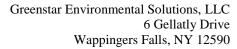
Annual 2011 Monitoring Event Letter Report for Site No. 932001 Airco Properties, Inc., Airco Parcel Niagara Falls, New York

Prepared for


Linde North America, Inc. 575 Mountain Avenue Murray Hill, New Jersey 07974

Prepared by

Greenstar Environmental Solutions, LLC 6 Gellatly Drive Wappingers Falls, New York 12590 (845) 223-9944

> April 2012 Revision: 0 Project No.: 1047.004

18 April 2012

Mr. Brian Thiesse Head of US SHEQ Operations Linde, LLC 575 Mountain Avenue Murray Hill, New Jersey 07974

RE: 2011 Annual Monitoring Event Letter Report and Remedy Review Report, Site No. 932001, Airco Properties Inc., Airco Parcel, Niagara Falls, New York

Dear Mr. Thiesse:

Greenstar Environmental Solutions, LLC (Greenstar) is pleased to provide the 2011 Annual Monitoring Event Letter Report summarizing the operation and maintenance activities at the Airco Parcel (Site), Niagara Falls, New York, for the period 1 January 2011 to 31 December 2011. The post-closure monitoring and facility maintenance program was initiated at the Airco Parcel during December 2000. Post-closure monitoring and facility maintenance is required by New York State Solid Waste Management Facilities Regulations (6 NYCRR Part 360-2.15[k][4]) and stipulated in Order on Consent No. B9-0470-94-12. The purpose of this Annual Monitoring Event Letter Report is to summarize the analytical results of the annual 2011 groundwater monitoring event conducted in October 2011 and the semi-annual surface water monitoring conducted in June and October 2011; and operations and maintenance activities conducted at the Site from January through December 2011.

OBJECTIVES

In accordance with the Revised Final Post-Closure Monitoring and Facility Maintenance Plan for the Airco Parcel, prepared by EA Engineering, PC and its affiliate EA Science and Technology (EA 2004)¹, environmental monitoring points are to be maintained and sampled during the post-closure monitoring period, including the collection of appropriate groundwater, surface water, and groundwater collection treatment system (GCTS) samples. The Post-Closure Monitoring and Facility Maintenance Plan specifies sampling locations, sampling parameters and analytical methods, in addition to other required maintenance activities, such as landfill cap inspections and the operations and maintenance plan for the GCTS. Following completion of the first five years of post-closure monitoring, the original Revised Final Post-Closure Monitoring and Facility Maintenance Plan, which was included as Appendix A in the Interim Remedial Measure Report (EA 2001a)², was re-evaluated and revised based on the data collected at the site so that the monitoring plan is now more focused to address site-specific issues that were identified during the first five years of post-closure monitoring.

^{1.} EA Engineering, P.C. and its Affiliate EA Science and Technology. 2004. Revised Final Post-Closure Monitoring and Facility Maintenance Plan for the Airco Parcel, Niagara Falls, New York. September.

^{2.} EA Engineering, P.C. and its Affiliate EA Science and Technology. 2001a. Interim Remedial Measure Report Documenting Closure of the Witmer Road Landfill, Niagara Falls, New York. Appendix A – Revised Final Post-Closure Monitoring and Facility Maintenance Plan. January.

In accordance with the Revised Post-Closure Monitoring and Facility Maintenance Program the following activities are being conducted annually:

- Environmental monitoring points are being maintained and sampled during the post-closure period.
- An annual summary report is submitted to site stakeholders including the New York State
 Department of Environmental Conservation (NYSDEC) Division of Solid and Hazardous
 Materials, Region 9; the New York State Department of Health, Albany, New York; Linde,
 LLC; and the document repository located at the Town of Niagara Clerk's Office.
- Routine inspections of the sediment ponds and the engineered wetlands are conducted to assess the presence of mosquito larvae.
- Drainage structures and ditches are maintained to prevent ponding of water and erosion of the landfill soil cap.
- Soil cover integrity, slopes, cover vegetation, drainage structures, and the perimeter road are maintained during the post-closure monitoring and maintenance period.
- A vegetative cover is maintained on all exposed final cover material, and adequate measures are taken to ensure the integrity of the final vegetated cover, topsoil layer, and underlying barrier protection layer.
- The GCTS is being operated and maintained to effectively mitigate the discharge of groundwater to surface water in the southwest corner of the Airco Parcel.
- Records are maintained of sample analytical results.

BACKGROUND

The Airco Parcel is part of the Vanadium Corporation of America site that is located in the Town of Niagara Falls, New York (Figure 1). The entire Vanadium site is approximately 150 acres in size, with the Airco Parcel encompassing approximately 25 acres. The 25-acre Airco parcel is the focus of this annual sampling event letter report. The site contains waste material from the historic operations of onsite and nearby production facilities.

An Immediate Investigative Work Assignment (IIWA) investigation was conducted by NYSDEC for a portion of the 150-acre parcel in August 1997, and included investigation of the 70 acre parcel owned by Niagara Mohawk Power Corporation and New York Power Authority. During the investigation, NYSDEC determined that the site had been used by Vanadium Corporation of America (the owners of the site from 1924 to 1964) to dispose of wood, brick, ash, lime slag, ferrochromium silicon slag, and ferrochromium silicon dust. Based on results of the IIWA investigation NYSDEC determined that much of the surface material consisted of fill, including fly ash, dust, slag, and cinder materials.

Analytical results of groundwater samples collected at the site during the IIWA investigation indicated that surface water and groundwater standards were exceeded for hexavalent chromium and pH. The Vanadium site, including the Airco Parcel, has been listed as a Class 2 Hazardous Waste Site in the New York State Registry of Inactive Hazardous Waste Sites (Site No. 932001).

Mr. Brian Theiesse Linde, LLC. April 2012 Page 3

Remedial measures at the Airco Parcel were completed in 2000 when the landfill was capped as part of an Interim Remedial Measure (IRM) implemented at the Site. A complete description of the history of the site, and the construction details of the landfill capping system, can be found in the Interim Remedial Measure Report (EA 2001b)³. During cap construction a relief pipe system was installed to allow perched water to exit from under the cap without causing slope instability. Flow monitoring and sampling were initiated as part the monitoring program. The data collected indicated that the leachate was actually groundwater recharging to surface water and elevated hexavalent chromium concentrations and pH in groundwater remained in excess of the ambient water quality criteria after mixing with surface water.

Therefore, the IRM was augmented in 2003 with the design and implementation of the GCTS, which was determined to be necessary to meet the goals of the interim remedial measures program. The GCTS was designed to prevent the uncontrolled discharge of impacted groundwater from the Airco Parcel and includes pH adjustment via carbon dioxide aeration, settling for precipitate removal, oxidation/reduction via zero valence iron, and final clarification via an engineered wetland. The main portion of the GCTS is located at the northwest corner of the site and contains the main control panel, carbon dioxide storage tank, carbon dioxide aeration system, sedimentation tanks, pump stations, zero valence iron reaction tanks, and an engineered wetland. An influent pump station is located at the southwest corner of the site.

In December 2011, modifications to the GCTS control system, which were outlined in a Proposal for Data Collection for Alternate Remedial Strategy (Greenstar 2011a)⁴ dated 11 October 2011 were completed as approved by the NYSDEC. As part of the proposal, one extraction well was installed through the landfill into weathered bedrock and fitted with a 4 in. diameter variable speed submersible pump capable of yielding at least 10 gallons per minute. This installation is part of a pilot study to explore whether dewatering the upper portion of bedrock can prevent leachate generation.

MONITORING EVENT FIELD ACTIVITIES

The annual and semi-annual monitoring events for 2011 were completed on June 16 2011 and 16 - 18 October 2011. The frequency of monitoring events was reduced at the Airco Parcel for 2011, moving from a biannual to annual basis for groundwater monitoring and remaining on a semi-annual basis for surface water sampling. Approval for modification to the existing Post-Closure Monitoring and Facility Maintenance Plan, outlined in a Proposal for Modifications to Existing Operation and Maintenance Plan at the Witmer Road Landfill, Niagara Falls, New York (Greenstar 2011b)⁵, was given by the NYSDEC in a letter dated 6 June 2011. The sections below provide a summary of data collected as part of this Monitoring event.

^{3.} EA Engineering, Science, and Technology. 2001b. Interim Remedial Measure Report Documenting Closure of the Witmer Road Landfill, Niagara Falls, New York. January.

^{4 .} Greenstar Environmental Solutions. 2011a. Proposal for Data Collection for Alternate Remedial Strategy. October.

⁵. Greenstar Environmental Solutions. 2011b. Proposal for Modifications to Existing Operation and Maintenance Plan at the Witmer Road Landfill, Niagara Falls, New York. April.

Monitoring Well Gauging

The site monitoring wells, Figure 2, were gauged on 16 October 2011 prior to sampling. Gauging data are summarized in the table below:

Manitarina Wall	Depth to Water	Well Elevation	Water Elevation			
Monitoring Well	(ft TOC)	(ft AMSL)	(ft AMSL)			
MW-1B	11.71	617.77	606.06			
MW-2B	12.31	615.88	603.57			
MW-3B	10.05	611.22	601.17			
MW-4B	13.34	606.68	593.34			
MW-5B	10.87	605.48	594.61			
MW-6B	4.45	603.47	599.02			
MW-7B	11.19	609.48	598.29			
MW-8B	6.69	6.69 611.62 604.93				
NOTE: TOC	= Top of casin	g.				
AMSL	= Above mean	Above mean sea level.				

Figure 3 shows the inferred groundwater flow direction at the site, based on the October 2011 gauging data.

LABORATORY ANALYSIS

Groundwater and surface water samples were submitted to TestAmerica Laboratories of Amherst, New York for analysis of phenolics by U.S. Environmental Protection Agency (EPA) Method 420.2, sulfate by EPA Method 375.3, ammonia (expressed as nitrogen) by EPA Method 350.2, and Target Analyte List metals by EPA Series 6010/6020, including hexavalent chromium.

Regulatory Criteria

Groundwater sampling results were compared to NYSDEC Ambient Water Quality Standards (AWQS) (NYSDEC 1999) and guidance values for Class GA waters. Class GA groundwater is used as a source of drinking water. Surface water samples were compared to NYSDEC AWQS for Class D surface waters. Class D waters are used for fishing but are not conducive to fish propagation. If no Class D standards were applicable for a particular compound, analytical results were compared to the more stringent Class C standards. Class C waters are suitable for fishing and fish propagation.

Groundwater Sampling

Monitoring wells were sampled on 17 – 18 October 2011. Eight monitoring wells are present at the site. Groundwater samples were collected from eight monitoring wells during this sampling event. Monitoring wells MW-3B, MW-4B, MW-5B, and MW-8B were purged using dedicated bailers due to slow recharge and limited well volume. Consistent with previous sampling, these wells yield very little groundwater and were bailed dry and allowed to recharge prior to sample collection. Monitoring wells MW-1B, MW-2B, MW-6B and MW-7B had adequate groundwater

Mr. Brian Theiesse Linde, LLC. April 2012 Page 5

yield for low flow sampling utilizing a peristaltic pump. Water quality readings were allowed to stabilize prior to sample collection. Monitoring well locations are shown on Figure 2.

Surface Water Sampling

Surface water samples were collected from the drainage swales in the southwest corner of the site twice during 2011. Sampling occurred on 16 June 2011 and then again during the monitoring well sampling event during 17 – 18 October 2011. The samples were collected from the eastern swale approximately 80 feet east of the pump station (SS-02); the confluence of the two swales where they discharge from the property (SS-01); and upstream of the confluence (SS-03). The surface water sample locations are shown on Figures 2 and 4.

ANALYTICAL RESULTS

Analytical results are summarized on the table provided in Attachment A. Copies of the well gauging, purging, and sampling forms are provided in Attachment B. Laboratory chain of-custody records are provided in Attachment C. A copy of the laboratory data package for groundwater and surface water sampling is included in Attachment D.

Summary tables listing analytical results compared to applicable NYSDEC AWQS are included in Attachment A, and tag maps illustrating analytical results are provided as Figure 4 and 5.

Metals

Unfiltered surface water samples were collected from the three surface water sampling locations in June and October 2011. Significant results included the following:

• Iron was detected in excess of the NYSDEC AWQS in SS-02 (June and October 2011) and SS-03 (October 2011) at concentrations ranging from 0.63 mg/L (SS-02 October 2011) to 2.1 mg/L (SS-02 June 2011). No other metals exceeded their respective NYSDEC AWQS for Class D surface waters.

Unfiltered groundwater samples were collected from the 8 monitoring wells for metals analyses. Significant results included the following:

- Chromium, hexavalent chromium, iron, magnesium, manganese, selenium and sodium were detected in one or more of the groundwater samples at concentrations in excess of NYSDEC AWQS.
- Chromium was detected in excess of the NYSDEC AWQS in MW-2B, MW-4B and MW-8B at concentrations ranging from 0.0762 milligram per liter (mg/L) (MW-8B) to 0.77 mg/L (MW-2B).
- Hexavalent chromium was detected in excess of the NYSDEC AWQS in MW-2B, MW-4B and MW-8B at concentrations ranging from 0.0762 milligram per liter (mg/L) (MW-8B) to 0.925 mg/L (MW-2B).
- Iron was detected in excess of the NYSDEC AWQS in MW-4B, MW-5B and MW-8B at concentrations ranging from 0.47 mg/L (MW-8B) to 5.4 mg/L (MW-4B).

Mr. Brian Theiesse Linde, LLC. April 2012 Page 6

- Magnesium was detected in excess of the NYSDEC AWQS in MW-1B, MW-4B MW-5B, MW-6B and MW-8B at concentrations ranging from 57.7 mg/L (MW-4B) to 82.3 mg/L (MW-5B).
- Manganese was detected in excess of the NYSDEC AWQS in MW-1B at concentration of 0.66 mg/L.
- Selenium was detected in excess of the NYSDEC AWQS in MW-2B and MW-8B at concentrations of 0.011 mg/L and 0.012 mg/L, respectively.
- Sodium was detected in excess of the NYSDEC AWQS in all 8 monitoring wells at concentrations ranging from 31.2 mg/L (MW-5B) to 125 mg/L (MW-1B).

Water Quality Parameters

Water quality parameters, including pH, temperature, conductivity, dissolved oxygen, turbidity, and salinity, were collected in the field. In addition, water quality parameters, including ammonia (expressed as N), phenolics, and sulfate, were analyzed by the laboratory. Notable results for the eight groundwater monitoring wells included the following:

- Phenolics were detected in excess of the NYSDEC AWQS in MW-1B, MW-2B and MW-7B at concentrations ranging from 0.0056J mg/L (MW-1B) to 0.0111 mg/L (0.0111).
- Sulfate was detected in excess of the NYSDEC AWQS in MW-6B at a concentration of 392 mg/L.
- pH measurements were measured outside the NYSDEC AWQS of 6.5-8.5 standard pH units in monitoring well MW-2B, with a pH value of 12.20.

There were no results above NYSDEC AWQC for the three surface water samples collected in June or October 2011.

LANDFILL INSPECTION

Landfill cap inspections were conducted on 16 March, 16 June, 11 September and 12 November 2011. The completed Landfill Cap Inspection Checklists are provided as Attachment E. No deterioration, damage, or erosion to the landfill cap was noted during the engineering inspections. The following action items were identified during the 1st, 2nd, 3rd and 4th quarters included:

- Piezometers installed as part of the pilot study were painted with safety blue paint and reflective markers added.
- Flocculent secondary containment removed from the site. Chemicals transferred into drums and require disposal.
- Area around T-7 reseeded, and vegetation established.
- Check dam was installed around T-7 outlet pipe to prevent organic matter from clogging outfall pipe.

Additional items noted during the inspection that require corrective measures included addressing rodent population issues by repairing/replacing the shed doors to prevent rodents from accessing the interior spaces and removal of the chemical flocculent.

GCTS OPERATIONS AND MAINTENANCE MONITORING ACTIVITIES

Starting in 2011 routine operations and maintenance of the GCTS is preformed during site visits once per month, which is a reduction from biweekly site visits completed in 2010. Approval for modification to the existing Revised Final Post-Closure Monitoring and Facility Maintenance Plan was given by the NYDSEC in a letter dated 6 June 2011. Activities performed include data collection, cleaning and calibration of pH probes, cleaning of pressure transmitters, operational parameter adjustments based on observed site conditions, and general housekeeping tasks. The replacement of system components, including pumps, pressure transmitters, and pH probes is also scheduled and performed during the routine visits when practicable.

System Operations and Maintenance (January – December 2011)

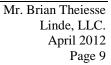
The GCTS was operated throughout the period of 1 January – 31 December 2011. System monitoring was conducted throughout the operation period. Attachment G provides details of the problems encountered, and the implemented solutions.

During the reporting period, the GCTS operated for 8,755 hours (99.94 percent) pumping 8,534,220 gallons at an average flow rate of 16.2 gallons per minute (gpm). The system went down for 5 hours in November due to a CO2 tank system failure. Linde personnel as well as Greenstar personnel were dispatched to the site to correct the failure. The system continued to pump to the T-8 emergency overflow pond and no uncontrolled releases of impacted water occurred. The GCTS sampling occurred monthly during the operation period. Samples were collected at various locations within the system to evaluate treatment system performance and compliance with discharge criteria. Annual samples were collected from the system at T3B after CO₂ aeration; T6B after treatment via the zero valence iron tank; after the engineered wetland (EWE); and at the point where the drainage swale exits the site in the southwest corner, when accessible. The samples were analyzed in the field for total chromium and hexavalent chromium using a HACH DR4000[®] spectrophotometer. The HACH DR4000[®] spectrophotometer field method is EPA approved for reporting water and wastewater analyses within a detection limit of 0.006 and 0.005 mg/L for hexavalent chromium, and 0.003 mg/L for total chromium.

The GCTS discharge samples were analyzed in the field, and separate quarterly samples were collected for off-site laboratory analysis at Test America Laboratories of Amherst, New York for a full list of discharge criteria. During the report period, field analysis on 12 February 2011, 6 June 2011, 19 October 2011, 2 December 2011 noted a hexavalent chromium concentration in excess of the NYSDEC discharge guidance value (11 μ g/L), in the GCTS discharge sample collected from the SS-01 location in the southwest corner. Confirmatory samples were collected and sent to Test America for analysis. The confirmatory samples indicated non-detect or below NYSEC discharge guidance value for hexavalent chromium. Field analysis on 12 November 2011 also noted hexavalent chromium concentrations in excess of the NYSDEC discharge guidance value (11 μ g/L). Due to Test America closure, no confirmatory sample could be

Mr. Brian Theiesse Linde, LLC. April 2012 Page 8

analyzed. Field sampling results for total and hexavalent chromium can be found in Table 1, and results of the quarterly GCTS discharge samples can be found in Table 2.


Analytical results for the quarterly discharge sampling indicated that NYSDEC discharge guidance values for Total Suspended Solids (10 mg/L) was exceeded during the first, third and fourth quarters with values of 18.8 mg/L, 22.8 mg/L and 32.8 mg/L respectively. The NYSDEC discharge guidance value for Dissolved Oxygen (7 mg/L) was not achieved during the fourth quarter. The dissolved oxygen value during the fourth quarter was 5.3 mg/L. The NYSDEC discharge value for Selenium (0.0046 mg/L) was exceeded during the First quarter with a value of 0.005 mg/L. All other analytical results for the quarterly discharge sampling were in compliance with NYSDEC discharge values. The Laboratory data package for the GCTS discharge sampling can be found in Attachment F.

GCTS Modifications (January – December 2011)

In December 2011, modifications to the GCTS, which were outlined in a Proposal for Data Collection for Alternate Remedial Strategy dated 11 October 2011, were completed. As part of the proposal, one extraction well was installed through the landfill into weathered bedrock and fitted with a 4 in. diameter variable speed submersible pump capable of yielding at least 10 gallons per minute. This installation is part of a pilot study to explore whether dewatering the upper portion of bedrock can prevent leachate generation. The extraction well was installed through the low permeability cap and geosynthetic liner which was repaired and sealed after the installation was complete to prevent precipitation from entering the waste mass. The discharge line for extraction well EW-1 was initially connected to the existing piping network for groundwater to be pumped to the GCTS. However, after startup it was determined that the water quality of the EW-1 discharge would meet the SPDES discharge guidance values and was permitted to discharge directly to the GCTS discharge swale. This change was requested due to fouling of the GCTS discharge line (From T-1 to the GCTS) caused by clean neutral pH water mixing with the high pH leachate which resulted in a calcium precipitate forming and blocking the line. Although controlled by the existing SCADA system, this extraction well is no longer part of the GCTS.

Electrical wiring was run from a junction box that supplies power to the T-1 shed. Power for the submersible pump was run from the junction box to a new NEMA 3R control panel mounted to the exterior of a small (3 ft by 3 ft) concrete vault. A vault was installed to cover the well head to permit winter operation. A control panel was constructed to contain a Modicon PLC which will link to the existing Modicon control system via an Ethernet radio consistent with the existing radio network utilized at the site. A variable frequency drive (VFD) used to control the pump was mounted in the wellhead control panel, along with a small heater to keep control systems at operating temperature during winter. The VFD will be used in conjunction with a pressure transducer placed in EW-1 to maintain a constant head drawdown within the well.

Other than modifications associated with the ongoing pilot study, site activities were limited to routine operations and maintenance and emergency response mobilization to alarm conditions. Routine site maintenance included repairs to pumps, VFDs, and pH probes and routine tank and line cleaning. Routine site maintenance to address some of the deficiencies noted in the engineering inspections was performed. Personnel mobilized to an emergency response on 2

December 11 to replace P3B. Attachment G summarizes monthly operation and maintenance and emergency response in detail for the period January through December 2011, as well as provides details of any proposed operation and maintenance projects and modification improvements to be implemented in the near future.

If you have any questions regarding the results of this Annual 2011 Monitoring Event Letter Report, please do not hesitate to contact the undersigned at (845) 223-9944.

Sincerely,

GREENSTAR ENVIRONMENTAL SOLUTIONS

Charles E. McLeod, Jr., P.E.

Project Manager

LIF. MUZ

Peter L. Nimmer, P.G.

Peter Muys

Senior Geologist

Attachment

cc: M. Hinton (NYSDEC) M. Forcucci (NYSDOH)

Town of Niagara Falls (Town Clerk)

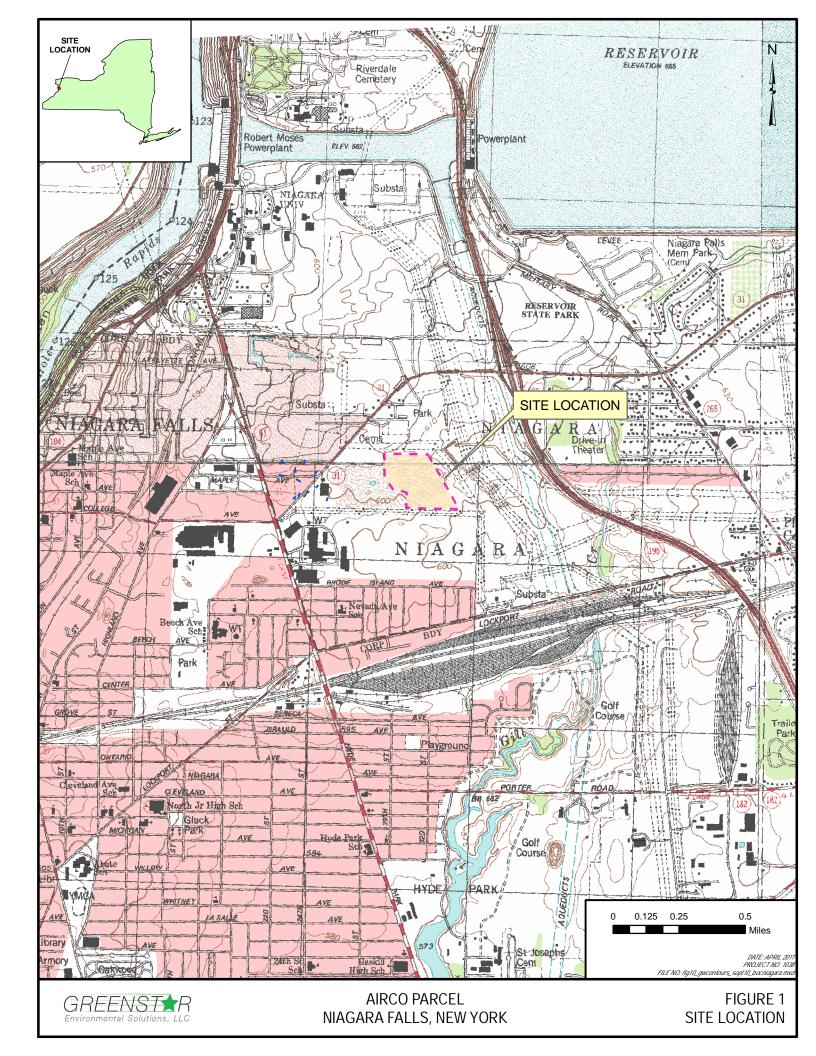
TABLE 1 SUMMARY OF GCTS FIELD SAMPLING RESULTS 1 JANUARY – 31 DECEMBER 2011, AIRCO PARCEL, NIAGARA FALLS, NEW YORK

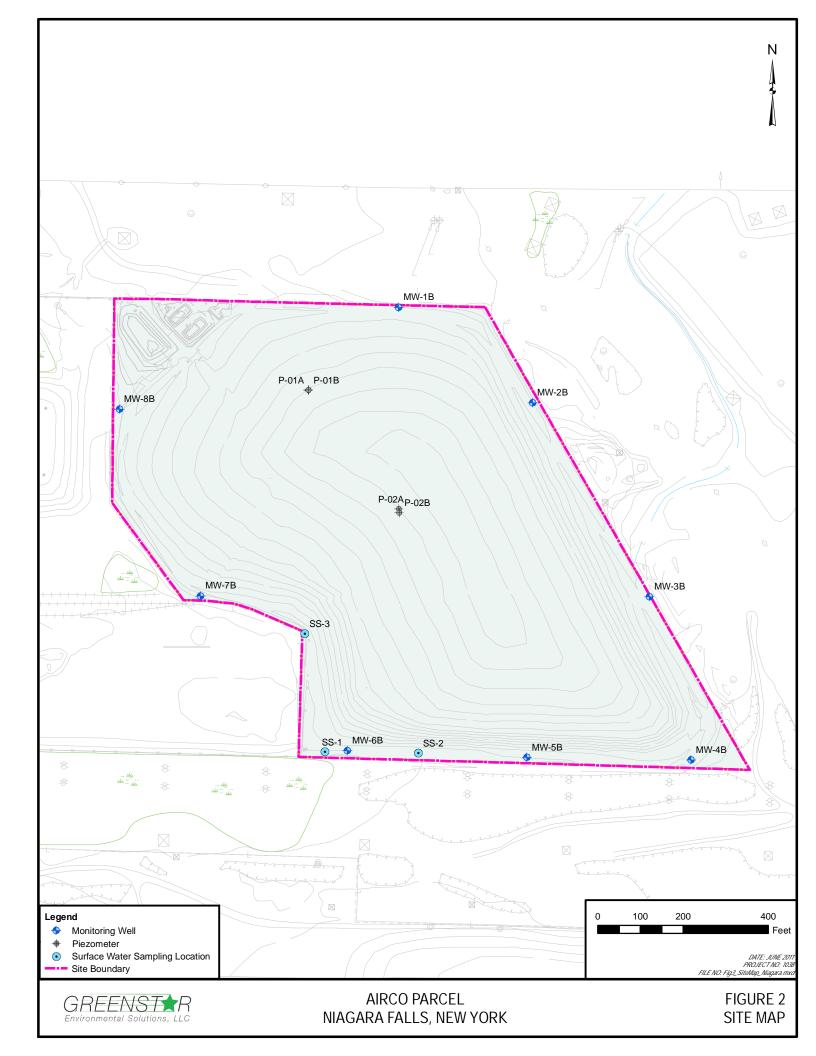
	Chromiun	n Tank 3B	Iron T	ank 6B	Engineere	d Wetland	Southwes	st Corner
	Total	Hexavalent	Total	Hexavalent	Total	Hexavalent	Total	Hexavalent
Date	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium
1/24/11	125 μg/L	1 μg/L	12 μg/L	0 μg/L	18 μg/L	0 μg/L	NS	NS
2/12/11 ⁽¹⁾	18 μg/L	29 μg/L	61 μg/L	8 μg/L	42 μg/L	0 μg/L	4.8 μg/L	<10 μg/L
3/16/11	84 μg/L	75 μg/L	1 μg/L	21 μg/L	0 μg/L	1 μg/L	19 μg/L	10 μg/L
4/12/11	164 μg/L	29 μg/L	4 μg/L	73 μg/L	56 μg/L	0 μg/L	44 μg/L	8 μg/L
5/16/11	91 μg/L	105 μg/L	2 μg/L	51 μg/L	0 μg/L	0 μg/L	20 μg/L	8 μg/L
6/16/11 ⁽²⁾	80 μg/L	73 μg/L	4 μg/L	0 μg/L	6 μg/L	2 μg/L	1.6J μg/L	<10 μg/L
7/16/11 ⁽³⁾	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
8/1/11	17 μg/L	7 μg/L	32 μg/L	8 μg/L	6 μg/L	2 μg/L	21 μg/L	9 μg/L
9/11/11 ⁽⁴⁾	100 μg/L	91 μg/L	79 μg/L	82 μg/L	58 μg/L	1 μg/L	1.3J μg/L	9J μg/L
10/19/11 ⁽⁵⁾		117 μg/L	41 μg/L	53 μg/L	72 μg/L	56 μg/L	1.0J μg/L	<5 μg/L
11/12/11 ⁽⁶⁾	128 μg/L	107 μg/L	5 μg/L	14 μg/L	64 μg/L	77 μg/L	64 μg/L	118 μg/L
12/2/11 ⁽⁷⁾	124 μg/L	131 μg/L	39 μg/L	59 μg/L	15 μg/L	40 μg/L	<3.1 μg/L	<10 μg/L

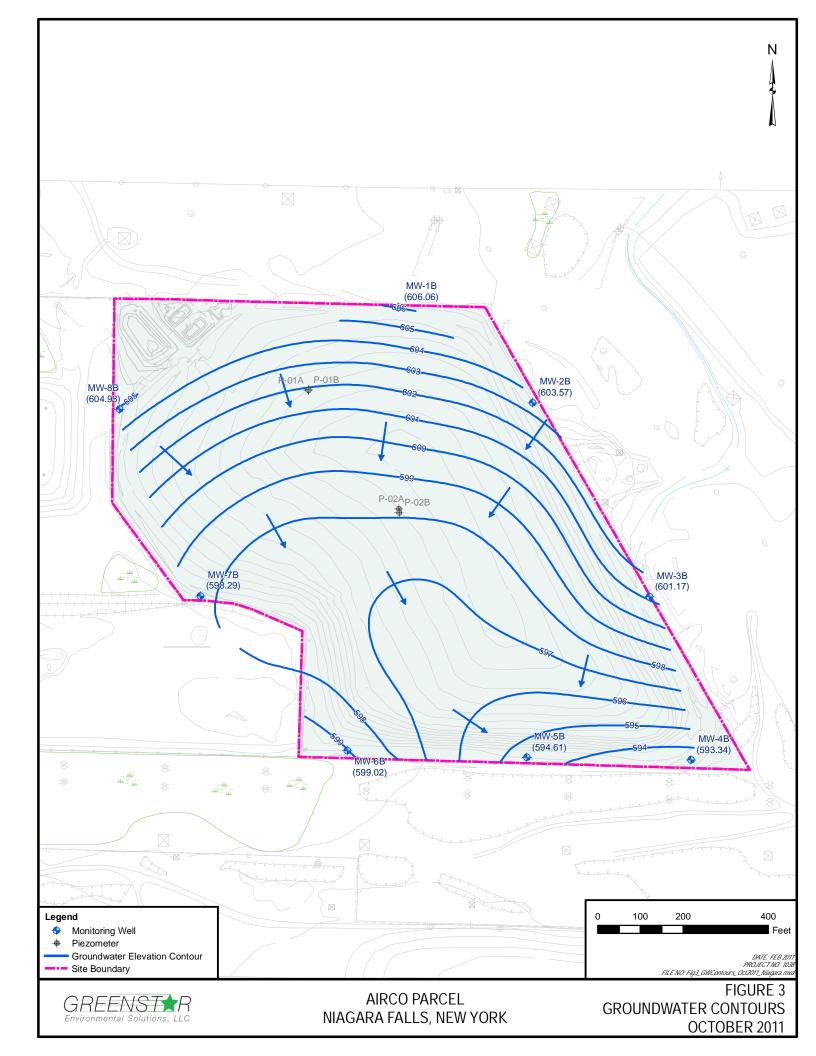
NOTE: NS = Not Sampled

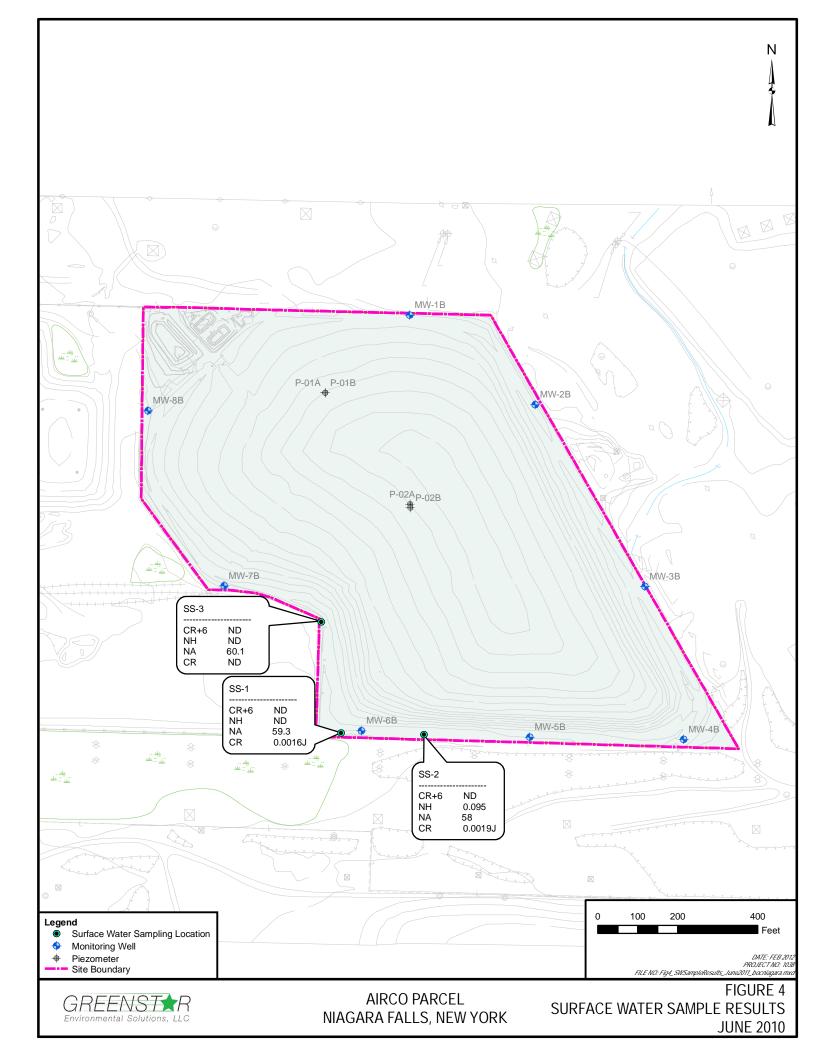
NS - Ice = Not Sampled due to winter weather conditions.

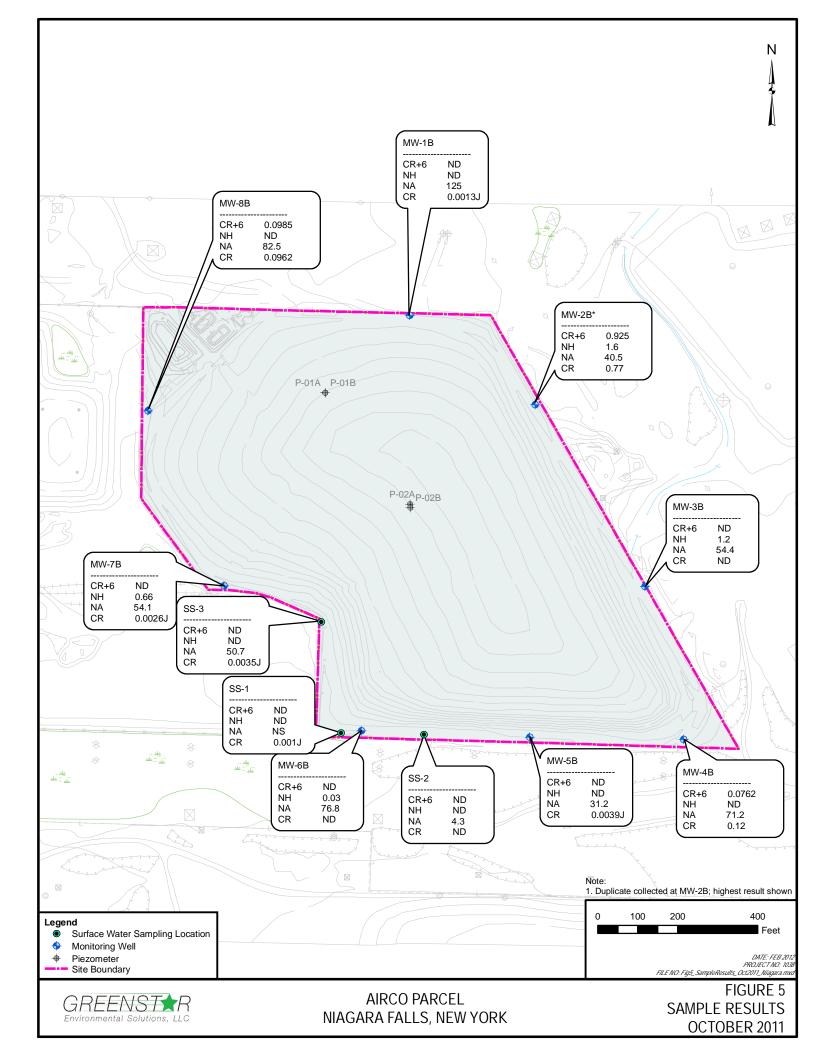
Bold field sample results were in excess of SPDES discharge guidance values.


- (1) Confirmation sample sent to Test America for analysis along with quarterly discharge samples. Sample was ND for hexavalent chromium, and below the NYSDEC discharge value for total chromium.
- (2) Sample collected and sent to Test America for analysis.
- (3) GCTS Maintenance Recording Log misplaced, no field concentrations available.
- (4) Sample collected and sent to Test America for analysis.
- (5) Confirmation sample sent to Test America for analysis. Sample was ND for hexavalent chromium, and below the NYSDEC discharge value for total chromium.
- (6) Test America closed. No confirmation sample analyzed.
- (7) Confirmation sample sent to Test America for analysis along with quarterly discharge samples. Sample was ND for both hexavalent and total chromium.


Field samples analyzed using a HACH DR4000® Spectrophotometer.


Hach Methods 8023 for Hexavalent Chromium and Hach Method 8084 for Total Chromium.


TABLE 2 SUMMARY OF QUARTERLY GCTS DISCHARGE SAMPLING 1 JANUARY AND 31 DECEMBER 2011, AIRCO PARCEL, NIAGARA FALLS, NEW YORK


					New York State Department of Environmental Conservation		
Parameter	12 February 2011	16 June 2011	9 September 2011	18 October 2011	Discharge Criteria		
pН	7.67	7.79	7.95	7.69	6-8		
Total suspended solids	18.8	<4.0U	22.8	32.8	10 mg/L		
Dissolved Oxygen	9.5	7.4	6.6	5.3	7 mg/L		
Ammonia as N	1.4	<0.020U	<0.020U	<9.2U	9.2 mg/L		
Total Kjeldahl nitrogen	2.4	0.28	0.21	0.41	Monitor (mg/L)		
Total Recoverable Phenolics	<0.010U	<0.010U	0.0065J	<0.010U	0.008 mg/L		
Biochemical oxygen demand	<2.0U	<2.0U	<2.0U	<2.0U	5.0 mg/L		
1,1-Dichloroethane	<5U	<5U	<5U	<5U	5.0 μg/L		
Trichloroethene	<5U	<5U	<5U	<5U	5.0 μg/L		
Nickel	0.0033J	0.0019J	0.0019J	0.0013J	0.07 mg/L		
Copper	0.0015J	<0.010U	<0.010U	<0.010U	0.0147 mg/L		
Barium	0.253	0.21	0.216	0.195	2 mg/L		
Total chromium	0.0048	0.0016J	0.0013J	0.0010J	0.1 mg/L		
Hexavalent chromium	<0.010U	<0.010U	0.0090J	<0.010U	0.011 mg/L		
Iron	0.0508	0.036J	0.142	0.0942	0.3 mg/L		
Selenium	0.005	<0.015U	0.00089J	0.00066J	0.0046 mg/L		
Thallium	0.000018J	<0.20U	<0.00020U	0.000025J	0.004 mg/L		
Zinc	<0.010U	<0.010U	<0.010U	0.0036J	0.115 mg/L		
Nitrate as N	1.0	0.53	0.69	0.69	Monitor (mg/L-N)		
Nitrite as N	<0.050U	<0.050U	<0.050U	<0.050U	Monitor (mg/L-N)		
Chemical oxygen demand	<10U	<10U	8.0J	13.3	40 mg/L		
Total dissolved solids	1020	622	531	655	Monitor (mg/L)		
Values in bold exceeded discharge guidance values.							

Attachment A

Summary of Analytical Results Groundwater and Surface Water Samples June and October 2011

ATTACHMENT A

SUMMARY OF ANALYTICAL RESULTS OF SURFACE WATER AND GROUNDWATER SAMPLES COLLECTED IN JUNE 2011,

AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Surface Water

Volatile Organic Compounds by EPA Method 624 (µg/L)

		SS-01
Analyte	AWQS	
Total VOC		ND
1,1-Dichloroethane		(<0.59U)
Trichloroethene	40	(<0.6U)

Baseline Metals by EPA Method 200.7 (mg/L) Total (Unfiltered)

		SS-01	SS-02	SS-03
Analyte	AWQS			
Barium		0.21		
Cadmium		<0.00033U	<0.00033U	<0.00033U
Chromium		0.0016J	0.0019J	0.0013J
Chromium, Hexavalent	0.016	(<0.005U)	(<0.005U)	(<0.005U)
Copper		(<0.0015U)		
Iron	0.3	0.036J	2.1	0.16
Lead		(<0.003U)	0.011	(<0.003U)
Magnesium		1.2	8.4	1.2
Manganese		0.0031B	0.2B	0.0089B
Nickel		0.0019J		
Selenium	0.0046	(<0.0087U)	(<0.0087U)	(<0.0087U)
Silica		2.1	4.7	2.33
Sodium		59.3	58	60.1
Thallium	0.02	(<0.01U)	(<0.01U)	(<0.01U)
Zinc		(<0.0017U)	0.016B	0.0017JB

		SS-01	SS-02	SS-03
Analyte	AWQS			
Ammonia (expressed as N)		(<0.009U)	0.095	(<0.009U)
BOD		(<2U)		
COD		(<5U)		
Dissolved Oxygen		7.4		
Nitrate (expressed as N)		0.53		
Nitrite (expressed as N)	0.01	(<0.02U)		
pН		7.79		
Phenolics		(<0.005U)	(<0.005U)	(<0.005U)
Sulfate		7.3	0.47J	7.2
TDS		622		
TKN		0.28		
TSS		(<4U)		

ATTACHMENT A (CONTINUED)

TABLE NOTES

AWQS = New York State Ambient Water Quality Standards and Guidance Values from

Water Quality Regulations, Title 6, Chapter X Parts 700-706 August 1999.

* = Indicates guidance value.

U = Not detected. Sample quantitation limits shown as (<__U).

Only those analytes detected in at least one of the samples is shown on this table. Results shaded and in boldface indicate concentrations in excess of New York State Ambient Water Quality Standards or Guidance Values.

Analytical Methods for Water Quality Parameters

Ammonia (expressed as Nitrogen) = EPA 350.2 Phenolics = EPA 420.2 Silica = EPA 6010 Sulfate = EPA 375.3

ATTACHMENT A

SUMMARY OF ANALYTICAL RESULTS OF SURFACE WATER AND GROUNDWATER SAMPLES COLLECTED IN OCTOBER 2011,

AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Groundwater

Baseline Metals by EPA Method 200.7 (mg/L) Total (Unfiltered)

		MW-1B	MW-2B	MW-2B (Dup)	MW-3B	MW-4B	MW-5B	MW-6B	MW-7B	MW-8B
Analyte	AWQS									
Cadmium	0.005	0.00099J	<0.00033U	<0.00033U	<0.00033U	0.00085J	0.00034J	<0.00033U	<0.00033U	0.00065J
Chromium	0.05	0.0013J	0.77	0.77	<0.00087U	0.12	0.0039J	<0.00087U	0.0026J	0.076
Chromium, Hexavalent	0.05	(<0.005U)	0.754	0.925	(<0.005U)	0.0762	(<0.005U)	(<0.005U)	(<0.005U)	0.0762
Iron	0.3	0.12	(<0.019U)	(<0.019U)	0.042J	5.4	0.6	0.28	0.095	0.47
Lead	0.025	(<0.003U)	(<0.003U)	(<0.003U)	(<0.003U)	(<0.003U)	(<0.003U)	(<0.003U)	(<0.003U)	(<0.003U)
Magnesium	35*	62.2	(<0.043U)	(<0.043U)	5.8	57.7	82.3	73.1	8.3	68.3
Manganese	0.3	0.66	(<0.0003U)	(<0.0003U)	0.0059	0.11	0.021	0.14	0.037	0.23
Selenium	0.01	(<0.0087U)	0.0097J	0.011J	(<0.0087U)	(<0.0087U)	(<0.0087U)	(<0.0087U)	<0.0087U)	0.012J
Silica		6.91B	0.509B	0.496B	8.26B	36B	16.8B	5.95B	4.96B	7.55B
Sodium	20	125	40.5	39.8	54.4	71.2	31.2	76.8	54.1	73.5
Thallium	0.0005*	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)	(<0.01U)
Zinc	2*	0.56	(<0.0017U)	0.0021J	0.0069J	0.06	0.025	0.002J	0.0023J	0.12

		MW-1B	MW-2B	MW-2B (Dup)	MW-3B	MW-4B	MW-5B	MW-6B	MW-7B	MW-8B
Analyte	AWQS									
Ammonia (expressed as N)	2	(<0.009U)	1.6	1.6	1.2	(<0.009U)	(<0.009U)	0.03	0.66	0.043
Phenolics	0.001	0.0056J	0.0105	0.01	(<0.005U)	(<0.005U)	(<0.005U)	(<0.005U)	0.0111	(<0.005U)
Sulfate	250	186	21.5	21.6	66.7	153	150	363	30.4	193

Surface Water

Volatile Organic Compounds by EPA Method 624 ($\mu g/L$)

		SS-01
Analyte	AWQS	
Total VOC		ND
1,1-Dichloroethane		(<0.59U)
Trichloroethene	40	(<0.6U)

Baseline Metals by EPA Method 200.7 (mg/L) Total (Unfiltered)

		SS-01	SS-02	SS-03
Analyte	AWQS			
Barium		0.195		
Cadmium			<0.00033U	<0.00033U
Chromium		0.001J	<0.00087U	0.0035J
Chromium, Hexavalent	0.016	(<0.005U)	(<0.005U)	(<0.005U)
Copper		(<0.0015U)		
Iron	0.3	0.0942	0.63	1.6
Lead			(<0.003U)	(<0.003U)
Magnesium			20.1	7.5
Manganese			0.38	0.13
Nickel		0.0013J		
Selenium	0.0046	0.00066J	(<0.0087U)	(<0.0087U)
Silica		2.86B	7.83B	2.58B
Sodium			4.3	50.7
Thallium	0.02	0.000025J	(<0.01U)	(<0.01U)
Zinc		0.0036J	0.0049J	0.02

		SS-01	SS-02	SS-03
Analyte	AWQS			
Ammonia (expressed as N)		(<0.009U)	(<0.009U)	(<0.009U)
BOD		(<2U)		
COD		13.3		
Dissolved Oxygen		5.3		
Nitrate (expressed as N)		0.69		
Nitrite (expressed as N)	0.01	(<0.02U)		
pH		7.69		
Phenolics		(<0.005U)	0.0206	0.0062J
Sulfate		24.5	27.8	23.4
TDS		655		
TKN		0.41		
TSS		32.8		

ATTACHMENT A (CONTINUED)

QA/QC

Volatile Organic Compounds by EPA Method 624 ($\mu g/L$)

		TB-01
Analyte	AWQS	
Total VOC		ND
1,1-Dichloroethane		(<0.59U)
Trichloroethene		(<0.6U)

Baseline Metals by EPA Method 200.7 (mg/L) Total (Unfiltered)

		RB-01	SWB-01
Analyte	AWQS		
Cadmium		<0.00033U	<0.00033U
Chromium		<0.00087U	<0.00087U
Chromium, Hexavalent		0.0056J	0.0056J
Iron		(<0.019U)	(<0.019U)
Lead		(<0.003U)	(<0.003U)
Magnesium		1.3	1.3
Manganese		(<0.0003U)	(<0.0003U)
Selenium		(<0.0087U)	(<0.0087U)
Silica		3.89B	3.78B
Sodium		6.8	6.7
Thallium		(<0.01U)	(<0.01U)
Zinc		0.0026J	0.0022J

		RB-01	SWB-01
Analyte	AWQS		
Ammonia (expressed as N)		(<0.009U)	(<0.009U)
Phenolics		0.0052J	0.0054J
Sulfate		6.5	6.4

ATTACHMENT A (CONTINUED)

TABLE NOTES

AWQS = New York State Ambient Water Quality Standards and Guidance Values from

Water Quality Regulations, Title 6, Chapter X Parts 700-706 August 1999.

