0.58	5.0	
	994-05-8	tert-Amyl Methyl Et	her (TAME)			0.091	0.50	
	71-43-2	Benzene				0.079	1.0	
	108-86-1	Bromobenzene				0.044	1.0	
	74-97-5	Bromochlorometha	ne			0.22	1.0	
	75-27-4	Bromodichlorometh	nane			0.088	0.50	
	75-25-2	Bromoform				0.21	1.0	
	74-83-9	Bromomethane				0.94	2.0	UJ 4-05
	78-93-3	2-Butanone (MEK)				2.4	20	
	75-65-0	tert-Butyl Alcohol (TBA)			2.2	20 f	₹ 1/16
	104-51-8	n-Butylbenzene				0.054	1.0	
	135-98-8	sec-Butylbenzene				0.084	1.0	
	98-06-6	tert-Butylbenzene				0.096	1.0	
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			0.075	0.50	
	75-15-0	Carbon Disulfide				1.0	4.0	
	56-23-5	Carbon Tetrachlori	de			0.10	5.0	
	108-90-7	Chlorobenzene				0.12	1.0	
	124-48-1	Chlorodibromomet	hane			0.054	0.50	
	75-00-3	Chloroethane				0.16	2.0	
	67-66-3	Chloroform				0.14	2.0	
	74-87-3	Chloromethane				0.32	2.0 t	4J L-04.V-05
	95-49-8	2-Chlorotoluene				0.070	1.0	
	106-43-4	4-Chlorotoluene				0.074	1.0	
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBC	P)		0.34	5.0	

1 - FORM I **ANALYSIS DATA SHEET**

TB-03_08-14-13

Con-Test Analytical Laboratory Laboratory:

Work Order:

13H0569

Client: CDM Smith, Inc. - NY

5 mL / 5 mL

Project:

Buffalo, NY

Matrix:

Trip Blank Water Laboratory ID: 13H0569-04

File ID:

ve233012.D

Sampled:

08/14/13 10:05

08/21/13 10:39

Analyzed:

08/21/13 12:14

Solids:

Preparation:

Prepared:

SW-846 5030B

Dilution:

1

Initial/Final:

Batch:	B079226	Sequence:	S004570	Calibration:	1300053	Instru	ment:	GCMSVOA5
	CAS NO.	COMPOUND		CO	NC. (μg/L)	MDL	RL	Q
	106-93-4	1,2-Dibromoethane	(EDB)			0.089	0.50	
	74-95-3	Dibromomethane				0.070	1.0	
	95-50-1	1,2-Dichlorobenzen	е			0.076	1.0	
	541-73-1	1,3-Dichlorobenzen	е			0.079	1.0	
	106-46-7	1,4-Dichlorobenzen	е			0.046	1.0	
	110-57-6	trans-1,4-Dichloro-2	?-butene			0.12	2.0	
	75-71-8	Dichlorodifluoromet	hane (Freon 12)			0.12	2.0	
	75-34-3	1,1-Dichloroethane				0.16	1.0	
	107-06-2	1,2-Dichloroethane				0.19	1.0	
	75-35-4	1,1-Dichloroethylen	e			0.21	1.0	
	156-59-2	cis-1,2-Dichloroethy	lene			0.15	1.0	
	156-60-5	trans-1,2-Dichloroet	thylene			0.15	1.0	
	78-87-5	1,2-Dichloropropane	е			0.11	1.0	
	142-28-9	1,3-Dichloropropane	е			0.099	0.50	
	594-20-7	2,2-Dichloropropane	е			0.072	1.0	
	563-58-6	1,1-Dichloropropend	е			0.13	2.0	
	10061-01-5	cis-1,3-Dichloroprop	oene			0.062	0.50	
	10061-02-6	trans-1,3-Dichloropi	ropene			0.056	0.50	
	60-29-7	Diethyl Ether				0.22	2.0	
	108-20-3	Diisopropyl Ether (D	DIPE)			0.18	0.50	
	123-91-1	1,4-Dioxane				26	50	2 - V 16
	100-41-4	Ethylbenzene				0.092	1.0	
	87-68-3	Hexachlorobutadier	ne			0.17	0.50	
	591-78-6	2-Hexanone (MBK)				1.5	10	
	98-82-8	Isopropylbenzene (Cumene)			0.11	1.0	

1 - FORM I **ANALYSIS DATA SHEET**

TB-03_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Trip Blank Water

Laboratory ID:

13H0569-04 File ID: ve233012.D

Sampled:

08/14/13 10:05

Prepared:

08/21/13 10:39

Analyzed:

Solids: Preparation: SW-846 5030B

Dilution:

08/21/13 12:14

Initial/Final:

5 mL / 5 mL

1

Batch:	B079226	Sequence:	S004570	Calibration:	1300053	Instru	ment:	GCMSVOA5
	CAS NO.	COMPOUND		CON	NC. (μg/L)	MDL	RL	Q
	99-87-6	p-Isopropyltoluene	(p-Cymene)			0.12	1.0	
	1634-04-4	Methyl tert-Butyl Et	her (MTBE)			0.090	1.0	
	75-09-2	Methylene Chloride				3.2	5.0	
	108-10-1	4-Methyl-2-pentano	ne (MIBK)			1.5	10	
	91-20-3	Naphthalene				0.12	2.0	
	103-65-1	n-Propylbenzene				0.094	1.0	
	100-42-5	Styrene				0.12	1.0	
	630-20-6	1,1,1,2-Tetrachloro	ethane			0.12	1.0	
	79-34-5	1,1,2,2-Tetrachloro	ethane			0.12	0.50	
	127-18-4	Tetrachloroethylen	е			0.080	1.0	
	109-99-9	Tetrahydrofuran				1.1	10	
	108-88-3	Toluene				0.090	1.0	
	87-61-6	1,2,3-Trichlorobenz	ene			0.14	5.0 🕻	ル ブ
	120-82-1	1,2,4-Trichlorobenz	zene			0.12	1.0	
	108-70-3	1,3,5-Trichlorobenz	zene			0.14	1.0	
	71-55-6	1,1,1-Trichloroetha	ne			0.094	1.0	
	79-00-5	1,1,2-Trichloroetha	ne			0.12	1.0	
	79-01-6	Trichloroethylene				0.077	1.0	
	75-69-4	Trichlorofluorometh	nane (Freon 11)			0.15	2.0	
	96-18-4	1,2,3-Trichloroprop	ane			0.12	2.0	
	76-13-1	1,1,2-Trichloro-1,2	2-trifluoroethane	(Freon 1		0.092	1.0	
	95-63-6	1,2,4-Trimethylben	zene			0.18	1.0	
	108-67-8	1,3,5-Trimethylben	zene			0.10	1.0	
	75-01-4	Vinyl Chloride				0.13	2.0	
	108383/106423	m+p Xylene				0.18	2.0	

1-FORMI **ANALYSIS DATA SHEET**

TB-03_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Trip Blank Water

13H0569-04

File ID:

ve233012.D

Sampled:

Initial/Final:

08/14/13 10:05

5 mL / 5 mL

Laboratory ID: Prepared:

08/21/13 10:39

Analyzed:

08/21/13 12:14

Solids:

Preparation:

SW-846 5030B

Dilution:

1

Batch:	B079226	Sequence:	S004570	Calibration:	1300053	Instru	ment:	GCMSVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	95-47-6	o-Xylene				0.11	1.0	_

1 - FORM I **ANALYSIS DATA SHEET**

FD-01_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0569-05

File ID:

ve233016.D

Sampled:

Solids:

08/14/13 00:00

Prepared:

Preparation:

08/21/13 10:39

SW-846 5030B

Analyzed:

Dilution:

08/21/13 14:07

500

Initial/Final:

5 mL / 5 mL

Batch:	B079226	Sequence:	S004570	Calibration:	1300053	Instru	ument:	GCMSVOA5
	CAS NO.	COMPOUND		CON	IC. (μg/L)	MDL	RL	Q
	67-64-1	Acetone				2300	25000	
	107-13-1	Acrylonitrile				290	2500	
	994-05-8	tert-Amyl Methyl Et	her (TAME)			46	250	
	71-43-2	Benzene				40	500	
	108-86-1	Bromobenzene				22	500	
	74-97-5	Bromochlorometha	ne			110	500	
	75-27-4	Bromodichlorometh	nane			44	250	
	75-25-2	Bromoform				100	500	
	74-83-9	Bromomethane				470	1000	UJ - V05-
	78-93-3	2-Butanone (MEK)				1200	10000	
	75-65-0	tert-Butyl Alcohol (*	ТВА)			1100	10000	R V-18
	104-51-8	n-Butylbenzene				27	500	
	135-98-8	sec-Butylbenzene				42	500	
	98-06-6	tert-Butylbenzene				48	500	
	637-92-3	tert-Butyl Ethyl Eth	er (TBEE)			38	250	
	75-15-0	Carbon Disulfide				510	2000	
	56-23-5	Carbon Tetrachlori	de			50	2500	
	108-90-7	Chlorobenzene				60	500	
	124-48-1	Chlorodibromomet	hane			27	250	
	75-00-3	Chloroethane				80	1000	
	67-66-3	Chloroform				72	1000	
	74-87-3	Chloromethane				160	1000	UJ L-04, V-0 5
	95-49-8	2-Chlorotoluene				35	500	
	106-43-4	4-Chlorotoluene				37	500	
	96-12-8	1,2-Dibromo-3-chlo	oropropane (DBC	P)		170	2500	

1 - FORM I ANALYSIS DATA SHEET

FD-01 08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

ve233016.D

Matrix:

Ground Water

Laboratory ID:

Prepared:

Preparation:

13H0569-05

SW-846 5030B

File ID:

Sampled:

08/14/13 00:00

08/21/13 10:39

Analyzed: Dilution:

08/21/13 14:07

500

Solids: Initial/Final:

5 mL / 5 mL

B079226

S004570

GCMSVOA5 Batch: Calibration: 1300053 Instrument: Sequence: CAS NO. COMPOUND CONC. (µg/L) MDL RL 0 106-93-4 44 250 1,2-Dibromoethane (EDB) 74-95-3 35 500 Dibromomethane 95-50-1 500 1,2-Dichlorobenzene 38 541-73-1 1,3-Dichlorobenzene 40 500 106-46-7 1,4-Dichlorobenzene 23 500 110-57-6 trans-1,4-Dichloro-2-butene 60 1000 75-71-8 60 1000 Dichlorodifluoromethane (Freon 12) 75-34-3 1,1-Dichloroethane 79 500 107-06-2 97 500 1,2-Dichloroethane 75-35-4 500 1,1-Dichloroethylene 100 156-59-2 cis-1,2-Dichloroethylene 23000 74 500 156-60-5 75 trans-1,2-Dichloroethylene 500 78-87-5 1,2-Dichloropropane 56 500 142-28-9 50 250 1,3-Dichloropropane 594-20-7 2,2-Dichloropropane 36 500 563-58-6 1,1-Dichloropropene 64 1000 250 10061-01-5 cis-1,3-Dichloropropene 31 10061-02-6 trans-1,3-Dichloropropene 28 250 60-29-7 110 1000 Diethyl Ether 108-20-3 Diisopropyl Ether (DIPE) 250 90 13000 25000 R 123-91-1 1,4-Dioxane 100-41-4 Ethylbenzene 46 500 87-68-3 250 Hexachlorobutadiene 85 591-78-6 2-Hexanone (MBK) 760 5000 98-82-8 Isopropylbenzene (Cumene) 56 500

1-FORMI **ANALYSIS DATA SHEET**

FD-01_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID: 13H0569-05 File ID:

ve233016.D

Sampled:

08/14/13 00:00

Prepared:

08/21/13 10:39

Analyzed:

08/21/13 14:07

Solids: Preparation: SW-846 5030B

Dilution:

Initial/Final:

5 mL / 5 mL

500

atch:	B079226	Sequence:	S004570	Calibration:	1300053	Instru	ıment: GC	MSVOA5
CAS N	0.	COMPOUND		co	NC. (μg/L)	MDL	RL	Q
99-87-	-6	p-Isopropyltoluene	(p-Cymene)			62	500	
1634-0	04-4	Methyl tert-Butyl Et	her (MTBE)			45	500	
75-09-	-2	Methylene Chloride)			1600	2500	
108-10	0-1	4-Methyl-2-pentano	one (MIBK)			730	5000	
91-20-	-3	Naphthalene				60	1000	
103-6	5-1	n-Propylbenzene				47	500	
100-4	2-5	Styrene				60	500	
630-20	0-6	1,1,1,2-Tetrachloro	ethane			60	500	
79-34	-5	1,1,2,2-Tetrachloro	ethane			62	250	
127-1	8-4	Tetrachloroethylen	e			40	500	
109-9	9-9	Tetrahydrofuran				540	5000	
108-8	8-3	Toluene				45	500	
87-61	-6	1,2,3-Trichlorobena	zene			70	2500 U J	٢
120-8	2-1	1,2,4-Trichlorobena	zene			59	500	
108-7	0-3	1,3,5-Trichlorobena	zene			69	500	
71-55	-6	1,1,1-Trichloroetha	ne			47	500	
79-00	-5	1,1,2-Trichloroetha	ne			58	500	
79-01	-6	Trichloroethylene				38	500	
75-69	-4	Trichlorofluorometh	nane (Freon 11)			74	1000	
96-18	-4	1,2,3-Trichloroprop	oane			60	1000	
76-13	-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		46	500	
95-63	-6	1,2,4-Trimethylben	zene			90	500	
108-6	7-8	1,3,5-Trimethylben	zene			50	500	
75-01	-4	Vinyl Chloride				66	1000	
10838	33/106423	m+p Xylene				90	1000	

K

1 - FORM I ANALYSIS DATA SHEET

FD-01_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Work Order:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0569-05

File ID:

ve233016.D

Sampled:

08/14/13 00:00

Prepared:

Preparation:

08/21/13 10:39

Analyzed:

08/21/13 14:07

Solids:

Batch:

SW-846 5030B

Dilution:

500

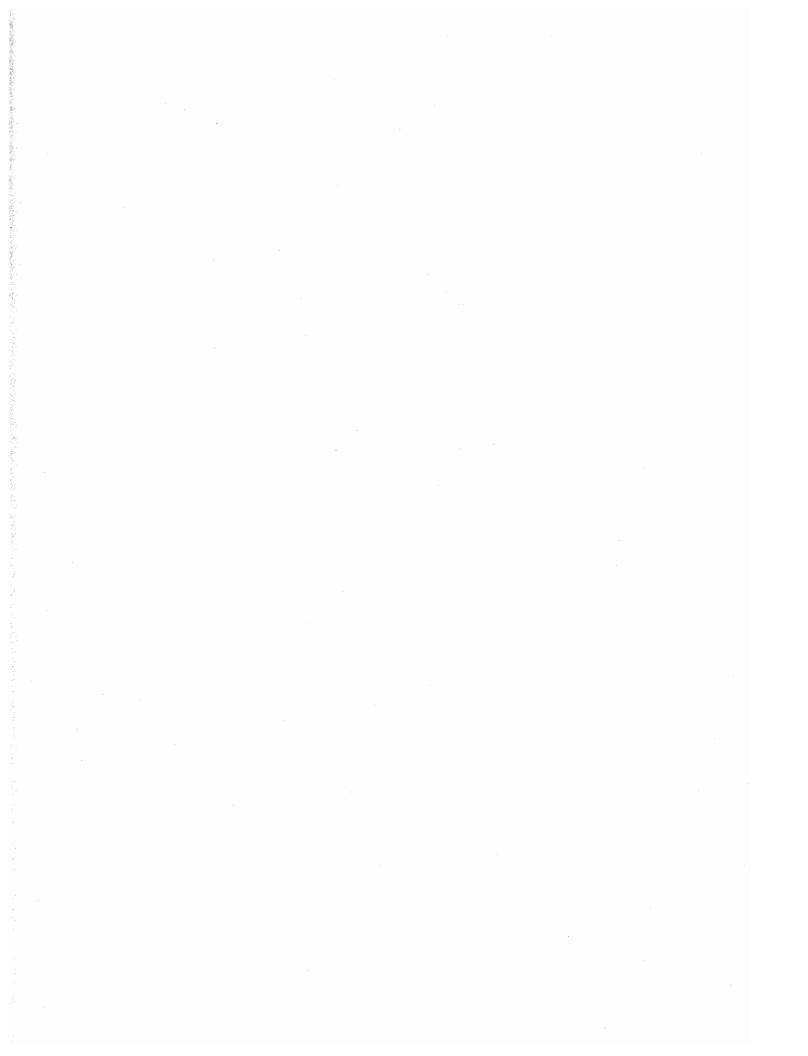
1019

Initial/Final:

5 mL / 5 mL

B079226

Sequence:


S004570

Calibration:

1300053

Instrument:

CAS NO.	COMPOUND	CONC. (μg/L)	MDL	RL	Q
95-47-6	o-Xylene		55	500	

1 - FORM I ANALYSIS DATA SHEET

MW-04_08-14-13

Laboratory:

Con-Test Analytical Laboratory

SDG:

13H0569

Client:

CDM Smith, Inc. - NY

Project:

Buffalo, NY

Matrix:

Ground Water

Laboratory ID:

13H0569-01

NW 10/17/13

Sampled:

08/14/13 09:20

% Solids:

0.00

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
7439-89-6	Iron	3.4	0.026	0.050	1		B079102	08/20/13 14:40	SW-846 6010C

1 - FORM I

MW-06_08-14-13

Laboratory:

Con-Test Analytical Laboratory

CDM Smith, Inc. - NY

Client: Matrix:

Ground Water

Sampled:

08/14/13 10:50

% Solids:

0.00

ANALYSIS DATA SHEET

SDG:

13H0569

Project:

Buffalo, NY

Laboratory ID:

13H0569-02

CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
7439-89-6	Iron	0.27	0.026	0.050	1		B079102	08/20/13 13:23	SW-846 6010C

•				
;				
	·			

1-FORMI

MW-04_08-14-13

Laboratory:

Con-Test Analytical Laboratory

Client:

CDM Smith, Inc. - NY

Matrix:

Ground Water

Sampled:

08/14/13 09:20

% Solids:

0.00

ANALYSIS DATA SHEET

SDG:

13H0569

Project:

Buffalo, NY

Laboratory ID:

13H0569-01

70 Solius.	0.00								
CAS NO.	Analyte	Concentration (mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
471-34-1	Alkalinity	540	0.79	1.0	1		B078962	08/16/13 11:00	SM18-20 2320B
16887-00-6	Chloride	150	3.5	5.0	5		B079056	08/21/13 13:10	SM18-20 4500 CL B
NA	Ferrous Iron	1.4	0.25	0.40	2		B079077	08/19/13 14:45	SM18-20 3500 Fe D
14797-55-8	Nitrate as N		0.030	0.050	1		B079065	08/19/13 09:58	SM 18-20 4500 NO3
14797-65-0	Nitrite as N		0.0030	0.010	1		B078867	08/15/13 11:20	SM 18-20 4500 NO2
14808-79-8	Sulfate	78	6.4	8.0	4		B079386	08/22/13 18:30	ASTM D516-90, 02
184-96-258	Sulfide		1.9	2.0	1 UJ	<u>-03-</u>	B079053	08/19/13 16:16	SM18-20
NA	Total Organic Carbon	18	0.67	1.0	1		B079021	08/19/13 08:22	SM 5310B
CAS NO.	Analyte	Concentration (µmhos/cm)	MDL	RL	DF	Q	Batch	Analyzed	Method
80	Specific conductores	1200		2.0	1		D070061	00/16/12 12:15	CM19.20.2510D

CAS NO.	Analyte	(µmhos/cm)	MDL	RL	DF	Q	Batch	Analyzed	Method
SC	Specific conductance	1300		2.0	1		B078961	08/16/13 12:15	SM18-20 2510B

1 - FORM I

MW-06_08-14-13

Laboratory:

Con-Test Analytical Laboratory

CDM Smith, Inc. - NY

Client: Matrix:

Ground Water

Sampled:

08/14/13 10:50

Specific conductance

% Solids:

SC

0.00

ANALYSIS DATA SHEET

SDG: 13H0569

Project:

Buffalo, NY

Laboratory ID:

13H0569-02

10/12/13

		Concentration							
CAS NO.	Analyte	(mg/L)	MDL	RL	DF	Q	Batch	Analyzed	Method
471-34-1	Alkalinity	380	0.79	1.0	1		B078962	08/16/13 11:00	SM18-20 2320B
16887-00-6	Chloride	150	3.5	5.0	5		B079056	08/21/13 13:10	SM18-20 4500 CL B
NA	Ferrous Iron		0.12	0.20	1		B079077	08/19/13 14:45	SM18-20 3500 Fe D
14797-55-8	Nitrate as N		0.030	0.050	1		B079065	08/19/13 09:58	SM 18-20 4500 NO3
14797-65-0	Nitrite as N		0.0030	0.010	1		B078867	08/15/13 11:20	SM 18-20 4500 NO2
14808-79-8	Sulfate	82	6.4	8.0	4		B079386	08/22/13 18:30	ASTM D516-90, 02
184-96-258	Sulfide		1.9	2.0	1 U J	L-03	В079053	08/19/13 16:16	SM18-20
NA	Total Organic Carbon	14	0.67	1.0	1		B079021	08/19/13 08:22	SM 5310B
CAS NO.	Analyte	Concentration (µmhos/cm)	MDL	RL	DF	Q	Batch	Analyzed	Method

2.0

1

B078961

08/16/13 12:15

SM18-20 2510B

1200

DATA USABILITY SUMMARY REPORT (DUSR)

DATA USABILITY SUMMARY REPORT

Volatile Organics

by EPA Compendium Method TO-15 Laboratory SDG: Data Package # 13D1071

Sample Identification

Field Sa	ample ID	Lab ID	Matrix
SV-4	OA	13D1071-01	Air
SV-4	SS	13D1071-02	Air
SV-4	IA	13D1071-03	Air
SV-5	OA	13D1071-04	Air
SV-5	SS	13D1071-05	Air
SV-5	IA	13D1071-06	Air
SV-3	SS	13D1071-07	Air
SV-3	IA	13D1071-08	Air
SV-2	SS1	13D1071-09	Air
SV-1	IA2	13D1071-10	Air
SV-1	SS2	13D1071-11	Air
DUP 1		13D1071-12	Air
SV-2	OA	13D1071-13	Air
DUP 2		13D1071-14	Air

I. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE

The laboratory submitted required deliverables. It is noted that the electronic copy was not bookmarked thoroughly for content, and no Table of Contents was included.

II. TECHNICAL DATA VALIDATION

The quality control elements that were reviewed are listed below:

Holding Times

Blanks

Reported Results

Accuracy

Precision

Instrument Performance and Calibration

Holding Times

Prescribed holding times for all samples were met. Canister pressures pre- and post-sampling were recorded on the chain-of-custody and were acceptable.

Blanks

All method blanks were reported free of contamination below the analyte PQL values.

Reported Results

Reported positive results in field samples were qualitatively verified from raw data chromatograms and spectral match.

Accuracy

Surrogate recoveries and internal standard responses were within limits. It is noted that NYSDEC and method guidance do not require surrogate spikes for TO-15 canister samples.

Blank Spike (LCS) samples were reported; the following target compound recoveries exceeded the upper limits: 4-methyl-2-pentanone (MIBK), acetone, isopropanol (IPA), and 1,1,2,2-tetrachloroethane.

Positive results for MIBK, acetone and IPA were qualified as estimated values (J) in associated samples, with indication of high bias. No positives were reported for 1,1,2,2-tetrachloroethane and therefore no qualifiers were assigned for this compound.

Precision

Samples SV-1 IA-2 and SV-2 SS1 were identified as the parent samples of field duplicate samples DUP-1 and DUP-2. RPD values for positive target compounds in field duplicates were within laboratory limits, as were laboratory duplicate RPD values for sample SV-4 SS.

Instrument Performance and Calibration

Calibration parameters were within acceptable limits, with the following exception: target compound Freon-113 presented %D value above the method limit of 30%, with reduced sensitivity.

Freon-113 was qualified as estimated (UJ or J) in all SDG air samples, with indication of low bias due to reduced sensitivity relative to average ICAL RRF.

Com

Lab ID: Con-Test Lab Job No.: 13D1071 Site ID: Fmr. Doro Cleaners

Calibration or QC Check	Minimum Frequency	Acceptance Criteria	QC Non-Compliance Description	Data Qualification Action ¹
Sample Preservation	All samples	Certified clean & leak-free canisters per method Acceptable pressures	None found	
Holding Times	All samples	Analysis within 30 days from collection	None found	
MS Tuning	Every 24 hours, prior to calibrations	Method TO-15, Sect. 10.4 and Table 3 criteria	None found	
Initial Calibration	Prior to sample analysis, and whenever continuing calibrations fail to meet acceptance criteria (minimum 5 levels)	RSD of mean RRF each target must be ≤ 30.0% Note: Linear regression is optional for targets w/ RSD >30%; r must be >0.99	None found	
Retention Time Windows	Each sample analyzed	Relative retention time (RRT) of each positive analyte within ± 0.06 of associated IS RRT	None found	
Continuing Calibration Verification (CCV)	Daily, before sample analysis, and after each successive 24 hours of	Response %D for each Target must be < 30.0% %D = RRFc - RRFi *100	Freon-113 (-32.5%) CCV 04/28 13D1071-01-14; LCS, DUP-1, DUP-2	Flag Freon-113 in associated samples as estimated (UJ or J) with indication of low bias
	sample analysis	RRFi %D = <u>True - Found</u> *100 True Value	None found CCV 04/26 13D1071-(04,07,09,11)RE; LCS, (DUP-1,DUP-2)RE	n/a
Method Blank (certified clean canister; w/ ultra-pure zero air)	After ICV or CCV, before sample analysis, minimum once per 24-hour period	No analytes detected ≥ PQL* for method blank * PQL = 3x MDL	04/28/13 B071996-BLK1 All targets <pql 13D1071-01-14; LCS, DUP-1, DUP-2 04/26/13 B071997-BLK1 EtOH <pql 13D1071-(04,07,09,11)RE; LCS, (DUP-1,DUP-2)RE</pql </pql 	

Notes:

Data Reviewer: Chris Taylor For: CDM-Smith / NYSDEC

¹ See DV report for details.

CALIBRATION AND QC SUMMARY EPA METHOD TO-15, GC-MS VOLATILES

Lab ID: Con-Test Lab Job No.: 13D1071 Site ID: Fmr. Doro Cleaners

Calibration or QC Check	Minimum Frequency	Acceptance Criteria	QC Non-Compliance Description		Data Qualification Action ¹
Surrogates	Note: per NYSDEC and method guidance, use of surrogates for TO-15 is not required	All surrogates recovered within 70 - 130% of expected (true) value, or recovery within laboratory-derived statistical limits	None found		
Internal Standards (IS)	Every sample, blank and standard	Retention time (RT): ± 20 seconds max from CCAL or average of ICAL	None found		
		IS area: max. ± 40% from corresponding CCAL	None found		
Laboratory Control Sample (LCS) aka Laboratory- Fortified Blank (LFB) aka Blank Spike	Once per each analytical batch (should include all reported analytes), and should be prepared independently from calibration standards	All analytes recovered within 70 - 130% of expected (true) value, <u>or</u> recovery within laboratory-derived statistical limits	B071996-BS1 Acetone, IPA, MIBK, 1,1,2,2- tetrachloroethane out (>130%)		Flag positives only for noted compounds in associated samples as estimated (J) with indication of high bias
Field Duplicates	As submitted to laboratory and identified to reviewer	Not established; use lab- derived limits.	DUP 1	SV-1	n/a All RPD values w/in lab limits
		Calculate RPD values and report.	DUP 2	SV-2 SS1	n/a All RPD values w/in lab limits
Lab Duplicates	As analyzed by laboratory	Not established; use lab- derived limits.	B071996-DUP1 None found	SV-4 S	S

Notes:

Data Reviewer: Chris Taylor For: CDM-Smith / NYSDEC

¹ See DV report for details.

DATA VALIDATION CHECKLIST Mercury and Cyanide

VALIDATION LEVEL:	☐ A		☐ B ⊠ DUSR				
DATA PACKAGE: 12L0362		MATRIX: Soil					
PROJECT: Former Doro Cleaners;	Site No. 915238						
LABORATORY: Con-Test							
VALIDATOR: Chris Taylor	ı	DATE: 06/24/2013					
	ANALYSES PE	RFORMED					
SW-846 6010/ICP SW-846/GFAA Metals Metals	⊠ SW-846 Hg 74	170/7471					
SW-846 6020/ICP-MS Metals		☑ Other SW-846 Cyanide 9014					
Note: Affirmations apply to both m			s 12L0362-03	3 and -12.			
1. DATA PACKAGE COMPLETENE Is technical verification docum Is a case narrative present?		ATIVE	⊠ YES ⊠ YES	□ NO	□ N/A □ N/A		
Comments:							
2. HOLDING TIMES Are sample holding times acce Comments:	(All Le ptable?	evels)	⊠ YES	□NO	□ N/A		
Sample #s qualified estimated:	None						
Sample #s qualified rejected:	None						
3. INSTRUMENT PERFORMANCE		S (DUSR)	_	_	_		
Are ICP interference checks acc	•		YES	□ NO	⊠ N/A		
Were initial calibrations perform		nts?	∑ YES	□NO	□ N/A		
Are initial calibrations acceptab		. 0	∑ YES	∐ NO	□ N/A		
Were ICV and CCV checks perfo		ients?	∑ YES	□ NO	□ N/A		
Are ICV and CCV checks accepts Comments:	able ?		∑ YES	∐ NO	□ N/A		
Sample #s qualified estimated:	None						
Sample #s qualified rejected:	None						

DATA VALIDATION CHECKLIST (Continued)

4.	BLANKS	(All Levels)			
	Were ICB and CCB checks perfor	med for all applicable analyses?	XES	☐ NO	☐ N/A
	Are ICB and CCB results acceptable	XES	☐ NO	☐ N/A	
	Were preparation blanks analyze	XES YES	☐ NO	□ N/A	
	Are preparation blank results acc		YES	☐ NO	□ N/A
	Were equipment blanks analyze	•	YES	⊠ NO	□ N/A
	Are equipment blank results acc	☐ ☐ YES	□ №	⊠ n/a	
	Comments:	cptable:			
	Comments.				
	Sample #s qualified not-detected	d or estimated: None			
	Sample #s qualified rejected:	None			
	Jampie #3 qualified rejected.	None			
5.	ACCURACY	(Level B and DUSR)			
٦.	Were matrix spike samples analy		X YES	Пио	□ N/A
			☐ YES	Пио	⊠ N/A
	Are matrix spike sample recover	ies acceptable?	☐ YES	=	
	Were LCS samples analyzed?			∐ NO	□ N/A
	Are LCS results acceptable?		∑ YES	∐ NO	☐ N/A
		for Hg was run; the parent sample wa	is not from ti	his SDG.	
	LCS/LCSD were run for CN; reco	veries were acceptable.			
	Sample #s qualified estimated:	None			
	Sample #s qualified rejected:	None			
_					
6.	PRECISION	(Level B and DUSR)	-		
	Were laboratory duplicates analy		∑ YES	∐ NO	□ N/A
	Are laboratory duplicate sample:	s RPD values acceptable?	∐ YES	∐ №	⊠ N/A
	Were field duplicates analyzed?		∐ YES	⊠ NO	☐ N/A
	Are field duplicate RPD values ac	cceptable?	YES YES	☐ NO	⊠ N/A
	Comments: A batch duplicate	for Hg was run; the parent sample wo	as not from t	his SDG.	
	Duplicate LCS san	nples were run for HG and CN, with ac	ceptable RPL) values.	
			-		
	_				
					
	Sample #s qualified estimated:	None			
	Sample #s qualified rejected:	None			
	Tampio no quannos rejectos.				

