

6 Gellatly Drive Wappingers Falls, NY 12590 (845) 223-9944

LETTER OF TRANSMITTAL

		se		DATE:	10/31/09	JOB NO.: 150C265.1005			
Time	d of US SHE	EQ Operations		ATTEN	ATTENTION: Mr. Brian Thiesse				
	de North Am	erica, Inc.				Monitoring Event Letter			
575	Mountain A	venue			Report, Site No. 932001, Airco Properties Inc.,				
Muı	rray Hill, Ne	w Jersey 07974		Air	co Parcel, Niag	gara Falls, New York			
WE ARE SF	ENDING YO)U [X] Atta	ched	[] Under sep	arate cover via	the following items:			
[]	Shop drawing	gs []Print	ts [] Plans	[] Samples		_			
	Copy of lette	-	nge order	[]					
[],	copy of fette	i [] Chui	ige order	L J					
	T								
COPIES	DATE	T: . F: .	1200037		CRIPTION	2001 4.			
1	10/31/09			toring Event Lette el, Niagara Falls, N		2001, Airco			
		Troperties inc.	, Alleo I alee	1, Magara T ans, 1	NEW TOIK				
		<u> </u>							
		ITTED as check		l ac aubusine d	[] Dl				
	For approval			l as submitted		omit copies for approval			
	For your use			l as noted		it copies for distribution			
[] /	As requested	ļ	[] Returned	for corrections	[] Returi	n corrected prints			
	P	nd comment				voireved prints			
[]]	For review ai	iii voiiiiiiiiiii	[]			00110000 p.m.is			
		DUE				NED AFTER LOAN TO US			

6 Gellatly Drive Wappingers Falls, NY 12590 (845) 223-9944

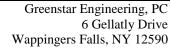
LETTER OF TRANSMITTAL

E		iton	DATE: 10/31/09 JOB NO.: 150C265.1005
-	New York State	Department of	ATTENTION: Mr. Michael Hinton
-	Environmental C	Conservation	RE: Bi-Annual 2008 Monitoring Event Letter
<u> </u>	Region 9		Report, Site No. 932001, Airco Properties Inc.,
2	270 Michigan A	venue	Airco Parcel, Niagara Falls, New York
_ <u>F</u>	Buffalo, New Yo	ork 14203	
WE ARE	SENDING YO	OU [X] Attached	[] Under separate cover via the following items:
] Shop drawing		
_			
L] Copy of lette	r [] Change order	[]
COPIE	S DATE		DESCRIPTION
1	10/31/09	First Bi-Annual 2009 Monit	oring Event Letter, Site No. 932001, Airco
		Properties Inc., Airco Parce	l, Niagara Falls, New York
		ITTED as checked below:	as submitted [] Resubmit copies for approval
[] For approval	[] Approved	as submitted [] Resubmit copies for approval
[]] For approval X] For your use	[] Approved	as noted [] Submit copies for distribution
] []]] For approval X] For your use] As requested	[] Approved [] Approved [] Returned to	as noted [] Submit copies for distribution for corrections [] Return corrected prints
] ;]]] For approval X] For your use] As requested] For review an	[] Approved	as noted [] Submit copies for distribution for corrections [] Return corrected prints

Bi-Annual 2009 Monitoring Event Letter Report for Site No. 932001 Airco Properties, Inc., Airco Parcel Niagara Falls, New York

Prepared for

Linde, Inc. 575 Mountain Avenue Murray Hill, New Jersey 07974


Prepared by

Greenstar Engineering, PC 6 Gellatly Drive Wappingers Falls, New York 12590 (845) 223-9944

> October 2009 Revision: 0

Project No.: 150C265.1005

31 October 2009

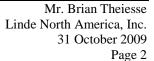
Mr. Brian Thiesse Head of US SHEQ Operations Linde North America, Inc. 575 Mountain Avenue Murray Hill, New Jersey 07974

RE: Bi-Annual 2009 Monitoring Event Letter Report, Site No. 932001, Airco Properties Inc., Airco

Parcel, Niagara Falls, New York Greenstar Project No.: 150C265.1005

Dear Mr. Thiesse:

Greenstar Engineering, P.C. (Greenstar) is pleased to provide the first 2009 Bi-Annual Monitoring Event Letter Report summarizing the operation and maintenance activities at the above referenced site for the period 1 January 2009 to 30 June 2009. The post-closure monitoring and facility maintenance program was initiated at the Airco Parcel located in Niagara Falls, New York, during December 2000. Post-closure monitoring and facility maintenance is required by New York State Solid Waste Management Facilities Regulations (6 NYCRR Part 360-2.15[k][4]) and stipulated in Order on Consent No. B9-0470-94-12. The purpose of this Bi-Annual Monitoring Event Letter Report is to summarize the analytical results of the first bi-annual 2009 groundwater monitoring event that was conducted in May 2009, and to summarize operations and maintenance activities conducted at the Site from January through June 2009.


OBJECTIVES

In accordance with the Revised Final Post-Closure Monitoring and Facility Maintenance Plan for the Airco Parcel, prepared by EA Engineering, PC and its affiliate EA Science and Technology (EA 2004)¹, environmental monitoring points will be maintained and sampled during the post-closure monitoring period, including the collection of appropriate groundwater, surface water, and groundwater collection treatment system (GCTS) samples. The Post-Closure Monitoring and Facility Maintenance Plan documents sampling locations, sampling parameters and analytical methods, in addition to other required maintenance activities, such as landfill cap inspections and the operations and maintenance plan for the GCTS. Following completion of the first five years of post-closure monitoring, the original Revised Final Post-Closure Monitoring and Facility Maintenance Plan, which was included as Appendix A in the Interim Remedial Measure Report (EA 2001a)², was re-evaluated and revised based on the data collected at the site so that the monitoring plan is more focused to address site-specific issues that were identified during the first five years of post-closure monitoring.

In accordance with the Revised Post-Closure Monitoring and Facility Maintenance Program the following activities are being completed:

^{1.} EA Engineering, P.C. and its Affiliate EA Science and Technology. 2004. Revised Final Post-Closure Monitoring and Facility Maintenance Plan for the Airco Parcel, Niagara Falls, New York. September.

^{2.} EA Engineering, P.C. and its Affiliate EA Science and Technology. 2001a. Interim Remedial Measure Report Documenting Closure of the Witmer Road Landfill, Niagara Falls, New York. Appendix A – Revised Final Post-Closure Monitoring and Facility Maintenance Plan. January.

- Environmental monitoring points are being maintained and sampled during the post-closure period.
- Bi-annual summary reports are submitted to the New York State Department of Environmental Conservation (NYSDEC) Division of Solid and Hazardous Materials, Region 9; the State of New York State Department of Health in Albany, New York; Linde, Inc.; and the document repository located at the Town of Niagara Town's Clerk's Office.
- Routine inspections of the sediment ponds and the engineered wetlands are conducted to assess the presence of mosquito larvae.
- Drainage structures and ditches are maintained to prevent ponding of water and erosion of the landfill soil cap.
- Soil cover integrity, slopes, cover vegetation, drainage structures, and the perimeter road are maintained during the post-closure monitoring and maintenance period.
- A vegetative cover is maintained on all exposed final cover material, and adequate measures
 are taken to ensure the integrity of the final vegetated cover, topsoil layer, and underlying barrier
 protection layer.
- The GCTS is being operated and maintained to effectively mitigate the discharge of groundwater to surface water in the southwest corner of the Airco Parcel.
- Records are maintained of all sampling and analytical results.

BACKGROUND

The Airco Parcel is part of the Vanadium Corporation of America site that is located in the Town of Niagara Falls, New York (Figure 1). The entire Vanadium site is approximately 150 acres in size, with the Airco Parcel encompassing approximately 25 acres. The 25-acre Airco parcel is the focus of this bi-annual sampling event letter report. The site contains waste material from the historic operations of onsite and nearby production facilities.

An Immediate Investigative Work Assignment (IIWA) investigation was conducted by NYSDEC for a portion of the 150-acre parcel in August 1997, and included investigation of the 70 acre parcel owned by Niagara Mohawk Power Corporation and New York Power Authority. During the investigation, NYSDEC determined that the site had been used by Vanadium Corporation of America (the owners of the site from 1924 to 1964) to dispose of wood, brick, ash, lime slag, ferrochromium silicon slag, and ferrochromium silicon dust. Based on results of the IIWA investigation NYSDEC determined that much of the surface material consisted of fill, including fly ash, dust, slag, and cinder materials.

Analytical results of groundwater samples collected at the site during the IIWA investigation indicated that surface water and groundwater standards were exceeded for hexavalent chromium and pH. The Vanadium site, including the Airco Parcel, has been listed as a Class 2 Hazardous Waste Site in the New York State Registry of Inactive Hazardous Waste Sites (Site No. 932001). A Class 2 listing indicates a significant threat to public health and the environment, and requires remedial action.

Remedial measures at the Airco Parcel were completed in 2000 when the landfill was capped as part of an Interim Remedial Measure (IRM) implemented at the Site. A complete description of the history of the site, and the construction details of the landfill capping system, can be found in the Interim Remedial Measure Report (EA 2001b)³. During construction of the capping system a

^{3.} EA Engineering, Science, and Technology. 2001b. Interim Remedial Measure Report Documenting Closure of the Witmer Road Landfill, Niagara Falls, New York. January.

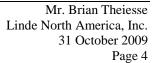
relief pipe system was installed to allow perched water to exit from under the cap without causing slope instability. Flow monitoring and quarterly sampling were initiated as part of post-closure operations and facility maintenance. The data collected since December 2000 indicated that the leachate was actually shallow groundwater discharging to surface water, groundwater discharge was seasonal, and elevated hexavalent chromium (Cr⁶⁺) concentrations and pH in groundwater remained in excess of the ambient water quality criteria after mixing with surface water.

The IRM was augmented in 2003 with the design and implementation of the GCTS, which was determined to be necessary to meet the goals of the interim remedial measures program. The GCTS was designed to prevent the uncontrolled discharge of impacted groundwater from the Airco Parcel and includes pH adjustment via carbon dioxide aeration, settling for precipitate removal, oxidation/reduction via zero valence iron, and final clarification via an engineered wetland. The main portion of the GCTS is located at the northwest corner of the site and contains the main control panel, carbon dioxide storage tank, carbon dioxide aeration system, sedimentation tanks, pump stations, zero valence iron reaction tanks, and an engineered wetland. An influent pump station is located at the southwest corner of the site.

MONITORING EVENT FIELD ACTIVITIES

The Bi-Annual Monitoring Event was completed between 18 and 19 May 2009. The sections below provide a summary of data collected as part of this sampling event.

Monitoring Well Gauging


The site monitoring wells, Figure 2, were gauged on 18 May 2009 prior to sampling. Gauging data are summarized in the table below:

	Depth to Water	Well Elevation	Water Elevation
Monitoring Well	(ft btoc)	(ft AMSL)	(ft AMSL)
MW-1B	10.05	617.77	607.72
MW-2B	11.82	615.88	604.06
MW-3B	8.32	611.22	602.90
MW-4B	6.85	606.68	599.83
MW-5B	5.24	605.48	600.24
MW-6B	3.22	603.47	600.25
MW-7B	9.30	609.48	600.18
MW-8B	4.49	611.62	607.13
NOTE: btoc =	Below top of casing.	-	-
AMSL =	Above mean sea level	l .	

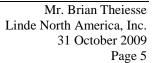
Figure 3 show the inferred groundwater flow direction at the site.

Groundwater Sampling Procedures

Monitoring wells were sampled on 19 May 2009. Eight groundwater samples were collected from the site monitoring wells. Monitoring wells MW-3B, MW-4B, MW-5B and MW-8B were purged using dedicated bailers due to slow recharge and limited well volume. Consistent with previous sampling, these wells yield very little groundwater and were bailed dry and allowed to recharge prior to sample collection. Monitoring wells MW-1B, MW-2B, MW-6B, and MW-7B have adequate groundwater yield for low flow sampling utilizing a peristaltic pump. Water quality readings were

allowed to stabilize prior to sample collection. Surface water samples were collected from the drainage swales in the southwest corner. These samples were collected from the eastern swale approximately 80 feet east of the pump station (SS-02); the confluence of the two swales where they discharge from the property (SS-01); and upstream of the confluence (SS-03). The surface water sample locations are shown on Figure 2. Samples were submitted to TestAmerica Laboratories of Amherst, New York for analysis of phenolics by U.S. Environmental Protection Agency (EPA) Method 420.2, sulfate by EPA Method 375.3, ammonia (expressed as nitrogen) by EPA Method 350.2, and Target Analyte List metals by EPA Series 6010/6020, including hexavalent chromium.

Groundwater sampling results were compared to NYSDEC Ambient Water Quality Standards (AWQS) (NYSDEC 1999) and guidance values for Class GA waters. Class GA groundwater is used as a source of drinking water. Surface water samples were compared to NYSDEC AWQS for Class D surface waters. Class D waters are used for fishing but are not conducive to fish propagation. If no Class D standards were applicable for a particular compound, analytical results were compared to the more stringent Class C standards. Class C waters are suitable for fishing and fish propagation. Analytical results for groundwater and surface water are summarized on the table provided in Attachment A. Copies of the well gauging, purging, and sampling forms are provided in Attachment B. Laboratory chain of-custody records are provided in Attachment C. Laboratory analytical results for groundwater and surface water sampling are included in Attachment D.


ANALYTICAL RESULTS

Summary tables listing analytical results compared to applicable NYSDEC AWQS are included in Attachment A, and a tag map illustrating analytical results is provided as Figure 4.

Metals

Unfiltered metals samples were collected from the 8 monitoring wells. Notable results included the following:

- Chromium, hexavalent chromium, iron, magnesium, manganese, selenium and sodium were detected in one or more of the groundwater samples at concentrations in excess of NYSDEC AWOS.
- Chromium was detected in excess of the NYSDEC AWQS in MW-2B, MW-4B and MW-8B at concentrations ranging from 0.179 mg/L to 0.563 mg/L.
- Hexavalent chromium was detected in excess of the NYSDEC AWQS in MW-2B, MW-4B and MW-8B at concentrations ranging from 0.144 mg/L and 0.229 mg/L, respectively.
- Iron was detected in excess of the NYSDEC AWQS in MW-2B, MW-3B, MW-5B, MW-7B and MW-8B at concentrations ranging from 0.329 mg/L (MW-7B) to 2.19 mg/L (MW-4B).
- Magnesium was detected in excess of the NYSDEC AWQS in MW-1B, MW-4B, MW-5B, MW-6B and MW-8B at concentrations ranging from 44.7 mg/L (MW-4B) to 84.7 mg/L (MW-5B).
- Manganese was detected in excess of the NYSDEC AWQS in MW-1B at a concentration of 0.675 mg/L.

- Selenium was detected in excess of the NYSDEC AWQS in MW-8B at a concentration of 0.04443 mg/L.
- Sodium was detected in excess of the NYSDEC AWQS in all 8 monitoring wells at concentrations ranging from 31.4 mg/L (MW-5B) to 120 mg/L (MW-1B).

Unfiltered metals samples were collected from 3 surface water locations. No metals were detected at concentration above the NYSDEC AWQS for Class D surface waters

Water Quality Parameters

Water quality parameters, including pH, temperature, conductivity, dissolved oxygen, turbidity, and salinity, were collected in the field. In addition, water quality parameters, including ammonia (expressed as N), phenolics, and sulfate, were analyzed by the laboratory. Notable results included the following:

- Phenolics were detected in excess of NYSDEC AWQS in MW-2B at a concentration of 0.0096 mg/L.
- Sulfate was detected in excess of the NYSDEC AWQS in MW-1B and MW-6B at a concentration of 260 mg/L in both monitoring wells.
- pH measurements were measured outside the NYSDEC AWQS of 6.5-8.5 standard pH units in monitoring wells MW-1B (6.42), MW-2B (11.92) and MW-3B (9.38).

LANDFILL INSPECTION

Quarterly landfill cap inspections were conducted on 19 March and 14 June 2009. The Landfill Cap Inspection Checklists are provided as Attachment E. No deterioration, damage, or erosion to the landfill cap was noted during the engineering inspections. The following was observed during the two inspections:

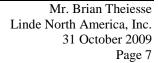
- Ponded Water was noted at the access gate near Witmer Road and on the access road adjacent to the GCTS. It is recommended that crushed gravel be added to these two areas and re-graded to avoid additional degradation of the access roads.
- Weeds have begun to grow up around the GCTS tanks and around the solar panels. It is recommended that geo-textile and stone be placed over this area to reduce/eliminate maintenance costs.
- Monitoring wells protective casings are rusting and should be painted to prevent deterioration.
- The concrete pad under the backup generator has settled. The service tech for the generator noted that it needed to be level to avoid potential damage to the generator.
- Stressed vegetation was observed in the southwest corner where surface water has been diverted away during the collection system upgrades. Additional topsoil should be added and the area re-seeded.

• The swale in the southwest corner has an area approximately 50 feet long that has sloughed into the swale and needs to be repaired.

GCTS OPERATIONS AND MAINTENANCE MONITORING ACTIVITIES

Routine operations and maintenance of the GCTS is preformed during site visits twice per month. Activities performed include data collection, cleaning and calibration of pH probes, cleaning of pressure transmitters, operational parameter adjustments based on observed site conditions, and general housekeeping tasks. The replacement of system components, including pumps, pressure transmitters, and pH probes is also scheduled and performed during the routine visits when practicable.

System Operations and Maintenance (January – June 2009)


The GCTS was operated throughout the 6-month period of 1 January – 30 June 2009. System monitoring was conducted throughout the operation period. Attachment G provides details of the problems encountered, and the implemented solutions.

During the reporting period, the GCTS operated for 4,344 hours (100 percent) at an average flow rate of 16.2 gallons per minute (gpm). The GCTS sampling occurred bi-weekly during the operation period. Samples were collected at various locations within the system to evaluate treatment system performance and compliance with discharge criteria. Bi-weekly samples were collected from the system at T3B after CO₂ aeration; T6B after treatment via the zero valence iron tank; after the engineered wetland (EWE); and at the point where the drainage swale exits the site in the southwest corner, when accessible. The samples were analyzed in the field for total chromium and hexavalent chromium using a HACH DR4000® spectrophotometer. The HACH DR4000® spectrophotometer field method is EPA approved for reporting water and wastewater analyses within a detection limit of 0.006 and 0.005 mg/L for hexavalent chromium, and 0.003 mg/L for total chromium. The engineered wetland discharge samples were analyzed in the field, and separate quarterly samples were also collected for off-site laboratory analysis at Test America Laboratories of Amherst, New York for a full list of discharge criteria. During the report period, two separate occasions noted elevated levels of hexavalent chromium in the surface water where it exits the site in the southwest corner. In both instances, additional grab samples were collected and sent to Test America in Amherst, NY to confirm the presence of hexavalent chromium. In both cases, the laboratory results were non-detect.

Field sampling results for total and hexavalent chromium can be found in Table 1, and results of the quarterly engineered wetland discharge samples can be found in Table 2. Analytical results for the quarterly discharge sampling noted that no constituents exceeded the NYSDEC discharge guidance values for the March or May 2009 discharge sampling. The full set of laboratory analytical data for the GCTS discharge sampling can be found in Attachment F.

GCTS Modifications (January – June 2009)

No major modifications to the GCTS were performed during the report period. Site activities were limited to routine operations and maintenance, including repairs to pumps, VFDs, and pH probes. Attachment G summarizes monthly operation and maintenance details for the period January through June 2009, as well as provides proposed operation and maintenance projects and modification improvements to be implemented in the near future.

If you have any questions regarding the results of this Bi-Annual 2009 Monitoring Event Letter Report, please do not hesitate to contact Charles McLeod at (845) 223-9944.

Sincerely,

GREENSTAR ENGINEERING, P.C.

Charles E. McLeod, Jr., P.E.

President

CEM/cl Attachments

cc: M. Hinton (NYSDEC) M. Forcucci (NYSDOH) Town of Niagara Falls (Town Clerk)

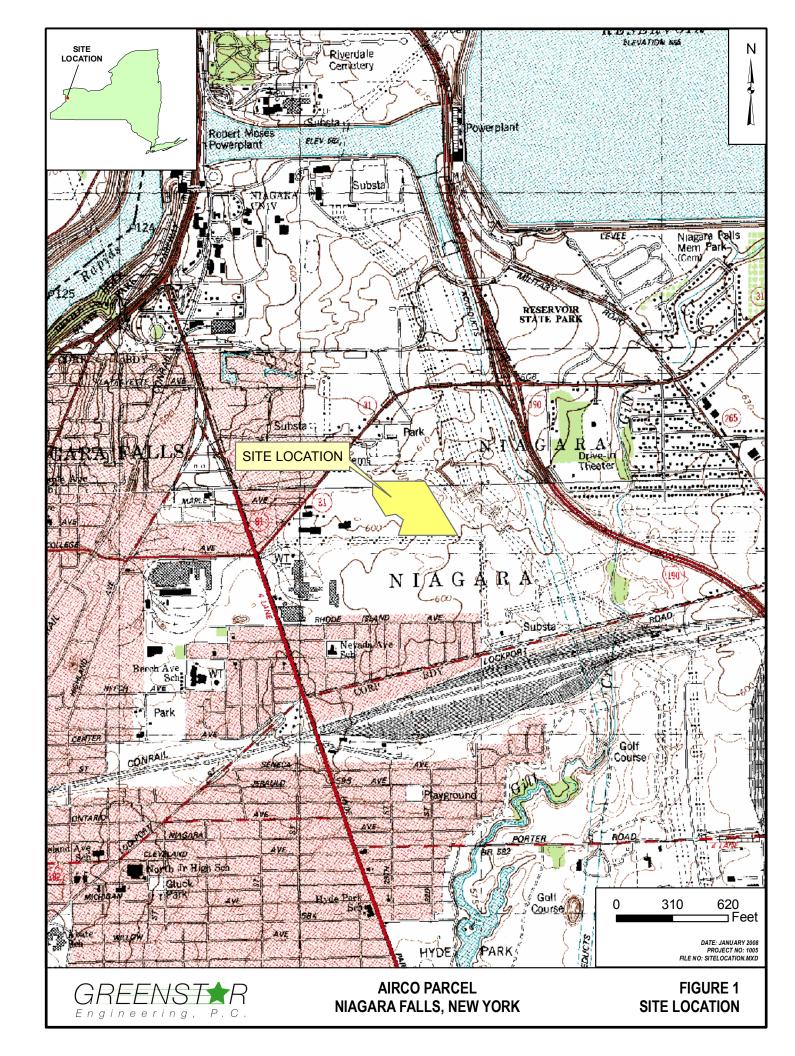
TABLE 1 SUMMARY OF GCTS FIELD SAMPLING RESULTS 1 JANUARY – 30 JUNE 2009, AIRCO PARCEL, NIAGARA FALLS, NEW YORK

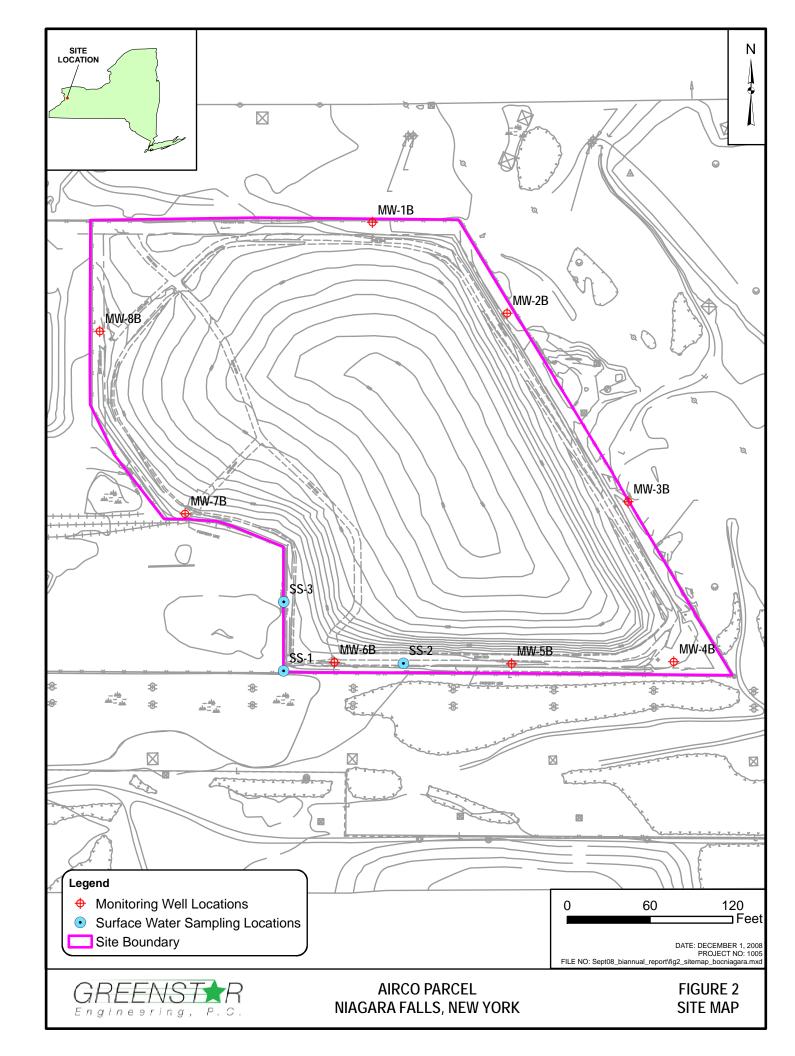
	Chromiun	n Tank 3B	Iron T	ank 6B	Engineere	d Wetland	Southwes	t Corner
	Total	Hexavalent	Total	Hexavalent	Total	Hexavalent	Total	Hexavalent
Date	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium
1/14/09	159 μg/L	64 μg/L	34 μg/L	<3U μg/L	13μg/L	2 μg/L	NS - Ice	NS - Ice
1/27/09	123 μg/L	99 μg/L	41 μg/L	<3U μg/L	31 μg/L	<3U μg/L	NS - Ice	NS - Ice
2/17/09	64 μg/L	14 μg/L	19 μg/L	7 μg/L	17 μg/L	5 μg/L	12 μg/L	8 μg/L
2/24/09	62 μg/L	33 μg/L	<6U μg/L	<3U μg/L	<6U μg/L	<3U μg/L	12 μg/L	<3U μg/L
3/3/09	74 μg/L	63 μg/L	17 μg/L	<3U μg/L	15 μg/L	<3U μg/L	27 μg/L	8 μg/L
3/19/09	152 μg/L	8 μg/L	3 μg/L	<3U μg/L	<6U μg/L	<3U μg/L	12 μg/L	18 μg/L
3/19/09*	NS	NS	NS	NS	NS	NS	$<100U~\mu g/L$	<11U μg/L
4/7/09	168 μg/L	99 μg/L	29 μg/L	<3U μg/L	10 μg/L	<3U μg/L	13 μg/L	8 μg/L
4/27/09	166 μg/L	107 μg/L	32 μg/L	<3U μg/L	<6U μg/L	<3U μg/L	23 μg/L	23 μg/L
4/27/09*	NS	NS	NS	NS	NS	NS	NS	<11U μg/L
5/5/09	154 μg/L	137 μg/L	48 μg/L	<3U μg/L	<6U μg/L	<3U μg/L	16 μg/L	5 μg/L
5/18/09	93 μg/L	55 μg/L	36 μg/L	<3U μg/L	<6U μg/L	<3U μg/L	14 μg/L	9 μg/L
6/16/09	149 μg/L	106 μg/L	51 μg/L	<3U μg/L	7 μg/L	<3U μg/L	19 μg/L	4 μg/L
6/30/09	113 μg/L	109 μg/L	49 μg/L	<3U μg/L	<6U μg/L	<3U μg/L	24 μg/L	10 μg/L

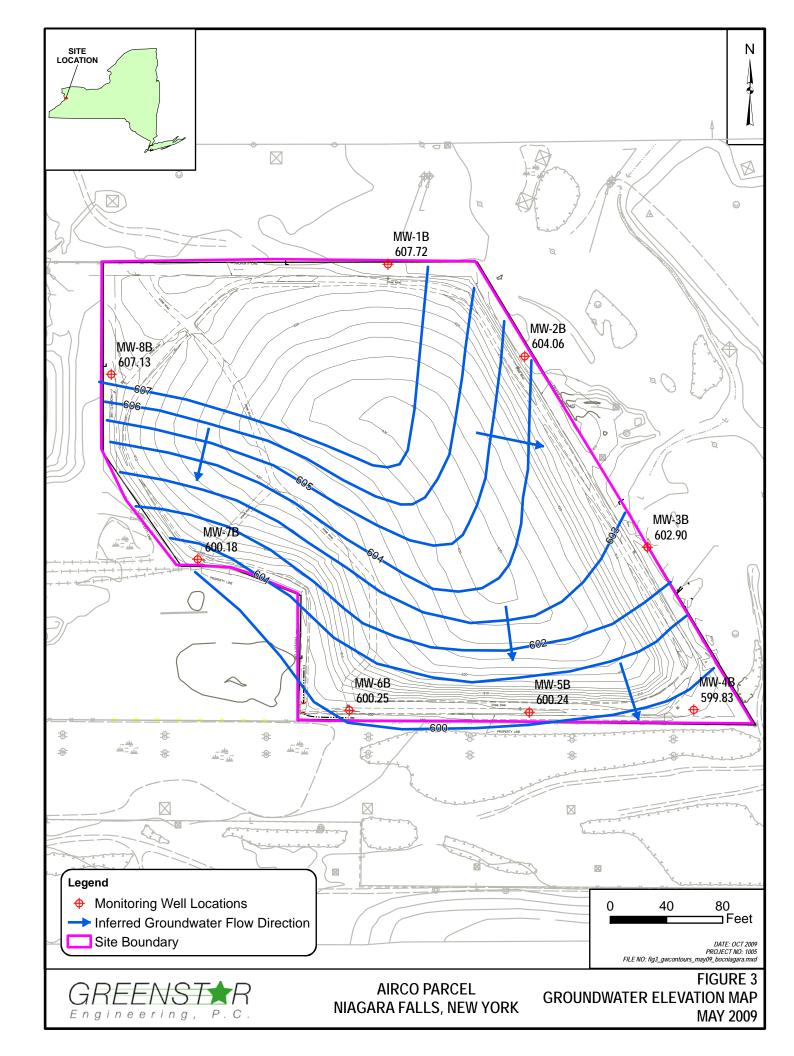
NOTE: NS = Not Sampled

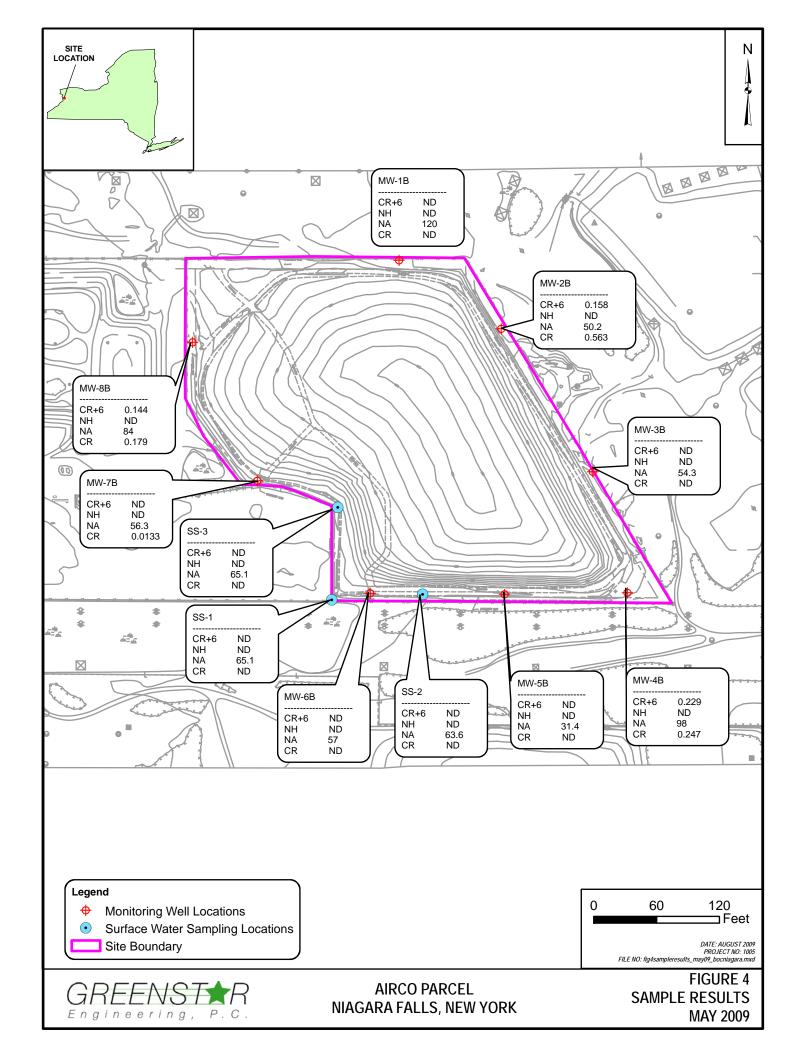
NS - Ice = Not Sampled due to winter weather conditions.

