Environmental Advantage

Environmental Advantage, Inc. 3636 N. Buffalo Road Orchard Park, New York 14127 Industrial Compliance, Hazardous Materials Management, Site Assessment/Remediation

June 30, 2024

Robert Waterfield, Owner 4245 Clark Street Hamburg, New York 14127

Via Email: rwaterfield236@verizon.net;

Re: Focused Phase II Environmental Site Assessment;

Commercial Property, 4245 Clark Street, Hamburg, NY

EA Project No: EA2305

Dear Mr. Waterfield:

Please find attached one electronic copy of the final report for a Phase II Environmental Site Assessment (ESA) completed at the above-referenced site. The Focused Phase II ESA was completed in accordance with our agreement signed on March 20, 2024. The attached report, as noted therein, has been prepared in general accordance with the ASTM Standard E1903-19.

Information accumulated for this assessment will be retained with your project file. The report and information in your file is considered confidential and will not be released without your written authorization.

If you have any questions concerning the information present in the report, please contact me directly. Thank you for the opportunity to provide these site assessment services.

Fax: 716-667-3156

Very truly yours,

ENVIRONMENTAL ADVANTAGE, INC.

C. Mark Hanna, CHMM

President

Attachment

Ph: 716-667-3130

www.envadvantage.com

FOCUSED PHASE II ENVIRONMENTAL SITE ASSESSMENT

Commercial Property 4245 Clark Street Hamburg, New York 14075

Prepared For:
Robert Waterfield
4245 Clark Street
Hamburg, New York 14075
EA Project No: EA2305

Prepared By:
Environmental Advantage, Inc.
3636 North Buffalo Road
Orchard Park, New York 14127
(716) 667-3130

C. Mark Hanna, CHMM President

TABLE OF CONTENTS

	<u> </u>	Page
1.0	INTRODUCTION	1
1.1	Background	1
1.2	Limitations and Exceptions	2
1.3	Purpose of the Investigation	
1.4	Statement of Objectives	
2.0	SITE CONDITIONS	. 4
2.1	Site Description and Features	4
2.2	Physical Setting	4
2.3	Site History and Land Use	
3.0	INVESTIGATIVE ACTIVITIES	4
3.1	Soil Boring/Temporary Well Installation	4
3.2	Interior SubSlab Vapor Sampling	6
4.0	INTERPRETATION OF RESULTS	. 8
4.1	Discussion of Field Observations	8
4.2	Discussion of Analytical Observations	9
4.3	Summary and Conclusions	11
4.4	Summary of Business Environmental Risk	12

ATTACHMENTS

- Figures A.
- Soil Boring Logs, Field Notes, & Vapor Sampling Sheets B.
- C.
- Analytical Tables
 Laboratory Analytical Reports
 Objectives and Limitations D.
- E.

FOCUSED PHASE II ENVIRONMENTAL SITE ASSESSMENT

Commercial Property 4245 Clark Street Hamburg, New York 14127

1.0 INTRODUCTION

1.1 Background

In accordance with the executed agreement, dated March 20, 2024, Environmental Advantage, Inc. (EA) completed a Focused Phase II Environmental Site Assessment (ESA) of the above-referenced property (hereinafter "subject site") for you (hereinafter "Client"). The Phase II ESA includes Figures in Attachment A; soil boring logs, field notes, and vapor sampling sheets in Attachment B, analytical summary tables in Attachment C, laboratory analytical reports in Attachment D; and objectives & limitations in Attachment E.

This report is an instrument of service of EA and reflects the purpose of this investigation to acquire and evaluate information sufficient to achieve the objectives set forth in this document. The identified statement of objectives and developed scope of work for this study, investigative activities and interpretation of results were completed in general conformance with the American Society for Testing and Materials (ASTM) Standard E 1903-19. This practice is intended for use in any situation in which a user desires to obtain sound, scientifically valid data concerning actual property conditions, whether or not such data relate to property conditions previously identified as "Recognized Environmental Conditions" (RECs) or data gaps presented in other siterelated documents. As defined under the ASTM Standard E1527-21, the "term recognized environmental condition means (1) the presence of hazardous substances or petroleum products in, on, or at the subject property due to a release to the environment; (2) the likely presence of hazardous substances or petroleum products in, on, or at the subject property due to a release or likely release to the environment; or (3) the presence of hazardous substances or petroleum products in, on, or at the subject property under conditions that pose a material threat of a future release to the environment". "Data Gaps" are defined in ASTM Standard E1527-21 as "a lack of or inability to obtain information required by this practice despite good faith efforts by the environmental professional to gather such information" as required by the USEPA 'All Appropriate Inquiries' (AAI) rule despite good faith efforts to gather such information. This ESA was completed by EA in accordance with generally accepted practices of the profession undertaken in similar studies within the same time frame and geographic area, and EA observed that degree of care and skill generally exercised by the profession under similar circumstances and conditions.

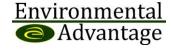
This ESA and report have been prepared on behalf of, and for the exclusive use of, EA's Client solely for its reliance in the environmental assessment of this site. The Client is the only party to which EA has explained the risks involved and which has been

involved in shaping of the scope of services needed to satisfactorily manage those risks, if any, from EA's Client's point of view. Accordingly, reliance on this report by any other party may involve assumptions whose extent and nature lead to a distorted meaning and impact of the findings and opinions related herein. EA's findings and opinions related in this report may not be relied upon by any party except EA's Client. Use of this ESA report by any other party is strictly prohibited, except by authorization in writing from EA's Client.

1.2 <u>Limitations and Exceptions</u>

The Focused Phase II ESA was conducted using methods and practices developed in general accordance with the American Society for Testing and Materials (ASTM) Standard E1903-19 and is thereby subject to limitations inherent to that Standard. EA's investigative activities were not intended to provide either a complete characterization of the subject site or a determination regarding the extent of any contaminant migration, but rather, to provide basic information concerning on-site conditions within the specific areas of concern.

EA has endeavored to meet what it believes is the applicable standard of care for the services completed and, in doing so, is obliged to advise its Client of the Focused Phase II ESA limitations. EA believes that providing information about limitations is essential to help its client identify and thereby manage risks. These risks may be able to be mitigated, and possibly eliminated, through additional research or investigation. EA will, upon request, advise its Client of the additional research opportunities available and the associated costs.


The findings and opinions conveyed via this ESA report are based upon information obtained during the performance of the investigation, and which EA believes is reliable. EA cannot, and does not, warrant the authenticity or reliability of the information sources it has relied upon in the development of the scope of work for this ESA. In those instances where additional services or service enhancements are included in the report as requested or authorized by the Client, specific limitations attendant to those services are presented in the text of the report.

1.3 Purpose of the Investigation

The purpose of this Focused Phase II Environmental Site Assessment was to assess recognized environmental conditions (RECs) identified in a Phase I Environmental Site Assessment¹, completed by EA, as follows:

The subject site has been utilized as a dry cleaner, occupied by Vara's Dry Cleaning, since construction in 1946 through the present. According to Mr. Waterfield, only mineral spirits has been used at the subject site, as opposed to a chlorinated solvent. Historically, mineral spirits has been stored in three aboveground storage tanks (ASTs), two previously located along the southeastern exterior of the structure which were installed in 1946 and removed in the 1980s.

¹ "Phase I Environmental Site Assessment, Commercial Property, 4245 Clark Street, Hamburg, New York 14127" prepared for Bevrich Corp. (Robert Waterfield, President) by Environmental Advantage, Inc. dated August 25, 2022.

_

and one currently located along the southern exterior, which was installed in the 1980s and is still in service (removed since Phase I ESA). Evidence of staining was observed beneath this AST and around the dry cleaning equipment inside the building (removed since the Phase I ESA).

The concrete floor in the dry cleaning room exhibited staining, limited cracking and deterioration, and one floor drain was present which reportedly discharges to the rear of the property. Stressed vegetation and staining on the asphalt parking lot were observed and appeared to be associated with the boiler blowdown discharge from two pipes along the southwestern corner of the structure. Additionally, small volumes of wastewater from an air vacuum connected to the steamers were directly discharged to the ground surface along the southeastern exterior of the structure. In that regard, concern was identified with respect to possible past release(s) of mineral spirits and other chemicals utilized during routine operations (water-repellant, spot cleaning chemicals, etc.) related to its use, storage, and/or disposal.

The eastern adjacent property, occupied by Dura Plating Inc., addressed at 4255 Clark Street, was listed on the database for several listings, including a Generator from a Hazardous Waste Manifest for the disposal of chromium. A manifest from 2002 listed the disposal of 800 pounds of "chromium contaminated soil". No spill listing was associated with this manifest. In that regard, concern exists with the respect to possible past release(s) of chromium and other hazardous substances and/or chemicals related to its use, storage, and/or disposal at the eastern adjoining property.

In this context, EA recommended that a Focused Phase II ESA subsurface investigation be completed on the subject site using at least soil boring and monitoring well installations to assess if the soil profile and/or ground water have been impacted by the historical site and adjoining property usage. Also, a subslab vapor assessment was conducted to address the potential for subfloor petroleum and chlorinated solvent contaminants associated with former dry cleaning use.

1.4 Statement of Objectives

In accordance with ASTM Standard E1903-19, this Focused Phase II ESA was designed to meet the following objectives:

- Objective A Assess if there has been a release of hazardous substances and/or petroleum products to environmental media within the meaning of CERCLA;
- Objective B Provide information relevant to identifying, defining and/or evaluating property conditions associated with target analytes relative to applicable agency clean-up standards and guidance values; and

 Objective C – Provide information relevant to target analytes that may pose business environmental risk in transactional and contractual contexts, including transferring, financing and insuring properties and due diligence related thereto.

2.0 SITE CONDITIONS

2.1 <u>Site Description and Features</u>

The subject site consists of one parcel totaling approximately 0.38 acres of land located at 4245 Clark Street in the Village of Hamburg, Erie County, New York. The subject site is located on the southeast side of Clark Street, east of the Clark Street and Old Clark Street intersection (Refer to Figure 1 presented in Attachment A). The subject site is developed with a one-story approximate 4,336-square foot structure, originally constructed by 1946 with several later additions. According to Mr. Waterfield, the structure has been utilized as a dry cleaning facility since construction in 1946, occupied by Vara's Dry Cleaning through 2023.

2.2 **Physical Setting**

The USGS 7.5-minute Topographic Quadrangle Map of Hamburg, NY indicates that the subject Site's ground surface slopes northeasterly toward Rush Creek located approximately 0.56 miles northeast of the subject Site. The surface elevation for the subject Site is approximately 820 feet above mean sea level. Surface water drainage is expected to flow to storm drains located on-site within the parking lot or located along Clark Street. According to soils data obtained from the USDA Soil Conservation Service, the soil beneath the subject Site is classified as Alton fine gravelly loam (AmA), generally described as gravelly loamy glaciofluvial deposits over sandy and gravelly glaciofluvial deposits, derived mainly from acidic rocks with limestone below 40 inches.

2.3 Site History and Land Use

According to the EA Phase I ESA, a summary of most probable Site history indicates that the subject Site was originally vacant land in the early 1900s. By 1946, the northern portion of the subject Site was developed with its current one-story structure. Since 1946, the structure has been utilized as dry cleaners, occupied by Vara's Dry Cleaners, through 2023.

3.0 INVESTIGATIVE ACTIVITIES

3.1 Exterior Soil Boring/Temporary Well Installation

Prior to performing on-site activities, underground utilities were located by the Underground Facilities Protection Organization. On-site field investigative activities were completed by EA with Matrix Environmental Technologies, Inc. (Matrix) on March 22, 2024. A direct-push Geoprobe rig was mobilized to the subject Site to install exterior soil/fill borings, some with temporary monitoring wells, if groundwater was encountered, in an effort to identify the presence of soil and/or groundwater contamination related to the conditions of concern described above.

Exterior soil borings were completed at eight (8) on-site locations within various identified areas of concern as depicted in Figure 2 in Attachment A. At each of the boring locations, direct push Geoprobe Macrocore probes were used to obtain discrete soil/fill samples continuously to refusal, boring requirements, and/or observed conditions. Upon completion of the soil borings, three (3) soil boring locations were converted into temporary monitoring wells in preparation for the collection of a groundwater sample.

Sampling equipment was initially decontaminated before use and again between each sampling location. The soil/fill encountered at each sampling location was visually described from the discrete samples obtained and included on the soil boring logs provided by Matrix in Attachment B. Upon collection, a portion of each discrete soil/fill sample was screened for the presence of volatile organic compounds (VOCs) using a pre-calibrated portable photo-ionization detector (PID) equipped with an organic vapor meter (OVM). OVM readings were identified above background levels (>0.5ppm) in the following soil borings:

- SB-02 (5'-6.5'): 0.6 ppm
- SB-05/MW-03 (0'-15'): ranged from 0.1 ppm 611 ppm, with the highest recording at the 10'-12' interval
- SB-06 (0'-2'): 2.5 ppm
- SB-07 (0'-13'): ranged from 2.7 ppm 511 ppm, with the highest recording at the 0'-1' interval
- SB-08 (5'-6'): 0.6 ppm

Soil/fill and groundwater samples were selected for analysis based on on-site observations and PID readings. Seven (7) soil/fill samples were selected from discrete samples SB-01/MW-01 (5-7.5'), SB-02 (0'-5'), SB-04/MW-02 (5-7.5'), SB-05/MW-03 (6.5-7.5'), SB-05 (10'-14'), SB-07 (0'-2'), and SB-07 (5'-7') for laboratory analysis.

Upon completing the soil borings, three (3) temporary monitoring wells constructed of 1" diameter schedule 40 PVC screen and riser pipe to a completion depth of 15.0 feet below grade were installed. After a period of time to allow recharge, a sample from each well was then collected using a new dedicated bailer for laboratory analysis. A total of three (3) groundwater samples were collected for analysis, one from each well.

Soil/fill samples and groundwater samples were placed in appropriate containers, sealed and labeled, preserved by cooling, and handled under chain of custody procedures until receipt by a NYSDEC-approved analytical laboratory. These samples were analyzed for the following analytical parameters:

Soil/Fill Samples

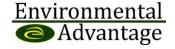
 SB-01/MW-01 (5-7.5') – total chromium via USEPA Method 6010D, total hexavalent chromium via USEPA Method 7196A, total solids via USEPA Method 2540G

- SB-02 (0'-5') VOCs via USEPA Method 8260 (TCL + STARS List), total chromium via USEPA Method 6010D, total hexavalent chromium via USEPA Method 7196A, total solids via USEPA Method 2540G
- SB-04/MW-02 (5-7.5') VOCs via USEPA Method 8260 (TCL + STARS List), total solids via USEPA Method 2540G
- SB-05/MW-03 (6.5-7.5') VOCs via USEPA Method 8260 (TCL + STARS List), total solids via USEPA Method 2540G
- SB-05 (10'-14') VOCs via USEPA Method 8260 (TCL + STARS List), total solids via USEPA Method 2540G
- SB-07 (0'-2') VOCs via USEPA Method 8260 (TCL + STARS List), total solids via USEPA Method 2540G
- SB-07 (5'-7') VOCs via USEPA Method 8260 (TCL + STARS List), total solids via USEPA Method 2540G

Groundwater

- SB-01/MW-01 VOCs via USEPA Method 8260 (TCL + STARS List)
- SB-04/MW-02 VOCs via USEPA Method 8260 (TCL + STARS List)
- SB-05/MW-03 VOCs via USEPA Method 8260 (TCL + STARS List)

3.2 <u>Interior Subslab Vapor Sampling</u>


Interior subfloor vapor sampling was conducted at five (5) locations of the on-site building, as indicated on Figure 3 in Attachment A. The sampling was not conducted to New York State Department of Health (NYSDOH) standards as this data was intended to address only potential subfloor petroleum and chlorinated solvent contaminant sources associated with past dry cleaning use.

The subslab sample points consisted of a ½- inch diameter hole completed with a rotary hammer drill though a competent portion of the concrete floor, away from any cracks. Clean, dedicated ¼-inch inside diameter polyethylene tubing was placed into the hole and extended approximately 2-inches below the concrete floor. The core-hole annulus was sealed at the floor surface with modeling clay. Before inserting the Summa canister, 360 mL of air was purged from the hole using a syringe.

The subslab vapor samples were then collected using a 2.7-liter capacity Summa canister fitted with a laboratory calibrated flow regulation device to allow the collection of vapor samples for an 8-hour sample collection time. Pre- and post-sampling vacuum/air pressure readings were taken and recorded on a field sheet for this sampling apparatus. After the 8-hour sampling interval, the sampling canister was removed from its tubing/regulator. All vapor samples were successfully collected and were packaged and sent to Alpha Analytical in Westborough Massachusetts to be analyzed for volatile organic compounds (VOCs) via USEPA Method TO-15.

3.3 <u>Interior Soil Boring/Temporary Well Installation</u>

On-site field investigative activities were continued by EA with TREC Environmental, Inc. (TREC) on May 30, 2024. A special access direct-push Geoprobe rig was mobilized to the subject Site to install interior soil/fill borings and a temporary

monitoring well (in the event that groundwater was encountered) in an effort to identify the presence of soil and/or groundwater contamination related to the conditions of concern described within the on-site structure.

Soil borings were completed at three (3) interior locations within previously identified areas of concern as depicted in Figure 3 (Attachment A). At each of the boring locations, direct push Geoprobe Macrocore probes were used to obtain discrete soil/fill samples continuously to refusal, boring requirements, and/or observed conditions. Upon completion of the soil borings, one (1) soil boring location was converted into a temporary monitoring well to allow the collection of a groundwater sample.

Sampling equipment was initially decontaminated before use and again between each sampling location. The soil/fill encountered at each sampling location was visually described from the discrete samples obtained and included on the soil boring logs provided in Attachment B. Upon collection, a portion of each discrete soil/fill sample was screened for the presence of volatile organic compounds (VOCs) using a precalibrated portable photo-ionization detector (PID) equipped with an organic vapor monitor (OVM). OVM readings were identified above background levels (>0.5ppm) in the following soil borings:

- IB-01 (0'-10'): ranged from 5.4 ppm 386 ppm, with the highest recording at 4' bg;
- IB-02/IW-01(0'-12'): ranged from 374 ppm 1733 ppm, with the highest recording at 6.5' bg;
- IB-03 (0'-12'): ranged from 398 ppm 1147 ppm, with the highest recording at 8' bg.

Soil/fill and groundwater samples were selected for analysis based on on-site observations and PID readings. Three (3) soil/fill samples were selected from discrete samples IB-01 (3.5-4.5'), IB-02/IW-01(6-7'), and IB-03 (7-8') for laboratory analysis.

Upon completing the soil borings, one (1) temporary monitoring well constructed of 1" diameter schedule 40 PVC screen and riser pipe to a completion depth of 12.0 feet below grade was installed. After a period of time to allow recharge, a sample from the well was then collected using a new dedicated bailer for laboratory analysis. A total of one (1) groundwater sample was collected for analysis. Additionally, sediment from the bottom of the groundwater sample was extracted by the laboratory and analyzed.

Soil/fill samples and the groundwater sample were placed in appropriate containers, sealed and labeled, preserved by cooling, and handled under chain of custody procedures until receipt by a NYSDEC-approved analytical laboratory. These samples were analyzed for the following analytical parameters:

Interior Soil/Fill Samples

 IB-01 (3.5-4.5') – VOCs via USEPA Method 8260 (TCL + STARS List), total solids via USEPA Method 2540G;

- IB-02/IW-01 (6-7') VOCs via USEPA Method 8260 (TCL + STARS List), total solids via USEPA Method 2540G;
- IB-03 (7-8') VOCs via USEPA Method 8260 (TCL + STARS List), total solids via USEPA Method 2540G.

Interior Groundwater

IW-01(Water Layer) – VOCs via USEPA Method 8260 (TCL + STARS List)

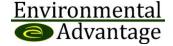
Interior Sediment from Groundwater Sample

IW-01 (Bottom Layer) – VOCs via USEPA Method 8260 (TCL + STARS List)

4.0 <u>INTERPRETATION OF RESULTS</u>

4.1 Discussion of Field Observations

Soil borings SB-01/MW-01 and SB-02 were completed along the eastern property boundary to assess for potential chromium contamination from the eastern adjoining property occupied by Dura Plating, Inc. Soil boring SB-01-/MW-01 was also completed in a presumed downgradient location on the subject Site on-site building.


Soil boring SB-03 was also completed in a presumed downgradient location on the subject Site and was placed to identify potential contamination associated with the on-site building's interior floor drain which reportedly discharges to the rear of the property; however, the discharge location has not been confirmed.

Soil boring SB-04/MW-02 was completed at the on-site building's boiler blowdown discharge location and slightly downgradient/cross-gradient from the former mineral spirits AST which was installed in 1980s and recently removed. SB-05/MW-03 was completed within the general proximity of the two historical mineral spirits ASTs which were installed in 1946 and removed in the 1980s. SB-06 was completed adjacent to the former air vacuum connected to the steamers in which small volumes of wastewater have been discharged to the ground surface. SB-07 was completed within the general proximity of a former mineral spirits AST which was installed in 1980s and recently removed. SB-08 was completed along the western property boundary.

Subsurface conditions encountered generally consisted of asphalt underlain by mostly sand with some silt and gravel fill ranging in depth from approximately 0 feet below grade (bg) to approximately 15 feet bg.

Interior subfloor vapor sampling was conducted at five (5) locations of the on-site building. A slight petroleum odor was observed at SV-03.

Interior boring IB-01 was completed at a presumed downgradient location from the former dry cleaning equipment and two former exterior mineral spirits ASTs mentioned above. IB-02/IW-01 was also completed in a location presumed to be downgradient from the former dry cleaning equipment and closer to the former exterior

mineral spirits ASTs as interior site conditions would allow. IB-03 was completed as close to interior subfloor vapor sample SV-05 as site conditions would allow. A fourth interior boring was attempted within the foundation of the former dry cleaning equipment; however, the concrete in this area exceeded 17" in thickness, and the special access Geoprobe was not able to drive through it. A petroleum odor was noted at all three interior boring locations.

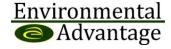
Upon collection of the groundwater samples from interior temporary well IW-01, a suspect segregated layer was initially noted at the bottom of the sampling container. Given the historical use of the site, EA presumed that this layer potentially contained CVOCs which were identified at elevated concentrations in subslab vapor samples SV-04 and SV-05. A large sample volume was submitted to Alpha Analytical with the request for the lab to separately analyze each observed layer.

4.2 Discussion of Analytical Results

As indicated above, soil/fill samples submitted for laboratory analysis were selected primarily based upon historical use and/or Matrix's/EA's observations of the soil/fill materials encountered within the probe holes (i.e., odors, residues, discoloration, sheens, etc.) and the PID screening results. Six (6) exterior soil/fill samples were selected from SB-02 (0-5'), SB-04/MW-02 (5'-7.5'), SB-05/MW-03 (6.55'-7.5'), SB-05 (10'-14'), SB-07 (0'-2'), and SB-07 (5'-7'), prepared for transport using laboratory supplied containers, and submitted for laboratory analysis. Exterior soil/fill analytical results are summarized in Table 1 in Attachment C. Three (3) groundwater samples were selected from SB-01/MW-01, SB-04/MW-02, and SB-05/MW-03. groundwater analytical results are summarized in Table 2. Five (5) subfloor soil vapor samples were selected from SV-01, SV-02, SV-03, SV-04, and SV-05. The analytical results for the subfloor vapor samples are summarized in Table 3. Three interior soil/fill samples were selected from IB-01 (3.5-4.5'), IB-02/IW-01 (6-7'), and IB-03 (7-8'), prepared for transport using laboratory supplied containers, and submitted for laboratory analysis. Interior soil/fill analytical results are summarized in Table 4 in Attachment C. Interior groundwater analytical results and sediment results from the interior groundwater samples are summarized in Table 4 and Table 5, respectively. The full analytical reports are presented in Attachment D.

Soil Analytical Results

VOCs analytical test results detected up to sixteen (16) VOCs at concentrations above method detection limits in all six (6) exterior soil/fill samples submitted for analysis. Five petroleum-related contaminants (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, n-propylbenzene, o-xylene, and/or p/m-xylene) were detected at concentrations exceeding their respective NYSDEC Commissioners Policy 51 (CP-51) Soil Cleanup Levels (SCLs) in SB-05/MW-03 and/or SB-07; former mineral spirit AST locations. One petroleum-related contaminant of this group (1,2,4-trimethylbenzene) was detected above its respective NYSDEC 6 NYCRR Part 375 Residential Use Soil Cleanup Objective (RUSCO) in SB-07; however, this value was well below its respective NYSDEC Commercial Use Soil Cleanup Objective (CUSCO).


Chromium analytical test results detected both hexavalent chromium and trivalent chromium at concentrations above their respective NYSDEC Unrestricted Use Soil Cleanup Objective (UUSCO) in SB-01/MW-01. Trivalent chromium was detected above method detection limits in SB-02; however, this value was below its respective NYSDEC SCOs.

VOCs analytical test results detected up to fifteen (15) VOCs at concentrations above method detection limits in all three (3) interior soil/fill samples submitted for Seven petroleum-related contaminants (1,2,4-trimethylbenzene, 1,3,5trimethylbenzene, n-butylbenzene, n-propylbenzene, p-isopropyltoluene, p/m-xylene, and toluene) were detected at concentrations exceeding their respective NYSDEC Commissioners Policy 51 (CP-51) Soil Cleanup Levels (SCLs) in IB-02/IW-01 and/or IB-03 located in the vicinity of the former dry cleaning equipment. One petroleum-related contaminant of this group (1,2,4-trimethylbenzene) was detected above its respective NYSDEC 6 NYCRR Part 375 Residential Use Soil Cleanup Objective (RUSCO) in IB-02/IW-01 and IB-03; however, this value was below its respective NYSDEC Commercial Use Soil Cleanup Objective (CUSCO). Please Note: The interior soil fill samples were originally submitted for TCL VOC analysis only, based on the results of the vapor samples identifying chlorinated VOC (CVOC) contaminants from subslab locations. The initial laboratory report noted "the sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample." Chromatograms included in the initial lab report depicted elevated levels of STARS List petroleum related contaminants. EA requested Alpha Analytical to reissue the lab reports for all interior media, including soil/fill, groundwater, and sediment, to include the STARS list contaminants.

Subslab Vapor Analytical Results:

This sampling was not conducted in accordance with New York State Department of Health (NYSDOH) guidance since these data were intended to address only the potential presence of subfloor petroleum and chlorinated solvent contaminants associated with former dry cleaning use. Up to twenty-eight (28) different VOCs were detected in the five vapor samples collected inside the Site building. In samples SV-01, SV-02, SV-03 and SV-05, there were no exceedances of the applicable NYSDOH subslab vapor "mitigate" decision matrix concentrations². However, in vapor sample SV-04, three VOCs (1,2,4-trimethylbenzene, tetrachloroethene, and trichloroethene) exceeded their respective subslab vapor "mitigate" decision matrix concentrations. While the concentrations for 1,2,4-trimethylbenzene and trichloroethene are moderate level exceedances, the concentration for tetrachloroethene [7,190 parts per billion (ppb)] notably exceeds its respective "mitigate" subslab concentration of 1,000 ppb. New York State does not have specific standards, criteria, or guidance values for concentrations of VOCs in subslab vapor samples alone (when not compared to indoor air results).

² "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health. Updated September 2013, August 2015, May 2017, and February 2024.

Groundwater Analytical Results:

VOCs analytical results detected up to fifteen (15) VOCs at concentrations above method detection limits in two (2) of the exterior groundwater samples collected for laboratory analysis from temporary monitoring wells MW-02 and MW-03. No VOCs were identified above method detection limits in the other groundwater sample submitted for analysis (MW-01).

Tetrachloroethene was detected above its respective NYSDEC TOGS 1.1.1 Class GA Criteria in MW-02, located at the boiler blowdown discharge location. Additionally, seven (7) petroleum-related VOCs (1,2,4-trimethylbenzene, benzene, isopropylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, and secbutylbenzene) were detected at concentrations above respective NYSDEC TOGS 1.1.1 Class GA Criteria in MW-03, in the general proximity of the former mineral spirits ASTs.

VOCs analytical results detected up to sixteen (16) VOCs at concentrations above method detection limits in the interior groundwater samples collected for laboratory analysis from temporary monitoring well IW-01. Eight (8) petroleum-related VOCs (1,2,4-trimethylbenzene, 1,3,5- trimethylbenzene, benzene, isopropylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, and sec-butylbenzene) were detected at concentrations above respective NYSDEC TOGS 1.1.1 Class GA Criteria in IW-01 in the general proximity of the former dry cleaning equipment.

Groundwater Sediment Analytical Results:

VOCs analytical results detected thirteen (13) VOCs at concentrations above method detection limits in the interior sediment sample extracted from the groundwater sample collected for laboratory analysis from temporary monitoring well IW-01. One (1) petroleum-related VOCs (1,2,4-trimethylbenzene) was detected at a concentration above NYSDEC CP-51 Criteria.

4.3 Summary and Conclusions

Based on the results of this focused investigation, EA suggests that Objectives A and B as presented above in Section 1.4 were met. Limited evidence of recognizable petroleum-related contaminants was identified in soil samples from SB-05/MW-03 and SB-07 above NYSDEC's CP-51 SCLs. Various VOCs were also detected in soil samples SB-02, SB-04/MW-02, SB-05/MW-03, and SB-07; however, these values did not exceed applicable NYSDEC CP-51 SCLs. Limited evidence of chromium was also identified in on-site soil sample SB-01/MW-01 above NYSDEC UUSCOs; however, these values were below applicable NYSDEC CUSCOs for commercial properties. Evidence of recognizable petroleum-related and solvent-related contaminants was identified in groundwater samples SB-04/MW-02 and SB-05/MW-03 above NYSDEC's TOGS 1.1.1 Class GA Criteria. Based on follow-up conversations with the Site Owner, a water jacket of the historical vapor degreasing equipment recirculation system at this location may have been the source of the PCE in the boiler blowdown discharge which potentially had a limited impact on groundwater quality detected in SB-04/MW-02, although that discharge was reportedly to the parking area surface. No VOCs were detected in groundwater sample SB-01/MW-01.

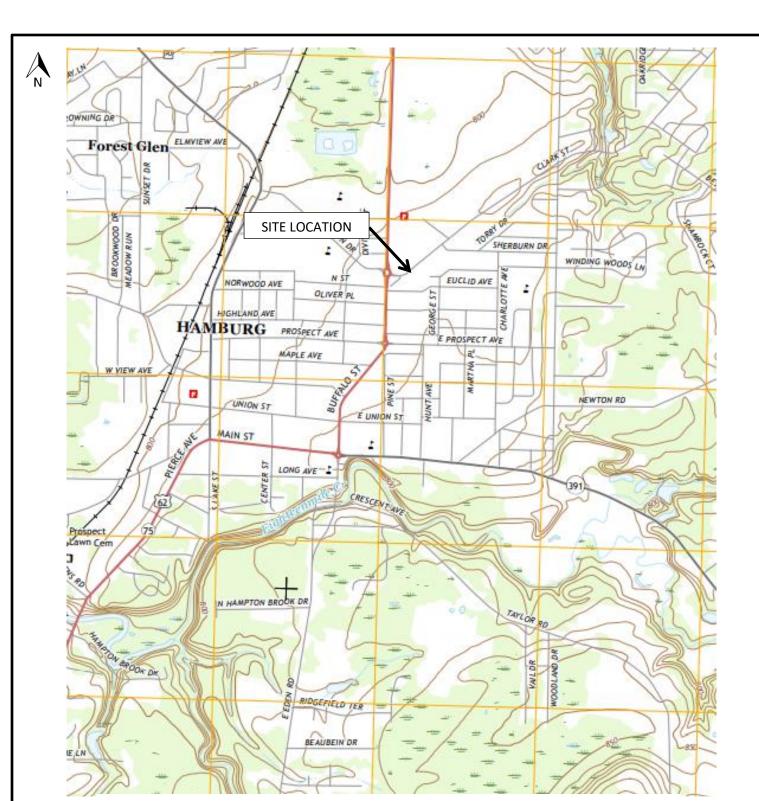
In evaluating the soil and groundwater results, various results exceed their respective NYSDEC CP-51 SCLs, NYSDEC UUSCOs, NYSDEC RUSCOs and/or TOGS 1.1.1 Class GA Criteria. However, all soil results were below their respective NYSDEC's Commercial Use Soil Cleanup Objectives (CUSCOs), which is the proposed Based on the Site's current configuration and existing use of the subject site. appurtenances at the time of this Focused Phase II ESA, and considering the reported size of the mineral spirits AST recently removed, the subject site does not meet the definition of a NYSDEC Petroleum Bulk Storage "facility" as defined in 6 NYCRR Part 613 (x)(1) as "a single property, or contiguous or adjacent properties used for a common purpose and owned or operated by the same person or persons, on or in which are located: (i) one or more tank systems having a combined storage capacity of more than 1,100 gallons (including a major facility); or (ii) an underground storage tank system having a storage capacity that is greater than 110 gallons." Additionally, no free product was observed in any of the soil/fill borings or temporary monitoring wells However, in consideration of the limited interior and exterior soil completed. exceedances of CP-51, and the minimal to moderate groundwater exceedances of TOGS 1.1.1 for petroleum related contaminants, EA recommends reporting these site conditions to NYSDEC as evidence of a historical release. Given the overall condition of this site as identified in this extensive Focused Phase II Site Assessment, EA suggests that with the installation of a subslab vapor mitigation system, this site may be eligible for an inactive site status upon review by the NYSDEC.

In part based upon the soil and groundwater laboratory results which indicated the presence of chlorinated hydrocarbons, a subfloor soil vapor assessment was deemed necessary to address the potential presence of subfloor petroleum and/or chlorinated solvent contaminants associated with former dry cleaning use. Up to twenty-eight (28) different VOCs were detected in the five vapor samples collected inside the Site building. As described above, SV-04 exhibited at total of fifteen (15) different VOCs, three of which (1,2,4-trimethylbenzene, tetrachloroethene, and trichloroethene) exceeded their respective NYSDOH subslab vapor "mitigate" decision matrix concentrations, indicating mitigation is highly recommended for safe use of the building regardless of the respective compound's indoor air concentration. Considering the concentration for tetrachloroethene at 7,190 ppb, in this context it is EA's opinion that a subslab mitigation system is warranted within the vicinity of vapor sample SV-04 to mitigate the potential for CVOCs and petroleum vapor intrusion into the interior of the building.

Elevated hexavalent and trivalent chromium levels identified in the soil along the eastern property boundary may represent an impact associated with an off-site source.

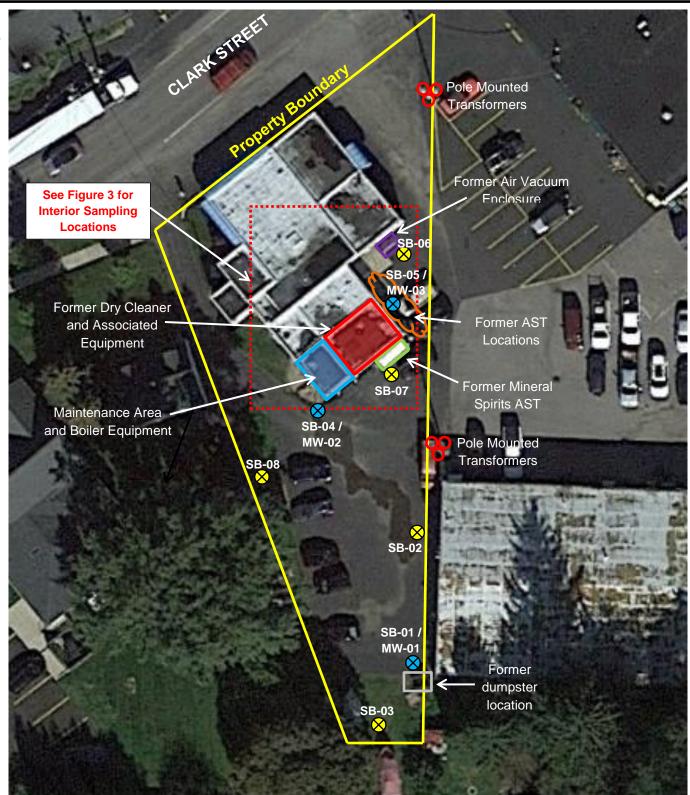
4.4 Summary of Business Environmental Risk

Based on the results of this focused investigation, EA suggests that Objective C also presented above in Section 1.4 was met. The potential impact of the subslab vapor analytical results obtained for this Site compared to the proposed use of the building as a restaurant must be considered. Limited further Site characterization


beneath the floor of the building slab provided both soil and groundwater sample results that did not support widespread (either vertically or laterally) CVOCs contamination in subslab media. Therefore, a modest subslab vapor collection system should provide adequate vapor control for the proposed use of the building.

It should be noted that sampling locations were selected in suspect areas of concern based on data and information provided in the EA Phase I ESA completed in There is an apparent relationship between specific contaminants detected: 1) Location SB-04/MW-02, which was the location of the boiler blowdown discharge, exhibited very low levels of both petroleum and chlorinated solvents in the soil sample analyzed, moderately elevated tetrachloroethene in the groundwater sample analyzed, and is suspected of being in downgradient of the rear processing room where SV-04 was installed; 2) SB-07 is also suspected of being in downgradient of the rear processing room where SV-04 was installed, but no chlorinated contaminants were detected in the soil sample analyzed; 3) SB-05/MW-03 is located either upgradient or cross-gradient from the interior location of SV-04, with no chlorinated contaminants detected in the soil and groundwater samples analyzed; however, petroleum contaminants were detected at elevated levels in both the soil and groundwater samples analyzed; and 4) Interior boring/well IB-02/IW-01 installed in the vicinity of the historical dry cleaning equipment exhibited on VOC (1,2,4-trimethylbenzene) above the RUSCO and eight petroleum-related VOCs detected at concentrations above respective NYSDEC TOGS 1.1.1 Class GA Criteria. Considering this information, EA suggests that the chlorinated compounds detected at the boiler blowdown discharge likely had some connection to the water jacket of the historical vapor degreasing equipment recirculation system used for dry cleaning which led to a combined discharge. In addition, the contamination detected at both AST locations, SB-05/MW-03 and SB-07 are likely related to the historical presence of the tanks, although SB-05/MW-03 did exhibit contamination at a depth of 10'-14' below grade, which may represent a source within the building.