DATA VALIDATION CHECKLIST (Continued)

7.	REPORTED RESULTS (All Levels)			
	Are results reported for all requested analyses?		□NO	□ N/A
	Are all results supported in the raw data? (DUSR)	∑ YES	□ NO	☐ N/A
	Comments:	<u></u>		
	Comments.			
C	DMMENTS (attach additional sheets as necessary):			
_				
_				
-				
_				
_				
_				
_				
=				
_				
_				
=				
=				
_				
_				
=				
=				
Re	viewed by:	06/24/2013		
	Signature	Date		
	0			
	Chris Taylor			
	(Reviewer's Name Typed/Printed)			
	7 - 11 1			

HOLDING TIME SUMMARY

DATA PACKAGE: 12L0362		VALIDATO	R: C. Taylor	DATE: 0	06/24/2013	Page <u>1</u> of <u>1</u>			
PREP. HOLDIN	PREP. HOLDING TIME LIMIT: N/A			ANALYSIS HOLDING TIME LIMIT: Mercury: 26 days from VTSR Cyanide: 12 days from VTSR					
Field Sample ID	Analysis Type	Date Received	Date Prepared	Date Analyzed	Prep. Holding Time, Days	Analysis Holding Time, Days	Qualifier		
B15 (4-8ft)	Mercury	12/12/12	N/A	12/14/12	N/A	2			
B29 (10-12ft)	Mercury	12/12/12	N/A	12/14/12	N/A	2			
D45 (4.0%)	0	40/40/40	21/2	40/00/40	21/2				
B15 (4-8ft)	Cyanide	12/12/12	N/A	12/20/12	N/A	8			
B29 (10-12ft)	Cyanide	12/12/12	N/A	12/20/12	N/A	8			

DATA VALIDATION CHECKLIST Mercury and Cyanide

VALIDATION LEVEL:	□ A	□В		⊠ DUSR					
DATA PACKAGE: 12L0409		MATRIX: Soil (12L0	409-01) ; H ₂ 0	O (12L040)9-14)				
PROJECT: Former Doro Cleaners;	Site No. 915238								
LABORATORY: Con-Test	_								
VALIDATOR: Chris Taylor		DATE: 06/30/2013							
	ANALYSES PE	RFORMED							
SW-846 6010/ICP SW-846/GFAA Metals Metals	⊠ SW-846 Hg 74	470/7471							
SW-846 6020/ICP-MS Metals		Other SW-846 Cyanide 9014							
	Note: Affirmations apply to both mercury and cyanide analysis for samples 12L0409-01 and -14.								
1. DATA PACKAGE COMPLETENE Is technical verification docum Is a case narrative present? Comments:		RATIVE	⊠ YES ⊠ YES	□ NO	□ N/A □ N/A				
Comments.									
2. HOLDING TIMES Are sample holding times acce	(All Le	evels)		□NO	 N/A				
Comments:									
Sample #s qualified estimated: Sample #s qualified rejected:	None None								
3. INSTRUMENT PERFORMANCE	AND CALIBRATION	S (DUSR)							
Are ICP interference checks acc			YES	☐ NO	⊠ N/A				
Were initial calibrations perform	med on all instrume	nts?	XES	☐ NO	☐ N/A				
Are initial calibrations acceptab			∑ YES	∐ №	□ N/A				
Were ICV and CCV checks perfo		nents?	∑ YES	□NO	□ N/A				
Are ICV and CCV checks accepts Comments:	able?		∑ YES	∐ NO	□ N/A				
Sample #s qualified estimated:	None								
Sample #s qualified rejected:	None								

DATA VALIDATION CHECKLIST (Continued)

4.	BLANKS	(All Levels)								
	Were ICB and CCB checks perfor	med for all applicable analyses?	XES	☐ NO	☐ N/A					
	Are ICB and CCB results acceptab	ole?	XES	☐ NO	☐ N/A					
	Were preparation blanks analyze	ed?	XES	☐ NO	☐ N/A					
	Are preparation blank results acc	eptable?	XES	☐ NO	☐ N/A					
	Were equipment blanks analyzed	?!	YES	$oxed{oxed}$ NO	☐ N/A					
	Are equipment blank results acce	eptable?	YES	☐ NO	⊠ N/A					
	Comments:	•								
	Sample #s qualified not-detected	l or estimated: None								
	Sample #s qualified rejected:	None								
5.	ACCURACY	(Level B and DUSR)								
	Were matrix spike samples analy	zed?	XES YES	☐ NO	☐ N/A					
	Are matrix spike sample recoveri	XES	☐ NO	□ N/A □ N/A						
	Were LCS samples analyzed?	ere LCS samples analyzed?								
	Are LCS results acceptable?									
	Comments: An aqueous batch MS for Hg was run; the parent sample was B-23 from this SDG. A									
	soil batch MS for CN was run; the parent sample was B-23 from this SDG.									
	LCS/LCSD were run for Hg and C									
	Sample #s qualified estimated:	None								
	Sample #s qualified rejected:	None								
	Sample #3 qualified rejected.	None								
6.	PRECISION	(Level B and DUSR)								
	Were laboratory duplicates analy	/zed?	XES YES	☐ NO	☐ N/A					
	Are laboratory duplicate samples		XES YES	☐ NO	□ N/A					
	Were field duplicates analyzed?	•	YES	⊠ NO	□ N/A					
	Are field duplicate RPD values ac	ceptable?	☐ YES	□ NO	⊠ N/A					
	•	for Hg and CN were run; parent sampl	es B-40 (10-1	12) and B-	23					
		G. Duplicate LCS samples were run foi	-	-						
	acceptable RPD vo		,							
1										
1	Sample #s qualified estimated:	None								
	Sample #5 qualified estilliated:	None								
	Sample #s qualified rejected:	None								

DATA VALIDATION CHECKLIST (Continued)

7. REPORTED	RESULTS (All Le	evels)			
Are results re	XES YES	□NO	□ N/A		
Are all result	s supported in the raw data? (DUSR)		XES YES	☐ NO	□ N/A
Comments:	•				
-					
COMMENTS (a	attach additional sheets as necessary):				
					
-					
-					
-					
-					
-					
					
-					
Reviewed by:	Com		/30/2013		
	Signature	Da	te		
	Chata Tan India				
	Chris Taylor				
	(Reviewer's Name Typed/Printed)				

HOLDING TIME SUMMARY

DATA PACKAGE: 12L0409 VALIDATOR: C. Taylor			R: C. Taylor	r DATE: 06/30/2013 Page <u>1</u> of <u>1</u>				
PREP. HOLDIN	NG TIME LIMI	T: N/A		ANALYSIS HOLDING TIME LIMIT: Mercury: 26 days from VTSR Cyanide: 12 days from VTSR				
Field Sample ID	Analysis Type	Date Received	Date Prepared	Date Analyzed	Prep. Holding Time, Days	Analysis Holding Time, Days	Qualifier	
B40 (10-12ft)	Mercury	12/13/12	N/A	12/14/12	N/A	1		
B23	Mercury	12/13/12	N/A	12/14/12	N/A	1		
B40 (10-12ft)	Cyanide	12/13/12	N/A	12/20/12	N/A	7		
B23	Cyanide	12/13/12	N/A	12/19/12	N/A	6		

METALS DATA VALIDATION CHECKLIST

VALIDATION LEVEL:		A		□В		⊠ DUSR		
DA	TA PACKAGE: 12L0362		MATE	RIX: S	Soil			
PR	OJECT: Former Doro Cleaners;	Site No. 915238						
LA	BORATORY: Con-Test							
VA	LIDATOR: Chris Taylor		DATE:	06/1	11/2013			
		ANALYSES P	ERFOR	MED				
	SW-846 6010/ICP SW-846/GFAA	☐ SW-846 Hg	7470/747	1				
	Metals Metals							
Ш	SW-846 6020/ICP-MS Metals		Oth	er				
1.	1. DATA PACKAGE COMPLETENESS AND CASE NARRATIVE Is technical verification documentation present? Is a case narrative present? Comments:					⊠ YES ⊠ YES	□ NO	□ N/A □ N/A
2.	HOLDING TIMES Are sample holding times acce Comments:	•	evels)			⊠ YES	□NO	N/A
-	Sample #s qualified estimated: Sample #s qualified rejected:	none						
3.	INSTRUMENT PERFORMANCE Are ICP interference checks acc Were initial calibrations perform Are initial calibrations acceptab Were ICV and CCV checks perform Are ICV and CCV checks acceptate Comments:	eptable? med on all instrum le? ormed on all instru	ents?	·		YESYESYESYESYESYES	NO NO NO NO NO	N/A N/A N/A N/A N/A
	Sample #s qualified estimated: Sample #s qualified rejected:	none none						

METALS DATA VALIDATION CHECKLIST (Continued)

4.	BLANKS	(All	Levels)						
	Were ICB and CCB checks performed	XES	□NO	□ N/A					
	Are ICB and CCB results acceptable?	,		□NO	□ N/A				
	Were preparation blanks analyzed?		XES	Пио	□ N/A				
	Are preparation blank results accept	mments helow	∑ YES	□ио	☐ N/A				
	Were equipment blanks analyzed?	minients below.	☐ YES	⊠ NO	□ N/A				
		Are equipment blank results acceptable? Comments: Prep Blank (B064561-BLK1) presented Al and Fe about 15 and 15 a							
			∐ YES	□ NO	⊠ N/A				
	, ,		-						
	mg/Kg, respectively);		for AI and Fe w	<i>iere >></i> 10	X				
	blank levels, no qualif	cessary.							
			T						
	Sample #s qualified not-detected or	estimated:	none						
	Sample #s qualified rejected: no	ne							
5.	ACCURACY	(Le	vel B and DUSR)						
	Were matrix spike samples analyzed?				☐ NO	☐ N/A			
	Are matrix spike sample recoveries acceptable?				☐ NO	⊠ N/A			
	Were LCS samples analyzed?			XES YES	☐ NO	☐ N/A			
	Are LCS results acceptable?				□ NO	□ N/A			
	Comments: A batch MS/MSD was	run: the nar	ent samnle was not	from this SDG					
	71 24 ten 111 3 111 3 114 3	ran, the par	ene sample was not	j. 0 t 02 0	•				
									
Г	Canada Ha analifia da atinata da								
-	· · · · · · · · · · · · · · · · · · ·	none							
	Sample #s qualified rejected: no	ne							
		_							
6.		•	el B and DUSR)	<u> </u>					
	Were laboratory duplicates analyzed			∑ YES	∐ №	∐ N/A			
	Are laboratory duplicate samples RP	D values acc	eptable?		☐ NO	☐ N/A			
	Were field duplicates analyzed?			☐ YES	⊠ NO	☐ N/A			
	Are field duplicate RPD values accept	table?		YES	☐ NO	⊠ N/A			
	Were ICP serial dilution samples ana	lvzed?		☐ YES	⊠ NO	☐ N/A			
	Are ICP serial dilution %D values acce	•		☐ YES	☐ NO	⊠ N/A			
	Comments: A batch duplicate was	from this SDG	i. Dunlica	te LCS					
	samples were run, wit	-	•						
	reported.	тиссергиын	. III D Values. A serie	ii aliation sam	pic was ii	Οί			
	Teporteu.								
Г	Cample #6 qualified astimated	2000							
	•	none							
	Sample #s qualified rejected: none								

METALS DATA VALIDATION CHECKLIST (Continued)

7. REPORTED	RESULTS	(All Levels)			
				□ №	□ N/A
	reported for all requested analy		⊠ YES	□NO	□ N/A
	ts supported in the raw data? (DUSK)	<u> </u>		□ N/A
Comments:					
-					
COMMENTS (attach additional sheets as nec	essary):			
-					
-					
-					
· ·					
-					
Reviewed by:	CAUCE U		06/11/2013		
	Signature		Date		
	Chille To To Lor				
	Chris Taylor (Reviewer's Name Typed/Pri	ntod			
	ineviewer's Nattie TVDEQ/Pf1	mea)			

DATA PACKA	GE: 12L0362	VALIDATO	R: C. Taylor	or DATE: 06/11/2013			e <u>1</u> of <u>1</u>	
PREP. HOLDIN	PREP. HOLDING TIME LIMIT: N/A				ANALYSIS HOLDING TIME LIMIT: 360 days from VTSR			
Field Sample ID	Analysis Type	Date Received	Date Prepared	Date Analyzed	Prep. Holding Time, Days	Analysis Holding Time, Days	Qualifier	
B15 (4-8ft)	ICP Metals	12/12/12	N/A	12/14/12	N/A	2		
B29 (10-12ft)	ICP Metals	12/12/12	N/A	12/14/12	N/A	2		

METALS DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	A	□ A □ □		3	□ DUSR	
DATA PACKAGE: 12L0409		MATRI	X: Soil			
PROJECT: Former Doro Cleaners;	Site No. 915238					
LABORATORY: Con-Test						
VALIDATOR: Chris Taylor		DATE:	06/30/2013			
	ANALYSES P	ERFORM	1ED			
SW-846 6010/ICP SW-846/GFAA Metals Metals	☐ SW-846 Hg	7470/7471				
SW-846 6020/ICP-MS Metals	I	Othe	r			
1. DATA PACKAGE COMPLETENI Is technical verification docum Is a case narrative present? Comments:		RATIVE		⊠ YES ⊠ YES	□ NO	□ N/A □ N/A
2. HOLDING TIMES Are sample holding times acce Comments:	Are sample holding times acceptable?					
Sample #s qualified estimated Sample #s qualified rejected:	: none none					
3. INSTRUMENT PERFORMANCE Are ICP interference checks acc Were initial calibrations perfor Are initial calibrations acceptal Were ICV and CCV checks perfor Are ICV and CCV checks accept Comments:	SR)	YESYESYESYESYESYES	NO NO NO NO NO	N/A N/A N/A N/A N/A		
Sample #s qualified estimated: Sample #s qualified rejected:	none					

METALS DATA VALIDATION CHECKLIST (Continued)