* = Indicates guidance value.

U = Not detected. Sample quantitation limits shown as (<__U).

Only those analytes detected in at least one of the samples is shown on this table. Results shaded and in boldface indicate concentrations in excess of New York State Ambient Water Quality Standards or Guidance Values.

Analytical Methods for Water Quality Parameters

Ammonia (expressed as Nitrogen) = EPA 350.2 Phenolics = EPA 420.2 Silica = EPA 6010 Sulfate = EPA 375.3

Attachment B

Well Gauging, Purging, and Sampling Forms October 2011

Personnel:	Client:
NM	Linde, Inc.
Well Condition:	Weather:
Good; Locked	Cloudy, Windy, 50°
Gauge Date:	Measurement Ref:
10/16/2011	TOC
Gauge Time:	Well Diameter (in):
11:05	2"
	NM Well Condition: Good; Locked Gauge Date: 10/16/2011 Gauge Time:

Purge Date:	Purge Time:
10/18/2011	38 min.
Purge Method:	Greenstar Personnel:
Low-Flow	NM

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft ³):	Depth/Height of Top of PVC:				
27.83	0.35	N/A				
B. Depth to Water (ft):	E. Well Volume (L)	Pump Type:				
11.71	10.0	Peristaltic				
C. Liquid Depth (ft) (A-B):		Pump Designation:				
16.12		N/A				

Water Quality Parameters									
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Lpm)	pH (pH units)	Conduct. (mS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp. (° C)	ORP (mv)
11:08	12.12	0.2	0.20	9.30	1.72	0.2	1.24	12.27	74
11:12	12.15	1	0.20	8.93	1.74	0.0	0.75	11.98	74
11:16	12.19	1.8	0.20	8.51	1.74	0.0	0.62	11.83	77
11:20	12.19	2.6	0.20	8.09	1.74	0.1	0.56	11.73	75
11:24	12.19	3.4	0.20	7.79	1.73	0.0	0.50	11.66	71
11:28	12.19	4.2	0.20	7.61	1.72	0.1	0.48	11.69	68
11:32	12.19	5	0.20	7.35	1.72	0.0	0.42	11.77	60
11:36	12.19	5.8	0.20	7.26	1.71	0.0	0.41	11.79	59
11:40	12.19	6.6	0.20	7.14	1.71	0.0	0.40	11.79	54
11:44	12.19	7.4	0.20	7.07	1.70	0.0	0.39	11.74	52
11:46	12.19	8.2	0.20	7.04	1.70	0.0	0.38	11.75	51

Total Quantity of Water Removed:	8.2 L	Sampling Time:	11:55
Samplers:	NM	Split Sample With:	N/A
Sampling Date:	10/18/2011	Sample Type:	GRAB

COMMENTS AND OBSERVATIONS: Well remarked with paint pen.

Well I.D.:	Personnel:	Client:
AP-MW2B	NM	Linde, Inc.
Location:	Well Condition:	Weather:
Niagara Falls	Good; Locked	Cloudy, Windy, 50°
Sounding Method:	Gauge Date:	Measurement Ref:
WLI	10/16/2011	TOC
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
UP	11:10	2"

Purge Date:	Purge Time:
10/18/2011	44 min
Purge Method:	Greenstar Personnel:
Low-Flow	NM

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft ³):	Depth/Height of Top of PVC:				
27.31	0.33	N/A				
B. Depth to Water (ft):	E. Well Volume (L):	Pump Type:				
12.31	9.3	Peristaltic				
C. Liquid Depth (ft) (A-B):		Pump Designation:				
15.00		N/A				

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Lpm)	pH (pH units)	Conduct. (mS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp. (° C)	ORP (mv)
9:41	12.33	0.2	0.10	11.14	1.52	0.2	3.88	10.31	-210
9:45	12.35	0.6	0.10	11.84	2.37	0.4	3.47	10.53	-176
9:49	12.35	1	0.10	12.05	3.61	0.0	3.42	10.73	-156
9:53	12.35	1.4	0.10	12.14	4.17	0.0	3.37	10.90	-145
9:57	12.35	1.7	0.10	12.19	4.68	0.3	3.31	11.15	-133
10:01	12.35	2.1	0.10	12.22	5.08	0.0	3.29	11.40	-124
10:05	12.35	2.4	0.10	12.23	5.26	0.5	3.21	12.23	-118
10:09	12.35	2.7	0.10	12.22	5.32	2.7	3.30	11.76	-113
10:13	12.35	3.1	0.10	12.21	5.15	2.7	3.39	11.94	-108
10:17	12.35	3.5	0.10	12.20	5.02	2.7	3.43	12.13	-104
10:21	12.35	3.9	0.10	12.20	4.99	3.8	3.44	12.21	-101
10:25	12.35	4.3	0.10	12.20	4.95	3.5	3.58	12.36	-99

Total Quantity of Water Removed:	4.3 L	Sampling Time:	10:25
Samplers:	NM	Split Sample With:	AP-DUP-01
Sampling Date:	10/18/2011	Sample Type:	GRAB

COMMENTS AND OBSERVATIONS: AP-DUP-01 collected from MW-2B. Well remarked with paint pen.

Well I.D.:			Personnel: Client:								
	AP-MW3B			NM			Linde, Inc.				
Location:			Well Cond				Weather:				
	Niagara Falls			Good; Locked			Cloudy, Windy, 50°				
Sounding I			Gauge Da			Measurement F	Ref:				
	WLI			10/16/2011			TOC				
Stick Up/D	• •		Gauge Tin	ne:		Well Diameter	(in):				
	UP						2"				
Purge Date	e :				Purge Tim	ie:					
	10/16/2011					11 min.					
Purge Metl					Greenstar	Personnel:					
	Hand-Bail					NM					
				Well	l Volume						
A. Well De	pth (ft):		D. Well Vo	lume (ft³):		Depth/Height o	f Top of PVC:				
·	18.41			0.18	}	_	N/A				
B. Depth to	Water (ft):		E. Well Vo	lume (L):		Pump Type:					
	10.05			5.2	5.2 3' Poly Bailer						
C. Liquid D	Pepth (ft) (A-B)	:				Pump Designation:					
	8.36						N/A				
				Water Qua	lity Paran	neters					
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP		
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)		
11:28	16.40	5.2	-	8.19	0.647	1.7	4.71	11.39	222		
11:32	Dry	7.6	-	-	-	-	-	-	-		
15:49	10.33	-	-	7.45	0.479	6.2	5.17	13.67	136		
Tatal O:		Dama avli		7.0.1		Camplin - T!	_	4.0).40		
	ntity of Water F	kemoved:		7.6 L	_	Sampling Time			2:10		
Samplers:			10/	NM 17/2011	_	Split Sample W Sample Type:	iui:		I/A RAB		
Sampling I	Dale.		10/	11/2011	-	Sample Type:		G	NAD		
COMMENT	S AND OBSE	-2NΩTIΩNG·		Well remarke	d with naint	pen. Bailer replac	-ba-				
COMMENT	C AITE ODOLI	A . 10110.		** CII TOTTIAI NO	a with pairit	pori. Danei Tepiat	,ou.				

Well I.D.:			Personnel	:		Client:			
	AP-MW4B			NM		Linde, Inc.			
Location:			Well Cond			Weather:			
	Niagara Falls			Good; Locked Cloudy, Windy, 50°			, 50°		
Sounding	Method:		Gauge Da	te:		Measurement Ref:			
	WLI			10/16/2011			TOC		
Stick Up/D	own (ft):		Gauge Tin	ne:		Well Diameter (in):		
	UP			0:00			2"		
Purge Date	e :				Purge Tim	e:			
	10/16/2011					4 min.			
Purge Met	hod:				Greenstar	Personnel:			
	Hand Bail					NM			
				Well	l Volume				
A. Well De	pth (ft):		D. Well Vo	lume (ft ³):		Depth/Height o	f Top of PVC:		
	15.08			0.04			N/A		
B. Depth to	B. Depth to Water (ft): E. Well Volume (L):				Pump Type:				
	13.34	1.1 3' Poly Bailer							
C. Liquid D	Pepth (ft) (A-B)):				Pump Designation:			
	1.74						N/A		
				Water Qua	lity Paran	neters			
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)
11:45	13.34	0	-	6.26	1.01	16.0	3.28	11.62	145
11:49	Dry	1.1	-	-	-	-	-	-	-
15:58	13.67	-	-	7.43	0.92	591.0	4.93	12.49	156
								ļļ	
								 	
				ļ					
T (1 5				4 4 1		o		_	00
	ntity of Water F	Removed:		1.1 L	_	Sampling Time			00
Samplers:			401	NM 17/2011	_	· · · · · · · · · · · · · · · · · · ·			I/A
Sampling I	Date:		10/	17/2011	_	Sample Type:		G	RAB
COMMENT	E AND OBSE	OVATIONS:		Wall ramarica	d with point	pen. Bailer replac	ad		
COMMENT	S AND OBSE	VALIONS:		vven remarke	u wiiii paint	peri. Daller replac	cu.		

Well I.D.:			Personnel:			Client:					
	AP-MW5B			NM			Linde, Inc.				
Location:			Well Cond				Weather:				
	Niagara Falls			Good; Locked			Cloudy, Windy, 50°				
Sounding I			Gauge Da			Measurement F	Ref:				
	WLI			10/16/2011			TOC				
Stick Up/D			Gauge Tin			Well Diameter ((in):				
	UP			11:55			2"				
Purge Date	e :				Purge Tim	e:					
	10/16/2011					3 min.					
Purge Metl					Greenstar	Personnel:					
	Hand Bail					NM					
				Well	l Volume						
A. Well De	pth (ft):		D. Well Vo	lume (ft ³):		Depth/Height o	f Top of PVC:				
•	14.22			0.07	•	-	N/A				
B. Depth to	Water (ft):		E. Well Vo	lume (L):		Pump Type:					
	10.87		2.1 3' Poly Bailer								
C. Liquid D	Pepth (ft) (A-B)	:				Pump Designation:					
	3.35						N/A				
				Water Qua	lity Paran	neters					
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP		
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)		
12:00	10.87	0	-	6.62	1.20	5.9	4.52	11.86	144		
12:03	Dry	2.2	-	-	-	-	-	-	-		
16:04	11.72	-	-	7.20	1.16	43.0	3.05	13.12	169		
								1			
Tatal O:	.414) a ma a ! .		0.0		Committee or Ti	_	4.0).FO		
	ntity of Water F	kemovea:		2.2 NM	_	Sampling Time			2:50 I/A		
Samplers:			10/	NM 17/2011	_	Split Sample W Sample Type:	iui:		RAB		
Sampling I	Dale.		10/	11/2011	-	Sample Type:		G	NAD		
COMMENT	S AND OBSER	SVΔTIΩNG∙		Well remarked	d with naint	pen. Bailer replac	-ba-				
COMMENT	C AITE ODOLI			** CII TOTTIAI NO	a with pairit	pori. Danei Tepiac	,ou.				

Well I.D.:	Personnel:	Client:
AP-MW6B	NM	Linde, Inc.
Location:	Well Condition:	Weather:
Niagara Falls	Good; Locked	Cloudy, Windy, 50°
Sounding Method:	Gauge Date:	Measurement Ref:
WLI	10/16/2011	TOC
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
1.15	40.44	0.11
UP	12:11	2"

Purge Date:	Purge Time:
10/18/2011	41 min.
Purge Method:	Greenstar Personnel:
Low-Flow	NM

Well Volume								
A. Well Depth (ft):	D. Well Volume (ft ³):	Depth/Height of Top of PVC:						
23.02	0.41	N/A						
B. Depth to Water (ft):	E. Well Volume (L):	Pump Type:						
4.45	11.5	Peristaltic						
C. Liquid Depth (ft) (A-B):		Pump Designation:						
18.57		N/A						

	Water Quality Parameters										
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Lpm)	pH (pH units)	Conduct. (mS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp. (° C)	ORP (mv)		
8:22	5.42	0.2	0.10	5.97	1.31	0.0	1.59	10.60	136		
8:25	5.71	0.5	0.10	6.26	1.29	0.0	1.17	10.78	94		
8:29	5.91	0.9	0.10	6.40	1.28	0.0	1.00	10.75	70		
8:33	6.16	1.3	0.10	6.54	1.27	0.0	0.89	10.86	48		
8:37	6.50	1.7	0.10	6.64	1.27	0.0	0.76	11.04	23		
8:41	6.71	2.1	0.10	6.67	1.26	0.0	0.67	11.23	14		
8:45	6.89	2.5	0.10	6.71	1.26	0.0	0.66	11.36	3		
8:49	7.27	2.9	0.10	6.74	1.26	0.0	0.60	11.47	-10		
8:53	7.55	3.3	0.10	6.77	1.26	0.0	0.60	11.50	-22		
8:57	7.81	3.7	0.10	6.79	1.26	0.0	0.56	11.53	-27		
9:01	7.99	4.1	0.10	6.80	1.26	0.0	0.54	11.55	-32		

Total Quantity of Water Removed:	4.1 L	Sampling Time:	9:10
Samplers:	NM	Split Sample With:	N/A
Sampling Date:	10/18/2011	Sample Type:	GRAB
_	_		

COMMENTS AND OBSERVATIONS: Well remarked with paint pen. Well produces little water, significant drawdown.

Purge Method:

Low-Flow

WELL GAUGING, PURGING AND SAMPLING FORM

Well I.D.:	Personnel:	Client:	
AP-MW7B	NM	Linde, Inc.	
Location:	Well Condition:	Weather:	
Niagara Falls	Good; Locked	Cloudy, Windy, 50°	
Sounding Method:	Gauge Date:	Measurement Ref:	
WLI	10/16/2011	TOC	
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	
UP	12:19	2"	
Purge Date:	Purge	e Time:	
40/47/0044		20	

Well Volume								
A. Well Depth (ft):	D. Well Volume (ft ³):	Depth/Height of Top of PVC:						
21.79	0.23	N/A						
B. Depth to Water (ft):	E. Well Volume (L):	Pump Type:						
11.19	6.5	Peristaltic						
C. Liquid Depth (ft) (A-B):		Pump Designation:						
10.60		N/A						

Greenstar Personnel:

NM

	Water Quality Parameters										
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Lpm)	pH (pH units)	Conduct. (mS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp. (° C)	ORP (mv)		
12:22	12.20	0.3	0.20	7.57	0.419	0.3	1.50	13.02	56		
12:26	13.00	0.9	0.15	7.68	0.413	0.0	0.82	13.36	9		
12:30	13.41	1.3	0.10	7.75	0.407	0.0	0.65	13.89	-32		
12:34	13.83	1.7	0.10	7.84	0.406	0.0	0.60	14.38	-60		
12:36	14.05	2.1	0.10	7.86	0.404	0.0	0.57	14.48	-67		
12:40	14.26	2.5	0.10	7.87	0.402	0.0	0.52	14.56	-81		
12:44	14.65	2.9	0.10	7.98	0.399	0.0	0.52	14.54	-85		
12:48	15.06	3.3	0.10	7.99	0.398	0.0	0.48	14.61	-90		
12:52	15.47	3.7	0.10	7.99	0.397	0.0	0.49	14.56	-95		
	_										

Total Quantity of Water Removed:	3.7 L	Sampling Time:	13:05
Samplers:	NM	Split Sample With:	N/A
Sampling Date:	10/18/2011	Sample Type:	GRAB
_	_		

COMMENTS AND OBSERVATIONS: Well remarked with paint pen.

Well I.D.:

WELL GAUGING, PURGING AND SAMPLING FORM

Client:

Personnel:

	AP-MW8B			NM		Linde, Inc.										
Location:			Well Cond	ition:		Weather:										
	Niagara Falls	Good; Locked Cloudy, Windy, 50° Gauge Date: Measurement Ref:														
Sounding I			Gauge Dat		<u> </u>	Measurement F	Ref:									
	WLI			10/16/2011			TOC									
Stick Up/Do			Gauge Tin			Well Diameter (· -									
	UP			12:28			2"									
Purge Date					Purge Tim											
	10/16/2011					9 min.										
Purge Meth					Greenstar	r Personnel:										
	Hand Bail					NM										
				Well	Volume				1							
A. Well Dep	oth (ft):		D. Well Vo			Denth/Height o	f Top of PVC:									
A. Well Dep	15.51		D. 110 10	0.19)	Depth/Height of Top of PVC: N/A										
B. Depth to			E. Well Vo			Pump Type:										
•	6.69			5.4		3' Poly Bailer										
C. Liquid D	epth (ft) (A-B):					Pump Designation:										
	8.82				N/A											
	Water Quality Parameters															
Time	DTW	Volume	Rate	рН	Conduct.	Turbidity	D.O.	Temp.	ORP							
(hrs)	(ft btoc)	(liters)	(Lpm)	(pH units)	(mS/cm)	(NTU)	(mg/L)	(° C)	(mv)							
12:34	15.45	5.3	-	6.88	1.40	>800	4.11	12.50	143							
12:37	Dry	6	-	-	-	-	-	-	-							
10:10	C CE			7.10	1.00	20.4	F 00	10.74	470							
16:10	6.65	-	-	7.19	1.36	20.4	5.02	12.74	172							
Tatal O	4i44 W-1			C.I.		Committee or The	_									
	tity of Water Re	emovea:		6 L NM	=	Sampling Time Split Sample W		13:10								
Samplers: Sampling [)ato:			17/2011	-	Sample Type:	N/A GRAB									
Janiping L	Jaie.		10/	11/2011	-	Sample Type:			VAD							
COMMENT	S AND OBSER	VATIONS:		Well remarked	d with paint r	oen. Bailer replac	ed.									

Sample ID	Date	Time	Sample Location	Notes
AP-DUP-01	10/18/2011	N/A	AP-MW-2B	
AP-RB-01	10/18/2011	14:00	Rinse Blank	Poland Springs H2O off tip of water level meter
AP-SWB-01	10/18/2011	14:10	Source Water Blank	Poland Spring Water
AP-SS-01	10/17/2011	14:30	At collection pool b4 leaving property in SW corner	
AP-SS-02	10/17/2011	14:50	80' N of MW-6 towards MW-5	
AP-SS-03	10/17/2011	15:10	BTW shed and MW-7; drainage swale uphill	
AP-EWE-01	N/A	N/A	At collection pool b4 leaving property in SW corner	Same as AP-SS-01

Attachment C Chain-of-Custody Records

TestAmerica Buffalo

10 Hazelwood Drive

Amherst NY 14228-2298 Phone (716) 691-2600 Fex (716) 691-7991

Chain of Custody Record

Client Information					eu PM	y-Erdmann, Peggy								Camer Tracking No(s)							CDC No: 480-13944-2891 1		
Chert Const.t Phone: E						Page																	
Charles E McLood Jr. Company				P	eggy	.gray-	erdn	iann	O les	IBM	ericali	nc. 6 0	ו חיל								aga to 12		
Greenstar Environmental Solutions, LLC										Ar	alys		tequ	jest	ed			_		┶			
Address 6 Gellatty Drive	Que Dele Requested.					e.	1		. 1			\$]			- (- 1	reservation Code	M-Hanara:	
Čriv. Wapprogers Falls Stane, Ziv.	TAT Requested (d	ays]:								•		00,088,0								B C D	- MGI - NaOH - Zn Acesate - NaMSOA	N - Norte O - As NBC2 P - Ma2O45 O - Na2SO3	
NY, 12590 ² hone	PQ#	_			\dashv	***					3			l i			<u> </u>			F	- MeOH - Amchlar	A - M±2S2SO3 S - H2SO4	
845-223-9944(Tel)	150C265-1006- wor	יס				100						ond,	ž				n Oemeria	anne sane		1:	l - Ascorbic Acid - Ice - DIWeer	T 75P Operaty@8i6 U - Actions V - MCAA	
cmcleod@greenstarsolutions.com ProjectName	Project #					Ιŧ				pouter	ž	ξ	8				출 :	5	Ø 8	ĚĚ	- EDTA	VV - gar 4-5 Z - other (aposity)	
Greenstar Environmental Solutions, LLC	48002405					3			2	4	Total	ē	2				micel Oxygen	5	DU I	ĒΙ	- RÓA Nec:	C - comes (aboving)	
Sire. New York	SSOW4.						£	ottati		Local		8	Ę	ě		- 1		<u> </u>		5	11-211		
Sampte Identifiçatjon	Sample Date	Sample Time	Sample Type (Cecomp, G=grab)	Maut) (w.e.e. Sepolet Central Official		reid Filteres Sampe (1985 of Pettern MSMSQ (1985 of NS)	6010B + Silicon	300.0_280 · Suffate	350.1 - Ammonla	200.7 - (MOD) Local	420.4 - Phanolics, Total Recoverable	Fleid Sampling - (MOD) pH.Cond, Temp, DO, OHP, OWER	71964 - Chrombutt, hezavaleni	380.1, 351.2, 410.4	200.7, 200.8	634, Sml - 624	S210B - Bloch	ZDAUC_CORICO - LOUB	2540D - Total Suspended Solids	Total Number of	Special In	structions/Note:	
	><	> <		tion Code	a:)	W		N	s	D	s	N .	N	S	<u> </u>	ا ١	4 1	1	T D	XI.			
SS-02	6/16	16:10	6	Water	<u>. </u>	T_	7	1	<u> </u>	1	1	_[ı			_		_	_1	_			
58-03	6//6	16:20	6	Wate	<u>.</u>	\mathbb{L}	LL!	_	1	1	1	_	١			_	\perp	_	\perp	1		<u>-</u>	
SS-01	6/16	16:00	6	Waje		L		1	<u> </u>				1	Ц	1	3	<u>1</u>]	ij	1	_			
	<u> </u>			•	\perp	<u> </u>	Ľ	L.	L	_	Щ		\Box			_		_	_	1			
					┙		<u> </u>		L	L	Ц				\perp	_ļ		_ļ	_	1			
					\perp	┸	L		L	L	L		_:	_	Ц	_	\downarrow	_	_	_{			
						L				_	<u> </u>		L		Ц	\Box	\perp	_	_	4			
						L	L	_		L							_		_	_1			
						Ι.	L	L	L									_	_	\perp			
						L						<u> </u>	_	L					\Box				
				-	1	Т	-	[-	<u> </u>								į		- !				
Possible Hazard Identification						S	mpk	Dis	DO 5	ai (A	l fee .	may	be s	3 <i>50</i>	\$ 500	if sa	mpk	9 A	18 VBI	telni	ed longer than		
☐ Non-Hazard ☐ Flammable ☐ Skin Imitant ☐ Port Detiverable Requested 1, R, III, IV, Other (specify)	son B Unki	WWTI -	Radiologica	af			□ _P				of DC Ri				osef £	ly La	ь	_		Arch	ive For	Months	
•						<u></u>	_	11141		9 11.22 C			•,		I								
Empty Kit Relinquished by	Tours :	Dale:		le		Time'		TRACE OF	hai:	_		_	_		Meth	10 01	Superior Clares					Сетрину	
Administration of the second	Dalot re.	17.15	0	Соправу				72	~ <u>~</u>		2	_		_			<u>ኛ</u> "	77	410	1	1750		
Reinquished by:	Dolos rive.			Сопрану			Aec	eved	by:								Drailes*	क्षा व्यक्त				Сопрасу	
Authorius hed by.	CaleTine			Сопрелу		_	Rece	bevoe	Dy:					Dola/1 me.					_			Сотрату	
Custody Seals Intact: Custody Seal No.:	1						Coc	er Te	mper é	Mar et l)°C ai	n d Ott	nqs Re	mgric	٠,	. /	յե	,					
Δ Yes Λ No								_							t	76	}			_			

1

0

U

4

w

TestAmerica Buffalo

10 Hazel=tod Oties

Amherst, NY 14229-2238

Chain of Custody Record

TestAn	nerica

Phone (716) 891-2800 Fax (716) 691-7991	E de																	COS V	
Client Information	5ample:	_	_	Gr	эрм ay-En	dmar	nn, P	өдд у					arier 1	racking	Mojsj.			GCC No: 480-13944-2891	2
Charle Contact Charles E. McLeod. Jr	Phone			E-N pe		ay-•	ırdma	vn®	ilestan	nenca	ווחב פ	om						Page Page 2 of 2	
Company Greenslar Environmental Solutions, LLC									A	inaly	sis i	Requ	este	d			-	Job 6	
Autoraps: 6 Geffaity Drive	Due Date Requests	d:			T					П					П		Т	Preservation Cod	
Cey Wappingers Falls	TAT Requested (da	η τ]:			11													A - HCL B - NaOH C - Zr Acessa	M - Herome N - More O - AsiNeO2
5ше <i>Б</i> р NY, 12590					J۱			<u> </u>										D - Nitric Acid E - NaHSQ4 F - MeOni	P - NeXCHS Q - NeXSOX R - Me252SO3
Phone 845-223-9944(TeV)	PO # 150C265-1005-0	נו			 -			į				.			\ \			G - Amethor H - Ascorbic Acid	S - H250)4 T - TSP Dodacahedrate
Errait criticised @greenstersolutions.com	WO*				_\{\bar{b}{a}\}	Œ.	Orygen, Discolved	9040B, Nhrpte		1			1				Į	I tice J∵Ol Water KÃQTA	U - Acettes V - MCAA W - pn 4-5
Project Name. Greenstay Environmental Solutions, LLC	Project 4 48002405				_ [В				1			1				containers	L - EDA	Z - OPer (specify)
Sne New York	SSDW4				s	ă	ģ	#ra		1							75		
		Sample	Sample Type (C≃comp,	NEBIFEX (Windpape) Singular Companyabil (EXITERNA)	. [륜]	Perform MBANKOWen or Holds	SM4500 0 G	353.2, 353.2_NAride,									Total Number		
Sample Identification	Sample Date	Time	G=qrab)	e-et) tion Code:		3	3 N	-	+	╀	⊢	-	+	+	╀	+	₩.	Special in:	structions/Note:
SS-02			11636110	Water	n	7	1	+	+	\dagger	H	\vdash	╁	+-	╁╼┼		T		
\$5-03				₩ater	††	7	\top	\top	\top	十		-	+	+	Н	-†-	十		
\$8-01	6/16	16:00	6	Water	\top		Į.	<u>a</u>					+			+	Ì		
	-7	·			\prod				Ţ.,				\perp				I		
						\sqcup	_	\downarrow		<u> </u>	Ļ	\Box	1	<u> </u>		_ _	1		
					4		4	_	_	1	L		4	_	Ш	_	4	•	
					4	\sqcup	\dashv	_	_	+	┡		_ _	-	Ш	\perp	-‡	╄——	
		_			4	\vdash	_	4	-	+		\square	-	1		\perp	+	1	
	<u> </u>				Щ	\vdash	_	4	_	\vdash		\square	+	┿	-	_		╀	
	<u>-</u>					╌┥	_	-		╀	L	!	+	+	\vdash	+	-	<u> </u>	_
Possible Hazard Identification					Ц.	Sen	neste i	Qiso:	osel (A foe	mev	he so	2464	j ord is a	amok	× 370	<u> </u>	ned longer than :	I month!
Non-Hazard	on B 🗀 Unkn	OWT .	Radiologica	ıł			⊔ _{Re}	tum	To Ch	tof		$\beth_{\mathcal{O}_{i}}$	spose	I By L	ab ab		Arc	thive For .	Months
Dekverable Requested I, II, IV, Other (specify)						<u> </u>	cial l	ns1ru	ctions/	QC R	ledini	emar							
Emply Kit Relinquished by	Dale/Tro , /,	Date:			Tir	πe:							^^	errod of	Shore				lo-
12 mil	6/16	/	5.25	Сопрыну			Recen			1	-	27	_	_	Data7	71.0	161	1750	Сопцияту
Refinitioned by	Date/I me			Company		\Box	Recen								Oale.	etaro.	_		Сотрату
Reinquehed by.	Dela/Time			Company]		vád Ly:							Daley	ime			Сотрату
Custody Seals Intact: Custody Seal No :							Coote	- Төпр	00+404/10	ls)*C#	and Of	er Rom	erva:	<u> </u>	ر				

රා

C

Chain of Custody Record

Temperature on Receipt _____

<u>TestAmerica</u>

Drinking Water?	Yes 🗆	Ma⊟
-----------------	-------	-----

THE LEADER IN ENVIRONMENTAL TESTING

Chark		Project M												Date	, -				\ c	hain c	of Cust	ody Mu	noer	
Granfar		Telephoni		hia.	Mel	rod						_				7/(1			<u>2</u> 1	0 <u>9</u>	<u>54:</u>	<u>3 </u>	
Le Gelletty Dave											_			Lab	Numt	ber				.	١		ا ہ	l
City State Zio Code	9	. (845 Site Cont	<u> </u>	23-	1.9	2 (Con	tact	45 -	-23	~445 T	7		Ana	vsis.	(Atta	ch lis	7//			Page	<u> </u>		<u>of</u>	
	590	(Cho)		j	1	9	/	۲.		: -	٠-,		more	e spa	ce is	neeo	ed)		 -	بــــا	,,			
	/	Carner/W	ayball M	vnber		. 3 3	7	7		€	420,4	ā	3	3 3	8 8	25300	3	ø	_] <u>3</u>	1 }			
CONFECTION ON THE CONTRACT OF THE CONTRACT OF THE CONTRACT ON THE CONTRACT OF		<u> </u>						_	· -	آر ٰ۔	13	£,	ᆁ	3 3	ž T	1 %	Ž	3 6	3 3	ı, R	Sp	cial In	structio	ons/
			M	amiz				nners & rvatives		اع ا	2	2	췹.	<u> </u>	ţ ş	13 13	-2540	400 P	13	18	150	DHIONS	of Rec	coipi
Samulia / D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	tros.	- 186 186 186	\$audey)	KSSH.	E S	W 5	Na Ott	- (기 (본)	ě	4	Ž,	4	35 1.2 40.4 35	1.526/21Js	ģ	ار گار	肾	W. W.				
AP- MW-3B 101	17/() 12.	10	x		2	Z	۲,	'		i>			× .	× 🖔	1	, Ц.		!	I					
AP- MW-46 lor	17/1 Iz	30	_ ` *.	1	الا	z	2			\ <u>\</u> \ <u>\</u>	*	*	* '	Κİγ				Ţ	Ĭ.	T-				_
MP- MW-5B 160	(17/11 1z4	50	7	· 	Ş	z	zį			X-1	Χ,	Х	×	<u> </u>]	, L		<u> </u>					
46- WM-802 [01	17/11	ا دا	7	<u> </u>	12	z	Zi		_l_	ŢĸŢ	¥	*	¥ .	4 7	2].	<u> </u>	\Box			
NP-65-03	1770 193	y o	<i>†</i>		Z	Z	z			۱۲	r_1	<u> </u>	,	χĺχ					\perp					
AP-55-02 b	<u> 1971) 14</u>	<u>50 </u>	1	,	<u>z</u>	2	Z	: '	L	<u>[</u> *]	ĸ.	У,	¥ :	۲ ۲	<u>′`</u>		ĺ	:			Ш			
	(17/11 -15	เช 📜	+	1	16	2	2	5	_1_	χ	×	ኦ	<u>,</u>	×	4 X	 	×	× 7	<u>(×</u>	*	<u> </u>		_	
Tro Blue N	11A- N.	<u>//- </u>	Υ.		' 	<u>.</u>		نــــــــــــــــــــــــــــــــــــــ	<u>:</u>	.	1			<u> </u>	⊥_		·	1	X	!				
	_		<u> </u>			! !			, 				! —-	<u>i</u>		:	<u> </u>			1	_			
 - · · -			ļ.	· 	·		·		. <u>-</u> ;	<u> </u>		_	· 	_ +	<u> </u>	ļ + _	L ₊		1	;				
·	 +		<u> </u>	· 	ı.	. ,						j		_				<u> </u>		i_		_		
		!		[: :	:					i	, , , ,		•			: :	. ;	ĺ	_				
Pars the Material Invent Canon Membredare Faunus (* Sim Indent [] P.		·		Dispas	•		- ·-	el 8y Lad		<u> </u>						(4)	hee m	ey be	43,960	sed if	(samp	es are i	www.	
Turn Aspuras Turne Required	омина ци	(MICHOLINA)		LM 10 C	ROVI!			eray car rements			(MP /-	27 <u> </u>		*	_	AZEN	CEN IL	an In	20/10/1	_	_	—-		
T. 6. T. 14 Days Lays 14 Days	🔀 21 Days	□ oner	<u> </u>	<u>.). </u>		ı				1														
The speciment E		Date lo (())		Time 70	~~	1. F	leceive I	By	L.	1	-			_						Deta	0/H/c	,	1785	,
Agricultural Section 1	<u>'</u>	0/17/11 Date	-	Time	<u>, </u>	12 F	<u>(</u> Весени	ed By	-t	¶—	_	_	_	_				•	-			,	Летте	_
3 February 1973		Cate	_;	Time		3 F	ecervi	ad By		_	-	· —				- -	-		_	Car	<u>-</u> -		Ya)10	
Comments	<u>-</u>									- —			_	-		-				<u>:</u> .	_		<u> </u>	

တ

CJ

ယ

Chain of Custody Record

Temperature on Receipt _____

<u>TestAmerica</u>

Orinking Water? Yes □ Not®

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (100?					<u> </u>					_				I		
Greenster		Project 44		Male	. 1				ļ	<i>0∎е</i> Ілт	18/1	ı			954	
Address		Telephoni	e Number (Ares C	N odeVFax N	ou contract				:	Lab Mu		<u> </u>		ب_د ر	30-	· <u>C</u>
(a feellatt Dave		(845	1-223-144		(845)	-223 - 10	175							Page _	[of]
City State	,	Site Cont		Lab Co	nlaci		Т				ttach N					
Wappingers Falls Project Name and Location (State)		Ch.O	No leo	Pegy	, Gre,	,	-} r_:	T -~ T		ो का	is need	<i>100)</i> ∏	тт			
ZOII Somi Minus (SU Sampline) Contractifucturese Order Oxide No	fireoland All NY	Camerin	ayb# Number ——.		,		7. 4. 25. 4. 25. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	350	C 043	3				,	Special .	Instructions/
Contract/Purchase Order/Oxiole No			Matox	!	Container Preservat			F1	1	87		. : .				ns of Receipt
Sample 1 D. No land Description (Containers for each stample may be combined on o	ne line) Date	Time 3	Sources	Chares HESOL	HC.	NaOrt NaOrt	Herchaese Torsads		10 (4)	14	!					
AP-MW-66	10/18/11	0910	X	2 2	• • •		* *	×	¥ ¥	<u>, x .</u>				<u> </u>		
AP-MU-ZB	<u> №/18/11 </u>	025	×	2 2	2	<u> </u>	* ×	*	¥¥	*	<u> </u>		\perp			
<u>አ</u> ዮ-	10/18/11	155	*	2 2	<u> z</u>		- K 1	*	<u> </u>	*	; ;			 	_	
AP-MW-7B.	10/15/11	305	<i>*</i>	2 2	Z] . :		+ x	×	¥:¥	141		L.				
AP-50B-01	bus/it i	400	у	2 2	z	_	, , ,	Y	<u> </u>	<u></u> [7]	, -	;				
NP- FD -01	<u> </u>	410	¥ 	7 2	Z	·	* *	×	* 14	_	·	į				
<u> ሉ</u> ያ - <u>ራ</u> ሀመ <u></u> ያ - <u>ወ</u> ነ	10/18/11	M/A	4	, Z , Z	z	 - }	, r, s	*	<u>* *</u>	<u> </u>		\sqcup	<u> </u>			_
			+ + + +	+ +	╷╶│╶┊ १ ╾╼┽╍╍┿┄		. .	<u> </u>		. ;	<u>_i</u> .	; 	- 			
	·		· · · ·		' <u>;</u>	!		·			<u> </u>	1	·			_
										, .						
		<u> </u>	<u> </u>		ļ <u>.</u>		_, , .	<u>. </u>		_	, .	. ↓		_		
Para Hamaria maran			Samore Disposal		<u></u>	<u>:</u> .	1 ,									
You Hazara Expressable Sauthor	an [] Poson 8 ⋤	Linknown	Resurr To Ch	en/ 🖫	Окрожн Ву	Lab 🗐	Ап лине (- - 20 _	. .	Mank		ige may ge: that		ngsned il se NIN)	mijales are	retained
Type A Cyard Trave Required 24 c	14 Days 🗷 21 Days	Cine	Statut		Regionerie	nts (Speci	(A)					- -				
		Dare 10/18/11	15/0	1.	Received B)	$T\nu$	l Ct					. –			Au	-72me [(//)
. Re. W. 17-5		Dare	Time	<u> </u> -	Heceiro B)	, 6	- +	7	— -·					Cala	7"	Times
Josh super record		Даце	Tane		Pere r ed B)	,	- \	\vdash			-			(Qate		Time
	_	·		<u> </u>		_					_				_	l

1

D |

(J)

ယ

TestAmerica Burlington

INTERNAL	CHAIN	OF	CUSTODY	LOG	(ICOC)	١
114 1 FIZHVE	CHAIR	O.	COSICDI	LUG		,

Storage Local Storage Cond Internal Transfe Sample Ty Original Pre	ociated varion:	with this log-in were place Waller Race Refrigeration	LAB IDs:	1/1	[40](] (Date)	070 (Time²)		Sample Custodian Signatu		
Storage Local Storage Cond Internal Transfe Sample Ty Original Pre	ociated value oc	with this log-in were place Walleton Refrigeration	ed into storag	ie on	[dt0] (\ (Date)	1020				
Storage Local Storage Cond Internal Transfe Sample Ty Original Pre	ation: dition: er Inform	Malica Rac A Refrigeration	htsh	1/1		(Time ²)				
Storage Local Storage Cond Internal Transfe Sample Ty Original Pre	ation: dition: er Inform	Malica Rac A Refrigeration	htsh	1/1		(Time ²)				
Storage Cond Internal Transfe Sample Ty Original Pre	dition: er Inform ype	Refrigeration ation	M She	1/1		(Time ²)		Sample Custodian Signatu	re	
Storage Cond Internal Transfe Sample Ty Original Pre	dition: er Inform ype	Refrigeration ation	h she	1/1				Cample Custoulan Signatu	10	
Storage Cond Internal Transfe Sample Ty Original Pre	dition: er Inform ype	Refrigeration ation	MT She □ Frozer	1/[
Sample Ty Original Pre	er Inform ype	Refrigeration ation	☐ Frozer		Specify sto	rage location	(refrigerato	r, freezer ID or lab location) for original sample containe	ers
Sample Ty Original Pre	уре	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$25,504,000 S. ** 1.25,440,600,000,000,600,000.	1	□ Ambi	ent	U.M. St. Lifeweiter and Switzer W. and		7 10 2 A 1 4 9 21 1 4 White I have been selected	
Original Pre					_		_		I	
	epared'	Lab ID(s)	Transfer Date	Transfer Time ²	Pur _l Prep	ose of Tran	Storage	Relinquished By:	Received	Storage Location Prepared Sample
\times	- 12 2	411	10/21/11	815	Ж	Alialysis	Jionage	12. QA	By:	repared Sample
×			1				X	11000 D	aust sale	
-	\	_		8-45				und Solu	and olex	
	\times		+	14.30			×	Missolu	aw Salu	
	X	AN	10/21/11	33.00		<u>×</u>		<u>BL</u>	K L	
	X	<u></u>	7	JA:05			٧	BL	BL.	
	-								X N	
									` `	
								•		
								. *		
,										
1		y other prepared sample that is								

¹Extract, digestate, or any other prepared sample that is no longer in original sample container

TestAmerica Burlington

	Project Info	ormation:									
	Log In #:	400-11	78' >	Method:	6005	<u>→</u>					
	Client:	(413)	Hous	LAB IDs:	6010 <u>5</u> 480-113	1-62	at	48	0-11387		
								·			
	Samples	associated	with this log-in were place	ed into storag	је оп	10 70 (Date)	(Time ²)	70	by: Sample Custodian Signatu	ure .	
	Storage L		Walk 1					(refrigerato	or, freezer ID or lab location) for original sample containe	ers
	Storage C		Refrigeration	☐ Frozer)	□ Ambi		Arthur ad Min. or preference Wild	Source dos 1999, 19, consequente de la consequence della consequen	07 94 - Ann Librard 19 (941) 97 (95 1 p = 1947) And Corp.	. de la composición de la del de de de la del de
	10.00	ansfer Inform	3 - 7 - 70 - 70 - 70 - 70 - 70 - 70 - 70	io.	11000	CARCO III.	98975-E-11 SECTION	\$180,000 Sept. 2007,000 NEWSTREE		2 NOVE 2012 AND ASSESSMENT OF THE PROPERTY OF	a complete party
		le Type	Lab ID(s)	Transfer	Transfer Time ²		pose of Tran		Relinquished	Received	Storage Location
	Original	Prepared ¹		Date		Prep	Analysis	Storage	By:	By:	Prepared Sample ¹
	×		AY	10/21/11	8.25	X			Mut Salle	Clus Sols	
_	X		l i	\ \	8.45			\times	aus Solu	aust Soela	
Page		×	1	4	14-30			×	Morale	and De	
50		X	Au	10/21/11	22,00		>		BL	BL	
of 54		×	1	上	22:05			×	BL	BL	
4	!			_							
									·		
			_								
									,		
1											

BRFSR012:07.09.10:2 TestAmerica

¹Extract, digestate, or any other prepared sample that is no longer in original sample container

² Military Time

TestAmerica Buffalo

10 Hazelwood Orive

Amherst, NY 14228-2298 Phone (718) 691-2600 Fax (716) 691-7991

Chain of Custody Record

CNB

<u>TestAmerica</u>

Client Information	Samples: Lab P					^{PM:} y-Erdmann, Peggy									Carrier Tracking No(s):						COC No: 480-16405-3868 1		
Client Information	Phone:				- NAME	art-m	ginn, r	\dashv								Page	' ——						
Charles E. McLeod, Jr.				g	өддү	gray	erdm	enné	₿ test	sme	erical	nc.d	Qrm								Page 1 of 1		
Company. Greenstar Environmental Solutions, LLC										Δn	alys	ie I	Ren	, peq	ted						Job #		
Adams:	Due Dete Request	ed:			\dashv	H	П	П	Т	Ť	~,`	<u></u>	•						П	\neg	Preservation Code	MK.	
6 Gellatly Drive					4														.		A - HQL	M - Hazana	
Cer: Wappingers Falls	TAT Requested (d	mark				ļ	Ш												.		B · NaOH C - Zn Acelale	N - None O - AsNaO2	
State, Zip.	1						ı												.		D - NIFIE Add	P - N8204S	
NY, 12590 Phone	PO #				4		l												.		€ - NaHSQ4 F - MeOH	O - Ne2503 A - Ne25250)a
845-223-9944(Tel)	150C265-1005-	-01			Ι,	_			.	l	ᆔ	•				NIMMe, 904QB, NITHER, Cedo			.		G - Amethor H - Ascorbe Acid	S - H2SO4 T - 7SP Dode	caheren
345-223-9944(Tel) Erax	MO N.				_]રે	ž	ll		2		Demand	\$	_	Ţ		ŧ.			.		I- Içe	U - Acesone V - MCAA	
crncleod @greenstarsolutions.com Project Name:	Project #				⊣ ;		ll		9	ž	2	₹	暑	Dissolved		1	Ī		.	£		W - ph 4-5	
Greenstar Environmental Solutions, LLC Sile	48002405								Ē	∄	ð.	3	3	ş		불	3		.	containers	L - FDA	Z - other (see	oPri
Sile	SSOW#:				7	Ē	₋		420.4 - PhaneSea, Total Recoverable	Bry - (NOD) Local Method	52108 - Biochamical Daygen	2540C_Catcd - Total Dissolved Soffe	2540D - Total Suspensed Solida	Orygen,	à	B	7196A - Chromium, hexevpleni				Other:		
New York	ļ			матп	: ا	Partie mores sam	ě		ř	賣	Ĕ	₽	3		Patelbampilog - Row	§				3			
			Sample	(. [3	1	360.1, 381.2, 410.4	8	8	Ě	¥	3	8	9 0	1		Ě		.	Total Number			
		Sample	Түре	Samurine Ouwarine	IĽ		5	8	5	Ĭ	9		اة		ā	5	•		.	ž			
Sample identification	Sample Date	Time	(C≖comp, G≕grab)	FT4Thms			380	2007, 200.8	ĝ	ş	9125	\$	25	96MB 00		353.2, 353.2	28		.	힐	Special Ins	tructions/l	Note:
		><	Preserva	tion Code	e: >	ΧX	s	5	s /	Ą	N	N	N N	N	Z	N T	Ň			X			
AP_EWE-0:	9-10-11	09:20		Water	, [I	1	ι	1	3	ı	ı	ĺ	1	-"	2	Ī						
								Ċ		- 1				l				ĺ					
		'			寸	+-	1		-	\dashv									\neg	7			
		!			-	+		- i	\dashv	-	\dashv					\dashv	\dashv	\dashv	\dashv	\dashv			
	ļ.,				_	4			_	_	\dashv	_				_	_	_	_				
		! :								- [.	ŀ			
						Т	T 1	†	Ī	7				i				T	\Box	\neg			
		İ			╅	+	H		†	╗		\dashv						၂	\dashv	-	!		
					-	┿	 	<u>-</u>	—⊦	┥	\dashv	_			\dashv	-	\dashv	ᅱ	<u>,—</u> ł	-			
					_	_	Ш	i	_ļ	_	\rightarrow					_		ļ					_
			:				1	i	l														
									Ì									Ī					
					寸	T		T	ī		\neg								\Box				
Possible Hazard Identification						Sa	mple	Disp	NO SRÍ	(A	tee r	пату	be a	98e8	sed	il sa	http://	es av	e rei	tain	ed longer than 1	month)	
Non-Hezard Flammable Skin kritant Pois	on B 🖵 Unki	wa 🗀 j	Radiologica	ıf		1	\square_{R_i}	eturn	700	ban	tt	Ī	_,))spo	sai f	مع را	Ф	E	⊐,	Arch	ova Far	Months	
Detrograble Requested, t, 1), fil, iV. Other (specify)							ec+al l					quir	етна	nls:									
Empty Kit Relinquished by:		Date			Ī	Time:		_							Math	rd ol S	d aga ra	ът.		τ.			
Reinqueries by	Date Tiple	n = 1	<i>ያ</i> ፡ ወን	Сопрену			Auge 	4	2	4	7	۷,	7	Ξ	_		Dune	9"	110	,]]ı 0;e#	Company -	
Refragished by:	Dese/Time/			Company			Hoc	960 D	Y	-							Danc	lunci		1		Company	
Adingualities by:	Dese/Time			Company		P	Pace	wed by	y.								[Jegass/	Time	$\overline{}$		7	Соприну	
Custody Seals Med Custody Seal No	r				_		Gecia	h loen	guerai.	re(s)	°C ane	OP1	Ro	mertus	:			7	19,	ر ک	1 1/2 × 1	ive_	معرن
					_		_										-(_	_	, ,		

ဖ

1

ග

U

Attachment D

Laboratory Analytical Results for Groundwater and Surface Water Sampling June and October 2011 THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-6216-1

Client Project/Site: Greenstar Environmental Solutions, LLC Sampling Event: Semi-Annual groundwater Monitoring 4,10

For:

Greenstar Environmental Solutions, LLC 6 Gellatly Drive Wappingers Falls, New York 12590

Attn: Charles E. McLeod, Jr.

Genrif M. Byrnes

Authorized for release by: 06/29/2011 01:30:19 PM Jennifer Byrnes Project Administrator jennifer.byrnes@testamericainc.com

Designee for

Peggy Gray-Erdmann
Project Manager II
peggy.gray-erdmann@testamericainc.com

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

Results relate only to the items tested and the sample(s) as received by the laboratory. The test results in this report meet all 2003 NELAC requirements for accredited parameters, exceptions are noted in this report. Pursuant to NELAC, this report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 27 06/29/2011

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	16
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	26

3

4

6

8

9

11

12

14

Definitions/Glossary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-6216-1

Qualifiers

-			
ΝЛ	0	ta	ıe

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

(Qualitier	Qualifier Description
F		MS or MSD exceeds the control limits
H	1	Sample was prepped or analyzed beyond the specified holding time
J		Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis.
EPA	United States Environmental Protection Agency
ND	Not Detected above the reporting level.
MDL	Method Detection Limit
RL	Reporting Limit
RE, RE1 (etc.)	Indicates a Re-extraction or Reanalysis of the sample.
%R	Percent Recovery
RPD	Relative Percent Difference, a measure of the relative difference between two points.