EA can only warrant the Site conditions encountered in the specific areas of the Site that were investigated, with samples collected but not selected for analysis based on screening and visual characterization not yielding more than supplemental information. It is possible that due to this limited sampling protocol, other areas of concern further on-site may be identified with further testing for delineation.


Attachment A Figures

THIS DRAWING IS FOR ILLUSTRATIVE AND INFORMATIONAL PURPOSES ONLY AND WAS ADAPTED FROM USGS, HAMBURG, NEW YORK QUADRANGLE (2016).

ENVIRONMENTAL ADVANTAGE, INC.								
Regulatory Complia	ance – Site Investigations –	Facility Inspections						
	LOCATION PLAN							
4245 CLARK STREET								
	HAMBURG, NEW YORK							
	WATERFIELD							
	HAMBURG, NEW YORK							
DRAWN BY: MB	SCALE: NOT TO SCALE	PROJECT: EA2305						
CHECKED BY: CMH	DATE: 05/2024	FIGURE NO: 1						

KEY

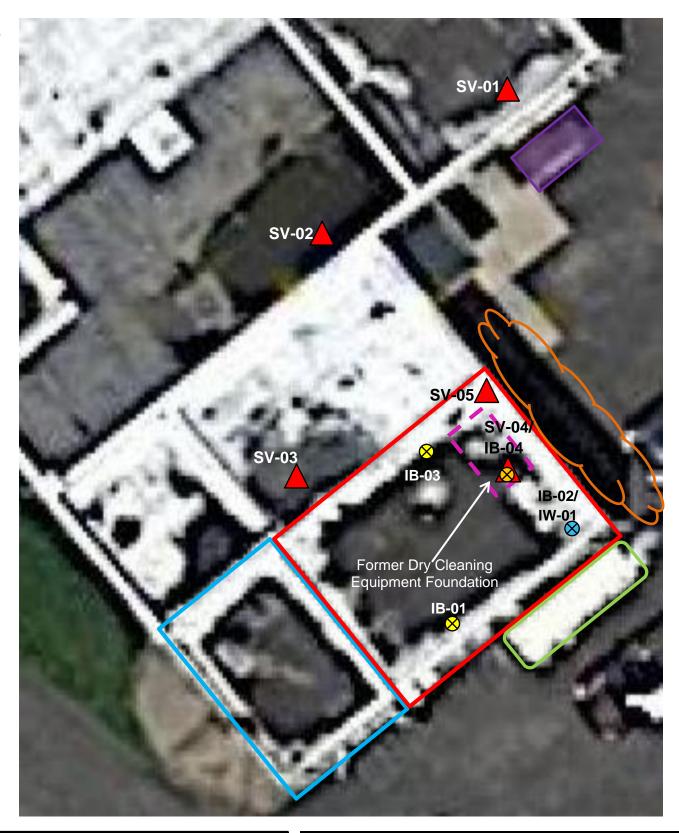
Soil Boring Location

Soil Boring & Temporary Monitoring Well Location

ENVIRONMENTAL ADVANTAGE, INC.

Regulatory Compliance - Site Investigations - Facility Inspections

EXTERIOR SAMPLING LOCATIONS


4245 CLARK STREET HAMBURG, NEW YORK

WATERFIELD

HAMBURG, NEW YORK

DRAWN BY: MB	SCALE: NOT TO SCALE	PROJECT: EA2305
CHECKED BY: CMH	DATE: 05/2024	FIGURE NO: 2

KEY

Soil Boring & Temporary Monitoring Well Location

Soil Vapor Location

ENVIRONMENTAL ADVANTAGE, INC.

Regulatory Compliance – Site Investigations – Facility Inspections

INTERIOR SAMPLING LOCATONS

4245 CLARK STREET HAMBURG, NEW YORK

WATERFIELD HAMBURG, NEW YORK

SCALE: NOT TO SCALE DRAWN BY: MB PROJECT: EA2305 CHECKED BY: MS DATE: 06/2024 FIGURE NO: 3

Attachment B

Soil Boring Logs, Field Notes, & Vapor Sampling Sheets

Matrix Environmental Technologies Inc.						SUBSURFACE LOG				
PROJECT	T & LOCA	TION:	4245 Clark	St., Hambı	urg, NY		PROJECT	No.	24-012	
CLIENT: Environmental Adva						WELL/BORING	ID:	SB01/MW1		
START D	DATE:		3/22/2024		DATE: 3/22/2024		RECORDED		Craig D. Zink, P.G.	
GROUN	DWATER	DEPTH W	/HILE DRILLII	NG:	7'	G	ROUNDWATER DEPTH AF COMPLETION		7.5' (measured in well)	
WEATHI	FR·		20° F, cloud	dv		DRILLING	ONTRACTOR / DRILLER: N	Matrix Environmental Te	echnologies / R. Reagan	
			20 1,01041	y	DRILLING CONTRACTOR / DRILLER: Matrix Environmental Technologies / R. Reagan Direct Push 2 1/2"					
DRILL RI	G:		Geoprobe	6620 DT	-	NPT	HAMMER Type:		Hydraulic	
	T		1	I	Sampler Type:			macrocore (L=60", OI	,	
Sample Depth (ft)	Sample No.	Sample Interval (feet)	OVM Reading (ppm)	Recovery (inches)		SOIL DESCRIPTION AND DRILLING COMMENTS Burmeister Soil Classification System f-fine m-medium c-coarse sr - subrounded, r - rounded, sa - subangular, a - angular trace (0-10%, little (11-20%), some (21-35%), and (36-50%)				
	1	0.0-5.0		39				g brown cf SAND, little	cf Gravel, (3") dry, loose; overlying grayish	
1			0.0		brown mf SAND, littl	le Silt, mois	st, medium dense.			
			0.0							
2			0.0							
3			0.0		Brown f SAND, some Silt, moist, dense. Sand grain size varies from medium to fine in 6" lenses. Little mf Gravel (a, shale fragments) in bottom 6" of sample.					
4										
5	2	5.0-10.0	0.0	36	Grayish brown cf SAI	ND, little (+	-) Silt, little cf Gravel (sr to	sa), moist, medium de	nse.	
6			0.0		Grayish brown cf SAI	ND, little (-) Silt, trace (+) f Gravel (sr to sa), moist to wet, medium dense.				
7			0.0							
8			0.0		Brown f SAND, wet,	f SAND, wet, medium dense.				
9										
10	3	10.0-15.0)	45						
11			0.0							
12					Brown to grayish brown f SAND, wet, medium dense. 3" lense of mf SAND, some mf Gravel (sr) at 10'10".					
13			0.0							
14										
15	5 End of boring.				End of boring.					
Notes		-					petween soil types represo PVC well screen and 5' of		n line. Transitions may be gradual. Depths are	

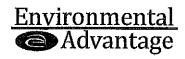
Matrix Environmental Technolog				hnolog	ies Inc.	SUBSURFACE LOG						
PROJEC	T & LOCA	TION:	4245 Clark	St., Hambi	urg, NY		PROJECT	No.	24-012			
CLIENT:			Environme				WELL/BORING	i ID:	SB02			
START [DATE:		3/22/2024		LETION DATE: 3/22/2024	-	RECORDED		Craig D. Zink, P.G.			
GROUN	DWATER	DEPTH W	/HILE DRILLI	NG:	6'	GH	ROUNDWATER DEPTH AF COMPLETI		not measured			
WEATH	ER:		20° F, cloud	dy	DRILLING CONTRACTOR / DRILLER: Matrix Environmental Technologies / R. Reagan							
					Direct Push 2 1/2"							
DRILL RI	G:		Geoprobe	6620 DT	N	PT	HAMMER Type:		Hydraulic			
				1	Sampler Type:			macrocore (L=60",	<u> </u>			
Sample	sample . Sample		OVM	_				ON AND DRILLING C				
Depth	Sample No.	Interval	Reading	Recovery (inches)				er Soil Classification Syst e m-medium c-coarse	em			
(ft)	140.	(feet)	(ppm)	(inches)				rounded, sa - subangula L1-20%), some (21-35%)				
	1	0.0-5.0		45	A - 1 - 1 (21) 1				· · ·			
			0.0			sphalt (2"); overlying gray mf GRAVEL and mf SAND (3"), dry, loose; overlying grayish black to gray f SAND, some mf Gra ace Silt, dry to moist, medium dense.						
1					, , , , , , , , , , , , , , , , , , , ,							
2			0.0		Gray f SAND and SILT, to	ace f Gra	avel, moist, dense.					
3												
4			0.0		Brown mf SAND, little (+) Silt, little (-) f Gravel (sa), moist, medium dense.							
5	2	5.0-10.0		31	Brown mf SAND, little (-	+) Silt, tra	ace f Gravel (sr to sa), mo	oist, medium dense.				
6			0.6		Brown f SAND, wet, med	dium dense.						
7			0.5									
8					Brown mf SAND, trace S	ilt, trace	f Gravel, wet, medium c	lense.				
9												
10	3	10.0-15.0)		End of boring.							
11												
12												
13												
14												
15												
Notes		_			000 w/10.6 eV lamp. Swi pes represented with str				e first OVM was used up. Background PID reading re approximate.			

Matri	x Envi	ronme	ntal Tech	nologie	es Inc.	SUBSURFACE LOG				
PROJECT	Γ& LOCA	TION:	4245 Clark	St., Hambu	ırg, NY	PROJECT No.	24-012			
CLIENT:			Environmer			WELL/BORING ID:	SB03			
START D	ATE:		3/22/2024	COMP	DATE: 3/22/2024	RECORDED BY: GROUNDWATER DEPTH AFTER	Craig D. Zink, P.G.			
GROUNI	DWATER	DEPTH W	HILE DRILLIN	IG:	7.0'	COMPLETION:	not measured			
			200 5 212114							
WEATHE	:K:		20° F, cloud	y, snowing	DRILLING Direct Push 2 1,	CONTRACTOR / DRILLER: Matrix Enviro	nmentai Lechnologies / K. Reagan			
DRILL RI	G:		Geoprobe 6	620 DT	NPT HAMMER Type: Hydraulic					
					Sampler Type:	macr	ocore (L=60", OD=2.125")			
CI-		C	OVM			SOIL DESCRIPTION AND	DRILLING COMMENTS			
Sample Depth	Sample	Sample Interval	Reading	Recovery		Burmeister Soil Cla f-fine m-med	' '			
(ft)	No.	(feet)	(ppm)	(inches)		sr - subrounded, r - rounded	sa - subangular, a - angular			
	1			45		trace (0-10%, little (11-20%),	ome (21-35%), and (36-50%)			
	-	0.0-5.0	0.5	43	TOPSOIL (silty) (2"); overlying	brown SILT, some f Sand, trace f Gravel	moist, medium dense.			
1			0.5		Brown mf SAND and SILT (w/r	oots), moist, medium dense.				
2										
3			0.5							
3					Brown mf SAND, some Silt, tr	ace (+) mf Gravel (sa), moist, medium de	nse, occasional lense of f SAND, little Silt.			
4										
5	2	5.0-10.0		31						
6			0.6		Brown mf SAND, little (+) Silt,	trace f Gravel (sr to sa), moist, medium	dense.			
7			0.5		Brown f SAND, wet, medium o	dense.				
8			0.5							
					Brown mf SAND, trace (+) f Gr	avel. wet. medium dense.				
9					, , ,	, ,				
10	3	10.0-15.0			End of boring.					
11										
12										
- 12										
13										
14										
15										
Notes		-	lected with I Depths are ap			nd PID reading was 0.5 ppm. Boundary b	etween soil types represented with stratification line. Transitions			
	ay be	_D . uuuai. L	chena are at	Pioniliate						

Matr	ix Env	ironme			gies Inc. SUBSURFACE LOG							
PROJECT & LOCATION: 4245 Clark			St., Hamb	urg, NY	PROJECT No. 24-012							
CLIENT: Environmental Adv					WELL/BORING ID:	SB04/MW2						
START D	DATE:		#########		DATE: 3/22/2024	,	RECORDED BY:	Craig D. Zink, P.G.				
GROUN	DWATER	DEPTH W	HILE DRILLI 28° F, cloud		7.2'	(GROUNDWATER DEPTH AFTER COMPLETION:	8.85' (measured in well)				
WEATHI	ER:		snowing	-,,	С	DRILLING CONTRACTOR / DRILLER: Matrix Environmental Technologies / R. Reagan						
					Direct Push 2 1/2"							
DRILL RIG:			Geoprobe 6620 DT			NPT	HAMMER Type:	Hydraulic				
		1	Т	т	Sampler Type: macrocore (L=60", OD=2.125")							
Sample		Sample	оум					AND DRILLING COMMENTS				
Depth	Sample	Interval	Reading	Recovery				oil Classification System n-medium c-coarse				
(ft)	No.	(feet)	(ppm)	(inches)				inded, sa - subangular, a - angular				
					trace (0-10%, little (11-20%), some (21-35%), and (36-50%)							
	1	0.0-5.0		39								
	1		0.5		TOPSOIL, silty (2"); ov	2"); overlying brown mf SAND, little (+) cf GRAVEL (sa to sr), little (-) Silt, moist, medium dense.						
1			0.5									
2	1											
			0.5									
3					Brown cf SAND, little (+) Silt, moist, dense. Occasional 2" lenses of cf GRAVEL (sr) and cf SAND.							
4												
5	2	5.0-10.0	0.5	31	Brown mf SAND little	(+) Silt	trace cf Gravel (sr to sa), moist, me	dium dense				
6			0.5			(, =,	,					
7			0.5									
8	-				Brown f SAND wet m	adium d	lanca					
0					Brown f SAND, wet, medium dense.							
9												
10	3	10.0-15.0	 	56								
11			0.5									
12					Brown f SAND,trace (-) Silt, we	et, medium dense.					
13	1		0.5									
14												
15					End of boring.							

Matri	x Envi	ronme	ntal Tech	nnologie	es Inc.	SUBSURFACE LOG						
	& LOCA		4245 Clark				PRO.	JECT No.	lo. 24-012			
CLIENT:			Environme						D: SB05/MW3			
		•		COMP	LETION							
START D	AIE:		3/22/2024	=	DATE: 3/22/2024	GR	RECOF OUNDWATER DEPT	DED BY:				
GROUNI	OWATER	DEPTH W	HILE DRILLIN	IG:	9'		COMP	LETION:	N: 9.91' (measured in well)			
WEATHE	R:		28° F, cloud	y, snowing		ORILLING CO	ONTRACTOR / DRILL	ER: Matı	1atrix Environmental Technologies / R. Reagan			
DRILL RIC	G:		Geoprobe 6	620 DT		Push 2 1/2" NPT	HAMMER Type:		Hydraulic			
		•			Sampler Type: macrocore (L=60", OD=2.125")							
								SOIL	IL DESCRIPTION AND DRILLING COMMENTS			
Sample Depth	Sample	Sample Interval	OVM Reading	Recovery					Burmeister Soil Classification System			
(ft)	No.	(feet)	(ppm)	(inches)				sr - su	f-fine m-medium c-coarse - subrounded, r - rounded, sa - subangular, a - angular			
								trace (0	te (0-10%, little (11-20%), some (21-35%), and (36-50%)			
ŀ	1	0.0-5.0		39	ASPHALT (2"); overly	ing dark gr	ay cf GRAVEL and m	f SAND (D (6"), dry, loose, overlying gray SILT, some f Sand, trace (+) f Gravel (sa to sr), moist, medium den			
1			3.5									
2					Brown and gray mf S	AND, some	Silt, little cf Gravel	(sr), mois	noist, dense. Occasional 2" lenses of cf GRAVEL (sr) and cf SAND.			
2			0.1									
3												
					Brown, cf SAND, little	Brown, cf SAND, little Silt, little f Gravel, moist, medium dense.						
4						,	, , , , , ,					
5	2	5.0-10.0		29								
			5.0		Brown mf SAND, little	rown mf SAND, little (+) Silt, trace mf Gravel (sr to sa), moist, medium dense.						
6			372									
7												
8					Gray f SAND trace Si	t traco m	Sand maint to wat	modium	um dense, petroleum odor.			
٥					Gray i SAND, trace si	t, trace iii .	sand, moist to wet,	medium	um dense, petroleum odor.			
9												
10	3	10.0-15.0		60								
10	,	10.0-13.0		- 00								
11			611									
12					Gray f SAND, trace (-)	Silt, wet, r	nedium dense, petr	oleum oc	n odor.			
			390									
13												
14			10.5		Gray and brown cf SA	ND, trace ((-) Silt, wet.					
15					End of boring.							
									oundary between soil types represented with stratification line. Transitions may be gradual. Depth			
	are appr	oximate.	Set tempora	iry monitor	ing well in borehole w	ith 10' of 1	L" PVC well screen a	nd 5' of 1	of 1" PVC casing.			

Matri	x Envi	ronme	ntal Tech	nologie	es Inc.	SUBSURFACE LOG						
PROJECT	& LOCA	TION:	4245 Clark 9	St., Hambu	rg, NY	PROJECT No.	24-012					
CLIENT:			Environmen			WELL/BORING ID:	SB06					
START D	ATE:		3/22/2024		DATE: 3/22/2024	RECORDED BY:	Craig D. Zink, P.G.					
GROUNI	OWATER	DEPTH W	HILE DRILLIN	G:	7.5'	GROUNDWATER DEPTH AFTER COMPLETION:	not measured					
WEATHE	R:		28° F, cloud	y	D	DRILLING CONTRACTOR / DRILLER: Matrix Environmental Technologies / R. Reagan						
					Direct Push 2 1/2"							
DRILL RI	G:	•	Geoprobe 6	620 DT	· -	NPT HAMMER Type:	Hydraulic					
					Sampler Type:	COLL	macrocore (L=60", OD=2.125") ESCRIPTION AND DRILLING COMMENTS					
Sample Depth (ft)	Sample No.	Sample Interval (feet)	OVM Reading (ppm)	Recovery (inches)		sr - suk	Burmeister Soil Classification System f-fine m-medium c-coarse rounded, r-rounded, sa - subangular, a - angular 10%, little (11-20%), some (21-35%), and (36-50%)					
	1	0.0-5.0		44	Asphalt (2"); overlying	g dark gray to gray mf SAND, little mf G	ravel (sa), trace Silt (7"), dry, loose; overlying gray SILT and CLAY, moist, dense.					
1			2.5		Grayish brown f SAND	and SILT, trace f Gravel, moist, dense.						
2												
3			1.5		5 (644)							
4					Brown mf SAND, dry, medium dense; occasional 2" layers with brown mf Gravel (sr), little (-) Silt.							
5	2	5.0-10.0		42	Brown mf SAND, trace	Silt, dry, medium dense.						
6			1.5		Brown mf SAND, little	(+) Silt, trace c Sand, dry to moist, med	ium dense.					
7												
8			1.5		Brown and grayish bro	own f SAND, trace Silt, trace f Gravel, m	ND, trace Silt, trace f Gravel, moist in first 6" then wet, medium dense.					
9												
10	3	10.0-15.0			End of boring.							
11												
12												
13												
14												
15												
		adings coll oximate.	lected with N	MiniRae 30	undary between soil types represented with stratification line. Transitions may be gradual. De							


Matri	x Envi	ronme	ntal Tech	nologie	es Inc.	SUBSURFACE LOG						
PROJECT	Γ& LOCA	TION:	4245 Clark 9	St., Hambu	rg, NY	PROJECT No.	24-012					
CLIENT:			Environmen			WELL/BORING ID:	SB07					
START D	ATE:		3/22/2024	COMP _	DATE: 3/22/2024	RECORDED BY:	Craig D. Zink, P.G.					
GROUN	DWATER	DEPTH W	/HILE DRILLIN	G:	6.8'	GROUNDWATER DEPTH AFTER COMPLETION:	not measured					
WEATH	ER:		28° F, cloud	у	DRI	LLING CONTRACTOR / DRILLER: Matri	ix Environmental Technologies / R. Reagan					
					Direct Pu							
DRILL RI	G:		Geoprobe 6	620 DT	NF	PT HAMMER Type:	Hydraulic					
			T		Sampler Type:	SOIL DESCR	macrocore (L=60", OD=2.125") IPTION AND DRILLING COMMENTS					
Sample Depth (ft)	Sample No.	Sample Interval (feet)	OVM Reading (ppm)	Recovery (inches)		Burr sr - subrounde	Burmeister Soil Classification System f-fine m-medium c-coarse sr - subrounded, r - rounded, sa - subangular, a - angular trace (0-10%, little (11-20%), some (21-35%), and (36-50%)					
	1	0.0-5.0		27			trace Silt (3"), dry, medium dense; overlying gray f SAND, some Silt, little cf Gravel					
1			511		(possible slag), dry, loos	e.						
1			378									
2												
3					Gray f SAND, little (+) Si	lt, trace f Gravel, dry, medium dense.						
4												
4												
5	2	5.0-10.0		27		O, some Silt, trace mf Gravel (sr to sa)						
6			87		Gray and orangish brow	n (banded) mf SAND, little (+) Silt, wet, medium dense.						
О			11.2									
7												
					Gray f SAND, trace Silt,	trace m Sand, moist to wet, medium	dense, petroleum odor.					
8												
9												
					Gray f SAND, wet, medi	um dense.						
10	3	10.0-15.0	-	39								
11			30.3									
11												
12			2.7		3" of resample overlyin	g grayish brown f SAND, wet, medium	n dense; 3" layer f Sand with organish brown color at 12'.					
13												
14												
15					End of boring.							
					00 w/10.6 eV lamp. Back		eading from 10 - 11.5' (30.3 ppm), may be elevated due to seepage from above layers.					
	Boundar	y betwee	en soil types r	represented	d with stratification line.	Transitions may be gradual. Depths a	re approximate.					

Matri	x Envi	ronme	ntal Tech	nologie	s Inc.	SUBSURFACE LOG				
PROJEC	T & LOCA	ATION:	4245 Clark	St., Hambu	rg, NY	PROJECT No.	24-012			
CLIENT:			Environmer	ntal Advant	age, Inc.		SB08			
START D	ATE:		3/22/2024		LETION	RECORDED BY:		D.C.		
SIAKIL	ATE:		3/22/2024	=-	DATE: 3/22/2024	GROUNDWATER DEPTH AFTER	Craig D. Zink,	P.G.		
GROUN	DWATER	DEPTH W	HILE DRILLIN	IG:	6'	COMPLETION:	not measure	ed		
WEATHI	FR.		28° F, cloud	v	DRI	ILING CONTRACTOR / DRILLER: Mat	ix Environmental Technologies / R. Reagan			
VV EATTH			20 1,0000	,	Direct Pu		ix Environmental recimologics / n. neagan			
DRILL RI	G:		Geoprobe 6	620 DT	NF		Hydraulic			
					Sampler Type:		macrocore (L=60", OD=2.125")			
Sample		Sample	OVM			SOIL DESC	IPTION AND DRILLING COMMENTS			
Depth	Sample	Interval	Reading	Recovery		Bu	meister Soil Classification System f-fine m-medium c-coarse			
(ft)	No.	(feet)	(ppm)	(inches)			ed, r - rounded, sa - subangular, a - angular			
	1			36		trace (0-10%,	ittle (11-20%), some (21-35%), and (36-50%)			
		0.0-5.0		36	TOPSOIL (2"); overlying	brown mf SAND, little (+) Silt, little r	of GRAVEL (a to sa), dry to moist, medium dense			
1			0.5							
2			0.5							
3			0.5		Brown f SAND little (+)	Silt, little cf Gravel, moist, dense. Silt	content decreases with denth			
					brown r salve, near (1)	one, mene er Gruver, moist, dense. om	content decreases with depth.			
4										
5	2	5.0-10.0	0.6	24	Brown f SAND, little Silt	, little cf Gravel (sr), wet, medium de	nse.			
6			0.0							
			0.5							
7										
8					Brown f SAND, little cm	SAND, little cm Gravel (sr), trace Silt, wet, medium dense.				
9										
10	3	10.0-15.0			End of boring.					
11										
12										
13										
14										
15										
Notes	OVM re	adings col	lected with I	MiniRae 30	<u> </u> 00 w/10.6 eV lamp. Back	ground PID reading was 0.5 ppm. Bo	undary between soil types represented with stra	atification line. Transitions may be		
	gradual	. Depths a	re approxima	ate.				·		

DAILY FIELD REPORT

Job Name 42 45 Clark St.	Date: 3-22-24
JOD NAME NIX	Time: fromto
Job # Hamburg N.V.	Vehicle used:
Weather wife	
Matrix personnel on site	
Completed by Crais Zink	
Progress of Work Soi Sample O	VM Readings 10.6 el larp
SBOI/MWI - all readings O.C	ppm; beckground 0.0 ypm
5B2 - all readings 0-5' 0.0 ppm	5-6.5' 0.6pm 6.5-7.5 0.5ppm
SB3 - all readings at bedigroun	10.5pm
SBY = all Headings of background	nd o. Sppm
513/mm2 5135/ - 0'-1.5' = 3.5ppm, 1.5'-3.	0'=0.1ppm, 5-6.5= 5.0ppm,
MW3 6.51-7.5'=372ppm 10'-	- 12' = 611 ppn, 12'-14'=350ppn
111 15 - 10 5 000	
14-15 = 10.5 pps	1 1.5
SB6 - all teadings at becugn	ound :50 ppm except 0'-2'=2.5pp
SB7 - 0'-1'= 51/pm 1'-2'= 3	78pm, 5'-6'=67 ppm,
6'-71 = 11.2 ppm 10'-11	3 = 30.3 (may be higher due to
z u seepege from above), 11.5	-13.0 = 2.7 pp
SBB - all reading of background	ed except 0.6 pan et 5'6,
background = 0.5 ppm hansi	, this borns.
Centractors on site:	
Visitors on site:	

Client: Waterfield Project No.: EA 230 5	
Site Name & Address: Former Vara'S 4245 Clark St.	
Person(s) Performing Sampling: Collin Snyder Sample Identification: SV-01	
Sample Type: ☐Indoor Air (ambient) ☐Outdoor Air ☐Soil Vapor ☒Sub-slab Vapo	or
Date of Collection: 4/22/24 Setup Time: 8:59 Stop Time: 5:0	
Sample Depth: 12"	
Sample Height:	
Sampling Method(s) & Device(s): Suma Can's ter	
Purge Volume: 100 mL	
Sample Volume: 2.7	
Sampling Canister Type & Size (if applicable):	
Canister# 520 Regulator# 01834	
Vacuum Pressure of Canister Prior to Sampling: <u>- 2 9.59</u>	
Vacuum Pressure of Canister After Sampling: <u>-4.22</u>	
Temperature in Sampling Zone: 💪 o	
Apparent Moisture Content of Sampling Zone: Moderate	
Soil Type in Sampling Zone:	
Standard Chain of Custody Procedures Used for Handling & Delivery of Samples to Labo	ratory:
☑Yes ☐ No. If no, provide reason(s) why?	
Laboratory Name: Pace	
Analysis: TO-15	
Comments:	
·	
7	
Sampler's Signature Calla Smarker Date: 4/22/24	

Client: Waterfield	Project No.: <u>E A 2 > 0</u> 5
Site Name & Address: Former Vara'S	4245 Clark St. Hamburg.
Person(s) Performing Sampling:	Snyder
Sample Identification: <u>5V-02</u>	
Sample Type: ☐Indoor Air (ambient) ☐Ou	utdoor Air □Soil Vapor 🏚 Sub-slab Vapor
Date of Collection: 4/22/24 Se	etup Time: 9:26 Stop Time: 5:15
Sample Depth: <u>[0</u> "	
Sample Height:	·
Sampling Method(s) & Device(s):	Suma Carister
Purge Volume: [OomL	
Sample Volume: 2.74	
Sampling Canister Type & Size (if applicable)	2.7 Suma
Canister # 4//	Regulator# <u>01452</u>
Vacuum Pressure of Canister Prior to	Sampling: <u>2<i>8</i>. 4</u> 3
Vacuum Pressure of Canister After Sa	ampling: <u>- 5 . 3 5</u>
Temperature in Sampling Zone: <u>60</u>	·
Apparent Moisture Content of Sampling Zone	: moderate
Soil Type in Sampling Zone:	
	for Handling & Delivery of Samples to Laboratory:
⊠Yes □No. If no, pr	rovide reason(s) why?
Laboratory Name: Pace	
Analysis: 10 - 15	
Comments: Can: Ster presure droped originaly	, 40-23 the Stabalized.
Sampler's Signature	Date: 4/22/24

Client: Waterfield	Project No	EA2305
Site Name & Address: Former Vara'		
Person(s) Performing Sampling:	in Sneder	
Sample Identification: $5V-03$	•	·
Sample Type: □Indoor Air (ambient) □	☐Outdoor Air ☐Soil Vapor	⊠Sub-slab Vapor
Date of Collection: <u>4/22/24</u>	Setup Time: <u>9:45</u>	Stop Time: 5:25
Sample Depth: 📶		
Sample Height:		
Sampling Method(s) & Device(s): 2.74	Suma	
Purge Volume: 100 mL		
Sample Volume: 2.7L		
Sampling Canister Type & Size (if applical	ble): 2.7L Suma	
Canister# 3401	_ Regulator# <i>Ø846</i>	
Vacuum Pressure of Canister Pric	or to Sampling: <u>- 2 9.88</u>	
Vacuum Pressure of Canister After	er Sampling: 5. 58	
Temperature in Sampling Zone: 60°		
Apparent Moisture Content of Sampling Z	one: Moderate	
Soil Type in Sampling Zone:		
Standard Chain of Custody Procedures U	sed for Handling & Delivery of	Samples to Laboratory:
MagYes □ No. If no	o, provide reason(s) why?	
Laboratory Name: 🌈a 🖙		
Analysis:To - 15	· Wes	
Comments: <u>Petrolium odor Coming fro</u>	m hole	
Sampler's Signature Calli Sa	mede/	ate: 4/22/24

Client: Waterfield	Project No.: <u>EA2305</u>
Site Name & Address: Former Va	.m's 4245 Clark St.
Person(s) Performing Sampling:	'n Snyder
Sample Identification: $\frac{5V-04}{}$	
	□Outdoor Air □Soil Vapor ÆSub-slab Vapor
Date of Collection: 4/22/24	Setup Time: 10:05 Stop Time: 5:40
Sample Depth: 24"	
Sample Height:	
Sampling Method(s) & Device(s): 2.74	Soma
Purge Volume: 24	
Sample Volume: 2.7L	
Sampling Canister Type & Size (if applica	ble): 2.7L Suma
Canister# 507	Regulator# <u>O224</u> 6
Vacuum Pressure of Canister Price	or to Sampling: <u>~2 9.40</u>
Vacuum Pressure of Canister After	er Sampling: <u>~ 6.06</u>
Temperature in Sampling Zone: <u>Co°</u>	
Apparent Moisture Content of Sampling Z	one: <u>moderate</u>
Soil Type in Sampling Zone:	
Standard Chain of Custody Procedures U	sed for Handling & Delivery of Samples to Laboratory:
ØYes □No. If n	o, provide reason(s) why?
Laboratory Name: Pac+	·
Analysis: 10-15	
Comments: High amount of dust	led to extended purging, Slab
Uas almost 2' thick	
· · · · · · · · · · · · · · · · · · ·	,
Samplar's Signature Calli Son	Date: 4/22/24

Client: Waterfield		Project N	io.: E12305
Site Name & Address: Former Va.	a'S 4245	Clark	St.
Person(s) Performing Sampling: <u>Collin</u>	Snyder		
Sample Identification: $SV - 0.5$			
Sample Type: ☐Indoor Air (ambient) ☐]Outdoor Air □	Soil Vapor	⊠Sub-slab Vapor
Date of Collection: 4/22/24	Setup Time: 0.1	<i>[G</i>	Stop Time: 5 : 50
Sample Depth: 8"			
Sample Height:			
Sampling Method(s) & Device(s): 2.74	Suma		
Purge Volume: 100 mL			
Sample Volume: 2.7८			
Sampling Canister Type & Size (if applicat	ole):		
Canister # 2076	_ Regulator #	# <u>061</u>	7
Vacuum Pressure of Canister Prior	r to Sampling: <u> </u> 2	29.60	
Vacuum Pressure of Canister Afte	er Sampling: <u>~</u>	.86	
Temperature in Sampling Zone: 60°			
Apparent Moisture Content of Sampling Zo	one: Madera de		
Soil Type in Sampling Zone:		•	
Standard Chain of Custody Procedures Us	sed for Handling &	Delivery of	f Samples to Laboratory:
⊠Yes □No. If no	o, provide reason(s	s) why?	
Laboratory Name: Pace	.		
Analysis: <u>TO-15</u>		··	
Comments:			
	<u>. </u>		
	,		
Sampler's Signature Calli.	ander		Data: 4 102 104

Attachment C Analytical Results Summary Tables

Table 1 Soil Analytical Results Summary 4245 Clark Street, Hamburg, NY

Location	NYSDEC CP-51	oosoo	RUSCO	cosco	SB-01 / MW-01 (5'-7.5')	SB-02 (0'-5')	SB-04 / MW-02 (5'-7.5')	SB-05 / MW-03 (6.5'-7.5')	SB-05 / MW-03 (10'-14')	SB-07 (0'-2')	SB-07 (5'-7')
Sampling Date	YS) iii	Si Si	Š	03/22/2024	03/22/2024	03/22/2024	03/22/2024	03/22/2024	03/22/2024	03/22/2024
Lab Sample ID	Z	ر	Œ	U	L2416145-01	L2416145-02	L2416145-03	L2416145-04	L2416145-05	L2416145-06	L2416145-07
Volatile Organic Compounds Anal	lysis via	EPA Me	thod 826	60 (mg/k	g)						
1,1-Dichloroethane	NV	0.27	19	240	NT	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	NV	0.33	100	500	NT	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3.6	3.6	47	190	NT	0.014	0.0054	18	0.650 J	97	6.7
1,2-Dichlorobenzene	NV	1.1	100	500	NT	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	NV	0.02	2.3	30	NT	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8.4	8.4	47	190	NT	0.0032	0.001 J	0.36 J	ND	23	1.6
1,3-Dichlorobenzene	NV	2.4	17	280	NT	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	NV	1.8	9.8	130	NT	ND	ND	ND	ND	ND	ND
Acetone	NV	0.05	100	500	NT	ND	ND	ND	ND	ND	ND
Benzene	0.06	0.06	2.9	44	NT	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	NV	0.76	1.4	22	NT	ND	ND	ND	ND	ND	ND
Chloroform	NV	0.37	10	350	NT	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	NV	0.25	59	500	NT	ND	ND	ND	ND	ND	ND
Cyclohexane	NV	NV	NV	NV	NT	ND	ND	0.450 J	ND	ND	ND
Ethylbenzene	1	1	30	390	NT	0.00029 J	ND	ND	ND	0.190 J	0.020 J
Isopropylbenzene	2.3	NV	NV	NV	NT	0.0006 J	0.00054 J	0.570 J	1.3	0.680	0.060
Methyl cyclohexane	NV	NV	NV	NV	NT	ND	ND	0.440 J	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	NV	0.12	100	500	NT	ND	ND	ND	ND	ND	ND
Methyl tert butyl ether (MTBE)	0.93	0.93	62	500	NT	ND	ND	ND	ND	ND	ND
Methylene chloride	NV	0.05	51	500	NT	ND	ND	ND	ND	ND	ND
Naphthalene	12	12	100	500	NT	0.00067 J	ND	1 J	2 J	6.8	0.390
n-Butvlbenzene	12	12	100	500	NT	0.00076 J	0.0013	5.3	8	7.4	0.590
n-Propylbenzene	3.9	3.9	100	500	NT	0.0022	0.002	2.8	5.3	2.5	0.210
o-Xylene	0.26	0.26	100	500	NT	0.00066 J	ND	ND	ND	0.970	0.071
p/m-Xylene	0.26	0.26	100	500	NT	0.0012 J	ND	ND	ND	1.3	0.120
p-Isopropyltoluene	10	NV	NV	NV	NT	0.00073 J	0.00019 J	2.5	ND	8.1	0.610
sec-Butylbenzene	11	11	100	500	NT	0.00091 J	0.0011	3.6	5.8	5	0.430
tert-Butvlbenzene	5.9	5.9	100	500	NT	ND	ND	0.2 J	0.310 J	0.330 J	0.023 J
Tetrachloroethene	NV	1.3	5.5	150	NT	0.0069	0.01	ND	ND	ND	ND
Toluene	0.7	0.7	100	500	NT	ND	ND	ND	ND	ND	ND
trans-1.2-Dichloroethene	NV	0.19	100	500	NT	ND	ND	ND	ND	ND	ND
Trichloroethene	NV	0.47	10	200	NT	ND	0.00074	ND	ND	ND	ND
Vinyl chloride	NV	0.02	0.21	13	NT	ND	ND	ND	ND	ND	ND
Metals Analysis (mg/kg)		0.02	J.2.						.,,,	.,,,	
Chromium, hexavalent	NV	1	22	400	6.46	ND	NT	NT	NT	NT	NT
Chromium, trivalent	NV	30	36	1500	33.54	13.7	NT	NT	NT	NT	NT