4.	BLANKS	(All Levels)					
	Were ICB and CCB checks perform	ned for all applicable analyses?	XES	☐ NO	☐ N/A		
	Are ICB and CCB results acceptable		XES YES	☐ NO	□ N/A		
	Were preparation blanks analyzed		✓ YES	□NO	□ N/A		
	Are preparation blank results acce		 ⊠ YES	_ по	□ N/A		
	Were equipment blanks analyzed	•	☐ YES	⊠ NO	□ N/A		
	Are equipment blank results accep		☐ YES	□NO	⊠ N/A		
			_	_			
	•	61-BLK1) presented Al and Fe above l	-				
	J. J. ,	y); since associated sample results fo	r Ai una re v	vere >>10	X		
	biank ieveis, no qui	alifiers were necessary.					
ا ا							
	Sample #s qualified not-detected	or estimated: none					
	Sample #s qualified rejected:	none					
5.	ACCURACY	(Level B and DUSR)					
	Were matrix spike samples analyz	ed?	XES YES	☐ NO	☐ N/A		
	Are matrix spike sample recoverie	s acceptable?	YES	☐ NO	⊠ N/A		
	Were LCS samples analyzed?		$igthered{igwedge}$ YES	☐ NO	☐ N/A		
	Are LCS results acceptable?		YES	⊠ NO	□ N/A		
	•	vas run; the parent sample was not fi	rom this SDG	ì.			
		aqueous batch LCS/LCSD B064640BS					
	The recoveries for soundin(rva) in	4446643 541611 263, 2635 266 16 1653	1 4114 552 11	C/C 0/0.			
ſ	Sample #s qualified estimated:	B-23: Na qualified estimated (J) wi	th indication	of low hi	20		
	Sample #3 quaimed estimated.	due to low LCS/LCSD recoveries.	tirinalcation	I OI IOW DI	as		
	Companie He availitied rejected.	·					
L	Sample #s qualified rejected:	none					
6.	PRECISION	(Level B and DUSR)					
0.				Пио	□ N/A		
	Were laboratory duplicates analyz		⊠ YES	□NO	□ N/A		
	Are laboratory duplicate samples	RPD values acceptable?	_				
	Were field duplicates analyzed?		∐ YES	⊠ NO	□ N/A		
	Are field duplicate RPD values acc	·	∐ YES	∐ NO	⊠ N/A		
	Were ICP serial dilution samples a	•	YES	⊠ ио	☐ N/A		
	Are ICP serial dilution %D values a	cceptable?	YES	☐ NO	⊠ N/A		
	Comments: A batch duplicate was run; the parent sample was not from this SDG. Duplicate LCS						
	samples were run,	with acceptable RPD values. Serial di	lution samp	les were n	ot		
	reported.						
					 -		
	Sample #s qualified estimated:	none					
		none none					

METALS DATA VALIDATION CHECKLIST (Continued)

7. REPORTED	RESULTS	(All Levels)		
Are results r	eported for all requested analy			□ NO □ N/A
Are all resul	ts supported in the raw data? ([DUSR)		□ NO □ N/A
Comments:	Aqueous sample B-23 was a	nalyzed for Al, Ca, Fe	e, Mg, K and Na by SI	N-846 Method
	6010C (ICP-AES), and for the	trace metals by Me	thod 6020A (ICP-MS)	. The 6020
	analytes were analyzed at a	5x dilution.		
COMMENTS (attach additional sheets as nece	essary):		
•				
				
-				 -
Reviewed by:	leur		06/30/2013	
	Signature		Date	
	0		_ 4.0	
	Chris Taylor			
	(Reviewer's Name Typed/Prir	nted)		

DATA PACKAGE: 12L0409		VALIDATO	VALIDATOR: C. Taylor		DATE: 06/30/2013			Page <u>1</u> of <u>1</u>		
PREP. HOLDI	NG TIME LIM	IT: N/A		AN VT	ALYSIS H SR	OLDING TIME	E LI	MIT: 180 da	180 days from	
Field Sample ID	Analysis Type	Date Received	Date Prepared	Aı	Date nalyzed	Prep. Holding Time, Days		Analysis Holding me, Days	Qualifier	
B40 (10-12ft)	ICP Metals	12/13/12	N/A	12/	14,17/12	N/A	1,	4		
B23	ICP Metals	12/13/12	N/A	12/	17,18/12	N/A	4,	5		

ORGANIC DATA VALIDATION CHECKLIST

V	ALIDATION LEVEL:	:	□ A	□В		⊠ DUSR		
D	ATA PACKAGE: 12	L0362		DA	TE : 06/11/	2013		
PF	ROJECT: Former D	oro Cleaners; Site	No. 915238					
_	BORATORY: Con-							
V	ALIDATOR: Chris	Taylor						
			ANALYSES PERFOR	RMED				
	SW-846 8260C	SW-846 8270C	SW-846 8082	Other	04 Daakiaidaa			
	Volatiles	Semivolatiles	PCBs as Aroclors	3W-846 8U8	31 Pesticides			
1.	DATA PACKAGE	COMPLETENESS A	ND CASE NARRATIV	E				
	Is technical verifi	_		☐ NO	□ N/A			
	Is a case narrativ	e present?	·		XES YES	☐ NO	☐ N/A	
	Comments:							
2.			(All Levels)		_	_	_	
	•	ing times acceptabl	e?	XES YES	∐ №	∐ N/A		
	Comments:							
	Sample #s qualifi		none					
	Sample #s qualifi	ied rejected: n	one					
3.		ERFORMANCE AND			(DUSR) ⊠ YES		□ N/A	
			le ? Note any outlier		=	∐ NO	∐ N/A	
	· ·	alibrations (CCV) ac	cceptable ? <i>Note any</i>	outliers below.	. M 1E3	∐ NO	☐ N/A	
	Comments:							
	Sample #s qualifi		none					
	Sample #s qualifi	ied rejected:	none				<u></u>	

4.	I. BLANKS (All Levels)								
	Were method blanks analyzed?			X YES	☐ NO	□ N/A			
	Are method blank results acceptable	acceptable?			☐ NO	□ N/A			
	Were equipment blanks analyzed?			YES YES	⊠ NO	□ N/A			
	Are equipment blank results accepta	able?	YES	☐ NO	⊠ N/A				
	Comments:								
	Sample #s qualified not-detected or	estimated:	none						
	Sample #s qualified rejected:	none							
5.	ACCURACY	(DUSR))						
	Were surrogate compounds analyze		•	YES	☐ NO	□ N/A			
	Are surrogate compound recoveries			X YES	☐ NO	□ N/A			
	Were MS/MSD samples analyzed?			X YES	☐ NO	☐ N/A			
	Are MS/MSD results acceptable?			YES	☐ NO	⊠ N/A			
	Were LCS samples analyzed?			X YES	☐ NO	□ N/A			
	Were LCS results acceptable?			X YES	☐ NO	□ N/A			
	Comments: A batch MS/MSD was	s run; the parent	sample was not from	this SDG.					
	Sample #s qualified estimated:	none							
	Sample #s qualified rejected:	none							
_									
6.	PRECISION	(DUSR))						
	Are MS/MSD RPD values acceptable			YES	☐ NO	⊠ N/A			
	Are field duplicate RPD values accep	table?		YES	☐ NO	⊠ N/A			
	Comments:								
	Sample #s qualified estimated:	None							
	_ ' '	none							
	Jumple 43 quamica rejected.	HOHE							
									

7.	SYSTEM PERFORMANCE	(DUSR)			
	Were internal standards analyzed?	?	☐ YES	⊠ no	□ N/A
	Are internal standard areas accept	able?	YES	☐ NO	⊠ N/A
	Are internal standard retention tin	•	☐ YES	☐ NO	⊠ N/A
	Comments: GC/ECD calibration	n for 8082 analysis was performed	using external	standard	s
г					
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
8.	COMPOUND IDENTIFICATION AND	QUANTITATION	(DUSR)		
	Is compound identification accepta	-	\ \ \ \ \ \ \ \ \ \ \ \ \ YES	□NO	□ N/A
	Is compound quantitation accepta		XES	□NO	□ N/A
	·	ors were reported in field samples.			
ſ	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
9.	REPORTED RESULTS	(All Levels)			
	Are results reported for all request	ted analyses?	XES	☐ NO	☐ N/A
	Are all results supported in the ray	v data? (DUSR)	YES	☐ NO	☐ N/A
	Comments:				

	(Continued)		
COMMENTS:			
repared by:	Com	06/11/2013	_
	Signature	Date	
	Chris W. Taylor	_	
	(Reviewer's Name Typed/Printed)		

DATA PACKA	GE: 12L0362	VALIDATO	R: C. Taylor	DATE: (06/11/2013	Pag	e <u>1</u> of <u>1</u>
PREP. HOLDING TIME LIMIT: 12 days from VTSR to extraction				ANALYSIS HOLDING TIME LIMIT: 40 days from extraction to analysis			
Field Sample ID	Analysis Type	Date Received	Date Prepared	Date Analyzed	Prep. Holding Time, Days	Analysis Holding Time, Days	Qualifier
B15 (4-8ft)	PCBs	12/12/12	12/12/12	12/12/12	<1	<1	
B29 (10-12ft)	PCBs	12/12/12	12/12/12	12/12/12	<1	<1	

ORGANIC DATA VALIDATION CHECKLIST

VA	ALIDATION LEVEL	:	□ A			В		OUSR
DA	ATA PACKAGE: 12	L0409				DATE : 06/29/	2013	
	OJECT: Former D		ite No. 915238					
	BORATORY: Con							
VA	ALIDATOR: Chris	Taylor						
			ANALYSES PER	RFORM				
	SW-846 8260C Volatiles	SW-846 8270C Semivolatiles	SW-846 8082 PCBs as Aroclo	SW-846 8082		er 5 8081 Pesticides		
	Volutiles							
2.	Is technical verif Is a case narrativ Comments: HOLDING TIME Are sample hold Comments: A	ication document of present? S ing times accept of the course of the c	(All Leve able? Note any ou B-23 was extracted B23: all analyt potential low b	els) tliers be one day	y beyond			
3. INSTRUMENT PERFORMANCE AND CALIBRATIONS Are initial calibrations (IC) acceptable? Note any ou Are continuing calibrations (CCV) acceptable? Note Comments:						(DUSR) ⊠ YES ow. ⊠ YES	□ NO	□ N/A □ N/A
	Sample #s qualif	ied estimated:	none					
	Sample #s qualif	ied rejected:	none					

4.	BLANKS	(All Level	ls)			
	Were method blanks analyzed?	·	•	XES	☐ NO	□ N/A
	Are method blank results acceptable	?		XES YES	☐ NO	□ N/A
	Were equipment blanks analyzed?			YES	⊠ NO	☐ N/A
	Are equipment blank results accepta	ble?		YES	☐ NO	⊠ N/A
	Comments:					
	Sample #s qualified not-detected or	estimated:	none			
Ī	Sample #s qualified rejected:	none				
5.	ACCURACY	(DUSR)				
	Were surrogate compounds analyzed			X YES	☐ NO	□ N/A
	Are surrogate compound recoveries	acceptable ?		XES YES	☐ NO	□ N/A
	Were MS/MSD samples analyzed?			XES YES	☐ NO	☐ N/A
	Are MS/MSD results acceptable?			YES	☐ NO	⊠ N/A
	Were LCS samples analyzed?			XES YES	☐ NO	☐ N/A
	Were LCS results acceptable?			X YES	☐ NO	☐ N/A
	Comments: A batch MS/MSD was	run; the parent	sample was not from	this SDG.		
	Sample #s qualified estimated:	none				
	Sample #s qualified rejected:	none				
6.	PRECISION	(DUSR)	1	_	_	_
	Are MS/MSD RPD values acceptable			YES	∐ №	⊠ N/A
	Are field duplicate RPD values accep	table?		YES	☐ NO	⊠ N/A
	Comments:					
	Sample #s qualified estimated:	Vone				
	· . ·	none				
L		- -				

7.	SYSTEM PERFORMANCE	(DUSR)			
	Were internal standards analyzed?		YES	⊠ no	☐ N/A
	Are internal standard areas accepta	able?	YES	☐ NO	⊠ N/A
	Are internal standard retention time	•	☐ YES	☐ NO	⊠ N/A
	Comments: GC/ECD calibration	for 8082 analysis was performed	using external	standard	s.
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
0	COMPOUND IDENTIFICATION AND	A CHANITITATION	(DUCD)		
٥.	COMPOUND IDENTIFICATION AND Is compound identification accepta		(DUSR) ⊠ YES	Пио	□ N/A
	Is compound quantitation acceptal		⊠ YES	Пио	□ N/A
		ors were reported in field samples.	₩ 153	Пио	
	No positive Arocine	is were reported in field sumples.			
	Sample #s qualified estimated:	nono			
	Sample #s qualified rejected:	none			
ļ	Sample #3 qualified rejected.	none			
9.	REPORTED RESULTS	(All Levels)			
٠.	Are results reported for all request			Пио	□ N/A
	Are all results supported in the raw	•	 ⊠ YES	_ □ NO	□ N/A
			_	_	
	Comments: The soil sample (B-	40 (10-12') was analyzed at a 5x di	ilution; RL valu	ies were	
	adjusted according	· · · · · · · · · · · · · · · · · · ·	ŕ		
	<u>-</u>	•			

	(continues)	
COMMENTS:		
-		
-		
-		
repared by:	Com	06/29/2013
	Signature	Date
	Chris W. Taylor	_
	(Reviewer's Name Typed/Printed)	

DATA PACKA	VALIDATO	R: C. Taylor	r DATE: 06/29/2013 Page			e <u>1</u> of <u>1</u>			
PREP. HOLDING TIME LIMIT: Aqueous: max. 5 days from VTSR to extraction. Non-aqueous: max. 12 days from VTSR to extraction					HOLDING TIM o analysis	EL	IMIT: 40 da	ys from	
Field Sample ID	Analysis Type	Date Received	Date Prepared		ate lyzed	Prep. Holding Time, Days	l	Analysis Holding me, Days	Qualifier
B40 (10-12ft)	PCBs	12/13/12	12/13/12	12/1	4/12	<1	1		
B23	PCBs	12/13/12	12/19/12	12/2	0/12	6	1		UJ or J
-		-							-

ORGANIC DATA VALIDATION CHECKLIST

VALIDATION LEVEL	:	A		В	\boxtimes [DUSR
DATA PACKAGE: 12	2L0362			DATE : 06/11/	2013	
PROJECT: Former [e No. 915238				
LABORATORY: Cor						
VALIDATOR: Chris	Taylor					
		ANALYSES PERFOR		7		
SW-846 8260C Volatiles	SW-846 8270C Semivolatiles	SW-846 8082 PCBs		Other V-846 8081 Pesticides		
Volutiles						
1. DATA PACKAG	E COMPLETENESS	AND CASE NARRATIVE	Ε	_		
	ication document	ation present?		∑ YES	□ NO	□ N/A
Is a case narration	ve present?			∑ YES	∐NO	∐ N/A
Comments:						
2 LIGHTING TIME		(All Lavala)				
2. HOLDING TIME	: 5 ling times acceptal	(All Levels)		⊠ YES	Пио	□ N/A
Comments:	ing times accepta	DIE:				
Sample #s qualit	fied estimated:	none				
Sample #s qualit		none				
	,					
3. INSTRUMENT F	PERFORMANCE AN	ND CALIBRATIONS		(DUSR)		
Are the GC/ECD	instrument perfor	rmance checks accepta	ıble?		☐ NO	☐ N/A
Are initial calibra	ations (IC) accepta	ble? Note any outlier	s below.	∑ YES	☐ NO	☐ N/A
Are continuing of	calibrations (CCV) a	acceptable ? <i>Note any</i>	outliers	below. 🛚 YES	☐ NO	☐ N/A
	•	a-BHC exceeded the %	•			
		ate greater sensitivity,	and no _l	positives for this co	mpound v	vere
Comments: _ j	found, no action w	as necessary.				
-						
-						
Sample #s qualit	fied estimated:	none				
<u> </u>		none				
Sample #s qualit	ieu rejecteu:	none				