3

4

5

7

8

9

. .

12

13

Case Narrative

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-6216-1

Job ID: 480-6216-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-6216-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

HPLC

No analytical or quality issues were noted.

Metals

Method(s) 200.7 Rev 4.4: The Method Blank for batch 480-20529 contained total manganese and zinc above the method detection limits. These target analyte concentrations were less than the reporting limits (RLs); therefore, re-extraction and/or re-analysis of samples SS-01 (480-6216-1), SS-02 (480-6216-2), SS-03 (480-6216-3) was not performed.

No other analytical or quality issues were noted.

General Chemistry

Method(s) SM 5210B: For batch 20546 the dilution water D.O. depletion was greater than 0.2 mg/L but less than the reporting limit of 2.0 mg/L.MHOL1 (480-6180-1)

Method(s) 7196A: The matrix spike (MS) recoveries for batch 20382 was outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 9040B: Sample 6216-1 was analyzed outside of holding time for pH. This method has a short holding time (<48 hours), and this sample was assigned to this method with insufficient holding time remaining for analysis.

No other analytical or quality issues were noted.

4

_

5

6

7

8

9

12

13

Client: Greenstar Environmental Solutions, LLC

Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-6216-1

Client Sample ID: SS-01

Lab Sample ID: 480-6216-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac [Method	Prep Type
Chromium	0.0016	J	0.0040	0.00087	mg/L	1	200.7 Rev 4.4	Total/NA
Iron	0.036	J	0.050	0.019	mg/L	1	200.7 Rev 4.4	Total/NA
Magnesium	1.2		0.20	0.043	mg/L	1	200.7 Rev 4.4	Total/NA
Manganese	0.0031	В	0.0030	0.00030	mg/L	1	200.7 Rev 4.4	Total/NA
Sodium	59.3		1.0	0.32	mg/L	1	200.7 Rev 4.4	Total/NA
Barium	0.21		0.0020	0.00050	mg/L	1	200.7 Rev 4.4	Total/NA
Nickel	0.0019	J	0.010	0.0013	mg/L	1	200.7 Rev 4.4	Total/NA
Selenium	1.4		1.0	0.44	ug/L	1	200.8	Total/NA
Thallium	0.023	J	0.20	0.0080	ug/L	1	200.8	Total/NA
Silicon	2100		100	4.7	ug/L	1	6010B	Total/NA
Sulfate	7.3		2.0	0.35	mg/L	1	300.0	Total/NA
Total Kjeldahl Nitrogen	0.28		0.20	0.15	mg/L as N	1	351.2	Total/NA
Nitrate as N	0.53		0.050	0.011	mg/L	1	353.2	Total/NA
Total Dissolved Solids	622		10.0	4.0	mg/L	1	SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac [Method	Prep Type
pH	7.79	Н	0.100	0.100	SU	1	9040B	Total/NA
Oxygen, Dissolved	7.4		0.050	0.050	mg/L	1	SM 4500 O G	Total/NA

Client Sample ID: SS-02

Lab Sample ID: 480-6216-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0019	J	0.0040	0.00087	mg/L	1	_	200.7 Rev 4.4	Total/NA
Iron	2.1		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Lead	0.011		0.0050	0.0030	mg/L	1		200.7 Rev 4.4	Total/NA
Magnesium	8.4		0.20	0.043	mg/L	1		200.7 Rev 4.4	Total/NA
Manganese	0.20	В	0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	58.0		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.016	В	0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	4700		100	4.7	ug/L	1		6010B	Total/NA
Sulfate	0.47	J	2.0	0.35	mg/L	1		300.0	Total/NA
Ammonia as N	0.095		0.020	0.0090	mg/L as N	1		350.1	Total/NA

Client Sample ID: SS-03

Lab Sample ID: 480-6216-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0013	J	0.0040	0.00087	mg/L		_	200.7 Rev 4.4	Total/NA
Iron	0.16		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Magnesium	1.2		0.20	0.043	mg/L	1		200.7 Rev 4.4	Total/NA
Manganese	0.0089	В	0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	60.1		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.0017	JB	0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	2330		100	4.7	ug/L	1		6010B	Total/NA
Sulfate	7.2		2.0	0.35	mg/L	1		300.0	Total/NA

3

6

8

40

11

13

14

Client Sample Results

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-6216-1

Lab Sample ID: 480-6216-1

Matrix: Water

Date Collected: 06/16/11 16:00 Date Received: 06/16/11 17:50

Client Sample ID: SS-01

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/17/11 20:40	1
Trichloroethene	ND		5.0	0.60	ug/L			06/17/11 20:40	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		72 - 130			-		06/17/11 20:40	1
4-Bromofluorobenzene (Surr)	97		69 - 121					06/17/11 20:40	1
Toluene-d8 (Surr)	101		70 - 123					06/17/11 20:40	1

Method: 200.7 Rev 4.4 - M	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		06/20/11 09:40	06/21/11 21:15	1
Chromium	0.0016	J	0.0040	0.00087	mg/L		06/20/11 09:40	06/21/11 21:15	1
Iron	0.036	J	0.050	0.019	mg/L		06/20/11 09:40	06/21/11 21:15	1
Lead	ND		0.0050	0.0030	mg/L		06/20/11 09:40	06/21/11 21:15	1
Magnesium	1.2		0.20	0.043	mg/L		06/20/11 09:40	06/21/11 21:15	1
Manganese	0.0031	В	0.0030	0.00030	mg/L		06/20/11 09:40	06/21/11 21:15	1
Selenium	ND		0.015	0.0087	mg/L		06/20/11 09:40	06/21/11 21:15	1
Sodium	59.3		1.0	0.32	mg/L		06/20/11 09:40	06/21/11 21:15	1
Thallium	ND		0.020	0.010	mg/L		06/20/11 09:40	06/21/11 21:15	1
Zinc	ND		0.010	0.0017	mg/L		06/20/11 09:40	06/21/11 21:15	1
Barium	0.21		0.0020	0.00050	mg/L		06/20/11 09:40	06/21/11 21:15	1
Nickel	0.0019	J	0.010	0.0013	mg/L		06/20/11 09:40	06/21/11 21:15	1
Copper	ND		0.010	0.0015	mg/L		06/20/11 09:40	06/21/11 21:15	1

Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	1.4		1.0	0.44	ug/L	_ <u>-</u>	06/20/11 11:40	06/21/11 23:32	1
Thallium	0.023	J	0.20	0.0080	•		06/20/11 11:40	06/21/11 23:32	1
- Method: 6010B - Metals (Custom	List)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	2100		100	4.7	ug/L		06/22/11 08:59	06/23/11 14:52	1
General Chemistry									
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
Sulfate	7.3		2.0	0.35	mg/L			06/23/11 16:17	1
Ammonia as N	ND		0.020	0.0090	mg/L as N			06/18/11 12:27	1
Total Kjeldahl Nitrogen	0.28		0.20	0.15	mg/L as N		06/23/11 10:12	06/25/11 16:08	1
Nitrate as N	0.53		0.050	0.011	mg/L			06/17/11 10:49	1
Nitrite as N	ND		0.050	0.020	mg/L			06/17/11 11:17	1
Chemical Oxygen Demand	ND		10.0	5.0	mg/L			06/28/11 13:25	1
Phenolics, Total Recoverable	ND		10.0	5.0	ug/L		06/22/11 19:30	06/23/11 09:02	1
Chromium, hexavalent	ND		10.0	5.0	ug/L			06/17/11 00:27	1
Total Dissolved Solids	622		10.0	4.0	mg/L			06/21/11 15:43	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			06/17/11 17:46	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.79	H	0.100	0.100	SU			06/17/11 19:17	1
Total Suspended Solids	ND		4.0	4.0	mg/L			06/17/11 09:00	1
Oxygen, Dissolved	7.4		0.050	0.050	mg/L			06/16/11 22:55	1

Client Sample Results

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Lab Sample ID: 480-6216-2

TestAmerica Job ID: 480-6216-1

Matrix: Water

Date Collected: 06/16/11 16:10 Date Received: 06/16/11 17:50

Date Received: 06/16/11 17:50

Client Sample ID: SS-02

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		06/20/11 09:40	06/21/11 21:17	1
Chromium	0.0019	J	0.0040	0.00087	mg/L		06/20/11 09:40	06/21/11 21:17	1
Iron	2.1		0.050	0.019	mg/L		06/20/11 09:40	06/21/11 21:17	1
Lead	0.011		0.0050	0.0030	mg/L		06/20/11 09:40	06/21/11 21:17	
Magnesium	8.4		0.20	0.043	mg/L		06/20/11 09:40	06/21/11 21:17	
Manganese	0.20	В	0.0030	0.00030	mg/L		06/20/11 09:40	06/21/11 21:17	1
Selenium	ND		0.015	0.0087	mg/L		06/20/11 09:40	06/21/11 21:17	1
Sodium	58.0		1.0	0.32	mg/L		06/20/11 09:40	06/21/11 21:17	1
Thallium	ND		0.020	0.010	mg/L		06/20/11 09:40	06/21/11 21:17	1
Zinc	0.016	В	0.010	0.0017	mg/L		06/20/11 09:40	06/21/11 21:17	

Method: 6010B - Metals (Custom List) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Silicon 4700 100 4.7 ug/L 06/22/11 08:59 06/23/11 14:57

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	0.47	J	2.0	0.35	mg/L			06/23/11 16:27	1
Ammonia as N	0.095		0.020	0.0090	mg/L as N			06/18/11 12:28	1
Phenolics, Total Recoverable	ND		10.0	5.0	ug/L		06/22/11 19:30	06/23/11 09:02	1
Chromium, hexavalent	ND		10.0	5.0	ug/L			06/17/11 00:30	1

Client Sample ID: SS-03 Lab Sample ID: 480-6216-3 Date Collected: 06/16/11 16:20 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		06/20/11 09:40	06/21/11 21:19	1
Chromium	0.0013	J	0.0040	0.00087	mg/L		06/20/11 09:40	06/21/11 21:19	1
Iron	0.16		0.050	0.019	mg/L		06/20/11 09:40	06/21/11 21:19	1
Lead	ND		0.0050	0.0030	mg/L		06/20/11 09:40	06/21/11 21:19	1
Magnesium	1.2		0.20	0.043	mg/L		06/20/11 09:40	06/21/11 21:19	1
Manganese	0.0089	В	0.0030	0.00030	mg/L		06/20/11 09:40	06/21/11 21:19	1
Selenium	ND		0.015	0.0087	mg/L		06/20/11 09:40	06/21/11 21:19	1
Sodium	60.1		1.0	0.32	mg/L		06/20/11 09:40	06/21/11 21:19	1
Thallium	ND		0.020	0.010	mg/L		06/20/11 09:40	06/21/11 21:19	1
Zinc	0.0017	JB	0.010	0.0017	mg/L		06/20/11 09:40	06/21/11 21:19	1

Method: 6010B - Metals (Custom Lis	st)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	2330		100	4.7	ug/L		06/22/11 08:59	06/23/11 15:02	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	7.2		2.0	0.35	mg/L			06/23/11 16:37	1
Ammonia as N	ND		0.020	0.0090	mg/L as N			06/18/11 12:35	1
Phenolics, Total Recoverable	ND		10.0	5.0	ug/L		06/22/11 23:14	06/23/11 09:02	1
Chromium, hexavalent	ND		10.0	5.0	ug/L			06/17/11 00:32	1

Surrogate Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC TestAmerica Job ID: 480-6216-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Surro	gate Recovery (Acceptance Li
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)	
480-6216-1	SS-01	103	97	101	
LCS 480-20476/4	Lab Control Sample	109	101	99	
MB 480-20476/6	Method Blank	111	99	97	

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Client: Greenstar Environmental Solutions, LLC

Project/Site: Greenstar Environmental Solutions, LLC

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water

Analysis Batch: 20476

Lab Sample ID: MB 480-20476/6

Client Sample ID: Method Blank

TestAmerica Job ID: 480-6216-1

Prep Type: Total/NA

Analyte RL MDL Unit Result Qualifier Prepared Analyzed Dil Fac 1,1-Dichloroethane ND 5.0 0.59 ug/L 06/17/11 13:44 Trichloroethene ND 5.0 0.60 ug/L 06/17/11 13:44

MB MB

MB MB

Surrogate	% Recovery	Qualifier	Limits	Prepared Ana	lyzed Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		72 - 130	06/17/1	11 13:44
4-Bromofluorobenzene (Surr)	99		69 - 121	06/17/1	11 13:44 1
Toluene-d8 (Surr)	97		70 - 123	06/17/1	11 13:44 1

Lab Sample ID: LCS 480-20476/4

Matrix: Water

Analysis Batch: 20476

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit % Rec Limits 1,1-Dichloroethane 20.0 20.2 ug/L 101 73 - 128 Trichloroethene 20.0 19.2 ug/L 96 67 - 134

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		72 - 130
4-Bromofluorobenzene (Surr)	101		69 - 121
Toluene-d8 (Surr)	99		70 - 123

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-20529/1-A

Matrix: Water

Analysis Batch: 21065

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 20529

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		06/20/11 09:40	06/21/11 20:58	1
Chromium	ND		0.0040	0.00087	mg/L		06/20/11 09:40	06/21/11 20:58	1
Iron	ND		0.050	0.019	mg/L		06/20/11 09:40	06/21/11 20:58	1
Lead	ND		0.0050	0.0030	mg/L		06/20/11 09:40	06/21/11 20:58	1
Magnesium	ND		0.20	0.043	mg/L		06/20/11 09:40	06/21/11 20:58	1
Manganese	0.000660	J	0.0030	0.00030	mg/L		06/20/11 09:40	06/21/11 20:58	1
Selenium	ND		0.015	0.0087	mg/L		06/20/11 09:40	06/21/11 20:58	1
Sodium	ND		1.0	0.32	mg/L		06/20/11 09:40	06/21/11 20:58	1
Thallium	ND		0.020	0.010	mg/L		06/20/11 09:40	06/21/11 20:58	1
Zinc	0.00189	J	0.010	0.0017	mg/L		06/20/11 09:40	06/21/11 20:58	1
Barium	ND		0.0020	0.00050	mg/L		06/20/11 09:40	06/21/11 20:58	1
Nickel	ND		0.010	0.0013	mg/L		06/20/11 09:40	06/21/11 20:58	1
Copper	ND		0.010	0.0015	mg/L		06/20/11 09:40	06/21/11 20:58	1

Lab Sample ID: LCS 480-20529/2-A

Matrix: Water

Analysis Batch: 21065

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 20529

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Cadmium	0.200	0.202		mg/L		101	85 - 115	
Chromium	0.200	0.197		mg/L		98	85 ₋ 115	

TestAmerica Buffalo

Page 9 of 27

06/29/2011

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-20529/2-A			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 21065			Prep Batch: 20529
	Spike	LCS LCS	% Rec.

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Iron	10.0	9.71		mg/L		97	85 - 115	
Lead	0.200	0.196		mg/L		98	85 ₋ 115	
Magnesium	10.0	9.99		mg/L		100	85 _ 115	
Manganese	0.200	0.201		mg/L		101	85 - 115	
Selenium	0.200	0.207		mg/L		104	85 - 115	
Sodium	10.0	10.25		mg/L		103	85 _ 115	
Thallium	0.200	0.196		mg/L		98	85 _ 115	
Zinc	0.200	0.193		mg/L		97	85 ₋ 115	
Barium	0.200	0.204		mg/L		102	85 - 115	
Nickel	0.200	0.195		mg/L		97	85 _ 115	
Copper	0.200	0.205		mg/L		102	85 - 115	

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 480-20686/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 21076** Prep Batch: 20686

MB MB Analyte RL MDL Unit Dil Fac Result Qualifier Prepared Analyzed Selenium 1.0 0.44 ug/L 06/20/11 11:40 ND 06/21/11 23:21 Thallium ND 0.20 0.0080 ug/L 06/20/11 11:40 06/21/11 23:21

Lab Sample ID: LCS 480-20686/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Prep Batch: 20686 **Analysis Batch: 21076**

	Spike	LCS	LCS			% Rec.	
Analyte	Added	Result	Qualifier	Unit	D % Red	Limits	
Selenium	20.0	20.41		ug/L	102	85 - 115	
Thallium	20.0	20.27		ug/L	101	85 - 115	

Method: 6010B - Metals (Custom List)

Lab Sample ID: MB 200-19987/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 20138** Prep Batch: 19987 MR MR

	IIID	1110							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	ND		100	4.7	ug/L		06/22/11 08:59	06/23/11 14:42	1

Lab Sample ID: LCS 200-19987/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 20138** Prep Batch: 19987 LCS LCS Spike % Rec. Analyte Added Result Qualifier Limits Unit % Rec Silicon 1000 101 80 - 120 1011 ug/L

Page 10 of 27

TestAmerica Buffalo 06/29/2011

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-21221/28 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 21221

Analyte RL MDL Unit Result Qualifier Prepared Analyzed Dil Fac Sulfate ND 2.0 0.35 mg/L 06/23/11 15:47

MB MB

MB MB

Lab Sample ID: LCS 480-21221/27 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 21221

Analysis Buton, 21221	Spike	LCS	LCS				% Rec.	
Analyte	Added		Qualifier	Unit	D	% Rec	Limits	
Sulfate	20.0	19.40		mg/L		97	90 - 110	

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-20616/147 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20616

Result Qualifier RL MDL Unit Prepared Dil Fac D Analyzed 0.020 Ammonia as N ND 0.0090 mg/L as N 06/18/11 12:09

Lab Sample ID: MB 480-20616/171 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20616

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	ND		0.020	0.0090	mg/L as N			06/18/11 12:33	1

Lab Sample ID: LCS 480-20616/148 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20616

	Spil	ce LCS	LCS				% Rec.	
Analyte	Adde	ed Result	Qualifier	Unit	D	% Rec	Limits	
Ammonia as N		1.08		mg/L as N		108	90 - 110	

Lab Sample ID: LCS 480-20616/172 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20616

Spike LCS LCS % Rec. Analyte Added Result Qualifier Unit % Rec Limits Ammonia as N 1.00 1.07 mg/L as N 107 90 - 110

Lab Sample ID: 480-6216-2 MS Client Sample ID: SS-02 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20616

	Sample	Sample	Spike	MS	MS				% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Ammonia as N	0.095		0.200	0.273		mg/L as N	_	89	54 - 150	

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: 480-6216-2 DU Client Sample ID: SS-02 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20616

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Ammonia as N	0.095		 0.0925		mg/L as N		 3	20

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: LCS 480-21303/2-A				C	lient S	Sample I	D: Lab Cor	ntrol Sample
Matrix: Water							Prep Ty	pe: Total/NA
Analysis Batch: 21593							Prep E	Batch: 21303
	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Total Kieldahl Nitrogen	2.50	2 56		ma/L as N		102	90 110	

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-20479/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20479

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrite as N	ND		0.050	0.020	mg/L			06/17/11 11:10	1

Lab Sample ID: LCS 480-20479/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 20479

-		Spike	LCS	LCS				% Rec.	
Analyte		Added	Result	Qualifier	Unit	D	% Rec	Limits	
Nitrite as N		1.50	1.53		mg/L		102	90 - 110	

Method: 410.4 - COD

Lab Sample ID: MB 480-21850/27 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 21850

-	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chemical Oxygen Demand	ND		10.0	5.0	mg/L			06/28/11 13:25	1

Lab Sample ID: LCS 480-21850/28 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 21850

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Chemical Oxygen Demand	25.0	25.48		mg/L		102	90 - 110	

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

100

90 - 110

Prep Type: Total/NA

Prep Batch: 21179

Prep Batch: 21179

Method: 420.4 - Phenolics, Total Recoverable

Client Sample ID: Method Blank Lab Sample ID: MB 480-21162/2-A **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 21252** Prep Batch: 21162 MB MB

Analyte RL MDL Unit Result Qualifier Prepared Analyzed Dil Fac Phenolics, Total Recoverable ND 10.0 5.0 ug/L 06/22/11 19:30 06/23/11 08:12

Lab Sample ID: LCS 480-21162/1-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 21252

Phenolics, Total Recoverable

Prep Batch: 21162 LCS LCS Spike % Rec. Added Result Qualifier Unit % Rec 100

Lab Sample ID: MB 480-21179/1-A Client Sample ID: Method Blank

100.3

ug/L

Matrix: Water

Analysis Batch: 21252

мв мв

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Phenolics, Total Recoverable 10.0 ND 5.0 ug/L 06/22/11 21:30 06/23/11 08:12

Lab Sample ID: LCS 480-21179/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 21252

Spike LCS LCS % Rec. Analyte Added Result Qualifier Limits Unit D % Rec Phenolics, Total Recoverable 100 106.1 ug/L 106 90 - 110

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 480-20382/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 20382

MB MB

RL MDL Unit Analyte Result Qualifier Prepared Analyzed Dil Fac 10.0 06/17/11 00:23 Chromium, hexavalent ND 5.0 ug/L

Lab Sample ID: LCS 480-20382/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 20382

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit % Rec Limits Chromium, hexavalent 50.0 52.07 ug/L 104 85 - 115

Lab Sample ID: 480-6216-3 MS Client Sample ID: SS-03 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 20382

MS MS Sample Sample Spike % Rec. Result Qualifier Added Result Qualifier Unit % Rec Limits Chromium, hexavalent ND 50.0 31.71 F ug/L 63 85 - 115

Page 13 of 27

Method: 7196A - Chromium, Hexavalent (Continued)

Lab Sample ID: 480-6216-1 DU Client Sample ID: SS-01 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20382

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Chromium, hexavalent ND ND ug/L NC 15

Method: 9040B - pH

Lab Sample ID: LCS 480-20559/1 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20559

Analysis Batom 2000	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
pH	7.00	7.000		SU	_	100	99 - 101	

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-20805/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20805

	IND	IVID							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L			06/21/11 02:10	1

Lab Sample ID: LCS 480-20805/2 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 20805

		Spike	LCS	LCS				% Rec.	
Analyte		Added	Result	Qualifier	Unit	D	% Rec	Limits	
Total Dissolved Solids		541	537.0		mg/L		99	85 - 115	

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-20434/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20434

	МВ	MB								
Analyte	Result	Qualifier	RL	RL	Unit	D		Prepared	Analyzed	Dil Fac
Total Suspended Solids	ND		4.0	4.0	mg/L		_		06/17/11 09:00	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-20434/2 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20434

Analysis Buton: 20404	Spike	LCS LCS			% Rec.	
Analyte	Added	Result Qualifier	Unit D	0 % Rec	Limits	
Total Suspended Solids		290.0	ma/L	98	88 - 110	

Page 14 of 27

Prep Type: Total/NA

QC Sample Results

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-6216-1

Method: SM 4500 O G - Oxygen, Dissolved

Lab Sample ID: 480-6216-1 DU Client Sample ID: SS-01
Matrix: Water Prep Type: Total/NA

Analysis Batch: 20391

 Sample
 Sample
 DU
 DU
 RPD

 Analyte
 Result
 Qualifier
 Result
 Qualifier
 Unit
 D
 RPD
 Limit

 Oxygen, Dissolved
 7.4
 7.65
 mg/L
 3.73

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-20546/1 USB

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 20546

USB USB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac
Biochemical Oxygen Demand ND 2.0 2.0 mg/L D O6/17/11 12:23 1

Lab Sample ID: LCS 480-20546/2

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 20546

 Spike
 LCS LCS
 % Rec.

 Analyte
 Added
 Result Qualifier
 Unit Unit
 D % Rec Limits

 Biochemical Oxygen Demand
 198
 202.7
 mg/L
 102
 85 - 115

6

_

10

12

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-6216-1

GC/MS VOA

Analysis Batch: 20476

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-20476/4	Lab Control Sample	Total/NA	Water	624	
MB 480-20476/6	Method Blank	Total/NA	Water	624	
480-6216-1	SS-01	Total/NA	Water	624	
_					

Metals

Prep Batch: 19987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 200-19987/1-A	Method Blank	Total/NA	Water	3010A	
LCS 200-19987/2-A	Lab Control Sample	Total/NA	Water	3010A	
480-6216-1	SS-01	Total/NA	Water	3010A	
480-6216-2	SS-02	Total/NA	Water	3010A	
480-6216-3	SS-03	Total/NA	Water	3010A	

Analysis Batch: 20138

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 200-19987/1-A	Method Blank	Total/NA	Water	6010B	19987
LCS 200-19987/2-A	Lab Control Sample	Total/NA	Water	6010B	19987
480-6216-1	SS-01	Total/NA	Water	6010B	19987
480-6216-2	SS-02	Total/NA	Water	6010B	19987
480-6216-3	SS-03	Total/NA	Water	6010B	19987

Prep Batch: 20529

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-20529/1-A	Method Blank	Total/NA	Water	200.7	_
LCS 480-20529/2-A	Lab Control Sample	Total/NA	Water	200.7	
480-6216-1	SS-01	Total/NA	Water	200.7	
480-6216-2	SS-02	Total/NA	Water	200.7	
480-6216-3	SS-03	Total/NA	Water	200.7	

Prep Batch: 20686

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-20686/1-A	Method Blank	Total/NA	Water	200.8	
LCS 480-20686/2-A	Lab Control Sample	Total/NA	Water	200.8	
480-6216-1	SS-01	Total/NA	Water	200.8	

Analysis Batch: 21065

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-20529/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	20529
LCS 480-20529/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	20529
480-6216-1	SS-01	Total/NA	Water	200.7 Rev 4.4	20529
480-6216-2	SS-02	Total/NA	Water	200.7 Rev 4.4	20529
480-6216-3	SS-03	Total/NA	Water	200.7 Rev 4.4	20529

Analysis Batch: 21076

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-20686/1-A	Method Blank	Total/NA	Water	200.8	20686
LCS 480-20686/2-A	Lab Control Sample	Total/NA	Water	200.8	20686
480-6216-1	SS-01	Total/NA	Water	200.8	20686

3

4

6

8

9

11

12

14

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-6216-1

General Chemistry

Anal	ysis	Batc	h: 20	382
------	------	-------------	-------	-----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-20382/3	Method Blank	Total/NA	Water	7196A	
LCS 480-20382/4	Lab Control Sample	Total/NA	Water	7196A	
480-6216-1	SS-01	Total/NA	Water	7196A	
480-6216-1 DU	SS-01	Total/NA	Water	7196A	
480-6216-2	SS-02	Total/NA	Water	7196A	
480-6216-3	SS-03	Total/NA	Water	7196A	
480-6216-3 MS	SS-03	Total/NA	Water	7196A	

Analysis Batch: 20391

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-6216-1	SS-01	Total/NA	Water	SM 4500 O G	
480-6216-1 DU	SS-01	Total/NA	Water	SM 4500 O G	

Analysis Batch: 20434

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-20434/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-20434/2	Lab Control Sample	Total/NA	Water	SM 2540D	
480-6216-1	SS-01	Total/NA	Water	SM 2540D	

Analysis Batch: 20479

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-20479/3	Method Blank	Total/NA	Water	353.2	
LCS 480-20479/4	Lab Control Sample	Total/NA	Water	353.2	
480-6216-1	SS-01	Total/NA	Water	353.2	

Analysis Batch: 20481

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-6216-1	SS-01	Total/NA	Water	353.2	

Analysis Batch: 20546

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
USB 480-20546/1 USB	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-20546/2	Lab Control Sample	Total/NA	Water	SM 5210B	
480-6216-1	SS-01	Total/NA	Water	SM 5210B	
100 02 10 1	33 01	1 otali 147 t	· · · · · · · · · · · · · · · · · · ·	0111 02 102	

Analysis Batch: 20559

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-20559/1	Lab Control Sample	Total/NA	Water	9040B	
480-6216-1	SS-01	Total/NA	Water	9040B	

Analysis Batch: 20616

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-20616/147	Method Blank	Total/NA	Water	350.1	
LCS 480-20616/148	Lab Control Sample	Total/NA	Water	350.1	
480-6216-1	SS-01	Total/NA	Water	350.1	
480-6216-2	SS-02	Total/NA	Water	350.1	
480-6216-2 DU	SS-02	Total/NA	Water	350.1	
480-6216-2 MS	SS-02	Total/NA	Water	350.1	
MB 480-20616/171	Method Blank	Total/NA	Water	350.1	
LCS 480-20616/172	Lab Control Sample	Total/NA	Water	350.1	
480-6216-3	SS-03	Total/NA	Water	350.1	

3

4

6

8

9

11

13

14

TestAmerica Job ID: 480-6216-1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

General Chemistry (Continued)

Analysis Batch: 20805

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-20805/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-20805/2	Lab Control Sample	Total/NA	Water	SM 2540C	
480-6216-1	SS-01	Total/NA	Water	SM 2540C	

Prep Batch: 21162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-21162/1-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-21162/2-A	Method Blank	Total/NA	Water	Distill/Phenol	
480-6216-1	SS-01	Total/NA	Water	Distill/Phenol	
480-6216-2	SS-02	Total/NA	Water	Distill/Phenol	

Prep Batch: 21179

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-21179/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-21179/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
480-6216-3	SS-03	Total/NA	Water	Distill/Phenol	

Analysis Batch: 21221

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
LCS 480-21221/27	Lab Control Sample	Total/NA	Water	300.0	
MB 480-21221/28	Method Blank	Total/NA	Water	300.0	
480-6216-1	SS-01	Total/NA	Water	300.0	
480-6216-2	SS-02	Total/NA	Water	300.0	
480-6216-3	SS-03	Total/NA	Water	300.0	

Analysis Batch: 21252

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-21162/1-A	Lab Control Sample	Total/NA	Water	420.4	21162
MB 480-21162/2-A	Method Blank	Total/NA	Water	420.4	21162
MB 480-21179/1-A	Method Blank	Total/NA	Water	420.4	21179
LCS 480-21179/2-A	Lab Control Sample	Total/NA	Water	420.4	21179
480-6216-3	SS-03	Total/NA	Water	420.4	21179
480-6216-1	SS-01	Total/NA	Water	420.4	21162
480-6216-2	SS-02	Total/NA	Water	420.4	21162

Prep Batch: 21303

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-21303/2-A	Lab Control Sample	Total/NA	Water	351.2	
480-6216-1	SS-01	Total/NA	Water	351.2	

Analysis Batch: 21593

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-21303/2-A	Lab Control Sample	Total/NA	Water	351.2	21303
480-6216-1	SS-01	Total/NA	Water	351.2	21303

Analysis Batch: 21850

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-21850/27	Method Blank	Total/NA	Water	410.4	
LCS 480-21850/28	Lab Control Sample	Total/NA	Water	410.4	
480-6216-1	SS-01	Total/NA	Water	410.4	

16

--

6

Q

9

11

13

14

Lab Chronicle

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC TestAmerica Job ID: 480-6216-1

Lab Sample ID: 480-6216-1

Matrix: Water

Date Collected: 06/16/11 16:00 Date Received: 06/16/11 17:50

Client Sample ID: SS-01

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	20476	06/17/11 20:40	TRB	TAL BUF
Total/NA	Prep	3010A			19987	06/22/11 08:59	ALS	TAL BUR
Total/NA	Analysis	6010B		1	20138	06/23/11 14:52	BAA	TAL BUR
Total/NA	Prep	200.7			20529	06/20/11 09:40	MM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	21065	06/21/11 21:15	LH	TAL BUF
Total/NA	Prep	200.8			20686	06/20/11 11:40	MM	TAL BUF
Total/NA	Analysis	200.8		1	21076	06/21/11 23:32	JRK	TAL BUF
Total/NA	Analysis	7196A		1	20382	06/17/11 00:27	KS	TAL BUF
Total/NA	Analysis	SM 4500 O G		1	20391	06/16/11 22:55	ML	TAL BUF
Total/NA	Analysis	SM 2540D		1	20434	06/17/11 09:00	MD	TAL BUF
Total/NA	Analysis	353.2		1	20479	06/17/11 11:17	LRM	TAL BUF
Total/NA	Analysis	353.2		1	20481	06/17/11 10:49	LRM	TAL BUF
Total/NA	Analysis	SM 5210B		1	20546	06/17/11 17:46	AP	TAL BUF
Total/NA	Analysis	9040B		1	20559	06/17/11 19:17	KS	TAL BUF
Total/NA	Analysis	350.1		1	20616	06/18/11 12:27	MD	TAL BUF
Total/NA	Analysis	SM 2540C		1	20805	06/21/11 15:43	KS	TAL BUF
Total/NA	Analysis	300.0		1	21221	06/23/11 16:17	RF	TAL BUF
Total/NA	Prep	Distill/Phenol			21162	06/22/11 19:30	AP	TAL BUF
Total/NA	Analysis	420.4		1	21252	06/23/11 09:02	JR	TAL BUF
Total/NA	Prep	351.2			21303	06/23/11 10:12	PN	TAL BUF
Total/NA	Analysis	351.2		1	21593	06/25/11 16:08	JR	TAL BUF
Total/NA	Analysis	410.4		1	21850	06/28/11 13:25	AP	TAL BUF

Client Sample ID: SS-02 Lab Sample ID: 480-6216-2 Date Collected: 06/16/11 16:10 **Matrix: Water**

Date Received: 06/16/11 17:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			19987	06/22/11 08:59	ALS	TAL BUR
Total/NA	Analysis	6010B		1	20138	06/23/11 14:57	BAA	TAL BUR
Total/NA	Prep	200.7			20529	06/20/11 09:40	MM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	21065	06/21/11 21:17	LH	TAL BUF
Total/NA	Analysis	7196A		1	20382	06/17/11 00:30	KS	TAL BUF
Total/NA	Analysis	350.1		1	20616	06/18/11 12:28	MD	TAL BUF
Total/NA	Analysis	300.0		1	21221	06/23/11 16:27	RF	TAL BUF
Total/NA	Prep	Distill/Phenol			21162	06/22/11 19:30	AP	TAL BUF
Total/NA	Analysis	420.4		1	21252	06/23/11 09:02	JR	TAL BUF

Page 19 of 27

TestAmerica Buffalo 06/29/2011

Lab Chronicle

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Lab Sample ID: 480-6216-3

TestAmerica Job ID: 480-6216-1

Matrix: Water

Date Collected: 06/16/11 16:20)
Date Received: 06/16/11 17:50)

Client Sample ID: SS-03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			19987	06/22/11 08:59	ALS	TAL BUR
Total/NA	Analysis	6010B		1	20138	06/23/11 15:02	BAA	TAL BUR
Total/NA	Prep	200.7			20529	06/20/11 09:40	MM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	21065	06/21/11 21:19	LH	TAL BUF
Total/NA	Analysis	7196A		1	20382	06/17/11 00:32	KS	TAL BUF
Total/NA	Analysis	350.1		1	20616	06/18/11 12:35	MD	TAL BUF
Total/NA	Analysis	300.0		1	21221	06/23/11 16:37	RF	TAL BUF
Total/NA	Prep	Distill/Phenol			21179	06/22/11 23:14	KS	TAL BUF
Total/NA	Analysis	420.4		1	21252	06/23/11 09:02	JR	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TestAmerica Buffalo 06/29/2011

Certification Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-6216-1

_aboratory	Authority	Program	EPA Region	Certification ID
estAmerica Buffalo	Arkansas	State Program	6	88-0686
estAmerica Buffalo	California	NELAC	9	1169CA
estAmerica Buffalo	Connecticut	State Program	1	PH-0568
estAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	Georgia EPD	4	N/A
estAmerica Buffalo	Georgia	State Program	4	956
estAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
estAmerica Buffalo	Iowa	State Program	7	374
estAmerica Buffalo	Kansas	NELAC	7	E-10187
estAmerica Buffalo	Kentucky	Kentucky UST	4	30
estAmerica Buffalo	Kentucky	State Program	4	90029
estAmerica Buffalo	Louisiana	NELAC	6	02031
estAmerica Buffalo	Maine	State Program	1	NY0044
estAmerica Buffalo	Maryland	State Program	3	294
estAmerica Buffalo	Massachusetts	State Program	1	M-NY044
estAmerica Buffalo	Michigan	State Program	5	9937
estAmerica Buffalo	Minnesota	NELAC	5	036-999-337
estAmerica Buffalo	New Hampshire	NELAC	1	68-00281
estAmerica Buffalo	New Hampshire	NELAC	1	2337
estAmerica Buffalo	New Jersey	NELAC	2	NY455
estAmerica Buffalo	New York	NELAC	2	10026
estAmerica Buffalo	North Dakota	State Program	8	R-176
estAmerica Buffalo	Oklahoma	State Program	6	9421
estAmerica Buffalo	Oregon	NELAC	10	NY200003
estAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
estAmerica Buffalo	Tennessee	State Program	4	TN02970
estAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
estAmerica Buffalo	USDA	USDA		P330-08-00242
estAmerica Buffalo	Virginia	State Program	3	278
estAmerica Buffalo	Washington	State Program	10	C1677
estAmerica Buffalo	West Virginia	West Virginia DEP	3	252
estAmerica Buffalo	Wisconsin	State Program	5	998310390
estAmerica Burlington	ACLASS	DoD ELAP		ADE-1492
estAmerica Burlington	Connecticut	State Program	1	PH-0751
estAmerica Burlington	Delaware	Delaware DNREC	3	NA
estAmerica Burlington	Florida	NELAC Secondary AB	4	E87467
estAmerica Burlington	Maine	State Program	1	VT00008
estAmerica Burlington	Minnesota	State Program	5	050-999-436
estAmerica Burlington	New Hampshire	NELAC	1	200610
estAmerica Burlington	New Jersey	NELAC	2	VT972
estAmerica Burlington	New York	NELAC	2	10391
estAmerica Burlington	Pennsylvania	NELAC	3	68-00489
estAmerica Burlington	Rhode Island	State Program	1	LAO00298
estAmerica Burlington	USDA	USDA		P330-11-00093
estAmerica Burlington	Vermont	State Program	1	VT-4000

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

3

4

Q

9

11

12

A E

Method Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-6216-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
200.7 Rev 4.4	Metals (ICP)	EPA	TAL BUF
200.8	Metals (ICP/MS)	EPA	TAL BUF
6010B	Metals (Custom List)	SW846	TAL BUR
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
410.4	COD	MCAWW	TAL BUF
420.4	Phenolics, Total Recoverable	MCAWW	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
9040B	рН	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM 4500 O G	Oxygen, Dissolved	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

2

-0

J

7

40

40

1/

Sample Summary

Matrix

Water

Water

Water

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Lab Sample ID 480-6216-1

480-6216-2

480-6216-3

Client Sample ID

SS-01

SS-02

SS-03

TestAmerica Job ID: 480-6216-1

Collected	Received
06/16/11 16:00	06/16/11 17:50
06/16/11 16:10	06/16/11 17:50

06/16/11 16:20

4

06/16/11 17:50

6

8

9

12

13

Login Sample Receipt Checklist

Client: Greenstar Environmental Solutions, LLC

Job Number: 480-6216-1

Login Number: 6216 List Source: TestAmerica Buffalo

List Number: 1

Creator: Szymanski, Andrew

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	Greenstar
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	True	

TestAmerica Buffalo

Login Sample Receipt Checklist

Client: Greenstar Environmental Solutions, LLC Job Number: 480-6216-1

List Source: TestAmerica Burlington
List Number: 1
List Creation: 06/21/11 02:55 PM

Creator: Marion, Greg T

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	792133
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	24.2°C IR GUN ID 96/CF= 0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	Check done at department level as required.

TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-11355-1

Client Project/Site: Greenstar Environmental Solutions, LLC Sampling Event: Semi-Annual groundwater Monitoring 4,10

For:

Greenstar Environmental Solutions, LLC 6 Gellatly Drive Wappingers Falls, New York 12590

Attn: Charles E. McLeod, Jr.

Deggy Gray-Eramann

Authorized for release by: 11/7/2011 12:17:22 PM

Peggy Gray-Erdmann
Project Manager II

peggy.gray-erdmann@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at:

www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	9
Surrogate Summary	17
QC Sample Results	18
QC Association Summary	31
Lab Chronicle	38
Certification Summary	44
Method Summary	45
Sample Summary	46
Chain of Custody	47
Receipt Checklists	51

3

4

0

9

11

13

Definitions/Glossary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-11355-1

Qualifiers

Metals

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

General Chemistry

Qualifier	Qualifier Description
E	Result exceeded calibration range.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Н	Sample was prepped or analyzed beyond the specified holding time
b	Result Detected in the USB
F	MS or MSD exceeds the control limits

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
*	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo 11/7/2011

Case Narrative

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC TestAmerica Job ID: 480-11355-1

Job ID: 480-11355-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-11355-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

HPLC

Method(s) 300.0: Due to the high concentration of Sulfate, the matrix spike / matrix spike duplicate (MS/MSD) for batch 32466 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) 300.0: The following samples were diluted due to the abundance of target analytes: (480-11355-3 MS), (480-11355-3 MSD), AP-MW-4B (480-11355-2), AP-MW-5B (480-11355-3). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following samples were diluted due to the abundance of target analytes: AP-MW-1B (480-11387-1), AP-MW-6B (480-11387-3), AP-MW-8B (480-11355-4). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Metals

Method(s) 200.7 Rev 4.4: The recoveries of Post Spike, (480-11355-1 PDS), in batch 480-35922 exhibited results outside the quality control limits for total cadmium, chromium, iron, magnesium, manganese, sodium, lead, selenium, and thallium. However, the Serial Dilution of this sample was compliant. Therefore, no corrective action was necessary

Method(s) 200.7 Rev 4.4: The recoveries of Post Spike, (480-11387-3 PDS), in batch 480-36075 exhibited results outside the quality control limits for total magnesium and sodium. However, the Serial Dilution of this sample was compliant. Therefore, no corrective action was necessary

Method(s) 200.7 Rev 4.4: The recovery of Post Spike, (480-11355-3 PDS), in batch 36308 exhibited results below the quality control limits for total sodium, magnesium, barium. However, the Serial Dilution of this sample was compliant. Therefore, no corrective action was necessary

No other analytical or quality issues were noted.

General Chemistry

Method(s) 350.1: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 37197 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. (480-11387-3 MS), (480-11387-3 MSD)

Method(s) SM 5210B: The dilution water D.O. depletion was greater than 0.2 mg/L but less than the reporting limit of 2.0 mg/L.

Method(s) 7196A, SM 3500 CR D: The matrix spike (MS) recoveries for batch 31476 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 9040B: The following sample was logged in with greater than 50% of holding time expired: AP-SS-01/EWE-01 (480-11355-7). As such, the laboratory had insufficient time remaining to perform the analysis within holding time.

Method(s) SM 4500 O G: The following sample(s) was received within Holding Time, but was logged in after Holding Time expired: AP-SS-01/EWE-01 (480-11355-7).

No other analytical or quality issues were noted.