BOLD field sample results were in excess of SPDES discharge guidance values.


*Confirmation sample collected and analyzed by Test America, Buffalo, NY. Both confirmation samples indicated compliance with SPDES discharge values.


Field samples analyzed using a HACH DR4000® Spectrophotometer.


Hach Methods 8023 for Hexavalent Chromium and Hach Method 8084 for Total Chromium.


TABLE 2 SUMMARY OF QUARTERLY GCTS DISCHARGE SAMPLING 19 MARCH AND 19 MAY 2009, AIRCO PARCEL, NIAGARA FALLS, NEW YORK

			New York State Department of Environmental Conservation
Parameter	19 March 2009	19 May 2009	Discharge Criteria
рН	7.80	7.88	6-8 s.u.
Total suspended solids	<10U	<10U	10 mg/L
Dissolved Oxygen	10.4	8.72	7 mg/L
Ammonia as N	<9.2U	<9.2U	9.2 mg/L
Total Kjeldahl nitrogen	<1.0U	<1.0U	Monitor (mg/L)
Total Recoverable Phenolics	<0.008U	<0.008U	.008 mg/L
Biochemical oxygen demand	<5U	<5U	5.0 mg/L
1,1-Dichloroethane	<5U	<5U	5.0 μg/L
Trichloroethene	<5U	<5U	5.0 μg/L
Nickel	<0.07U	<0.07U	0.07 mg/L
Copper	<0.0147U	<0.0147U	0.0147 mg/L
Barium	<2U	<2U	2 mg/L
Total chromium	<0.1U	<0.1U	0.1 mg/L
Hexavalent chromium	<0.011U	<0.011U	0.011 mg/L
Iron	<0.3U	<0.3U	0.3 mg/L
Selenium	<0.0046U	<0.0046U	0.0046 mg/L
Thallium	<0.004U	<0.004U	0.004 mg/L
Zinc	<0.115U	<0.115U	0.115 mg/L
Nitrate as N	1.17	<0.05U	Monitor (mg/L-N)
Nitrite as N	<0.05U	2.30	Monitor (mg/L-N)
Chemical oxygen demand	<40U	<40U	40 mg/L
Total dissolved solids	591	657	Monitor (mg/L)

Attachment A

Summary of Analytical Results Groundwater and Surface Water Samples May 2009

ATTACHMENT A

SUMMARY OF ANALYTICAL RESULTS OF SURFACE WATER AND GROUNDWATER SAMPLES COLLECTED IN MAY 2009,

AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Groundwater

Baseline Metals by EPA Method 200.7 (mg/L) Total (Unfiltered)

		MW-1B	MW-2B	MW-3B	MW-4B	MW-5B	MW-6B	MW-6B (Dup)	MW-7B	MW-8B
Analyte	AWQS									
Cadmium	0.005	(<0.001U)	(<0.001U)	(<0.001U)						
Chromium	0.05	(<0.004U)	0.563	(<0.004U)	0.247	(<0.004U)	(<0.004U)	(<0.004U)	0.0133	0.179
Chromium, Hexavalent	0.05	(<0.011U)	0.158	(<0.011U)	0.229	(<0.011U)	(<0.011U)	(<0.011U)	(<0.011U)	0.144
Iron	0.3	0.0899	0.151	0.122	2.19	0.347	0.478	0.474	0.329	0.787
Lead	0.025	(<0.005U)	(<0.005U)	(<0.005U)						
Magnesium	35*	64.8	(<0.2U)	7.88	44.7	84.7	82.6	89.3	10.7	71.2
Manganese	0.3	0.675	0.0097	0.0126	0.0387	0.0123	0.163	0.174	0.0582	0.125
Selenium	0.01	(<0.015U)	(<0.015U)	0.0444						
Silica		6.77	1.12	6.34	8.41	7.98	5.92	6.05	4.69	7.59
Sodium	20	120	50.2	54.3	98	31.4	57	61.1	56.3	84
Thallium	0.0005*	(<0.02U)	(<0.02U)	(<0.02U)						
Zinc	2*	0.518	(<0.01U)	0.0184	0.0474	0.063	(<0.01U)	(<0.01U)	(<0.01U)	0.115

Water Quality Parameters (mg/L)

		MW-1B	MW-2B	MW-3B	MW-4B	MW-5B	MW-6B	MW-6B	MW-7B	MW-8B
								(Dup)		
Analyte	AWQS									
Ammonia (expressed as N)	2	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)	(<9.2U)
Phenolics	0.001	(<0.008U)	0.0096	(<0.008U)						
Sulfate	250	260	(<10U)	66	160	160	260	320	36	230

Surface Water

Baseline Metals by EPA Method 200.7 (mg/L) Total (Unfiltered)

		SS-01	SS-02	SS-03
Analyte	AWQS			
Cadmium		(<0.001U)	(<0.001U)	(<0.001U)
Chromium		(<0.004U)	(<0.004U)	(<0.004U)
Chromium, Hexavalent	0.016	(<0.011U)	(<0.011U)	(<0.011U)
Iron	0.3	0.0975	(<0.05U)	(<0.05U)
Lead		(<0.005U)	(<0.005U)	(<0.005U)
Magnesium		1.37	4.95	1.24
Manganese		0.0055	(<0.003U)	0.0067
Selenium	0.0046	(<0.015U)	(<0.015U)	(<0.015U)
Silica		0.832	1.48	0.673
Sodium		65.1	63.6	65.1
Thallium	0.02	(<0.02U)	(<0.02U)	(<0.02U)
Zinc		(<0.01U)	(<0.01U)	(<0.01U)

Water Quality Parameters (mg/L)

		SS-01	SS-02	SS-03
Analyte	AWQS			
Ammonia (expressed as N)		(<9.2U)	(<9.2U)	(<9.2U)
Phenolics		(<0.008U)	(<0.008U)	(<0.008U)
Sulfate		11	12	11

QA/QC

Baseline Metals by EPA Method 200.7 (mg/L) Total (Unfiltered)

		Rinse	Source
		Blank	Water
			Blank
Analyte	AWQS		
Cadmium		(<0.001U)	(<0.001U)
Chromium		(<0.004U)	(<0.004U)
Chromium, Hexavalent		(<0.011U)	(<0.011U)
Iron		(<0.05U)	(<0.05U)
Lead		(<0.005U)	(<0.005U)
Magnesium		3.42	3.53
Manganese		(<0.003U)	(<0.003U)
Selenium		(<0.015U)	(<0.015U)
Silica		(<0.05U)	(<0.05U)
Sodium		8.3	8.4
Thallium		(<0.02U)	(<0.02U)
Zinc		(<0.01U)	(<0.01U)

Water Quality Parameters (mg/L)

		Rinse	Source
		Blank	Water
			Blank
Analyte	AWQS		
Ammonia (expressed as N)		(<9.2U)	(<9.2U)
Phenolics		(<0.008U)	(<0.008U)
Sulfate		11	12

ATTACHMENT A (CONTINUED)

TABLE NOTES

AWQS = New York State Ambient Water Quality Standards and Guidance Values from Water Quality Regulations, Title 6, Chapter X Parts 700-706 August 1999.

* = Indicates guidance value.

U = Not detected. Sample quantitation limits shown as (<__U).

Only those analytes detected in at least one of the samples is shown on this table. Results shaded and in boldface indicate concentrations in excess of New York State Ambient Water Quality Standards or Guidance Values.

Analytical Methods for Water Quality Parameters

Ammonia (expressed as Nitrogen) = EPA 350.2 Phenolics = EPA 420.2 Silica = EPA 6010 Sulfate = EPA 375.3

Attachment B

Well Gauging, Purging, and Sampling Forms May 2009

Well I.D.:	Personnel:		Client:	
AP-MW1B	Steve Bazilus	ļ	Linde, Inc.	
Location:	Well Condition:		Weather:	
Niagara Falls	Locked		Mostly Sunny, 63°	
Sounding Method:	Gauge Date:		Measurement Ref:	
WLI	5/18/2009	ļ	TOC	
Stick Up/Down (ft):	Gauge Time:		Well Diameter (in):	
UP	16:30	ļ	2"	
Purge Date:		Purge Time	e:	
5/19/2009		<u> </u>	8:15	
Purge Method:		Greenstar	Personnel:	
Low-Flow		l	SB	
	Well	Volume		
A. Well Depth (ft):	D. Well Volume (ft3):		Depth/Height of Top of PVC:	
27.83	1	0.39	N/A	
B. Depth to Water (ft):	E. Well Volume (L)		Pump Type:	
10.05		10.98		
C Liquid Depth (ft) (A-R):		-	Pump Designation:	

Water Quality Parameters									
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Lpm)	pH (pH units)	Conduct. (mS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp. (° C)	ORP (mv)
8:23	10.61	1	0.25	6.73	2.65	9.9	3.53	9.54	172
8:27	10.62	2	0.25	6.65	2.69	7.9	2.70	9.54	146
8:32	10.63	3	0.25	6.56	2.70	9.3	1.24	9.71	65
8:35	10.64	4	0.25	6.51	2.71	9.8	0.73	9.76	61
8:39	10.67	5	0.25	6.47	2.70	9.1	0.15	9.95	57
8:43	10.71	6	0.25	6.43	2.70	10.5	0.00	10.02	53
8:47	10.72	7	0.25	6.42	2.69	18.6	0.00	10.13	51
8:51	10.73	8	0.25	6.42	2.69	18.1	0.00	10.16	49
8:55	10.74	9	0.25	6.42	2.70	18.2	0.00	10.17	47

N/A

Total Quantity of Water Removed:	9 L	Sampling Time:	8:55	
Samplers:	SB	Split Sample With:	N/A	
Sampling Date:	19-May-09	Sample Type:	Grab	
COMMENTS AND OBSERVATIONS:				
	-		-	

Well I.D.:			Personnel	:		Client:				
	AP-MW2B			Steve Bazilus			Linde, Inc.			
Location:			Well Cond	ition:		Weather:				
	Niagara Falls			Locked		Mostly Sunny, 63°				
Sounding I			Gauge Dat			Measurement F				
	WLI 5/18/2009						TOC			
Stick Up/Do			Gauge Time: Well Diameter (in):							
	UP			16:40			2"			
Purge Date	<u> </u>				Purge Tim	۵.				
l argo Dato	5/19/2009				l urgo riiii	9:30				
Purge Meth					Greenstar	Personnel:				
	Low-Flow					SB				
									1	
					Volume					
A. Well Dep	. Well Depth (ft): D. Well Volume (ft3):					Depth/Height o	-			
D. Donath to	27.31				0.34		N/A			
B. Depth to	. Depth to Water (ft): E. Well Volume (L):				9.56	Pump Type: Peristaltic				
11.82 C. Liquid Depth (ft) (A-B):					9.50	Pump Designation:				
C. Liquid D	15.49	•				r unip Designat	N/A			
						<u>. </u>				
				Water Qua	lity Paran	neters				
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)	
		4	0.25	11.51	11.80	460	1.77	10.69	-111	
9:34	12.45	1			44.00		4 47	40.40	-124	
9:38	12.52	2	0.25	11.74	11.90	44.8	1.47	10.48		
9:38 9:42	12.52 12.52	2	0.25 0.25	11.82	11.80	38.6	1.40	10.21	-126	
9:38 9:42 9:46	12.52 12.52 12.55	2 3 4	0.25 0.25 0.25	11.82 11.88	11.80 11.90	38.6 38.4	1.40 1.35	10.21 10.00	-126	
9:38 9:42 9:46 9:50	12.52 12.52 12.55 12.56	2 3 4 5	0.25 0.25 0.25 0.25	11.82 11.88 11.92	11.80 11.90 11.90	38.6 38.4 40.2	1.40 1.35 1.33	10.21 10.00 10.01	-126 -126	
9:38 9:42 9:46	12.52 12.52 12.55	2 3 4	0.25 0.25 0.25	11.82 11.88	11.80 11.90	38.6 38.4	1.40 1.35	10.21 10.00	-126	
9:38 9:42 9:46 9:50	12.52 12.52 12.55 12.56	2 3 4 5	0.25 0.25 0.25 0.25	11.82 11.88 11.92	11.80 11.90 11.90	38.6 38.4 40.2	1.40 1.35 1.33	10.21 10.00 10.01	-126 -126	
9:38 9:42 9:46 9:50	12.52 12.52 12.55 12.56	2 3 4 5	0.25 0.25 0.25 0.25	11.82 11.88 11.92	11.80 11.90 11.90	38.6 38.4 40.2	1.40 1.35 1.33	10.21 10.00 10.01	-126 -126	
9:38 9:42 9:46 9:50	12.52 12.52 12.55 12.56	2 3 4 5	0.25 0.25 0.25 0.25	11.82 11.88 11.92	11.80 11.90 11.90	38.6 38.4 40.2	1.40 1.35 1.33	10.21 10.00 10.01	-126 -126	
9:38 9:42 9:46 9:50	12.52 12.52 12.55 12.56	2 3 4 5	0.25 0.25 0.25 0.25	11.82 11.88 11.92	11.80 11.90 11.90	38.6 38.4 40.2	1.40 1.35 1.33	10.21 10.00 10.01	-126 -126	
9:38 9:42 9:46 9:50	12.52 12.52 12.55 12.56	2 3 4 5	0.25 0.25 0.25 0.25	11.82 11.88 11.92	11.80 11.90 11.90	38.6 38.4 40.2	1.40 1.35 1.33	10.21 10.00 10.01	-126 -126	
9:38 9:42 9:46 9:50 9:54	12.52 12.52 12.55 12.56 12.56	2 3 4 5 6	0.25 0.25 0.25 0.25	11.82 11.88 11.92 11.92	11.80 11.90 11.90	38.6 38.4 40.2 41.6	1.40 1.35 1.33 1.35	10.21 10.00 10.01 10.02	-126 -126	
9:38 9:42 9:46 9:50 9:54	12.52 12.52 12.55 12.56	2 3 4 5 6	0.25 0.25 0.25 0.25	11.82 11.88 11.92 11.92	11.80 11.90 11.90	38.6 38.4 40.2 41.6	1.40 1.35 1.33 1.35	10.21 10.00 10.01 10.02	-126 -126 -126	
9:38 9:42 9:46 9:50 9:54 Total Quan Samplers:	12.52 12.52 12.55 12.56 12.56	2 3 4 5 6	0.25 0.25 0.25 0.25	11.82 11.88 11.92 11.92	11.80 11.90 11.90	38.6 38.4 40.2 41.6 Sampling Time Split Sample W	1.40 1.35 1.33 1.35	10.21 10.00 10.01 10.02	-126 -126	
9:38 9:42 9:46 9:50 9:54	12.52 12.52 12.55 12.56 12.56	2 3 4 5 6	0.25 0.25 0.25 0.25	11.82 11.88 11.92 11.92	11.80 11.90 11.90	38.6 38.4 40.2 41.6	1.40 1.35 1.33 1.35	10.21 10.00 10.01 10.02	-126 -126 -126	

Well I.D.:			Personnel			Client:					
	AP-MW3B			Steve Bazilus			Linde, Inc.				
Location:			Well Cond			Weather:					
	Niagara Falls			Locked		Mostly Sunny, 63°					
Sounding I			Gauge Dat			Measurement I					
	WLI			5/18/2009			TOC				
Stick Up/Do	• •		Gauge Tin	Gauge Time: Well Diameter (in):							
	UP			16:50			2"				
Purge Date					Purge Tim	e:					
	5/18/2009					16:55					
Purge Meth					Greenstar	Personnel:					
	Hand Bail					SB					
				Well	Volume						
A. Well Dep	Nell Depth (ft): D. Well Volume (ft3):					Depth/Height of	of Top of PVC:				
	18.41				0.22		N/A	ı			
B. Depth to	Depth to Water (ft): E. Well Volume (L):					Pump Type:					
	8.32					Poly Bailer					
C. Liquid Depth (ft) (A-B):						Pump Designation:					
10.09 N/A											
				Water Qua	lity Paran	neters					
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP		
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)		
16:55	8.32	0.5	N/A	7.21	0.421	19.0	11.12	10.84	108		
17:09	Dry	8	N/A	7.52	0.411	54.8	10.48	11.98	67		
10:35	8.52	N/A	N/A	9.48	0.42	36.2	10.98	10.85	131		
	tity of Water R	lemoved:		8 L	-	Sampling Time		10:35	/0		
Samplers:	Nata.			SB 40 May 00	-	Split Sample W	/itn:		/A		
Sampling D	vate:			19-May-09	-	Sample Type:		Grab			
COMMENT	S AND OBSEF	OVATIONS.		Well purged d	ry and cam	aled the following	day				
	AIVI, UDOFF	.valiuis.		Well purged dry and sampled the following day. Replace bailer for fall event.							

Well I.D.:	A D A 0.4.4.5		Personnel			Client:				
_	AP-MW4B			Steve Bazilus			Linde, Inc.			
Location:			Well Cond			Weather:				
	Niagara Falls		<u> </u>	Locked		Mostly Sunny, 63°				
Sounding I			Gauge Dat			Measurement				
04: 1 11 /0	WLI			5/18/2009		W !! D:	TOC			
Stick Up/De	. ,		Gauge III	auge Time: Well Diameter (in):						
	UP			17:20			2"			
Purge Date	\.				Purge Tim	0:			1	
ruige Date	5/18/2009				ruige iiii	e. 17:25				
Purge Meth					Greenstar	Personnel:				
J. J.	Hand Bail					SB				
				Well	l Volume					
A. Well Dep	A. Well Depth (ft): D. Well Volume (ft3):					Depth/Height of	of Top of PVC:			
	15.08				0.18		N/A			
B. Depth to	B. Depth to Water (ft): E. Well Volume (L):					Pump Type:				
6.85 C. Liquid Depth (ft) (A-B):					5.08	5.08 Poly Bailer				
C. Liquid D		•				Pump Designa				
	8.23 N/A									
				Water Qua	lity Paran	neters				
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)	
17:25	6.85	0.5	N/A	6.98	0.847	37.9	10.51	10.72	185	
17:33	Dry	8	N/A	7.08	0.843	> 999	10.79	9.68	186	
10:50	6.80	N/A	N/A	8.18	0.837	96.1	10.06	12.10	186	
Total Quan	tity of Water F	Removed:		8 L	_	Sampling Time		10:50		
Samplers:				SB	_	Split Sample V	/ith:	N	/A	
Sampling [Date:			19-May-09	_	Sample Type:		Grab		
				\A/ II ·		1 10 6 "				
COMMENT	S AND OBSEF	RVATIONS:		Well purged Replace baile		mpled the follo	wing day.			
				Replace balle	r ior fall evel	III.				

Well I.D.:	AB 10==		Personnel			Client:				
	AP-MW5B			Steve Bazilus			Linde, Inc.			
Location:			Well Cond			Weather:	Moothy Comme	ော		
	Niagara Falls		<u> </u>	Locked		Mostly Sunny, 63°				
Sounding I			Gauge Dat			Measurement Ref:				
00-1-11 /2	WLI		O T'	5/18/2009		W-UD:	TOC			
Stick Up/D			Gauge Tin	Gauge Time: Well Diameter (in): 17:42 2"						
	UP			17:42						
Purge Date					Purge Tim					
Purge Date	5/18/2009				Purge IIIII	e. 17:44				
Purge Meth					Greenstar	Personnel:				
l argo mon	Hand Bail				O CONStan	SB				
				Well	l Volume					
A. Well Dep	Well Depth (ft): D. Well Volume (ft3):						of Top of PVC:			
	14.22				0.20		N/A	<u> </u>		
B. Depth to	B. Depth to Water (ft): E. Well Volume (L):				<u>-</u>	Pump Type:				
5.24					5.54	· · · · · · · · · · · · · · · · · · ·				
C. Liquid Depth (ft) (A-B):					Pump Designation:					
8.98 N/A										
				Water Qua	lity Daran	neters				
Time	DTW	Valuma	Doto		Conduct.		D.O.	Taman	ORP	
Time (hrs)	(ft btoc)	Volume (liters)	Rate (Lpm)	pH (pH units)	(mS/cm)	Turbidity (NTU)	(mg/L)	Temp. (° C)	(mv)	
	I .			<u> </u>		1		† 		
17:44 17:51	5.24 Dry	0.5 8	N/A N/A	6.86 6.90	1.630 1.770	34.5 649.0	9.30 10.32	13.88 10.72	221 242	
17.51	Dry	0	IN/A	0.90	1.770	049.0	10.32	10.72	242	
11:30	5.40	N/A	N/A	7.60	0.912	36.0	9.27	14.73	210	
Total O	.4i4., a4 \A/a4a F) a m a : -		0.1		Complies of Time	_	44.00		
Samplers:	itity of Water F	kemovea:		8 L SB	=	Sampling Time Split Sample W		11:30	/A	
Sampling I	Date:			19-May-09	-	Sample Type:	VILIT.	Grab	// <u>^</u>	
Camping L	Jule.									
COMMENT	S AND OBSER	RVATIONS:		Well purged d	ry and same	oled the following	ı dav.			

Well I.D.:			Personnel	:		Client:				
	AP-MW6B			Steve Bazilus			Linde, Inc.			
Location:			Well Cond	ition:		Weather:				
	Niagara Falls			Locked		Mostly Sunny, 63°				
Sounding I			Gauge Dat			Measurement Ref:				
	WLI 5/18/2009						TOC			
Stick Up/Do										
	UP			18:00			2"			
					•					
Purge Date					Purge Tim					
	5/19/2009					11:55				
Purge Meth					Greenstar	Personnel:				
	Low-Flow				<u> </u>	SB				
				147 **	1.17 - 1-				1	
					Volume					
A. Well Dep			D. Well Vo	lume (ft3):		Depth/Height o	-			
D D	23.02		E 14/		0.43		N/A	1		
B. Depth to Water (ft):				lume (L):	40.00	Pump Type:	D :			
3.22					12.22 Peristaltic					
C. Liquid Depth (ft) (A-B): Pump Designation:										
	19.80 N/A									
				Water Qua	lity Paran	neters				
Time	DTW	Volume	Rate		lity Paran		D.O.	Temp.	ORP	
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Lpm)	рН		Turbidity		Temp.	ORP (mv)	
(hrs)			Rate (Lpm) 0.25		Conduct. (mS/cm)	Turbidity (NTU)	(mg/L)	(° C)	(mv)	
	(ft btoc)	(liters)	(Lpm)	pH (pH units)	Conduct.	Turbidity				
(hrs) 12:00	(ft btoc) 5.42	(liters)	(Lpm) 0.25	pH (pH units) 7.23	Conduct. (mS/cm)	Turbidity (NTU) 232.0	(mg/L) 0.52	(° C)	(mv) -79	
(hrs) 12:00 12:04	(ft btoc) 5.42 6.50	(liters) 1 2	(Lpm) 0.25 0.25	pH (pH units) 7.23 7.08	Conduct. (mS/cm) 1.92 1.89	Turbidity (NTU) 232.0 24.3	(mg/L) 0.52 0.00	(° C) 12.32 12.91	-79 -83	
(hrs) 12:00 12:04 12:08 12:12 12:16	(ft btoc) 5.42 6.50 7.76	(liters) 1 2 3	0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98	Conduct. (mS/cm) 1.92 1.89 1.90	Turbidity (NTU) 232.0 24.3 12.8	(mg/L) 0.52 0.00 0.00	(° C) 12.32 12.91 12.75	-79 -83 -82	
(hrs) 12:00 12:04 12:08 12:12 12:16 12:20	5.42 6.50 7.76 8.74 9.81 10.21	(liters) 1 2 3 4 5 6	(Lpm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91 6.88	1.92 1.89 1.90 1.90 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1 9.6	(mg/L) 0.52 0.00 0.00 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67 12.57	-79 -83 -82 -82 -81 -81	
(hrs) 12:00 12:04 12:08 12:12 12:16	5.42 6.50 7.76 8.74 9.81	(liters) 1 2 3 4 5	0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91	1.92 1.89 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1	(mg/L) 0.52 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67	-79 -83 -82 -82 -81	
(hrs) 12:00 12:04 12:08 12:12 12:16 12:20	5.42 6.50 7.76 8.74 9.81 10.21	(liters) 1 2 3 4 5 6	(Lpm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91 6.88	1.92 1.89 1.90 1.90 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1 9.6	(mg/L) 0.52 0.00 0.00 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67 12.57	-79 -83 -82 -82 -81 -81	
(hrs) 12:00 12:04 12:08 12:12 12:16 12:20	5.42 6.50 7.76 8.74 9.81 10.21	(liters) 1 2 3 4 5 6	(Lpm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91 6.88	1.92 1.89 1.90 1.90 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1 9.6	(mg/L) 0.52 0.00 0.00 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67 12.57	-79 -83 -82 -82 -81 -81	
(hrs) 12:00 12:04 12:08 12:12 12:16 12:20	5.42 6.50 7.76 8.74 9.81 10.21	(liters) 1 2 3 4 5 6	(Lpm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91 6.88	1.92 1.89 1.90 1.90 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1 9.6	(mg/L) 0.52 0.00 0.00 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67 12.57	-79 -83 -82 -82 -81 -81	
(hrs) 12:00 12:04 12:08 12:12 12:16 12:20	5.42 6.50 7.76 8.74 9.81 10.21	(liters) 1 2 3 4 5 6	(Lpm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91 6.88	1.92 1.89 1.90 1.90 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1 9.6	(mg/L) 0.52 0.00 0.00 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67 12.57	-79 -83 -82 -82 -81 -81	
(hrs) 12:00 12:04 12:08 12:12 12:16 12:20	5.42 6.50 7.76 8.74 9.81 10.21	(liters) 1 2 3 4 5 6	(Lpm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91 6.88	1.92 1.89 1.90 1.90 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1 9.6	(mg/L) 0.52 0.00 0.00 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67 12.57	-79 -83 -82 -82 -81 -81	
(hrs) 12:00 12:04 12:08 12:12 12:16 12:20 12:24	5.42 6.50 7.76 8.74 9.81 10.21 11.27	(liters) 1 2 3 4 5 6 7	(Lpm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91 6.88 6.86	1.92 1.89 1.90 1.90 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1 9.6 9.3	(mg/L) 0.52 0.00 0.00 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67 12.57 12.49	-79 -83 -82 -82 -81 -81	
(hrs) 12:00 12:04 12:08 12:12 12:16 12:20 12:24 Total Quan	5.42 6.50 7.76 8.74 9.81 10.21	(liters) 1 2 3 4 5 6 7	(Lpm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91 6.88 6.86	1.92 1.89 1.90 1.90 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1 9.6 9.3 Sampling Time	(mg/L) 0.52 0.00 0.00 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67 12.57 12.49	(mv) -79 -83 -82 -82 -81 -81 -80	
(hrs) 12:00 12:04 12:08 12:12 12:16 12:20 12:24 Total Quan Samplers:	5.42 6.50 7.76 8.74 9.81 10.21 11.27	(liters) 1 2 3 4 5 6 7	(Lpm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91 6.88 6.86	1.92 1.89 1.90 1.90 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1 9.6 9.3 Sampling Time Split Sample W	(mg/L) 0.52 0.00 0.00 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67 12.57 12.49	-79 -83 -82 -82 -81 -81	
(hrs) 12:00 12:04 12:08 12:12 12:16 12:20 12:24 Total Quan	5.42 6.50 7.76 8.74 9.81 10.21 11.27	(liters) 1 2 3 4 5 6 7	(Lpm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25	pH (pH units) 7.23 7.08 6.98 6.95 6.91 6.88 6.86	1.92 1.89 1.90 1.90 1.90 1.90	Turbidity (NTU) 232.0 24.3 12.8 9.4 9.1 9.6 9.3 Sampling Time	(mg/L) 0.52 0.00 0.00 0.00 0.00 0.00 0.00	(° C) 12.32 12.91 12.75 12.71 12.67 12.57 12.49	(mv) -79 -83 -82 -82 -81 -81 -80	

Well I.D.:			Personnel	<u> </u>		Client:				
	AP-MW7B			Steve Bazilus			Linde, Inc.			
Location:			Well Cond	ition:		Weather:				
	Niagara Fal	ls		Locked		Mostly Sunny, 63°				
Sounding I	Method:		Gauge Dat	e:		Measurement Ref:				
	WLI			5/18/2009			TOC			
Stick Up/D	own (ft):		Gauge Tim	ie:		Well Diameter	(in):			
	UP			18:10			2"			
Purge Date):				Purge Tim	e:				
	5/19/2009					13:32				
Purge Meth	nod:				Greenstar	Personnel:				
	Low-Flow					SB				
				We	II Volume					
A. Well De	oth (ft):		D. Well Vo	lume (ft3):		Depth/Height o	f Top of PVC:			
•	21.79			- •	0.27		N/A	Ĺ		
B. Depth to	Water (ft):		E. Well Vo	ume (L):		Pump Type:				
	9.30				7.71		Peristaltio	;		
C. Liquid D	epth (ft) (A-	B):				Pump Designa	tion:			
	12.49						N/A	\		
				Water Qua	ality Para	meters				
Time	DTW	Volume	Rate	pН	Conduct.	Turbidity	D.O.	Temp.	ORP	
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)	
13:36	11.82	1	0.25	7.52	0.333	31.0	0.00	11.91	-19	
13:\$0	12.66	2	0.25	7.52	0.332	30.5	0.00	11.75	-40	
13:44	13.52	3	0.25	7.53	0.332	25.1	0.00	11.78	-69	
13:48	14.48	4	0.25	7.53	0.333	29.9	0.00	11.74	-81	
13:52	15.68	5	0.25	7.53	0.333	34.8	0.00	11.89	91	
13:56	16.27	6	0.25	7.52	0.334	36.4	0.00	11.98	-97	
14:00	17.00	7	0.25	7.52	0.333	36.3	0.00	12.03	-100	
					<u> </u>					
Total Ouse	tity of Wate	r Removed	ı .	7 L		Sampling Time	\-	14:00		
	iny or wate	i venioveo	l.	SB	=	Split Sample W			/A	
Samplers: SB Sampling Date: 19-May-09			_	Sample Type:		Grab	// X			
-ampining L				10 May 03	-	Campio Type.		Giab		

Well I.D.:	Personnel:			Client:			
AP-MW8B		Steve Bazilus		Linde, Inc.			
Location:	Well Condi			Weather:			
Niagara Falls		Locked		Mostly Sunny, 63°			
Sounding Method:	Gauge Date			Measurement	Ref:		
WLI	_	5/18/2009			TOC		
Stick Up/Down (ft):	Gauge Time			Well Diameter			
UP		18:14			2"		
				1			
Purge Date:			Purge Tim	e:			
5/18/2009			90	18:15			
Purge Method:			Greenstar	Personnel:			
Hand Bail				SB			
			•				
		Well	Volume				
A. Well Depth (ft):	D. Well Vol		• • • • • • • • • • • • • • • • • • • •	Depth/Height o	of Top of PVC:		
15.51	D. WEII VOI	uille (113).	0.24		n top of PVC. N/A		
B. Depth to Water (ft):	E. Well Vol	ume (L.):	Pump Type:				
4.49		u (=,:	6.80				
C. Liquid Depth (ft) (A-B):	†		*** -	Pump Designa			
11.02					N/A		
	<u></u>						
	,	Water Qual	itv Param	eters			
Time DTW Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP
(hrs) (ft btoc) (liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)
18:15 4.49 0.5	N/A	6.79	1.930	4.5	9.21	11.79	285
18:23 Dry 8	N/A	6.87	2.040	> 999	10.33	9.71	265
10.23	1.47.	0.0.	2.0.0	7 000	10.00	VII. 1	
14:40 4.50 N/A	N/A	7.04	2.05	63.9	9.37	13.84	182

Total Quantity of Water Removed:	8 L	Sampling Time:	14:40			
Samplers:	SB	Split Sample With:	N/A			
Sampling Date:	19-May-09	Sample Type:	Grab			
COMMENTS AND OBSERVATIONS:	Well purged dry an	d sampled the following day.				
	Replace bailer for fall event.					