Were method blanks analyzed? Are method blank results acceptable? Were equipment blanks analyzed? Are equipment blank results acceptable? Comments: Sample #s qualified not-detected or estimated: none	
Were equipment blanks analyzed? Are equipment blank results acceptable? Comments: Sample #s qualified not-detected or estimated: none	☐ N/A
Are equipment blank results acceptable? Comments: Sample #s qualified not-detected or estimated: Sample #s qualified rejected: none 5. ACCURACY Were surrogates/system monitoring compounds analyzed? Are surrogate/system monitoring compound recoveries acceptable? Were MS/MSD samples analyzed? Are MS/MSD results acceptable? Were LCS samples analyzed? Were LCS results acceptable? Were LCS results acceptable? Comments: A batch MS/MSD was run; the parent sample was not from this SDG. Sample #s qualified estimated: none 6. PRECISION Are MS/MSD RPD values acceptable? Are field duplicate RPD values acceptable? Are field duplicate RPD values acceptable?	☐ N/A
Comments: Sample #s qualified not-detected or estimated: none	☐ N/A
Sample #s qualified not-detected or estimated: none Sample #s qualified rejected: none	⊠ N/A
Sample #s qualified rejected: none 5. ACCURACY (DUSR) Were surrogates/system monitoring compounds analyzed?	
Sample #s qualified rejected: none 5. ACCURACY (DUSR) Were surrogates/system monitoring compounds analyzed?	
5. ACCURACY Were surrogates/system monitoring compounds analyzed? Are surrogate/system monitoring compound recoveries acceptable? Were MS/MSD samples analyzed? Are MS/MSD results acceptable? Were LCS samples analyzed? Were LCS results acceptable? Were LCS results acceptable? Were LCS results acceptable? Comments: A batch MS/MSD was run; the parent sample was not from this SDG. Sample #s qualified estimated: none 6. PRECISION Are MS/MSD RPD values acceptable? Are field duplicate RPD values acceptable?	
Were surrogates/system monitoring compounds analyzed? Are surrogate/system monitoring compound recoveries acceptable? Were MS/MSD samples analyzed? Are MS/MSD results acceptable? Were LCS samples analyzed? Were LCS results acceptable? Comments: A batch MS/MSD was run; the parent sample was not from this SDG. Sample #s qualified estimated: Sample #s qualified rejected: none 6. PRECISION Are MS/MSD RPD values acceptable? OUSR) Are field duplicate RPD values acceptable? YES NO NO OUSR) Are field duplicate RPD values acceptable?	
Were surrogates/system monitoring compounds analyzed? Are surrogate/system monitoring compound recoveries acceptable? Were MS/MSD samples analyzed? Are MS/MSD results acceptable? Were LCS samples analyzed? Were LCS results acceptable? Comments: A batch MS/MSD was run; the parent sample was not from this SDG. Sample #s qualified estimated: Sample #s qualified rejected: none 6. PRECISION Are MS/MSD RPD values acceptable? OUSR) Are field duplicate RPD values acceptable? YES NO NO OUSR) Are field duplicate RPD values acceptable?	
Were surrogates/system monitoring compounds analyzed? Are surrogate/system monitoring compound recoveries acceptable? Were MS/MSD samples analyzed? Are MS/MSD results acceptable? Were LCS samples analyzed? Were LCS results acceptable? Comments: A batch MS/MSD was run; the parent sample was not from this SDG. Sample #s qualified estimated: Sample #s qualified rejected: none 6. PRECISION Are MS/MSD RPD values acceptable? OUSR) Are field duplicate RPD values acceptable? YES NO NO OUSR) Are field duplicate RPD values acceptable?	
Are surrogate/system monitoring compound recoveries acceptable? Were MS/MSD samples analyzed? Are MS/MSD results acceptable? Were LCS samples analyzed? Were LCS results acceptable? Comments: A batch MS/MSD was run; the parent sample was not from this SDG. Sample #s qualified estimated: Sample #s qualified rejected: none 6. PRECISION Are MS/MSD RPD values acceptable? Are field duplicate RPD values acceptable? NO OUSR) Are field duplicate RPD values acceptable?	□ N/A
Were MS/MSD samples analyzed? Are MS/MSD results acceptable? Were LCS samples analyzed? Were LCS results acceptable? Comments:	□ N/A
Are MS/MSD results acceptable? Were LCS samples analyzed? Were LCS results acceptable? Comments: A batch MS/MSD was run; the parent sample was not from this SDG. Sample #s qualified estimated: none Sample #s qualified rejected: none 6. PRECISION Are MS/MSD RPD values acceptable? Are field duplicate RPD values acceptable? NO NO OUSR) YES NO NO NO	☐ N/A
Were LCS samples analyzed? Were LCS results acceptable? Comments:	⊠ N/A
Were LCS results acceptable? Comments:	□ N/A
Sample #s qualified estimated: none Sample #s qualified rejected: none 6. PRECISION (DUSR) Are MS/MSD RPD values acceptable?	□ N/A
Sample #s qualified rejected: none 6. PRECISION (DUSR) Are MS/MSD RPD values acceptable?	
6. PRECISION (DUSR) Are MS/MSD RPD values acceptable?	
Are MS/MSD RPD values acceptable? ☐ YES ☐ NO Are field duplicate RPD values acceptable? ☐ YES ☐ NO	
Are MS/MSD RPD values acceptable? ☐ YES ☐ NO Are field duplicate RPD values acceptable? ☐ YES ☐ NO	
Are field duplicate RPD values acceptable?	I.
The field duplicate in D values acceptable.	⊠ N/A
Comments:	⊠ N/A
Consider the conditional control of the National Control of the Co	
Sample #s qualified estimated: None	
Sample #s qualified rejected: none	

7.	SYSTEM PERFORMANCE	(DUSR)			
	Were internal standards analyzed?	,	☐ YES	$oxed{\boxtimes}$ NO	☐ N/A
	Are internal standard areas accepta	able?	☐ YES	☐ NO	⊠ N/A
	Are internal standard retention tim		☐ YES	☐ NO	⊠ N/A
	Comments: GC/ECD calibration	for 8081B analysis was performed	d using externo	al standar	ds.
					
					<u></u>
l					
	Sample #s qualified estimated:	n/a			
Ī	Sample #s qualified rejected:	n/a			
	Jampie #3 quamea rejected.	11/ 4			
l					
8.	COMPOUND IDENTIFICATION AND	QUANTITATION	(DUSR)		
	Is compound identification accepta	ble?	YES	☐ NO	☐ N/A
	Is compound quantitation acceptal	ole?	XES YES	☐ NO	☐ N/A
	Comments: 4,4'-DDD and 4,4'-L	DDT were reported positive in sam	ple 12L0362-1	2. Review	of
	chromatograms ind	dicated peaks within retention tim	e ranges on bo	oth colum	ns
	and good quantitat	tive agreement between columns.			
ſ	Sample #s qualified estimated:	none			
-	Sample #s qualified rejected:	none			
	Jampie #3 quamica rejected.	none			
q	REPORTED RESULTS	(All Levels)			
٦.	Are results reported for all request	•	⊠ yes	Пио	□ N/A
	Are all results supported in the raw	•	⊠ YES	Пио	□ N/A
	Are all results supported in the raw	data: (BOSN)	<u> </u>		_
	Comments:				
	-				<u></u>

	(continuca)	
COMMENTS:		
-		
Prepared by:	Con	06/11/2013
repared by.	Signature	Date
	Chris W. Taylor	Date
	(Reviewer's Name Typed/Printed)	_
	(Neviewer 3 Name Typea/Timea/	

DATA PACKAGE: 12L0362		VALIDATO	R: C. Taylor	or DATE: 06/11/2013 Page _1_ o			
PREP. HOLDING TIME LIMIT: 12 days from VTSR textraction			om VTSR to	ANALYSIS extraction t	HOLDING TIM to analysis	E LIMIT: 40 da	ays from
Field Sample ID	Analysis Type	Date Received	Date Prepared	Date Analyzed	Prep. Holding Time, Days	Analysis Holding Time, Days	Qualifier
B15 (4-8ft)	Pesticides	12/12/12	12/12/12	12/14/12	<1	2	
B29 (10-12ft)	Pesticides	12/12/12	12/12/12	12/14/12	<1	2	

ORGANIC DATA VALIDATION CHECKLIST

V	ALIDATION LEVEL:		□ A		□В		DUSR
D	ATA PACKAGE: 12L0409				DATE: 06/29/	2013	
PF	ROJECT: Former Doro Cleane	rs ; Site N	o. 915238				
	ABORATORY: Con-Test						
V	ALIDATOR: Chris Taylor						
			ANALYSES PERFO				
	SW-846 8260C Semivolatiles Semivolatile		SW-846 8082 PCBs	⊠ Ot	her 46 8081 Pesticides		
	Volatiles Semivolatil	C3	1 CD3	300-0-	+0 00011 esticides		
	·			, i			
1.	DATA PACKAGE COMPLETI	ENESS AN	D CASE NARRATIV	Έ			
	Is technical verification docu	umentatio	on present?			□ №	☐ N/A
	Is a case narrative present?					□ №	☐ N/A
	Comments:						
2.			(All Levels)		□vcc	MNO	□ N/A
	Are sample holding times as	•	•		YES	⊠ NO	□ N/A
	Comments: Aqueous san VTSR.	тріе в-23	was extracted one	aay beyond	a the 5-day noid	ing time j	rom
	Sample #s qualified estimat	ed: I	B23: all analytes q	ualified est	imated (UJ or J).	Indicatio	n of
	, , , , , , , , , , , , , , , , , , ,		potential low bias.				
	Sample #s qualified rejected	l: nor	ne				
3.					(DUSR)	_	_
	Are the GC/ECD instrument	•	•		∑ YES	∐ио	∐ N/A
	Are initial calibrations (IC) a	•	•		∑ YES	∐ио	∐ N/A
	Are continuing calibrations		•			∐ №	☐ N/A
		-	V 5 & 6 : Methoxc			•	-
	·	-	respectively). Meth	•	•	•	
		•	C exceeded the %L	•	•		
	Comments: action was n		tivity, and no posit	ves jor tilis	compound were	e jouna, n	O
	detion was n	cccssury.					
			B-40 (10-12), B-23	3: Methoxy	chlor qualified a	s estimate	<u></u>
	Sample #s qualified estimat	ed:	(UJ) with indication	•	•		
	Sample #s qualified rejected		none	•		•	
	•						

4.	BLANKS	(All Leve	ls)			
	Were method blanks analyzed?			XES	☐ NO	☐ N/A
	Are method blank results acceptable?				☐ NO	☐ N/A
	Were equipment blanks analyzed?	YES	⊠ NO	☐ N/A		
	Are equipment blank results accepta	ible?		YES	☐ NO	⊠ N/A
	Comments:					
	Sample #s qualified not-detected or	estimated:	none			
	Sample #s qualified rejected:	none				
5.	ACCURACY	(DUSR)				
	Were surrogates/system monitoring	, ,		X YES	☐ NO	□ N/A
	Are surrogate/system monitoring co	•	•	X YES	☐ NO	☐ N/A
	Were MS/MSD samples analyzed?	•	•	X YES	☐ NO	☐ N/A
	Are MS/MSD results acceptable?			YES	☐ NO	⊠ N/A
	Were LCS samples analyzed?			X YES	☐ NO	☐ N/A
	Were LCS results acceptable?			XES	☐ NO	☐ N/A
-	Comments: A batch MS/MSD was	run; the parent	sample was not fro	m this SDG.		
Ī	Sample #s qualified estimated:	none				
İ	Sample #s qualified rejected:	none				
		1				
6.	PRECISION	(DUSR)				
	Are MS/MSD RPD values acceptable?				☐ NO	⊠ N/A
	Are field duplicate RPD values accep	table?		YES	☐ NO	⊠ N/A
	Comments:					
	Complette qualified astigasted	None				
		None				
	Sample #s qualified rejected:	none				

7.	SYSTEM PERFORMANCE	(DUSR)			
	Were internal standards analyzed?		YES	⊠ NO	□ N/A
	Are internal standard areas accept	able?	☐ YES	□NO	⊠ N/A
	Are internal standard retention tim	ies acceptable?	☐ YES	☐ NO	⊠ N/A
	Comments: GC/ECD calibration	for 8081B analysis was performed	d using externo	al standar	ds.
İ					
					
	Sample #s qualified estimated:	n/a			
i	Sample #s qualified rejected:	n/a			
	Sample no quamica rejecteur	.,, a			
8.	COMPOUND IDENTIFICATION AND	QUANTITATION	(DUSR)		
	Is compound identification accepta	ble?	∑ YES	☐ NO	☐ N/A
	Is compound quantitation acceptal	ole?	XES YES	☐ NO	☐ N/A
	•	ted positive in sample 12L0409-01	-		
	chromatograms ind	dicated peaks within retention tim	e ranges on bo	th columi	15
	and good quantita	tive agreement between columns.			
	Sample #s qualified estimated:	none			
·	Sample #s qualified rejected:	none			
	, ,				
9.	REPORTED RESULTS	(All Levels)			
	Are results reported for all request			☐ NO	□ N/A
	Are all results supported in the raw	•		☐ NO	□ N/A
		, ,			
	Comments:				
	-				

	(000000000)	
COMMENTS:	<u> </u>	
-		
-		
-		
-		
Prepared by:	Chuch	06/29/2013
, , -	Signature	Date
	Chris W. Taylor	
	(Reviewer's Name Typed/Printed)	_
	, , , , , , , , , , , , , , , , , , , ,	

DATA PACKAGE: 12L0409 VALIDATOR: C. Taylor			DATE: 06/29/2013 Page _1_ of _1				e <u>1</u> of <u>1</u>	
						EL	IMIT: 40 da	ys from
Analysis Type	Date Received	Date Prepared			Prep. Holding Time, Days	I	Holding	Qualifier
Pesticides	12/13/12	12/13/12	12/	17/12	<1	4		
Pesticides	12/13/12	12/19/12	12/	20/12	6	1		UJ or J
	Analysis Type Pesticides	Analysis Type Pesticides NG TIME LIMIT: Analysis Type Date Received 12/13/12	Analysis Type Pesticides NG TIME LIMIT: Date prepared Pesticides 12/13/12 Page 12/13/12	AN extended and service and se	ANALYSIS extraction to max. 12 days from VTSR to extraction. Analysis Type Date Received Prepared Analyzed Pesticides 12/13/12 12/13/12 12/17/12	ANALYSIS HOLDING TIME ANALYSIS HOLDING TIME ANALYSIS HOLDING TIME Extraction to analysis Analysis Type Date Received Prepared Analyzed Time, Days Pesticides 12/13/12 12/13/12 12/17/12 <1	ANALYSIS HOLDING TIME L extraction to analysis Analysis Type Received Prepared Date Prepared	ANALYSIS HOLDING TIME LIMIT: 40 days from VTSR to extraction. max. 12 days from VTSR to Analysis Type Date Received Prepared P

ORGANIC DATA VALIDATION CHECKLIST

VALIDATION LEV	ÆL:	A	□В	□ DUSR		
DATA PACKAGE:		Cito No. 015220	DATE:	06/10/	2013	
LABORATORY: 0	er Doro Cleaners ; Con-Test	31te NO. 913236				
VALIDATOR: Chi	ris Taylor					
		ANALYSES PERFOR	MED			
SW-846 8260C Volatiles	SW-846 8270D Semivolatiles	SW-846 8082 PCBs	☐ Other			
1. DATA PACKA	GE COMPLETENE	SS AND CASE NARRATIV	F			
		entation present?	_	XES	□NO	□ N/A
Is a case narra		·		XES YES	☐ NO	☐ N/A
Comments:						
2. HOLDING TIE	MFS	(All Levels)				
	olding times accep	• • •		XES	□NO	□ N/A
Comments:						
•	alified estimated:	none				
Sample #s qua	alified rejected:	none				
3. INSTRUMEN	T PERFORMANCE	AND CALIBRATIONS	(DU	SR)		
Is the GC/MS	DFTPP tuning/per	formance check acceptal	•	YES	□NO	☐ N/A
Are initial cali	brations (IC) acce	ptable? Note any outliers	Delow.	XES YES	□NO	☐ N/A
Are continuin	-	V) acceptable? Note any	outhers below.	XES YES	□NO	☐ N/A
		flagged target compound	•		•	ing
		of 0.034. However, this cand similar compounds ty	•			of
		RRFs were consistent (RSL				-
	Therefore, no vo	alidation qualifiers were d	issigned for this cor	npound	by the	
Comments:	reviewer.					
•	alified estimated:	none				
Sample #s qua	alified rejected:	none				