4

5

6

a

10

12

13

14

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-11355-1

Client Sample ID: AP-MW-3B

Client Sample ID: AP-MW-4B

Lab Sample ID: 480-11355-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	0.042	J	0.050	0.019	mg/L	1	_	200.7 Rev 4.4	Total/NA
Magnesium	5.8		0.20	0.043	mg/L	1		200.7 Rev 4.4	Total/NA
Manganese	0.0059		0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	54.4		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.0069	J	0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	8260	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	66.7		2.0	0.35	mg/L	1		300.0	Total/NA
Ammonia as N	1.2		0.020	0.0090	mg/L as N	1		350.1	Total/NA

Lab Sample ID: 480-11355-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cadmium	0.00085 J	0.0010	0.00033	mg/L	1	_	200.7 Rev 4.4	Total/NA
Chromium	0.12	0.0040	0.00087	mg/L	1		200.7 Rev 4.4	Total/NA
Iron	5.4	0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Magnesium	57.7	0.20	0.043	mg/L	1		200.7 Rev 4.4	Total/NA
Manganese	0.11	0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	71.2	1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.060	0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	36000 B	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	153	4.0	0.70	mg/L	2		300.0	Total/NA
Chromium, hexavalent	76.2	10.0	5.0	ug/L	1		7196A	Total/NA

Client Sample ID: AP-MW-5B Lab Sample ID: 480-11355-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cadmium	0.00034	J	0.0010	0.00033	mg/L	1	_	200.7 Rev 4.4	Total/NA
Chromium	0.0039	J	0.0040	0.00087	mg/L	1		200.7 Rev 4.4	Total/NA
Iron	0.60		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Magnesium	82.3		0.20	0.043	mg/L	1		200.7 Rev 4.4	Total/NA
Manganese	0.021		0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	31.2		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.025		0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	16800	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	150		4.0	0.70	mg/L	2		300.0	Total/NA

Client Sample ID: AP-MW-8B Lab Sample ID: 480-11355-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cadmium	0.00065	J	0.0010	0.00033	mg/L	1	_	200.7 Rev 4.4	Total/NA
Chromium	0.076		0.0040	0.00087	mg/L	1		200.7 Rev 4.4	Total/NA
Iron	0.47		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Magnesium	68.3		0.20	0.043	mg/L	1		200.7 Rev 4.4	Total/NA
Manganese	0.23		0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Selenium	0.012	J	0.015	0.0087	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	73.5		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.12		0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	7550	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	193		10.0	1.7	mg/L	5		300.0	Total/NA
Ammonia as N	0.043		0.020	0.0090	mg/L as N	1		350.1	Total/NA
Chromium, hexavalent	76.2		10.0	5.0	ug/L	1		7196A	Total/NA

Client Sample ID: AP-SS-03 Lab Sample ID: 480-11355-5

TestAmerica Buffalo

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-SS-03 (Continued)

Lab Sample ID: 480-11355-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0035	J	0.0040	0.00087	mg/L	1	_	200.7 Rev 4.4	Total/NA
Iron	1.6		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Magnesium	7.5		0.20	0.043	mg/L	1		200.7 Rev 4.4	Total/NA
Manganese	0.13		0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	50.7		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.020		0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	2580	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	23.4		2.0	0.35	mg/L	1		300.0	Total/NA
Phenolics, Total Recoverable	6.2	J	10.0	5.0	ug/L	1		420.4	Total/NA

Client Sample ID: AP-SS-02

Lab Sample ID: 480-11355-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	0.63		0.050	0.019	mg/L	1	_	200.7 Rev 4.4	Total/NA
Magnesium	20.1		0.20	0.043	mg/L	1		200.7 Rev 4.4	Total/NA
Manganese	0.38		0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	4.3		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.0049	J	0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	7830	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	27.8		2.0	0.35	mg/L	1		300.0	Total/NA
Phenolics, Total Recoverable	20.6		10.0	5.0	ug/L	1		420.4	Total/NA

Client Sample ID: AP-SS-01/EWE-01

Lab Sample ID: 480-11355-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	195		2.0	0.50	ug/L	1	_	200.7 Rev 4.4	Total/NA
Chromium	1.0	J	4.0	0.87	ug/L	1		200.7 Rev 4.4	Total/NA
Iron	94.2		50.0	19.3	ug/L	1		200.7 Rev 4.4	Total/NA
Nickel	1.3	J	10.0	1.3	ug/L	1		200.7 Rev 4.4	Total/NA
Zinc	3.6	J	10.0	1.7	ug/L	1		200.7 Rev 4.4	Total/NA
Selenium	0.66	J	1.0	0.44	ug/L	1		200.8	Total/NA
Thallium	0.025	J	0.20	0.0080	ug/L	1		200.8	Total/NA
Silicon	2860	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	24.5		2.0	0.35	mg/L	1		300.0	Total/NA
Total Kjeldahl Nitrogen	0.41		0.20	0.15	mg/L as N	1		351.2	Total/NA
Nitrate as N	0.69		0.050	0.011	mg/L	1		353.2	Total/NA
Chemical Oxygen Demand	13.3		10.0	5.0	mg/L	1		410.4	Total/NA
Total Dissolved Solids	655		10.0	4.0	mg/L	1		SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
рН	7.69	Н	0.100	0.100	SU	1	_	9040B	Total/NA
Total Suspended Solids	32.8		4.0	4.0	mg/L	1		SM 2540D	Total/NA
Oxygen, Dissolved	5.3	Н	0.050	0.050	mg/L	1		SM 4500 O G	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-11355-8

No Detections

Client Sample ID: AP-MW-1B

Lab Sample ID: 480-11387-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cadmium	0.00099	J	0.0010	0.00033	mg/L		_	200.7 Rev 4.4	Total/NA
Chromium	0.0013	J	0.0040	0.00087	mg/L	1		200.7 Rev 4.4	Total/NA
Iron	0.12		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA

8

10

12

13

14

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

2

Client Sample ID: AP-MW-1B (Continued)

Lab Sample ID: 480-11387-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Magnesium	62.2		0.20	0.043	mg/L	1	_	200.7 Rev 4.4	Total/NA
Manganese	0.66		0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	125		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.56		0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	6910	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	186		4.0	0.70	mg/L	2		300.0	Total/NA
Phenolics. Total Recoverable	5.6	J	10.0	5.0	ua/L	1		420.4	Total/NA

5

Client Sample ID: AP-MW-2B

Lab Sample ID: 480-11387-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.77		0.0040	0.00087	mg/L	1	_	200.7 Rev 4.4	Total/NA
Selenium	0.0097	J	0.015	0.0087	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	40.5		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	509	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	21.5		2.0	0.35	mg/L	1		300.0	Total/NA
Ammonia as N	1.6		0.020	0.0090	mg/L as N	1		350.1	Total/NA
Phenolics, Total Recoverable	10.5		10.0	5.0	ug/L	1		420.4	Total/NA
Chromium, hexavalent	754		20.0	10.0	ug/L	2		7196A	Total/NA

11

Client Sample ID: AP-MW-6B

Lab Sample ID: 480-11387-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	0.28		0.050	0.019	mg/L	1	_	200.7 Rev 4.4	Total/NA
Magnesium	73.1		0.20	0.043	mg/L	1		200.7 Rev 4.4	Total/NA
Manganese	0.14		0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	76.8		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.0020	J	0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	5950	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	363		10.0	1.7	mg/L	5		300.0	Total/NA
Ammonia as N	0.030		0.020	0.0090	mg/L as N	1		350.1	Total/NA

15

Client Sample ID: AP-MW-7B

Lab Sample ID: 480-11387-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0026	J	0.0040	0.00087	mg/L	1	_	200.7 Rev 4.4	Total/NA
Iron	0.095		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Magnesium	8.3		0.20	0.043	mg/L	1		200.7 Rev 4.4	Total/NA
Manganese	0.037		0.0030	0.00030	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	54.1		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.0023	J	0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	4960	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	30.4		2.0	0.35	mg/L	1		300.0	Total/NA
Ammonia as N	0.66		0.020	0.0090	mg/L as N	1		350.1	Total/NA
Phenolics, Total Recoverable	11.1		10.0	5.0	ug/L	1		420.4	Total/NA

Client Sample ID: AP-GW-DUP-01

Lab Sample ID: 480-11387-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.77		0.0040	0.00087	mg/L	1	_	200.7 Rev 4.4	Total/NA
Selenium	0.011	J	0.015	0.0087	mg/L	1		200.7 Rev 4.4	Total/NA
Sodium	39.8		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.0021	J	0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	496	В	100	4.7	ug/L	1		6010B	Total/NA

Detection Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-11355-1

Lab Sample ID: 480-11387-5

3

Client Sample ID: AP-GW-DUP-01 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	21.6		2.0	0.35	mg/L	1	_	300.0	Total/NA
Ammonia as N	1.6		0.020	0.0090	mg/L as N	1		350.1	Total/NA
Phenolics, Total Recoverable	10		10.0	5.0	ug/L	1		420.4	Total/NA
Chromium, hexavalent	925		50.0	25.0	ug/L	5		7196A	Total/NA

5

Client Sample ID: AP-RB-01

Lab Sample	ID: 480-11387-6
------------	-----------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Magnesium	1.3		0.20	0.043	mg/L	1	_	200.7 Rev 4.4	Total/NA
Sodium	6.8		1.0	0.32	mg/L	1		200.7 Rev 4.4	Total/NA
Zinc	0.0026	J	0.010	0.0017	mg/L	1		200.7 Rev 4.4	Total/NA
Silicon	3890	В	100	4.7	ug/L	1		6010B	Total/NA
Sulfate	6.5		2.0	0.35	mg/L	1		300.0	Total/NA
Phenolics, Total Recoverable	5.2	J	10.0	5.0	ug/L	1		420.4	Total/NA
Chromium, hexavalent	5.6	J	10.0	5.0	ug/L	1		7196A	Total/NA

9

Client Sample ID: AP-SWB-01

Lab Sample ID: 480-11387-7

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Magnesium	1.3	0.20	0.043	mg/L		200.7 Rev 4.4	Total/NA
Sodium	6.7	1.0	0.32	mg/L	1	200.7 Rev 4.4	Total/NA
Zinc	0.0022 J	0.010	0.0017	mg/L	1	200.7 Rev 4.4	Total/NA
Silicon	3780 B	100	4.7	ug/L	1	6010B	Total/NA
Sulfate	6.4	2.0	0.35	mg/L	1	300.0	Total/NA
Phenolics, Total Recoverable	5.4 J	10.0	5.0	ug/L	1	420.4	Total/NA
Chromium, hexavalent	5.6 J	10.0	5.0	ug/L	1	7196A	Total/NA

13

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-MW-3B

Date Collected: 10/17/11 12:10 Date Received: 10/17/11 17:05 Lab Sample ID: 480-11355-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		10/18/11 11:00	10/18/11 20:24	1
Chromium	ND		0.0040	0.00087	mg/L		10/18/11 11:00	10/18/11 20:24	1
Iron	0.042	J	0.050	0.019	mg/L		10/18/11 11:00	10/18/11 20:24	1
Lead	ND		0.0050	0.0030	mg/L		10/18/11 11:00	10/18/11 20:24	1
Magnesium	5.8		0.20	0.043	mg/L		10/18/11 11:00	10/18/11 20:24	1
Manganese	0.0059		0.0030	0.00030	mg/L		10/18/11 11:00	10/18/11 20:24	1
Selenium	ND		0.015	0.0087	mg/L		10/18/11 11:00	10/18/11 20:24	1
Sodium	54.4		1.0	0.32	mg/L		10/18/11 11:00	10/18/11 20:24	1
Thallium	ND		0.020	0.010	mg/L		10/18/11 11:00	10/18/11 20:24	1
Zinc	0.0069	J	0.010	0.0017	mg/L		10/18/11 11:00	10/18/11 20:24	1
Method: 6010B - Metals (Custom List)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	8260	В	100	4.7	ug/L		10/21/11 08:15	10/22/11 00:26	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	66.7		2.0	0.35	mg/L			10/26/11 10:06	1
Ammonia as N	1.2		0.020	0.0090	mg/L as N			10/25/11 13:58	1
Phenolics, Total Recoverable	ND		10.0	5.0	ug/L		11/03/11 16:22	11/03/11 18:49	1
Chromium, hexavalent	ND		10.0	5.0	ug/L			10/18/11 12:00	1

Client Sample ID: AP-MW-4B

Date Collected: 10/17/11 12:30 Date Received: 10/17/11 17:05 Lab Sample ID: 480-11355-2 Matrix: Water

Method: 200.7 Rev 4.4 - Metals Analyte	• ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.00085	J	0.0010	0.00033	mg/L		10/18/11 11:00	10/19/11 22:38	1
Chromium	0.12		0.0040	0.00087	mg/L		10/18/11 11:00	10/19/11 22:38	1
Iron	5.4		0.050	0.019	mg/L		10/18/11 11:00	10/19/11 22:38	1
Lead	ND		0.0050	0.0030	mg/L		10/18/11 11:00	10/19/11 22:38	1
Magnesium	57.7		0.20	0.043	mg/L		10/18/11 11:00	10/19/11 22:38	1
Manganese	0.11		0.0030	0.00030	mg/L		10/18/11 11:00	10/19/11 22:38	1
Selenium	ND		0.015	0.0087	mg/L		10/18/11 11:00	10/19/11 22:38	1
Sodium	71.2		1.0	0.32	mg/L		10/18/11 11:00	10/19/11 22:38	1
Thallium	ND		0.020	0.010	mg/L		10/18/11 11:00	10/19/11 22:38	1
Zinc	0.060		0.010	0.0017	mg/L		10/18/11 11:00	10/19/11 22:38	1
Method: 6010B - Metals (Custo	m List)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	36000	В	100	4.7	ug/L		10/21/11 08:15	10/22/11 00:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	153		4.0	0.70	mg/L			10/27/11 20:45	2
Ammonia as N	ND		0.020	0.0090	mg/L as N			10/25/11 13:59	1
Phenolics, Total Recoverable	ND		10.0	5.0	ug/L		11/03/11 16:22	11/03/11 18:49	1
Chromium, hexavalent	76.2		10.0	5.0	ug/L			10/18/11 12:00	1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-MW-5B

Date Collected: 10/17/11 12:50 Date Received: 10/17/11 17:05 Lab Sample ID: 480-11355-3

Matrix: Water

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.00034	J	0.0010	0.00033	mg/L		10/18/11 11:00	10/19/11 22:40	1
Chromium	0.0039	J	0.0040	0.00087	mg/L		10/18/11 11:00	10/19/11 22:40	1
Iron	0.60		0.050	0.019	mg/L		10/18/11 11:00	10/19/11 22:40	1
Lead	ND		0.0050	0.0030	mg/L		10/18/11 11:00	10/19/11 22:40	1
Magnesium	82.3		0.20	0.043	mg/L		10/18/11 11:00	10/19/11 22:40	1
Manganese	0.021		0.0030	0.00030	mg/L		10/18/11 11:00	10/19/11 22:40	1
Selenium	ND		0.015	0.0087	mg/L		10/18/11 11:00	10/19/11 22:40	1
Sodium	31.2		1.0	0.32	mg/L		10/18/11 11:00	10/19/11 22:40	1
Thallium	ND		0.020	0.010	mg/L		10/18/11 11:00	10/19/11 22:40	1
Zinc	0.025		0.010	0.0017	mg/L		10/18/11 11:00	10/19/11 22:40	1
- Method: 6010B - Metals (Custor	m List)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	16800	В	100	4.7	ug/L		10/21/11 08:15	10/22/11 00:36	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	150		4.0	0.70	mg/L			10/27/11 20:55	2
Ammonia as N	ND		0.020	0.0090	mg/L as N			10/25/11 14:00	1
Phenolics, Total Recoverable	ND		10.0	5.0	ug/L		11/03/11 16:22	11/03/11 18:49	1
Chromium, hexavalent	ND		10.0	5.0	ug/L			10/18/11 12:00	1

Client Sample ID: AP-MW-8B Lab Sample ID: 480-11355-4

Date Collected: 10/17/11 13:10 Date Received: 10/17/11 17:05

Method: 200.7 Rev 4.4 - Metals (ICP) Result Qualifier RL Dil Fac Analyte MDL Unit D Prepared Analyzed Cadmium 0.00065 0.0010 0.00033 mg/L 10/18/11 11:00 10/19/11 22:55 0.0040 0.00087 mg/L 10/18/11 11:00 10/19/11 22:55 Chromium 0.076 0.050 0.019 mg/L Iron 0.47 10/18/11 11:00 10/19/11 22:55 0.0030 mg/L Lead ND 0.0050 10/18/11 11:00 10/19/11 22:55

0.043 mg/L 10/18/11 11:00 10/19/11 22:55 Magnesium 68.3 0.20 0.0030 0.00030 mg/L 10/18/11 11:00 10/19/11 22:55 Manganese 0.23 Selenium 0.0087 mg/L 0.012 J 0.015 10/18/11 11:00 10/19/11 22:55 **Sodium** 73.5 1.0 0.32 mg/L 10/18/11 11:00 10/19/11 22:55 Thallium ND 0.020 0.010 mg/L 10/18/11 11:00 10/19/11 22:55 Zinc 0.010 0.0017 mg/L 10/18/11 11:00 10/19/11 22:55 0.12

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	193		10.0	1.7	mg/L			10/27/11 22:06	5
Ammonia as N	0.043		0.020	0.0090	mg/L as N			10/25/11 14:01	1
Phenolics, Total Recoverable	ND		10.0	5.0	ug/L		11/03/11 16:26	11/03/11 18:58	1
Chromium, hexavalent	76.2		10.0	5.0	ug/L			10/18/11 12:00	1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-SS-03

Date Collected: 10/17/11 14:30 Date Received: 10/17/11 17:05 Lab Sample ID: 480-11355-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		10/18/11 11:00	10/19/11 22:57	1
Chromium	0.0035	J	0.0040	0.00087	mg/L		10/18/11 11:00	10/19/11 22:57	1
Iron	1.6		0.050	0.019	mg/L		10/18/11 11:00	10/19/11 22:57	1
Lead	ND		0.0050	0.0030	mg/L		10/18/11 11:00	10/19/11 22:57	1
Magnesium	7.5		0.20	0.043	mg/L		10/18/11 11:00	10/19/11 22:57	1
Manganese	0.13		0.0030	0.00030	mg/L		10/18/11 11:00	10/19/11 22:57	1
Selenium	ND		0.015	0.0087	mg/L		10/18/11 11:00	10/19/11 22:57	1
Sodium	50.7		1.0	0.32	mg/L		10/18/11 11:00	10/19/11 22:57	1
Thallium	ND		0.020	0.010	mg/L		10/18/11 11:00	10/19/11 22:57	1
Zinc	0.020		0.010	0.0017	mg/L		10/18/11 11:00	10/19/11 22:57	1
Method: 6010B - Metals (Custom	List)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	2580	В	100	4.7	ug/L		10/21/11 08:15	10/22/11 00:47	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	23.4		2.0	0.35	mg/L			10/26/11 10:46	1
Ammonia as N	ND		0.020	0.0090	mg/L as N			10/25/11 14:02	1
Phenolics, Total Recoverable	6.2	J	10.0	5.0	ug/L		11/03/11 16:26	11/03/11 18:58	1
								10/18/11 12:00	

Client Sample ID: AP-SS-02 Lab Sample ID: 480-11355-6

Date Collected: 10/17/11 14:50 Date Received: 10/17/11 17:05 -ab Sample ID: 480-11355-6 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		10/18/11 11:00	10/19/11 23:00	1
Chromium	ND		0.0040	0.00087	mg/L		10/18/11 11:00	10/19/11 23:00	1
Iron	0.63		0.050	0.019	mg/L		10/18/11 11:00	10/19/11 23:00	1
Lead	ND		0.0050	0.0030	mg/L		10/18/11 11:00	10/19/11 23:00	1
Magnesium	20.1		0.20	0.043	mg/L		10/18/11 11:00	10/19/11 23:00	1
Manganese	0.38		0.0030	0.00030	mg/L		10/18/11 11:00	10/19/11 23:00	1
Selenium	ND		0.015	0.0087	mg/L		10/18/11 11:00	10/19/11 23:00	1
Sodium	4.3		1.0	0.32	mg/L		10/18/11 11:00	10/19/11 23:00	1
Thallium	ND		0.020	0.010	mg/L		10/18/11 11:00	10/19/11 23:00	1
Zinc	0.0049	J	0.010	0.0017	mg/L		10/18/11 11:00	10/19/11 23:00	1
Method: 6010B - Metals (Custom List)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	7830	В	100	4.7	ug/L		10/21/11 08:15	10/22/11 00:52	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	27.8		2.0	0.35	mg/L			10/26/11 10:56	1
Ammonia as N	ND		0.020	0.0090	mg/L as N			10/25/11 14:03	1
Phenolics, Total Recoverable	20.6		10.0	5.0	ug/L		11/03/11 16:26	11/03/11 18:58	1
Chromium, hexavalent	ND		10.0	5.0	ug/L			10/18/11 12:00	1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-SS-01/EWE-01

Date Collected: 10/17/11 15:10 Date Received: 10/17/11 17:05 Lab Sample ID: 480-11355-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/26/11 00:46	
Trichloroethene	ND		5.0	0.60	ug/L			10/26/11 00:46	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		72 - 130					10/26/11 00:46	
4-Bromofluorobenzene (Surr)	99		69 - 121					10/26/11 00:46	1
Toluene-d8 (Surr)	100		70 - 123					10/26/11 00:46	1
Method: 200.7 Rev 4.4 - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	195		2.0	0.50	ug/L		10/18/11 11:00	10/19/11 23:02	1
Chromium	1.0	J	4.0	0.87	ug/L		10/18/11 11:00	10/19/11 23:02	1
Copper	ND		10.0	1.5	ug/L		10/18/11 11:00	10/19/11 23:02	1
Iron	94.2		50.0	19.3	ug/L		10/18/11 11:00	10/19/11 23:02	1
Nickel	1.3	J	10.0	1.3	ug/L		10/18/11 11:00	10/19/11 23:02	1
Zinc	3.6	J	10.0	1.7	ug/L		10/18/11 11:00	10/19/11 23:02	1
Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	0.66	J	1.0	0.44	ug/L		10/19/11 07:40	10/22/11 16:17	1
Thallium	0.025	J	0.20	0.0080	ug/L		10/19/11 07:40	10/24/11 17:56	1
Method: 6010B - Metals (Custom List	n								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	24.5		2.0	0.35	mg/L			10/26/11 11:07	1
Ammonia as N	ND		0.020	0.0090	mg/L as N			10/26/11 16:19	1
Total Kjeldahl Nitrogen	0.41		0.20	0.15	mg/L as N		10/25/11 12:25	10/27/11 18:34	1
Nitrate as N	0.69		0.050	0.011	mg/L			10/19/11 00:57	1
Nitrite as N	ND		0.050	0.020	mg/L			10/19/11 01:04	1
Chemical Oxygen Demand	13.3		10.0	5.0	mg/L			10/28/11 12:23	1
Phenolics, Total Recoverable	ND		10.0	5.0	ug/L		11/03/11 16:26	11/03/11 18:58	1
Chromium, hexavalent	ND		10.0	5.0	ug/L			10/18/11 12:00	1
Total Dissolved Solids	655		10.0	4.0	mg/L			10/20/11 14:26	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			10/18/11 13:59	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.69	H	0.100	0.100	SU			10/19/11 00:08	1
Total Suspended Solids	32.8		4.0	4.0	mg/L			10/21/11 01:45	1
Oxygen, Dissolved	5.3	Н	0.050	0.050	mg/L			10/18/11 23:37	1

100

2860 B

4.7 ug/L

Client Sample ID: TRIP BLANK

Date Collected: 10/17/11 00:00 Date Received: 10/17/11 17:05

Silicon

Lab Sample ID: 480-11355-8

10/22/11 00:57

10/21/11 08:15

Matrix: Water

Method: 624 - Volatile Organic Compounds (GC/MS)									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,1-Dichloroethane	ND	5.0	0.59	ug/L			10/26/11 01:08	1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Lab Sample ID: 480-11355-8

Matrix: Water

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 10/17/11 00:00 Date Received: 10/17/11 17:05

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Trichloroethene	ND		5.0	0.60	ug/L			10/26/11 01:08	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	107		72 - 130			_		10/26/11 01:08	1	
4-Bromofluorobenzene (Surr)	98		69 - 121					10/26/11 01:08	1	
Toluene-d8 (Surr)	100		70 - 123					10/26/11 01:08	1	

Client Sample ID: AP-MW-1B Lab Sample ID: 480-11387-1

Date Collected: 10/18/11 11:55

Date Received: 10/18/11 15:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.00099	J	0.0010	0.00033	mg/L		10/19/11 09:20	10/19/11 17:17	1
Chromium	0.0013	J	0.0040	0.00087	mg/L		10/19/11 09:20	10/19/11 17:17	1
Iron	0.12		0.050	0.019	mg/L		10/19/11 09:20	10/19/11 17:17	1
Lead	ND		0.0050	0.0030	mg/L		10/19/11 09:20	10/19/11 17:17	1
Magnesium	62.2		0.20	0.043	mg/L		10/19/11 09:20	10/19/11 17:17	1
Manganese	0.66		0.0030	0.00030	mg/L		10/19/11 09:20	10/19/11 17:17	1
Selenium	ND		0.015	0.0087	mg/L		10/19/11 09:20	10/19/11 17:17	1
Sodium	125		1.0	0.32	mg/L		10/19/11 09:20	10/19/11 17:17	1
Thallium	ND		0.020	0.010	mg/L		10/19/11 09:20	10/19/11 17:17	1
Zinc	0.56		0.010	0.0017	mg/L		10/19/11 09:20	10/19/11 17:17	1

Method: 6010B - Metals (Custom List)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	6910	В	100	4.7	ug/L		10/21/11 08:25	10/21/11 23:28	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	186		4.0	0.70	mg/L			10/27/11 22:26	2
Ammonia as N	ND		0.020	0.0090	mg/L as N			10/25/11 14:14	1
Phenolics, Total Recoverable	5.6	J	10.0	5.0	ug/L		11/03/11 22:31	11/05/11 09:33	1
Chromium, hexavalent	ND		10.0	5.0	ug/L			10/18/11 20:53	1

Client Sample ID: AP-MW-2B Lab Sample ID: 480-11387-2

Date Collected: 10/18/11 10:25 Matrix: Water Date Received: 10/18/11 15:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		10/19/11 09:20	10/19/11 17:20	1
Chromium	0.77		0.0040	0.00087	mg/L		10/19/11 09:20	10/19/11 17:20	1
Iron	ND		0.050	0.019	mg/L		10/19/11 09:20	10/19/11 17:20	1
Lead	ND		0.0050	0.0030	mg/L		10/19/11 09:20	10/19/11 17:20	1
Magnesium	ND		0.20	0.043	mg/L		10/19/11 09:20	10/19/11 17:20	1
Manganese	ND		0.0030	0.00030	mg/L		10/19/11 09:20	10/19/11 17:20	1
Selenium	0.0097	J	0.015	0.0087	mg/L		10/19/11 09:20	10/19/11 17:20	1
Sodium	40.5		1.0	0.32	mg/L		10/19/11 09:20	10/19/11 17:20	1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC TestAmerica Job ID: 480-11355-1

Client Sample ID: AP-MW-2B

Date Collected: 10/18/11 10:25 Date Received: 10/18/11 15:10

Chromium, hexavalent

Client Sample ID: AP-MW-6B

Date Collected: 10/18/11 09:10

Date Received: 10/18/11 15:10

Lab Sample ID: 480-11387-2

Matrix: Water

Pocult								
iveani	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.020	0.010	mg/L		10/19/11 09:20	10/19/11 17:20	1
ND		0.010	0.0017	mg/L		10/19/11 09:20	10/19/11 17:20	1
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
509	В	100	4.7	ug/L		10/21/11 08:25	10/21/11 23:33	1
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
21.5		2.0	0.35	mg/L			10/27/11 22:36	1
1.6		0.020	0.0090	mg/L as N			10/25/11 14:15	1
10.5		10.0	5.0	ug/L		11/03/11 22:39	11/05/11 09:33	1
	ND Result 509 Result 21.5 1.6	Result Qualifier 509 B Result Qualifier 21.5 1.6	Result 509 Qualifier RL 509 B 100 Result 21.5 2.0 1.6 0.020	ND 0.010 0.0017 Result 509 B RL 100 MDL 4.7 Result 21.5 2.0 0.35 RL 20.0 0.009	ND 0.010 0.0017 mg/L Result 509 B RL 100 MDL 4.7 ug/L Result 21.5 2.0 0.35 mg/L 1.6 Qualifier 2.0 0.020 0.0090 mg/L as N	ND 0.010 0.0017 mg/L Result 509 B RL 100 MDL 4.7 ug/L Unit ug/L D Result 21.5 2.0 0.35 mg/L 1.6 Qualifier 2.0 0.0090 mg/L as N N D	ND 0.010 0.0017 mg/L 10/19/11 09:20 Result 509 B RL MDL unit ug/L D 10/21/11 08:25 Result Qualifier RL MDL ug/L MDL ug/L D Prepared 21.5 2.0 0.35 mg/L 1.6 0.020 0.0090 mg/L as N	Result Qualifier RL MDL Unit ug/L D Prepared 10/21/11 08:25 Analyzed 10/21/11 23:33 Result Qualifier RL MDL Unit ug/L D Prepared 10/21/11 08:25 Analyzed 10/21/11 23:33 Result Qualifier RL MDL Unit pg/L D Prepared 10/21/11 23:33 Analyzed 10/27/11 23:33 21.5 2.0 0.35 mg/L 1.6 0.020 0.0090 mg/L as N 10/25/11 14:15

20.0

754

10.0 ug/L

Lab Sample ID: 480-11387-3

10/18/11 21:22

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND ND	0.0010	0.00033	mg/L		10/19/11 09:20	10/19/11 17:22	1
Chromium	ND	0.0040	0.00087	mg/L		10/19/11 09:20	10/19/11 17:22	1
Iron	0.28	0.050	0.019	mg/L		10/19/11 09:20	10/19/11 17:22	1
Lead	ND	0.0050	0.0030	mg/L		10/19/11 09:20	10/19/11 17:22	1
Magnesium	73.1	0.20	0.043	mg/L		10/19/11 09:20	10/19/11 17:22	1
Manganese	0.14	0.0030	0.00030	mg/L		10/19/11 09:20	10/19/11 17:22	1
Selenium	ND	0.015	0.0087	mg/L		10/19/11 09:20	10/19/11 17:22	1
Sodium	76.8	1.0	0.32	mg/L		10/19/11 09:20	10/19/11 17:22	1
Thallium	ND	0.020	0.010	mg/L		10/19/11 09:20	10/19/11 17:22	1
Zinc	0.0020 J	0.010	0.0017	mg/L		10/19/11 09:20	10/19/11 17:22	1

	Method: 6010B - Metals (Custom List)									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Silicon	5950	В	100	4.7	ug/L		10/21/11 08:25	10/21/11 23:38	1
1										

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	363		10.0	1.7	mg/L			10/27/11 22:46	5
Ammonia as N	0.030		0.020	0.0090	mg/L as N			10/25/11 14:18	1
Phenolics, Total Recoverable	ND		10.0	5.0	ug/L		11/03/11 22:47	11/05/11 09:33	1
Chromium, hexavalent	ND		10.0	5.0	ug/L			10/18/11 20:59	1

Client Sample ID: AP-MW-7B Lab Sample ID: 480-11387-4

Date Collected: 10/18/11 13:05 **Matrix: Water** Date Received: 10/18/11 15:10

Method: 200.7 Rev 4.4 - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		10/19/11 09:20	10/19/11 17:37	1
Chromium	0.0026	J	0.0040	0.00087	mg/L		10/19/11 09:20	10/19/11 17:37	1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-MW-7B

Date Collected: 10/18/11 13:05 Date Received: 10/18/11 15:10 Lab Sample ID: 480-11387-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.095		0.050	0.019	mg/L		10/19/11 09:20	10/19/11 17:37	1
Lead	ND		0.0050	0.0030	mg/L		10/19/11 09:20	10/19/11 17:37	1
Magnesium	8.3		0.20	0.043	mg/L		10/19/11 09:20	10/19/11 17:37	1
Manganese	0.037		0.0030	0.00030	mg/L		10/19/11 09:20	10/19/11 17:37	1
Selenium	ND		0.015	0.0087	mg/L		10/19/11 09:20	10/19/11 17:37	1
Sodium	54.1		1.0	0.32	mg/L		10/19/11 09:20	10/19/11 17:37	1
Thallium	ND		0.020	0.010	mg/L		10/19/11 09:20	10/19/11 17:37	1
Zinc	0.0023	J	0.010	0.0017	mg/L		10/19/11 09:20	10/19/11 17:37	1

 Method: 6010B - Metals (Custom List)
 Result Silicon
 Qualifier
 RL
 MDL Unit
 D
 Prepared To/21/11 08:25
 Analyzed To/21/11 23:44
 Dil Fac To/21/11 08:25

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	30.4		2.0	0.35	mg/L			10/26/11 16:00	1
Ammonia as N	0.66		0.020	0.0090	mg/L as N			10/25/11 14:21	1
Phenolics, Total Recoverable	11.1		10.0	5.0	ug/L		11/03/11 22:54	11/05/11 09:33	1
Chromium, hexavalent	ND		10.0	5.0	ug/L			10/18/11 21:02	1

Client Sample ID: AP-GW-DUP-01 Lab Sample ID: 480-11387-5

Date Collected: 10/18/11 00:00 Date Received: 10/18/11 15:10

Method: 200.7 Rev 4.4 - N	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		10/19/11 09:20	10/19/11 17:39	1
Chromium	0.77		0.0040	0.00087	mg/L		10/19/11 09:20	10/19/11 17:39	1
Iron	ND		0.050	0.019	mg/L		10/19/11 09:20	10/19/11 17:39	1
Lead	ND		0.0050	0.0030	mg/L		10/19/11 09:20	10/19/11 17:39	1
Magnesium	ND		0.20	0.043	mg/L		10/19/11 09:20	10/19/11 17:39	1
Manganese	ND		0.0030	0.00030	mg/L		10/19/11 09:20	10/19/11 17:39	1
Selenium	0.011	J	0.015	0.0087	mg/L		10/19/11 09:20	10/19/11 17:39	1
Sodium	39.8		1.0	0.32	mg/L		10/19/11 09:20	10/19/11 17:39	1
Thallium	ND		0.020	0.010	mg/L		10/19/11 09:20	10/19/11 17:39	1
Zinc	0.0021	J	0.010	0.0017	mg/L		10/19/11 09:20	10/19/11 17:39	1

Method: 6010B - Metals (Custom L	_ist)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	496	В	100	4.7	ug/L		10/21/11 08:25	10/21/11 23:49	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	21.6		2.0	0.35	mg/L			10/27/11 22:56	1
Ammonia as N	1.6		0.020	0.0090	mg/L as N			10/25/11 14:22	1
Phenolics, Total Recoverable	10		10.0	5.0	ug/L		11/03/11 23:02	11/05/11 09:42	1
Chromium, hexavalent	925		50.0	25.0	ug/L			10/18/11 21:35	5

Matrix: Water

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-RB-01

Date Collected: 10/18/11 14:10 Date Received: 10/18/11 15:10 Lab Sample ID: 480-11387-6

Matrix: Water

Method: 200.7 Rev 4.4 - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		10/19/11 09:20	10/19/11 17:41	•
Chromium	ND		0.0040	0.00087	mg/L		10/19/11 09:20	10/19/11 17:41	1
Iron	ND		0.050	0.019	mg/L		10/19/11 09:20	10/19/11 17:41	1
Lead	ND		0.0050	0.0030	mg/L		10/19/11 09:20	10/19/11 17:41	1
Magnesium	1.3		0.20	0.043	mg/L		10/19/11 09:20	10/19/11 17:41	1
Manganese	ND		0.0030	0.00030	mg/L		10/19/11 09:20	10/19/11 17:41	1
Selenium	ND		0.015	0.0087	mg/L		10/19/11 09:20	10/19/11 17:41	1
Sodium	6.8		1.0	0.32	mg/L		10/19/11 09:20	10/19/11 17:41	1
Thallium	ND		0.020	0.010	mg/L		10/19/11 09:20	10/19/11 17:41	1
Zinc	0.0026	J	0.010	0.0017	mg/L		10/19/11 09:20	10/19/11 17:41	1
Method: 6010B - Metals (Custom List)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	3890	В	100	4.7	ug/L		10/21/11 08:25	10/21/11 23:54	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	6.5		2.0	0.35	mg/L			10/26/11 16:21	1
Ammonia as N	ND		0.020	0.0090	mg/L as N			10/25/11 14:23	1
Phenolics, Total Recoverable	5.2	J	10.0	5.0	ug/L		11/03/11 23:10	11/05/11 09:42	
Chromium, hexavalent	5.6		10.0	5.0	ug/L			10/18/11 21:09	1

Client Sample ID: AP-SWB-01 Lab Sample ID: 480-11387-7

Date Collected: 10/18/11 14:00 Date Received: 10/18/11 15:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		10/19/11 09:20	10/19/11 17:43	1
Chromium	ND		0.0040	0.00087	mg/L		10/19/11 09:20	10/19/11 17:43	1
Iron	ND		0.050	0.019	mg/L		10/19/11 09:20	10/19/11 17:43	1
Lead	ND		0.0050	0.0030	mg/L		10/19/11 09:20	10/19/11 17:43	1
Magnesium	1.3		0.20	0.043	mg/L		10/19/11 09:20	10/19/11 17:43	1
Manganese	ND		0.0030	0.00030	mg/L		10/19/11 09:20	10/19/11 17:43	1
Selenium	ND		0.015	0.0087	mg/L		10/19/11 09:20	10/19/11 17:43	1
Sodium	6.7		1.0	0.32	mg/L		10/19/11 09:20	10/19/11 17:43	1
Thallium	ND		0.020	0.010	mg/L		10/19/11 09:20	10/19/11 17:43	1
Zinc	0.0022	J	0.010	0.0017	mg/L		10/19/11 09:20	10/19/11 17:43	1

Method: 6010B - Metals (Custom L	ist)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silicon	3780	В	100	4.7	ug/L		10/21/11 08:25	10/21/11 23:59	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	6.4		2.0	0.35	mg/L			10/26/11 16:31	1
Ammonia as N	ND		0.020	0.0090	mg/L as N			10/25/11 14:24	1
Phenolics, Total Recoverable	5.4	J	10.0	5.0	ug/L		11/03/11 23:18	11/05/11 10:00	1
Chromium, hexavalent	5.6	J	10.0	5.0	ug/L			10/18/11 21:25	1

Matrix: Water

Surrogate Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-11355-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Su
		12DCE	BFB	TOL
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)
480-11355-7	AP-SS-01/EWE-01	107	99	100
480-11355-8	TRIP BLANK	107	98	100
LCS 480-37153/4	Lab Control Sample	103	101	100
MB 480-37153/5	Method Blank	103	99	99

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

2

3

4

5

6

8

9

10

12

4 4

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-37153/5

Matrix: Water

Analysis Batch: 37153

Client San	nple ID	: Meth	od Bla	ank
	Prep	Type:	Total/	NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/25/11 16:13	1
Trichloroethene	ND		5.0	0.60	ug/L			10/25/11 16:13	1

MB MB %Recovery Surrogate Qualifier I imits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 103 72 - 130 10/25/11 16:13 4-Bromofluorobenzene (Surr) 99 69 - 121 10/25/11 16:13 Toluene-d8 (Surr) 99 70 - 123 10/25/11 16:13

Lab Sample ID: LCS 480-37153/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 37153

Magnesium

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1,1-Dichloroethane 20.0 20.0 ug/L 100 73 - 128 Trichloroethene 20.0 19.4 ug/L 97 67 - 134

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 72 - 130 103 4-Bromofluorobenzene (Surr) 101 69 - 121 Toluene-d8 (Surr) 100 70 - 123

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-35922/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 36071** Prep Batch: 35922

		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Cadmium	ND		0.0010	0.00033	mg/L		10/18/11 11:00	10/18/11 19:30	1
İ	Chromium	ND		0.0040	0.00087	mg/L		10/18/11 11:00	10/18/11 19:30	1
	Iron	ND		0.050	0.019	mg/L		10/18/11 11:00	10/18/11 19:30	1
İ	Lead	ND		0.0050	0.0030	mg/L		10/18/11 11:00	10/18/11 19:30	1
	Magnesium	ND		0.20	0.043	mg/L		10/18/11 11:00	10/18/11 19:30	1
İ	Manganese	ND		0.0030	0.00030	mg/L		10/18/11 11:00	10/18/11 19:30	1
ı	Selenium	ND		0.015	0.0087	mg/L		10/18/11 11:00	10/18/11 19:30	1
ı	Sodium	ND		1.0	0.32	mg/L		10/18/11 11:00	10/18/11 19:30	1
İ	Thallium	ND		0.020	0.010	mg/L		10/18/11 11:00	10/18/11 19:30	1
١	Zinc	ND		0.010	0.0017	mg/L		10/18/11 11:00	10/18/11 19:30	1

Lab Sample ID: LCS 480-35922/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 36071

LCS LCS Spike %Rec. Analyte Added Result Qualifier D Limits Unit %Rec Cadmium 0.200 0.189 mg/L 94 85 - 115Chromium 0.200 0.194 mg/L 97 85 - 115 10.0 Iron 9.44 mg/L 94 85 _ 115 0.200 0.185 93 85 - 115 Lead mg/L

> TestAmerica Buffalo 11/7/2011

85 - 115

97

Prep Batch: 35922

Page 18 of 54

9.70

mg/L

10.0

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-35922/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 36071** Prep Batch: 35922

	Spike	LUS	LUS			%Rec.	
Analyte	Added	Result	Qualifier	Unit I	D %Rec	Limits	
Manganese	0.200	0.194		mg/L	97	85 - 115	
Selenium	0.200	0.192		mg/L	96	85 - 115	
Sodium	10.0	9.79		mg/L	98	85 - 115	
Thallium	0.200	0.189		mg/L	94	85 - 115	
Zinc	0.200	0.206		ma/L	103	85 - 115	

Client Sample ID: AP-MW-3B Lab Sample ID: 480-11355-1 MS

Matrix: Water Prep Type: Total/NA **Analysis Batch: 36071** Prep Batch: 35922

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	ND		0.200	0.191		mg/L		96	70 - 130	
Chromium	ND		0.200	0.195		mg/L		98	70 _ 130	
Iron	0.042	J	10.0	9.23		mg/L		92	70 _ 130	
Lead	ND		0.200	0.187		mg/L		94	70 - 130	
Magnesium	5.8		10.0	15.31		mg/L		95	70 - 130	
Manganese	0.0059		0.200	0.198		mg/L		96	70 - 130	
Selenium	ND		0.200	0.197		mg/L		98	70 - 130	
Sodium	54.4		10.0	63.27	4	mg/L		89	70 - 130	
Thallium	ND		0.200	0.190		mg/L		95	70 - 130	
Zinc	0.0069	J	0.200	0.214		mg/L		104	70 - 130	

Lab Sample ID: 480-11355-1 MSD Client Sample ID: AP-MW-3B

Matrix: Water

Analysis Batch: 36071									Prep	Batch:	35922
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		0.200	0.193		mg/L		97	70 - 130	1	20
Chromium	ND		0.200	0.196		mg/L		98	70 - 130	0	20
Iron	0.042	J	10.0	9.38		mg/L		93	70 - 130	2	20
Lead	ND		0.200	0.191		mg/L		96	70 - 130	2	20
Magnesium	5.8		10.0	15.58		mg/L		97	70 - 130	2	20
Manganese	0.0059		0.200	0.200		mg/L		97	70 - 130	1	20
Selenium	ND		0.200	0.198		mg/L		99	70 - 130	1	20
Sodium	54.4		10.0	65.63	4	mg/L		112	70 - 130	4	20
Thallium	ND		0.200	0.193		mg/L		96	70 - 130	1	20
Zinc	0.0069	J	0.200	0.216		mg/L		105	70 - 130	1	20

Lab Sample ID: MB 480-35923/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA **Analysis Batch: 36308** Prep Batch: 35923

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	ND		2.0	0.50	ug/L		10/18/11 11:00	10/19/11 22:21	1
Cadmium	ND		0.0010	0.00033	mg/L		10/18/11 11:00	10/19/11 22:21	1
Chromium	ND		0.0040	0.00087	mg/L		10/18/11 11:00	10/19/11 22:21	1
Copper	ND		10.0	1.5	ug/L		10/18/11 11:00	10/19/11 22:21	1
Iron	ND		0.050	0.019	mg/L		10/18/11 11:00	10/19/11 22:21	1
Lead	ND		0.0050	0.0030	mg/L		10/18/11 11:00	10/19/11 22:21	1
Magnesium	ND		0.20	0.043	mg/L		10/18/11 11:00	10/19/11 22:21	1

Prep Type: Total/NA

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: MB 480-35923/1-A

Matrix: Water

Analysis Batch: 36308

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 35923

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nickel	ND		10.0	1.3	ug/L		10/18/11 11:00	10/19/11 22:21	1
Manganese	ND		0.0030	0.00030	mg/L		10/18/11 11:00	10/19/11 22:21	1
Selenium	ND		0.015	0.0087	mg/L		10/18/11 11:00	10/19/11 22:21	1
Sodium	ND		1.0	0.32	mg/L		10/18/11 11:00	10/19/11 22:21	1
Thallium	ND		0.020	0.010	mg/L		10/18/11 11:00	10/19/11 22:21	1
Zinc	ND		0.010	0.0017	mg/L		10/18/11 11:00	10/19/11 22:21	1

Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 36308

Lab Sample ID: LCS 480-35923/2-A

Prep Type: Total/NA

Prep Batch: 35923

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Barium 200 213.4 ug/L 107 85 - 115 Cadmium 0.200 0.194 mg/L 97 85 - 115 Chromium 0.200 0.198 99 85 - 115 mg/L Copper 200 201.3 ug/L 101 85 - 115 10.0 10.97 110 85 - 115 mg/L Lead 0.200 85 - 115 0.191 96 mg/L Magnesium 10.0 10.30 mg/L 103 85 - 115 Nickel 200 214.1 ug/L 107 85 - 115 Manganese 0.200 0.212 mg/L 106 85 - 115 Selenium 0.200 0.205 mg/L 103 85 - 115 Sodium 10.0 10.11 mg/L 101 85 - 115

0.193

0.219

mg/L

mg/L

0.200

0.200

Lab Sample ID: 480-11355-3 MS

Matrix: Water

Thallium

Zinc

Analysis Ratch: 36309

Client Sample ID: AP-MW-5B

85 - 115

85 - 115

97

110

Prep Type: Total/NA

Pron Ratch: 35923

Analysis Batch: 36308	01-	01-	0						Prep Batch: 35923
	•	Sample	Spike	MS					%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Barium	0.035		0.200	0.244		mg/L		104	70 - 130
Cadmium	0.00034	J	0.200	0.194		mg/L		97	70 - 130
Chromium	0.0039	J	0.200	0.198		mg/L		97	70 - 130
Copper	ND		0.200	0.198		mg/L		99	70 - 130
Iron	0.60		10.0	11.51		mg/L		109	70 - 130
Lead	ND		0.200	0.188		mg/L		94	70 - 130
Magnesium	82.3		10.0	91.51	4	mg/L		92	70 - 130
Nickel	ND		0.200	0.215		mg/L		108	70 - 130
Manganese	0.021		0.200	0.225		mg/L		102	70 - 130
Selenium	ND		0.200	0.205		mg/L		103	70 - 130
Sodium	31.2		10.0	41.54		mg/L		103	70 - 130
Thallium	ND		0.200	0.191		mg/L		96	70 - 130
Zinc	0.025		0.200	0.235		mg/L		105	70 _ 130

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: 480-11355-3 MSD

Matrix: Water

Analysis Batch: 36308

Client Sample ID: AP-MW-5B

Prep Type: Total/NA

Prep Batch: 35923

7 maryone Batom cocco											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Barium	0.035		0.200	0.243		mg/L		104	70 - 130	0	20
Cadmium	0.00034	J	0.200	0.193		mg/L		96	70 - 130	1	20
Chromium	0.0039	J	0.200	0.196		mg/L		96	70 - 130	1	20
Copper	ND		0.200	0.195		mg/L		97	70 - 130	2	20
Iron	0.60		10.0	11.51		mg/L		109	70 - 130	0	20
Lead	ND		0.200	0.189		mg/L		94	70 - 130	0	20
Magnesium	82.3		10.0	93.04	4	mg/L		107	70 - 130	2	20
Nickel	ND		0.200	0.215		mg/L		108	70 - 130	0	20
Manganese	0.021		0.200	0.224		mg/L		102	70 - 130	0	20
Selenium	ND		0.200	0.203		mg/L		102	70 - 130	1	20
Sodium	31.2		10.0	42.06		mg/L		108	70 - 130	1	20
Thallium	ND		0.200	0.190		mg/L		95	70 - 130	1	20
Zinc	0.025		0.200	0.236		mg/L		106	70 - 130	0	20

Lab Sample ID: MB 480-36075/1-A

Matrix: Water

Analysis Batch: 36315

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 36075

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.0010	0.00033	mg/L		10/19/11 09:20	10/19/11 17:11	1
Chromium	ND		0.0040	0.00087	mg/L		10/19/11 09:20	10/19/11 17:11	1
Iron	ND		0.050	0.019	mg/L		10/19/11 09:20	10/19/11 17:11	1
Lead	ND		0.0050	0.0030	mg/L		10/19/11 09:20	10/19/11 17:11	1
Magnesium	ND		0.20	0.043	mg/L		10/19/11 09:20	10/19/11 17:11	1
Manganese	ND		0.0030	0.00030	mg/L		10/19/11 09:20	10/19/11 17:11	1
Selenium	ND		0.015	0.0087	mg/L		10/19/11 09:20	10/19/11 17:11	1
Sodium	ND		1.0	0.32	mg/L		10/19/11 09:20	10/19/11 17:11	1
Thallium	ND		0.020	0.010	mg/L		10/19/11 09:20	10/19/11 17:11	1
Zinc	ND		0.010	0.0017	mg/L		10/19/11 09:20	10/19/11 17:11	1

Lab Sample ID: LCS 480-36075/2-A

Matrix: Water

Analysis Batch: 36315

Client Sample II	D: Lab Co	ontrol Sample
------------------	-----------	---------------

Prep Type: Total/NA

Alialysis Datcii. 30313							Frep Ball	JII. 30073
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	0.200	0.201		mg/L		100	85 - 115	
Chromium	0.200	0.204		mg/L		102	85 _ 115	
Iron	10.0	10.40		mg/L		104	85 _ 115	
Lead	0.200	0.194		mg/L		97	85 _ 115	
Magnesium	10.0	10.16		mg/L		102	85 _ 115	
Manganese	0.200	0.206		mg/L		103	85 - 115	
Selenium	0.200	0.199		mg/L		99	85 _ 115	
Sodium	10.0	9.88		mg/L		99	85 - 115	
Thallium	0.200	0.198		mg/L		99	85 _ 115	
Zinc	0.200	0.215		mg/L		107	85 _ 115	

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC TestAmerica Job ID: 480-11355-1

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: 480-11387-3 MS Client Sample ID: AP-MW-6B **Matrix: Water** Prep Type: Total/NA Analysis Batch: 36315 Prep Batch: 36075

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	ND		0.200	0.208		mg/L		104	70 _ 130	
Chromium	ND		0.200	0.200		mg/L		100	70 _ 130	
Iron	0.28		10.0	10.66		mg/L		104	70 _ 130	
Lead	ND		0.200	0.201		mg/L		100	70 _ 130	
Magnesium	73.1		10.0	82.36	4	mg/L		93	70 - 130	
Manganese	0.14		0.200	0.346		mg/L		101	70 - 130	
Selenium	ND		0.200	0.214		mg/L		107	70 - 130	
Sodium	76.8		10.0	86.50	4	mg/L		96	70 - 130	
Thallium	ND		0.200	0.199		mg/L		99	70 - 130	
Zinc	0.0020	J	0.200	0.215		mg/L		107	70 - 130	

Lab Sample ID: 480-11387-3 MSD Client Sample ID: AP-MW-6B **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 36315									Prep	Batch:	36075
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		0.200	0.205		mg/L		103	70 - 130	2	20
Chromium	ND		0.200	0.201		mg/L		101	70 - 130	1	20
Iron	0.28		10.0	10.57		mg/L		103	70 - 130	1	20
Lead	ND		0.200	0.197		mg/L		98	70 - 130	2	20
Magnesium	73.1		10.0	81.75	4	mg/L		87	70 - 130	1	20
Manganese	0.14		0.200	0.344		mg/L		100	70 - 130	1	20
Selenium	ND		0.200	0.207		mg/L		104	70 - 130	3	20
Sodium	76.8		10.0	86.05	4	mg/L		92	70 - 130	1	20
Thallium	ND		0.200	0.196		mg/L		98	70 - 130	1	20
Zinc	0.0020	J	0.200	0.213		mg/L		105	70 - 130	1	20

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 480-35978/1-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 36906

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		1.0	0.44	ug/L		10/19/11 07:40	10/22/11 14:45	1
Thallium	ND		0.20	0.0080	ug/L		10/19/11 07:40	10/22/11 14:45	1

Lab Sample ID: LCS 480-35978/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA Analysis Batch: 36906 Prep Batch: 35978

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
Selenium	 20.0	22.78		ug/L	114	85 - 115	
Thallium	20.0	22.12		ug/L	111	85 - 115	

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 480-11355-7 MS				Client Sample ID: AP-SS-01/EWE-01
Matrix: Water				Prep Type: Total/NA
Analysis Batch: 36906				Prep Batch: 35978
-	Sample Sample	Spike	MS MS	%Rec.

Analyte babbA Result Qualifier Unit Result Qualifier D %Rec Limits 20.0 Selenium 0.66 J 21.47 ug/L 104 70 - 130

Lab Sample ID: 480-11355-7 MS Client Sample ID: AP-SS-01/EWE-01 **Matrix: Water** Prep Type: Total/NA Prep Batch: 35978 **Analysis Batch: 37043** Sample Sample Spike MS MS

Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Thallium 0.025 J 20.0 18.32 ug/L 91 70 - 130 Lab Sample ID: 480-11355-7 MSD Client Sample ID: AP-SS-01/EWE-01

Matrix: Water Prep Type: Total/NA Analysis Batch: 36906 Prep Batch: 35978 Sample Sample Spike MSD MSD %Rec. RPD

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Selenium 0.66 20.0 21.44 104 70 - 130 ug/L

Lab Sample ID: 480-11355-7 MSD Client Sample ID: AP-SS-01/EWE-01 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 37043 Prep Batch: 35978 Sample Sample Spike MSD MSD %Rec. **RPD**

Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Limit Thallium 0.025 J 20.0 89 70 - 130 17 80 ug/L 20

Method: 6010B - Metals (Custom List)

Lab Sample ID: MB 200-27168/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water Analysis Batch: 27300

MR MR

RL MDL Unit Analyte Result Qualifier D Prepared Dil Fac Analyzed 100 J

Silicon 4.7 10/21/11 08:15 19.55 ug/L 10/22/11 00:15

Lab Sample ID: LCS 200-27168/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 27300 Prep Batch: 27168 LCS LCS Spike %Rec.

Result Qualifier Analyte Added Unit D %Rec Limits Silicon 1000 912.5 ug/L 91 80 - 120

Lab Sample ID: MB 200-27170/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 27297 Prep Batch: 27170 MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Silicon 14.14 J 100 4.7 ug/L 10/21/11 08:25 10/21/11 23:17

%Rec.

251America 300 iD. 400-1 1333-1

Method: 6010B - Metals (Custom List) (Continued)

Lab Sample ID: LCS 200-27170/2-A					Client S	Sample	ID: Lab Co	ntrol Sample
Matrix: Water							Prep Ty	pe: Total/NA
Analysis Batch: 27297							Prep	Batch: 27170
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Silicon	1000	943.0		ug/L		94	80 - 120	

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-37018/100							Client Sa	ample ID: Metho	d Blank
Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 37018									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	ND		2.0	0.35	mg/L			10/26/11 09:56	1
Lab Sample ID: LCS 480-37018/99						CI	ient Sample	ID: Lab Control	Sample
Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 37018									

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Sulfate	20.0	20.60		mg/L		103	90 - 110		
Lab Sample ID: 480-11355-7 MS					Clien	t Sampl	e ID: AP-S	S-01/E\	NE-01
Matrix: Water							Prep Ty	ype: To	tal/NA

LCS LCS

Spike

Analysis Batch: 37018										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	24.5		25.0	51 40		ma/l		108	75 125	 -

Lab Sample ID: MB 480-37020/124	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 37020	
мв мв	

Analyte	Result Qualifier	RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
Sulfate	ND	2.0	0.35 mg	/L		10/26/11 13:59	1

Lab Sample ID: LCS 480-37020/123 Matrix: Water						Client S	Sample I	ID: Lab Control Sa Prep Type: Tota	•
Analysis Batch: 37020									
		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate		20.0	20.80		mg/L		104	90 - 110	
Lab Sample ID: 480-11387-7 MS							Client	Sample ID: AP-SW	/B-01
Matrix: Water								Prep Type: Tota	al/NA
Analysis Batch: 37020									
Sample	Sample	Spike	MS	MS				%Rec.	
Analyte Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate 6.4		25.0	33.80		mg/L		110	75 _ 125	

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 480-11387-7 MSD	Client Sample ID: AP-SWB-01
Matrix: Water	Prep Type: Total/NA
A	

Analysis Batch: 37020

	Sample	Sample	эріке	MSD	เพอบ			%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	%Red	Limits	RPD	Limit	
Sulfate	6.4		25.0	33.90		mg/L	 110	75 - 125	0	20	

Lab Sample ID: MB 480-37441/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 37441

мв мв Result Qualifier MDL Unit Prepared Analyte RL D Analyzed Dil Fac Sulfate ND 2.0 0.35 mg/L 10/27/11 17:53

Lab Sample ID: LCS 480-37441/3 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 37441

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Sulfate 20.0 20.10 mg/L 101 90 - 110

Lab Sample ID: 480-11355-3 MS Client Sample ID: AP-MW-5B Prep Type: Total/NA

Matrix: Water

Analysis Batch: 37441

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Sulfate 150 50.0 201.2 E mg/L 102 75 - 125

Lab Sample ID: 480-11355-3 MSD Client Sample ID: AP-MW-5B **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 37441

7 maryolo Batom Cr. 111	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Sulfate	150		50.0	203.4	E	ma/L		107	75 - 125	1	20	

Lab Sample ID: MB 480-37444/28 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 37444

	IVID	IVID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Sulfate	ND		2.0	0.35	ma/l			10/27/11 21:56	1	

Lab Sample ID: LCS 480-37444/27 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 37444

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	20.0	20.10		mg/L	_	101	90 - 110	

TestAmerica Buffalo 11/7/2011

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-37197/51 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 37197

мв мв Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 0.020 10/25/11 13:43 Ammonia as N ND 0.0090 mg/L as N

Lab Sample ID: MB 480-37197/75 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 37197

MB MB

Result Qualifier Prepared Analyte RL MDL Unit D Analyzed Dil Fac Ammonia as N ND 0.020 0.0090 mg/L as N 10/25/11 14:06

Lab Sample ID: LCS 480-37197/52 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 37197

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 1.00 1.04 90 - 110 Ammonia as N mg/L as N

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-37197/76 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 37197

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits 1.00 Ammonia as N 1.05 mg/L as N 105 90 110

Lab Sample ID: 480-11387-3 MS Client Sample ID: AP-MW-6B **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 37197

Sample Sample Spike MS MS %Rec. Added Result Qualifier Analyte Result Qualifier Unit %Rec Limits D 0.200 54 - 150 Ammonia as N 0.030 0.456 F mg/L as N 213

Lab Sample ID: 480-11387-3 MSD Client Sample ID: AP-MW-6B Prep Type: Total/NA

Matrix: Water

Analysis Batch: 37197

Sample Sample Spike MSD MSD RPD Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits RPD Limit 0.463 F 0.200 Ammonia as N 0.030 mg/L as N 216 54 - 150

Lab Sample ID: MB 480-37440/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 37440

мв мв

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Ammonia as N ND 0.020 0.0090 mg/L as N 10/26/11 16:01

Lab Sample ID: LCS 480-37440/4

Matrix: Water

Analysis Batch: 37440

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Ammonia as N 1.00 1.06 mg/L as N 106 90 - 110

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 37151

Prep Batch: 37151

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 480-37151/1-A

Matrix: Water

Analysis Batch: 37705

мв мв Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 0.20 0.15 mg/L as N 10/25/11 12:25 Total Kjeldahl Nitrogen ND 10/27/11 15:57

Lab Sample ID: LCS 480-37151/2-A

Matrix: Water

Total Kjeldahl Nitrogen

Analyte

Analysis Batch: 37705

Spike

Added

2.50

LCS LCS Result Qualifier 2.47

Unit

D mg/L as N

%Rec 99

Limits 90 - 110

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-36045/3

Matrix: Water

Analysis Batch: 36045

MR MR

Analyte

Nitrite as N ND

Result Qualifier

RL 0.050

MDL Unit 0.020 mg/L

Prepared

Analyzed Dil Fac 10/19/11 00:58

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: LCS 480-36045/4

Matrix: Water

Analysis Batch: 36045

Analyte Nitrite as N

Spike Added 1.50

Result Qualifier 1.60

LCS LCS

Unit mg/L D %Rec

107

%Rec. Limits 90 - 110

Client Sample ID: Lab Control Sample

Method: 410.4 - COD

Lab Sample ID: MB 480-37853/3

Lab Sample ID: LCS 480-37853/4

Matrix: Water

Matrix: Water

Analysis Batch: 37853

MB MB

Analyte Chemical Oxygen Demand

Result Qualifier ND

MDI Unit 5.0 mg/L

D

Unit

mg/L

Prepared

Analyzed 10/28/11 12:23

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

Analysis Batch: 37853

Chemical Oxygen Demand

Spike Added 25.0

LCS LCS Result Qualifier 24.71

D

%Rec 99 90 - 110

%Rec. Limits

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-38811/1-A

Matrix: Water

Analysis Batch: 38892

Phenolics, Total Recoverable

MB MB

Qualifier Result ND

10.0

RI

10.0

MDL Unit 5.0 ua/L

Prepared 11/03/11 16:22

11/03/11 17:02

Client Sample ID: Method Blank

Prep Batch: 38811

Prep Type: Total/NA

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: 420.4 - Phenolics, Total Recoverable (Continued)

Lab Sample ID: LCS 480-38811/2-A Matrix: Water					Client	Sample	ID: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 38892							Prep Batch: 38811
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Phenolics, Total Recoverable	100	101.6		ug/L		102	90 - 110

Lab Sample ID: MB 480-38815/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 38892 Prep Batch: 38815

MB MB

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenolics, Total Recoverable	ND	10.0	5.0	ug/L		11/03/11 16:26	11/03/11 17:02	1

Lab Sample ID: LCS 480-38815/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 38892 Prep Batch: 38815

ı		Бріке	LUS	LUS			%Rec.	
	Analyte	Added	Result	Qualifier Uni	it D	%Rec	Limits	
	Phenolics, Total Recoverable	100	107.6	ug/		108	90 - 110	

Lab Sample ID: MB 480-38856/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 39103

мв мв

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenolics, Total Recoverable	ND	10.0	5.0	ug/L	_	11/03/11 21:45	11/05/11 08:35	1

Lab Sample ID: LCS 480-38856/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 39103** Prep Batch: 38856

LCS LCS Spike %Rec. Added Result Qualifier Unit Analyte %Rec Limits Phenolics, Total Recoverable 100 106.2 90 - 110 ug/L 106

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 480-35972/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 35972

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND	10.0	5.0 ug/L			10/18/11 12:00	1

Lab Sample ID: LCS 480-35972/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Ratch: 35072

Alialysis Dalcii. 33372								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	50.0	48.73		ug/L	_	97	85 _ 115	

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC TestAmerica Job ID: 480-11355-1

Client Sample ID: Lab Control Sample

Client Sample ID: AP-SWB-01

Method: 7196A - Chromium, Hexavalent (Continued)

Lab Sample ID: 480-11355-7 MS Matrix: Water Analysis Batch: 35972							Clien	t Sampl	e ID: AP-SS-01/E Prep Type: To	
Analysis Batch. 33372	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	ND		50.0	44.81		ug/L		90	85 - 115	
Lab Sample ID: 480-11355-2 DU								Client	Sample ID: AP-N	W-4B
Matrix: Water									Prep Type: To	tal/NA
Analysis Batch: 35972										
-	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
Chromium, hexavalent	76.2			74.22		ug/L			3	15
Lab Sample ID: 480-11355-4 DU								Client	: Sample ID: AP-N	MW-8B
Matrix: Water									Prep Type: To	tal/NA
Analysis Batch: 35972										
-	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
Chromium, hexavalent	76.2			73.24		ug/L			4	15

Lab Sample ID: MB 480-36056/3	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 36056	
MD MD	

Analyte Result Qualifier Prepared Analyzed Dil Fac Chromium, hexavalent ND 10.0 5.0 ug/L 10/18/11 20:46

Matrix: Water							Prep Type	e: Total/NA
Analysis Batch: 36056								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	50.0	54.61		ug/L		109	85 - 115	

Lab Sample ID: 480-11387-6 MS	Client Sample ID: AP-RB-01
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 36056

Lab Sample ID: LCS 480-36056/4

Lab Sample ID: 480-11387-7 DU

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	5.6	J	50.0	64.41	F	ug/L		118	85 _ 115	

Matrix: Water							Prep T	ype: To	tal/NA
Analysis Batch: 36056									
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Chromium, hexavalent	5.6	J	6.57	J	ug/L			16	15

1 JOD ID: 480-11355-1

Method	l:	9040	B -	pН
--------	----	------	-----	----

Lab Sample ID: LCS 480-36041/1	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 36041

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
pH	 7.00	7.020		SU		100	99 - 101	

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-36361/1	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Retaly 26264	

Analysis Batch: 36361

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L			10/20/11 11:50	1

Lab Sample ID: LCS 480-36361/2

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 36361

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	502	483.0		mg/L	_	96	85 - 115	

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-36509/1	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 36509

		IVID								
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Suspended Solids	ND		4.0	4.0	mg/L			10/21/11 01:23	1	

Lab Sample ID: LCS 480-36509/2	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA
A	

Analysis Batch: 36509

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	304	299.6		mg/L		99	88 - 110	

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-36051/1 USB	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 36051

	USB	USB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			10/18/11 13:59	1

Lab Sample ID: LCS 480-36051/2	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 36051

/ maryoro Batom Coco :								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Biochemical Oxygen Demand	198	203.4		mg/L		103	85 - 115	

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-11355-1

GC/MS VOA

Analysis Batch: 37153

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	624	
480-11355-8	TRIP BLANK	Total/NA	Water	624	
LCS 480-37153/4	Lab Control Sample	Total/NA	Water	624	
MB 480-37153/5	Method Blank	Total/NA	Water	624	

Metals

Prep Batch: 27168

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-1	AP-MW-3B	Total/NA	Water	3010A	
480-11355-2	AP-MW-4B	Total/NA	Water	3010A	
480-11355-3	AP-MW-5B	Total/NA	Water	3010A	
480-11355-4	AP-MW-8B	Total/NA	Water	3010A	
480-11355-5	AP-SS-03	Total/NA	Water	3010A	
480-11355-6	AP-SS-02	Total/NA	Water	3010A	
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	3010A	
LCS 200-27168/2-A	Lab Control Sample	Total/NA	Water	3010A	
MB 200-27168/1-A	Method Blank	Total/NA	Water	3010A	

Prep Batch: 27170

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11387-1	AP-MW-1B	Total/NA	Water	3010A	
480-11387-2	AP-MW-2B	Total/NA	Water	3010A	
480-11387-3	AP-MW-6B	Total/NA	Water	3010A	
480-11387-4	AP-MW-7B	Total/NA	Water	3010A	
480-11387-5	AP-GW-DUP-01	Total/NA	Water	3010A	
480-11387-6	AP-RB-01	Total/NA	Water	3010A	
480-11387-7	AP-SWB-01	Total/NA	Water	3010A	
LCS 200-27170/2-A	Lab Control Sample	Total/NA	Water	3010A	
MB 200-27170/1-A	Method Blank	Total/NA	Water	3010A	

Analysis Batch: 27297

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11387-1	AP-MW-1B	Total/NA	Water	6010B	27170
480-11387-2	AP-MW-2B	Total/NA	Water	6010B	27170
480-11387-3	AP-MW-6B	Total/NA	Water	6010B	27170
480-11387-4	AP-MW-7B	Total/NA	Water	6010B	27170
480-11387-5	AP-GW-DUP-01	Total/NA	Water	6010B	27170
480-11387-6	AP-RB-01	Total/NA	Water	6010B	27170
480-11387-7	AP-SWB-01	Total/NA	Water	6010B	27170
LCS 200-27170/2-A	Lab Control Sample	Total/NA	Water	6010B	27170
MB 200-27170/1-A	Method Blank	Total/NA	Water	6010B	27170

Analysis Batch: 27300

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-1	AP-MW-3B	Total/NA	Water	6010B	27168
480-11355-2	AP-MW-4B	Total/NA	Water	6010B	27168
480-11355-3	AP-MW-5B	Total/NA	Water	6010B	27168
480-11355-4	AP-MW-8B	Total/NA	Water	6010B	27168
480-11355-5	AP-SS-03	Total/NA	Water	6010B	27168
480-11355-6	AP-SS-02	Total/NA	Water	6010B	27168
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	6010B	27168

G

3

4

5

7

_

10

13

14

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-11355-1

Metals (Continued)

Analysis Batch: 27300 (Continued)

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	LCS 200-27168/2-A	Lab Control Sample	Total/NA	Water	6010B	27168
1	MB 200-27168/1-A	Method Blank	Total/NA	Water	6010B	27168

Prep Batch: 35922

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-1	AP-MW-3B	Total/NA	Water	200.7	
480-11355-1 MS	AP-MW-3B	Total/NA	Water	200.7	
480-11355-1 MSD	AP-MW-3B	Total/NA	Water	200.7	
LCS 480-35922/2-A	Lab Control Sample	Total/NA	Water	200.7	
MB 480-35922/1-A	Method Blank	Total/NA	Water	200.7	

Prep Batch: 35923

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-2	AP-MW-4B	Total/NA	Water	200.7	
480-11355-3	AP-MW-5B	Total/NA	Water	200.7	
480-11355-3 MS	AP-MW-5B	Total/NA	Water	200.7	
480-11355-3 MSD	AP-MW-5B	Total/NA	Water	200.7	
480-11355-4	AP-MW-8B	Total/NA	Water	200.7	
480-11355-5	AP-SS-03	Total/NA	Water	200.7	
480-11355-6	AP-SS-02	Total/NA	Water	200.7	
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	200.7	
LCS 480-35923/2-A	Lab Control Sample	Total/NA	Water	200.7	
MB 480-35923/1-A	Method Blank	Total/NA	Water	200.7	

Prep Batch: 35978

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	200.8	
480-11355-7 MS	AP-SS-01/EWE-01	Total/NA	Water	200.8	
480-11355-7 MSD	AP-SS-01/EWE-01	Total/NA	Water	200.8	
LCS 480-35978/2-A	Lab Control Sample	Total/NA	Water	200.8	
MB 480-35978/1-A	Method Blank	Total/NA	Water	200.8	

Analysis Batch: 36071

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-1	AP-MW-3B	Total/NA	Water	200.7 Rev 4.4	35922
480-11355-1 MS	AP-MW-3B	Total/NA	Water	200.7 Rev 4.4	35922
480-11355-1 MSD	AP-MW-3B	Total/NA	Water	200.7 Rev 4.4	35922
LCS 480-35922/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	35922
MB 480-35922/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	35922

Prep Batch: 36075

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11387-1	AP-MW-1B	Total/NA	Water	200.7	
480-11387-2	AP-MW-2B	Total/NA	Water	200.7	
480-11387-3	AP-MW-6B	Total/NA	Water	200.7	
480-11387-3 MS	AP-MW-6B	Total/NA	Water	200.7	
480-11387-3 MSD	AP-MW-6B	Total/NA	Water	200.7	
480-11387-4	AP-MW-7B	Total/NA	Water	200.7	
480-11387-5	AP-GW-DUP-01	Total/NA	Water	200.7	
480-11387-6	AP-RB-01	Total/NA	Water	200.7	
480-11387-7	AP-SWB-01	Total/NA	Water	200.7	
LCS 480-36075/2-A	Lab Control Sample	Total/NA	Water	200.7	

J

4

၁ —

0

9

10

11

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Metals (Continued)

Prep Batch: 36075 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-36075/1-A	Method Blank	Total/NA	Water	200.7	

Analysis Batch: 36308

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-2	AP-MW-4B	Total/NA	Water	200.7 Rev 4.4	35923
480-11355-3	AP-MW-5B	Total/NA	Water	200.7 Rev 4.4	35923
480-11355-3 MS	AP-MW-5B	Total/NA	Water	200.7 Rev 4.4	35923
480-11355-3 MSD	AP-MW-5B	Total/NA	Water	200.7 Rev 4.4	35923
480-11355-4	AP-MW-8B	Total/NA	Water	200.7 Rev 4.4	35923
480-11355-5	AP-SS-03	Total/NA	Water	200.7 Rev 4.4	35923
480-11355-6	AP-SS-02	Total/NA	Water	200.7 Rev 4.4	35923
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	200.7 Rev 4.4	35923
LCS 480-35923/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	35923
MB 480-35923/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	35923

Analysis Batch: 36315

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11387-1	AP-MW-1B	Total/NA	Water	200.7 Rev 4.4	36075
480-11387-2	AP-MW-2B	Total/NA	Water	200.7 Rev 4.4	36075
480-11387-3	AP-MW-6B	Total/NA	Water	200.7 Rev 4.4	36075
480-11387-3 MS	AP-MW-6B	Total/NA	Water	200.7 Rev 4.4	36075
480-11387-3 MSD	AP-MW-6B	Total/NA	Water	200.7 Rev 4.4	36075
480-11387-4	AP-MW-7B	Total/NA	Water	200.7 Rev 4.4	36075
480-11387-5	AP-GW-DUP-01	Total/NA	Water	200.7 Rev 4.4	36075
480-11387-6	AP-RB-01	Total/NA	Water	200.7 Rev 4.4	36075
480-11387-7	AP-SWB-01	Total/NA	Water	200.7 Rev 4.4	36075
LCS 480-36075/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	36075
MB 480-36075/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	36075

Analysis Batch: 36906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	200.8	35978
480-11355-7 MS	AP-SS-01/EWE-01	Total/NA	Water	200.8	35978
480-11355-7 MSD	AP-SS-01/EWE-01	Total/NA	Water	200.8	35978
LCS 480-35978/2-A	Lab Control Sample	Total/NA	Water	200.8	35978
MB 480-35978/1-A	Method Blank	Total/NA	Water	200.8	35978

Analysis Batch: 37043

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	200.8	35978
480-11355-7 MS	AP-SS-01/EWE-01	Total/NA	Water	200.8	35978
480-11355-7 MSD	AP-SS-01/EWE-01	Total/NA	Water	200.8	35978

General Chemistry

Analysis Batch: 35972

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-1	AP-MW-3B	Total/NA	Water	7196A	
480-11355-2	AP-MW-4B	Total/NA	Water	7196A	
480-11355-2 DU	AP-MW-4B	Total/NA	Water	7196A	
480-11355-3	AP-MW-5B	Total/NA	Water	7196A	
480-11355-4	AP-MW-8B	Total/NA	Water	7196A	

2

4

6

9

. .

10

13

14

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

General Chemistry (Continued)

Analysis Batch: 35972 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-4 DU	AP-MW-8B	Total/NA	Water	7196A	
480-11355-5	AP-SS-03	Total/NA	Water	7196A	
480-11355-6	AP-SS-02	Total/NA	Water	7196A	
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	7196A	
480-11355-7 MS	AP-SS-01/EWE-01	Total/NA	Water	7196A	
LCS 480-35972/4	Lab Control Sample	Total/NA	Water	7196A	
MB 480-35972/3	Method Blank	Total/NA	Water	7196A	

Analysis Batch: 36041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	9040B	
LCS 480-36041/1	Lab Control Sample	Total/NA	Water	9040B	

Analysis Batch: 36045

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	353.2	
LCS 480-36045/4	Lab Control Sample	Total/NA	Water	353.2	
MB 480-36045/3	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 36051

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	SM 5210B	
LCS 480-36051/2	Lab Control Sample	Total/NA	Water	SM 5210B	
USB 480-36051/1 USB	Method Blank	Total/NA	Water	SM 5210B	

Analysis Batch: 36052

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/FWF-01	Total/NA	Water	SM 4500 O G	

Analysis Batch: 36056

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11387-1	AP-MW-1B	Total/NA	Water	7196A	
480-11387-2	AP-MW-2B	Total/NA	Water	7196A	
480-11387-3	AP-MW-6B	Total/NA	Water	7196A	
480-11387-4	AP-MW-7B	Total/NA	Water	7196A	
480-11387-5	AP-GW-DUP-01	Total/NA	Water	7196A	
480-11387-6	AP-RB-01	Total/NA	Water	7196A	
480-11387-6 MS	AP-RB-01	Total/NA	Water	7196A	
480-11387-7	AP-SWB-01	Total/NA	Water	7196A	
480-11387-7 DU	AP-SWB-01	Total/NA	Water	7196A	
LCS 480-36056/4	Lab Control Sample	Total/NA	Water	7196A	
MB 480-36056/3	Method Blank	Total/NA	Water	7196A	

Analysis Batch: 36361

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	SM 2540C	
LCS 480-36361/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-36361/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 36509

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	SM 2540D	

TestAmerica Buffalo 11/7/2011

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-11355-1

General Chemistry (Continued)

Analysis Batch: 36509 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-36509/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-36509/1	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 36746

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	353.2	

Analysis Batch: 37018

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-1	AP-MW-3B	Total/NA	Water	300.0	
480-11355-5	AP-SS-03	Total/NA	Water	300.0	
480-11355-6	AP-SS-02	Total/NA	Water	300.0	
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	300.0	
480-11355-7 MS	AP-SS-01/EWE-01	Total/NA	Water	300.0	
LCS 480-37018/99	Lab Control Sample	Total/NA	Water	300.0	
MB 480-37018/100	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 37020

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11387-4	AP-MW-7B	Total/NA	Water	300.0	_
480-11387-6	AP-RB-01	Total/NA	Water	300.0	
480-11387-7	AP-SWB-01	Total/NA	Water	300.0	
480-11387-7 MS	AP-SWB-01	Total/NA	Water	300.0	
480-11387-7 MSD	AP-SWB-01	Total/NA	Water	300.0	
LCS 480-37020/123	Lab Control Sample	Total/NA	Water	300.0	
MB 480-37020/124	Method Blank	Total/NA	Water	300.0	

Prep Batch: 37151

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	351.2	
LCS 480-37151/2-A	Lab Control Sample	Total/NA	Water	351.2	
MB 480-37151/1-A	Method Blank	Total/NA	Water	351.2	

Analysis Batch: 37197

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-1	AP-MW-3B	Total/NA	Water	350.1	_
480-11355-2	AP-MW-4B	Total/NA	Water	350.1	
480-11355-3	AP-MW-5B	Total/NA	Water	350.1	
480-11355-4	AP-MW-8B	Total/NA	Water	350.1	
480-11355-5	AP-SS-03	Total/NA	Water	350.1	
480-11355-6	AP-SS-02	Total/NA	Water	350.1	
480-11387-1	AP-MW-1B	Total/NA	Water	350.1	
480-11387-2	AP-MW-2B	Total/NA	Water	350.1	
480-11387-3	AP-MW-6B	Total/NA	Water	350.1	
480-11387-3 MS	AP-MW-6B	Total/NA	Water	350.1	
480-11387-3 MSD	AP-MW-6B	Total/NA	Water	350.1	
480-11387-4	AP-MW-7B	Total/NA	Water	350.1	
480-11387-5	AP-GW-DUP-01	Total/NA	Water	350.1	
480-11387-6	AP-RB-01	Total/NA	Water	350.1	
480-11387-7	AP-SWB-01	Total/NA	Water	350.1	
LCS 480-37197/52	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-37197/76	Lab Control Sample	Total/NA	Water	350.1	

2

3

4

6

7

9

10

. .

4 1

Le

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

General Chemistry (Continued)

Analysis Batch: 37197 (Continued)

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	MB 480-37197/51	Method Blank	Total/NA	Water	350.1	
ı	MB 480-37197/75	Method Blank	Total/NA	Water	350.1	

Analysis Batch: 37440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	350.1	_
LCS 480-37440/4	Lab Control Sample	Total/NA	Water	350.1	
MB 480-37440/3	Method Blank	Total/NA	Water	350.1	

Analysis Batch: 37441

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-11355-2	AP-MW-4B	Total/NA	Water	300.0	
480-11355-3	AP-MW-5B	Total/NA	Water	300.0	
480-11355-3 MS	AP-MW-5B	Total/NA	Water	300.0	
480-11355-3 MSD	AP-MW-5B	Total/NA	Water	300.0	
LCS 480-37441/3	Lab Control Sample	Total/NA	Water	300.0	
MB 480-37441/4	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 37444

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-4	AP-MW-8B	Total/NA	Water	300.0	
480-11387-1	AP-MW-1B	Total/NA	Water	300.0	
480-11387-2	AP-MW-2B	Total/NA	Water	300.0	
480-11387-3	AP-MW-6B	Total/NA	Water	300.0	
480-11387-5	AP-GW-DUP-01	Total/NA	Water	300.0	
LCS 480-37444/27	Lab Control Sample	Total/NA	Water	300.0	
MB 480-37444/28	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 37705

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	351.2	37151
LCS 480-37151/2-A	Lab Control Sample	Total/NA	Water	351.2	37151
MB 480-37151/1-A	Method Blank	Total/NA	Water	351.2	37151

Analysis Batch: 37853

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	410.4	
LCS 480-37853/4	Lab Control Sample	Total/NA	Water	410.4	
MB 480-37853/3	Method Blank	Total/NA	Water	410.4	

Prep Batch: 38811

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
	480-11355-1	AP-MW-3B	Total/NA	Water	Distill/Phenol
ı	480-11355-2	AP-MW-4B	Total/NA	Water	Distill/Phenol
ı	480-11355-3	AP-MW-5B	Total/NA	Water	Distill/Phenol
١	LCS 480-38811/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol
İ	MB 480-38811/1-A	Method Blank	Total/NA	Water	Distill/Phenol

Prep Batch: 38815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-4	AP-MW-8B	Total/NA	Water	Distill/Phenol	
480-11355-5	AP-SS-03	Total/NA	Water	Distill/Phenol	

TestAmerica Buffalo 11/7/2011 _____

J

4

_

8

9

11

12

1 /

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-11355-1

General Chemistry (Continued)

Prep Batch: 38815 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-6	AP-SS-02	Total/NA	Water	Distill/Phenol	
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	Distill/Phenol	
LCS 480-38815/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-38815/1-A	Method Blank	Total/NA	Water	Distill/Phenol	

Prep Batch: 38856

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11387-1	AP-MW-1B	Total/NA	Water	Distill/Phenol	
480-11387-2	AP-MW-2B	Total/NA	Water	Distill/Phenol	
480-11387-3	AP-MW-6B	Total/NA	Water	Distill/Phenol	
480-11387-4	AP-MW-7B	Total/NA	Water	Distill/Phenol	
480-11387-5	AP-GW-DUP-01	Total/NA	Water	Distill/Phenol	
480-11387-6	AP-RB-01	Total/NA	Water	Distill/Phenol	
480-11387-7	AP-SWB-01	Total/NA	Water	Distill/Phenol	
LCS 480-38856/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-38856/1-A	Method Blank	Total/NA	Water	Distill/Phenol	

Analysis Batch: 38892

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11355-1	AP-MW-3B	Total/NA	Water	420.4	38811
480-11355-2	AP-MW-4B	Total/NA	Water	420.4	38811
480-11355-3	AP-MW-5B	Total/NA	Water	420.4	38811
480-11355-4	AP-MW-8B	Total/NA	Water	420.4	38815
480-11355-5	AP-SS-03	Total/NA	Water	420.4	38815
480-11355-6	AP-SS-02	Total/NA	Water	420.4	38815
480-11355-7	AP-SS-01/EWE-01	Total/NA	Water	420.4	38815
LCS 480-38811/2-A	Lab Control Sample	Total/NA	Water	420.4	38811
LCS 480-38815/2-A	Lab Control Sample	Total/NA	Water	420.4	38815
MB 480-38811/1-A	Method Blank	Total/NA	Water	420.4	38811
MB 480-38815/1-A	Method Blank	Total/NA	Water	420.4	38815

Analysis Batch: 39103

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-11387-1	AP-MW-1B	Total/NA	Water	420.4	38856
480-11387-2	AP-MW-2B	Total/NA	Water	420.4	38856
480-11387-3	AP-MW-6B	Total/NA	Water	420.4	38856
480-11387-4	AP-MW-7B	Total/NA	Water	420.4	38856
480-11387-5	AP-GW-DUP-01	Total/NA	Water	420.4	38856
480-11387-6	AP-RB-01	Total/NA	Water	420.4	38856
480-11387-7	AP-SWB-01	Total/NA	Water	420.4	38856
LCS 480-38856/2-A	Lab Control Sample	Total/NA	Water	420.4	38856
MB 480-38856/1-A	Method Blank	Total/NA	Water	420.4	38856

7

9

10

11

13

14

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-MW-3B

Lab Sample ID: 480-11355-1

Matrix: Water

Date Collected: 10/17/11 12:10 Date Received: 10/17/11 17:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			27168	10/21/11 08:15	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27300	10/22/11 00:26	BL	TAL BUR
Total/NA	Prep	200.7			35922	10/18/11 11:00	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36071	10/18/11 20:24	LH	TAL BUF
Total/NA	Analysis	7196A		1	35972	10/18/11 12:00	JS	TAL BUF
Total/NA	Analysis	300.0		1	37018	10/26/11 10:06	RMM	TAL BUF
Total/NA	Analysis	350.1		1	37197	10/25/11 13:58	KS	TAL BUF
Total/NA	Prep	Distill/Phenol			38811	11/03/11 16:22	AP	TAL BUF
Total/NA	Analysis	420.4		1	38892	11/03/11 18:49	PN	TAL BUF

Lab Sample ID: 480-11355-2

Date Collected: 10/17/11 12:30

420.4

Analysis

TAL BUF

Date Received: 10/17/11 17:05

Client Sample ID: AP-MW-4B

Matrix: Water

Batch Batch Dilution Batch Prepared Method Prep Type Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3010A 27168 10/21/11 08:15 ALS TAL BUR Total/NA 6010B 27300 10/22/11 00:31 BL TAL BUR Analysis 1 Total/NA Prep 200.7 35923 10/18/11 11:00 JM TAL BUF 200.7 Rev 4.4 Total/NA 36308 JRK TAL BUF Analysis 1 10/19/11 22:38 Total/NA Analysis 7196A 35972 10/18/11 12:00 JS TAL BUF Total/NA 350.1 37197 10/25/11 13:59 KS TAL BUF Analysis 1 Total/NA Analysis 300.0 2 37441 10/27/11 20:45 RMM TAL BUF ΑP Total/NA 38811 11/03/11 16:22 TAL BUF Prep Distill/Phenol

Client Sample ID: AP-MW-5B Lab Sample ID: 480-11355-3 Date Collected: 10/17/11 12:50 Matrix: Water

1

38892

11/03/11 18:49

PΝ

Date Received: 10/17/11 17:05

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			27168	10/21/11 08:15	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27300	10/22/11 00:36	BL	TAL BUR
Total/NA	Prep	200.7			35923	10/18/11 11:00	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36308	10/19/11 22:40	JRK	TAL BUF
Total/NA	Analysis	7196A		1	35972	10/18/11 12:00	JS	TAL BUF
Total/NA	Analysis	350.1		1	37197	10/25/11 14:00	KS	TAL BUF
Total/NA	Analysis	300.0		2	37441	10/27/11 20:55	RMM	TAL BUF
Total/NA	Prep	Distill/Phenol			38811	11/03/11 16:22	AP	TAL BUF
Total/NA	Analysis	420.4		1	38892	11/03/11 18:49	PN	TAL BUF

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Lab Sample ID: 480-11355-4

Matrix: Water

Client Sample ID: AP-MW-8B Date Collected: 10/17/11 13:10

Date Received: 10/17/11 17:05

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 3010A 27168 10/21/11 08:15 ALS TAL BUR Total/NA 6010B TAL BUR 27300 10/22/11 00:41 BLAnalysis 1 Total/NA Prep 200.7 35923 10/18/11 11:00 JM TAL BUF Total/NA 10/19/11 22:55 JRK TAL BUF 200.7 Rev 4.4 36308 Analysis 1 Total/NA Analysis 7196A 35972 10/18/11 12:00 JS TAL BUF 1 37197 Total/NA Analysis 350.1 10/25/11 14:01 KS TAL BUF Total/NA Analysis 300.0 5 37444 10/27/11 22:06 RMM TAL BUF Total/NA Prep Distill/Phenol 38815 11/03/11 16:26 ΑP TAL BUF Total/NA Analysis 420.4 1 38892 11/03/11 18:58 PΝ TAL BUF

Client Sample ID: AP-SS-03 Lab Sample ID: 480-11355-5

Date Collected: 10/17/11 14:30 Matrix: Water

Date Received: 10/17/11 17:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			27168	10/21/11 08:15	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27300	10/22/11 00:47	BL	TAL BUR
Total/NA	Prep	200.7			35923	10/18/11 11:00	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36308	10/19/11 22:57	JRK	TAL BUF
Total/NA	Analysis	7196A		1	35972	10/18/11 12:00	JS	TAL BUF
Total/NA	Analysis	300.0		1	37018	10/26/11 10:46	RMM	TAL BUF
Total/NA	Analysis	350.1		1	37197	10/25/11 14:02	KS	TAL BUF
Total/NA	Prep	Distill/Phenol			38815	11/03/11 16:26	AP	TAL BUF
Total/NA	Analysis	420.4		1	38892	11/03/11 18:58	PN	TAL BUF

Client Sample ID: AP-SS-02 Lab Sample ID: 480-11355-6

Date Collected: 10/17/11 14:50 Date Received: 10/17/11 17:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			27168	10/21/11 08:15	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27300	10/22/11 00:52	BL	TAL BUR
Total/NA	Prep	200.7			35923	10/18/11 11:00	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36308	10/19/11 23:00	JRK	TAL BUF
Total/NA	Analysis	7196A		1	35972	10/18/11 12:00	JS	TAL BUF
Total/NA	Analysis	300.0		1	37018	10/26/11 10:56	RMM	TAL BUF
Total/NA	Analysis	350.1		1	37197	10/25/11 14:03	KS	TAL BUF
Total/NA	Prep	Distill/Phenol			38815	11/03/11 16:26	AP	TAL BUF
Total/NA	Analysis	420.4		1	38892	11/03/11 18:58	PN	TAL BUF

TestAmerica Buffalo 11/7/2011

Matrix: Water

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Lab Sample ID: 480-11355-7

Matrix: Water

Client Sample ID: AP-SS-01/EWE-01

Date Collected: 10/17/11 15:10 Date Received: 10/17/11 17:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	37153	10/26/11 00:46	TRB	TAL BUF
Total/NA	Prep	3010A			27168	10/21/11 08:15	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27300	10/22/11 00:57	BL	TAL BUR
Total/NA	Prep	200.7			35923	10/18/11 11:00	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36308	10/19/11 23:02	JRK	TAL BUF
Total/NA	Prep	200.8			35978	10/19/11 07:40	JM	TAL BUF
Total/NA	Analysis	200.8		1	36906	10/22/11 16:17	MM	TAL BUF
Total/NA	Analysis	200.8		1	37043	10/24/11 17:56	MM	TAL BUF
Total/NA	Analysis	7196A		1	35972	10/18/11 12:00	JS	TAL BUF
Total/NA	Analysis	9040B		1	36041	10/19/11 00:08	ES	TAL BUF
Total/NA	Analysis	353.2		1	36045	10/19/11 01:04	ES	TAL BUF
Total/NA	Analysis	SM 5210B		1	36051	10/18/11 13:59	ML	TAL BUF
Total/NA	Analysis	SM 4500 O G		1	36052	10/18/11 23:37	ML	TAL BUF
Total/NA	Analysis	SM 2540C		1	36361	10/20/11 14:26	AP	TAL BUF
Total/NA	Analysis	SM 2540D		1	36509	10/21/11 01:45	KS	TAL BUF
Total/NA	Analysis	353.2		1	36746	10/19/11 00:57	RL	TAL BUF
Total/NA	Analysis	300.0		1	37018	10/26/11 11:07	RMM	TAL BUF
Total/NA	Analysis	350.1		1	37440	10/26/11 16:19	KS	TAL BUF
Total/NA	Prep	351.2			37151	10/25/11 12:25	PN	TAL BUF
Total/NA	Analysis	351.2		1	37705	10/27/11 18:34	PN	TAL BUF
Total/NA	Analysis	410.4		1	37853	10/28/11 12:23	KS	TAL BUF
Total/NA	Prep	Distill/Phenol			38815	11/03/11 16:26	AP	TAL BUF
Total/NA	Analysis	420.4		1	38892	11/03/11 18:58	PN	TAL BUF

Client Sample ID: TRIP BLANK

Date Collected: 10/17/11 00:00 Date Received: 10/17/11 17:05 Lab Sample ID: 480-11355-8 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	37153	10/26/11 01:08	TRB	TAL BUF

Client Sample ID: AP-MW-1B

Lab Sample ID: 480-11387-1 Date Collected: 10/18/11 11:55 Date Received: 10/18/11 15:10

Batch	Batch		Dilution	Batch	Prepared		
Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Prep	3010A			27170	10/21/11 08:25	ALS	TAL BUR
Analysis	6010B		1	27297	10/21/11 23:28	BL	TAL BUR
Prep	200.7			36075	10/19/11 09:20	JM	TAL BUF
Analysis	200.7 Rev 4.4		1	36315	10/19/11 17:17	LH	TAL BUF
Analysis	7196A		1	36056	10/18/11 20:53	KS	TAL BUF
Analysis	350.1		1	37197	10/25/11 14:14	KS	TAL BUF
Analysis	300.0		2	37444	10/27/11 22:26	RMM	TAL BUF
	Prep Analysis Prep Analysis Analysis Analysis	Type Method Prep 3010A Analysis 6010B Prep 200.7 Analysis 200.7 Rev 4.4 Analysis 7196A Analysis 350.1	Type Method Run Prep 3010A Analysis 6010B Prep 200.7 Analysis 200.7 Rev 4.4 Analysis 7196A Analysis 350.1	Type Method Run Factor Prep 3010A 1 Analysis 6010B 1 Prep 200.7 1 Analysis 200.7 Rev 4.4 1 Analysis 7196A 1 Analysis 350.1 1	Type Method Run Factor Number Prep 3010A 27170 Analysis 6010B 1 27297 Prep 200.7 36075 Analysis 200.7 Rev 4.4 1 36315 Analysis 7196A 1 36056 Analysis 350.1 1 37197	Type Method Run Factor Number or Analyzed Prep 3010A 27170 10/21/11 08:25 Analysis 6010B 1 27297 10/21/11 23:28 Prep 200.7 36075 10/19/11 09:20 Analysis 200.7 Rev 4.4 1 36315 10/19/11 17:17 Analysis 7196A 1 36056 10/18/11 20:53 Analysis 350.1 1 37197 10/25/11 14:14	Type Method Run Factor Number or Analyzed Analyst Prep 3010A 27170 10/21/11 08:25 ALS Analysis 6010B 1 27297 10/21/11 23:28 BL Prep 200.7 36075 10/19/11 09:20 JM Analysis 200.7 Rev 4.4 1 36315 10/19/11 17:17 LH Analysis 7196A 1 36056 10/18/11 20:53 KS Analysis 350.1 1 37197 10/25/11 14:14 KS

Matrix: Water

TestAmerica Job ID: 480-11355-1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-MW-1B Lab Sample ID: 480-11387-1

Date Collected: 10/18/11 11:55 Matrix: Water

Date Received: 10/18/11 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Distill/Phenol			38856	11/03/11 22:31	KS	TAL BUF
Total/NA	Analysis	420.4		1	39103	11/05/11 09:33	PN	TAL BUF

Client Sample ID: AP-MW-2B Lab Sample ID: 480-11387-2

Date Collected: 10/18/11 10:25
Date Received: 10/18/11 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			27170	10/21/11 08:25	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27297	10/21/11 23:33	BL	TAL BUR
Total/NA	Prep	200.7			36075	10/19/11 09:20	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36315	10/19/11 17:20	LH	TAL BUF
Total/NA	Analysis	7196A		2	36056	10/18/11 21:22	KS	TAL BUF
Total/NA	Analysis	350.1		1	37197	10/25/11 14:15	KS	TAL BUF
Total/NA	Analysis	300.0		1	37444	10/27/11 22:36	RMM	TAL BUF
Total/NA	Prep	Distill/Phenol			38856	11/03/11 22:39	KS	TAL BUF
Total/NA	Analysis	420.4		1	39103	11/05/11 09:33	PN	TAL BUF

Client Sample ID: AP-MW-6B

Date Collected: 10/18/11 09:10

Lab Sample ID: 480-11387-3

Matrix: Water

Date Received: 10/18/11 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			27170	10/21/11 08:25	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27297	10/21/11 23:38	BL	TAL BUR
Total/NA	Prep	200.7			36075	10/19/11 09:20	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36315	10/19/11 17:22	LH	TAL BUF
Total/NA	Analysis	7196A		1	36056	10/18/11 20:59	KS	TAL BUF
Total/NA	Analysis	350.1		1	37197	10/25/11 14:18	KS	TAL BUF
Total/NA	Analysis	300.0		5	37444	10/27/11 22:46	RMM	TAL BUF
Total/NA	Prep	Distill/Phenol			38856	11/03/11 22:47	KS	TAL BUF
Total/NA	Analysis	420.4		1	39103	11/05/11 09:33	PN	TAL BUF

Client Sample ID: AP-MW-7B Lab Sample ID: 480-11387-4

Date Collected: 10/18/11 13:05 Matrix: Water
Date Received: 10/18/11 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			27170	10/21/11 08:25	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27297	10/21/11 23:44	BL	TAL BUR
Total/NA	Prep	200.7			36075	10/19/11 09:20	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36315	10/19/11 17:37	LH	TAL BUF
Total/NA	Analysis	7196A		1	36056	10/18/11 21:02	KS	TAL BUF
Total/NA	Analysis	300.0		1	37020	10/26/11 16:00	RMM	TAL BUF

2

4

5

7

0

Matrix: Water

10

12

14

15

TestAmerica Buffalo 11/7/2011

TestAmerica Job ID: 480-11355-1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-MW-7B

Date Collected: 10/18/11 13:05 Date Received: 10/18/11 15:10 Lab Sample ID: 480-11387-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	350.1		1	37197	10/25/11 14:21	KS	TAL BUF
Total/NA	Prep	Distill/Phenol			38856	11/03/11 22:54	KS	TAL BUF
Total/NA	Analysis	420.4		1	39103	11/05/11 09:33	PN	TAL BUF

Client Sample ID: AP-GW-DUP-01 Lab Sample ID: 480-11387-5

Date Collected: 10/18/11 00:00

Date Received: 10/18/11 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			27170	10/21/11 08:25	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27297	10/21/11 23:49	BL	TAL BUR
Total/NA	Prep	200.7			36075	10/19/11 09:20	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36315	10/19/11 17:39	LH	TAL BUF
Total/NA	Analysis	7196A		5	36056	10/18/11 21:35	KS	TAL BUF
Total/NA	Analysis	350.1		1	37197	10/25/11 14:22	KS	TAL BUF
Total/NA	Analysis	300.0		1	37444	10/27/11 22:56	RMM	TAL BUF
Total/NA	Prep	Distill/Phenol			38856	11/03/11 23:02	KS	TAL BUF
Total/NA	Analysis	420.4		1	39103	11/05/11 09:42	PN	TAL BUF

Client Sample ID: AP-RB-01 Lab Sample ID: 480-11387-6

Date Collected: 10/18/11 14:10

Date Received: 10/18/11 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			27170	10/21/11 08:25	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27297	10/21/11 23:54	BL	TAL BUR
Total/NA	Prep	200.7			36075	10/19/11 09:20	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36315	10/19/11 17:41	LH	TAL BUF
Total/NA	Analysis	7196A		1	36056	10/18/11 21:09	KS	TAL BUF
Total/NA	Analysis	300.0		1	37020	10/26/11 16:21	RMM	TAL BUF
Total/NA	Analysis	350.1		1	37197	10/25/11 14:23	KS	TAL BUF
Total/NA	Prep	Distill/Phenol			38856	11/03/11 23:10	KS	TAL BUF
Total/NA	Analysis	420.4		1	39103	11/05/11 09:42	PN	TAL BUF

Client Sample ID: AP-SWB-01 Lab Sample ID: 480-11387-7

Date Collected: 10/18/11 14:00 Matrix: Water

Date Received: 10/18/11 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3010A			27170	10/21/11 08:25	ALS	TAL BUR
Total/NA	Analysis	6010B		1	27297	10/21/11 23:59	BL	TAL BUR
Total/NA	Prep	200.7			36075	10/19/11 09:20	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	36315	10/19/11 17:43	LH	TAL BUF
Total/NA	Analysis	7196A		1	36056	10/18/11 21:25	KS	TAL BUF

TestAmerica Buffalo 11/7/2011

Page 42 of 54

Matrix: Water

Matrix: Water

Lab Chronicle

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC TestAmerica Job ID: 480-11355-1

Lab Sample ID: 480-11387-7

Matrix: Water

Date Collected: 10/18/11 14:00 Date Received: 10/18/11 15:10

Client Sample ID: AP-SWB-01

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			37020	10/26/11 16:31	RMM	TAL BUF
Total/NA	Analysis	350.1		1	37197	10/25/11 14:24	KS	TAL BUF
Total/NA	Prep	Distill/Phenol			38856	11/03/11 23:18	KS	TAL BUF
Total/NA	Analysis	420.4		1	39103	11/05/11 10:00	PN	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TestAmerica Job ID: 480-11355-1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Buffalo	Arkansas	State Program	6	88-0686
TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	Georgia EPD	4	N/A
TestAmerica Buffalo	Georgia	State Program	4	956
TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica Buffalo	Iowa	State Program	7	374
TestAmerica Buffalo	Kansas	NELAC	7	E-10187
TestAmerica Buffalo	Kentucky	Kentucky UST	4	30
TestAmerica Buffalo	Kentucky	State Program	4	90029
TestAmerica Buffalo	Louisiana	NELAC	6	02031
TestAmerica Buffalo	Maine	State Program	1	NY0044
TestAmerica Buffalo	Maryland	State Program	3	294
TestAmerica Buffalo	Massachusetts	State Program	1	M-NY044
TestAmerica Buffalo	Michigan	State Program	5	9937
TestAmerica Buffalo	Minnesota	NELAC	5	036-999-337
TestAmerica Buffalo	New Hampshire	NELAC	1	2337
TestAmerica Buffalo	New Hampshire	NELAC	1	68-00281
TestAmerica Buffalo	New Jersey	NELAC	2	NY455
TestAmerica Buffalo	New York	NELAC	2	10026
TestAmerica Buffalo	North Dakota	State Program	8	R-176
TestAmerica Buffalo	Oklahoma	State Program	6	9421
TestAmerica Buffalo	Oregon	NELAC	10	NY200003
TestAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
TestAmerica Buffalo	Tennessee	State Program	4	TN02970
TestAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
TestAmerica Buffalo	USDA	USDA		P330-08-00242
TestAmerica Buffalo	Virginia	NELAC Secondary AB	3	460185
TestAmerica Buffalo	Virginia	State Program	3	278
TestAmerica Buffalo	Washington	State Program	10	C1677
TestAmerica Buffalo	Wisconsin	State Program	5	998310390
TestAmerica Burlington	ACLASS	DoD ELAP		ADE-1492
TestAmerica Burlington	Connecticut	State Program	1	PH-0751
TestAmerica Burlington	Delaware	Delaware DNREC	3	NA
TestAmerica Burlington	Florida	NELAC Secondary AB	4	E87467
TestAmerica Burlington	Louisiana	NELAC Secondary AB	6	176292
TestAmerica Burlington	Maine	State Program	1	VT00008
TestAmerica Burlington	Minnesota	State Program	5	050-999-436
TestAmerica Burlington	New Hampshire	NELAC	1	200610
TestAmerica Burlington	New Jersey	NELAC	2	VT972
TestAmerica Burlington	New York	NELAC	2	10391
TestAmerica Burlington	Pennsylvania	NELAC	3	68-00489
TestAmerica Burlington	Rhode Island	State Program	1	LAO00298
TestAmerica Burlington	USDA	USDA		P330-11-00093
TestAmerica Burlington	Vermont	State Program	1	VT-4000

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

6

3

4

6

8

9

11

12

Method Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-11355-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
200.7 Rev 4.4	Metals (ICP)	EPA	TAL BUF
200.8	Metals (ICP/MS)	EPA	TAL BUF
6010B	Metals (Custom List)	SW846	TAL BUR
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
110.4	COD	MCAWW	TAL BUF
120.4	Phenolics, Total Recoverable	MCAWW	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
9040B	pН	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM 4500 O G	Oxygen, Dissolved	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

6

3

4

5

0

9

44

12

4 4

Sample Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-11355-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-11355-1	AP-MW-3B	Water	10/17/11 12:10	10/17/11 17:05
480-11355-2	AP-MW-4B	Water	10/17/11 12:30	10/17/11 17:05
480-11355-3	AP-MW-5B	Water	10/17/11 12:50	10/17/11 17:05
480-11355-4	AP-MW-8B	Water	10/17/11 13:10	10/17/11 17:05
480-11355-5	AP-SS-03	Water	10/17/11 14:30	10/17/11 17:05
480-11355-6	AP-SS-02	Water	10/17/11 14:50	10/17/11 17:05
480-11355-7	AP-SS-01/EWE-01	Water	10/17/11 15:10	10/17/11 17:05
480-11355-8	TRIP BLANK	Water	10/17/11 00:00	10/17/11 17:05
480-11387-1	AP-MW-1B	Water	10/18/11 11:55	10/18/11 15:10
480-11387-2	AP-MW-2B	Water	10/18/11 10:25	10/18/11 15:10
480-11387-3	AP-MW-6B	Water	10/18/11 09:10	10/18/11 15:10
480-11387-4	AP-MW-7B	Water	10/18/11 13:05	10/18/11 15:10
480-11387-5	AP-GW-DUP-01	Water	10/18/11 00:00	10/18/11 15:10
480-11387-6	AP-RB-01	Water	10/18/11 14:10	10/18/11 15:10
480-11387-7	AP-SWB-01	Water	10/18/11 14:00	10/18/11 15:10

2

Λ

6

0

10

46

13

14

Client: Greenstar Environmental Solutions, LLC Job Number: 480-11355-1

Login Number: 11355 List Source: TestAmerica Buffalo

List Number: 1 Creator: Janish, Carl

oreator. Jamon, Jan		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	False	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	

4

5

7

9

11

13

14

15

Chlorine Residual checked.

N/A

Client: Greenstar Environmental Solutions, LLC

Job Number: 480-11355-1

List Source: TestAmerica Burlington
List Number: 1
List Creation: 10/20/11 04:28 PM

Creator: Marion, Greg T

Radioactivity either was not measured or, if measured, is at or below background The cooler's custody seal, if present, is intact. True 792773 The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. True Cooler Temperature is recorded. True 16.2°C IR GUN ID 96/CF=0 COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. True Sample containers have legible labels. True Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. True Cool is present. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True Samples are received within Holding Time. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	amples.
tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? N/A Received project as a subcontract there are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. In true COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? N/A Received project as a subcontract there are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
COC is filled out in ink and legible. COC is filled out with all pertinent information. In true Is the Field Sampler's name present on COC? N/A Received project as a subcontract the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True True True True True True True True True True True True True	ī.
Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True	
Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True	
Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True	
Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True	
Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True	
Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	
MS/MSDs	
NOA	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in N/A diameter.	
Multiphasic samples are not present. N/A	
Samples do not require splitting or compositing. N/A	
Residual Chlorine Checked. N/A	

_

А

6

0

9

11

13

Client: Greenstar Environmental Solutions, LLC Job Number: 480-11355-1

Login Number: 11387 List Source: TestAmerica Buffalo

List Number: 1 Creator: Janish, Carl

oreator. Samon, Oan		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	False	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

O

1

9

11

13

_ _ _ _

Client: Greenstar Environmental Solutions, LLC

Job Number: 480-11355-1

List Source: TestAmerica Burlington
List Number: 1
List Creation: 10/20/11 04:37 PM

Creator: Marion, Greg T

oroatori mariori, orog r		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	792773
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	16.2°C IR GUN ID 96/CF=0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

2

4

5

_

a

a a

12

14

Attachment E

Landfill Cap Inspection Checklists March, June, September and November 2011

LANDFILL CAP INSPECTION CHECKLIST AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Personnel: Bruce Vinal

Date: 3/16/11 1st Quarter Inspection

Weather: Sunny 40 degrees

1. Inspection of ground surface for exposure of geotextile cover (cap erosion):

None noted.

2. Inspection of ground surface for differential settlement resulting in soil cracking or ponded water: None noted.

3. Identification of stressed vegetation:

Re-seeded areas around T-7 are still not yet established. Several areas of sod on the Northern slope of T-7 have been damaged as a result of snow removal

4. Identification of seeps, rooted vegetation (trees), and/or animal burrows:

None observed.

5. Identification of deteriorating equipment (i.e., monitoring wells, fencing, or drainage structures):

The two new piezometers wells still require Safety Blue paint. The door to the T-1 shed is inadequate in keeping out small rodents. In the past, rodents were responsible for chewing through wiring of monitoring equipment. Rat baits have been used with success. With O&M visits limited to once a month we aren't able to clean out the dead mice decompose before next visit. One of the tanks containing liquid flocculent in the "Lab Shed" is leaking. The leak is confined to the secondary containment vessel. These containers are no longer in use and should be removed

6. Inspection of stormwater drainage swales for erosion, sloughing, or flow-through:

Blockage of flow at Southwest corner of property where road crosses swale to T-1 shed. Blockage cleared and pipes under road able to handle the high flow rate.

7. Inspection of east side of the landfill (Niagara Mohawk Power Corporation parcel) along the intermittent stream for the presence of erosion or sloughing:

None observed.

Inspection of access roads:

Numerous areas of the access roads have been gouged by snowplows and will require repair.

LANDFILL CAP INSPECTION CHECKLIST AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Personnel: Bruce Vinal

Date: 6/16/11 2nd Quarter inspection

Weather: Sunny 90 degrees

1. Inspection of ground surface for exposure of geotextile cover (cap erosion): None noted.

- 2. Inspection of ground surface for differential settlement resulting in soil cracking or ponded water: None noted
- **3. Identification of stressed vegetation:** Re-seeded areas around T-7 are well established and appear to be doing well. Areas on the Northern slope of T-7 closest to the entry gate were damaged during snow removal. This does not affect the integrity of T-7 berm but should be repaired as it hinders lawn mowing.
- 4. Identification of seeps, rooted vegetation (trees), and/or animal burrows:
 None noted
- **5. Identification of deteriorating equipment (i.e., monitoring wells, fencing, or drainage structures):** Influent line cleanout vault in the Southwest corner closest to the T-1 shed has been hit by a snowplow and knocked out of square, lid does not close completely. New piezometers still need to be painted. The leaking liquid flocculent containers in the Lab shed will be removed. The door to the T-1 shed still has a gap that allows rodents to gain access.
- 6. Inspection of stormwater drainage swales for erosion, sloughing, or flow-through:
 The area where the discharge swale leaves the site has backed up with a combination of organic matter and iron sediment causing the water to be diverted to the east. Blockage has been cleaned out by hand and correct flow restored.
- 7. Inspection of east side of the landfill (Niagara Mohawk Power Corporation parcel) along the intermittent stream for the presence of erosion or sloughing:

 None noted.
- **8. Inspection of access roads:** The roads around the site perimeter are overgrown with weeds, but will be cleared during cap mowing. The road to the T-8 shed has significant settling in the area where the new T-7 outlet pipe was installed.

LANDFILL CAP INSPECTION CHECKLIST AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Personnel: Bruce Vinal

Date: 9/11/11 3rd Quarter Inspection

Weather: Sunny 80 degrees

- 1. Inspection of ground surface for exposure of geotextile cover (cap erosion):

 None noted.
- 2. Inspection of ground surface for differential settlement resulting in soil cracking or ponded water: The areas above the trench where the new T-7 outfall pipe was installed have settled substantially. No ponding was observed, but the situation creates maintenance issues
- 3. Identification of stressed vegetation: Vegetation site-wide is thriving.
- **4.** Identification of seeps, rooted vegetation (trees), and/or animal burrows: None noted.
- 5. Identification of deteriorating equipment (i.e., monitoring wells, fencing, or drainage structures): New monitoring wells have been painted with safety blue paint and reflective markers have been added to aid in visibility during cap mowing. Leaking flocculent tanks were no longer needed and have been removed, the remaining chemical has been transferred to drums and needs to be disposed of. Cleanout enclosure in the SW corner still requires repair/replacement. Entrance doors to all the sheds are not tight enough to keep rodents out, in the winter months we are virtually overrun with mice in the sheds.
- 6. Inspection of stormwater drainage swales for erosion, sloughing, or flow-through: The end of the effluent swale is choked with organic material, the surface water sampling pool are for sample ID AP-SW-01 is nonexistent. This area should be cleaned and dug out to facilitate clean sample collection.
- 7. Inspection of east side of the landfill (Niagara Mohawk Power Corporation parcel) along the intermittent stream for the presence of erosion or sloughing:

 None noted.
- **8. Inspection of access roads:** All access roads, as well as the areas around the treatment system are overgrown. Mowing and weeding scheduled for Q4 will resolve these issues.

LANDFILL CAP INSPECTION CHECKLIST AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Personnel: Bruce Vinal

Date: 11/12/11 4th Quarter Inspection

Weather: Sunny 45 degrees

- 1. Inspection of ground surface for exposure of geotextile cover (cap erosion):
 None noted.
- 2. Inspection of ground surface for differential settlement resulting in soil cracking or ponded water: The entire length of the trench where the new outlet pipe was installed on T-7 has settled and needs to be addressed. Crushed gravel should be added in the road area and topsoil should be added, raked and seeded in the grass areas.
- 3. Identification of stressed vegetation: None noted.
- **4. Identification of seeps, rooted vegetation (trees), and/or animal burrows:** Cap moving has been completed. There are some areas along the Northeast fence line that were missed.
- 5. Identification of deteriorating equipment (i.e., monitoring wells, fencing, or drainage structures): Cleanout enclosure in the SW corner still requires repair/replacement, the box is out of square and will not close correctly. Entrance doors to all the sheds are not tight enough to keep rodents out, in the winter months rodents can overrun the sheds.
- 6. Inspection of stormwater drainage swales for erosion, sloughing, or flow-through: Effluent swale is choked with organic matter left over from cap mowing, and iron sediment has started to become an issue. The area at the point where the water leaves the site is plugging up and tends to backup along the Southern road. Swale needs to be cleaned out and re-defined. The new outfall line from T-7 is prone to clogging from organic matter within the pond, frequent cleaning is required.
- 7. Inspection of east side of the landfill (Niagara Mohawk Power Corporation parcel) along the intermittent stream for the presence of erosion or sloughing:

 None noted.
- **8. Inspection of access roads:** With the exception of the issue noted in #2, all roads are in acceptable condition.

Attachment F

Laboratory Analytical Results for GCTS Discharge Sampling February and September 2011

TABLE 2 SUMMARY OF QUARTERLY GCTS DISCHARGE SAMPLING 1 JANUARY AND 31 DECEMBER 2011, AIRCO PARCEL, NIAGARA FALLS, NEW YORK

					New York State Department of Environmental Conservation
Parameter	12 February 2011	16 June 2011	9 September 2011	18 October 2011	Discharge Criteria
pН	7.67	7.79	7.95	7.69	6-8
Total suspended solids	18.8	<4.0U	22.8	32.8	10 mg/L
Dissolved Oxygen	9.5	7.4	6.6	5.3	7 mg/L
Ammonia as N	1.4	<0.020U	<0.020U	<9.2U	9.2 mg/L
Total Kjeldahl nitrogen	2.4	0.28	0.21	0.41	Monitor (mg/L)
Total Recoverable Phenolics	<0.010U	<0.010U	0.0065J	<0.010U	0.008 mg/L
Biochemical oxygen demand	<2.0U	<2.0U	<2.0U	<2.0U	5.0 mg/L
1,1-Dichloroethane	<5U	<5U	<5U	<5U	5.0 μg/L
Trichloroethene	<5U	<5U	<5U	<5U	5.0 μg/L
Nickel	0.0033J	0.0019J	0.0019J	0.0013J	0.07 mg/L
Copper	0.0015J	<0.010U	<0.010U	<0.010U	0.0147 mg/L
Barium	0.253	0.21	0.216	0.195	2 mg/L
Total chromium	0.0048	0.0016J	0.0013J	0.0010J	0.1 mg/L
Hexavalent chromium	<0.010U	<0.010U	0.0090J	<0.010U	0.011 mg/L
Iron	0.0508	0.036J	0.142	0.0942	0.3 mg/L
Selenium	0.005	<0.015U	0.00089J	0.00066J	0.0046 mg/L
Thallium	0.000018J	<0.20U	<0.00020U	0.000025J	0.004 mg/L
Zinc	<0.010U	<0.010U	<0.010U	0.0036J	0.115 mg/L
Nitrate as N	1.0	0.53	0.69	0.69	Monitor (mg/L-N)
Nitrite as N	<0.050U	<0.050U	<0.050U	<0.050U	Monitor (mg/L-N)
Chemical oxygen demand	<10U	<10U	8.0J	13.3	40 mg/L
Total dissolved solids	1020	622	531	655	Monitor (mg/L)
	Values in bold	d exceeded discha	rge guidance values.		

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-1601-1

Client Project/Site: Greenstar Environmental Solutions, LLC

Sampling Event: Quarterly Discharge Monitoring

For:

Greenstar Environmental Solutions, LLC 6 Gellatly Drive Wappingers Falls, New York 12590

Attn: Charles E. McLeod, Jr.

Genif M. Byrnes

Authorized for release by: 2/28/2011 12:45 PM Jennifer Byrnes **Project Administrator** jennifer.byrnes@testamericainc.com

Designee for

Peggy Gray-Erdmann Project Manager II peggy.gray-erdmann@testamericainc.com

----- LINKS ------**Review your project** results through Total Access **Have a Question?**

Visit us at: www.testamericainc.com

Results relate only to the items tested and the sample(s) as received by the laboratory. The test results in this report meet all 2003 NELAC requirements for accredited parameters, exceptions are noted in this report. Pursuant to NELAC, this report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 21 02/28/2011

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association	13
Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Sample Receipt Checklist	21

4

6

0

9

10

12

4 /

Qualifier Definition/Glossary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

Qualifiers

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
F	MS or MSD exceeds the control limits
Н	Sample was prepped or analyzed beyond the specified holding time
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Glossary	Glossary Description
#	Listed under the "D" column to designate that the result is reported on a dry weight basis.

Case Narrative

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

Job ID: 480-1601-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-1601-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

Method(s) 350.1: The method blank for preparation batch 5470 contained ammonia above the reporting limit (RL). The associated sample(s) contained detects for this analyte at concentrations greater than 10X the value found in the method blank; therefore, re-analysis of samples was not performed. AP-EWE-01 (480-1601-1)

Method(s) 351.2: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 5655 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. (480-1601-1 MS)

Method(s) SM 4500 O G: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample(s) has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: AP-EWE-01 (480-1601-1)

No other analytical or quality issues were noted.

3

4

5

e

1

10

13

14

Detection Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

Client Sample ID: AP-EWE-01

Lab Sample ID: 480-1601-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	253		2.0	0.50	ug/L	1	_	200.7 Rev 4.4	Total/NA
Chromium	4.8		4.0	0.87	ug/L	1		200.7 Rev 4.4	Total/NA
Copper	1.5	J	10.0	1.5	ug/L	1		200.7 Rev 4.4	Total/NA
Iron	50.8		50.0	19.3	ug/L	1		200.7 Rev 4.4	Total/NA
Nickel	3.3	J	10.0	1.3	ug/L	1		200.7 Rev 4.4	Total/NA
Selenium	5.0		1.0	0.44	ug/L	1		200.8	Total/NA
Thallium	0.018	J	0.20	0.0080	ug/L	1		200.8	Total/NA
Ammonia	1.4	В	0.020	0.0090	mg/L as N	1		350.1	Total/NA
Total Kjeldahl Nitrogen	2.4		0.20	0.15	mg/L as N	1		351.2	Total/NA
Nitrate as N	1.0		0.050	0.011	mg/L	1		353.2	Total/NA
Total Dissolved Solids	1020		10.0	4.0	mg/L	1		SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
pH	7.67	Н	0.100	0.100	SU	1	_	9040B	Total/NA
Total Suspended Solids	18.8		4.0	4.0	mg/L	1		SM 2540D	Total/NA
Oxygen, Dissolved	9.5	Н	0.050	0.050	mg/L	1		SM 4500 O G	Total/NA

Client Sample ID: Trip blank

Lab Sample ID: 480-1601-2

No Detections.

3

3

L

6

8

9

4 4

15

13

14

Analytical Data

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

Lab Sample ID: 480-1601-1

Matrix: Water

Date Collected: 02/12/11 13:00 Date Received: 02/12/11 14:00

Date Received: 02/12/11 14:00

Client Sample ID: AP-EWE-01

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	ND		5.0	0.59	ug/L			02/14/11 16:24	1
Trichloroethene	ND		5.0	0.60	ug/L			02/14/11 16:24	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		72 - 130			-		02/14/11 16:24	1
4-Bromofluorobenzene (Surr)	102		69 - 121					02/14/11 16:24	1
Toluene-d8 (Surr)	103		70 - 123					02/14/11 16:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	253		2.0	0.50	ug/L		02/15/11 08:10	02/15/11 20:47	1
Chromium	4.8		4.0	0.87	ug/L		02/15/11 08:10	02/15/11 20:47	1
Copper	1.5	J	10.0	1.5	ug/L		02/15/11 08:10	02/15/11 20:47	1
Iron	50.8		50.0	19.3	ug/L		02/15/11 08:10	02/15/11 20:47	1
Nickel	3.3	J	10.0	1.3	ug/L		02/15/11 08:10	02/15/11 20:47	1
Zinc	ND		10.0	1.7	ug/L		02/15/11 08:10	02/15/11 20:47	1

Method: 200.8 - Metals (ICP/MS)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	5.0	1.0	0.44	ug/L		02/15/11 08:20	02/15/11 18:41	1
Thallium	0.018 J	0.20	0.0080	ug/L		02/15/11 08:20	02/15/11 18:41	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia	1.4	В	0.020	0.0090	mg/L as N			02/14/11 12:27	1
Total Kjeldahl Nitrogen	2.4		0.20	0.15	mg/L as N		02/15/11 08:40	02/16/11 09:57	1
Nitrate as N	1.0		0.050	0.011	mg/L			02/17/11 11:47	1
Nitrite as N	ND		0.050	0.020	mg/L			02/12/11 15:44	1
Chemical Oxygen Demand	ND		10.0	5.0	mg/L			02/15/11 18:11	1
Phenolics, Total Recoverable	ND		10.0	5.0	ug/L		02/15/11 15:55	02/16/11 15:49	1
Cr (VI)	ND		0.010	0.0050	mg/L			02/12/11 14:30	1
Total Dissolved Solids	1020		10.0	4.0	mg/L			02/16/11 10:53	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			02/12/11 12:30	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.67	H	0.100	0.100	SU			02/14/11 21:27	1
Total Suspended Solids	18.8		4.0	4.0	mg/L			02/16/11 10:59	1
Oxygen, Dissolved	9.5	Н	0.050	0.050	mg/L			02/13/11 12:05	1

Client Sample ID: Trip blank Lab Sample ID: 480-1601-2 Date Collected: 02/12/11 00:00 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	ND		5.0	0.59	ug/L			02/14/11 16:50	1
Trichloroethene	ND		5.0	0.60	ug/L			02/14/11 16:50	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		72 - 130			-		02/14/11 16:50	1
4-Bromofluorobenzene (Surr)	102		69 - 121					02/14/11 16:50	1
Toluene-d8 (Surr)	102		70 - 123					02/14/11 16:50	1

Surrogate Summary

Client: Greenstar Environmental Solutions, LLC

Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_				Percent Su
		12DCE	BFB	TOL
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)
480-1601-1	AP-EWE-01	100	102	103
480-1601-2	Trip blank	101	102	102
LCS 480-5428/4	LCS 480-5428/4	104	101	103
MB 480-5428/5	MB 480-5428/5	103	103	101

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

2

4

5

_

10

11

13

14

1

Method: 624 - Volatile Organic Compounds (GC/MS)

MB MB

мв мв

Qualifier

Result

ND

ND

Lab Sample ID: MB 480-5428/5

Matrix: Water

1.1-Dichloroethane

Trichloroethene

Analyte

Analysis Batch: 5428

Client Sample ID: MB 480-5428/5 Prep Type: Total/NA

02/14/11 11:30

Client Sample ID: LCS 480-5428/4

Analyzed Dil Fac Prepared 02/14/11 11:30

MB MB Surrogate % Recovery Qualifier Limits Prepared Analyzed Dil Fac 72 - 130 02/14/11 11:30 1,2-Dichloroethane-d4 (Surr) 103 4-Bromofluorobenzene (Surr) 103 69 - 121 02/14/11 11:30 Toluene-d8 (Surr) 101 70 - 123 02/14/11 11:30

RL

5.0

5.0

MDL Unit

0.59 ug/L

0.60 ug/L

Lab Sample ID: LCS 480-5428/4

Matrix: Water Prep Type: Total/NA **Analysis Batch: 5428** Spike LCS LCS % Rec.

Analyte Added Result Qualifier Unit % Rec Limits 20.0 20.8 1,1-Dichloroethane ug/L 104 73 - 128 20.0 Trichloroethene 19.1 ug/L 96 67 - 134

LCS LCS % Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 104 72 - 130 4-Bromofluorobenzene (Surr) 101 69 - 121 Toluene-d8 (Surr) 103 70 - 123

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-5493/1-A

Matrix: Water

Analysis Batch: 5638

Client Sample ID: MB 480-5493/1-A Prep Type: Total/NA Prep Batch: 5493

Dil Fac Analyzed 02/15/11 19:41

MDL Unit Analyte Result Qualifier RL Prepared Barium 2.0 02/15/11 08:10 ND 0.50 ug/L 4.0 02/15/11 08:10 02/15/11 19:41 Chromium ND 0.87 ug/L ND 10.0 02/15/11 19:41 Copper 1.5 ug/L 02/15/11 08:10 ND 50.0 02/15/11 08:10 02/15/11 19:41 Iron 19.3 ug/L Nickel ND 10.0 1.3 ug/L 02/15/11 08:10 02/15/11 19:41 Zinc ND 10.0 1.7 ug/L 02/15/11 08:10 02/15/11 19:41

Lab Sample ID: LCS 480-5493/2-A

Matrix: Water

Analysis Batch: 5638

Client Sample ID: LCS 480-5493/2-A Prep Type: Total/NA Prep Batch: 5493

	Spike	LCS	LCS			% Rec.	
Analyte	Added	Result	Qualifier	Unit I	D % Rec	Limits	
Barium	200	200.6		ug/L	100	85 - 115	
Chromium	200	203.2		ug/L	102	85 - 115	
Copper	200	213.5		ug/L	107	85 - 115	
Iron	10000	9763		ug/L	98	85 - 115	
Nickel	200	202.2		ug/L	101	85 - 115	
Zinc	200	197.9		ug/L	99	85 - 115	

Prep Type: Total/NA

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 480-5494/1-A Client Sample ID: MB 480-5494/1-A **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 5773** Prep Batch: 5494 MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		1.0	0.44	ug/L		02/15/11 08:20	02/15/11 16:14	1
Thallium	ND		0.20	0.0080	ug/L		02/15/11 08:20	02/15/11 16:14	1

Lab Sample ID: LCS 480-5494/2-A Client Sample ID: LCS 480-5494/2-A

Matrix: Water

Analyte

Selenium

Thallium

Analysis Batch: 5773

Prep Batch: 5494 Spike LCS LCS % Rec. Added Result Qualifier Unit % Rec Limits 20.0 19.38 97 ug/L 85 - 115 20.0 21.25 ug/L 106 85 - 115

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-5470/99 Client Sample ID: MB 480-5470/99 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 5470

MB MB

Analyte	Result Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia	0.0208	0.020	0.0090	mg/L as N			02/14/11 12:09	1

Lab Sample ID: LCS 480-5470/100 Client Sample ID: LCS 480-5470/100 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 5470

Allalysis Daton. 0470								
	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Ammonia	 1.00	1.00		mg/L as N		100	90 - 110	

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 480-5530/2-A Client Sample ID: MB 480-5530/2-A **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 5655

Result Qualifier RL MDL Unit Dil Fac Analyte Prepared Analyzed 0.20 02/15/11 08:40 Total Kjeldahl Nitrogen ND 0.15 mg/L as N 02/16/11 09:10

Lab Sample ID: LCS 480-5530/3-A Client Sample ID: LCS 480-5530/3-A **Matrix: Water** Prep Type: Total/NA

Spike LCS LCS % Rec. Added Result Qualifier Unit % Rec Limits

мв мв

Analyte Total Kjeldahl Nitrogen 2.50 2.59 mg/L as N 104 90 - 110

Lab Sample ID: 480-1601-1 MS

Matrix: Water

Analysis Batch: 5655

Analysis Batch: 5655 Prep Batch: 5530 Spike Sample Sample MS MS % Rec. Analyte Result Qualifier Added Result Qualifier Unit % Rec Limits Total Kjeldahl Nitrogen 2.4 1.00 4.03 F mg/L as N 163 72 - 127

Prep Type: Total/NA

Prep Batch: 5530

Prep Batch: 5530

Client Sample ID: AP-EWE-01

Limits

90 - 110

107

Method: 351.2 - Nitrogen, Total Kjeldahl (Continued)

Lab Sample ID: 480-1601-1 DU							Client Sample ID	: AP-E\	NE-01
Matrix: Water							Prep Ty	pe: To	tal/NA
Analysis Batch: 5655							Prep	Batch	: 5530
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Kjeldahl Nitrogen	2.4		2.71		mg/L as N			12	20

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-5392/3 Matrix: Water							Client Sa	mple ID: MB 480 Prep Type: T	
Analysis Batch: 5392	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrite as N	ND	-	0.050	0.020	mg/L			02/12/11 15:39	1
Lab Sample ID: LCS 480-5392/4							Client Sai	mple ID: LCS 480)-5392/4
Matrix: Water								Prep Type: 1	otal/NA
Analysis Batch: 5392									
			Spike	LCS LC	s			% Rec.	

Result Qualifier

1.60

Unit

mg/L

Added

1.50

Method: 410.4 - COD

Analyte

Nitrite as N

Lab Sample ID: MB 480-5582/3 Matrix: Water							C	Client Sa	mple ID: MB 480 Prep Type: T	
Analysis Batch: 5582										
-	MB	MB								
Analyte	Result	Qualifier	RL	. N	IDL Unit	:	D Pr	epared	Analyzed	Dil Fac
Chemical Oxygen Demand	ND		10.0)	5.0 mg/	L			02/15/11 16:48	1
- Lab Sample ID: LCS 480-5582/4							C	lient San	nple ID: LCS 480)- 5582 /4
Matrix: Water									Prep Type: T	otal/NA
Analysis Batch: 5582										
•		5	Spike	LCS	LCS				% Rec.	
Analyte		Α	dded	Result	Qualifie	r Unit	D	% Rec	Limits	
Chemical Oxygen Demand			25.0	25.43		mg/L		102	90 - 110	

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-5584/1-A									Clie	nt Samp	le ID: MB 480-5	584/1-A
Matrix: Water											Prep Type: 1	otal/NA
Analysis Batch: 5700											Prep Bate	ch: 5584
-	MB	MB									-	
Analyte	Result	Qualifier		RL	M	DL Unit		D	Pre	pared	Analyzed	Dil Fac
Phenolics, Total Recoverable	ND			10.0	į	5.0 ug/L		_	02/15	11 15:55	02/16/11 14:46	1
Lab Sample ID: LCS 480-5584/2-A									Clier	ıt Sampl	e ID: LCS 480-5	584/2-A
Matrix: Water											Prep Type: 1	otal/NA
Analysis Batch: 5700											Prep Bate	ch: 5584
			Spike		LCS	LCS					% Rec.	
Analyte			Added		Result	Qualifier	Unit		D	% Rec	Limits	
Phenolics, Total Recoverable			100		98.75		ug/L			99	90 - 110	

Client: Greenstar Environmental Solutions, LLC
Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

Method: 420.4 - Phenolics, Total Recoverable (Continued)

Lab Sample ID: 480-1601-1 DU							Client	Sample	ID: AP-E	WE-01
Matrix: Water								Prep	Type: To	tal/NA
Analysis Batch: 5700								Pr	rep Batch	: 55 84
	Sample	Sample	DU	DU						RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D			RPD	Limit
Phenolics, Total Recoverable	ND		 5.11	J	ug/L				NC	20

Lab Sample ID: MB 480-5405/3 Matrix: Water Analysis Batch: 5405							Client Sa	mple ID: MB 480 Prep Type: T	
Analysis Batom 5455	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.010	0.0050	mg/L			02/12/11 13:30	1
Lab Sample ID: LCS 480-5405/4 Matrix: Water							Client Sar	nple ID: LCS 480 Prep Type: T	

Analysis Batch: 5405							
Spike	LCS	LCS				% Rec.	
Analyte Added	Result	Qualifier	Unit	D	% Rec	Limits	
Cr (VI) 0.0500	0.0530		mg/L	_	106	85 - 115	

Lab Sample ID: 480-1601-1 DU						Cli	ent Sample ID: AP-E	.WE-01
Matrix: Water							Prep Type: To	otal/NA
Analysis Batch: 5518								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
pH	7.67	H	7.690		SU		0.3	5

Lab Sample ID: MB 480-5664/1									Clie	ent Sar	nple ID: MB 48	
Matrix: Water											Prep Type: 1	otal/NA
Analysis Batch: 5664												
_	МВ	MB										
Analyte	Result	Qualifier		RL	М	DL Unit		D	Prepa	ared	Analyzed	Dil Fac
Total Dissolved Solids	ND			10.0	,	4.0 mg/L					02/16/11 10:53	1
Lab Sample ID: LCS 480-5664/2									Clie	nt Sam	ple ID: LCS 48	0-5664/2
Matrix: Water											Prep Type: 1	otal/NA
Analysis Batch: 5664												
			Spike		LCS	LCS					% Rec.	
Analyte			Added		Result	Qualifier	Unit		D 9	% Rec	Limits	
Total Dissolved Solids			500		532.0		mg/L			106	85 - 115	

Quality Control Data

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC TestAmerica Job ID: 480-1601-1

Method: SM 2540D - Solids, Total Suspended (TSS)

MB MB

Lab Sample ID: MB 480-5667/1 Client Sample ID: MB 480-5667/1 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 5667

Analyte Result Qualifier RL **RL** Unit Analyzed Dil Fac Prepared Total Suspended Solids ND 4.0 4.0 mg/L 02/16/11 10:59

Lab Sample ID: LCS 480-5667/2 **Client Sample ID: LCS 480-5667/2** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 5667

Spike LCS LCS % Rec. Added Analyte Result Qualifier Limits Unit % Rec Total Suspended Solids 203 183.2 90 mg/L 88 - 110

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-5399/1 MB Client Sample ID: USB 480-5399/1 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 5399

USB USB Result Qualifier RL Analyte MDL Unit D Prepared Analyzed Dil Fac Biochemical Oxygen Demand 2.0 ND 2.0 mg/L 02/12/11 12:30

Lab Sample ID: LCS 480-5399/2 **Client Sample ID: LCS 480-5399/2** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 5399

Spike LCS LCS % Rec. Analyte Added Result Qualifier Unit Limits % Rec

Biochemical Oxygen Demand 198 182.6 mg/L 92 85 - 115

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC TestAmerica Job ID: 480-1601-1

GC/MS VOA

Analys	is Batc	h: 5428
---------------	---------	---------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batc
480-1601-1	AP-EWE-01	Total/NA	Water	624
480-1601-2	Trip blank	Total/NA	Water	624
LCS 480-5428/4	LCS 480-5428/4	Total/NA	Water	624
MB 480-5428/5	MB 480-5428/5	Total/NA	Water	624

Metals

Prep Batch: 5493

Lab Sa	ample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 48	0-5493/1-A	MB 480-5493/1-A	Total/NA	Water	200.7	
LCS 48	80-5493/2-A	LCS 480-5493/2-A	Total/NA	Water	200.7	
480-16	601-1	AP-EWE-01	Total/NA	Water	200.7	

Prep Batch: 5494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-5494/1-A	MB 480-5494/1-A	Total/NA	Water	200.8	
LCS 480-5494/2-A	LCS 480-5494/2-A	Total/NA	Water	200.8	
480-1601-1	AP-EWE-01	Total/NA	Water	200.8	

Analysis Batch: 5638

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-5493/1-A	MB 480-5493/1-A	Total/NA	Water	200.7 Rev 4.4	5493
LCS 480-5493/2-A	LCS 480-5493/2-A	Total/NA	Water	200.7 Rev 4.4	5493
480-1601-1	AP-EWE-01	Total/NA	Water	200.7 Rev 4.4	5493

Analysis Batch: 5773

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-5494/1-A	MB 480-5494/1-A	Total/NA	Water	200.8	5494
LCS 480-5494/2-A	LCS 480-5494/2-A	Total/NA	Water	200.8	5494
480-1601-1	AP-EWE-01	Total/NA	Water	200.8	5494

General Chemistry

Analysis Batch: 5392

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-5392/3	MB 480-5392/3	Total/NA	Water	353.2	
LCS 480-5392/4	LCS 480-5392/4	Total/NA	Water	353.2	
480-1601-1	AP-EWE-01	Total/NA	Water	353.2	

Analysis Batch: 5399

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
USB 480-5399/1 MB	USB 480-5399/1	Total/NA	Water	SM 5210B	
LCS 480-5399/2	LCS 480-5399/2	Total/NA	Water	SM 5210B	
480-1601-1	AP-EWE-01	Total/NA	Water	SM 5210B	

Analysis Batch: 5400

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-1601-1	AP-EWE-01	Total/NA	Water	SM 4500 O G	

Analysis Batch: 5405

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-5405/3	MB 480-5405/3	Total/NA	Water	7196A	

02/28/2011

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

General Chemistry (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-5405/4	LCS 480-5405/4	Total/NA	Water	7196A	
480-1601-1	AP-EWE-01	Total/NA	Water	7196A	

Analysis Batch: 5470

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-5470/100	LCS 480-5470/100	Total/NA	Water	350.1	
480-1601-1	AP-EWE-01	Total/NA	Water	350.1	
MB 480-5470/99	MB 480-5470/99	Total/NA	Water	350.1	

Analysis Batch: 5518

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-5518/1	LCS 480-5518/1	Total/NA	Water	9040B	
480-1601-1	AP-EWE-01	Total/NA	Water	9040B	
480-1601-1 DU	AP-EWE-01	Total/NA	Water	9040B	

Prep Batch: 5530

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-1601-1	AP-EWE-01	Total/NA	Water	351.2	
480-1601-1 DU	AP-EWE-01	Total/NA	Water	351.2	
480-1601-1 MS	AP-EWE-01	Total/NA	Water	351.2	
MB 480-5530/2-A	MB 480-5530/2-A	Total/NA	Water	351.2	
LCS 480-5530/3-A	LCS 480-5530/3-A	Total/NA	Water	351.2	

Analysis Batch: 5582

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-1601-1	AP-EWE-01	Total/NA	Water	410.4	
MB 480-5582/3	MB 480-5582/3	Total/NA	Water	410.4	
LCS 480-5582/4	LCS 480-5582/4	Total/NA	Water	410.4	

Prep Batch: 5584

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Ba	atch
MB 480-5584/1-A	MB 480-5584/1-A	Total/NA	Water	Distill/Phenol	
LCS 480-5584/2-A	LCS 480-5584/2-A	Total/NA	Water	Distill/Phenol	
480-1601-1	AP-EWE-01	Total/NA	Water	Distill/Phenol	
480-1601-1 DU	AP-EWE-01	Total/NA	Water	Distill/Phenol	

Analysis Batch: 5655

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-1601-1	AP-EWE-01	Total/NA	Water	351.2	5530
480-1601-1 DU	AP-EWE-01	Total/NA	Water	351.2	5530
480-1601-1 MS	AP-EWE-01	Total/NA	Water	351.2	5530
MB 480-5530/2-A	MB 480-5530/2-A	Total/NA	Water	351.2	5530
LCS 480-5530/3-A	LCS 480-5530/3-A	Total/NA	Water	351.2	5530

Analysis Batch: 5664

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-5664/1	MB 480-5664/1	Total/NA	Water	SM 2540C	
480-1601-1	AP-EWE-01	Total/NA	Water	SM 2540C	
LCS 480-5664/2	LCS 480-5664/2	Total/NA	Water	SM 2540C	

3

4

6

8

9

11

13

14

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

General Chemistry (Continued)

Anal	vsis	Batc	h:	566
------	------	------	----	-----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-5667/1	MB 480-5667/1	Total/NA	Water	SM 2540D	
LCS 480-5667/2	LCS 480-5667/2	Total/NA	Water	SM 2540D	
480-1601-1	AP-EWE-01	Total/NA	Water	SM 2540D	

Analysis Batch: 5700

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-1601-1	AP-EWE-01	Total/NA	Water	420.4	5584
480-1601-1 DU	AP-EWE-01	Total/NA	Water	420.4	5584
MB 480-5584/1-A	MB 480-5584/1-A	Total/NA	Water	420.4	5584
LCS 480-5584/2-A	LCS 480-5584/2-A	Total/NA	Water	420.4	5584

Analysis Batch: 5780

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-1601-1	AP-EWE-01	Total/NA	Water	353.2	

1

K

4

7

8

9

10

11

12

14

Lab Chronicle

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

Client Sample ID: AP-EWE-01

Date Collected: 02/12/11 13:00 Date Received: 02/12/11 14:00 Lab Sample ID: 480-1601-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	624	_	1	5428	02/14/11 16:24	TRB	TestAmerica Buffalo
Total/NA	Prep	200.7			5493	02/15/11 08:10	MM	TestAmerica Buffalo
Total/NA	Analysis	200.7 Rev 4.4		1	5638	02/15/11 20:47	MM	TestAmerica Buffalo
Total/NA	Prep	200.8			5494	02/15/11 08:20	MM	TestAmerica Buffalo
Total/NA	Analysis	200.8		1	5773	02/15/11 18:41	DN	TestAmerica Buffalo
Total/NA	Analysis	353.2		1	5392	02/12/11 15:44	RF	TestAmerica Buffalo
Total/NA	Analysis	SM 5210B		1	5399	02/12/11 12:30	AP	TestAmerica Buffalo
Total/NA	Analysis	SM 4500 O G		1	5400	02/13/11 12:05	AP	TestAmerica Buffalo
Total/NA	Analysis	7196A		1	5405	02/12/11 14:30	AP	TestAmerica Buffalo
Total/NA	Analysis	350.1		1	5470	02/14/11 12:27	JE	TestAmerica Buffalo
Total/NA	Analysis	9040B		1	5518	02/14/11 21:27	RL	TestAmerica Buffalo
Total/NA	Analysis	410.4		1	5582	02/15/11 18:11	RL	TestAmerica Buffalo
Total/NA	Prep	351.2			5530	02/15/11 08:40	JM	TestAmerica Buffalo
Total/NA	Analysis	351.2		1	5655	02/16/11 09:57	JM	TestAmerica Buffalo
Total/NA	Analysis	SM 2540C		1	5664	02/16/11 10:53	KP	TestAmerica Buffalo
Total/NA	Analysis	SM 2540D		1	5667	02/16/11 10:59	KP	TestAmerica Buffalo
Total/NA	Prep	Distill/Phenol			5584	02/15/11 15:55	JN	TestAmerica Buffalo
Total/NA	Analysis	420.4		1	5700	02/16/11 15:49	JR	TestAmerica Buffalo
Total/NA	Analysis	353.2		1	5780	02/17/11 11:47	RF	TestAmerica Buffalo

Client Sample ID: Trip blank Date Collected: 02/12/11 00:00

Date Received: 02/12/11 14:00

Lab Sample ID: 480-1601-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	5428	02/14/11 16:50	TRB	TestAmerica Buffalo

Certification Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

Laboratory	Authority	Program	EPA Region	Certification ID	* Expiration Date
TestAmerica Buffalo		USDA		P330-08-00242	11/25/11
TestAmerica Buffalo	Arkansas	State Program	6	88-0686	07/06/11
TestAmerica Buffalo	California	NELAC	9	1169CA	09/30/11
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568	09/30/12
TestAmerica Buffalo	Florida	NELAC	4	E87672	06/30/11
TestAmerica Buffalo	Georgia	Georgia EPD	4	N/A	03/31/11
TestAmerica Buffalo	Georgia	State Program	4	956	04/01/10
TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003	09/30/11
TestAmerica Buffalo	Iowa	State Program	7	374	03/01/11
TestAmerica Buffalo	Kentucky	Kentucky UST	4	30	04/12/12
TestAmerica Buffalo	Kentucky	State Program	4	90029	12/31/11
TestAmerica Buffalo	Louisiana	NELAC	6	02031	06/30/11
TestAmerica Buffalo	Maine	State Program	1	NY0044	12/04/12
TestAmerica Buffalo	Maryland	State Program	3	294	03/31/11
TestAmerica Buffalo	Massachusetts	State Program	1	M-NY044	06/30/11
TestAmerica Buffalo	Michigan	State Program	5	9937	04/01/11
TestAmerica Buffalo	Minnesota	NELAC	5	036-999-337	12/31/11
TestAmerica Buffalo	New Hampshire	NELAC	1	68-00281	11/17/11
TestAmerica Buffalo	New Hampshire	NELAC	1	2337	09/11/11
TestAmerica Buffalo	New Jersey	NELAC	2	NY455	06/30/11
TestAmerica Buffalo	New York	NELAC	2	10026	04/01/11
TestAmerica Buffalo	North Dakota	State Program	8	R-176	03/31/11
TestAmerica Buffalo	Oklahoma	State Program	6	9421	09/30/11
TestAmerica Buffalo	Oregon	NELAC	10	NY200003	06/10/11
TestAmerica Buffalo	Pennsylvania	NELAC	3	68-00281	07/31/11
TestAmerica Buffalo	Tennessee	State Program	4	TN02970	03/31/11
TestAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX	07/31/11
TestAmerica Buffalo	Virginia	State Program	3	278	06/30/11
TestAmerica Buffalo	Washington	State Program	10	C1677	02/10/12
TestAmerica Buffalo	West Virginia	West Virginia DEP	3	252	09/30/11
TestAmerica Buffalo	Wisconsin	State Program	5	998310390	08/31/11

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

4

5

7

9

10

12

13

^{*} Any expired certifications in this list are currently pending renewal and are considered valid.

Method Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
200.7 Rev 4.4	Metals (ICP)	EPA	TAL BUF
200.8	Metals (ICP/MS)	EPA	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
410.4	COD	MCAWW	TAL BUF
420.4	Phenolics, Total Recoverable	MCAWW	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
9040B	pH	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM 4500 O G	Oxygen, Dissolved	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

-

9

10

46

12

14

Sample Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-1601-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-1601-1	AP-EWE-01	Water	02/12/11 13:00	02/12/11 14:00
480-1601-2	Trip blank	Water	02/12/11 00:00	02/12/11 14:00

3

4

5

8

9

10

13

14

Login Sample Receipt Checklist

Client: Greenstar Environmental Solutions, LLC Job Number: 480-1601-1

Login Number: 1601 List Source: TestAmerica Buffalo

List Number: 1 Creator: Rabb, Mike

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	Greenstar
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	True	

TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-9607-1

Client Project/Site: Greenstar Environmental Solutions, LLC

For:

Greenstar Environmental Solutions, LLC 6 Gellatly Drive Wappingers Falls, New York 12590

Attn: Charles E. McLeod, Jr.

Jeggy Gray-Eramann

Authorized for release by: 09/26/2011 12:04:51 PM

Peggy Gray-Erdmann Project Manager II

peggy.gray-erdmann@testamericainc.com

·····LINKS ·······

results through Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com

Results relate only to the items tested and the sample(s) as received by the laboratory. The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 22

09/26/2011

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	14
Lab Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

\wedge
\mathbf{C}

13

Definitions/Glossary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-9607-1

Qualifiers

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Н	Sample was prepped or analyzed beyond the specified holding time

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit (Dioxin)
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or method detection limit if shown)
PQL	Practical Quantitation Limit
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-9607-1

Job ID: 480-9607-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-9607-1

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

Method(s) SM 5210B: For batch 30859 the dilution water D.O. depletion was greater than 0.2 mg/L but less than the reporting limit of 2.0 mg/L.

No other analytical or quality issues were noted.

3

4

6

8

9

10

13

14

Detection Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-EWE-01

TestAmerica Job ID: 480-9607-1

Lab Sample ID: 480-9607-1

Lab Sample ID: 480-9607-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Barium	216		2.0	0.50	ug/L	1	200.7 Rev 4.4	Total/NA
Chromium	1.3	J	4.0	0.87	ug/L	1	200.7 Rev 4.4	Total/NA
Iron	142		50.0	19.3	ug/L	1	200.7 Rev 4.4	Total/NA
Nickel	1.9	J	10.0	1.3	ug/L	1	200.7 Rev 4.4	Total/NA
Selenium	0.89	J	1.0	0.44	ug/L	1	200.8	Total/NA
Total Kjeldahl Nitrogen	0.21		0.20	0.15	mg/L as N	1	351.2	Total/NA
Nitrate as N	0.69		0.050	0.011	mg/L	1	353.2	Total/NA
Chemical Oxygen Demand	8.0	J	10.0	5.0	mg/L	1	410.4	Total/NA
Phenolics, Total Recoverable	6.5	J	10.0	5.0	ug/L	1	420.4	Total/NA
Chromium, hexavalent	9.0	J	10.0	5.0	ug/L	1	7196A	Total/NA
Total Dissolved Solids	531		10.0	4.0	mg/L	1	SM 2540C	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	Method	Prep Type
pH	7.95		0.100	0.100	SU	1	9040B	Total/NA
Total Suspended Solids	22.8		4.0	4.0	mg/L	1	SM 2540D	Total/NA
Oxygen, Dissolved	6.6	Н	0.050	0.050	mg/L	1	SM 4500 O G	Total/NA

Client Sample ID: trip blank

Tent Sample ID. trip blank

No Detections

2

3

4

5

7

11

12

13

14

TestAmerica Job ID: 480-9607-1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Client Sample ID: AP-EWE-01

Date Collected: 09/10/11 09:20 Date Received: 09/10/11 10:07 Lab Sample ID: 480-9607-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/13/11 19:04	1
Trichloroethene	ND		5.0	0.60	ug/L			09/13/11 19:04	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	76		72 - 130			-		09/13/11 19:04	1
4-Bromofluorobenzene (Surr)	88		69 - 121					09/13/11 19:04	1
	112		70 - 123					09/13/11 19:04	1

Method: 200.7 Rev 4.4 - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	216		2.0	0.50	ug/L		09/13/11 08:10	09/13/11 15:37	1
Chromium	1.3	J	4.0	0.87	ug/L		09/13/11 08:10	09/13/11 15:37	1
Copper	ND		10.0	1.5	ug/L		09/13/11 08:10	09/13/11 15:37	1
Iron	142		50.0	19.3	ug/L		09/13/11 08:10	09/13/11 15:37	1
Nickel	1.9	J	10.0	1.3	ug/L		09/13/11 08:10	09/13/11 15:37	1
Zinc	ND		10.0	1.7	ug/L		09/13/11 08:10	09/13/11 15:37	1
_									

Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	0.89	J	1.0	0.44	ug/L		09/13/11 08:30	09/13/11 20:21	1
Thallium	ND		0.20	0.0080	ug/L		09/13/11 08:30	09/13/11 20:21	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N	ND		0.020	0.0090	mg/L as N			09/14/11 13:32	1
Total Kjeldahl Nitrogen	0.21		0.20	0.15	mg/L as N		09/15/11 09:30	09/16/11 11:13	1
Nitrate as N	0.69		0.050	0.011	mg/L			09/10/11 16:50	1
Nitrite as N	ND		0.050	0.020	mg/L			09/10/11 16:21	1
Chemical Oxygen Demand	8.0	J	10.0	5.0	mg/L			09/13/11 12:15	1
Phenolics, Total Recoverable	6.5	J	10.0	5.0	ug/L		09/12/11 18:38	09/13/11 09:50	1
Chromium, hexavalent	9.0	J	10.0	5.0	ug/L			09/10/11 16:43	1
Total Dissolved Solids	531		10.0	4.0	mg/L			09/13/11 22:37	1
Biochemical Oxygen Demand	ND		2.0	2.0	mg/L			09/10/11 10:42	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.95		0.100	0.100	SU			09/10/11 19:46	1
Total Suspended Solids	22.8		4.0	4.0	mg/L			09/12/11 22:33	1
Oxygen, Dissolved	6.6	Н	0.050	0.050	mg/L			09/10/11 19:48	1

Client Sample ID: trip blank

Lab Sample ID: 480-9607-2

Date Collected: 09/10/11 00:00 Matrix: Water Date Received: 09/10/11 10:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/13/11 19:30	1
Trichloroethene	ND		5.0	0.60	ug/L			09/13/11 19:30	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		72 - 130			_		09/13/11 19:30	1
4-Bromofluorobenzene (Surr)	89		69 - 121					09/13/11 19:30	1

Client Sample Results

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC TestAmerica Job ID: 480-9607-1

Client Sample ID: trip blank Lab Sample ID: 480-9607-2

Date Collected: 09/10/11 00:00 Matrix: Water

Date Received: 09/10/11 10:07

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate % Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 110 70 - 123 09/13/11 19:30

Surrogate Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-9607-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_				Percent Su
		12DCE	BFB	TOL
Lab Sample ID	Client Sample ID	(72-130)	(69-121)	(70-123)
480-9607-1	AP-EWE-01	76	88	112
480-9607-2	trip blank	84	89	110
LCS 480-30957/4	Lab Control Sample	111	93	109
MB 480-30957/5	Method Blank	113	96	107

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

3

3

6

7

8

9

11

14

14

TestAmerica Job ID: 480-9607-1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-30957/5

Matrix: Water

Analysis Batch: 30957

Client	Sam	ple	ID:	Met	hod	Bla	nk
		Pre	en 1	Type	: To	tal/N	IA

MB MB RL Analyte MDL Unit Result Qualifier D Prepared Analyzed Dil Fac 5.0 1,1-Dichloroethane ND 0.59 ug/L 09/13/11 11:39 Trichloroethene ND 5.0 09/13/11 11:39 0.60 ug/L

MB MB

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		72 - 130		09/13/11 11:39	1
4-Bromofluorobenzene (Surr)	96		69 - 121		09/13/11 11:39	1
Toluene-d8 (Surr)	107		70 - 123		09/13/11 11:39	1

Lab Sample ID: LCS 480-30957/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

19.1

Matrix: Water

Trichloroethene

Analysis Batch: 30957

LCS LCS % Rec. Spike Added Result Qualifier Unit % Rec Limits 1,1-Dichloroethane 20.0 19.2 ug/L 96 73 - 128

20.0

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	111		72 - 130
4-Bromofluorobenzene (Surr)	93		69 - 121
Toluene-d8 (Surr)	109		70 - 123

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-30907/1-A

Matrix: Water

Analysis Batch: 31166

Client Sample ID: Method Blank

96

67 - 134

Prep Type: Total/NA Prep Batch: 30907

мв мв

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	ND —	2.0	0.50	ug/L		09/13/11 08:10	09/13/11 15:04	1
Chromium	ND	4.0	0.87	ug/L		09/13/11 08:10	09/13/11 15:04	1
Copper	ND	10.0	1.5	ug/L		09/13/11 08:10	09/13/11 15:04	1
Iron	ND	50.0	19.3	ug/L		09/13/11 08:10	09/13/11 15:04	1
Nickel	ND	10.0	1.3	ug/L		09/13/11 08:10	09/13/11 15:04	1
Zinc	ND	10.0	1.7	ug/L		09/13/11 08:10	09/13/11 15:04	1

Lab Sample ID: LCS 480-30907/2-A Client Sample ID: Lab Control Sample

Analysis Batch: 31166

Matrix: Water

Prep Type: Total/NA Prep Batch: 30907

ug/L

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Barium	200	204.8		ug/L		102	85 - 115	
Chromium	200	204.1		ug/L		102	85 - 115	
Copper	200	206.4		ug/L		103	85 - 115	
Iron	10000	10180		ug/L		102	85 - 115	
Nickel	200	203.1		ug/L		102	85 - 115	
Zinc	200	200.4		ug/L		100	85 - 115	

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 480-30915/1-A

Matrix: Water

Analysis Batch: 31205

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 31477

Prep Batch: 30915

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		1.0	0.44	ug/L		09/13/11 08:30	09/13/11 19:00	1
Thallium	ND		0.20	0.0080	ug/L		09/13/11 08:30	09/13/11 19:00	1

Lab Sample ID: LCS 480-30915/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA **Matrix: Water**

Analyte Selenium Thallium

Analysis Batch: 31205

						Prep	Batch: 30	915
Spike	LCS	LCS				% Rec.		
Added	Result	Qualifier	Unit	D	% Rec	Limits		
20.0	20.16		ug/L		101	85 - 115		
20.0	19.39		ug/L		97	85 _ 115		

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-31264/3

Matrix: Water

Analysis Batch: 31264

мв мв

MB MB

MDL Unit Analyte RL Result Qualifier D Dil Fac Prepared Analyzed Ammonia as N 0.020 0.0090 mg/L as N 09/14/11 13:03 ND

Lab Sample ID: LCS 480-31264/4

Matrix: Water

Analysis Batch: 31264

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Ammonia as N	1.00	0.953		mg/L as N	_	95	90 - 110	

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 480-31477/1-A

Matrix: Water

Analysis Batch: 31628

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Kjeldahl Nitrogen	ND ND	0.20	0.15 mg/L as N	_	09/15/11 09:30	09/16/11 09:58	1

Lab Sample ID: LCS 480-31477/2-A

Matrix: Water

Total Kjeldahl Nitrogen

Analyte

Analysis Batch: 31628

			Cli	ent S	Sample I	D: Lab Control Sample
						Prep Type: Total/NA
						Prep Batch: 31477
Spike	LCS	LCS				% Rec.
Added	Result	Qualifier	Unit	D	% Rec	Limits
2.50	2.35		mg/L as N	_	94	90 - 110

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method:	353.2 -	Nitrogen,	Nitrite
---------	---------	-----------	----------------

Lab Sample ID: MB 480-30742/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 30742

MB MB RL MDL Unit Analyte Result Qualifier D Prepared Analyzed Dil Fac 0.050 Nitrite as N ND 0.020 mg/L 09/10/11 16:19

Lab Sample ID: LCS 480-30742/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 30742

LCS LCS Spike % Rec. Analyte Added Result Qualifier % Rec Limits Nitrite as N 1.50 1 41 mg/L 90 - 110

Method: 410.4 - COD

Lab Sample ID: MB 480-31115/51 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 31115

MR MR RL Unit Result Qualifier D Dil Fac Prepared Analyzed 10.0 Chemical Oxygen Demand ND 5.0 mg/L 09/13/11 12:15

Lab Sample ID: LCS 480-31115/52 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 31115

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit D % Rec Limits 25.0 Chemical Oxygen Demand 23 77 mg/L 90 - 110 95

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-30939/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Prep Batch: 30939

Analysis Batch: 31022

MB MB Analyte RI MDL Result Qualifier Unit Prepared Analyzed Dil Fac 10.0 Phenolics, Total Recoverable ND 5.0 ug/L 09/12/11 17:55 09/13/11 07:23

Lab Sample ID: LCS 480-30939/2-A Client Sample ID: Lab Control Sample

Matrix: Water Analysis Batch: 31022

Prep Batch: 30939 LCS LCS % Rec. Spike Added Result Qualifier Unit % Rec

Phenolics, Total Recoverable 100 107.8 ug/L 108 90 - 110

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 480-30748/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 30748

MB MB Result Qualifier MDL Unit D Dil Fac Prepared Analyzed Chromium, hexavalent ND 10.0 5.0 ug/L 09/10/11 16:42

Prep Type: Total/NA

Client Sample ID: AP-EWE-01

Client Sample ID: AP-EWE-01

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: 7196A - Chromium, Hexavalent (Continued)

Lab Sample ID: LCS 480-30748/4

Matrix: Water

Analysis Batch: 30748

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit D % Rec Limits 85 - 115 Chromium, hexavalent 50.0 56.00 ug/L 112

Lab Sample ID: 480-9607-1 MS

Matrix: Water

Analysis Batch: 30748

MS Sample Sample Spike % Rec. Analyte Result Qualifier Added Result Qualifier Unit % Rec Limits Chromium, hexavalent 90 J 50.0 58.00 ug/L 98 85 - 115

Lab Sample ID: 480-9607-1 DU

Matrix: Water

Analysis Batch: 30748

DU DU Sample Sample RPD Result Qualifier Result Qualifier Unit RPD Limit Chromium, hexavalent 9.0 7.00 ug/L 15

Method: 9040B - pH

Lab Sample ID: LCS 480-30877/1

Matrix: Water

Analysis Batch: 30877

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit D % Rec Limits 7.030 SU pН 7 00 100 99 _ 101

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-31116/1

Matrix: Water

Analysis Batch: 31116

MB MB

Analyte RI MDL Result Qualifier Unit D Prepared Analyzed Dil Fac 10.0 Total Dissolved Solids ND 4.0 mg/L 09/13/11 22:30

Lab Sample ID: LCS 480-31116/2

Matrix: Water

Analysis Batch: 31116

LCS LCS % Rec. Spike Analyte Added Result Qualifier Unit % Rec Limits Total Dissolved Solids 501 486.0 mg/L 97 85 - 115

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 480-30902/1

Matrix: Water

Analysis Batch: 30902

MB MB

Result Qualifier RL Unit D Dil Fac Prepared Analyzed Total Suspended Solids ND 4.0 4.0 ma/L 09/12/11 22:18

Prep Type: Total/NA

TestAmerica Job ID: 480-9607-1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Method: SM 2540D - Solids, Total Suspended (TSS) (Continued)

Lab Sample ID: LCS 480-30902/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 30902

LCS LCS Spike % Rec. Analyte Added Limits Result Qualifier Unit % Rec 232 88 - 110 **Total Suspended Solids** 230.8 mg/L 99

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-30859/1 USB Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 30859 USB USB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Biochemical Oxygen Demand ND 2.0 2.0 mg/L 09/10/11 10:42

Lab Sample ID: LCS 480-30859/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 30859

LCS LCS Spike % Rec. Analyte Added Limits Result Qualifier Unit D % Rec 198 86 Biochemical Oxygen Demand 169.6 mg/L 85 - 115

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-9607-1

GC/MS VOA

Anal	ysis	Batc	h: 3	0957
------	------	------	------	------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	624	
480-9607-2	trip blank	Total/NA	Water	624	
LCS 480-30957/4	Lab Control Sample	Total/NA	Water	624	
MB 480-30957/5	Method Blank	Total/NA	Water	624	

Metals

Prep Batch: 30907

١	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-9607-1	AP-EWE-01	Total/NA	Water	200.7	
	LCS 480-30907/2-A	Lab Control Sample	Total/NA	Water	200.7	
	MB 480-30907/1-A	Method Blank	Total/NA	Water	200.7	

Prep Batch: 30915

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	200.8	
LCS 480-30915/2-A	Lab Control Sample	Total/NA	Water	200.8	
MB 480-30915/1-A	Method Blank	Total/NA	Water	200.8	

Analysis Batch: 31166

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	200.7 Rev 4.4	30907
LCS 480-30907/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	30907
MB 480-30907/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	30907

Analysis Batch: 31205

L	_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
4	180-9607-1	AP-EWE-01	Total/NA	Water	200.8	30915
L	_CS 480-30915/2-A	Lab Control Sample	Total/NA	Water	200.8	30915
L	MB 480-30915/1-A	Method Blank	Total/NA	Water	200.8	30915

General Chemistry

Analysis Batch: 30742

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	353.2	
LCS 480-30742/4	Lab Control Sample	Total/NA	Water	353.2	
MB 480-30742/3	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 30748

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	7196A	
480-9607-1 DU	AP-EWE-01	Total/NA	Water	7196A	
480-9607-1 MS	AP-EWE-01	Total/NA	Water	7196A	
LCS 480-30748/4	Lab Control Sample	Total/NA	Water	7196A	
MB 480-30748/3	Method Blank	Total/NA	Water	7196A	

Analysis Batch: 30859

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	SM 5210B	
LCS 480-30859/2	Lab Control Sample	Total/NA	Water	SM 5210B	
USB 480-30859/1 USB	Method Blank	Total/NA	Water	SM 5210B	

FestAmerica Buffalo 09/26/2011

Page 14 of 22

_

3

4

6

7

10

12

13

14

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-9607-1

Canaral Cl	hamiatm. /	Continued)

Anal	ysis	Batc	h:	30	86	3
------	------	------	----	----	----	---

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	SM 4500 O G	

Analysis Batch: 30877

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	9040B	
LCS 480-30877/1	Lab Control Sample	Total/NA	Water	9040B	

Analysis Batch: 30902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	SM 2540D	
LCS 480-30902/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 480-30902/1	Method Blank	Total/NA	Water	SM 2540D	

Prep Batch: 30939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	Distill/Phenol	
LCS 480-30939/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
MB 480-30939/1-A	Method Blank	Total/NA	Water	Distill/Phenol	

Analysis Batch: 31022

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	420.4	30939
LCS 480-30939/2-A	Lab Control Sample	Total/NA	Water	420.4	30939
MB 480-30939/1-A	Method Blank	Total/NA	Water	420.4	30939

Analysis Batch: 31115

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	410.4	
LCS 480-31115/52	Lab Control Sample	Total/NA	Water	410.4	
MB 480-31115/51	Method Blank	Total/NA	Water	410.4	

Analysis Batch: 31116

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	SM 2540C	
LCS 480-31116/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-31116/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 31264

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	350.1	
LCS 480-31264/4	Lab Control Sample	Total/NA	Water	350.1	
MB 480-31264/3	Method Blank	Total/NA	Water	350.1	

Prep Batch: 31477

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	351.2	
LCS 480-31477/2-A	Lab Control Sample	Total/NA	Water	351.2	
MB 480-31477/1-A	Method Blank	Total/NA	Water	351.2	

Analysis Batch: 31628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch				
480-9607-1	AP-EWE-01	Total/NA	Water	351.2	31477				

0

10

12

13

4 6

QC Association Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-9607-1

General Chemistry (Continued)

Analysis Batch: 31628 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-31477/2-A	Lab Control Sample	Total/NA	Water	351.2	31477
MB 480-31477/1-A	Method Blank	Total/NA	Water	351.2	31477

Analysis Batch: 31962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-9607-1	AP-EWE-01	Total/NA	Water	353.2	

2

3

4

Ţ

_

7

4.0

11

13

14

TestAmerica Job ID: 480-9607-1

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

Lab Sample ID: 480-9607-1

Lab Sample ID: 480-9607-2

Matrix: Water

Matrix: Water

Client Sample ID: AP-EWE-01 Date Collected: 09/10/11 09:20

Date Received: 09/10/11 10:07

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	624			30957	09/13/11 19:04	TRB	TAL BUF
Total/NA	Prep	200.7			30907	09/13/11 08:10	JM	TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	31166	09/13/11 15:37	LH	TAL BUF
Total/NA	Prep	200.8			30915	09/13/11 08:30	JM	TAL BUF
Total/NA	Analysis	200.8		1	31205	09/13/11 20:21	JRK	TAL BUF
Total/NA	Analysis	353.2		1	30742	09/10/11 16:21	JR	TAL BUF
Total/NA	Analysis	7196A		1	30748	09/10/11 16:43	KS	TAL BUF
Total/NA	Analysis	SM 5210B		1	30859	09/10/11 10:42	AP	TAL BUF
Total/NA	Analysis	SM 4500 O G		1	30863	09/10/11 19:48	AP	TAL BUF
Total/NA	Analysis	9040B		1	30877	09/10/11 19:46	ES	TAL BUF
Total/NA	Analysis	SM 2540D		1	30902	09/12/11 22:33	KS	TAL BUF
Total/NA	Prep	Distill/Phenol			30939	09/12/11 18:38	KS	TAL BUF
Total/NA	Analysis	420.4		1	31022	09/13/11 09:50	PN	TAL BUF
Total/NA	Analysis	410.4		1	31115	09/13/11 12:15	JS	TAL BUF
Total/NA	Analysis	SM 2540C		1	31116	09/13/11 22:37	KS	TAL BUF
Total/NA	Analysis	350.1		1	31264	09/14/11 13:32	KS	TAL BUF
Total/NA	Prep	351.2			31477	09/15/11 09:30	PN	TAL BUF
Total/NA	Analysis	351.2		1	31628	09/16/11 11:13	JS	TAL BUF
Total/NA	Analysis	353.2		1	31962	09/10/11 16:50	JR	TAL BUF

Client Sample ID: trip blank Date Collected: 09/10/11 00:00

Date Received: 09/10/11 10:07

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab	
Total/NA	Analysis	624		1	30957	09/13/11 19:30	TRB	TAL BUF	

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-9607-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Buffalo	Arkansas	State Program	6	88-0686
estAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	Georgia EPD	4	N/A
TestAmerica Buffalo	Georgia	State Program	4	956
TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica Buffalo	Iowa	State Program	7	374
estAmerica Buffalo	Kansas	NELAC	7	E-10187
estAmerica Buffalo	Kentucky	Kentucky UST	4	30
TestAmerica Buffalo	Kentucky	State Program	4	90029
TestAmerica Buffalo	Louisiana	NELAC	6	02031
TestAmerica Buffalo	Maine	State Program	1	NY0044
estAmerica Buffalo	Maryland	State Program	3	294
estAmerica Buffalo	Massachusetts	State Program	1	M-NY044
estAmerica Buffalo	Michigan	State Program	5	9937
estAmerica Buffalo	Minnesota	NELAC	5	036-999-337
estAmerica Buffalo	New Hampshire	NELAC	1	68-00281
estAmerica Buffalo	New Hampshire	NELAC	1	2337
estAmerica Buffalo	New Jersey	NELAC	2	NY455
estAmerica Buffalo	New York	NELAC	2	10026
estAmerica Buffalo	North Dakota	State Program	8	R-176
estAmerica Buffalo	Oklahoma	State Program	6	9421
estAmerica Buffalo	Oregon	NELAC	10	NY200003
estAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
estAmerica Buffalo	Tennessee	State Program	4	TN02970
estAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
estAmerica Buffalo	USDA	USDA		P330-08-00242
estAmerica Buffalo	Virginia	NELAC Secondary AB	3	460185
estAmerica Buffalo	Virginia	State Program	3	278
estAmerica Buffalo	Washington	State Program	10	C1677
estAmerica Buffalo	West Virginia	West Virginia DEP	3	252
estAmerica Buffalo	Wisconsin	State Program	5	998310390

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

tAmerica Buffalo

Method Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-9607-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
200.7 Rev 4.4	Metals (ICP)	EPA	TAL BUF
200.8	Metals (ICP/MS)	EPA	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
110.4	COD	MCAWW	TAL BUF
20.4	Phenolics, Total Recoverable	MCAWW	TAL BUF
196A	Chromium, Hexavalent	SW846	TAL BUF
0040B	pH	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
M 4500 O G	Oxygen, Dissolved	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4

5

7

0

10

12

13

14

Sample Summary

Client: Greenstar Environmental Solutions, LLC Project/Site: Greenstar Environmental Solutions, LLC

TestAmerica Job ID: 480-9607-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-9607-1	AP-EWE-01	Water	09/10/11 09:20	09/10/11 10:07
480-9607-2	trip blank	Water	09/10/11 00:00	09/10/11 10:07

3

4

_

Я

9

11

12

14

Login Sample Receipt Checklist

Client: Greenstar Environmental Solutions, LLC

Job Number: 480-9607-1

Login Number: 9607
List Source: TestAmerica Buffalo
List Number: 1

Creator: Wienke, Robert

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	Not in contact with samples
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	False	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

5

7

9

11

13

۳

Attachment G

Monthly Operation and Maintenance Details January – December 2011

1. INTRODUCTION

This report presents a summary of the ongoing operation and maintenance activities for the Airco Parcel, Niagara Falls, New York, from 1 January to 31 December 2011. It includes a summary of ongoing operations, system repairs, corrective actions, improvements, and an evaluation of the groundwater collection and treatment system (GCTS) performance.

2. ROUTINE OPERATION AND MAINTENANCE

Comparing the discharge flow rates to the discharge value, the system exceeded the 36,000 gallons per day (gpd) total flow on 27 and 28 December 2011. The system flow rates were adjusted to lower the flow rate to within the specified range. During this report period, the overall system average flow rate was 16.2 gallons per minute (gpm).

Table 2 of the Annual Monitoring Event Letter Report provides a summary of the quarterly effluent analytical data from the February, June, September and October 2011 quarterly GCTS discharge sampling events. Routine operation and maintenance was completed throughout the monitoring period. Field tasks included system checks, data collection, and field analysis of treatment water at various stages of the treatment process, transducer cleanings, and general site maintenance.

3. SYSTEM OPERATIONS AND EFFICIENCY

During this monitoring period, 8,534,220 gal of groundwater were treated and discharged to the stormwater swale adjacent to the engineered wetlands. The system average flow rate was 16.2 gpm during the reporting period. The treatment system was operational for 99.94 percent of the reporting period. The emergency overflow pond (T8) was utilized while the tank and line cleaning was performed during the reporting period, and during response to alarm conditions. The system was temporarily shut off and the T-8 emergency overflow pond utilized during the system cleaning and during the CO₂ tank system failure. No known releases to the environment occurred during the reporting period.

The completed System Monitoring Checklists are provided in Attachment G.1. Monthly GCTS flow calculations are provided in Attachment G.2. During the reporting period, an estimated 1.9 pounds (lb) of total chromium was treated by the GCTS, of which an estimated 1.5 lb was hexavalent chromium. These values are based on the total gallons treated and the average influent and effluent concentrations observed from the monthly field sampling.

3.1 SYNOPSIS OF THE BI-ANNUAL ACTIVITIES

January 2011

The system was operational for all 31 days in January. No alarm conditions were reported during the month of January. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during January:

• 24 January 2011 – Routine site visit. Cleaned and calibrated pH probes in T3B and T6B. Crossover pipes in T3A cleaned to remove calcium deposits. Southwest corner iced over an inaccessible for chromium field measurements. Gauged onsite wells with Mike Hinton from NYSDEC.

February 2011

The system was operational for all 28 days in February. No alarm conditions were reported during the month of February. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during February:

• 12 February 2011 – Routine site visit. Cleaned and calibrated pH probes in T3B and T6B. Crack repaired on suction line for P1-B. Installed shelves in T-1 shed. First quarter effluent sampling completed during visit.

March 2011

The system was operational for all 31 days in March. No alarm conditions were reported during the month of March. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during March:

• 16 March 2011 – Routine site visit. Clean and calibrated all pH probes. Replaced P-6B pump with a rebuilt pump. Tightened camera pole at T-1. First quarter engineers inspection completed during visit.

April 2011

The system was operational for all 30 days in April. No alarm conditions were reported during the month of April. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during April:

• 4 April 2011 – Routine site visit. Cleaned and calibrated all pH probes. Acid injection performed at leachate collection system. Observed the fence on the North side of the property needs repair, clips have come undone. Vault closest to T-1 was hit by snow plow, straightened as well as possible.

May 2011

The system was operational for all 31 days in May. No alarm conditions were reported during the month of May. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during May:

• 16 May 2011 – Routine site visit. Cleaned and calibrated all pH probes. T3A crossover pipes cleaned to remove calcium deposits. Damaged fence on North side of property repaired. Calcium buildup on the end of T3A inlet pipe cleared. Sprayed herbicide around treatment system tanks to reduce weed growth.

June 2011

The system was operational for all 30 days in June. No alarm conditions were reported during the month of June. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during June:

• 16 June 2011 – Routine site visit. Cleaned and calibrated all pH probes. Clean pressure transducer in T8. Vegetation around T7 too long to cut with push mower. Quarterly sampling and Engineers inspection completed during site visit.

July 2011

The system was operational for all 31 days in July. No alarm conditions were reported during the month of July. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during July:

• 8 July 2010 – Routine site visit. Cleaned and calibrated all pH probes.

August 2011

The system was operational for all 31 days in August. No alarm conditions were reported during the month of August. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during August:

• 1 August 2011 – Routine site visit. Clean and calibrate all pH probes.

September 2011

The system was operational for all 30 days in September. No alarm conditions were reported during the month of September. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during September:

• 9 September 2011 – Routine site visit. Clean and calibrate all pH probes. Generator shut down while being repaired. Engineers inspection completed during site visit.

October 2011

The system was operational for 31 days in October. One alarm condition was reported during the month of October. A T7 low and high level condition occurred due to the pressure transmitter shorting out. Mobilization to the site was combined with a routine site visit. No scheduled or unscheduled shut downs. Leachate pumped into the T8 overflow pond during system cleaning. The following details the activities which were performed during October:

• 19 October 2011 – Routine site visit combined with system cleaning and Annual Groundwater Sampling Event. Cleaned and calibrated all pH probes. T3A tanks cleaned. Acid injecting into the leachate collection trench. P6B was determined to be failing and was replaced and sent out to be rebuilt. Replaced pressure transmitters in T7 and T8, which were damaged due the inundation of junction box. Junction box raised to avoid future water damaged. Cracked CO₂ diffuser in first tank of T3A replaced. Repairs made to bad PLC computer. Groundwater samples collected at MW-01B through MW-08B SS-01, SS-02 and SS-03 as part of annual and bi-annual sampling events. Drilling for extraction well initiated as part of the pilot study.

November 2011

The system was operational for 30 days in November. One alarm condition was reported during the month of November. A T6B high level alarm condition was reported. Mobilization to the site was combined with a routine site visit. No scheduled or unscheduled shut downs or system bypasses occurred. The following details the activities which were performed during November:

• 12 November 2011 – Routine site visit. Cleaned and calibrated all pH probes. Cleared organic obstructions from T7 outlet pipe. Field testing indicated elevated chromium concentrations in sample collected at SW corner, Laboratory closed, unable to get confirmatory samples analyzed.

December 2011

The system was operational for 31 days in December. No alarm conditions were reported during the month of December. No scheduled or unscheduled shut downs. Leachate pumped to the T8 pond while replacing P3B pump. The following details the activities which were performed during December:

- 2 December 2011 Mobilization for emergency response to P3B pump. Pump rate at P3B decreased. Pump replaced with new pump. Monthly inspection performed while onsite. Cleaned and calibrated all pH probes. Replaced check valve in T6B. Elevated concentrations of chromium indicated in field testing of water sample from SW corner. Confirmatory samples sent to laboratory; and results came back nondetect for hex chrome.
- 5 December 2011 Environmental contractor mobilized for pilot study upgrades. Submersible pump installed in extraction well, new PLC installed at extraction well, effluent line from extraction well tied into the treatment system.

4. MODIFICATIONS/IMPROVEMENTS AND RECOMMENDATIONS

4.1 SYSTEM MODIFICATION/IMPROVEMENTS

In December 2011, modifications to the GCTS outlined in a Proposal for Data Collection for Alternate Remedial Strategy dated 11 October 2011 were completed. As part of the proposal, one extraction well was installed through the landfill into weathered bedrock and fitted with a 4-in. diameter variable speed submersible pump capable of yielding at least 10 gpm. This installation is part of a pilot study to evaluate whether dewatering the upper portion of bedrock can prevent leachate generation. The extraction well was installed through the low permeability cap and geosynthetic liner which was repaired and sealed after the installation was complete to prevent precipitation from entering the waste above. The discharge line for extraction well EW-1 was connected to the existing piping network for groundwater to be pumped to the GCTS. To allow this pump to run throughout the year the new extraction well was tied into the existing control system. Permanent piping, wiring and pump controls were run to the EW-1 location.

Electrical wiring was run in the existing buried conduits that supply power to the T-1 shed. Power for the submersible pump was run from the T-1 shed to a new NEMA 3R control panel that was mounted on the exterior of a small (3 ft by 3 ft) concrete vault. The vault was installed to cover the well head to permit winter operation. A control panel was constructed to contain a Modicon PLC which is linked to the existing Modicon control system via an Ethernet radio, consistent with the existing radio network utilized at the site. A variable frequency drive (VFD) used to control the pump was mounted in the wellhead control panel, along with a small heater to keep control systems at operating temperature during the winter. The VFD will be used in conjunction with a pressure transducer placed in EW-1 to maintain a constant head drawdown within the well. A connection was made in the existing line running from the T1 shed to the T3 settling tanks to convey the extracted water from EW-1 to the treatment system, and the line was re-buried. The 2-in. line from the new extraction well was connected to the 3-inch force main prior to it entering the T-8 valve control shed.

The following site maintenance activities were performed to address deficiencies noted during the engineering inspections:

- The stick-up casings of piezometers installed as part of the pilot study were painted with safety blue paint and reflective markers added.
- Stored flocculent at the site is no longer needed, and was properly disposed.
- Area around T-7 reseeded, and vegetation established.
- Dam built around T-7 pipe of course gravel, to prevent organic matter from clogging outfall pipe.
- Mowing of landfill cap completed.

5. PROJECTED OPERATION AND MAINTENACE

5.1 JANUARY – DECEMBER 2012

During the 2012 annual reporting period, Greenstar anticipates performing routine operation and maintenance activities. Routine activities during the reporting period will include routine cleaning and calibration, pump replacements, and other activities as required. Emergency response to alarm conditions will be responded to as required.

6. SYSTEM MONITORING

6.1 ENVIRONMENTAL SAMPLING

Routine system sampling with field analysis will continue on an as needed basis to ensure chromium removal efficiency is maintained and no short circuiting is occurring in the zero valence iron beds. Quarterly discharge samples are anticipated to be collected in March, June, September, and December 2012 from the GCTS to monitor the NYSDEC discharge permit guidelines. The annual groundwater monitoring event is anticipated to occur in September 2012. Monthly effluent samples from the EW-1 will be collected as part of the data collection required to evaluate potential remediation alternatives for the site.

Attachment G.1

Airco Parcel Monthly System Monitoring Checklists January – December 2011

Date: 1/24/11	Project No.: 1046	Greenstar Personnel: Bruce Vinal
Weather: Overcast 1	0 degrees	
R	READING	ITEM
	235	Carbon Dioxide Storage Tank Pressure (220-235 psi)
	5,900	Carbon Dioxide Tank Liquid Level
	3.4	T1 Water Level
AUT	O/CYCLING	Pump P1A Running Status ON/OFF
AUT	O/CYCLING	Pump P1BA Running Status ON/OFF
	616.2	T3A Water Elevation
	6.4	T3B pH Reading
	613.3	T3B Water Level
AUT	O/CYCLING	Pump 3B Operational Status ON/OFF
	612.5	T5 Water Level
AUT	O/CYCLING	Pump 5 Operational Status ON/OFF
	616.1	T6A Water Elevation
	6.5	Т6В рН
	613.8	T6B Water Level
AUT	O/CYCLING	Pump 6B Operational Status ON/OFF
	615.5	T7 Water Level Reading
	6.6	T7 pH
	3.5	T8 Water Elevation
3	1,403,154	Flow Meter Reading
	18.2	Average System Flow
	35.9	Generator Run Hours
READING	Standard	LOCATION/PARAMETER
0.001	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium
0.125	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium
ND	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium
0.012	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium
ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium
0.018	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium
N/A	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium
N/A	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium
pH	READING	SAMPLE LOCATION
	6.16	Calcium Settling Pond Effluent (T3)
	6.40	Iron Settling Pond Effluent (T6)
	6.54	Engineered Wetland Effluent (T7)
	N/A	Southwest Corner Effluent (SS-1)
Notes: Clean and cali	ibrated all nH probes Clear	ned crossover pines in T-3A. SW Corner inaccessible to sample.

Notes: Clean and calibrated all pH probes. Cleaned crossover pipes in T-3A. SW Corner inaccessible to sample. Gauged wells in surrounding area with Mike Hinton.

	Project No.: 1046	Greenstar Personnel: Bruce Vinal
eather: Sun 30 Deg		TEM
K	EADING	ITEM
	235	Carbon Dioxide Storage Tank Pressure (220-235 psi)
	8,100	Carbon Dioxide Tank Liquid Level
	2.8	T1 Water Level
	D/CYCLING	Pump P1A Running Status ON/OFF
AUTO	D/CYCLING	Pump P1BA Running Status ON/OFF
	616.2	T3A Water Elevation
	6.3	T3B pH Reading
	613.6	T3B Water Level
AUTO	O/CYCLING	Pump 3B Operational Status ON/OFF
	611.0	T5 Water Level
AUTO	D/CYCLING	Pump 5 Operational Status ON/OFF
	616.2	T6A Water Elevation
	6.5	Т6В рН
	613.0	T6B Water Level
AUTO	D/CYCLING	Pump 6B Operational Status ON/OFF
	615.6	T7 Water Level Reading
	6.6	Т7 рН
	3.3	T8 Water Elevation
31	,915,704	Flow Meter Reading
	17.1	Average System Flow
	36.4	Generator Run Hours
READING	Standard	LOCATION/PARAMETER
0.029	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiu
0.018	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium
0.008	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium
0.061	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium
ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium
0.042	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium
0.066	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium
0.012	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium
pH	READING	SAMPLE LOCATION
	6.32	Calcium Settling Pond Effluent (T3)
	6.45	Iron Settling Pond Effluent (T6)
	6.54	Engineered Wetland Effluent (T7)
	6.98	Southwest Corner Effluent (SS-1)

Completed quarterly discharge sampling at SW corner.

Date: 3/16/11		Greenstar Personnel: Bruce Vinal	
Weather: Sun 40 de	grees		
READING		ITEM	
	234	Carbon Dioxide Storage Tank Pressure (220-235 psi)	
	7,000	Carbon Dioxide Tank Liquid Level	
	3.2	T1 Water Level	
AU	ΓO/CYCLING	Pump P1A Running Status ON/OFF	
AU	ΓO/CYCLING	Pump P1BA Running Status ON/OFF	
	616.2	T3A Water Elevation	
	6.2	T3B pH Reading	
	614.3	T3B Water Level	
AU	ΓO/CYCLING	Pump 3B Operational Status ON/OFF	
	612.3	T5 Water Level	
AU'	ΓO/CYCLING	Pump 5 Operational Status ON/OFF	
	616.1	T6A Water Elevation	
	6.3	Т6В рН	
	614.1	T6B Water Level	
AU	ΓO/CYCLING	Pump 6B Operational Status ON/OFF	
	615.5	T7 Water Level Reading	
	6.6	Т7 рН	
	2.0	T8 Water Elevation	
	32,552,542	Flow Meter Reading	
	18.7	Average System Flow	
	37.2	Generator Run Hours	
READING	Standard	LOCATION/PARAMETER	
0.075	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium	
0.084	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium	
0.021	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium	
0.001	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium	
ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium	
0.001	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium	
0.010	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium	
0.019	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium	
pì	H READING	SAMPLE LOCATION	
	6.23	Calcium Settling Pond Effluent (T3)	
	6.33	Iron Settling Pond Effluent (T6)	
	6.75	Engineered Wetland Effluent (T7)	
7.55		Southwest Corner Effluent (SS-1)	

Notes: Cleaned and calibrated all pH probes. Completed Q1 engineering inspections. Replace P-6B pump with a rebuilt pump. Cleaned T-1 shed to remove dead mice and associated stench. Tightened camera pole at T-1.

Date: 4/12/11	Project No.: 1046	Greenstar Personnel: Bruce Vinal
Weather: Sun 50 Deg	grees	
I	READING	ITEM
	235	Carbon Dioxide Storage Tank Pressure (220-235 psi)
	7800	Carbon Dioxide Tank Liquid Level
	2.8	T1 Water Level
AUT	O/CYCLING	Pump P1A Running Status ON/OFF
AUT	O/CYCLING	Pump P1BA Running Status ON/OFF
	616.2	T3A Water Elevation
	6.3	T3B pH Reading
	613.4	T3B Water Level
AUT	O/CYCLING	Pump 3B Operational Status ON/OFF
	611.4	T5 Water Level
AUT	O/CYCLING	Pump 5 Operational Status ON/OFF
	616.2	T6A Water Elevation
	6.5	Т6В рН
	613.7	T6B Water Level
AUT	O/CYCLING	Pump 6B Operational Status ON/OFF
	615.5	T7 Water Level Reading
	6.7	T7 pH
	1.9	T8 Water Elevation
3	3,330,752	Flow Meter Reading
	18.6	Average System Flow
	38.1	Generator Run Hours
READING	Standard	LOCATION/PARAMETER
0.029	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium
0.164	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium
0.073	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium
0.004	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium
ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium
0.056	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium
0.008	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium
0.044	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium
pН	READING	SAMPLE LOCATION
	6.34	Calcium Settling Pond Effluent (T3)
	6.38	Iron Settling Pond Effluent (T6)
	6.77	Engineered Wetland Effluent (T7)
	6.96	Southwest Corner Effluent (SS-1)

Notes: Replace pH Probe in T-3B. Cleaned and calibrated remaining PH Probes. Fence to the North needs repair (clips came undone). Acid injected into leachate collection trench. Vault closest to T-1 was hit by snow plow, may be able to straighten.

ate: 5/16/11 Project No.: 1046 Greenstar Personnel: Bruce Vinal Veather: Rain 40 degrees		
	READING	ITEM
	234	Carbon Dioxide Storage Tank Pressure (220-235 psi)
	11,200	Carbon Dioxide Tank Liquid Level
	3.2	T1 Water Level
AU	TO/CYCLING	Pump P1A Running Status ON/OFF
	TO/CYCLING	Pump P1BA Running Status ON/OFF
	616.2	T3A Water Elevation
	6.2	T3B pH Reading
	613.8	T3B Water Level
AU	TO/CYCLING	Pump 3B Operational Status ON/OFF
	611.8	T5 Water Level
AU'	TO/CYCLING	Pump 5 Operational Status ON/OFF
	616.3	T6A Water Elevation
	6.3	Т6В рН
	613.3	T6B Water Level
AU'	TO/CYCLING	Pump 6B Operational Status ON/OFF
	615.5	T7 Water Level Reading
	6.6	Т7 рН
	2.2	T8 Water Elevation
	34,267,796	Flow Meter Reading
	12.1	Average System Flow
	39.0	Generator Run Hours
READING	Standard	LOCATION/PARAMETER
0.105	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiur
0.091	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium
0.051	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium
0.002	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium
ND	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium
ND	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium
0.008	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium
0.020	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium
p _i	H READING	SAMPLE LOCATION
	6.20	Calcium Settling Pond Effluent (T3)
	6.31	Iron Settling Pond Effluent (T6)
6.81		Engineered Wetland Effluent (T7)
7.15		Southwest Corner Effluent (SS-1)

Date: 6/16/11 Project No.: 1046 Greenstar Personnel: Bruce Vinal				
Weather: Sun 90 deg	EADING	ITEM		
A	232	Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	3,800	Carbon Dioxide Tank Liquid Level		
A I ITT	2.6 O/CYCLING	T1 Water Level		
	O/CYCLING O/CYCLING	Pump P1A Running Status ON/OFF		
AUT		Pump P1BA Running Status ON/OFF		
	616.2	T3A Water Elevation		
		T3B pH Reading		
A T TODA	613.0	T3B Water Level		
AUT	O/CYCLING	Pump 3B Operational Status ON/OFF		
A T TODA	612.8	T5 Water Level		
AUT	O/CYCLING	Pump 5 Operational Status ON/OFF		
	616.2	T6A Water Elevation		
	6.4	T6B pH		
A T TODA	614.3	T6B Water Level		
AUT	O/CYCLING	Pump 6B Operational Status ON/OFF		
	615.6	T7 Water Level Reading		
	6.3	T7 pH		
24	1.4	T8 Water Elevation		
3:	5,122,635	Flow Meter Reading		
	19.1	Average System Flow		
	40.1	Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
0.073	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium		
0.080	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
ND	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.004	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.002	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.006	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.009	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.020	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
pH READING		SAMPLE LOCATION		
6.05		Calcium Settling Pond Effluent (T3)		
	6.34	Iron Settling Pond Effluent (T6)		
	6.56	Engineered Wetland Effluent (T7)		
	6.82	Southwest Corner Effluent (SS-1)		

Notes: Cleaned and calibrated all pH probes. Cleaned T-8 pressure transducer. Vegetation around T-7 to overgrown to cut with push mower. Biannual surface water sampling completed. Engineering inspection of landfill cap completed.

ate: 8/1/11	Project No.: 1046	Greenstar Personnel: Bruce Vinal		
Veather: Sun 80	READING	ITEM		
	229	Carbon Dioxide Storage Tank Pressure (220-235 psi)		
	6700	Carbon Dioxide Tank Liquid Level T1 Water Level		
Α.	3.4			
	UTO/CYCLING	Pump P1A Running Status ON/OFF		
A	UTO/CYCLING	Pump P1BA Running Status ON/OFF T3A Water Elevation		
	616.1			
	6.2	T3B pH Reading T3B Water Level		
	613.5			
A	UTO/CYCLING	Pump 3B Operational Status ON/OFF		
	612.9	T5 Water Level		
A	UTO/CYCLING	Pump 5 Operational Status ON/OFF		
	616.2	T6A Water Elevation		
	6.5	T6B pH		
	614.0	T6B Water Level		
A	UTO/CYCLING	Pump 6B Operational Status ON/OFF		
	615.5	T7 Water Level Reading		
	6.3	T7 pH		
	1.0	T8 Water Elevation		
	36,265,304	Flow Meter Reading Average System Flow		
	15.8			
		Generator Run Hours		
READING	Standard	LOCATION/PARAMETER		
0.007	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiun		
0.017	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
0.008	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.032	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.002	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.006	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.009	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.021	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
	pH READING	SAMPLE LOCATION		
6.24		Calcium Settling Pond Effluent (T3)		
6.30		Iron Settling Pond Effluent (T6)		
	6.39	Engineered Wetland Effluent (T7)		
·	7.27	Southwest Corner Effluent (SS-1)		

e: 9/11/11 ather: Sun 80 degr	Project No.: 1046	Greenstar Personnel: Bruce Vinal	
	EADING	ITEM	
	231	Carbon Dioxide Storage Tank Pressure (220-235 psi)	
	4.100	Carbon Dioxide Tank Liquid Level	
	3.2	T1 Water Level	
AUTO	D/CYCLING	Pump P1A Running Status ON/OFF	
	D/CYCLING	Pump P1BA Running Status ON/OFF	
11010	616.2	T3A Water Elevation	
	6.1	T3B pH Reading	
	614.1	T3B Water Level	
AUTO	D/CYCLING	Pump 3B Operational Status ON/OFF	
	612.9	T5 Water Level	
AUTO	D/CYCLING	Pump 5 Operational Status ON/OFF	
	616.2	T6A Water Elevation	
	6.5	Т6В рН	
	613.3	T6B Water Level	
AUTO	D/CYCLING	Pump 6B Operational Status ON/OFF	
	615.6	T7 Water Level Reading	
	6.4	T7 pH	
1.3		T8 Water Elevation	
37,014,944		Flow Meter Reading	
	8.9	Average System Flow	
	42	Generator Run Hours	
READING	Standard	LOCATION/PARAMETER	
0.091	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromiu	
0.100	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium	
0.082	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium	
0.079	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium	
0.001	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium	
0.058	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium	
0.009	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium	
0.059	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium	
pH .	READING	SAMPLE LOCATION	
	6.02	Calcium Settling Pond Effluent (T3)	
	6.27	Iron Settling Pond Effluent (T6)	
	6.77	Engineered Wetland Effluent (T7)	
	7.27	Southwest Corner Effluent (SS-1)	

Airco Parcel, Niagara Falls, New York

Engineering Inspection of landfill cap completed.

Weather: Cloudy, 50 degrees, windy READING ITEM 233 Carbon Dioxide Storage Tank Pressure (220-235 psi) 6,831 Carbon Dioxide Tank Liquid Level 598.6 (Switched to Feet msl) T1 Water Level AUTO/CYCLING Pump P1A Running Status ON/OFF 616.3 T3A Water Elevation 6.4 T3B pH Reading 612.8 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 613.4 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.2 T6A Water Elevation 63.3 T6B pH 613.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.0 T7 Water Level Reading AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.0 T7 Water Level Reading AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.0 T7 Water Level Reading 6.7 T7 PH 1.3 T8 Water Elevation 37,544,016 Flow Meter Reading	Date: 10/19/11	Project No.: 1046	Greenstar Personnel: Chip McLeod/Nate Maier		
Carbon Dioxide Storage Tank Pressure (220-235 psi)	Weather: Cloudy, 50	0 degrees, windy			
Carbon Dioxide Tank Liquid Level		READING	ITEM		
T1 Water Level		233	Carbon Dioxide Storage Tank Pressure (220-235 psi)		
AUTO/CYCLING		6,831	Carbon Dioxide Tank Liquid Level		
AUTO/CYCLING	598.6 (Sv	vitched to Feet msl)	T1 Water Level		
616.3 T3A Water Elevation	AUT	ΓO/CYCLING	Pump P1A Running Status ON/OFF		
6.4 T3B pH Reading 612.8 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 613.4 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.2 T6A Water Elevation 6.3 T6B pH 613.7 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.0 T7 Water Level Reading 6.7 T7 pH 1.3 T8 Water Elevation 37,544,016 Flow Meter Reading 10 Average System Flow 42 Generator Run Hours READING Standard LOCATION/PARAMETER 0.117 mg/l 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.092 mg/l 0.050 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium 0.056 mg/l 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.072 mg/l 0.050 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.078 mg/l 0.011 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.078 mg/l 0.050 mg/L Southwest Corner Effluent (T3) 10 SAMPLE LOCATION 6.25 Engineered Wetland Effluent (T6) 10 Sample Effluent (T7) 11 Southwest Corner Effluent (T3) 12 Sauthwest Corner Effluent (T3) 13 Sauthwest Corner Effluent (T3) 14 Sauthwest Corner Effluent (T3) 15 Sauthwest Corner Effluent (T3) 16 Sauthwest Corner Effluent (T3) 17 Sauthwest Corner Effluent (T3) 18 Sauthwest Corner Effluent (T3) 19 Sauthwest Corner Effluent (T3) 10 Sauthwest Corner Effluent (T3) 10 Sauthwest Corner Effluent (T3) 11 Sauthwest Corner Effluent (T3) 12 Sauthwest Corner Effluent (T3) 13 Sauthwest Corner Effluent (T3) 14 Sauthwest Corner Effluent (T3) 15 Sauthwest Corner Effluent (T3) 16 Sauthwest Corner Effluent (T3) 16 Sauthwest Corner Effluent (T3) 17 Sauthwest Corner Effluent (T3) 18 Sauthwest Corner Effluent (T3) 18 Sauthwest Corner Effluent (T3) 18 Sauthwest Corner Effluent (T3) 18 Sauthwest Corner Effluent (T3) 18 Sauthwest Cor	AUT	ΓO/CYCLING	Pump P1BA Running Status ON/OFF		
AUTO/CYCLING		616.3	T3A Water Elevation		
AUTO/CYCLING		6.4	T3B pH Reading		
AUTO/CYCLING		612.8	T3B Water Level		
AUTO/CYCLING	AUT	ΓO/CYCLING	Pump 3B Operational Status ON/OFF		
T6A Water Elevation		613.4	T5 Water Level		
AUTO/CYCLING	AUT	ΓO/CYCLING	Pump 5 Operational Status ON/OFF		
AUTO/CYCLING		616.2	T6A Water Elevation		
AUTO/CYCLING		6.3	Т6В рН		
T7 Water Level Reading		613.7	T6B Water Level		
1.3 T8 Water Elevation	AUT	ΓO/CYCLING	Pump 6B Operational Status ON/OFF		
1.3 T8 Water Elevation 37,544,016 Flow Meter Reading 10 Average System Flow 42 Generator Run Hours READING Standard LOCATION/PARAMETER 0.117 mg/l 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.092 mg/l 0.050 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium 0.041 mg/l 0.050 mg/L Iron Settling Pond Effluent (T7) Total Chromium 0.056 mg/l 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.072 mg/l 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.072 mg/l 0.050 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.078 mg/l 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.078 mg/l 0.050 mg/L Engineered Wetland Effluent (T7) Southwest Corner Effluent (SS-1) Total Chromium 0.078 mg/l 0.050 mg/L Engineered Wetland Effluent (T3) Engineered Wetland Effluent (T6) Engineered Wetland Effluent (T7)		616.0	T7 Water Level Reading		
37,544,016 Flow Meter Reading 10		6.7	T7 pH		
Average System Flow Generator Run Hours		1.3	T8 Water Elevation		
A2 Generator Run Hours	3	37,544,016	Flow Meter Reading		
READINGStandardLOCATION/PARAMETER0.117 mg/l0.011 mg/LCalcium Settling Pond Effluent (T3) Hexavalent Chromium0.092 mg/l0.050 mg/LCalcium Settling Pond Effluent (T6) Hexavalent Chromium0.053 mg/l0.011 mg/LIron Settling Pond Effluent (T6) Hexavalent Chromium0.041 mg/l0.050 mg/LIron Settling Pond Effluent (T6) Total Chromium0.056 mg/l0.011 mg/LEngineered Wetland Effluent (T7) Hexavalent Chromium0.072 mg/l0.050 mg/LEngineered Wetland Effluent (SS-1) Hexavalent Chromium0.016 mg/l0.011 mg/LSouthwest Corner Effluent (SS-1) Hexavalent Chromium0.078 mg/lSouthwest Corner Effluent (SS-1) Total ChromiumpH READINGSAMPLE LOCATION6.27Calcium Settling Pond Effluent (T3)6.25Iron Settling Pond Effluent (T6)Engineered Wetland Effluent (T7)		10	Average System Flow		
0.117 mg/l0.011 mg/LCalcium Settling Pond Effluent (T3) Hexavalent Chromium0.092 mg/l0.050 mg/LCalcium Settling Pond Effluent (T3) Total Chromium0.053 mg/l0.011 mg/LIron Settling Pond Effluent (T6) Hexavalent Chromium0.041 mg/l0.050 mg/LIron Settling Pond Effluent (T6) Total Chromium0.056 mg/l0.011 mg/LEngineered Wetland Effluent (T7) Hexavalent Chromium0.072 mg/l0.050 mg/LEngineered Wetland Effluent (SS-1) Hexavalent Chromium0.016 mg/l0.011 mg/LSouthwest Corner Effluent (SS-1) Hexavalent Chromium0.078 mg/l0.050 mg/LSouthwest Corner Effluent (SS-1) Total ChromiumPH READING6.27Calcium Settling Pond Effluent (T3)6.25Iron Settling Pond Effluent (T6)Engineered Wetland Effluent (T6)		42	Generator Run Hours		
0.092 mg/l0.050 mg/LCalcium Settling Pond Effluent (T3) Total Chromium0.053 mg/l0.011 mg/LIron Settling Pond Effluent (T6) Hexavalent Chromium0.041 mg/l0.050 mg/LIron Settling Pond Effluent (T6) Total Chromium0.056 mg/l0.011 mg/LEngineered Wetland Effluent (T7) Hexavalent Chromium0.072 mg/l0.050 mg/LEngineered Wetland Effluent (T7) Total Chromium0.016 mg/l0.011 mg/LSouthwest Corner Effluent (SS-1) Hexavalent Chromium0.078 mg/lSouthwest Corner Effluent (SS-1) Total ChromiumPH READING6.27Calcium Settling Pond Effluent (T3)6.25Iron Settling Pond Effluent (T6)Engineered Wetland Effluent (T6)Engineered Wetland Effluent (T7)	READING	Standard	LOCATION/PARAMETER		
0.053 mg/l 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium 0.041 mg/l 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium 0.056 mg/l 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.072 mg/l 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.016 mg/l 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.078 mg/l 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING 6.27 Calcium Settling Pond Effluent (T3) 6.25 Iron Settling Pond Effluent (T6) 6.25 Engineered Wetland Effluent (T7)	0.117 mg/l	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium		
0.041 mg/l 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium 0.056 mg/l 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.072 mg/l 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.016 mg/l 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.078 mg/l 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING 6.27 Calcium Settling Pond Effluent (T3) 6.25 Iron Settling Pond Effluent (T6) 6.52 Engineered Wetland Effluent (T7)	0.092 mg/l	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
0.056 mg/l 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.072 mg/l 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.016 mg/l 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.078 mg/l 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING 6.27 Calcium Settling Pond Effluent (T3) 6.25 Iron Settling Pond Effluent (T6) 6.52 Engineered Wetland Effluent (T7)	0.053 mg/l	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.072 mg/l 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.016 mg/l 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.078 mg/l 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING 6.27 Calcium Settling Pond Effluent (T3) 6.25 Iron Settling Pond Effluent (T6) 6.52 Engineered Wetland Effluent (T7)	0.041 mg/l	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium		
0.016 mg/l 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.078 mg/l 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING 6.27 Calcium Settling Pond Effluent (T3) 6.25 Iron Settling Pond Effluent (T6) 6.52 Engineered Wetland Effluent (T7)	0.056 mg/l	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.078 mg/l 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium pH READING SAMPLE LOCATION 6.27 Calcium Settling Pond Effluent (T3) 6.25 Iron Settling Pond Effluent (T6) 6.52 Engineered Wetland Effluent (T7)	0.072 mg/l	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
pH READINGSAMPLE LOCATION6.27Calcium Settling Pond Effluent (T3)6.25Iron Settling Pond Effluent (T6)6.52Engineered Wetland Effluent (T7)	0.016 mg/l	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
6.27 Calcium Settling Pond Effluent (T3) 6.25 Iron Settling Pond Effluent (T6) 6.52 Engineered Wetland Effluent (T7)	0.078 mg/l	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
6.25 Iron Settling Pond Effluent (T6) 6.52 Engineered Wetland Effluent (T7)	рI	H READING	SAMPLE LOCATION		
6.52 Engineered Wetland Effluent (T7)		6.27	Calcium Settling Pond Effluent (T3)		
		6.25	Iron Settling Pond Effluent (T6)		
6.90 Southwest Corner Effluent (SS-1)		6.52	Engineered Wetland Effluent (T7)		
		6.90	Southwest Corner Effluent (SS-1)		

Notes: System cleaning of tanks and lines. Acid injection of collection trench. Replaced P6 and sent out pump to be rebuilt. Replaced pressure transmitters in T7 and T8 and raised the junction box to avoid future water damage. Repairs to PLC and CO2 diffusers. Cleaned and Calibrated pH probes. Started drilling for EW for pump test.

READING	Date: 11/12/11					
Carbon Dioxide Storage Tank Pressure (220-235 psi)	Weather:					
Carbon Dioxide Tank Liquid Level 598.7		READING	ITEM			
S98.7		232	Carbon Dioxide Storage Tank Pressure (220-235 psi)			
AUTO/CYCLING 55 gpm		6,800	Carbon Dioxide Tank Liquid Level			
AUTO/CYCLING 54 gpm		598.7	T1 Water Level			
T3A Water Elevation	AUTO/0	CYCLING 55 gpm	Pump P1A Running Status ON/OFF			
6.6 T3B pH Reading	AUTO/0	CYCLING 54 gpm	Pump P1BA Running Status ON/OFF			
AUTO/CYCLING		616.2	T3A Water Elevation			
AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.4 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 616.3 T6A Water Elevation 6.7 T6B pH 613.4 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.0 T7 Water Level Reading 6.8 T7 pH 2.0 T8 Water Elevation 38,010,860 Flow Meter Reading 15.4 Average System Flow 42.8 Generator Run Hours READING Standard LOCATION/PARAMETER 0.107 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.128 0.050 mg/L Calcium Settling Pond Effluent (T6) Hexavalent Chromium 0.005 0.050 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium 0.077 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.064 0.050 mg/L Engineered Wetland Effluent (SS-1) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.064		6.6	T3B pH Reading			
AUTO/CYCLING		613.2	T3B Water Level			
AUTO/CYCLING	AU	ΓO/CYCLING	Pump 3B Operational Status ON/OFF			
T6A Water Elevation		612.4	T5 Water Level			
AUTO/CYCLING	AU	ΓO/CYCLING	Pump 5 Operational Status ON/OFF			
AUTO/CYCLING		616.3	T6A Water Elevation			
AUTO/CYCLING		6.7	Т6В рН			
T7 Water Level Reading		613.4	T6B Water Level			
6.8 T7 pH 2.0 T8 Water Elevation 38,010,860 Flow Meter Reading 15.4 Average System Flow 42.8 Generator Run Hours READING Standard LOCATION/PARAMETER 0.107 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.128 0.050 mg/L Calcium Settling Pond Effluent (T3) Total Chromium 0.014 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium 0.005 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium 0.077 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.656 Iron Settling Pond Effluent (T6) 6.56 Iron Settling Pond Effluent (T6)	AUT	ΓO/CYCLING	Pump 6B Operational Status ON/OFF			
2.0 T8 Water Elevation 38,010,860 Flow Meter Reading 15.4 Average System Flow 42.8 Generator Run Hours READING Standard LOCATION/PARAMETER 0.107 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.128 0.050 mg/L Calcium Settling Pond Effluent (T6) Hexavalent Chromium 0.014 0.011 mg/L Iron Settling Pond Effluent (T6) Total Chromium 0.005 0.050 mg/L Iron Settling Pond Effluent (T7) Hexavalent Chromium 0.077 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING SAMPLE LOCATION 6.34 Calcium Settling Pond Effluent (T3) 6.56 Iron Settling Pond Effluent (T6) Iron Settling Pond Effluent (T6) Engineered Wetland Effluent (T7)		616.0	T7 Water Level Reading			
38,010,860 Flow Meter Reading 15.4 Average System Flow 42.8 Generator Run Hours READING Standard LOCATION/PARAMETER 0.107 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium 0.128 0.050 mg/L Calcium Settling Pond Effluent (T6) Hexavalent Chromium 0.014 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium 0.005 0.050 mg/L Iron Settling Pond Effluent (T7) Hexavalent Chromium 0.077 0.011 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.634 Calcium Settling Pond Effluent (T3) 6.56 Iron Settling Pond Effluent (T6) 6.73 Engineered Wetland Effluent (T7)		6.8	T7 pH			
Average System Flow 42.8 Generator Run Hours		2.0 T8 Water Elevation				
A2.8 Generator Run Hours		38,010,860	Flow Meter Reading			
READINGStandardLOCATION/PARAMETER0.1070.011 mg/LCalcium Settling Pond Effluent (T3) Hexavalent Chromium0.1280.050 mg/LCalcium Settling Pond Effluent (T6) Hexavalent Chromium0.0140.011 mg/LIron Settling Pond Effluent (T6) Hexavalent Chromium0.0050.050 mg/LIron Settling Pond Effluent (T6) Total Chromium0.0770.011 mg/LEngineered Wetland Effluent (T7) Hexavalent Chromium0.0640.050 mg/LEngineered Wetland Effluent (SS-1) Hexavalent Chromium0.1180.011 mg/LSouthwest Corner Effluent (SS-1) Hexavalent Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Hexavalent Chromium0.0640.050 mg/LSouthwest Corner Efflue		15.4	Average System Flow			
0.1070.011 mg/LCalcium Settling Pond Effluent (T3) Hexavalent Chromium0.1280.050 mg/LCalcium Settling Pond Effluent (T3) Total Chromium0.0140.011 mg/LIron Settling Pond Effluent (T6) Hexavalent Chromium0.0050.050 mg/LIron Settling Pond Effluent (T6) Total Chromium0.0770.011 mg/LEngineered Wetland Effluent (T7) Hexavalent Chromium0.0640.050 mg/LEngineered Wetland Effluent (SS-1) Hexavalent Chromium0.1180.011 mg/LSouthwest Corner Effluent (SS-1) Hexavalent Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total Chromium0.0640.050 mg/LSouthwest Corner Effluent (T3)0.065Iron Settling Pond Effluent (T3)0.066Iron Settling Pond Effluent (T6)0.067Engineered Wetland Effluent (T7)		42.8	Generator Run Hours			
0.128 0.050 mg/L Calcium Settling Pond Effluent (T3) Total Chromium 0.014 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium 0.005 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium 0.077 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.064 0.050 mg/L Engineered Wetland Effluent (SS-1) Hexavalent Chromium 0.018 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium 0.050 mg/L SAMPLE LOCATION 6.34 Calcium Settling Pond Effluent (T3) 6.56 Iron Settling Pond Effluent (T6) Engineered Wetland Effluent (T7)	READING	Standard	LOCATION/PARAMETER			
0.0140.011 mg/LIron Settling Pond Effluent (T6) Hexavalent Chromium0.0050.050 mg/LIron Settling Pond Effluent (T6) Total Chromium0.0770.011 mg/LEngineered Wetland Effluent (T7) Hexavalent Chromium0.0640.050 mg/LEngineered Wetland Effluent (T7) Total Chromium0.1180.011 mg/LSouthwest Corner Effluent (SS-1) Hexavalent Chromium0.0640.050 mg/LSouthwest Corner Effluent (SS-1) Total ChromiumPH READING6.34Calcium Settling Pond Effluent (T3)6.56Iron Settling Pond Effluent (T6)6.73Engineered Wetland Effluent (T7)	0.107	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium			
0.005 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium 0.077 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.064 0.050 mg/L Engineered Wetland Effluent (S7) Total Chromium 0.118 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING 6.34 Calcium Settling Pond Effluent (T3) 6.56 Iron Settling Pond Effluent (T6) 6.73 Engineered Wetland Effluent (T7)	0.128	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium			
0.077 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium 0.064 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.118 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium PH READING 6.34 Calcium Settling Pond Effluent (T3) 6.56 Iron Settling Pond Effluent (T6) 6.73 Engineered Wetland Effluent (T7)	0.014	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium			
0.064 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium 0.118 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium pH READING SAMPLE LOCATION 6.34 Calcium Settling Pond Effluent (T3) 6.56 Iron Settling Pond Effluent (T6) 6.73 Engineered Wetland Effluent (T7)	0.005	0.050 mg/L	Iron Settling Pond Effluent (T6) Total Chromium			
0.118 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium 0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium pH READING 6.34 Calcium Settling Pond Effluent (T3) 6.56 Iron Settling Pond Effluent (T6) 6.73 Engineered Wetland Effluent (T7)	0.077	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium			
0.064 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium pH READING SAMPLE LOCATION 6.34 Calcium Settling Pond Effluent (T3) 6.56 Iron Settling Pond Effluent (T6) 6.73 Engineered Wetland Effluent (T7)	0.064	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium			
pH READINGSAMPLE LOCATION6.34Calcium Settling Pond Effluent (T3)6.56Iron Settling Pond Effluent (T6)6.73Engineered Wetland Effluent (T7)	0.118	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium			
6.34 Calcium Settling Pond Effluent (T3) 6.56 Iron Settling Pond Effluent (T6) 6.73 Engineered Wetland Effluent (T7)	0.064	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium			
6.56 Iron Settling Pond Effluent (T6) 6.73 Engineered Wetland Effluent (T7)	рI	H READING	SAMPLE LOCATION			
6.73 Engineered Wetland Effluent (T7)		6.34	Calcium Settling Pond Effluent (T3)			
<u> </u>		6.56	Iron Settling Pond Effluent (T6)			
6.97 Southwest Corner Effluent (SS-1)		6.73	Engineered Wetland Effluent (T7)			
		6.97	Southwest Corner Effluent (SS-1)			

Notes: Winterized GCTS. Turn on heaters in sheds. Completed Q4 Engineering inspection of landfill cap. Cleaned and calibrated all pH probes. Cleared organic obstructions from T7 outlet pipe. High readings found in field tests, unable to analyze confirmatory samples, lab closed. Internet batteries charged at 14.3 volts

Weather: Sleet, 34 degrees READING ITEM 232 Carbon Dioxide Storage Tank Pressure (220-235 psi) 6418 Carbon Dioxide Tank Liquid Level 598.8 T1 Water Level AUTO/CYCLING Pump P1A Running Status ON/OFF AUTO/CYCLING Pump P1BA Running Status ON/OFF 616.3 T3A Water Elevation 6.9 T3B pH Reading 613.0 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours <tr< th=""><th colspan="5">Date: 12/2/11 Project No.: 1047.001 Greenstar Personnel: Nate Maier</th></tr<>	Date: 12/2/11 Project No.: 1047.001 Greenstar Personnel: Nate Maier				
232 Carbon Dioxide Storage Tank Pressure (220-235 psi) 6418 Carbon Dioxide Tank Liquid Level 598.8 T1 Water Level AUTO/CYCLING Pump P1A Running Status ON/OFF AUTO/CYCLING Pump P1BA Running Status ON/OFF 616.3 T3A Water Elevation 6.9 T3B pH Reading 613.0 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER	Weather: Sleet, 34 de	egrees			
6418 Carbon Dioxide Tank Liquid Level 598.8 T1 Water Level AUTO/CYCLING Pump P1A Running Status ON/OFF AUTO/CYCLING Pump P1BA Running Status ON/OFF 616.3 T3A Water Elevation 6.9 T3B pH Reading 613.0 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B PH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER	R	READING	ITEM		
598.8 T1 Water Level AUTO/CYCLING Pump P1A Running Status ON/OFF AUTO/CYCLING Pump P1BA Running Status ON/OFF 616.3 T3A Water Elevation 6.9 T3B pH Reading 613.0 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		232	Carbon Dioxide Storage Tank Pressure (220-235 psi)		
AUTO/CYCLING Pump P1A Running Status ON/OFF AUTO/CYCLING Pump P1BA Running Status ON/OFF 616.3 T3A Water Elevation 6.9 T3B pH Reading 613.0 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		6418	Carbon Dioxide Tank Liquid Level		
AUTO/CYCLING Pump P1BA Running Status ON/OFF 616.3 T3A Water Elevation 6.9 T3B pH Reading 613.0 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		598.8	T1 Water Level		
616.3 T3A Water Elevation 6.9 T3B pH Reading 613.0 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER	AUT	O/CYCLING	Pump P1A Running Status ON/OFF		
6.9 T3B pH Reading 613.0 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER	AUT	O/CYCLING	Pump P1BA Running Status ON/OFF		
613.0 T3B Water Level AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		616.3	T3A Water Elevation		
AUTO/CYCLING Pump 3B Operational Status ON/OFF 612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		6.9	T3B pH Reading		
612.8 T5 Water Level AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		613.0	T3B Water Level		
AUTO/CYCLING Pump 5 Operational Status ON/OFF 613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER	AUT	O/CYCLING	Pump 3B Operational Status ON/OFF		
613.5 T6A Water Elevation 6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		612.8	T5 Water Level		
6.1 T6B pH 613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard	AUT	O/CYCLING	Pump 5 Operational Status ON/OFF		
613.8 T6B Water Level AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		613.5	T6A Water Elevation		
AUTO/CYCLING Pump 6B Operational Status ON/OFF 616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		6.1	Т6В рН		
616.8 T7 Water Level Reading 6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		613.8	T6B Water Level		
6.9 T7 pH 2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER	AUT	O/CYCLING	Pump 6B Operational Status ON/OFF		
2.5 T8 Water Elevation 38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		616.8	T7 Water Level Reading		
38457140 Flow Meter Reading 16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		6.9	T7 pH		
16 GPM Average System Flow 43.0 Generator Run Hours READING Standard LOCATION/PARAMETER		2.5	T8 Water Elevation		
43.0 Generator Run Hours READING Standard LOCATION/PARAMETER	3	38457140	Flow Meter Reading		
READING Standard LOCATION/PARAMETER		16 GPM	Average System Flow		
		43.0	Generator Run Hours		
0.121 0.011 mg/L Coloium Cattling Dand Effluent (T2) Have shown	READING	Standard	LOCATION/PARAMETER		
0.131 U.011 lilg/L Calcium Setting Pond Efficient (13) Hexavalent Chromium	0.131	0.011 mg/L	Calcium Settling Pond Effluent (T3) Hexavalent Chromium		
0.124 0.050 mg/L Calcium Settling Pond Effluent (T3) Total Chromium	0.124	0.050 mg/L	Calcium Settling Pond Effluent (T3) Total Chromium		
0.058 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium	0.058	0.011 mg/L	Iron Settling Pond Effluent (T6) Hexavalent Chromium		
0.039 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium	0.039	0.050 mg/L			
0.040 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium	0.040	0.011 mg/L	Engineered Wetland Effluent (T7) Hexavalent Chromium		
0.015 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium	0.015	0.050 mg/L	Engineered Wetland Effluent (T7) Total Chromium		
0.165 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium	0.165	0.011 mg/L	Southwest Corner Effluent (SS-1) Hexavalent Chromium		
0.052 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium	0.052	0.050 mg/L	Southwest Corner Effluent (SS-1) Total Chromium		
pH READING SAMPLE LOCATION	рН	READING	SAMPLE LOCATION		
6.63 Calcium Settling Pond Effluent (T3)		6.63	Calcium Settling Pond Effluent (T3)		
6.16 Iron Settling Pond Effluent (T6)		6.16	Iron Settling Pond Effluent (T6)		
6.96 Engineered Wetland Effluent (T7)		6.96	Engineered Wetland Effluent (T7)		
6.99 Southwest Corner Effluent (SS-1)		6.99	Southwest Corner Effluent (SS-1)		

Notes: Mobilization for emergency response to T3B pump. Pump replaced. Clean and calibrated all pH probes. Replaced check valve in T6B. High readings found in chromium field testing for SW corner. Confirmatory samples came back nondetect from lab.

Attachment G.2

Airco Parcel GCTS Monthly Flow Calculations January – December 2011

Monthly Flow Calculations January 2011

Date	Maximum Flow (gpm)	Average Flow Rate (gpm)	Total Daily Flow (Gal)	Total Gallons To Date (Gal)	Run Time (hours)	Run Time (minutes)
1/1/2011	37	22.1	31,840	30,809,088	24	0
1/2/2011	36	18.0	25,970	30,835,058	24	0
1/3/2011	36	17.9	25,764	30,860,822	24	0
1/4/2011	36	18.1	26,024	30,886,846	24	0
1/5/2011	36	18.0	25,936	30,912,782	24	0
1/6/2011	36	18.1	26,044	30,938,826	24	0
1/7/2011	36	18.2	26,228	30,965,054	24	0
1/8/2011	36	18.0	25,962	30,991,016	24	0
1/9/2011	36	17.8	25,668	31,016,684	24	0
1/10/2011	36	17.7	25,542	31,042,226	24	0
1/11/2011	36	18.2	26,166	31,068,392	24	0
1/12/2011	36	18.4	26,554	31,094,946	24	0
1/13/2011	35	17.8	25,698	31,120,644	24	0
1/14/2011	35	18.1	25,996	31,146,640	24	0
1/15/2011	35	18.2	26,200	31,172,840	24	0
1/16/2011	35	18.2	26,170	31,199,010	24	0
1/17/2011	35	18.1	26,022	31,225,032	24	0
1/18/2011	35	18.7	26,858	31,251,890	24	0
1/19/2011	35	18.7	26,888	31,278,778	24	0
1/20/2011	35	18.7	26,860	31,305,638	24	0
1/21/2011	35	18.6	26,768	31,332,406	24	0
1/22/2011	35	18.4	26,460	31,358,866	24	0
1/23/2011	35	18.1	26,028	31,384,894	24	0
1/24/2011	35	18.9	27,212	31,412,106	24	0
1/25/2011	35	20.3	29,282	31,441,388	24	0
1/26/2011	35	19.9	28,644	31,470,032	24	0
1/27/2011	35	19.6	28,194	31,498,226	24	0
1/28/2011	35	19.5	28,094	31,526,320	24	0
1/29/2011	35	19.5	28,096	31,554,416	24	0
1/30/2011	35	19.9	28,688	31,583,104	24	0
1/31/2011	35	20.9	30,162	31,613,266	24	0
	37	18.7	836,018	31,613,266	31	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Flow Calculations February 2011

Date	Maximum Flow (gpm)	Average Flow Rate (gpm)	Total Daily Flow (Gal)	Total Gallons To Date (Gal)	Run Time (hours)	Run Time (minutes)
2/1/2011	34	18.7	26,958	31,640,224	24	0
2/2/2011	34	18.8	27,050	31,667,274	24	0
2/3/2011	34	18.4	26,522	31,693,796	24	0
2/4/2011	34	18.4	26,518	31,720,314	24	0
2/5/2011	34	18.4	26,522	31,746,836	24	0
2/6/2011	34	17.9	25,840	31,772,676	24	0
2/7/2011	34	18.3	26,386	31,799,062	24	0
2/8/2011	34	18.2	26,228	31,825,290	24	0
2/9/2011	33	17.3	24,912	31,850,202	24	0
2/10/2011	33	17.2	24,808	31,875,010	24	0
2/11/2011	33	17.2	24,702	31,899,712	24	0
2/12/2011	33	17.1	24,568	31,924,280	24	0
2/13/2011	33	17.3	24,844	31,949,124	24	0
2/14/2011	34	19.8	28,462	31,977,586	24	0
2/15/2011	33	17.6	25,354	32,002,940	24	0
2/16/2011	33	17.1	24,666	32,027,606	24	0
2/17/2011	33	20.4	29,318	32,056,924	24	0
2/18/2011	33	21.0	30,258	32,087,182	24	0
2/19/2011	32	13.8	19,880	32,107,062	24	0
2/20/2011	32	13.4	19,258	32,126,320	24	0
2/21/2011	32	14.8	21,312	32,147,632	24	0
2/22/2011	32	15.2	21,940	32,169,572	24	0
2/23/2011	32	15.8	22,752	32,192,324	24	0
2/24/2011	32	15.7	22,546	32,214,870	24	0
2/25/2011	32	15.9	22,922	32,237,792	24	0
2/26/2011	32	16.0	22,988	32,260,780	24	0
2/27/2011	31	16.3	23,510	32,284,290	24	0
2/28/2011	32	21.4	30,836	32,315,126	24	0
	34	17.4	701,860	32,315,126	28	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Flow Calculations March 2011

Date	Maximum Flow (gpm)	Average Flow Rate (gpm)	Total Daily Flow (Gal)	Total Gallons To Date (Gal)	Run Time (hours)	Run Time (minutes)
3/1/2011	32	9.4	13,596	32,328,722	24	0
3/2/2011	31	5.1	7,410	32,336,132	24	0
3/3/2011	31	1.6	2,256	32,338,388	24	0
3/4/2011	31	9.5	13,628	32,352,016	24	0
3/5/2011	31	21.8	31,388	32,383,404	24	0
3/6/2011	31	12.4	17,896	32,401,300	24	0
3/7/2011	31	9.9	14,226	32,415,526	24	0
3/8/2011	31	8.3	11,996	32,427,522	24	0
3/9/2011	31	8.7	12,538	32,440,060	24	0
3/10/2011	31	7.5	10,792	32,450,852	24	0
3/11/2011	31	3.5	5,022	32,455,874	24	0
3/12/2011	31	10.2	14,724	32,470,598	24	0
3/13/2011	31	16.9	24,392	32,494,990	24	0
3/14/2011	32	16.4	23,626	32,518,616	24	0
3/15/2011	39	17.0	24,450	32,543,066	24	0
3/16/2011	39	20.7	29,840	32,572,906	24	0
3/17/2011	39	21.5	30,948	32,603,854	24	0
3/18/2011	39	21.8	31,378	32,635,232	24	0
3/19/2011	39	21.0	30,202	32,665,434	24	0
3/20/2011	39	20.2	29,134	32,694,568	24	0
3/21/2011	39	20.5	29,542	32,724,110	24	0
3/22/2011	39	19.9	28,720	32,752,830	24	0
3/23/2011	39	19.9	28,620	32,781,450	24	0
3/24/2011	39	19.5	28,150	32,809,600	24	0
3/25/2011	39	19.7	28,372	32,837,972	24	0
3/26/2011	39	19.2	27,682	32,865,654	24	0
3/27/2011	39	19.5	28,138	32,893,792	24	0
3/28/2011	39	19.9	28,626	32,922,418	24	0
3/29/2011	39	19.5	28,080	32,950,498	24	0
3/30/2011	39	19.7	28,384	32,978,882	24	0
3/31/2011	39	19.7	28,300	33,007,182	24	0
	39	15.5	692,056	33,007,182	31	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Flow Calculations April 2011

Date	Maximum Flow (gpm)	Average Flow Rate (gpm)	Total Daily Flow (Gal)	Total Gallons To Date (Gal)	Run Time (hours)	Run Time (minutes)
4/1/2011	39	19.7	28,416	33,035,598	24	0
4/2/2011	39	19.4	27,904	33,063,502	24	0
4/3/2011	39	19.6	28,268	33,091,770	24	0
4/4/2011	39	21.5	30,940	33,122,710	24	0
4/5/2011	39	19.7	28,298	33,151,008	24	0
4/6/2011	39	19.3	27,720	33,178,728	24	0
4/7/2011	39	19.6	28,240	33,206,968	24	0
4/8/2011	39	19.0	27,408	33,234,376	24	0
4/9/2011	39	18.9	27,242	33,261,618	24	0
4/10/2011	39	19.0	27,300	33,288,918	24	0
4/11/2011	39	19.0	27,420	33,316,338	24	0
4/12/2011	39	18.5	26,572	33,342,910	24	0
4/13/2011	39	19.4	27,996	33,370,906	24	0
4/14/2011	39	18.9	27,160	33,398,066	24	0
4/15/2011	39	18.5	26,638	33,424,704	24	0
4/16/2011	39	22.8	32,818	33,457,522	24	0
4/17/2011	39	19.6	28,216	33,485,738	24	0
4/18/2011	39	19.3	27,846	33,513,584	24	0
4/19/2011	39	19.3	27,726	33,541,310	24	0
4/20/2011	39	23.3	33,522	33,574,832	24	0
4/21/2011	39	19.0	27,300	33,602,132	24	0
4/22/2011	39	19.0	27,388	33,629,520	24	0
4/23/2011	39	20.6	29,612	33,659,132	24	0
4/24/2011	39	18.9	27,184	33,686,316	24	0
4/25/2011	39	21.3	30,604	33,716,920	24	0
4/26/2011	39	20.8	30,000	33,746,920	24	0
4/27/2011	38	20.0	28,848	33,775,768	24	0
4/28/2011	38	19.4	27,964	33,803,732	24	0
4/29/2011	38	19.1	27,436	33,831,168	24	0
4/30/2011	38	18.9	27,164	33,858,332	24	0
	39	19.7	851,150	33,858,332	30	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Flow Calculations May 2011

Date	Maximum Flow (gpm)	Average Flow Rate (gpm)	Total Daily Flow (Gal)	Total Gallons To Date (Gal)	Run Time (hours)	Run Time (minutes)
5/1/2011	38	18.8	27,108	33,885,440	24	0
5/2/2011	38	19.1	27,556	33,912,996	24	0
5/3/2011	38	20.7	29,832	33,942,828	24	0
5/4/2011	38	19.3	27,840	33,970,668	24	0
5/5/2011	38	18.6	26,776	33,997,444	24	0
5/6/2011	38	18.5	26,684	34,024,128	24	0
5/7/2011	38	18.3	26,312	34,050,440	24	0
5/8/2011	38	18.3	26,412	34,076,852	24	0
5/9/2011	37	18.9	27,268	34,104,120	24	0
5/10/2011	37	19.4	27,880	34,132,000	24	0
5/11/2011	37	19.1	27,496	34,159,496	24	0
5/12/2011	37	19.2	27,660	34,187,156	24	0
5/13/2011	37	19.0	27,424	34,214,580	24	0
5/14/2011	37	13.9	20,072	34,234,652	24	0
5/15/2011	37	15.5	22,288	34,256,940	24	0
5/16/2011	37	14.1	20,276	34,277,216	24	0
5/17/2011	37	16.9	24,284	34,301,500	24	0
5/18/2011	37	22.1	31,760	34,333,260	24	0
5/19/2011	37	20.2	29,056	34,362,316	24	0
5/20/2011	36	20.9	30,028	34,392,344	24	0
5/21/2011	36	20.6	29,628	34,421,972	24	0
5/22/2011	36	20.3	29,176	34,451,148	24	0
5/23/2011	36	20.9	30,076	34,481,224	24	0
5/24/2011	36	20.7	29,848	34,511,072	24	0
5/25/2011	36	21.2	30,460	34,541,532	24	0
5/26/2011	39	22.2	31,944	34,573,476	24	0
5/27/2011	36	21.6	31,048	34,604,524	24	0
5/28/2011	39	20.8	29,944	34,634,468	24	0
5/29/2011	39	21.6	31,040	34,665,508	24	0
5/30/2011	35	16.8	24,240	34,689,748	24	0
5/31/2011	35	18.1	26,016	34,715,764	24	0
	39	19.2	857,432	34,715,764	30	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Flow Calculations June 2011

Date	Maximum Flow (gpm)	Average Flow Rate (gpm)	Total Daily Flow (Gal)	Total Gallons To Date (Gal)	Run Time (hours)	Run Time (minutes)
6/1/2011	35	17.5	25,248	34,741,012	24	0
6/2/2011	38	17.4	25,068	34,766,080	24	0
6/3/2011	35	17.5	25,184	34,791,264	24	0
6/4/2011	35	17.9	25,760	34,817,024	24	0
6/5/2011	35	17.6	25,376	34,842,400	24	0
6/6/2011	39	17.5	25,244	34,867,644	24	0
6/7/2011	38	7.8	11,220	34,878,864	24	0
6/8/2011	36	8.9	12,852	34,891,716	24	0
6/9/2011	36	21.6	31,116	34,922,832	24	0
6/10/2011	37	20.5	29,540	34,952,372	24	0
6/11/2011	36	20.3	29,256	34,981,628	24	0
6/12/2011	37	20.0	28,812	35,010,440	24	0
6/13/2011	36	20.3	29,200	35,039,640	24	0
6/14/2011	35	20.1	28,896	35,068,536	24	0
6/15/2011	35	19.5	28,056	35,096,592	24	0
6/16/2011	35	19.0	27,348	35,123,940	24	0
6/17/2011	34	18.0	25,884	35,149,824	24	0
6/18/2011	34	17.8	25,620	35,175,444	24	0
6/19/2011	34	17.7	25,424	35,200,868	24	0
6/20/2011	34	17.6	25,368	35,226,236	24	0
6/21/2011	34	17.5	25,244	35,251,480	24	0
6/22/2011	34	19.1	27,556	35,279,036	24	0
6/23/2011	34	18.5	26,648	35,305,684	24	0
6/24/2011	34	17.8	25,572	35,331,256	24	0
6/25/2011	34	17.5	25,160	35,356,416	24	0
6/26/2011	34	17.3	24,920	35,381,336	24	0
6/27/2011	34	17.3	24,940	35,406,276	24	0
6/28/2011	34	17.2	24,704	35,430,980	24	0
6/29/2011	34	17.1	24,668	35,455,648	24	0
6/30/2011	34	17.0	24,536	35,480,184	24	0
			•	, ,		
	39	17.7	764,420	35,480,184	30	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Flow Calculations July 2011

Date	Maximum Flow (gpm)	Average Flow Rate (gpm)	Total Daily Flow (Gal)	Total Gallons To Date (Gal)	Run Time (hours)	Run Time (minutes)
7/1/2011	34	16.7	23,976	35,504,160	24	0
7/2/2011	34	16.3	23,436	35,527,596	24	0
7/3/2011	34	17.9	25,792	35,553,388	24	0
7/4/2011	34	18.6	26,732	35,580,120	24	0
7/5/2011	33	18.5	26,620	35,606,740	24	0
7/6/2011	33	18.5	26,672	35,633,412	24	0
7/7/2011	33	17.5	25,200	35,658,612	24	0
7/8/2011	33	18.9	27,232	35,685,844	24	0
7/9/2011	33	18.7	26,880	35,712,724	24	0
7/10/2011	33	18.6	26,836	35,739,560	24	0
7/11/2011	33	18.5	26,596	35,766,156	24	0
7/12/2011	33	18.4	26,492	35,792,648	24	0
7/13/2011	33	18.2	26,264	35,818,912	24	0
7/14/2011	33	18.0	25,984	35,844,896	24	0
7/15/2011	33	17.8	25,672	35,870,568	24	0
7/16/2011	33	17.6	25,404	35,895,972	24	0
7/17/2011	33	17.4	25,020	35,920,992	24	0
7/18/2011	33	17.4	25,108	35,946,100	24	0
7/19/2011	33	17.3	24,856	35,970,956	24	0
7/20/2011	33	17.2	24,764	35,995,720	24	0
7/21/2011	33	17.0	24,536	36,020,256	24	0
7/22/2011	33	16.8	24,240	36,044,496	24	0
7/23/2011	33	16.7	24,040	36,068,536	24	0
7/24/2011	33	16.8	24,128	36,092,664	24	0
7/25/2011	33	16.5	23,732	36,116,396	24	0
7/26/2011	33	16.0	23,104	36,139,500	24	0
7/27/2011	33	16.0	23,052	36,162,552	24	0
7/28/2011	33	16.0	22,988	36,185,540	24	0
7/29/2011	33	16.4	23,576	36,209,116	24	0
7/30/2011	33	15.6	22,404	36,231,520	24	0
7/31/2011	33	15.7	22,636	36,254,156	24	0
	34	17.3	773,972	36,254,156	30	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Flow Calculations August 2011

	Maximum	Average Flow Rate	Total Daily	Total Gallons	Run Time	Run Time
Date	Flow (gpm)	(gpm)	Flow (Gal)	To Date (Gal)	(hours)	(minutes)
8/1/2011	33	14.4	20,756	36,274,912	24	0
8/2/2011	32	13.2	19,052	36,293,964	24	0
8/3/2011	33	13.4	19,292	36,313,256	24	0
8/4/2011	33	13.0	18,784	36,332,040	24	0
8/5/2011	33	13.1	18,832	36,350,872	24	0
8/6/2011	32	13.1	18,824	36,369,696	24	0
8/7/2011	32	15.5	22,332	36,392,028	24	0
8/8/2011	32	17.3	24,872	36,416,900	24	0
8/9/2011	32	17.2	24,748	36,441,648	24	0
8/10/2011	32	17.4	25,020	36,466,668	24	0
8/11/2011	33	17.3	24,972	36,491,640	24	0
8/12/2011	33	17.3	24,896	36,516,536	24	0
8/13/2011	32	16.9	24,296	36,540,832	24	0
8/14/2011	32	16.7	24,012	36,564,844	24	0
8/15/2011	32	16.5	23,696	36,588,540	24	0
8/16/2011	32	16.1	23,208	36,611,748	24	0
8/17/2011	32	15.9	22,868	36,634,616	24	0
8/18/2011	32	15.7	22,540	36,657,156	24	0
8/19/2011	32	15.4	22,164	36,679,320	24	0
8/20/2011	32	15.1	21,728	36,701,048	24	0
8/21/2011	32	15.7	22,596	36,723,644	24	0
8/22/2011	32	15.0	21,568	36,745,212	24	0
8/23/2011	32	14.7	21,144	36,766,356	24	0
8/24/2011	32	14.6	21,060	36,787,416	24	0
8/25/2011	32	14.1	20,372	36,807,788	24	0
8/26/2011	32	13.3	19,112	36,826,900	24	0
8/27/2011	32	13.0	18,692	36,845,592	24	0
8/28/2011	32	12.4	17,908	36,863,500	24	0
8/29/2011	32	12.0	17,340	36,880,840	24	0
8/30/2011	32	11.8	17,048	36,897,888	24	0
8/31/2011	32	11.6	16,664	36,914,552	24	0
	33	14.8	660,396	36,914,552	31	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Flow Calculations September 2011

	Maximum	Average Flow Rate	Total Daily	Total Gallons	Run Time	Run Time
Date	Flow (gpm)	(gpm)	Flow (Gal)	To Date (Gal)	(hours)	(minutes)
9/1/2011	32	11.3	16,212	36,930,764	24	0
9/2/2011	32	10.7	15,388	36,946,152	24	0
9/3/2011	32	10.1	14,608	36,960,760	24	0
9/4/2011	32	10.2	14,696	36,975,456	24	0
9/5/2011	32	9.3	13,428	36,988,884	24	0
9/6/2011	32	8.7	12,504	37,001,388	24	0
9/7/2011	32	8.3	12,000	37,013,388	24	0
9/8/2011	32	8.4	12,118	37,025,506	24	0
9/9/2011	32	8.4	12,118	37,037,624	24	0
9/10/2011	32	8.4	12,118	37,049,742	24	0
9/11/2011	32	8.4	12,118	37,061,860	24	0
9/12/2011	31	8.4	12,118	37,073,978	24	0
9/13/2011	31	8.4	12,118	37,086,096	24	0
9/14/2011	31	8.4	12,118	37,098,214	24	0
9/15/2011	31	8.4	12,118	37,110,332	24	0
9/16/2011	31	7.9	11,428	37,121,760	24	0
9/17/2011	31	8.1	11,596	37,133,356	24	0
9/18/2011	31	7.9	11,304	37,144,660	24	0
9/19/2011	31	8.4	12,112	37,156,772	24	0
9/20/2011	31	8.5	12,280	37,169,052	24	0
9/21/2011	31	8.6	12,388	37,181,440	24	0
9/22/2011	31	8.4	12,108	37,193,548	24	0
9/23/2011	31	10.3	14,896	37,208,444	24	0
9/24/2011	31	9.0	12,952	37,221,396	24	0
9/25/2011	31	9.2	13,228	37,234,624	24	0
9/26/2011	30	9.4	13,500	37,248,124	24	0
9/27/2011	30	10.7	15,348	37,263,472	24	0
9/28/2011	30	10.7	15,444	37,278,916	24	0
9/29/2011	30	3.8	5,512	37,284,428	24	0
9/30/2011	30	9.1	13,044	37,297,472	24	0
	32	8.9	382,920	37,297,472	30	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Flow Calculations October 2011

Date	Maximum Flow (gpm)	Average Flow Rate (gpm)	Total Daily Flow (Gal)	Total Gallons To Date (Gal)	Run Time (hours)	Run Time (minutes)
10/1/2011	30	8.4	12,064	37,309,536	24	0
10/2/2011	30	8.8	12,676	37,322,212	24	0
10/3/2011	30	9.0	12,944	37,335,156	24	0
10/4/2011	30	11.2	16,072	37,351,228	24	0
10/5/2011	30	10.1	14,560	37,365,788	24	0
10/6/2011	30	9.8	14,132	37,379,920	24	0
10/7/2011	29	10.1	14,472	37,394,392	24	0
10/8/2011	29	10.2	14,736	37,409,128	24	0
10/9/2011	29	10.7	15,476	37,424,604	24	0
10/10/2011	29	10.8	15,504	37,440,108	24	0
10/11/2011	29	11.1	16,028	37,456,136	24	0
10/12/2011	29	11.9	17,072	37,473,208	24	0
10/13/2011	29	12.4	17,784	37,490,992	24	0
10/14/2011	29	12.3	17,676	37,508,668	24	0
10/15/2011	30	18.1	26,080	37,534,748	24	0
10/16/2011*	0	0.0	0	0	24	0
10/17/2011*	0	0.0	0	0	24	0
10/18/2011	36	2.5	3,612	37,538,360	24	0
10/19/2011	36	9.4	13,476	37,551,836	24	0
10/20/2011	37	14.9	21,436	37,573,272	24	0
10/21/2011	37	11.7	16,820	37,590,092	24	0
10/22/2011	37	11.6	16,740	37,606,832	24	0
10/23/2011	36	12.1	17,396	37,624,228	24	0
10/24/2011	36	12.4	17,828	37,642,056	24	0
10/25/2011	36	12.5	18,024	37,660,080	24	0
10/26/2011	36	14.7	21,212	37,681,292	24	0
10/27/2011	36	14.4	20,804	37,702,096	24	0
10/28/2011	36	13.9	20,028	37,722,124	24	0
10/29/2011	36	14.4	20,748	37,742,872	24	0
10/30/2011	36	14.4	20,780	37,763,652	24	0
10/31/2011	36	14.8	21,244	37,784,896	24	0
	37	10.9	487,424	37,784,896	31	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

^{*}System bypass using T-8 for system Cleaning

Monthly Flow Calculations November 2011

Date	Maximum Flow (gpm)	Average Flow Rate (gpm)	Total Daily Flow (Gal)	Total Gallons To Date (Gal)	Run Time (hours)	Run Time (minutes)
11/1/2011	36	14.8	21,316	37,806,212	24	0
11/2/2011	36	15.0	21,572	37,827,784	24	0
11/3/2011	36	14.9	21,496	37,849,280	24	0
11/4/2011	36	14.6	20,968	37,870,248	24	0
11/5/2011	36	14.7	21,136	37,891,384	24	0
11/6/2011	36	5.5	7,908	37,899,292	19	1
11/7/2011	36	5.7	8,172	37,907,464	24	0
11/8/2011	36	16.5	23,776	37,931,240	24	0
11/9/2011	36	16.0	23,092	37,954,332	24	0
11/10/2011	36	15.5	22,388	37,976,720	24	0
11/11/2011	36	15.3	22,024	37,998,744	24	0
11/12/2011	36	15.7	22,536	38,021,280	24	0
11/13/2011	36	15.2	21,956	38,043,236	24	0
11/14/2011	36	15.6	22,520	38,065,756	24	0
11/15/2011	36	15.2	21,884	38,087,640	24	0
11/16/2011	36	15.1	21,756	38,109,396	24	0
11/17/2011	36	14.9	21,520	38,130,916	24	0
11/18/2011	36	14.8	21,268	38,152,184	24	0
11/19/2011	36	14.7	21,156	38,173,340	24	0
11/20/2011	36	14.4	20,696	38,194,036	24	0
11/21/2011	36	14.3	20,612	38,214,648	24	0
11/22/2011	36	14.6	21,000	38,235,648	24	0
11/23/2011	36	18.6	26,840	38,262,488	24	0
11/24/2011	41	15.4	22,228	38,284,716	24	0
11/25/2011	36	15.3	22,080	38,306,796	24	0
11/26/2011	37	15.3	22,008	38,328,804	24	0
11/27/2011	41	15.8	22,708	38,351,512	24	0
11/28/2011	40	17.2	24,700	38,376,212	24	0
11/29/2011	36	19.5	28,120	38,404,332	24	0
11/30/2011	36	16.3	23,456	38,427,788	24	0
	41	14.4	642,892	38,427,788	30	99.4%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage

Monthly Flow Calculations December 2011

Date	Maximum Flow (gpm)	Average Flow Rate (gpm)	Total Daily Flow (Gal)	Total Gallons To Date (Gal)	Run Time (hours)	Run Time (minutes)
12/1/2011	36	13.4	19,332	38,447,120	24	0
12/2/2011	36	17.0	24,536	38,471,656	24	0
12/3/2011	36	16.9	24,404	38,496,060	24	0
12/4/2011	36	17.7	25,420	38,521,480	24	0
12/5/2011	36	17.7	25,468	38,546,948	24	0
12/6/2011	37	14.4	20,676	38,567,624	24	0
12/7/2011	39	22.5	32,384	38,600,008	24	0
12/8/2011	36	20.9	30,052	38,630,060	24	0
12/9/2011	36	22.3	32,180	38,662,240	24	0
12/10/2011	36	19.7	28,436	38,690,676	24	0
12/11/2011	36	18.3	26,292	38,716,968	24	0
12/12/2011	38	18.7	26,960	38,743,928	24	0
12/13/2011	36	12.0	17,232	38,761,160	24	0
12/14/2011	38	12.0	17,232	38,778,392	24	0
12/15/2011	39	22.3	32,172	38,810,564	24	0
12/16/2011	36	19.1	27,496	38,838,060	24	0
12/17/2011	36	19.2	27,708	38,865,768	24	0
12/18/2011	36	19.2	27,664	38,893,432	24	0
12/19/2011	39	19.0	27,364	38,920,796	24	0
12/20/2011	39	15.8	22,704	38,943,500	24	0
12/21/2011	39	19.5	28,028	38,971,528	24	0
12/22/2011	37	18.9	27,208	38,998,736	24	0
12/23/2011	40	21.3	30,696	39,029,432	24	0
12/24/2011	39	24.3	34,920	39,064,352	24	0
12/25/2011	38	24.8	35,728	39,100,080	24	0
12/26/2011	40	24.3	35,060	39,135,140	24	0
12/27/2011	39	25.7	36,976	39,172,116	24	0
12/28/2011	36	25.1	36,080	39,208,196	24	0
12/29/2011	36	23.7	34,068	39,242,264	24	0
12/30/2011	36	23.8	34,220	39,276,484	24	0
12/31/2011	36	24.3	34,984	39,311,468	24	0
	40	19.6	883,680	39,311,468	31	100%
	Daily Maximum (GPM)	Monitoring Period Average (GPM)	Monitoring Period Total (GAL)	Cumulative Total (GAL)	Runtime (Days)	Operational Percentage