Notes:

- 1. Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are presented in this table. Refer to Appendix for the full analytical report.
- 2. mg/kg = parts per million.
- 3. ND = not detected; NT = not tested; NV = no value; NS = Not Specified.
- 4. Analytical results compared to NYSDEC CP-51 Soil Cleanup Guidance for gasoline and fuel contaminated soils and NYSDEC 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives (SCOs); Table 375-6 R/b): Restricted Use SCOs.
- 5. J = Estimated value. The target analyte is below the reporting limit (RL), but above the method dectection limit (MDL).
- 6. Shading indicates: exceeds CP-51 Soil Cleanup Levels for gasoline and fuel oil contaminated soils

exceeds UUSCO - Unrestricted Use Soil Cleanup Objective

exceeds RUSCO - Residential Use Soil Cleanup Objective

exceeds CUSCO - Commercial Use Soil Cleanup Objective

Reporting limit is greater than the regulatory limit for this parameter due to sample dilution

Table 2 Groundwater Analytical Summary Results 4245 Clark Street, Hamburg, NY

Location	NYSDEC	SB-01 / MW-01	SB-04 / MW-02	SB-05 / MW-03
Sampling Date	TOGS Class	03/22/2024	03/22/2024	03/22/2024
Lab Sample ID	GA Criteria	L2416144-01	L2416144-02	L2416144-03
Volatile Organic Compounds via	a USEPA Meth	od 8260 (ug/L)		
1,1,1-Trichloroethane	5	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	13
1,2-Dibromo-3-chloropropane	0.04	ND	ND	ND
1,2-Dibromoethane	0.0006	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND
1,2-Dichloroethane	0.6	ND	ND	ND
1,2-Dichloropropane	1	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND
Acetone	50	ND	ND	6.8 J
Benzene	1	ND	ND	1.5
Bromomethane	5	ND	ND	ND
Chlorobenzene	5	ND	ND	ND
Chloroethane	5	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND
cis-1,3-Dichloropropene	0.4	ND	ND	ND
Cyclohexane	NV	ND	ND	5.9 J
Dichlorodifluoromethane	5	ND	ND	ND
Ethylbenzene	5	ND	ND	3.9 J
Freon-113	5	ND	ND	ND
Isopropylbenzene	5	ND	ND	18
Methyl cyclohexane	NV	ND	ND	3.9 J
Methylene chloride	5	ND	ND	ND
Naphthalene	10	ND	ND	55
n-Butylbenzene	5	ND	ND	26
n-Propylbenzene	5	ND	ND	53
o-Xylene	5	ND	ND	ND
p/m-Xylene	5	ND	ND	3.0 J
p-Isopropyltoluene	5	ND	ND	ND
sec-Butylbenzene	5	ND	ND	26
Styrene	5	ND	ND	ND
tert-Butylbenzene	5	ND	ND	2.1 J
Tetrachloroethene	5	ND	11	ND
Toluene	5	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ND	ND	ND
Trichloroethene	5	ND	0.99	ND
Trichlorofluoromethane	5	ND	ND	ND
Vinyl chloride	2	ND	ND	ND
Notes:				

Notes:

- 1. Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are presented in this table. Refer to Appendix for the full analytical report.
- 2. ug/L = parts per billion
- 3. ND = Non-detect; NT = not tested; NV = no value.
- 4. Analytical results compared to NYSDEC Ambient Water Quality Standards and Guidance Values, derived from Article 17 of the Environmental Conservation Law and 6 NYCRR Parts 700-706, Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1)
- 5. J = Estimated value. The target analyte is below the reporting limit (RL), but above the method decrection limit (MDL).
- 6. Shading indicates:

exceeds NYSDEC TOGS Class GA Criteria. Reporting limit is greater than the regulatory limit for this parameter due to sample dilution

Table 3 Subslab Analytical Summary Results 4245 Clark Street, Hamburg, NY

LOCATION	NYSDOH Matrix	SV-01	SV-02	SV-03	SV-04	SV-05
SAMPLING DATE	"Mitigate"	4/22/2024	4/22/2024	4/22/2024	4/22/2024	4/22/2024
LAB SAMPLE ID	Subslab Value	L2422054-01	L2422054-02	L2422054-03	L2422054-04	L2422054-05
Volatile Organics in Air (ug/m³)		LZ-72205-01	LZ-7ZZUJUZ	LZ-7220303	LZ-72205-0-	LZ-1220303
1.1.1-Trichloroethane	1000	ND	ND	ND	ND	ND
1.1-Dichloroethene	60	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	600	3.85	3.6	4.14	865	ND
1,3,5-Trimethylbenzene	600	1.09	1.07	ND	275	ND
1,3-butadiene	NV	ND	ND	ND	ND ND	18.4
1.4-Dioxane	NV	ND	ND	2.44	ND	ND
2,2,4-trimethylpentane	600	ND	ND	ND	ND	ND
2-Butanone (Methyl Ethyl Ketone)	NV	3.01	ND	10.6	ND	47.5
4-ethyltoluene	NV	1.47	1.44	ND	158	ND
4-Methyl-2-pentanone	NV	ND	ND	5	352	15.2
Acetone	NV	43.2	51.5	1460	10500	230
Benzene	600	11.6	7.57	20.1	116	38.7
Bromomethane	NV	0.792	ND	ND	ND	ND
Carbon disulfide	NV	ND	ND	ND	ND	65.7
Carbon tetrachloride	60	ND	ND	ND	ND	ND
Chlorobenzene	NV	ND	1.61	ND	ND	ND
Chloromethane	NV	ND	0.485	ND	ND	ND
cis-1,2-Dichloroethene	60	ND	ND	ND	ND	88
Cyclohexane	600	19	19.5	36.5	297	27.6
Dichlorodifluoromethane	NV	2.18	2.34	2.26	ND	2.53
Ethanol	NV	ND	ND	34.7	ND	ND
Ethylbenzene	600	43.2	33.7	39.1	364	50.4
Heptane	2000	42.6	17.3	81.6	971	43.4
Isopropanol	NV	25.6	1.84	16.6	ND	4.77
Methylene chloride	1000	ND	ND	ND	ND	ND
n-Hexane	2000	63.1	32.2	99.4	663	76.8
Naphthalene	600	ND	ND	ND	ND	ND
o-Xylene	600	51.3	36.4	39.2	578	52.6
p/m-Xylene	2000	185	142	164	1160	157
Tertiary butyl Alcohol	NV	ND	ND	10.2	ND	6.88
Tetrachloroethene	1000	4.74	1.55	80	7190	19
Tetrahydrofuran	NV	ND	2.57	ND	ND	5.49
Toluene	3000	46	33.1	62.6	497	46
Trichloroethene	60	ND	6.66	13.6	249	7.26
Vinyl chloride	60	ND	ND	ND	ND	ND

Notes:

- 1. NYSDOH Matrix Guideline compounds and other compounds detected in one or more samples included in this table. For a list of all compounds, refer to analytical report.
- 2. Analytical testing for VOCs via TO-15 completed by Alpha Laboratories; Samples were collected during a 8-hour sample duration; Results present in ug/m3 or microgram per cubic meter.
- 3. Air Guideline Values and Matrix Values from "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006, prepared by New York State Department of Health. Updated September 2013, August 2015, May 2017, and February 2024.
- 4. **BOLDED** compounds = NYSDOH Matrix Compound
- 5. ND = Non Detect; NV = No Value.
- 6. Shading indicates:

 Exceedance of NYSDOH Matrix "Mitigate" Subslab Value

 Reporting limit is greater than the regulatory value for this parameter due to sample dilution

Table 4 Interior Soil Analytical Results Summary 4245 Clark Street, Hamburg, NY

Location Sampling Date Lab Sample ID	NYSDEC CP-51	oosno	RUSCO	cosco	IB-01 3.5'-4.5' 5/30/2024 L2430322-01	IB-02 6'-7' 5/30/2024 L2430322-02	IB-03 7'-8' 5/30/2024 L2430322-03	IW-01 (BOTTOM LAYER) 5/30/2024 L2432463-01
Volatile Organic Compounds Analysis (mg/kg)					E	EPA Method 5035 High		
1,1-Dichloroethane	NV	0.27	19	240	ND	ND	ND	ND
1,1-Dichloroethene	NV	0.33	100	500	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3.6	3.6	47	190	0.66E	130	110	4.5
1,2-Dichlorobenzene	NV	1.1	100	500	ND	ND	ND	ND
1,2-Dichloroethane	NV	0.02	2.3	30	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8.4	8.4	47	190	0.19	25	30	0.52
1,4-Dichlorobenzene	NV	1.8	9.8	130	ND	ND	ND	ND
1,4-Dioxane	NV	0.1	9.8	130	ND	ND	ND	ND
2-Butanone	NV	0.12	100	500	ND	ND	ND	ND
Acetone	NV	0.05	100	500	0.011	ND	ND	ND
Benzene	0.06	0.06	2.9	44	ND	ND	ND	ND
Carbon tetrachloride	NV	0.76	1.4	22	ND	ND	ND	ND
Chloroform	NV	0.37	10	350	ND	ND	ND	ND
cis-1,2-Dichloroethene	NV	0.25	59	500	ND	ND	ND	ND
Ethylbenzene	1	1	30	390	0.00089J	0.36J	0.38J	0.013J
Isopropylbenzene	2.3	NV	NV	NV	0.006	1.6	1.4	0.12
Methyl cyclohexane	NV	NV	NV	NV	0.00076J	ND	ND	0.051J
Methyl tert butyl ether	0.93	0.93	62	500	ND	ND	ND	ND
Methylene chloride	NV	0.05	51	500	ND	ND	ND	ND
n-Butylbenzene	12	12	100	500	0.053	15	14	2.3
n-Propylbenzene	3.9	3.9	100	500	0.026	5.9	5.3	0.52
Naphthalene	12	12	100	500	0.015	3.7J	5.3	0.56
o-Xylene	0.26	NV	NV	NV	0.0016	ND	ND	0.02J
p-Isopropyltoluene	10	NV	NV	NV	0.064	12	13	0.63
p/m-Xylene	0.26	NV	NV	NV	0.0069	1J	1.9	0.053J
sec-Butylbenzene	11	11	100	500	0.044	9.1	8.8	1.5
tert-Butylbenzene	5.9	5.9	100	500	0.0034	0.51J	0.52J	0.1
Tetrachloroethene	NV	1.3	5.5	150	0.00037J	ND	ND	ND
Toluene	0.7	0.7	100	500	0.00074J	1.1	0.35J	ND
trans-1,2-Dichloroethene	NV	0.19	100	500	ND	ND	ND	ND
Trichloroethene	NV	0.47	10	200	ND	ND	ND	ND
Vinyl chloride	NV	0.02	0.21	13	ND	ND	ND	ND
Xylenes, Total	0.26	0.26	100	500	0.0085	1J	1.9	0.073J

Notes:

- 1. Analytical testing performed by Alpha Analytical. Compounds detected in one or more samples are presented in this table. Refer to Appendix for the full analytical report.
- 2. mg/kg = parts per million.
- 3. ND = not detected; NT = not tested; NV = no value; NS = Not Specified.
- 4. Analytical results compared to NYSDEC CP-51 Soil Cleanup Guidance for gasoline and fuel contaminated soils and NYSDEC 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives (SCOs); Table 375 6.8(b): Restricted Use SCOs.
- 5. J = Estimated value. The target analyte is below the reporting limit (RL), but above the method dectection limit (MDL); E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

6. Shading indicates:

exceeds CP-51 Soil Cleanup Levels for gasoline and fuel oil contaminated soils
exceeds UUSCO - Unrestricted Use Soil Cleanup Objective
exceeds RUSCO - Residential Use Soil Cleanup Objective
exceeds CUSCO - Commercial Use Soil Cleanup Objective

Reporting limit is greater than the regulatory limit for this parameter due to sample dilution

Table 5 Interior Water Analytical Summary Results 4245 Clark Street, Hamburg, NY

Location	NYSDEC TOGS Class	IW-01 (WATER LAYER)			
Sampling Date		5/30/2024			
Lab Sample ID	GA Criteria	L2430553-01			
Volatile Organic Compounds via US					
1,1,2-Trichloroethane	1	ND			
1,2,4-Trimethylbenzene	5	120			
1,2-Dibromo-3-chloropropane	0.04	ND			
1,2-Dibromoethane	0.0006	ND			
1,2-Dichloropropane	1	ND			
1,3,5-Trimethylbenzene	5	8.8			
Acetone	50	6.2			
Benzene	1	2.4			
cis-1,2-Dichloroethene	5	0.75J			
cis-1,3-Dichloropropene	0.4	ND			
Cyclohexane	NV	0.27J			
Dichlorodifluoromethane	5	ND			
Ethylbenzene	5	1.9J			
Isopropylbenzene	5	5.7			
n-Butylbenzene	5	15			
n-Propylbenzene	5	12			
Naphthalene	10	24			
o-Xylene	5	1.3J			
p-Isopropyltoluene	5	4.7			
p/m-Xylene	5	4.1			
sec-Butylbenzene	5	17			
tert-Butylbenzene	5	1.4J			
trans-1,3-Dichloropropene	0.4	ND			
Xylenes, Total		5.4J			

Notes:

- 1. Analytical testing performed by Alpha Analytical. Refer to appendix for the full analytical report.
- 2. ug/L = parts per billion
- 3. ND = Non-detect; NT = Not tested; NV = No Value.
- 4. Analytical results compared to NYSDEC Ambient Water Quality Standards
- 5. J = Estimated value. The target analyte is below the reporting limit (RL), but
- 6. Shading indicates:
 - exceeds NYSDEC TOGS Class GA Criteria

 Reporting limit is greater than the regulatory limit for this parameter due to sample dilution

Attachment D Laboratory Analytical Reports

ANALYTICAL REPORT

Lab Number: L2416145

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna
Phone: (716) 667-3130

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305
Report Date: 04/01/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416145 **Report Date:** 04/01/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2416145-01	SB-01/MW-01 (5'-7.5')	SOIL	4245 CLARK STREET, HAMBURG	03/22/24 10:00	03/25/24
L2416145-02	SB-02 (0'-5')	SOIL	4245 CLARK STREET, HAMBURG	03/22/24 09:30	03/25/24
L2416145-03	SB-04/MW-02 (5'-7.5')	SOIL	4245 CLARK STREET, HAMBURG	03/22/24 10:40	03/25/24
L2416145-04	SB-05/MW-03 (6.5'-7.5')	SOIL	4245 CLARK STREET, HAMBURG	03/22/24 11:10	03/25/24
L2416145-05	SB-05 (10'-14')	SOIL	4245 CLARK STREET, HAMBURG	03/22/24 11:10	03/25/24
L2416145-06	SB-07 (0'-2')	SOIL	4245 CLARK STREET, HAMBURG	03/22/24 11:40	03/25/24
L2416145-07	SB-07 (5'-7')	SOIL	4245 CLARK STREET, HAMBURG	03/22/24 11:40	03/25/24

Project Number: EA2305 Report Date: 04/01/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416145Project Number:EA2305Report Date:04/01/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2416145-01: The collection date and time on the chain of custody was 22-MAR-24 18:50; however, the collection date/time on the container label was 22-MAR-24 10:00. At the client's request, the collection date/time is reported as 22-MAR-24 10:00.

L2416145-01: The sample identified as "SB-01/MW-01 (5'-7.5')" on the chain of custody was identified as "SB-01 (5'-7.5')" on the container label. At the client's request, the sample is reported as "SB-01/MW-01 (5'-7.5')".

L2416145-03: The sample identified as "SB-04/MW-02 (5'-7.5')" on the chain of custody was identified as "SB-04 (5'-7.5')" on the container label. At the client's request, the sample is reported as "SB-04/MW-02 (5'-7.5')".

L2416145-04: The sample identified as "SB-05/MW-03 (6.5'-7.5')" on the chain of custody was identified as "SB-05 (6.5'-7.5')" on the container label. At the client's request, the sample is reported as "SB-05/MW-03 (6.5'-7.5')".

Volatile Organics

L2416145-02 through -07: Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

L2416145-04D and -05D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L2416145-04D: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (174%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2416145-05D: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (150%);

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416145Project Number:EA2305Report Date:04/01/24

Case Narrative (continued)

however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2416145-06D: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (170%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2416145-07: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (185%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

Total Metals

L2416145-01 and -02: The sample has an elevated detection limit due to the dilution required by the sample matrix.

Hexavalent Chromium

The WG1902427-2 LCS recovery for chromium, hexavalent (75%), associated with L2416145-01 and -02, is outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original analyses are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Willelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 04/01/24

ORGANICS

VOLATILES

L2416145

04/01/24

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

SAMPLE RESULTS

Date Collected: 03/22/24 09:30

Lab ID: L2416145-02

Client ID: SB-02 (0'-5')

Sample Location: 4245 CLARK STREET, HAMBURG

Date Received: 03/25/24
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 03/29/24 01:59

Analyst: JIC Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/kg	5.0	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.14	1
Chloroform	ND		ug/kg	1.5	0.14	1
Carbon tetrachloride	ND		ug/kg	1.0	0.23	1
1,2-Dichloropropane	ND		ug/kg	1.0	0.12	1
Dibromochloromethane	ND		ug/kg	1.0	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	1
Tetrachloroethene	6.9		ug/kg	0.50	0.20	1
Chlorobenzene	ND		ug/kg	0.50	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.0	0.70	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	1
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	1
Bromodichloromethane	ND		ug/kg	0.50	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.27	1
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0.16	1
Bromoform	ND		ug/kg	4.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0.17	1
Benzene	ND		ug/kg	0.50	0.17	1
Toluene	ND		ug/kg	1.0	0.54	1
Ethylbenzene	0.29	J	ug/kg	1.0	0.14	1
Chloromethane	ND		ug/kg	4.0	0.93	1
Bromomethane	ND		ug/kg	2.0	0.58	1
Vinyl chloride	ND		ug/kg	1.0	0.34	1
Chloroethane	ND		ug/kg	2.0	0.45	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1
Trichloroethene	ND		ug/kg	0.50	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	1

MDL

Dilution Factor

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: Date Collected: 03/22/24 09:30

Client ID: SB-02 (0'-5') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Result

Sample Depth:

Parameter

Volatile Organics by GC/MS - Westboro	ough Lab					
	ND					
4 4 Diablambanana			ug/kg	2.0	0.15	1
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	1
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	1
p/m-Xylene	1.2	J	ug/kg	2.0	0.56	1
o-Xylene	0.66	J	ug/kg	1.0	0.29	1
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	1
Styrene	ND		ug/kg	1.0	0.20	1
Dichlorodifluoromethane	ND		ug/kg	10	0.92	1
Acetone	ND		ug/kg	10	4.8	1
Carbon disulfide	ND		ug/kg	10	4.6	1
2-Butanone	ND		ug/kg	10	2.2	1
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	1
2-Hexanone	ND		ug/kg	10	1.2	1
1,2-Dibromoethane	ND		ug/kg	1.0	0.28	1
n-Butylbenzene	0.76	J	ug/kg	1.0	0.17	1
sec-Butylbenzene	0.91	J	ug/kg	1.0	0.15	1
tert-Butylbenzene	ND		ug/kg	2.0	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0	1
Isopropylbenzene	0.66	J	ug/kg	1.0	0.11	1
p-Isopropyltoluene	0.73	J	ug/kg	1.0	0.11	1
Naphthalene	0.67	J	ug/kg	4.0	0.65	1
n-Propylbenzene	2.2		ug/kg	1.0	0.17	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	1
1,3,5-Trimethylbenzene	3.2		ug/kg	2.0	0.19	1
1,2,4-Trimethylbenzene	14		ug/kg	2.0	0.33	1
Methyl Acetate	ND		ug/kg	4.0	0.95	1
Cyclohexane	ND		ug/kg	10	0.54	1
Freon-113	ND		ug/kg	4.0	0.69	1
Methyl cyclohexane	ND		ug/kg	4.0	0.60	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	119		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	124		70-130	
Dibromofluoromethane	114		70-130	

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

SAMPLE RESULTS

Lab ID: L2416145-03 Date Collected: 03/22/24 10:40

Client ID: SB-04/MW-02 (5'-7.5')

4245 CLARK STREET, HAMBURG Sample Location:

Date Received: Field Prep:

Lab Number:

Report Date:

03/25/24 Not Specified

L2416145

04/01/24

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 03/29/24 02:23

Analyst: JIC 77% Percent Solids:

Volatile Organics by GC/MS - Westborough Methylene chloride	ND ND				
Methylene chloride					
	ND	ug/kg	5.6	2.6	1
1,1-Dichloroethane	IND	ug/kg	1.1	0.16	1
Chloroform	ND	ug/kg	1.7	0.16	1
Carbon tetrachloride	ND	ug/kg	1.1	0.26	1
1,2-Dichloropropane	ND	ug/kg	1.1	0.14	1
Dibromochloromethane	ND	ug/kg	1.1	0.16	1
1,1,2-Trichloroethane	ND	ug/kg	1.1	0.30	1
Tetrachloroethene	10	ug/kg	0.56	0.22	1
Chlorobenzene	ND	ug/kg	0.56	0.14	1
Trichlorofluoromethane	ND	ug/kg	4.5	0.78	1
1,2-Dichloroethane	ND	ug/kg	1.1	0.29	1
1,1,1-Trichloroethane	ND	ug/kg	0.56	0.19	1
Bromodichloromethane	ND	ug/kg	0.56	0.12	1
trans-1,3-Dichloropropene	ND	ug/kg	1.1	0.31	1
cis-1,3-Dichloropropene	ND	ug/kg	0.56	0.18	1
Bromoform	ND	ug/kg	4.5	0.28	1
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.56	0.19	1
Benzene	ND	ug/kg	0.56	0.19	1
Toluene	ND	ug/kg	1.1	0.61	1
Ethylbenzene	ND	ug/kg	1.1	0.16	1
Chloromethane	ND	ug/kg	4.5	1.0	1
Bromomethane	ND	ug/kg	2.2	0.65	1
Vinyl chloride	ND	ug/kg	1.1	0.38	1
Chloroethane	ND	ug/kg	2.2	0.51	1
1,1-Dichloroethene	ND	ug/kg	1.1	0.27	1
trans-1,2-Dichloroethene	ND	ug/kg	1.7	0.15	1
Trichloroethene	0.74	ug/kg	0.56	0.15	1
1,2-Dichlorobenzene	ND	ug/kg	2.2	0.16	1

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-03 Date Collected: 03/22/24 10:40

Client ID: SB-04/MW-02 (5'-7.5') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.17	1
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.19	1
Methyl tert butyl ether	ND		ug/kg	2.2	0.23	1
p/m-Xylene	ND		ug/kg	2.2	0.63	1
o-Xylene	ND		ug/kg	1.1	0.33	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1
Styrene	ND		ug/kg	1.1	0.22	1
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1
Acetone	ND		ug/kg	11	5.4	1
Carbon disulfide	ND		ug/kg	11	5.1	1
2-Butanone	ND		ug/kg	11	2.5	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1
2-Hexanone	ND		ug/kg	11	1.3	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.31	1
n-Butylbenzene	1.3		ug/kg	1.1	0.19	1
sec-Butylbenzene	1.1		ug/kg	1.1	0.16	1
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.4	1.1	1
Isopropylbenzene	0.54	J	ug/kg	1.1	0.12	1
p-Isopropyltoluene	0.19	J	ug/kg	1.1	0.12	1
Naphthalene	ND		ug/kg	4.5	0.73	1
n-Propylbenzene	2.0		ug/kg	1.1	0.19	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.31	1
1,3,5-Trimethylbenzene	1.0	J	ug/kg	2.2	0.22	1
1,2,4-Trimethylbenzene	5.4		ug/kg	2.2	0.38	1
Methyl Acetate	ND		ug/kg	4.5	1.1	1
Cyclohexane	ND		ug/kg	11	0.61	1
Freon-113	ND		ug/kg	4.5	0.78	1
Methyl cyclohexane	ND		ug/kg	4.5	0.68	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	109		70-130	

L2416145

04/01/24

Project Name: WATERFIELD PHASE 2 ESA

4245 CLARK STREET, HAMBURG

D

L2416145-04

SB-05/MW-03 (6.5'-7.5')

Project Number: EA2305

SAMPLE RESULTS

Date Collected: 03/22/24 11:10

Date Received: 03/25/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 03/29/24 02:46

Analyst: JIC Percent Solids: 83%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/kg	3200	1500	10
1,1-Dichloroethane	ND		ug/kg	650	94.	10
Chloroform	ND		ug/kg	970	91.	10
Carbon tetrachloride	ND		ug/kg	650	150	10
1,2-Dichloropropane	ND		ug/kg	650	81.	10
Dibromochloromethane	ND		ug/kg	650	91.	10
1,1,2-Trichloroethane	ND		ug/kg	650	170	10
Tetrachloroethene	ND		ug/kg	320	130	10
Chlorobenzene	ND		ug/kg	320	82.	10
Trichlorofluoromethane	ND		ug/kg	2600	450	10
1,2-Dichloroethane	ND		ug/kg	650	170	10
1,1,1-Trichloroethane	ND		ug/kg	320	110	10
Bromodichloromethane	ND		ug/kg	320	71.	10
trans-1,3-Dichloropropene	ND		ug/kg	650	180	10
cis-1,3-Dichloropropene	ND		ug/kg	320	100	10
Bromoform	ND		ug/kg	2600	160	10
1,1,2,2-Tetrachloroethane	ND		ug/kg	320	110	10
Benzene	ND		ug/kg	320	110	10
Toluene	ND		ug/kg	650	350	10
Ethylbenzene	ND		ug/kg	650	91.	10
Chloromethane	ND		ug/kg	2600	600	10
Bromomethane	ND		ug/kg	1300	380	10
Vinyl chloride	ND		ug/kg	650	220	10
Chloroethane	ND		ug/kg	1300	290	10
1,1-Dichloroethene	ND		ug/kg	650	150	10
trans-1,2-Dichloroethene	ND		ug/kg	970	89.	10
Trichloroethene	ND		ug/kg	320	89.	10
1,2-Dichlorobenzene	ND		ug/kg	1300	93.	10

MDL

Dilution Factor

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-04 D Date Collected: 03/22/24 11:10

Client ID: SB-05/MW-03 (6.5'-7.5') Date Received: 03/25/24

Result

Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

raiailletei	Result	Qualifier	Ullita	IN.L	IVIDE	Dilution i actor	
Volatile Organics by GC/MS - We	estborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	1300	96.	10	
1,4-Dichlorobenzene	ND		ug/kg	1300	110	10	
Methyl tert butyl ether	ND		ug/kg	1300	130	10	
p/m-Xylene	ND		ug/kg	1300	360	10	
o-Xylene	ND		ug/kg	650	190	10	
cis-1,2-Dichloroethene	ND		ug/kg	650	110	10	
Styrene	ND		ug/kg	650	130	10	
Dichlorodifluoromethane	ND		ug/kg	6500	590	10	
Acetone	ND		ug/kg	6500	3100	10	
Carbon disulfide	ND		ug/kg	6500	2900	10	
2-Butanone	ND		ug/kg	6500	1400	10	
4-Methyl-2-pentanone	ND		ug/kg	6500	830	10	
2-Hexanone	ND		ug/kg	6500	760	10	
1,2-Dibromoethane	ND		ug/kg	650	180	10	
n-Butylbenzene	5300		ug/kg	650	110	10	
sec-Butylbenzene	3600		ug/kg	650	94.	10	
tert-Butylbenzene	200	J	ug/kg	1300	76.	10	
1,2-Dibromo-3-chloropropane	ND		ug/kg	1900	650	10	
Isopropylbenzene	570	J	ug/kg	650	71.	10	
p-Isopropyltoluene	2500		ug/kg	650	71.	10	
Naphthalene	1000	J	ug/kg	2600	420	10	
n-Propylbenzene	2800		ug/kg	650	110	10	
1,2,4-Trichlorobenzene	ND		ug/kg	1300	180	10	
1,3,5-Trimethylbenzene	360	J	ug/kg	1300	120	10	
1,2,4-Trimethylbenzene	18000		ug/kg	1300	220	10	
Methyl Acetate	ND		ug/kg	2600	620	10	
Cyclohexane	450	J	ug/kg	6500	350	10	
Freon-113	ND		ug/kg	2600	450	10	
Methyl cyclohexane	440	J	ug/kg	2600	390	10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	174	Q	70-130	
Dibromofluoromethane	114		70-130	

L2416145

04/01/24

Project Name: WATERFIELD PHASE 2 ESA

D

4245 CLARK STREET, HAMBURG

L2416145-05

SB-05 (10'-14')

Project Number: EA2305

SAMPLE RESULTS

Date Collected: 03/22/24 11:10

Date Received: 03/25/24 Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 03/29/24 03:09

Analyst: JIC 80% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	6000	2800	20
1,1-Dichloroethane	ND		ug/kg	1200	180	20
Chloroform	ND		ug/kg	1800	170	20
Carbon tetrachloride	ND		ug/kg	1200	280	20
1,2-Dichloropropane	ND		ug/kg	1200	150	20
Dibromochloromethane	ND		ug/kg	1200	170	20
1,1,2-Trichloroethane	ND		ug/kg	1200	320	20
Tetrachloroethene	ND		ug/kg	600	240	20
Chlorobenzene	ND		ug/kg	600	150	20
Trichlorofluoromethane	ND		ug/kg	4800	840	20
1,2-Dichloroethane	ND		ug/kg	1200	310	20
1,1,1-Trichloroethane	ND		ug/kg	600	200	20
Bromodichloromethane	ND		ug/kg	600	130	20
trans-1,3-Dichloropropene	ND		ug/kg	1200	330	20
cis-1,3-Dichloropropene	ND		ug/kg	600	190	20
Bromoform	ND		ug/kg	4800	300	20
1,1,2,2-Tetrachloroethane	ND		ug/kg	600	200	20
Benzene	ND		ug/kg	600	200	20
Toluene	ND		ug/kg	1200	660	20
Ethylbenzene	ND		ug/kg	1200	170	20
Chloromethane	ND		ug/kg	4800	1100	20
Bromomethane	ND		ug/kg	2400	700	20
Vinyl chloride	ND		ug/kg	1200	410	20
Chloroethane	ND		ug/kg	2400	550	20
1,1-Dichloroethene	ND		ug/kg	1200	290	20
trans-1,2-Dichloroethene	ND		ug/kg	1800	170	20
Trichloroethene	ND		ug/kg	600	170	20
1,2-Dichlorobenzene	ND		ug/kg	2400	170	20

MDL

Dilution Factor

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-05 D Date Collected: 03/22/24 11:10

Client ID: SB-05 (10'-14') Date Received: 03/25/24

Result

Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

raidilletei	Nesuit	Qualifie	Ullita	NL.	IVIDE	Dilution i actor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	2400	180	20	
1,4-Dichlorobenzene	ND		ug/kg	2400	210	20	
Methyl tert butyl ether	ND		ug/kg	2400	240	20	
p/m-Xylene	ND		ug/kg	2400	680	20	
o-Xylene	ND		ug/kg	1200	350	20	
cis-1,2-Dichloroethene	ND		ug/kg	1200	210	20	
Styrene	ND		ug/kg	1200	240	20	
Dichlorodifluoromethane	ND		ug/kg	12000	1100	20	
Acetone	ND		ug/kg	12000	5800	20	
Carbon disulfide	ND		ug/kg	12000	5500	20	
2-Butanone	ND		ug/kg	12000	2700	20	
4-Methyl-2-pentanone	ND		ug/kg	12000	1600	20	
2-Hexanone	ND		ug/kg	12000	1400	20	
1,2-Dibromoethane	ND		ug/kg	1200	340	20	
n-Butylbenzene	8000		ug/kg	1200	200	20	
sec-Butylbenzene	5800		ug/kg	1200	180	20	
tert-Butylbenzene	310	J	ug/kg	2400	140	20	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3600	1200	20	
Isopropylbenzene	1300		ug/kg	1200	130	20	
p-Isopropyltoluene	ND		ug/kg	1200	130	20	
Naphthalene	2000	J	ug/kg	4800	790	20	
n-Propylbenzene	5300		ug/kg	1200	210	20	
1,2,4-Trichlorobenzene	ND		ug/kg	2400	330	20	
1,3,5-Trimethylbenzene	ND		ug/kg	2400	230	20	
1,2,4-Trimethylbenzene	650	J	ug/kg	2400	400	20	
Methyl Acetate	ND		ug/kg	4800	1200	20	
Cyclohexane	ND		ug/kg	12000	660	20	
Freon-113	ND		ug/kg	4800	840	20	
Methyl cyclohexane	ND		ug/kg	4800	730	20	
			9/9				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	115		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	150	Q	70-130	
Dibromofluoromethane	113		70-130	

L2416145

04/01/24

Project Name: WATERFIELD PHASE 2 ESA

L2416145-06

SB-07 (0'-2')

D

4245 CLARK STREET, HAMBURG

Project Number: EA2305

SAMPLE RESULTS

Date Collected: 03/22/24 11:40

Lab Number:

Report Date:

Date Received: 03/25/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 03/29/24 03:32

Analyst: JIC Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/kg	3100	1400	10
1,1-Dichloroethane	ND		ug/kg	630	91.	10
Chloroform	ND		ug/kg	940	88.	10
Carbon tetrachloride	ND		ug/kg	630	140	10
1,2-Dichloropropane	ND		ug/kg	630	78.	10
Dibromochloromethane	ND		ug/kg	630	88.	10
1,1,2-Trichloroethane	ND		ug/kg	630	170	10
Tetrachloroethene	ND		ug/kg	310	120	10
Chlorobenzene	ND		ug/kg	310	80.	10
Trichlorofluoromethane	ND		ug/kg	2500	440	10
1,2-Dichloroethane	ND		ug/kg	630	160	10
1,1,1-Trichloroethane	ND		ug/kg	310	100	10
Bromodichloromethane	ND		ug/kg	310	68.	10
trans-1,3-Dichloropropene	ND		ug/kg	630	170	10
cis-1,3-Dichloropropene	ND		ug/kg	310	99.	10
Bromoform	ND		ug/kg	2500	150	10
1,1,2,2-Tetrachloroethane	ND		ug/kg	310	100	10
Benzene	ND		ug/kg	310	100	10
Toluene	ND		ug/kg	630	340	10
Ethylbenzene	190	J	ug/kg	630	88.	10
Chloromethane	ND		ug/kg	2500	580	10
Bromomethane	ND		ug/kg	1200	360	10
Vinyl chloride	ND		ug/kg	630	210	10
Chloroethane	ND		ug/kg	1200	280	10
1,1-Dichloroethene	ND		ug/kg	630	150	10
trans-1,2-Dichloroethene	ND		ug/kg	940	86.	10
Trichloroethene	ND		ug/kg	310	86.	10
1,2-Dichlorobenzene	ND		ug/kg	1200	90.	10

MDL

Dilution Factor

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-06 D Date Collected: 03/22/24 11:40

Client ID: SB-07 (0'-2') Date Received: 03/25/24

Result

Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

Volatile Organics by GC/MS - Westbo	avavvah I ah						$\overline{}$
	orough Lab						
1,3-Dichlorobenzene	ND		ug/kg	1200	93.	10	
1,4-Dichlorobenzene	ND		ug/kg	1200	110	10	
Methyl tert butyl ether	ND		ug/kg	1200	130	10	
p/m-Xylene	1300		ug/kg	1200	350	10	
o-Xylene	970		ug/kg	630	180	10	
cis-1,2-Dichloroethene	ND		ug/kg	630	110	10	
Styrene	ND		ug/kg	630	120	10	
Dichlorodifluoromethane	ND		ug/kg	6300	570	10	
Acetone	ND		ug/kg	6300	3000	10	
Carbon disulfide	ND		ug/kg	6300	2800	10	
2-Butanone	ND		ug/kg	6300	1400	10	
4-Methyl-2-pentanone	ND		ug/kg	6300	800	10	
2-Hexanone	ND		ug/kg	6300	740	10	
1,2-Dibromoethane	ND		ug/kg	630	180	10	
n-Butylbenzene	7400		ug/kg	630	100	10	
sec-Butylbenzene	5000		ug/kg	630	92.	10	
tert-Butylbenzene	330	J	ug/kg	1200	74.	10	
1,2-Dibromo-3-chloropropane	ND		ug/kg	1900	630	10	
Isopropylbenzene	680		ug/kg	630	68.	10	
p-Isopropyltoluene	8100		ug/kg	630	68.	10	
Naphthalene	6800		ug/kg	2500	410	10	
n-Propylbenzene	2500		ug/kg	630	110	10	
1,2,4-Trichlorobenzene	ND		ug/kg	1200	170	10	
1,3,5-Trimethylbenzene	23000		ug/kg	1200	120	10	
1,2,4-Trimethylbenzene	97000		ug/kg	1200	210	10	
Methyl Acetate	ND		ug/kg	2500	600	10	
Cyclohexane	ND		ug/kg	6300	340	10	
Freon-113	ND		ug/kg	2500	430	10	
Methyl cyclohexane	ND		ug/kg	2500	380	10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	116		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	170	Q	70-130	
Dibromofluoromethane	113		70-130	

L2416145

04/01/24

Not Specified

03/25/24

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

SAMPLE RESULTS

03/22/24 11:40

Lab Number:

Report Date:

Date Received:

Lab ID: L2416145-07 Date Collected:

Client ID: SB-07 (5'-7')