_	DI ANIKO	/AII 1 1 1			
4.	BLANKS	(All Levels)	Myss		□ N/A
	Were method blanks analyzed?	_	∑ YES	∐ NO	∐ N/A
	Are method blank results acceptable	?	∑ YES	∐ NO	□ N/A
	Were equipment blanks analyzed?		YES	⊠ NO	□ N/A
	Are equipment blank results accepta	ble?	YES	∐ NO	⊠ N/A
	Comments:				
	Sample #s qualified not-detected or e	estimated: none			
	- 1 1.6. 1	none			
	Jampie #3 quamica rejected.	ione			
5.	ACCURACY	(DUSR)			
	Were surrogates/system monitoring	compounds analyzed?	X YES	☐ NO	☐ N/A
	Are surrogate/system monitoring cor		X YES	☐ NO	☐ N/A
	Were MS/MSD samples analyzed?		☐ YES	⊠ NO	☐ N/A
	Are MS/MSD results acceptable?		YES	☐ NO	⊠ N/A
	Were LCS samples analyzed?		X YES	☐ NO	☐ N/A
	Were LCS results acceptable?		YES	⊠ NO	☐ N/A
	Comments: The following compou	nds presented recoveries below li	mits in both L	CS and LO	CSD
	which resulted in qual	ification in the noted associated <mark>s</mark>	amples: benzo	oic acid,	
	benzidine. Note: altho	ugh the LCSD recovery for benzid	ine was 46.5%	, the	
	average of the LCS (31	%) and LCSD recoveries was belo	w the lower re	covery li	mit
	of 40% (at 39%), and t	he RPD value exceeded the limit o	of 30% (at 40%	6).	
	Sample #s qualified estimated:	12L0362-03 and 12: benzoic acid	d and benzidin	e. Qualif	ied
	_	as estimated (UJ); low bias indic	ated.		
	Sample #s qualified rejected:	none			
6	PRECISION	(DUSR)			
υ.	Are MS/MSD RPD values acceptable?	• •	YES	Пио	⊠ N/A
	Are field duplicate RPD values acceptable:		☐ YES	Пио	⊠ N/A
	·	duplicate samples for SVOC were i	_		
	Wo Wish Wish of Jiela C	iupiicate sairipies joi 3000 were i	dentified.		
	Sample #s qualified estimated:N	lone			
	Sample #s qualified rejected: r	one			

7.	SYSTEM PERFORMANCE	(DUSR)			
	Were internal standards analyzed?			☐ NO	□ N/A
	Are internal standard areas accept	able?		☐ NO	☐ N/A
	Are internal standard retention tim	nes acceptable?		☐ NO	□ N/A
	Comments:				
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
İ					
8.	COMPOUND IDENTIFICATION AND	OUANTITATION	(DUSR)		
٥.	Is compound identification accepta	-	(BOSI() ⊠ YES	Пио	□ N/A
	Is compound quantitation acceptal		∑ YES	☐ NO	☐ N/A
	Comments:				
	-				
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
					<u></u>
9.	REPORTED RESULTS	(All Levels)			
	Are results reported for all request	ed analyses?		☐ NO	☐ N/A
	Are all results supported in the raw	data? (DUSR)	∑ YES	☐ NO	□ N/A
	Comments:				
					

	(Continued)		
COMMENTS:			
			_
	0		
repared by:	Com	06/10/2013	_
	Signature	Date	
	Chris W. Taylor	_	
	(Reviewer's Name Typed/Printed)		

DATA PACKAGE: 12L0362 VALIDATOR: C. Taylor			r DATE: 06/10/2013 Page <u>1</u> of <u>1</u>					
PREP. HOLDING TIME LIMIT: 12 days from VTSR to extraction			om VTSR to	ANALYSIS HOLDING TIME LIMIT: 40 days from extraction to analysis				
Field Sample ID	Analysis Type	Date Received	Date Prepared	Date Analyzed			Qualifier	
B15 (4-8ft)	SVOC	12/12/12	12/12/12	12/14/12	<1	2		
B29 (10-12ft)	SVOC	12/12/12	12/12/12	12/14/12	<1	2		

ORGANIC DATA VALIDATION CHECKLIST

VALIDATION LEVEL: A B DUSR					OUSR				
DATA PACKAGE: 1	2L0409			DATE: 06/28/2	2013				
	Doro Cleaners ; Site N	o. 915238							
	LABORATORY: Con-Test								
VALIDATOR: Chris	ALIDATOR: Chris Taylor								
_		ANALYSES PERFOR							
SW-846 8260C Volatiles	SW-846 8270D Semivolatiles	SW-846 8082 PCBs	Othe	er					
	E COMPLETENESS AN				Пио	□ N/A			
Is a case narrati	fication documentation	on present?		⊠ YES	Пио	□ N/A □ N/A			
Comments:	ve present:					L			
2. HOLDING TIME	ES	(All Levels)							
Are sample hold	ding times acceptable	?		YES	☐ NO	☐ N/A			
Comments:									
Sample #s quali	fied estimated:	none							
Sample #s quali	fied rejected: nor	ne							
	DEDECORA A N. O A N. D.			(5,165)					
	PERFORMANCE AND		Jo2	(DUSR) ⊠ YES	Пио	□ N/A			
	FTPP tuning/performa ations (IC) acceptable	•		☐ YES	⊠no	□ N/A			
	calibrations (CCV) acc	•		=	⊠ NO	□ N/A			
_	IC (soil): The laborato			···· —					
	presenting a low RRF								
	listed minimum RRF, ເ			•					
	RRF of 0.010, and the		=		_				
	concentration. Theref	•	ualifiers wer	re assigned for t	this				
	compound by the revi IC (H₂O): The %RSD fo		aveaadad th	a limit and tha	compour	nd.			
	vas calibrated via line	•			-				
	0.99.	car regression, now	ever the n	arae was serow	the mine	o,			
	CCV (H₂O): Target con	npounds 4-nitrophe	nol, benzo(g	nhi)perylene and	d benzidii	ne			
Comments:	presented %D values	above the method l	imit, with re	educed sensitivi	ty.				
		1010100							
		12L0409-14: 2,4-di	•	•		tad			
Sample #s quali	fied estimated:	benzo(ghi)perylene (UJ); low bias indic		ппе. Quanījieā ā	s estimat	.ea			
	-	none	uteu.						
Janipie #3 quan	Sample #s qualified rejected: none								

4.	BLANKS	(All Lev	els)			
	Were method blanks analyzed?	·	•	XES YES	☐ NO	☐ N/A
	Are method blank results acceptable	?		\boxtimes YES	☐ NO	☐ N/A
	Were equipment blanks analyzed?			YES	⊠ NO	☐ N/A
	Are equipment blank results accepta	ble?		YES	☐ NO	⊠ N/A
	Comments:					
	Sample #s qualified not-detected or	estimated:	none			
	_ ·	none				
5.	ACCURACY	(DUSF	R)			
٠.	Were surrogates/system monitoring	•	•	X YES	□ NO	□ N/A
	Are surrogate/system monitoring co			XES	☐ NO	□ N/A
	Were MS/MSD samples analyzed?	•	•	YES	⊠ NO	☐ N/A
	Are MS/MSD results acceptable?			YES	☐ NO	⊠ N/A
	Were LCS samples analyzed?			XES YES	☐ NO	☐ N/A
	Were LCS results acceptable?			YES	⊠ NO	☐ N/A
	Comments: The following compou	•				
	which resulted in qua	-	noted associated san	nples: benz	oic acid, I	V-
	nitroso-dimethylamin					
	Sample #s qualified estimated:	12L0409-01:				
			N-nitroso-dimethylan			
			estimated (UJ); low bio	as indicated	1.	
	Sample #s qualified rejected:	none				
6.	PRECISION	(DUSF	₹)			
	Are MS/MSD RPD values acceptable	?		YES	☐ NO	⊠ N/A
	Are field duplicate RPD values accept			YES	☐ NO	⊠ N/A
	Comments: No MS/MSD or field	duplicate samp	oles for SVOC were ide	ntified.		
	Sample #s qualified estimated:	None				
	Sample #s qualified rejected:	none				

7.	SYSTEM PERFORMANCE	(DUSR)			
	Were internal standards analyzed?			☐ NO	☐ N/A
	Are internal standard areas accepta	able?		☐ NO	☐ N/A
	Are internal standard retention tim	es acceptable?		☐ NO	☐ N/A
	Comments:				
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
8.	COMPOUND IDENTIFICATION AND	OUANTITATION	(DUSR)		
0.	Is compound identification accepta	· ·	∑ YES	□NO	□ N/A
	Is compound quantitation acceptal			☐ NO	□ N/A
	Comments:				
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
	-				
9.	REPORTED RESULTS	(All Levels)	_	_	_
	Are results reported for all request	•	∑ YES	☐ NO	□ N/A
	Are all results supported in the raw	data? (DUSR)	⊠ YES	∐ NO	∐ N/A
	Comments:				
					<u></u>

	(60111111111111111111111111111111111111	
COMMENTS:		
N	Com	06/20/2012
repared by:		06/28/2013
	Signature	Date
	Chris W. Taylor (Reviewer's Name Typed (Printed))	_
	(Reviewer's Name Typed/Printed)	

DATA PACKAGE: 12L0409 VALIDATOR: C. Taylor			R: C. Taylor		DATE: (06/28/2013		Pag	e <u>1</u> of <u>1</u>
PREP. HOLDING TIME LIMIT: Aqueous: max. 5 days from VTSR to extraction. Non-aqueous: max. 12 days from VTSR to extraction						HOLDING TIM tion to analys		IMIT: (AII)	40 days
Field Sample ID	Analysis Type	Date Received	Date Prepared		Date alyzed	Prep. Holding Time, Days	I	Analysis Holding me, Days	Qualifier
B40 (10-12ft)	SVOC	12/13/12	12/13/12	12/	18/12	<1	5		
B23	SVOC	12/13/12	12/14/12	12/	18/12	1	4		

ORGANIC DATA VALIDATION CHECKLIST

VALIDATION LEVEL:									
DATA PACKAGE: 12L0266	DATA PACKAGE: 12L0266 DATE: 06/11/2013								
PROJECT: Former Doro Cleaners ;	Site No. 915238								
LABORATORY: Con-Test									
VALIDATOR: Chris Taylor									
	ANALYSES PERFOR								
SW-846 8260C Semivolatiles	SW-846 8082 PCBs	Other							
1. DATA PACKAGE COMPLETENE Is technical verification docume Is a case narrative present? Comments:		E ⊠ YES ⊠ YES	□ NO □ N/A □ NO □ N/A						
2. HOLDING TIMES Are sample holding times acceptodes Comments:	(All Levels) otable?	⊠ YES	□ NO □ N/A						
Sample #s qualified estimated:	none								
Sample #s qualified rejected:	none								
Is the GC/MS BFB tuning/perfo Are initial calibrations (IC) acce Are continuing calibrations (CC) IC: Target comp acetone, 2-buta Comments: presented relati	3. INSTRUMENT PERFORMANCE AND CALIBRATIONS Is the GC/MS BFB tuning/performance check acceptable?								
Sample #s qualified estimated: CCV %D: Acetone, methylene of estimated non-detects (UJ) in order in Trip Blank sample. Indication Sample #s qualified rejected:	Low RRF: 1,4-dioxo detects (UJ) in all S and THF qualified o samples except -02 chloride, naphthalene and all SDG soil samples. DBC	ane, TBA qualified as estin SDG soil samples. Acetone as estimated non-detects 1 (Trip Blank). Indication c l trans-1,4-dichlorobutene	nated non- , DBCP, MEK (UJ) in all of low bias. e qualified as						

4.	BLANKS	(All Levels)			
	Were method blanks analyzed?		X YES	☐ NO	☐ N/A
	Are method blank results acceptable	9?	X YES	☐ NO	☐ N/A
	Were equipment blanks analyzed?		YES	⊠ NO	☐ N/A
	Are equipment blank results accepta	ble?	YES	☐ NO	⊠ N/A
	Comments: Trip Blank was report	ed free of contamination.			
	Sample #s qualified not-detected or	estimated: none			
	Sample #s qualified rejected:	none			
5.	ACCURACY	(DUSR)			
	Were surrogates/system monitoring	compounds analyzed?	XES YES	☐ NO	☐ N/A
	Are surrogate/system monitoring co	mpound recoveries acceptable?	X YES	☐ NO	☐ N/A
	Were MS/MSD samples analyzed?		YES	⊠ NO	☐ N/A
	Are MS/MSD results acceptable ?		YES	☐ NO	⊠ N/A
	Were LCS samples analyzed?		∑ YES	∐ №	∐ N/A
	Were LCS results acceptable?		XES YES	∐ NO	☐ N/A
	Comments:				
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
6.	PRECISION	(DUSR)			_
	Are MS/MSD RPD or difference value	·	YES	☐ NO	⊠ N/A
	Are field duplicate RPD values accep		YES	∐ NO	⊠ N/A
	•	s were identified for this SDG. LCS (Bla	nk Spike) (and LCS	
Duplicate samples were reported.					
No field duplicate samples for VOCs were identified.					
	Sample #s qualified estimated:	None			
	Sample #s qualified rejected:	none			

7.	SYSTEM PERFORMANCE	(DUSR)			
	Were internal standards analyzed?		XES	☐ NO	□ N/A
	Are internal standard areas accept	able?	XES YES	☐ NO	☐ N/A
	Are internal standard retention tim		XES	☐ NO	☐ N/A
	Comments:	·			
	<u> </u>				
					
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
0	COMPOUND IDENTIFICATION AND	A CHANTITATION	(DUSR)		
٥.	Is compound identification accepta	-	(DUSK)	Пио	□ N/A
	Is compound quantitation acceptal		⊠ YES	Пио	□ N/A
		ਗਵਾ were verified at random from ma	_		□ 1V/A
	reported positives	were verified at random from ma	iss spectru.		
-					
	Consult the smallfield actions to de				
	Sample #s qualified estimated:	none			
	Cample tts qualified rejected:	nono			
	Sample #s qualified rejected:	none			
۵	REPORTED RESULTS	(All Levels)			
Э.	Are results reported for all request	-		Пио	□ N/A
	Are all results supported in the raw		⊠ YES	Пио	□ N/A
	Are all results supported in the raw	data: (DOSK)	<u> </u>		□ 1 1 //1
	Comments:				
					

COMMENTS:		
repared by:	Comme	06/11/2013
	Signature	Date
	Chris W. Taylor	
	(Reviewer's Name Typed/Printed)	_

HOLDING TIME SUMMARY

DATA PACKAGE: 12L0266 VALIDATOR: C. Taylo			DATE: 06/11/2013			Page <u>1</u> of <u>1</u>	
PREP. HOLDING	TIME LIMIT:	N/A		ANALYSIS	HOLD TIME L	MIT: 12 days	from VTSR
Field Sample ID	Lab Sample ID	Date Received (VTSR)	Date Prepared	Date Analyzed	Prep. Holding Time, Days	Analysis Holding Time, Days	Qualifier
TB-1	12L0266-01	12/08/12	N/A	12/10/12	N/A	2	
B-16 (12-14FT)	12L0266-02	12/08/12	N/A	12/10/12	N/A	2	
B-24 (0-4FT)	12L0266-03	12/08/12	N/A	12/10/12	N/A	2	
B-17 (8-10FT)	12L0266-04	12/08/12	N/A	12/10/12	N/A	2	
B-18 (6-8FT)	12L0266-05	12/08/12	N/A	12/10/12	N/A	2	
B-23 (0-2FT)	12L0266-06	12/08/12	N/A	12/10/12	N/A	2	
B-20 (12-14FT)	12L0266-07	12/08/12	N/A	12/10/12	N/A	2	
B-20 (0-2FT)	12L0266-08	12/08/12	N/A	12/10/12	N/A	2	