Attachment C Chain-of-Custody Records

Custody Record Chain of

Temperature on Receipt

Drinking Water? Yes □ No≰

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions, Special Instructions, Conditions of Receipt (A fee may be assessed if samples are retained Months longer than 1 month) Time ð Date Date 3-19-09 more space is needed) Analysis (Attach list if Lab Number 8.006 240197 ሄ ☐ Disposal By Lab ☐ Archive For JWC OC Requirements (Specify) 19955 \oAnZ HO≜N Containers & Preservatives ИаОН 1. Receiped By 3. Received By Received By <u>k</u> IOH mber (Area Code)/Fax Number EONH 3 ¢0SZH serdur J ☐ Return To Client 110S Time Time HIRCO - Quarterly Discharge (NY) CarrierWaybill Number Matrix pes ydneons Telephone No. Other_ Unknown 14:00 3-19-09/4:42 Date Time Date Greenstar Eng-Chip McLesd 21 Days 3-19-09 Wag pingers. Falls NY 12590 ☐ Poison B Date 14 Days (Containers for each sample may be combined on one line) Skin Irritant Sample I.D. No. and Description ☐ 7 Days 6 Gellaty Dr. 40-EWE-01 Non-Hazard | Flammable Irio-Blank 24 Hours 48 Hours Possible Hazard Identification Tum Around Time Required となり . Relingalished By 2./Relinquished By 3. Relinquished By TAL-4124 (1007) Client, Comments

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Chain of Custody Record

Temperature on Receipt

Drinking Water? Yes ☐ Not

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

Special Instructions/ Canditions of Receipt 1550 (A fee may be assessed if samples are retained langer than I month) Ē Chain of Custody Numb 900 å 05/19/09 тоге space is needed) Analysis (Allach list if испр XXXXXX メメメズス × 3620" Archive For 845-223-9944/9955 909N /9**4**0Z 🔀 Disposal By Lab Confainers & Preservatives 2. Received By нови Project Manager
Chily M. L. (2002)
Telepthone Number (Area Code)/Fax Number Reserved By 9. Received By 104 122 K **EQNH** Lab Confect DISTRIBUTION WHITE HELINE TO CHONT WIP PROCE CANATA - SUBJE WITH FROM FROM CONTRACT SUBJE WITH IN SAMPLE, PHAIR - FROM CONTRACTOR ☐ Untrionen ☐ Return To Client Sample Dispose #rs Ē Camer/Waybill Number Metrix 7°5 05/19/09 17 Site Contact ية 1.) AIRLO SEMI. AMNUAL GAM MON. : MAY-CY WAY 0441 1510 1050 <u>⊀</u> Z Oake 05/19/09/0855 1335 1500 30 1224 1400) 25 B ☐ Poison B Sets 12590 State Ztp Code 14 Days (Containers for each sample may be combined on one line) M Non-Hazerd | Flemmable | Shin Imitans ス > Greenstar ENG. 6 Gallathy Drive Sample I.D. No. and Description T 7 Days 80 173 AP-MW-1B **∂** S AP-MW-2B SWB-DI AP-MW-3B AP- DUP - 0 WAPPINGERS Falls AP-MW-☐ 48 Hours AP-MW-Possible Hazard Identification Тит Аксила 71.те Ресиква AP-MW DP-MW AP.MW 2. Relinguished By 3. Relinquished By -dt C 24 Hours TAL-4124 (1007) Client

Chain of Custody Record

Temperature on Receipt .

регация оп несвірі -

<u>}</u>

Orinking Water? Yes □

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/ Conditions of Receipt d ð (A fee may be assessed if samples are remined langer than 1 month) Page 0 5 | 14 | 04 Analysis (Attach list if more space is needed) Months Oisposal By Lab Anthre For 3650 2C Requirements (Specify) HOPN PV12 न्यवप्पप विव Containers & Preservatives HOEN 3. Asceived By DISTRIBUTION: WHITE-REALMED OF CHAMMER SANDER PROFESSION OF THE SANDER PROFESSION OF THE SANDER PROFESSION OF THE PROFES POWH N McLend нова. Return To Client Telephone Number (Area (8 4 5 - 2 2 3 Sris Contect Sample Dispose POS Ě Camer Waybull Number ABITT peg Project Manager X 05/19/09 0.00 Unknown 6W MON - MM, 091 (NY) 1300 Time 88 X21 Days DE/19/19 05/14/09 6 GATLATTY DAINE STORES Potson B 950 T4 Days (Containers for each sample may be combined on one line) Greenstone Eng. Skin Anison Sample I.D. No. and Description ☐ 7 Days NAFOINGES FOLLS
Project Name and Location (State) Alle Spini-Annal Frammeble ☐ 48 Hours Possible Hazard Identification Tum Around Tittle Required 3. Relanquished By P. Rethopulshed By Non-Hazard 2. Relinquished By 24 Hours TAL-4124 (1001) Clent Comments

Chain of Custody Record

Temperature on Receipt

Drinking Water? Yes □ No 🕱

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

ントナら Special Instructions/ Conditions of Receipt Conditions of Receipt 099376 (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Number Time Page Date 05/19/09 Analysis (Attach list if more space is needed) Lab Number Months 5020 200.8 200.8 2.40V Archive For OC Requirements (Specify) 9955 Spisposal By Lab Containers & Preservatives HOPN 3. Received By 1. Received By 2. Received By ЮH ph66-Chip Meleo A Lab Contact €ONH 7 tOSZH R + 6 ANA V S 1S - SHOY THULD HOLD Return To Client 845-223 Sample Disposal jjoS Time Carrier/Waybill Number Matrix 05/19/08 \bowtie Site Contact □ other_ Unknown PAIRCO - QUARTERLY DISCHARGES - MAY CONTROL PURCHARGES - MAY Date Time 05/19/09/1830 05 108109 NA Z21 Days C. GELLATIY DRIVES SPANDED ☐ Poison B JR + 6 ANAlysis Date ☐ 14 Days (Containers for each sample may be combined on one line) Skin Irritant Ollen Stewstan ENA. Sample I.D. No. and Description □·7 Days AP-EWE-O Project Name and Location (State) ☐ Flammable TRIP BLANK 48 Hours Possible Hazard Identification Turn Around Time Required 1. Relinquished By 2. Relinquished By Non-Hazard 3. Relinquished By A DISTRIBUTION: 24 Hours FAL-4124 (1007) Comments

Attachment D

Laboratory Analytical Results for Groundwater and Surface Water Sampling May 2009

Analytical Report

Work Order: RSE0685

Project Description
Semi-Annual GW Monitoring

For:

Charles E. McLeod, Jr.

Greenstar Environmental Solutions, LLC

6 Gellatly Drive Wappinger Falls, NY 12590

Jason Kacalski

Project Manager

jason.kacalski@testamericainc.com

Wednesday, June 10, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Project: Semi-Annual GW Monitoring

Project Number:

05/19/09 Received:

Reported: 06/10/09 15:02

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	<i>E</i> 87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA, CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas *	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accre ditation is required or available. Any exceptions to NELAP requirements are noted in this report.

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Page 2 of 38 www.testamericainc.com

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

Case Narrative

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

There are pertinent documents appended to this report, 33 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

05/19/09 Received:

Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

SpecificMethod

200.7

Analyte Lead

<u>Units</u> mg/L

Client RL 0.0050

Lab PQL 0.0060

Page 4 of 38 www.testamericainc.com

 ${\it Greenstar\ Environmental\ Solutions,\ LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received: Reported: 05/19/09

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

DATA QUALIFIERS AND DEFINITIONS

D08 Dilution required due to high concentration of target analyte(s)

R4 Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

NR Any inclusion of NR indicates that the project specific requirements do not require reporting to method detection limit

(MDL)

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received: 05/19/09

Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

Executive S	Summary -	Detections
--------------------	-----------	------------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-01	(AP-MW-1B -	- Water)			Samı	oled: 05/	19/09 08:55	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	260	D08	20	NR	mg/L	10.0	06/03/09 14:36	TCH	9F05015	300
Total Metals by EPA 200	Series Meth	<u>iods</u>								
Iron	0.0899		0.0500	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Magnesium	64.8		0.200	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Manganese	0.675		0.0030	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Sodium	120		1.0	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Zinc	0.518		0.0100	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Metals (ICP)										
Si	6770		2500	250	ug/L	5.00	06/01/09 14:52	NP	27533	6010B
Sample ID: RSE0685-02	(AP-MW-2B -	Water)			Samı	oled: 05/	19/09 09:54	Rec	vd: 05/19/0	9 15:50
General Chemistry Para	meters									
Chromium, Hexavalent	158		11.0	NR	ug/L	1.00	05/19/09 22:05		9E19120	7196A
Phenolics, Total Recoverable	9.6		8.0	NR	ug/L	1.00	05/26/09 18:34	RLG	9E22019	420.4
Total Metals by EPA 200	Series Meth	<u>nods</u>								
Chromium	0.563		0.0040	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Iron	0.151		0.0500	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Manganese	0.0097		0.0030	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Sodium	50.2		1.0	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Metals (ICP)										
Si	1120		500	50.0	ug/L	1.00	06/01/09 16:37	NP	27533	6010B
Sample ID: RSE0685-03	(AP-MW-3B -	Water)			Samı	oled: 05/	19/09 10:35	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	<u>300.0</u>									
Sulfate	66		10	NR	mg/L	1.00	06/03/09 14:56	TCH	9F05015	300
Total Metals by EPA 200	Series Meth	<u>nods</u>								
Iron	0.122		0.0500	NR	mg/L	1.00	05/22/09 02:22			200.7
Magnesium	7.88		0.200	NR	mg/L	1.00	05/22/09 02:22		9E20059	200.7
Manganese	0.0126		0.0030	NR	mg/L	1.00	05/22/09 02:22			200.7
Sodium	54.3		1.0	NR	mg/L	1.00	05/22/09 02:22	_		200.7
Zinc	0.0184		0.0100	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Metals (ICP)										
Si	6340		2500	250	ug/L	5.00	06/01/09 15:03	NP	27533	6010B
Sample ID: RSE0685-04	(AP-MW-4B -	Water)			Samı	oled: 05/	19/09 10:50	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	160	D08	10	NR	mg/L	5.00	06/03/09 15:06	TCH	9F05015	300

General Chemistry Parameters

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 6 of 38

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Project: Semi-Annual GW Monitoring

Project Number: GES

05/19/09

06/10/09 15:02

Received:

Reported:

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-04	(AP-MW-4B -	Water) - cont	t.		Samı	pled: 05/	19/09 10:50	Rec	vd: 05/19/0	9 15:50
General Chemistry Para	meters - con	<u>t.</u>								
Chromium, Hexavalent	229		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Total Metals by EPA 200	O Series Meth	<u>iods</u>								
Chromium	0.247		0.0040	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Iron	2.19		0.0500	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Magnesium	44.7		0.200	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Manganese	0.0387		0.0030	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Sodium	98.0		1.0	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Zinc	0.0474		0.0100	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Metals (ICP)										
Si	8410		2500	250	ug/L	5.00	06/01/09 15:09	NP	27533	6010B
Sample ID: RSE0685-05	(AP-MW-5B -	Water)			Samı	pled: 05/	19/09 11:30	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	160	D08	10	NR	mg/L	5.00	06/03/09 15:17	TCH	9F05015	300
Total Metals by EPA 200	O Series Meth	ods								
Iron	0.347		0.0500	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Magnesium	84.7		0.200	NR	mg/L	1.00	05/22/09 02:52	TWS		200.7
Manganese	0.0123		0.0030	NR	mg/L	1.00	05/22/09 02:52	_	9E20059	200.7
Sodium	31.4		1.0	NR	mg/L	1.00	05/22/09 02:52	TWS		200.7
Zinc	0.0630		0.0100	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Metals (ICP)										
Si	7980		2500	250	ug/L	5.00	06/01/09 15:15	NP	27533	6010B
Sample ID: RSE0685-06	(AP-MW-6B -	Water)			Samı	pled: 05/	19/09 12:24	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	260	D08	10	NR	mg/L	5.00	06/03/09 15:27	TCH	9F05015	300
Total Metals by EPA 200	O Series Meth	ods								
Iron	0.478		0.0500	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Magnesium	82.6		0.200	NR	mg/L	1.00	05/22/09 04:23			200.7
Manganese	0.163		0.0030	NR	mg/L	1.00	05/22/09 04:23		9E20059	200.7
Sodium	57.0		1.0	NR	mg/L	1.00	05/22/09 04:23			200.7
Metals (ICP)										
Si	5920		2500	250	ug/L	5.00	06/01/09 15:21	NP	27533	6010B
Sample ID: RSE0685-07	(AP-MW-7B -	Water)			Samı	pled: 05/	19/09 14:00	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	36		10	NR	mg/L	1.00	06/03/09 15:37	TCH	9F05015	300
Total Metals by EPA 200	O Series Meth	iods								
Chromium	0.0133		0.0040	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
					3					

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 7 of 38

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received: Reported:

05/19/09

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

Executive	Summary -	Detections
-----------	-----------	------------

	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSE0685-07	(AP-MW-7B -	Water) - cont	•		Samı	pled: 05/	19/09 14:00	Rec	vd: 05/19/09	15:50
Total Metals by EPA 200	Series Meth	ods - cont.								
Iron	0.329		0.0500	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Magnesium	10.7		0.200	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Manganese	0.0582		0.0030	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Sodium	56.3		1.0	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Metals (ICP)										
Si	4690		2500	250	ug/L	5.00	06/01/09 15:26	NP	27533	6010B
Sample ID: RSE0685-08	(AP-MW-8B -	Water)			Samı	pled: 05/	19/09 14:40	Rec	vd: 05/19/09	15:50
Anions by EPA Method	300.0									
Sulfate	230	D08	10	NR	mg/L	5.00	06/08/09 17:36	TCH	9F09009	300
General Chemistry Para	<u>imeters</u>									
Chromium, Hexavalent	144		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Total Metals by EPA 200	O Series Meth	<u>ods</u>								
Chromium	0.179		0.0040	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Iron	0.787		0.0500	NR	mg/L	1.00	05/22/09 04:33		9E20059	200.7
Magnesium	71.2		0.200	NR	mg/L	1.00	05/22/09 04:33		9E20059	200.7
Manganese	0.125		0.0030	NR	mg/L	1.00	05/22/09 04:33	TWS		200.7
Selenium	0.0444		0.0150	NR	mg/L	1.00	05/22/09 04:33	TWS		200.7
Sodium	84.0		1.0	NR	mg/L	1.00	05/22/09 04:33	TWS		200.7
Zinc	0.115		0.0100	NR	mg/L	1.00	05/22/09 04:33	TWS		200.7
Metals (ICP)										
Si	7590		2500	250	ug/L	5.00	06/01/09 15:32	NP	27533	6010B
Sample ID: RSE0685-09	(AP-DUP-01 -	Water)			Samı	pled: 05/	19/09	Rec	vd: 05/19/09	15:50
Anions by EPA Method	300.0									
Sulfate	320	D08	40	NR	mg/L	20.0	06/03/09 16:07	TCH	9F05015	300
Total Metals by EPA 200	O Series Meth	<u>ods</u>								
Iron	0.474		0.0500	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Magnesium	89.3		0.200	NR	mg/L	1.00	05/22/09 04:38			200.7
Manganese	0.174		0.0030	NR	mg/L	1.00	05/22/09 04:38			200.7
Sodium	61.1		1.0	NR	mg/L	1.00	05/22/09 04:38			200.7
Metals (ICP)										
Si	6050		2500	250	ug/L	5.00	06/01/09 15:38	NP	27533	6010B
Sample ID: RSE0685-10	(AP-SWB-01	- Water)			Samı	pled: 05/	19/09 15:00	Rec	vd: 05/19/09	15:50
Anions by EPA Method	300.0									
Sulfate	14		10	NR	mg/L	1.00	06/03/09 16:38	TCH	9F05015	300
Total Metals by EPA 200	Series Meth	<u>ods</u>								
Magnesium	3.53		0.200	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 8 of 38

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

05/19/09 Received:

Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

Executive	Summary -	Detections
-----------	-----------	------------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RSE0685-10 (A	P-SWB-01	- Water) - con	t.		Sampled: 05/19/09 15:00 Recvd: 05/19/09 15:50						
Total Metals by EPA 200 S	Series Meth	ods - cont.									
Sodium	8.4		1.0	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7	
Sample ID: RSE0685-10RE	1 (AP-SWE	3-01 - Water)			Samp	oled: 05/	19/09 15:00	Recv	/d: 05/19/09	15:50	
Anions by EPA Method 30	0.0										
Sulfate	12		10	NR	mg/L	1.00	06/08/09 17:46	TCH	9F09009	300	
Sample ID: RSE0685-11 (A	P-RB-01 - \	Water)			Samp	oled: 05/	19/09 15:10	Recvd: 05/19/09 15:50			
Anions by EPA Method 30	0.0										
Sulfate	15		10	NR	mg/L	1.00	06/03/09 16:48	TCH	9F05015	300	
Total Metals by EPA 200 S	Series Meth	<u>iods</u>									
Magnesium	3.42		0.200	NR	mg/L	1.00	05/22/09 04:48		9E20059	200.7	
Sodium	8.3		1.0	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7	
Sample ID: RSE0685-11RE)1 - Water)			Samp	oled: 05/	19/09 15:10	Recvd: 05/19/09 15:50				
Anions by EPA Method 30	0.0										
Sulfate	11		10	NR	mg/L	1.00	06/08/09 17:57	TCH	9F09009	300	
Sample ID: RSE0685-12 (AP-SS-01 - Water)				Samp	oled: 05/	19/09 10:25	Recvd: 05/19/09 15:50		15:50		
Anions by EPA Method 30	0.0										
Sulfate	11		10	NR	mg/L	1.00	06/03/09 16:58	TCH	9F05015	300	
Total Metals by EPA 200 S	Series Meth	<u>iods</u>									
Iron	0.0975		0.0500	NR	mg/L	1.00	05/22/09 04:53		9E20059	200.7	
Magnesium	1.37		0.200	NR	mg/L	1.00	05/22/09 04:53		9E20059	200.7	
Manganese Sodium	0.0055 65.1		0.0030 1.0	NR NR	mg/L	1.00 1.00	05/22/09 04:53 05/22/09 04:53		9E20059 9E20059	200.7 200.7	
	03.1		1.0	INIX	mg/L	1.00	03/22/09 04.33	1005	9L20039	200.7	
Metals (ICP) Si	832		500	50.0	ug/L	1.00	06/01/09 16:55	NP	27533	6010B	
Sample ID: RSE0685-13 (A	P-SS-02 - V	Water)			Ü	oled: 05/	19/09 11:20	Recv	/d: 05/19/09	15:50	
Anions by EPA Method 30		•									
Sulfate	15		10	NR	mg/L	1.00	06/03/09 17:08	TCH	9F05015	300	
Total Metals by EPA 200 S	Series Meth	<u>iods</u>									
Magnesium	4.95		0.200	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7	
Sodium	63.6		1.0	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7	
Metals (ICP)											
Si	1480		500	50.0	ug/L	1.00	06/01/09 16:14	NP	27533	6010B	
Sample ID: RSE0685-13RE	1 (AP-SS-0)2 - Water)			Samp	oled: 05/	19/09 11:20	Recv	/d: 05/19/09	15:50	
Anions by EPA Method 30	0.0										
Sulfate	12		10	NR	mg/L	1.00	06/08/09 18:07	TCH	9F09009	300	

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Page 9 of 38 www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received: Reported: 05/19/09 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GE

Executive Summary - Detections

				Jannary	D 01001						
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RSE068	Sample ID: RSE0685-14 (AP-SS-03 - Water)						Sampled: 05/19/09 13:00 Recvd: 05/19/09 15:				
Anions by EPA Met	thod 300.0										
Sulfate	11		10	NR	mg/L	1.00	06/03/09 17:18	TCH	9F05015	300	
Total Metals by EPA	A 200 Series Meth	<u>iods</u>									
Magnesium	1.24		0.200	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7	
Manganese	0.0067		0.0030	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7	
Sodium	65.1		1.0	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7	
Metals (ICP)											
Si	673		500	50.0	ua/L	1.00	06/01/09 16:20	NP	27533	6010B	

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
AP-MW-1B	RSE0685-01	Water	05/19/09 08:55	05/19/09 15:50	
AP-MW-2B	RSE0685-02	Water	05/19/09 09:54	05/19/09 15:50	
AP-MW-3B	RSE0685-03	Water	05/19/09 10:35	05/19/09 15:50	
AP-MW-4B	RSE0685-04	Water	05/19/09 10:50	05/19/09 15:50	
AP-MW-5B	RSE0685-05	Water	05/19/09 11:30	05/19/09 15:50	
AP-MW-6B	RSE0685-06	Water	05/19/09 12:24	05/19/09 15:50	
AP-MW-7B	RSE0685-07	Water	05/19/09 14:00	05/19/09 15:50	
AP-MW-8B	RSE0685-08	Water	05/19/09 14:40	05/19/09 15:50	
AP-DUP-01	RSE0685-09	Water	05/19/09	05/19/09 15:50	
AP-SWB-01	RSE0685-10	Water	05/19/09 15:00	05/19/09 15:50	
AP-RB-01	RSE0685-11	Water	05/19/09 15:10	05/19/09 15:50	
AP-SS-01	RSE0685-12	Water	05/19/09 10:25	05/19/09 15:50	
AP-SS-02	RSE0685-13	Water	05/19/09 11:20	05/19/09 15:50	
AP-SS-03	RSE0685-14	Water	05/19/09 13:00	05/19/09 15:50	

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Project Number:

Received:

05/19/09

Reported: 06/10/09 15:02

Analytical Report

Project: Semi-Annual GW Monitoring

				iaiyucai	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-01	(AP-MW-1B				Samp	led: 05/	19/09 08:55		vd: 05/19/0	
Anions by EPA Method	300.0									
Sulfate	260	D08	20	NR	mg/L	10.0	06/03/09 14:36	TCH	9F05015	300
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:31	RMM	9E20032	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total Recoverable	ND		8.0	NR	ug/L	1.00	05/22/09 19:38	JMM	9E21099	420.4
Total Metals by EPA 20	0 Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Iron	0.0899		0.0500	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Magnesium	64.8		0.200	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Manganese	0.675		0.0030	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Sodium	120		1.0	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Zinc	0.518		0.0100	NR	mg/L	1.00	05/22/09 02:12	TWS	9E20059	200.7
Metals (ICP)										
Si	6770		2500	250	ug/L	5.00	06/01/09 14:52	NP	27533	6010B

Page 12 of 38

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

Analytical Report

			Δ i	iaryticai	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-02	(AP-MW-2B	· Water)			Samp	led: 05	19/09 09:54	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	ND		10	NR	mg/L	1.00	06/03/09 14:46	TCH	9F05015	300
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:32	RMM	9E20032	350.1
Chromium, Hexavalent	158		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total Recoverable	9.6		8.0	NR	ug/L	1.00	05/26/09 18:34	RLG	9E22019	420.4
Total Metals by EPA 200	O Series Meth	nods								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Chromium	0.563		0.0040	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Iron	0.151		0.0500	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Magnesium	ND		0.200	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Manganese	0.0097		0.0030	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Sodium	50.2		1.0	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	05/22/09 02:17	TWS	9E20059	200.7
Metals (ICP)										
Si	1120		500	50.0	ug/L	1.00	06/01/09 16:37	NP	27533	6010B

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received: 0

05/19/09 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE06	85-02RE1 (AP-MW-	-2B - Water)			Samı	oled: 05/	19/09 09:54	Recv	/d: 05/19/0	9 15:50
Anions by EPA M	ethod 300.0									
Sulfate	ND		10	NR	ma/L	1.00	06/08/09 17:26	TCH	9F09009	300

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
					Onits	1 ac	Allalyzeu	recii	Daten	Wiethou
Sample ID: RSE0685-03	(AP-MW-3B -	· Water)			Samp	led: 05/	/19/09 10:35	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	66		10	NR	mg/L	1.00	06/03/09 14:56	TCH	9F05015	300
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:35	RMM	9E20032	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total	ND		8.0	NR	ug/L	1.00	05/26/09 18:34	RLG	9E22019	420.4
Recoverable										
Total Metals by EPA 20	0 Series Meth	nods								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Iron	0.122		0.0500	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Magnesium	7.88		0.200	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Manganese	0.0126		0.0030	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Sodium	54.3		1.0	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Zinc	0.0184		0.0100	NR	mg/L	1.00	05/22/09 02:22	TWS	9E20059	200.7
Metals (ICP)										
Si	6340		2500	250	ug/L	5.00	06/01/09 15:03	NP	27533	6010B

www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

	Ana	lytical	Report
--	-----	---------	--------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-04							19/09 10:50		vd: 05/19/0	
Anions by EPA Method	300.0	•								
Sulfate	160	D08	10	NR	mg/L	5.00	06/03/09 15:06	TCH	9F05015	300
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:36	RMM	9E20032	350.1
Chromium, Hexavalent	229		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total Recoverable	ND		8.0	NR	ug/L	1.00	05/26/09 18:34	RLG	9E22019	420.4
Total Metals by EPA 200	0 Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Chromium	0.247		0.0040	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Iron	2.19		0.0500	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Magnesium	44.7		0.200	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Manganese	0.0387		0.0030	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Sodium	98.0		1.0	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Zinc	0.0474		0.0100	NR	mg/L	1.00	05/22/09 02:47	TWS	9E20059	200.7
Metals (ICP)										
Si	8410		2500	250	ug/L	5.00	06/01/09 15:09	NP	27533	6010B

www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

	Ana	lytical	Report
--	-----	---------	--------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
					Onits	ı ac	Allalyzea	recii	Daten	Wethou
Sample ID: RSE0685-05	(AP-MW-5B -	Water)			Samp	led: 05/	/19/09 11:30	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	160	D08	10	NR	mg/L	5.00	06/03/09 15:17	TCH	9F05015	300
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:39	RMM	9E20033	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total	ND		8.0	NR	ug/L	1.00	05/26/09 18:34	RLG	9E22019	420.4
Recoverable										
Total Metals by EPA 20	0 Series Meth	<u>iods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Iron	0.347		0.0500	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Magnesium	84.7		0.200	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Manganese	0.0123		0.0030	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Sodium	31.4		1.0	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Zinc	0.0630		0.0100	NR	mg/L	1.00	05/22/09 02:52	TWS	9E20059	200.7
Metals (ICP)										
Si	7980		2500	250	ug/L	5.00	06/01/09 15:15	NP	27533	6010B

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

/ widiy wodi i topoi t	Ana	lytical	Re	port
------------------------	-----	---------	----	------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-06									vd: 05/19/0	
Cample ID. NOLUGO-00	(AI -WW-0D -	water)			Samp	iea: U5/	19/09 12:24	Rec	va: 05/19/0	9 15:50
Anions by EPA Method	<u>300.0</u>									
Sulfate	260	D08	10	NR	mg/L	5.00	06/03/09 15:27	TCH	9F05015	300
General Chemistry Para	meters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:40	RMM	9E20033	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total	ND		8.0	NR	ug/L	1.00	05/26/09 18:34	RLG	9E22019	420.4
Recoverable										
Total Metals by EPA 200	Series Meth	<u>iods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Iron	0.478		0.0500	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Magnesium	82.6		0.200	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Manganese	0.163		0.0030	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Sodium	57.0		1.0	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	05/22/09 04:23	TWS	9E20059	200.7
Metals (ICP)										
Si	5920		2500	250	ug/L	5.00	06/01/09 15:21	NP	27533	6010B

Page 18 of 38 www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
			112		Units	ı ac	Allalyzeu	recn	Dateii	Welliou
Sample ID: RSE0685-07	(AP-MW-7B -	· Water)			Samp	led: 05/	/19/09 14:00	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	36		10	NR	mg/L	1.00	06/03/09 15:37	TCH	9F05015	300
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:41	RMM	9E20033	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total	ND		8.0	NR	ug/L	1.00	05/26/09 19:05	RLG	9E22019	420.4
Recoverable										
Total Metals by EPA 200	0 Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Chromium	0.0133		0.0040	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Iron	0.329		0.0500	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Magnesium	10.7		0.200	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Manganese	0.0582		0.0030	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Sodium	56.3		1.0	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	05/22/09 04:28	TWS	9E20059	200.7
Metals (ICP)										
Si	4690		2500	250	ug/L	5.00	06/01/09 15:26	NP	27533	6010B

www.testamericainc.com Page 19 of 38

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
					Onits	Tac	Allalyzeu	recii	Daten	Metriou
Sample ID: RSE0685-08	(AP-MW-8B -	· Water)			Samp	led: 05/	19/09 14:40	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	230	D08	10	NR	mg/L	5.00	06/08/09 17:36	TCH	9F09009	300
General Chemistry Para	meters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:42	RMM	9E20033	350.1
Chromium, Hexavalent	144		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total	ND		8.0	NR	ug/L	1.00	05/26/09 18:43	RLG	9E22026	420.4
Recoverable										
Total Metals by EPA 200	O Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Chromium	0.179		0.0040	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Iron	0.787		0.0500	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Magnesium	71.2		0.200	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Manganese	0.125		0.0030	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Selenium	0.0444		0.0150	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Sodium	84.0		1.0	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Zinc	0.115		0.0100	NR	mg/L	1.00	05/22/09 04:33	TWS	9E20059	200.7
Metals (ICP)										
Si	7590		2500	250	ug/L	5.00	06/01/09 15:32	NP	27533	6010B

Page 20 of 38 www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
-			112		Units	ı ac	Allalyzeu	recn	Dateii	Metriou
Sample ID: RSE0685-09	(AP-DUP-01	- Water)			Samp	led: 05/	19/09	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	300.0									
Sulfate	320	D08	40	NR	mg/L	20.0	06/03/09 16:07	TCH	9F05015	300
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:43	RMM	9E20033	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total	ND		8.0	NR	ug/L	1.00	05/26/09 18:43	RLG	9E22026	420.4
Recoverable										
Total Metals by EPA 200	O Series Meth	<u>iods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Iron	0.474		0.0500	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Magnesium	89.3		0.200	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Manganese	0.174		0.0030	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Sodium	61.1		1.0	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	05/22/09 04:38	TWS	9E20059	200.7
Metals (ICP)										
Si	6050		2500	250	ua/L	5.00	06/01/09 15:38	NP	27533	6010B