4245 CLARK STREET, HAMBURG Sample Location: Field Prep:

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 03/29/24 03:55

Analyst: JIC 84% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbe	orough Lab					
Methylene chloride	ND		ug/kg	250	110	1
1,1-Dichloroethane	ND		ug/kg	50	7.3	1
Chloroform	ND		ug/kg	75	7.0	1
Carbon tetrachloride	ND		ug/kg	50	12.	1
1,2-Dichloropropane	ND		ug/kg	50	6.3	1
Dibromochloromethane	ND		ug/kg	50	7.0	1
1,1,2-Trichloroethane	ND		ug/kg	50	13.	1
Tetrachloroethene	ND		ug/kg	25	9.8	1
Chlorobenzene	ND		ug/kg	25	6.4	1
Trichlorofluoromethane	ND		ug/kg	200	35.	1
1,2-Dichloroethane	ND		ug/kg	50	13.	1
1,1,1-Trichloroethane	ND		ug/kg	25	8.4	1
Bromodichloromethane	ND		ug/kg	25	5.5	1
trans-1,3-Dichloropropene	ND		ug/kg	50	14.	1
cis-1,3-Dichloropropene	ND		ug/kg	25	7.9	1
Bromoform	ND		ug/kg	200	12.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	25	8.3	1
Benzene	ND		ug/kg	25	8.3	1
Toluene	ND		ug/kg	50	27.	1
Ethylbenzene	20	J	ug/kg	50	7.1	1
Chloromethane	ND		ug/kg	200	47.	1
Bromomethane	ND		ug/kg	100	29.	1
Vinyl chloride	ND		ug/kg	50	17.	1
Chloroethane	ND		ug/kg	100	23.	1
1,1-Dichloroethene	ND		ug/kg	50	12.	1
trans-1,2-Dichloroethene	ND		ug/kg	75	6.9	1
Trichloroethene	ND		ug/kg	25	6.9	1
1,2-Dichlorobenzene	ND		ug/kg	100	7.2	1

MDL

Dilution Factor

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2416145-07 Date Collected: 03/22/24 11:40

Client ID: SB-07 (5'-7') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Result

Sample Depth:

Parameter

- arameter			••			
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	100	7.4	1
1,4-Dichlorobenzene	ND		ug/kg	100	8.6	1
Methyl tert butyl ether	ND		ug/kg	100	10.	1
p/m-Xylene	120		ug/kg	100	28.	1
o-Xylene	71		ug/kg	50	14.	1
cis-1,2-Dichloroethene	ND		ug/kg	50	8.8	1
Styrene	ND		ug/kg	50	9.8	1
Dichlorodifluoromethane	ND		ug/kg	500	46.	1
Acetone	ND		ug/kg	500	240	1
Carbon disulfide	ND		ug/kg	500	230	1
2-Butanone	ND		ug/kg	500	110	1
4-Methyl-2-pentanone	ND		ug/kg	500	64.	1
2-Hexanone	ND		ug/kg	500	59.	1
1,2-Dibromoethane	ND		ug/kg	50	14.	1
n-Butylbenzene	590		ug/kg	50	8.4	1
sec-Butylbenzene	430		ug/kg	50	7.3	1
tert-Butylbenzene	23	J	ug/kg	100	5.9	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	150	50.	1
Isopropylbenzene	60		ug/kg	50	5.5	1
p-Isopropyltoluene	610		ug/kg	50	5.5	1
Naphthalene	390		ug/kg	200	32.	1
n-Propylbenzene	210		ug/kg	50	8.6	1
1,2,4-Trichlorobenzene	ND		ug/kg	100	14.	1
1,3,5-Trimethylbenzene	1600		ug/kg	100	9.7	1
1,2,4-Trimethylbenzene	6700		ug/kg	100	17.	1
Methyl Acetate	ND		ug/kg	200	48.	1
Cyclohexane	ND		ug/kg	500	27.	1
Freon-113	ND		ug/kg	200	35.	1
Methyl cyclohexane	ND		ug/kg	200	30.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	126		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	185	Q	70-130	
Dibromofluoromethane	118		70-130	

Project Number: EA2305 Report Date: 04/01/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 20:58

Analyst: RAW

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	02-03 Batch:	WG1902594-5
Methylene chloride	ND	ug/k	g 5.0	2.3
1,1-Dichloroethane	ND	ug/k	g 1.0	0.14
Chloroform	ND	ug/k	g 1.5	0.14
Carbon tetrachloride	ND	ug/k	g 1.0	0.23
1,2-Dichloropropane	ND	ug/k	g 1.0	0.12
Dibromochloromethane	ND	ug/k	g 1.0	0.14
1,1,2-Trichloroethane	ND	ug/k	g 1.0	0.27
Tetrachloroethene	ND	ug/k	g 0.50	0.20
Chlorobenzene	ND	ug/k	g 0.50	0.13
Trichlorofluoromethane	ND	ug/k	g 4.0	0.70
1,2-Dichloroethane	ND	ug/k	g 1.0	0.26
1,1,1-Trichloroethane	ND	ug/k	g 0.50	0.17
Bromodichloromethane	ND	ug/k	g 0.50	0.11
trans-1,3-Dichloropropene	ND	ug/k	g 1.0	0.27
cis-1,3-Dichloropropene	ND	ug/k	g 0.50	0.16
Bromoform	ND	ug/k	g 4.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/k	g 0.50	0.17
Benzene	ND	ug/k	g 0.50	0.17
Toluene	ND	ug/k	g 1.0	0.54
Ethylbenzene	ND	ug/k	g 1.0	0.14
Chloromethane	ND	ug/k	g 4.0	0.93
Bromomethane	ND	ug/k	g 2.0	0.58
Vinyl chloride	ND	ug/k	g 1.0	0.34
Chloroethane	ND	ug/k	g 2.0	0.45
1,1-Dichloroethene	ND	ug/k	g 1.0	0.24
trans-1,2-Dichloroethene	ND	ug/k	g 1.5	0.14
Trichloroethene	ND	ug/k	g 0.50	0.14
1,2-Dichlorobenzene	ND	ug/k	g 2.0	0.14
1,3-Dichlorobenzene	ND	ug/k	g 2.0	0.15

Project Number: EA2305 Report Date: 04/01/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 20:58

Analyst: RAW

Parameter	Result	Qualifier Unit	s R	L	MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sample(s):	02-03 B	atch:	WG1902594-5
1,4-Dichlorobenzene	ND	ug/k	.g 2.	0	0.17
Methyl tert butyl ether	ND	ug/k	g 2.	0	0.20
p/m-Xylene	ND	ug/k	g 2.	0	0.56
o-Xylene	ND	ug/k	g 1.	0	0.29
cis-1,2-Dichloroethene	ND	ug/k	g 1.	0	0.18
Styrene	ND	ug/k	g 1.	0	0.20
Dichlorodifluoromethane	ND	ug/k	g 1	0	0.92
Acetone	ND	ug/k	g 1	0	4.8
Carbon disulfide	ND	ug/k	g 1	0	4.6
2-Butanone	ND	ug/k	g 1	0	2.2
4-Methyl-2-pentanone	ND	ug/k	g 1	0	1.3
2-Hexanone	ND	ug/k	g 1	0	1.2
1,2-Dibromoethane	ND	ug/k	g 1.	0	0.28
n-Butylbenzene	ND	ug/k	g 1.	0	0.17
sec-Butylbenzene	ND	ug/k	g 1.	0	0.15
tert-Butylbenzene	ND	ug/k	.g 2.	0	0.12
1,2-Dibromo-3-chloropropane	ND	ug/k	.g 3.	0	1.0
Isopropylbenzene	ND	ug/k	.g 1.	0	0.11
p-Isopropyltoluene	ND	ug/k	g 1.	0	0.11
Naphthalene	ND	ug/k	.g 4.	0	0.65
n-Propylbenzene	ND	ug/k	.g 1.	0	0.17
1,2,4-Trichlorobenzene	ND	ug/k	.g 2.	0	0.27
1,3,5-Trimethylbenzene	ND	ug/k	.g 2.	0	0.19
1,2,4-Trimethylbenzene	ND	ug/k	.g 2.	0	0.33
Methyl Acetate	ND	ug/k	.g 4.	0	0.95
Cyclohexane	ND	ug/k	.g 1	0	0.54
Freon-113	ND	ug/k	.g 4.	0	0.69
Methyl cyclohexane	ND	ug/k	kg 4.	0	0.60

Project Number: EA2305 Report Date: 04/01/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 20:58

Analyst: RAW

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02-03 Batch: WG1902594-5

Acceptance Surrogate %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 118 70-130 Toluene-d8 102 70-130 4-Bromofluorobenzene 105 70-130 Dibromofluoromethane 107 70-130

Project Number: EA2305 Report Date: 04/01/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 20:58

Analyst: RAW

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	04-07 Batch:	WG1902595-5
Methylene chloride	ND	ug/k	g 250	110
1,1-Dichloroethane	ND	ug/k	g 50	7.2
Chloroform	ND	ug/k	g 75	7.0
Carbon tetrachloride	ND	ug/k	g 50	12.
1,2-Dichloropropane	ND	ug/k	g 50	6.2
Dibromochloromethane	ND	ug/k	g 50	7.0
1,1,2-Trichloroethane	ND	ug/k	g 50	13.
Tetrachloroethene	ND	ug/k	g 25	9.8
Chlorobenzene	ND	ug/k	g 25	6.4
Trichlorofluoromethane	ND	ug/k	g 200	35.
1,2-Dichloroethane	ND	ug/k	g 50	13.
1,1,1-Trichloroethane	ND	ug/k	g 25	8.4
Bromodichloromethane	ND	ug/k	g 25	5.4
trans-1,3-Dichloropropene	ND	ug/k	g 50	14.
cis-1,3-Dichloropropene	ND	ug/k	g 25	7.9
Bromoform	ND	ug/k	g 200	12.
1,1,2,2-Tetrachloroethane	ND	ug/k	g 25	8.3
Benzene	ND	ug/k	g 25	8.3
Toluene	ND	ug/k	g 50	27.
Ethylbenzene	ND	ug/k	g 50	7.0
Chloromethane	ND	ug/k	g 200	47.
Bromomethane	ND	ug/k	g 100	29.
Vinyl chloride	ND	ug/k	g 50	17.
Chloroethane	ND	ug/k	g 100	23.
1,1-Dichloroethene	ND	ug/k	g 50	12.
trans-1,2-Dichloroethene	ND	ug/k	g 75	6.8
Trichloroethene	ND	ug/k	g 25	6.8
1,2-Dichlorobenzene	ND	ug/k	g 100	7.2
1,3-Dichlorobenzene	ND	ug/k	g 100	7.4

Project Number: EA2305 Report Date: 04/01/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 20:58

Analyst: RAW

arameter	Result	Qualifier Unit	s F	L	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	04-07 B	atch:	WG1902595-5
1,4-Dichlorobenzene	ND	ug/ŀ	:g 1	00	8.6
Methyl tert butyl ether	ND	ug/l	g 1	00	10.
p/m-Xylene	ND	ug/l	ig 1	00	28.
o-Xylene	ND	ug/l	.g 5	0	14.
cis-1,2-Dichloroethene	ND	ug/l	.g 5	0	8.8
Styrene	ND	ug/l	.g 5	0	9.8
Dichlorodifluoromethane	ND	ug/l	kg 50	00	46.
Acetone	ND	ug/l	kg 50	00	240
Carbon disulfide	ND	ug/l	kg 50	00	230
2-Butanone	ND	ug/l	kg 50	00	110
4-Methyl-2-pentanone	ND	ug/l	kg 50	00	64.
2-Hexanone	ND	ug/l	kg 50	00	59.
1,2-Dibromoethane	ND	ug/l	ig 5	0	14.
n-Butylbenzene	ND	ug/l	ig 5	0	8.4
sec-Butylbenzene	ND	ug/l	ig 5	0	7.3
tert-Butylbenzene	ND	ug/l	g 1	00	5.9
1,2-Dibromo-3-chloropropane	ND	ug/l	g 1:	50	50.
Isopropylbenzene	ND	ug/l	ig 5	0	5.4
p-Isopropyltoluene	ND	ug/l	g 5	0	5.4
Naphthalene	ND	ug/l	g 2	00	32.
n-Propylbenzene	ND	ug/l	ig 5	0	8.6
1,2,4-Trichlorobenzene	ND	ug/l	g 1	00	14.
1,3,5-Trimethylbenzene	ND	ug/l	g 1	00	9.6
1,2,4-Trimethylbenzene	ND	ug/l	ig 1	00	17.
Methyl Acetate	ND	ug/ŀ	.g 20	00	48.
Cyclohexane	ND	ug/ŀ	ig 50	00	27.
Freon-113	ND	ug/ŀ	.g 2	00	35.
Methyl cyclohexane	ND	ug/l	g 2	00	30.

Project Number: EA2305 Report Date: 04/01/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 20:58

Analyst: RAW

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 04-07 Batch: WG1902595-5

		Acceptance	
Surrogate	%Recovery G	ualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	107	70-130	

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416145

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - We	estborough Lab Associated	sample(s):	02-03 Batch: 1	WG1902594-3	WG1902594-4		
Methylene chloride	79		79		70-130	0	30
1,1-Dichloroethane	96		96		70-130	0	30
Chloroform	93		94		70-130	1	30
Carbon tetrachloride	112		102		70-130	9	30
1,2-Dichloropropane	98		101		70-130	3	30
Dibromochloromethane	104		110		70-130	6	30
1,1,2-Trichloroethane	95		102		70-130	7	30
Tetrachloroethene	96		99		70-130	3	30
Chlorobenzene	85		88		70-130	3	30
Trichlorofluoromethane	71		71		70-139	0	30
1,2-Dichloroethane	100		103		70-130	3	30
1,1,1-Trichloroethane	100		101		70-130	1	30
Bromodichloromethane	100		102		70-130	2	30
trans-1,3-Dichloropropene	97		103		70-130	6	30
cis-1,3-Dichloropropene	98		100		70-130	2	30
Bromoform	94		103		70-130	9	30
1,1,2,2-Tetrachloroethane	83		94		70-130	12	30
Benzene	92		93		70-130	1	30
Toluene	85		89		70-130	5	30
Ethylbenzene	85		88		70-130	3	30
Chloromethane	104		104		52-130	0	30
Bromomethane	56	Q	56	Q	57-147	0	30
Vinyl chloride	77		77		67-130	0	30

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416145

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-03 Batch:	WG1902594-3	WG1902594-4			
Chloroethane	62		63		50-151	2	30	
1,1-Dichloroethene	66		65		65-135	2	30	
trans-1,2-Dichloroethene	92		93		70-130	1	30	
Trichloroethene	98		98		70-130	0	30	
1,2-Dichlorobenzene	82		88		70-130	7	30	
1,3-Dichlorobenzene	80		85		70-130	6	30	
1,4-Dichlorobenzene	79		85		70-130	7	30	
Methyl tert butyl ether	95		100		66-130	5	30	
p/m-Xylene	82		85		70-130	4	30	
o-Xylene	82		85		70-130	4	30	
cis-1,2-Dichloroethene	92		92		70-130	0	30	
Styrene	84		87		70-130	4	30	
Dichlorodifluoromethane	91		89		30-146	2	30	
Acetone	82		83		54-140	1	30	
Carbon disulfide	62		62		59-130	0	30	
2-Butanone	84		84		70-130	0	30	
4-Methyl-2-pentanone	83		90		70-130	8	30	
2-Hexanone	85		92		70-130	8	30	
1,2-Dibromoethane	97		102		70-130	5	30	
n-Butylbenzene	80		85		70-130	6	30	
sec-Butylbenzene	80		86		70-130	7	30	
tert-Butylbenzene	80		85		70-130	6	30	
1,2-Dibromo-3-chloropropane	75		86		68-130	14	30	

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416145

arameter	LCS %Recovery	Qual	LCSD %Recovery	⁄ Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Wes	stborough Lab Associated sa	ample(s): 0	2-03 Batch:	WG1902594-3	WG1902594-4			
Isopropylbenzene	81		86		70-130	6		30
p-Isopropyltoluene	80		84		70-130	5		30
Naphthalene	82		89		70-130	8		30
n-Propylbenzene	80		86		70-130	7		30
1,2,4-Trichlorobenzene	85		90		70-130	6		30
1,3,5-Trimethylbenzene	80		85		70-130	6		30
1,2,4-Trimethylbenzene	81		86		70-130	6		30
Methyl Acetate	95		97		51-146	2		30
Cyclohexane	91		92		59-142	1		30
Freon-113	66		66		50-139	0		30
Methyl cyclohexane	82		83		70-130	1		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qu	Acceptance al Criteria
1,2-Dichloroethane-d4	111	110	70-130
Toluene-d8	98	100	70-130
4-Bromofluorobenzene	101	103	70-130
Dibromofluoromethane	105	105	70-130

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416145

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	04-07 Batch: W	G1902595-	3 WG1902595-4		
Methylene chloride	79		79		70-130	0	30
1,1-Dichloroethane	96		96		70-130	0	30
Chloroform	93		94		70-130	1	30
Carbon tetrachloride	112		102		70-130	9	30
1,2-Dichloropropane	98		101		70-130	3	30
Dibromochloromethane	104		110		70-130	6	30
1,1,2-Trichloroethane	95		102		70-130	7	30
Tetrachloroethene	96		99		70-130	3	30
Chlorobenzene	85		88		70-130	3	30
Trichlorofluoromethane	71		71		70-139	0	30
1,2-Dichloroethane	100		103		70-130	3	30
1,1,1-Trichloroethane	100		101		70-130	1	30
Bromodichloromethane	100		102		70-130	2	30
trans-1,3-Dichloropropene	97		103		70-130	6	30
cis-1,3-Dichloropropene	98		100		70-130	2	30
Bromoform	94		103		70-130	9	30
1,1,2,2-Tetrachloroethane	83		94		70-130	12	30
Benzene	92		93		70-130	1	30
Toluene	85		89		70-130	5	30
Ethylbenzene	85		88		70-130	3	30
Chloromethane	104		104		52-130	0	30
Bromomethane	56	Q	56	Q	57-147	0	30
Vinyl chloride	77		77		67-130	0	30

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416145

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - We	stborough Lab Associated	sample(s):	04-07 Batch: \	WG1902595-3	WG1902595-4				
Chloroethane	62		63		50-151	2		30	
1,1-Dichloroethene	66		65		65-135	2		30	
trans-1,2-Dichloroethene	92		93		70-130	1		30	
Trichloroethene	98		98		70-130	0		30	
1,2-Dichlorobenzene	82		88		70-130	7		30	
1,3-Dichlorobenzene	80		85		70-130	6		30	
1,4-Dichlorobenzene	79		85		70-130	7		30	
Methyl tert butyl ether	95		100		66-130	5		30	
p/m-Xylene	82		85		70-130	4		30	
o-Xylene	82		85		70-130	4		30	
cis-1,2-Dichloroethene	92		92		70-130	0		30	
Styrene	84		87		70-130	4		30	
Dichlorodifluoromethane	91		89		30-146	2		30	
Acetone	82		83		54-140	1		30	
Carbon disulfide	62		62		59-130	0		30	
2-Butanone	84		84		70-130	0		30	
4-Methyl-2-pentanone	83		90		70-130	8		30	
2-Hexanone	85		92		70-130	8		30	
1,2-Dibromoethane	97		102		70-130	5		30	
n-Butylbenzene	80		85		70-130	6		30	
sec-Butylbenzene	80		86		70-130	7		30	
tert-Butylbenzene	80		85		70-130	6		30	
1,2-Dibromo-3-chloropropane	75		86		68-130	14		30	

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416145

Report Date: 04/01/24

arameter	LCS %Recovery	Qual		LCSD Recovery		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	b Associated	sample(s):	04-07	Batch:	WG1902595-3	WG1902595-4			
Isopropylbenzene	81			86		70-130	6		30
p-Isopropyltoluene	80			84		70-130	5		30
Naphthalene	82			89		70-130	8		30
n-Propylbenzene	80			86		70-130	7		30
1,2,4-Trichlorobenzene	85			90		70-130	6		30
1,3,5-Trimethylbenzene	80			85		70-130	6		30
1,2,4-Trimethylbenzene	81			86		70-130	6		30
Methyl Acetate	95			97		51-146	2		30
Cyclohexane	91			92		59-142	1		30
Freon-113	66			66		50-139	0		30
Methyl cyclohexane	82			83		70-130	1		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	111	110	70-130
Toluene-d8	98	100	70-130
4-Bromofluorobenzene	101	103	70-130
Dibromofluoromethane	105	105	70-130

METALS

Project Name: Lab Number: WATERFIELD PHASE 2 ESA L2416145

Project Number: EA2305 **Report Date:** 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-01 Date Collected: 03/22/24 10:00

Client ID: SB-01/MW-01 (5'-7.5') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Sample Depth:

Matrix: Soil 80% Percent Solids:

Prep Dilution Date Date **Analytical** Method

Parameter Result Qualifier Units MDL Factor Prepared Analyzed Method RL**Analyst** Total Metals - Mansfield Lab Chromium, Total 40.0 mg/kg 0.973 0.093 2 03/27/24 18:02 03/29/24 19:54 EPA 3050B 1,6010D JMF

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

 Lab ID:
 L2416145-02
 Date Collected:
 03/22/24 09:30

 Client ID:
 SB-02 (0'-5')
 Date Received:
 03/25/24

Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 88%

Dilution Date Date Prep Analytical
Parameter Result Qualifier Units RI MDI Factor Prepared Analyzed Method Method Analyst

Factor Parameter Result Qualifier Units RL MDL Prepared Analyzed Method **Analyst** Total Metals - Mansfield Lab Chromium, Total 13.7 mg/kg 0.855 0.082 2 03/27/24 18:02 03/29/24 20:00 EPA 3050B 1,6010D JMF

L2416145

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305 **Report Date:**

04/01/24

Lab Number:

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RL**Factor Prepared** Analyzed MDL Total Metals - Mansfield Lab for sample(s): 01-02 Batch: WG1901526-1 Chromium, Total ND mg/kg 0.400 0.038 1 03/29/24 09:31 1,6010D JMF 03/27/24 18:02

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis

80-120

WATERFIELD PHASE 2 ESA

Batch Quality Control

106

Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

LCS LCSD %Recovery
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual RPD Limits

Total Metals - Mansfield Lab Associated sample(s): 01-02 Batch: WG1901526-2

Project Name:

Chromium, Total

Matrix Spike Analysis Batch Quality Control

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number:

L2416145

Report Date:

04/01/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		ecovery Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01-02	QC Ba	tch ID: WG190	1526-3	QC Sam	nple: L2416510-	01 Clier	nt ID: MS	S Sample	
Chromium, Total	11.3	17.1	28.5	100		-	-		75-125	-	20

INORGANICS & MISCELLANEOUS

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-01 Date Collected: 03/22/24 10:00

Client ID: SB-01/MW-01 (5'-7.5') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	80.0		%	0.100	NA	1	-	03/26/24 12:28	121,2540G	ROI
Chromium, Hexavalent	6.46		mg/kg	1.00	0.200	1	03/29/24 10:14	03/30/24 14:04	1,7196A	LOF

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-02 Date Collected: 03/22/24 09:30

Client ID: SB-02 (0'-5') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Solids, Total	88.1		%	0.100	NA	1	-	03/26/24 12:28	121,2540G	ROI
Chromium, Hexavalent	ND		mg/kg	0.908	0.182	1	03/29/24 10:14	03/30/24 14:04	1,7196A	LOF

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-03 Date Collected: 03/22/24 10:40

Client ID: SB-04/MW-02 (5'-7.5') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	77.4		%	0.100	NA	1	-	03/26/24 12:28	121,2540G	ROI

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-04 Date Collected: 03/22/24 11:10

Client ID: SB-05/MW-03 (6.5'-7.5') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	82.6		%	0.100	NA	1	-	03/26/24 12:28	121,2540G	ROI

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-05 Date Collected: 03/22/24 11:10

Client ID: SB-05 (10'-14') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	80.2		%	0.100	NA	1	-	03/26/24 12:28	121,2540G	ROI

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-06 Date Collected: 03/22/24 11:40

Client ID: SB-07 (0'-2') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	84.3		%	0.100	NA	1	-	03/26/24 12:28	121,2540G	ROI

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416145

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: L2416145-07 Date Collected: 03/22/24 11:40

Client ID: SB-07 (5'-7') Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	84.3		%	0.100	NA	1	-	03/26/24 12:28	121,2540G	ROI

L2416145

Project Name: WATERFIELD PHASE 2 ESA Lab Number:

Project Number: EA2305 Report Date: 04/01/24

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for sam	nple(s): 01	-02 Bat	tch: W0	G1902427-	1			
Chromium, Hexavalent	ND	mg/kg	0.800	0.160	1	03/29/24 10:14	03/30/24 14:04	1,7196A	LOF

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD PHASE 2 ESA

Lab Number:

L2416145

Project Number: EA2305

Report Date:

04/01/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Asso	ociated sample(s)	: 01-02	Batch: WG19024	427-2					
Chromium, Hexavalent	75	Q	-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number:

L2416145

Report Date:

04/01/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery C	Recover Qual Limits	,	RPD Qual Limits
General Chemistry - Westboroug (5'-7.5')	gh Lab Asso	ciated samp	le(s): 01-02	QC Batch II	D: WG1902427-4	QC Sample: L2	2416145-01 C	Client ID:	SB-01/MW-01
Chromium, Hexavalent	6.46	1400	1360	96	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305 Lab Number: L2416145 04/01/24

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated s	sample(s): 01-07 QC Batch	n ID: WG1900909-1	QC Sample:	L2416234-21	Client ID:	DUP Sample
Solids, Total	77.6	78.2	%	1		20
General Chemistry - Westborough Lab Associated s 7.5')	sample(s): 01-02 QC Batch	n ID: WG1902427-6	QC Sample:	L2416145-01	Client ID:	SB-01/MW-01 (5'-
Chromium, Hexavalent	6.46	6.98	mg/kg	8		20

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416145
Report Date: 04/01/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2416145-01A	Plastic 60ml unpreserved	Α	NA		3.5	Υ	Absent		CR-TI(180)
L2416145-01B	Glass 60mL/2oz unpreserved	Α	NA		3.5	Υ	Absent		TS(7),HEXCR-7196(30)
L2416145-02A	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L2416145-02B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.5	Υ	Absent		CR-TI(180)
L2416145-02C	Vial Large Septa unpreserved (4oz)	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14),HEXCR-7196(30)
L2416145-02X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-02Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)
L2416145-02Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)
L2416145-03A	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L2416145-03B	Vial Large Septa unpreserved (4oz)	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-03X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-03Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)
L2416145-03Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)
L2416145-04A	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L2416145-04B	Vial Large Septa unpreserved (4oz)	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-04X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-04Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)
L2416145-04Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)
L2416145-05A	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L2416145-05B	Vial Large Septa unpreserved (4oz)	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-05X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-05Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)
L2416145-05Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)

Lab Number: L2416145

Report Date: 04/01/24

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2416145-06A	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L2416145-06B	Vial Large Septa unpreserved (4oz)	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-06X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-06Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)
L2416145-06Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)
L2416145-07A	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L2416145-07B	Vial Large Septa unpreserved (4oz)	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-07X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416145-07Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)
L2416145-07Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	28-MAR-24 06:48	NYTCL-8260-R2(14)

Project Name: Lab Number: WATERFIELD PHASE 2 ESA L2416145 **Report Date: Project Number:** EA2305 04/01/24

GLOSSARY

Acronyms

EMPC

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416145Project Number:EA2305Report Date:04/01/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416145Project Number:EA2305Report Date:04/01/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416145Project Number:EA2305Report Date:04/01/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:04012412:55

ID No.:17873 Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 106		Page \ of \			Date in I		1 3	126	ALPHA Job# 12416145			
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erable	s				Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Water	field F	mose	ZEST	+	ASP-A ASP-B				ASF	Same as Client Info		
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 424	5 Clar	k Stre	et Har	nburg		EQui	S (1 F	ile)	EQ.	ilS (4 File)	PO#	
Client Information		Project # FA 230										EA2305		
Client: Eov. Advar	alage, Im.	(Use Project name as Pro	oject#)		. 4		Regu	latory	Requ	iremen	t		Disposal Site Information	
	BUMBOO Rd	Project Manager: Manager	K Han	ma				NY TO	GS		X NY F	Please identify below location of		
Orchard Dark	NY 4127	ALPHAQuote #:					AWQ Standards NY CP-51						applicable disposal facilities.	
Phone (710) (0(0)	1-3130	Turn-Around Time						NY Re	stricte	d Use	Othe	r	Disposal Facility:	
Fax:		Standard	X	Due Date	£			NY Ur	restric	ted Use			□ NJ □ NY	
Email: Whanna	Panyadvant	Rush (only if pre approved)		# of Days:				NYC S	Sewer I	Dischar	3e		Other:	
These samples have b		party.					ANA	LYSIS					Sample Filtration	T
Other project specific	requirements/comm	nents:								8			Done	t
Please specify Metals		@envadvar	itage.(mon				کے	٧	C+STA			Lab to do Preservation Lab to do	а В
							1	_	0	10			/Diago Casalfy holand	0
AT POPULATION AND			Coll	ection	T	Tan and	S	5	X	S			(Please Specify below)	t
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	200.000		Sample Matrix	Sampler's Initials	1	10	4	8			Comple Consider Comments	
1	90 41111111	1/5/25/	Date	Time	CA		17	1	-	_	-	-	Sample Specific Comments	0
16145-01	JB-01/MW-C	(5'-7.5')	3/22/24	18:50	50	CZICS	X	Х	X		_	+		Z
-02	DR-07 (0	-0)	3/22/24	9:30	50	CZICS	X	X	X	X		+		3
700	OB-O4/MW		3/22/24	10:40	56	(2/0	X			X	_	+-		4
04	DB-05/MW	03(65-75)	3/22/24	11:10	50	CZICS	X	-		X				6
	DB-05 (10)	- 14	3 22/24	11:10	50	CZ10	X			×	_	+		6
06	DB-0710	1-21)	3/22/24	11:40	150	77K8	X		_	X	-	+		4
0/	08-67 (0	('-7')	3/22/24	11:40	SO	CZICS	X			X		-		Z
					1		-	_						1
100														
							_							L
Preservative Gode: A = None	Container Code P = Plastic	Westboro: Certification N	lo: MA935		Co	ntainer Type	0						Please print clearly, legible	У
B = HCI	A = Amber Glass	Mansfield: Certification N	lo: MA015				+	A	A	71			and completely. Samples	can
C = HNO ₃ D = H ₂ SO ₄	V = Vial G = Glass				1	Preservative	٨	A		A			not be logged in and turnaround time clock will	not
E = NaOH	B = Bacteria Cup					n veresormer.	A	A	A	A			start until any ambiguities	
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished			/Time		Recei	ved B	<i>f</i> :		/ Det	te/Time	resolved, BY EXECUTING	
$H = Na_2S_2O_3$	E = Encore	Call Smull	e	3/25/24	1 12:55	5	4			-	3/25/2	1 125	THIS COC, THE CLIENT HAS READ AND AGREE	
K/E = Zn Ac/NaOH	D = BOD Bottle	Chi		3/25/24	1415		-6	2			3/20/2	4 0040		
O = Other		00		1//	,	1							TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 3	30-Sept-2013)												(See reverse side.)	

Data Path : K:\VOA131\2024\240328N\

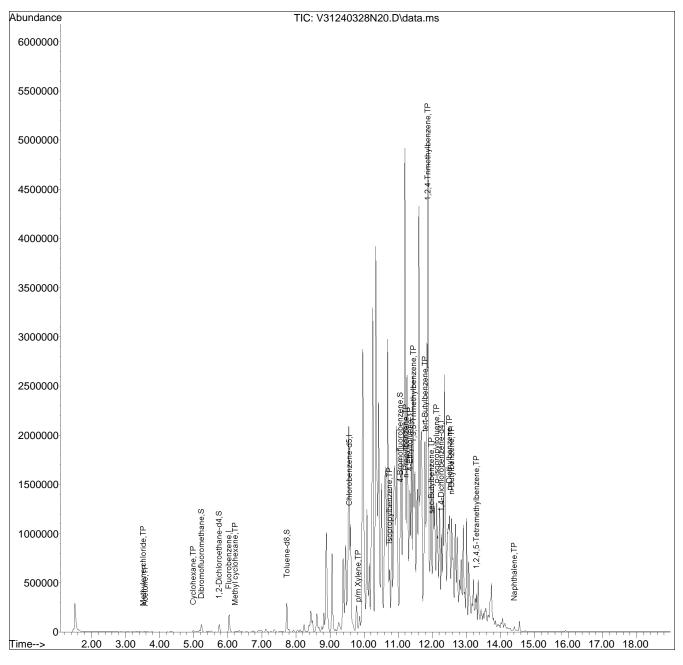
Data File : V31240328N20.D

Acq On : 29 Mar 2024 02:46 am

Operator : VOA131:JIC

Sample : 12416145-04d,31h,5.58,5,0.01,,x

Misc : WG1902595,ICAL20859 ALS Vial : 20 Sample Multiplier: 1


Quant Time: Mar 29 12:55:36 2024

Quant Method: K:\VOA131\2024\240328N\V131_240214N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update: Thu Feb 15 14:32:02 2024

Response via : Initial Calibration

V131_240214N_8260.m Fri Mar 29 13:51:27 2024

Data Path : K:\VOA131\2024\240328N\

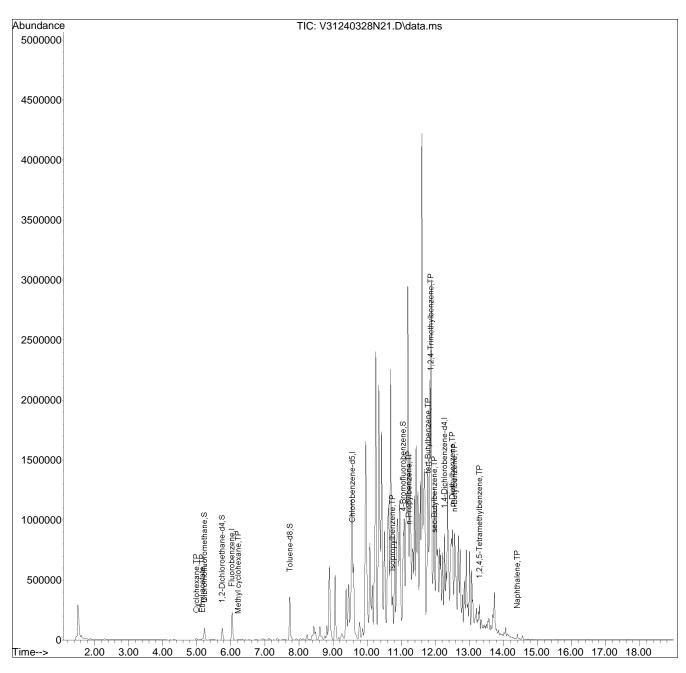
Data File : V31240328N21.D

Acq On : 29 Mar 2024 03:09 am

Operator : VOA131:JIC

Sample : 12416145-05d,31h,6.46,5,0.005,x

Misc : WG1902595,ICAL20859 ALS Vial : 21 Sample Multiplier: 1


Quant Time: Mar 29 12:57:22 2024

Quant Method: K:\VOA131\2024\240328N\V131_240214N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update: Thu Feb 15 14:32:02 2024

Response via : Initial Calibration

V131_240214N_8260.m Fri Mar 29 13:51:35 2024

Data Path : K:\VOA131\2024\240328N\

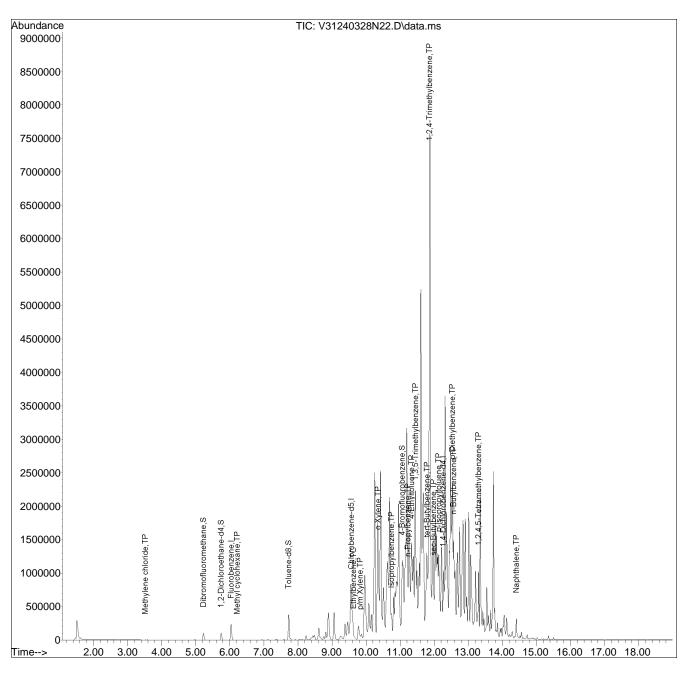
Data File : V31240328N22.D

Acq On : 29 Mar 2024 03:32 am

Operator : VOA131:JIC

Sample : 12416145-06d,31h,5.55,5,0.01,,x

Misc : WG1902595,ICAL20859 ALS Vial : 22 Sample Multiplier: 1


Quant Time: Mar 29 12:58:57 2024

Quant Method: K:\VOA131\2024\240328N\V131_240214N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update: Thu Feb 15 14:32:02 2024

Response via : Initial Calibration

V131_240214N_8260.m Fri Mar 29 13:51:41 2024

Data Path : K:\VOA131\2024\240328N\

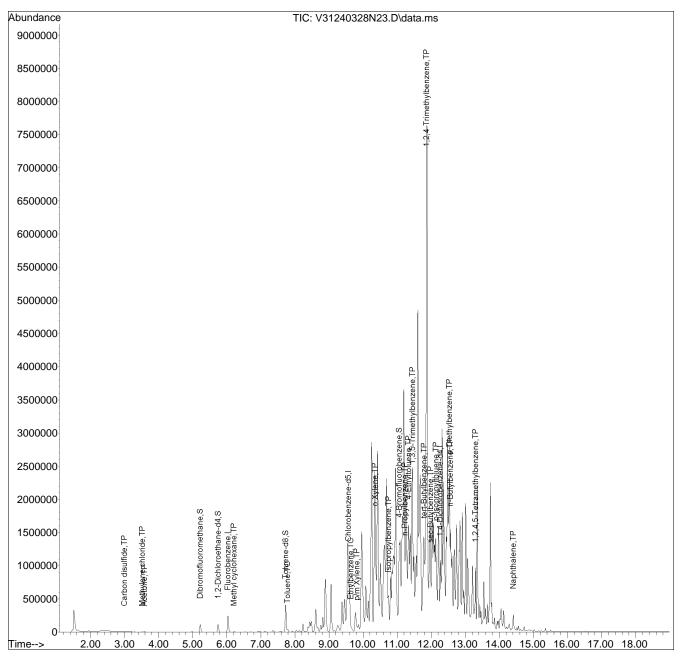
Data File : V31240328N23.D

Acq On : 29 Mar 2024 03:55 am

Operator : VOA131:JIC

Sample : 12416145-07,31h,7.27,5,0.100,,x

Misc : WG1902595,ICAL20859 ALS Vial : 23 Sample Multiplier: 1


Quant Time: Mar 29 13:00:37 2024

Quant Method: K:\VOA131\2024\240328N\V131_240214N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update: Thu Feb 15 14:32:02 2024

Response via : Initial Calibration

V131_240214N_8260.m Fri Mar 29 13:51:48 2024

ANALYTICAL REPORT

Lab Number: L2416144

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna
Phone: (716) 667-3130

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305
Report Date: 04/01/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number:

L2416144

Report Date:

04/01/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2416144-01	SB-01/MW-01	WATER	4245 CLARK STREET, HAMBURG	03/22/24 10:10	03/25/24
L2416144-02	SB-04/MW-02	WATER	4245 CLARK STREET, HAMBURG	03/22/24 11:25	03/25/24
L2416144-03	SB-05/MW-03	WATER	4245 CLARK STREET, HAMBURG	03/22/24 12:30	03/25/24

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416144Project Number:EA2305Report Date:04/01/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:04012409:07

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416144Project Number:EA2305Report Date:04/01/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2416144-03D: The sample has elevated detection limits due to the dilution required by the sample matrix (sheen).

L2416144-03D: The pH was greater than two; however, the sample was analyzed within the method required holding time.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/01/24

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

VOLATILES

L2416144

04/01/24

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

SAMPLE RESULTS

Date Collected: 03/22/24 10:10

Lab ID: L2416144-01

Client ID: SB-01/MW-01

Sample Location: 4245 CLARK STREET, HAMBURG

Date Received: 03/25/24
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/28/24 16:02

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416144

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Lab ID: Date Collected: 03/22/24 10:10

Client ID: SB-01/MW-01 Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

12.10 02.11.11.01.12.1,111.11.12.11.

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	103	70-130	

L2416144

04/01/24

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

SAMPLE RESULTS

Date Collected: 03/22/24 11:25

Lab ID: L2416144-02

Client ID: SB-04/MW-02

Sample Location: 4245 CLARK STREET, HAMBURG

Date Received: 03/25/24
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/28/24 16:26

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	11		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.99		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416144

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2416144-02 Date Collected: 03/22/24 11:25

Client ID: SB-04/MW-02 Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Result

Sample Depth:

Parameter

raiailletei	Kesuit	Qualifiei	Ullita	IN.L	IVIDE	Dilution i actor	
Volatile Organics by GC/MS - We	estborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	107	70-130	

L2416144

Project Name: Lab Number: WATERFIELD PHASE 2 ESA

Project Number: Report Date: EA2305

04/01/24

SAMPLE RESULTS

Lab ID: L2416144-03 D Date Collected: 03/22/24 12:30

Client ID: Date Received: 03/25/24 SB-05/MW-03 Field Prep: Sample Location: 4245 CLARK STREET, HAMBURG Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/28/24 16:51

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2	
Chloroform	ND		ug/l	5.0	1.4	2	
Carbon tetrachloride	ND		ug/l	1.0	0.27	2	
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2	
Dibromochloromethane	ND		ug/l	1.0	0.30	2	
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2	
Tetrachloroethene	ND		ug/l	1.0	0.36	2	
Chlorobenzene	ND		ug/l	5.0	1.4	2	
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2	
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2	
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2	
Bromodichloromethane	ND		ug/l	1.0	0.38	2	
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2	
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2	
Bromoform	ND		ug/l	4.0	1.3	2	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2	
Benzene	1.5		ug/l	1.0	0.32	2	
Toluene	ND		ug/l	5.0	1.4	2	
Ethylbenzene	3.9	J	ug/l	5.0	1.4	2	
Chloromethane	ND		ug/l	5.0	1.4	2	
Bromomethane	ND		ug/l	5.0	1.4	2	
Vinyl chloride	ND		ug/l	2.0	0.14	2	
Chloroethane	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2	
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2	
Trichloroethene	ND		ug/l	1.0	0.35	2	
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2	

MDL

Dilution Factor

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416144

Project Number: EA2305 Report Date: 04/01/24

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2416144-03 D Date Collected: 03/22/24 12:30

Client ID: SB-05/MW-03 Date Received: 03/25/24 Sample Location: 4245 CLARK STREET, HAMBURG Field Prep: Not Specified

Result

Sample Depth:

Parameter

Farameter	Kesuit	Qualifie	Ullita	IX.L	MIDL	Dilution i actor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2	
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2	
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2	
p/m-Xylene	3.0	J	ug/l	5.0	1.4	2	
o-Xylene	ND		ug/l	5.0	1.4	2	
cis-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2	
Styrene	ND		ug/l	5.0	1.4	2	
Dichlorodifluoromethane	ND		ug/l	10	2.0	2	
Acetone	6.8	J	ug/l	10	2.9	2	
Carbon disulfide	ND		ug/l	10	2.0	2	
2-Butanone	ND		ug/l	10	3.9	2	
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2	
2-Hexanone	ND		ug/l	10	2.0	2	
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2	
n-Butylbenzene	26		ug/l	5.0	1.4	2	
sec-Butylbenzene	26		ug/l	5.0	1.4	2	
tert-Butylbenzene	2.1	J	ug/l	5.0	1.4	2	
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2	
Isopropylbenzene	18		ug/l	5.0	1.4	2	
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2	
Naphthalene	55		ug/l	5.0	1.4	2	
n-Propylbenzene	53		ug/l	5.0	1.4	2	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2	
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene	13		ug/l	5.0	1.4	2	
Methyl Acetate	ND		ug/l	4.0	0.47	2	
Cyclohexane	5.9	J	ug/l	20	0.54	2	
Freon-113	ND		ug/l	5.0	1.4	2	
Methyl cyclohexane	3.9	J	ug/l	20	0.79	2	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	100	70-130	

Project Name: WATERFIELD PHASE 2 ESA **Lab Number:** L2416144

Project Number: EA2305 Report Date: 04/01/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 08:41

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	Westborough Lab	for sample(s):	01-03 Batch:	WG1901952-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416144

Project Number: EA2305 Report Date: 04/01/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 08:41

Analyst: PID

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s): 0	1-03 Batch:	WG1901952-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: WATERFIELD PHASE 2 ESA Lab Number: L2416144

Project Number: EA2305 Report Date: 04/01/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 08:41

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-03 Batch: WG1901952-5

		Acceptance
Surrogate	%Recovery (Qualifier Criteria
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	95	70-130
Dibromofluoromethane	107	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416144

Report Date: 04/01/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - We	estborough Lab Associated	sample(s):	01-03 Batch: \	WG1901952-3	WG1901952-4				
Methylene chloride	96		94		70-130	2		20	
1,1-Dichloroethane	100		100		70-130	0		20	
Chloroform	98		94		70-130	4		20	
Carbon tetrachloride	97		98		63-132	1		20	
1,2-Dichloropropane	100		98		70-130	2		20	
Dibromochloromethane	93		95		63-130	2		20	
1,1,2-Trichloroethane	94		95		70-130	1		20	
Tetrachloroethene	100		98		70-130	2		20	
Chlorobenzene	99		95		75-130	4		20	
Trichlorofluoromethane	87		98		62-150	12		20	
1,2-Dichloroethane	96		96		70-130	0		20	
1,1,1-Trichloroethane	100		100		67-130	0		20	
Bromodichloromethane	95		97		67-130	2		20	
trans-1,3-Dichloropropene	94		94		70-130	0		20	
cis-1,3-Dichloropropene	97		97		70-130	0		20	
Bromoform	91		90		54-136	1		20	
1,1,2,2-Tetrachloroethane	99		97		67-130	2		20	
Benzene	100		100		70-130	0		20	
Toluene	100		98		70-130	2		20	
Ethylbenzene	100		98		70-130	2		20	
Chloromethane	96		92		64-130	4		20	
Bromomethane	87		87		39-139	0		20	
Vinyl chloride	95		92		55-140	3		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416144

Report Date: 04/01/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch: W0	G1901952-3 WG1901952-4		
Chloroethane	100		99	55-138	1	20
1,1-Dichloroethene	100		93	61-145	7	20
trans-1,2-Dichloroethene	96		97	70-130	1	20
Trichloroethene	97		95	70-130	2	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	100		96	70-130	4	20
1,4-Dichlorobenzene	100		96	70-130	4	20
Methyl tert butyl ether	90		92	63-130	2	20
p/m-Xylene	100		100	70-130	0	20
o-Xylene	100		100	70-130	0	20
cis-1,2-Dichloroethene	100		98	70-130	2	20
Styrene	100		100	70-130	0	20
Dichlorodifluoromethane	87		81	36-147	7	20
Acetone	87		90	58-148	3	20
Carbon disulfide	100		95	51-130	5	20
2-Butanone	82		90	63-138	9	20
4-Methyl-2-pentanone	84		88	59-130	5	20
2-Hexanone	78		85	57-130	9	20
1,2-Dibromoethane	92		96	70-130	4	20
n-Butylbenzene	100		98	53-136	2	20
sec-Butylbenzene	100		97	70-130	3	20
tert-Butylbenzene	100		95	70-130	5	20
1,2-Dibromo-3-chloropropane	84		84	41-144	0	20

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD PHASE 2 ESA

Project Number: EA2305

Lab Number: L2416144

Report Date: 04/01/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - V	Vestborough Lab Associated s	ample(s): 01	1-03 Batch:	WG1901952-3	WG1901952-4			
Isopropylbenzene	100		95		70-130	5		20
p-Isopropyltoluene	100		96		70-130	4		20
Naphthalene	92		91		70-130	1		20
n-Propylbenzene	100		97		69-130	3		20
1,2,4-Trichlorobenzene	98		96		70-130	2		20
1,3,5-Trimethylbenzene	100		96		64-130	4		20
1,2,4-Trimethylbenzene	100		96		70-130	4		20
Methyl Acetate	88		93		70-130	6		20
Cyclohexane	96		95		70-130	1		20
Freon-113	96		96		70-130	0		20
Methyl cyclohexane	98		97		70-130	1		20

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	97	70-130
Toluene-d8	99	98	70-130
4-Bromofluorobenzene	99	94	70-130
Dibromofluoromethane	102	99	70-130

Project Name: WATERFIELD PHASE 2 ESA

Lab Number: L2416144 Project Number: EA2305 **Report Date:** 04/01/24

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2416144-01A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416144-01B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416144-01C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416144-02A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416144-02B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416144-02C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416144-03A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416144-03B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2416144-03C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416144Project Number:EA2305Report Date:04/01/24

GLOSSARY

Acronyms

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL
includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416144Project Number:EA2305Report Date:04/01/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416144Project Number:EA2305Report Date:04/01/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD PHASE 2 ESALab Number:L2416144Project Number:EA2305Report Date:04/01/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Page 1 of 1

Published Date: 6/16/2023 4:52:28 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

Page 24 of 25

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitner Albany, NY 12205: 14 Walker V Tonawanda, NY 14160: 275 Co	Vay	06	Page			Rec'd Lab	3 26	2/24	ALPHA Job# L241614	4
Westborough, MA 01581	Mansfield, MA 02048	Project Information	10000			Value	Deliverable	S		STATE OF THE PARTY.	Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: WO	adield	Dinge	75	CA	ASP.	-A	ASP-	-B	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 474		k Stra			-	S (1 File)	THE LAWS A	S (4 File)		
Client Information	The Part of the last of	1.0403	305	COMC	THEIL	Durg	Othe			(4110)	PO# EA 2305	
The state of the s	antage Jun	Project # A 2	7				-	Requireme	n)		Disposal Site Information	
Address: 3030 N	S. JAIS DA		1 11	0.0			MONY TO	IN SECURIOR STATES	W. 24	art 375	STATE OF STA	
Cohool Do	TOUREND KOL	Project Manager: Mana	CK HAY	ma	-		-	Standards	☐ NY C		Please identify below location applicable disposal facilities.	of
Choncia Hui	F10714171	THE RESERVE OF THE PARTY OF THE		-	_	-	100000	estricted Use	-			
Phone: 710-(00	01-5150	Turn-Around Time		-					Other		Disposal Facility:	
Fax:	on adult do	Standard Standard		Due Date				nrestricted Us			NJ NY	
	7	high (only if pre approved	1) 🔲	# of Days			The real Property lies and the least lies and the lies and the lies and the least lies and the least lies and the lies and t	Sewer Discha	rga		Other:	100
	hese samples have been previously analyzed by Alpha ther project specific requirements/comments:						ANALYSIS				Sample Filtration	- 0
							8.				Done	1
emil	Jabres 14	s@ envadu	antage	now.			SE	1 1	1		Lab to do	
		de Cinadiv	ar neigh				4				Preservation Lab to do	
Please specify Metals	s or TAL.						B					В
							A COMPANY				(Please Specify below)	1
ALPHA Lab ID	9	ample ID	Coll	ection	Sample	Sampler's	183		1 1 "			1
(Lab Use Only)	31	ample ID	Date	Time	Matrix	Initials	Vacs				Sample Specific Comments	
16144-01	58-01 1MW	-01	3/22/24	10:10	GW	07	X					3
-02	SB-OH/MW	-02	3/22/24	11:25	GW	07	X					3
-03	58-05/MV	V-03	3/22/24	12:30	GW	07	V					3
	OGOGIFII	1 00	16401	12.00	Chry		1	\vdash	+			12
												+
			_	_	_	_	+	+ + -			-	+
			+			-	+	-	++-	-		+
			-	-		-	++-					+
			-	-	-	-	+	-	+	-	-	+
			-	-	-	-	+	-	-			+
Preservative Code:	Container Code		1		-		-	\vdash	-	-	-	
A = None	P = Plastic	Westboro: Certification I			Cor	ntainer Type	\vee				Please print clearly, legi	
B = HCI C = HNO ₁	A = Amber Glass V = Vial	Mansfield: Certification I	No: MA015			- 674	Ψ.				and completely. Sample not be logged in and	is can
$D = H_2SO_A$	G = Glass					reservative	18				turnaround time clock w	ton Iliv
E = NaOH	B = Bacteria Cup						D				start until any ambiguitie	
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished	Ву:	Date	/Time		Received B		N	e/Time	resolved. BY EXECUTII	
$H = Na_2S_2O_3$	E = Encore	Collisanyela		3/25/24	12:55	280		3	125 F24	125.	THIS COC, THE CLIEN HAS READ AND AGRE	
K/E = Zn Ac/NaOH	D = BOD Bottle	A STATE OF THE STA		2/25/24	141	1			3/26/2	1 0040	TO BE BOUND BY ALF	
O = Other		00	*	7 / /	. / .						TERMS & CONDITION	
Form No: 01-25 HC (rev. 3	30-Sept-2013)										(See reverse side.)	

ANALYTICAL REPORT

Lab Number: L2422054

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna
Phone: (716) 667-3130

Project Name: WATERFIELD P2

Project Number: EA2305 Report Date: 05/08/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0825), DoD (L2474), FL (E87814), IL (200081), IN (C-MA-04), KY (KY98046), LA (85084), ME (MA00030), MD (350), MI (9110), MN (025-999-495), NJ (MA015), NY (11627), NC (685), OR (MA-0262), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #525-23-107-88708A1), USFWS (Permit #A24920).

Project Number: EA2305

Lab Number: L2422054 **Report Date:** 05/08/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2422054-01	SV-01	SOIL_VAPOR	4245 CLARK ST.	04/22/24 17:04	04/23/24
L2422054-02	SV-02	SOIL_VAPOR	4245 CLARK ST.	04/22/24 17:15	04/23/24
L2422054-03	SV-03	SOIL_VAPOR	4245 CLARK ST.	04/22/24 17:25	04/23/24
L2422054-04	SV-04	SOIL_VAPOR	4245 CLARK ST.	04/22/24 17:40	04/23/24
L2422054-05	SV-05	SOIL_VAPOR	4245 CLARK ST.	04/22/24 17:50	04/23/24

L2422054

Project Name: WATERFIELD P2 Lab Number:

Project Number: EA2305 Report Date: 05/08/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:05082416:33

Project Name: WATERFIELD P2 Lab Number: L2422054

Project Number: EA2305 Report Date: 05/08/24

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on April 17, 2024. The canister certification data is provided as an addendum.

L2422054-03D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2422054-04D and -05D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/08/24

Christopher J. Anderson

AIR

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID: L2422054-01

Client ID: SV-01

Sample Location: 4245 CLARK ST.

Date Collected: 04/22/24 17:04

Date Received: 04/23/24
Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 05/08/24 04:47

Analytical Date: 05/08 Analyst: BJB

ppbV ug/m3 Dilution **Factor Parameter** Results RLMDL Results RL MDL Qualifier Volatile Organics in Air - Mansfield Lab Dichlorodifluoromethane 0.441 0.200 0.989 2.18 1 Chloromethane ND 0.200 ND 0.413 1 Freon-114 ND 0.200 1 ND 1.40 ----Vinyl chloride ND 0.200 ND 0.511 1 ----1,3-Butadiene ND 0.200 ND 0.442 1 Bromomethane 0.204 0.200 0.792 0.777 1 ----Chloroethane ND 0.200 ND 0.528 1 ----Ethanol ND 5.00 ND 9.42 1 --Vinyl bromide ND 0.200 ND 0.874 1 ----Acetone 1.00 18.2 43.2 2.38 1 Trichlorofluoromethane ND 0.200 ND 1.12 --1 Isopropanol 10.4 0.500 25.6 1.23 1 ----1,1-Dichloroethene ND 0.200 ND 0.793 1 --Tertiary butyl Alcohol 0.500 ND --ND 1.52 --1 Methylene chloride ND 0.500 ND 1.74 1 3-Chloropropene ND 0.200 --ND 0.626 --1 Carbon disulfide ND 0.200 ND 0.623 1 --Freon-113 ND 0.200 ND 1.53 --1 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1 ----1,1-Dichloroethane ND 0.200 ND 0.809 1 Methyl tert butyl ether ND 0.200 ND 0.721 1 2-Butanone 1.02 0.500 3.01 1.47 --1 -cis-1,2-Dichloroethene ND 0.200 ND 0.793 1

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID: L2422054-01

Client ID: SV-01

Sample Location: 4245 CLARK ST.

Date Collected: 04/22/24 17:04

Date Received: 04/23/24
Field Prep: Not Specified

•		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	17.9	0.200		63.1	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	3.64	0.200		11.6	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	5.53	0.200		19.0	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	10.4	0.200		42.6	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	12.2	0.200		46.0	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	0.699	0.200		4.74	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	9.95	0.200		43.2	0.869			1

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID: L2422054-01

Client ID: SV-01

Sample Location: 4245 CLARK ST.

Date Collected: 04/22/24 17:04

Date Received: 04/23/24

Field Prep: Not Specified

оатріс Веріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
p/m-Xylene	42.7	0.400		185	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	11.8	0.200		51.3	0.869			1
4-Ethyltoluene	0.299	0.200		1.47	0.983			1
1,3,5-Trimethylbenzene	0.221	0.200		1.09	0.983			1
1,2,4-Trimethylbenzene	0.783	0.200		3.85	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	96		60-140

Project Number: EA2305

Lab Number: L2422054

Report Date: 05/08/24

SAMPLE RESULTS

Lab ID: L2422054-02

Client ID: SV-02

Sample Location: 4245 CLARK ST.

Date Collected: 04/22/24 17:15 Date Received: 04/23/24

Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 05/06/24 20:54

Analyst: BJB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.474	0.200		2.34	0.989			1
Chloromethane	0.235	0.200		0.485	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	21.7	1.00		51.5	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	0.748	0.500		1.84	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID: L2422054-02

Client ID: SV-02

Sample Location: 4245 CLARK ST.

Date Collected: 04/2

04/22/24 17:15

Date Received: Field Prep:

04/23/24 Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	0.870	0.500		2.57	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	9.14	0.200		32.2	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	2.37	0.200		7.57	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	5.66	0.200		19.5	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	1.24	0.200		6.66	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	4.21	0.200		17.3	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	8.78	0.200		33.1	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	0.229	0.200		1.55	1.36			1
Chlorobenzene	0.349	0.200		1.61	0.921			1
Ethylbenzene	7.76	0.200		33.7	0.869			1

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID: L2422054-02

Client ID: SV-02

Sample Location: 4245 CLARK ST.

Date Collected: 04

04/22/24 17:15

Date Received: Field Prep:

04/23/24 Not Specified

Оатріе Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
p/m-Xylene	32.8	0.400		142	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	8.37	0.200		36.4	0.869			1
4-Ethyltoluene	0.292	0.200		1.44	0.983			1
1,3,5-Trimethylbenzene	0.218	0.200		1.07	0.983			1
1,2,4-Trimethylbenzene	0.732	0.200		3.60	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	101		60-140

04/22/24 17:25

Not Specified

04/23/24

Project Name: WATERFIELD P2

Project Number: EA2305

Lab Number: L2422054

Report Date: 05/08/24

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2422054-03 D

Client ID: SV-03

Sample Location: 4245 CLARK ST.

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 05/06/24 21:34

Analyst: BJB

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.458	0.400		2.26	1.98			2
Chloromethane	ND	0.400		ND	0.826			2
Freon-114	ND	0.400		ND	2.80			2
Vinyl chloride	ND	0.400		ND	1.02			2
1,3-Butadiene	ND	0.400		ND	0.885			2
Bromomethane	ND	0.400		ND	1.55			2
Chloroethane	ND	0.400		ND	1.06			2
Ethanol	18.4	10.0		34.7	18.8			2
Vinyl bromide	ND	0.400		ND	1.75			2
Acetone	614	2.00		1460	4.75			2
Trichlorofluoromethane	ND	0.400		ND	2.25			2
Isopropanol	6.74	1.00		16.6	2.46			2
1,1-Dichloroethene	ND	0.400		ND	1.59			2
Tertiary butyl Alcohol	3.38	1.00		10.2	3.03			2
Methylene chloride	ND	1.00		ND	3.47			2
3-Chloropropene	ND	0.400		ND	1.25			2
Carbon disulfide	ND	0.400		ND	1.25			2
Freon-113	ND	0.400		ND	3.07			2
trans-1,2-Dichloroethene	ND	0.400		ND	1.59			2
1,1-Dichloroethane	ND	0.400		ND	1.62			2
Methyl tert butyl ether	ND	0.400		ND	1.44			2
2-Butanone	3.60	1.00		10.6	2.95			2
cis-1,2-Dichloroethene	ND	0.400		ND	1.59			2

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID: L2422054-03 D

Date Collected: 04/

04/22/24 17:25

Client ID:

SV-03

Date Received:

04/23/24

Sample Location:

4245 CLARK ST.

Field Prep:

Not Specified

оатріє Берії.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	1.00		ND	3.60			2
Chloroform	ND	0.400		ND	1.95			2
Tetrahydrofuran	ND	1.00		ND	2.95			2
1,2-Dichloroethane	ND	0.400		ND	1.62			2
n-Hexane	28.2	0.400		99.4	1.41			2
1,1,1-Trichloroethane	ND	0.400		ND	2.18			2
Benzene	6.30	0.400		20.1	1.28			2
Carbon tetrachloride	ND	0.400		ND	2.52			2
Cyclohexane	10.6	0.400		36.5	1.38			2
1,2-Dichloropropane	ND	0.400		ND	1.85			2
Bromodichloromethane	ND	0.400		ND	2.68			2
1,4-Dioxane	0.678	0.400		2.44	1.44			2
Trichloroethene	2.53	0.400		13.6	2.15			2
2,2,4-Trimethylpentane	ND	0.400		ND	1.87			2
Heptane	19.9	0.400		81.6	1.64			2
cis-1,3-Dichloropropene	ND	0.400		ND	1.82			2
4-Methyl-2-pentanone	1.22	1.00		5.00	4.10			2
trans-1,3-Dichloropropene	ND	0.400		ND	1.82			2
1,1,2-Trichloroethane	ND	0.400		ND	2.18			2
Toluene	16.6	0.400		62.6	1.51			2
2-Hexanone	ND	0.400		ND	1.64			2
Dibromochloromethane	ND	0.400		ND	3.41			2
1,2-Dibromoethane	ND	0.400		ND	3.07			2
Tetrachloroethene	11.8	0.400		80.0	2.71			2
Chlorobenzene	ND	0.400		ND	1.84			2
Ethylbenzene	9.00	0.400		39.1	1.74			2

Project Number: EA2305 Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID:

L2422054-03 D

Client ID:

SV-03

Sample Location:

4245 CLARK ST.

Date Collected:

04/22/24 17:25

Date Received: Field Prep:

04/23/24 Not Specified

Sample Depth:

ppbV

Campio Bopuii		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
p/m-Xylene	37.8	0.800		164	3.47			2
Bromoform	ND	0.400		ND	4.14			2
Styrene	ND	0.400		ND	1.70			2
1,1,2,2-Tetrachloroethane	ND	0.400		ND	2.75			2
o-Xylene	9.02	0.400		39.2	1.74			2
4-Ethyltoluene	ND	0.400		ND	1.97			2
1,3,5-Trimethylbenzene	ND	0.400		ND	1.97			2
1,2,4-Trimethylbenzene	0.842	0.400		4.14	1.97			2
Benzyl chloride	ND	0.400		ND	2.07			2
1,3-Dichlorobenzene	ND	0.400		ND	2.40			2
1,4-Dichlorobenzene	ND	0.400		ND	2.40			2
1,2-Dichlorobenzene	ND	0.400		ND	2.40			2
1,2,4-Trichlorobenzene	ND	0.400		ND	2.97			2
Naphthalene	ND	0.400		ND	2.10			2
Hexachlorobutadiene	ND	0.400		ND	4.27			2

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	102		60-140

Project Number: EA2305 Lab Number: L2422054

Date Collected:

04/22/24 17:40

Report Date: 05/08/24

SAMPLE RESULTS

Lab ID: L2422054-04 D

Client ID: SV-04

Sample Location: 4245 CLARK ST. Date Received: 04/23/24 Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 05/08/24 05:25

Analyst: BJB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Dichlorodifluoromethane	ND	25.0		ND	124			125
Chloromethane	ND	25.0		ND	51.6			125
Freon-114	ND	25.0		ND	175			125
Vinyl chloride	ND	25.0		ND	63.9			125
1,3-Butadiene	ND	25.0		ND	55.3			125
Bromomethane	ND	25.0		ND	97.1			125
Chloroethane	ND	25.0		ND	66.0			125
Ethanol	ND	625		ND	1180			125
Vinyl bromide	ND	25.0		ND	109			125
Acetone	4420	125		10500	297			125
Trichlorofluoromethane	ND	25.0		ND	140			125
Isopropanol	ND	62.5		ND	154			125
1,1-Dichloroethene	ND	25.0		ND	99.1			125
Tertiary butyl Alcohol	ND	62.5		ND	189			125
Methylene chloride	ND	62.5		ND	217			125
3-Chloropropene	ND	25.0		ND	78.3			125
Carbon disulfide	ND	25.0		ND	77.9			125
Freon-113	ND	25.0		ND	192			125
trans-1,2-Dichloroethene	ND	25.0		ND	99.1			125
1,1-Dichloroethane	ND	25.0		ND	101			125
Methyl tert butyl ether	ND	25.0		ND	90.1			125
2-Butanone	ND	62.5		ND	184			125
cis-1,2-Dichloroethene	ND	25.0		ND	99.1			125

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID: L2422054-04 D

Client ID: SV-04

Sample Location: 4245 CLARK ST.

Date Collected: 04/22/24 17:40

Date Received: 04/23/24
Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Ethyl Acetate	ND	62.5		ND	225			125
Chloroform	ND	25.0		ND	122			125
Tetrahydrofuran	ND	62.5		ND	184			125
1,2-Dichloroethane	ND	25.0		ND	101			125
n-Hexane	188	25.0		663	88.1			125
1,1,1-Trichloroethane	ND	25.0		ND	136			125
Benzene	36.4	25.0		116	79.9			125
Carbon tetrachloride	ND	25.0		ND	157			125
Cyclohexane	86.4	25.0		297	86.1			125
1,2-Dichloropropane	ND	25.0		ND	116			125
Bromodichloromethane	ND	25.0		ND	167			125
1,4-Dioxane	ND	25.0		ND	90.1			125
Trichloroethene	46.4	25.0		249	134			125
2,2,4-Trimethylpentane	ND	25.0		ND	117			125
Heptane	237	25.0		971	102			125
cis-1,3-Dichloropropene	ND	25.0		ND	113			125
4-Methyl-2-pentanone	85.8	62.5		352	256			125
trans-1,3-Dichloropropene	ND	25.0		ND	113			125
1,1,2-Trichloroethane	ND	25.0		ND	136			125
Toluene	132	25.0		497	94.2			125
2-Hexanone	ND	25.0		ND	102			125
Dibromochloromethane	ND	25.0		ND	213			125
1,2-Dibromoethane	ND	25.0		ND	192			125
Tetrachloroethene	1060	25.0		7190	170			125
Chlorobenzene	ND	25.0		ND	115			125
Ethylbenzene	83.8	25.0		364	109			125

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID:

L2422054-04 D

Client ID:

SV-04

Sample Location:

4245 CLARK ST.

Date Collected: 04/22/24 17:40

Date Received:

04/23/24

Field Prep:

Not Specified

Sample Depth.	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
p/m-Xylene	268	50.0		1160	217			125
Bromoform	ND	25.0		ND	258			125
Styrene	ND	25.0		ND	106			125
1,1,2,2-Tetrachloroethane	ND	25.0		ND	172			125
o-Xylene	133	25.0		578	109			125
4-Ethyltoluene	32.1	25.0		158	123			125
1,3,5-Trimethylbenzene	56.0	25.0		275	123			125
1,2,4-Trimethylbenzene	176	25.0		865	123			125
Benzyl chloride	ND	25.0		ND	129			125
1,3-Dichlorobenzene	ND	25.0		ND	150			125
1,4-Dichlorobenzene	ND	25.0		ND	150			125
1,2-Dichlorobenzene	ND	25.0		ND	150			125
1,2,4-Trichlorobenzene	ND	25.0		ND	186			125
Naphthalene	ND	25.0		ND	131			125
Hexachlorobutadiene	ND	25.0		ND	267			125

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	111		60-140

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID: L2422054-05 D

Client ID: SV-05

Sample Location: 4245 CLARK ST.

Date Collected: 04/22/24 17:50
Date Received: 04/23/24
Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 05/06/24 22:52

Analyst: BJB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.512	0.500		2.53	2.47			2.5
Chloromethane	ND	0.500		ND	1.03			2.5
Freon-114	ND	0.500		ND	3.49			2.5
Vinyl chloride	ND	0.500		ND	1.28			2.5
1,3-Butadiene	8.32	0.500		18.4	1.11			2.5
Bromomethane	ND	0.500		ND	1.94			2.5
Chloroethane	ND	0.500		ND	1.32			2.5
Ethanol	ND	12.5		ND	23.6			2.5
Vinyl bromide	ND	0.500		ND	2.19			2.5
Acetone	96.9	2.50		230	5.94			2.5
Trichlorofluoromethane	ND	0.500		ND	2.81			2.5
Isopropanol	1.94	1.25		4.77	3.07			2.5
1,1-Dichloroethene	ND	0.500		ND	1.98			2.5
Tertiary butyl Alcohol	2.27	1.25		6.88	3.79			2.5
Methylene chloride	ND	1.25		ND	4.34			2.5
3-Chloropropene	ND	0.500		ND	1.57			2.5
Carbon disulfide	21.1	0.500		65.7	1.56			2.5
Freon-113	ND	0.500		ND	3.83			2.5
trans-1,2-Dichloroethene	ND	0.500		ND	1.98			2.5
1,1-Dichloroethane	ND	0.500		ND	2.02			2.5
Methyl tert butyl ether	ND	0.500		ND	1.80			2.5
2-Butanone	16.1	1.25		47.5	3.69			2.5
cis-1,2-Dichloroethene	22.2	0.500		88.0	1.98			2.5

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID:

L2422054-05 D

Client ID:

SV-05

Sample Location:

4245 CLARK ST.

Date Collected:

04/22/24 17:50

Date Received: Field Prep:

04/23/24 Not Specified

Запріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	1.25		ND	4.50			2.5
Chloroform	ND	0.500		ND	2.44			2.5
Tetrahydrofuran	1.86	1.25		5.49	3.69			2.5
1,2-Dichloroethane	ND	0.500		ND	2.02			2.5
n-Hexane	21.8	0.500		76.8	1.76			2.5
1,1,1-Trichloroethane	ND	0.500		ND	2.73			2.5
Benzene	12.1	0.500		38.7	1.60			2.5
Carbon tetrachloride	ND	0.500		ND	3.15			2.5
Cyclohexane	8.03	0.500		27.6	1.72			2.5
1,2-Dichloropropane	ND	0.500		ND	2.31			2.5
Bromodichloromethane	ND	0.500		ND	3.35			2.5
1,4-Dioxane	ND	0.500		ND	1.80			2.5
Trichloroethene	1.35	0.500		7.26	2.69			2.5
2,2,4-Trimethylpentane	ND	0.500		ND	2.34			2.5
Heptane	10.6	0.500		43.4	2.05			2.5
cis-1,3-Dichloropropene	ND	0.500		ND	2.27			2.5
1-Methyl-2-pentanone	3.70	1.25		15.2	5.12			2.5
trans-1,3-Dichloropropene	ND	0.500		ND	2.27			2.5
1,1,2-Trichloroethane	ND	0.500		ND	2.73			2.5
Toluene	12.2	0.500		46.0	1.88			2.5
2-Hexanone	ND	0.500		ND	2.05			2.5
Dibromochloromethane	ND	0.500		ND	4.26			2.5
,2-Dibromoethane	ND	0.500		ND	3.84			2.5
Tetrachloroethene	2.80	0.500		19.0	3.39			2.5
Chlorobenzene	ND	0.500		ND	2.30			2.5
Ethylbenzene	11.6	0.500		50.4	2.17			2.5

Project Number: EA2305

Lab Number:

L2422054

Report Date:

05/08/24

SAMPLE RESULTS

Lab ID:

L2422054-05 D

Client ID:

SV-05

Sample Location:

4245 CLARK ST.

Date Collected:

04/22/24 17:50

Date Received: Field Prep:

04/23/24 Not Specified

1.00	MDL	Results	RL	MDL	Qualifier	Factor
		157				
		157				
F00		137	4.34			2.5
.500		ND	5.17			2.5
.500		ND	2.13			2.5
.500		ND	3.43			2.5
.500		52.6	2.17			2.5
.500		ND	2.46			2.5
.500		ND	2.46			2.5
.500		ND	2.46			2.5
.500		ND	2.59			2.5
.500		ND	3.01			2.5
.500		ND	3.01			2.5
.500		ND	3.01			2.5
.500		ND	3.71			2.5
.500		ND	2.62			2.5
.500		ND	5.33			2.5
	.500 .500 .500 .500 .500 .500 .500 .500	.500500500500500500500500500500500500500500	.500 ND	.500 ND 2.13 .500 ND 3.43 .500 S2.6 2.17 .500 ND 2.46 .500 ND 2.46 .500 ND 2.46 .500 ND 2.59 .500 ND 3.01 .500 ND 3.01 .500 ND 3.01 .500 ND 3.01	.500 ND 2.13500 ND 3.43500 52.6 2.17500 ND 2.46500 ND 2.46500 ND 2.46500 ND 3.01500 ND 3.01	.500 ND 3.43500 ND 3.43500 52.6 2.17500 ND 2.46500 ND 2.46500 ND 2.59500 ND 3.01500 ND 3.01

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	78		60-140
chlorobenzene-d5	115		60-140

Project Name: WATERFIELD P2 Lab Number: L2422054

Project Number: EA2305 Report Date: 05/08/24

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/06/24 18:51

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	ole(s): 02-	·03,05 E	Batch: WG19	17644-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: WATERFIELD P2 Lab Number: L2422054

Project Number: EA2305 Report Date: 05/08/24

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/06/24 18:51

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 02-	·03,05 E	Batch: WG191	7644-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: WATERFIELD P2 Lab Number: L2422054

Project Number: EA2305 Report Date: 05/08/24

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/06/24 18:51

		ppbV			ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 02-	-03,05	Batch: WG191	17644-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: WATERFIELD P2 Lab Number: L2422054

Project Number: EA2305 Report Date: 05/08/24

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/07/24 17:17

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01,	04 Batch:	: WG19181	59-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: WATERFIELD P2 Lab Number: L2422054

Project Number: EA2305 Report Date: 05/08/24

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/07/24 17:17

Parameter Results RL MDL Volatile Organics in Air - Mansfield Lab for sample(s): 01,04 Batch Tetrahydrofuran ND 0.500 1,2-Dichloroethane ND 0.200 n-Hexane ND 0.200 1,1,1-Trichloroethane ND 0.200 Benzene ND 0.200 Carbon tetrachloride ND 0.200 Cyclohexane ND 0.200 1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 4-Methyl-2-pentanone ND 0.500	Results Ch: WG19181 ND ND ND ND ND ND ND ND ND N	RL 59-4 1.47 0.809 0.705 1.09 0.639 1.26 0.688 0.924	 Qualifier	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tetrahydrofuran ND 0.500 1,2-Dichloroethane ND 0.200 n-Hexane ND 0.200 1,1,1-Trichloroethane ND 0.200 Benzene ND 0.200 Carbon tetrachloride ND 0.200 Cyclohexane ND 0.200 1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200	ND	1.47 0.809 0.705 1.09 0.639 1.26 0.688	 	1 1 1 1
1,2-Dichloroethane ND 0.200 n-Hexane ND 0.200 1,1,1-Trichloroethane ND 0.200 Benzene ND 0.200 Carbon tetrachloride ND 0.200 Cyclohexane ND 0.200 1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200	ND ND ND ND ND ND ND ND ND	0.809 0.705 1.09 0.639 1.26 0.688	 	1 1 1 1
n-Hexane ND 0.200 1,1,1-Trichloroethane ND 0.200 Benzene ND 0.200 Carbon tetrachloride ND 0.200 Cyclohexane ND 0.200 1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200	ND ND ND ND ND ND ND	0.705 1.09 0.639 1.26 0.688	 	1 1 1
1,1,1-Trichloroethane ND 0.200 Benzene ND 0.200 Carbon tetrachloride ND 0.200 Cyclohexane ND 0.200 1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200	ND ND ND ND	1.09 0.639 1.26 0.688	 	1 1 1
Benzene ND 0.200 Carbon tetrachloride ND 0.200 Cyclohexane ND 0.200 1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200	ND ND ND	0.639 1.26 0.688	 	1
Carbon tetrachloride ND 0.200 Cyclohexane ND 0.200 1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200	ND ND ND	1.26 0.688		1
Cyclohexane ND 0.200 1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200	ND ND	0.688		
1,2-Dichloropropane ND 0.200 Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200	ND			1
Bromodichloromethane ND 0.200 1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200		0.924		•
1,4-Dioxane ND 0.200 Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200	ND			1
Trichloroethene ND 0.200 2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200		1.34		1
2,2,4-Trimethylpentane ND 0.200 Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200	ND	0.721		1
Heptane ND 0.200 cis-1,3-Dichloropropene ND 0.200	ND	1.07		1
cis-1,3-Dichloropropene ND 0.200	ND	0.934		1
	ND	0.820		1
4-Methyl-2-pentanone ND 0.500	ND	0.908		1
	ND	2.05		1
trans-1,3-Dichloropropene ND 0.200	ND	0.908		1
1,1,2-Trichloroethane ND 0.200	ND	1.09		1
Toluene ND 0.200	ND	0.754		1
2-Hexanone ND 0.200	ND	0.820		1
Dibromochloromethane ND 0.200	ND	1.70		1
1,2-Dibromoethane ND 0.200	ND	1.54		1
Tetrachloroethene ND 0.200	ND	1.36		1
Chlorobenzene ND 0.200	ND	0.921		1
Ethylbenzene ND 0.200	ND	0.869		1
p/m-Xylene ND 0.400	ND	1.74		1

Project Name: WATERFIELD P2 Lab Number: L2422054

Project Number: EA2305 Report Date: 05/08/24

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 05/07/24 17:17

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab for samp	le(s): 01,	04 Batch	n: WG19181	59-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: WATERFIELD P2

Project Number: EA2305

Lab Number: L2422054

Dichlorodifluoromethane	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Chloromethane 88 - 70-130 - Freon-114 99 - 70-130 - Vinyl chloride 96 - 70-130 - 1,3-Butadiene 105 - 70-130 - Bromomethane 98 - 70-130 - Chloroethane 96 - 70-130 - Ethanol 95 - 40-160 - Vinyl bromide 91 - 70-130 - Acetone 95 - 40-160 - Tichlorofluoromethane 92 - 70-130 - Isopropanol 84 - 40-160 - Interiary butyl Alcohol 93 - 70-130 - Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - 4-Freon-113 88 - 70-130 - 4-Freon-114 88	Volatile Organics in Air - Mansfield Lab	Associated sample(s):	02-03,05	Batch: WG191	7644-3					
Freon-114 99 - 70-130 - Vinyl chloride 96 - 70-130 - 1.3-Butacliene 105 - 70-130 - Bromomethane 98 - 70-130 - Chloroethane 96 - 70-130 - Ethanol 95 - 40-160 - Vinyl bromide 91 - 70-130 - Acetone 95 - 40-160 - Tichlorofluoromethane 92 - 70-130 - Isopropanol 84 - 40-160 - 1,1-Dichloroethene 94 - 70-130 - Tertiary butyl Alcohol 93 - 70-130 - Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - Freon-113 88 - 70-130 - 1,1-Dichloroethane <th< td=""><td>Dichlorodifluoromethane</td><td>89</td><td></td><td>-</td><td></td><td>70-130</td><td>-</td><td></td><td></td><td></td></th<>	Dichlorodifluoromethane	89		-		70-130	-			
Vinyl chloride 96 70-130 - 1,3-Butadiene 105 - 70-130 - Bromomethane 98 - 70-130 - Chloroethane 96 - 70-130 - Ethanol 95 - 40-160 - Vinyl bromide 91 - 70-130 - Acetone 95 - 40-160 - Trichloroftuoromethane 92 - 70-130 - Isopropanol 84 - 40-160 - 1,1-Dichloroethene 94 - 70-130 - Tertiary butyl Alcohol 93 - 70-130 - 3-Chloropropene 97 - 70-130 - 4-Chloropropene 97 - 70-130 - 4-Chloropropene 98 - 70-130 - 4-chloropropene 97 - 70-130 - 4-chloropropene 97	Chloromethane	88		-		70-130	-			
1,3-Butadiene 105 - 70-130 - Bromomethane 98 - 70-130 - Chloroethane 96 - 70-130 - Ethanol 95 - 40-160 - Vinyl bromide 91 - 70-130 - Acetone 95 - 40-160 - Trichiorofluoromethane 92 - 70-130 - Isopropanol 84 - 40-160 - 1,1-Dichloroethene 94 - 70-130 - Mettylee chloride 93 - 70-130 - 3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92	Freon-114	99		-		70-130	-			
Bromomethane 98 - 70-130 - Chloroethane 96 - 70-130 - Ethanol 95 - 40-160 - Vinyl bromide 91 - 70-130 - Acetone 95 - 40-160 - Trichlorofluoromethane 92 - 70-130 - Isopropanol 84 - 40-160 - 1,1-Dichloroethene 94 - 70-130 - Teriary butyl Alcohol 93 - 70-130 - Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethane 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert but	Vinyl chloride	96		-		70-130	-			
Chloroethane 96 - 70-130 - Ethanol 95 - 40-160 - Vinyl bromide 91 - 70-130 - Acetone 95 - 40-160 - Trichloroffluoromethane 92 - 70-130 - Isopropanol 84 - 40-160 - 1,1-Dichloroethene 94 - 70-130 - Tertiary butyl Alcohol 93 - 70-130 - Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	1,3-Butadiene	105		-		70-130	-			
Ethanol 95 - 40-160 - Vinyl bromide 91 - 70-130 - Acetone 95 - 40-160 - Trichlorofluoromethane 92 - 70-130 - Isopropanol 84 - 40-160 - 1,1-Dichloroethene 94 - 70-130 - Tertiary butyl Alcohol 93 - 70-130 - Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	Bromomethane	98		-		70-130	-			
Vinyl bromide 91 - 70-130 - Acetone 95 - 40-160 - Trichlorofluoromethane 92 - 70-130 - Isopropanol 84 - 40-160 - 1,1-Dichloroethene 94 - 70-130 - Tertiary butyl Alcohol 93 - 70-130 - Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	Chloroethane	96		-		70-130	-			
Acetone 95 - 40-160 - Trichlorofluoromethane 92 - 70-130 - Isopropanol 84 - 40-160 - 1,1-Dichloroethene 94 - 70-130 - Tertiary butyl Alcohol 93 - 70-130 - Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	Ethanol	95		-		40-160	-			
Trichloroftluoromethane 92 - 70-130 - Isopropanol 84 - 40-160 - 1,1-Dichloroethene 94 - 70-130 - Tertiary butyl Alcohol 93 - 70-130 - Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	Vinyl bromide	91		-		70-130	-			
Isopropanol	Acetone	95		-		40-160	-			
1,1-Dichloroethene 94 - 70-130 - Tertiary butyl Alcohol 93 - 70-130 - Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	Trichlorofluoromethane	92		-		70-130	-			
Tertiary butyl Alcohol 93 - 70-130 - Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	Isopropanol	84		-		40-160	-			
Methylene chloride 94 - 70-130 - 3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	1,1-Dichloroethene	94		-		70-130	-			
3-Chloropropene 97 - 70-130 - Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	Tertiary butyl Alcohol	93		-		70-130	-			
Carbon disulfide 88 - 70-130 - Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	Methylene chloride	94		-		70-130	-			
Freon-113 88 - 70-130 - trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	3-Chloropropene	97		-		70-130	-			
trans-1,2-Dichloroethene 94 - 70-130 - 1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	Carbon disulfide	88		-		70-130	-			
1,1-Dichloroethane 89 - 70-130 - Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	Freon-113	88		-		70-130	-			
Methyl tert butyl ether 94 - 70-130 - 2-Butanone 92 - 70-130 -	trans-1,2-Dichloroethene	94		-		70-130	-			
2-Butanone 92 - 70-130 -	1,1-Dichloroethane	89		-		70-130	-			
	Methyl tert butyl ether	94		-		70-130	-			
cis-1,2-Dichloroethene 93 - 70-130 -	2-Butanone	92		-		70-130	-			
	cis-1,2-Dichloroethene	93		-		70-130	-			

Project Name: WATERFIELD P2

Project Number: EA2305

Lab Number: L2422054

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab A	Associated sample(s):	02-03,05	Batch: WG191	7644-3				
Ethyl Acetate	100				70-130	-		
Chloroform	94		-		70-130	-		
Tetrahydrofuran	91		-		70-130	-		
1,2-Dichloroethane	86		-		70-130	-		
n-Hexane	106		-		70-130	-		
1,1,1-Trichloroethane	93		-		70-130	-		
Benzene	94		-		70-130	-		
Carbon tetrachloride	95		-		70-130	-		
Cyclohexane	105		-		70-130	-		
1,2-Dichloropropane	95		-		70-130	-		
Bromodichloromethane	106		-		70-130	-		
1,4-Dioxane	108		-		70-130	-		
Trichloroethene	97		-		70-130	-		
2,2,4-Trimethylpentane	106		-		70-130	-		
Heptane	102		-		70-130	-		
cis-1,3-Dichloropropene	102		-		70-130	-		
4-Methyl-2-pentanone	102		-		70-130	-		
trans-1,3-Dichloropropene	102		-		70-130	-		
1,1,2-Trichloroethane	94		-		70-130	-		
Toluene	90		-		70-130	-		
2-Hexanone	103		-		70-130	-		
Dibromochloromethane	101		-		70-130	-		
1,2-Dibromoethane	89		-		70-130	-		

Project Name: WATERFIELD P2

Project Number: EA2305

Lab Number: L2422054

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asse	ociated sample(s)	: 02-03,05	Batch: WG191	7644-3				
Tetrachloroethene	86		-		70-130	-		
Chlorobenzene	90		-		70-130	-		
Ethylbenzene	91		-		70-130	-		
p/m-Xylene	92		-		70-130	-		
Bromoform	99		-		70-130	-		
Styrene	91		-		70-130	-		
1,1,2,2-Tetrachloroethane	97		-		70-130	-		
o-Xylene	94		-		70-130	-		
4-Ethyltoluene	94		-		70-130	-		
1,3,5-Trimethylbenzene	92		-		70-130	-		
1,2,4-Trimethylbenzene	95		-		70-130	-		
Benzyl chloride	99		-		70-130	-		
1,3-Dichlorobenzene	91		-		70-130	-		
1,4-Dichlorobenzene	91		-		70-130	-		
1,2-Dichlorobenzene	89		-		70-130	-		
1,2,4-Trichlorobenzene	87		-		70-130	-		
Naphthalene	91		-		70-130	-		
Hexachlorobutadiene	83		-		70-130	-		

Project Name: WATERFIELD P2

Project Number: EA2305

Lab Number: L2422054

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01,04	Batch: WG191815	9-3				
Dichlorodifluoromethane	90		-		70-130	-		
Chloromethane	88		-		70-130	-		
Freon-114	100		-		70-130	-		
Vinyl chloride	96		-		70-130	-		
1,3-Butadiene	107		-		70-130	-		
Bromomethane	100		-		70-130	-		
Chloroethane	96		-		70-130	-		
Ethanol	91		-		40-160	-		
Vinyl bromide	90		-		70-130	-		
Acetone	94		-		40-160	-		
Trichlorofluoromethane	93		-		70-130	-		
Isopropanol	84		-		40-160	-		
1,1-Dichloroethene	93		-		70-130	-		
Tertiary butyl Alcohol	92		-		70-130	-		
Methylene chloride	96		-		70-130	-		
3-Chloropropene	96		-		70-130	-		
Carbon disulfide	87		-		70-130	-		
Freon-113	88		-		70-130	-		
trans-1,2-Dichloroethene	93		-		70-130	-		
1,1-Dichloroethane	88		-		70-130	-		
Methyl tert butyl ether	94		-		70-130	-		
2-Butanone	91		-		70-130	-		
cis-1,2-Dichloroethene	92		-		70-130	-		

Project Name: WATERFIELD P2

Project Number: EA2305

Lab Number: L2422054

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01,04	Batch: WG1918	159-3				
Ethyl Acetate	98		-		70-130	-		
Chloroform	96		-		70-130	-		
Tetrahydrofuran	90		-		70-130	-		
1,2-Dichloroethane	86		-		70-130	-		
n-Hexane	105		-		70-130	-		
1,1,1-Trichloroethane	93		-		70-130	-		
Benzene	94		-		70-130	-		
Carbon tetrachloride	96		-		70-130	-		
Cyclohexane	105		-		70-130	-		
1,2-Dichloropropane	92		-		70-130	-		
Bromodichloromethane	106		-		70-130	-		
1,4-Dioxane	106		-		70-130	-		
Trichloroethene	96		-		70-130	-		
2,2,4-Trimethylpentane	106		-		70-130	-		
Heptane	101		-		70-130	-		
cis-1,3-Dichloropropene	100		-		70-130	-		
4-Methyl-2-pentanone	101		-		70-130	-		
trans-1,3-Dichloropropene	100		-		70-130	-		
1,1,2-Trichloroethane	93		-		70-130	-		
Toluene	89		-		70-130	-		
2-Hexanone	101		-		70-130	-		
Dibromochloromethane	100		-		70-130	-		
1,2-Dibromoethane	88		-		70-130	-		

Project Name: WATERFIELD P2

Project Number: EA2305

Lab Number: L2422054

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	ociated sample(s):	01,04	Batch: WG1918	3159-3				
Tetrachloroethene	86		-		70-130	-		
Chlorobenzene	89		-		70-130	-		
Ethylbenzene	90		-		70-130	-		
p/m-Xylene	92		-		70-130	-		
Bromoform	97		-		70-130	-		
Styrene	90		-		70-130	-		
1,1,2,2-Tetrachloroethane	98		-		70-130	-		
o-Xylene	93		-		70-130	-		
4-Ethyltoluene	92		-		70-130	-		
1,3,5-Trimethylbenzene	92		-		70-130	-		
1,2,4-Trimethylbenzene	95		-		70-130	-		
Benzyl chloride	97		-		70-130	-		
1,3-Dichlorobenzene	92		-		70-130	-		
1,4-Dichlorobenzene	89		-		70-130	-		
1,2-Dichlorobenzene	91		-		70-130	-		
1,2,4-Trichlorobenzene	89		-		70-130	-		
Naphthalene	92		-		70-130	-		
Hexachlorobutadiene	86		-		70-130	-		

Lab Number: L2422054

Project Number: EA2305

WATERFIELD P2

Project Name:

Report Date: 05/08/24

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2422054-01	SV-01	01834	Flow 2	04/17/24	463151		-	-	-	Pass	4.5	4.7	4
L2422054-01	SV-01	520	2.7L Can	04/17/24	463151	L2420404-01	Pass	-29.4	-4.3	-	-	-	-
L2422054-02	SV-02	01452	Flow 4	04/17/24	463151		-	-	-	Pass	4.4	4.8	9
L2422054-02	SV-02	411	2.7L Can	04/17/24	463151	L2420404-01	Pass	-29.5	-5.3	-	-	-	-
L2422054-03	SV-03	0846	Flow 5	04/17/24	463151		-	-	-	Pass	4.6	4.6	0
L2422054-03	SV-03	3401	2.7L Can	04/17/24	463151	L2420404-01	Pass	-29.4	-5.1	-	-	-	-
L2422054-04	SV-04	02240	Flow 5	04/17/24	463151		-	-	-	Pass	4.5	4.7	4
L2422054-04	SV-04	507	2.7L Can	04/17/24	463151	L2420404-01	Pass	-29.5	-5.6	-	-	-	-
L2422054-05	SV-05	0017	Flow 4	04/17/24	463151		-	-	-	Pass	4.5	5.2	14
L2422054-05	SV-05	2076	2.7L Can	04/17/24	463151	L2420404-01	Pass	-29.5	-7.3	-	-	-	-

L2420404

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/08/24

Air Canister Certification Results

Lab ID: L2420404-01

Date Collected: 04/13/24 12:00 Client ID: **CAN 3244 SHELF 15** Date Received: 04/15/24

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 04/15/24 16:45

Analyst: KJD

	-	ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2420404

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/08/24

Air Canister Certification Results

Lab ID: L2420404-01

Date Collected: 04/13/24 12:00 Client ID: **CAN 3244 SHELF 15** Date Received: 04/15/24

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2420404

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/08/24

Air Canister Certification Results

Lab ID: L2420404-01

Date Collected: 04/13/24 12:00 Client ID: **CAN 3244 SHELF 15** Date Received: 04/15/24

Sample Location:

Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2420404

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/08/24

Air Canister Certification Results

Lab ID: L2420404-01

Date Collected: 04/13/24 12:00 Client ID: **CAN 3244 SHELF 15** Date Received: 04/15/24

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
I-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2420404

Project Number: CANISTER QC BAT **Report Date:** 05/08/24

Air Canister Certification Results

Lab ID: L2420404-01

Date Collected: 04/13/24 12:00 Client ID: **CAN 3244 SHELF 15** Date Received:

04/15/24 Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	93		60-140

L2420404

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 05/08/24

Air Canister Certification Results

Lab ID: L2420404-01

Date Collected: 04/13/24 12:00 Client ID: **CAN 3244 SHELF 15** Date Received: 04/15/24

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 04/15/24 16:45

Analyst: KJD

		ppbV			ug/m3		Dilution Factor	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	1 actor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Frichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2420404

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 05/08/24

Air Canister Certification Results

Lab ID: L2420404-01

Date Collected: 04/13/24 12:00 Client ID: **CAN 3244 SHELF 15** Date Received: 04/15/24

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV		ug/m3	Dilutio				
Parameter	Results	RL	RL MDL		Results RL		Qualifier	Factor	
Volatile Organics in Air by SIM	- Mansfield Lab								
1,2-Dichloropropane	ND	0.020		ND	0.092			1	
Bromodichloromethane	ND	0.020		ND	0.134			1	
1,4-Dioxane	ND	0.100		ND	0.360			1	
Frichloroethene	ND	0.020		ND	0.107			1	
is-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
,1,2-Trichloroethane	ND	0.020		ND	0.109			1	
Toluene	ND	0.100		ND	0.377			1	
Dibromochloromethane	ND	0.020		ND	0.170			1	
,2-Dibromoethane	ND	0.020		ND	0.154			1	
etrachloroethene	ND	0.020		ND	0.136			1	
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
Chlorobenzene	ND	0.100		ND	0.461			1	
Ethylbenzene	ND	0.020		ND	0.087			1	
n/m-Xylene	ND	0.040		ND	0.174			1	
Bromoform	ND	0.020		ND	0.207			1	
Styrene	ND	0.020		ND	0.085			1	
,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
o-Xylene	ND	0.020		ND	0.087			1	
sopropylbenzene	ND	0.200		ND	0.983			1	
1-Ethyltoluene	ND	0.020		ND	0.098			1	
,3,5-Trimethybenzene	ND	0.020		ND	0.098			1	
,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1	
Benzyl chloride	ND	0.100		ND	0.518			1	
,3-Dichlorobenzene	ND	0.020		ND	0.120			1	
,4-Dichlorobenzene	ND	0.020		ND	0.120			1	

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2420404

Project Number: CANISTER QC BAT **Report Date:** 05/08/24

Air Canister Certification Results

Lab ID: L2420404-01

Date Collected: 04/13/24 12:00 Client ID: **CAN 3244 SHELF 15** Date Received: 04/15/24

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	101		60-140
chlorobenzene-d5	95		60-140

Project Name: WATERFIELD P2

Lab Number: L2422054

Project Number: EA2305 Report Date: 05/08/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

NA Absent

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler pl		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2422054-01A	Canister - 2.7L (Batch Certified)	NA	NA			Υ	Absent		TO15-LL(30)
	L2422054-02A	Canister - 2.7L (Batch Certified)	NA	NA			Υ	Absent		TO15-LL(30)
	L2422054-03A	Canister - 2.7L (Batch Certified)	NA	NA			Υ	Absent		TO15-LL(30)
	L2422054-04A	Canister - 2.7L (Batch Certified)	NA	NA			Υ	Absent		TO15-LL(30)
	L2422054-05A	Canister - 2.7L (Batch Certified)	NA	NA			Υ	Absent		TO15-LL(30)

Project Name: WATERFIELD P2 Lab Number: L2422054

Project Number: EA2305 Report Date: 05/08/24

GLOSSARY

Acronyms

EDL

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:WATERFIELD P2Lab Number:L2422054Project Number:EA2305Report Date:05/08/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \text{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name:WATERFIELD P2Lab Number:L2422054Project Number:EA2305Report Date:05/08/24

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:WATERFIELD P2Lab Number:L2422054Project Number:EA2305Report Date:05/08/24

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 21

> Published Date: 04/17/2024 Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

													Seria	al_No	:05082416:	33
A		NALYSIS	PA	IGEC	OF _	Date R	ec'd in La	ıb: 41-	14/2	y		ALF	РНА .	Job#	: L242	2054
ALPHA	CHAIN OF CUSTODY	Project Informa	ition		Carlo B	Repo	rt Inform	ation -	Data D	eliveral	oles	Bill	ing Ir	nform	ation	
	Mansfield, MA 02048 0 FAX: 508-822-3288	Project Name: W	tarfiel	J PI		□ FAX						≱ Sa	me as	s Client	info PO#	EA 2305
Client Informati		Project Location:	245	6-45	+	□AD		acker:								
Client: Enu A	dvantage, Inc	Project #:EA23		mrn J			(Default bas	ed on Regu	latory Crit	eria Indicate	d)					
Address:3636	N. Buffalo Rd.	Project Manager:		nm+M	. cu 5711	EM L	Other Form AlL (stand	nats: dard pdf :	report)			Re	gulate	ory Re	equirements	/Report Limit
	Park, NY 14127	ALPHA Quote #:	io i i ii	ripic / 10	219 320	Add	ditional De	eliverable	is:			State	e/Fed	F	Program	Res / Comm
	667 3130	Turn-Around T	ime			Repor	t to: or affere	nt than Projec	t Marvager)					+		
Fax: 716	6673156	X Standard	□ RUSH (only)													
	Genvadvantage.com	Standard	L KOSH jony	ociatisment it tisse-inter	provedy								AN	ALYS	SIS	
These samples have a sample of the sample	ave been previously analyzed by Alph			Time:								11	0	Lite	///	
500 CO. C.	Specific Requirements/Cor											///	A STATE OF THE STA	35,70	///	
Project-Specific	c Target Compound List:										_/	//	Se Se	"Cappan	//	
	THE THE PARTY OF	XII Columi	ns Bel	low N	/lust	Bel	Fille	d O	ut	100	40	SSIM	Fixed Gases	25 & Age	//	
ALPHA Lab ID (Lab Use Only)	Sample ID	End Date Start Tir	DLLECTIO ne End Time	N Initial Vacuum	Final	Sample Matrix*	Sampler' Initials	s Can Size	I D Can	I D - Flow Controller	20.7	APH See	Fixe		Sample Cor	mments (i.e. PID
	SV-01	4/22/208:4				SV	CS	2.7	520	01834						
	SV-02	4/22/24 09:2					CS	2.7	411	01452	X					
	SV-03	4/22/24 09:4	517:25	-2988	-5.58	SV										
	SV-04	4/22/2410:0								02240		П				
WEST OF THE PARTY	SV-05	4/22/24 10:11					es			0017						
	37.03	V2427 10 . [1	117.50	- 1.60	7.00	<i>J</i> v		2.7	2018		1	\Box	П			
												H				
												Ħ				
												††				
											Н					
		AA = Ambient Air (Ind	oor/Outdoor)	ann di	- 488						H	++	+			
*SAMP	LE MATRIX CODES	SV = Soil Vapor/Landf Other = Please Specify						Containe	r Type	2.7L Sum	- -				completely. Sa	early, legibly and amples can not be
WAR 11 12		Relinquished By:	3	Date	e/Time		Rece	eived By		Jun		Date/Tir	me:		clock will not s	turnaround time tart until any ambi
	Cal	11: Douds	ė.	1/53/	3485	2	The	. *		4	23/	14	53	6	submitted are	olved. All samples subject to Alpha's
	C.CA	Lang IV	-	J. Puller	of the same		A 4.07			-/4	148	P4 01			Terms and Cor	nditions

ANALYTICAL REPORT

Lab Number: L2430322

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna Phone: (716) 667-3130

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305 Report Date: 06/19/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ANALYTICAL

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2430322 **Report Date:** 06/19/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2430322-01	IB-01 3.5'-4.5'	SOIL	4245 CLARK ST. HAMBURG	05/30/24 15:00	05/31/24
L2430322-02	IB-02 6'-7'	SOIL	4245 CLARK ST. HAMBURG	05/30/24 14:45	05/31/24
L2430322-03	IB-03 7'-8'	SOIL	4245 CLARK ST. HAMBURG	05/30/24 14:15	05/31/24

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2430322Project Number:EA2305Report Date:06/19/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.									

Serial_No:06192416:03

Project Name: WATERFIELD INDOOR PHASE 2

Lab Number:

L2430322

Project Number:

EA2305

Report Date:

06/19/24

Case Narrative (continued)

Report Revision

June 19, 2024: The Volatile Organics analyte list has been amended on L2430322-01, -02 and -03.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

L2430322-01: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (191%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2430322-02D and -03D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L2430322-02D: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (190%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2430322-03D: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (213%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

The WG1931270-5 Method Blank, associated with L2430322-01, has a concentration above the reporting limit for chloroform and bromodichloromethane. Since the associated sample concentrations are either greater than 10x the blank concentration or non-detect to the RL for these target analytes, no corrective action is required. Any results detected below the reporting limit are qualified with a "B".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 06/19/24

ORGANICS

VOLATILES

L2430322

06/19/24

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

SAMPLE RESULTS

Date Collected: 05/30/24 15:00

Lab Number:

Report Date:

Lab ID: L2430322-01 Client ID: IB-01 3.5'-4.5'

Date Received: 05/31/24 Field Prep: Sample Location: Not Specified 4245 CLARK ST. HAMBURG

Sample Depth:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 06/07/24 11:08

Analyst: MKS 87% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ıgh Lab					
Methylene chloride	ND		ug/kg	5.2	2.4	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.0	0.24	1
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1
Dibromochloromethane	ND		ug/kg	1.0	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.28	1
Tetrachloroethene	0.37	J	ug/kg	0.52	0.20	1
Chlorobenzene	ND		ug/kg	0.52	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.2	0.73	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.27	1
1,1,1-Trichloroethane	ND		ug/kg	0.52	0.17	1
Bromodichloromethane	ND		ug/kg	0.52	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.28	1
cis-1,3-Dichloropropene	ND		ug/kg	0.52	0.16	1
Bromoform	ND		ug/kg	4.2	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.52	0.17	1
Benzene	ND		ug/kg	0.52	0.17	1
Toluene	0.74	J	ug/kg	1.0	0.57	1
Ethylbenzene	0.89	J	ug/kg	1.0	0.15	1
Chloromethane	ND		ug/kg	4.2	0.97	1
Bromomethane	ND		ug/kg	2.1	0.61	1
Vinyl chloride	ND		ug/kg	1.0	0.35	1
Chloroethane	ND		ug/kg	2.1	0.47	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.25	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.14	1
Trichloroethene	ND		ug/kg	0.52	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.1	0.15	1

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number: L2430322

Project Number: EA2305 Report Date: 06/19/24

SAMPLE RESULTS

Lab ID: L2430322-01 Date Collected: 05/30/24 15:00

Client ID: IB-01 3.5'-4.5' Date Received: 05/31/24

Sample Location: 4245 CLARK ST. HAMBURG Field Prep: Not Specified

Sample Depth:

ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzane ND ug/kg 2.1 0.18 1 Methly terber butyl ether ND ug/kg 2.1 0.21 1 pr/m-Xylene 6.9 ug/kg 2.1 0.58 1 oxylylene 1.6 ug/kg 1.0 0.30 1 xylylenes, Total 8.5 ug/kg 1.0 0.30 1 cis-1,2-Dichloroethene ND ug/kg 1.0 0.20 1 Styrene ND ug/kg 1.0 0.20 1 Dichlorodifluoromethane ND ug/kg 1.0 0.96 1 Acatone 11 ug/kg 1.0 0.96 1 Carbon disulfide ND ug/kg 1.0 4.8 1 Carbon disulfide ND ug/kg 1.0 4.8 1 2-Butanone ND ug/kg 1.0 1.3 1 2-Hexanone ND ug/kg 1.0 0.1 1	Volatile Organics by GC/MS - Wes	stborough Lab					
1.4-Dichlorobenzane ND ug/kg 2.1 0.18 1 Methly terber butyl ether ND ug/kg 2.1 0.21 1 pr/m-Xylene 6.9 ug/kg 2.1 0.58 1 oxylylene 1.6 ug/kg 1.0 0.30 1 xylylenes, Total 8.5 ug/kg 1.0 0.30 1 cis-1,2-Dichloroethene ND ug/kg 1.0 0.20 1 Styrene ND ug/kg 1.0 0.20 1 Dichlorodifluoromethane ND ug/kg 1.0 0.96 1 Acatone 11 ug/kg 1.0 0.96 1 Carbon disulfide ND ug/kg 1.0 4.8 1 Carbon disulfide ND ug/kg 1.0 4.8 1 2-Butanone ND ug/kg 1.0 1.3 1 2-Hexanone ND ug/kg 1.0 0.1 1	1,3-Dichlorobenzene	ND		ug/kg	2.1	0.15	1
Methyl tert butyl ether ND ug/kg 2.1 0.21 1 p/m-xylene 6.9 ug/kg 2.1 0.58 1 o-xylene 1.6 ug/kg 1.0 0.30 1 xylenes, Total 8.5 ug/kg 1.0 0.30 1 slast-1,2-Dichloroethene ND ug/kg 1.0 0.20 1 Skyrene ND ug/kg 1.0 0.96 1 Dichlorodiffuoromethane ND ug/kg 10 0.96 1 Acetone 11 ug/kg 10 0.96 1 Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 4.8 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochitoromethane ND ug/kg 1.0 0.21 1 1,2-Dibromoethane ND ug/kg 1.0 0.17 1	1,4-Dichlorobenzene	ND			2.1	0.18	1
prim-Xylene 6.9 ug/kg 2.1 0.58 1 o-Xylene 1.6 ug/kg 1.0 0.30 1 Xylenes, Total 8.5 ug/kg 1.0 0.30 1 Styrene ND ug/kg 1.0 0.18 1 Styrene ND ug/kg 1.0 0.96 1 Dichlorodifluoromethane ND ug/kg 10 0.96 1 Acetone 11 ug/kg 10 0.96 1 Acetone 11 ug/kg 10 4.8 1 Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 2.3 1 4-Wethyl-2-pentanone ND ug/kg 10 1.2 1 2-Hexanone ND ug/kg 10 0.21 1 1-2-Dithomethane ND<	Methyl tert butyl ether	ND			2.1	0.21	1
o-Xylene 1.6 ug/kg 1.0 0.30 1 Xylenes, Total 8.5 ug/kg 1.0 0.30 1 Sist-12-Dichloroethene ND ug/kg 1.0 0.18 1 Styrene ND ug/kg 1.0 0.20 1 Dichlorodifluoromethane ND ug/kg 10 0.96 1 Acetone 11 ug/kg 10 5.0 1 Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 1.3 1 2-Butanone ND ug/kg 10 1.2 1 2-Hexanone ND ug/kg 10 1.2 1 1-2-Dibromoshane ND ug/kg 1.0 0.17 1 1-2-Dibromoshane ND ug/kg 1.0 0.11 1 1-2-Dibromoshane <td>p/m-Xylene</td> <td>6.9</td> <td></td> <td></td> <td>2.1</td> <td>0.58</td> <td>1</td>	p/m-Xylene	6.9			2.1	0.58	1
Xylenes, Total 8.5 ug/kg 1.0 0.30 1 cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 1 Styrene ND ug/kg 1.0 0.20 1 Dichlorodifluoromethane ND ug/kg 10 0.96 1 Acetone 11 ug/kg 10 0.96 1 Acetone 11 ug/kg 10 4.8 1 Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 4.8 1 2-Hexanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 1.0 0.21 1 1-2-Dibromoethane ND ug/kg 1.0 0.17 1 1-2-Dibromoethane 3.4 ug/kg 1.0 0.17 1 1-2-Dibro	o-Xylene	1.6			1.0	0.30	1
ND	Xylenes, Total	8.5			1.0	0.30	1
Dichlorodifluoromethane ND	cis-1,2-Dichloroethene	ND			1.0	0.18	1
Acetone 11 ug/kg 10 5.0 1 Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 2.3 1 4-Methyl-2-pentanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 10 1.2 1 1-2-Dibromoethane ND ug/kg 2.1 0.21 1 1.2-Dibromoethane ND ug/kg 1.0 0.29 1 1.2-Dibromoethane ND ug/kg 1.0 0.17 1 1-2-Dibromoethane S3 ug/kg 1.0 0.17 1 1-2-Dibromoethane ND ug/kg 2.1 0.12 1 1-1-Butylbenzene S3 ug/kg 1.0 0.17 1 1-2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 12 1 1-2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 12 1 1-2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 11 1 1-2-Dispropylbenzene 6.0 ug/kg 1.0 0.11 1 1-2-Dispropylbenzene 6.0 ug/kg 1.0 0.11 1 1-2-Dispropylbenzene 15 ug/kg 1.0 0.11 1 1-1-Dispropylbenzene 15 ug/kg 1.0 0.11 1 1-1-1-Dispropylbenzene 15 ug/kg 1.0 0.18 1 1.2-3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1.2-3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1.2-4-Trimethylbenzene 190 ug/kg 2.1 0.35 1 1.2-4-Trimethylbenzene 190 ug/kg 2.1 0.35 1 1.2-4-Trimethylbenzene ND ug/kg 4.2 0.99 1 1.3-5-Trimethylbenzene ND ug/kg 4.2 0.99 1 1.4-Dioxane ND ug/kg 4.2 0.99 1	Styrene	ND		ug/kg	1.0	0.20	1
Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 2.3 1 4-Methyl-2-pentanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 2.1 0.21 1 1,2-Dibromoethane ND ug/kg 1.0 0.29 1 n-Butylbenzene 53 ug/kg 1.0 0.17 1 tetr-Butylbenzene 3.4 ug/kg 2.1 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 1 Isspropylbenzene 6.0 ug/kg 3.1 1.0 1 Isspropylbenzene 64 ug/kg 1.0 0.11 1 Naphthalene 15 ug/kg 4.2 0.68 1 n-Propylbenzene 26 ug/kg 2.1 0.34 1	Dichlorodifluoromethane	ND		ug/kg	10	0.96	1
2-Butanone ND ug/kg 10 2.3 1 4-Methyl-2-pentanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 2.1 0.21 1 1,2-Dibromoethane ND ug/kg 1.0 0.29 1 1,2-Dibromoethane ND ug/kg 1.0 0.17 1 tert-Butylbenzene 53 ug/kg 1.0 0.17 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.1 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 1 Isopropylbenzene 6.0 ug/kg 3.1 1.0 1 Isopropylbenzene 64 ug/kg 1.0 0.11 1 In-Propylbenzene 64 ug/kg 1.0 0.11 1 Naphthalene 15 ug/kg 4.2 0.68 1 In-Propylbenzene 26 ug/kg 1.0 0.11 1 In-Propylbenzene ND ug/kg 2.1 0.34 1 In-2-Trichlorobenzene ND ug/kg 2.1 0.35 1 In-3-Trimethylbenzene 190 ug/kg 2.1 0.20 1 In-3-Trimethylbenzene 190 ug/kg 2.1 0.35 1 In-2-Trimethylbenzene ND ug/kg 3.1 0.0 0.57 1 In-2-Trimethylbenzene ND ug/kg 3.2 0.99 1 In-2-Trimethylbenzene ND ug/kg 3.1 0.0 0.57 1 In-2-Trimethylbenzene ND ug/kg 3.2 0.52 1	Acetone	11		ug/kg	10	5.0	1
A-Methyl-2-pentanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 2.1 0.21 1 1.2-Dibromoethane ND ug/kg 1.0 0.29 1 1.1-Pulybenzene 53 ug/kg 1.0 0.17 1 1.2-Dibromo-3-chloropropane ND ug/kg 2.1 0.12 1 1.2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 12 1 1.2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 1 1.5-polybenzene 6.0 ug/kg 1.0 0.11 1 1-polybenzene 64 ug/kg 1.0 0.11 1 1-polybenzene 64 ug/kg 1.0 0.11 1 Naphthalene 15 ug/kg 1.0 0.11 1 Naphthalene 15 ug/kg 1.0 0.11 1 1-1-Propylbenzene 26 ug/kg 1.0 0.11 1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Carbon disulfide	ND		ug/kg	10	4.8	1
ND	2-Butanone	ND		ug/kg	10	2.3	1
ND	4-Methyl-2-pentanone	ND		ug/kg	10	1.3	1
1,2-Dibromoethane ND ug/kg 1.0 0.29 1 1.0 1.0 0.29 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2-Hexanone	ND		ug/kg	10	1.2	1
n-Butylbenzene 53 ug/kg 1.0 0.17 1 tert-Butylbenzene 3.4 ug/kg 2.1 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 11 Isopropylbenzene 6.0 ug/kg 1.0 0.11 1 p-Isopropyltoluene 64 ug/kg 1.0 0.11 1 Naphthalene 15 ug/kg 4.2 0.68 1 n-Propylbenzene 26 ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trimethylbenzene 190 ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene 190 ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 190 ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene ND ug/kg 3.1 0.57 1 1,4-Dioxane ND ug/kg 4.2 0.99 1 1,4-Dioxane ND ug/kg 4.2 0.99 1 1,4-Dioxane ND ug/kg 4.2 0.72 1	Bromochloromethane	ND		ug/kg	2.1	0.21	1
tert-Butylbenzene 3.4 ug/kg 2.1 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 1 Isopropylbenzene 6.0 ug/kg 1.0 0.11 1 p-Isopropyltoluene 64 ug/kg 1.0 0.11 1 Naphthalene 15 ug/kg 4.2 0.68 1 n-Propylbenzene 26 ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene 190 ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 660 E ug/kg 2.1 0.35 1 Methyl Acetate ND ug/kg 4.2 0.99 1 Cyclohexane ND ug/kg 4.2 0.99 1 1,4-Dioxane ND ug/kg 4.2 0.72 1	1,2-Dibromoethane	ND		ug/kg	1.0	0.29	1
1,2-Dibromo-3-chloropropane	n-Butylbenzene	53		ug/kg	1.0	0.17	1
Sopropylbenzene 6.0 ug/kg 1.0 0.11 1 1 1 1 1 1 1 1 1	tert-Butylbenzene	3.4		ug/kg	2.1	0.12	1
P-Isopropyltoluene 64 ug/kg 1.0 0.11 1 Naphthalene 15 ug/kg 4.2 0.68 1 n-Propylbenzene 26 ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene 190 ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 660 E ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene ND ug/kg 3.1 0.20 1 1,2,4-Trimethylbenzene ND ug/kg 3.1 0.20 1 1,2,4-Trimethylbenzene ND ug/kg 3.1 0.35 1 1,4-Dioxane ND ug/kg 4.2 0.99 1 1,4-Dioxane ND ug/kg 84 37. 1 1,4-Dioxane ND ug/kg 84 37. 1 1,4-Dioxane ND ug/kg 84 37. 1	1,2-Dibromo-3-chloropropane	ND		ug/kg	3.1	1.0	1
Naphthalene 15 ug/kg 4.2 0.68 1 n-Propylbenzene 26 ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene 190 ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 660 E ug/kg 2.1 0.35 1 Methyl Acetate ND ug/kg 4.2 0.99 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.72 1	Isopropylbenzene	6.0		ug/kg	1.0	0.11	1
n-Propylbenzene 26 ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene 190 ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 660 E ug/kg 2.1 0.35 1 Methyl Acetate ND ug/kg 4.2 0.99 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.72 1	p-Isopropyltoluene	64		ug/kg	1.0	0.11	1
1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene 190 ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 660 E ug/kg 2.1 0.35 1 Methyl Acetate ND ug/kg 4.2 0.99 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.72 1	Naphthalene	15		ug/kg	4.2	0.68	1
1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene 190 ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 660 E ug/kg 2.1 0.35 1 Methyl Acetate ND ug/kg 4.2 0.99 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.72 1	n-Propylbenzene	26		ug/kg	1.0	0.18	1
1,3,5-Trimethylbenzene 190 ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 660 E ug/kg 2.1 0.35 1 Methyl Acetate ND ug/kg 4.2 0.99 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.72 1	1,2,3-Trichlorobenzene	ND		ug/kg	2.1	0.34	1
1,2,4-Trimethylbenzene 660 E ug/kg 2.1 0.35 1 Methyl Acetate ND ug/kg 4.2 0.99 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.72 1	1,2,4-Trichlorobenzene	ND		ug/kg	2.1	0.28	1
Methyl Acetate ND ug/kg 4.2 0.99 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.72 1	1,3,5-Trimethylbenzene	190		ug/kg	2.1	0.20	1
Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.72 1	1,2,4-Trimethylbenzene	660	Е	ug/kg	2.1	0.35	1
1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.72 1	Methyl Acetate	ND		ug/kg	4.2	0.99	1
Freon-113 ND ug/kg 4.2 0.72 1	Cyclohexane	ND		ug/kg	10	0.57	1
- 3	1,4-Dioxane	ND		ug/kg	84	37.	1
Methyl cyclohexane 0.76 J ug/kg 4.2 0.63 1	Freon-113	ND		ug/kg	4.2	0.72	1
	Methyl cyclohexane	0.76	J	ug/kg	4.2	0.63	1

Project Name: Lab Number: WATERFIELD INDOOR PHASE 2 L2430322

Project Number: Report Date: EA2305 06/19/24

SAMPLE RESULTS

Lab ID: Date Collected: 05/30/24 15:00 L2430322-01

Date Received: Client ID: 05/31/24 IB-01 3.5'-4.5' Sample Location: Field Prep: 4245 CLARK ST. HAMBURG Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	113		70-130	
4-Bromofluorobenzene	191	Q	70-130	
Dibromofluoromethane	97		70-130	

L2430322

06/19/24

05/31/24

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

SAMPLE RESULTS

05/30/24 14:45

Lab Number:

Report Date:

Date Received:

Lab ID: D Date Collected: L2430322-02

Client ID: IB-02 6'-7'

Sample Location: Field Prep: 4245 CLARK ST. HAMBURG Not Specified

Sample Depth:

Matrix: Soil 1,8260D Analytical Method: Analytical Date: 06/07/24 05:33

Analyst: JIC 87% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/kg	5700	2600	20
1,1-Dichloroethane	ND		ug/kg	1100	160	20
Chloroform	ND		ug/kg	1700	160	20
Carbon tetrachloride	ND		ug/kg	1100	260	20
1,2-Dichloropropane	ND		ug/kg	1100	140	20
Dibromochloromethane	ND		ug/kg	1100	160	20
1,1,2-Trichloroethane	ND		ug/kg	1100	300	20
Tetrachloroethene	ND		ug/kg	570	220	20
Chlorobenzene	ND		ug/kg	570	140	20
Trichlorofluoromethane	ND		ug/kg	4500	790	20
1,2-Dichloroethane	ND		ug/kg	1100	290	20
1,1,1-Trichloroethane	ND		ug/kg	570	190	20
Bromodichloromethane	ND		ug/kg	570	120	20
trans-1,3-Dichloropropene	ND		ug/kg	1100	310	20
cis-1,3-Dichloropropene	ND		ug/kg	570	180	20
Bromoform	ND		ug/kg	4500	280	20
1,1,2,2-Tetrachloroethane	ND		ug/kg	570	190	20
Benzene	ND		ug/kg	570	190	20
Toluene	1100		ug/kg	1100	610	20
Ethylbenzene	360	J	ug/kg	1100	160	20
Chloromethane	ND		ug/kg	4500	1000	20
Bromomethane	ND		ug/kg	2300	660	20
Vinyl chloride	ND		ug/kg	1100	380	20
Chloroethane	ND		ug/kg	2300	510	20
1,1-Dichloroethene	ND		ug/kg	1100	270	20
trans-1,2-Dichloroethene	ND		ug/kg	1700	160	20
Trichloroethene	ND		ug/kg	570	160	20
1,2-Dichlorobenzene	ND		ug/kg	2300	160	20

05/30/24 14:45

Project Name: WATERFIELD INDOOR PHASE 2 **Lab Number:** L2430322

Project Number: EA2305 Report Date: 06/19/24

SAMPLE RESULTS

Lab ID: L2430322-02 D Date Collected:

Client ID: IB-02 6'-7' Date Received: 05/31/24

Sample Location: 4245 CLARK ST. HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	2300	170	20	
1,4-Dichlorobenzene	ND		ug/kg	2300	190	20	
Methyl tert butyl ether	ND		ug/kg	2300	230	20	
p/m-Xylene	1000	J	ug/kg	2300	630	20	
o-Xylene	ND		ug/kg	1100	330	20	
Xylenes, Total	1000	J	ug/kg	1100	330	20	
cis-1,2-Dichloroethene	ND		ug/kg	1100	200	20	
Styrene	ND		ug/kg	1100	220	20	
Dichlorodifluoromethane	ND		ug/kg	11000	1000	20	
Acetone	ND		ug/kg	11000	5400	20	
Carbon disulfide	ND		ug/kg	11000	5200	20	
2-Butanone	ND		ug/kg	11000	2500	20	
4-Methyl-2-pentanone	ND		ug/kg	11000	1400	20	
2-Hexanone	ND		ug/kg	11000	1300	20	
Bromochloromethane	ND		ug/kg	2300	230	20	
1,2-Dibromoethane	ND		ug/kg	1100	320	20	
n-Butylbenzene	15000		ug/kg	1100	190	20	
tert-Butylbenzene	510	J	ug/kg	2300	130	20	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3400	1100	20	
Isopropylbenzene	1600		ug/kg	1100	120	20	
p-Isopropyltoluene	12000		ug/kg	1100	120	20	
Naphthalene	3700	J	ug/kg	4500	740	20	
n-Propylbenzene	5900		ug/kg	1100	190	20	
1,2,3-Trichlorobenzene	ND		ug/kg	2300	360	20	
1,2,4-Trichlorobenzene	ND		ug/kg	2300	310	20	
1,3,5-Trimethylbenzene	25000		ug/kg	2300	220	20	
1,2,4-Trimethylbenzene	130000		ug/kg	2300	380	20	
Methyl Acetate	ND		ug/kg	4500	1100	20	
Cyclohexane	ND		ug/kg	11000	620	20	
1,4-Dioxane	ND		ug/kg	90000	40000	20	
Freon-113	ND		ug/kg	4500	780	20	
Methyl cyclohexane	ND		ug/kg	4500	680	20	

Project Name: Lab Number: WATERFIELD INDOOR PHASE 2 L2430322

Project Number: Report Date: EA2305 06/19/24

SAMPLE RESULTS

Lab ID: D Date Collected: 05/30/24 14:45 L2430322-02

Date Received: Client ID: IB-02 6'-7' 05/31/24 Sample Location: Field Prep: 4245 CLARK ST. HAMBURG Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	190	Q	70-130	
Dibromofluoromethane	95		70-130	

L2430322

06/19/24

Project Name: WATERFIELD INDOOR PHASE 2

D

Project Number: EA2305

SAMPLE RESULTS

Date Collected: 05/30/24 14:15

Lab Number:

Report Date:

AWIFEE RESOLTS

Lab ID: L2430322-03
Client ID: IB-03 7'-8'

Client ID: Date Received: 05/31/24
Sample Location: 4245 CLARK ST. HAMBURG Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 06/07/24 05:59

Analyst: JIC Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	3200	1500	10
1,1-Dichloroethane	ND		ug/kg	650	94.	10
Chloroform	ND		ug/kg	970	90.	10
Carbon tetrachloride	ND		ug/kg	650	150	10
1,2-Dichloropropane	ND		ug/kg	650	81.	10
Dibromochloromethane	ND		ug/kg	650	90.	10
1,1,2-Trichloroethane	ND		ug/kg	650	170	10
Tetrachloroethene	ND		ug/kg	320	130	10
Chlorobenzene	ND		ug/kg	320	82.	10
Trichlorofluoromethane	ND		ug/kg	2600	450	10
1,2-Dichloroethane	ND		ug/kg	650	170	10
1,1,1-Trichloroethane	ND		ug/kg	320	110	10
Bromodichloromethane	ND		ug/kg	320	70.	10
trans-1,3-Dichloropropene	ND		ug/kg	650	180	10
cis-1,3-Dichloropropene	ND		ug/kg	320	100	10
Bromoform	ND		ug/kg	2600	160	10
1,1,2,2-Tetrachloroethane	ND		ug/kg	320	110	10
Benzene	ND		ug/kg	320	110	10
Toluene	350	J	ug/kg	650	350	10
Ethylbenzene	380	J	ug/kg	650	91.	10
Chloromethane	ND		ug/kg	2600	600	10
Bromomethane	ND		ug/kg	1300	380	10
Vinyl chloride	ND		ug/kg	650	220	10
Chloroethane	ND		ug/kg	1300	290	10
1,1-Dichloroethene	ND		ug/kg	650	150	10
trans-1,2-Dichloroethene	ND		ug/kg	970	88.	10
Trichloroethene	ND		ug/kg	320	88.	10
1,2-Dichlorobenzene	ND		ug/kg	1300	93.	10

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number: L2430322

Project Number: EA2305 Report Date: 06/19/24

SAMPLE RESULTS

Lab ID: L2430322-03 D Date Collected: 05/30/24 14:15

Sample Location: 4245 CLARK ST. HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westh	orough Lab					
1,3-Dichlorobenzene	ND		ug/kg	1300	96.	10
1,4-Dichlorobenzene	ND		ug/kg	1300	110	10
Methyl tert butyl ether	ND		ug/kg	1300	130	10
p/m-Xylene	1900		ug/kg	1300	360	10
o-Xylene	ND		ug/kg	650	190	10
Xylenes, Total	1900		ug/kg	650	190	10
cis-1,2-Dichloroethene	ND		ug/kg	650	110	10
Styrene	ND		ug/kg	650	130	10
Dichlorodifluoromethane	ND		ug/kg	6500	590	10
Acetone	ND		ug/kg	6500	3100	10
Carbon disulfide	ND		ug/kg	6500	2900	10
2-Butanone	ND		ug/kg	6500	1400	10
4-Methyl-2-pentanone	ND		ug/kg	6500	830	10
2-Hexanone	ND		ug/kg	6500	760	10
Bromochloromethane	ND		ug/kg	1300	130	10
1,2-Dibromoethane	ND		ug/kg	650	180	10
n-Butylbenzene	14000		ug/kg	650	110	10
tert-Butylbenzene	520	J	ug/kg	1300	76.	10
1,2-Dibromo-3-chloropropane	ND		ug/kg	1900	640	10
Isopropylbenzene	1400		ug/kg	650	70.	10
p-Isopropyltoluene	13000		ug/kg	650	70.	10
Naphthalene	5300		ug/kg	2600	420	10
n-Propylbenzene	5300		ug/kg	650	110	10
1,2,3-Trichlorobenzene	ND		ug/kg	1300	210	10
1,2,4-Trichlorobenzene	ND		ug/kg	1300	180	10
1,3,5-Trimethylbenzene	30000		ug/kg	1300	120	10
1,2,4-Trimethylbenzene	110000		ug/kg	1300	220	10
Methyl Acetate	ND		ug/kg	2600	610	10
Cyclohexane	ND		ug/kg	6500	350	10
1,4-Dioxane	ND		ug/kg	52000	23000	10
Freon-113	ND		ug/kg	2600	450	10
Methyl cyclohexane	ND		ug/kg	2600	390	10

Project Name: Lab Number: WATERFIELD INDOOR PHASE 2 L2430322

Project Number: Report Date: EA2305 06/19/24

SAMPLE RESULTS

Lab ID: D Date Collected: 05/30/24 14:15 L2430322-03

Date Received: Client ID: 05/31/24 IB-03 7'-8' Sample Location: Field Prep: 4245 CLARK ST. HAMBURG Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	113		70-130	
4-Bromofluorobenzene	213	Q	70-130	
Dibromofluoromethane	97		70-130	

Project Number: EA2305 Report Date: 06/19/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/06/24 21:53

Analyst: RAW

arameter	Result Qualifier Units		;	RL	MDL	
olatile Organics by GC/MS -	Westborough Lab	for sampl	le(s):	02-03	Batch:	WG1931129-5
Methylene chloride	ND		ug/k	9	250	110
1,1-Dichloroethane	ND		ug/k	9	50	7.2
Chloroform	17	J	ug/k	9	75	7.0
Carbon tetrachloride	ND		ug/k	9	50	12.
1,2-Dichloropropane	ND		ug/k	9	50	6.2
Dibromochloromethane	ND		ug/k	9	50	7.0
1,1,2-Trichloroethane	ND		ug/k	9	50	13.
Tetrachloroethene	ND		ug/k	9	25	9.8
Chlorobenzene	ND		ug/k	9	25	6.4
Trichlorofluoromethane	ND		ug/k	9	200	35.
1,2-Dichloroethane	ND		ug/k	9	50	13.
1,1,1-Trichloroethane	ND		ug/k	9	25	8.4
Bromodichloromethane	ND		ug/k	9	25	5.4
trans-1,3-Dichloropropene	ND		ug/k	9	50	14.
cis-1,3-Dichloropropene	ND		ug/k	9	25	7.9
Bromoform	ND		ug/k	9	200	12.
1,1,2,2-Tetrachloroethane	ND		ug/k	9	25	8.3
Benzene	ND		ug/k	9	25	8.3
Toluene	ND		ug/k	9	50	27.
Ethylbenzene	ND		ug/k	9	50	7.0
Chloromethane	ND		ug/k	9	200	47.
Bromomethane	ND		ug/k	9	100	29.
Vinyl chloride	ND		ug/k	9	50	17.
Chloroethane	ND		ug/k	9	100	23.
1,1-Dichloroethene	ND		ug/k	9	50	12.
trans-1,2-Dichloroethene	ND		ug/k	9	75	6.8
Trichloroethene	ND		ug/k	9	25	6.8
1,2-Dichlorobenzene	ND		ug/k	9	100	7.2
1,3-Dichlorobenzene	ND		ug/kg	9	100	7.4

Project Number: EA2305 Report Date: 06/19/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/06/24 21:53

Analyst: RAW

arameter	Result	Qualifier	Units	.	RL	MDL
olatile Organics by GC/MS - We	estborough Lab	for sampl	e(s):	02-03	Batch:	WG1931129-5
1,4-Dichlorobenzene	ND		ug/k	g	100	8.6
Methyl tert butyl ether	ND		ug/k	g	100	10.
p/m-Xylene	ND		ug/k	g	100	28.
o-Xylene	ND		ug/k	g	50	14.
Xylenes, Total	ND		ug/k	g	50	14.
cis-1,2-Dichloroethene	ND		ug/k	g	50	8.8
Styrene	ND		ug/k	g	50	9.8
Dichlorodifluoromethane	ND		ug/k	g	500	46.
Acetone	ND		ug/k	g	500	240
Carbon disulfide	ND		ug/k	g	500	230
2-Butanone	ND		ug/k	g	500	110
4-Methyl-2-pentanone	ND		ug/k	g	500	64.
2-Hexanone	ND		ug/k	g	500	59.
Bromochloromethane	ND		ug/k	g	100	10.
1,2-Dibromoethane	ND		ug/k	g	50	14.
n-Butylbenzene	ND		ug/k	g	50	8.4
tert-Butylbenzene	ND		ug/k	g	100	5.9
1,2-Dibromo-3-chloropropane	ND		ug/k	g	150	50.
Isopropylbenzene	ND		ug/k	g	50	5.4
p-Isopropyltoluene	ND		ug/k	g	50	5.4
Naphthalene	ND		ug/k	g	200	32.
n-Propylbenzene	ND		ug/k	g	50	8.6
1,2,3-Trichlorobenzene	16	J	ug/k	g	100	16.
1,2,4-Trichlorobenzene	ND		ug/k	g	100	14.
1,3,5-Trimethylbenzene	ND		ug/k	g	100	9.6
1,2,4-Trimethylbenzene	ND		ug/k	g	100	17.
Methyl Acetate	ND		ug/k	g	200	48.
Cyclohexane	ND		ug/k	g	500	27.
1,4-Dioxane	ND		ug/k	g	4000	1800

Project Number: EA2305 Report Date: 06/19/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/06/24 21:53

Analyst: RAW

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough Lat	o for sample	e(s): 02-03	Batch:	WG1931129-5	
Freon-113	ND		ug/kg	200	35.	
Methyl cyclohexane	ND		ug/kg	200	30.	

		Acceptance		
Surrogate	%Recovery Qualifi	er Criteria		
1,2-Dichloroethane-d4	94	70-130		
Toluene-d8	92	70-130		
4-Bromofluorobenzene	88	70-130		
Dibromofluoromethane	95	70-130		

Project Number: EA2305 Report Date: 06/19/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/07/24 10:16

Analyst: MKS

arameter	Result	Qualifier	Units		RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for samp	e(s): (01	Batch:	WG1931270-5
Methylene chloride	ND		ug/kg		5.0	2.3
1,1-Dichloroethane	ND		ug/kg		1.0	0.14
Chloroform	4.8		ug/kg		1.5	0.14
Carbon tetrachloride	ND		ug/kg		1.0	0.23
1,2-Dichloropropane	ND		ug/kg		1.0	0.12
Dibromochloromethane	0.71	J	ug/kg		1.0	0.14
1,1,2-Trichloroethane	ND		ug/kg		1.0	0.27
Tetrachloroethene	ND		ug/kg		0.50	0.20
Chlorobenzene	ND		ug/kg		0.50	0.13
Trichlorofluoromethane	ND		ug/kg		4.0	0.70
1,2-Dichloroethane	ND		ug/kg		1.0	0.26
1,1,1-Trichloroethane	ND		ug/kg		0.50	0.17
Bromodichloromethane	1.8		ug/kg		0.50	0.11
trans-1,3-Dichloropropene	ND		ug/kg		1.0	0.27
cis-1,3-Dichloropropene	ND		ug/kg		0.50	0.16
Bromoform	ND		ug/kg		4.0	0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg		0.50	0.17
Benzene	ND		ug/kg		0.50	0.17
Toluene	ND		ug/kg		1.0	0.54
Ethylbenzene	ND		ug/kg		1.0	0.14
Chloromethane	ND		ug/kg		4.0	0.93
Bromomethane	ND		ug/kg		2.0	0.58
Vinyl chloride	ND		ug/kg		1.0	0.34
Chloroethane	ND		ug/kg		2.0	0.45
1,1-Dichloroethene	ND		ug/kg		1.0	0.24
trans-1,2-Dichloroethene	ND		ug/kg		1.5	0.14
Trichloroethene	ND		ug/kg		0.50	0.14
1,2-Dichlorobenzene	ND		ug/kg		2.0	0.14
1,3-Dichlorobenzene	ND		ug/kg		2.0	0.15

Project Number: EA2305 Report Date: 06/19/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/07/24 10:16

Analyst: MKS

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for samp	le(s): 0	1 Batch:	WG1931270-5
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17
Methyl tert butyl ether	ND		ug/kg	2.0	0.20
p/m-Xylene	ND		ug/kg	2.0	0.56
o-Xylene	ND		ug/kg	1.0	0.29
Xylenes, Total	ND		ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18
Styrene	ND		ug/kg	1.0	0.20
Dichlorodifluoromethane	ND		ug/kg	10	0.92
Acetone	ND		ug/kg	10	4.8
Carbon disulfide	ND		ug/kg	10	4.6
2-Butanone	ND		ug/kg	10	2.2
4-Methyl-2-pentanone	ND		ug/kg	10	1.3
2-Hexanone	ND		ug/kg	10	1.2
Bromochloromethane	ND		ug/kg	2.0	0.20
1,2-Dibromoethane	ND		ug/kg	1.0	0.28
n-Butylbenzene	ND		ug/kg	1.0	0.17
tert-Butylbenzene	ND		ug/kg	2.0	0.12
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0
Isopropylbenzene	ND		ug/kg	1.0	0.11
p-Isopropyltoluene	ND		ug/kg	1.0	0.11
Naphthalene	0.72	J	ug/kg	4.0	0.65
n-Propylbenzene	ND		ug/kg	1.0	0.17
1,2,3-Trichlorobenzene	0.55	J	ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	0.36	J	ug/kg	2.0	0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33
Methyl Acetate	ND		ug/kg	4.0	0.95
Cyclohexane	ND		ug/kg	10	0.54
1,4-Dioxane	ND		ug/kg	80	35.

Project Number: EA2305 Report Date: 06/19/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/07/24 10:16

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample	e(s): 01	Batch:	WG1931270-5
Freon-113	ND		ug/kg	4.0	0.69
Methyl cyclohexane	ND		ug/kg	4.0	0.60

	Acceptance						
Surrogate	%Recovery Qualifi	er Criteria					
1,2-Dichloroethane-d4	92	70-130					
Toluene-d8	93	70-130					
4-Bromofluorobenzene	88	70-130					
Dibromofluoromethane	96	70-130					

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2430322

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-03 Batch: W0	G1931129-3 WG1931129-4		
Methylene chloride	93		92	70-130	1	30
1,1-Dichloroethane	98		97	70-130	1	30
Chloroform	92		92	70-130	0	30
Carbon tetrachloride	91		93	70-130	2	30
1,2-Dichloropropane	99		103	70-130	4	30
Dibromochloromethane	96		102	70-130	6	30
1,1,2-Trichloroethane	92		98	70-130	6	30
Tetrachloroethene	102		105	70-130	3	30
Chlorobenzene	104		107	70-130	3	30
Trichlorofluoromethane	99		96	70-139	3	30
1,2-Dichloroethane	89		92	70-130	3	30
1,1,1-Trichloroethane	95		95	70-130	0	30
Bromodichloromethane	91		93	70-130	2	30
trans-1,3-Dichloropropene	97		103	70-130	6	30
cis-1,3-Dichloropropene	98		101	70-130	3	30
Bromoform	90		94	70-130	4	30
1,1,2,2-Tetrachloroethane	95		100	70-130	5	30
Benzene	101		103	70-130	2	30
Toluene	102		104	70-130	2	30
Ethylbenzene	102		104	70-130	2	30
Chloromethane	77		75	52-130	3	30
Bromomethane	121		113	57-147	7	30
Vinyl chloride	101		99	67-130	2	30

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2430322

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-03 Batch: W0	G1931129-3 WG1931129-4		
Chloroethane	110		106	50-151	4	30
1,1-Dichloroethene	98		95	65-135	3	30
trans-1,2-Dichloroethene	100		97	70-130	3	30
Trichloroethene	95		96	70-130	1	30
1,2-Dichlorobenzene	105		107	70-130	2	30
1,3-Dichlorobenzene	107		109	70-130	2	30
1,4-Dichlorobenzene	105		107	70-130	2	30
Methyl tert butyl ether	92		94	66-130	2	30
p/m-Xylene	104		107	70-130	3	30
o-Xylene	102		105	70-130	3	30
cis-1,2-Dichloroethene	96		98	70-130	2	30
Styrene	106		108	70-130	2	30
Dichlorodifluoromethane	82		79	30-146	4	30
Acetone	71		76	54-140	7	30
Carbon disulfide	94		91	59-130	3	30
2-Butanone	76		77	70-130	1	30
4-Methyl-2-pentanone	94		100	70-130	6	30
2-Hexanone	77		79	70-130	3	30
Bromochloromethane	97		99	70-130	2	30
1,2-Dibromoethane	92		97	70-130	5	30
n-Butylbenzene	111		112	70-130	1	30
tert-Butylbenzene	103		106	70-130	3	30
1,2-Dibromo-3-chloropropane	92		98	68-130	6	30

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2430322

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Wes	stborough Lab Associated sa	ample(s): 02	-03 Batch:	WG1931129-3	WG1931129-4			
Isopropylbenzene	104		104		70-130	0		30
p-Isopropyltoluene	110		111		70-130	1		30
Naphthalene	101		106		70-130	5		30
n-Propylbenzene	105		107		70-130	2		30
1,2,3-Trichlorobenzene	108		111		70-130	3		30
1,2,4-Trichlorobenzene	117		118		70-130	1		30
1,3,5-Trimethylbenzene	102		104		70-130	2		30
1,2,4-Trimethylbenzene	104		107		70-130	3		30
Methyl Acetate	71		74		51-146	4		30
Cyclohexane	96		96		59-142	0		30
1,4-Dioxane	108		116		65-136	7		30
Freon-113	105		102		50-139	3		30
Methyl cyclohexane	101		102		70-130	1		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	85	85	70-130
Toluene-d8	96	94	70-130
4-Bromofluorobenzene	92	93	70-130
Dibromofluoromethane	92	92	70-130

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2430322

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG19	931270-3 W	VG1931270-4		
Methylene chloride	90		80		70-130	12	30
1,1-Dichloroethane	92		85		70-130	8	30
Chloroform	85		81		70-130	5	30
Carbon tetrachloride	83		80		70-130	4	30
1,2-Dichloropropane	93		89		70-130	4	30
Dibromochloromethane	88		84		70-130	5	30
1,1,2-Trichloroethane	88		83		70-130	6	30
Tetrachloroethene	91		90		70-130	1	30
Chlorobenzene	95		91		70-130	4	30
Trichlorofluoromethane	94		88		70-139	7	30
1,2-Dichloroethane	83		79		70-130	5	30
1,1,1-Trichloroethane	86		83		70-130	4	30
Bromodichloromethane	84		81		70-130	4	30
trans-1,3-Dichloropropene	91		86		70-130	6	30
cis-1,3-Dichloropropene	92		87		70-130	6	30
Bromoform	82		79		70-130	4	30
1,1,2,2-Tetrachloroethane	89		87		70-130	2	30
Benzene	93		90		70-130	3	30
Toluene	91		90		70-130	1	30
Ethylbenzene	92		89		70-130	3	30
Chloromethane	70		63		52-130	11	30
Bromomethane	109		98		57-147	11	30
Vinyl chloride	92		84		67-130	9	30

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2430322

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	1 Batch: WG1	931270-3	WG1931270-4		
Chloroethane	101		93		50-151	8	30
1,1-Dichloroethene	90		83		65-135	8	30
trans-1,2-Dichloroethene	92		85		70-130	8	30
Trichloroethene	85		82		70-130	4	30
1,2-Dichlorobenzene	96		94		70-130	2	30
1,3-Dichlorobenzene	98		96		70-130	2	30
1,4-Dichlorobenzene	96		93		70-130	3	30
Methyl tert butyl ether	89		80		66-130	11	30
p/m-Xylene	94		92		70-130	2	30
o-Xylene	94		91		70-130	3	30
cis-1,2-Dichloroethene	90		86		70-130	5	30
Styrene	96		93		70-130	3	30
Dichlorodifluoromethane	73		68		30-146	7	30
Acetone	67		61		54-140	9	30
Carbon disulfide	85		79		59-130	7	30
2-Butanone	73		68	Q	70-130	7	30
4-Methyl-2-pentanone	89		84		70-130	6	30
2-Hexanone	72		67	Q	70-130	7	30
Bromochloromethane	91		85		70-130	7	30
1,2-Dibromoethane	87		82		70-130	6	30
n-Butylbenzene	98		98		70-130	0	30
tert-Butylbenzene	92		93		70-130	1	30
1,2-Dibromo-3-chloropropane	86		81		68-130	6	30

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2430322

ırameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westbo	rough Lab Associated sa	ample(s): 01	Batch: W	G1931270-3	WG1931270-4			
Isopropylbenzene	92		92		70-130	0		30
p-Isopropyltoluene	96		97		70-130	1		30
Naphthalene	94		90		70-130	4		30
n-Propylbenzene	94		94		70-130	0		30
1,2,3-Trichlorobenzene	100		97		70-130	3		30
1,2,4-Trichlorobenzene	106		103		70-130	3		30
1,3,5-Trimethylbenzene	93		93		70-130	0		30
1,2,4-Trimethylbenzene	95		94		70-130	1		30
Methyl Acetate	68		61		51-146	11		30
Cyclohexane	86		84		59-142	2		30
1,4-Dioxane	112		107		65-136	5		30
Freon-113	95		89		50-139	7		30
Methyl cyclohexane	88		87		70-130	1		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	85	83	70-130
Toluene-d8	95	94	70-130
4-Bromofluorobenzene	93	94	70-130
Dibromofluoromethane	93	90	70-130

INORGANICS & MISCELLANEOUS

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number: L2430322

Project Number: EA2305 Report Date: 06/19/24

SAMPLE RESULTS

Lab ID: L2430322-01 Date Collected: 05/30/24 15:00

Client ID: IB-01 3.5'-4.5' Date Received: 05/31/24 Sample Location: 4245 CLARK ST. HAMBURG Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			Analytical Method	Analyst
General Chemistry - W	estborough Lat)								
Solids, Total	86.8		%	0.100	NA	1	-	06/04/24 02:22	121,2540G	WJM

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number: L2430322

Project Number: EA2305 Report Date: 06/19/24

SAMPLE RESULTS

Lab ID: L2430322-02 Date Collected: 05/30/24 14:45

Client ID: IB-02 6'-7' Date Received: 05/31/24
Sample Location: 4245 CLARK ST. HAMBURG Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	86.5		%	0.100	NA	1	-	06/04/24 02:22	121,2540G	WJM

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number: L2430322

Project Number: EA2305 Report Date: 06/19/24

SAMPLE RESULTS

Lab ID: L2430322-03 Date Collected: 05/30/24 14:15

Client ID: IB-03 7'-8' Date Received: 05/31/24
Sample Location: 4245 CLARK ST. HAMBURG Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	85.4		%	0.100	NA	1	-	06/04/24 02:22	121,2540G	WJM

L2430322

Lab Duplicate Analysis

Batch Quality Control

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

ntrol Lab Number:

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG1929171-1	QC Sample:	L2430318-01	Client ID:	DUP Sample
Solids, Total	91.8		91.0	%	1		20

Serial_No:06192416:03 *Lab Number:* L2430322

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305 Report Date: 06/19/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2430322-01A	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		TS(7)	
L2430322-01B	Vial Large Septa unpreserved (4oz)	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)	
L2430322-01X	Vial MeOH preserved split	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)	
L2430322-01Y	Vial Water preserved split	Α	NA		2.5	Υ	Absent	05-JUN-24 10:43	NYTCL-8260-R2(14)	
L2430322-01Z	Vial Water preserved split	Α	NA		2.5	Υ	Absent	05-JUN-24 10:43	NYTCL-8260-R2(14)	
L2430322-02A	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		TS(7)	
L2430322-02B	Vial Large Septa unpreserved (4oz)	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)	
L2430322-02X	Vial MeOH preserved split	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)	
L2430322-02Y	Vial Water preserved split	Α	NA		2.5	Υ	Absent	05-JUN-24 10:43	NYTCL-8260-R2(14)	
L2430322-02Z	Vial Water preserved split	Α	NA		2.5	Υ	Absent	05-JUN-24 10:43	NYTCL-8260-R2(14)	
L2430322-03A	Plastic 2oz unpreserved for TS	Α	NA		2.5	Υ	Absent		TS(7)	
L2430322-03B	Vial Large Septa unpreserved (4oz)	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)	
L2430322-03X	Vial MeOH preserved split	Α	NA		2.5	Υ	Absent		NYTCL-8260-R2(14)	
L2430322-03Y	Vial Water preserved split	Α	NA		2.5	Υ	Absent	05-JUN-24 10:43	NYTCL-8260-R2(14)	
L2430322-03Z	Vial Water preserved split	Α	NA		2.5	Υ	Absent	05-JUN-24 10:43	NYTCL-8260-R2(14)	

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number: L2430322
Project Number: EA2305 Report Date: 06/19/24

GLOSSARY

Acronyms

EDL

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

oniy.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2430322Project Number:EA2305Report Date:06/19/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2430322Project Number:EA2305Report Date:06/19/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2430322Project Number:EA2305Report Date:06/19/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 21

> Published Date: 04/17/2024 Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9183	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co Project Information Project Name: Variation	Nay poper Ave, Suite 10	ndoor	Phase	2	Delive	Date Rec'd in Lab erables ASP-A EQuIS (1 F	6	ASP		ALPHA Job # 1 J 4 3 0 3 2 Billing Information Same as Client Information Po# EA2305	
Client Information Client: Env. Adva Address: 3636 Orchard Po	N.Buffab Rd. Lrk, NY 14127 7 3130	Project # EA2 30.5 (Use Project name as P Project Manager: Ma. ALPHAQuote #: Turn-Around Time	roject#) 🗆	at Mar			Regu	Other latory Requ NY TOGS AWQ Standa NY Restricte	irement ards d Use		art 375 P-51	Disposal Site Information Please identify below location applicable disposal facilities Disposal Facility:	tion of s.
Email: monne@c	nvadvantage.com			Due Date # of Days			ANA	NY Unrestric NYC Sewer I				NJ NY Other: Sample Filtration	- Birth
Other project specific Also ema:l; m. la Please specify Metal	crequirements/com SZUStak@enu bresults@enu		_					CL VOCS 8100				Done Lab to do Preservation Lab to do (Please Specify below	o t a l
ALPHA Lab ID (Lab Use Only)		sample ID	Date	Time	Sample Matrix	Sampler's Initials	2	7				Sample Specific Commer	1000
36322 -01 -02 -03	IB-02 G- IB-037-	-4.5° 7' 8'	5/30/24 5/30/24 5/30/24	2:45	5	CS CS	XXX	X					2 2
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ao/NaOH O = Other	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification Mansfield: Certification Relinquished	No: MA015	Date 5/3/2	/Time		A	V A ved By:		1131	e/Time /41	Please print clearly, I and completely. Sam not be logged in and turnaround time clock start until any ambiguresolved. BY EXECUTHIS COC, THE CLIHAS READ AND AGTO BE BOUND BY ATERMS & CONDITION.	nples can k will not uities are JTING IENT SREES ALPHA'S
Form No: 01-25 HC (rev.	30-Sept-2013)											(See reverse side.)	

Quantitation Report (QT Reviewed)

Data Path : K:\VOA104\2024\240607A\

Data File: V04240607A07.D

Acq On : 7 Jun 2024 11:08 am

Operator : VOA104:MKS

Sample : L2430322-01,31,5.51,5,,Y
Misc : WG1931270,ICAL21038
ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jun 07 11:51:01 2024

Quant Method: K:\VOA104\2024\240607A\V104_240410N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Thu Apr 11 11:43:39 2024

Response via : Initial Calibration

Sub List : 8260-CurveSoil - Megamix plus Diox07A01.D•

V104_240410N_8260.m Fri Jun 07 13:45:17 2024

Quantitation Report (QT Reviewed)

Data Path : K:\VOA104\2024\240606N\

Data File: V04240606N20.D

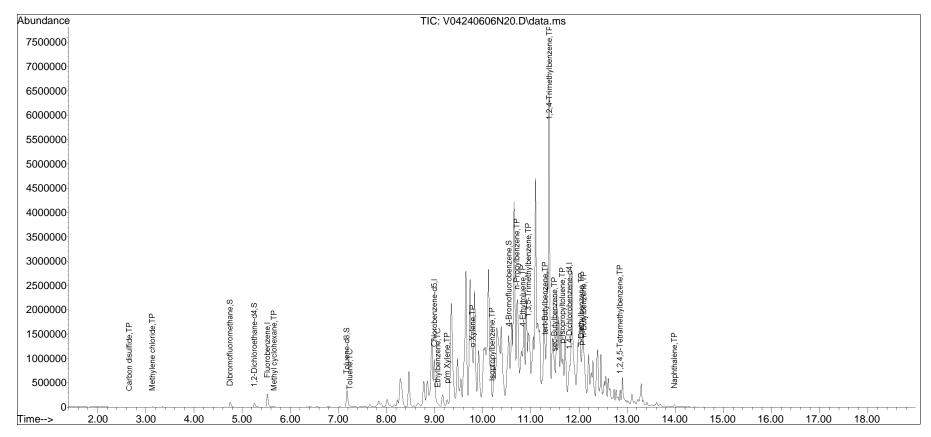
Acq On : 7 Jun 2024 5:33 am

Operator : VOA104:JIC

Sample : L2430322-02D,31H,5.92,5,0.005,,X

Misc : WG1931129,ICAL21038 ALS Vial : 20 Sample Multiplier: 1

Quant Time: Jun 07 09:35:06 2024


Quant Method: K:\VOA104\2024\240606N\V104_240410N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Thu Apr 11 11:43:39 2024

Response via: Initial Calibration

Sub List : 8260-CurveSoil - Megamix plus Diox06N01.D•

V104_240410N_8260.m Fri Jun 07 10:46:35 2024

Quantitation Report (QT Reviewed)

Data Path : K:\VOA104\2024\240606N\

Data File : V04240606N21.D

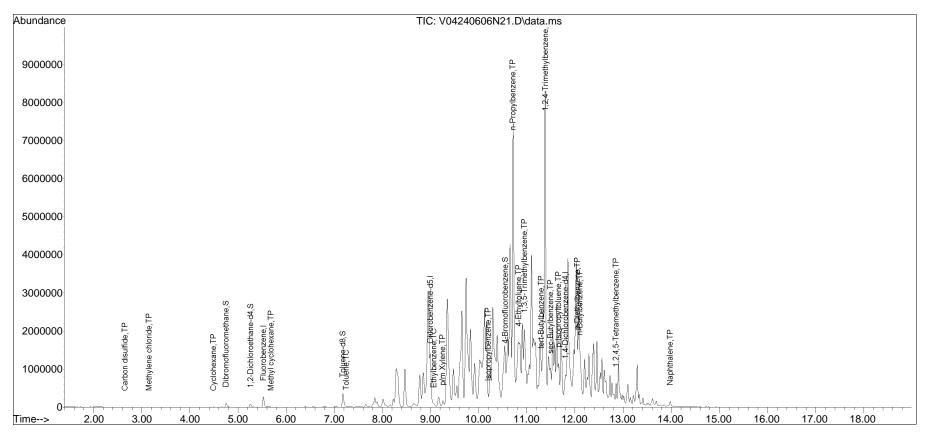
Acq On : 7 Jun 2024 5:59 am

Operator : VOA104:JIC

Sample : L2430322-03D,31H,5.22,5,0.01,,X

Misc : WG1931129,ICAL21038 ALS Vial : 21 Sample Multiplier: 1

Quant Time: Jun 07 09:36:10 2024


Quant Method: K:\VOA104\2024\240606N\V104_240410N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Thu Apr 11 11:43:39 2024

Response via : Initial Calibration

Sub List : 8260-CurveSoil - Megamix plus Diox06N01.D•

V104_240410N_8260.m Fri Jun 07 10:46:42 2024

ANALYTICAL REPORT

Lab Number: L2430553

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna Phone: (716) 667-3130

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305 Report Date: 06/26/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ALPHA ANALYTISAL **Project Name:** WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number:

L2430553

Report Date:

06/26/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2430553-01	IW-01 (WATER LAYER)	WATER	4245 CLARK ST, HAMBURG	05/30/24 11:30	06/03/24
L2430553-02	IW-01 (DNAPL LAYER)	OIL	4245 CLARK ST, HAMBURG	05/30/24 11:30	06/03/24

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2430553Project Number:EA2305Report Date:06/26/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:

WATERFIELD INDOOR PHASE 2

Lab Number:

L2430553

Project Number:

EA2305

Report Date:

06/26/24

Case Narrative (continued)

Report Revision

June 26, 2024: The Volatile Organics analyte list has been amended on L2430553-01.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2430553-01: The sample was received in an inappropriate container for the TCL Volatiles - EPA 8260D analysis. An aliquot was taken from an unpreserved container and preserved appropriately.

Volatile Organics

L2430553-01: The pH was greater than two; however, the sample was analyzed within the method required holding time.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

(attlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 06/26/24

ORGANICS

VOLATILES

L2430553

06/26/24

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2430553-01 Date Collected: 05/30/24 11:30

Client ID: IW-01 (WATER LAYER) Date Received: 06/03/24 Field Prep: Not Specified

Sample Location: 4245 CLARK ST, HAMBURG

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/06/24 09:17

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	2.4		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	1.9	J	ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number: L2430553

Project Number: EA2305 Report Date: 06/26/24

SAMPLE RESULTS

Lab ID: L2430553-01 Date Collected: 05/30/24 11:30

Client ID: IW-01 (WATER LAYER) Date Received: 06/03/24 Sample Location: 4245 CLARK ST, HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	4.1		ug/l	2.5	0.70	1
o-Xylene	1.3	J	ug/l	2.5	0.70	1
Xylenes, Total	5.4	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	0.75	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	6.2		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	15		ug/l	2.5	0.70	1
sec-Butylbenzene	17		ug/l	2.5	0.70	1
tert-Butylbenzene	1.4	J	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	5.7		ug/l	2.5	0.70	1
p-Isopropyltoluene	4.7		ug/l	2.5	0.70	1
Naphthalene	24		ug/l	2.5	0.70	1
n-Propylbenzene	12		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	8.8		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	120		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	0.27	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Project Name: Lab Number: WATERFIELD INDOOR PHASE 2 L2430553

Project Number: Report Date: EA2305 06/26/24

SAMPLE RESULTS

Lab ID: L2430553-01 Date Collected: 05/30/24 11:30

Date Received: Client ID: IW-01 (WATER LAYER) 06/03/24 Sample Location: Field Prep: 4245 CLARK ST, HAMBURG Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	110	70-130	

Project Number: EA2305 Report Date: 06/26/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/06/24 08:32

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	o for sample(s):	01 Batch:	WG1930619-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2430553

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number:

Project Number: EA2305 Report Date: 06/26/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/06/24 08:32

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01 Batch:	WG1930619-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27

Project Number: EA2305 Report Date: 06/26/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/06/24 08:32

Analyst: PID

Parameter	Result	Qualifier Unit	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	o for sample(s):	01 Batch:	WG1930619-5	
1,4-Dioxane	ND	ug	íl 250	61.	
Freon-113	ND	ug	l 2.5	0.70	
Methyl cyclohexane	ND	ug	l 10	0.40	

		Acceptance
Surrogate	%Recovery Qua	lifier Criteria
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	111	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2430553

Report Date: 06/26/24

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westbor	rough Lab Associated	sample(s): 0	1 Batch: WG1	930619-3	WG1930619-4				
Methylene chloride	100		100		70-130	0		20	
1,1-Dichloroethane	100		94		70-130	6		20	
Chloroform	110		110		70-130	0		20	
Carbon tetrachloride	120		120		63-132	0		20	
1,2-Dichloropropane	94		90		70-130	4		20	
Dibromochloromethane	110		100		63-130	10		20	
1,1,2-Trichloroethane	100		98		70-130	2		20	
Tetrachloroethene	100		98		70-130	2		20	
Chlorobenzene	110		100		75-130	10		20	
Trichlorofluoromethane	120		110		62-150	9		20	
1,2-Dichloroethane	100		100		70-130	0		20	
1,1,1-Trichloroethane	120		110		67-130	9		20	
Bromodichloromethane	110		100		67-130	10		20	
trans-1,3-Dichloropropene	98		95		70-130	3		20	
cis-1,3-Dichloropropene	98		95		70-130	3		20	
Bromoform	100		93		54-136	7		20	
1,1,2,2-Tetrachloroethane	110		100		67-130	10		20	
Benzene	100		97		70-130	3		20	
Toluene	110		100		70-130	10		20	
Ethylbenzene	110		100		70-130	10		20	
Chloromethane	86		82		64-130	5		20	
Bromomethane	62		60		39-139	3		20	
Vinyl chloride	89		86		55-140	3		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2430553

Report Date: 06/26/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: WG1	930619-3	WG1930619-4			
Chloroethane	110		100		55-138	10		20
1,1-Dichloroethene	110		100		61-145	10		20
trans-1,2-Dichloroethene	100		98		70-130	2		20
Trichloroethene	110		100		70-130	10		20
1,2-Dichlorobenzene	110		100		70-130	10		20
1,3-Dichlorobenzene	110		100		70-130	10		20
1,4-Dichlorobenzene	110		100		70-130	10		20
Methyl tert butyl ether	84		82		63-130	2		20
p/m-Xylene	110		100		70-130	10		20
o-Xylene	105		100		70-130	5		20
cis-1,2-Dichloroethene	100		99		70-130	1		20
Styrene	105		100		70-130	5		20
Dichlorodifluoromethane	100		100		36-147	0		20
Acetone	96		98		58-148	2		20
Carbon disulfide	110		100		51-130	10		20
2-Butanone	82		84		63-138	2		20
4-Methyl-2-pentanone	66		66		59-130	0		20
2-Hexanone	65		64		57-130	2		20
Bromochloromethane	110		100		70-130	10		20
1,2-Dibromoethane	100		98		70-130	2		20
n-Butylbenzene	120		110		53-136	9		20
sec-Butylbenzene	120		110		70-130	9		20
tert-Butylbenzene	120		110		70-130	9		20

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2430553

Report Date: 06/26/24

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: \	WG1930619-3	WG1930619-4			
1,2-Dibromo-3-chloropropane	95		93		41-144	2		20
Isopropylbenzene	110		110		70-130	0		20
p-Isopropyltoluene	110		110		70-130	0		20
Naphthalene	92		90		70-130	2		20
n-Propylbenzene	110		100		69-130	10		20
1,2,3-Trichlorobenzene	95		92		70-130	3		20
1,2,4-Trichlorobenzene	97		92		70-130	5		20
1,3,5-Trimethylbenzene	120		110		64-130	9		20
1,2,4-Trimethylbenzene	120		110		70-130	9		20
Methyl Acetate	89		85		70-130	5		20
Cyclohexane	90		84		70-130	7		20
1,4-Dioxane	88		82		56-162	7		20
Freon-113	110		110		70-130	0		20
Methyl cyclohexane	100		98		70-130	2		20

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	108	109	70-130
Toluene-d8	104	105	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	109	110	70-130

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305 Report Date: 06/26/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2430553-01A	Plastic 950ml unpreserved	Α	NA		4.6	Υ	Absent		NYTCL-8260-R2(7)
L2430553-01X	Vial HCl preserved split	Α	NA		4.6	Υ	Absent		NYTCL-8260-R2(7)
L2430553-01Y	Vial HCl preserved split	Α	NA		4.6	Υ	Absent		NYTCL-8260-R2(7)
L2430553-01Z	Vial HCl preserved split	Α	NA		4.6	Υ	Absent		NYTCL-8260-R2(7)
L2430553-02X	Vial MeOH preserved split	NA	NA			Υ	Absent		ARCHIVE()

Project Name: Lab Number: WATERFIELD INDOOR PHASE 2 L2430553 **Report Date: Project Number:** EA2305 06/26/24

GLOSSARY

Acronyms

LCSD

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.) - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2430553Project Number:EA2305Report Date:06/26/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2430553Project Number:EA2305Report Date:06/26/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2430553Project Number:EA2305Report Date:06/26/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:06262413:04

ID No.:17873 Revision 21

Page 1 of 1

Published Date: 04/17/2024

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-998-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 0204B 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information Project Name: Wate Project Location: 42 4	ay oper Ave, Suite 10		Page of		Deliverat	les P-A	-	P-B	ALPHA Job# L24 30553 Billing Information Same as Client Info
Client Information	vantage. Inc	Project #EA 2305		ST. Han	nburg		Ott	ulS (1 File) er ry Requirem		ulS (4 File)	PO#EA2305 Disposal Site Information
Orchard Po	N. Buffalo Ro	Project Manager: Ma		a + Ma	ry Sz	ustak	☐ AW	TOGS Q Standards Restricted Use	☐ NY	Part 375 CP-51 er	Please identify below location of applicable disposal facilities. Disposal Facility:
Fax: 716-60 Email: mhanna	envadvantage	Standard Rush (only if pre approved)		Due Date: # of Days:			☐ NY	Unrestricted U Sewer Disch			NJ NY Other:
These samples have b	THE RESIDENCE OF THE PARTY OF T	and the state of t					ANALYS	IS			Sample Filtration
Please also Please specify Metals	ema:1; Ms.	results@envadua results@enuadu	antage.c	com Com			- VOC 2000				□ Done t □ Lab to do Preservation □ Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)		ample ID	Colle	ection Time	Sample Matrix	Sampler's Initials	101				Sample Specific Comments e
34553 -01	IW-OI		5/30/29	11:30	GW	cs	×				2 Samples to be 1 taken, one from the water one from DNAPL.
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				ntainer Type Preservative	P A				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished I	4	Date/ Co13124 G/3/24	Time \H:33 /5:/5	dit.	Received	MACE	1200	33 1 0030	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 3	0-Sept-2013)										(See reverse side.)

ANALYTICAL REPORT

Lab Number: L2432463

Client: Environmental Advantage, Inc.

3636 North Buffalo Road Orchard Park, NY 14127

ATTN: Mark Hanna Phone: (716) 667-3130

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305 Report Date: 06/19/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number:

L2432463

Report Date:

06/19/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2432463-01	IW-01 (BOTTOM LAYER)	SEDIMENT	4245 CLARK ST. HAMBURG	05/30/24 11:30	06/03/24

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2432463Project Number:EA2305Report Date:06/19/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:

WATERFIELD INDOOR PHASE 2

Lab Number:

L2432463

Project Number:

EA2305

Report Date:

06/19/24

Case Narrative (continued)

Report Revision

June 19, 2024: The Volatile Organics analyte list has been amended on L2432463-01.

June 17, 2024: The Client ID was amended on L2432463-01.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2432463-01: The analysis of Volatile Organics by EPA Method 5035/8260 Low Level could not be performed due to the elevated concentrations of non-target compounds in the sample.

L2432463-01: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (263%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 06/19/24

ORGANICS

VOLATILES

Serial_No:06192415:53

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number: L2432463

Project Number: EA2305 Report Date: 06/19/24

SAMPLE RESULTS

Lab ID: L2432463-01 Date Collected: 05/30/24 11:30

Client ID: IW-01 (BOTTOM LAYER) Date Received: 06/03/24
Sample Location: 4245 CLARK ST. HAMBURG Field Prep: Not Specified

Sample Depth:

Matrix: Sediment
Analytical Method: 1,8260D
Analytical Date: 06/13/24 15:26

Analyst: AJK

Percent Solids: Results reported on an 'AS RECEIVED' basis.

Volatile Organics by EPA 5035 High - Westl Methylene chloride 1,1-Dichloroethane Chloroform	ND ND ND)	ug/kg	250	110	
1,1-Dichloroethane	ND ND			250	110	
	ND					1
Chloroform			ug/kg	50	7.2	1
oniororom.			ug/kg	75	7.0	1
Carbon tetrachloride	ND		ug/kg	50	11.	1
1,2-Dichloropropane	ND		ug/kg	50	6.2	1
Dibromochloromethane	ND		ug/kg	50	7.0	1
1,1,2-Trichloroethane	ND		ug/kg	50	13.	1
Tetrachloroethene	ND		ug/kg	25	9.8	1
Chlorobenzene	ND		ug/kg	25	6.3	1
Trichlorofluoromethane	ND		ug/kg	200	35.	1
1,2-Dichloroethane	ND		ug/kg	50	13.	1
1,1,1-Trichloroethane	ND		ug/kg	25	8.3	1
Bromodichloromethane	ND		ug/kg	25	5.4	1
trans-1,3-Dichloropropene	ND		ug/kg	50	14.	1
cis-1,3-Dichloropropene	ND		ug/kg	25	7.9	1
Bromoform	ND		ug/kg	200	12.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	25	8.3	1
Benzene	ND		ug/kg	25	8.3	1
Toluene	ND		ug/kg	50	27.	1
Ethylbenzene	13	J	ug/kg	50	7.0	1
Chloromethane	ND		ug/kg	200	46.	1
Bromomethane	ND		ug/kg	100	29.	1
Vinyl chloride	ND		ug/kg	50	17.	1
Chloroethane	ND		ug/kg	100	22.	1
1,1-Dichloroethene	ND		ug/kg	50	12.	1
trans-1,2-Dichloroethene	ND		ug/kg	75	6.8	1
Trichloroethene	ND		ug/kg	25	6.8	1
1,2-Dichlorobenzene	ND		ug/kg	100	7.2	1

Serial_No:06192415:53

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number: L2432463

Project Number: EA2305 Report Date: 06/19/24

SAMPLE RESULTS

Lab ID: L2432463-01 Date Collected: 05/30/24 11:30

Client ID: IW-01 (BOTTOM LAYER) Date Received: 06/03/24
Sample Location: 4245 CLARK ST. HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hig	gh - Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	100	7.4	1
1,4-Dichlorobenzene	ND		ug/kg	100	8.5	1
Methyl tert butyl ether	ND		ug/kg	100	10.	1
p/m-Xylene	53	J	ug/kg	100	28.	1
o-Xylene	20	J	ug/kg	50	14.	1
Xylenes, Total	73	J	ug/kg	50	14.	1
cis-1,2-Dichloroethene	ND		ug/kg	50	8.7	1
Styrene	ND		ug/kg	50	9.8	1
Dichlorodifluoromethane	ND		ug/kg	500	46.	1
Acetone	ND		ug/kg	500	240	1
Carbon disulfide	ND		ug/kg	500	230	1
2-Butanone	ND		ug/kg	500	110	1
4-Methyl-2-pentanone	ND		ug/kg	500	64.	1
2-Hexanone	ND		ug/kg	500	59.	1
Bromochloromethane	ND		ug/kg	100	10.	1
1,2-Dibromoethane	ND		ug/kg	50	14.	1
n-Butylbenzene	2300		ug/kg	50	8.3	1
sec-Butylbenzene	1500		ug/kg	50	7.3	1
tert-Butylbenzene	100		ug/kg	100	5.9	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	150	50.	1
Isopropylbenzene	120		ug/kg	50	5.4	1
p-Isopropyltoluene	630		ug/kg	50	5.4	1
Naphthalene	560		ug/kg	200	32.	1
n-Propylbenzene	520		ug/kg	50	8.5	1
1,2,3-Trichlorobenzene	ND		ug/kg	100	16.	1
1,2,4-Trichlorobenzene	ND		ug/kg	100	14.	1
1,3,5-Trimethylbenzene	520		ug/kg	100	9.6	1
1,2,4-Trimethylbenzene	4500		ug/kg	100	17.	1
Methyl Acetate	ND		ug/kg	200	47.	1
Cyclohexane	ND		ug/kg	500	27.	1
1,4-Dioxane	ND		ug/kg	4000	1800	1
Freon-113	ND		ug/kg	200	34.	1
Methyl cyclohexane	51	J	ug/kg	200	30.	1

Serial_No:06192415:53

Project Name: Lab Number: WATERFIELD INDOOR PHASE 2 L2432463

Project Number: Report Date: EA2305 06/19/24

SAMPLE RESULTS

Lab ID: L2432463-01 Date Collected: 05/30/24 11:30

Date Received: Client ID: IW-01 (BOTTOM LAYER) 06/03/24 Sample Location: 4245 CLARK ST. HAMBURG Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by EPA 5035 High - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	263	Q	70-130	
Dibromofluoromethane	100		70-130	

Project Number: EA2305 Report Date: 06/19/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/13/24 08:04

Analyst: AJK

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035	High - Westbor	ough Lab fo	or sample(s):	01	Batch:	WG1934426-5
Methylene chloride	110	J	ug/kg	250		110
1,1-Dichloroethane	ND		ug/kg	50		7.2
Chloroform	ND		ug/kg	75		7.0
Carbon tetrachloride	ND		ug/kg	50		12.
1,2-Dichloropropane	ND		ug/kg	50		6.2
Dibromochloromethane	ND		ug/kg	50		7.0
1,1,2-Trichloroethane	ND		ug/kg	50		13.
Tetrachloroethene	ND		ug/kg	25		9.8
Chlorobenzene	ND		ug/kg	25		6.4
Trichlorofluoromethane	ND		ug/kg	200		35.
1,2-Dichloroethane	ND		ug/kg	50		13.
1,1,1-Trichloroethane	ND		ug/kg	25		8.4
Bromodichloromethane	ND		ug/kg	25		5.4
trans-1,3-Dichloropropene	ND		ug/kg	50		14.
cis-1,3-Dichloropropene	ND		ug/kg	25		7.9
Bromoform	ND		ug/kg	200		12.
1,1,2,2-Tetrachloroethane	ND		ug/kg	25		8.3
Benzene	ND		ug/kg	25		8.3
Toluene	ND		ug/kg	50		27.
Ethylbenzene	ND		ug/kg	50		7.0
Chloromethane	ND		ug/kg	200		47.
Bromomethane	ND		ug/kg	100		29.
Vinyl chloride	ND		ug/kg	50		17.
Chloroethane	ND		ug/kg	100		23.
1,1-Dichloroethene	ND		ug/kg	50		12.
trans-1,2-Dichloroethene	ND		ug/kg	75		6.8
Trichloroethene	ND		ug/kg	25		6.8
1,2-Dichlorobenzene	ND		ug/kg	100		7.2
1,3-Dichlorobenzene	ND		ug/kg	100		7.4

Project Number: EA2305 Report Date: 06/19/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/13/24 08:04

Analyst: AJK

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Hig	gh - Westbord	ough Lab fo	or sample(s):	01	Batch:	WG1934426-5
1,4-Dichlorobenzene	ND		ug/kg	100		8.6
Methyl tert butyl ether	ND		ug/kg	100		10.
p/m-Xylene	ND		ug/kg	100		28.
o-Xylene	ND		ug/kg	50		14.
Xylenes, Total	ND		ug/kg	50		14.
cis-1,2-Dichloroethene	ND		ug/kg	50		8.8
Styrene	11	J	ug/kg	50		9.8
Dichlorodifluoromethane	ND		ug/kg	500		46.
Acetone	ND		ug/kg	500		240
Carbon disulfide	ND		ug/kg	500		230
2-Butanone	ND		ug/kg	500		110
4-Methyl-2-pentanone	ND		ug/kg	500		64.
2-Hexanone	ND		ug/kg	500		59.
Bromochloromethane	ND		ug/kg	100		10.
1,2-Dibromoethane	ND		ug/kg	50		14.
n-Butylbenzene	ND		ug/kg	50		8.4
sec-Butylbenzene	ND		ug/kg	50		7.3
tert-Butylbenzene	ND		ug/kg	100		5.9
1,2-Dibromo-3-chloropropane	ND		ug/kg	150		50.
Isopropylbenzene	ND		ug/kg	50		5.4
p-Isopropyltoluene	ND		ug/kg	50		5.4
Naphthalene	ND		ug/kg	200		32.
n-Propylbenzene	ND		ug/kg	50		8.6
1,2,3-Trichlorobenzene	ND		ug/kg	100		16.
1,2,4-Trichlorobenzene	ND		ug/kg	100		14.
1,3,5-Trimethylbenzene	ND		ug/kg	100		9.6
1,2,4-Trimethylbenzene	ND		ug/kg	100		17.
Methyl Acetate	ND		ug/kg	200		48.
Cyclohexane	ND		ug/kg	500		27.

Project Number: EA2305 Report Date: 06/19/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/13/24 08:04

Analyst: AJK

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 High	- Westboro	ugh Lab fo	r sample(s):	01	Batch:	WG1934426-5
1,4-Dioxane	ND		ug/kg	4000		1800
Freon-113	ND		ug/kg	200		35.
Methyl cyclohexane	ND		ug/kg	200		30.

		Acceptance
Surrogate	%Recovery Qua	ifier Criteria
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	97	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2432463

Report Date: 06/19/24

Parameter	LCS %Recovery		_CSD ecovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - West	borough Lab Ass	sociated sample(s):	01 Batch:	WG1934426-3 WG19344	26-4	
Methylene chloride	86		92	70-130	7	30
1,1-Dichloroethane	90		97	70-130	7	30
Chloroform	94		97	70-130	3	30
Carbon tetrachloride	92		92	70-130	0	30
1,2-Dichloropropane	94		99	70-130	5	30
Dibromochloromethane	82		88	70-130	7	30
1,1,2-Trichloroethane	89		96	70-130	8	30
Tetrachloroethene	97		99	70-130	2	30
Chlorobenzene	93		96	70-130	3	30
Trichlorofluoromethane	104		103	70-139	1	30
1,2-Dichloroethane	97		103	70-130	6	30
1,1,1-Trichloroethane	94		96	70-130	2	30
Bromodichloromethane	87		92	70-130	6	30
trans-1,3-Dichloropropene	89		97	70-130	9	30
cis-1,3-Dichloropropene	90		96	70-130	6	30
Bromoform	74		80	70-130	8	30
1,1,2,2-Tetrachloroethane	85		97	70-130	13	30
Benzene	97		96	70-130	1	30
Toluene	93		96	70-130	3	30
Ethylbenzene	96		98	70-130	2	30
Chloromethane	105		105	52-130	0	30
Bromomethane	112		109	57-147	3	30
Vinyl chloride	98		97	67-130	1	30

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2432463

Report Date: 06/19/24

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - Wes	tborough Lab Asso	ciated sample(s): 01 Batch	n: WG1934426-3 WG19344	26-4	
Chloroethane	101	102	50-151	1	30
1,1-Dichloroethene	92	92	65-135	0	30
trans-1,2-Dichloroethene	93	94	70-130	1	30
Trichloroethene	93	94	70-130	1	30
1,2-Dichlorobenzene	92	96	70-130	4	30
1,3-Dichlorobenzene	94	97	70-130	3	30
1,4-Dichlorobenzene	93	95	70-130	2	30
Methyl tert butyl ether	82	93	66-130	13	30
p/m-Xylene	97	100	70-130	3	30
o-Xylene	94	97	70-130	3	30
cis-1,2-Dichloroethene	89	87	70-130	2	30
Styrene	91	95	70-130	4	30
Dichlorodifluoromethane	90	91	30-146	1	30
Acetone	91	113	54-140	22	30
Carbon disulfide	97	97	59-130	0	30
2-Butanone	92	106	70-130	14	30
4-Methyl-2-pentanone	79	94	70-130	17	30
2-Hexanone	79	98	70-130	21	30
Bromochloromethane	90	92	70-130	2	30
1,2-Dibromoethane	87	95	70-130	9	30
n-Butylbenzene	103	103	70-130	0	30
sec-Butylbenzene	100	101	70-130	1	30
tert-Butylbenzene	97	98	70-130	1	30

Lab Control Sample Analysis Batch Quality Control

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305

Lab Number: L2432463

Report Date: 06/19/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - Westh	orough Lab Ass	ociated sample	e(s): 01 Bat	ch: WG1934426-3 WG19344	26-4	
1,2-Dibromo-3-chloropropane	74		84	68-130	13	30
Isopropylbenzene	99		100	70-130	1	30
p-Isopropyltoluene	99		99	70-130	0	30
Naphthalene	83		92	70-130	10	30
n-Propylbenzene	101		102	70-130	1	30
1,2,3-Trichlorobenzene	88		93	70-130	6	30
1,2,4-Trichlorobenzene	92		94	70-130	2	30
1,3,5-Trimethylbenzene	97		98	70-130	1	30
1,2,4-Trimethylbenzene	95		97	70-130	2	30
Methyl Acetate	95		112	51-146	16	30
Cyclohexane	110		104	59-142	6	30
1,4-Dioxane	88		105	65-136	18	30
Freon-113	102		102	50-139	0	30
Methyl cyclohexane	95		96	70-130	1	30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	106	108	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	100	100	70-130
Dibromofluoromethane	102	101	70-130

Serial_No:06192415:53 *Lab Number:* L2432463

Project Name: WATERFIELD INDOOR PHASE 2

Project Number: EA2305 Report Date: 06/19/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Initial Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2432463-01A	Plastic 950ml unpreserved	Α	NA		4.6	N	Absent		NYTCL-8260H-R2(14)
	L2432463-01U	Vial unpreserved split	NA	NA			Υ	Absent		ARCHIVE()
	L2432463-01V	Vial unpreserved split	NA	NA			Υ	Absent		ARCHIVE()
	L2432463-01W	Vial unpreserved split	NA	NA			Υ	Absent		ARCHIVE()
	L2432463-01X	Vial MeOH preserved split	Α	NA		4.6	Υ	Absent		NYTCL-8260H-R2(14)
	L2432463-01Y	Vial Water preserved split	NA	NA			Υ	Absent	12-JUN-24 07:40	NYTCL-8260H-R2(14)
	L2432463-01Z	Vial Water preserved split	NA	NA			Υ	Absent	12-JUN-24 07:40	NYTCL-8260H-R2(14)

Project Name: WATERFIELD INDOOR PHASE 2 Lab Number: L2432463
Project Number: EA2305 Report Date: 06/19/24

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2432463Project Number:EA2305Report Date:06/19/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2432463Project Number:EA2305Report Date:06/19/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:06192415:53

Project Name:WATERFIELD INDOOR PHASE 2Lab Number:L2432463Project Number:EA2305Report Date:06/19/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:06192415:53

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 21

Published Date: 04/17/2024 Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay oper Ave, Suite 10		Page		102300	bles	,1412	ASP-B	L2432463 WMC 6/10/24 ALPHA Job # Billing Information
FAX: 508-898-9193 Client Information	FAX: 508-822-3288	Project Name: Wate Project Location: 42 L Project # EA 2305	5 Clark	St. Han	nose 2		☐ E	QuIS (1 File) ther	_	EQuIS (4 File)	Same as Client Info
Client: Fnu Ad	vantage lac	(Use Project name as Pro	niect #\				-	ory Requiren	nent	10000	Disposal Site Information
Address: 3636 Or Chard Po Phone: 716 - 60 Fax: 716 - 60	N. Buffab Ro c. K. N.Y. 19127 67-3130 67-3156	Project Manager: Mana	rk Hanne	Due Date:		ustak		TOGS VQ Standards Restricted Us Unrestricted V	e 🗍	NY Part 375 NY CP-51 Other	Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:
These samples have b							ANALY	SIS			Sample Filtration
Please also Please specify Metals	ema:1; Ms.	nents: Zusta Koenvadvo resultsoenuadu	antage.co vantage.	om Com			. VOC 2000				Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	imple ID	Colle	Time	Sample Matrix	Sampler's Initials	101				Sample Specific Comments
32463	IW-OI		5/30/29	11:30	GW	CS	×				2 Samples to be 1 taken, one from the water one from DNAPL.
	-										
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No: MA935 Mansfield: Certification No: MA015				tainer Type Preservative	A				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	By: PACE					PACE		Date/Time	start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.		
Form No: 01-25 HC (rev. 3	10-Sept-2013)										(See reverse side.)

Quantitation Report (QT Reviewed)

Data Path : K:\VOA127\2024\240613A\

Data File : V27240613A26.D

Acq On : 13 Jun 2024 03:26 pm

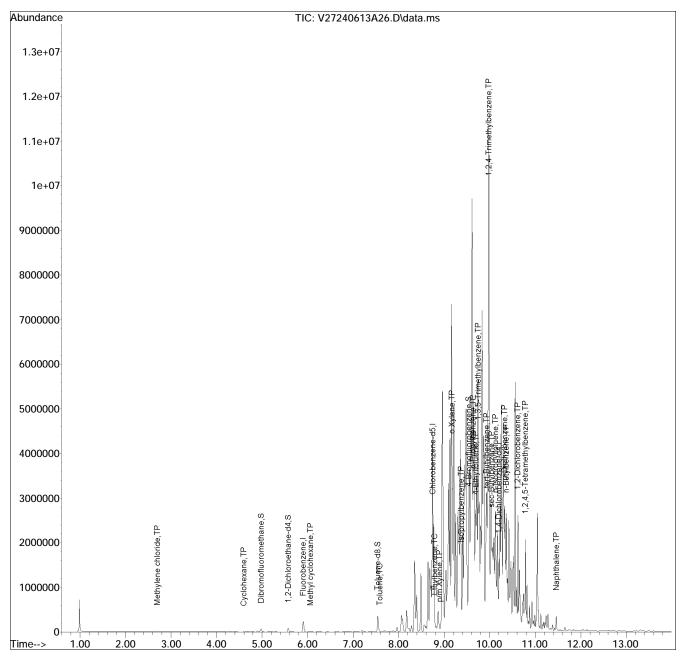
Operator : VOA127:AJK

Sample : L2432463-01,31H,5.01,5,0.100,,X

Misc : WG1934426,ICAL21177

ALS Vial : 26 Sample Multiplier: 1

Quant Time: Jun 14 08:17:12 2024


Quant Method: K:\VOA127\2024\240613A\V127_240606N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Fri Jun 07 09:03:54 2024

Response via : Initial Calibration

Sub List : 8260-CurveSoil - Megamix plus Diox13A01.D•

V127_240606N_8260.m Fri Jun 14 10:43:12 2024

Attachment E Objectives and Limitations

OBJECTIVES AND LIMITATIONS

Environmental Advantage, Inc. (EA) has endeavored to meet what it believes is the applicable standard of care for the services completed and, in doing so, is obliged to advise our Client of the Focused Phase II Environmental Site Assessment (ESA) limitations. EA believes that providing information about limitations is essential to help our Client identify and thereby manage risks. These risks can be mitigated, and possibly eliminated, through additional research or investigation. EA will, upon request, advise our Client of the additional research opportunities available and their associated costs.

The findings and opinions conveyed via this ESA report are based upon information obtained during the performance of the investigation, and which EA believes is reliable. EA cannot, and does not warrant, the authenticity or reliability of the information sources it has relied upon in the development of the scope of work for this ESA. In those instances where additional services or service enhancements are included in the report as requested or authorized by the Client, specific limitations attendant to those services are presented in the text of the report.

The final report represents EA's service to our Client as of the report date. In that regard, the report constitutes EA's final document, and the text of the report may not be altered in any manner after final issuance of same. Opinions relative to environmental conditions presented in this report are based upon information derived from the most recent site investigation date and from other activities described herein. The Client are herewith advised that the conditions observed by EA are subject to change. Certain indicators of the presence of hazardous materials may have been latent or not present at the time of the most recent site reconnaissance and may have subsequently become observable. In similar manner, the research effort conducted for a Phase II ESA is limited. Accordingly, it is possible that EA's investigative activities, while fully appropriate for a Phase II ESA and in compliance with the scope of service, may not include identify other important environmental conditions. Assuming such conditions exist, information suggesting their presence may not have been considered in the formulation of the scope of services or EA's findings and conclusions.

The final report is not a comprehensive site characterization or regulatory compliance audit and should not be construed as such. The opinions presented in this report are based upon findings derived from a site reconnaissance, a review of previously completed ESA(s), and on-site investigative activities. Specifically, EA does not, and cannot, represent that the Site contains no hazardous or toxic materials, products, or other latent conditions beyond that observed by EA during its Site assessment. Further, the services herein shall in no way be construed, designed or intended to be relied upon as legal interpretation or advice.