ORGANIC DATA VALIDATION CHECKLIST

VALIDATION LEVEL:				\ [OUSR				
DATA PACKAGE: 12L03	DATA PACKAGE: 12L0362 DATE: 06/10/2013								
PROJECT: Former Dore	o Cleaners ; Site N	o. 915238		, -,					
LABORATORY: Con-Test									
VALIDATOR: Chris Tay	lor								
		ANALYSES PERFOR	MED						
<u> </u>	SW-846 8270C Semivolatiles	SW-846 8082 PCBs	Oti	her					
1. DATA PACKAGE CO			•	_	_				
Is technical verificat		on present?		∑ YES	∐NO	∐ N/A			
Is a case narrative p	resent?				∐ №	∐ N/A			
Comments:									
2. HOLDING TIMES		(All Levels)		N					
Are sample holding	times acceptable	?		∑ YES	∐NO	∐ N/A			
Comments:									
Sample #s qualified	_	none							
Sample #s qualified	rejected: nor	ne							
				4					
3. INSTRUMENT PER			2	(DUSR)		□ N1/A			
Is the GC/MS BFB to		•		∑ YES	∐NO	∐ N/A			
Are initial calibratio		•		∐ YES	⊠ NO	□ N/A			
Are continuing calib	•	•			⊠ no	☐ N/A			
	,	s 1,2-dibromo-3-chl			-	-1			
		(MEK), tert-butyl ald	· · · · · · · · ·		-	F)			
		ponse factor (RRF) \							
		loromethane, naphi zene, trans-1,3-dich							
		s above the method							
aremore baterie pre	.semed 70D values	s above the method		reduced serisiti	vicy.				
		Low RRF) DBCP, ac	etone, MEI	K: 12L0362- (03-	-11 inclusi	ve),			
		15.		•		,			
		1,4-dioxane, TBA:	12L0362-(0	01-15 inclusive).					
		THF: 12L0362-(03-	11 inclusive	e), (13-15 inclus	ive).				
		Above named targ			-	1			
Sample #s qualified	=	noted samples. Inc			as.				
, ,		zene, 1,2,4-trichlor							
		oropropene: 12L036		2.					
		utene: 12L0362-13,.	14.						
Naphthalene: 12L0	·	• •	noted some	nloc Indication	of low bi-	10			
•	• •	timated (UJ or J) in	notea sam _i	pies. indication	טומ שטו נט	5.			
Sample #s qualified	rejectea:	none							

4.	BLANKS	(All Levels)			
	Were method blanks analyzed?			☐ NO	☐ N/A
	Are method blank results acceptab	le?	✓ YES	☐ NO	☐ N/A
	Were equipment blanks analyzed?		☐ YES	$oxed{\boxtimes}$ NO	☐ N/A
	Are equipment blank results accep		☐ YES	☐ NO	⊠ N/A
		Blank were reported free of con	tamination.		
		, , ,			
	Sample #s qualified not-detected of	or estimated: none			
	Sample #s qualified rejected:	none			
	Jampie #3 qualified rejected.	none			
5.	ACCURACY	(DUSR)		_	
	Were surrogates/system monitoring		⊠ YES	∐ №	□ N/A
	Are surrogate/system monitoring of	compound recoveries acceptable		∐ №	☐ N/A
	Were MS/MSD samples analyzed?		XES YES	☐ NO	☐ N/A
	Are MS/MSD results acceptable ?		☐ YES	⊠ no	☐ N/A
	Were LCS samples analyzed?		XES YES	☐ NO	☐ N/A
	Were LCS results acceptable?		☐ YES	\boxtimes NO	☐ N/A
	Comments: The following comp	ounds presented recoveries belo	w limits in both N	ΛS and M	ISD
	which resulted in qu	alification in parent sample 12L0	0362-10:		
	dichlorodifluorome	hane (Freon-12), naphthalene, 1	,2,3-trichlorober	zene and	1
	1,2,4-trichlorobenze	The state of the s			
	The following comp	ounds presented recoveries belo	w limits in both L	CS and L	CSD
		ialification in the noted associate			
	·	hane (Freon-12), samples 12L03	•		
		mples 12L0362-13 and 14.	,		
	Sample #s qualified estimated:	12L0362-10: Freon-12, napht	thalene. 1.2.3-		
	p a day	trichlorobenzene and 1,2,4-tr		Qualifiea	as
		estimated (UJ); low bias indic		~,·	
	12L0362-01 and 02: Freon-12. Qu				
	12L0362-13 and 14: chlorometha			1.	
	Sample #s qualified rejected:	none			
6.	PRECISION	(DUSR)			
	Are MS/MSD RPD or difference val		☐ YES	⊠ NO	□ N/A
	Are field duplicate RPD values acce	•	—	□ NO	□ N/A
	•	oounds presented MS/MSD RPD	values which exc	— eeded 30	
	, ,	ene, 1,2,4-trichlorobenzene and			
		se compounds were found in the			mee
	qualifiers were ass		. parent sample,	no data	
	Sample DUP-1 is the field duplicat		ware reported n	ocitiva (a	+
	200x dilution) for tetrachloroethe		were reported p	usitive (u	ι
	200x unution) for tetructiloroethe	ne, with NFD tultulated at 24%.			
	Sample #s qualified estimated:	None			
	Sample #s qualified rejected:				
	Jampie #3 quaimeu rejecteu.	none			

7	SYSTEM PERFORMANCE	(DUSR)			
/.	Were internal standards analyzed?	` ,	⊠ YES	Пио	□ N/A
	Are internal standard areas accept		⊠ YES	Пио	□ N/A
	•		⊠ YES	Пио	□ N/A
	Are internal standard retention tin	nes acceptable?			□ IN/A
	Comments:				
Ī					
	Sample #s qualified estimated:	none			
ı	Sample #s qualified rejected:	none			
	, , ,				
			(==)		
8.	COMPOUND IDENTIFICATION ANI	-	(DUSR)		□ .
	Is compound identification accept		∑ YES	∐NO	∐ N/A
	Is compound quantitation accepta			∐ NO	☐ N/A
	Comments: Reported positives	were qualitatively verified from	mass spectra.		
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
	, , , , , , , , , , , , , , , , , , ,				
9.	REPORTED RESULTS	(All Levels)			
•	Are results reported for all reques			□NO	□ N/A
	Are all results supported in the ray		— ☐ YES	— □ NO	□ N/A
	The anneaded supported in the ra-		_	_	
	Comments:				
Ī					
1					
1					
ı					

	(commuta)	
COMMENTS:		
-		
-		
Prepared by:	Com	06/10/2013
-	Signature	Date
	Chris W. Taylor	_
	(Reviewer's Name Typed/Printed)	

HOLDING TIME SUMMARY

DATA PACKAG	E: 12L0362	VALIDATOR: C. Taylor		DATE: (DATE: 06/11/2013		Page <u>1</u> of <u>1</u>	
PREP. HOLDING	TIME LIMIT:	N/A		ANALYSIS	HOLD TIME LI	MIT: 12 days	from VTSR	
Field Sample ID	Lab Sample ID	Date Received (VTSR)	Date Prepared	Date Analyzed	Prep. Holding Time, Days	Analysis Holding Time, Days	Qualifier	
TB-2	12L0362-01	12/12/12	N/A	12/19/12	N/A	7		
FB-1	12L0362-02	12/12/12	N/A	12/19/12	N/A	7		
B-15 (4-8ft)	12L0362-03	12/12/12	N/A	12/13/12	N/A	1		
B-13 (8-12ft)	12L0362-04	12/12/12	N/A	12/13/12	N/A	1		
B-28 (4-6ft)	12L0362-05	12/12/12	N/A	12/13/12	N/A	1		
B-14 (8-12ft)	12L0362-06	12/12/12	N/A	12/13/12	N/A	1		
B-32 (8-10ft)	12L0362-07	12/12/12	N/A	12/13/12	N/A	1		
B-33 (2-4ft)	12L0362-08	12/12/12	N/A	12/13/12	N/A	1		
B-30 (6-8ft)	12L0362-09	12/12/12	N/A	12/13/12	N/A	1		
B-12 (8-12ft)	12L0362-10	12/12/12	N/A	12/13/12	N/A	1		
B-11 (6-8ft)	12L0362-11	12/12/12	N/A	12/13/12	N/A	1		
B-29 (10-12ft)	12L0362-12	12/12/12	N/A	12/20/12	N/A	8		
DUP-1	12L0362-13	12/12/12	N/A	12/13/12	N/A	1		
B-29 (4-6ft)	12L0362-14	12/12/12	N/A	12/13/12	N/A	1		
B-34 (4-6ft)	12L0362-15	12/12/12	N/A	12/13/12	N/A	1		

ORGANIC DATA VALIDATION CHECKLIST

VALIDATION LEVEL:		□ A	□ B	⊠ DUSR						
DATA PACKAGE: 12	2L0409		DA	TE : 06/25/	2013					
PROJECT: Former [Ooro Cleaners ; :	Site No. 915238								
LABORATORY: Cor										
VALIDATOR: Chris	Taylor									
		ANALYSES PERFOR	MED							
⊠ SW-846 8260C	0 1 1 11 000									
Volatiles	Semivolatiles	PCBs								
			"		*					
1. DATA PACKAGI	E COMPLETENES	SS AND CASE NARRATIVE								
Is technical verif	ication docume	ntation present?		XES YES	☐ NO	☐ N/A				
Is a case narrativ	ve present?			XES YES	☐ NO	☐ N/A				
Comments:										
2. HOLDING TIME		(All Levels)		₩ vec		□ N1/A				
Are sample hold	ling times accep	table?		YES	∐ №	∐ N/A				
Comments:	::!									
Sample #s qualif		none								
Sample #s qualif	ried rejected:	none								
2 INSTRUMENTS	DEDECORMANICE	AND CALIBRATIONS	,	DUCD)						
		mance check acceptable	=	DUSR) ⊠ YES	Пио	□ N/A				
		stable? Note any outliers		YES	⊠ NO	□ N/A				
		/) acceptable? <i>Note any</i>		YES	⊠ NO	□ N/A				
_		t compounds 1,2-dibromo		_						
	. , ,	none (MEK), tert-butyl ald			-	-				
		ve response factor (RRF) v			•	•				
i	C (H₂O): Target	compounds 1,4-dioxane,	TBA and THF pr	esented re	lative					
	<u> </u>	(RRF) values below the m								
• •		naphthalene, 2,2-dichlor				nd				
	oropropene pres	sented %D values above	the method limi	t, with red	uced					
sensitivity.	ant commounds	nanhthalana chlaramath	ana bramafarn	m DDCD 1	2 2					
	•	naphthalene, chlorometh -dichlorobutene presente				i+				
with reduced se		diemorobatene presente	u /ob values as	ove the m	ctriou min	ι,				
	,									
		Low RRF soils: 1,4-dioxo	ne, TBA. 12L04	09- (01-08	inclusive).					
		Acetone, DBCP, MEK, T	HF. 12L0409-(0.	2-08 inclus	ive).					
		Low RRF H₂O: 1,4-dioxa		09- (09-19	inclusive).					
		TBA. 12L0409-(11-19 ir								
	ried		-	=	r J) in not	ed				
	2 2 dichlaran	<u> </u>			hthalana					
= = = = = = = = = = = = = = = = = = = =	•	•	· -							
	2,2-dichloropro	Acetone, DBCP, MEK, T Low RRF H ₂ O: 1,4-dioxa	HF. 12L0409-(0. ne, THF. 12L04(nclusive). ualified as estin notential low bio propene [12L04(2-08 inclus 09- (09-19 i nated (UJ c as. 09]-01; nap	ive). inclusive). or J) in note ohthalene,	ed				

CCV %D (H_2O): naphthalene, chloromethane, bromoform, DBCP, 1,2,3-trichlorobenzene and trans-1,4-dichlorobutene [12L0409]-(11-19 inclusive).

Above named targets qualified as estimated (UJ or J) in noted samples. Indication of low bias.

Sample #s qualified rejected: none

4.	BLANKS		(All Levels)			
	Were method	XES YES	☐ NO	☐ N/A		
	Are method b	XES YES	☐ NO	☐ N/A		
	Were equipm	YES YES	⊠ NO	☐ N/A		
	Are equipmen	YES	☐ NO	⊠ N/A		
	Comments:	·				
	Sample #s qua	alified not-detected or	estimated: none			
			none			
5.	ACCURACY		(DUSR)			
Э.		tes/system monitoring			Пио	□ N/A
	_	-	mpound recoveries acceptable?	⊠ YES	Пио	□ N/A
		7 system monitoring col D samples analyzed?	impound recoveries acceptable:	⊠ YES	Пио	□ N/A
		results acceptable?		YES	⊠ NO	□ N/A
		iples analyzed?		∑ YES	□NO	□ N/A
		ılts acceptable?		☐ YES	⊠ NO	□ N/A
	Comments:	•	unds presented recoveries below lim		_	
	Comments.		on in parent sample 12L0409-08: di			
			ne, 1,2,3-trichlorobenzene and 1,2	•		
		•	presented recoveries below limits i			THE
			lification in parent sample 12L0409			and
		Freon-12.	incution in parent sample 1220405	13. Cilioron	retrarie	arra
			ınds presented recoveries below lin	nits in soil 10	rs/I csp	
			lification in the noted associated sa			nnle
		12L0409-01.	nyieutien in the noted descended su	pico. i i coi	, 1 2 , 54	
	Sample #s qua	alified estimated:	12L0409-08: Freon-12, naphthale	ne, 1,2,3-		
			trichlorobenzene and 1,2,4-trichlo			
			12L0409-15: chloromethane and	Freon-12.		
			Qualified as estimated (UJ); low b	bias indicate	d.	
	12L0409-01:	Freon-12. Qualified as	estimated (UJ); low bias indicated.			
	Sample #s qua	alified rejected:	none			
						_
6.	PRECISION		(DUSR)			
	Are MS/MSD	RPD or difference value	es acceptable?	YES	⊠ NO	☐ N/A
	Are field dupli	cate RPD values accept		YES	⊠ NO	☐ N/A
	Comments:		unds presented MS/MSD RPD value		eeded 30	% in
		parent sample 12L04	109-08: N-butylbenzene, hexachlor	obutadiene,		
		•	ichlorobenzene, 1,2,4-trichlorobenz			
		trichlorobenzene and	l tetrachloroethene. Since tetrachlo	proethene w	as positiv	ve in
		the parent sample, to	etrachloroethene was qualified in 1	2L0409-08 o	nly. No d	'ata
		qualifiers were assigi	ned to the other compounds as the	y were non-c	letects.	
	Sample DUP-	2 is the field duplicate	of B-40 (10-12′). Both samples wer	e reported po	ositive (a	t
	5000x and 50	00x dilution, respective	ly) for tetrachloroethene, with RPD	calculated o	at 82%.	
	Sample DUP	-3 is the field duplicate	of B-28. Both samples were reporte	ed positive fo	or cis-1,2	

dichloroethene, trichloroethene and tetrachloroethene, while only DUP-3 was reported positive for vinyl chloride and benzene. RPD values for cis-1,2-dichloroethene, trichloroethene and tetrachloroethene were 144%, 126% and 107%, respectively. RPD results are high and indicate sample non-homogeneity. The results for these compounds in the parent and duplicate samples only were qualified as estimated (J or UJ) with indeterminate bias direction.

Sample #s qualified estimated: 12L0409-08: tetrachloroethene. Qualified as estimated (J);

indeterminate bias direction.

12L0409-01, -05: tetrachloroethene. Qualified as estimated

(J); indeterminate bias direction.

12L0409-12, -17: cis-1,2-dichloroethene, trichloroethene, tetrachloroethene, vinyl chloride and benzene. Qualified as

estimated (J or UJ); indeterminate bias direction.

Sample #s qualified rejected:

none

		(continued)			
7.	SYSTEM PERFORMANCE Were internal standards analyzed?		⊠ YES	□NO	□ N/A
	Are internal standard areas accept Are internal standard retention tin Comments:		⊠ YES ⊠ YES	□ ио	□ N/A □ N/A
	Comments.				
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
8.	COMPOUND IDENTIFICATION AND	-	(DUSR)		
	Is compound identification acceptals compound quantitation accepta		∑ YES ∑ YES	∐ NO □ NO	∐ N/A □ N/A
		were qualitatively verified from	m mass spectra.		
	Sample #s qualified estimated:	none			
	Sample #s qualified rejected:	none			
9.	REPORTED RESULTS Are results reported for all request	(All Levels)	⊠ YES	Пио	□ n/a
	Are all results supported in the ray	•	⊠ YES	□NO	□ N/A
	Comments:				
ļ					

	(Continueu)	
COMMENTS:		
-		
-		
Prepared by:	Com	06/27/2013
	Signature	Date
	Chris W. Taylor	_
	(Reviewer's Name Typed/Printed)	

HOLDING TIME SUMMARY

DATA PACKAG	E: 12L0409	VALIDATO	R: C. Taylor	DATE: 0	6/26/2013	Page <u>1</u> of		e <u>1</u> of <u>1</u>
PREP. HOLDING	ANALYSIS HOLD TIME LIMIT: 12 days from VTSR							
Field Sample ID	Lab Sample ID	Date Received (VTSR)	Date Prepared	Date Analyzed	Prep. Holding Time, Days	ŀ	analysis Holding me, Days	Qualifier
B-40 (10-12ft)	12L0409-01	12/13/12	N/A	12/19/12	N/A	6		
B-31 (6-8ft)	12L0409-02	12/13/12	N/A	12/14/12	N/A	1		
B-35 (6-8ft)	12L0409-03	12/13/12	N/A	12/14/12	N/A	1		
B-41 (10-12ft)	12L0409-04	12/13/12	N/A	12/14/12	N/A	1		
DUP-2	12L0409-05	12/13/12	N/A	12/14,17/12	N/A	1,	4	
B-37 (10-12ft)	12L0409-06	12/13/12	N/A	12/14,19/12	N/A	1,	6	
B-19 (6-8ft)	12L0409-07	12/13/12	N/A	12/17/12	N/A	4		
B-21 (0-2ft)	12L0409-08	12/13/12	N/A	12/14/12	N/A	1		
TB-3	12L0409-09	12/13/12	N/A	12/14/12	N/A	1		
FB-2	12L0409-10	12/13/12	N/A	12/14/12	N/A	1		
B-27	12L0409-11	12/13/12	N/A	12/20/12	N/A	7		
B-28	12L0409-12	12/13/12	N/A	12/20/12	N/A	7		
B-18	12L0409-13	12/13/12	N/A	12/20/12	N/A	7		
B-23	12L0409-14	12/13/12	N/A	12/20/12	N/A	7		
B-17	12L0409-15	12/13/12	N/A	12/20/12	N/A	7		
B-11	12L0409-16	12/13/12	N/A	12/20/12	N/A	7		
DUP-3	12L0409-17	12/13/12	N/A	12/20/12	N/A	7		
B-36	12L0409-18	12/13/12	N/A	12/20/12	N/A	7		
B-35	12L0409-19	12/13/12	N/A	12/20/12	N/A	7		

ORGANIC DATA VALIDATION CHECKLIST

VALIDATION LEVEL:		A		□В	⊠ DUSR		
DATA PACKAGE: 12L045	58			DATE	: 07/02/	2013	
PROJECT: Former Doro	Cleaners;	Site No. 915238		·			
VALIDATOR: Chris Taylo	or						
		_	MED	r			
				Other			
DATA PACKAGE: 12L0458 PROJECT: Former Doro Cleaners; Site No. 915238 LABORATORY: Con-Test VALIDATOR: Chris Taylor SW-846 8260C							
			E		<u> </u>		
		ntation present?					
•	esent?				⊠ YES	⊔мо	∐ N/A
Comments:							
2 HOLDING TIMES		(All Lovals)					
	imes accen	•			⊠ YES	Пио	□ N/A
,	тез ассер	table.			_	_	
Sample #s qualified e	estimated:	none					
· ·		none					
	,	-					
3. INSTRUMENT PERFO	ORMANCE	AND CALIBRATIONS		(D	USR)		
Is the GC/MS BFB tur	ning/perfor	mance check acceptable	?		XES YES	☐ NO	☐ N/A
Are initial calibration	s (IC) accep	otable? Note any outliers	belo	w.	YES	⊠ NO	☐ N/A
Are continuing calibr	ations (CC\	/) acceptable? <i>Note any</i>	outli	ers below.	YES YES	⊠ NO	☐ N/A
· ·	ATA PACKAGE: 12L0458 ROJECT: Former Doro Cleaners; Site No. 915238 ABORATORY: Con-Test ALIDATOR: Chris Taylor ANALYSES PERFORMED SW-846 8250C	· -					
				-		•	F)
·							
· -		•		•	sentea rei	iative	
PROJECT: Former Doro Cleaners; Site No. 915238 LABORATORY: Con-Test VALIDATOR: Chris Taylor ANALYSES PERFORMED							
	SE: 12L0458 mer Doro Cleaners; Site No. 915238 : Con-Test Chris Taylor ANALYSES PERFORMED						
		•					
		•		•	•		
		-dichlorobutene presente	d %L	ว values aboง	ve the me	rthod limit	,
with reduced sensiti	vity.						
		Low RRE soils: 1210/158	_ (01	-02 -04): DE	RCD 1 1_c	diovane	
					, _,		
			- (06-	09 inclusive).	1,4-diox	ane, TBA,	THF.
Sample #s qualified		Above named targets q	-		=	r J) in note	ed
estimated:	0450 /04	samples. Indication of p					
(SOIIS): 12L0)458- (U1, -	02 -04); naphthalene. 12	LU4U	ษ-บร; promof	orm, cnic	prometnai	ne,

trans-1,3-dichloropropene, trans-1,4-dichlorobutene. CCV %D (H_2O): 12L0458- (06-09 inclusive); bromoform, chloromethane, trans-1,3-dichloropropene, trans-1,4-dichlorobutene. 12L0458-(11 and -12); 2,2-dichloropropene, trans-1,3-dichloropropene.

Above named targets qualified as estimated (UJ or J) in noted samples. Indication of low bias. Sample #s qualified rejected: none

4.	BLANKS		(All Levels)			
	Were method	blanks analyzed?	,	\boxtimes YES	☐ NO	☐ N/A
		lank results acceptabl	e?	✓ YES	□NO	□ N/A
		ent blanks analyzed?		YES	⊠ NO	□ N/A
		nt blank results accept	able?	YES	_ по	M N/A
	Comments:	it blank results accept	abic.	_		
	comments.					
	Sample #s qua	alified not-detected or	r estimated: none			
	Sample #s qua	alified rejected:	none			
		-				
5.	ACCURACY		(DUSR)			
	Were surroga	tes/system monitorin	g compounds analyzed?	XES YES	☐ NO	☐ N/A
		-	ompound recoveries acceptable?	\boxtimes YES	☐ NO	☐ N/A
	_	D samples analyzed?	·	YES	⊠ NO	□ N/A
		results acceptable?		YES	☐ NO	⊠ N/A
	-	ples analyzed?		X YES	☐ NO	□ N/A
		ults acceptable?		YES	⊠ NO	☐ N/A
	Comments:	•	ounds presented recoveries below lim	its in soil LO	CS/LCSD	
			alification in the noted associated sar			е
		•	robutene, sample 12L0458-05.	,		
			ounds presented recoveries below lim	its in aaueo	us LCS/L0	CSD
		, ,	alification in the noted associated sar	•	-	
		·	and -11; chloromethane and trans-1	•		
		samples 12L0458-06		,	,	
	Sample #s qua	alified estimated:	12L0458-(05-09 inclusive): chloron	nethane and	d trans-1,	4-
			dichlorobutene.		,	
			12L0458-10 and -11: Freon-12.			
			Qualified as estimated (UJ); low b	ias indicate	d.	
	Sample #s qua	alified rejected:	none			
6.	PRECISION		(DUSR)			-
	-	RPD or difference valu	•	∐ YES	∐ №	⊠ N/A
	Are field dupli	icate RPD values acce _l		YES	∐ NO	⊠ N/A
	Comments:	No MS/MSD sample	es or field duplicate samples were ide	ntified for t	his SDG.	
	Sample #s qua	alified estimated:	none			
		alified rejected:	none			
	Janupie #3 que	anneu rejecteu.	none			

7. SYSTEM PERFORMANCE	(DUSR)			
Were internal standards analyze	· · ·		☐ NO	☐ N/A
Are internal standard areas acce			□NO	☐ N/A
Are internal standard retention	•		☐ NO	☐ N/A
Comments:	·			
-				
Sample #s qualified estimated:	none			
Sample #s qualified rejected:	none			
Sample no quantea rejected.	- Home			
8. COMPOUND IDENTIFICATION A	ND OHANTITATION	(DUSR)		
Is compound identification acce		(DO3K) ⊠ YES	Пио	□ N/A
Is compound quantitation accep	·	⊠ YES	Пио	□ N/A
·	ves were qualitatively verified from	_		
neporteu positiv	ves were quantatively verifica from	mass spectra.		
Sample #s qualified estimated:	none			
Sample #s qualified estimated: Sample #s qualified rejected:	none none			
Sample #s qualified estimated: Sample #s qualified rejected:	none			
Sample #s qualified rejected:	·			
Sample #s qualified rejected:	none (All Levels)	⊠ YES	□ NO	
Sample #s qualified rejected: 9. REPORTED RESULTS	(All Levels) sested analyses?	⊠ YES ⊠ YES	□ NO □ NO	□ N/A □ N/A
Sample #s qualified rejected: 9. REPORTED RESULTS Are results reported for all requested Are all results supported in the	none (All Levels) lested analyses? raw data? (DUSR)	∑ YES	□NO	□ N/A
Sample #s qualified rejected: 9. REPORTED RESULTS Are results reported for all requester all results supported in the suppo	none (All Levels) sested analyses? raw data? (DUSR) 3-05 (Cistern; soil) was analyzed at	∑ YES	□NO	□ N/A
Sample #s qualified rejected: 9. REPORTED RESULTS Are results reported for all requ Are all results supported in the Comments: Sample 12L0458 RL values are ad	none (All Levels) lested analyses? raw data? (DUSR) 8-05 (Cistern; soil) was analyzed at lijusted to reflect this dilution.	⊠ YES a 2x initial dilutio	No on; report	□ N/A
Sample #s qualified rejected: 9. REPORTED RESULTS Are results reported for all requ Are all results supported in the Comments: Sample 12L0458 RL values are ad The following samples were re	none (All Levels) lested analyses? raw data? (DUSR) 3-05 (Cistern; soil) was analyzed at allusted to reflect this dilution. -analyzed (-RE) due to the noted ar	☐ YES a 2x initial dilutionalytes exceeding	□ NO on; report	□ N/A
Sample #s qualified rejected: 9. REPORTED RESULTS Are results reported for all requestre all results supported in the suppo	none (All Levels) rested analyses? raw data? (DUSR) 8-05 (Cistern; soil) was analyzed at all all all all all all all all all	→ YES a 2x initial dilution nalytes exceeding -27 (3-4ft)], 20x,	no n; report g the cis-1,2-	□ N/A
Sample #s qualified rejected: 9. REPORTED RESULTS Are results reported for all requester all results supported in the suppo	none (All Levels) lested analyses? raw data? (DUSR) 3-05 (Cistern; soil) was analyzed at allusted to reflect this dilution. -analyzed (-RE) due to the noted ar	→ YES a 2x initial dilution nalytes exceeding -27 (3-4ft)], 20x,	no n; report g the cis-1,2-	□ N/A
Sample #s qualified rejected: 9. REPORTED RESULTS Are results reported for all requestre all results supported in the suppo	none (All Levels) rested analyses? raw data? (DUSR) 8-05 (Cistern; soil) was analyzed at all all all all all all all all all	→ YES a 2x initial dilution nalytes exceeding -27 (3-4ft)], 20x,	no n; report g the cis-1,2-	□ N/A
Sample #s qualified rejected: 9. REPORTED RESULTS Are results reported for all requestre all results supported in the suppo	none (All Levels) rested analyses? raw data? (DUSR) 8-05 (Cistern; soil) was analyzed at all all all all all all all all all	→ YES a 2x initial dilution nalytes exceeding -27 (3-4ft)], 20x,	no n; report g the cis-1,2-	□ N/A
Sample #s qualified rejected: 9. REPORTED RESULTS Are results reported for all requestre all results supported in the suppo	none (All Levels) rested analyses? raw data? (DUSR) 8-05 (Cistern; soil) was analyzed at all all all all all all all all all	→ YES a 2x initial dilution nalytes exceeding -27 (3-4ft)], 20x,	no n; report g the cis-1,2-	□ N/A
Sample #s qualified rejected: 9. REPORTED RESULTS Are results reported for all requester all results supported in the suppo	none (All Levels) rested analyses? raw data? (DUSR) 8-05 (Cistern; soil) was analyzed at all all all all all all all all all	→ YES a 2x initial dilution nalytes exceeding -27 (3-4ft)], 20x,	no n; report g the cis-1,2-	□ N/A

	(continuca)	
COMMENTS:		
-		
-		
-		
Prepared by:	Com	07/02/2013
repared by.	Signature	Date
	Chris W. Taylor	Date
	(Reviewer's Name Typed/Printed)	_
	(neviewer straine Typea/Timea/	

HOLDING TIME SUMMARY

DATA PACKAG	E: 12L0458	VALIDATO	R: C. Taylor	or DATE: 07/02/2013			Page <u>1</u> of <u>1</u>			
PREP. HOLDING TIME LIMIT: N/A					ANALYSIS HOLD TIME LIMIT: Max. 7 days unpreserved; 10 days preserved (from VTSR)					
Field Sample ID ID		Date Received (VTSR)	Date Prepared		Date alyzed	Holding		nalysis olding ne, Days	Qualifier	
B-26 (6-8ft)	12L0458-01	12/14/12	N/A	12	2/17/12	N/A	3			
B-27 (3-4ft)	12L0458-02	12/14/12	N/A	12/	17,21/12	N/A	3, 7	,		
B-22 (0-4ft)	12L0458-03	12/14/12	N/A	12	2/18/12	N/A	4			
B-25 (5-6ft)	12L0458-04	12/14/12	N/A	12	2/17/12	N/A	3			
Cistern (soil)	12L0458-05	12/14/12	N/A	12	2/21/12	N/A	7			
Cistern (GW)	12L0458-06	12/14/12	N/A	12/2	20,21/12	N/A	6, 7	,		
CB-2	12L0458-07	12/14/12	N/A	12	2/21/12	N/A	7			
CB-1	12L0458-08	12/14/12	N/A	12	2/21/12	N/A	7			
B-14	12L0458-09	12/14/12	N/A	12/2	21,23/12	N/A	7, 9)		
FB-3	12L0458-10	12/14/12	N/A	12	2/19/12	N/A	5			
TB-4	12L0458-11	12/14/12	N/A	12	2/19/12	N/A	5			