Page 21 of 38 www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-10							19/09 15:00		vd: 05/19/0	
•		,			Oump	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10/00 10:00	1100	va. 00/10/0	. 10.00
Anions by EPA Method	300.0									
Sulfate	14		10	NR	mg/L	1.00	06/03/09 16:38	TCH	9F05015	300
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:44	RMM	9E20033	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total	ND		8.0	NR	ug/L	1.00	05/26/09 18:43	RLG	9E22026	420.4
Recoverable										
Total Metals by EPA 200	0 Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7
Iron	ND		0.0500	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7
Magnesium	3.53		0.200	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7
Manganese	ND		0.0030	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7
Sodium	8.4		1.0	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	05/22/09 04:43	TWS	9E20059	200.7
Metals (ICP)										
Si	ND		500	50.0	ug/L	1.00	06/01/09 16:43	NP	27533	6010B

Page 22 of 38 www.testamericainc.com

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE00	685-10RE1 (AP-SWE	3-01 - Water)			Samı	pled: 05/	19/09 15:00	Recv	rd: 05/19/0	9 15:50
Anions by EPA M	Method 300.0									
Sulfate	12		10	NR	mg/L	1.00	06/08/09 17:46	TCH	9F09009	300

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

/ widiy wodi i topoi t	Ana	lytical	Re	port
------------------------	-----	---------	----	------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-11							/19/09 15:10		vd: 05/19/0	
Anions by EPA Method	300.0									
Sulfate	15		10	NR	mg/L	1.00	06/03/09 16:48	TCH	9F05015	300
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:47	RMM	9E20033	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total Recoverable	ND		8.0	NR	ug/L	1.00	05/26/09 18:43	RLG	9E22026	420.4
Total Metals by EPA 20	0 Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7
Iron	ND		0.0500	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7
Magnesium	3.42		0.200	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7
Manganese	ND		0.0030	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7
Sodium	8.3		1.0	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	05/22/09 04:48	TWS	9E20059	200.7
Metals (ICP)										
Si	ND		500	50.0	ug/L	1.00	06/01/09 16:49	NP	27533	6010B

Page 24 of 38 www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received: Reported: 05/19/09 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE06	685-11RE1 (AP-RB-0)1 - Water)			Samı	pled: 05/	19/09 15:10	Recv	/d: 05/19/0	9 15:50
Anions by EPA M	lethod 300.0									
Sulfate	11		10	NR	mg/L	1.00	06/08/09 17:57	TCH	9F09009	300

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

orted: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

	Ana	lytical	Report
--	-----	---------	--------

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-12							19/09 10:25		vd: 05/19/0	
	(2.1. 00 0.	,			Janip	ieu. US/	13/03 10.23	Nec	va. 05/15/0	3 13.30
Anions by EPA Method	<u>300.0</u>									
Sulfate	11		10	NR	mg/L	1.00	06/03/09 16:58	TCH	9F05015	300
General Chemistry Para	meters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:48	RMM	9E20033	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total	ND		8.0	NR	ug/L	1.00	06/02/09 12:45	JMM	9E28064	420.4
Recoverable										
Total Metals by EPA 200	Series Meth	<u>iods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 04:53	TWS	9E20059	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	05/22/09 04:53	TWS	9E20059	200.7
Iron	0.0975		0.0500	NR	mg/L	1.00	05/22/09 04:53	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 04:53	TWS	9E20059	200.7
Magnesium	1.37		0.200	NR	mg/L	1.00	05/22/09 04:53	TWS	9E20059	200.7
Manganese	0.0055		0.0030	NR	mg/L	1.00	05/22/09 04:53	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 04:53	TWS	9E20059	200.7
Sodium	65.1		1.0	NR	mg/L	1.00	05/22/09 04:53	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 04:53	TWS	9E20059	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	05/22/09 04:53	TWS	9E20059	200.7
Metals (ICP)										
Si	832		500	50.0	ug/L	1.00	06/01/09 16:55	NP	27533	6010B

www.testamericainc.com Page 26 of 38

 $\label{eq:Greenstar} \textbf{Greenstar Environmental Solutions, LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

Analytical Report

			AI	iaiyiicai	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-13	(AP-SS-02 - \				Samp	led: 05/	/19/09 11:20		vd: 05/19/0	
Anions by EPA Method	300.0									
Sulfate	15		10	NR	mg/L	1.00	06/03/09 17:08	TCH	9F05015	300
General Chemistry Para	ameters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:49	RMM	9E20033	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total Recoverable	ND		8.0	NR	ug/L	1.00	05/26/09 18:43	RLG	9E22026	420.4
Total Metals by EPA 200	0 Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7
Iron	ND		0.0500	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7
Magnesium	4.95		0.200	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7
Manganese	ND		0.0030	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7
Sodium	63.6		1.0	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	05/22/09 04:58	TWS	9E20059	200.7
Metals (ICP)										
Si	1480		500	50.0	ug/L	1.00	06/01/09 16:14	NP	27533	6010B

www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

05/19/09 Received:

Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

Analytical Report

	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
3ample ID: RSE06	85-13RE1 (AP-SS-0)2 - Water)			Samı	pled: 05/	19/09 11:20	Recv	d: 05/19/0	9 15:50
Anions by EPA M	ethod 300.0									
Sulfate	12		10	NR	mg/L	1.00	06/08/09 18:07	TCH	9F09009	300

 ${\it Greenstar\ Environmental\ Solutions,\ LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring Project Number: GES

Analytical Report

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSE0685-14										
Sample ID. NSE0003-14	(AF-33-03 - 1	water)			Samp	iea: U5/	19/09 13:00	Rec	vd: 05/19/0	9 15:50
Anions by EPA Method	<u>300.0</u>									
Sulfate	11		10	NR	mg/L	1.00	06/03/09 17:18	TCH	9F05015	300
General Chemistry Para	meters									
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:50	RMM	9E20033	350.1
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Phenolics, Total	ND		8.0	NR	ug/L	1.00	05/26/09 18:43	RLG	9E22026	420.4
Recoverable										
Total Metals by EPA 200	Series Meth	<u>nods</u>								
Cadmium	ND		0.0010	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7
Chromium	ND		0.0040	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7
Iron	ND		0.0500	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7
Lead	ND		0.0050	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7
Magnesium	1.24		0.200	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7
Manganese	0.0067		0.0030	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7
Selenium	ND		0.0150	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7
Sodium	65.1		1.0	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7
Thallium	ND		0.0200	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7
Zinc	ND		0.0100	NR	mg/L	1.00	05/22/09 05:03	TWS	9E20059	200.7
Metals (ICP)										
Si	673		500	50.0	ug/L	1.00	06/01/09 16:20	NP	27533	6010B

www.testamericainc.com Page 29 of 38

 $\label{eq:Greenstar} \textbf{Greenstar Environmental Solutions, LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received: Reported: 05/19/09 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
Anions by EPA Method 300.0							•		
300	9F05015	RSE0685-01	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-02	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-03	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-04	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-05	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-06	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-07	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-09	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-10	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-11	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-12	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-13	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F05015	RSE0685-14	5.00	mL	5.00	mL	06/03/09 14:16	BWM	Direct Injection - Anions
300	9F09009	RSE0685-02RE	5.00	mL	5.00	mL	06/08/09 17:06	BWM	Direct Injection - Anions
300	9F09009	RSE0685-08	5.00	mL	5.00	mL	06/08/09 17:06	BWM	Direct Injection - Anions
300	9F09009	RSE0685-10RE	5.00	mL	5.00	mL	06/08/09 17:06	BWM	Direct Injection - Anions
300	9F09009	RSE0685-11RE	5.00	mL	5.00	mL	06/08/09 17:06	BWM	Direct Injection - Anions
300	9F09009	RSE0685-13RE	5.00	mL	5.00	mL	06/08/09 17:06	BWM	Direct Injection - Anions
General Chemistry Parameters									
350.1	9E20032	RSE0685-01	5.00	mL	5.00	mL	05/20/09 09:09	RMM	Ammonia
350.1	9E20032	RSE0685-02	5.00	mL	5.00	mL	05/20/09 09:09	RMM	Ammonia
350.1	9E20032	RSE0685-03	5.00	mL	5.00	mL	05/20/09 09:09	RMM	Ammonia
350.1	9E20032	RSE0685-04	5.00	mL	5.00	mL	05/20/09 09:09	RMM	Ammonia
350.1	9E20033	RSE0685-05	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
350.1	9E20033	RSE0685-06	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
350.1	9E20033	RSE0685-07	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
350.1	9E20033	RSE0685-08	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
350.1	9E20033	RSE0685-09	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
350.1	9E20033	RSE0685-10	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
350.1	9E20033	RSE0685-11	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
350.1	9E20033	RSE0685-12	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
350.1	9E20033	RSE0685-13	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
350.1	9E20033	RSE0685-14	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
420.4	9E21099	RSE0685-01	50.00	mL	50.00	mL	05/21/09 17:04	MDM	TRP Distillation
420.4	9E28064	RSE0685-12	50.00	mL	50.00	mL	05/28/09 13:57	RJK	TRP Distillation
420.4	9E22019	RSE0685-02	50.00	mL	50.00	mL	05/22/09 10:07	RMM	TRP Distillation

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 30 of 38

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09 Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number:

SAMPLE EXTRACTION DATA

			OAIIII EL	//	AOTION	מוא			
Description	Datak	Lab Noveleau	Wt/Vol Extracte	11-:4-	Extract Volume	11-4-	Data Dasa saad	Lab	Fortunation Matter d
Parameter 420.4	9E22019	Lab Number RSE0685-03	50.00	Units mL	50.00	Units mL	Date Prepared 05/22/09 10:07	Tech RMM	Extraction Method TRP Distillation
420.4	9E22019 9E22019	RSE0685-04	50.00	mL	50.00	mL	05/22/09 10:07	RMM	TRP Distillation
420.4	9E22019	RSE0685-05	50.00	mL	50.00	mL	05/22/09 10:07	RMM	TRP Distillation
420.4	9E22019 9E22019	RSE0685-06	50.00	mL	50.00	mL	05/22/09 10:07	RMM	TRP Distillation
420.4	9E22019	RSE0685-07	50.00	mL	50.00	mL	05/22/09 10:07	RMM	TRP Distillation
420.4	9E22026	RSE0685-08	50.00		50.00		05/22/09 10:07	RMM	TRP Distillation
420.4	9E22026	RSE0685-09	50.00	mL mL	50.00	mL mL	05/22/09 10:47	RMM	TRP Distillation
420.4	9E22026	RSE0685-10	50.00	mL	50.00	mL	05/22/09 10:47	RMM	TRP Distillation
	9E22026								
420.4 420.4	9E22026 9E22026	RSE0685-11 RSE0685-13	50.00 50.00	mL ml	50.00 50.00	mL ml	05/22/09 10:47 05/22/09 10:47	RMM RMM	TRP Distillation TRP Distillation
420.4	9E22026			mL ml		mL ml			
		RSE0685-14	50.00	mL ml	50.00	mL ml	05/22/09 10:47	RMM	TRP Distillation
7196A	9E19120	RSE0685-01	25.00	mL	25.00	mL !	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-02	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
7196A 7196A	9E19120	RSE0685-03	25.00	mL	25.00	mL !	05/19/09 22:05	MDM	Hex Digestion
	9E19120	RSE0685-04	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-05	25.00	mL	25.00	mL !	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-06	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-07	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-08	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-09	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-10	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-11	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-12	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-13	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
7196A	9E19120	RSE0685-14	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
Total Metals by EPA 200 Series	9E20059	RSE0685-01	50.00	ml	50.00	ml	05/21/09 09:30	MLD	3005A
200.7 200.7	9E20059	RSE0685-02	50.00	mL ml	50.00	mL ml	05/21/09 09:30	MLD	3005A 3005A
200.7	9E20059	RSE0685-03	50.00	mL mL	50.00	mL mL	05/21/09 09:30	MLD	3005A
200.7	9E20059	RSE0685-04	50.00		50.00		05/21/09 09:30	MLD	3005A
				mL ml		mL ml			
200.7	9E20059	RSE0685-05	50.00	mL	50.00	mL !	05/21/09 09:30	MLD	3005A
200.7	9E20059	RSE0685-06	50.00	mL	50.00	mL !	05/21/09 09:30	MLD	3005A
200.7	9E20059	RSE0685-07	50.00	mL	50.00	mL	05/21/09 09:30	MLD	3005A
200.7	9E20059	RSE0685-08	50.00	mL	50.00	mL !	05/21/09 09:30	MLD	3005A
200.7	9E20059	RSE0685-09	50.00	mL	50.00	mL !	05/21/09 09:30	MLD	3005A
200.7	9E20059	RSE0685-10	50.00	mL	50.00	mL	05/21/09 09:30	MLD	3005A
200.7	9E20059	RSE0685-11	50.00	mL	50.00	mL	05/21/09 09:30	MLD	3005A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Page 31 of 38 www.testamericainc.com

 ${\it Greenstar\ Environmental\ Solutions,\ LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received: Reported: 05/19/09 06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
200.7	9E20059	RSE0685-12	50.00	mL	50.00	mL	05/21/09 09:30	MLD	3005A
200.7	9E20059	RSE0685-13	50.00	mL	50.00	mL	05/21/09 09:30	MLD	3005A
200.7	9E20059	RSE0685-14	50.00	mL	50.00	mL	05/21/09 09:30	MLD	3005A

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported: 06/10/09 15:02

Project: Semi-Annual GW Monitoring **GES**

Project Number:

	L	_A	В	OI	RA	T	o	R١	/ C)C	D/	4T/	4
--	---	----	---	----	----	---	---	----	-----	----	----	------------	---

	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Anions by EPA Method 30	00.0									
Blank Analyzed: 06/03/09	(Lab Num	ber:9F050	15-BLK1, E	Batch: 9F05015)						
Sulfate			2.0	NR	mg/L	ND				
LCS Analyzed: 06/03/09 (Lab Numb	er:9F0501	5-BS1, Bato	ch: 9F05015)						
Sulfate		20	2.0	NR	mg/L	21.0	105	90-110		
Anions by EPA Method 3	00.0									
Blank Analyzed: 06/08/09	(Lab Num	bor:0E000	100 BIK1 E	Ratch: QENQNNQ)						
•	(Lab Null	1061.31 030	•	•	1					
Sulfate			2.0	NR	mg/L	ND				
LCS Analyzed: 06/08/09 (Lab Numb	er:9F0900	9-BS1, Bate	ch: 9F09009)						
Sulfate		20	2.0	NR	mg/L	18.1	91	90-110		

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Project: Semi-Annual GW Monitoring

Project Number: GES

05/19/09

06/10/09 15:02

Received:

Reported:

				BORATOR	. 4						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
General Chemistry Paran	neters				<u> </u>	11000					
DI 1 4 1 1 05/40/00			400 DI 1/4 D		•						
Blank Analyzed: 05/19/09 Chromium, Hexavalent	(Lab Num	nber:9E19	12 0-BLK1, E 10.0	satcn: 9E1912 NR	ug/L	ND					
					ug/L	ND					
LCS Analyzed: 05/19/09	(Lab Numb			-							
Chromium, Hexavalent		50.0	10.0	NR	ug/L	51.5	103	85-115			
General Chemistry Paran	neters										
Blank Analyzed: 05/20/09	(I ah Num	hor:9F20	032-BLK1 F	Ratch: 9F2003	2)						
Ammonia as N	(Lab Haii	1501.5220	0.020	NR	mg/L as N	ND					
	/I ala Niveala	OF-0001			3						
LCS Analyzed: 05/20/09 (Ammonia as N	(Lab Numb	0.750	0.020	NR	mg/L as N	0.736	98	90-110			
					· ·	0.730	90	90-110			
Duplicate Analyzed: 05/20 QC Source Sample: RSE0685-0	•	Number:9	E20032-DUF	P1, Batch: 9E2	0032)						
Ammonia as N	0.0113		0.020	NR	mg/L as N	0.0180			46	20	R4
Matrix Spike Analyzed: 09 QC Source Sample: RSE0685-0	-	ab Numbe	r:9E20032-N	/IS1, Batch: 9E	E20032)						
Ammonia as N	0.0113	0.200	0.020	NR	mg/L as N	0.204	96	54-150			
General Chemistry Paran	<u>neters</u>										
Blank Analyzed: 05/20/09	(Lab Num	nber:9E20	033-BLK1, E	Batch: 9E2003	3)						
Ammonia as N			9.20	NR	mg/L as N	ND					
LCS Analyzed: 05/20/09 ((I ab Numb	er:9F2003	33-BS1, Bate	ch: 9F20033)							
Ammonia as N	(Lub Italiik	0.750	0.020	NR	mg/L as N	0.744	99	90-110			
					· ·						
General Chemistry Paran	<u>neters</u>										
Blank Analyzed: 05/22/09	(Lab Num	nber:9E21	099-BLK1, E	Batch: 9E2109	9)						
Phenolics, Total Recoverable			10.0	NR	ug/L	ND					
LCS Analyzed: 05/22/09 ((Lab Numb	er:9E2109	99-BS1, Bato	ch: 9E21099)							
Phenolics, Total Recoverable		115	10.0	NR	ug/L	116	101	75-125			
Matrix Spike Analyzed: 05/22/09 (Lab Number:9E21099-MS1, Batch: 9E21099) QC Source Sample: RSE0685-01											
Phenolics, Total Recoverable	ND	100	10.0	NR	ug/L	99.9	100	60-143			

General Chemistry Parameters

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 34 of 38

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring Project Number: **GES**

LABORA	ATORY	QC E)ATA
--------	-------	------	------

• • •	Source	Spike	RL	MDI		5 "	%	% REC	% RPD Data
Analyte General Chemistry Paran	Result	Level	IXL	MDL	Units	Result	REC	Limits	RPD Limit Qualifiers
Control Chamber y Furan	1101010								
Blank Analyzed: 05/26/09	(Lab Num	ber:9E220)19-BLK1, E	Batch: 9E22019)				
Phenolics, Total Recoverable			10.0	NR	ug/L	ND			
LCS Analyzed: 05/26/09	(Lab Numb	er:9E2201	9-BS1, Bate	ch: 9E22019)					
Phenolics, Total Recoverable		115	10.0	NR	ug/L	95.1	83	75-125	
Duplicate Analyzed: 05/2 QC Source Sample: RSE0685-	•	Number:9E	E22019-DUF	P1, Batch: 9E22	019)				
Phenolics, Total Recoverable	ND		10.0	NR	ug/L	ND			20
Matrix Spike Analyzed: 0 QC Source Sample: RSE0685-	-	ab Numbei	r:9E22019-N	/IS1, Batch: 9E2	22019)				
Phenolics, Total Recoverable	ND	100	10.0	NR	ug/L	62.5	62	60-143	
General Chemistry Paran	neters								
Blank Analyzed: 05/26/09	(Lab Num	nber:9E220)26-BLK1, E	Batch: 9E22026)				
Phenolics, Total Recoverable			10.0	NR	ug/L	ND			
LCS Analyzed: 05/26/09	(Lab Numb	er:9E2202	6-BS1, Bat	ch: 9E22026)					
Phenolics, Total Recoverable		115	10.0	NR	ug/L	96.8	84	75-125	
General Chemistry Paran	<u>neters</u>								
Blank Analyzed: 06/02/09	(Lab Num	nber:9E280)64-BLK1, E	Batch: 9E28064)				
Phenolics, Total Recoverable			10.0	NR	ug/L	ND			
LCS Analyzed: 06/02/09	(Lab Numb	er:9E2806	4-BS1, Bat	ch: 9E28064)					
Phenolics, Total Recoverable		115	10.0	NR	ug/L	106	92	75-125	

Page 35 of 38 www.testamericainc.com

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Project: Semi-Annual GW Monitoring

Project Number: GES

LABORATORY OC DATA

05/19/09

06/10/09 15:02

Received:

Reported:

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by EPA 200	Series Met	<u>hods</u>									
Blank Analyzed: 05/22/09	(Lab Num	ber:9E20	059-BLK1. E	Batch: 9E20059))						
Cadmium	(=0.0 110		0.0010	NR	mg/L	ND					
Chromium			0.0040	NR	mg/L	ND					
Iron			0.0500	NR	mg/L	ND					
Lead			0.0050	NR	mg/L	ND					
Magnesium			0.200	NR	mg/L	ND					
Manganese			0.0030	NR	mg/L	ND					
Selenium			0.0150	NR	mg/L	ND					
Sodium			1.0	NR	mg/L	ND					
Thallium			0.0200	NR	mg/L	ND					
Zinc			0.0100	NR	mg/L	ND					
LCS Analyzed: 05/22/09	(I ob Numb	or:0E200	E0 DC1 Date	.h. 0E200E0\							
Cadmium	(Lab Numb	0.200	0.0010	NR	ma/l	0.201	101	85-115			
Chromium		0.200	0.0010	NR	mg/L	0.201	101	85-115			
		10.0		NR NR	mg/L	10.1					
Iron Lead		0.200	0.0500 0.0050	NR	mg/L	0.201	101 101	85-115 85-115			
		10.0	0.200	NR NR	mg/L	10.2	101	85-115			
Magnesium		0.200	0.200	NR	mg/L	0.200	102	85-115			
Manganese Selenium		0.200	0.0030	NR	mg/L mg/L	0.200	98	85-115			
Sodium		10.0	1.0	NR	mg/L	10.3	103	85-115			
Thallium		0.200	0.0200	NR	mg/L	0.201	101	85-115			
Zinc		0.200	0.0100	NR	mg/L	0.202	101	85-115			
2.110		0.200	0.0100	1414	mg/L	0.202	101	00 110			
Matrix Spike Analyzed: 0 QC Source Sample: RSE0685-	-	ab Numbe	er:9E20059-N	/IS1, Batch: 9E	20059)						
Cadmium	0.000490	0.200	0.0010	NR	mg/L	0.205	102	70-130			
Chromium	ND	0.200	0.0040	NR	mg/L	0.211	106	70-130			
Iron	0.122	10.0	0.0500	NR	mg/L	10.5	103	70-130			
Lead	ND	0.200	0.0050	NR	mg/L	0.204	102	70-130			
Magnesium	7.88	10.0	0.200	NR	mg/L	18.1	102	70-130			
Manganese	0.0126	0.200	0.0030	NR	mg/L	0.218	103	70-130			
Selenium	ND	0.200	0.0150	NR	mg/L	0.204	102	70-130			
Sodium	54.3	10.0	1.0	NR	mg/L	63.5	91	70-130			
Thallium	ND	0.200	0.0200	NR	mg/L	0.207	104	70-130			
Zinc	0.0184	0.200	0.0100	NR	mg/L	0.222	102	70-130			
Matrix Spike Dup Analyz QC Source Sample: RSE0685-		9 (Lab Ni	umber:9E200	059-MSD1, Bat	ch: 9E20059)						
Cadmium	0.000490	0.200	0.0010	NR	mg/L	0.206	103	70-130	0	20	
Chromium	ND	0.200	0.0040	NR	mg/L	0.212	106	70-130	0	20	
TestAmerica Buffalo					-						
10 Hazelwood Drive Am	nherst, NY	14228 tel	716-691-26	00 fax 716-691	-7991						

www.testamericainc.com Page 36 of 38

 $\label{eq:Greenstar} \textbf{Greenstar Environmental Solutions, LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

06/10/09 15:02

Project: Semi-Annual GW Monitoring

Project Number: GES

LABORATORY QC DAT

Analyte Total Metals by EPA 20	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Matrix Spike Dup Analyzed: 05/22/09 (Lab Number:9E20059-MSD1, Batch: 9E20059) QC Source Sample: RSE0685-03											
Iron	0.122	10.0	0.0500	NR	mg/L	10.5	103	70-130	0	20	
Lead	ND	0.200	0.0050	NR	mg/L	0.205	102	70-130	0	20	
Magnesium	7.88	10.0	0.200	NR	mg/L	18.0	101	70-130	1	20	
Manganese	0.0126	0.200	0.0030	NR	mg/L	0.218	103	70-130	0	20	
Selenium	ND	0.200	0.0150	NR	mg/L	0.205	102	70-130	1	20	
Sodium	54.3	10.0	1.0	NR	mg/L	62.3	80	70-130	2	20	
Thallium	ND	0.200	0.0200	NR	mg/L	0.200	100	70-130	3	20	
Zinc	0.0184	0.200	0.0100	NR	mg/L	0.221	101	70-130	0	20	

 $\label{eq:Greenstar} \textbf{Greenstar Environmental Solutions, LLC}$

6 Gellatly Drive

Si

Wappinger Falls, NY 12590

Work Order: RSE0685

Received:

05/19/09

Reported:

d: 06/10/09 15:02

Project: Semi-Annual GW Monitoring

50.0

Project Number: GES

500

LABORATORY QC DATA

Analyte	Source Result	Spike Level	MRL	MDL	Units	Result	% REC	% REC Limits	RPD Limit	Data Qualifiers
Metals (ICP)										
Blank Analyzed: 06	6/01/09 (Lab Num	nber:220-2	27603-10, B	Satch: 27533)						

ug/L

ND

Chain of Custody Record

Temperature on Receipt ____

Drinking Water? Yes ☐ No

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)			
Carried And Fine	Project Manager Chino Mr. Less &	Dele 05/19/09	Chain of Custody Number
Address	ber (Area Code)/Fax Number	4.	7
	5-223		Page 01 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Site Contact Lab Contact	Analysis (Attach list if more space is needed)	
Project Name and Location (State) ATR (1) Service Annual (S.1.) May MAY -	Carrier/Waybill Number	NG	Special International
Contract/Purchase Order/Quote No.	Metrix Containers &	1620 2012 1621 1621	Canditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	FICHTV	25. 7.2. 26. 26. 19.T.	
AP. MW- 1R 05/19/0		スメメメ	
	k 1 1 1 1 1 1 1 1 1	XXXXX	
AP-MW-3B	R35	X	
AP-MM-4B		メンネメン	
AP MW - SB		X X X X X X	
AP-MW-6R	7		
١	X	スメメメメ	
AP-MW-8B	x;	XXXXX	
-	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
١,	1500		
ر ا	x 0151		
4P-5S-01	1825 J J J J	メメメメ	
azard identification) sterd	Sample Disposal	(A fee may be assess Acative For Months tonger than 1 month)	(A fee may be assessed if samples are retained tonger than 1 month)
Turn Andered Titres Required 24 Hours			
Y Clap	Date Time I Registed By	7	Cale Tuna
2. Halingokined By	Dale Time 2. Received By)	
3. Reinquished By	Clate Time 3 Received By		Dete
CR+6 ANALYSIS - SITURA HOLD &	5 to 1000 \$ 302.	20"	
DASTRIBUTION: WHITE - Hatumed to Criena wijp Magort. (CANAARY - 518.	aya with the Sample, HINK - Fleed Copy		

Chain of Custody Record

Temperature on Receipt .

регация оп несвірі -

<u>}</u>

Orinking Water? Yes □

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/ Conditions of Receipt d ð (A fee may be assessed if samples are remined larger than 1 month) Page 0 5 | 14 | 04 Analysis (Attach list if more space is needed) Months Oisposal By Lab 🔲 Anthree For 3650 2C Requirements (Specify) HOPN PV12 न्यवप्पप विव Containers & Preservatives HOEN 3. Asceived By DISTRIBUTION: WHITE-REALMED OF CHAMMER SANDER PROFESSION OF THOSE SANDER PROFESSION OF THE SANDER PROFESSION OF THE PROF POWH N McLend нова. Return To Client Telephone Number (Area (8 4 5 - 2 2 3 Sris Contact Sample Dispose POS Ě Camer Waybull Number ABITT peg Project Manager X 05/19/09 0.00 Unknown 6W MON - MM, 091 (NY) 1300 Time 88 X21 Days DE/19/19 05/14/09 6 GATLATTY DAINE STORES Potson B 950 T4 Days (Containers for each sample may be combined on one line) Greenstone Eng. Skin knigar Sample I.D. No. and Description ☐ 7 Days NAPOINGES FOLLS
Project Name and Location (State) Alle Spini-Annal Frammeble ☐ 48 Hours Possible Hazard Identification Tum Around Tittle Required 3. Relanquished By P. Rethopulshed By Non-Hazard 2. Relinquished By 24 Hours TAL-4124 (1001) Clent Comments

ANALYTICAL REPORT

Job Number: 220-9110-1

Job Description: Airco Niagagra Falls - RSE0685

For:

TestAmerica Laboratories, Inc. 10 Hazelwood Drive Amherst, NY 14228-2298

Attention: Mr. Jason Kacalski

Approved for releas Cheryl Cascella 6/4/2009 11:51 AM

Designee for
Johanna Dubauskas
Project Manager I
johanna.dubauskas@testamericainc.com
06/04/2009

Chery and Cascella

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Project Manager.

TestAmerica Connecticut Certifications and Approvals: CTDOH PH-047, MADEP CT023, RIDOH A43, NYDOH 10602, NY NELAP 10602, NHDES 2528, NJDEP CT410, ME DOH CT023, UT DOH 2032614458

Job Narrative 220-J9110-1

Comments

No additional comments.

ReceiptAll samples were received in good condition within temperature requirements.

Metals

No analytical or quality issues were noted.

METHOD SUMMARY

Client: TestAmerica Laboratories, Inc.

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Metals (ICP)	TAL CT	SW846 6010B	
Preparation, Total Metals	TAL CT		SW846 3010A

Lab References:

TAL CT = TestAmerica Connecticut

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Job Number: 220-9110-1

METHOD / ANALYST SUMMARY

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

 Method
 Analyst
 Analyst ID

 SW846 6010B
 Petronchak, Nestor
 NP

SAMPLE SUMMARY

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
220-9110-1	RSE0685-01	Water	05/19/2009 0855	05/20/2009 0935
220-9110-2	RSE0685-02	Water	05/19/2009 0954	05/20/2009 0935
220-9110-3	RSE0685-03	Water	05/19/2009 1035	05/20/2009 0935
220-9110-4	RSE0685-04	Water	05/19/2009 1050	05/20/2009 0935
220-9110-5	RSE0685-05	Water	05/19/2009 1130	05/20/2009 0935
220-9110-6	RSE0685-06	Water	05/19/2009 1224	05/20/2009 0935
220-9110-7	RSE0685-07	Water	05/19/2009 1400	05/20/2009 0935
220-9110-8	RSE0685-08	Water	05/19/2009 1440	05/20/2009 0935
220-9110-9	RSE0685-09	Water	05/19/2009 0000	05/20/2009 0935
220-9110-10	RSE0685-10	Water	05/19/2009 1500	05/20/2009 0935
220-9110-11	RSE0685-11	Water	05/19/2009 1510	05/20/2009 0935
220-9110-12	RSE0685-12	Water	05/19/2009 1025	05/20/2009 0935
220-9110-13	RSE0685-13	Water	05/19/2009 1120	05/20/2009 0935
220-9110-14	RSE0685-14	Water	05/19/2009 1300	05/20/2009 0935

SAMPLE RESULTS

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-01

 Lab Sample ID:
 220-9110-1
 Date Sampled:
 05/19/2009 0855

 Client Matrix:
 Water
 Date Received:
 05/20/2009 0935

6010B Metals (ICP)

Method: 6010B Analysis Batch: 220-27603 Instrument ID: TJA Trace ICAP

Preparation: 3010A Prep Batch: 220-27533 Lab File ID: W060109
Dilution: 5.0 Initial Weight/Volume: 100 mL

Date Analyzed: 06/01/2009 1452 Final Weight/Volume: 50 mL

Date Prepared: 05/29/2009 1051

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 6770
 250
 2500

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-02

 Lab Sample ID:
 220-9110-2
 Date Sampled:
 05/19/2009 0954

 Client Matrix:
 Water
 Date Received:
 05/20/2009 0935

6010B Metals (ICP)

Method:6010BAnalysis Batch: 220-27603Instrument ID:TJA Trace ICAPPreparation:3010APrep Batch: 220-27533Lab File ID:W060109

Dilution: 1.0 Initial Weight/Volume: 100 mL
Date Analyzed: 06/01/2009 1637 Final Weight/Volume: 50 mL

Date Prepared: 05/29/2009 1051

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 1120
 50.0
 500

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-03

 Lab Sample ID:
 220-9110-3
 Date Sampled:
 05/19/2009 1035

 Client Matrix:
 Water
 Date Received:
 05/20/2009 0935

6010B Metals (ICP)

Method: 6010B Preparation: 3010A Dilution: 5.0

Date Analyzed: 06/01/2009 1503 Date Prepared: 05/29/2009 1051 Analysis Batch: 220-27603 Prep Batch: 220-27533 Instrument ID: TJA Trace ICAP Lab File ID: W060109

Initial Weight/Volume: 100 mL Final Weight/Volume: 50 mL

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 6340
 250
 2500

TJA Trace ICAP

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-04

 Lab Sample ID:
 220-9110-4
 Date Sampled:
 05/19/2009 1050

 Client Matrix:
 Water
 Date Received:
 05/20/2009 0935

6010B Metals (ICP)

Method: 6010B Preparation: 3010A Dilution: 5.0

Date Analyzed: 06/01/2009 1509

Date Prepared: 05/29/2009 1051

Analysis Batch: 220-27603 Instrument ID: Prep Batch: 220-27533 Lab File ID:

Lab File ID: W060109
Initial Weight/Volume: 100 mL
Final Weight/Volume: 50 mL

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 8410
 250
 2500

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-05

Lab Sample ID: 220-9110-5 Date Sampled: 05/19/2009 1130 Client Matrix: Date Received: 05/20/2009 0935 Water

6010B Metals (ICP)

Method: 6010B Preparation: 3010A

Dilution: 5.0

Date Analyzed: 06/01/2009 1515 Date Prepared: 05/29/2009 1051

Analysis Batch: 220-27603 Prep Batch: 220-27533

Instrument ID: Lab File ID:

TJA Trace ICAP W060109

Initial Weight/Volume: 100 mL Final Weight/Volume: 50 mL

Analyte Result (ug/L) Qualifier MDL RLSi 7980 250 2500

TJA Trace ICAP

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-06

 Lab Sample ID:
 220-9110-6
 Date Sampled:
 05/19/2009
 1224

 Client Matrix:
 Water
 Date Received:
 05/20/2009
 0935

6010B Metals (ICP)

Method: 6010B
Preparation: 3010A
Dilution: 5.0

Date Prepared:

Date Analyzed: 06/01/2009 1521

05/29/2009 1051

Analysis Batch: 220-27603 Instrument ID: Prep Batch: 220-27533 Lab File ID:

Batch: 220-27533 Lab File ID: W060109
Initial Weight/Volume: 100 mL
Final Weight/Volume: 50 mL

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 5920
 250
 2500

TJA Trace ICAP

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-07

 Lab Sample ID:
 220-9110-7
 Date Sampled:
 05/19/2009 1400

 Client Matrix:
 Water
 Date Received:
 05/20/2009 0935

6010B Metals (ICP)

Method: 6010B Analysis Batch: 220-27603 Instrument ID: Preparation: 3010A Prep Batch: 220-27533 Lab File ID: Dilution: 5.0 Initial Weight/V

Batch: 220-27533 Lab File ID: W060109
Initial Weight/Volume: 100 mL
Final Weight/Volume: 50 ml

Date Analyzed: 06/01/2009 1526 Final Weight/Volume: 50 mL Date Prepared: 05/29/2009 1051

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 4690
 250
 2500

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-08

Lab Sample ID: 220-9110-8 Date Sampled: 05/19/2009 1440 Client Matrix: Date Received: 05/20/2009 0935 Water

6010B Metals (ICP)

Method: 6010B Preparation: 3010A Dilution: 5.0

Date Prepared:

Date Analyzed: 06/01/2009 1532

05/29/2009 1051

Analysis Batch: 220-27603

Prep Batch: 220-27533

Instrument ID: Lab File ID: Initial Weight/Volume: TJA Trace ICAP W060109

100 mL Final Weight/Volume: 50 mL

Analyte Result (ug/L) Qualifier MDL RLSi 7590 250 2500

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-09

 Lab Sample ID:
 220-9110-9
 Date Sampled:
 05/19/2009 0000

 Client Matrix:
 Water
 Date Received:
 05/20/2009 0935

6010B Metals (ICP)

Method: 6010B
Preparation: 3010A
Dilution: 5.0

Dilution: 5.0

Date Analyzed: 06/01/2009 1538

Date Prepared: 05/29/2009 1051

Analysis Batch: 220-27603 Instrument ID: TJA Trace ICAP Prep Batch: 220-27533 Lab File ID: W060109

Initial Weight/Volume: 100 mL Final Weight/Volume: 50 mL

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 6050
 250
 2500

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-10

 Lab Sample ID:
 220-9110-10
 Date Sampled:
 05/19/2009 1500

 Client Matrix:
 Water
 Date Received:
 05/20/2009 0935

6010B Metals (ICP)

Method:6010BAnalysis Batch: 220-27603Instrument ID:TJA Trace ICAPPreparation:3010APrep Batch: 220-27533Lab File ID:W060109

Dilution: 1.0 Initial Weight/Volume: 100 mL Date Analyzed: 06/01/2009 1643 Final Weight/Volume: 50 mL

Date Analyzed: 06/01/2009 1643 Final Weight/Volume: 50
Date Prepared: 05/29/2009 1051

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 500
 U
 50.0
 500

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-11

 Lab Sample ID:
 220-9110-11
 Date Sampled:
 05/19/2009 1510

 Client Matrix:
 Water
 Date Received:
 05/20/2009 0935

6010B Metals (ICP)

Method:6010BAnalysis Batch: 220-27603Instrument ID:TJA Trace ICAPPreparation:3010APrep Batch: 220-27533Lab File ID:W060109

Dilution: 1.0 Initial Weight/Volume: 100 mL

Date Analyzed: 06/01/2009 1649 Final Weight/Volume: 50 mL Date Prepared: 05/29/2009 1051

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 500
 U
 50.0
 500

TJA Trace ICAP

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-12

 Lab Sample ID:
 220-9110-12
 Date Sampled:
 05/19/2009 1025

 Client Matrix:
 Water
 Date Received:
 05/20/2009 0935

6010B Metals (ICP)

Method:6010BAnalysis Batch: 220-27603Instrument ID:Preparation:3010APrep Batch: 220-27533Lab File ID:Dilution:1.0Initial Weight/Volume

Lab File ID: W060109
Initial Weight/Volume: 100 mL
Final Weight/Volume: 50 mL

Date Analyzed: 06/01/2009 1655 Date Prepared: 05/29/2009 1051

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 832
 50.0
 500

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-13

Lab Sample ID: 220-9110-13 Date Sampled: 05/19/2009 1120 Client Matrix: Date Received: 05/20/2009 0935 Water

6010B Metals (ICP)

Method: 6010B Preparation: 3010A

Dilution: 1.0

Date Analyzed: 06/01/2009 1614 Date Prepared: 05/29/2009 1051

Analysis Batch: 220-27603 Instrument ID:

Prep Batch: 220-27533

TJA Trace ICAP W060109 Lab File ID: Initial Weight/Volume: 100 mL Final Weight/Volume: 50 mL

Analyte Result (ug/L) Qualifier MDL RLSi 1480 50.0 500

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Client Sample ID: RSE0685-14

 Lab Sample ID:
 220-9110-14
 Date Sampled:
 05/19/2009 1300

 Client Matrix:
 Water
 Date Received:
 05/20/2009 0935

6010B Metals (ICP)

Method: 6010B Preparation: 3010A

Dilution: 1.0

Date Analyzed: 06/01/2009 1620 Date Prepared: 05/29/2009 1051 Analysis Batch: 220-27603 Prep Batch: 220-27533 Instrument ID: Lab File ID: TJA Trace ICAP W060109

Initial Weight/Volume: 100 mL Final Weight/Volume: 50 mL

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Si
 673
 50.0
 500

DATA REPORTING QUALIFIERS

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Lab Section	Qualifier	Description
Metals		
	U	Indicates analyzed for but not detected.
	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

QUALITY CONTROL RESULTS

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 220-2753					
_CS 220-27533/2-A	Lab Control Sample	Т	Water	3010A	
MB 220-27533/1-A	Method Blank	T	Water	3010A	
220-9110-1	RSE0685-01	T	Water	3010A	
220-9110-2	RSE0685-02	T	Water	3010A	
220-9110-3	RSE0685-03	T	Water	3010A	
220-9110-4	RSE0685-04	T	Water	3010A	
220-9110-5	RSE0685-05	T	Water	3010A	
220-9110-6	RSE0685-06	T	Water	3010A	
220-9110-7	RSE0685-07	Т	Water	3010A	
220-9110-8	RSE0685-08	Т	Water	3010A	
220-9110-9	RSE0685-09	Т	Water	3010A	
220-9110-10	RSE0685-10	T	Water	3010A	
220-9110-11	RSE0685-11	Т	Water	3010A	
220-9110-12	RSE0685-12	Т	Water	3010A	
220-9110-13	RSE0685-13	Т	Water	3010A	
220-9110-14	RSE0685-14	Т	Water	3010A	
220-9167-D-1-D DU	Duplicate	Т	Water	3010A	
220-9167-D-1-E MS	Matrix Spike	Т	Water	3010A	
Analysis Batch:220-2	7603				
CS 220-27533/2-A	Lab Control Sample	Т	Water	6010B	220-27533
MB 220-27533/1-A	Method Blank	Т	Water	6010B	220-27533
220-9110-1	RSE0685-01	Т	Water	6010B	220-27533
20-9110-2	RSE0685-02	Т	Water	6010B	220-27533
220-9110-3	RSE0685-03	Т	Water	6010B	220-27533
220-9110-4	RSE0685-04	Т	Water	6010B	220-27533
220-9110-5	RSE0685-05	Т	Water	6010B	220-27533
220-9110-6	RSE0685-06	Т	Water	6010B	220-27533
220-9110-7	RSE0685-07	Т	Water	6010B	220-27533
220-9110-8	RSE0685-08	Ť	Water	6010B	220-27533
220-9110-9	RSE0685-09	Ť	Water	6010B	220-27533
220-9110-10	RSE0685-10	T	Water	6010B	220-27533
220-9110-11	RSE0685-11	Ť	Water	6010B	220-27533
220-9110-12	RSE0685-12	T	Water	6010B	220-27533
220-9110-13	RSE0685-13	T	Water	6010B	220-27533
20-9110-14	RSE0685-14	T	Water	6010B	220-27533
220-9167-D-1-D DU	Duplicate	T	Water	6010B	220-27533
220-9167-D-1-E MS	Matrix Spike	T	Water	6010B	220-27533

Report Basis T = Total

Quality Control Results

W060109

Client: TestAmerica Laboratories, Inc. Job Number: 220-9110-1

Method Blank - Batch: 220-27533 Method: 6010B Preparation: 3010A

Lab Sample ID: MB 220-27533/1-A Analysis Batch: 220-27603 Instrument ID: TJA Trace ICAP 61E2

Client Matrix: Water Prep Batch: 220-27533 Lab File ID:

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 100 mL

Date Analyzed: 06/01/2009 1343 Final Weight/Volume: 50 mL Date Prepared: 05/29/2009 1051

 Analyte
 Result
 Qual
 MDL
 RL

 Si
 500
 U
 50.0
 500

Analyte Sample Result/Qual Spike Amount Result % Rec. Limit Qual

Duplicate - Batch: 220-27533 Method: 6010B Preparation: 3010A

Lab Sample ID: 220-9167-D-1-D DU Analysis Batch: 220-27603 Instrument ID: TJA Trace ICAP 61E2

Client Matrix: Water Prep Batch: 220-27533 Lab File ID: W060109

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 100 mL Date Analyzed: 06/01/2009 1412 Final Weight/Volume: 50 mL Date Prepared: 05/29/2009 1051

Analyte Sample Result/Qual Result RPD Limit Qual
Si 4990 5100 2 20

Calculations are performed before rounding to avoid round-off errors in calculated results.

MISCELLANEOUS DOCUMENTS

SUBCONTRACT ORDER

TestAmerica Buffalo **RSE0685**

SENDING LABORATORY:

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 Phone: 716-691-2600 Fax: 716-691-7991

Project Manager:

Jason Kacalski

RECEIVING LABORATORY:

TestAmerica Connecticut 128 Long Hill Cross Road Shelton, CT 06484 Phone:(203) 944-1307

Fax: -

Analysis	Due	Expires	Laboratory ID	Comments
G)		134 (348)4941414	
Sample ID: RSE0685-01	Water	Sampled:05/19/09 08:55		
SUB 6010B Tot - Silicon	06/03/09 12	:00 11/15/09 08:55		NONE,
Containers Supplied:				
<u> </u>)			
Sample ID: RSE0685-02	Water	Sampled:05/19/09 09:54		
SUB 6010B Tot - Silicon	06/03/09 12	:00 11/15/09 09:54		NONE,
Containers Supplied:				
<u> </u>	<u></u>			
Sample ID: RSE0685-03	Water	Sampled:05/19/09 10:35	******	
SUB 6010B Tot - Silicon	06/03/09 12	:00 11/15/09 10:35		NONE,
Containers Supplied:				
(u	2)	0 1 10 2 40 40 40 40 40		
Sample ID: RSE0685-04	Water	Sampled:05/19/09 10:50		22027
SUB 6010B Tot - Silicon	06/03/09 12	:00 11/15/09 10:50		NONE,
Containers Supplied:				
6	Ď			
Sample ID: RSE0685-05	Water	Sampled:05/19/09 11:30		
SUB 6010B Tot - Silicon	06/03/09 12	:00 11/15/09 11:30		NONE,
Containers Supplied:				
(0				·
Sample ID: RSE0685-06	Water	Sampled:05/19/09 12:24		
SUB 6010B Tot - Silicon	06/03/09 12	:00 11/15/09 12:24		NONE,
Containers Supplied:				

Released By

Date

Page Received By

17 200

Date

06/04/2009

passed rad $^{Page\ 1\ of\ 2}$

SUBCONTRACT ORDER

TestAmerica Buffalo RSE0685

Sample ID: RSE0685-09	nalysis	Due	Expires	Laboratory ID	Comments
Sample ID: RSE0685-06 Water Sampled:05/19/09 14:40 NONE,		•	pled:05/19/09 14:00		
Sample ID: RSE0685-08 Water Sampled:05/19/09 14:40 NONE,	-	06/03/09 12:00	11/15/09 14:00		NONE,
Sample ID: RSE0685-08 Water Sampled-05/19/09 14:40 NONE, Containers Supplied: Sample ID: RSE0685-09 Water Sampled-05/19/09 00:00 NONE, Containers Supplied: Sample ID: RSE0685-09 Water Sampled-05/19/09 00:00 NONE, Containers Supplied: Sample ID: RSE0685-10 Water Sampled-05/19/09 15:00 NONE, Containers Supplied: Sample ID: RSE0685-11 Water Sampled-05/19/09 15:00 NONE, Containers Supplied: Sample ID: RSE0685-11 Water Sampled-05/19/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-11 Water Sampled-05/19/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled-05/19/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled-05/19/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled-05/19/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled-05/19/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled-05/19/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled-05/19/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled-05/19/09 13:00 NONE,	Containers Supplied:				
Sample ID: RSE0685-08 Water Sampled-05/19/09 14:40 NONE, Containers Supplied: Sample ID: RSE0685-09 Water Sampled-05/19/09 00:00 NONE, Containers Supplied: Sample ID: RSE0685-09 Water Sampled-05/19/09 00:00 NONE, Containers Supplied: Sample ID: RSE0685-10 Water Sampled-05/19/09 15:00 NONE, Containers Supplied: Sample ID: RSE0685-11 Water Sampled-05/19/09 15:00 NONE, Containers Supplied: Sample ID: RSE0685-11 Water Sampled-05/19/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-11 Water Sampled-05/19/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled-05/19/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled-05/19/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled-05/19/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled-05/19/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled-05/19/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled-05/19/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled-05/19/09 13:00 NONE,	<u> </u>	<u> </u>			
Sample ID: RSE0685-10	ample ID: RSE0685-08	Water Sam	pled:05/19/09 14:40		
Sample ID: RSE0685-10 Sample ID: RSE0685-10 Water Sampled:05/19/09 00:00 NONE, Containers Supplied: Sample ID: RSE0685-11 Water Sampled:05/19/09 15:00 Sample ID: RSE0685-11 Water Sampled:05/19/09 15:10 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 15:10 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled:05/19/09 10:25 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 NONE, NONE, NONE, NONE, NONE, NONE,	SUB 6010B Tot - Silicon	06/03/09 12:00	11/15/09 14:40		NONE,
Sample ID: RSE0685-10 Sub 6010B Tot - Silicon	Containers Supplied:				
Sub 6010B Tot - Silicon	- G)		**************************************	
Sample ID: RSE0685-10 Water Sampled:05/19/09 15:00 NONE,				<u>, in the second of the second</u>	
Sample ID: RSE0685-10 Water Sampled: 05/19/09 15:00 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 15:00 NONE, Containers Supplied: Water Sampled: 05/19/09 15:10 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled: 05/19/09 10:25 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-13 Water Sampled: 05/19/09 11:20 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled: 05/19/09 13:00 NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE, NONE,		06/03/09 12:00	11/15/09 00:00		NONE,
Sumple ID: RSE0685-11 Water Sampled:05/19/09 15:10 Sample ID: RSE0685-11 Water Sampled:05/19/09 15:10 SuB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled:05/19/09 10:25 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SuB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SuB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE, NONE,	Containers Supplied:				
Sumple ID: RSE0685-11 Water Sampled:05/19/09 15:10 Sample ID: RSE0685-11 Water Sampled:05/19/09 15:10 SuB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled:05/19/09 10:25 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SuB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SuB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE, NONE,	ample ID: BSE0695 1	Water San	mled:05/10/00 15:00		
Sample ID: RSE0685-11				\$ 91 C 77 C 78 789 B 78	NONE.
Sample ID: RSE0685-11 Water Sampled:05/19/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled:05/19/09 10:25 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,		00/03/07 12.00	11/15/05 15:00		a 1 2 - 1 Aug
Sample ID: RSE0685-11 Water Sampled:05/19/09 15:10 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled:05/19/09 10:25 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00					
Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 15:10 NONE, Containers Supplied: Sample ID: RSE0685-12 Water Sampled:05/19/09 10:25 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 NONE, Containers Supplied: Supplied: Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE, Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 NONE,) Water S	mlad-05/10/00 15-10		
Sample ID: RSE0685-12 Water Sampled:05/19/09 10:25				₹ 3 %, % 3 % % % % % % % % % % % % % % % % % %	NONE
Sample ID: RSE0685-12 Water Sampled:05/19/09 10:25 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,		00/03/09 12:00	11/15/09 15:10		INOINE,
Sample ID: RSE0685-12 Water Sampled:05/19/09 10:25 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,	солишь в вириси.				
SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 10:25 NONE, Containers Supplied: Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,		2)			
Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,					NONE
Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,		06/03/09 12:00	11/15/09 10:25		NONE,
Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,	Containers Supplied:				
Sample ID: RSE0685-13 Water Sampled:05/19/09 11:20 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 11:20 NONE, Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,	<u>(13</u>	`			
Containers Supplied: Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,	ample ID: RSE0685-13	Water San		S S S S S S S S S S S S S S S S S S S	
Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,		06/03/09 12:00	11/15/09 11:20		NONE,
Sample ID: RSE0685-14 Water Sampled:05/19/09 13:00 SUB 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,	Containers Suppliea:				
Sub 6010B Tot - Silicon 06/03/09 12:00 11/15/09 13:00 NONE,					
·	-				
Containers Supplied: (1) 1 - 5/9/04 PW KRIMING 0=		06/03/09 12:00	11/15/09 13:00		NONE,
(11 h - 5/9/09 17W KRIMING 0=	Containers Supplied:				
(1) 1 = 5/9/09 17W KRIMING 0=			 		
1.1 1 1 - U/1/09 1/00 KRIMIKOU 5/1/1/19 0=	~ 1	5/101	or 15/11	1/ 1	4.1
Released By Date Received By Date	In h	. 2/19/	79 1700	* Blocker	1 <u>5/20/09 935</u>

ESTAMERICA CONNECTICUT

Job Number:

Client:

Client Project:

Date	5/20/09)							-				,
initials	97)			,								
Preservative Lot Number	11/14													ð											
pH after Adjustment	υďα													->				4	1						
Adjustment (mLs)	(MA													ð					7	100 Ave 1					
Hd	27	77	27	27	27	27	27	27	27	77	27	27	(1	77						1/2	A				
Preservative	HNUS													6											77 CT
mber	10 -0	70 -	03	757	65	90	40	080	60	0)		12	(3	#											TO 7000 H 7 501 20 W +500
Lab Number	9110								Pag	je :	28	of	31	8							6/	04/	200	\ 	V + 0 00 1 1 0 00 0 1 0 00 0 1

TestAmerica - Connecticut Internal Chain-of-Custody

Trip Blank:

QC:

FB:

Soil:

Air:

Water: /-/4

220-9110 TH Buffalo: Workshave

Date Received: 5(20/09)

Sample #s: 1-14

Locations: 89D

	, · · · · · · · · · · · · · · · · · · ·				 	 	 		,	
Time	// o>_									
Date	5/49									
Signature-Sample Return	7									
Reason	212/									
Time	0,0									
Date	5/20									
Signature-Sample Removal	7									
Laboratory Sample#	Page	29	of 3	1				06/	04/2	2009

TestAmerica Form# SMF02300.CT

TESTAMERICA CONNECTICUT - CHAIN OF CUSTODY ATOMIC SPECTROSCOPY DEPARTMENT

Job Number:	9110	Sample Numb	ers:	
	mber: 27537			
F				
	WATER SOIL -	SLUDGE - TC	LP/SPLP	
I confirm that I authorize the tra	have performed the prepa ansfer of these digestates t	ration below follo to the metals instru	wing SOP guid ument lab.:	delines and
Sample Prep:			5/29/09	ICP
	Analysts		Date(s)	3.6
	Analysts		Date(s)	Mercury
I confirm that !	I have performed the anal	ysis below follow	ing SOP guidel	ines:
Analysis:				
	Analysts		Date(s)	ICP
	111.01.50-0			Mercury
	Chemist		Date(s)	2 -A 7
I have review	ved and authorized the r	elease of the job:		
Complete:	<u>~~~</u>		6/3/0°	7_
_	Supervisor		Date	5
OAF02602.CT				

Login Sample Receipt Check List

Client: TestAmerica Laboratories, Inc.

Job Number: 220-9110-1

Login Number: 9110 List Source: TestAmerica Connecticut Creator: Blocker, Kristina

List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	NOT ICED
Cooler Temperature is acceptable.	False	
Cooler Temperature is recorded.	True	17.2C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Attachment E

Landfill Cap Inspection Checklists March and June 2009

LANDFILL CAP INSPECTION CHECKLIST AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Personnel: Bruce Vinal

Date: 1st Quarter Inspection (19 March 2009)

Weather: Sunny, 28 degrees

1. Inspection of ground surface for exposure of geotextile cover (cap erosion):

None noted

- 2. Inspection of ground surface for differential settlement resulting in soil cracking or ponded water: Ponded Water was noted at access gate near Witmer Road and on the access road adjacent to the GCTS. It is recommended that crushed gravel be added and these two areas regarded to avoid additional degradation of the access roads.
- 3. Identification of stressed vegetation:

Snow cover limits this inspection

4. Identification of seeps, rooted vegetation (trees), and/or animal burrows:
None noted

5. Identification of deteriorating equipment (i.e., monitoring wells, fencing, or drainage structures):

Monitoring wells still need to be painted safety blue

- 6. Inspection of stormwater drainage swales for erosion, sloughing, or flow-through: Snow cover somewhat limits this inspection however all look to be in good shape
- 7. Inspection of east side of the landfill (Niagara Mohawk Power Corporation parcel) along the intermittent stream for the presence of erosion or sloughing:

 None noted
- 8. Inspection of access roads:

All access roads are in good shape with the exceptions noted in line 2

LANDFILL CAP INSPECTION CHECKLIST AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Personnel: Bruce Vinal - Greenstar Engineering, PC

Date: 2nd Quarter Inspection (16 June 2009)

Weather: Overcast, 65 degrees

- **1. Inspection of ground surface for exposure of geotextile cover (cap erosion):** None noted.
- 2. Inspection of ground surface for differential settlement resulting in soil cracking or ponded water: Ponded Water was noted at access gate near Witmer Road and on the access road adjacent to the GCTS. It is recommended that crushed gravel be added and these two areas regarded to avoid additional degradation of the access roads.

3. Identification of stressed vegetation:

Vegetation in the disturbed areas of the southwest corner are not doing well. This area should have topsoil added and be re-seeded

4. Identification of seeps, rooted vegetation (trees), and/or animal burrows:

Weeds have begun to grow up around the GCTS tanks and around the solar panels. Recommend placement of geo-textile and stone over this area to reduce/eliminate maintenance costs.

5. Identification of deteriorating equipment (i.e., monitoring wells, fencing, or drainage structures):

Wells need to be painted with safety blue paint. The concrete pad under the backup generator has begun to settle, met with service tech and Bob Broomfield about possible solutions

- 6. Inspection of stormwater drainage swales for erosion, sloughing, or flow-through: Large amounts of algae has grown in the swale conveying the GCTS discharge. This growth does not appear to have any adverse effects but will be monitored. The swale in the southwest corner has an area about 50' long that has sloughed into the swale and needs to be repaired.
- 7. Inspection of east side of the landfill (Niagara Mohawk Power Corporation parcel) along the intermittent stream for the presence of erosion or sloughing:

 None noted.

8. Inspection of access roads:

Roads are in good shape. Vegetation is taking over the roads, but no need to use herbicides. Roads are still usable. Roads will be mowed and scarified in October.

Attachment F

Laboratory Analytical Results for GCTS Discharge Sampling March and May 2009

Analytical Report

Work Order: RSC0696

Project Description Airco - Niagara Falls

For:

Charles E. McLeod, Jr.

Greenstar Environmental Solutions, LLC

6 Gellatly Drive Wappinger Falls, NY 12590

Jason Kacalski

Project Manager

jason.kacalski@testamericainc.com

Wednesday, April 1, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received: Reported:

03/19/09 04/01/09 14:19

Project: Airco - Niagara Falls

Project Number: NY5A9582

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0 0 4 4
Maryland	SD W A	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T10470441208-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters or which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received: Reported: 03/19/09 04/01/09 14:19

Project: Airco - Niagara Falls

Project Number: NY5A9582

Case Narrative

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A958

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

<u>SpecificMethod</u>	<u>Analyte</u>	<u>Units</u>	Client RL	<u>Lab PQL</u>
2540C	Total Dissolved Solids	mg/L	4	10
420.4	Phenolics, Total Recoverable	ug/L	0.008	0.01

6 Gellatly Drive

HFT

M8

Wappinger Falls, NY 12590

Work Order: RSC0696

Project Number:

Received:

03/19/09

Reported:

1: 04/01/09 14:19

DATA QUALIFIERS AND DEFINITIONS

NY5A9582

D15 Sample weight / volume has been reduced to eliminate matrix interference. Reporting limits have been adjusted accordingly.

The holding time for this test is immediate. It was analyzed in the laboratory as soon as possible after receipt.

Project: Airco - Niagara Falls

The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

Executive Summary - Detections

Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSC0696-01 (AP-EWE-	-01 - Water)				Sa	mpled: 03	/19/09 14:42	Rec	vd: 03/19/	09 15:35
General Chemistry Parameters						•				
pН	7.8	HFT	0.1	NA	SU	1.00	03/19/09 20:29	JFR	9C19100	9040
Oxygen, Dissolved	10.4		7.00	NA	mg/L	1.00	03/19/09 22:35	RJK	9C19101	4500-O G
Nitrate	1.17		0.050	NA	mg/L as N	1.00	03/19/09 17:45	JFR	9C19094	353.2
Total Dissolved Solids	591		4.0	NA	mg/L	1.00	03/23/09 16:15	RJP	9C23072	2540C

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Project Number:

Project: Airco - Niagara Falls

Received:

03/19/09

Reported:

04/01/09 14:19

Sample Summary

NY5A9582

Date/Time Date/Time SAMPLE IDENTIFICATION LAB NUMBER **Client Matrix** Sampled Received AP-EWE-01 RSC0696-01 Water 03/19/09 14:42 03/19/09 15:35 TRIP BLANK RSC0696-02 Water 03/19/09 03/19/09 15:35

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

			Analyti	cal Rep	ort					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSC0696-01 (AP-EWE	-01 - Water)				Sa	ampled: 03	3/19/09 14:42	Rec	vd: 03/19/	09 15:35
General Chemistry Parameters										
Ammonia as N	ND		9.20	NA	mg/L as N	1.00	03/20/09 12:26	RMM	9C20016	350.1
Biochemical Oxygen Demand	ND		5.0	NA	mg/L	1.00	03/19/09 21:18	MDM	9C19092	5210B
Chromium, Hexavalent	ND		11.0	NA	ug/L	1.00	03/19/09 21:00	RLG	9C19090	7196A
Chemical Oxygen Demand	ND		40.0	NA	mg/L	1.00	03/23/09 13:25	MDM	9C23047	410.4
рН	7.8	HFT	0.1	NA	SU	1.00	03/19/09 20:29	JFR	9C19100	9040
Oxygen, Dissolved	10.4		7.00	NA	mg/L	1.00	03/19/09 22:35	RJK	9C19101	4500-O G
Nitrate	1.17		0.050	NA	mg/L as N	1.00	03/19/09 17:45	JFR	9C19094	353.2
Nitrite	ND		0.05	NA	mg/L as N	1.00	03/19/09 19:42	JFR	9C19095	353.2
Phenolics, Total Recoverable	ND		8.0	NA	ug/L	1.00	03/26/09 11:29	JMM	9C24017	420.4
Total Dissolved Solids	591		4.0	NA	mg/L	1.00	03/23/09 16:15	RJP	9C23072	2540C
Total Suspended Solids	ND		10.0	NA	mg/L	1.00	03/21/09 16:16	RJP	9C21012	2540D
Total Kjeldahl Nitrogen	ND		1.00	NA	mg/L as N	1.00	03/24/09 20:18	RLG	9C24011	351.2
Total Metals by EPA 200 Series Metho	ods				_					
Barium	ND		2000	NA	ug/L	1.00	03/26/09 00:08	AH	9C23059	200.7
Chromium	ND		100	NA	ug/L	1.00	03/27/09 00:23	AH	9C23059	200.7
Copper	ND		14.7	NA	ug/L	1.00	03/26/09 00:08	AH	9C23059	200.7
Iron	ND		300	NA	ug/L	1.00	03/26/09 00:08	AH	9C23059	200.7
Nickel	ND		70.0	NA	ug/L	1.00	03/26/09 00:08	AH	9C23059	200.7
Zinc	ND		115	NA	ug/L	1.00	03/26/09 00:08	AH	9C23059	200.7
Selenium	ND		4.6	NA	ug/L	1.00	03/24/09 16:33	TWS	9C23065	200.8
Thallium	ND		4.0	NA	ug/L	1.00	03/24/09 16:33	TWS	9C23065	200.8
Volatile Organic Compounds					3					
1,1-Dichloroethane	ND		5.0	0.59	ug/L	1.00	03/20/09 20:31	TRB	9C20040	624
Trichloroethene	ND		5.0	0.60	ug/L ug/L	1.00	03/20/09 20:31	TRB	9C20040	624
Surr: 1,2-Dichloroethane-d4 (88-132%)	110 %						03/20/09 20:31	TRB	9C20040	624
Surr: 4-Bromofluorobenzene (78-122%)	96 %						03/20/09 20:31	TRB	9C20040	624
Surr: Toluene-d8 (87-110%)	98 %						03/20/09 20:31	TRB	9C20040	624

6 Gellatly Drive

Wappinger Falls, NY 12590

Surr: Toluene-d8 (87-110%)

Work Order: RSC0696

97%

Received:

TRB

03/20/09 20:56

03/19/09

Reported:

04/01/09 14:19

624

9C20040

Project: Airco - Niagara Falls Project Number: NY5A9582

			Analyti	cal Repo	ort					
Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSC0696-02 (TRIP BL	ANK - Water)				S	ampled: 03	/19/09	Rec	vd: 03/19/	09 15:35
Volatile Organic Compounds						_				
1,1-Dichloroethane	ND		5.0	0.59	ug/L	1.00	03/20/09 20:56	TRB	9C20040	624
Trichloroethene	ND		5.0	0.60	ug/L	1.00	03/20/09 20:56	TRB	9C20040	624
Surr: 1,2-Dichloroethane-d4 (88-132%)	106 %						03/20/09 20:56	TRB	9C20040	624
Surr: 4-Bromofluorobenzene (78-122%)	96 %						03/20/09 20:56	TRB	9C20040	624

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Project: Airco - Niagara Falls

Received:

03/19/09

Reported:

04/01/09 14:19

Project Number: NY5A9582

SAMPLE EXTRACTION DATA

General Chemistry Parameters 2540C 9C23072 RSC0696-01 100.00 mL 100.00 mL 03/23/09 16:15 KLD No prep solids 2540D 9C21012 RSC0696-01 250.00 mL 250.00 mL 03/21/09 11:00 RJP No prep solids 350.1 9C20016 RSC0696-01 5.00 mL 5.00 mL 03/20/09 07:37 RMM Ammonia 351.2 9C24011 RSC0696-01 25.00 mL 25.00 mL 03/24/09 08:20 JMM TKN Digestion 353.2 9C19095 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 353.2 9C19094 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 410.4 9C23047 RSC0696-01 2.00 mL 2.00 mL 03/23/09 13:25 MDM Chemical Oxygen Demand 4500-O G 9C19101 RSC0696-01 50.00	
2540D 9C21012 RSC0696-01 250.00 mL 250.00 mL 03/21/09 11:00 RJP No prep solids 350.1 9C20016 RSC0696-01 5.00 mL 5.00 mL 03/20/09 07:37 RMM Ammonia 351.2 9C24011 RSC0696-01 25.00 mL 25.00 mL 03/24/09 08:20 JMM TKN Digestion 353.2 9C19095 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 353.2 9C19094 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 410.4 9C23047 RSC0696-01 2.00 mL 2.00 mL 03/23/09 13:25 MDM Chemical Oxygen Demand 420.4 9C24017 RSC0696-01 50.00 mL 50.00 mL 03/24/09 07:56 RMM TRP Distillation 4500-O G 9C19101 RSC0696-01 1.00 mL 1.00 mL 03/19/09 22:35 RJK Direct	
350.1 9C20016 RSC0696-01 5.00 mL 5.00 mL 03/20/09 07:37 RMM Ammonia 351.2 9C24011 RSC0696-01 25.00 mL 25.00 mL 03/24/09 08:20 JMM TKN Digestion 353.2 9C19095 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 353.2 9C19094 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 410.4 9C23047 RSC0696-01 2.00 mL 2.00 mL 03/23/09 13:25 MDM Chemical Oxygen Demand 420.4 9C24017 RSC0696-01 50.00 mL 50.00 mL 03/24/09 07:56 RMM TRP Distillation 4500-O G 9C19101 RSC0696-01 1.00 mL 1.00 mL 03/19/09 22:35 RJK Direct	
351.2 9C24011 RSC0696-01 25.00 mL 25.00 mL 03/24/09 08:20 JMM TKN Digestion 353.2 9C19095 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 353.2 9C19094 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 410.4 9C23047 RSC0696-01 2.00 mL 2.00 mL 03/23/09 13:25 MDM Chemical Oxygen Demand 420.4 9C24017 RSC0696-01 50.00 mL 50.00 mL 03/24/09 07:56 RMM TRP Distillation 4500-O G 9C19101 RSC0696-01 1.00 mL 1.00 mL 03/19/09 22:35 RJK Direct	
353.2 9C19095 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 353.2 9C19094 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 410.4 9C23047 RSC0696-01 2.00 mL 2.00 mL 03/23/09 13:25 MDM Chemical Oxygen Demand 420.4 9C24017 RSC0696-01 50.00 mL 50.00 mL 03/24/09 07:56 RMM TRP Distillation 4500-O G 9C19101 RSC0696-01 1.00 mL 1.00 mL 03/19/09 22:35 RJK Direct	
353.2 9C19094 RSC0696-01 5.00 mL 5.00 mL 03/19/09 16:44 JFR Nitrate 410.4 9C23047 RSC0696-01 2.00 mL 2.00 mL 03/23/09 13:25 MDM Chemical Oxygen Demand 420.4 9C24017 RSC0696-01 50.00 mL 50.00 mL 03/24/09 07:56 RMM TRP Distillation 4500-O G 9C19101 RSC0696-01 1.00 mL 1.00 mL 03/19/09 22:35 RJK Direct	
410.4 9C23047 RSC0696-01 2.00 mL 2.00 mL 03/23/09 13:25 MDM Chemical Oxygen Demand 420.4 9C24017 RSC0696-01 50.00 mL 50.00 mL 03/24/09 07:56 RMM TRP Distillation 4500-O G 9C19101 RSC0696-01 1.00 mL 1.00 mL 03/19/09 22:35 RJK Direct	
420.4 9C24017 RSC0696-01 50.00 mL 50.00 mL 03/24/09 07:56 RMM TRP Distillation 4500-O G 9C19101 RSC0696-01 1.00 mL 1.00 mL 03/19/09 22:35 RJK Direct	
4500-O G 9C19101 RSC0696-01 1.00 mL 1.00 mL 03/19/09 22:35 RJK Direct	
5210B 9C19092 RSC0696-01 300.00 mL 300.00 mL 03/19/09 21:18 RJK Biochemical Oxygen Demand	
7196A 9C19090 RSC0696-01 25.00 mL 25.00 mL 03/19/09 21:00 RLG Hex Digestion	
9040 9C19100 RSC0696-01 1.00 mL 1.00 _{mL} 03/19/09 20:29 JFR pH	
Total Metals by EPA 200 Series Methods	
200.7 9C23059 RSC0696-01 50.00 mL 50.00 _{mL} 03/24/09 08:30 DAN 3005A	
200.7 9C23059 RSC0696-01 50.00 mL 50.00 mL 03/24/09 08:30 DAN 3005A	
200.7 9C23059 RSC0696-01 50.00 mL 50.00 mL 03/24/09 08:30 DAN 3005A	
200.7 9C23059 RSC0696-01 50.00 mL 50.00 mL 03/24/09 08:30 DAN 3005A	
200.7 9C23059 RSC0696-01 50.00 mL 50.00 mL 03/24/09 08:30 DAN 3005A	
200.7 9C23059 RSC0696-01 50.00 mL 50.00 mL 03/24/09 08:30 DAN 3005A	
200.8 9C23065 RSC0696-01 50.00 mL 50.00 _{mL} 03/24/09 08:30 DAN 3020A	
200.8 9C23065 RSC0696-01 50.00 mL 50.00 _{mL} 03/24/09 08:30 DAN 3020A	
Volatile Organic Compounds	
624 9C20040 RSC0696-01 5.00 mL 5.00 _{mL} 03/20/09 12:47 TRB 5030B MS	
624 9C20040 RSC0696-02 5.00 mL 5.00 _{mL} 03/20/09 12:47 TRB 5030B MS	

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
General Chemistry Parameters												
Blank Analyzed: 03/19/09 (9C19090	-BLK1)											
Chromium, Hexavalent	9C19090			10.0	NA	ug/L	ND					
General Chemistry Parameters												
LCS Analyzed: 03/19/09 (9C19090-1	BS1)											
Chromium, Hexavalent	9C19090		50.0	10.0	NA	ug/L	50.3	101	85-115			

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

	Seq/	Source	Spike					%	% REC	% RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits R	PD Limit	Qualifiers
General Chemistry Parameters											
Blank Analyzed: 03/19/09 (9C19092	-BLK1)										
Biochemical Oxygen Demand	9C19092			2.0	NA	mg/L	ND				
General Chemistry Parameters											
LCS Analyzed: 03/19/09 (9C19092-1	BS1)										
Biochemical Oxygen Demand	9C19092		198	2.0	NA	mg/L	188	95	85-115		

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

Analyte	Seq/ Batch	Source Result	Spike Level	MRL	MDL	Units	Result	% REC	% REC %		Oualifiers
	Daten	Result	Level	WIKE	MDL	Units	Kesuit	REC	Limits IXI	Lillit	Qualifiers
General Chemistry Parameters											
Blank Analyzed: 03/19/09 (9C19094	4-BLK1)										
Nitrate	9C19094			0.050	NA	mg/L as N	ND				
General Chemistry Parameters											
LCS Analyzed: 03/19/09 (9C19094-	BS1)										
Nitrate	9C19094		1.50	0.050	NA	mg/L as N	1.55	104	90-110		

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

					_							
	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
General Chemistry Parameters												
Blank Analyzed: 03/19/09 (9C19095-	-BLK1)											
Nitrite	9C19095			0.05	NA	mg/L as N	ND					
General Chemistry Parameters												
LCS Analyzed: 03/19/09 (9C19095-E	BS1)											
Nitrite	9C19095		1.50	0.05	NA	mg/L as N	1.46	98	90-110			

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

Analyte	Seq/ Batch	Source Result	Spike Level	MRL	MDL	Units	Result	% REC	% REC % Limits RPI	RPD Limit	Qualifiers
General Chemistry Parameters											
LCS Analyzed: 03/19/09 (9C19100-E	BS1)										
pH	9C19100		7.00	N/A	NA	SU	7.02	100	99.3-100.8		

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

LABORATORY QC DATA

Seq/	Source	Spike					%	% REC	%	RPD	
Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
BLK1)											
9C20016			9.20	NA	mg/L as N	ND					
S1)											
9C20016		0.750	9.20	NA	mg/L as N	0.711	95	90-110			
16-DUP1)											
9C20016	ND		9.20	NA	mg/L as N	ND				20	
20016-MS1))										
9C20016	ND	0.200	9.20	NA	mg/L as N	0.161	80	54-150			
1	Batch BLK1) 9C20016 S1) 9C20016 16-DUP1) 9C20016	Batch Result BLK1) 9C20016 S1) 9C20016 16-DUP1) 9C20016 ND	Batch Result Level BLK1) 9C20016 S1) 9C20016 0.750 16-DUP1) 9C20016 ND	Batch Result Level MRL BLK1) 9C20016 9.20 S1) 9C20016 0.750 9.20 16-DUP1) 9C20016 ND 9.20 20016-MS1)	Batch Result Level MRL MDL BLK1) 9C20016 9.20 NA S1) 9C20016 0.750 9.20 NA 16-DUP1) 9C20016 ND 9.20 NA 20016-MS1) 9C20016 ND 9C20016 NA	Batch Result Level MRL MDL Units BLK1) 9C20016 9.20 NA mg/L as N S1) 9C20016 0.750 9.20 NA mg/L as N 16-DUP1) 9C20016 ND 9.20 NA mg/L as N 20016-MS1) ND 9.20 NA mg/L as N	Batch Result Level MRL MDL Units Result BLK1) 9C20016 9.20 NA mg/L as N ND S1) 9C20016 0.750 9.20 NA mg/L as N 0.711 16-DUP1) 9C20016 ND 9.20 NA mg/L as N ND 20016-MS1) ND 9.20 NA mg/L as N ND	Batch Result Level MRL MDL Units Result REC BLK1) 9C20016 9.20 NA mg/L as N ND S1) 9C20016 0.750 9.20 NA mg/L as N 0.711 95 16-DUP1) 9C20016 ND 9.20 NA mg/L as N ND 20016-MS1) ND 9.20 NA mg/L as N ND	Batch Result Level MRL MDL Units Result REC Limits BLK1) 9C20016 9.20 NA mg/L as N ND ND S1) 9C20016 0.750 9.20 NA mg/L as N 0.711 95 90-110 16-DUP1) 9C20016 ND 9.20 NA mg/L as N ND 20016-MS1) ND 9.20 NA mg/L as N ND	Batch Result Level MRL MDL Units Result REC Limits RPD BLK1) 9C20016 9.20 NA mg/L as N ND ND ND 9.20 NA mg/L as N 0.711 95 90-110 16-DUP1) 9C20016 ND 9.20 NA mg/L as N ND ND 20016-MS1)	Batch Result Level MRL MDL Units Result REC Limits RPD Limit BLK1) 9C20016 9.20 NA mg/L as N ND ND V <

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

	LABOI	RATORY	QC DATA
--	-------	--------	---------

	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compounds												
Blank Analyzed: 03/20/09 (9C20040	0-BLK1)											
1,1-Dichloroethane	9C20040			5.0	0.59	ug/L	ND					
Trichloroethene	9C20040			5.0	0.60	ug/L	ND					
Surrogate: 1,2-Dichloroethane-d4						ug/L		104	88-132			
Surrogate: 4-Bromofluorobenzene						ug/L		99	78-122			
Surrogate: Toluene-d8						ug/L		97	87-110			
Volatile Organic Compounds												
LCS Analyzed: 03/20/09 (9C20040-	BS1)											
1,1-Dichloroethane	9C20040		20	5.0	0.59	ug/L	21.5	107	72.5-127.5			
Trichloroethene	9C20040		20	5.0	0.60	ug/L	21.4	107	66.5-133.5			
Surrogate: 1,2-Dichloroethane-d4						ug/L		103	88-132			
Surrogate: 4-Bromofluorobenzene						ug/L		99	78-122			
Surrogate: Toluene-d8						ug/L		101	87-110			

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

Analyte	Seq/ Batch	Source Result	Spike Level	MRL	MDL	Units	Result	% REC	% REC	% RPD	RPD Limit	Oualifiers
General Chemistry Parameters	Duten					<u> </u>	1105411					
Blank Analyzed: 03/21/09 (9C21012	-BLK1)											
Total Suspended Solids	9C21012			4.0	NA	mg/L	ND					
General Chemistry Parameters												
LCS Analyzed: 03/21/09 (9C21012-	BS1)											
Total Suspended Solids	9C21012		891	4.0	NA	mg/L	842	95	88-110			

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits 1	RPD	Limit	Qualifiers
General Chemistry Parameters												
Blank Analyzed: 03/23/09 (9C23047	-BLK1)											
Chemical Oxygen Demand	9C23047			10.0	NA	mg/L	ND					
General Chemistry Parameters												
LCS Analyzed: 03/23/09 (9C23047-1	BS1)											
Chemical Oxygen Demand	9C23047		25.0	10.0	NA	mg/L	23.0	92	90-110			

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

orted: 04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

LABORATORY OC DATA

					_							
	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by EPA 200 Series Met	thods											
Blank Analyzed: 03/25/09 (9C23059	-BLK1)											
Barium	9C23059			2.00	NA	ug/L	ND					
Chromium	9C23059			4.00	NA	ug/L	ND					
Copper	9C23059			10.0	NA	ug/L	ND					
Iron	9C23059			50.0	NA	ug/L	ND					
Nickel	9C23059			10.0	NA	ug/L	ND					
Zinc	9C23059			10.0	NA	ug/L	ND					
Total Metals by EPA 200 Series Met	thods											
LCS Analyzed: 03/25/09 (9C23059-	BS1)											
Barium	9C23059		200	2.00	NA	ug/L	200	100	85-115			
Chromium	9C23059		200	4.00	NA	ug/L	212	106	85-115			
Copper	9C23059		200	10.0	NA	ug/L	202	101	85-115			
Iron	9C23059		10000	50.0	NA	ug/L	10200	102	85-115			
Nickel	9C23059		200	10.0	NA	ug/L	205	103	85-115			
Zinc	9C23059		200	10.0	NA	ug/L	205	103	85-115			

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

LABORATORY	QC DATA
------------	---------

	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by EPA 200 Series Meth	<u>ıods</u>											
Blank Analyzed: 03/24/09 (9C23065-	BLK1)											
Selenium	9C23065			1.0	NA	ug/L	ND					
Thallium	9C23065			0.2	NA	ug/L	ND					
Total Metals by EPA 200 Series Meth	<u>ıods</u>											
LCS Analyzed: 03/24/09 (9C23065-B	SS1)											
Selenium	9C23065		20.0	1.0	NA	ug/L	19.6	98	85-115			
Thallium	9C23065		20.0	0.2	NA	ug/L	20.6	103	85-115			

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

	Seq/	Source	Spike					%	% REC		RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
General Chemistry Parameters												
Blank Analyzed: 03/23/09 (9C23072	-BLK1)											
Total Dissolved Solids	9C23072			4.0	NA	mg/L	ND					
General Chemistry Parameters												
LCS Analyzed: 03/23/09 (9C23072-	BS1)											
Total Dissolved Solids	9C23072		500	4.0	NA	mg/L	497	99				

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

orted: 04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

	Seq/	Source	Spike					%	% REC	%	RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
General Chemistry Parameters												
Blank Analyzed: 03/24/09 (9C24011	-BLK1)											
Total Kjeldahl Nitrogen	9C24011			0.20	NA	mg/L as N	ND					
General Chemistry Parameters												
LCS Analyzed: 03/24/09 (9C24011-1	BS1)											
Total Kjeldahl Nitrogen	9C24011		2.50	0.20	NA	mg/L as N	2.40	96	90-110			

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSC0696

Received:

03/19/09

Reported:

04/01/09 14:19

Project: Airco - Niagara Falls Project Number: NY5A9582

	Seq/	Source	Spike					%			RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits I	RPD L	imit	Qualifiers
General Chemistry Parameters												
Blank Analyzed: 03/26/09 (9C24017	-BLK1)											
Phenolics, Total Recoverable	9C24017			10.0	NA	ug/L	ND					
General Chemistry Parameters												
LCS Analyzed: 03/26/09 (9C24017-1	BS1)											
Phenolics, Total Recoverable	9C24017		115	10.0	NA	ug/L	98.5	86	75-125			

Custody Record Chain of

Temperature on Receipt

Drinking Water? Yes □ No≰

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions, Special Instructions, Conditions of Receipt (A fee may be assessed if samples are retained Months longer than 1 month) Time ð Date Date 3-19-09 more space is needed) Analysis (Attach list if Lab Number 8.006 240197 ሄ ☐ Disposal By Lab ☐ Archive For JWC OC Requirements (Specify) 19955 \oAnZ HO≜N Containers & Preservatives ИаОН 1. Receipted By 3. Received By Received By <u>k</u> IOH mber (Area Code)/Fax Number EONH 3 ¢0SZH serdur J ☐ Return To Client 110S Time Time HIRCO - Quarterly Discharge (NY) CarrierWaybill Number Matrix pes ydneons Telephone No. Other_ Unknown 14:00 3-19-09/4:42 Date Time Date Greenstar Eng-Chip McLesd 21 Days 3-19-09 Wag pingers. Falls NY 12590 ☐ Poison B Date 14 Days (Containers for each sample may be combined on one line) Skin Irritant Sample I.D. No. and Description ☐ 7 Days 6 Gellaty Dr. 40-EWE-01 Non-Hazard | Flammable Irio-Blank 24 Hours 48 Hours Possible Hazard Identification Tum Around Time Required となり . Relingalished By 2./Relinquished By 3. Relinquished By TAL-4124 (1007) Client, Comments

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Analytical Report

Work Order: RSE0686

Project Description

Quarterly Discharge Monitoring

For:

Charles E. McLeod, Jr.

Greenstar Environmental Solutions, LLC

6 Gellatly Drive Wappinger Falls, NY 12590

Jason Kacalski

Project Manager

jason.kacalski@testamericainc.com

Thursday, June 4, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686 05/19/09 Received:

Project: Quarterly Discharge Monitoring

Project Number:

TestAmerica Buffalo Current Certifications

As of 1/27/2009

Reported:

06/04/09 14:21

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accre ditation is required or available. Any exceptions to NELAP requirements are noted in this report.

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Page 2 of 15 www.testamericainc.com

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received: Reported: 05/19/09 06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number: GES

Case Narrative

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received: Reported:

05/19/09

06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number: GE

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

 SpecificMethod
 Analyte
 Units
 Client RL
 Lab PQL

 2540C
 Total Dissolved Solids
 mg/L
 4.0
 10.0

 420.4
 Phenolics, Total Recoverable
 ug/L
 10.0
 10.0

Greenstar Environmental Solutions, LLC 6 Gellatly Drive

HFT

Wappinger Falls, NY 12590

Work Order: RSE0686

Received:

05/19/09

Reported:

06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number:

DATA QUALIFIERS AND DEFINITIONS

The holding time for this test is immediate. It was analyzed in the laboratory as soon as possible after receipt.

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received:

05/19/09

Reported:

06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number:

Executive Summary - Detections

Analyte	Sample Result	Data Qualifiers	Rpt Limit	MDL	Units	Dilution Factor	Date Analyzed	Analyst	Seq/ Batch	Method
Sample ID: RSE0686-01 (AF	P-EWE-01 - Water)				Sample	d: 05/19/0	9 10:30	Recvd: 0	5/19/09 1	5:50
General Chemistry Parameters	<u>s</u>				•					
На	7.88	HFT	0.100	NR	SU	1.00	05/19/09 21:49) JME	9E19141	9040
Oxygen, Dissolved	8.72		7.00	NR	mg/L	1.00	05/19/09 20:51	1 MDM	9E20002	4500-O G
Nitrate	2.30		0.050	NR	mg/L as N	1.00	05/20/09 18:12	2 JFR	9E20118	353.2
Total Dissolved Solids	657		4.0	NR	mg/L	1.00	05/20/09 21:55	5 MDM	9E20092	2540C

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received: 05

Reported:

05/19/09 06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number: GES

Sample Summary

SAMPLE IDENTIFICATION	LAB NUMBER	Client Matrix	Date/Time Sampled	Date/Time Received
AP-EWE-01	RSE0686-01	Water	05/19/09 10:30	05/19/09 15:50
trip blank	RSE0686-02	Water	05/19/09	05/19/09 15:50

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received:

05/19/09

Reported: 06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number: GES

Ana	lytical	Report

	Sample	Data	Dut Limit	MD		Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analys	Batch	Method
Sample ID: RSE0686-01 (AP-EWE	-01 - Water)				Sampl	ed: 05/19	/09 10:30	Recvd:	05/19/09	15:50
General Chemistry Parameters										
Ammonia as N	ND		9.20	NR	mg/L as N	1.00	05/20/09 11:51	RMM	9E20033	350.1
Biochemical Oxygen Demand	ND		5.0	NR	mg/L	1.00	05/19/09 17:13	JFR	9E20001	5210B
Chromium, Hexavalent	ND		11.0	NR	ug/L	1.00	05/19/09 22:05	MDM	9E19120	7196A
Chemical Oxygen Demand	ND		40.0	NR	mg/L	1.00	05/22/09 10:30	JMM	9E22049	410.4
рН	7.88	HFT	0.100	NR	SU	1.00	05/19/09 21:49	JME	9E19141	9040
Oxygen, Dissolved	8.72		7.00	NR	mg/L	1.00	05/19/09 20:51	MDM	9E20002	4500-O G
Nitrate	2.30		0.050	NR	mg/L as N	1.00	05/20/09 18:12	JFR	9E20118	353.2
Nitrite	ND		0.05	NR	mg/L as N	1.00	05/20/09 22:21	JFR	9E20117	353.2
Phenolics, Total Recoverable	ND		8.0	NR	ug/L	1.00	05/26/09 19:05	RLG	9E22026	420.4
Total Dissolved Solids	657		4.0	NR	mg/L	1.00	05/20/09 21:55	MDM	9E20092	2540C
Total Suspended Solids	ND		10.0	NR	mg/L	1.00	05/20/09 09:30	JMM	9E20018	2540D
Total Kjeldahl Nitrogen	ND		1.00	NR	mg/L as N	1.00	05/22/09 11:42	KLD	9E21082	351.2
Total Metals by EPA 200 Series Meth	<u>iods</u>									
Barium	ND		2000	NR	ug/L	1.00	05/22/09 08:03	TWS	9E20057	200.7
Chromium	ND		100	NR	ug/L	1.00	05/22/09 08:03	TWS	9E20057	200.7
Copper	ND		14.7	NR	ug/L	1.00	05/22/09 08:03	TWS	9E20057	200.7
ron	ND		300	NR	ug/L	1.00	05/22/09 08:03	TWS	9E20057	200.7
Nickel	ND		70.0	NR	ug/L	1.00	05/22/09 08:03	TWS	9E20057	200.7
Zinc	ND		115	NR	ug/L	1.00	05/22/09 08:03	TWS	9E20057	200.7
Selenium	ND		4.6	NR	ug/L	1.00	05/21/09 21:25	AMH	9E20066	200.8
Thallium	ND		4.0	NR	ug/L	1.00	05/21/09 21:25	AMH	9E20066	200.8
Volatile Organic Compounds										
1,1-Dichloroethane	ND		5.0	0.59	ug/L	1.00	05/23/09 00:30	TRB	9E22014	624
Trichloroethene	ND		5.0	0.60	ug/L	1.00	05/23/09 00:30	TRB	9E22014	624
Surr: 1,2-Dichloroethane-d4 (88-132%)	106 %						05/23/09 00:30	TRB	9E22014	624
Surr: 4-Bromofluorobenzene (78-122%)	96 %						05/23/09 00:30	TRB	9E22014	624
Surr: Toluene-d8 (87-110%)	100 %						05/23/09 00:30	TRB	9E22014	624

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received:

05/19/09

Reported:

06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number:

Analytical	Report
------------	--------

Analytical Report										
	Sample	Data				Dilution	Date		Seq/	
Analyte	Result	Qualifiers	Rpt Limit	MDL	Units	Factor	Analyzed	Analyst	Batch	Method
Sample ID: RSE0686-02 (trip blar	nk - Water)				Samp	led: 05/19	/09	Recvd:	05/19/09	15:50
Volatile Organic Compounds										
1,1-Dichloroethane	ND		5.0	0.59	ug/L	1.00	05/23/09 00:56	TRB	9E22014	624
Trichloroethene	ND		5.0	0.60	ug/L	1.00	05/23/09 00:56	TRB	9E22014	624
Surr: 1,2-Dichloroethane-d4 (88-132%)	110 %						05/23/09 00:56	TRB	9E22014	624
Surr: 4-Bromofluorobenzene (78-122%)	94 %						05/23/09 00:56	TRB	9E22014	624
Surr: Toluene-d8 (87-110%)	101 %						05/23/09 00:56	TRB	9E22014	624

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received: Reported: 05/19/09

06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number: GES

SAMPLE EXTRACTION DATA

			Wt/Vol		Extract				
Parameter	Batch	Lab Number	Extracted	Units	Volume	Units	Date	Analyst	Extraction Method
General Chemistry Parameters	;								
2540C	9E20092	RSE0686-01	100.00	mL	100.00	mL	05/20/09 21:55	MDM	Solids
2540D	9E20018	RSE0686-01	250.00	mL	250.00	mL	05/20/09 09:30	JMM	No prep solids
350.1	9E20033	RSE0686-01	5.00	mL	5.00	mL	05/20/09 09:11	RMM	Ammonia
351.2	9E21082	RSE0686-01	25.00	mL	25.00	mL	05/21/09 14:31	RJP	TKN Digestion
353.2	9E20117	RSE0686-01	5.00	mL	5.00	mL	05/20/09 16:30	JFR	Nitrate
353.2	9E20118	RSE0686-01	5.00	mL	5.00	mL	05/20/09 16:30	JFR	Nitrate
410.4	9E22049	RSE0686-01	2.00	mL	2.00	mL	05/22/09 10:30	JMM	No prep Chemical Oxygen Demand
420.4	9E22026	RSE0686-01	50.00	mL	50.00	mL	05/22/09 10:47	RMM	TRP Distillation
4500-O G	9E20002	RSE0686-01	1.00	mL	1.00	mL	05/19/09 20:51	MDM	Direct
5210B	9E20001	RSE0686-01	300.00	mL	300.00	mL	05/19/09 17:13	MDM	Biochemical Oxygen Demand
7196A	9E19120	RSE0686-01	25.00	mL	25.00	mL	05/19/09 22:05	MDM	Hex Digestion
9040	9E19141	RSE0686-01	50.00	mL	50.00	mL	05/19/09 21:49	JME	No prep pH
Total Metals by EPA 200 Serie	s Methods	;							
200.7	9E20057	RSE0686-01	50.00	mL	50.00	mL	05/21/09 09:00	MLD	3005A
200.8	9E20066	RSE0686-01	50.00	mL	50.00	mL	05/21/09 08:00	MLD	3020A
Volatile Organic Compounds									
624	9E22014	RSE0686-01	5.00	mL	5.00	mL	05/22/09 10:48	TRB	5030B MS
624	9E22014	RSE0686-02	5.00	mL	5.00	mL	05/22/09 10:48	TRB	5030B MS

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received:

05/19/09

Reported:

06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number: GES

LABORATORY QC DATA

	Seq/	Source	Spike					%	% REC	% RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifier
General Chemistry Parameters	Duton						11000.11				
Blank Analyzed: 05/19/09 (9E191	20-BLK1)										
Chromium, Hexavalent	9E19120			10.0	NR	ug/L	ND				
LCS Analyzed: 05/19/09 (9E19120	0-BS1)										
Chromium, Hexavalent	9E19120		50.0	10.0	NR	ug/L	51.5	103	85-115		
Duplicate Analyzed: 05/19/09 (9E	19120-DUP	P2)									
QC Source Sample: RSE0686-01											
Chromium, Hexavalent	9E19120	ND		10.0	NR	ug/L	ND			20	
Matrix Spike Analyzed: 05/19/09	(9E19120-N	/IS2)									
QC Source Sample: RSE0686-01											
Chromium, Hexavalent	9E19120	ND	50.0	10.0	NR	ug/L	51.5	103	75-120		
General Chemistry Parameters											
LCS Analyzed: 05/19/09 (9E1914	1-BS1)										
pH	9E19141		7.00	N/A	NR	SU	6.99	100	99.3-100.8		HFT
Duplicate Analyzed: 05/19/09 (9E QC Source Sample: RSE0686-01	19141-DUP	P1)									
рН	9E19141	7.88		N/A	NR	SU	7.89			0	HFT
General Chemistry Parameters											
Blank Analyzed: 05/19/09 (9E200	01-BLK1)										
Biochemical Oxygen Demand	9E20001			2.0	NR	mg/L	ND				
LCS Analyzed: 05/19/09 (9E2000	1-BS1)										
Biochemical Oxygen Demand	9E20001		198	2.0	NR	mg/L	227	115	85-115		
General Chemistry Parameters											
Blank Analyzed: 05/20/09 (9E200	18-BLK1)										
Total Suspended Solids	9E20018			4.0	NR	mg/L	ND				
LCS Analyzed: 05/20/09 (9E20018	8-BS1)										
Total Suspended Solids	9E20018		761	4.0	NR	mg/L	713	94	88-110		
Duplicate Analyzed: 05/20/09 (9E	20018-DUP	P1)									
QC Source Sample: RSE0686-01											
Total Suspended Solids	9E20018	ND		4.0	NR	mg/L	ND				
General Chemistry Parameters											
Blank Analyzed: 05/20/09 (9E200	33-BLK1)										
Ammonia as N	9E20033			9.20	NR	mg/L as N	ND				
LCS Analyzed: 05/20/09 (9E2003	3-BS1)										
Ammonia as N	9E20033		0.750	0.020	NR	mg/L as N	0.744	99	90-110		
Duplicate Analyzed: 05/20/09 (9E	20033-DUP	P1)									
QC Source Sample: RSE0686-01											
Ammonia as N	9E20033	0.0111		0.020	NR	mg/L as N	ND			20	
Matrix Spike Analyzed: 05/20/09	(9E20033-N	/IS1)									
QC Source Sample: RSE0686-01											

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com Page 11 of 15

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received:

05/19/09

Reported:

06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number: GES

LA	۱I	3(O	R	Α	Т	O	F	łΥ	' Q	C	D	A ⁻	ΓΑ	

	Seq/	Source	Spike					%	% REC	% RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifier
General Chemistry Parameters	<u>i</u>										
Matrix Spike Analyzed: 05/20/0	9 (9E20033-N	/IS1)									
QC Source Sample: RSE0686-01											
Ammonia as N	9E20033	0.0111	0.200	0.020	NR	mg/L as N	0.193	91	54-150		
General Chemistry Parameters	<u>i</u>										
Blank Analyzed: 05/20/09 (9E2	0092-BLK1)										
Total Dissolved Solids	9E20092			4.0	NR	mg/L	ND				
LCS Analyzed: 05/20/09 (9E20	092-BS1)										
Total Dissolved Solids	9E20092		500	4.0	NR	mg/L	517	103			
General Chemistry Parameters	<u>i</u>										
Blank Analyzed: 05/20/09 (9E2	0117-BLK1)										
Nitrite	9E20117			0.05	NR	mg/L as N	ND				
LCS Analyzed: 05/20/09 (9E20	117-BS1)										
Nitrite	9E20117		1.50	0.05	NR	mg/L as N	1.43	96	90-110		
General Chemistry Parameters	<u>i</u>										
Blank Analyzed: 05/20/09 (9E2	0118-BLK1)										
Nitrate	9E20118			0.050	NR	mg/L as N	ND				
LCS Analyzed: 05/20/09 (9E20	118-BS1)										
Nitrate	9E20118		1.50	0.050	NR	mg/L as N	1.45	97	90-110		
General Chemistry Parameters	<u>1</u>										
Blank Analyzed: 05/22/09 (9E2	1082-BLK1)										
Total Kjeldahl Nitrogen	9E21082			0.20	NR	mg/L as N	ND				
LCS Analyzed: 05/22/09 (9E21	082-BS1)										
Total Kjeldahl Nitrogen	9E21082		2.50	0.20	NR	mg/L as N	2.32	93	90-110		
Duplicate Analyzed: 05/22/09 (9E21082-DUF	P1)									
QC Source Sample: RSE0686-01											
Total Kjeldahl Nitrogen	9E21082	0.347		0.20	NR	mg/L as N	0.333			4 20	
Matrix Spike Analyzed: 05/22/0	9 (9E21082-N	/IS1)									
QC Source Sample: RSE0686-01	0504000	0.247	4.00	0.00	ND	// N	4.05	100	70 407		
Total Kjeldahl Nitrogen	9E21082	0.347	1.00	0.20	NR	mg/L as N	1.35	100	72-127		
General Chemistry Parameters	<u>i</u>										
Blank Analyzed: 05/26/09 (9E2	-										
Phenolics, Total Recoverable	9E22026			10.0	NR	ug/L	ND				
LCS Analyzed: 05/26/09 (9E22						_					
Phenolics, Total Recoverable	9E22026		115	10.0	NR	ug/L	96.8	84	75-125		
General Chemistry Parameters	<u>i</u>										
Blank Analyzed: 05/22/09 (9E2	2049-BLK1)										
Chemical Oxygen Demand	9E22049			10.0	NR	mg/L	ND				
TestAmerica Buffalo											
10 Hazelwood Drive Amhe	erst, NY 142	28 tel 716	6-691-26	00 fax 71	6-691-799	91					
www.testamericainc.com										Page 1	2 of 15

www.testamericainc.com

Page 12 of 15

 ${\it Greenstar\ Environmental\ Solutions,\ LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received: Reported:

05/19/09

06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number: GES

LABORATORY QC DATA

_Analyte	Seq/ Batch	Source Result	Spike Level	MRL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Qualifier
General Chemistry Parameter	<u>s</u>										
LCS Analyzed: 05/22/09 (9E22	2049-BS1)										
Chemical Oxygen Demand	9E22049		50.0	20.0	NR	mg/L	53.8	108	90-110		

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received:

05/19/09

Reported:

06/04/09 14:21

Project Number:

Project: Quarterly Discharge Monitoring

LABORATORY QC DATA

				_	•						
	Seq/	Source	Spike					%	% REC	% RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifier
Total Metals by EPA 200 Series	Methods										
Blank Analyzed: 05/22/09 (9E20	0057-BLK1)										
Barium	9E20057			2.00	NR	ug/L	ND				
Chromium	9E20057			4.00	NR	ug/L	ND				
Copper	9E20057			10.0	NR	ug/L	ND				
Iron	9E20057			50.0	NR	ug/L	ND				
Nickel	9E20057			10.0	NR	ug/L	ND				
Zinc	9E20057			10.0	NR	ug/L	ND				
LCS Analyzed: 05/22/09 (9E200	57-BS1)										
Barium	9E20057		200	2.00	NR	ug/L	209	105	85-115		
Chromium	9E20057		200	4.00	NR	ug/L	212	106	85-115		
Copper	9E20057		200	10.0	NR	ug/L	200	100	85-115		
Iron	9E20057		10000	50.0	NR	ug/L	10300	103	85-115		
Nickel	9E20057		200	10.0	NR	ug/L	205	102	85-115		
Zinc	9E20057		200	10.0	NR	ug/L	205	102	85-115		
Total Metals by EPA 200 Series	Methods										
Blank Analyzed: 05/21/09 (9E20	0066-BLK1)										
Selenium	9E20066			1.0	NR	ug/L	ND				
Thallium	9E20066			0.2	NR	ug/L	ND				
LCS Analyzed: 05/21/09 (9E200	66-BS1)										
Selenium	9E20066		20.0	1.0	NR	ug/L	19.4	97	85-115		
Thallium	9E20066		20.0	0.2	NR	ug/L	22.1	111	85-115		

 $\label{eq:Greenstar} \textbf{Greenstar Environmental Solutions, LLC}$

6 Gellatly Drive

Wappinger Falls, NY 12590

Work Order: RSE0686

Received: Reported:

05/19/09

06/04/09 14:21

Project: Quarterly Discharge Monitoring

Project Number: GES

LABORATORY QC DATA

	Seq/	Source	Spike	MDI	MDI			%	% REC	% RPD	
Analyte	Batch	Result	Level	MRL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifier
Volatile Organic Compounds											
Blank Analyzed: 05/22/09 (9E220	014-BLK1)										
1,1-Dichloroethane	9E22014			5.0	0.59	ug/L	ND				
Trichloroethene	9E22014			5.0	0.60	ug/L	ND				
Surrogate: 1,2-Dichloroethane-d4						ug/L		103	88-132		
Surrogate: 4-Bromofluorobenzene						ug/L		97	78-122		
Surrogate: Toluene-d8						ug/L		99	87-110		
LCS Analyzed: 05/22/09 (9E2201	4-BS1)										
1,1-Dichloroethane	9E22014		20	5.0	0.59	ug/L	21.6	108	73-128		
Trichloroethene	9E22014		20	5.0	0.60	ug/L	21.0	105	67-134		
Surrogate: 1,2-Dichloroethane-d4						ug/L		100	88-132		
Surrogate: 4-Bromofluorobenzene						ug/L		98	78-122		
Surrogate: Toluene-d8						ug/L		100	87-110		

Chain of Custody Record

Temperature on Receipt _

Drinking Water? Yes □ No 🕱

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ントナら Special Instructions/ Conditions of Receipt Conditions of Receipt 099376 (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Number Time Page Date 05/19/09 Analysis (Attach list if more space is needed) Lab Number Months 5020 200.8 200.8 2.40V Archive For OC Requirements (Specify) 9955 Spisposal By Lab Containers & Preservatives HOPN 3. Received By 1. Received By 2. Received By ЮH ph66-Chip Meleo A Lab Contact €ONH 7 tOSZH R + 6 ANA V S 1S - SHOY THULD HOLD Return To Client 845-223 Sample Disposal jjoS Time Carrier/Waybill Number Matrix 05/19/08 \bowtie Site Contact □ other_ Unknown PAIRCO - QUARTERLY DISCHARGES - MAY CONTROL PURCHARGES - MAY Date Time 05/19/09/1830 05 108109 NA Z21 Days C. GELLATIY DRIVES SPANDED ☐ Poison B JR + 6 ANAlysis Date ☐ 14 Days (Containers for each sample may be combined on one line) Skin Irritant Ollen Stewstan ENA. Sample I.D. No. and Description □·7 Days AP-EWE-O Project Name and Location (State) ☐ Flammable TRIP BLANK 48 Hours Possible Hazard Identification Turn Around Time Required 1. Relinquished By 2. Relinquished By Non-Hazard 3. Relinquished By A DISTRIBUTION: 24 Hours FAL-4124 (1007) Comments

Attachment G

Monthly Operation and Maintenance Details January – June 2009

1. INTRODUCTION

This report presents a summary of the ongoing operation and maintenance activities for the Airco Parcel site from 1 January to 30 June 2009. It includes a summary of ongoing operations, system repairs, corrective actions, improvements, and an evaluation of the groundwater collection and treatment system (GCTS) performance.

2. ROUTINE OPERATION AND MAINTENANCE

The 21,600 gallons per day (gpd) discharge limit was exceeded during the reporting period. The number of days per month the limit was exceeded was as follows: January (24), February (14), March (12), April (30), and May (31). These exceedances were due to excessive influent flow into T1. The influent flow rate at T1 is routinely adjusted to prevent excess flow into the treatment system. Although the system can be programmed to automatically adjust the influent control valve to maintain a certain flow rate, it results in significant and constant actuation of the valve as it "Hunts and Pecks" to maintain the desired flow rate. Therefore, it is recommended that the effluent discharge rate be raised from 21,600 gpd to 28,800 gpd, or an average flow rate of 20 gpm. During this report period, the overall system average flow rate was 16.2 gallons per minute (gpm).

Table 2 of the Bi-Annual 2009 Monitoring Event Letter Report provides a summary of the quarterly effluent analytical data from the March and May 2009 sampling events. Routine operation and maintenance was completed throughout the monitoring period. Field tasks included system checks, data collection, and field analysis of treatment water at various stages of the treatment process, transducer cleanings, and general site maintenance.

3. SYSTEM OPERATIONS AND EFFICIENCY

During this monitoring period, 4,208,376 gal of groundwater were treated and discharged to the stormwater swale adjacent to the engineered wetlands. The system average flow rate was 16.2 gpm during the reporting period, with no influence observed due to heavy rain events. The treatment system was operational for 100 percent of the reporting period. The emergency overflow pond (T8) was utilized at various points during the reporting period during routine system maintenance and cleaning activities, and six times due to high levels in T-8. No releases to the environment occurred during the reporting period.

The completed System Monitoring Checklists are provided in Attachment G.1. Monthly GCTS flow calculations are provided in Attachment G.2. During the reporting period, an estimated 3.7 pounds (lb) of total chromium was treated by the GCTS, of which an estimated 2.4 lb was hexavalent chromium. These values are based on the total gallons treated and the average influent and effluent concentrations observed from the bi-weekly field sampling.

achment G, Page 2 of 5 October 2009

3.1 SYNOPSIS OF THE BI-ANNUAL ACTIVITIES

January 2009

The system was operational for all 31 days in January. No alarm conditions were reported. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during January.

- 14 January 2009 Routine site visit. Cleaned and calibrated pH probes in T3B and T6B. Opened air valve on aerator in T6A to limit load on blower to prevent blower from tripping the thermal overload protection.
- 27 January 2009 Routine site visit. Adjusting valve aperture has prevented the aeration blower from tripping the thermal overload. Cleaned and calibrated the pH probes in T3B and T6B. Snow and ice prevented collection of SW corner samples.

February 2009

The system was operational for all 28 days in February. Alarm conditions were reported four times during February. The alarm conditions were due to high water levels in T-8. No unscheduled shut downs occurred. The following details the activities which were performed during February.

- 7 February 2009 Remote monitoring response to high level in T-8. Pumped T8 down to acceptable limits.
- 11 February 2009 Remote monitoring response to high level in T-8. Pumped T8 down to acceptable limits.
- 17 February 2009 Routine site visit. Calibrated pH probes in T3 and T6. Water observed entering T1 shed through electrical conduit. Removed ice/water from trough box. The water was found to be entering from in ground splice box east of T1 4-inch PVC line which was full of ice. No inherent hazard. This will be addressed in warmer weather.
- 24 February 2009 Routine site visit. Found pump P1B to be leaking heavily from shaft seals. Removed pump, rebuilt seal assembly and re-installed pump. Ordered seal kit #1640-167-96 & 2 replacement shaft sleeves #1472-000-00. Calibrated T3 and T6 pH probes. Took inventory of shelf stock.
- 27 February 2009 Remote monitoring response to high level in T-8. Pumped T8 down to acceptable limits.
- 28 February 2009 Remote monitoring response to high level in T-8. Pumped T8 down to acceptable limits.

March 2009

The system was operational for all 31 days in March. Alarm conditions were reported once during March. The alarm condition was due to high water levels in T-8. No unscheduled shut downs occurred. The following details the activities which were performed during March.

- 3 March 2009 Routine site visit. Replaced P1B. Jet line from T3/6A to T3 to increase T1 pump performance. Diagnose pH probe issues as a faulty cable in T6. Ordered new cable. P8 discharge line found to be frozen. Thawed P8 line. Calibrated pH field meter. Replaced computer work group switch, need new modem. The existing one is functioning, but the exterior case was damaged due to high heat in shed caused but malfunctioning thermocouple.
- 7 March 2009 Remote monitoring response to high level in T-6B caused by pumping from T-8 due to elevated water level. Manually operated pumps to obtain water levels within acceptable limits.
- 19 March 2009 Routine site visit. Pumped water from under T-8 liner. Hosed down T8 slopes. Quarterly GCTS Sampling was performed. Completed engineer's inspection. Replaced defective internet router. Pulled 3-inch tree from T7 slope. Noted high groundwater around T-1. Water noted entering overflow catch basin and T-1. T-1 pumps were ramped up to 100% for half an hour to drop levels and reset at 15% (18-20 GPM) to maintain acceptable levels. Installed updates to computer.

April 2009

The system was operational for 30 days in April. No alarm conditions were reported. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed to during April.

- 7 April 2009 Routine site visit. Replaced pH probe and cable to T-6. Calibrated pH probes in T-3, T-6, and T-7. Raised T-5 manhole cover 3 inches to avoid stones entering T-5 which were jamming the effluent check valve. Replaced padlocks on monitoring wells. Existing locks could not be opened and required replacement.
- 27 April 2009 Routine site visit. Install new SCADA computer. Take GCTS effluent sample to lab to confirm/deny high chromium levels. Lab data indicated no hexavalent chromium in the effluent.

May 2009

The system was operational for 31 days in May. No alarm conditions were reported. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during May.

• 5 May 2009 – Routine site visit. Cut grass around T7. Replaced P6. Contractor onsite to jet line between T6 and T7. Pump water from T-3/6A vault.

Project No.: 150C265.1005 Attachment G, Page 4 of 5

October 2009

• 18 May 2009 – Routine site visit. Cut grass around T7. Pumped water from under T8 liner. Calibrated pH probes in T7 and T3. Placed boulders around front gate to keep ATV's out. Groundwater sampling and GCTS sampling. Noticed pad under backup generator has settled and is now ½" per 1' out of level.

June 2009

The system was operational for 30 days in June. Alarm conditions were reported once during June. The alarm condition was due to high water levels in T-8. No unscheduled shut downs occurred. The following details the activities which were performed during June.

- 16 June 2009 Routine site visit. Cut grass around T-7. Site walk with local contractor to go over repairs needed to obtain pricing. Pump groundwater from under T-8 liner.
- 25 June 2009 Remote monitoring response to high level in T-8. Pumped T8 down to acceptable levels.
- 30 June 2009 Calibrated pH probes and cleaned pressure transducer in T-3. Cut grass around T-7 and removed Cattails from T-7 outlet. Block up floor system in T-1 shed to keep out rodents. Repair pressure transmitter cable chewed by rodents. Called local contractor to set have-a- heart traps.

4. MODIFICATIONS/IMPROVEMENTS AND RECOMMENDATIONS

4.1 SYSTEM MODIFICATION/IMPROVEMENTS

One modification to the GCTS was performed during the report period. A new SCADA computer and upgraded software was installed to replace the existing computer system. In addition, routine operations and maintenance activities were performed, including repairs to pumps, VFDs, pH probes, etc.

5. PROJECTED OPERATION AND MAINTENACE

5.1 JULY – DECEMBER 2009

During the second bi-annual report period of 2009, Greenstar anticipates performing routine operation and maintenance activities and completion of the SCADA system upgrades. Routine activities during the second report period will include cleaning of tanks, lines, ponds and the engineered wetland.

Project No.: 150C265.1005 Attachment G, Page 5 of 5 October 2009

Greenstar Engineering, P.C.

6. SYSTEM MONITORING

6.1 ENVIRONMENTAL SAMPLING

Routine system sampling with field analysis will continue on a bi-monthly basis to ensure chromium removal efficiency is maintained and no short circuiting is occurring in the zero valence iron beds. Quarterly discharge samples are anticipated to be collected in August and October 2009 from the GCTS to monitor the New York State Department of Environmental Conservation discharge permit guidelines. The second bi-annual groundwater monitoring event for 2009 is anticipated to occur in August 2009.

Attachment G.1

Airco Parcel Bi-Weekly System Monitoring Checklists January – June 2009

Date: 1/14/09	Project No.: 1005	Greenstar Personnel: Chip Mcleod					
Weather: Very cold,	7 Degrees, Snow						
F	READING	ITEM					
	234	Carbon Dioxide Storage Tank Pressure (220-235 psi)					
	5,503	Carbon Dioxide Tank Liquid Level					
	3.0	T1 Water Level					
AUT	O/CYCLING	Pump P1A Running Status ON/OFF					
AUT	O/CYCLING	Pump P1BA Running Status ON/OFF					
	616.1	T3A Water Elevation					
	6.4	T3B pH Reading					
	614.5	T3B Water Level					
AUT	O/CYCLING	Pump 3B Operational Status ON/OFF					
	611.0	T5 Water Level					
AUT	O/CYCLING	Pump 5 Operational Status ON/OFF					
	616.1	T6A Water Elevation					
	6.3	Т6В рН					
	613.9	T6B Water Level					
AUT	O/CYCLING	Pump 6B Operational Status ON/OFF					
	616.2	T7 Water Level Reading					
	6.0	T7 pH					
	2.7	T8 Water Elevation					
1	4,108,017	Flow Meter Reading					
	15 GPM	Average System Flow					
	14.4	Generator Run Hours					
READING	Standard	LOCATION/PARAMETER					
0.064	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium					
0.159	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium					
ND	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium					
0.034	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium					
0.002	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium					
0.013	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium					
NS - Snow/Ice	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium					
NS – Snow/Ice	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium					
рН	READING	SAMPLE LOCATION					
	6.34	Calcium Settling Pond Effluent (T3)					
	6.31	Iron Settling Pond Effluent (T6)					
	6.48	Engineered Wetland Effluent (T7)					
NS –Snow was too d	eep to safely get to SW corner						
N. G. 1 1	aslibuated all pushes in T2D and	d TCD. On an ad air valva on coretor in TCA to limit load on					

Notes: Cleaned and calibrated pH probes in T3B and T6B. Opened air valve on aerator in T6A to limit load on blower to prevent blower from tripping the thermal overload protection.

Date: 1/27/09	Project No.: 1005	Greenstar Personnel: Chip McLeod					
Weather: Cold, 10	Degrees, Sunny						
	READING	ITEM					
	234	Carbon Dioxide Storage Tank Pressure (220-235 psi)					
	11,006	Carbon Dioxide Tank Liquid Level					
	3.2	T1 Water Level					
AU	TO/CYCLING	Pump P1A Running Status ON/OFF					
AU	TO/CYCLING	Pump P1BA Running Status ON/OFF					
	616.1	T3A Water Elevation					
	6.5	T3B pH Reading					
	613.3	T3B Water Level					
AU	TO/CYCLING	Pump 3B Operational Status ON/OFF					
613.0		T5 Water Level					
AU	TO/CYCLING	Pump 5 Operational Status ON/OFF					
	616.0	T6A Water Elevation					
	6.3	Т6В рН					
	613.6	T6B Water Level					
AU	TO/CYCLING	Pump 6B Operational Status ON/OFF					
	616.3	T7 Water Level Reading					
	6.0	T7 pH					
	3.8	T8 Water Elevation					
	14,423,451	Flow Meter Reading					
	17	Average System Flow					
	14.7	Generator Run Hours					
READING	Standard	LOCATION/PARAMETER					
0.099	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiun					
0.123	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium					
ND	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium					
0.041	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium					
ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium					
0.031	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium					
NS – Ice/Snow	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium					
NS-Ice/Snow	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium					
pH READING		SAMPLE LOCATION					
	6.37	Calcium Settling Pond Effluent (T3)					
	6.29	Iron Settling Pond Effluent (T6)					
	6.39	Engineered Wetland Effluent (T7)					
NS –Snow was too	deep to safely get to SW corner						

Notes: Adjusting valve aperture has prevented the aeration blower from tripping the thermal overload. Cleaned and calibrated the pH probes in T3B and T6B. Snow and ice prevented collection of SW corner samples.

READING ITEM 234 Carbon Dioxide Storage Tank Pressure (220-235 psi) 11,951 Carbon Dioxide Tank Liquid Level 3.3 T1 Water Level AUTO/CYCLING Pump P1A Running Status ON/OFF AUTO/CYCLING Pump P1BA Running Status ON/OFF 616.1 T3A Water Elevation 6.5 T3B pH Reading 613.8 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.9 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.0 T6A Water Elevation 64 T6B pH 612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 61.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromi	Date: 2/17/09	Project No.: 1005	Greenstar Personnel: Bruce Vinal				
Carbon Dioxide Storage Tank Pressure (220-235 psi)	Weather: Sun/30 de	grees					
11,951 Carbon Dioxide Tank Liquid Level		READING	ITEM				
3.3 T1 Water Level		234	Carbon Dioxide Storage Tank Pressure (220-235 psi)				
AUTO/CYCLING Pump P1A Running Status ON/OFF AUTO/CYCLING Pump P1BA Running Status ON/OFF 616.1 T3A Water Elevation 6.5 T3B pH Reading 613.8 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.9 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.0 T6A Water Elevation 6.4 T6B pH 612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		11,951	Carbon Dioxide Tank Liquid Level				
AUTO/CYCLING		3.3	T1 Water Level				
616.1 T3A Water Elevation 6.5 T3B pH Reading 613.8 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.9 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.0 T6A Water Elevation 6.4 T6B pH 612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium	AU'	TO/CYCLING	Pump P1A Running Status ON/OFF				
6.5 T3B pH Reading 613.8 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.9 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.0 T6A Water Elevation 6.4 T6B pH 612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium	AU	TO/CYCLING	Pump P1BA Running Status ON/OFF				
613.8 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.9 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.0 T6A Water Elevation 6.4 T6B pH 612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		616.1	T3A Water Elevation				
AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.9 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.0 T6A Water Elevation 6.4 T6B pH 612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		6.5	T3B pH Reading				
612.9 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.0 T6A Water Elevation 6.4 T6B pH 612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		613.8	T3B Water Level				
AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.0 T6A Water Elevation 6.4 T6B pH 612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium	AU	TO/CYCLING	Pump 3B Operational Status ON/OFF				
616.0 T6A Water Elevation 6.4 T6B pH 612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		612.9	T5 Water Level				
6.4 T6B pH 612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium	AU	TO/CYCLING	Pump 5 Operational Status ON/OFF				
612.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		616.0	T6A Water Elevation				
AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		6.4	Т6В рН				
616.3 T7 Water Level Reading 6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		612.7	T6B Water Level				
6.1 T7 pH 3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium	AU	TO/CYCLING	Pump 6B Operational Status ON/OFF				
3.8 T8 Water Elevation 14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		616.3	T7 Water Level Reading				
14,885,574 Flow Meter Reading 10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		6.1	T7 pH				
10 gpm Average System Flow 15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		3.8	T8 Water Elevation				
15.3 Generator Run Hours READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		14,885,574	Flow Meter Reading				
READING Standard LOCATION/PARAMETER 0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		10 gpm	Average System Flow				
0.014 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium		15.3	Generator Run Hours				
	READING	Standard	LOCATION/PARAMETER				
0.064 0.050 mg/L Calcium Settling Pond Effluent (T3) Total Chromium	0.014	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium				
	0.064	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium				
0.007 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium	0.007	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium				
0.019 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium	0.019	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium				
0.005 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium	0.005	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium				
0.017 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium	0.017	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium				
0.008 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium	0.008	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium				
0.012 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium	0.012	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium				
pH READING SAMPLE LOCATION	pi	H READING	SAMPLE LOCATION				
6.43 Calcium Settling Pond Effluent (T3)		6.43	Calcium Settling Pond Effluent (T3)				
6.22 Iron Settling Pond Effluent (T6)		6.22	Iron Settling Pond Effluent (T6)				
Engineered Wetland Effluent (T7)		6.4	Engineered Wetland Effluent (T7)				
7.10 Southwest Corner Effluent (SS-1)		7.10	Southwest Corner Effluent (SS-1)				

Notes: Calibrated pH probes in T3 and T6. Water observed entering T1 shed through elec. Conduit. Removed ice/water from trough box. Water found to be entering from in ground splice box east of T1 4" PVC full of ice. No inherent hazard. This will be addressed in warmer weather.

Date: 2/24/09	Project No.: 1005	Greenstar Personnel: Bruce Vinal				
Weather: Sun/20 de	grees					
	READING	ITEM				
	234	Carbon Dioxide Storage Tank Pressure (220-235 psi)				
	8,041	Carbon Dioxide Tank Liquid Level				
	3.3	T1 Water Level				
AU	ΓO/CYCLING	Pump P1A Running Status ON/OFF				
AU	ΓO/CYCLING	Pump P1BA Running Status ON/OFF				
	616.1	T3A Water Elevation				
	5.2	T3B pH Reading				
	614.5	T3B Water Level				
AU	ΓO/CYCLING	Pump 3B Operational Status ON/OFF				
	611.0	T5 Water Level				
AU	ΓO/CYCLING	Pump 5 Operational Status ON/OFF				
	616.0	T6A Water Elevation				
	6.3	Т6В рН				
	613.7	T6B Water Level				
AU	ΓO/CYCLING	Pump 6B Operational Status ON/OFF				
	616.3	T7 Water Level Reading				
	6.1	T7 pH				
	3.9	T8 Water Elevation				
	15,010,859	Flow Meter Reading				
	12	Average System Flow				
	15.4	Generator Run Hours				
READING	Standard	LOCATION/PARAMETER				
0.033	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium				
0.062	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium				
-0.018	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium				
-0.005	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium				
ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium				
ND	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium				
0.000	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium				
0.012	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium				
pl	H READING	SAMPLE LOCATION				
	6.50	Calcium Settling Pond Effluent (T3)				
	6.61	Iron Settling Pond Effluent (T6)				
	6.71	Engineered Wetland Effluent (T7)				
	7.12	Southwest Corner Effluent (SS-1)				

Notes: Found pump P1B to be leaking heavily from shaft seals. Removed pump, rebuilt seal assembly and reinstalled pump. Ordered seal kit #1640-167-96 & 2 replacement shaft sleeves #1472-000-00. Calibrate T3 and T6 pH probes. Took inventory of shelf stock.

Date: 3/3/09	Project No.: 1005	Greenstar Personnel: Bruce Vinal				
Weather: Clear-15	degrees					
	READING	ITEM				
	234	Carbon Dioxide Storage Tank Pressure (220-235 psi)				
	4238	Carbon Dioxide Tank Liquid Level				
	3.1	T1 Water Level				
AU'	TO/CYCLING	Pump P1A Running Status ON/OFF				
AU'	TO/CYCLING	Pump P1BA Running Status ON/OFF				
	616.2	T3A Water Elevation				
	6.15	T3B pH Reading				
	613.4	T3B Water Level				
AU	TO/CYCLING	Pump 3B Operational Status ON/OFF				
	611.9	T5 Water Level				
AU'	TO/CYCLING	Pump 5 Operational Status ON/OFF				
	615.9	T6A Water Elevation				
	6.31	Т6В рН				
	612.3	T6B Water Level				
AU	TO/CYCLING	Pump 6B Operational Status ON/OFF				
	616.2	T7 Water Level Reading				
	6.1	T7 pH				
	2.5	T8 Water Elevation				
	15,148,051	Flow Meter Reading				
	14	Average System Flow				
	15.6	Generator Run Hours				
READING	Standard	LOCATION/PARAMETER				
0.063	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium				
0.074	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium				
-0.010	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium				
0.017	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium				
-0.011	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium				
0.015	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium				
0.008	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium				
0.027	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium				
pi	H READING	SAMPLE LOCATION				
	6.16	Calcium Settling Pond Effluent (T3)				
	6.49	Iron Settling Pond Effluent (T6)				
	6.59	Engineered Wetland Effluent (T7)				
	6.73	Southwest Corner Effluent (SS-1)				
		-				

Notes: Replace P1B. Jet line from T3/6A to T3 to increase T1 pump performance. Diagnose pH probe issues-faulty cable in T6 (on order. Thaw P8 line. Calibrate pH field meter. Replaced computer work group switch, need new modem. The existing one is functioning, but damaged exterior case to to high heat in shed.

Date: 3/19/09	Project No.: 1005	Greenstar Personnel: Bruce Vinal	
Weather: overcast 3			
	READING	ITEM	
	232	Carbon Dioxide Storage Tank Pressure (220-235 psi)	
	11,434	Carbon Dioxide Tank Liquid Level	
	2.5	T1 Water Level	
AU	TO/CYCLING	Pump P1A Running Status ON/OFF	
AU	TO/CYCLING	Pump P1BA Running Status ON/OFF	
	616.1	T3A Water Elevation	
	6.0	T3B pH Reading	
	612.9	T3B Water Level	
AU	TO/CYCLING	Pump 3B Operational Status ON/OFF	
	611.8	T5 Water Level	
AU	TO/CYCLING	Pump 5 Operational Status ON/OFF	
	616.0	T6A Water Elevation	
N/A	Sensor on order	Т6В рН	
	613.2	T6B Water Level	
AU	TO/CYCLING	Pump 6B Operational Status ON/OFF	
	616.3	T7 Water Level Reading	
	6.1	T7 pH	
	1.3	T8 Water Elevation	
	15,404,170	Flow Meter Reading	
	13	Average System Flow	
	16.1	Generator Run Hours	
READING	Standard	LOCATION/PARAMETER	
0.008	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium	
0.152	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium	
-0.014	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium	
0.003	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium	
-0.001	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium	
ND	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium	
0.018	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium	
0.012	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium	
p.	H READING	SAMPLE LOCATION	
	6.33	Calcium Settling Pond Effluent (T3)	
	6.44	Iron Settling Pond Effluent (T6)	
	6.70	Engineered Wetland Effluent (T7)	
	7.44	Southwest Corner Effluent (SS-1)	

Notes: Pumped water from under T-8 liner. Hosed down T8 slopes. Quarterly GCTS Sampling. Completed engineer's inspection. Replaced defectives internet router. Pulled 3" tree from T7 slope. Noted high groundwater around T-1. Water noted entering overflow catch basin and T-1. T-1 pumps were ramped up to 100% for half an hour to drop levels and are now set at 15% (18-20 GPM) to maintain acceptable levels. Installed updates to computer.

Date: 4/7/09	Date: 4/7/09 Project No.: 1005 Greenstar Personnel: Bruce Vinal				
Weather: 27 degree	s Snow				
	READING	ITEM			
	234	Carbon Dioxide Storage Tank Pressure (220-235 psi)			
	9,280	Carbon Dioxide Tank Liquid Level			
	3.4	T1 Water Level			
AU	TO/CYCLING	Pump P1A Running Status ON/OFF			
AU	TO/CYCLING	Pump P1BA Running Status ON/OFF			
	616.1	T3A Water Elevation			
	6.2	T3B pH Reading			
	614.1	T3B Water Level			
AU	TO/CYCLING	Pump 3B Operational Status ON/OFF			
	613.5	T5 Water Level			
AU	TO/CYCLING	Pump 5 Operational Status ON/OFF			
	616.0	T6A Water Elevation			
	6.66	Т6В рН			
	613.1	T6B Water Level			
AU	TO/CYCLING	Pump 6B Operational Status ON/OFF			
	616.3	T7 Water Level Reading			
	6.2	T7 pH			
	2.6	T8 Water Elevation			
	15,911,495	Flow Meter Reading			
	18	Average System Flow			
	16.5	Generator Run Hours			
READING	Standard	LOCATION/PARAMETER			
0.099	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium			
0.168	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium			
-0.013	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium			
0.029	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium			
0.000	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium			
0.010	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium			
0.008	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium			
0.013	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium			
pl	H READING	SAMPLE LOCATION			
	6.23	Calcium Settling Pond Effluent (T3)			
	6.40	Iron Settling Pond Effluent (T6)			
_	6.69	Engineered Wetland Effluent (T7)			
	7.37	Southwest Corner Effluent (SS-1)			

Notes: Replaced pH probe and cable to T-6. Calibrated pH probes in T-3, T-6, and T-7. Raised manhole cover to T-5 3" to avoid stones entering T-5 which was jamming the effluent check valve open. Replaced padlocks on monitoring wells. Existing locks could not be opened and required replacement.

	Project No.: 1005	Greenstar Personnel: Bruce Vinal	
ather: 60 degrees o	EADING	ITEM	
	228	Carbon Dioxide Storage Tank Pressure (220-235 psi)	
	5,577	Carbon Dioxide Storage Tank Flessate (220-233 psi)	
	2.4	T1 Water Level	
AUTO	D/CYCLING	Pump P1A Running Status ON/OFF	
	D/CYCLING	Pump P1BA Running Status ON/OFF	
71010	616.1	T3A Water Elevation	
	6.51	T3B pH Reading	
	613.3	T3B Water Level	
AUTO	D/CYCLING	Pump 3B Operational Status ON/OFF	
	613.1	T5 Water Level	
	D/CYCLING	Pump 5 Operational Status ON/OFF	
	616.0	T6A Water Elevation	
	6.5	Т6В рН	
	613.8	T6B Water Level	
AUTO	O/CYCLING	Pump 6B Operational Status ON/OFF	
616.5		T7 Water Level Reading	
6.0		T7 pH	
2.9		T8 Water Elevation	
16,390,116 17 gpm		Flow Meter Reading	
		Average System Flow	
	17.0	Generator Run Hours	
READING	Standard	LOCATION/PARAMETER	
0.107	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromius	
0.166	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium	
-0.009	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium	
0.032	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium	
-0.020 ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium	
-0.010 ND	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium	
0.023	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium	
0.023	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium	
pH i	READING	SAMPLE LOCATION	
	6.57	Calcium Settling Pond Effluent (T3)	
	6.55	Iron Settling Pond Effluent (T6)	
	6.88	Engineered Wetland Effluent (T7)	
	7.42	Southwest Corner Effluent (SS-1)	

Notes: O&M – Install new computer. Take GCTS effluent sample to lab to confirm/deny high chrome levels. Lab data indicated no hexavalent chromium in the effluent.

GCTS DATA RECORDING SHEET

e: 5/5/09	Project No.: 1005	Greenstar Personnel: Bruce Vinal			
ather: 65 degre	READING	ITEM			
	230				
		Carbon Dioxide Storage Tank Pressure (220-235 psi)			
	8,970	Carbon Dioxide Tank Liquid Level T1 Water Level			
AT	3.4				
	JTO/CYCLING	Pump P1A Running Status ON/OFF			
AU	TO/CYCLING	Pump P1BA Running Status ON/OFF			
	616.1	T3A Water Elevation			
	6.3	T3B pH Reading			
	613.8	T3B Water Level			
AU	JTO/CYCLING	Pump 3B Operational Status ON/OFF			
	611.2	T5 Water Level			
AU	JTO/CYCLING	Pump 5 Operational Status ON/OFF			
	616.0	T6A Water Elevation			
	6.5	T6B pH			
	614.8	T6B Water Level			
AU	JTO/CYCLING	Pump 6B Operational Status ON/OFF			
616.5		T7 Water Level Reading			
6.0		T7 pH			
2.7		T8 Water Elevation			
16,604,390 15 gpm		Flow Meter Reading			
		Average System Flow			
	17.2	Generator Run Hours			
READING	Standard	LOCATION/PARAMETER			
0.137	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiu			
0.154	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium			
-0.005	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium			
0.048	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium			
-0.012	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium			
-0.009 ND	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium			
0.005	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium			
0.016	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium			
I	OH READING	SAMPLE LOCATION			
	6.55	Calcium Settling Pond Effluent (T3)			
	6.53	Iron Settling Pond Effluent (T6)			
	6.76	Engineered Wetland Effluent (T7)			
	7.32	Southwest Corner Effluent (SS-1)			

Airco Parcel, Niagara Falls, New York

3/6A vault.

READING ITEM 233 Carbon Dioxide Storage Tank Pressure (220-235 psi) 8,690 Carbon Dioxide Tank Liquid Level 2.7 TI Water Level AUTO/CYCLING Pump P1A Running Status ON/OFF 6.1 Pump P1BA Running Status ON/OFF 6.2 T3A Water Elevation 6.3 T3B PH Reading 6.4.5 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 613.3 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.0 T6A Water Elevation 6.5 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.5 T76 Water Level Reading 616.5 T7 Water Level Reading 60.0 T7 pH 0.9 T8 Water Elevation 16,954,786 Flow Meter Reading 17,5 Generator Run Hours READING Standard 0.055 0.011 mg/L Calcium Settling Pond Effluent (T3) Total Chromium <tr< th=""><th>Date: 5/18/09</th><th>Project No.: 1005</th><th>Greenstar Personnel: Bruce Vinal</th></tr<>	Date: 5/18/09	Project No.: 1005	Greenstar Personnel: Bruce Vinal
Carbon Dioxide Storage Tank Pressure (220-235 psi) 8,690	Weather: Sunny 60	degrees	
School		READING	ITEM
AUTO/CYCLING		233	Carbon Dioxide Storage Tank Pressure (220-235 psi)
AUTO/CYCLING		8,690	Carbon Dioxide Tank Liquid Level
AUTO/CYCLING		2.7	T1 Water Level
616.2 T3A Water Elevation	AU	TO/CYCLING	Pump P1A Running Status ON/OFF
6.3 T3B pH Reading	AU	TO/CYCLING	Pump P1BA Running Status ON/OFF
AUTO/CYCLING		616.2	T3A Water Elevation
AUTO/CYCLING		6.3	T3B pH Reading
AUTO/CYCLING		614.5	T3B Water Level
AUTO/CYCLING	AU	TO/CYCLING	Pump 3B Operational Status ON/OFF
T6A Water Elevation		613.3	T5 Water Level
AUTO/CYCLING	AU	TO/CYCLING	Pump 5 Operational Status ON/OFF
AUTO/CYCLING		616.0	T6A Water Elevation
AUTO/CYCLING		6.5	Т6В рН
T7 Water Level Reading		613.8	T6B Water Level
6.0 T7 pH 0.9 T8 Water Elevation 16,954,786 Flow Meter Reading 17gpm Average System Flow 17.5 Generator Run Hours READING Standard LOCATION/PARAMETER 0.055 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.093 0.050 mg/L Calcium Settling Pond Effluent (T6) Hexavalent Chromium 0.036 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium ND 0.050 mg/L Engineered Wetland Effluent (SS-1) Hexavalent Chromium 0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING SAMPLE LOCATION 6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) Engineered Wetland Effluent (T7) Engineered Wetland Effluent (T7)	AU	TO/CYCLING	Pump 6B Operational Status ON/OFF
0.9 T8 Water Elevation 16,954,786 Flow Meter Reading 17gpm Average System Flow 17.5 Generator Run Hours READING Standard LOCATION/PARAMETER 0.055 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.093 0.050 mg/L Calcium Settling Pond Effluent (T3) Total Chromium 0.036 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium pH READING SAMPLE LOCATION 6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) 6.54 Engineered Wetland Effluent (T6)		616.5	T7 Water Level Reading
16,954,786 17gpm Average System Flow 17.5 Generator Run Hours READING Standard LOCATION/PARAMETER 0.055 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.093 0.050 mg/L Calcium Settling Pond Effluent (T6) Hexavalent Chromium 0.036 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.014 0.050 mg/L Figure Calcium Settling Pond Effluent (T3) 6.52 Calcium Settling Pond Effluent (T3) Engineered Wetland Effluent (T6) Engineered Wetland Effluent (T7)		6.0	
17.5 Generator Run Hours READING Standard LOCATION/PARAMETER 0.055 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.093 0.050 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium -0.015 0.011 mg/L Iron Settling Pond Effluent (T6) Total Chromium 0.036 0.050 mg/L Iron Settling Pond Effluent (T7) Hexavalent Chromium ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING SAMPLE LOCATION 6.52 Calcium Settling Pond Effluent (T3) 1 Iron Settling Pond Effluent (T3) 1 Iron Settling Pond Effluent (T6) Engineered Wetland Effluent (T7)		0.9	T8 Water Elevation
T7.5 Generator Run Hours		16,954,786	Flow Meter Reading
READINGStandardLOCATION/PARAMETER0.0550.011 mg/LCalcium Settling Pond Effluent (T3) Hexavalent Chromium0.0930.050 mg/LCalcium Settling Pond Effluent (T3) Total Chromium-0.0150.011 mg/LIron Settling Pond Effluent (T6) Hexavalent Chromium0.0360.050 mg/LIron Settling Pond Effluent (T6) Total ChromiumND0.011 mg/LEngineered Wetland Effluent (T7) Hexavalent ChromiumND0.050 mg/LEngineered Wetland Effluent (SS-1) Hexavalent Chromium0.0090.011 mg/LSouthwest Corner Effluent (SS-1) Hexavalent Chromium0.0140.050 mg/LSouthwest Corner Effluent (SS-1) Total ChromiumPH READINGSAMPLE LOCATION6.52Calcium Settling Pond Effluent (T3)6.54Iron Settling Pond Effluent (T6)6.84Engineered Wetland Effluent (T7)			
0.055 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.093 0.050 mg/L Calcium Settling Pond Effluent (T3) Total Chromium -0.015 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium 0.036 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium ND 0.050 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING SAMPLE LOCATION 6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) Engineered Wetland Effluent (T7)			Generator Run Hours
0.093 0.050 mg/L Calcium Settling Pond Effluent (T3) Total Chromium -0.015 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium 0.036 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING SAMPLE LOCATION 6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) Engineered Wetland Effluent (T7)	READING	Standard	LOCATION/PARAMETER
-0.015 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium 0.036 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING SAMPLE LOCATION 6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) 6.84 Engineered Wetland Effluent (T7)	0.055	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium
0.036 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium ND 0.050 mg/L Engineered Wetland Effluent (SS-1) Total Chromium 0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING SAMPLE LOCATION 6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) 6.84 Engineered Wetland Effluent (T7)	0.093	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium
ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING SAMPLE LOCATION 6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) 6.84 Engineered Wetland Effluent (T7)			
ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING 6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) 6.84 Engineered Wetland Effluent (T7)	0.036		
0.009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium pH READING SAMPLE LOCATION 6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) 6.84 Engineered Wetland Effluent (T7)	ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium
0.014 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium pH READING SAMPLE LOCATION 6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) 6.84 Engineered Wetland Effluent (T7)	ND	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium
pH READINGSAMPLE LOCATION6.52Calcium Settling Pond Effluent (T3)6.54Iron Settling Pond Effluent (T6)6.84Engineered Wetland Effluent (T7)	0.009	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium
6.52 Calcium Settling Pond Effluent (T3) 6.54 Iron Settling Pond Effluent (T6) 6.84 Engineered Wetland Effluent (T7)	0.014	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium
6.54 Iron Settling Pond Effluent (T6) 6.84 Engineered Wetland Effluent (T7)	p	H READING	SAMPLE LOCATION
6.84 Engineered Wetland Effluent (T7)		6.52	Calcium Settling Pond Effluent (T3)
<u> </u>		6.54	Iron Settling Pond Effluent (T6)
7.34 Southwest Corner Effluent (SS-1)		6.84	Engineered Wetland Effluent (T7)
<u> </u>		7.34	Southwest Corner Effluent (SS-1)

Notes: Cut grass around T7. Pumped water from under T8 liner. Calibrated pH probes in T7 and T3. Placed boulders around front gate to keep ATV's out. Groundwater sampling and GCTS sampling. Noticed pad under backup generator has settled and is now ½" per 1' out of level.

Date: 6/16/09	Project No.: 1005	Greenstar Personnel: Bruce Vinal
Weather:		
	READING	ITEM
	232	Carbon Dioxide Storage Tank Pressure (220-235 psi)
	8764	Carbon Dioxide Tank Liquid Level
	3.5	T1 Water Level
AU	TO/CYCLING	Pump P1A Running Status ON/OFF
AU	TO/CYCLING	Pump P1BA Running Status ON/OFF
	616.2	T3A Water Elevation
	5.7	T3B pH Reading
	613.1	T3B Water Level
AU	TO/CYCLING	Pump 3B Operational Status ON/OFF
	613.4	T5 Water Level
AU	TO/CYCLING	Pump 5 Operational Status ON/OFF
	616.0	T6A Water Elevation
	6.5	Т6В рН
	613.8	T6B Water Level
AU	TO/CYCLING	Pump 6B Operational Status ON/OFF
	616.7	T7 Water Level Reading
	6.2	T7 pH
	0.9	T8 Water Elevation
	17,631,314	Flow Meter Reading
	15	Average System Flow
	18.6	Generator Run Hours
READING	Standard	LOCATION/PARAMETER
0.106	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium
0.149	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium
-0.013	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium
0.051	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium
ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium
0.007	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium
0.004	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium
0.019	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium
p)	H READING	SAMPLE LOCATION
	6.72	Calcium Settling Pond Effluent (T3)
	6.70	Iron Settling Pond Effluent (T6)
	6.86	Engineered Wetland Effluent (T7)
	7.59	Southwest Corner Effluent (SS-1)

groundwater from under T-8 liner.

Date: 6/30/09	Project No.: 1005	Greenstar Personnel: Bruce Vinal
Weather: Cloudy 6		
	READING	ITEM
	230	Carbon Dioxide Storage Tank Pressure (220-235 psi)
	9782	Carbon Dioxide Tank Liquid Level
	3.3	T1 Water Level
AU	TO/CYCLING	Pump P1A Running Status ON/OFF
AU	TO/CYCLING	Pump P1BA Running Status ON/OFF
	616.2	T3A Water Elevation
	5.8	T3B pH Reading
	614.0	T3B Water Level
AU	TO/CYCLING	Pump 3B Operational Status ON/OFF
	611.6	T5 Water Level
AU	TO/CYCLING	Pump 5 Operational Status ON/OFF
	616.0	T6A Water Elevation
	6.4	Т6В рН
	613.0	T6B Water Level
AU	TO/CYCLING	Pump 6B Operational Status ON/OFF
	615.9	T7 Water Level Reading
	6.3	T7 pH
	0.9	T8 Water Elevation
	17,991,694	Flow Meter Reading
	18	Average System Flow
	18.9	Generator Run Hours
READING	Standard	LOCATION/PARAMETER
0.109	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium
0.113	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium
-0.012	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium
0.049	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium
0.000	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium
0.000	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium
0.010	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium
0.024	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium
p	H READING	SAMPLE LOCATION
	6.30	Calcium Settling Pond Effluent (T3)
	6.56	Iron Settling Pond Effluent (T6)
	6.74	Engineered Wetland Effluent (T7)
	7.35	Southwest Corner Effluent (SS-1)

Notes: Calibrated pH probes and cleaned pres. Trans in T-3. Cut grass around T-7 & removed Cattails from T-7 outlet. Block up floor system in T-1 shed to keep out rodents. Repair pres. Trans cable chewed by rodents. Called local contractor to set have-a- hart traps.

Attachment G.2

Airco Parcel GCTS Monthly Flow Calculations January – June 2009

Monthly Airco Parcel GCTS Flow Calculations January 2009

	Maximum Flow	Average Flow Rate	Total Daily	Total Gallons To	Run Time	Run Time
Date	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
1/1/2009	40	15	22,704	13,831,046	24	0
1/2/2009	40	15	23,008	13,854,054	24	0
1/3/2009	40	15	22,573	13,876,627	24	0
1/4/2009	40	15	22,716	13,899,343	24	0
1/5/2009	39	15	22,865	13,922,208	24	0
1/6/2009	39	15	22,887	13,945,095	24	0
1/7/2009	39	16	24,112	13,969,207	24	0
1/8/2009	39	16	23,841	13,993,048	24	0
1/9/2009	39	15	22,570	14,015,618	24	0
1/10/2009	39	13	19,939	14,035,557	24	0
1/11/2009	39	14	20,206	14,055,763	24	0
1/12/2009	38	13	20,139	14,075,902	24	0
1/13/2009	38	14	20,640	14,096,542	24	0
1/14/2009	38	15	21,926	14,118,468	24	0
1/15/2009	38	17	25,288	14,143,756	24	0
1/16/2009	38	17	25,190	14,168,946	24	0
1/17/2009	38	17	24,651	14,193,597	24	0
1/18/2009	38	17	24,609	14,218,206	24	0
1/19/2009	37	17	24,696	14,242,902	24	0
1/20/2009	37	17	24,749	14,267,651	24	0
1/21/2009	37	16	24,357	14,292,008	24	0
1/22/2009	37	17	24,689	14,316,697	24	0
1/23/2009	37	17	24,478	14,341,175	24	0
1/24/2009	37	16	24,091	14,365,266	24	0
1/25/2009	36	17	24,562	14,389,828	24	0
1/26/2009	36	15	22,982	14,412,810	24	0
1/27/2009	36	13	19,912	14,432,722	24	0
1/28/2009	36	12	18,661	14,451,383	24	0
1/29/2009	36	14	21,550	14,472,933	24	0
1/30/2009	36	16	23,909	14,496,842	24	0
1/31/2009	35	16	23,734	14,520,576	24	0
	40	15	712,234	14,520,576	31	100%
Sample Measurement	Daily	Monitoring Period	Monitoring			
	Maximum (GPM)	Average (GPM)	Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Airco Parcel GCTS Flow Calculations February 2009

	Maximum Flow	Average Flow Rate	Total Daily	Total Gallons To	Run Time	Run Time
Date	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
2/1/2009	35	16.00	24,081	14,544,657	24	0
2/2/2009	35	16.00	23,574	14,568,231	24	0
2/3/2009	35	16.00	23,734	14,591,965	24	0
2/4/2009	35	16.00	23,551	14,615,516	24	0
2/5/2009	35	16.00	23,679	14,639,195	24	0
2/6/2009	34	16.00	23,155	14,662,350	24	0
2/7/2009	34	16.00	23,769	14,686,119	23	1
2/8/2009	34	18.00	26,025	14,712,144	24	0
2/9/2009	34	17.00	24,836	14,736,980	24	0
2/10/2009	34	17.00	25,032	14,762,012	24	0
2/11/2009	33	19.00	27,667	14,789,679	24	0
2/12/2009	33	16.00	24,346	14,814,025	24	0
2/13/2009	33	12.00	18,371	14,832,396	24	0
2/14/2009	33	10.00	14,551	14,846,947	24	0
2/15/2009	32	9.00	14,279	14,861,226	24	0
2/16/2009	32	10.00	14,879	14,876,105	24	0
2/17/2009	32	11.00	16,223	14,892,328	24	0
2/18/2009	32	12.00	18,539	14,910,867	24	0
2/19/2009	32	12.00	17,991	14,928,858	24	0
2/20/2009	32	12.00	17,748	14,946,606	24	0
2/21/2009	31	12.00	17,757	14,964,363	24	0
2/22/2009	31	12.00	17,555	14,981,918	24	0
2/23/2009	31	12.00	17,363	14,999,281	24	0
2/24/2009	31	12.00	17,858	15,017,139	24	0
2/25/2009	31	12.00	17,771	15,034,910	24	0
2/26/2009	31	12.00	17,545	15,052,455	24	0
2/27/2009	31	16.00	23,942	15,076,397	24	0
2/28/2009	31	15.00	21,655	15,098,052	24	0
	35	14	577 A7.C	15 000 052	20	1000/
Sample	35		577,476	15,098,052	28	100%
Measurement	Daily Maximum	Monitoring Period Average	Monitoring Period Total	Cumulative	Runtime	Operational
	(GPM)	(GPM)	(GAL)	Total (GAL)	(Days)	Percentage

Monthly Airco Parcel GCTS Flow Calculations March 2009

	Maximum	Average		Total	Run	
	Flow	Flow Rate	Total Daily	Gallons To	Time	Run Time
Date	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
3/1/2009	31	10	14,516	15,112,568	24	0
3/2/2009	30	10	14,562	15,127,130	24	0
3/3/2009	31	14	20,921	15,148,051	24	0
3/4/2009	31	5	8,375	15,156,426	24	0
3/5/2009	30	7	11,266	15,167,692	24	0
3/6/2009	31	11	16,215	15,183,907	24	0
3/7/2009	31	13	20,046	15,203,953	24	0
3/8/2009	31	8	12,649	15,216,602	24	0
3/9/2009	30	9	14,086	15,230,688	24	0
3/10/2009	30	11	16,567	15,247,255	24	0
3/11/2009	30	12	17,353	15,264,608	24	0
3/12/2009	30	9	13,757	15,278,366	24	0
3/13/2009	30	12	17,984	15,296,350	24	0
3/14/2009	30	14	20,226	15,316,576	24	0
3/15/2009	30	13	18,844	15,335,420	24	0
3/16/2009	30	13	19,987	15,355,407	24	0
3/17/2009	29	11	16,210	15,371,617	24	0
3/18/2009	29	11	16,504	15,388,121	24	0
3/19/2009	30	13	19,089	15,407,210	24	0
3/20/2009	29	16	23,695	15,430,905	24	0
3/21/2009	30	21	30,533	15,461,438	24	0
3/22/2009	29	19	27,574	15,489,012	24	0
3/23/2009	29	19	27,369	15,516,381	24	0
3/24/2009	29	18	27,297	15,543,678	24	0
3/25/2009	29	19	27,439	15,571,117	24	0
3/26/2009	29	19	27,445	15,598,562	24	0
3/27/2009	29	18	27,216	15,625,778	24	0
3/28/2009	29	18	27,109	15,652,887	24	0
3/29/2009	29	19	27,719	15,680,606	24	0
3/30/2009	29	18	26,415	15,707,021	24	0
3/31/2009	28	18	26,254	15,733,275	24	0
	30	14	635,222	15,733,275	31	100%
Sample		Monitoring		-,,		
Measurement	Daily	Period	Monitoring			
	Maximum	Average	Period Total	Cumulative	Runtime	Operational
	(GPM)	(GPM)	(GAL)	Total (GAL)	(Days)	Percentage

Monthly Airco Parcel GCTS Flow Calculations April 2009

	Maximu	Average		Total	Run	
	m Flow	Flow Rate	Total Daily	Gallons To	Time	Run Time
Date	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
4/1/2009	28	18	26,617	15,759,892	24	0
4/2/2009	28	18	26,418	15,786,310	24	0
4/3/2009	28	21	31,179	15,817,489	24	0
4/4/2009	28	19	27,530	15,845,019	24	0
4/5/2009	28	18	26,167	15,871,186	24	0
4/6/2009	28	18	27,002	15,898,188	24	0
4/7/2009	28	18	26,677	15,924,865	24	0
4/8/2009	28	18	26,187	15,951,052	24	0
4/9/2009	27	18	25,994	15,977,046	24	0
4/10/2009	27	17	25,886	16,002,932	24	0
4/11/2009	27	17	25,749	16,028,681	24	0
4/12/2009	27	17	25,372	16,054,053	24	0
4/13/2009	27	17	25,425	16,079,478	24	0
4/14/2009	27	17	25,012	16,104,490	24	0
4/15/2009	27	17	24,551	16,129,041	24	0
4/16/2009	26	17	24,842	16,153,883	24	0
4/17/2009	26	17	24,586	16,178,469	24	0
4/18/2009	26	16	24,457	16,202,926	24	0
4/19/2009	26	17	24,474	16,227,400	24	0
4/20/2009	26	17	25,301	16,252,701	24	0
4/21/2009	26	16	24,413	16,277,114	24	0
4/22/2009	25	17	24,558	16,301,672	24	0
4/23/2009	25	16	24,415	16,326,087	24	0
4/24/2009	25	17	24,466	16,350,553	24	0
4/25/2009	25	16	24,300	16,374,853	24	0
4/26/2009	25	16	24,452	16,399,305	24	0
4/27/2009	25	16	23,389	16,422,694	24	0
4/28/2009	25	16	23,650	16,446,344	24	0
4/29/2009	25	16	23,438	16,469,782	24	0
4/30/2009	24	16	24,122	16,493,904	24	0
	26	17	760,629	16,493,904	30	100%
Sample		Monitoring				
Measurement	Daily	Period	Monitoring			
	Maximum	Average	Period Total	Cumulative	Runtime	Operational
	(GPM)	(GPM)	(GAL)	Total (GAL)	(Days)	Percentage

Monthly Airco Parcel GCTS Flow Calculations May 2009

	Maximum Flow	Average Flow Rate	Total Daily	Total Gallons To	Run Time	Run Time
Date	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
5/1/2009	25	18	26,342	16,520,246	24	0
5/2/2009	24	16	23,138	16,543,384	24	0
5/3/2009	24	16	23,131	16,566,515	24	0
5/4/2009	24	15	22,582	16,589,097	24	0
5/5/2009	24	15	22,864	16,611,961	24	0
5/6/2009	47	17	25,586	16,637,547	24	0
5/7/2009	47	21	30,378	16,667,925	24	0
5/8/2009	48	21	31,193	16,699,118	24	0
5/9/2009	48	21	31,271	16,730,389	24	0
5/10/2009	48	19	28,622	16,759,011	24	0
5/11/2009	47	18	26,219	16,785,230	24	0
5/12/2009	47	18	26,156	16,811,386	24	0
5/13/2009	47	18	26,248	16,837,634	24	0
5/14/2009	47	18	26,078	16,863,712	24	0
5/15/2009	48	17	25,642	16,889,354	24	0
5/16/2009	47	17	25,700	16,915,054	24	0
5/17/2009	47	17	25,284	16,940,338	24	0
5/18/2009	47	17	24,978	16,965,316	24	0
5/19/2009	47	17	25,122	16,990,438	24	0
5/19/2009	47	17	25,122	16,990,438	24	0
5/20/2009	52	17	25,020	17,015,458	24	0
5/21/2009	47	17	24,750	17,040,208	24	0
5/22/2009	47	16	24,412	17,064,620	24	0
5/23/2009	47	16	24,374	17,088,994	24	0
5/24/2009	52	17	24,478	17,113,472	24	0
5/25/2009	49	16	24,030	17,137,502	24	0
5/26/2009	47	16	24,090	17,161,592	24	0
5/27/2009	46	16	23,894	17,185,486	24	0
5/28/2009	46	17	24,552	17,210,038	24	0
5/29/2009	46	17	25,184	17,235,222	24	0
5/30/2009	46	16	24,384	17,259,606	24	0
5/31/2009	46	15	22,992	17,282,598	24	0
	<u> </u>					
	44	17	813,816	17,282,598	31	100%
Sample Measurement	Daily	Monitoring Period	Monitoring	, , ,		
	Maximum	Average	Period Total	Cumulative	Runtime	Operational
	(GPM)	(GPM)	(GAL)	Total (GAL)	(Days)	Percentage

Monthly Airco Parcel GCTS Flow Calculations June 2009

	Maximum Flow	Average Flow Rate	Total Daily	Total Gallons To	Run Time	Run Time
Date	(gpm)	(gpm)	Flow (Gal)	Date (Gal)	(hours)	(minutes)
6/1/2009	46	15	22,770	17,305,368	24	0
6/2/2009	46	15	22,710	17,328,078	24	0
6/3/2009	46	15	22,854	17,350,932	24	0
6/4/2009	46	15	22,644	17,373,576	24	0
6/5/2009	46	16	23,474	17,397,050	24	0
6/6/2009	46	16	23,194	17,420,244	24	0
6/7/2009	46	15	22,954	17,443,198	24	0
6/8/2009	46	16	23,150	17,466,348	24	0
6/9/2009	46	16	23,926	17,490,274	24	0
6/10/2009	46	15	22,096	17,512,370	24	0
6/11/2009	45	15	22,536	17,534,906	24	0
6/12/2009	45	14	21,530	17,556,436	24	0
6/13/2009	45	14	21,272	17,577,708	24	0
6/14/2009	45	14	21,384	17,599,092	24	0
6/15/2009	45	14	20,948	17,620,040	24	0
6/16/2009	45	17	25,372	17,645,412	24	0
6/17/2009	49	19	28,322	17,673,734	24	0
6/18/2009	46	20	28,936	17,702,670	24	0
6/19/2009	45	18	26,942	17,729,612	24	0
6/20/2009	45	19	28,030	17,757642	24	0
6/21/2009	45	18	26,476	17,784,118	24	0
6/22/2009	48	17	25,414	17,809,532	24	0
6/23/2009	44	17	24,790	17,834,322	24	0
6/24/2009	47	17	24,550	17,858,872	24	0
6/25/2009	45	20	29,694	17,888,566	24	0
6/26/2009	44	18	26,272	17,914,838	24	0
6/27/2009	44	17	25,728	17,940,566	24	0
6/28/2009	44	18	25,940	17,966,506	24	0
6/29/2009	44	17	25,188	17,991,694	24	0
6/30/2009	44	17	25,024	18,016,718	24	0
Sample Measurement	45	17	734,120	18,016,718	30	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage