## Periodic Review Report for Site No. 932001 Airco Properties, Inc., Airco Parcel Niagara Falls, New York

Prepared for

Linde Gas North America, LLC 425 Avenue P Newark, NJ 07105

Prepared by

Greenstar Environmental Solutions, LLC 6 Gellatly Drive Wappingers Falls, New York 12590 (845) 223-9944

> March 2022 Project No.: 150C265.1047

## Periodic Review Report for Site No. 932001 Airco Properties, Inc., Airco Parcel Niagara Falls, New York

Prepared for

Linde Gas North America, LLC 425 Avenue P Newark, NJ 07105

Prepared by



Greenstar Environmental Solutions, LLC 6 Gellatly Drive Wappingers Falls, New York 12590 (845) 223-9944

WE. MWZ

31 March 2022

Charles E. McLeod, Jr., P.E. Senior Engineer

Date

March 2022 Project No.: 150C265.1047

#### TABLE OF CONTENTS

| LI | ST Ol                    | F TABLES AND FIGURES                                                                                           | <u>Page</u> |
|----|--------------------------|----------------------------------------------------------------------------------------------------------------|-------------|
| ЕΣ | KECU                     | TTIVE SUMMARY                                                                                                  |             |
| 1. | INTF                     | RODUCTION                                                                                                      | 1           |
| 2. | BAC                      | CKGROUND                                                                                                       | 2           |
|    | 2.1<br>2.2<br>2.3<br>2.4 | Physical Characteristics  Land and Resource Use  Basis of Actions  Basis for Taking Action at the Airco Parcel | 2           |
| 3. |                          | ALUATE REMEDY PERFORMANCE, EFFECTIVENESS, AND DTECTIVENESSREMEDIAL ACTIONS                                     | 4           |
| 4. | IC/E                     | EC PLAN COMPLIANCE REPORT                                                                                      | 5           |
| 5. | MO                       | NITORING PLAN COMPLIANCE REPORT                                                                                | 6           |
|    | 5.1<br>5.2               | Monitoring Well GaugingGroundwater Monitoring                                                                  | 6<br>6      |
|    |                          | 5.2.1 Groundwater Sampling                                                                                     | 7           |
|    | 5.3<br>5.4<br>5.5        | Laboratory Analysis  Regulatory Criteria  Analytical Results                                                   | 7           |
|    |                          | 5.5.1 Metals                                                                                                   |             |
| 6. | OPE                      | ERATION & MAINTENANCE (O&M) PLAN COMPLIANCE REPORT                                                             | 9           |
|    | 6.1<br>6.2               | System Operations and Maintenance (January to December 2021)                                                   |             |
| 7  | OVE                      | ERALL PRR CONCLUSIONS AND RECOMMENDATIONS                                                                      | 11          |

ATTACHMENT A SUMMARY OF ANALYTICAL RESULTS GROUNDWATER SAMPLES 2006 THROUGH 2021 ATTACHMENT B WELL GAUGING, PURGING, AND SAMPLING FORMS SEPTEMBER 2021 ATTACHMENT C LABORATORY ANALYTICAL RESULTS QUARTERLY DISCHARGE, AND MONITORING WELL SAMPLING LANDFILL CAP INSPECTION CHECKLIST SEPTEMBER 2021 ATTACHMENT D MONTHLY OPERATION AND MAINTENANCE DETAILS ATTACHMENT E JANUARY – DECEMBER 20121 ATTACHMENT E.1 GCTS MONITORING CHECKLISTS JANUARY – DECEMBER 2021 ATTACHMENT E.2 GCTS MONTHLY FLOW CALCULATIONS JANUARY -DECEMBER 2021 TREND GRAPHS ATTACHMENT F

#### LIST OF TABLES

| Number        | <u>Title</u>                                                                                                   |
|---------------|----------------------------------------------------------------------------------------------------------------|
| 1             | Routine GCTS Field Sampling Results, 1 January – 31 December 2021, Airco Parcel, Niagara Falls, New York.      |
| 2             | Quarterly GCTS Discharge Sampling Results, 1 January – 31 December 2021, Airco Parcel, Niagara Falls, New York |
|               | LIST OF FIGURES                                                                                                |
| <u>Number</u> | <u>Title</u>                                                                                                   |
| 1             | Site location, Airco Parcel, Niagara Falls, New York.                                                          |
| 2             | Vanadium Site Operable Units, Airco Parcel, Niagara Falls, New York.                                           |
| 3             | Site Map, Airco Parcel, Niagara Falls, New York.                                                               |
| 4             | Groundwater Contours September 2021, Airco Parcel, Niagara Falls, New York.                                    |
| 5             | Groundwater Sample Results September 2021, Airco Parcel, Niagara Falls, New York.                              |

#### **EXECUTIVE SUMMARY**

The remedy for the Airco Parcel in Niagara Falls, New York included the construction of a modified Title 6 New York Codes of Rules and Regulations (NYCRR) Part 360 landfill cap and a collection and treatment system for groundwater which was discharging to the ground surface in the southwest corner of the site. The site remedy has been operating since 2000. Regular maintenance and system modifications have occurred on an as needed basis since the remedy was completed in 2000.

#### Has the remedy been operating as designed?

The periodic review of the remedy found that the remedy was constructed in accordance with the requirements of the Interim Remedial Measure (IRM). The remedy is functioning as designed and the threats at the site have been eliminated through capping of the waste and prevention of releases of untreated groundwater.

## Have there been reductions/improvements in Constituents of Concern since remedy implementation?

Since the site is an unlined landfill, concentrations of Constituents of Concern (COCs) in shallow groundwater in contact with waste may remain above some water quality standards, however, there is no data to support this assumption. The overarching intent of the remedy is to prevent exposure pathways, and to prevent the release of untreated groundwater. The remedy has significantly reduced the exposure pathways through capping of the former landfill and prevented leachate discharge to ground surface. The landfill cap is functioning as intended and has minimized the migration of contaminants to groundwater and eliminated environmental and human exposure. There have been no changes in the physical conditions of the site that would affect the protectiveness of the remedy.

#### What, if any, issues have been raised, and what modification are recommended?

The Groundwater Collection and Treatment System (GCTS) has been performing as intended. Based on the GCTS performance, and the stable groundwater concentrations, no issues were identified, and no modifications are recommended. In a letter dated October 5, 2021 summarizing the Five-Year Review site walk, New York State Department of Environmental Conservation (NYSDEC) personnel requested that the old Post-Closure Operations and Maintenance Manual be converted to the Site Management Plan format. This conversion will be completed during 2022.

#### 1. INTRODUCTION

Greenstar Environmental Solutions, LLC (Greenstar) on behalf of Linde Gas North America, LLC (Linde) has prepared this 2020 Periodic Review Report (PRR) for the Airco Parcel located in the Town of Niagara, New York. As per Section 6.3(b) of the Division of Environmental Remediation (DER), DER-10 Technical Guidance for Site Investigation and Remediation, the purpose of the annual PRR is to document the implementation of, and compliance with, site-specific site management requirements. The methods, findings, and conclusions of the review are documented in this report. The report also identifies recommendations for the site for the next annual review period.

#### 2. BACKGROUND

#### 2.1 Site Physical Characteristics

The Airco Parcel is a part of the Vanadium Corporation of America Site which has been placed on the New York State Department of Environmental Conservation (NYSDEC) New York State Registry of Inactive Hazardous Waste Sites. The site location is shown in Figure 1. The Vanadium Site includes three Operable Units (OU), which are aligned in a roughly west to east orientation as shown in Figure 2. The OU sizes and responsible parties are listed below:

- 1) OU-1 is a 37-acre parcel owned by SKW Alloys, Inc. (SKW Parcel).
- 2) OU-2 is a 25-acre parcel owned by Linde (Airco Parcel).
- 3) OU-3 is a 53-acre parcel owned by National Grid (acquired Niagara Mohawk Power Corporation/New York Power Authority) (NMPC/NYPA Parcel).

The entire Vanadium Site (i.e., OU-1 through OU-3) is listed as a Class 4 site in the New York State Registry of Inactive Hazardous Waste Sites (Site No. 932001). This classification indicates the site has been properly closed but requires continued management.

Linde is responsible for OU-2, this report addresses only the Airco Parcel (OU-2). However, information from the other OUs is included when necessary to develop a complete understanding of the issues at the Airco Parcel.

#### 2.2 Land and Resource Use

The current land use for the site and surrounding areas is for light industrial and commercial uses. The nearest residential areas are located approximately 0.20 miles to the northeast and 0.30 miles to the south. The perimeter of the Airco Parcel is fenced and gated. A 24-acre modified Title 6 of the New York Codes, Rules and Regulations NYCRR Part 360 cap was constructed over the former disposal area as part of an interim remedial measure (IRM) was completed in 2000.

There are no current users of groundwater at the Vanadium Site. Regional groundwater yields from overburden deposits are too low for domestic or industrial purposes. The bedrock has the capability to produce higher yields; however, the bedrock groundwater is typically highly mineralized and is not used as a drinking water source in the area.

#### 2.3 Basis of Actions

In 1985, the NYSDEC first listed the Vanadium Site as a Class 2a site in the Registry of Inactive Hazardous Waste Disposal Sites in New York (the Registry). Class 2a is a temporary classification assigned to a site that has inadequate and/or insufficient data for inclusion in any of the other classifications. In 1995, the NYSDEC listed the Vanadium Site as a Class 2 site in the Registry. A Class 2 site is a site where the NYSDEC has determined hazardous waste presents a significant threat to the public health or the environment and action is required. The NYSDEC lowered the classification for the Airco Parcel to a Class 4 inactive hazardous waste site on 24 November 2014, after remedial measures were completed on OU-1 through OU-3.

#### 2.4 Basis for Taking Action at The Airco Parcel

The Airco Parcel was historically used to dispose of a wide variety of waste materials derived from the metallurgic industry. Prior to commencement of remedial activities at the Airco Parcel, approximately 80 percent of the site was largely exposed waste and groundwater was recharging to surface water in the eastern and southwest portions of the site via seeps. The groundwater contained concentrations of calcium, chromium and hexavalent chromium with pH above background levels.

The remedy selected for the Airco Parcel included installation of a landfill cap to limit infiltration of water into the waste material thereby reducing the amount of impacted groundwater or surface water. Since the Airco Parcel had been permitted as a 6 NYCRR Part 360 landfill, the remedy was required to conform to the provisions of 6 NYCRR Part 360, Solid Waste Management Facilities (NYSDEC 1998).

Ongoing remedial measures at the Airco parcel include operation and maintenance of the cap to prevent direct exposure to waste materials and operation and maintenance of the Groundwater Collection and Treatment System (GCTS) to prevent the release of untreated groundwater. Potential exposure pathways at the Airco Parcel are being addressed through the capping of the landfill, the installation of the fence, and operation and maintenance of the GCTS. Public water is available to adjacent areas surrounding the site.

As noted in the Proposed Remedial Action Plan (PRAP) and Record of Decision (ROD) developed for the Vanadium Site (NYSDEC 2006), the IRM for the Airco Parcel has accomplished the remedial action objectives. The remedial measures have operated and been maintained in a manner consistent with the design and approved Operation, Maintenance, and Monitoring Plans.

The following are required as part of post-closure monitoring and facility maintenance:

- Maintenance of all drainage structures and ditches to prevent ponding of water and erosion of the final landfill soil cap.
- Inspections of the engineered wetland to assess the presence of mosquito larva.
- Maintenance of the soil cover integrity, slopes, cover vegetation, drainage structures, and the perimeter road during the post-closure monitoring and maintenance period.
- Maintenance and sampling of environmental monitoring points during the post-closure period. A Periodic Review Report must be submitted annually to the NYSDEC Division of Solid and Hazardous Materials, Region 9, the State of New York Department of Health in Albany, New York; and to the document repository located at the Town of Niagara Town Clerk's Office.
- Maintenance of the vegetative cover on all exposed final cover material, and adequate measures must be taken to ensure the integrity of the final vegetated cover, topsoil layer, and underlying barrier protection layer.
- Operation and maintenance of the GCTS to effectively mitigate the release of groundwater recharging to surface water in the southwest corner of the Airco Parcel.
- Maintenance of records from all sampling and analysis results.

## 3. EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The 2021 periodic review of the remedy found that the remedy was constructed in accordance with the requirements of the Interim Remedial Measure (IRM). The remedy is functioning as designed and the threats at the site are being managed through capping of the waste and prevention of releases of untreated groundwater.

Since the site is an unlined landfill, concentrations of Constituents of Concern (COCs) in shallow groundwater in contact with waste may remain above some water quality standards. The remedy was designed to prevent exposure pathways and to prevent the release of untreated groundwater, restoration of groundwater to drinking water standards does not apply for the site Remedial Action Objectives (RAOs). The remedy has eliminated the exposure pathways through capping of the former landfill and collection and treatment of impacted groundwater recharging to the ground surface. Reductions and improvements in concentrations of the predominant COC in groundwater and surface water, (hexavalent chromium) were noted during the 2016 through 2021 reporting period. Over the last five years, the hexavalent chromium concentrations were stable in all but one monitoring well. In An increasing trend was noted in MW-2B. However, this is likely a result of the cap limiting infiltration which would reduce dilution of near surface groundwater in the vicinity of MW-2B.

The remedy is functioning as intended and no modification of the remedy is necessary. Inspection of the cap indicated no problems related to erosion, desiccation cracking, vegetative cover, etc. The treatment system is operating as designed and operational data is presented in Attachment E. Trend Graphs are provided in Attachment F.

To reduce long term project costs a groundwater extraction pilot test was initiated in 2012 to test whether pumping from bedrock may lower water elevations within the Airco waste to a level to allow for the shutdown of the on-site GCTS in the future. This pilot test was approved by NYSDEC in an email correspondence dated October 14, 2011. Initial results were summarized in a letter dated January 8, 2014 issued to the NYSDEC. The pilot study was suspended between 2012 and 2017 pending resolution of regional groundwater quality issues. The pilot study was reactivated in May 2017 and ran through December 2017 utilizing activated carbon for treatment of the extracted water. The third phase of the Pilot Test was conducted in 2019. A draft Work Plan was submitted to NYSDEC on October 29, 2018. NYSDEC provided comments to the draft Work Plan in a letter dated December 18, 2018. A revised Work Plan was provided to the NYSDEC on dated January 18, 2019. NYSDEC provided comments to the revised Work Plan in a letter dated February 1, 2019. The final Work Plan was provided to NYSDEC on February 15, 2019. The pilot test was approved by the NYSDEC in a letter dated February 20, 2019. The third phase of the pilot study ran from June 17. 2019 through December 17, 2019. Findings were summarized to the NYSDEC in a letter report dated March 19, 2020.

#### 4. IC/EC PLAN COMPLIANCE REPORT

The remedy for the Site includes institutional controls (IC) and engineering controls (EC). The Post-Closure Monitoring and Facility Maintenance Plan<sup>1</sup> includes the following ICs for the site:

- Soil Management Plan which is intended to restrict site usage or excavation activities which would permit exposing the waste layer.
- Site Management Plan which is intended to restrict future development of the site.
- The Operations and Monitoring (O&M) plans, which are sections of the post-Closure plan that detail the required operations, maintenance, and monitoring activities. This includes an annual engineering inspection of the cap system (See Attachment D) to ensure the cap components are maintained and that no penetrations of the cap have occurred.
- Although not discussed in the post-Closure plan, an environmental easement including land use restrictions are also in place and recorded on the deed to prevent future site use and development (September 2014).

The ECs for the site include the following:

- Landfill Cover System
- Fencing/Access Control
- Groundwater Collection and Treatment System (GCTS)

The ECs are discussed in the post-Closure plan which specifies the routine inspection, operation and maintenance that is required. The engineering controls each have a specific intended purpose. The landfill capping system is designed to prevent infiltration of precipitation that could mobilize and transport contaminants into the groundwater. The fencing provides site security and limits access to the site reducing the potential of unauthorized personnel from possible exposure to contaminants or to groundwater treatment operations. The GCTS is designed to intercept, collect, and treat groundwater that could discharge to the surface water and provide an exposure pathway.

Attachments E through E.2 provide a summary of the monthly operations and maintenance details for 2021 which were completed to maintain the system to meet the EC.

The data collected during 2021 demonstrates the IC/ECs in place are meeting their intended objectives. There were no modifications to the ECs during the reporting period; only routine maintenance (pump repairs, cleaning of tanks lines and equipment, etc.) were required. There are no changes or modifications to the IC recommended at this time. NYSDEC did request a transition from the older post-Closure plan to NYSDEC's current Site Management Plan format. Therefore, a Site Management Plan will be prepared and issued to NYSDEC in 2022.

<sup>1</sup> Greenstar Environmental Solutions, LLC, 2017. Post-Closure Monitoring and Facility Maintenance Plan for the Airco Parcel, Niagara Falls, New York. February

#### 5. MONITORING PLAN COMPLIANCE REPORT

The Post-Closure Monitoring and Facility Maintenance Plan requires quarterly GCTS discharge sampling, routine maintenance of the cap and groundwater sampling every five years.

#### 5.1 Monitoring Well Gauging

The site monitoring wells and piezometers, Figure 3, were gauged on 28 September 2021 prior to sampling. Gauging data are summarized in the table below:

| In.        |                |                |            |                 |
|------------|----------------|----------------|------------|-----------------|
|            | Depth to Water | Well Elevation | Well Depth | Water Elevation |
| Well ID    | (ft TOC)       | (ft AMSL)      | (ft BGS)   | (ft AMSL)       |
| MW-1B      | 11.34          | 617.77         | 27.83      | 606.43          |
| MW-2B      | 14.41          | 615.88         | 27.31      | 601.47          |
| MW-3B      | 11.00          | 611.22         | 18.41      | 600.22          |
| MW-4B      | 8.24           | 606.68         | 15.08      | 598.44          |
| MW-5B      | 12.61          | 605.48         | 14.22      | 592.87          |
| MW-6B      | 4.02           | 603.47         | 23.02      | 599.45          |
| MW-7B      | 11.13          | 609.48         | 21.79      | 598.35          |
| MW-8B      | 4.91           | 611.62         | 15.51      | 606.71          |
| Notes: TOC | = Top of Cas   | ing.           |            |                 |

28 September 2021 Groundwater Gauging Data

AMSL = Above Mean Sea Level. BGS = Below Ground Surface.

Figure 4 shows the inferred groundwater flow direction at the site based on the 28 September 2021 gauging data. The data indicates groundwater flow is roughly from north to south, consistent with previously collected site data.

The general groundwater flow pattern depicted for 2021 is consistent with past years. However, precipitation prior to gauging caused higher than normal surface water elevations in the wetlands to the south of the site, resulting in an apparent northward flow of groundwater along the southern site boundary. However, this data is interpreted to be a temporary condition and is not indicative of typical groundwater flow patterns. In general, groundwater elevations are highest near MW-1B located along the northern property boundary. No significant seasonal changes in groundwater flow direction have been noted in historic groundwater gauging data.

#### 5.2 Groundwater Monitoring

Groundwater monitoring has been conducted in accordance with the post-closure monitoring and facility maintenance plan since December 2000. The data evaluation for this remedy review is limited to evaluating the data from the eight monitoring wells and GCTS discharge samples for 2021 in comparison to the same data set from 2016. Sample locations are shown on Figure 3. The data generated from these monitoring locations most accurately reflects current groundwater conditions.

#### 5.2.1 Groundwater Sampling

Monitoring wells were sampled on September 28 and 29, 2021. Groundwater samples were collected from the eight on-site monitoring wells during the Five-Year review sampling event. Monitoring wells MW-2B and MW-5B, which exhibited limited well yield, were purged dry and allowed to recharge prior to sample collection. Monitoring wells MW-1B, MW-3B, MW-6B, MW-7B and MW-8B have adequate groundwater yield for low flow sampling utilizing a peristaltic pump. Water quality readings, including pH, temperature, conductivity, dissolved oxygen, and turbidity, which were monitored to demonstrate stabilization prior to sample collection. Monitoring well locations are shown on Figure 3.

#### 5.3 Laboratory Analysis

Groundwater samples were placed in coolers on ice and maintained at 4<sup>0</sup> C. The coolers were delivered in accordance to chain of custody protocols to the Alpha Analytical Service Center in Tonawanda, New York. At the Alpha Analytical laboratory in Westborough, MA samples were analyzed for phenolics by U.S. Environmental Protection Agency (EPA) Method 420.2, sulfate by EPA Method 375.3, ammonia (expressed as nitrogen) by EPA Method 350.2, and Target Analyte List metals by EPA Series 6010/6020, including hexavalent chromium.

#### 5.4 Regulatory Criteria

As per the approved Post-Closure Monitoring and Facility Maintenance Plan<sup>2</sup>, groundwater sampling results were compared to NYSDEC Ambient Water Quality Standards (AWQS) (NYSDEC 1999) and guidance values for Class GA waters. Class GA groundwater is used as a source of drinking water. Surface water samples were compared to NYSDEC AWQS for Class D surface waters. Class D waters are used for fishing but are not conducive to fish propagation. If no Class D standards were applicable for a particular compound, analytical results were compared to the more stringent Class C standards. Class C waters are suitable for fishing and fish propagation.

#### 5.5 Analytical Results

Summary tables listing analytical results, for the last four 5-year review periods, compared to applicable NYSDEC AWQS are included in Attachment A. A tag map illustrating analytical results for the September 2021 monitoring well sampling event is provided on Figure 5. Copies of the well gauging, purging, and sampling forms are provided in Attachment B. A copy of the laboratory data package for GCTS effluent, groundwater and surface water sampling is included in Attachment C. Groundwater results were generally consistent with previous sampling events.

<sup>2</sup> Greenstar Environmental Solutions, LLC, 2017. Post-Closure Monitoring and Facility Maintenance Plan for the Airco Parcel, Niagara Falls, New York. February

#### **5.5.1** Metals

Unfiltered groundwater samples were collected from 8 monitoring wells for metals analyses. Significant results included the following:

- Cadmium, chromium, hexavalent chromium, iron, lead, magnesium, manganese, selenium, and sodium were detected in one or more of the groundwater samples at concentrations exceeding NYSDEC AWQS.
- Cadmium was detected in excess of the NYSDEC AWQS in MW-7B at a concentration of 0.01J mg/L. It should be noted that turbidity was elevated in the sample, which may affect sample quality. See Attachment B, Well Gauging, Purging, and Sampling Forms.
- Chromium was detected in excess of the NYSDEC AWQS in MW-2B, MW-4B and MW-8B at concentrations ranging from 0.272 mg/L to 3.2 mg/L (MW-7B).
- Hexavalent chromium was detected in excess of the NYSDEC AWQS in MW-2B and MW-4B at concentrations of 0.809 mg/L and 0.238 mg/L, respectively.
- Iron was detected in excess of the NYSDEC AWQS in MW-3B through MW-8B at concentrations ranging from .0.653 mg/L (MW-8B) to 97.6 mg/L (MW-7B).
- Lead was detected in excess of the NYSDEC AWQS in MW-7B at a concentration of 0.097 mg/L. It should be noted that turbidity was elevated in the sample, which may affect sample quality. See Attachment B, Well Gauging, Purging, and Sampling Forms.
- Magnesium was detected in excess of the NYSDEC AWQS in MW-1B, MW-4B, MW-5B, MW-6B, MW-7B and MW-8B at concentrations ranging from 54.4 mg/L (MW-1B) to 100.0 mg/L (MW-4B).
- Manganese was detected in excess of the NYSDEC AWQS in MW-1B, MW-7B and MW-8B at concentration ranging from 0.334 mg/L(MW-8B) to 4.5 mg/L (MW-7B).
- Selenium was detected in excess of the NYSDEC AWQS in MW-7B at a concentration of 0.091J mg/L. It should be noted that turbidity was elevated in the sample, which may affect sample quality. See Attachment B, Well Gauging, Purging, and Sampling Forms.
- Sodium was detected in excess of the NYSDEC AWQS in all 8 monitoring wells at concentrations ranging from 31.8 mg/L (MW-5B) to 170 mg/L (MW-1B).

As noted above, these results were consistent with past results.

#### **5.5.2** Water Quality Parameters

Water quality parameters, including pH, temperature, conductivity, dissolved oxygen, and turbidity were collected in the field. These values are included on the forms in Attachment B. In addition, water quality parameters, including ammonia (expressed as N), phenolics, and sulfate, were analyzed by the laboratory. Notable results for the seven groundwater monitoring wells and surface water samples included the following:

- Ammonia (expressed as N) and Phenolics were detected in excess of the NYSDEC AWQS in MW-2B at concentrations of 2.6 mg/L and 0.006J mg/L, respectively.
- Sulfate was detected in excess of the NYSDEC AWQS in MW-4B, MW-6B and MW-8B at concentration ranging from 272 mg/L (MW-8B) to 302 mg/L (MW-6B).
- pH measurements were measured outside the NYSDEC AWQS of 6.5-8.5 standard pH units in monitoring wells MW-2B (12.65), MW-3B (10.65), and MW-4B (9.18).

#### 6. OPERATION & MAINTENANCE (O&M) PLAN COMPLIANCE REPORT

Linde has the responsibility for conducting operation and maintenance activities at the Airco Parcel. These activities are being conducted in accordance with the Post-Closure Monitoring and Facility Maintenance Plan<sup>3</sup>.

The primary remedial activity at the Airco Parcel involved the construction of a 6 NYCRR Part 360 cap consisting of:

- Bedding layer (6-in.)
- Low permeability layer (40-mil VFPE geomembrane)
- Drainage layer (geocomposite drainage net)
- Barrier protection layer (12 in.)
- Topsoil (6 in.).

The landfill cap was designed to eliminate the flow of water through the landfill by providing an impermeable layer which prevents precipitation from infiltrating into the landfill thereby producing leachate. The cap effectively removes a major source of the on-going groundwater contamination by reducing leachate generation. Current activities have been focused on operation and maintenance of the treatment system, monitoring groundwater at the site perimeter monitoring wells, and inspections and maintenance of the cap and fence around the site.

During 2021 routine operations and maintenance of the GCTS was performed during monthly site visits. Activities performed include data collection, cleaning and calibration of pH probes, cleaning of pressure transmitters, operational parameter adjustments based on observed site conditions, and as needed site maintenance tasks (pump repairs and/or probe replacement). The replacement of system components, including pumps, pressure transmitters, and pH probes was also scheduled and performed during the routine visits. Details of these activities are presented in Attachment E The collection trench was evaluated in 2021 and was found to be impacted by calcium and was subsequently replaced to improve system collection and treatment.

#### 6.1 System Operations and Maintenance (January to December 2021)

The GCTS was operated throughout the period of January 1 to December 31, 2021. System monitoring and data logging was conducted throughout the operation period. Attachment E provides details of any issues encountered and implemented solutions.

During the reporting period, the GCTS operated consistently throughout the year pumping 3,503,914 gallons at an average flow rate of 6.67 gallons per minute (gpm). The T8 emergency overflow containment pond is a lined pond where flow is diverted in the event of an alarm conditions that prohibits water from being processed by the GCTS. It allows the system to continue to collect and store the untreated water during periods when bypassing the GCTS is required for scheduled or unscheduled shutdowns. The T8 emergency overflow containment pond was needed during several events in 2021 as detailed in Attachment E. There were no

<sup>3</sup> Greenstar Environmental Solutions, LLC, 2017. Post-Closure Monitoring and Facility Maintenance Plan for the Airco Parcel, Niagara Falls, New York. February

uncontrolled releases of impacted water during 2021.

GCTS sampling occurred monthly during 2021. Samples were collected at various locations within the system to evaluate treatment system performance and compliance with discharge criteria. Samples were collected from the following locations: within the GCTS system at T3B after CO<sub>2</sub> aeration; T6B after treatment via the zero-valence iron tank; after the engineered wetland (T7); and at the point where the drainage swale exits the site in the southwest corner. The samples were analyzed in the field for total chromium and hexavalent chromium using a HACH DR4000<sup>®</sup> spectrophotometer. The HACH DR4000<sup>®</sup> spectrophotometer field method is EPA approved for reporting water and wastewater analyses within a detection limit of 0.006 mg/L for hexavalent chromium, and 0.003 mg/L for total chromium.

The GCTS discharge samples were sent for off-site laboratory analysis at a New York State accredited environmental laboratory. During the 2021 reporting period, field analysis of the GCTS discharge samples collected from the AP-EWE-01 location in the southwest corner of the site had no hexavalent chromium or total chromium concentrations in excess of the NYSDEC discharge guidance values of 11  $\mu$ g/L and 50  $\mu$ g/L, respectively. Field sampling results for total and hexavalent chromium are summarized in Table 1 and results of the quarterly GCTS discharge samples are summarized in Table 2. The Laboratory data package for the GCTS discharge sampling can be found in Attachment C.

Analytical results for the quarterly discharge sampling were in compliance with NYSDEC discharge values with the following exceptions:

• The second and third quarter dissolved oxygen values, 4.6 and 4.4 mg/L, respectively, were below the NYSDEC discharge guidance value (7 mg/L). This is due to the use of zero valent iron treatment which removes oxygen as part of the treatment process. This water is then discharged to an engineered wetland and flow along a swale prior to discharge. The low dissolved oxygen values are likely due to increased biologic activity within the wetlands during the second and third quarters which may correspondingly reduce the amount of oxygen which is absorbed by treated water. This lower-than-expected result is not considered significant as further oxygenation will occur as the water flows along the swale prior to discharge.

No discharge from the site occurred in the first quarter and therefore no sampling was performed. The field sampling indicated Total and hexavalent chromium levels within acceptable limits. The treatment system is operating as intended and no changes are required.

#### 6.2 GCTS Modifications (January to December 2021)

No system modifications occurred during 2021. System modifications and improvements completed during this five-year review were performed in 2020. These included upgrades to the control system including a complete replacement of the main control panel, upgrades to the hardware in the T6A/B control panel including the T3B VFD, replacement of the pH controller and probes for T3B and T-6B, installation of a new pH controller and probe in T3A, replacement of the T1 control panel, including VFDs, and replacement of the local area network radios communicating between the southwest corner T1 panel and the main portion of the GCTS.

#### 7. OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

As demonstrated by the data reviewed and the annual site inspection, the cap is functioning as intended by the IRM for the Airco Parcel. The capping of the landfill achieved the RAOs by eliminating migration of contaminants into groundwater via infiltration and by eliminating environmental and human exposure pathways. There have been no changes in the physical conditions of the site that would affect the protectiveness of the remedy. The cap and surrounding area were undisturbed, the cap is operating as designed. The perimeter fence around the site is intact and in good condition. The GCTS is functioning as designed. The GCTS collects, treats and discharges groundwater to prevent the uncontrolled discharge of impacted groundwater recharging to surface water.

The NYSDEC has requested that the old post-closure plan be updated into the new Site Management Plan format. This will be completed during 2022. No other recommendations are suggested at this time.

#### TABLE 1 ROUTINE GCTS FIELD SAMPLING RESULTS 1 JANUARY – 31 DECEMBER 2021 AIRCO PARCEL, NIAGARA FALLS, NEW YORK

|          | Calcium  | Tank 3B    | Iron T   | ank 6B     | Engineered Wetland |            | Southwes | t Corner   |
|----------|----------|------------|----------|------------|--------------------|------------|----------|------------|
|          | Total    | Hexavalent | Total    | Hexavalent | Total              | Hexavalent | Total    | Hexavalent |
| Date     | Chromium | Chromium   | Chromium | Chromium   | Chromium           | Chromium   | Chromium | Chromium   |
| 1/7/21   | 18 μg/L  | 11 μg/L    | 1 μg/L   | 0 μg/L     | NS                 | NS         | NS       | NS         |
| 2/15/21  | NS       | NS         | NS       | NS         | NS                 | NS         | NS       | NS-Ice     |
| 3/22/21  | ND       | 19 μg/L    | 11 μg/L  | ND         | NS                 | NS         | NS       | NS         |
| 4/15/21  | 16 μg/L  | 3 μg/L     | ND       | ND         | 5 μg/L             | 6 μg/L     | ND       | ND         |
| 5/11/21  | 6 μg/L   | 11 μg/L    | 1 μg/L   | 6 μg/L     | NS                 | NS         | NS       | NS         |
| 6/29/21  | 11 μg/L  | 6 μg/L     | 5 μg/L   | 2 μg/L     | NS                 | NS         | NS       | NS         |
| 7/14/21  | 41 μg/L  | 2 μg/L     | ND       | 2 μg/L     | ND                 | ND         | 9 μg/L   | ND         |
| 8/26/21  | 8 μg/L   | 11 μg/L    | ND       | ND         | ND                 | ND         | 10 μg/L  | 9 μg/L     |
| 9/27/21  | 52 μg/L  | 6 μg/L     | ND       | ND         | 3 μg/L             | 12 μg/L    | 12 μg/L  | 5 μg/L     |
| 10/12/21 | 49 μg/L  | 6 μg/L     | ND       | ND         | 5 μg/L             | 11 μg/L    | 12 μg/L  |            |
| 11/29/21 | 45 μg/L  | 11 μg/L    | ND       | ND         | 1 μg/L             | 10 μg/L    | 9 μg/L   | 3 μg/L     |
| 12/14/21 | 52 μg/L  | 26 μg/L    | ND       | ND         |                    |            | 10 μg/L  | 5 μg/L     |

NOTE: NS – Insufficient water.

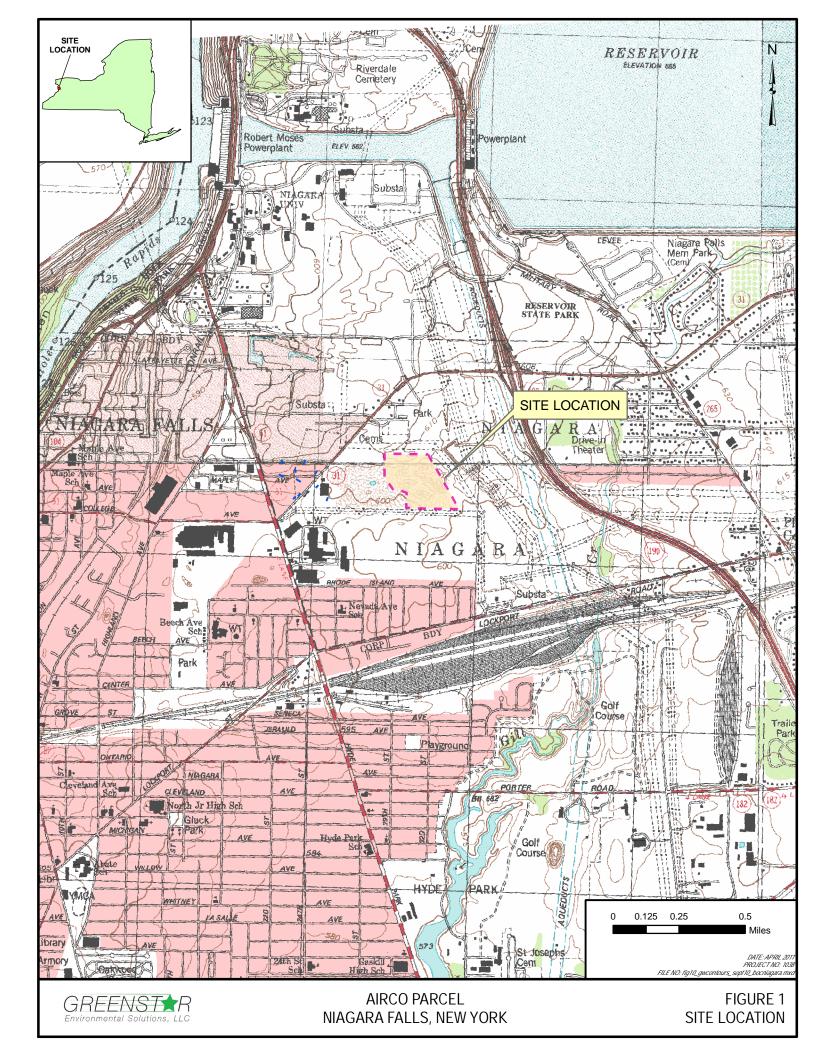
NS - Ice = Not Sampled due to winter weather conditions.

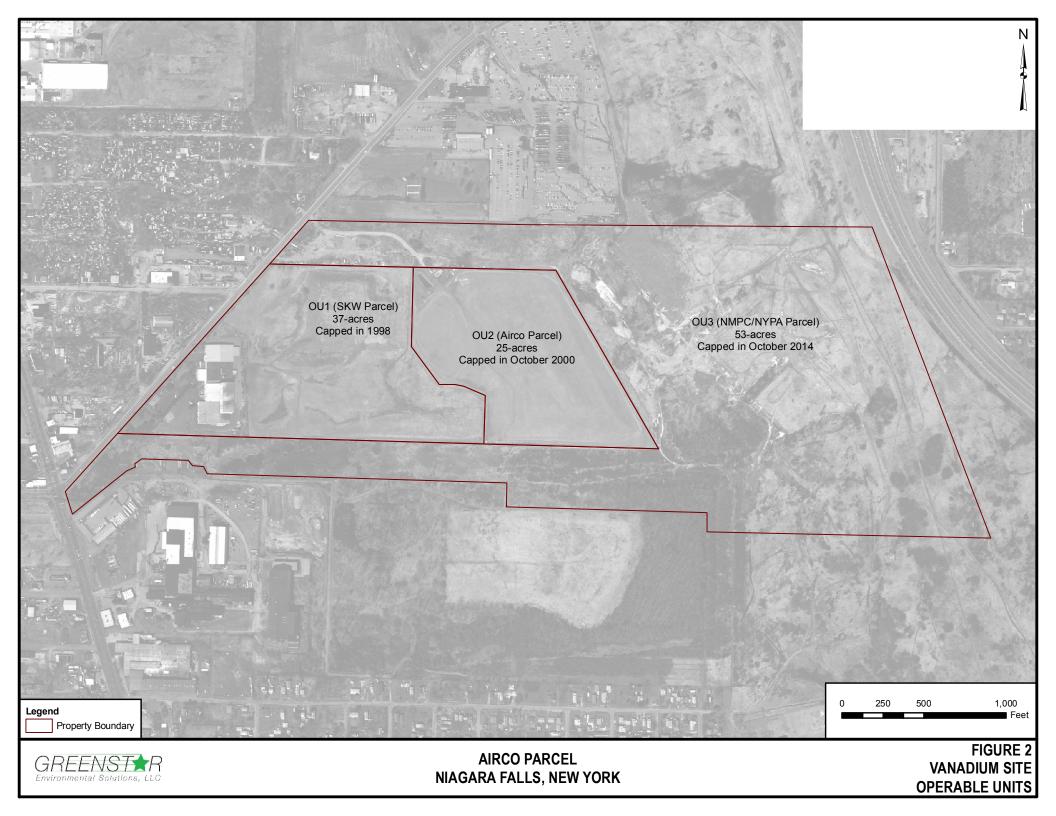
**Bold** field sample results were in excess of SPDES discharge guidance values.

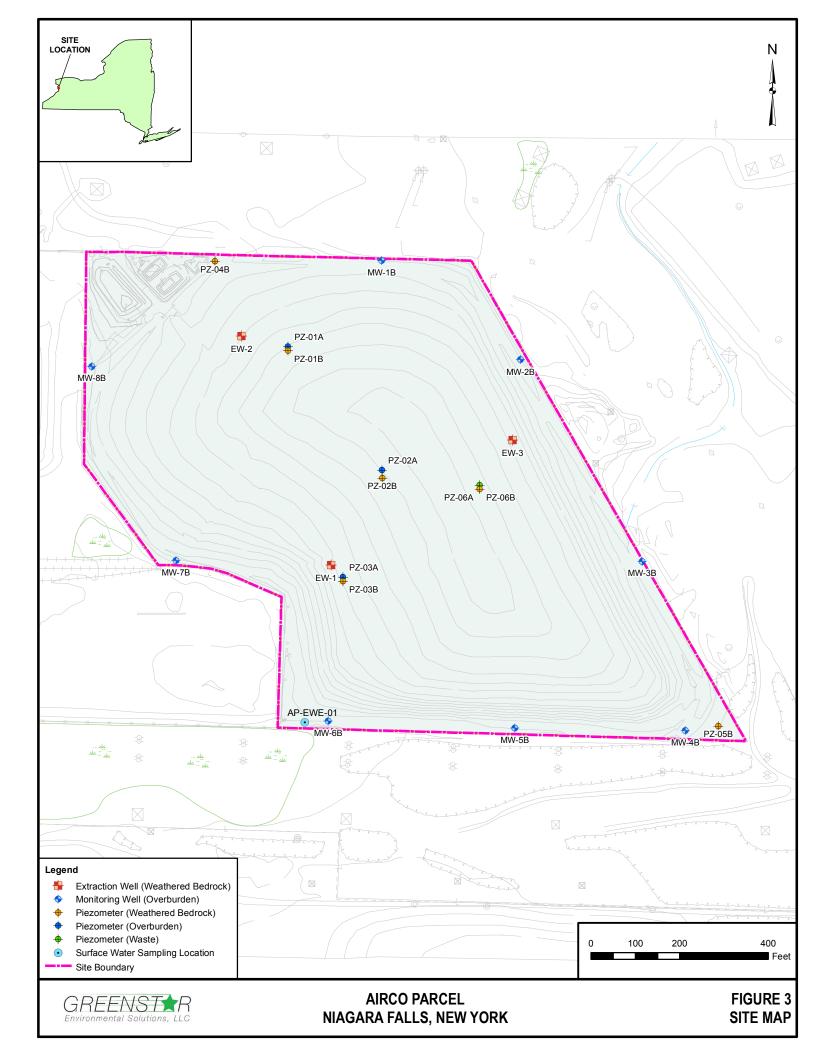
Field samples analyzed using a HACH DR4000® Spectrophotometer.

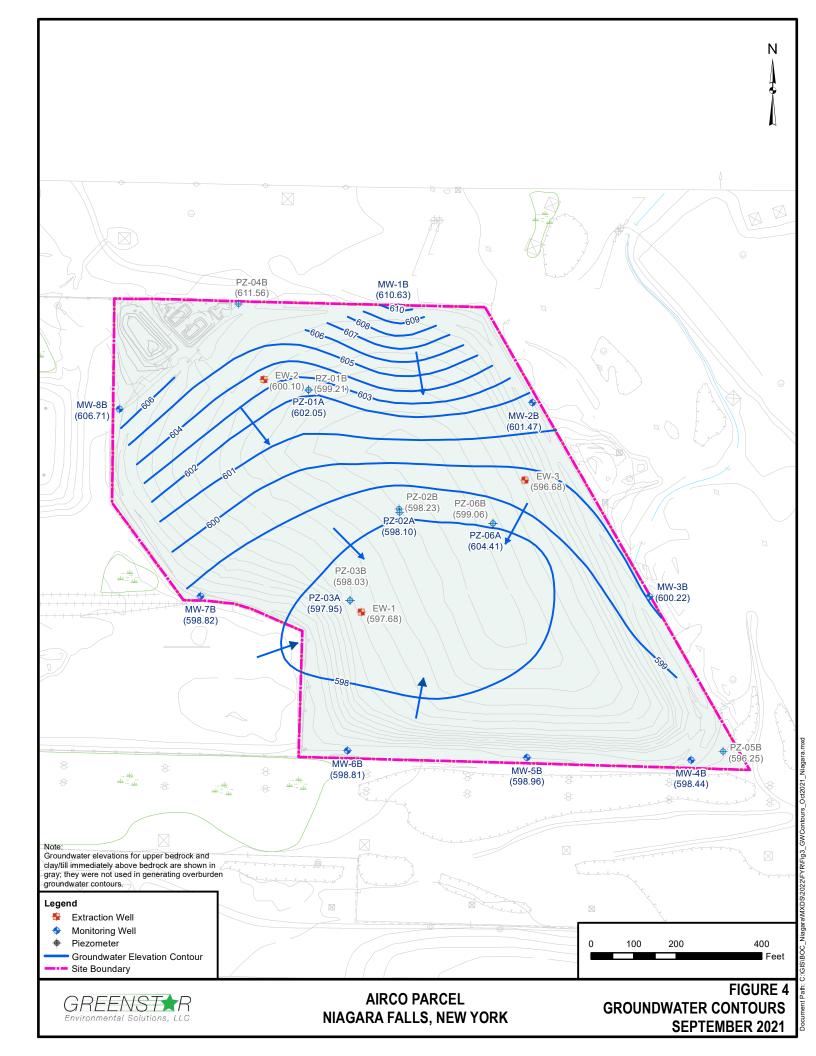
Hach Methods 8023 for Hexavalent Chromium and Hach Method 8084 for Total Chromium.

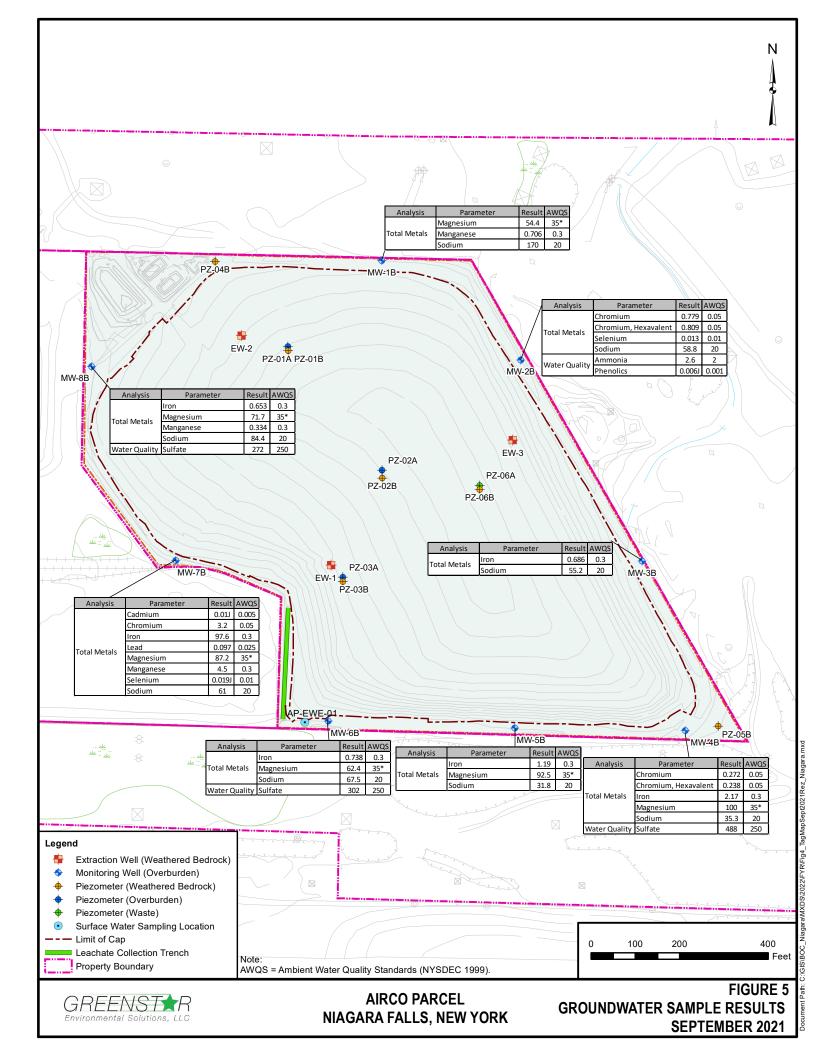
# TABLE 2 QUARTERLY GCTS DISCHARGE SAMPLING RESULTS 1 JANUARY – 31 DECEMBER 2021 AIRCO PARCEL, TOWN OF NIAGARA, NEW YORK


| Parameter                   | 1 <sup>st</sup> Quarter | 16 April 2021 | 20 July 2021 | 12 October 2021 | New York State Department of Environmental Conservation Discharge Criteria |
|-----------------------------|-------------------------|---------------|--------------|-----------------|----------------------------------------------------------------------------|
| рН                          | NS                      | 7.5           | 7.6          | 7.5             | 6.5-8.5                                                                    |
| Total suspended solids      | NS                      | 1.5           | 1.9          | 1.9             | 10 mg/L                                                                    |
| Dissolved Oxygen            | NS                      | 8             | 4.6          | 4.4             | >7 mg/L                                                                    |
| Ammonia as N                | NS                      | 0.102         | .329         | >0.024U         | 5.0 mg/L                                                                   |
| Total Kjeldahl nitrogen     | NS                      | 0.721         | .808         | >.022U          | Monitor (mg/L)                                                             |
| Total Recoverable Phenolics | NS                      | <0.006U       | <0.006U      | <0.006U         | 0.008 mg/L                                                                 |
| Biochemical oxygen demand   | NS                      | <2.0U         | <2.0U        | <2.0U           | 5.0 mg/L                                                                   |
| 1,1-Dichloroethane          | NS                      | <0.40U        | <0.40U       | <0.40U          | 5.0 μg/L                                                                   |
| Trichloroethene             | NS                      | <0.33U        | <0.33U       | <0.33U          | 5.0 μg/L                                                                   |
| Nickel                      | NS                      | <0.00055U     | .00149J      | .00076J         | 0.07 mg/L                                                                  |
| Copper                      | NS                      | 0.00157       | .0084J       | <0.00038U       | 0.0147 mg/L                                                                |
| Barium                      | NS                      | 0.06446J      | 0.1128       | 0.1230          | 2 mg/L                                                                     |
| Total chromium              | NS                      | 0.00036J      | .0058J       | .00068J         | 0.1 mg/L                                                                   |
| Hexavalent chromium         | NS                      | <0.003U       | <0.003U      | <0.003U         | 0.011 mg/L                                                                 |
| Iron                        | NS                      | 0.0678J       | .0683        | .0568           | 0.3 mg/L                                                                   |
| Selenium                    | NS                      | <0.00173U     | <0.00173U    | <0.0073U        | $0.0046~\mathrm{mg/L}$                                                     |
| Thallium                    | NS                      | 0.00022J      | .00039J      | 0.00018J        | 0.004 mg/L                                                                 |
| Zinc                        | NS                      | 0.01861J      | .01792       | 0.01098         | 0.115 mg/L                                                                 |
| Nitrate as N                | NS                      | 0.044J        | .32          | .15             | Monitor (mg/L-N)                                                           |
| Nitrite as N                | NS                      | 0.016J        | .072         | <0.014U         | Monitor (mg/L-N)                                                           |
| Chemical oxygen demand      | NS                      | 8.7J          | 20           | 11              | 40 mg/L                                                                    |
| Total dissolved solids      | NS                      | 440           | 740          | 620             | Monitor (mg/L)                                                             |


Values in **BOLD** were out of the discharge guidance values range for that parameter.


NS = Not Sampled. No discharge from the site occurred during the 1<sup>st</sup> Quarter.


U = Compound not detected at the minimum laboratory detection limit shown.


J = Result is less than the reporting limit but greater than or equal to the minimum detection limit and the concentration is an approximate value.











## **Attachment A**

Summary of Analytical Results Groundwater Samples 2006 Through 2021

## ATTACHMENT A SUMMARY OF ANALYTICAL RESULTS, GROUNDWATER SAMPLES, 2006 THROUGH 2021 AIRCO PARCEL, NIAGARA FALLS, NEW YORK

|                   |                          |         |            | MW         | -1B        |           |
|-------------------|--------------------------|---------|------------|------------|------------|-----------|
| Analyte Group     | Analyte                  | AWQS    | 10/10/2006 | 10/18/2011 | 9/27/2016  | 9/28/2021 |
| Total Metals      | Cadmium                  | 0.005   | (<0.001U)  | 0.00099J   | 0.00054J   | (<0.005U) |
| (mg/L)            | Chromium                 | 0.05    | (<0.004U)  | 0.0013J    | (<0.001U)  | (<0.01U)  |
|                   | Chromium, hexavalent     | 0.05    | (<0.011U)  | (<0.005U)  | 0.005J     | (<0.01U)  |
|                   | Iron                     | 0.3     | 0.17       | 0.12       | 0.094      | 0.254     |
|                   | Lead                     | 0.025   | (<0.005U)  | (<0.003U)  | (<0.003U)  | 0.003J    |
|                   | Magnesium                | 35*     | 63.5       | 62.2       | 58.7       | 54.4      |
|                   | Manganese                | 0.3     | 0.7        | 0.66       | 0.59 B     | 0.706     |
|                   | Selenium                 | 0.01    | (<0.015U)  | (<0.0087U) | (<0.0087U) | (<0.01U)  |
|                   | Silica                   |         | 7510       | 6.91B      |            |           |
|                   | Silicon                  |         |            |            | 6.8        | 6.85      |
|                   | Sodium                   | 20      | 112        | 125        | 178        | 170       |
|                   | Thallium                 | 0.0005* | (<0.02U)   | (<0.01U)   | (<0.01U)   | (<0.02U)  |
|                   | Zinc                     | 2*      | 0.48       | 0.56       | 0.46       | 0.477     |
| Water Quality     | Ammonia (expressed as N) | 2       | (<9.2U)    | (<0.009U)  | (<0.009U)  | 0.033J    |
| Parameters (mg/L) | Phenolics                | 0.001   | (<0.008U)  | 0.0056J    | (<0.005U)  | (<0.03U)  |
|                   | Sulfate                  | 250     | 230        | 186        | 179        | 214       |

|                   |                          |         |            | MW          | -2B        |           |
|-------------------|--------------------------|---------|------------|-------------|------------|-----------|
| Analyte Group     | Analyte                  | AWQS    | 10/10/2006 | 10/18/2011  | 9/28/2016  | 9/28/2021 |
| Total Metals      | Cadmium                  | 0.005   | (<0.001U)  | (<0.00033U) | (<0.0005U) | (<0.005U) |
| (mg/L)            | Chromium                 | 0.05    | 0.5        | 0.77        | 0.3        | 0.779     |
|                   | Chromium, Hexavalent     | 0.05    | 0.332      | 0.754       | 0.358      | 0.809     |
|                   | Iron                     | 0.3     | (<0.05U)   | (<0.019U)   | 0.25       | 0.032J    |
|                   | Lead                     | 0.025   | (<0.005U)  | (<0.003U)   | 0.0034J    | 0.005J    |
|                   | Magnesium                | 35*     | (<0.2U)    | (<0.043U)   | 0.083J     | 0.049J    |
|                   | Manganese                | 0.3     | (<0.003U)  | (<0.0003U)  | 0.014 B    | (<0.01U)  |
|                   | Selenium                 | 0.01    | (<0.015U)  | 0.0097J     | (<0.0087U) | 0.013     |
|                   | Silica                   |         | 522B       | 0.509B      |            |           |
|                   | Silicon                  |         |            |             | 2.8        | 0.812     |
|                   | Sodium                   | 20      | 56.7       | 40.5        | 70.7       | 58.8      |
|                   | Thallium                 | 0.0005* | (<0.02U)   | (<0.01U)    | (<0.01U)   | (<0.02U)  |
|                   | Zinc                     | 2*      | (<0.01U)   | (<0.0017U)  | 0.0033J    | 0.011J    |
| Water Quality     | Ammonia (expressed as N) | 2       | (<9.2U)    | 1.6         | 3.6 B      | 2.6       |
| Parameters (mg/L) | Phenolics                | 0.001   | 0.008      | 0.0105      | 0.0273     | 0.006J    |
|                   | Sulfate                  | 250     | 18.7       | 21.5        | 32.9       | 77.3      |

|                   |                          |         |            | MW          | 7-3B       |           |
|-------------------|--------------------------|---------|------------|-------------|------------|-----------|
| Analyte Group     | Analyte                  | AWQS    | 10/10/2006 | 10/17/2011  | 9/28/2016  | 9/28/2021 |
| Total Metals      | Cadmium                  | 0.005   | (<0.001U)  | (<0.00033U) | (<0.0005U) | (<0.005U) |
| (mg/L)            | Chromium                 | 0.05    | (<0.004U)  | (<0.00087U) | (<0.001U)  | (<0.01U)  |
|                   | Chromium, Hexavalent     | 0.05    | (<0.011U)  | (<0.005U)   | 0.0067J    | (<0.01U)  |
|                   | Iron                     | 0.3     | (<0.05U)   | 0.042J      | 0.12       | 0.686     |
|                   | Lead                     | 0.025   | (<0.005U)  | (<0.003U)   | (<0.003U)  | (<0.01U)  |
|                   | Magnesium                | 35*     | 2.7        | 5.8         | 2.9        | 4.55      |
|                   | Manganese                | 0.3     | (<0.003U)  | 0.0059      | 0.0053 B   | 0.016     |
|                   | Selenium                 | 0.01    | (<0.015U)  | (<0.0087U)  | (<0.0087U) | (<0.01U)  |
|                   | Silica                   |         | 8960       | 8.26B       |            |           |
|                   | Silicon                  |         |            |             | 8.1        | 9.11      |
|                   | Sodium                   | 20      | 76.9       | 54.4        | 50.2       | 55.2      |
|                   | Thallium                 | 0.0005* | (<0.02U)   | (<0.01U)    | (<0.01U)   | (<0.02U)  |
|                   | Zinc                     | 2*      | (<0.01U)   | 0.0069J     | 0.01       | 0.065     |
| Water Quality     | Ammonia (expressed as N) | 2       | (<9.2U)    | 1.2         | 0.63 B     | 0.998     |
| Parameters (mg/L) | Phenolics                | 0.001   | (<0.008U)  | (<0.005U)   | (<0.005U)  | (<0.03U)  |
|                   | Sulfate                  | 250     | 102        | 66.7        | 52.9       | 77.1      |

#### APPENDIX A (CONTINUED)

|                   |                          |         |            | MW-4B      |           |
|-------------------|--------------------------|---------|------------|------------|-----------|
| Analyte Group     | Analyte                  | AWQS    | 10/10/2006 | 10/17/2011 | 9/28/2021 |
| Total Metals      | Cadmium                  | 0.005   | (<0.001U)  | 0.00085J   | 0.001J    |
| (mg/L)            | Chromium                 | 0.05    | 0.22       | 0.12       | 0.272     |
|                   | Chromium, Hexavalent     | 0.05    | 0.172      | 0.0762     | 0.238     |
|                   | Iron                     | 0.3     | 0.96       | 5.4        | 2.17      |
|                   | Lead                     | 0.025   | (<0.005U)  | (<0.003U)  | 0.006J    |
|                   | Magnesium                | 35*     | 41.8       | 57.7       | 100       |
|                   | Manganese                | 0.3     | 0.022      | 0.11       | 0.042     |
|                   | Selenium                 | 0.01    | (<0.015U)  | (<0.0087U) | 0.006J    |
|                   | Silica                   |         | 7730       | 36B        |           |
|                   | Silicon                  |         |            |            | 9.68      |
|                   | Sodium                   | 20      | 93.3       | 71.2       | 35.3      |
|                   | Thallium                 | 0.0005* | (<0.02U)   | (<0.01U)   | (<0.02U)  |
|                   | Zinc                     | 2*      | 0.025      | 0.06       | 0.128     |
| Water Quality     | Ammonia (expressed as N) | 2       | (<9.2U)    | (<0.009U)  | 0.064J    |
| Parameters (mg/L) | Phenolics                | 0.001   | (<0.008U)  | (<0.005U)  | (<0.03U)  |
|                   | Sulfate                  | 250     | 159        | 153        | 488       |

|                   |                          |         |            | MW         | -5B        |           |
|-------------------|--------------------------|---------|------------|------------|------------|-----------|
| Analyte Group     | Analyte                  | AWQS    | 10/10/2006 | 10/17/2011 | 9/28/2016  | 9/28/2021 |
| Total Metals      | Cadmium                  | 0.005   | (<0.001U)  | 0.00034J   | 0.00095J   | (<0.005U) |
| (mg/L)            | Chromium                 | 0.05    | 0.0042     | 0.0039J    | 0.0032J    | 0.004J    |
|                   | Chromium, Hexavalent     | 0.05    | (<0.011U)  | (<0.005U)  | 0.0091J    | (<0.01U)  |
|                   | Iron                     | 0.3     | 0.78       | 0.6        | 2.7        | 1.19      |
|                   | Lead                     | 0.025   | (<0.005U)  | (<0.003U)  | 0.012      | 0.005J    |
|                   | Magnesium                | 35*     | 73.3       | 82.3       | 93.3       | 92.5      |
|                   | Manganese                | 0.3     | 0.045      | 0.021      | 0.069 B    | 0.051     |
|                   | Selenium                 | 0.01    | (<0.015U)  | (<0.0087U) | (<0.0087U) | (<0.01U)  |
|                   | Silica                   |         | 9650       | 16.8B      |            |           |
|                   | Silicon                  | -       |            |            | 13.8       | 12.6      |
|                   | Sodium                   | 20      | 44.4       | 31.2       | 42.2       | 31.8      |
|                   | Thallium                 | 0.0005* | (<0.02U)   | (<0.01U)   | (<0.01U)   | (<0.02U)  |
|                   | Zinc                     | 2*      | 0.057      | 0.025      | 0.13       | 0.076     |
| Water Quality     | Ammonia (expressed as N) | 2       | (<9.2U)    | (<0.009U)  |            | 0.029J    |
| Parameters (mg/L) | Phenolics                | 0.001   | (<0.008U)  | (<0.005U)  |            | (<0.03U)  |
|                   | Sulfate                  | 250     | 154        | 150        | 152        | 144       |

|                   |                          |         |            | MW          | '-6B       |           |
|-------------------|--------------------------|---------|------------|-------------|------------|-----------|
| Analyte Group     | Analyte                  | AWQS    | 10/10/2006 | 10/18/2011  | 9/27/2016  | 9/28/2021 |
| Total Metals      | Cadmium                  | 0.005   | (<0.001U)  | (<0.00033U) | (<0.0005U) | (<0.005U) |
| (mg/L)            | Chromium                 | 0.05    | (<0.004U)  | (<0.00087U) | (<0.001U)  | (<0.01U)  |
|                   | Chromium, hexavalent     | 0.05    | (<0.011U)  | (<0.005U)   | 0.0059J    | (<0.01U)  |
|                   | Iron                     | 0.3     | 0.14       | 0.28        | 0.44       | 0.738     |
|                   | Lead                     | 0.025   | (<0.005U)  | (<0.003U)   | (<0.003U)  | 0.003J    |
|                   | Magnesium                | 35*     | 79.5       | 73.1        | 61.6       | 62.4      |
|                   | Manganese                | 0.3     | 0.15       | 0.14        | 0.12 B     | 0.209     |
|                   | Selenium                 | 0.01    | (<0.015U)  | (<0.0087U)  | (<0.0087U) | (<0.01U)  |
|                   | Silica                   |         | 7000       | 5.95B       |            |           |
|                   | Silicon                  |         |            |             | 5.9        | 6.81      |
|                   | Sodium                   | 20      | 70.2       | 76.8        | 74.4       | 67.5      |
|                   | Thallium                 | 0.0005* | (<0.02U)   | (<0.01U)    | (<0.01U)   | (<0.02U)  |
|                   | Zinc                     | 2*      | (<0.01U)   | 0.002J      | 0.0059J    | 0.013J    |
| Water Quality     | Ammonia (expressed as N) | 2       | (<9.2U)    | 0.03        | (<0.009U)  | 0.031J    |
| Parameters (mg/L) | Phenolics                | 0.001   | (<0.008U)  | (<0.005U)   | (<0.005U)  | (<0.03U)  |
|                   | Sulfate                  | 250     | 337        | 363         | 331        | 302       |

#### APPENDIX A (CONTINUED)

|                   |                          |         |            | MW          | -7B        |           |
|-------------------|--------------------------|---------|------------|-------------|------------|-----------|
| Analyte Group     | Analyte                  | AWQS    | 10/10/2006 | 10/18/2011  | 9/27/2016  | 9/28/2021 |
| Total Metals      | Cadmium                  | 0.005   | (<0.001U)  | (<0.00033U) | (<0.0005U) | 0.01J     |
| (mg/L)            | Chromium                 | 0.05    | 0.088      | 0.0026J     | 0.0084     | 3.2       |
|                   | Chromium, Hexavalent     | 0.05    | (<0.011U)  | (<0.005U)   | 0.0075J    | 0.006J    |
|                   | Iron                     | 0.3     | 6.9        | 0.095       | 0.21       | 97.6      |
|                   | Lead                     | 0.025   | (<0.005U)  | (<0.003U)   | (<0.003U)  | 0.097     |
|                   | Magnesium                | 35*     | 11.1       | 8.3         | 8.6        | 87.2      |
|                   | Manganese                | 0.3     | 0.14       | 0.037       | 0.14 B     | 4.5       |
|                   | Selenium                 | 0.01    | (<0.015U)  | (<0.0087U)  | (<0.0087U) | 0.019J    |
|                   | Silica                   |         | 9220       | 4.96B       |            |           |
|                   | Silicon                  |         |            |             | 4.8        | 79.8      |
|                   | Sodium                   | 20      | 56.5       | 54.1        | 53.4       | 61        |
|                   | Thallium                 | 0.0005* | (<0.02U)   | (<0.01U)    | (<0.01U)   | (<0.1U)   |
|                   | Zinc                     | 2*      | 0.032      | 0.0023J     | 0.0062J    | 0.644     |
| Water Quality     | Ammonia (expressed as N) | 2       | (<9.2U)    | 0.66        | (<0.009U)  | 0.522     |
| Parameters (mg/L) | Phenolics                | 0.001   | 0.009      | 0.0111      | (<0.005U)  | (<0.03U)  |
|                   | Sulfate                  | 250     | 45         | 30.4        | 25.6       | 65        |

|                   |                          |         |            | MW         | 7-8B       |           |
|-------------------|--------------------------|---------|------------|------------|------------|-----------|
| Analyte Group     | Analyte                  | AWQS    | 10/10/2006 | 10/17/2011 | 9/28/2016  | 9/28/2021 |
| Total Metals      | Cadmium                  | 0.005   | (<0.001U)  | 0.00065J   | 0.00071J   | (<0.005U) |
| (mg/L)            | Chromium                 | 0.05    | 0.18       | 0.076      | 0.052      | 0.018     |
|                   | Chromium, Hexavalent     | 0.05    | 0.116      | 0.0762     | 0.0581     | (<0.01U)  |
|                   | Iron                     | 0.3     | 1.7        | 0.47       | 0.13       | 0.653     |
|                   | Lead                     | 0.025   | (<0.005U)  | (<0.003U)  | (<0.003U)  | (<0.01U)  |
|                   | Magnesium                | 35*     | 51.4       | 68.3       | 68.4       | 71.7      |
|                   | Manganese                | 0.3     | 0.14       | 0.23       | 0.1 B      | 0.334     |
|                   | Selenium                 | 0.01    | 0.077      | 0.012J     | (<0.0087U) | 0.005J    |
|                   | Silica                   |         | 8260       | 7.55B      |            |           |
|                   | Silicon                  |         |            |            | 7.5        | 8.62      |
|                   | Sodium                   | 20      | 157        | 73.5       | 79.9       | 84.4      |
|                   | Thallium                 | 0.0005* | (<0.02U)   | (<0.01U)   | (<0.01U)   | (<0.02U)  |
|                   | Zinc                     | 2*      | 0.052      | 0.12       | 0.14       | 0.094     |
| Water Quality     | Ammonia (expressed as N) | 2       | (<9.2U)    | 0.043      | (<0.009U)  | 0.04J     |
| Parameters (mg/L) | Phenolics                | 0.001   | (<0.008U)  | (<0.005U)  | (<0.005U)  | (<0.03U)  |
|                   | Sulfate                  | 250     | 328        | 193        | 206        | 272       |

#### APPENDIX A (CONTINUED)

#### **TABLE NOTES**

Groundwater sampling results were compared to NYSDEC Ambient Water Quality Standards (AWQS) (NYSDEC 1999) and guidance values for Class GA waters. Class GA groundwater is used as a source of drinking water. Surface water samples were compared to NYSDEC AWQS for Class D surface waters. Class D waters are used for fishing but are not conducive to fish propagation. If no Class D standards were applicable for a particular compound, analytical results were compared to the more stringent Class C standards. Class C waters are suitable for fishing and fish propagation.

- \* = Indicates guidance value.
- U = Not detected. Sample quantitation limits shown as (< U).

Results shaded indicate concentrations above the New York State Ambient Water Quality Standards or Guidance Values.

## **Attachment B**

Well Gauging, Purging, and Sampling Forms September 2021



#### WELL GAUGING, PURGING AND SAMPLING FORM

| Well I.D.:                  | Personnel:            |                      | Client:                     |  |  |  |
|-----------------------------|-----------------------|----------------------|-----------------------------|--|--|--|
| AP-MW-1B                    | NC                    |                      |                             |  |  |  |
|                             |                       |                      | Linde, LLC                  |  |  |  |
| Location:                   | Well Condition:       |                      | Weather:                    |  |  |  |
| Niagara Falls               | Locked                |                      | Sunny 65                    |  |  |  |
| Sounding Method:            | Gauge Date:           |                      | Measurement Ref:            |  |  |  |
| WLI                         | 9/28/2021             |                      | TOC                         |  |  |  |
| Stick Up/Down (ft):         | Gauge Time:           |                      | Well Diameter (in):         |  |  |  |
| UP                          | 902                   |                      | 2"                          |  |  |  |
|                             |                       |                      |                             |  |  |  |
| Purge Date: 9/28/21         |                       | Purge Time           | 9: 35 Mins                  |  |  |  |
| Purge Method:               |                       | Greenstar Personnel: |                             |  |  |  |
| Peri Pump                   |                       |                      | NC                          |  |  |  |
|                             |                       |                      |                             |  |  |  |
|                             | Well                  | Volume               |                             |  |  |  |
| A. Well Depth (ft):         | D. Well Volume (gal): |                      | Depth/Height of Top of PVC: |  |  |  |
| 27.83                       | 2.67                  |                      |                             |  |  |  |
| B. Depth to Water (ft):     | E. Well Volume (L)    |                      | Pump Type:                  |  |  |  |
| 11.34                       | 10.13                 |                      | Peristaltic                 |  |  |  |
| C. Liquid Depth (ft) (A-B): |                       |                      |                             |  |  |  |
| 16.49                       |                       |                      |                             |  |  |  |
|                             |                       |                      |                             |  |  |  |
|                             | Water Qual            | ity Param            | eters                       |  |  |  |
| Time DTW Volume             | Poto nU               | Conduct              | Turbidity DO Tomp OPD       |  |  |  |

|               | Water Quality Parameters |                    |               |                  |                     |                    |                |                |             |  |  |
|---------------|--------------------------|--------------------|---------------|------------------|---------------------|--------------------|----------------|----------------|-------------|--|--|
| Time<br>(hrs) | DTW<br>(ft btoc)         | Volume<br>(liters) | Rate<br>(Lpm) | pH<br>(pH units) | Conduct.<br>(mS/cm) | Turbidity<br>(NTU) | D.O.<br>(mg/L) | Temp.<br>(° C) | ORP<br>(mv) |  |  |
| 910           | 12.45                    | 4                  | 0.20          | 6.86             | 1.92                | 27,5               | 7.05           | 13.15          | -8          |  |  |
| 915           | 12.45                    | 8                  | 0.20          | 6.83             | 1.61                | 18.7               | 7.31           | 13.17          | -8          |  |  |
| 920           | 12.45                    | 10                 | 0.20          | 6.82             | 1.58                | 10.1               | 7.32           | 13.17          | -8          |  |  |
| 925           | 12.45                    | 12                 | 0.20          | 6.81             | 1.57                | 8.8                | 7.31           | 13.18          | -9          |  |  |
| 930           | 12.45                    | 14                 | 0.20          | 6.82             | 1.55                | 8.7                | 7.32           | 13.17          | -9          |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |

| Total Quantity of Water Removed: | 14 L    | Sampling Time:     | 950    |
|----------------------------------|---------|--------------------|--------|
| Samplers:                        | NC      | Split Sample With: |        |
| Sampling Date:                   | 9/28/21 | Sample Parameters: | Stable |
|                                  |         |                    |        |

**COMMENTS AND OBSERVATIONS:** Sample ID AP-MW-1B collected for Silicon, Total Metals, Ammonia as N, Sulfate, Phenolics and Hexavalent Chrome.



#### WELL GAUGING, PURGING AND SAMPLING FORM

| Wall I D .  |                              |           | Danasanasl  |             |             | Cli t.                      |             |       |     |  |
|-------------|------------------------------|-----------|-------------|-------------|-------------|-----------------------------|-------------|-------|-----|--|
| Well I.D.:  |                              |           | Personnel   |             |             | Client:                     |             |       |     |  |
|             | AP-MW-2B                     |           |             | NC          |             |                             | Linde, LLC  |       |     |  |
| Location:   |                              |           | Well Cond   | ition:      |             | Weather:                    |             |       |     |  |
|             | Niagara Falls                |           |             | Locked      |             |                             | Sunny 65    |       |     |  |
| Sounding I  | Method:                      |           | Gauge Dat   | e:          |             | Measurement                 | Ref:        |       |     |  |
|             | WLI 9/28/20:                 |           |             |             |             |                             | TOC         |       |     |  |
| Stick Up/Do | ck Up/Down (ft): Gauge Time: |           |             |             |             | Well Diameter               | (in):       |       |     |  |
| <u> </u>    | ÛP                           |           |             | 1015        |             |                             | 2"          |       |     |  |
|             |                              |           |             |             | <u> </u>    |                             |             |       |     |  |
| Purge Date  | :                            | 9/28/21   |             |             | Purge Time  | e:                          | 30 min      |       |     |  |
| Purge Meth  | nod:                         |           |             |             | Greenstar   | Personnel:                  | NC          |       |     |  |
| J g         |                              | Peri Pump |             |             |             |                             |             |       |     |  |
|             |                              |           |             | -           | -           |                             | -           |       |     |  |
|             |                              |           |             | Well        | Volume      |                             |             |       |     |  |
| A. Well Dep | oth (ft):                    |           | D. Well Vo  | lume (gal): | <del></del> | Depth/Height of Top of PVC: |             |       |     |  |
|             | 27.31                        |           | l           | 2.09        |             |                             |             |       |     |  |
| B. Depth to | Water (ft):                  |           | E. Well Vol | lume (L):   |             | Pump Type:                  |             |       |     |  |
|             | 14.41                        |           |             | 7.92        |             |                             | Peristaltic |       |     |  |
| C. Liquid D | epth (ft) (A-B):             |           | 1           |             |             |                             |             |       |     |  |
| -           | 12.90                        |           |             |             |             |                             |             |       |     |  |
|             |                              |           |             |             |             |                             |             |       |     |  |
| Water Q     |                              |           |             | Water Quali | ity Param   | eters                       |             |       |     |  |
| Time        | DTW                          | Volume    | Rate        | pН          | Conduct.    | Turbidity                   | D.O.        | Temp. | ORP |  |
|             |                              |           |             |             |             |                             |             | /a 🗪  |     |  |

|               | Water Quality Parameters |                    |               |                  |                     |                    |                |                |             |  |  |
|---------------|--------------------------|--------------------|---------------|------------------|---------------------|--------------------|----------------|----------------|-------------|--|--|
| Time<br>(hrs) | DTW<br>(ft btoc)         | Volume<br>(liters) | Rate<br>(Lpm) | pH<br>(pH units) | Conduct.<br>(mS/cm) | Turbidity<br>(NTU) | D.O.<br>(mg/L) | Temp.<br>(° C) | ORP<br>(mv) |  |  |
| 1020          | 15.21                    | 4                  | 0.10          | 12.67            | 4.12                | 0.7                | 10.12          | 14.55          | -186        |  |  |
| 1025          | 15.21                    | 6                  | 0.10          | 12.68            | 2.97                | 0.0                | 8.97           | 14.45          | -186        |  |  |
| 1030          | 15.21                    | 8                  | 0.20          | 12.65            | 1.98                | 0.0                | 8.67           | 14.44          | -186        |  |  |
| 1035          | 15.21                    | 10                 | 0.20          | 12.65            | 1.98                | 0.0                | 8.61           | 14.45          | -186        |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |
|               |                          |                    |               |                  |                     |                    |                |                |             |  |  |

| Total Quantity of Water Removed: | 10 L    | Sampling Time:     | 1050 |
|----------------------------------|---------|--------------------|------|
| Samplers:                        | NC      | Split Sample With: |      |
| Sampling Date:                   | 9/28/21 | Sample Parameters: |      |
| _                                |         |                    |      |

**COMMENTS AND OBSERVATIONS:** Sample ID AP-MW-1B collected for Silicon, Total Metals, Ammonia as N, Sulfate, Phenolics and Hexavalent Chrome. Phenolics and Hex Chrome. Well is obstructed at 15.52 ft toc. Very difficult to feed tubing and WL meter. Thousands of ants purged with water, clogging peri pump tubing.



Sampling Date:

#### WELL GAUGING, PURGING AND SAMPLING FORM

| Well I.D.:  |                                |         | Personnel:  | :                   |            | Client:                 |                |       |      |  |  |
|-------------|--------------------------------|---------|-------------|---------------------|------------|-------------------------|----------------|-------|------|--|--|
|             | AP-MW-3B                       |         |             | BQ                  | ļ          | Linde, LLC              |                |       |      |  |  |
| Location:   |                                |         | Well Condi  | ition:              |            | Weather:                |                |       |      |  |  |
|             | Niagara Falls                  |         |             | Locked              |            |                         | Sunny 65       |       |      |  |  |
| Sounding I  | ding Method: Gauge Date:       |         |             | :e:                 |            | Measurement l           | Ref:           |       |      |  |  |
|             | WLI 9/28/20                    |         |             | 9/28/2021           |            | <u> </u>                | TOC            |       |      |  |  |
| Stick Up/Do | tick Up/Down (ft): Gauge Time: |         |             |                     |            | Well Diameter           | (in):          |       |      |  |  |
|             | UP 12:00:00 A                  |         |             |                     |            |                         | 2"             |       |      |  |  |
|             |                                |         |             |                     |            |                         |                |       |      |  |  |
| Purge Date  | :                              | 9/28/21 |             |                     | Purge Time | e:                      | 5 Min          |       |      |  |  |
| Purge Meth  | Purge Method: Bailer           |         |             |                     |            | Greenstar Personnel: BQ |                |       |      |  |  |
|             |                                |         |             | Wall                | Volume     |                         |                |       |      |  |  |
|             |                                |         | T=          |                     | Volume     | T=                      |                |       |      |  |  |
| A. Well Dep | oth (ft):<br>18.41             |         | D. Well Vol | lume (gal):<br>1.20 | )          | Depth/Height o          | of Top of PVC: |       |      |  |  |
| B. Depth to |                                |         | E. Well Vol |                     |            | Pump Type:              |                |       |      |  |  |
|             | 11                             |         |             | 4.55                | )          | Bailer                  |                |       |      |  |  |
| C. Liquid D | epth (ft) (A-B):               | :       |             |                     |            | 1                       |                |       |      |  |  |
|             | 7.41                           |         | <u> </u>    |                     |            |                         |                |       |      |  |  |
|             |                                |         |             |                     |            |                         |                |       |      |  |  |
|             |                                |         | ,           | Water Quali         | ity Param  | eters                   |                |       |      |  |  |
| Time        | DTW                            | Volume  | Rate        | pН                  | Conduct.   | Turbidity               | D.O.           | Temp. | ORP  |  |  |
| (hrs)       | (ft btoc)                      | (gal)   | (Lpm)       | (pH units)          | (mS/cm)    | (NTU)                   | (mg/L)         | (° C) | (mv) |  |  |
| 900         | 11.00                          | 2       | Bail        | 10.65               | 0.490      | 24.2                    | 9.28           | 14.77 | -175 |  |  |
|             |                                |         |             |                     |            |                         |                |       |      |  |  |
| Dry Aafter  | one volume                     |         |             |                     |            |                         |                |       |      |  |  |
| 7L          |                                |         |             |                     |            |                         |                |       |      |  |  |
|             |                                |         |             |                     |            |                         |                |       |      |  |  |

| <u> </u> | tity of Water Re |  | 21 | Sampling Time |  | 910 |
|----------|------------------|--|----|---------------|--|-----|
|          |                  |  |    |               |  |     |
|          |                  |  |    |               |  |     |
|          |                  |  |    |               |  |     |

**COMMENTS AND OBSERVATIONS:** Sample ID AP-MW-1B collected for Silicon, Total Metals, Ammonia as N, Sulfate, Phenolics and Hexavalent Chrome.

Sample Parameters:

9/28/21

N/A



AP-MW-4B

Well I.D.:

Location:

#### WELL GAUGING, PURGING AND SAMPLING FORM

BQ

Client:

Weather:

Linde, LLC

Personnel:

Well Condition:

|                                                           | Niagara Falls       |          |            | Locked              |                |                   | Sunny 65          |                |             |
|-----------------------------------------------------------|---------------------|----------|------------|---------------------|----------------|-------------------|-------------------|----------------|-------------|
| Sounding N                                                | Method:             |          | Gauge Dat  | e:                  |                | Measurement I     | Ref:              |                |             |
|                                                           | WLI                 |          |            | 9/28/2021           |                |                   | TOC               |                |             |
| Stick Up/Do                                               |                     |          | Gauge Tim  | ne:                 |                | Well Diameter     |                   |                |             |
|                                                           | UP                  |          |            |                     |                |                   | 2"                |                |             |
|                                                           |                     |          |            |                     | T              |                   |                   |                |             |
| Purge Date                                                | :                   | 9/28/21  |            |                     | Purge Tim      | e:                | 5 Mins            |                |             |
| Purge Meth                                                | iod:                | Bailer   |            |                     | Greenstar      | Personnel:        | BQ                |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     | Volume         |                   |                   |                |             |
| A. Well Dep                                               | oth (ft):<br>15.08  |          | D. Well Vo | lume (gal):<br>0.57 |                | Depth/Height o    | of Top of PVC:    |                |             |
| B. Depth to                                               | Water (ft):<br>8.24 |          | E. Well Vo |                     |                | Pump Type:        | Bailer            |                |             |
| 8.24<br>C. Liquid Depth (ft) (A-B):<br>6.84               |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            | Water Qual          |                | eters             |                   |                |             |
| Time                                                      | DTW                 | Volume   | Rate       | pH                  | Conduct.       | Turbidity         | D.O.              | Temp.          | ORP         |
| (hrs)                                                     | (ft btoc)           | (gal)    | (Lpm)      | (pH units)          | (mS/cm)        | (NTU)             | (mg/L)            | (° C)          | (mv)        |
| 920                                                       |                     |          | Bail       | 9.18                | 1.210          | 98.6              | 10.84             | 15.13          | 1           |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          | 1          |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
|                                                           |                     |          |            |                     |                |                   |                   |                |             |
| Total Quan                                                | tity of Water F     | Removed: |            | 7L                  |                |                   | Sampling Time: 93 |                |             |
| Samplers: BQ                                              |                     |          | BQ         | Split Sample With:  |                |                   |                   |                |             |
| Sampling Date:                                            |                     |          |            | _                   | Sample Parame  | eters:            |                   |                |             |
| COMMENTS AND OBSERVATIONS: Sample I<br>Hexavalent Chrome. |                     |          |            | P-MW-4B colle       | ected for Sili | con, Total Metals | s, Ammonia as     | N, Sulfate, Ph | enolics and |



#### WELL GAUGING, PURGING AND SAMPLING FORM

| Well I.D.:  |                 |          | Personnel:  | :          |                  | Client:                     |                |                       |            |  |
|-------------|-----------------|----------|-------------|------------|------------------|-----------------------------|----------------|-----------------------|------------|--|
|             | AP-MW-5B        |          |             | BQ         |                  | <u> </u>                    | Linde, LLC     |                       |            |  |
| Location:   |                 |          | Well Condi  | ition:     |                  | Weather:                    |                |                       |            |  |
|             | Niagara Falls   |          |             | Locked     |                  | <u> </u>                    | Sunny 65       |                       |            |  |
| Sounding I  | Method:         |          | Gauge Date  | .e:        |                  | Measurement I               | Ref:           |                       |            |  |
|             | WLI             |          |             | 9/28/2021  | !                |                             | TOC            |                       |            |  |
| Stick Up/Do | own (ft):       |          | Gauge Tim   | ie:        |                  | Well Diameter               | (in):          |                       |            |  |
|             | UP              |          |             |            |                  |                             | 2"             |                       |            |  |
|             |                 |          |             |            |                  |                             |                |                       |            |  |
| Purge Date  | <del></del>     | 9/28/21  |             | -          | Purge Time       | e:                          | 5 Mins         |                       |            |  |
|             |                 |          |             |            | <u> </u>         |                             |                |                       |            |  |
| Purge Meth  | nod:            | Bailer   |             |            | Greenstar        | Personnel:                  | BQ             |                       |            |  |
|             |                 |          |             |            |                  |                             |                |                       |            |  |
|             |                 |          |             | NA/-II     | 11-1-year        |                             |                |                       |            |  |
|             |                 |          |             |            | Volume           |                             |                |                       |            |  |
| A. Well Dep |                 |          | D. Well Vol |            |                  | Depth/Height of Top of PVC: |                |                       |            |  |
|             | 14.22           |          |             | 0.90       |                  |                             |                |                       |            |  |
| B. Depth to |                 |          | E. Well Vol | ume (L):   | !                | Pump Type:                  | Hand Bail      |                       |            |  |
|             | 12.61           |          |             | 0.99       |                  | <u> </u>                    |                |                       |            |  |
| C. Liquid D | epth (ft) (A-B) | :        |             |            | ľ                |                             |                |                       |            |  |
|             | 1.61            |          |             |            |                  | <u> </u>                    |                |                       |            |  |
|             |                 |          |             |            |                  |                             |                |                       |            |  |
| Water Q     |                 |          |             |            | ity Param        | eters                       |                |                       |            |  |
| T:          | DTW             | Volume   | Rate        | pН         | Conduct.         | Turbidity                   | D.O.           | Temp.                 | ORP        |  |
| Time        | DIVV            | Volume   |             |            |                  |                             | l ,            |                       |            |  |
| (hrs)       | (ft btoc)       | (liters) | (Lpm)       | (pH units) | (mS/cm)          | (NTU)                       | (mg/L)         | (° C)                 | (mv)       |  |
| _           |                 |          |             | -          | (mS/cm)<br>1.130 | (NTU)<br>97.3               | (mg/L)<br>9.72 | (° <b>C)</b><br>16.84 | (mv)<br>34 |  |

|               |                  |                    |               | Water Qual       | ity Param           | eters              |                |                |             |
|---------------|------------------|--------------------|---------------|------------------|---------------------|--------------------|----------------|----------------|-------------|
| Time<br>(hrs) | DTW<br>(ft btoc) | Volume<br>(liters) | Rate<br>(Lpm) | pH<br>(pH units) | Conduct.<br>(mS/cm) | Turbidity<br>(NTU) | D.O.<br>(mg/L) | Temp.<br>(° C) | ORP<br>(mv) |
| 945           |                  |                    | Bail          | 8.20             | 1.130               | 97.3               | 9.72           | 16.84          | 34          |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |

| Total Quantity of Water Removed: | 5L       | Sampling Time:     | 950 |
|----------------------------------|----------|--------------------|-----|
| Samplers:                        | BQ       | Split Sample With: |     |
| Sampling Date:                   | 9/28/21  | Sample Type:       |     |
|                                  | <u> </u> |                    |     |

**COMMENTS AND OBSERVATIONS:** Sample ID AP-MW-5B collected for Silicon, Total Metals, Ammonia as N, Sulfate, Phenolics and Hexavalent Chrome.



#### WELL GAUGING, PURGING AND SAMPLING FORM

| Well I.D.:                  | Personnel:  |             |            | Client:        |                | <del></del> |     |
|-----------------------------|-------------|-------------|------------|----------------|----------------|-------------|-----|
| AP-MW-6B                    |             | NC/BQ       |            |                | Linde, LLC     |             |     |
| Location:                   | Well Condi  | ition:      |            | Weather:       |                |             |     |
| Niagara Falls               |             | Locked      |            |                | Sunny 65       |             |     |
| Sounding Method:            | Gauge Dat   | e:          |            | Measurement    | Ref:           |             |     |
| WLI                         |             | 9/28/2021   |            |                | TOC            |             |     |
| Stick Up/Down (ft):         | Gauge Tim   | Gauge Time: |            | Well Diameter  | (in):          |             |     |
| UP                          |             | 1100        |            |                | 2"             |             |     |
|                             |             |             |            |                |                |             |     |
| Purge Date: 9/2             | 7/16        |             | Purge Time | e:             | 30 Mins        |             |     |
|                             |             |             |            |                |                |             |     |
| Purge Method: Low F         | low         |             | Greenstar  | Personnel:     | NC/BQ          |             |     |
|                             |             |             |            |                |                |             |     |
|                             |             | Well        | Volume     |                |                |             |     |
| A. Well Depth (ft):         | D. Well Vol | lume (gal): |            | Depth/Height o | of Top of PVC: |             |     |
| 23.02                       |             | 3.07        |            |                | •              |             |     |
| B. Depth to Water (ft):     | E. Well Vol | ume (L):    |            | Pump Type:     |                |             |     |
| 4.02                        |             | 11.67       |            |                | Peristaltic    |             |     |
| C. Liquid Depth (ft) (A-B): |             |             |            |                |                |             |     |
| 19.00                       |             |             |            |                |                |             |     |
| <del>.</del>                |             | ·           | -          | ·              | ·              | -           |     |
| Water Quality Parameters    |             |             |            |                |                |             |     |
| Time DTW Vol                | umo Pato    |             |            | Turbidity      | D.O.           | Tomp        | OPP |

| Water Quality Parameters |                  |                    |               |                  |                     |                    |                |                |             |
|--------------------------|------------------|--------------------|---------------|------------------|---------------------|--------------------|----------------|----------------|-------------|
| Time<br>(hrs)            | DTW<br>(ft btoc) | Volume<br>(liters) | Rate<br>(Lpm) | pH<br>(pH units) | Conduct.<br>(mS/cm) | Turbidity<br>(NTU) | D.O.<br>(mg/L) | Temp.<br>(° C) | ORP<br>(mv) |
| 1115                     | 8.70             | 3                  | 0.10          | 8.41             | 0.97                | 4.3                | 12.15          | 17.13          | -145        |
| 1120                     | 10.10            | 5                  | 0.10          | 8.31             | 0.95                | 0.0                | 8.94           | 16.98          | -145        |
| 1125                     | 12.20            | 7                  | 0.10          | 8.28             | 0.95                | 0.0                | 8.78           | 16.99          | -145        |
| 1130                     | 12.30            | 10.0               | 0.10          | 8.27             | 0.95                | 0.0                | 8.77           | 16.99          | -145        |
|                          |                  |                    |               |                  |                     |                    |                |                |             |
|                          |                  |                    |               |                  |                     |                    |                |                |             |
|                          |                  |                    |               |                  |                     |                    |                |                |             |
|                          |                  |                    |               |                  |                     |                    |                |                |             |
|                          |                  |                    |               |                  |                     |                    |                |                |             |
|                          |                  |                    |               |                  |                     |                    |                |                |             |
|                          |                  |                    |               |                  |                     |                    |                |                |             |
|                          |                  |                    |               |                  |                     |                    |                |                |             |

| Total Quantity of Water Removed: | 10 L    | Sampling Time:     | 1145   |  |
|----------------------------------|---------|--------------------|--------|--|
| Samplers:                        | BQ      | Split Sample With: |        |  |
| Sampling Date:                   | 9/28/21 | Sample Type:       | Stable |  |
|                                  |         |                    |        |  |

COMMENTS AND OBSERVATIONS: Sample ID AP-MW-1B collected for Silicon, Total Metals, Ammonia as N, Sulfate, Phenolics and Hexavalent Chrome. DUP-01 also collected at this well (sampled 1200-BQ)



## WELL GAUGING, PURGING AND SAMPLING FORM

| Well I.D.:                |          | Personnel:  |             |            | Client:         |                  |       |     |  |
|---------------------------|----------|-------------|-------------|------------|-----------------|------------------|-------|-----|--|
| AP-MW-7B                  |          |             | NC/BQ       |            |                 | Linde, LLC       |       |     |  |
| Location:                 |          | Well Condi  | tion:       |            | Weather:        |                  |       |     |  |
| Niagara Fall              | s        |             | Locked      |            |                 | Sunny 65         |       |     |  |
| Sounding Method:          |          | Gauge Dat   | e:          |            | Measurement     | Ref:             |       |     |  |
| WLI                       |          |             | 9/28/2021   |            |                 | TOC              |       |     |  |
| Stick Up/Down (ft):       |          | Gauge Tim   | e:          |            | Well Diameter   | (in):            |       |     |  |
| UP                        |          |             |             |            |                 | 2"               |       |     |  |
|                           |          |             |             |            |                 |                  |       |     |  |
| Purge Date:               | 9/28/21  |             |             | Purge Time | e:              | 25 Mins          |       |     |  |
| Purge Method:             | Low Flow |             |             | Greenstar  | Personnel:      | NC/BQ            |       |     |  |
|                           |          |             | Well        | Volume     |                 |                  |       |     |  |
| A. Well Depth (ft):       |          | D. Well Vol |             | Totallio   | Depth/Height    | of Top of DVC:   |       |     |  |
| 21.79                     |          | D. Well Voi | 1.80        |            | Deptii/neight ( | or top or PVC.   |       |     |  |
| B. Depth to Water (ft):   |          | E. Well Vol | ` '         |            | Pump Type:      | Peristaltic Pump | )     |     |  |
| 10.66                     |          |             | 6.84        |            |                 |                  |       |     |  |
| C. Liquid Depth (ft) (A-E | 3):      |             |             |            |                 |                  |       |     |  |
| 11.13                     |          |             |             |            |                 |                  |       |     |  |
|                           |          | ,           | Water Quali | ity Param  | eters           |                  |       |     |  |
| Time DTW                  | Volume   | Rate        | рН          | Conduct.   |                 | D.O.             | Temp. | ORP |  |

|               |                  |                    | ,             | Water Qual       | ity Paramo          | eters              |                |                |             |
|---------------|------------------|--------------------|---------------|------------------|---------------------|--------------------|----------------|----------------|-------------|
| Time<br>(hrs) | DTW<br>(ft btoc) | Volume<br>(liters) | Rate<br>(Lpm) | pH<br>(pH units) | Conduct.<br>(mS/cm) | Turbidity<br>(NTU) | D.O.<br>(mg/L) | Temp.<br>(° C) | ORP<br>(mv) |
| 1155          | 11.41            | 2                  | 0.10          | 8.59             | 0.464               | 0.00               | 9.64           | 20.12          | 36          |
| 1200          | 11.45            | 2                  | 0.10          | 8.50             | 0.464               | 0.00               | 8.99           | 20.08          | 36          |
| 1205          | 18.67            | 4                  | 0.10          | 8.50             | 0.464               | 0.00               | 8.87           | 20.08          | 36          |
| 1210          | 20.00            | 4                  | 0.10          | 8.50             | 0.464               | 0.00               | 8.78           | 20.08          | 36          |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |
|               |                  |                    |               |                  |                     |                    |                |                |             |

| Total Quantity of Water Removed: | 4 L     | Sampling Time:     | 1215 |
|----------------------------------|---------|--------------------|------|
| Samplers:                        | BQ      | Split Sample With: |      |
| Sampling Date:                   | 9/27/21 | Sample Type:       |      |
| <u>-</u>                         |         |                    |      |

**COMMENTS AND OBSERVATIONS:** Sample ID AP-MW-7B collected for Silicon, Total Metals, Ammonia as N, Sulfate, Phenolics and Hexavalent Chrome. Well ran dry, very turbid at time of sample, horiba still read 0.0 NTUs



## WELL GAUGING, PURGING AND SAMPLING FORM

| Well I.D.:   |               |         | Personnel:  |             |            | Client:         |                |       |      |
|--------------|---------------|---------|-------------|-------------|------------|-----------------|----------------|-------|------|
|              | AP-MW-8B      |         |             | BQ          |            |                 | Linde, LLC     |       |      |
| Location:    |               |         | Well Condi  | ·           |            | Weather:        |                |       |      |
| ı            | Niagara Falls |         |             | Locked      |            |                 | Sunny 65       |       |      |
| Sounding M   | ethod:        |         | Gauge Dat   | e:          |            | Measurement     | Ref:           |       |      |
|              | WLI           |         |             | 9/28/2021   |            |                 | TOC            |       |      |
| Stick Up/Do  | wn (ft):      |         | Gauge Tim   | e:          |            | Well Diameter   | (in):          |       |      |
|              | UP            |         |             | 12:00:00 AM |            |                 | 2"             |       |      |
|              |               |         |             |             |            |                 |                |       |      |
| Purge Date:  |               | 9/28/21 |             |             | Purge Time | 9:              | 5 Mins         |       |      |
| Purge Metho  | od:           | Bailer  |             |             | Greenstar  | Personnel:      | BQ             |       |      |
|              |               |         |             | \A/ - II    | \/ - I     |                 |                |       |      |
|              |               |         |             | Well        | Volume     |                 |                |       |      |
| A. Well Dept | th (ft):      |         | D. Well Vol | ume (gal):  |            | Depth/Height of | of Top of PVC: |       |      |
|              | 15.51         |         |             | 1.72        |            |                 |                |       |      |
| B. Depth to  | Water (ft):   |         | E. Well Vol |             |            | Pump Type:      | Peristaltic    |       |      |
|              | 4.91          |         |             | 6.51        |            |                 |                |       |      |
| C. Liquid De |               | :       |             |             |            |                 |                |       |      |
|              | 10.60         |         |             |             |            |                 |                |       |      |
|              |               |         |             |             |            |                 |                |       |      |
|              |               |         | 1           | Water Qual  | ity Param  | eters           |                |       |      |
| Time         | DTW           | Volume  | Rate        | pН          | Conduct.   | Turbidity       | D.O.           | Temp. | ORP  |
| (hrs)        | (ft btoc)     | (gal)   | (Lpm)       | (pH units)  | (mS/cm)    | (NTU)           | (mg/L)         | (° C) | (mv) |

|               |                  |                 | ,             | Water Qual       | ity Param           | eters              |                |                |             |
|---------------|------------------|-----------------|---------------|------------------|---------------------|--------------------|----------------|----------------|-------------|
| Time<br>(hrs) | DTW<br>(ft btoc) | Volume<br>(gal) | Rate<br>(Lpm) | pH<br>(pH units) | Conduct.<br>(mS/cm) | Turbidity<br>(NTU) | D.O.<br>(mg/L) | Temp.<br>(° C) | ORP<br>(mv) |
| 955           |                  |                 | Bail          | 8.04             | 1.370               | 46.3               | 9.88           | 18.23          | 36          |
|               |                  |                 |               |                  |                     |                    |                |                |             |
|               |                  |                 |               |                  |                     |                    |                |                |             |
|               |                  |                 |               |                  |                     |                    |                |                |             |
|               |                  |                 |               |                  |                     |                    |                |                |             |
|               |                  |                 |               |                  |                     |                    |                |                |             |
|               |                  |                 |               |                  |                     |                    |                |                |             |

| Total Quantity of Water Removed: | 8.5L    | Sampling Time:     | 1005 |  |
|----------------------------------|---------|--------------------|------|--|
| Samplers:                        | BQ      | Split Sample With: |      |  |
| Sampling Date:                   | 9/28/21 | Sample Parameters: | Grab |  |
|                                  |         |                    |      |  |

**COMMENTS AND OBSERVATIONS:** Sample ID AP-MW-8B collected for Silicon, Total Metals, Ammonia as N, Sulfate, Phenolics and Hexavalent Chrome.

## **Attachment C**

Laboratory Analytical Results Quarterly Discharge, Five-Year Review Monitoring Well Sampling



## ANALYTICAL REPORT

Lab Number: L2119570

Client: Greenstar Environmental Solutions, LLC

6 Gellatly Drive

Wappingers Falls, NY 12590

ATTN: Pete Nimmer
Phone: (845) 223-9944

Project Name: SPDES

Project Number: Not Specified Report Date: 04/29/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Project Name: SPDES

Project Number: Not Specified

L2119570 Report Date: 04/29/21

Lab Number:

| Alpha<br>Sample ID | Client ID | Matrix | Sample<br>Location | Collection Date/Time | Receive Date |
|--------------------|-----------|--------|--------------------|----------------------|--------------|
| L2119570-01        | AP-EWE-01 | WATER  | NIAGARA FALLS, NY  | 04/16/21 10:00       | 04/16/21     |
| L2119570-02        | TB-01     | WATER  | NIAGARA FALLS, NY  | 04/16/21 00:00       | 04/16/21     |



### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



Project Name:SPDESLab Number:L2119570Project Number:Not SpecifiedReport Date:04/29/21

## **Case Narrative (continued)**

## Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

### **Total Metals**

The WG1489579-3 MS recovery for silicon (0%), performed on L2119570-01, does not apply because the sample concentration is greater than four times the spike amount added.

The WG1489606-4 Laboratory Duplicate RPD for iron (25%), performed on L2119570-01, is above the acceptance criteria; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

## Dissolved Oxygen

L2119570-01 was analyzed with the method required holding time exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

M 2004 Jennifer L Clements

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 04/29/21

## **ORGANICS**



## **VOLATILES**



Project Name: SPDES Lab Number: L2119570

Project Number: Not Specified Report Date: 04/29/21

**SAMPLE RESULTS** 

Lab ID: L2119570-01 Date Collected: 04/16/21 10:00

Client ID: AP-EWE-01 Date Received: 04/16/21 Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 04/19/21 20:02

Analyst: MKS

| Parameter                      | Result         | Qualifier | Units | RL  | MDL  | Dilution Factor |
|--------------------------------|----------------|-----------|-------|-----|------|-----------------|
| Volatile Organics by GC/MS - W | estborough Lab |           |       |     |      |                 |
| 1,1-Dichloroethane             | ND             |           | ug/l  | 1.5 | 0.40 | 1               |
| Trichloroethene                | ND             |           | ua/l  | 1.0 | 0.33 | 1               |

| Surrogate            | % Recovery | Qualifier | Acceptance<br>Criteria |
|----------------------|------------|-----------|------------------------|
| Pentafluorobenzene   | 109        |           | 60-140                 |
| Fluorobenzene        | 97         |           | 60-140                 |
| 4-Bromofluorobenzene | 94         |           | 60-140                 |



**Project Name:** Lab Number: **SPDES** L2119570

**Project Number:** Report Date: Not Specified 04/29/21

**SAMPLE RESULTS** 

Lab ID: L2119570-02 Date Collected: 04/16/21 00:00

Client ID: Date Received: TB-01

04/16/21 Sample Location: Field Prep: NIAGARA FALLS, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 04/19/21 19:25

Analyst: MKS

| Parameter                      | Result         | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|--------------------------------|----------------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by GC/MS - W | estborough Lab |           |       |     |      |                 |  |
| 1,1-Dichloroethane             | ND             |           | ug/l  | 1.5 | 0.40 | 1               |  |
| Trichloroethene                | ND             |           | ug/l  | 1.0 | 0.33 | 1               |  |

| Surrogate            | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|----------------------|------------|-----------|------------------------|--|
| Pentafluorobenzene   | 108        |           | 60-140                 |  |
| Fluorobenzene        | 96         |           | 60-140                 |  |
| 4-Bromofluorobenzene | 93         |           | 60-140                 |  |



Project Name: SPDES Lab Number: L2119570

Project Number: Not Specified Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 04/19/21 17:09

Analyst: GT

| Parameter                        | Result       | Qualifier Uni  | its     | RL        | MDL       |
|----------------------------------|--------------|----------------|---------|-----------|-----------|
| Volatile Organics by GC/MS - Wes | tborough Lab | for sample(s): | : 01-02 | Batch: WG | 1488341-4 |
| 1,1-Dichloroethane               | ND           | uç             | g/l     | 1.5       | 0.40      |
| Trichloroethene                  | ND           | นดู            | g/l     | 1.0       | 0.33      |

|                      |           | Acceptance         |  |
|----------------------|-----------|--------------------|--|
| Surrogate            | %Recovery | Qualifier Criteria |  |
|                      |           |                    |  |
| Pentafluorobenzene   | 107       | 60-140             |  |
| Fluorobenzene        | 96        | 60-140             |  |
| 4-Bromofluorobenzene | 92        | 60-140             |  |



## Lab Control Sample Analysis Batch Quality Control

Project Name: SPDES

Batch Quality Co

Project Number: Not Specified

Lab Number:

L2119570

Report Date:

04/29/21

|                                          | LCS            |            | LCSD         |             | %Recovery |     |      | RPD    |  |
|------------------------------------------|----------------|------------|--------------|-------------|-----------|-----|------|--------|--|
| Parameter                                | %Recovery      | Qual       | %Recovery    | Qual        | Limits    | RPD | Qual | Limits |  |
| Volatile Organics by GC/MS - Westborough | Lab Associated | sample(s): | 01-02 Batch: | WG1488341-3 |           |     |      |        |  |
| 1,1-Dichloroethane                       | 90             |            | -            |             | 50-150    | -   |      | 49     |  |
| Trichloroethene                          | 95             |            | -            |             | 65-135    | -   |      | 48     |  |

| Surrogate            | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria |
|----------------------|------------------|------|-------------------|------|------------------------|
| Pentafluorobenzene   | 108              |      |                   |      | 60-140                 |
| Fluorobenzene        | 96               |      |                   |      | 60-140                 |
| 4-Bromofluorobenzene | 92               |      |                   |      | 60-140                 |

## **METALS**



04/16/21 10:00

Date Collected:

Project Name:SPDESLab Number:L2119570Project Number:Not SpecifiedReport Date:04/29/21

**SAMPLE RESULTS** 

Lab ID: L2119570-01 Client ID: AP-EWE-01

Client ID: AP-EWE-01 Date Received: 04/16/21 Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter           | Result    | Qualifier | Units | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|-----------|-----------|-------|---------|---------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans | field Lab |           |       |         |         |                    |                  |                  |                |                      |         |
| Barium, Total       | 0.06446   |           | mg/l  | 0.00050 | 0.00017 | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Cadmium, Total      | ND        |           | mg/l  | 0.00020 | 0.00005 | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Chromium, Total     | 0.00036   | J         | mg/l  | 0.00100 | 0.00017 | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Copper, Total       | 0.00157   |           | mg/l  | 0.00100 | 0.00038 | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Iron, Total         | 0.0678    |           | mg/l  | 0.0500  | 0.0191  | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Lead, Total         | ND        |           | mg/l  | 0.00100 | 0.00034 | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Magnesium, Total    | 19.3      |           | mg/l  | 0.0700  | 0.0242  | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Manganese, Total    | 0.00985   |           | mg/l  | 0.00100 | 0.00044 | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Nickel, Total       | 0.00072   | J         | mg/l  | 0.00200 | 0.00055 | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Selenium, Total     | ND        |           | mg/l  | 0.00500 | 0.00173 | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Silicon, Total      | 5.20      |           | mg/l  | 0.500   | 0.007   | 1                  | 04/26/21 09:29   | 04/28/21 20:43   | EPA 3005A      | 1,6010D              | SV      |
| Sodium, Total       | 15.1      |           | mg/l  | 0.100   | 0.0293  | 1                  | 04/26/21 09:29   | 04/29/21 11:01   | EPA 3005A      | 1,6020B              | CD      |
| Thallium, Total     | 0.00022   | J         | mg/l  | 0.00100 | 0.00014 | 1                  |                  | 04/29/21 11:01   |                | 1,6020B              | CD      |
| Zinc, Total         | 0.01861   |           | mg/l  | 0.01000 | 0.00341 | 1                  |                  | 04/29/21 11:01   |                | 1,6020B              | CD      |



Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2119570

Report Date:

04/29/21

# Method Blank Analysis Batch Quality Control

| Parameter                | Result Qualifier   | Units    | RL     | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method |    |
|--------------------------|--------------------|----------|--------|---------|--------------------|------------------|------------------|----------------------|----|
| Total Metals - Mansfield | Lab for sample(s): | 01 Batch | : WG14 | 489579- | 1                  |                  |                  |                      |    |
| Silicon, Total           | ND                 | mg/l     | 0.500  | 0.007   | 1                  | 04/26/21 09:29   | 04/28/21 21:03   | 3 1,6010D            | SV |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter              | Result Q        | ualifier | Units   | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|-----------------|----------|---------|---------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfie | eld Lab for sar | mple(s): | 01 Bato | h: WG14 | 89606-1 |                    |                  |                  |                      |         |
| Barium, Total          | ND              |          | mg/l    | 0.00050 | 0.00017 | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Cadmium, Total         | ND              |          | mg/l    | 0.00020 | 0.00005 | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Chromium, Total        | ND              |          | mg/l    | 0.00100 | 0.00017 | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Copper, Total          | ND              |          | mg/l    | 0.00100 | 0.00038 | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Iron, Total            | ND              |          | mg/l    | 0.0500  | 0.0191  | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Lead, Total            | ND              |          | mg/l    | 0.00100 | 0.00034 | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Magnesium, Total       | ND              |          | mg/l    | 0.0700  | 0.0242  | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Manganese, Total       | 0.00046         | J        | mg/l    | 0.00100 | 0.00044 | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Nickel, Total          | ND              |          | mg/l    | 0.00200 | 0.00055 | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Selenium, Total        | ND              |          | mg/l    | 0.00500 | 0.00173 | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Sodium, Total          | ND              |          | mg/l    | 0.100   | 0.0293  | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Thallium, Total        | 0.00016         | J        | mg/l    | 0.00100 | 0.00014 | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |
| Zinc, Total            | ND              |          | mg/l    | 0.01000 | 0.00341 | 1                  | 04/26/21 09:29   | 04/29/21 10:42   | 1,6020B              | CD      |

**Prep Information** 

Digestion Method: EPA 3005A



## Lab Control Sample Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number: L2119570

| Parameter                                      | LCS<br>%Recovery | Qual     | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|----------|-------------------|------|---------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample | e(s): 01 Batch:  | WG148957 | 9-2               |      |                     |     |      |            |
| Silicon, Total                                 | 103              |          | -                 |      | 80-120              | -   |      |            |
| Fotal Metals - Mansfield Lab Associated sample | e(s): 01 Batch:  | WG148960 | 6-2               |      |                     |     |      |            |
| Barium, Total                                  | 105              |          | -                 |      | 80-120              | -   |      |            |
| Cadmium, Total                                 | 104              |          | -                 |      | 80-120              | -   |      |            |
| Chromium, Total                                | 102              |          | -                 |      | 80-120              | -   |      |            |
| Copper, Total                                  | 101              |          | -                 |      | 80-120              | -   |      |            |
| Iron, Total                                    | 106              |          | -                 |      | 80-120              | -   |      |            |
| Lead, Total                                    | 106              |          | -                 |      | 80-120              | -   |      |            |
| Magnesium, Total                               | 107              |          | -                 |      | 80-120              | -   |      |            |
| Manganese, Total                               | 101              |          | -                 |      | 80-120              | -   |      |            |
| Nickel, Total                                  | 96               |          | -                 |      | 80-120              | -   |      |            |
| Selenium, Total                                | 108              |          | -                 |      | 80-120              | -   |      |            |
| Sodium, Total                                  | 107              |          | -                 |      | 80-120              | -   |      |            |
| Thallium, Total                                | 104              |          | -                 |      | 80-120              | -   |      |            |
| Zinc, Total                                    | 108              |          | -                 |      | 80-120              | -   |      |            |

## Matrix Spike Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2119570

| arameter                    | Native<br>Sample  | MS<br>Added | MS<br>Found | MS<br>%Recovery | Qua | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits | RPD   | Qual | RPD<br>Limits |
|-----------------------------|-------------------|-------------|-------------|-----------------|-----|--------------|------------------|-------------------------|-------|------|---------------|
| Гotal Metals - Mansfield La | ab Associated sam | ple(s): 01  | QC Batch I  | D: WG148957     | 9-3 | QC Sample    | : L2119570-01    | Client ID: AP-E\        | NE-01 |      |               |
| Silicon, Total              | 5.20              | 1           | 3.60        | 0               | Q   | -            | -                | 75-125                  | -     |      | 20            |
| Гotal Metals - Mansfield La | ab Associated sam | ple(s): 01  | QC Batch I  | D: WG148960     | 6-3 | QC Sample    | : L2119570-01    | Client ID: AP-E\        | WE-01 |      |               |
| Barium, Total               | 0.06446           | 2           | 2.120       | 103             |     | -            | -                | 75-125                  | -     |      | 20            |
| Cadmium, Total              | ND                | 0.051       | 0.05329     | 104             |     | -            | -                | 75-125                  | -     |      | 20            |
| Chromium, Total             | 0.00036J          | 0.2         | 0.2039      | 102             |     | -            | -                | 75-125                  | -     |      | 20            |
| Copper, Total               | 0.00157           | 0.25        | 0.2529      | 100             |     | -            | -                | 75-125                  | -     |      | 20            |
| Iron, Total                 | 0.0678            | 1           | 1.19        | 112             |     | -            | -                | 75-125                  | -     |      | 20            |
| Lead, Total                 | ND                | 0.51        | 0.5371      | 105             |     | -            | -                | 75-125                  | -     |      | 20            |
| Magnesium, Total            | 19.3              | 10          | 30.5        | 112             |     | -            | -                | 75-125                  | -     |      | 20            |
| Manganese, Total            | 0.00985           | 0.5         | 0.5003      | 98              |     | -            | -                | 75-125                  | -     |      | 20            |
| Nickel, Total               | 0.00072J          | 0.5         | 0.4757      | 95              |     | -            | -                | 75-125                  | -     |      | 20            |
| Selenium, Total             | ND                | 0.12        | 0.134       | 112             |     | -            | -                | 75-125                  | -     |      | 20            |
| Sodium, Total               | 15.1              | 10          | 26.0        | 109             |     | -            | -                | 75-125                  | -     |      | 20            |
| Thallium, Total             | 0.00022J          | 0.12        | 0.1280      | 107             |     | -            | -                | 75-125                  | -     |      | 20            |
| Zinc, Total                 | 0.01861           | 0.5         | 0.5532      | 107             |     | -            | -                | 75-125                  | -     |      | 20            |

# Lab Duplicate Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

**Lab Number:** L2119570

| Parameter                                             | Native Sample Du        | uplicate Sample | Units       | RPD        | Qual      | RPD Limits |
|-------------------------------------------------------|-------------------------|-----------------|-------------|------------|-----------|------------|
| otal Metals - Mansfield Lab Associated sample(s): 01  | QC Batch ID: WG1489579- | 4 QC Sample:    | L2119570-01 | Client ID: | AP-EWE-01 |            |
| Silicon, Total                                        | 5.20                    | 5.36            | mg/l        | 3          |           | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1489606- | 4 QC Sample:    | L2119570-01 | Client ID: | AP-EWE-01 |            |
| Barium, Total                                         | 0.06446                 | 0.06821         | mg/l        | 6          |           | 20         |
| Cadmium, Total                                        | ND                      | ND              | mg/l        | NC         |           | 20         |
| Chromium, Total                                       | 0.00036J                | 0.00039J        | mg/l        | NC         |           | 20         |
| Copper, Total                                         | 0.00157                 | 0.00141         | mg/l        | 10         |           | 20         |
| Iron, Total                                           | 0.0678                  | 0.0876          | mg/l        | 25         | Q         | 20         |
| Lead, Total                                           | ND                      | ND              | mg/l        | NC         |           | 20         |
| Magnesium, Total                                      | 19.3                    | 20.8            | mg/l        | 7          |           | 20         |
| Manganese, Total                                      | 0.00985                 | 0.01136         | mg/l        | 14         |           | 20         |
| Nickel, Total                                         | 0.00072J                | 0.00088J        | mg/l        | NC         |           | 20         |
| Selenium, Total                                       | ND                      | ND              | mg/l        | NC         |           | 20         |
| Sodium, Total                                         | 15.1                    | 16.1            | mg/l        | 6          |           | 20         |
| Thallium, Total                                       | 0.00022J                | 0.00064J        | mg/l        | NC         |           | 20         |
| Zinc, Total                                           | 0.01861                 | 0.01807         | mg/l        | 3          |           | 20         |

# INORGANICS & MISCELLANEOUS



Project Name: SPDES Lab Number: L2119570

Project Number: Not Specified Report Date: 04/29/21

## **SAMPLE RESULTS**

Lab ID: L2119570-01 Date Collected: 04/16/21 10:00

Client ID: AP-EWE-01 Date Received: 04/16/21 Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter                | Result      | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - West | borough Lat | )         |       |       |       |                    |                  |                  |                      |         |
| Solids, Total Dissolved  | 440         |           | mg/l  | 10    | 3.1   | 1                  | -                | 04/22/21 09:25   | 121,2540C            | DW      |
| Solids, Total Suspended  | 1.5         |           | mg/l  | 1.0   | NA    | 1                  | -                | 04/22/21 14:40   | 121,2540D            | AC      |
| pH (H)                   | 7.5         |           | SU    | -     | NA    | 1                  | -                | 04/20/21 01:08   | 1,9040C              | AW      |
| Nitrogen, Ammonia        | 0.102       |           | mg/l  | 0.075 | 0.024 | 1                  | 04/26/21 17:30   | 04/28/21 11:17   | 121,4500NH3-BH       | JO      |
| Nitrogen, Nitrite        | ND          |           | mg/l  | 0.050 | 0.013 | 1                  | -                | 04/17/21 07:32   | 121,4500NO3-F        | MR      |
| Nitrogen, Nitrate        | 0.163       |           | mg/l  | 0.100 | 0.022 | 1                  | -                | 04/17/21 07:32   | 121,4500NO3-F        | MR      |
| Nitrogen, Total Kjeldahl | 0.721       |           | mg/l  | 0.300 | 0.066 | 1                  | 04/26/21 16:40   | 04/28/21 12:06   | 121,4500NH3-H        | JO      |
| Dissolved Oxygen         | 8.0         |           | mg/l  | 0.10  | 0.10  | 1                  | -                | 04/17/21 18:25   | 121,4500O-C          | SH      |
| Sulfate                  | 34.         |           | mg/l  | 20    | 2.7   | 2                  | 04/21/21 17:11   | 04/21/21 17:11   | 121,4500SO4-E        | JB      |
| Chemical Oxygen Demand   | 8.7         | J         | mg/l  | 20    | 6.0   | 1                  | 04/23/21 18:30   | 04/23/21 20:59   | 121,5220D            | TL      |
| BOD, 5 day               | ND          |           | mg/l  | 2.0   | NA    | 1                  | 04/17/21 14:05   | 04/22/21 14:00   | 121,5210B            | JT      |
| Phenolics, Total         | ND          |           | mg/l  | 0.030 | 0.006 | 1                  | 04/20/21 07:05   | 04/20/21 10:02   | 4,420.1              | KP      |
| Chromium, Hexavalent     | ND          |           | mg/l  | 0.010 | 0.003 | 1                  | 04/17/21 09:40   | 04/17/21 09:53   | 1,7196A              | AW      |



Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2119570

Report Date:

04/29/21

## Method Blank Analysis Batch Quality Control

| Parameter                | Result Q       | ualifier | Units      | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|----------------|----------|------------|--------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG148 | 37452-1            |                  |                  |                      |         |
| Nitrogen, Nitrate        | ND             |          | mg/l       | 0.100  | 0.022 | 1                  | -                | 04/17/21 04:36   | 121,4500NO3-F        | MR      |
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG148 | 37453-1            |                  |                  |                      |         |
| Nitrogen, Nitrite        | ND             |          | mg/l       | 0.050  | 0.013 | 1                  | -                | 04/17/21 04:38   | 121,4500NO3-F        | MR      |
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG148 | 37498-1            |                  |                  |                      |         |
| Chromium, Hexavalent     | ND             |          | mg/l       | 0.010  | 0.003 | 1                  | 04/17/21 09:40   | 04/17/21 09:52   | 1,7196A              | AW      |
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG148 | 37577-1            |                  |                  |                      |         |
| BOD, 5 day               | ND             |          | mg/l       | 2.0    | NA    | 1                  | 04/17/21 14:05   | 04/22/21 14:00   | 121,5210B            | JT      |
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG148 | 38262-1            |                  |                  |                      |         |
| Phenolics, Total         | ND             |          | mg/l       | 0.030  | 0.006 | 1                  | 04/20/21 07:05   | 04/20/21 09:54   | 4,420.1              | KP      |
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG148 | 38976-1            |                  |                  |                      |         |
| Sulfate                  | 2.0            | J        | mg/l       | 10     | 1.4   | 1                  | 04/21/21 17:11   | 04/21/21 17:11   | 121,4500SO4-E        | JB      |
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG148 | 39221-1            |                  |                  |                      |         |
| Solids, Total Dissolved  | ND             |          | mg/l       | 10     | 3.1   | 1                  | -                | 04/22/21 09:25   | 121,2540C            | DW      |
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG148 | 39508-1            |                  |                  |                      |         |
| Solids, Total Suspended  | ND             |          | mg/l       | 1.0    | NA    | 1                  | -                | 04/22/21 14:40   | 121,2540D            | AC      |
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG149 | 90087-1            |                  |                  |                      |         |
| Chemical Oxygen Demand   | ND             |          | mg/l       | 20     | 6.0   | 1                  | 04/23/21 18:30   | 04/23/21 20:58   | 121,5220D            | TL      |
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG149 | 90938-1            |                  |                  |                      |         |
| Nitrogen, Ammonia        | 0.044          | J        | mg/l       | 0.075  | 0.024 | 1                  | 04/26/21 17:30   | 04/28/21 10:39   | 121,4500NH3-BI       | Н ЈО    |
| General Chemistry - W    | estborough Lab | for sam  | ple(s): 01 | Batch: | WG149 | 90978-1            |                  |                  |                      |         |
| Nitrogen, Total Kjeldahl | 0.134          | J        | mg/l       | 0.300  | 0.022 | 1                  | 04/26/21 16:40   | 04/28/21 11:40   | 121,4500NH3-H        | I JO    |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** SPDES

**Project Number:** Not Specified Lab Number:

L2119570

Report Date:

04/29/21

| Parameter                           | LCS<br>%Recovery Qu      | LCSD<br>al %Recovery | %Recovery<br>Qual Limits | RPD | Qual | RPD Limits |
|-------------------------------------|--------------------------|----------------------|--------------------------|-----|------|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1487452-2   |                          |     |      |            |
| Nitrogen, Nitrate                   | 95                       | -                    | 90-110                   | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1487453-2   |                          |     |      |            |
| Nitrogen, Nitrite                   | 97                       | -                    | 90-110                   | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1487498-2   |                          |     |      |            |
| Chromium, Hexavalent                | 98                       | -                    | 85-115                   | -   |      | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1487577-2   |                          |     |      |            |
| BOD, 5 day                          | 102                      | -                    | 85-115                   | -   |      | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1488200-1   |                          |     |      |            |
| рН                                  | 101                      | -                    | 99-101                   | -   |      | 5          |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1488262-2   |                          |     |      |            |
| Phenolics, Total                    | 103                      | -                    | 70-130                   | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1488976-2   |                          |     |      |            |
| Sulfate                             | 95                       | -                    | 90-110                   | -   |      |            |



## Lab Control Sample Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number: L2119570

| Parameter                           | LCS<br>%Recovery         | LCSD<br>%Recovery  | %Recovery<br>Limits | RPD | RPD Limits |
|-------------------------------------|--------------------------|--------------------|---------------------|-----|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1489221-2 |                     |     |            |
| Solids, Total Dissolved             | 91                       | -                  | 80-120              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1489508-2 |                     |     |            |
| Solids, Total Suspended             | 94                       | -                  | 80-120              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1490087-2 |                     |     |            |
| Chemical Oxygen Demand              | 101                      | -                  | 90-110              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1490938-2 |                     |     |            |
| Nitrogen, Ammonia                   | 92                       | -                  | 80-120              | -   | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1490978-2 |                     |     |            |
| Nitrogen, Total Kjeldahl            | 100                      | -                  | 78-122              | -   |            |



## Matrix Spike Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2119570

| Parameter                    | Native<br>Sample | MS<br>Added | MS<br>Found | MS<br>%Recovery | MSD<br>Qual Found | MSD<br>%Recovery Qual | Recovery<br>Limits | RPD Qual    | RPD<br>Limits |
|------------------------------|------------------|-------------|-------------|-----------------|-------------------|-----------------------|--------------------|-------------|---------------|
| General Chemistry - Westbord | ough Lab Asso    | ciated samp | ole(s): 01  | QC Batch ID: \  | WG1487452-4       | QC Sample: L2119570-  | 01 Client I        | D: AP-EWE-0 | )1            |
| Nitrogen, Nitrate            | 0.163            | 4           | 4.48        | 108             | -                 | -                     | 83-113             | -           | 17            |
| General Chemistry - Westbord | ough Lab Asso    | ciated samp | ole(s): 01  | QC Batch ID: \  | WG1487453-4       | QC Sample: L2119570-  | 01 Client I        | D: AP-EWE-0 | )1            |
| Nitrogen, Nitrite            | ND               | 4           | 4.38        | 110             | -                 | -                     | 80-120             | -           | 20            |
| General Chemistry - Westbord | ough Lab Asso    | ciated samp | ole(s): 01  | QC Batch ID: \  | WG1487498-4       | QC Sample: L2119570-  | 01 Client I        | D: AP-EWE-0 | )1            |
| Chromium, Hexavalent         | ND               | 0.1         | 0.091       | 91              | -                 | -                     | 85-115             | -           | 20            |
| General Chemistry - Westbord | ough Lab Asso    | ciated samp | ole(s): 01  | QC Batch ID: \  | WG1487577-4       | QC Sample: L2116521-  | 114 Client         | ID: MS Samp | ole           |
| BOD, 5 day                   | 10.              | 100         | 120         | 106             | -                 | -                     | 50-145             | -           | 35            |
| General Chemistry - Westbord | ough Lab Asso    | ciated samp | ole(s): 01  | QC Batch ID: \  | WG1488262-4       | QC Sample: L2117713-  | 06 Client I        | D: MS Sampl | е             |
| Phenolics, Total             | 0.025J           | 0.4         | 0.059       | 15              | Q -               | -                     | 70-130             | -           | 20            |
| General Chemistry - Westbord | ough Lab Asso    | ciated samp | ole(s): 01  | QC Batch ID: \  | WG1488976-4       | QC Sample: L2118938-  | 01 Client I        | D: MS Sampl | е             |
| Sulfate                      | 110              | 200         | 340         | 116             | -                 | -                     | 55-147             | -           | 14            |
| General Chemistry - Westbord | ough Lab Asso    | ciated samp | ole(s): 01  | QC Batch ID: \  | WG1490087-3       | QC Sample: L2120215-  | 01 Client I        | D: MS Sampl | е             |
| Chemical Oxygen Demand       | 240              | 238         | 420         | 77              | Q -               | -                     | 84-120             | -           | 12            |
| General Chemistry - Westbord | ough Lab Asso    | ciated samp | ole(s): 01  | QC Batch ID: \  | WG1490938-4       | QC Sample: L2120807-  | 05 Client I        | D: MS Sampl | е             |
| Nitrogen, Ammonia            | 1.12             | 4           | 5.18        | 102             | -                 | -                     | 80-120             | -           | 20            |
| General Chemistry - Westbord | ough Lab Asso    | ciated samp | ole(s): 01  | QC Batch ID: \  | WG1490978-4       | QC Sample: L2120807-  | 06 Client I        | D: MS Sampl | е             |
| Nitrogen, Total Kjeldahl     | 0.152J           | 8           | 6.56        | 82              |                   | -                     | 77-111             | -           | 24            |



# Lab Duplicate Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2119570

| Parameter                              | Nativ                | ve Sample       | Duplicate Sam | ple Units     | RPD        | Qual        | RPD Limits   |
|----------------------------------------|----------------------|-----------------|---------------|---------------|------------|-------------|--------------|
| General Chemistry - Westborough Lab As | ssociated sample(s): | 01 QC Batch ID: | WG1487452-3   | QC Sample: L2 | 119570-01  | Client ID:  | AP-EWE-01    |
| Nitrogen, Nitrate                      |                      | 0.163           | 0.180         | mg/l          | 10         |             | 17           |
| General Chemistry - Westborough Lab As | ssociated sample(s): | 01 QC Batch ID: | WG1487453-3   | QC Sample: L2 | 119570-01  | Client ID:  | AP-EWE-01    |
| Nitrogen, Nitrite                      |                      | ND              | ND            | mg/l          | NC         |             | 20           |
| General Chemistry - Westborough Lab As | ssociated sample(s): | 01 QC Batch ID: | WG1487498-3   | QC Sample: L2 | 119570-01  | Client ID:  | AP-EWE-01    |
| Chromium, Hexavalent                   |                      | ND              | ND            | mg/l          | NC         |             | 20           |
| General Chemistry - Westborough Lab As | ssociated sample(s): | 01 QC Batch ID: | WG1487577-3   | QC Sample: L2 | 116521-114 | 4 Client ID | : DUP Sample |
| BOD, 5 day                             |                      | 10.             | 9.7           | mg/l          | 3          |             | 35           |
| General Chemistry - Westborough Lab As | ssociated sample(s): | 01 QC Batch ID: | WG1487596-2   | QC Sample: L2 | 119570-01  | Client ID:  | AP-EWE-01    |
| Dissolved Oxygen                       |                      | 8.0             | 7.5           | mg/l          | 6          |             | 20           |
| General Chemistry - Westborough Lab As | ssociated sample(s): | 01 QC Batch ID: | WG1488200-2   | QC Sample: L2 | 119700-03  | Client ID:  | DUP Sample   |
| рН                                     |                      | 6.3             | 6.3           | SU            | 0          |             | 5            |
| General Chemistry - Westborough Lab As | ssociated sample(s): | 01 QC Batch ID: | WG1488262-3   | QC Sample: L2 | 117713-06  | Client ID:  | DUP Sample   |
| Phenolics, Total                       |                      | 0.025J          | 0.025J        | mg/l          | NC         |             | 20           |
| General Chemistry - Westborough Lab As | ssociated sample(s): | 01 QC Batch ID: | WG1488976-3   | QC Sample: L2 | 118938-01  | Client ID:  | DUP Sample   |
| Sulfate                                |                      | 110             | 130           | mg/l          | 17         | Q           | 14           |
| General Chemistry - Westborough Lab As | ssociated sample(s): | 01 QC Batch ID: | WG1489221-3   | QC Sample: L2 | 119371-01  | Client ID:  | DUP Sample   |
| Solids, Total Dissolved                |                      | 56.             | 56            | mg/l          | 0          |             | 10           |



# Lab Duplicate Analysis Batch Quality Control

**Project Name:** SPDES

**Project Number:** Not Specified Lab Number:

L2119570

Report Date:

04/29/21

| Parameter                           | Nati                  | ve S  | ample        | Duplicate Sam | nple Unit  | s RPD       | )          | RPD Limit  |
|-------------------------------------|-----------------------|-------|--------------|---------------|------------|-------------|------------|------------|
| General Chemistry - Westborough Lab | Associated sample(s): | 01    | QC Batch ID: | WG1489508-3   | QC Sample: | L2119450-01 | Client ID: | DUP Sample |
| Solids, Total Suspended             |                       | 25.   |              | 26            | mg/l       | 4           |            | 29         |
| General Chemistry - Westborough Lab | Associated sample(s): | 01    | QC Batch ID: | WG1490087-4   | QC Sample: | L2120215-01 | Client ID: | DUP Sample |
| Chemical Oxygen Demand              |                       | 240   |              | 200           | mg/l       | 18          | Q          | 12         |
| General Chemistry - Westborough Lab | Associated sample(s): | 01    | QC Batch ID: | WG1490938-3   | QC Sample: | L2120807-05 | Client ID: | DUP Sample |
| Nitrogen, Ammonia                   |                       | 1.12  | 2            | 1.24          | mg/l       | 10          |            | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): | 01    | QC Batch ID: | WG1490978-3   | QC Sample: | L2120807-06 | Client ID: | DUP Sample |
| Nitrogen, Total Kjeldahl            |                       | 0.152 | 2J           | 0.281J        | mg/l       | NC          |            | 24         |
|                                     |                       |       |              |               |            |             |            |            |

Project Name: **SPDES Lab Number:** L2119570 Project Number: Not Specified

Report Date: 04/29/21

## Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

**Cooler Information** 

Custody Seal Cooler

Α Absent

| Container Information |                                    |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                                  |  |  |
|-----------------------|------------------------------------|--------|---------|-------|-------|------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Container ID          | Container Type                     | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                      |  |  |
| L2119570-01A          | Vial Na2S2O3 preserved             | Α      | NA      |       | 3.2   | Υ    | Absent |           | 624.1(7)                                                                                                                                                                                         |  |  |
| L2119570-01B          | Vial Na2S2O3 preserved             | Α      | NA      |       | 3.2   | Υ    | Absent |           | 624.1(7)                                                                                                                                                                                         |  |  |
| L2119570-01C          | Vial Na2S2O3 preserved             | Α      | NA      |       | 3.2   | Υ    | Absent |           | 624.1(7)                                                                                                                                                                                         |  |  |
| L2119570-01D          | Plastic 250ml unpreserved          | Α      | 7       | 7     | 3.2   | Y    | Absent |           | SO4-4500(28),HEXCR-7196(1),PH-<br>9040(1),NO3-4500(2),NO2-4500NO3(2),BOD-<br>5210(2),TDS-2540(7)                                                                                                 |  |  |
| L2119570-01E          | Plastic 250ml HNO3 preserved       | А      | <2      | <2    | 3.2   | Y    | Absent |           | FE-6020T(180),TL-6020T(180),BA-6020T(180),SE-6020T(180),NI-6020T(180),CR-6020T(180),ZN-6020T(180),SI-TI(180),CU-6020T(180),NA-6020T(180),PB-6020T(180),MN-6020T(180),CD-6020T(180),MG-6020T(180) |  |  |
| L2119570-01F          | BOD bottle Powder Pillow preserved | Α      | NA      |       | 3.2   | Υ    | Absent |           | DO-4500(.3)                                                                                                                                                                                      |  |  |
| L2119570-01G          | BOD bottle Powder Pillow preserved | Α      | NA      |       | 3.2   | Υ    | Absent |           | DO-4500(.3)                                                                                                                                                                                      |  |  |
| L2119570-01H          | Plastic 500ml H2SO4 preserved      | Α      | <2      | <2    | 3.2   | Υ    | Absent |           | TKN-4500(28),COD-5220(28),NH3-4500(28)                                                                                                                                                           |  |  |
| L2119570-01J          | Plastic 950ml unpreserved          | Α      | 7       | 7     | 3.2   | Υ    | Absent |           | SO4-4500(28),HEXCR-7196(1),PH-<br>9040(1),NO3-4500(2),NO2-4500NO3(2),BOD-<br>5210(2),TDS-2540(7)                                                                                                 |  |  |
| L2119570-01K          | Plastic 950ml unpreserved          | Α      | 7       | 7     | 3.2   | Υ    | Absent |           | TSS-2540-LOW(7)                                                                                                                                                                                  |  |  |
| L2119570-01L          | Amber 1000ml H2SO4 preserved       | Α      | <2      | <2    | 3.2   | Υ    | Absent |           | NY-TPHENOL-420(28)                                                                                                                                                                               |  |  |
| L2119570-02A          | Vial Na2S2O3 preserved             | Α      | NA      |       | 3.2   | Υ    | Absent |           | 624.1(7)                                                                                                                                                                                         |  |  |
| L2119570-02B          | Vial Na2S2O3 preserved             | Α      | NA      |       | 3.2   | Υ    | Absent |           | 624.1(7)                                                                                                                                                                                         |  |  |



### **GLOSSARY**

### **Acronyms**

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for
which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers



#### **Footnotes**

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

### Data Qualifiers

receipt, if applicable.

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers



### **Data Qualifiers**

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers



Project Name:SPDESLab Number:L2119570Project Number:Not SpecifiedReport Date:04/29/21

### REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.

## **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial\_No:04292115:34

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

## Certification Information

### The following analytes are not included in our Primary NELAP Scope of Accreditation:

### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

## **Mansfield Facility**

**SM 2540D:** TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

### The following analytes are included in our Massachusetts DEP Scope of Accreditation

### Westborough Facility:

### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

## Mansfield Facility:

## **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

| Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9193 FAX: 508-898-9193  Client Information Client: Greenstar Address: 6 Gellatly Drive Wappingers Falls, NY 12590 Phone: 845-223-9944 Fax: Email: cmcleod@greenstarsolution | Mahwah, NJ 07430: 35 Whitm<br>Albany, NY 12205: 14 Walker<br>Y Tonawanda, NY 14150: 275 C | SPDES Niagara Fa                                                        |                 |                  | 9 1<br>f 1            | Deliv        | ASP<br>EQU<br>Othe<br>latory<br>NY TO<br>AWQ<br>NY R | Lab  A IS (1 II Requ OGS Stand estricte | File)      | nt              | NYC            | IS (4 I            |                | Billing Information  Same as Client Info  Po #  Disposal Site Information  Please identify below location of applicable disposal facilities.  Disposal Facility:  NJ NY  Other: NA                                                                                                                                                                                                                                                                                                 |   |   |   |   |   |   |  |                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------|------------------|-----------------------|--------------|------------------------------------------------------|-----------------------------------------|------------|-----------------|----------------|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|-----------------------------------------------------------|
| These samples have been previously an                                                                                                                                                                                       |                                                                                           |                                                                         |                 |                  |                       | ANA          | LYSIS                                                |                                         | -          |                 |                |                    |                | Sample Filtration                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |   |   |   |   |   |  |                                                           |
| Other project specific requirements/c *metals-NI, CU, BA, CR, FE, SE, TL, ZN Please specify Metals or TAL.                                                                                                                  | omments:                                                                                  | **VOC-1,1-d                                                             | ichloroethane,  | trichloroeth     | ene                   | T. Phenol    | Dissolved Oxygen                                     | TSS                                     | T. Metals* | NH3/TKN/COD     | **20V          | CR+6, pH, TDS, BOD | SO4, NO3, NO2  | □ Done □ Lab to do □ Preservation □ Lab to do □ CPlease Specify below) □ Lab to do |   |   |   |   |   |   |  |                                                           |
| ALPHA Lab ID<br>(Lab Use Only)                                                                                                                                                                                              | Sample ID                                                                                 | Coll<br>Date                                                            | lection<br>Time | Sample<br>Matrix | Sampler's<br>Initials |              | Diss                                                 |                                         |            | Ż               |                | CR+6               | SC             | Sample Specific Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |   |   |   |   |  |                                                           |
| 19570-01 AP-EI                                                                                                                                                                                                              | NE-01                                                                                     | 4/16/21                                                                 | 1000            | SW               | NO                    | х            | х                                                    | х                                       | х          | Х               | Х              | Х                  | Х              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |   |   |   |   |  |                                                           |
|                                                                                                                                                                                                                             | ,                                                                                         |                                                                         |                 |                  |                       |              |                                                      | _                                       | -          |                 |                | _                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |   |   |  |                                                           |
| -02 TB-0                                                                                                                                                                                                                    | 1                                                                                         | _                                                                       | _               | -                |                       | _            | _                                                    | -                                       | -          | ₩               | X              | -                  | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |   |   |  |                                                           |
|                                                                                                                                                                                                                             |                                                                                           | -                                                                       |                 | -                | -                     | _            | -                                                    | -                                       | +          | +-              | +              | +                  | +              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |   |   |  |                                                           |
|                                                                                                                                                                                                                             |                                                                                           |                                                                         |                 |                  |                       |              | -                                                    | $\vdash$                                | +-         | +               | +              | +                  | +-             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |   |   |  |                                                           |
|                                                                                                                                                                                                                             |                                                                                           | _                                                                       | -               | -                | -                     |              | $\vdash$                                             | $\vdash$                                | +-         | +               | +              | +                  | +              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |   |   |  |                                                           |
|                                                                                                                                                                                                                             |                                                                                           |                                                                         |                 |                  |                       |              | _                                                    |                                         | _          | -               |                | +                  | +              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |   |   |  |                                                           |
|                                                                                                                                                                                                                             |                                                                                           |                                                                         |                 |                  |                       |              |                                                      | $\vdash$                                | 1          |                 | T              | T                  | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |   |   |  |                                                           |
|                                                                                                                                                                                                                             |                                                                                           |                                                                         |                 |                  |                       |              |                                                      |                                         |            |                 |                |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |   |   |  |                                                           |
| Preservative Code:         Container Code           A = None         P = Plastic           B = HCl         A = Amber Glass           C = HNO <sub>3</sub> V = Vial                                                          |                                                                                           | Westboro: Certification No: MA935<br>Mansfield: Certification No: MA015 |                 |                  | Container Type        |              | Container Type                                       |                                         |            |                 | Container Type |                    | Container Type |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 | Р | Р | Р | Р | Р |  | Please print clearly, legibly and completely. Samples can |
| D = H <sub>2</sub> SO <sub>4</sub> G = Glass<br>E = NaOH B = Bacteria Cup                                                                                                                                                   |                                                                                           |                                                                         |                 | F                | reservative           | D            |                                                      | A                                       | c          | D               | A              | A                  |                | not be logged in and<br>turnaround time clock will not                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |   |   |   |   |  |                                                           |
| F = MeOH C = Cube                                                                                                                                                                                                           | Relinquished                                                                              | Relinquished By: Date/Ti                                                |                 |                  |                       | Received By: |                                                      |                                         |            | D A A Date/Time |                |                    |                | start until any ambiguities are                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |   |   |  |                                                           |
| G = NaHSO <sub>4</sub> O = Other H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> E = Encore K/E = Zn Ac/NaOH D = BOD Bottle                                                                                               |                                                                                           | P. MARK                                                                 | 4/16            | 111)             | foray                 | _            | _                                                    |                                         | JAD        | 4/              | 16/2           | 1 1                | 1:11           | resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S                                                                                                                                                                                                                                                                                                                                                                                             |   |   |   |   |   |   |  |                                                           |
| O = Other Form No: 01-25 (rev. 30-Sept-2013)                                                                                                                                                                                | 0 ,                                                                                       | , , ,                                                                   |                 |                  | 1100                  |              |                                                      | 0                                       |            | 1               |                |                    |                | TERMS & CONDITIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |   |   |   |   |  |                                                           |



## ANALYTICAL REPORT

Lab Number: L2138829

Client: Greenstar Environmental Solutions, LLC

6 Gellatly Drive

Wappingers Falls, NY 12590

ATTN: Pete Nimmer
Phone: (845) 223-9944

Project Name: SPDES

Project Number: Not Specified Report Date: 08/16/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2138829

Report Date:

08/16/21

| Alpha<br>Sample ID | Client ID | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|-----------|--------|--------------------|-------------------------|--------------|
| L2138829-01        | AP-EWE-01 | WATER  | NIAGARA FALLS, NY  | 07/20/21 10:00          | 07/20/21     |



Project Name:SPDESLab Number:L2138829Project Number:Not SpecifiedReport Date:08/16/21

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



Project Name:SPDESLab Number:L2138829Project Number:Not SpecifiedReport Date:08/16/21

#### **Case Narrative (continued)**

Report Submission

August 16, 2021: This final report includes the results of all requested analyses.

July 29, 2021: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

#### Volatile Organics

L2138829-01: The pH of the sample was greater than two; however, the sample was analyzed within the method required holding time.

#### **Total Metals**

The WG1527554-3 MS recovery for silicon (256%), performed on L2138829-01, does not apply because the sample concentration is greater than four times the spike amount added.

#### Dissolved Oxygen

L2138829-01 was analyzed with the method required holding time exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Nachelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 08/16/21



### **ORGANICS**



### **VOLATILES**



Serial\_No:08162117:36

Project Name: SPDES Lab Number: L2138829

Project Number: Not Specified Report Date: 08/16/21

**SAMPLE RESULTS** 

Lab ID: L2138829-01 Date Collected: 07/20/21 10:00

Client ID: AP-EWE-01 Date Received: 07/20/21
Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/24/21 19:59

Analyst: NLK

| Parameter                      | Result         | Qualifier | Units | RL   | MDL  | Dilution Factor |
|--------------------------------|----------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - W | estborough Lab |           |       |      |      |                 |
| 1,1-Dichloroethane             | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Trichloroethene                | ND             |           | ua/l  | 0.50 | 0.18 | 1               |

| Surrogate             | % Recovery | Acceptance<br>Qualifier Criteria |  |
|-----------------------|------------|----------------------------------|--|
| 1,2-Dichloroethane-d4 | 95         | 70-130                           |  |
| Toluene-d8            | 99         | 70-130                           |  |
| 4-Bromofluorobenzene  | 95         | 70-130                           |  |
| Dibromofluoromethane  | 111        | 70-130                           |  |



Project Name: SPDES Lab Number: L2138829

Project Number: Not Specified Report Date: 08/16/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/24/21 12:55

Analyst: TMS

| Parameter                        | Result       | Qualifier | Units    | RL     | MDL         |  |
|----------------------------------|--------------|-----------|----------|--------|-------------|--|
| Volatile Organics by GC/MS - Wes | tborough Lab | for sampl | e(s): 01 | Batch: | WG1527939-5 |  |
| 1,1-Dichloroethane               | ND           |           | ug/l     | 2.5    | 0.70        |  |
| Trichloroethene                  | ND           |           | ug/l     | 0.50   | 0.18        |  |

|                       |                   | Acceptance  |  |
|-----------------------|-------------------|-------------|--|
| Surrogate             | %Recovery Qualifi | er Criteria |  |
| 1,2-Dichloroethane-d4 | 91                | 70-130      |  |
| Toluene-d8            | 101               | 70-130      |  |
| 4-Bromofluorobenzene  | 99                | 70-130      |  |
| Dibromofluoromethane  | 104               | 70-130      |  |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** SPDES

**Project Number:** Not Specified Lab Number:

L2138829

Report Date:

| <u>Pa</u> | rameter                                  | LCS<br>%Recovery | Qual       |       | LCSD<br>ecover | y Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|-----------|------------------------------------------|------------------|------------|-------|----------------|-------------|---------------------|-----|------|---------------|--|
| Vo        | latile Organics by GC/MS - Westborough L | ab Associated    | sample(s): | 01 Ba | atch: W        | VG1527939-3 | WG1527939-4         |     |      |               |  |
|           | 1,1-Dichloroethane                       | 93               |            |       | 90             |             | 70-130              | 3   |      | 20            |  |
|           | Trichloroethene                          | 90               |            |       | 87             |             | 70-130              | 3   |      | 20            |  |

| Surrogate             | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|-----------------------|-----------------------|------------------------|------------------------|
| 1,2-Dichloroethane-d4 | 97                    | 97                     | 70-130                 |
| Toluene-d8            | 100                   | 102                    | 70-130                 |
| 4-Bromofluorobenzene  | 98                    | 98                     | 70-130                 |
| Dibromofluoromethane  | 108                   | 107                    | 70-130                 |

### **METALS**



07/20/21 10:00

Date Collected:

Project Name:SPDESLab Number:L2138829Project Number:Not SpecifiedReport Date:08/16/21

**SAMPLE RESULTS** 

Lab ID: L2138829-01 Client ID: AP-EWE-01

Client ID: AP-EWE-01 Date Received: 07/20/21
Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter           | Result    | Qualifier | Units | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|-----------|-----------|-------|---------|---------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans | field Lab |           |       |         |         |                    |                  |                  |                |                      |         |
| Barium, Total       | 0.1128    |           | mg/l  | 0.00050 | 0.00017 | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Cadmium, Total      | ND        |           | mg/l  | 0.00020 | 0.00005 | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Chromium, Total     | 0.00058   | J         | mg/l  | 0.00100 | 0.00017 | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Copper, Total       | 0.00084   | J         | mg/l  | 0.00100 | 0.00038 | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Iron, Total         | 0.0683    |           | mg/l  | 0.0500  | 0.0191  | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Lead, Total         | ND        |           | mg/l  | 0.00100 | 0.00034 | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Magnesium, Total    | 16.3      |           | mg/l  | 0.0700  | 0.0242  | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Manganese, Total    | 0.1975    |           | mg/l  | 0.00100 | 0.00044 | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Nickel, Total       | 0.00149   | J         | mg/l  | 0.00200 | 0.00055 | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Selenium, Total     | ND        |           | mg/l  | 0.00500 | 0.00173 | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Silicon, Total      | 6.09      |           | mg/l  | 0.500   | 0.007   | 1                  | 07/24/21 19:58   | 08/05/21 16:46   | EPA 3005A      | 1,6010D              | PS      |
| Sodium, Total       | 53.8      |           | mg/l  | 0.100   | 0.0293  | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Thallium, Total     | 0.00039   | J         | mg/l  | 0.00100 | 0.00014 | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
| Zinc, Total         | 0.01792   |           | mg/l  | 0.01000 | 0.00341 | 1                  | 07/24/21 19:58   | 08/13/21 10:51   | EPA 3005A      | 1,6020B              | CD      |
|                     |           |           |       |         |         |                    |                  |                  |                |                      |         |



Serial\_No:08162117:36

L2138829

**Project Name: SPDES** 

Project Number: Not Specified

Lab Number:

**Report Date:** 08/16/21

### **Method Blank Analysis Batch Quality Control**

| Parameter                | Result Qualifier   | Units   | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|--------------------|---------|---------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for sample(s): | 01 Bato | h: WG15 | 27553-1 | 1                  |                  |                  |                      |         |
| Barium, Total            | ND                 | mg/l    | 0.00050 | 0.00017 | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Cadmium, Total           | ND                 | mg/l    | 0.00020 | 0.00005 | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Chromium, Total          | ND                 | mg/l    | 0.00100 | 0.00017 | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Copper, Total            | ND                 | mg/l    | 0.00100 | 0.00038 | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Iron, Total              | ND                 | mg/l    | 0.0500  | 0.0191  | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Lead, Total              | ND                 | mg/l    | 0.00100 | 0.00034 | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Magnesium, Total         | ND                 | mg/l    | 0.0700  | 0.0242  | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Manganese, Total         | ND                 | mg/l    | 0.00100 | 0.00044 | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Nickel, Total            | ND                 | mg/l    | 0.00200 | 0.00055 | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Selenium, Total          | ND                 | mg/l    | 0.00500 | 0.00173 | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Sodium, Total            | ND                 | mg/l    | 0.100   | 0.0293  | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Thallium, Total          | ND                 | mg/l    | 0.00100 | 0.00014 | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |
| Zinc, Total              | ND                 | mg/l    | 0.01000 | 0.00341 | 1                  | 07/24/21 19:58   | 08/13/21 10:22   | 1,6020B              | CD      |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter           | Result Qualifier         | Units    | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytica<br>Method |    |
|---------------------|--------------------------|----------|---------|---------|--------------------|------------------|------------------|---------------------|----|
| Total Metals - Mans | field Lab for sample(s): | 01 Batch | n: WG15 | 527554- | 1                  |                  |                  |                     |    |
| Silicon, Total      | ND                       | mg/l     | 0.500   | 0.007   | 1                  | 07/24/21 19:58   | 08/05/21 16:29   | 1,6010D             | PS |

**Prep Information** 

Digestion Method: EPA 3005A



# Lab Control Sample Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number: L2138829

**Report Date:** 08/16/21

| Parameter                                      | LCS<br>%Recovery | LCSD<br>Qual %Recovery | %Recovery<br>Qual Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|------------------|------------------------|--------------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample | (s): 01 Batch:   | WG1527553-2            |                          |     |      |            |
| Barium, Total                                  | 100              | -                      | 80-120                   | -   |      |            |
| Cadmium, Total                                 | 108              | -                      | 80-120                   | -   |      |            |
| Chromium, Total                                | 103              | -                      | 80-120                   | -   |      |            |
| Copper, Total                                  | 103              | -                      | 80-120                   | -   |      |            |
| Iron, Total                                    | 102              | -                      | 80-120                   | -   |      |            |
| Lead, Total                                    | 102              | -                      | 80-120                   | -   |      |            |
| Magnesium, Total                               | 102              | -                      | 80-120                   | -   |      |            |
| Manganese, Total                               | 99               | -                      | 80-120                   | -   |      |            |
| Nickel, Total                                  | 91               | -                      | 80-120                   | -   |      |            |
| Selenium, Total                                | 104              | -                      | 80-120                   | -   |      |            |
| Sodium, Total                                  | 103              | -                      | 80-120                   | -   |      |            |
| Thallium, Total                                | 110              | -                      | 80-120                   | -   |      |            |
| Zinc, Total                                    | 107              | -                      | 80-120                   | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | (s): 01 Batch:   | WG1527554-2            |                          |     |      |            |
| Silicon, Total                                 | 96               | -                      | 80-120                   | -   |      |            |



### Matrix Spike Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2138829

**Report Date:** 08/16/21

| arameter                  | Native<br>Sample   | MS<br>Added | MS<br>Found | MS<br>%Recovery | Qua | MSD<br>I Found | MSD<br>%Recovery | Qual  | Recovery<br>Limits | RPD   | Qual | RPD<br>Limits |
|---------------------------|--------------------|-------------|-------------|-----------------|-----|----------------|------------------|-------|--------------------|-------|------|---------------|
| otal Metals - Mansfield L | _ab Associated sam | nple(s): 01 | QC Batch II | D: WG152755     | 3-3 | QC Sample      | : L2138829-01    | Clien | ID: AP-EV          | VE-01 |      |               |
| Barium, Total             | 0.1128             | 2           | 2.065       | 98              |     | -              | -                |       | 75-125             | -     |      | 20            |
| Cadmium, Total            | ND                 | 0.053       | 0.05506     | 104             |     | -              | -                |       | 75-125             | -     |      | 20            |
| Chromium, Total           | 0.00058J           | 0.2         | 0.2064      | 103             |     | -              | -                |       | 75-125             | -     |      | 20            |
| Copper, Total             | 0.00084J           | 0.25        | 0.2588      | 104             |     | -              | -                |       | 75-125             | -     |      | 20            |
| Iron, Total               | 0.0683             | 1           | 1.12        | 105             |     | -              | -                |       | 75-125             | -     |      | 20            |
| Lead, Total               | ND                 | 0.53        | 0.5493      | 104             |     | -              | -                |       | 75-125             | -     |      | 20            |
| Magnesium, Total          | 16.3               | 10          | 26.6        | 103             |     | -              | -                |       | 75-125             | -     |      | 20            |
| Manganese, Total          | 0.1975             | 0.5         | 0.7008      | 101             |     | -              | -                |       | 75-125             | -     |      | 20            |
| Nickel, Total             | 0.00149J           | 0.5         | 0.4580      | 92              |     | -              | -                |       | 75-125             | -     |      | 20            |
| Selenium, Total           | ND                 | 0.12        | 0.121       | 101             |     | -              | -                |       | 75-125             | -     |      | 20            |
| Sodium, Total             | 53.8               | 10          | 61.3        | 75              |     | -              | -                |       | 75-125             | -     |      | 20            |
| Thallium, Total           | 0.00039J           | 0.12        | 0.1339      | 112             |     | -              | -                |       | 75-125             | -     |      | 20            |
| Zinc, Total               | 0.01792            | 0.5         | 0.5586      | 108             |     | -              | -                |       | 75-125             | -     |      | 20            |
| otal Metals - Mansfield L | _ab Associated sam | nple(s): 01 | QC Batch II | D: WG152755     | 4-3 | QC Sample      | : L2138829-01    | Clien | ID: AP-EV          | VE-01 |      |               |
| Silicon, Total            | 6.09               | 1           | 8.65        | 256             | Q   | -              | -                |       | 75-125             | -     |      | 20            |

# Lab Duplicate Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

 Lab Number:
 L2138829

 Report Date:
 08/16/21

| arameter                                             | Native Sample Du        | uplicate Sample | Units       | RPD        | Qual      | RPD Limits |
|------------------------------------------------------|-------------------------|-----------------|-------------|------------|-----------|------------|
| otal Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1527553- | 4 QC Sample:    | L2138829-01 | Client ID: | AP-EWE-01 |            |
| Barium, Total                                        | 0.1128                  | 0.1117          | mg/l        | 1          |           | 20         |
| Cadmium, Total                                       | ND                      | ND              | mg/l        | NC         |           | 20         |
| Chromium, Total                                      | 0.00058J                | 0.00056J        | mg/l        | NC         |           | 20         |
| Copper, Total                                        | 0.00084J                | 0.00083J        | mg/l        | NC         |           | 20         |
| Iron, Total                                          | 0.0683                  | 0.0758          | mg/l        | 10         |           | 20         |
| Lead, Total                                          | ND                      | ND              | mg/l        | NC         |           | 20         |
| Magnesium, Total                                     | 16.3                    | 16.5            | mg/l        | 1          |           | 20         |
| Manganese, Total                                     | 0.1975                  | 0.1961          | mg/l        | 1          |           | 20         |
| Nickel, Total                                        | 0.00149J                | 0.00170J        | mg/l        | NC         |           | 20         |
| Selenium, Total                                      | ND                      | ND              | mg/l        | NC         |           | 20         |
| Sodium, Total                                        | 53.8                    | 55.4            | mg/l        | 3          |           | 20         |
| Thallium, Total                                      | 0.00039J                | 0.00092J        | mg/l        | NC         |           | 20         |
| Zinc, Total                                          | 0.01792                 | 0.01782         | mg/l        | 1          |           | 20         |
| otal Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1527554- | 4 QC Sample:    | L2138829-01 | Client ID: | AP-EWE-01 |            |
| Silicon, Total                                       | 6.09                    | 6.19            | mg/l        | 2          |           | 20         |



# Lab Serial Dilution Analysis Batch Quality Control

Lab Number:

L2138829 08/16/21

uality Control Report Date:

| Parameter                                             | Native Sample S         | Serial Dilution | Units       | % D        | Qual      | RPD Limits |
|-------------------------------------------------------|-------------------------|-----------------|-------------|------------|-----------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1527553- | 6 QC Sample:    | L2138829-01 | Client ID: | AP-EWE-01 |            |
| Barium, Total                                         | 0.1128                  | 0.1111          | mg/l        | 2          |           | 20         |
| Magnesium, Total                                      | 16.3                    | 16.4            | mg/l        | 1          |           | 20         |
| Manganese, Total                                      | 0.1975                  | 0.1935          | mg/l        | 2          |           | 20         |
| Sodium, Total                                         | 53.8                    | 53.2            | mg/l        | 1          |           | 20         |



**Project Name:** 

Project Number:

SPDES

Not Specified

# INORGANICS & MISCELLANEOUS



Serial\_No:08162117:36

Project Name: SPDES Lab Number: L2138829

Project Number: Not Specified Report Date: 08/16/21

#### **SAMPLE RESULTS**

Lab ID: L2138829-01 Date Collected: 07/20/21 10:00

Client ID: AP-EWE-01 Date Received: 07/20/21 Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

| Parameter                | Result        | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|---------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Wes  | stborough Lat | )         |       |       |       |                    |                  |                  |                      |         |
| Solids, Total Dissolved  | 740           |           | mg/l  | 10    | 3.1   | 1                  | -                | 07/26/21 07:30   | 121,2540C            | DW      |
| Solids, Total Suspended  | 1.9           |           | mg/l  | 1.0   | NA    | 1                  | -                | 07/23/21 12:05   | 121,2540D            | AC      |
| pH (H)                   | 7.6           |           | SU    | -     | NA    | 1                  | -                | 07/21/21 07:43   | 121,4500H+-B         | KP      |
| Nitrogen, Ammonia        | 0.329         |           | mg/l  | 0.075 | 0.024 | 1                  | 07/27/21 02:00   | 07/27/21 20:17   | 121,4500NH3-BH       | AT      |
| Nitrogen, Nitrite        | 0.072         |           | mg/l  | 0.050 | 0.014 | 1                  | -                | 07/21/21 11:09   | 44,353.2             | EL      |
| Nitrogen, Nitrate        | 0.32          |           | mg/l  | 0.10  | 0.023 | 1                  | -                | 07/21/21 11:09   | 44,353.2             | EL      |
| Nitrogen, Total Kjeldahl | 0.808         |           | mg/l  | 0.300 | 0.066 | 1                  | 07/26/21 22:35   | 07/28/21 21:12   | 121,4500NH3-H        | AT      |
| Dissolved Oxygen         | 4.6           |           | mg/l  | 0.10  | 0.10  | 1                  | -                | 07/21/21 11:10   | 121,4500O-C          | JT      |
| Sulfate                  | 38.           |           | mg/l  | 10    | 1.4   | 1                  | 07/26/21 13:21   | 07/26/21 13:21   | 121,4500SO4-E        | JB      |
| Chemical Oxygen Demand   | 20.           |           | mg/l  | 10    | 2.7   | 1                  | 07/21/21 21:10   | 07/21/21 23:52   | 44,410.4             | TL      |
| BOD, 5 day               | ND            |           | mg/l  | 2.0   | NA    | 1                  | 07/21/21 22:45   | 07/26/21 18:27   | 121,5210B            | JD      |
| Phenolics, Total         | ND            |           | mg/l  | 0.030 | 0.006 | 1                  | 07/21/21 06:59   | 07/21/21 10:45   | 4,420.1              | KP      |
| Chromium, Hexavalent     | ND            |           | mg/l  | 0.010 | 0.003 | 1                  | 07/21/21 02:50   | 07/21/21 03:08   | 1,7196A              | KA      |



Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2138829

Report Date:

08/16/21

### Method Blank Analysis Batch Quality Control

| Parameter                | Result Q        | ualifier | Units      | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-----------------|----------|------------|--------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG15  | 26088-1            |                  |                  |                      |         |
| Nitrogen, Nitrate        | ND              |          | mg/l       | 0.10   | 0.023 | 1                  | -                | 07/21/21 07:12   | 44,353.2             | EL      |
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG15  | 26089-1            |                  |                  |                      |         |
| Nitrogen, Nitrite        | ND              |          | mg/l       | 0.050  | 0.014 | 1                  | -                | 07/21/21 07:14   | 44,353.2             | EL      |
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG15  | 26097-1            |                  |                  |                      |         |
| Chromium, Hexavalent     | ND              |          | mg/l       | 0.010  | 0.003 | 1                  | 07/21/21 02:50   | 07/21/21 03:06   | 1,7196A              | KA      |
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG15  | 26142-1            |                  |                  |                      |         |
| Phenolics, Total         | ND              |          | mg/l       | 0.030  | 0.006 | 1                  | 07/21/21 06:59   | 07/21/21 10:41   | 4,420.1              | KP      |
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG152 | 26439-1            |                  |                  |                      |         |
| Chemical Oxygen Demand   | ND              |          | mg/l       | 10     | 2.7   | 1                  | 07/21/21 21:10   | 07/21/21 23:49   | 44,410.4             | TL      |
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG152 | 26467-1            |                  |                  |                      |         |
| BOD, 5 day               | ND              |          | mg/l       | 2.0    | NA    | 1                  | 07/21/21 22:45   | 07/26/21 18:27   | 121,5210B            | JD      |
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG15  | 27178-1            |                  |                  |                      |         |
| Sulfate                  | ND              |          | mg/l       | 10     | 1.4   | 1                  | 07/26/21 13:21   | 07/26/21 13:21   | 121,4500SO4-E        | ≣ ЈВ    |
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG152 | 27212-1            |                  |                  |                      |         |
| Solids, Total Suspended  | ND              |          | mg/l       | 1.0    | NA    | 1                  | -                | 07/23/21 12:05   | 121,2540D            | AC      |
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG152 | 27738-1            |                  |                  |                      |         |
| Solids, Total Dissolved  | ND              |          | mg/l       | 10     | 3.1   | 1                  | -                | 07/26/21 07:30   | 121,2540C            | DW      |
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG152 | 28088-1            |                  |                  |                      |         |
| Nitrogen, Total Kjeldahl | 0.106           | J        | mg/l       | 0.300  | 0.022 | 1                  | 07/26/21 22:35   | 07/28/21 20:59   | 121,4500NH3-H        | H AT    |
| General Chemistry - V    | Vestborough Lab | for sam  | ple(s): 01 | Batch: | WG152 | 28102-1            |                  |                  |                      |         |
| Nitrogen, Ammonia        | ND              |          | mg/l       | 0.075  | 0.024 | 1                  | 07/27/21 02:00   | 07/27/21 20:14   | 121,4500NH3-B        | H AT    |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** SPDES

**Project Number:** Not Specified Lab Number:

L2138829

Report Date:

| Parameter                           | LCS<br>%Recovery Qu      | LCSD<br>al %Recovery Qu | %Recovery<br>ıal Limits | RPD | Qual | RPD Limits |
|-------------------------------------|--------------------------|-------------------------|-------------------------|-----|------|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1526088-2      |                         |     |      |            |
| Nitrogen, Nitrate                   | 104                      | -                       | 90-110                  | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1526089-2      |                         |     |      |            |
| Nitrogen, Nitrite                   | 98                       | -                       | 90-110                  | -   |      | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1526097-2      |                         |     |      |            |
| Chromium, Hexavalent                | 106                      | -                       | 85-115                  | -   |      | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1526142-2      |                         |     |      |            |
| Phenolics, Total                    | 100                      | -                       | 70-130                  | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1526180-1      |                         |     |      |            |
| рН                                  | 100                      | -                       | 99-101                  | -   |      | 5          |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1526439-2      |                         |     |      |            |
| Chemical Oxygen Demand              | 98                       | -                       | 90-110                  | -   |      |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1526467-2      |                         |     |      |            |
| BOD, 5 day                          | 104                      | -                       | 85-115                  | -   |      | 20         |



# Lab Control Sample Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number: L21

L2138829

Report Date:

| Parameter                           | LCS<br>%Recovery         | LCSD<br>%Recovery  | %Recovery<br>Limits | RPD | RPD Limits |
|-------------------------------------|--------------------------|--------------------|---------------------|-----|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1527178-2 |                     |     |            |
| Sulfate                             | 90                       | -                  | 90-110              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1527212-2 |                     |     |            |
| Solids, Total Suspended             | 104                      | -                  | 80-120              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1527738-2 |                     |     |            |
| Solids, Total Dissolved             | 98                       | -                  | 80-120              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1528088-2 |                     |     |            |
| Nitrogen, Total Kjeldahl            | 101                      | -                  | 78-122              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1528102-2 |                     |     |            |
| Nitrogen, Ammonia                   | 102                      | -                  | 80-120              | -   | 20         |



### Matrix Spike Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2138829

Report Date:

| Parameter                 | Native<br>Sample  | MS<br>Added | MS<br>Found | MS<br>%Recovery | MS<br>Qual Fou | 11100            | Recov<br>Qual Limi | •                | RPD<br>Limits |
|---------------------------|-------------------|-------------|-------------|-----------------|----------------|------------------|--------------------|------------------|---------------|
| General Chemistry - Westh | oorough Lab Assoc | iated samp  | le(s): 01   | QC Batch ID: V  | NG1526088-4    | QC Sample: L21   | 38779-03 C         | lient ID: MS Sam | ple           |
| Nitrogen, Nitrate         | 180               | 4           | 180         | 0               | Q              |                  | 83-11              | 3 -              | 6             |
| General Chemistry - Westb | oorough Lab Assoc | iated samp  | le(s): 01   | QC Batch ID: V  | NG1526089-4    | QC Sample: L21   | 38779-03 C         | lient ID: MS Sam | ple           |
| Nitrogen, Nitrite         | 1.5               | 4           | 5.3         | 95              |                |                  | 80-12              | 0 -              | 20            |
| General Chemistry - Westb | oorough Lab Assoc | iated samp  | le(s): 01   | QC Batch ID: V  | NG1526097-4    | QC Sample: L21   | 38829-01 C         | lient ID: AP-EWE | -01           |
| Chromium, Hexavalent      | ND                | 0.1         | 0.105       | 105             |                |                  | 85-11              | 5 -              | 20            |
| General Chemistry - Westk | oorough Lab Assoc | iated samp  | le(s): 01   | QC Batch ID: V  | NG1526142-4    | QC Sample: L21   | 38829-01 C         | lient ID: AP-EWE | -01           |
| Phenolics, Total          | ND                | 0.4         | 0.35        | 87              |                |                  | 70-13              | 0 -              | 20            |
| General Chemistry - Westk | oorough Lab Assoc | iated samp  | le(s): 01   | QC Batch ID: V  | NG1526439-3    | 3 QC Sample: L21 | 37917-01 C         | lient ID: MS Sam | ple           |
| Chemical Oxygen Demand    | 27.               | 47.6        | 76          | 103             |                |                  | 90-11              | 0 -              | 20            |
| General Chemistry - Westk | oorough Lab Assoc | iated samp  | le(s): 01   | QC Batch ID: V  | NG1526467-4    | QC Sample: L21   | 38829-01 C         | lient ID: AP-EWE | -01           |
| BOD, 5 day                | ND                | 100         | 110         | 107             |                |                  | 50-14              | 5 -              | 35            |
| General Chemistry - Westk | oorough Lab Assoc | iated samp  | le(s): 01   | QC Batch ID: V  | NG1527178-4    | QC Sample: L21   | 39452-01 C         | lient ID: MS Sam | ple           |
| Sulfate                   | 24.               | 40          | 57          | 82              |                |                  | 55-14              | 7 -              | 14            |
| General Chemistry - Westh | oorough Lab Assoc | iated samp  | le(s): 01   | QC Batch ID: V  | NG1528088-4    | QC Sample: L21   | 37562-01 C         | lient ID: MS Sam | ple           |
| Nitrogen, Total Kjeldahl  | 0.873             | 8           | 8.30        | 93              |                |                  | 77-11              | 1 -              | 24            |
| General Chemistry - Westh | oorough Lab Assoc | ciated samp | le(s): 01   | QC Batch ID: V  | NG1528102-4    | QC Sample: L21   | 36469-07 C         | lient ID: MS Sam | ple           |
| Nitrogen, Ammonia         | 0.070J            | 4           | 3.79        | 95              |                |                  | 80-12              | 0 -              | 20            |



# Lab Duplicate Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2138829

**Report Date:** 08/16/21

| Parameter                           | Native S                 | Sample       | Duplicate Sam | ple Units    | RPD         | Qual       | RPD Limits |
|-------------------------------------|--------------------------|--------------|---------------|--------------|-------------|------------|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1526088-3   | QC Sample: I | _2138779-03 | Client ID: | DUP Sample |
| Nitrogen, Nitrate                   | 18                       | 0            | 190           | mg/l         | 5           |            | 6          |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1526089-3   | QC Sample: I | _2138779-03 | Client ID: | DUP Sample |
| Nitrogen, Nitrite                   | 1.:                      | 5            | 1.5           | mg/l         | 0           |            | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1526097-3   | QC Sample: I | _2138829-01 | Client ID: | AP-EWE-01  |
| Chromium, Hexavalent                | NI                       | )            | ND            | mg/l         | NC          |            | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1526142-3   | QC Sample: I | _2138829-01 | Client ID: | AP-EWE-01  |
| Phenolics, Total                    | NI                       | )            | 0.013J        | mg/l         | NC          |            | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1526180-2   | QC Sample: I | _2138778-01 | Client ID: | DUP Sample |
| рН                                  | 6.7                      | 7            | 6.7           | SU           | 0           |            | 5          |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1526439-4   | QC Sample: I | _2137917-01 | Client ID: | DUP Sample |
| Chemical Oxygen Demand              | 27                       |              | 27            | mg/l         | 0           |            | 20         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1526467-3   | QC Sample: I | _2138829-01 | Client ID: | AP-EWE-01  |
| BOD, 5 day                          | NI                       | )            | ND            | mg/l         | NC          |            | 35         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1527178-3   | QC Sample: I | _2139452-01 | Client ID: | DUP Sample |
| Sulfate                             | 24                       |              | 22            | mg/l         | 9           |            | 14         |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | QC Batch ID: | WG1527212-3   | QC Sample: I | _2139218-01 | Client ID: | DUP Sample |
| Solids, Total Suspended             | 45                       |              | 470           | mg/l         | 4           |            | 29         |



# Lab Duplicate Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2138829

Report Date:

| Parameter                                | Native Sample                     | Duplicate Sample  | Units R           | PD            | RPD Limits |
|------------------------------------------|-----------------------------------|-------------------|-------------------|---------------|------------|
| General Chemistry - Westborough Lab Asso | ociated sample(s): 01 QC Batch II | D: WG1527436-1 QC | Sample: L2138829- | 01 Client ID: | AP-EWE-01  |
| Dissolved Oxygen                         | 4.6                               | 3.8               | mg/l              | 19            | 20         |
| General Chemistry - Westborough Lab Asso | ociated sample(s): 01 QC Batch II | D: WG1527738-3 QC | Sample: L2138941- | 01 Client ID: | DUP Sample |
| Solids, Total Dissolved                  | 290                               | 300               | mg/l              | 3             | 10         |
| General Chemistry - Westborough Lab Asso | ociated sample(s): 01 QC Batch II | D: WG1528088-3 QC | Sample: L2137562- | 01 Client ID: | DUP Sample |
| Nitrogen, Total Kjeldahl                 | 0.873                             | 1.08              | mg/l              | 21            | 24         |
| General Chemistry - Westborough Lab Asso | ociated sample(s): 01 QC Batch II | D: WG1528102-3 QC | Sample: L2136469- | 07 Client ID: | DUP Sample |
| Nitrogen, Ammonia                        | 0.070J                            | 0.061J            | mg/l              | NC            | 20         |



Serial\_No:08162117:36

**Lab Number:** L2138829

Report Date: 08/16/21

Project Number: Not Specified

### Sample Receipt and Container Information

Were project specific reporting limits specified?

**SPDES** 

YES

**Cooler Information** 

Project Name:

Custody Seal Cooler

Absent Α

| Container Info | rmation                            |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                                  |
|----------------|------------------------------------|--------|---------|-------|-------|------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                     | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                      |
| L2138829-01A   | Vial HCl preserved                 | Α      | NA      |       | 3.8   | Υ    | Absent |           | NYTCL-8260(14)                                                                                                                                                                                   |
| L2138829-01B   | Vial HCl preserved                 | Α      | NA      |       | 3.8   | Υ    | Absent |           | NYTCL-8260(14)                                                                                                                                                                                   |
| L2138829-01C   | Vial HCl preserved                 | Α      | NA      |       | 3.8   | Υ    | Absent |           | NYTCL-8260(14)                                                                                                                                                                                   |
| L2138829-01D   | Plastic 250ml unpreserved          | A      | 7       | 7     | 3.8   | Υ    | Absent |           | SO4-4500(28),HEXCR-7196(1),NO2-<br>353(2),PH-4500(.01),TDS-2540(7),BOD-<br>5210(2),NO3-353(2)                                                                                                    |
| L2138829-01E   | Plastic 250ml HNO3 preserved       | A      | <2      | <2    | 3.8   | Y    | Absent |           | TL-6020T(180),FE-6020T(180),SE-6020T(180),BA-6020T(180),NI-6020T(180),CR-6020T(180),CU-6020T(180),ZN-6020T(180),SI-TI(180),NA-6020T(180),PB-6020T(180),MN-6020T(180),MG-6020T(180),CD-6020T(180) |
| L2138829-01F   | Plastic 500ml H2SO4 preserved      | Α      | <2      | <2    | 3.8   | Υ    | Absent |           | TKN-4500(28),COD-410-LOW(28),NH3-<br>4500(28)                                                                                                                                                    |
| L2138829-01G   | BOD bottle Powder Pillow preserved | Α      | NA      |       | 3.8   | Υ    | Absent |           | DO-4500(.3)                                                                                                                                                                                      |
| L2138829-01H   | BOD bottle Powder Pillow preserved | Α      | NA      |       | 3.8   | Υ    | Absent |           | DO-4500(.3)                                                                                                                                                                                      |
| L2138829-01J   | Plastic 950ml unpreserved          | Α      | 7       | 7     | 3.8   | Υ    | Absent |           | TSS-2540-LOW(7)                                                                                                                                                                                  |
| L2138829-01K   | Plastic 950ml unpreserved          | Α      | 7       | 7     | 3.8   | Υ    | Absent |           | SO4-4500(28),HEXCR-7196(1),NO2-<br>353(2),PH-4500(.01),TDS-2540(7),BOD-<br>5210(2),NO3-353(2)                                                                                                    |
| L2138829-01L   | Amber 1000ml H2SO4 preserved       | Α      | <2      | <2    | 3.8   | Υ    | Absent |           | NY-TPHENOL-420(28)                                                                                                                                                                               |
|                |                                    |        |         |       |       |      |        |           |                                                                                                                                                                                                  |



**Project Name:** Lab Number: **SPDES** L2138829 Not Specified **Report Date: Project Number:** 08/16/21

#### GLOSSARY

#### Acronyms

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

**EDL** - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

**EMPC** - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

**EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

> adjustments from dilutions, concentrations or moisture content, where applicable. - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

MS

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers



Project Name:SPDESLab Number:L2138829Project Number:Not SpecifiedReport Date:08/16/21

#### **Footnotes**

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### **Terms**

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$  Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers



Project Name:SPDESLab Number:L2138829Project Number:Not SpecifiedReport Date:08/16/21

#### **Data Qualifiers**

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers



Serial\_No:08162117:36

Project Name:SPDESLab Number:L2138829Project Number:Not SpecifiedReport Date:08/16/21

#### REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial\_No:08162117:36

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

#### **Mansfield Facility**

**SM 2540D:** TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

| Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193  Client Information  Client: Greenstar  Address: 6 Gellatly D                                                     | NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Bivd TEL: 508-822-9300 FAX: 508-822-3288                           | Albany, NY 12205: 14 Walker Wa<br>Tonawanda, NY 14150: 275 Coop<br>Project Information<br>Project Name:<br>Project Location:<br>Project # | wah, NJ 07430: 35 Whitney Rd, Suite 5 ny, NY 12205: 14 Walker Way swanda, NY 14150: 275 Cooper Ave, Suite 105  Project Information ject Name: SPDES ject Location: Niagara Falls, NY ject # e Project name as Project #) |                      |                  |                       |                 |                  | -A<br>IS (1 I     | 7                           | (2          | Billing Information  Same as Client Information  G (4 File)  Disposal Site Information  1 375  Please identify below location |                    |               |                                                                                                                                                                                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|-----------------------|-----------------|------------------|-------------------|-----------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Wappingers Falls, NY 1 Phone: 845-223-99 Fax: Email: cmcleod@g These samples have be                                                                                                     | reenstarsolutions.com                                                                                                       | Turn-Around Time Standard Rush (only if pre approved)                                                                                     | Standard ☑ Due Date: ▼ HC+ Chrome  Rush (only if pre approved) □ # of Days: Ⅵ ¼ Nr TAT                                                                                                                                   |                      |                  |                       |                 |                  | nrestric<br>Sewer | ed Use<br>cted Us<br>Discha | e           | Other                                                                                                                         |                    |               | Disposal Facility:  NJ NY  Other: NA  Sample Filtration                                                                                                                                                                                                  |  |
| Other project specific<br>*metals-NI, CU, BA, CR<br>Please specify Metals                                                                                                                | requirements/comm<br>, FE, SE, TL, ZN, SI,                                                                                  | nents:                                                                                                                                    |                                                                                                                                                                                                                          | chloroethane,        |                  |                       | T. Phenol       | Dissolved Oxygen | TSS               | T. Metais*                  | NH3/TKN/COD | *>>>                                                                                                                          | CR+6, pH, TDS, BOD | SO4, NO3, NO2 | Done Lab to do Preservation Lab to do Please Specify below)                                                                                                                                                                                              |  |
| ALPHA Lab ID<br>(Lab Use Only)<br>38829-01                                                                                                                                               | Sa                                                                                                                          | E AP-EWE-01                                                                                                                               | Date 7/20                                                                                                                                                                                                                | Time<br>(0 00        | Sample<br>Matrix | Sampler's<br>Initials | х               | X                | x                 | x                           | х           | х                                                                                                                             | X<br>R             | x             | Sample Specific Comments                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                          |                      |                  |                       |                 |                  |                   |                             |             |                                                                                                                               |                    |               |                                                                                                                                                                                                                                                          |  |
| A = None<br>B = HCI<br>C = HNO <sub>3</sub><br>D = H <sub>2</sub> SO <sub>4</sub><br>E = NaOH<br>F = MeOH<br>G = NaHSO <sub>4</sub><br>H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle | Westboro: Certification No<br>Mansfield: Certification No<br>Relinquished B<br>Whals Co                                                   | o: MA015                                                                                                                                                                                                                 | Date: 7/20/2/7/20/2/ | Time             | Preservative          | G<br>D<br>Recei | . /              | P<br>A<br>y:      | РС                          | -           | 20/2                                                                                                                          | P A e/Time         |               | Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. |  |



#### ANALYTICAL REPORT

Lab Number: L2155685

Client: Greenstar Environmental Solutions, LLC

6 Gellatly Drive

Wappingers Falls, NY 12590

ATTN: Pete Nimmer
Phone: (845) 223-9944

Project Name: SPDES

Project Number: Not Specified Report Date: 10/26/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Serial\_No:10262115:07

**Project Name: SPDES** 

Project Number: Not Specified Lab Number:

L2155685

Report Date:

10/26/21

Alpha Sample ID Sample Location Collection Date/Time **Receive Date** Client ID Matrix AP-EWE-01 WATER NIAGARA FALLS, NY 10/12/21 14:30 L2155685-01

10/12/21

Serial No:10262115:07

Project Name:SPDESLab Number:L2155685Project Number:Not SpecifiedReport Date:10/26/21

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



Serial\_No:10262115:07

Project Name:SPDESLab Number:L2155685Project Number:Not SpecifiedReport Date:10/26/21

#### **Case Narrative (continued)**

#### Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

#### **Total Metals**

L2155685-01: The sample has an elevated detection limit for silicon due to the dilution required by the limited sample volume available for analysis.

The WG1558047-3 MS recovery for sodium (56%), performed on L2155685-01, does not apply because the sample concentration is greater than four times the spike amount added.

#### Dissolved Oxygen

L2155685-01: The sample was analyzed with the method required holding time exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Willelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 10/26/21

### **ORGANICS**



### **VOLATILES**



Serial\_No:10262115:07

Project Name: SPDES Lab Number: L2155685

Project Number: Not Specified Report Date: 10/26/21

**SAMPLE RESULTS** 

Lab ID: L2155685-01 Date Collected: 10/12/21 14:30

Client ID: AP-EWE-01 Date Received: 10/12/21

Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 10/14/21 12:47

Analyst: MKS

| Parameter                                  | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |
|--------------------------------------------|--------|-----------|-------|-----|------|-----------------|
| Volatile Organics by GC/MS - Westborough I | Lab    |           |       |     |      |                 |
| 1,1-Dichloroethane                         | ND     |           | ug/l  | 1.5 | 0.40 | 1               |
| Trichloroethene                            | ND     |           | ug/l  | 1.0 | 0.33 | 1               |
|                                            |        |           |       |     |      |                 |

| Surrogate            | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|----------------------|------------|-----------|------------------------|--|
| Pentafluorobenzene   | 86         |           | 60-140                 |  |
| Fluorobenzene        | 95         |           | 60-140                 |  |
| 4-Bromofluorobenzene | 111        |           | 60-140                 |  |



Project Name: SPDES Lab Number: L2155685

Project Number: Not Specified Report Date: 10/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 10/14/21 06:26

Analyst: GT

| Parameter                       | Result        | Qualifier   | Units    | RL     | MDL         |  |
|---------------------------------|---------------|-------------|----------|--------|-------------|--|
| Volatile Organics by GC/MS - We | stborough Lat | o for sampl | e(s): 01 | Batch: | WG1558694-4 |  |
| 1,1-Dichloroethane              | ND            |             | ug/l     | 1.5    | 0.40        |  |
| Trichloroethene                 | ND            |             | ug/l     | 1.0    | 0.33        |  |

|                      |           | Acceptance         |   |  |  |
|----------------------|-----------|--------------------|---|--|--|
| Surrogate            | %Recovery | Qualifier Criteria | а |  |  |
|                      |           |                    |   |  |  |
| Pentafluorobenzene   | 86        | 60-140             |   |  |  |
| Fluorobenzene        | 94        | 60-140             |   |  |  |
| 4-Bromofluorobenzene | 123       | 60-140             |   |  |  |



# Lab Control Sample Analysis Batch Quality Control

Project Name: SPDES

Lab Number:

L2155685 10/26/21

**Project Number:** 

Not Specified

Report Date:

| Parameter                                  | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------------|------------------|--------------|-------------------|----------|---------------------|-----|------|---------------|--|
| Volatile Organics by GC/MS - Westborough L | ab Associated    | sample(s): 0 | 01 Batch: WG1     | 558694-3 |                     |     |      |               |  |
| 1,1-Dichloroethane                         | 90               |              | -                 |          | 50-150              | -   |      | 49            |  |
| Trichloroethene                            | 115              |              | -                 |          | 65-135              | -   |      | 48            |  |

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qu | Acceptance<br>ual Criteria |
|----------------------|-----------------------|----------------------|----------------------------|
| Pentafluorobenzene   | 87                    |                      | 60-140                     |
| Fluorobenzene        | 100                   |                      | 60-140                     |
| 4-Bromofluorobenzene | 117                   |                      | 60-140                     |

### **METALS**



10/12/21 14:30

Date Collected:

Project Name:SPDESLab Number:L2155685Project Number:Not SpecifiedReport Date:10/26/21

**SAMPLE RESULTS** 

Lab ID: L2155685-01
Client ID: AP-EWE-01

Client ID: AP-EWE-01 Date Received: 10/12/21 Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Sample Depth:

|                                       | Analyst                                                                                         |
|---------------------------------------|-------------------------------------------------------------------------------------------------|
|                                       |                                                                                                 |
| ,6020B                                | PS                                                                                              |
| ,6010D                                | DL                                                                                              |
| ,6020B                                | PS                                                                                              |
| ,6020B                                | PS                                                                                              |
| ,6020B                                | PS                                                                                              |
| , , , , , , , , , , , , , , , , , , , | 6020B<br>6020B<br>6020B<br>6020B<br>6020B<br>6020B<br>6020B<br>6020B<br>6020B<br>6020B<br>6020B |



Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2155685

**Report Date:** 10/26/21

# Method Blank Analysis Batch Quality Control

| Parameter                | Result Q    | ualifier | Units   | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-------------|----------|---------|---------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for sai | mple(s): | 01 Batc | h: WG15 | 58047-1 |                    |                  |                  |                      |         |
| Barium, Total            | ND          |          | mg/l    | 0.00050 | 0.00017 | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Cadmium, Total           | ND          |          | mg/l    | 0.00020 | 0.00005 | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Chromium, Total          | 0.00068     | J        | mg/l    | 0.00100 | 0.00017 | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Copper, Total            | ND          |          | mg/l    | 0.00100 | 0.00038 | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Iron, Total              | ND          |          | mg/l    | 0.0500  | 0.0191  | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Lead, Total              | ND          |          | mg/l    | 0.00100 | 0.00034 | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Magnesium, Total         | ND          |          | mg/l    | 0.0700  | 0.0242  | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Manganese, Total         | 0.00058     | J        | mg/l    | 0.00100 | 0.00044 | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Nickel, Total            | ND          |          | mg/l    | 0.00200 | 0.00055 | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Selenium, Total          | ND          |          | mg/l    | 0.00500 | 0.00173 | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Sodium, Total            | ND          |          | mg/l    | 0.100   | 0.0293  | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Thallium, Total          | 0.00014     | J        | mg/l    | 0.00100 | 0.00014 | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |
| Zinc, Total              | ND          |          | mg/l    | 0.01000 | 0.00341 | 1                  | 10/14/21 09:32   | 10/15/21 17:33   | 1,6020B              | PS      |

**Prep Information** 

Digestion Method: EPA 3005A

| Parameter           | Result Qualifier         | Units    | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytica<br>Method |    |
|---------------------|--------------------------|----------|---------|---------|--------------------|------------------|------------------|---------------------|----|
| Total Metals - Mans | field Lab for sample(s): | 01 Batch | n: WG15 | 558620- | 1                  |                  |                  |                     |    |
| Silicon, Total      | ND                       | mg/l     | 0.500   | 0.007   | 1                  | 10/15/21 14:10   | 10/19/21 22:25   | 1,6010D             | DL |

**Prep Information** 

Digestion Method: EPA 3005A



### Lab Control Sample Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number: L2155685

**Report Date:** 10/26/21

| Parameter                                      | LCS<br>%Recovery  | LCSD<br>Qual %Recovery | %Recovery<br>Qual Limits | RPD | Qual | RPD Limits |
|------------------------------------------------|-------------------|------------------------|--------------------------|-----|------|------------|
| Total Metals - Mansfield Lab Associated sample | e(s): 01 Batch: V | VG1558047-2            |                          |     |      |            |
| Barium, Total                                  | 103               | -                      | 80-120                   | -   |      |            |
| Cadmium, Total                                 | 103               | -                      | 80-120                   | -   |      |            |
| Chromium, Total                                | 94                | -                      | 80-120                   | -   |      |            |
| Copper, Total                                  | 96                | -                      | 80-120                   | -   |      |            |
| Iron, Total                                    | 99                | -                      | 80-120                   | -   |      |            |
| Lead, Total                                    | 103               | -                      | 80-120                   | -   |      |            |
| Magnesium, Total                               | 101               | -                      | 80-120                   | -   |      |            |
| Manganese, Total                               | 98                | -                      | 80-120                   | -   |      |            |
| Nickel, Total                                  | 94                | -                      | 80-120                   | -   |      |            |
| Selenium, Total                                | 99                | -                      | 80-120                   | -   |      |            |
| Sodium, Total                                  | 99                | -                      | 80-120                   | -   |      |            |
| Thallium, Total                                | 104               | -                      | 80-120                   | -   |      |            |
| Zinc, Total                                    | 97                | -                      | 80-120                   | -   |      |            |
| Total Metals - Mansfield Lab Associated sample | e(s): 01 Batch: V | VG1558620-2            |                          |     |      |            |
| Silicon, Total                                 | 102               | -                      | 80-120                   | -   |      |            |



### Matrix Spike Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2155685

Report Date:

10/26/21

| arameter                | Native<br>Sample   | MS<br>Added | MS<br>Found | MS<br>%Recovery | Qua | MSD<br>al Found | MSD<br>%Recovery | Qual  | Recovery<br>Limits | RPD   | RPD<br>Qual Limits |
|-------------------------|--------------------|-------------|-------------|-----------------|-----|-----------------|------------------|-------|--------------------|-------|--------------------|
| otal Metals - Mansfield | Lab Associated sam | nple(s): 01 | QC Batch II | D: WG155804     | 7-3 | QC Sample       | : L2155685-01    | Clien | t ID: AP-EV        | VE-01 |                    |
| Barium, Total           | 0.1230             | 4           | 4.282       | 104             |     | -               | -                |       | 75-125             | -     | 20                 |
| Cadmium, Total          | ND                 | 0.106       | 0.1105      | 104             |     | -               | -                |       | 75-125             | -     | 20                 |
| Chromium, Total         | 0.00097J           | 0.4         | 0.3932      | 98              |     | -               | -                |       | 75-125             | -     | 20                 |
| Copper, Total           | ND                 | 0.5         | 0.5091      | 102             |     | -               | -                |       | 75-125             | -     | 20                 |
| Iron, Total             | 0.0568             | 2           | 2.05        | 100             |     | -               | -                |       | 75-125             | -     | 20                 |
| Lead, Total             | ND                 | 1.06        | 1.128       | 106             |     | -               | -                |       | 75-125             | -     | 20                 |
| Magnesium, Total        | 5.34               | 20          | 25.4        | 100             |     | -               | -                |       | 75-125             | -     | 20                 |
| Manganese, Total        | 0.01718            | 1           | 1.040       | 102             |     | -               | -                |       | 75-125             | -     | 20                 |
| Nickel, Total           | 0.00076J           | 1           | 0.9707      | 97              |     | -               | -                |       | 75-125             | -     | 20                 |
| Selenium, Total         | ND                 | 0.24        | 0.263       | 110             |     | -               | -                |       | 75-125             | -     | 20                 |
| Sodium, Total           | 83.5               | 20          | 94.8        | 56              | Q   | -               | -                |       | 75-125             | -     | 20                 |
| Thallium, Total         | 0.00018J           | 0.24        | 0.2595      | 108             |     | -               | -                |       | 75-125             | -     | 20                 |
| Zinc, Total             | 0.01098            | 1           | 1.010       | 100             |     | -               | -                |       | 75-125             | -     | 20                 |
| otal Metals - Mansfield | Lab Associated sam | nple(s): 01 | QC Batch II | D: WG155862     | 0-3 | QC Sample       | : L2155685-01    | Clien | t ID: AP-EV        | VE-01 |                    |
| Silicon, Total          | 3.74J              | 100         | 109         | 109             |     | -               | -                |       | 75-125             | -     | 20                 |

### Lab Duplicate Analysis Batch Quality Control

Project Name: SPDES

**Project Number:** 

Not Specified

Lab Number:

L2155685 10/26/21

Report Date:

**Native Sample Duplicate Sample Units RPD** Qual **RPD Limits Parameter** Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1558047-4 QC Sample: L2155685-01 Client ID: AP-EWE-01 Barium, Total 0.1230 0.1239 mg/l 20 Cadmium, Total ND ND mg/l NC 20 Chromium, Total 0.00097J 0.00103 mg/l NC 20 Copper, Total ND ND mg/l NC 20 Iron, Total 0.0568 0.0693 mg/l 20 20 Lead, Total ND ND mg/l NC 20 Magnesium, Total 5.34 5.39 mg/l 20 Manganese, Total 0.01718 0.01738 mg/l 20 Nickel, Total 0.00076J 0.00105J mg/l NC 20 Selenium, Total ND ND mg/l NC 20 Sodium, Total 83.5 82.9 mg/l 20 Thallium, Total 0.00018J 0.00065J mg/l NC 20 Zinc, Total 0.01098 0.01030 6 20 mg/l Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1558620-4 QC Sample: L2155685-01 Client ID: AP-EWE-01 20 Silicon, Total 3.74J 3.76J mg/l NC



# INORGANICS & MISCELLANEOUS



Project Name: SPDES Lab Number: L2155685

Project Number: Not Specified Report Date: 10/26/21

#### **SAMPLE RESULTS**

Lab ID: L2155685-01 Date Collected: 10/12/21 14:30

Client ID: AP-EWE-01 Date Received: 10/12/21 Sample Location: NIAGARA FALLS, NY Field Prep: Not Specified

Sample Depth:

| Parameter                | Result      | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - West | borough Lat | )         |       |       |       |                    |                  |                  |                      |         |
| Solids, Total Dissolved  | 620         |           | mg/l  | 10    | 3.1   | 1                  | -                | 10/15/21 09:50   | 121,2540C            | DW      |
| Solids, Total Suspended  | 1.9         |           | mg/l  | 1.0   | NA    | 1                  | -                | 10/19/21 15:30   | 121,2540D            | AC      |
| pH (H)                   | 7.5         |           | SU    | -     | NA    | 1                  | -                | 10/13/21 17:24   | 121,4500H+-B         | AS      |
| Nitrogen, Ammonia        | 0.232       |           | mg/l  | 0.075 | 0.024 | 1                  | 10/21/21 22:15   | 10/22/21 21:01   | 121,4500NH3-BH       | I AT    |
| Nitrogen, Nitrite        | ND          |           | mg/l  | 0.050 | 0.014 | 1                  | -                | 10/13/21 04:26   | 44,353.2             | MR      |
| Nitrogen, Nitrate        | 0.14        |           | mg/l  | 0.10  | 0.023 | 1                  | -                | 10/13/21 04:26   | 44,353.2             | MR      |
| Nitrogen, Total Kjeldahl | 0.718       |           | mg/l  | 0.300 | 0.066 | 1                  | 10/20/21 22:05   | 10/21/21 22:39   | 121,4500NH3-H        | AT      |
| Dissolved Oxygen         | 4.4         |           | mg/l  | 0.10  | 0.10  | 1                  | -                | 10/14/21 14:30   | 121,4500O-C          | JT      |
| Sulfate                  | ND          |           | mg/l  | 10    | 1.4   | 1                  | 10/15/21 12:52   | 10/15/21 12:53   | 121,4500SO4-E        | JB      |
| Chemical Oxygen Demand   | 11.         |           | mg/l  | 10    | 2.7   | 1                  | 10/19/21 18:20   | 10/19/21 20:59   | 44,410.4             | TL      |
| BOD, 5 day               | ND          |           | mg/l  | 2.0   | NA    | 1                  | 10/14/21 00:10   | 10/18/21 18:10   | 121,5210B            | JD      |
| Phenolics, Total         | ND          |           | mg/l  | 0.030 | 0.006 | 1                  | 10/20/21 07:10   | 10/22/21 10:15   | 4,420.1              | KP      |
| Chromium, Hexavalent     | ND          |           | mg/l  | 0.010 | 0.003 | 1                  | 10/13/21 05:33   | 10/13/21 05:55   | 1,7196A              | VA      |



Project Name: SPDES

Project Number: Not Specified

Lab Number: L2155685

**Report Date:** 10/26/21

### Method Blank Analysis Batch Quality Control

| Parameter                | Result Q        | ualifier | Units      | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-----------------|----------|------------|--------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG15  | 57820-1            |                  |                  |                      |         |
| Nitrogen, Nitrate        | ND              |          | mg/l       | 0.10   | 0.023 | 1                  | -                | 10/13/21 03:43   | 44,353.2             | MR      |
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG155 | 57821-1            |                  |                  |                      |         |
| Nitrogen, Nitrite        | ND              |          | mg/l       | 0.050  | 0.014 | 1                  | -                | 10/13/21 03:46   | 44,353.2             | MR      |
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG155 | 57877-1            |                  |                  |                      |         |
| Chromium, Hexavalent     | ND              |          | mg/l       | 0.010  | 0.003 | 1                  | 10/13/21 05:33   | 10/13/21 05:51   | 1,7196A              | VA      |
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG15  | 58309-1            |                  |                  |                      |         |
| BOD, 5 day               | ND              |          | mg/l       | 2.0    | NA    | 1                  | 10/14/21 00:10   | 10/18/21 18:10   | 121,5210B            | JD      |
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG15  | 58517-1            |                  |                  |                      |         |
| Sulfate                  | ND              |          | mg/l       | 10     | 1.4   | 1                  | 10/15/21 12:52   | 10/15/21 12:53   | 121,4500SO4-E        | JB      |
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG15  | 58959-1            |                  |                  |                      |         |
| Solids, Total Dissolved  | ND              |          | mg/l       | 10     | 3.1   | 1                  | -                | 10/15/21 09:50   | 121,2540C            | DW      |
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG156 | 60547-1            |                  |                  |                      |         |
| Solids, Total Suspended  | ND              |          | mg/l       | 1.0    | NA    | 1                  | -                | 10/19/21 15:30   | 121,2540D            | AC      |
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG156 | 60625-1            |                  |                  |                      |         |
| Chemical Oxygen Demand   | ND              |          | mg/l       | 10     | 2.7   | 1                  | 10/19/21 18:20   | 10/19/21 20:56   | 44,410.4             | TL      |
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG156 | 60798-1            |                  |                  |                      |         |
| Phenolics, Total         | ND              |          | mg/l       | 0.030  | 0.006 | 1                  | 10/20/21 07:10   | 10/22/21 10:07   | 4,420.1              | KP      |
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG156 | 61182-1            |                  |                  |                      |         |
| Nitrogen, Total Kjeldahl | ND              |          | mg/l       | 0.300  | 0.022 | 1                  | 10/20/21 22:05   | 10/21/21 22:33   | 121,4500NH3-H        | AT      |
| General Chemistry -      | Westborough Lab | for sam  | ple(s): 01 | Batch: | WG156 | 61731-1            |                  |                  |                      |         |
| Nitrogen, Ammonia        | ND              |          | mg/l       | 0.075  | 0.024 | 1                  | 10/21/21 22:15   | 10/22/21 20:22   | 121,4500NH3-BI       | H AT    |



# Lab Control Sample Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2155685

Report Date:

10/26/21

| Parameter                           | LCS<br>%Recovery      | LCSD<br>Qual %Recovery | %Recovery<br>Qual Limits | RPD | Qual RPD Limits |
|-------------------------------------|-----------------------|------------------------|--------------------------|-----|-----------------|
| General Chemistry - Westborough Lab | Associated sample(s): | 01 Batch: WG1557820-   | -2                       |     |                 |
| Nitrogen, Nitrate                   | 94                    | -                      | 90-110                   | -   |                 |
| General Chemistry - Westborough Lab | Associated sample(s): | 01 Batch: WG1557821    | -2                       |     |                 |
| Nitrogen, Nitrite                   | 98                    | -                      | 90-110                   | -   | 20              |
| General Chemistry - Westborough Lab | Associated sample(s): | 01 Batch: WG1557877    | -2                       |     |                 |
| Chromium, Hexavalent                | 106                   | -                      | 85-115                   | -   | 20              |
| General Chemistry - Westborough Lab | Associated sample(s): | 01 Batch: WG1558262    | -1                       |     |                 |
| рН                                  | 100                   | -                      | 99-101                   | -   | 5               |
| General Chemistry - Westborough Lab | Associated sample(s): | 01 Batch: WG1558309-   | -2                       |     |                 |
| BOD, 5 day                          | 107                   | -                      | 85-115                   | -   | 20              |
| General Chemistry - Westborough Lab | Associated sample(s): | 01 Batch: WG1558517    | -2                       |     |                 |
| Sulfate                             | 105                   | -                      | 90-110                   | -   |                 |
| General Chemistry - Westborough Lab | Associated sample(s): | 01 Batch: WG1558959    | -2                       |     |                 |
| Solids, Total Dissolved             | 88                    | -                      | 80-120                   | -   |                 |



### Lab Control Sample Analysis Batch Quality Control

**Project Name:** SPDES

**Project Number:** Not Specified Lab Number:

L2155685

Report Date:

10/26/21

| Parameter                           | LCS<br>%Recovery         | LCSD<br>%Recovery  | %Recovery<br>Limits | RPD | RPD Limits |
|-------------------------------------|--------------------------|--------------------|---------------------|-----|------------|
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1560547-2 |                     |     |            |
| Solids, Total Suspended             | 102                      | -                  | 80-120              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1560625-2 |                     |     |            |
| Chemical Oxygen Demand              | 102                      | -                  | 90-110              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1560798-2 |                     |     |            |
| Phenolics, Total                    | 75                       | -                  | 70-130              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1561182-2 |                     |     |            |
| Nitrogen, Total Kjeldahl            | 102                      | -                  | 78-122              | -   |            |
| General Chemistry - Westborough Lab | Associated sample(s): 01 | Batch: WG1561731-2 |                     |     |            |
| Nitrogen, Ammonia                   | 101                      | -                  | 80-120              | -   | 20         |



### Matrix Spike Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2155685 10/26/21

Report Date:

| Parameter                      | Native<br>Sample | MS<br>Added  | MS<br>Found | MS<br>%Recover | y Qual    | MSD<br>Found | MSD<br>%Recovery Qua | Recovery<br>I Limits | RPD Qual     | RPD<br>Limits |
|--------------------------------|------------------|--------------|-------------|----------------|-----------|--------------|----------------------|----------------------|--------------|---------------|
| General Chemistry - Westboroug | ıh Lab Ass       | ociated samp | le(s): 01   | QC Batch II    | D: WG1557 | 820-4        | QC Sample: L215545   | 9-01 Client          | ID: MS Sampl | е             |
| Nitrogen, Nitrate              | 0.081J           | 4            | 7.1         | 178            | Q         | -            | -                    | 83-113               | -            | 6             |
| General Chemistry - Westboroug | h Lab Ass        | ociated samp | le(s): 01   | QC Batch II    | D: WG1557 | 821-4        | QC Sample: L215545   | 9-01 Client          | ID: MS Sampl | е             |
| Nitrogen, Nitrite              | 0.044J           | 4            | 4.5         | 112            |           | -            | -                    | 80-120               | -            | 20            |
| General Chemistry - Westboroug | h Lab Ass        | ociated samp | le(s): 01   | QC Batch II    | D: WG1557 | 877-4        | QC Sample: L215568   | 5-01 Client          | ID: AP-EWE-0 | )1            |
| Chromium, Hexavalent           | ND               | 0.1          | 0.107       | 107            |           | -            | -                    | 85-115               | -            | 20            |
| General Chemistry - Westboroug | h Lab Ass        | ociated samp | le(s): 01   | QC Batch II    | D: WG1558 | 309-4        | QC Sample: L215568   | 5-01 Client          | ID: AP-EWE-0 | )1            |
| BOD, 5 day                     | ND               | 100          | 100         | 104            |           | -            | -                    | 50-145               | -            | 35            |
| General Chemistry - Westboroug | h Lab Ass        | ociated samp | le(s): 01   | QC Batch II    | D: WG1558 | 517-4        | QC Sample: L215563   | 1-01 Client          | ID: MS Sampl | е             |
| Sulfate                        | ND               | 20           | 28          | 140            |           | -            | -                    | 55-147               | -            | 14            |
| General Chemistry - Westboroug | h Lab Ass        | ociated samp | le(s): 01   | QC Batch II    | D: WG1560 | 625-3        | QC Sample: L215527   | 5-01 Client          | ID: MS Sampl | е             |
| Chemical Oxygen Demand         | 4.8J             | 47.6         | 51          | 107            |           | -            | -                    | 90-110               | -            | 20            |
| General Chemistry - Westboroug | ıh Lab Ass       | ociated samp | le(s): 01   | QC Batch II    | D: WG1560 | 798-4        | QC Sample: L215548   | 5-02 Client          | ID: MS Sampl | е             |
| Phenolics, Total               | ND               | 0.4          | 0.27        | 67             | Q         | -            | -                    | 70-130               |              | 20            |
| General Chemistry - Westboroug | ıh Lab Ass       | ociated samp | le(s): 01   | QC Batch II    | D: WG1561 | 182-4        | QC Sample: L215545   | 3-02 Client          | ID: MS Sampl | е             |
| Nitrogen, Total Kjeldahl       | 1.59             | 8            | 8.90        | 91             |           | -            | -                    | 77-111               | -            | 24            |
| General Chemistry - Westboroug | h Lab Ass        | ociated samp | le(s): 01   | QC Batch II    | D: WG1561 | 731-4        | QC Sample: L215548   | 6-02 Client          | ID: MS Sampl | е             |
| Nitrogen, Ammonia              | 0.039J           | 4            | 3.50        | 88             |           | -            | -                    | 80-120               |              | 20            |



# Lab Duplicate Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2155685

Report Date:

10/26/21

| Parameter                              | Nativ                  | e Sample        | Duplicate Sam | ple Units     | RPD        | Qual       | RPD Limits |
|----------------------------------------|------------------------|-----------------|---------------|---------------|------------|------------|------------|
| General Chemistry - Westborough Lab As | ssociated sample(s): ( | O1 QC Batch ID: | WG1557820-3   | QC Sample: L2 | 2155459-01 | Client ID: | DUP Sample |
| Nitrogen, Nitrate                      | (                      | 0.081J          | 0.064J        | mg/l          | NC         |            | 6          |
| General Chemistry - Westborough Lab As | ssociated sample(s): ( | O1 QC Batch ID: | WG1557821-3   | QC Sample: L2 | 2155459-01 | Client ID: | DUP Sample |
| Nitrogen, Nitrite                      | (                      | 0.044J          | 0.036J        | mg/l          | NC         |            | 20         |
| General Chemistry - Westborough Lab As | ssociated sample(s): ( | 01 QC Batch ID: | WG1557877-3   | QC Sample: L2 | 2155685-01 | Client ID: | AP-EWE-01  |
| Chromium, Hexavalent                   |                        | ND              | ND            | mg/l          | NC         |            | 20         |
| General Chemistry - Westborough Lab As | ssociated sample(s): ( | O1 QC Batch ID: | WG1558262-2   | QC Sample: L2 | 2155558-05 | Client ID: | DUP Sample |
| рН                                     |                        | 7.2             | 7.2           | SU            | 0          |            | 5          |
| General Chemistry - Westborough Lab As | ssociated sample(s): ( | 01 QC Batch ID: | WG1558309-3   | QC Sample: L2 | 2155685-01 | Client ID: | AP-EWE-01  |
| BOD, 5 day                             |                        | ND              | ND            | mg/l          | NC         |            | 35         |
| General Chemistry - Westborough Lab As | ssociated sample(s): ( | 01 QC Batch ID: | WG1558517-3   | QC Sample: L2 | 2155631-01 | Client ID: | DUP Sample |
| Sulfate                                |                        | ND              | ND            | mg/l          | NC         |            | 14         |
| General Chemistry - Westborough Lab As | ssociated sample(s): ( | 01 QC Batch ID: | WG1558959-3   | QC Sample: L2 | 2156339-11 | Client ID: | DUP Sample |
| Solids, Total Dissolved                |                        | 490             | 490           | mg/l          | 0          |            | 10         |
| General Chemistry - Westborough Lab As | ssociated sample(s): ( | 01 QC Batch ID: | WG1559523-1   | QC Sample: L2 | 2155685-01 | Client ID: | AP-EWE-01  |
| Dissolved Oxygen                       |                        | 4.4             | 3.6           | mg/l          | 20         |            | 20         |
| General Chemistry - Westborough Lab As | ssociated sample(s): ( | 01 QC Batch ID: | WG1560547-3   | QC Sample: L2 | 2155792-01 | Client ID: | DUP Sample |
| Solids, Total Suspended                |                        | 89.             | 89            | mg/l          | 0          |            | 29         |



# Lab Duplicate Analysis Batch Quality Control

Project Name: SPDES

Project Number: Not Specified

Lab Number:

L2155685

Report Date:

10/26/21

| Parameter                              | Native Sa               | ample        | Duplicate Sam | iple Units | s RPD       | 1            | RPD Limits |
|----------------------------------------|-------------------------|--------------|---------------|------------|-------------|--------------|------------|
| General Chemistry - Westborough Lab As | ssociated sample(s): 01 | QC Batch ID: | WG1560625-4   | QC Sample: | L2155275-01 | Client ID: I | OUP Sample |
| Chemical Oxygen Demand                 | 4.8J                    |              | ND            | mg/l       | NC          |              | 20         |
| General Chemistry - Westborough Lab As | ssociated sample(s): 01 | QC Batch ID: | WG1560798-3   | QC Sample: | L2155485-02 | Client ID: I | OUP Sample |
| Phenolics, Total                       | ND                      |              | ND            | mg/l       | NC          |              | 20         |
| General Chemistry - Westborough Lab As | ssociated sample(s): 01 | QC Batch ID: | WG1561182-3   | QC Sample: | L2155453-02 | Client ID: I | OUP Sample |
| Nitrogen, Total Kjeldahl               | 1.59                    |              | 1.83          | mg/l       | 14          |              | 24         |
| General Chemistry - Westborough Lab As | ssociated sample(s): 01 | QC Batch ID: | WG1561731-3   | QC Sample: | L2155486-02 | Client ID: I | OUP Sample |
| Nitrogen, Ammonia                      | 0.039                   | J            | 0.094         | mg/l       | NC          |              | 20         |

Lab Number: L2155685

Report Date: 10/26/21

#### Sample Receipt and Container Information

Were project specific reporting limits specified?

**SPDES** 

YES

**Cooler Information** 

Project Name:

Cooler Custody Seal

A Absent

Project Number: Not Specified

| Container Info | rmation                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                        | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Frozen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                                                                                                                                           | Cooler                                                                                                                                                                                                                                                                                                                                                                                 | рH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | deg C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L2155685-01A   | Vial Na2S2O3 preserved                                                                                                                                   | Α                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 624.1(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| L2155685-01B   | Vial Na2S2O3 preserved                                                                                                                                   | Α                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 624.1(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| L2155685-01C   | Vial Na2S2O3 preserved                                                                                                                                   | Α                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 624.1(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| L2155685-01D   | Plastic 250ml unpreserved                                                                                                                                | A                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SO4-4500(28),HEXCR-7196(1),NO2-<br>353(2),PH-4500(.01),TDS-2540(7),BOD-<br>5210(2),NO3-353(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L2155685-01E   | Plastic 250ml HNO3 preserved                                                                                                                             | Α                                                                                                                                                                                                                                                                                                                                                                                      | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TL-6020T(180),SE-6020T(180),BA-6020T(180),FE-6020T(180),CR-6020T(180),NI-6020T(180),SI-TI(180),ZN-6020T(180),NA-6020T(180),CU-6020T(180),PB-6020T(180),MN-6020T(180),MG-6020T(180),CD-6020T(180)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| L2155685-01F   | BOD bottle Powder Pillow preserved                                                                                                                       | Α                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DO-4500(.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L2155685-01G   | BOD bottle Powder Pillow preserved                                                                                                                       | Α                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DO-4500(.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L2155685-01H   | Plastic 500ml H2SO4 preserved                                                                                                                            | Α                                                                                                                                                                                                                                                                                                                                                                                      | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TKN-4500(28),COD-410-LOW(28),NH3-<br>4500(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L2155685-01I   | Plastic 950ml unpreserved                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SO4-4500(28),HEXCR-7196(1),NO2-<br>353(2),PH-4500(.01),TDS-2540(7),BOD-<br>5210(2),NO3-353(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L2155685-01J   | Plastic 950ml unpreserved                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TSS-2540-LOW(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L2155685-01K   | Amber 1000ml H2SO4 preserved                                                                                                                             | Α                                                                                                                                                                                                                                                                                                                                                                                      | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NY-TPHENOL-420(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | Container ID  L2155685-01A  L2155685-01B  L2155685-01C  L2155685-01D  L2155685-01E  L2155685-01E  L2155685-01F  L2155685-01H  L2155685-01I  L2155685-01J | L2155685-01A Vial Na2S2O3 preserved  L2155685-01B Vial Na2S2O3 preserved  L2155685-01C Vial Na2S2O3 preserved  L2155685-01D Plastic 250ml unpreserved  L2155685-01E Plastic 250ml HNO3 preserved  L2155685-01F BOD bottle Powder Pillow preserved  L2155685-01G BOD bottle Powder Pillow preserved  L2155685-01H Plastic 500ml H2SO4 preserved  L2155685-01I Plastic 950ml unpreserved | Container ID         Container Type         Cooler           L2155685-01A         Vial Na2S2O3 preserved         A           L2155685-01B         Vial Na2S2O3 preserved         A           L2155685-01C         Vial Na2S2O3 preserved         A           L2155685-01D         Plastic 250ml unpreserved         A           L2155685-01E         Plastic 250ml HNO3 preserved         A           L2155685-01F         BOD bottle Powder Pillow preserved         A           L2155685-01G         BOD bottle Powder Pillow preserved         A           L2155685-01H         Plastic 500ml H2SO4 preserved         A           L2155685-01I         Plastic 950ml unpreserved         A           L2155685-01J         Plastic 950ml unpreserved         A | Container ID         Container Type         Cooler PH           L2155685-01A         Vial Na2S2O3 preserved         A         NA           L2155685-01B         Vial Na2S2O3 preserved         A         NA           L2155685-01C         Vial Na2S2O3 preserved         A         NA           L2155685-01D         Plastic 250ml unpreserved         A         7           L2155685-01E         Plastic 250ml HNO3 preserved         A         A           L2155685-01F         BOD bottle Powder Pillow preserved         A         NA           L2155685-01G         BOD bottle Powder Pillow preserved         A         NA           L2155685-01H         Plastic 500ml H2SO4 preserved         A         -           L2155685-01I         Plastic 950ml unpreserved         A         7           L2155685-01J         Plastic 950ml unpreserved         A         7 | Container ID         Container Type         Cooler pH         Initial pH           L2155685-01A         Vial Na2S2O3 preserved         A         NA           L2155685-01B         Vial Na2S2O3 preserved         A         NA           L2155685-01C         Vial Na2S2O3 preserved         A         NA           L2155685-01D         Plastic 250ml unpreserved         A         7         7           L2155685-01E         Plastic 250ml HNO3 preserved         A         A         <2 | Container ID         Container Type         Cooler pH         Third pH         Temp deg C           L2155685-01A         Vial Na2S2O3 preserved         A         NA         3.1           L2155685-01B         Vial Na2S2O3 preserved         A         NA         3.1           L2155685-01C         Vial Na2S2O3 preserved         A         NA         3.1           L2155685-01D         Plastic 250ml unpreserved         A         7         7         3.1           L2155685-01E         Plastic 250ml HNO3 preserved         A         A         -2         -2         3.1           L2155685-01F         BOD bottle Powder Pillow preserved         A         NA         3.1           L2155685-01G         BOD bottle Powder Pillow preserved         A         NA         3.1           L2155685-01H         Plastic 500ml H2SO4 preserved         A         -2         -2         3.1           L2155685-01J         Plastic 950ml unpreserved         A         7         7         3.1 | Container ID         Container Type         Cooler pH         rintal pH         rempt deg C         Pres           L2155685-01A         Vial Na2S2O3 preserved         A         NA         3.1         Y           L2155685-01B         Vial Na2S2O3 preserved         A         NA         3.1         Y           L2155685-01C         Vial Na2S2O3 preserved         A         NA         3.1         Y           L2155685-01D         Plastic 250ml unpreserved         A         7         7         3.1         Y           L2155685-01E         Plastic 250ml HNO3 preserved         A         NA         3.1         Y           L2155685-01F         BOD bottle Powder Pillow preserved         A         NA         3.1         Y           L2155685-01G         BOD bottle Powder Pillow preserved         A         NA         3.1         Y           L2155685-01H         Plastic 500ml H2SO4 preserved         A         4         4         2         2         3.1         Y           L2155685-01J         Plastic 950ml unpreserved         A         7         7         3.1         Y | Container ID         Container Type         Cooler         PH         PH         PH         Person         Seal           L2155685-01A         Vial Na2S2O3 preserved         A         NA         3.1         Y         Absent           L2155685-01B         Vial Na2S2O3 preserved         A         NA         3.1         Y         Absent           L2155685-01C         Vial Na2S2O3 preserved         A         NA         3.1         Y         Absent           L2155685-01D         Plastic 250ml unpreserved         A         7         7         3.1         Y         Absent           L2155685-01E         Plastic 250ml HNO3 preserved         A         NA         3.1         Y         Absent           L2155685-01F         BOD bottle Powder Pillow preserved         A         NA         3.1         Y         Absent           L2155685-01H         Plastic 500ml H2SO4 preserved         A         4         4         2         4         3.1         Y         Absent           L2155685-01J         Plastic 950ml unpreserved         A         7         7         3.1         Y         Absent           L2155685-01J         Plastic 950ml unpreserved         A         7         7         3.1         Y< | Container ID         Container Type         Cooler         pH         The latter of the pH         The pH         The pH         The pH         The pH         The pH         The pH |



Project Name:SPDESLab Number:L2155685Project Number:Not SpecifiedReport Date:10/26/21

#### **GLOSSARY**

#### **Acronyms**

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers



Project Name:SPDESLab Number:L2155685Project Number:Not SpecifiedReport Date:10/26/21

#### **Footnotes**

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers



Project Name:SPDESLab Number:L2155685Project Number:Not SpecifiedReport Date:10/26/21

#### **Data Qualifiers**

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
   (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers



Project Name:SPDESLab Number:L2155685Project Number:Not SpecifiedReport Date:10/26/21

#### **REFERENCES**

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

#### Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

#### **Mansfield Facility**

**SM 2540D:** TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

| ДІРНА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NEW YORK<br>CHAIN OF<br>CUSTODY                                                                                                                                                         | Service Centers<br>Mahwah, NJ 07430: 35 Whitne;<br>Albany, NY 12205: 14 Walker V<br>Tonawanda, NY 14150: 275 Co | Nay                    | 105                           | Pag            | ge 1<br>of 1 |           |                  | Rec'     | 'd         | 10/13/21       |          |                         |               | ALPHA Job#                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|----------------|--------------|-----------|------------------|----------|------------|----------------|----------|-------------------------|---------------|------------------------------------------------------------------------------------------------------------------------|
| Westborough, MA 01581<br>8 Walkup Dr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mansfield, MA 02048<br>320 Forbes Blvd                                                                                                                                                  | Project Information                                                                                             |                        |                               | £ 7            |              | Deli      | verable          | es .     | (6)        | t .            |          | 19/502                  |               | L 2155685 Billing Information                                                                                          |
| TEL: 508-898-9220<br>FAX: 508-898-9193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEL: 508-822-9300<br>FAX: 508-822-3288                                                                                                                                                  | Project Name:                                                                                                   | SPDES                  | Annual Control                |                |              | 1 -       | ASP              |          |            |                | ASP      |                         |               | Same as Client Info                                                                                                    |
| The second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                         | Project Location:                                                                                               | Niagara Fa             | alls, NY                      |                |              |           |                  | IS (1    | File)      |                | EQu      | IS (4                   | File)         | PO#                                                                                                                    |
| Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                         | Project #                                                                                                       |                        |                               |                |              |           | Othe             | er.      |            |                |          |                         |               |                                                                                                                        |
| Client: Greenstar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         | (Use Project name as Pr                                                                                         | roject #)              |                               |                |              | Reg       | ulatory          | Requ     | uireme     | ent            |          |                         |               | Disposal Site Information                                                                                              |
| Address: 6 Gellatly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drive                                                                                                                                                                                   | Project Manager:                                                                                                |                        |                               |                |              |           | NYT              | ogs      |            | ×              | NYP      | art 375                 |               | Please identify below location of                                                                                      |
| Wappingers Falls, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12590                                                                                                                                                                                   | ALPHAQuote #:                                                                                                   |                        |                               |                |              | ×         | AWQ              | Stand    | lards      |                | NYC      | P-51                    |               | applicable disposal facilities.                                                                                        |
| Phone: 845-223-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9944                                                                                                                                                                                    | Turn-Around Time                                                                                                |                        |                               | -              | 195-LB1      |           | NYR              | estricte | ed Use     | X              | Othe     | r                       |               | Disposal Facility:                                                                                                     |
| Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                         | Standard                                                                                                        | ×                      | Due Date:                     |                |              | 7         | NYU              | nrestri  | cted Us    | se A           | MY RA    | 360                     | 7             | □ NJ □ NY                                                                                                              |
| Email: cmcleod@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | greenstarsolutions.co                                                                                                                                                                   | Rush (only if pre approved                                                                                      |                        | # of Days:                    |                |              |           | NYC              | Sewer    | Discha     |                |          |                         |               | Other: NA                                                                                                              |
| These samples have t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | een previously analyz                                                                                                                                                                   | ed by Alpha                                                                                                     |                        |                               |                |              | ANA       | LYSIS            | -        |            |                |          | _                       | _             | Sample Filtration                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R, FE, SE, TL, ZN, SI,                                                                                                                                                                  | nents: Centang<br>CD, PB, MG, MN, NA                                                                            | 1+ex c6<br>**VOC-1,1-d | n rom @ Wy<br>lichloroethane, | trichloroeth   | TAT          | T. Phenol | Dissolved Oxygen | TSS      | T. Metals* | NH3/TKN/COD    | *>>      | дов 'Sат, нф.           | SO4, NO3, NO2 | Done Lab to do Preservation Lab to do  (Please Specify below)                                                          |
| ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                 | Col                    | llection                      | Sample         | Sampler's    | 1         | Sis              | 1        |            | Ξ.             | 1        | CR+6,                   | S.            | t                                                                                                                      |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58                                                                                                                                                                                      | ample ID                                                                                                        | Date                   | Time                          | Matrix         | Initials     | L         | -                |          |            |                |          | 2                       |               | Sample Specific Comments                                                                                               |
| 55685 - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AP-EWE                                                                                                                                                                                  | -01                                                                                                             | 10/12                  | 1430                          | AQ             | NC           | χ٠        | X.               | х -      | х.         | х.             | χ.       | х.                      | x.            | 11                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                 |                        |                               | 110            | -            | 1         | 1                | A -      | IX.        | ^ -            | , ·      | 1                       | 10.           | <del>                                     </del>                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                 |                        |                               |                |              | 1         |                  | 1        | +          | 1              | +        | 1                       | _             |                                                                                                                        |
| A SUPERIOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                 |                        |                               |                |              |           | -                | $\vdash$ | +          | -              | +        | +                       | +             |                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                 |                        |                               |                | +            | $\vdash$  | _                | -        | +          | +              | +        | +                       | 1             |                                                                                                                        |
| TO STATE OF THE ST |                                                                                                                                                                                         |                                                                                                                 |                        |                               |                | _            | $\vdash$  |                  | $\vdash$ | +          | +              | +        | +                       | +             |                                                                                                                        |
| CARLES PLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                 |                        |                               |                |              | -         |                  | -        | -          | +              | +        | ╁                       | +             |                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                 |                        |                               |                |              | -         | -                | -        | +          | +              | $\vdash$ | +                       | +             |                                                                                                                        |
| MEDICENSER) MINIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                 |                        | +                             | _              |              | -         | -                | -        | -          | +              | -        | -                       | +             |                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                 |                        | -                             |                | +            | +         | -                | -        | +          | -              | $\vdash$ | +                       | -             |                                                                                                                        |
| Preservative Code: A = None B = HCl C = HNO <sub>3</sub> D = H <sub>2</sub> SO <sub>4</sub> E = NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = None P = Plastic Westboro: Certification No: MA935  = HCI A = Amber Glass Mansfield: Certification No: MA015  = HNO <sub>3</sub> V = Vial  = H <sub>2</sub> SO <sub>4</sub> G = Glass |                                                                                                                 |                        |                               | Container Type |              |           | 0                | Р        | Р          | Р              | Р        | P                       |               | Please print clearly, legibly<br>and completely. Samples can<br>not be logged in and<br>turnaround time clock will not |
| E = NaOH<br>F = MeOH<br>G = NaHSO <sub>4</sub><br>H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>K/E = Zn Ac/NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D = DOD Bettle                                                                                                                                                                          |                                                                                                                 |                        | Date/Time R                   |                |              | Recej     | ved By           |          | IC .       |                | 1/12     |                         | 1536          | start until any ambiguities are<br>resolved. BY EXECUTING<br>THIS COC, THE CLIENT                                      |
| O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ar Dungff , TOK C 10                                                                                                                                                                    |                                                                                                                 |                        |                               | 1/36           | 100          | Many.     |                  |          | 5          | = 10/13/21 013 |          |                         | (NC)          | TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.                                                                             |
| Form No: 01-25 (rev. 30-Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ept-2013)                                                                                                                                                                               |                                                                                                                 |                        |                               |                |              |           |                  |          |            |                |          | Talling & Collott City. |               |                                                                                                                        |



#### ANALYTICAL REPORT

Lab Number: L2152669

Client: Greenstar Environmental Solutions, LLC

6 Gellatly Drive

Wappingers Falls, NY 12590

ATTN: Pete Nimmer
Phone: (845) 223-9944

Project Name: NF 5 YEAR SAMPLING

Project Number: 1047 Report Date: 10/13/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



**Project Name:** NF 5 YEAR SAMPLING

**Project Number:** 1047

**Lab Number:** L2152669 **Report Date:** 10/13/21

| Alpha<br>Sample ID | Client ID  | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|------------|--------|--------------------|-------------------------|--------------|
| L2152669-01        | AP-MW-1B   | WATER  | NF AIRCO PARCEL    | 09/28/21 09:50          | 09/28/21     |
| L2152669-02        | AP-MW-2B   | WATER  | NF AIRCO PARCEL    | 09/28/21 10:50          | 09/28/21     |
| L2152669-03        | AP-MW-3B   | WATER  | NF AIRCO PARCEL    | 09/28/21 09:10          | 09/28/21     |
| L2152669-04        | AP-MW-4B   | WATER  | NF AIRCO PARCEL    | 09/28/21 09:30          | 09/28/21     |
| L2152669-05        | AP-MW-5B   | WATER  | NF AIRCO PARCEL    | 09/28/21 09:50          | 09/28/21     |
| L2152669-06        | AP-MW-6B   | WATER  | NF AIRCO PARCEL    | 09/28/21 11:45          | 09/28/21     |
| L2152669-07        | DUP-01     | WATER  | NF AIRCO PARCEL    | 09/28/21 12:00          | 09/28/21     |
| L2152669-08        | AP-MW-7B   | WATER  | NF AIRCO PARCEL    | 09/28/21 12:15          | 09/28/21     |
| L2152669-09        | AP-MW-8B   | WATER  | NF AIRCO PARCEL    | 09/28/21 10:05          | 09/28/21     |
| L2152669-10        | TRIP BLANK | WATER  | NF AIRCO PARCEL    | 09/28/21 00:00          | 09/28/21     |



L2152669

Project Name: NF 5 YEAR SAMPLING Lab Number:

Project Number: 1047 Report Date: 10/13/21

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

| Please contact Project Management at 800-624-9220 with any questions. |  |
|-----------------------------------------------------------------------|--|
|                                                                       |  |



L2152669

Lab Number:

**Project Name:** NF 5 YEAR SAMPLING

**Project Number:** 1047 **Report Date:** 10/13/21

#### **Case Narrative (continued)**

#### Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

#### **Total Metals**

L2152669-08: The sample has elevated detection limits due to the prep dilution required by the sample matrix.

The WG1553319-3 MS recovery for silicon (18%), performed on L2152669-01, does not apply because the sample concentration is greater than four times the spike amount added.

The WG1553319-3 MS recovery for sodium (40%), performed on L2152669-01, does not apply because the sample concentration is greater than four times the spike amount added.

#### Anions by Ion Chromatography

The WG1556848-3 MS recovery, performed on L2152669-08, is outside the acceptance criteria for sulfate (72%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 10/13/21



### **METALS**



**Project Name:** NF 5 YEAR SAMPLING **Lab Number:** L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

 Lab ID:
 L2152669-01
 Date Collected:
 09/28/21 09:50

 Client ID:
 AP-MW-1B
 Date Received:
 09/28/21

Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|--------------------|------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Man | sfield Lab |           |       |       |       |                    |                  |                  |                |                      |         |
| Cadmium, Total     | ND         |           | mg/l  | 0.005 | 0.001 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |
| Chromium, Total    | ND         |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |
| Iron, Total        | 0.254      |           | mg/l  | 0.050 | 0.009 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |
| Lead, Total        | 0.003      | J         | mg/l  | 0.010 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |
| Magnesium, Total   | 54.4       |           | mg/l  | 0.100 | 0.015 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |
| Manganese, Total   | 0.706      |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |
| Selenium, Total    | ND         |           | mg/l  | 0.010 | 0.004 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |
| Silicon, Total     | 6.85       |           | mg/l  | 0.500 | 0.007 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |
| Sodium, Total      | 170        |           | mg/l  | 2.00  | 0.120 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |
| Thallium, Total    | ND         |           | mg/l  | 0.020 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |
| Zinc, Total        | 0.477      |           | mg/l  | 0.050 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 13:11   | EPA 3005A      | 19,200.7             | GD      |



**Project Name:** NF 5 YEAR SAMPLING **Lab Number:** L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

 Lab ID:
 L2152669-02
 Date Collected:
 09/28/21 10:50

 Client ID:
 AP-MW-2B
 Date Received:
 09/28/21

Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter           | Result     | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans | sfield Lab |           |       |       |       |                    |                  |                  |                |                      |         |
| Cadmium, Total      | ND         |           | mg/l  | 0.005 | 0.001 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |
| Chromium, Total     | 0.779      |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |
| Iron, Total         | 0.032      | J         | mg/l  | 0.050 | 0.009 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |
| Lead, Total         | 0.005      | J         | mg/l  | 0.010 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |
| Magnesium, Total    | 0.049      | J         | mg/l  | 0.100 | 0.015 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |
| Manganese, Total    | ND         |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |
| Selenium, Total     | 0.013      |           | mg/l  | 0.010 | 0.004 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |
| Silicon, Total      | 0.812      |           | mg/l  | 0.500 | 0.007 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |
| Sodium, Total       | 58.8       |           | mg/l  | 2.00  | 0.120 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |
| Thallium, Total     | ND         |           | mg/l  | 0.020 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |
| Zinc, Total         | 0.011      | J         | mg/l  | 0.050 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:03   | EPA 3005A      | 19,200.7             | GD      |



**Project Name:** NF 5 YEAR SAMPLING **Lab Number:** L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

 Lab ID:
 L2152669-03
 Date Collected:
 09/28/21 09:10

 Client ID:
 AP-MW-3B
 Date Received:
 09/28/21

Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|-----------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans | field Lab |           |       |       |       |                    |                  |                  |                |                      |         |
| Cadmium, Total      | ND        |           | mg/l  | 0.005 | 0.001 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |
| Chromium, Total     | ND        |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |
| Iron, Total         | 0.686     |           | mg/l  | 0.050 | 0.009 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |
| Lead, Total         | ND        |           | mg/l  | 0.010 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |
| Magnesium, Total    | 4.55      |           | mg/l  | 0.100 | 0.015 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |
| Manganese, Total    | 0.016     |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |
| Selenium, Total     | ND        |           | mg/l  | 0.010 | 0.004 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |
| Silicon, Total      | 9.11      |           | mg/l  | 0.500 | 0.007 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |
| Sodium, Total       | 55.2      |           | mg/l  | 2.00  | 0.120 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |
| Thallium, Total     | ND        |           | mg/l  | 0.020 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |
| Zinc, Total         | 0.065     |           | mg/l  | 0.050 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:07   | EPA 3005A      | 19,200.7             | GD      |



**Project Name:** NF 5 YEAR SAMPLING **Lab Number:** L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

 Lab ID:
 L2152669-04
 Date Collected:
 09/28/21 09:30

 Client ID:
 AP-MW-4B
 Date Received:
 09/28/21

Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Result    | Qualifier                                                                      | Units                                                                        | RL                                                                                                                              | MDL                                                                                                                                                                                        | Dilution<br>Factor                                                                                                                                                                                                                                                                                         | Date<br>Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date<br>Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prep<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analytical<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| field Lab |                                                                                |                                                                              |                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| noid Edb  |                                                                                |                                                                              |                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.001     | J                                                                              | mg/l                                                                         | 0.005                                                                                                                           | 0.001                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.272     |                                                                                | mg/l                                                                         | 0.010                                                                                                                           | 0.002                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.17      |                                                                                | mg/l                                                                         | 0.050                                                                                                                           | 0.009                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.006     | J                                                                              | mg/l                                                                         | 0.010                                                                                                                           | 0.003                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 100       |                                                                                | mg/l                                                                         | 0.100                                                                                                                           | 0.015                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.042     |                                                                                | mg/l                                                                         | 0.010                                                                                                                           | 0.002                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.006     | J                                                                              | mg/l                                                                         | 0.010                                                                                                                           | 0.004                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9.68      |                                                                                | mg/l                                                                         | 0.500                                                                                                                           | 0.007                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 35.3      |                                                                                | mg/l                                                                         | 2.00                                                                                                                            | 0.120                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND        |                                                                                | mg/l                                                                         | 0.020                                                                                                                           | 0.003                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.128     |                                                                                | mg/l                                                                         | 0.050                                                                                                                           | 0.002                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                          | 09/30/21 05:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/04/21 14:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19,200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | 0.001<br>0.272<br>2.17<br>0.006<br>100<br>0.042<br>0.006<br>9.68<br>35.3<br>ND | field Lab  0.001 J  0.272 2.17  0.006 J  100  0.042  0.006 J  9.68  35.3  ND | field Lab  0.001 J mg/l  0.272 mg/l  2.17 mg/l  0.006 J mg/l  100 mg/l  0.042 mg/l  0.006 J mg/l  9.68 mg/l  35.3 mg/l  ND mg/l | field Lab  0.001 J mg/l 0.005  0.272 mg/l 0.010  2.17 mg/l 0.050  0.006 J mg/l 0.010  100 mg/l 0.100  0.042 mg/l 0.010  0.006 J mg/l 0.010  9.68 mg/l 0.500  35.3 mg/l 2.00  ND mg/l 0.020 | field Lab  0.001 J mg/l 0.005 0.001  0.272 mg/l 0.010 0.002  2.17 mg/l 0.050 0.009  0.006 J mg/l 0.010 0.003  100 mg/l 0.100 0.015  0.042 mg/l 0.010 0.002  0.006 J mg/l 0.010 0.002  0.006 J mg/l 0.010 0.002  0.006 J mg/l 0.010 0.004  9.68 mg/l 0.500 0.007  35.3 mg/l 2.00 0.120  ND mg/l 0.020 0.003 | Result         Qualifier         Units         RL         MDL         Factor           field Lab           0.001         J         mg/l         0.005         0.001         1           0.272         mg/l         0.010         0.002         1           2.17         mg/l         0.050         0.009         1           0.006         J         mg/l         0.010         0.003         1           100         mg/l         0.100         0.015         1           0.042         mg/l         0.010         0.002         1           0.006         J         mg/l         0.010         0.004         1           9.68         mg/l         0.500         0.007         1           35.3         mg/l         2.00         0.120         1           ND         mg/l         0.020         0.003         1 | Result         Qualifier         Units         RL         MDL         Factor         Prepared           6ield Lab           0.001         J         mg/l         0.005         0.001         1         09/30/21 05:26           0.272         mg/l         0.010         0.002         1         09/30/21 05:26           2.17         mg/l         0.050         0.009         1         09/30/21 05:26           0.006         J         mg/l         0.010         0.003         1         09/30/21 05:26           100         mg/l         0.100         0.015         1         09/30/21 05:26           0.042         mg/l         0.010         0.002         1         09/30/21 05:26           0.006         J         mg/l         0.010         0.004         1         09/30/21 05:26           9.68         mg/l         0.500         0.007         1         09/30/21 05:26           ND         mg/l         0.020         0.003         1         09/30/21 05:26           ND         mg/l         0.020         0.003         1         09/30/21 05:26 | Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed           field Lab           0.001         J         mg/l         0.005         0.001         1         09/30/21 05:26 10/04/21 14:12           0.272         mg/l         0.010         0.002         1         09/30/21 05:26 10/04/21 14:12           2.17         mg/l         0.050         0.009         1         09/30/21 05:26 10/04/21 14:12           0.006         J         mg/l         0.010         0.003         1         09/30/21 05:26 10/04/21 14:12           100         mg/l         0.100         0.015         1         09/30/21 05:26 10/04/21 14:12           0.042         mg/l         0.010         0.002         1         09/30/21 05:26 10/04/21 14:12           0.006         J         mg/l         0.010         0.004         1         09/30/21 05:26 10/04/21 14:12           0.006         J         mg/l         0.010         0.004         1         09/30/21 05:26 10/04/21 14:12           9.68         mg/l         0.500         0.007         1         09/30/21 05:26 10/04/21 14:12           ND         mg/l         0.020         0.020         1         09/3 | Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed         Method           field Lab           0.001         J         mg/l         0.005         0.001         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A           0.272         mg/l         0.010         0.002         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A           2.17         mg/l         0.050         0.009         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A           0.006         J         mg/l         0.010         0.003         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A           100         mg/l         0.100         0.015         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A           0.042         mg/l         0.010         0.002         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A           0.006         J         mg/l         0.010         0.004         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A           9.68         mg/l         0.500         0.007         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A           ND         mg/l         0.020         0 | Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed         Method         Method           field Lab           0.001         J         mg/l         0.005         0.001         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A         19,200.7           0.272         mg/l         0.050         0.009         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A         19,200.7           2.17         mg/l         0.010         0.003         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A         19,200.7           0.006         J         mg/l         0.010         0.003         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A         19,200.7           100         mg/l         0.100         0.015         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A         19,200.7           0.042         mg/l         0.010         0.002         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A         19,200.7           0.066         J         mg/l         0.010         0.004         1         09/30/21 05:26 10/04/21 14:12         EPA 3005A         19,200.7           9.68         mg/l         0.500 |



**Project Name:** NF 5 YEAR SAMPLING **Lab Number:** L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

 Lab ID:
 L2152669-05
 Date Collected:
 09/28/21 09:50

 Client ID:
 AP-MW-5B
 Date Received:
 09/28/21

Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter           | Result     | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans | sfield Lab |           |       |       |       |                    |                  |                  |                |                      |         |
| Cadmium, Total      | ND         |           | mg/l  | 0.005 | 0.001 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |
| Chromium, Total     | 0.004      | J         | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |
| Iron, Total         | 1.19       |           | mg/l  | 0.050 | 0.009 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |
| Lead, Total         | 0.005      | J         | mg/l  | 0.010 | 0.003 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |
| Magnesium, Total    | 92.5       |           | mg/l  | 0.100 | 0.015 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |
| Manganese, Total    | 0.051      |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |
| Selenium, Total     | ND         |           | mg/l  | 0.010 | 0.004 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |
| Silicon, Total      | 12.6       |           | mg/l  | 0.500 | 0.007 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |
| Sodium, Total       | 31.8       |           | mg/l  | 2.00  | 0.120 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |
| Thallium, Total     | ND         |           | mg/l  | 0.020 | 0.003 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |
| Zinc, Total         | 0.076      |           | mg/l  | 0.050 | 0.002 | 1                  | 09/30/21 05:26   | 3 10/04/21 14:16 | EPA 3005A      | 19,200.7             | GD      |



**Project Name:** NF 5 YEAR SAMPLING **Lab Number:** L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

 Lab ID:
 L2152669-06
 Date Collected:
 09/28/21 11:45

 Client ID:
 AP-MW-6B
 Date Received:
 09/28/21

Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter          | Result     | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|--------------------|------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Man | sfield Lab |           |       |       |       |                    |                  |                  |                |                      |         |
| Cadmium, Total     | ND         |           | mg/l  | 0.005 | 0.001 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |
| Chromium, Total    | ND         |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |
| Iron, Total        | 0.738      |           | mg/l  | 0.050 | 0.009 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |
| Lead, Total        | 0.003      | J         | mg/l  | 0.010 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |
| Magnesium, Total   | 62.4       |           | mg/l  | 0.100 | 0.015 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |
| Manganese, Total   | 0.209      |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |
| Selenium, Total    | ND         |           | mg/l  | 0.010 | 0.004 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |
| Silicon, Total     | 6.81       |           | mg/l  | 0.500 | 0.007 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |
| Sodium, Total      | 67.5       |           | mg/l  | 2.00  | 0.120 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |
| Thallium, Total    | ND         |           | mg/l  | 0.020 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |
| Zinc, Total        | 0.013      | J         | mg/l  | 0.050 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:20   | EPA 3005A      | 19,200.7             | GD      |



09/28/21 12:00

Date Collected:

**Project Name:** NF 5 YEAR SAMPLING **Lab Number:** L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

Lab ID: L2152669-07

Client ID: DUP-01 Date Received: 09/28/21 Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|-----------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans | field Lab |           |       |       |       |                    |                  |                  |                |                      |         |
| Cadmium, Total      | ND        |           | mg/l  | 0.005 | 0.001 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |
| Chromium, Total     | ND        |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |
| Iron, Total         | 0.621     |           | mg/l  | 0.050 | 0.009 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |
| Lead, Total         | ND        |           | mg/l  | 0.010 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |
| Magnesium, Total    | 60.9      |           | mg/l  | 0.100 | 0.015 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |
| Manganese, Total    | 0.228     |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |
| Selenium, Total     | ND        |           | mg/l  | 0.010 | 0.004 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |
| Silicon, Total      | 6.76      |           | mg/l  | 0.500 | 0.007 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |
| Sodium, Total       | 66.6      |           | mg/l  | 2.00  | 0.120 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |
| Thallium, Total     | ND        |           | mg/l  | 0.020 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |
| Zinc, Total         | 0.011     | J         | mg/l  | 0.050 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:25   | EPA 3005A      | 19,200.7             | GD      |



**Project Name:** NF 5 YEAR SAMPLING **Lab Number:** L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

 Lab ID:
 L2152669-08
 Date Collected:
 09/28/21 12:15

 Client ID:
 AP-MW-7B
 Date Received:
 09/28/21

Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter           | Result     | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans | sfield Lab |           |       |       |       |                    |                  |                  |                |                      |         |
| Cadmium, Total      | 0.010      | J         | mg/l  | 0.025 | 0.005 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |
| Chromium, Total     | 3.20       |           | mg/l  | 0.050 | 0.011 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |
| Iron, Total         | 97.6       |           | mg/l  | 0.250 | 0.045 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |
| Lead, Total         | 0.097      |           | mg/l  | 0.050 | 0.014 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |
| Magnesium, Total    | 87.2       |           | mg/l  | 0.500 | 0.077 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |
| Manganese, Total    | 4.50       |           | mg/l  | 0.050 | 0.008 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |
| Selenium, Total     | 0.019      | J         | mg/l  | 0.050 | 0.018 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |
| Silicon, Total      | 79.8       |           | mg/l  | 2.50  | 0.037 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |
| Sodium, Total       | 61.0       |           | mg/l  | 10.0  | 0.600 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |
| Thallium, Total     | ND         |           | mg/l  | 0.100 | 0.013 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |
| Zinc, Total         | 0.644      |           | mg/l  | 0.250 | 0.011 | 1                  | 09/30/21 05:26   | 10/04/21 14:47   | EPA 3005A      | 19,200.7             | GD      |



**Project Name:** NF 5 YEAR SAMPLING **Lab Number:** L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

 Lab ID:
 L2152669-09
 Date Collected:
 09/28/21 10:05

 Client ID:
 AP-MW-8B
 Date Received:
 09/28/21

Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Analytical<br>Method | Analyst |
|---------------------|-----------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------|----------------------|---------|
| Total Metals - Mans | field Lab |           |       |       |       |                    |                  |                  |                |                      |         |
| Cadmium, Total      | ND        |           | mg/l  | 0.005 | 0.001 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |
| Chromium, Total     | 0.018     |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |
| Iron, Total         | 0.653     |           | mg/l  | 0.050 | 0.009 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |
| Lead, Total         | ND        |           | mg/l  | 0.010 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |
| Magnesium, Total    | 71.7      |           | mg/l  | 0.100 | 0.015 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |
| Manganese, Total    | 0.334     |           | mg/l  | 0.010 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |
| Selenium, Total     | 0.005     | J         | mg/l  | 0.010 | 0.004 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |
| Silicon, Total      | 8.62      |           | mg/l  | 0.500 | 0.007 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |
| Sodium, Total       | 84.4      |           | mg/l  | 2.00  | 0.120 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |
| Thallium, Total     | ND        |           | mg/l  | 0.020 | 0.003 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |
| Zinc, Total         | 0.094     |           | mg/l  | 0.050 | 0.002 | 1                  | 09/30/21 05:26   | 10/04/21 14:51   | EPA 3005A      | 19,200.7             | GD      |



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669

Project Number: 1047 Report Date: 10/13/21

# Method Blank Analysis Batch Quality Control

| Parameter               | Result 0     | Qualifier | Units   | RL       | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-------------------------|--------------|-----------|---------|----------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfiel | d Lab for sa | ample(s): | 01-09 I | Batch: W | G15533 | 19-1               |                  |                  |                      |         |
| Cadmium, Total          | ND           |           | mg/l    | 0.005    | 0.001  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |
| Chromium, Total         | ND           |           | mg/l    | 0.010    | 0.002  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |
| Iron, Total             | ND           |           | mg/l    | 0.050    | 0.009  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |
| Lead, Total             | ND           |           | mg/l    | 0.010    | 0.003  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |
| Magnesium, Total        | ND           |           | mg/l    | 0.100    | 0.015  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |
| Manganese, Total        | ND           |           | mg/l    | 0.010    | 0.002  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |
| Selenium, Total         | ND           |           | mg/l    | 0.010    | 0.004  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |
| Silicon, Total          | 0.007        | J         | mg/l    | 0.500    | 0.007  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |
| Sodium, Total           | 0.261        | J         | mg/l    | 2.00     | 0.120  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |
| Thallium, Total         | ND           |           | mg/l    | 0.020    | 0.003  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |
| Zinc, Total             | ND           |           | mg/l    | 0.050    | 0.002  | 1                  | 09/30/21 05:26   | 10/04/21 13:45   | 19,200.7             | GD      |

**Prep Information** 

Digestion Method: EPA 3005A



### Lab Control Sample Analysis Batch Quality Control

**Project Name:** NF 5 YEAR SAMPLING

Project Number: 1047

Lab Number:

L2152669

Report Date:

10/13/21

| Parameter                                    | LCS<br>%Recovery  | Qual      | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|----------------------------------------------|-------------------|-----------|-------------------|------|---------------------|-----|------|------------|
| Fotal Metals - Mansfield Lab Associated samp | le(s): 01-09 Bate | ch: WG155 | 3319-2            |      |                     |     |      |            |
| Cadmium, Total                               | 106               |           | -                 |      | 85-115              | -   |      |            |
| Chromium, Total                              | 103               |           | -                 |      | 85-115              | -   |      |            |
| Iron, Total                                  | 96                |           | -                 |      | 85-115              | -   |      |            |
| Lead, Total                                  | 102               |           | -                 |      | 85-115              | -   |      |            |
| Magnesium, Total                             | 105               |           | -                 |      | 85-115              | -   |      |            |
| Manganese, Total                             | 95                |           | -                 |      | 85-115              | -   |      |            |
| Selenium, Total                              | 112               |           | -                 |      | 85-115              | -   |      |            |
| Silicon, Total                               | 101               |           | -                 |      | 85-115              | -   |      |            |
| Sodium, Total                                | 107               |           | -                 |      | 85-115              | -   |      |            |
| Thallium, Total                              | 107               |           | -                 |      | 85-115              | -   |      |            |
| Zinc, Total                                  | 110               |           | -                 |      | 85-115              | -   |      |            |

#### Matrix Spike Analysis Batch Quality Control

**Project Name:** NF 5 YEAR SAMPLING

**Project Number:** 1047

Lab Number: L2152669

**Report Date:** 10/13/21

| arameter                    | Native<br>Sample | MS<br>Added    | MS<br>Found | MS<br>%Recovery | Qual   | MSD<br>Found | MSD<br>%Recovery Qu | Recovery<br>al Limits | RPD Qual | RPD<br>Limits |
|-----------------------------|------------------|----------------|-------------|-----------------|--------|--------------|---------------------|-----------------------|----------|---------------|
| otal Metals - Mansfield Lab | Associated sar   | nple(s): 01-09 | QC Ba       | tch ID: WG155   | 3319-3 | QC San       | nple: L2152669-01   | Client ID: AF         | P-MW-1B  |               |
| Cadmium, Total              | ND               | 0.053          | 0.056       | 106             |        | -            | -                   | 75-125                | -        | 20            |
| Chromium, Total             | ND               | 0.2            | 0.201       | 100             |        | -            | -                   | 75-125                | -        | 20            |
| Iron, Total                 | 0.254            | 1              | 1.18        | 93              |        | -            | -                   | 75-125                | -        | 20            |
| Lead, Total                 | 0.003J           | 0.53           | 0.518       | 98              |        | -            | -                   | 75-125                | -        | 20            |
| Magnesium, Total            | 54.4             | 10             | 62.4        | 80              |        | -            | -                   | 75-125                | -        | 20            |
| Manganese, Total            | 0.706            | 0.5            | 1.14        | 87              |        | -            | -                   | 75-125                | -        | 20            |
| Selenium, Total             | ND               | 0.12           | 0.146       | 122             |        | -            | -                   | 75-125                | -        | 20            |
| Silicon, Total              | 6.85             | 1              | 7.03        | 18              | Q      | -            | -                   | 75-125                | -        | 20            |
| Sodium, Total               | 170              | 10             | 174         | 40              | Q      | -            | -                   | 75-125                | -        | 20            |
| Thallium, Total             | ND               | 0.12           | 0.117       | 98              |        | -            | -                   | 75-125                | -        | 20            |
| Zinc, Total                 | 0.477            | 0.5            | 1.01        | 107             |        | -            | -                   | 75-125                | -        | 20            |
|                             |                  |                |             |                 |        |              |                     |                       |          |               |

### Lab Duplicate Analysis Batch Quality Control

**Project Name:** NF 5 YEAR SAMPLING

Project Number: 1047

 Lab Number:
 L2152669

 Report Date:
 10/13/21

| arameter                                               | Native Sample  | Duplicate Sample       | Units       | RPD        | Qual     | RPD Limits |
|--------------------------------------------------------|----------------|------------------------|-------------|------------|----------|------------|
| otal Metals - Mansfield Lab Associated sample(s): 01-0 | 9 QC Batch ID: | WG1553319-4 QC Sample: | L2152669-01 | Client ID: | AP-MW-1B |            |
| Cadmium, Total                                         | ND             | ND                     | mg/l        | NC         |          | 20         |
| Chromium, Total                                        | ND             | ND                     | mg/l        | NC         |          | 20         |
| Iron, Total                                            | 0.254          | 0.247                  | mg/l        | 3          |          | 20         |
| Lead, Total                                            | 0.003J         | ND                     | mg/l        | NC         |          | 20         |
| Magnesium, Total                                       | 54.4           | 54.0                   | mg/l        | 1          |          | 20         |
| Manganese, Total                                       | 0.706          | 0.696                  | mg/l        | 1          |          | 20         |
| Selenium, Total                                        | ND             | 0.005J                 | mg/l        | NC         |          | 20         |
| Silicon, Total                                         | 6.85           | 6.82                   | mg/l        | 0          |          | 20         |
| Sodium, Total                                          | 170            | 170                    | mg/l        | 0          |          | 20         |
| Thallium, Total                                        | ND             | ND                     | mg/l        | NC         |          | 20         |
| Zinc, Total                                            | 0.477          | 0.476                  | mg/l        | 0          |          | 20         |

## INORGANICS & MISCELLANEOUS



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

Lab ID: L2152669-01 Date Collected: 09/28/21 09:50

Client ID: AP-MW-1B Date Received: 09/28/21 Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter                | Result       | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|--------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - West | tborough Lal | b         |       |       |       |                    |                  |                  |                      |         |
| Nitrogen, Ammonia        | 0.033        | J         | mg/l  | 0.075 | 0.024 | 1                  | 10/12/21 10:00   | 10/12/21 22:14   | 44,350.1             | AT      |
| Phenolics, Total         | ND           |           | mg/l  | 0.030 | 0.006 | 1                  | 10/12/21 07:15   | 10/12/21 11:56   | 4,420.1              | KP      |
| Chromium, Hexavalent     | ND           |           | mg/l  | 0.010 | 0.003 | 1                  | 09/29/21 05:00   | 09/29/21 05:19   | 1,7196A              | KA      |
| Anions by Ion Chromatog  | raphy - Wes  | tborough  | Lab   |       |       |                    |                  |                  |                      |         |
| Sulfate                  | 214.         |           | mg/l  | 10.0  | 4.54  | 10                 | -                | 10/10/21 17:20   | 44,300.0             | SH      |



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

Lab ID: L2152669-02 Date Collected: 09/28/21 10:50

Client ID: AP-MW-2B Date Received: 09/28/21 Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter               | Result       | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-------------------------|--------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Wes | tborough Lat |           |       |       |       |                    |                  |                  |                      |         |
| Nitrogen, Ammonia       | 2.60         |           | mg/l  | 0.075 | 0.024 | 1                  | 10/12/21 10:00   | 10/12/21 22:17   | 44,350.1             | AT      |
| Phenolics, Total        | 0.006        | J         | mg/l  | 0.030 | 0.006 | 1                  | 10/12/21 07:15   | 10/12/21 12:01   | 4,420.1              | KP      |
| Chromium, Hexavalent    | 0.809        |           | mg/l  | 0.020 | 0.006 | 2                  | 09/29/21 05:00   | 09/29/21 05:20   | 1,7196A              | KA      |
| Anions by Ion Chromatog | raphy - West | borough   | Lab   |       |       |                    |                  |                  |                      |         |
| Sulfate                 | 77.3         |           | mg/l  | 1.00  | 0.454 | 1                  | -                | 10/10/21 12:42   | 44,300.0             | SH      |



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

Lab ID: L2152669-03 Date Collected: 09/28/21 09:10

Client ID: AP-MW-3B Date Received: 09/28/21 Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter                  | Result     | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|----------------------------|------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Westbe | orough Lab | )         |       |       |       |                    |                  |                  |                      |         |
| Nitrogen, Ammonia          | 0.998      |           | mg/l  | 0.075 | 0.024 | 1                  | 10/12/21 10:00   | 10/12/21 22:18   | 44,350.1             | AT      |
| Phenolics, Total           | ND         |           | mg/l  | 0.030 | 0.006 | 1                  | 10/12/21 07:15   | 10/12/21 12:01   | 4,420.1              | KP      |
| Chromium, Hexavalent       | ND         |           | mg/l  | 0.010 | 0.003 | 1                  | 09/29/21 05:00   | 09/29/21 05:21   | 1,7196A              | KA      |
| Anions by Ion Chromatogra  | phy - West | borough   | Lab   |       |       |                    |                  |                  |                      |         |
| Sulfate                    | 77.1       |           | mg/l  | 1.00  | 0.454 | 1                  | -                | 10/10/21 12:54   | 44,300.0             | SH      |



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

Lab ID: L2152669-04 Date Collected: 09/28/21 09:30

Client ID: AP-MW-4B Date Received: 09/28/21 Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter                 | Result      | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------------|-------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Westb | orough Lab  | )         |       |       |       |                    |                  |                  |                      |         |
| Nitrogen, Ammonia         | 0.064       | J         | mg/l  | 0.075 | 0.024 | 1                  | 10/12/21 10:00   | 10/12/21 22:19   | 44,350.1             | AT      |
| Phenolics, Total          | ND          |           | mg/l  | 0.030 | 0.006 | 1                  | 10/12/21 07:15   | 10/12/21 12:02   | 4,420.1              | KP      |
| Chromium, Hexavalent      | 0.238       |           | mg/l  | 0.010 | 0.003 | 1                  | 09/29/21 05:00   | 09/29/21 05:22   | 1,7196A              | KA      |
| Anions by Ion Chromatogra | aphy - West | borough   | Lab   |       |       |                    |                  |                  |                      |         |
| Sulfate                   | 488.        |           | mg/l  | 10.0  | 4.54  | 10                 | -                | 10/10/21 17:32   | 44,300.0             | SH      |



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

Lab ID: L2152669-05 Date Collected: 09/28/21 09:50

Client ID: AP-MW-5B Date Received: 09/28/21 Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter               | Result       | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-------------------------|--------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Wes | stborough La | b         |       |       |       |                    |                  |                  |                      |         |
| Nitrogen, Ammonia       | 0.029        | J         | mg/l  | 0.075 | 0.024 | 1                  | 10/12/21 10:00   | 10/12/21 22:20   | 44,350.1             | AT      |
| Phenolics, Total        | ND           |           | mg/l  | 0.030 | 0.006 | 1                  | 10/12/21 07:15   | 10/12/21 12:03   | 4,420.1              | KP      |
| Chromium, Hexavalent    | ND           |           | mg/l  | 0.010 | 0.003 | 1                  | 09/29/21 05:00   | 09/29/21 05:22   | 1,7196A              | KA      |
| Anions by Ion Chromatog | graphy - Wes | tborough  | Lab   |       |       |                    |                  |                  |                      |         |
| Sulfate                 | 144.         |           | mg/l  | 10.0  | 4.54  | 10                 | -                | 10/10/21 17:44   | 44,300.0             | SH      |



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

Lab ID: L2152669-06 Date Collected: 09/28/21 11:45

Client ID: AP-MW-6B Date Received: 09/28/21 Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter                | Result      | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - West | borough Lal | )         |       |       |       |                    |                  |                  |                      |         |
| Nitrogen, Ammonia        | 0.031       | J         | mg/l  | 0.075 | 0.024 | 1                  | 10/12/21 10:00   | 10/12/21 22:21   | 44,350.1             | AT      |
| Phenolics, Total         | ND          |           | mg/l  | 0.030 | 0.006 | 1                  | 10/12/21 07:15   | 10/12/21 12:04   | 4,420.1              | KP      |
| Chromium, Hexavalent     | ND          |           | mg/l  | 0.010 | 0.003 | 1                  | 09/29/21 05:00   | 09/29/21 05:22   | 1,7196A              | KA      |
| Anions by Ion Chromatog  | raphy - Wes | tborough  | Lab   |       |       |                    |                  |                  |                      |         |
| Sulfate                  | 302.        |           | mg/l  | 10.0  | 4.54  | 10                 | -                | 10/10/21 17:56   | 44,300.0             | SH      |



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

Lab ID: L2152669-07 Date Collected: 09/28/21 12:00

Client ID: DUP-01 Date Received: 09/28/21 Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter                | Result      | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - West | borough Lal | )         |       |       |       |                    |                  |                  |                      |         |
| Nitrogen, Ammonia        | 0.037       | J         | mg/l  | 0.075 | 0.024 | 1                  | 10/12/21 10:00   | 10/12/21 22:25   | 44,350.1             | AT      |
| Phenolics, Total         | ND          |           | mg/l  | 0.030 | 0.006 | 1                  | 10/12/21 07:15   | 10/12/21 12:05   | 4,420.1              | KP      |
| Chromium, Hexavalent     | ND          |           | mg/l  | 0.010 | 0.003 | 1                  | 09/29/21 05:00   | 09/29/21 05:23   | 1,7196A              | KA      |
| Anions by Ion Chromatogr | aphy - Wes  | tborough  | Lab   |       |       |                    |                  |                  |                      |         |
| Sulfate                  | 303.        |           | mg/l  | 10.0  | 4.54  | 10                 | -                | 10/10/21 18:33   | 44,300.0             | SH      |



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

Lab ID: L2152669-08 Date Collected: 09/28/21 12:15

Client ID: AP-MW-7B Date Received: 09/28/21 Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter                 | Result      | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------------|-------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Westb | orough Lab  | )         |       |       |       |                    |                  |                  |                      |         |
| Nitrogen, Ammonia         | 0.522       |           | mg/l  | 0.375 | 0.120 | 5                  | 10/12/21 10:00   | 10/12/21 22:26   | 44,350.1             | AT      |
| Phenolics, Total          | ND          |           | mg/l  | 0.030 | 0.006 | 1                  | 10/12/21 07:15   | 10/12/21 12:06   | 4,420.1              | KP      |
| Chromium, Hexavalent      | 0.006       | J         | mg/l  | 0.010 | 0.003 | 1                  | 09/29/21 05:00   | 09/29/21 05:23   | 1,7196A              | KA      |
| Anions by Ion Chromatogra | aphy - West | borough   | Lab   |       |       |                    |                  |                  |                      |         |
| Sulfate                   | 65.0        |           | mg/l  | 1.00  | 0.454 | 1                  | -                | 10/10/21 19:09   | 44,300.0             | SH      |



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669

Project Number: 1047 Report Date: 10/13/21

**SAMPLE RESULTS** 

Lab ID: L2152669-09 Date Collected: 09/28/21 10:05

Client ID: AP-MW-8B Date Received: 09/28/21 Sample Location: NF AIRCO PARCEL Field Prep: Not Specified

Sample Depth:

| Parameter              | Result       | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|--------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - We | stborough La | ıb        |       |       |       |                    |                  |                  |                      |         |
| Nitrogen, Ammonia      | 0.040        | J         | mg/l  | 0.075 | 0.024 | 1                  | 10/12/21 10:00   | 10/12/21 22:27   | 44,350.1             | AT      |
| Phenolics, Total       | ND           |           | mg/l  | 0.030 | 0.006 | 1                  | 10/12/21 07:15   | 10/12/21 12:07   | 4,420.1              | KP      |
| Chromium, Hexavalent   | ND           |           | mg/l  | 0.010 | 0.003 | 1                  | 09/29/21 05:00   | 09/29/21 05:24   | 1,7196A              | KA      |
| Anions by Ion Chromato | graphy - Wes | stborough | Lab   |       |       |                    |                  |                  |                      |         |
| Sulfate                | 272.         |           | mg/l  | 10.0  | 4.54  | 10                 | -                | 10/10/21 19:21   | 44,300.0             | SH      |



L2152669

Lab Number:

Project Name: NF 5 YEAR SAMPLING

Project Number: 1047 Report Date: 10/13/21

> Λ S

| Method | Blank   | <b>Analysis</b> |
|--------|---------|-----------------|
| Batch  | Quality | Control         |

| Parameter             | Result Qualifi       | er Units      | RL       | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|----------------------|---------------|----------|---------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - W | estborough Lab for s | sample(s): 01 | -09 Ba   | tch: WC | G1552100-1         | ĺ                |                  |                      |         |
| Chromium, Hexavalent  | ND                   | mg/l          | 0.010    | 0.003   | 1                  | 09/29/21 05:00   | 09/29/21 05:13   | 1,7196A              | KA      |
| Anions by Ion Chromat | ography - Westborou  | gh Lab for sa | ample(s) | : 01-09 | Batch: W           | /G1556848-1      |                  |                      |         |
| Sulfate               | ND                   | mg/l          | 1.00     | 0.454   | 1                  | -                | 10/10/21 12:06   | 44,300.0             | SH      |
| General Chemistry - W | estborough Lab for s | sample(s): 01 | -09 Ba   | tch: WC | G1557370-1         | 1                |                  |                      |         |
| Phenolics, Total      | ND                   | mg/l          | 0.030    | 0.006   | 1                  | 10/12/21 07:15   | 10/12/21 11:54   | 4,420.1              | KP      |
| General Chemistry - W | estborough Lab for s | sample(s): 01 | -09 Ba   | tch: WC | G1557517-1         | 1                |                  |                      |         |
| Nitrogen, Ammonia     | ND                   | mg/l          | 0.075    | 0.024   | 1                  | 10/12/21 10:00   | 10/12/21 22:00   | 44,350.1             | AT      |



### Lab Control Sample Analysis Batch Quality Control

**Project Name:** NF 5 YEAR SAMPLING

Project Number: 1047

Lab Number:

L2152669

Report Date:

10/13/21

| Parameter                                 | LCS<br>%Recovery | Qual    | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|-------------------------------------------|------------------|---------|-------------------|----------|---------------------|-----|------|------------|
| General Chemistry - Westborough Lab Asso  | ciated sample(s) | : 01-09 | Batch: WG1552     | 100-2    |                     |     |      |            |
| Chromium, Hexavalent                      | 104              |         | -                 |          | 85-115              | -   |      | 20         |
| Anions by Ion Chromatography - Westboroug | gh Lab Associate | ed samp | le(s): 01-09 Bato | h: WG155 | 56848-2             |     |      |            |
| Sulfate                                   | 92               |         | -                 |          | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab Asso  | ciated sample(s) | : 01-09 | Batch: WG15573    | 370-2    |                     |     |      |            |
| Phenolics, Total                          | 80               |         | -                 |          | 70-130              | -   |      |            |
| General Chemistry - Westborough Lab Asso  | ciated sample(s) | : 01-09 | Batch: WG1557     | 517-2    |                     |     |      |            |
| Nitrogen, Ammonia                         | 92               |         | -                 |          | 90-110              | -   |      | 20         |



#### Matrix Spike Analysis Batch Quality Control

**Project Name:** NF 5 YEAR SAMPLING

**Project Number:** 1047

Lab Number:

L2152669

Report Date:

10/13/21

| Parameter                           | Native<br>Sample | MS<br>Added | MS<br>Found   | MS<br>%Recovery | Qual   | MSD<br>Found | MSD<br>%Recovery | Qual   | Recovery<br>Limits | /<br>RPD  | Qual  | RPD<br>Limits |
|-------------------------------------|------------------|-------------|---------------|-----------------|--------|--------------|------------------|--------|--------------------|-----------|-------|---------------|
| General Chemistry - Westbo          | rough Lab Asso   | ciated samp | ole(s): 01-09 | QC Batch I      | D: WG1 | 552100-4     | QC Sample:       | L21526 | 669-03 C           | lient ID: | AP-MV | V-3B          |
| Chromium, Hexavalent                | ND               | 0.1         | 0.102         | 102             |        | -            | -                |        | 85-115             | -         |       | 20            |
| Anions by Ion Chromatograp<br>MW-7B | hy - Westborou   | gh Lab Asso | ociated samp  | ole(s): 01-09   | QC Bat | ch ID: WG    | 1556848-3        | QC Sar | mple: L215         | 2669-08   | Clien | t ID: AP      |
| Sulfate                             | 65.0             | 8           | 70.8          | 72              | Q      | -            | -                |        | 90-110             | -         |       | 20            |
| General Chemistry - Westbo          | rough Lab Asso   | ciated samp | ole(s): 01-09 | QC Batch I      | D: WG1 | 557370-4     | QC Sample:       | L21526 | 669-01 C           | lient ID: | AP-MV | V-1B          |
| Phenolics, Total                    | ND               | 0.4         | 0.29          | 72              |        | -            | -                |        | 70-130             | -         |       | 20            |
| General Chemistry - Westbo          | rough Lab Asso   | ciated samp | ole(s): 01-09 | QC Batch I      | D: WG1 | 557517-4     | QC Sample:       | L21526 | 669-01 C           | lient ID: | AP-MV | V-1B          |
| Nitrogen, Ammonia                   | 0.033J           | 4           | 3.67          | 92              |        | -            | -                |        | 90-110             | -         |       | 20            |

L2152669

### Lab Duplicate Analysis Batch Quality Control

**Project Name:** NF 5 YEAR SAMPLING

Project Number: 1047

Quality Control Lab Number:

**Report Date:** 10/13/21

| Parameter                                           | Native Sam     | ple [         | Ouplicate Samp | ole Units    | RPD          | Qual       | RPD Limits       |
|-----------------------------------------------------|----------------|---------------|----------------|--------------|--------------|------------|------------------|
| General Chemistry - Westborough Lab Associated samp | ole(s): 01-09  | QC Batch ID:  | : WG1552100-3  | QC Sample:   | L2152669-01  | Client ID: | AP-MW-1B         |
| Chromium, Hexavalent                                | ND             | ND            |                | mg/l         | NC           |            | 20               |
| Anions by Ion Chromatography - Westborough Lab Asso | ociated sample | e(s): 01-09 ( | QC Batch ID: W | /G1556848-4  | QC Sample: L | .2152669-0 | 8 Client ID: AP- |
| Sulfate                                             | 65.0           |               | 65.0           | mg/l         | 0            |            | 20               |
| General Chemistry - Westborough Lab Associated samp | ole(s): 01-09  | QC Batch ID:  | : WG1557370-3  | QC Sample:   | L2152669-01  | Client ID: | AP-MW-1B         |
| Phenolics, Total                                    | ND             |               | ND             | mg/l         | NC           |            | 20               |
| General Chemistry - Westborough Lab Associated samp | ole(s): 01-09  | QC Batch ID:  | : WG1557517-3  | 3 QC Sample: | L2152669-01  | Client ID: | AP-MW-1B         |
| Nitrogen, Ammonia                                   | 0.033J         |               | 0.085          | mg/l         | NC           |            | 20               |

Serial\_No:10132115:05 *Lab Number:* L2152669

Project Name: NF 5 YEAR SAMPLING

Project Number: 1047 Report Date: 10/13/21

#### Sample Receipt and Container Information

Were project specific reporting limits specified?

**Cooler Information** 

Cooler Custody Seal

A Absent B Absent

| Container Info | ormation                      |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                                                                                         |
|----------------|-------------------------------|--------|---------|-------|-------|------|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                                                                             |
| L2152669-01A   | Plastic 250ml unpreserved     | В      | 7       | 7     | 2.8   | Υ    | Absent |           | SO4-300(28),HEXCR-7196(1)                                                                                                                                                                                                                               |
| L2152669-01B   | Plastic 250ml HNO3 preserved  | В      | <2      | <2    | 2.8   | Y    | Absent |           | BA-6020T(180),SE-6020T(180),ZN-UI(180),CR-6020T(180),SI-UI(180),FE-UI(180),PB-6020T(180),MG-UI(180),SE-UI(180),AS-6020T(180),CD-UI(180),CR-UI(180),AG-6020T(180),NA-UI(180),MN-UI(180),CD-6020T(180),HG-T(28),TL-UI(180),PB-UI(180)                     |
| L2152669-01C   | Plastic 500ml H2SO4 preserved | В      | <2      | <2    | 2.8   | Υ    | Absent |           | NH3-350(28)                                                                                                                                                                                                                                             |
| L2152669-01D   | Amber 1000ml H2SO4 preserved  | В      | <2      | <2    | 2.8   | Υ    | Absent |           | NY-TPHENOL-420(28)                                                                                                                                                                                                                                      |
| L2152669-02A   | Plastic 250ml unpreserved     | В      | 12      | 12    | 2.8   | Υ    | Absent |           | SO4-300(28),HEXCR-7196(1)                                                                                                                                                                                                                               |
| L2152669-02B   | Plastic 250ml HNO3 preserved  | В      | <2      | <2    | 2.8   | Y    | Absent |           | SE-6020T(180),BA-6020T(180),SI-UI(180),ZN-<br>UI(180),CR-6020T(180),SE-UI(180),PB-<br>6020T(180),FE-UI(180),MG-UI(180),CD-<br>UI(180),AS-6020T(180),HG-T(28),CD-<br>6020T(180),MN-UI(180),NA-UI(180),AG-<br>6020T(180),CR-UI(180),TL-UI(180),PB-UI(180) |
| L2152669-02C   | Plastic 500ml H2SO4 preserved | В      | <2      | <2    | 2.8   | Υ    | Absent |           | NH3-350(28)                                                                                                                                                                                                                                             |
| L2152669-02D   | Amber 1000ml H2SO4 preserved  | В      | <2      | <2    | 2.8   | Υ    | Absent |           | NY-TPHENOL-420(28)                                                                                                                                                                                                                                      |
| L2152669-03A   | Plastic 250ml unpreserved     | Α      | 8       | 8     | 3.7   | Υ    | Absent |           | SO4-300(28),HEXCR-7196(1)                                                                                                                                                                                                                               |
| L2152669-03B   | Plastic 250ml HNO3 preserved  | А      | <2      | <2    | 3.7   | Y    | Absent |           | SE-6020T(180),BA-6020T(180),CR-6020T(180),ZN-UI(180),SI-UI(180),PB-6020T(180),FE-UI(180),MG-UI(180),SE-UI(180),CD-UI(180),AS-6020T(180),CR-UI(180),MN-UI(180),AG-6020T(180),HG-T(28),NA-UI(180),CD-6020T(180),TL-UI(180),PB-UI(180)                     |
| L2152669-03C   | Plastic 500ml H2SO4 preserved | Α      | <2      | <2    | 3.7   | Υ    | Absent |           | NH3-350(28)                                                                                                                                                                                                                                             |
| L2152669-03D   | Amber 1000ml H2SO4 preserved  | Α      | <2      | <2    | 3.7   | Υ    | Absent |           | NY-TPHENOL-420(28)                                                                                                                                                                                                                                      |
| L2152669-04A   | Plastic 250ml unpreserved     | Α      | 7       | 7     | 3.7   | Υ    | Absent |           | SO4-300(28),HEXCR-7196(1)                                                                                                                                                                                                                               |



**Lab Number:** L2152669

Report Date: 10/13/21

Project Number: 1047

Project Name:

NF 5 YEAR SAMPLING

| Container Info | ormation                      |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                                                                                             |
|----------------|-------------------------------|--------|---------|-------|-------|------|--------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                                                                                 |
| L2152669-04B   | Plastic 250ml HNO3 preserved  | Α      | <2      | <2    | 3.7   | Y    | Absent |           | SE-6020T(180),BA-6020T(180),SI-UI(180),CR-6020T(180),ZN-UI(180),MG-UI(180),PB-6020T(180),FE-UI(180),SE-UI(180),CD-UI(180),AS-6020T(180),AG-6020T(180),HG-T(28),MN-UI(180),CR-UI(180),NA-UI(180),CD-6020T(180),PB-UI(180),TL-UI(180)                         |
| L2152669-04C   | Plastic 500ml H2SO4 preserved | Α      | <2      | <2    | 3.7   | Υ    | Absent |           | NH3-350(28)                                                                                                                                                                                                                                                 |
| L2152669-04D   | Amber 1000ml H2SO4 preserved  | Α      | <2      | <2    | 3.7   | Υ    | Absent |           | NY-TPHENOL-420(28)                                                                                                                                                                                                                                          |
| L2152669-05A   | Plastic 250ml unpreserved     | Α      | 7       | 7     | 3.7   | Υ    | Absent |           | SO4-300(28),HEXCR-7196(1)                                                                                                                                                                                                                                   |
| L2152669-05B   | Plastic 250ml HNO3 preserved  | A      | <2      | <2    | 3.7   | Y    | Absent |           | BA-6020T(180),SE-6020T(180),ZN-<br>UI(180),CR-6020T(180),SI-UI(180),SE-<br>UI(180),MG-UI(180),PB-6020T(180),FE-<br>UI(180),AG-6020T(180),CD-UI(180),MN-<br>UI(180),AG-6020T(180),CD-6020T(180),HG-<br>T(28),CR-UI(180),NA-UI(180),PB-UI(180),TL-<br>UI(180) |
| L2152669-05C   | Plastic 500ml H2SO4 preserved | Α      | <2      | <2    | 3.7   | Υ    | Absent |           | NH3-350(28)                                                                                                                                                                                                                                                 |
| L2152669-05D   | Amber 1000ml H2SO4 preserved  | Α      | <2      | <2    | 3.7   | Υ    | Absent |           | NY-TPHENOL-420(28)                                                                                                                                                                                                                                          |
| L2152669-06A   | Plastic 250ml unpreserved     | В      | 7       | 7     | 2.8   | Υ    | Absent |           | SO4-300(28),HEXCR-7196(1)                                                                                                                                                                                                                                   |
| L2152669-06B   | Plastic 250ml HNO3 preserved  | В      | <2      | <2    | 2.8   | Y    | Absent |           | SE-6020T(180),BA-6020T(180),CR-6020T(180),ZN-UI(180),SI-UI(180),PB-6020T(180),FE-UI(180),MG-UI(180),SE-UI(180),AS-6020T(180),CD-UI(180),CR-UI(180),AG-6020T(180),MN-UI(180),CD-6020T(180),MA-UI(180),TL-UI(180),PB-UI(180)                                  |
| L2152669-06C   | Plastic 500ml H2SO4 preserved | В      | <2      | <2    | 2.8   | Υ    | Absent |           | NH3-350(28)                                                                                                                                                                                                                                                 |
| L2152669-06D   | Amber 1000ml H2SO4 preserved  | В      | <2      | <2    | 2.8   | Υ    | Absent |           | NY-TPHENOL-420(28)                                                                                                                                                                                                                                          |
| L2152669-07A   | Plastic 250ml unpreserved     | В      | 7       | 7     | 2.8   | Υ    | Absent |           | SO4-300(28),HEXCR-7196(1)                                                                                                                                                                                                                                   |
| L2152669-07B   | Plastic 250ml HNO3 preserved  | В      | <2      | <2    | 2.8   | Y    | Absent |           | BA-6020T(180),SE-6020T(180),CR-6020T(180),SI-UI(180),ZN-UI(180),FE-UI(180),PB-6020T(180),MG-UI(180),SE-UI(180),AS-6020T(180),CD-UI(180),NA-UI(180),AG-6020T(180),MN-UI(180),HG-T(28),CD-6020T(180),CR-UI(180),TL-UI(180),PB-UI(180)                         |
| L2152669-07C   | Plastic 500ml H2SO4 preserved | В      | <2      | <2    | 2.8   | Υ    | Absent |           | NH3-350(28)                                                                                                                                                                                                                                                 |
| L2152669-07D   | Amber 1000ml H2SO4 preserved  | В      | <2      | <2    | 2.8   | Υ    | Absent |           | NY-TPHENOL-420(28)                                                                                                                                                                                                                                          |
| L2152669-08A   | Plastic 250ml unpreserved     | В      | 7       | 7     | 2.8   | Υ    | Absent |           | SO4-300(28),HEXCR-7196(1)                                                                                                                                                                                                                                   |



Lab Number: L2152669

**Report Date:** 10/13/21

NH3-350(28)

HOLD(14)

HOLD(14)

NY-TPHENOL-420(28)

**Project Name:** NF 5 YEAR SAMPLING

Plastic 500ml H2SO4 preserved

Amber 1000ml H2SO4 preserved

Vial HCl preserved

Vial HCI preserved

Α

Α

Α

Α

<2

<2

NA

NA

<2

<2

Project Number: 1047

Container Information Final Temp Initial Frozen pН deg C Pres Seal Date/Time Container ID Container Type Cooler рΗ Analysis(\*) L2152669-08B Plastic 250ml HNO3 preserved В <2 <2 BA-6020T(180),SE-6020T(180),ZN-2.8 Absent UI(180), CR-6020T(180), SI-UI(180), FE-UI(180),PB-6020T(180),MG-UI(180),SE-UI(180),CD-UI(180),AS-6020T(180),CR-UI(180),NA-UI(180),MN-UI(180),AG-6020T(180),HG-T(28),CD-6020T(180),PB-UI(180),TL-UI(180) В L2152669-08C Plastic 500ml H2SO4 preserved <2 <2 2.8 Υ NH3-350(28) Absent L2152669-08D Amber 1000ml H2SO4 preserved В <2 <2 NY-TPHENOL-420(28) 2.8 Υ Absent L2152669-09A Plastic 250ml unpreserved Α 7 7 Υ SO4-300(28), HEXCR-7196(1) 3.7 Absent L2152669-09B Plastic 250ml HNO3 preserved Α <2 <2 3.7 Υ Absent SE-6020T(180),BA-6020T(180),ZN-UI(180),SI-UI(180),CR-6020T(180),FE-UI(180),PB-6020T(180),SE-UI(180),MG-UI(180),AS-6020T(180),CD-UI(180),AG-6020T(180),HG-T(28),NA-UI(180),MN-UI(180),CR-UI(180),CD-6020T(180),PB-UI(180),TL-UI(180)

3.7

3.7

3.7

3.7

Υ

Υ

Υ

Υ

Absent

Absent

Absent

Absent



L2152669-09C

L2152669-09D

L2152669-10A

L2152669-10B

**Project Name:** Lab Number: NF 5 YEAR SAMPLING L2152669

**Project Number: Report Date:** 1047 10/13/21

#### GLOSSARY

#### Acronyms

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

**EDL** 

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

**EMPC** - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** 

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers



Project Name:NF 5 YEAR SAMPLINGLab Number:L2152669Project Number:1047Report Date:10/13/21

#### **Footnotes**

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### **Terms**

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers



Project Name:NF 5 YEAR SAMPLINGLab Number:L2152669Project Number:1047Report Date:10/13/21

#### **Data Qualifiers**

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
   (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers



Project Name: NF 5 YEAR SAMPLING Lab Number: L2152669
Project Number: 1047 Report Date: 10/13/21

#### REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

O 4161 41 1 6 41

ID No.:**17873** Revision 19

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

#### **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 1,2,4,5-Tetramethylbenzene; 1,2,4,

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

**EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

**Drinking Water** 

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

Drinking Water

**EPA 200.7:** Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.** 

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

| ДІРНА                                    | NEW YORK<br>CHAIN OF<br>CUSTODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Service Centers<br>Mahwah, NJ 07430: 35 Whitney<br>Albany, NY 12205: 14 Walker W<br>Tonawanda, NY 14150: 275 Coo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /ay                                      | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page                   |                       |               | Date<br>in I | Rec'o           | d C      | 1/26           | 1/2                           | 1      | ALPHA Job # L2152669                                                                      |  |  |  |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|---------------|--------------|-----------------|----------|----------------|-------------------------------|--------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Westborough, MA 01581<br>8 Walkup Dr.    | Mansfield, MA 02048<br>320 Forbes Blvd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A LOUIS                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Health                 |                       | Deliv         | erable       | 5               | 514      |                |                               | 411.65 | Billing Information                                                                       |  |  |  |  |  |  |
| TEL: 508-898-9220<br>FAX: 508-898-9193   | TEL: 508-822-9300<br>FAX: 508-822-3288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project Name: NF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |               |              |                 |          |                | ASP-A ASP-B                   |        |                                                                                           |  |  |  |  |  |  |
| PAA. 300-030-0103                        | 1701.000022-0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Project Location: NF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oject Location: NF AIRCO PRICES          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |               |              |                 |          |                | EQuIS (1 File) EQuIS (4 File) |        |                                                                                           |  |  |  |  |  |  |
| Client Information                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project # (047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |               | Other        | r               |          |                |                               |        |                                                                                           |  |  |  |  |  |  |
| Client: Greenstu                         | V Ehv. Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Use Project name as Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oject#)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 112-                  | Regu          | latory       | Requ            | iremer   | nt             |                               |        | Disposal Site Information                                                                 |  |  |  |  |  |  |
| Address: G Gella                         | 14 DV. WAPPILLARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Manager: ALPHAQuote #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C C                                      | hip Mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Leo)                  |                       |               | NY TO        |                 | nede     | =              | Y Part 3                      |        | Please identify below location of applicable disposal facilities.                         |  |  |  |  |  |  |
| Phone: 917 - 6                           | 55-5123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Turn-Around Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N DE SE                                  | 60 10 CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The Real Property lies |                       | H             | NY Re        |                 |          | =              | ther                          | F      | Disposal Facility:                                                                        |  |  |  |  |  |  |
| Fax:                                     | 2 316)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                        | Due Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | O SOLIE               | ᅥ님            |              |                 | ted Use  |                | uidi                          |        | □ NJ □ NY                                                                                 |  |  |  |  |  |  |
|                                          | marachs tou solk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rush (only if pre approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | # of Days:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                       | ᆸ             |              |                 | Dischar  |                |                               |        | Other:                                                                                    |  |  |  |  |  |  |
| These samples have b                     | The State of the S | And the Control of th | hammed .                                 | ii oi bayo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                       | ANA           | LYSIS        |                 | Diodria  | 90             |                               |        | Sample Filtration                                                                         |  |  |  |  |  |  |
| Other project specific                   | requirements/comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ients:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |               | 1010         | -               |          |                | _                             | -1     | 0                                                                                         |  |  |  |  |  |  |
| Ahalytcs - S                             | ulfate, Ic, Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al Silicon, Total for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RCRAY M<br>BPHen                         | etals, M<br>ol, Hex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 'm moniq<br>Chrosu-    | 745 14P S             | 1440          | 504          | g Total Met     |          |                |                               |        | ☐ Lab to do  Preservation ☐ Lab to do ☐ B                                                 |  |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       | NOL           | 2            | <b>±</b>        | ~        |                |                               |        | (Please Specify below)                                                                    |  |  |  |  |  |  |
| ALPHA Lab ID                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Coll                                     | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Camala                 | Committee             | 井             | ×            | -               | 土        |                |                               |        | (Flease Specify below)                                                                    |  |  |  |  |  |  |
| (Lab Use Only)                           | Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mple ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date                                     | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample<br>Matrix       | Sampler's<br>Initials | 7             | 1+0          | 10              | >        |                |                               |        | Sample Specific Comments                                                                  |  |  |  |  |  |  |
|                                          | AP-MW-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/48                                     | 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | NC                    | -             | -            | -               |          |                | +                             | -      | Sample Specific Comments                                                                  |  |  |  |  |  |  |
| 521669 -01                               | AP-MW-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                        | 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aá<br>Aa               | NC                    | x             | *            | X               | X        | -              | +                             | -      |                                                                                           |  |  |  |  |  |  |
| -02                                      | AP-MW-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/28                                     | The state of the s |                        | -                     | H             | $\vdash$     | +               | +        | -              | +                             | _      |                                                                                           |  |  |  |  |  |  |
| -03                                      | AP-MW-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The state of the s |                                          | 910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQ                     | Ba                    | H             | H            | $\vdash$        | $\vdash$ | -              | -                             | _      |                                                                                           |  |  |  |  |  |  |
| -04                                      | Ar- Mw-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/28                                     | 930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | B'C                   | $\vdash$      | Н-           | H               | Н        |                | -                             |        |                                                                                           |  |  |  |  |  |  |
| -05                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/28                                     | 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQ                     | BQ                    | $\vdash$      | Н.           | 1               | $\vdash$ |                | -                             |        |                                                                                           |  |  |  |  |  |  |
| -Ole                                     | AP-MW-G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/28                                     | 1145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AQ                     | Ba                    | $\vdash$      | 4            | Н_              | Н        |                |                               |        |                                                                                           |  |  |  |  |  |  |
| -07                                      | Dul-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/28                                     | Idoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AQ                     | ea                    | Щ.            | Ш            |                 | Ш        |                | _                             |        |                                                                                           |  |  |  |  |  |  |
| -08                                      | AP- MW- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/28                                     | 1215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aq                     | 80                    |               |              |                 |          |                |                               |        |                                                                                           |  |  |  |  |  |  |
| -09                                      | AP-MW-81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/18                                     | 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aq                     | BQ                    | 1             | 4            | 4               | 4        |                |                               |        |                                                                                           |  |  |  |  |  |  |
| -10                                      | Trip Big                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9128                                     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                     | w                     |               |              |                 |          |                |                               |        |                                                                                           |  |  |  |  |  |  |
| Preservative Code: A = None B = HCl      | Containet Code P = Plastic A = Amber Glass V = Vial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Westboro: Certification N<br>Mansfield: Certification N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-10-10-10-10-10-10-10-10-10-10-10-10-1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cor                    | ntainer Type          | A             | Ρ            | P               | P        |                |                               |        | Please print clearly, legibly and completely. Samples can                                 |  |  |  |  |  |  |
| $C = HNO_3$<br>$D = H_2SO_4$<br>E = NaOH | G = Glass<br>B = Bacteria Cup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                      | Preservative          | В             | A            | ۷               | 0        |                |                               |        | not be logged in and<br>turnaround time clock will not<br>start until any ambiguities are |  |  |  |  |  |  |
| F = MeOH                                 | C = Cube<br>O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elinquished By: Date/Time                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |               |              | Received By: Da |          |                |                               |        | resolved. BY EXECUTING                                                                    |  |  |  |  |  |  |
| $G = NaHSO_4$<br>$H = Na_2S_2O_3$        | E = Encore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | news care &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1500                                     | 9/28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | Nell                  | Mell 11 9/281 |              |                 |          |                | 1/21                          | 1500   | THIS COC, THE CLIENT                                                                      |  |  |  |  |  |  |
| K/E = Zn Ac/NaOH                         | D = BOD Bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WELVE ARC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 9/28/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15:00                  | 11/                   | 1//           | 201          | il              | 1        | 9/20           | 1/21                          | 1:30   | HAS READ AND AGREES<br>TO BE BOUND BY ALPHA'S                                             |  |  |  |  |  |  |
| O = Other                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | 100                   | 11            |              | 9               | 5        | 1 1/1/1/1/1/20 |                               |        | TERMS & CONDITIONS.                                                                       |  |  |  |  |  |  |
| Form No: 01-25 HC (rev. 3                | 0-Sept-2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                       |               |              | 6               | /        |                |                               |        | (See reverse side.)                                                                       |  |  |  |  |  |  |

### **Attachment D**

# **Landfill Cap Inspection Checklist September 2021**

#### LANDFILL CAP INSPECTION CHECKLIST AIRCO PARCEL, NIAGARA FALLS, NEW YORK

Personnel: Chip Mcleod (Greenstar) Andrew Zwack (NYSDEC)

Date: 9/28/20

Weather: Sunny, 70 degrees F

1. Inspection of ground surface for exposure of geotextile cover (cap erosion): None noted.

- 2. Inspection of ground surface for differential settlement resulting in soil cracking or ponded water: None noted.
- 3. Identification of stressed vegetation: None noted.
- 4. Identification of seeps, rooted vegetation (trees), and/or animal burrows: Cap mowing completed in September prior to inspection.
- 5. Identification of deteriorating equipment (i.e., monitoring wells, fencing, or drainage structures): AL-MW-02B riser kinked. Dedicated tubing installed to ensure future collection of groundwater sampling is still possible.
- 6. Inspection of storm water drainage swales for erosion, sloughing, or flow-through:
  None noted
- 7. Inspection of east side of the landfill (Niagara Mohawk Power Corporation parcel) along the intermittent stream for the presence of erosion or sloughing:

  None noted.
- **8. Inspection of access roads:** All roads are in acceptable condition.

### **Attachment E**

Monthly Operation and Maintenance Details January – December 2021

#### 1. INTRODUCTION

This report presents a summary of the ongoing operation and maintenance activities for the Airco Parcel, Niagara Falls, New York, from 1 January to 31 December 2021. It includes a summary of ongoing operations, system repairs, corrective actions, improvements, and an evaluation of the groundwater collection and treatment system (GCTS) performance.

#### 2. ROUTINE OPERATION AND MAINTENANCE

The overall system average flow rate was 6.67 gallons per minute (gpm). The average daily flow rate during the reporting period was estimated to be 9,605 gallons per day. The flow rate of treated water exceeded the 36,000 gallon/day flow limit on July 17, 2021. The total flow that day was 38,113 gallons. This occurred the week following the replacement of the collection trench.

Tables 1 and 2 in the PRR provide a summary of the Total and Hexavalent Chromium field sampling and the quarterly effluent analytical data from the quarterly GCTS discharge sampling events, respectively. Routine operation and maintenance was completed throughout the report period. Field tasks included system checks, data collection, and field analysis of treatment water at various stages of the treatment process, component and full-system cleanings, component replacement and general site maintenance.

#### 3. SYSTEM OPERATIONS AND EFFICIENCY

During this monitoring period, 3,503,914 gallons of groundwater was treated and discharged to the stormwater swale adjacent to the engineered wetlands. The system average flow rate was 6.67 gpm during the reporting period. The groundwater collection system was operational 100 percent of the reporting period. The emergency overflow pond (T-8) was utilized while tank and line cleaning was performed and during response to alarm conditions. No known releases to the environment occurred during the reporting period. The completed System Monitoring Checklists are provided in Attachment E.1. Monthly GCTS flow calculations are provided in Attachment E.2.

#### 3.1 SYNOPSIS OF THE ANNUAL ACTIVITIES

#### January 2021

The system was operational for 31 days in January. No alarm conditions were reported during the month of January. No scheduled or unscheduled system shutdowns or system bypasses occurred. The following details the activities performed during January:

- January 6, 2021 Replaced all three CO2 solenoid valves and flow controllers for CO2 distribution to T3A, T3B and T6B.
- January 7, 2021 Replaced all three network cameras. Performed field chrome testing on T3B and T6B. No discharge from T7 wetland so no sampling at T7 outlet or SS-01. Rotated valves in T1. Checked mouse bait. Notified Linde/Praxair that a shutoff valve on the T2 outlet manifold was leaking gas.
- January 7, 2021 Linde repaired the leaking valve.

#### February 2021

The system was operational for 28 days in February. A high pH alarm in T3A was responded to, probes were recalibrated and reinstalled. No scheduled or unscheduled system shutdowns or system bypasses occurred. The following details the activities performed during February:

• February 15, 2021 – Emergency response to high pH in T3A. Calibrated probe. Error code indicates possible probe failure, or failure due to cold temp. T6A/B Lab shed mouse problem has gotten as bad as T1 was. Will rip out insulation and install spray foam. No sampling. No discharge from system or site. No flow into system. Pulled pressure transducers from PZ-02B and MW-08.

#### **March 2021**

The system was operational for 31 days in March. No alarm conditions were reported during the month of March. No scheduled or unscheduled system shutdowns or system bypasses occurred. The following details the activities performed during March:

March 22, 2021 – Routine site visit. Endress & Hauser on site to fix issues with pH controller. Performed field chrome testing on T3B and T6B. No discharge from T7 wetland so no sampling at T7 outlet or SS-01. Rotated valves in T1. Checked mouse bait. Contacted SCADA engineer for support to reboot remote PCs. Lab shed looks great with new spray foam insulation. Extreme ammonia smells no longer present. Need to order more pH solutions.

#### **April 2021**

The system was operational for 29 days in April. No alarm conditions were reported during the month of April. No scheduled or unscheduled system shutdowns or system bypasses occurred. The following details the activities performed during April:

- April 15, 2021 Routine site visit. Performed field chrome testing on T3B, T6B, T7 and SS-01. Rotated valves in T1. Checked mouse bait. Need to order new eye wash station solutions. More mouse bait put out. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Added two 512 GB USB drives to the SCADA PLC for additional storage. Gravity lines from ZVI tanks are not draining properly. Need to pull the lids off the iron tanks and inspect the outlets.
- April 16, 2021 Collected AP-EWE-01 quarterly discharge sample from the SS-01 location.
- April 25, 2021 ZVI tank inspections occurred. Based on visual observation line cleaning scheduled for the May 2021 routine monthly visit.

#### May 2021

The system was operational for 31 days in May. No alarm conditions were reported during the month of May. No scheduled or unscheduled system shutdowns or system bypasses occurred. The following details the activities were performed during May:

• May 12, 2021 – Routine site visit. Performed field chrome testing on T3B and T6B. T7 and SS-01were dry. Rotated valves in T1. Checked mouse bait. Ordered replacement eye wash station solutions. More mouse bait put out. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Changed auto dialer programing and tested outputs. Spoke to contractor about leachate collection line replacement. ZVI effluent lines were cleaned. Installed new eyewash stations in the lab shed, T1 influent shed and T8 valve shed.

#### June 2021

The system was operational for 30 days in June. No alarm conditions were reported during the month of June. No scheduled or unscheduled system shutdowns or system bypasses occurred. The following details the activities performed during June:

• 29 June 2021 – Routine site visit. Performed field chrome testing on T3B and T6B. T7 and SS-01were dry. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Checked southwest corner for leakage.

#### July 2021

The system was operational for 31 days in July. Multiple alarm conditions were reported during the month of July after the leachate collection trench was replaced. One scheduled system shutdown occurred. The following details the activities performed during July:

- July 10-11, 2021 The leachate collection trench was replaced in the Southwest corner.
- July 12-14, 2021 Mobilized to the site for system restart after the leachate trench replacement. During restart, we observed that pumps P-1A, P-1B, and P-5 were not operating within normal parameters and were replaced and sent out to be rebuilt. Additionally, pressure transmitters were replaced in T5 and T6B. pH probes in T3A and T6B were calibrated. T-6B was pressured washed and vacuumed out and a pipe camera was used to check for breaks in the pipe between T-6B and the iron sedimentation tanks. The line from the iron sedimentation tank was jetted clean and flow rate was improved.
- 20 July 2021 Mobilized to the site to respond to alarm of P6 not starting. P6 was replaced and the existing pump sent out for repairs. Cleaned P6 check valve, calibrated T3 pH probe, performed chrome tests on T3, T6, T7, and SS-01. Collected AP-EWE-01 quarterly discharge sample from the SS-01 location. The system was operated manually daily for 4 weeks post leachate collection trench replacement to regulate and monitor the system, making adjustments to pump cycles and valve apertures gradually to avoid high level alarms.

#### August 2021

The system was operational for 31 days in August. No alarm conditions were reported during the month of August. No scheduled or unscheduled system shutdowns or system bypasses occurred. The following details the activities, which were performed during August:

• August 26, 2021 – Routine site visit. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly.

#### September 2021

The system was operational for 30 days in September. No alarm conditions were reported during the month of September. No scheduled or unscheduled system shutdowns or system bypasses occurred. The following details the activities, which were performed during September:

- September 27, 2021 On site with NYSDEC personnel to conduct the five-year review site walk. Routine site visit. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly.
- September 28, 2021 Completed groundwater sampling of the eight overburden monitoring wells as part of the five-year review report.

#### October 2021

The system was operational for 31 days in October. No alarm conditions were reported during the month of October. No scheduled or unscheduled system shutdowns or system bypasses occurred. The following details the activities, which were performed during October:

• October 12, 2021 – Routine site visit. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Collected AP-EWE-01 quarterly discharge sample from the SS-01 location.

#### November 2021

The system was operational for 30 days in November. No alarm conditions were reported during the month of November. No scheduled or unscheduled system shutdowns or system bypasses occurred. The following details the activities, which were performed during November:

• November 29, 2021 – Routine site visit. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Cleaned T3A influent line to restore T1 flowrate. T1 flow rates started being erratic just before arrival to the site. Opened T8 floor to access the influent flow meter for maintenance. Cleaned and lubricated the Doppler transducer. Normal flow readings were observed after cleaning and lubrication.

#### December 2021

The system was operational for 31 days in December. No alarm conditions were reported during the month of December. No scheduled or unscheduled system shutdowns. The following details the activities, which were performed during December:

• December 21, 2021 – Routine site visit. Cleaned and calibrated T3A, T3B, and T6B pH probes, pH returned to normal value. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Removed vegetation from T7 outlet pipe.

#### 4. MODIFICATIONS/IMPROVEMENTS AND RECOMMENDATIONS

#### 4.1 SYSTEM MODIFICATION/IMPROVEMENTS

No system modifications and improvements were performed during the 2021 periodic review report period.

#### 5. PROJECTED OPERATION AND MAINTENACE

#### 5.1 JANUARY – DECEMBER 2022

During the 2022 periodic review report period, Greenstar anticipates performing routine operation and maintenance activities; a general site cleanup; and completion and submittal of the Site Management Plan. Routine activities during the reporting period will include routine cleaning and calibration, pump and other system component replacements, and other activities on an as-needed basis. Emergency response to alarm conditions will be completed as required.

#### 6. SYSTEM MONITORING

#### 6.1 ENVIRONMENTAL SAMPLING

Routine system sampling with field analysis will continue as needed to ensure chromium removal efficiency is maintained. Quarterly discharge samples will be collected from the GCTS to monitor the NYSDEC discharge permit guidelines and will also include parameters from the surface water analysis list.

### **Attachment E.1**

GCTS Monitoring Checklists January – December 2021

| Date:1/7/21 | Project No.: 1047 | Greenstar Personnel: C. McLeod                       | Weather: 30 degrees, Cloudy                     |  |
|-------------|-------------------|------------------------------------------------------|-------------------------------------------------|--|
| READING     |                   | IT                                                   | ITEM                                            |  |
| 597.1       |                   | T1 Water Level                                       |                                                 |  |
| On/Cycling  |                   | Pump P1A R                                           | Lunning Status                                  |  |
|             | On/Cycling        | Pump P1BA                                            | Running Status                                  |  |
| 241         | 9,250             | T2 Pressure (220-235 psi)                            | T2 Level (lbs)                                  |  |
| 5.9         | 616.2             | T3A pH Reading                                       | T3A Water Elevation                             |  |
| 6.7         | 612.2             | T3B pH Reading                                       | T3B Water Level                                 |  |
|             | On/Cycling        | Pump 3B Ope                                          | erational Status                                |  |
|             | 613.0             | T5 Wat                                               | ter Level                                       |  |
|             | On/Cycling        | Pump 5 Oper                                          | rational Status                                 |  |
|             | 616.2             | T6A Wate                                             | er Elevation                                    |  |
| 6.8         | 612.8             | Т6В рН                                               | T6B Water Level                                 |  |
|             | On/Cycling        | Pump 6B Ope                                          | Pump 6B Operational Status                      |  |
|             | 615.8             | T7 Water Level Reading                               |                                                 |  |
| 613.0       | 95.2              | T8 Water Elevation T8 Air Pressure                   |                                                 |  |
|             | Auto              | Pump P8 Ope                                          | Pump P8 Operational Status                      |  |
|             | 76,522,458        | Flow Met                                             | er Reading                                      |  |
|             | 0.33              | Average S                                            | Average System Flow                             |  |
| READING     | Standard          | LOCATION/                                            | PARAMETER                                       |  |
| 0.010       | 0.011 mg/L        | Calcium Settling Pond Effluent (T.                   | 3) Hexavalent Chromium                          |  |
| 0.018       | 0.050 mg/L        | Calcium Settling Pond Effluent (T.                   | 3) Total Chromium                               |  |
| 0.000       | 0.011 mg/L        | Iron Settling Pond Effluent (T6) H                   | exavalent Chromium                              |  |
| 0.001       | 0.050 mg/L        | Iron Settling Pond Effluent (T6) Total Chromium      |                                                 |  |
| NS          | 0.011 mg/L        | Engineered Wetland Effluent (T7) Hexavalent Chromium |                                                 |  |
| NS          | 0.050 mg/L        | Engineered Wetland Effluent (T7) Total Chromium      |                                                 |  |
| NS          | 0.011 mg/L        | Southwest Corner Effluent (SS-1)                     | Hexavalent Chromium                             |  |
| NS          | 0.050 mg/L        | Southwest Corner Effluent (SS-1)                     | Southwest Corner Effluent (SS-1) Total Chromium |  |
|             | pH READING        | SAMPLE                                               | SAMPLE LOCATION                                 |  |
|             | 6.86              | Calcium Settling Pond Effluent (T3)                  |                                                 |  |
|             | 6.82              | Iron Settling Pond Effluent (T6)                     |                                                 |  |
| No          | GCTS Discharge    | Engineered Wetland Effluent (T7)                     |                                                 |  |
| No          | GCTS Discharge    | Southwest Corne                                      | er Effluent (SS-1)                              |  |
|             |                   | •                                                    |                                                 |  |

Notes: Arrived 1/6/21: Replaced all three CO2 solenoid valves and flow controllers for CO2 distribution to T3A, T3B and T6B. 1/7/21: Replaced all three network cameras. Performed field chrome testing on T3B and T6B. No discharge from T7 wetland so no sampling at T7 outlet or SS-01. Rotated valves in T1.Checked mouse bait. Notified Linde/Praxair that a shutoff valve on the T2 outlet manifold was leaking gas. Valve repaired 1/7/21

| Date:2/15/21 | Project No.: 1047 | Greenstar Personnel: C. Mcleod                  | Weather: 20 degrees, heavy snow                   |  |
|--------------|-------------------|-------------------------------------------------|---------------------------------------------------|--|
| READING      |                   | ITEM                                            |                                                   |  |
| 597.1        |                   | T1 Water Level                                  |                                                   |  |
| Oı           | n/Cycling         | Pump P1A l                                      | Running Status                                    |  |
| Oı           | n/Cycling         | Pump P1BA                                       | Running Status                                    |  |
| 242.4        | 7,466             | T2 Pressure (220-235 psi)                       | T2 Level (lbs)                                    |  |
| 5.4          | 616.2             | T3A pH Reading                                  | T3A Water Elevation                               |  |
| 6.9          | 612.6             | T3B pH Reading                                  | T3B Water Level                                   |  |
| Oı           | n/Cycling         | Pump 3B Op                                      | erational Status                                  |  |
|              | 612.3             | T5 Wa                                           | ter Level                                         |  |
| Oı           | n/Cycling         | Pump 5 Ope                                      | erational Status                                  |  |
|              | 616.0             | T6A Wat                                         | er Elevation                                      |  |
| 7.0          | 612.2             | Т6В рН                                          | T6B Water Level                                   |  |
| Oı           | n/Cycling         | Pump 6B Op                                      | erational Status                                  |  |
|              | 615.8             | T7 Water Level Reading                          |                                                   |  |
| 613.3        | 85.8              | T8 Water Elevation                              | T8 Air Pressure (psi)                             |  |
| Auto         |                   | Pump P8 Op                                      | erational Status                                  |  |
| 76           | 5,533,453         | Flow Meter Reading                              |                                                   |  |
|              | 0.0               | Average S                                       | System Flow                                       |  |
| READING      | Standard          | LOCATION                                        | /PARAMETER                                        |  |
| NS – No Flow | 0.011 mg/L        | Calcium Settling Pond Effluent (T               | 3) Hexavalent Chromium                            |  |
| NS – No Flow | 0.050  mg/L       | Calcium Settling Pond Effluent (T               | 3) Total Chromium                                 |  |
| NS – No Flow | 0.011 mg/L        | Iron Settling Pond Effluent (T6) H              | exavalent Chromium                                |  |
| NS – No Flow | 0.050  mg/L       | Iron Settling Pond Effluent (T6) To             | otal Chromium                                     |  |
| NS - Ice     | 0.011 mg/L        | Engineered Wetland Effluent (T7)                | ineered Wetland Effluent (T7) Hexavalent Chromium |  |
| NS - Ice     | 0.050  mg/L       | Engineered Wetland Effluent (T7)                | Total Chromium                                    |  |
| NS - Ice     | 0.011 mg/L        | Southwest Corner Effluent (SS-1)                | Hexavalent Chromium                               |  |
| NS - Ice     | 0.050  mg/L       | Southwest Corner Effluent (SS-1) Total Chromium |                                                   |  |
| рН           | READING           | SAMPLE LOCATION                                 |                                                   |  |
| NS           | – No Flow         | Calcium Settling Pond Effluent (T3)             |                                                   |  |
| NS           | – No Flow         | Iron Settling Pond Effluent (T6)                |                                                   |  |
| 1            | NS - Ice          | Engineered Wetland Effluent (T7)                |                                                   |  |
| 1            | NS - Ice          | Southwest Corner Effluent (SS-1)                |                                                   |  |

Notes: Emergency response to high pH in T3A. Calibrated probe. Error code indicates possible probe failure, or failure due to cold temp. T6A/B Lab shed mouse problem has gotten as bad as T1 was. Will rip out insulation and install spray foam. No sampling. No discharge from system or site. No flow into system. Pulled pressure transducers from PZ-02B and MW-08.

| Date: 3/22/21 | Project No.: 1047 | Greenstar Personnel: C. McLeod                       | Weather: Sunny, 60 Degrees |
|---------------|-------------------|------------------------------------------------------|----------------------------|
| READING       |                   | ITEM                                                 |                            |
| 597.1         |                   | T1 Water Level                                       |                            |
| On/Cycling    |                   | Pump P1A R                                           | unning Status              |
|               | On/Cycling        | Pump P1BA I                                          | Running Status             |
| 243           | 7,206             | T2 Pressure (220-235 psi)                            | T2 Level (lbs)             |
| 5.6           | 616.2             | T3A pH Reading                                       | T3A Water Elevation        |
| 6.8           | 612.6             | T3B pH Reading                                       | T3B Water Level            |
|               | On/Cycling        | Pump 3B Ope                                          | erational Status           |
|               | 612.4             | T5 Wat                                               | er Level                   |
|               | On/Cycling        | Pump 5 Oper                                          | rational Status            |
|               | 616.2             | T6A Wate                                             | r Elevation                |
| 6.8           | 612.6             | Т6В рН                                               | T6B Water Level            |
|               | On/Cycling        | Pump 6B Ope                                          | erational Status           |
|               | 616.0             | T7 Water Level Reading                               |                            |
|               | 84                | T8 Water Elevation                                   | T8 Air Pressure (psi)      |
|               | Auto              | Pump P8 Ope                                          | erational Status           |
|               | 76,543,244        | Flow Met                                             | er Reading                 |
|               | <1                | Average S                                            | ystem Flow                 |
| READING       | Standard          | LOCATION/.                                           | PARAMETER                  |
| 0.019         | 0.011 mg/L        | Calcium Settling Pond Effluent (T3                   | 3) Hexavalent Chromium     |
| ND            | 0.050 mg/L        | Calcium Settling Pond Effluent (T3                   | 3) Total Chromium          |
| ND            | 0.011 mg/L        | Iron Settling Pond Effluent (T6) He                  | exavalent Chromium         |
| 0.011         | 0.050 mg/L        | Iron Settling Pond Effluent (T6) To                  | otal Chromium              |
| No Flow       | 0.011 mg/L        | Engineered Wetland Effluent (T7) Hexavalent Chromium |                            |
| No Flow       | 0.050 mg/L        | Engineered Wetland Effluent (T7) Total Chromium      |                            |
| No Flow       | 0.011 mg/L        | Southwest Corner Effluent (SS-1) Hexavalent Chromium |                            |
| No Flow       | 0.050 mg/L        | Southwest Corner Effluent (SS-1) Total Chromium      |                            |
| p             | H READING         | SAMPLE LOCATION                                      |                            |
|               | 6.63              | Calcium Settling Pond Effluent (T3)                  |                            |
|               | 6.58              | Iron Settling Pond Effluent (T6)                     |                            |
|               | No Flow           | Engineered Wetland Effluent (T7)                     |                            |
|               | No Flow           | Southwest Corner Effluent (SS-1)                     |                            |
|               | '. ' ' E 1 0 H    |                                                      | D 0 10 11 1                |

Notes: Routine site visit. Endress & Hauser on site to fix issues with pH controller. Performed field chrome testing on T3B and T6B. No discharge from T7 wetland so no sampling at T7 outlet or SS-01. Rotated valves in T1. Checked mouse bait. Contacted SCADA engineer for support to reboot remote PCs. Lab shed looks great with new spray foam insulation. Extreme ammonia smell no longer present. Need to order more pH solutions.

| Date: 4/15 – 4/16/21 | Projec     | t No.: 1047 | Greenstar Personnel: C. McLeod, N. Cornine | Weather: 37 cloudy and rain/snow    |  |
|----------------------|------------|-------------|--------------------------------------------|-------------------------------------|--|
| READING              |            | NG          | ITEM                                       |                                     |  |
| 587.2                |            | 2           | T1 Water Level                             |                                     |  |
|                      | On/Cycling |             | Pump P1A R                                 | unning Status                       |  |
|                      | On/Cyc     | ling        | Pump P1BA I                                | Running Status                      |  |
| 239                  |            | 3,890       | T2 Pressure (220-235 psi)                  | T2 Level (lbs)                      |  |
| 5.8                  |            | 616.2       | T3A pH Reading                             | T3A Water Elevation                 |  |
| 6.7                  |            | 612.1       | T3B pH Reading                             | T3B Water Level                     |  |
|                      | On/Cyc     | ling        | Pump 3B Ope                                | erational Status                    |  |
|                      | 612.8      | 3           | T5 Wat                                     | er Level                            |  |
|                      | On/Cyc     | ling        | Pump 5 Oper                                | rational Status                     |  |
|                      | 616.2      | 2           | T6A Wate                                   | r Elevation                         |  |
| 7.0                  |            | 612.7       | Т6В рН                                     | T6B Water Level                     |  |
|                      | On/Cyc     | ling        | Pump 6B Operational Status                 |                                     |  |
|                      | 616.0      | )           | T7 Water Level Reading                     |                                     |  |
| 613.7                |            | 93.0        | T8 Water Elevation                         | T8 Air Pressure (psi)               |  |
|                      | Auto       | )           | Pump P8 Ope                                | erational Status                    |  |
|                      | 76,624,    | 867         | Flow Met                                   | er Reading                          |  |
|                      | 4.0        |             | Average S                                  | ystem Flow                          |  |
| READING              |            | Standard    | LOCATION                                   | PARAMETER                           |  |
| 0.003                |            | 0.011 mg/L  | Calcium Settling Pond Effluent (T3         | 3) Hexavalent Chromium              |  |
| 0.016                |            | 0.050 mg/L  | Calcium Settling Pond Effluent (T3         | 3) Total Chromium                   |  |
| ND                   |            | 0.011 mg/L  | Iron Settling Pond Effluent (T6) Ho        | exavalent Chromium                  |  |
| ND                   |            | 0.050 mg/L  | Iron Settling Pond Effluent (T6) To        | otal Chromium                       |  |
| 0.006                |            | 0.011 mg/L  | Engineered Wetland Effluent (T7)           | Hexavalent Chromium                 |  |
| 0.005                |            | 0.050 mg/L  | Engineered Wetland Effluent (T7)           | Total Chromium                      |  |
| ND                   |            | 0.011 mg/L  | Southwest Corner Effluent (SS-1) l         | Hexavalent Chromium                 |  |
| ND                   |            | 0.050 mg/L  | Southwest Corner Effluent (SS-1)           | Total Chromium                      |  |
| 1                    | pH REAL    | DING        | SAMPLE                                     | LOCATION                            |  |
|                      | 5.62       |             | Calcium Settling                           | Calcium Settling Pond Effluent (T3) |  |
|                      | 6.34       |             | Iron Settling Po                           | and Effluent (T6)                   |  |
|                      | 7.13       |             | Engineered Wetl                            | and Effluent (T7)                   |  |
|                      | 7.72       |             | Southwest Corne                            | er Effluent (SS-1)                  |  |
|                      |            |             |                                            |                                     |  |

Notes: Routine site visit. Performed field chrome testing on T3B, T6B, T7 and SS-01. Rotated valves in T1. Checked mouse bait. Need to order new eye wash station solutions. More mouse bait put out. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Added two 512 GB USB drives to the SCADA PLC for additional storage. Collected AP-EWE-01 quarterly discharge sample from the SS-01 location. Gravity lines from ZVI tanks are not draining properly. Need to pull the lids off the iron tanks and inspect the outlets. Line cleaning scheduled for 5/12/21. ZVI tank inspections will occur 4/25/21.

| Date:5/12/21 Pro                      | ject No.: 1047                        | Greenstar Personnel: N. Cornine,<br>C. Mcleod   | Weather: Sunny 60                                    |  |
|---------------------------------------|---------------------------------------|-------------------------------------------------|------------------------------------------------------|--|
| READING                               |                                       | ITEM                                            |                                                      |  |
| 597.5                                 |                                       | T1 Wat                                          | er Level                                             |  |
| On/C                                  | Cycling                               | Pump P1A R                                      | unning Status                                        |  |
| On/C                                  | Cycling                               | Pump P1BA I                                     | Running Status                                       |  |
| 251.9                                 | 11850                                 | T2 Pressure (220-235 psi)                       | T2 Level (lbs)                                       |  |
| 5.8                                   | 616.2                                 | T3A pH Reading                                  | T3A Water Elevation                                  |  |
| 7.0                                   | 612.7                                 | T3B pH Reading                                  | T3B Water Level                                      |  |
| On/C                                  | Cycling                               | Pump 3B Ope                                     | erational Status                                     |  |
| 61                                    | 12.7                                  | T5 Wat                                          | er Level                                             |  |
| On/C                                  | Cycling                               | Pump 5 Oper                                     | rational Status                                      |  |
| 61                                    | 16.2                                  | T6A Wate                                        | r Elevation                                          |  |
| 6.8                                   | 612.6                                 | Т6В рН                                          | T6B Water Level                                      |  |
| On/Cycling Pump 6B Operational Status |                                       | erational Status                                |                                                      |  |
| 61                                    | 15.9                                  | T7 Water Level Reading                          |                                                      |  |
| 612.2                                 | 97.4 T8 Water Elevation T8 Air Pressu |                                                 | T8 Air Pressure (psi)                                |  |
| A                                     | uto                                   | Pump P8 Ope                                     | rational Status                                      |  |
| 76,7                                  | 10,636                                | Flow Met                                        | er Reading                                           |  |
| (                                     | 0.0                                   | Average S                                       | ystem Flow                                           |  |
| READING                               | Standard                              | LOCATION/A                                      | PARAMETER                                            |  |
| .011                                  | 0.011 mg/L                            | Calcium Settling Pond Effluent (T3              | 3) Hexavalent Chromium                               |  |
| .006                                  | $0.050~\mathrm{mg/L}$                 | Calcium Settling Pond Effluent (T3              | 3) Total Chromium                                    |  |
| .006                                  | 0.011 mg/L                            | Iron Settling Pond Effluent (T6) He             | exavalent Chromium                                   |  |
| .001                                  | $0.050~\mathrm{mg/L}$                 | Iron Settling Pond Effluent (T6) To             | otal Chromium                                        |  |
| ND                                    | 0.011 mg/L                            | Engineered Wetland Effluent (T7)                | Hexavalent Chromium                                  |  |
| ND                                    | $0.050~\mathrm{mg/L}$                 | Engineered Wetland Effluent (T7)                | Total Chromium                                       |  |
| ND                                    | 0.011 mg/L                            | Southwest Corner Effluent (SS-1) I              | Southwest Corner Effluent (SS-1) Hexavalent Chromium |  |
| ND                                    | $0.050~\mathrm{mg/L}$                 | Southwest Corner Effluent (SS-1) Total Chromium |                                                      |  |
| pH RE                                 | EADING                                | SAMPLE LOCATION                                 |                                                      |  |
| 6                                     | .32                                   | Calcium Settling Pond Effluent (T3)             |                                                      |  |
| 6                                     | .41                                   | Iron Settling Pond Effluent (T6)                |                                                      |  |
| 1                                     | ND                                    | Engineered Wetland Effluent (T7)                |                                                      |  |
| 1                                     | ND                                    | Southwest Corner Effluent (SS-1)                |                                                      |  |

Notes: Routine site visit. Performed field chrome testing on T3B and T6B. T7 and SS-01were dry. Rotated valves in T1. Checked mouse bait. Need to order new eye wash station solutions. More mouse bait put out. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Changed auto dialer programing and tested outputs. Spoke to contractor about leachate collection line replacement. Checked the ZVI outlets to ensure they were clear. Installed new eyewash stations in the lab shed, T1 influent shed and T8 valve shed.

| Date:6/29/21 | Project No.: 1047 | Greenstar Personnel: N. Cornine                      | Weather: Sunny 93                                    |  |
|--------------|-------------------|------------------------------------------------------|------------------------------------------------------|--|
| READING      |                   | IT                                                   | ITEM                                                 |  |
| 596.8        |                   | T1 War                                               | T1 Water Level                                       |  |
| On/Cycling   |                   | Pump P1A R                                           | Running Status                                       |  |
|              | On/Cycling        | Pump P1BA                                            | Running Status                                       |  |
| 252.3        | 11549             | T2 Pressure (220-235 psi)                            | T2 Level (lbs)                                       |  |
| 5.9          | 616.1             | T3A pH Reading                                       | T3A Water Elevation                                  |  |
| 6.9          | 612.2             | T3B pH Reading                                       | T3B Water Level                                      |  |
|              | On/Cycling        | Pump 3B Ope                                          | erational Status                                     |  |
|              | 612.1             | T5 War                                               | ter Level                                            |  |
|              | On/Cycling        | Pump 5 Ope                                           | rational Status                                      |  |
|              | 616.1             | T6A Wate                                             | er Elevation                                         |  |
| 6.9          | 611.5             | Т6В рН                                               | T6B Water Level                                      |  |
|              | On/Cycling        | Pump 6B Ope                                          | Pump 6B Operational Status                           |  |
|              | 615.5             | T7 Water L                                           | T7 Water Level Reading                               |  |
| 612.4        | 98.9              | T8 Water Elevation T8 Air Pressure                   |                                                      |  |
|              | Auto              | Pump P8 Ope                                          | erational Status                                     |  |
|              | 76,714,065        | Flow Met                                             | er Reading                                           |  |
|              | 0.0               | Average S                                            | Average System Flow                                  |  |
| READING      | Standard          | LOCATION/                                            | PARAMETER                                            |  |
| .006         | 0.011 mg/L        | Calcium Settling Pond Effluent (T.                   | 3) Hexavalent Chromium                               |  |
| .011         | 0.050 mg/L        | Calcium Settling Pond Effluent (T.                   | 3) Total Chromium                                    |  |
| .002         | 0.011 mg/L        | Iron Settling Pond Effluent (T6) H                   | exavalent Chromium                                   |  |
| .005         | 0.050 mg/L        | Iron Settling Pond Effluent (T6) To                  | Iron Settling Pond Effluent (T6) Total Chromium      |  |
| NS           | 0.011 mg/L        | Engineered Wetland Effluent (T7)                     | Engineered Wetland Effluent (T7) Hexavalent Chromium |  |
| NS           | 0.050 mg/L        | Engineered Wetland Effluent (T7) Total Chromium      |                                                      |  |
| NS           | 0.011 mg/L        | Southwest Corner Effluent (SS-1) Hexavalent Chromium |                                                      |  |
| NS           | 0.050 mg/L        | Southwest Corner Effluent (SS-1)                     | Southwest Corner Effluent (SS-1) Total Chromium      |  |
|              | pH READING        | SAMPLE A                                             | SAMPLE LOCATION                                      |  |
|              | 6.12              | Calcium Settling                                     | Calcium Settling Pond Effluent (T3)                  |  |
|              | 5.91              | Iron Settling Po                                     | Iron Settling Pond Effluent (T6)                     |  |
|              | NS                | Engineered Wet                                       | Engineered Wetland Effluent (T7)                     |  |
|              | NS                | Southwest Corn-                                      | er Effluent (SS-1)                                   |  |
|              |                   |                                                      |                                                      |  |

Notes: Routine site visit. Performed field chrome testing on T3B and T6B. T7 and SS-01were dry. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Checked southwest corner for leakage.

| Date: 7/12 – Pro<br>7/14/21 | ject No.: 1047                        | Greenstar Personnel: N. Cornine/C. Mcleod | Weather: Sunny 85                               |  |
|-----------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------------|--|
| READING                     |                                       | ITEM                                      |                                                 |  |
| 598.4                       |                                       | T1 Wat                                    | er Level                                        |  |
|                             | Sycling                               | Pump P1A R                                | unning Status                                   |  |
| On/C                        | ycling                                | Pump P1BA I                               | Running Status                                  |  |
| 236                         | 9254                                  | T2 Pressure (220-235 psi)                 | T2 Level (lbs)                                  |  |
| 6.7                         | 616.2                                 | T3A pH Reading                            | T3A Water Elevation                             |  |
| 6.4                         | 6135                                  | T3B pH Reading                            | T3B Water Level                                 |  |
| On/C                        | cycling                               | Pump 3B Ope                               | erational Status                                |  |
| 61                          | 3.7                                   | T5 Wat                                    | er Level                                        |  |
| On/C                        | cycling                               | Pump 5 Oper                               | rational Status                                 |  |
| 61                          | 6.5                                   | T6A Wate                                  | r Elevation                                     |  |
| 6.4                         | 612.7                                 | Т6В рН                                    | T6B Water Level                                 |  |
| On/C                        | On/Cycling Pump 6B Operational Status |                                           | erational Status                                |  |
| 61                          | 5.9                                   | T7 Water Level Reading                    |                                                 |  |
| 615.5                       | 98.9                                  | T8 Water Elevation                        | T8 Air Pressure (psi)                           |  |
| A                           | uto                                   | Pump P8 Ope                               | erational Status                                |  |
| 76,70                       | 50,027                                | Flow Met                                  | er Reading                                      |  |
| 17:                         | gpm                                   | Average S                                 | Average System Flow                             |  |
| READING                     | Standard                              | LOCATION/.                                | PARAMETER                                       |  |
| .002                        | 0.011 mg/L                            | Calcium Settling Pond Effluent (T3        | 3) Hexavalent Chromium                          |  |
| .041                        | $0.050~\mathrm{mg/L}$                 | Calcium Settling Pond Effluent (T3        | 3) Total Chromium                               |  |
| .002                        | 0.011 mg/L                            | Iron Settling Pond Effluent (T6) Ho       | exavalent Chromium                              |  |
| ND                          | $0.050~\mathrm{mg/L}$                 | Iron Settling Pond Effluent (T6) To       | otal Chromium                                   |  |
| ND                          | 0.011  mg/L                           | Engineered Wetland Effluent (T7)          | Hexavalent Chromium                             |  |
| ND                          | $0.050~\mathrm{mg/L}$                 | Engineered Wetland Effluent (T7)          | Total Chromium                                  |  |
| ND                          | 0.011  mg/L                           | Southwest Corner Effluent (SS-1) l        | Hexavalent Chromium                             |  |
| .009                        | $0.050~\mathrm{mg/L}$                 | Southwest Corner Effluent (SS-1)          | Southwest Corner Effluent (SS-1) Total Chromium |  |
| pH RE                       | EADING                                | SAMPLE I                                  | LOCATION                                        |  |
| 6                           | .43                                   | Calcium Settling                          | Calcium Settling Pond Effluent (T3)             |  |
| 6                           | .60                                   | Iron Settling Po                          | Iron Settling Pond Effluent (T6)                |  |
| 6                           | .86                                   | Engineered Wetl                           | and Effluent (T7)                               |  |
| 7.58                        |                                       | Southwest Corner Effluent (SS-1)          |                                                 |  |

Notes: Work was done on leachate collection system in the Southwest corner from Friday-Sunday. Due to issues with the treatment system after the work done in the SW corner, pumps P-1A, P-1B, and P-5 were replaced. Pressure transmitters were replaced in T5 and T6B. pH probes in T3A and T6B were calibrated. T-6B was pressured washed and vacuumed out and a pipe camera was used to check for breaks in the pipe between T-6B and the iron sedimentation tanks. The line from the iron sedimentation tank was jetted clean and flow rate was improved. 7/20/2021: responded to alarm of P6 not starting, changed pump and cleaned check valve, calibrated T3 pH probe, performed chrome tests on T3, T6, T7, and SS-01, took compliance samples from SW swale.

| Date:8/26/21 | Project No.: 1047 | Greenstar Personnel: N. Cornine                      | Weather: Sunny 88                   |  |
|--------------|-------------------|------------------------------------------------------|-------------------------------------|--|
| READING      |                   | ITEM                                                 |                                     |  |
| 597.3        |                   | T1 War                                               | T1 Water Level                      |  |
| On/Cycling   |                   | Pump P1A R                                           | Running Status                      |  |
|              | On/Cycling        | Pump P1BA                                            | Running Status                      |  |
| 240.5        | 11095             | T2 Pressure (220-235 psi)                            | T2 Level (lbs)                      |  |
| 6.6          | 616.3             | T3A pH Reading                                       | T3A Water Elevation                 |  |
| 6.5          | 612.9             | T3B pH Reading                                       | T3B Water Level                     |  |
|              | On/Cycling        | Pump 3B Ope                                          | erational Status                    |  |
|              | 612.2             | T5 War                                               | ter Level                           |  |
|              | On/Cycling        | Pump 5 Ope                                           | rational Status                     |  |
|              | 616.3             | T6A Wate                                             | er Elevation                        |  |
| 6.5          | 612.7             | Т6В рН                                               | T6B Water Level                     |  |
|              | On/Cycling        | Pump 6B Ope                                          | Pump 6B Operational Status          |  |
|              | 615.9             | T7 Water L                                           | T7 Water Level Reading              |  |
| 612.1        | 93.3              | T8 Water Elevation T8 Air Pressure                   |                                     |  |
|              | Auto              | Pump P8 Ope                                          | erational Status                    |  |
|              | 77,849,605        | Flow Met                                             | er Reading                          |  |
|              | 14 gpm            | Average S                                            | Average System Flow                 |  |
| READING      | Standard          | LOCATION/                                            | PARAMETER                           |  |
| .011         | 0.011 mg/L        | Calcium Settling Pond Effluent (T.                   | 3) Hexavalent Chromium              |  |
| .008         | 0.050 mg/L        | Calcium Settling Pond Effluent (T.                   | 3) Total Chromium                   |  |
| ND           | 0.011 mg/L        | Iron Settling Pond Effluent (T6) H                   | exavalent Chromium                  |  |
| ND           | 0.050 mg/L        | Iron Settling Pond Effluent (T6) Total Chromium      |                                     |  |
| ND           | 0.011 mg/L        | Engineered Wetland Effluent (T7) Hexavalent Chromium |                                     |  |
| ND           | 0.050 mg/L        | Engineered Wetland Effluent (T7) Total Chromium      |                                     |  |
| .009         | 0.011 mg/L        | Southwest Corner Effluent (SS-1) Hexavalent Chromium |                                     |  |
| .010         | 0.050 mg/L        | Southwest Corner Effluent (SS-1) Total Chromium      |                                     |  |
|              | pH READING        | SAMPLE                                               | SAMPLE LOCATION                     |  |
|              | 6.91              | Calcium Settling                                     | Calcium Settling Pond Effluent (T3) |  |
|              | 7.05              | Iron Settling Pond Effluent (T6)                     |                                     |  |
|              | 7.03              | Engineered Wetland Effluent (T7)                     |                                     |  |
|              | 7.65              | Southwest Corn                                       | er Effluent (SS-1)                  |  |
|              |                   | •                                                    |                                     |  |

Notes: Routine site visit. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly.

| Date:9/27/21 | Proje  | ct No.: 1047          | Greenstar Personnel: N. Cornine/B. Quinn | Weather: Sunny 65                               |  |
|--------------|--------|-----------------------|------------------------------------------|-------------------------------------------------|--|
| READING      |        | ING                   |                                          | ITEM                                            |  |
| 597.6        |        | .6                    | T1 Wa                                    | ater Level                                      |  |
| On/Cycling   |        | cling                 | Pump P1A                                 | Running Status                                  |  |
|              | On/Cy  | cling                 | Pump P1BA                                | Running Status                                  |  |
| 242.9        |        | 7749                  | T2 Pressure (220-235 psi)                | T2 Level (lbs)                                  |  |
| 6.4          |        | 616.3                 | T3A pH Reading                           | T3A Water Elevation                             |  |
| 6.3          |        | 612.5                 | T3B pH Reading                           | T3B Water Level                                 |  |
|              | On/Cy  | cling                 | Pump 3B Op                               | perational Status                               |  |
|              | 612    | .7                    | T5 Wa                                    | ater Level                                      |  |
|              | On/Cy  | cling                 | Pump 5 Op                                | erational Status                                |  |
|              | 616    | .3                    | T6A Wa                                   | ter Elevation                                   |  |
| 6.5          |        | 612.0                 | Т6В рН                                   | T6B Water Level                                 |  |
|              | On/Cy  | cling                 | Pump 6B Op                               | Pump 6B Operational Status                      |  |
|              | 615    | .9                    | T7 Water Level Reading                   |                                                 |  |
| 612.3        |        | 92.8                  | T8 Water Elevation                       | T8 Air Pressure (psi)                           |  |
|              | Aut    | o                     | Pump P8 Op                               | Pump P8 Operational Status                      |  |
|              | 78,365 | ,521                  | Flow Mo                                  | eter Reading                                    |  |
|              | 9.0    | )                     | Average                                  | Average System Flow                             |  |
| READING      |        | Standard              | LOCATION                                 | I/PARAMETER                                     |  |
| .006         |        | 0.011 mg/L            | Calcium Settling Pond Effluent (7        | Γ3) Hexavalent Chromium                         |  |
| .052         |        | $0.050~\mathrm{mg/L}$ | Calcium Settling Pond Effluent (7        | Γ3) Total Chromium                              |  |
| ND           |        | 0.011 mg/L            | Iron Settling Pond Effluent (T6) I       | Hexavalent Chromium                             |  |
| ND           |        | $0.050~\mathrm{mg/L}$ | Iron Settling Pond Effluent (T6)         | Гotal Chromium                                  |  |
| .012         |        | 0.011 mg/L            | Engineered Wetland Effluent (T7          | ) Hexavalent Chromium                           |  |
| .003         |        | $0.050~\mathrm{mg/L}$ | Engineered Wetland Effluent (T7          | ) Total Chromium                                |  |
| .005         |        | 0.011 mg/L            | Southwest Corner Effluent (SS-1)         | Hexavalent Chromium                             |  |
| .012         |        | 0.050  mg/L           | Southwest Corner Effluent (SS-1)         | Southwest Corner Effluent (SS-1) Total Chromium |  |
| I            | oH REA | DING                  | SAMPLE                                   | SAMPLE LOCATION                                 |  |
|              | 6.5    | 1                     | Calcium Settling                         | Calcium Settling Pond Effluent (T3)             |  |
|              | 6.8    | 8                     | Iron Settling F                          | Iron Settling Pond Effluent (T6)                |  |
|              | 6.8    | 0                     | Engineered We                            | Engineered Wetland Effluent (T7)                |  |
|              | 7.5    | 3                     | Southwest Corn                           | Southwest Corner Effluent (SS-1)                |  |

Notes: On site for DEC 5 year review. Routine site visit. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly.

| READING                    | Date: 10/12/21 Project No.: 1047 Greenstar Personnel: N. Cornine Weather: Sunny 80 |                        |
|----------------------------|------------------------------------------------------------------------------------|------------------------|
|                            | ITEM                                                                               |                        |
| 975.5                      | T1 Water Level                                                                     |                        |
| On/Cycling                 | Pump P1A R                                                                         | unning Status          |
| On/Cycling                 | Pump P1BA I                                                                        | Running Status         |
| 241.1 11904                | T2 Pressure (220-235 psi)                                                          | T2 Level (lbs)         |
| 6.4 616.3                  | T3A pH Reading                                                                     | T3A Water Elevation    |
| 6.4 612.4                  | T3B pH Reading                                                                     | T3B Water Level        |
| On/Cycling                 | Pump 3B Ope                                                                        | erational Status       |
| 612.6                      | T5 Wat                                                                             | er Level               |
| On/Cycling                 | Pump 5 Oper                                                                        | rational Status        |
| 616.1                      | T6A Wate                                                                           | r Elevation            |
| 6.5 612.1                  | Т6В рН                                                                             | T6B Water Level        |
| On/Cycling                 | Pump 6B Ope                                                                        | erational Status       |
| 615.9                      | T7 Water Level Reading                                                             |                        |
| 612.8 93.7                 | 93.7 T8 Water Elevation T8 Air Pressure (p                                         |                        |
| Auto                       | Pump P8 Ope                                                                        | rational Status        |
| 78,569,161                 | Flow Met                                                                           | er Reading             |
| 9.0                        | Average S                                                                          | ystem Flow             |
| READING Standard           | LOCATION/A                                                                         | PARAMETER              |
| .006 0.011 mg/L            | Calcium Settling Pond Effluent (T3                                                 | 3) Hexavalent Chromium |
| .054 0.050 mg/L            | Calcium Settling Pond Effluent (T3                                                 | 3) Total Chromium      |
| ND 0.011 mg/L              | Iron Settling Pond Effluent (T6) He                                                | exavalent Chromium     |
| ND 0.050 mg/L              | Iron Settling Pond Effluent (T6) To                                                | otal Chromium          |
| .011 0.011 mg/L            | Engineered Wetland Effluent (T7) Hexavalent Chromium                               |                        |
| .005 0.050 mg/L            | Engineered Wetland Effluent (T7) Total Chromium                                    |                        |
| .004 0.011 mg/L            | Southwest Corner Effluent (SS-1) Hexavalent Chromium                               |                        |
|                            | Southwest Corner Effluent (SS-1) Total Chromium                                    |                        |
| .012 0.050 mg/L            | SAMPLE LOCATION                                                                    |                        |
| .012 0.050 mg/L pH READING | SAMPLE I                                                                           | LOCATION               |
|                            |                                                                                    | Pond Effluent (T3)     |
| pH READING                 | Calcium Settling l                                                                 |                        |
| pH READING 6.56            | Calcium Settling I                                                                 | Pond Effluent (T3)     |

Notes: Routine site visit. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Took quarterly AP-EWE-01 sample.

| Date:11/29/21 | Project No.: 1047                     | Greenstar Personnel: C. McLeod                          | Weather: 30, recent snow |
|---------------|---------------------------------------|---------------------------------------------------------|--------------------------|
|               | READING                               | ITEM                                                    |                          |
| 597.5         |                                       | T1 Water Level                                          |                          |
|               | On/Cycling                            | Pump P1A R                                              | unning Status            |
|               | On/Cycling                            | Pump P1BA F                                             | Running Status           |
| 254           | 8,950                                 | T2 Pressure (220-235 psi)                               | T2 Level (lbs)           |
| 6.5           | 613.3                                 | T3A pH Reading                                          | T3A Water Elevation      |
| 6.5           | 612.9                                 | T3B pH Reading                                          | T3B Water Level          |
|               | On/Cycling                            | Pump 3B Ope                                             | rational Status          |
|               | 612.2                                 | T5 Wat                                                  | er Level                 |
|               | On/Cycling                            | Pump 5 Oper                                             | rational Status          |
|               | 616.2                                 | T6A Wate                                                | r Elevation              |
| 6.6           | 612.9                                 | Т6В рН                                                  | T6B Water Level          |
|               | On/Cycling                            | Pump 6B Ope                                             | rational Status          |
|               | 616.0                                 | T7 Water Level Reading                                  |                          |
| 614.2         | 95.8                                  | T8 Water Elevation                                      | T8 Air Pressure (psi)    |
| Winter M      | ode (2 mins on/58 off)                | Pump P8 Ope                                             | rational Status          |
|               | 79,344,238                            | Flow Meter                                              | er Reading               |
|               | 12.0                                  | Average S                                               | ystem Flow               |
| READING       | Standard                              | LOCATION/A                                              | PARAMETER                |
| .007          | 0.011 mg/L                            | Calcium Settling Pond Effluent (T3) Hexavalent Chromium |                          |
| .045          | 0.050 mg/L                            | Calcium Settling Pond Effluent (T3) Total Chromium      |                          |
| ND            | 0.011 mg/L                            | Iron Settling Pond Effluent (T6) Hexavalent Chromium    |                          |
| ND            | 0.050 mg/L                            | Iron Settling Pond Effluent (T6) Total Chromium         |                          |
| .010          | 0.011 mg/L                            | Engineered Wetland Effluent (T7) Hexavalent Chromium    |                          |
| .001          | 0.050 mg/L                            | Engineered Wetland Effluent (T7) Total Chromium         |                          |
| .003          | 0.011 mg/L                            | Southwest Corner Effluent (SS-1) Hexavalent Chromium    |                          |
| .009          | 0.050 mg/L                            | Southwest Corner Effluent (SS-1) Total Chromium         |                          |
| P             | H READING                             | SAMPLE I                                                | OCATION                  |
|               | 6.53                                  | Calcium Settling Pond Effluent (T3)                     |                          |
|               | 6.72                                  | Iron Settling Pond Effluent (T6)                        |                          |
|               | 6.81                                  | Engineered Wetland Effluent (T7)                        |                          |
|               | 7.45                                  | Southwest Corne                                         | er Effluent (SS-1)       |
|               | · · · · · · · · · · · · · · · · · · · |                                                         |                          |

Notes Routine site visit. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Cleaned T3A influent line to restore T1 flowrate. T1 flow rates started being erratic just before arrival to the site. Opened T8 floor to access the influent flow meter for maintenance. Cleaned and lubricated the Doppler transducer. Normal flow readings were observed after cleaning and lubrication.

| Date:12/14/21 | Project No.: 1047 | Greenstar Personnel: C. McLeod                       | Weather: 45, sunny                              |  |
|---------------|-------------------|------------------------------------------------------|-------------------------------------------------|--|
| READING       |                   | ITEM                                                 |                                                 |  |
| 597.7         |                   | T1 Water Level                                       |                                                 |  |
|               | On/Cycling        | Pump P1A R                                           | unning Status                                   |  |
|               | Off               | Pump P1BA I                                          | Running Status                                  |  |
| 250           | 1,977             | T2 Pressure (220-235 psi)                            | T2 Level (lbs)                                  |  |
| 6.3           | 616.2             | T3A pH Reading                                       | T3A Water Elevation                             |  |
| 6.4           | 612.0             | T3B pH Reading                                       | T3B Water Level                                 |  |
|               | On/Cycling        | Pump 3B Ope                                          | erational Status                                |  |
|               | 612.6             | T5 Wat                                               | er Level                                        |  |
|               | On/Cycling        | Pump 5 Oper                                          | rational Status                                 |  |
|               | 616.2             | T6A Wate                                             | r Elevation                                     |  |
| 6.6           | 612.8             | Т6В рН                                               | T6B Water Level                                 |  |
|               | On/Cycling        | Pump 6B Ope                                          | erational Status                                |  |
|               | 616.0             | T7 Water Level Reading                               |                                                 |  |
| 614.7         | 87.6              | T8 Water Elevation T8 Air Pressure (psi              |                                                 |  |
|               | Auto              | Pump P8 Ope                                          | erational Status                                |  |
|               | 79,628,869        | Flow Met                                             | er Reading                                      |  |
|               | 14.0              | Average S                                            | ystem Flow                                      |  |
| READING       | Standard          | LOCATION/.                                           | PARAMETER                                       |  |
| .026          | 0.011 mg/L        | Calcium Settling Pond Effluent (T3                   | 3) Hexavalent Chromium                          |  |
| .052          | 0.050 mg/L        | Calcium Settling Pond Effluent (T3                   | 3) Total Chromium                               |  |
| ND            | 0.011 mg/L        | Iron Settling Pond Effluent (T6) He                  | exavalent Chromium                              |  |
| ND            | 0.050 mg/L        | Iron Settling Pond Effluent (T6) To                  | otal Chromium                                   |  |
| .003          | 0.011 mg/L        | Engineered Wetland Effluent (T7) Hexavalent Chromium |                                                 |  |
| .006          | 0.050 mg/L        | Engineered Wetland Effluent (T7)                     | Engineered Wetland Effluent (T7) Total Chromium |  |
| .005          | 0.011 mg/L        | Southwest Corner Effluent (SS-1) Hexavalent Chromium |                                                 |  |
| .010          | 0.050 mg/L        | Southwest Corner Effluent (SS-1) Total Chromium      |                                                 |  |
|               | OH READING        | SAMPLE I                                             | LOCATION                                        |  |
|               | 6.11              | Calcium Settling Pond Effluent (T3)                  |                                                 |  |
|               | 6.25              | Iron Settling Pond Effluent (T6)                     |                                                 |  |
|               | 6.45              | Engineered Wetland Effluent (T7)                     |                                                 |  |
|               | 7.25              | Southwest Corner Effluent (SS-1)                     |                                                 |  |
|               |                   | " II 014 Cl 1 11 1                                   |                                                 |  |

Notes: Emergency site visit. pH meter was reading a pH of 14. Cleaned all three pH probes. pH returned to normal. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly. Cleaned cross over lines in T3. Removed vegetation from T7 outlet pipe. Generator inspection done by Penn Power. Block heater was shorted out and was replaced. P1B would not show that it was running. Contacted SCADA engineer to assess.

| SP7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On/Cycling         Pump P1A Running Status           241.6         10,098         T2 Pressure (220-235 psi)         T2 Level (lbs)           6.4         616.2         T3A pH Reading         T3A Water Elevation           6.4         612.0         T3B pH Reading         T3B Water Level           On/Cycling         Pump 3B Operational Status           612.6         T5 Water Level           On/Cycling         Pump 5 Operational Status           616.1         T6A Water Elevation           6.5         612.7         T6B pH         T6B Water Level           On/Cycling         Pump 6B Operational Status           615.9         T7 Water Level Reading           614.2         86.6         T8 Water Elevation         T8 Air Pressure (psi)           Auto         Pump P8 Operational Status           79,781,268         Flow Meter Reading           17.0         Average System Flow           READING         Standard         LOCATION/PARAMETER           .022         0.011 mg/L         Calcium Settling Pond Effluent (T3) Hexavalent Chromium           ND         0.050 mg/L         Iron Settling Pond Effluent (T6) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7) Hexavalent Chromium                                                        |
| Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 241.6         10,098         T2 Pressure (220-235 psi)         T2 Level (lbs)           6.4         616.2         T3A pH Reading         T3A Water Elevation           6.4         612.0         T3B pH Reading         T3B Water Level           On/Cycling         Pump 3B Operational Status           612.6         T5 Water Level           On/Cycling         Pump 5 Operational Status           616.1         T6A Water Elevation           6.5         612.7         T6B pH         T6B Water Level           On/Cycling         Pump 6B Operational Status           615.9         T7 Water Level Reading           614.2         86.6         T8 Water Elevation         T8 Air Pressure (psi)           Auto         Pump P8 Operational Status           79,781,268         Flow Meter Reading           17.0         Average System Flow           READING         Standard         LOCATION/PARAMETER           .022         0.011 mg/L         Calcium Settling Pond Effluent (T3) Hexavalent Chromium           ND         0.050 mg/L         Iron Settling Pond Effluent (T3) Total Chromium           ND         0.050 mg/L         Iron Settling Pond Effluent (T6) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7)                                         |
| 6.4         616.2         T3A pH Reading         T3A Water Elevation           6.4         612.0         T3B pH Reading         T3B Water Level           On/Cycling         Pump 3B Operational Status           612.6         T5 Water Level           On/Cycling         Pump 5 Operational Status           616.1         T6A Water Elevation           6.5         612.7         T6B pH         T6B Water Level           On/Cycling         Pump 6B Operational Status           615.9         T7 Water Level Reading           614.2         86.6         T8 Water Elevation         T8 Air Pressure (psi)           Auto         Pump P8 Operational Status           79,781,268         Flow Meter Reading           17.0         Average System Flow           READING         Standard         LOCATION/PARAMETER           .022         0.011 mg/L         Calcium Settling Pond Effluent (T3) Hexavalent Chromium           ND         0.01 mg/L         Iron Settling Pond Effluent (T6) Hexavalent Chromium           ND         0.050 mg/L         Iron Settling Pond Effluent (T6) Total Chromium           ND         0.011 mg/L         Engineered Wetland Effluent (T7) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluen                                           |
| T3B pH Reading   T3B Water Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| On/Cycling         Pump 3B Operational Status           612.6         T5 Water Level           On/Cycling         Pump 5 Operational Status           616.1         T6A Water Elevation           6.5         612.7         T6B pH         T6B Water Level           On/Cycling         Pump 6B Operational Status           615.9         T7 Water Level Reading           614.2         86.6         T8 Water Elevation         T8 Air Pressure (psi)           Auto         Pump P8 Operational Status           79,781,268         Flow Meter Reading           17.0         Average System Flow           READING         Standard         LOCATION/PARAMETER           .022         0.011 mg/L         Calcium Settling Pond Effluent (T3) Hexavalent Chromium           .043         0.050 mg/L         Iron Settling Pond Effluent (T6) Hexavalent Chromium           ND         0.011 mg/L         Iron Settling Pond Effluent (T6) Total Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7) Total Chromium           .009         0.011 mg/L         Southwest Corner Effluent (SS-1) Hexavalent Chromium           .038         0.050 mg/L         Southwest Corner Effluent (SS-1) T |
| T5 Water Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| On/Cycling         Pump 5 Operational Status           616.1         T6A Water Elevation           6.5         612.7         T6B pH         T6B Water Level           On/Cycling         Pump 6B Operational Status           615.9         T7 Water Level Reading           614.2         86.6         T8 Water Elevation         T8 Air Pressure (psi)           Auto         Pump P8 Operational Status           79,781,268         Flow Meter Reading           17.0         Average System Flow           READING         Standard         LOCATION/PARAMETER           .022         0.011 mg/L         Calcium Settling Pond Effluent (T3) Hexavalent Chromium           .043         0.050 mg/L         Calcium Settling Pond Effluent (T3) Total Chromium           ND         0.011 mg/L         Iron Settling Pond Effluent (T6) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7) Total Chromium           .009         0.011 mg/L         Southwest Corner Effluent (SS-1) Hexavalent Chromium           .038         0.050 mg/L         Southwest Corner Effluent (SS-1) Total Chromium                                                                                |
| 616.1         T6A Water Elevation           6.5         612.7         T6B pH         T6B Water Level           On/Cycling         Pump 6B Operational Status           615.9         T7 Water Level Reading           614.2         86.6         T8 Water Elevation         T8 Air Pressure (psi)           Auto         Pump P8 Operational Status           79,781,268         Flow Meter Reading           17.0         Average System Flow           READING         Standard         LOCATION/PARAMETER           .022         0.011 mg/L         Calcium Settling Pond Effluent (T3) Hexavalent Chromium           ND         0.050 mg/L         Iron Settling Pond Effluent (T6) Hexavalent Chromium           ND         0.050 mg/L         Iron Settling Pond Effluent (T6) Total Chromium           ND         0.011 mg/L         Engineered Wetland Effluent (T7) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7) Total Chromium           ND         0.050 mg/L         Southwest Corner Effluent (SS-1) Hexavalent Chromium           .009         0.011 mg/L         Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                              |
| 6.5         612.7         T6B pH         T6B Water Level           On/Cycling         Pump 6B Operational Status           615.9         T7 Water Level Reading           614.2         86.6         T8 Water Elevation         T8 Air Pressure (psi)           Auto         Pump P8 Operational Status           79,781,268         Flow Meter Reading           17.0         Average System Flow           READING         Standard         LOCATION/PARAMETER           .022         0.011 mg/L         Calcium Settling Pond Effluent (T3) Hexavalent Chromium           ND         0.011 mg/L         Iron Settling Pond Effluent (T6) Hexavalent Chromium           ND         0.050 mg/L         Iron Settling Pond Effluent (T6) Total Chromium           ND         0.011 mg/L         Engineered Wetland Effluent (T7) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (SS-1) Hexavalent Chromium           .009         0.011 mg/L         Southwest Corner Effluent (SS-1) Hexavalent Chromium           .038         0.050 mg/L         Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                 |
| On/Cycling         Pump 6B Operational Status           615.9         T7 Water Level Reading           614.2         86.6         T8 Water Elevation         T8 Air Pressure (psi)           Auto         Pump P8 Operational Status           79,781,268         Flow Meter Reading           17.0         Average System Flow           READING         Standard         LOCATION/PARAMETER           .022         0.011 mg/L         Calcium Settling Pond Effluent (T3) Hexavalent Chromium           .043         0.050 mg/L         Calcium Settling Pond Effluent (T6) Hexavalent Chromium           ND         0.011 mg/L         Iron Settling Pond Effluent (T6) Total Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7) Total Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (SS-1) Hexavalent Chromium           .009         0.011 mg/L         Southwest Corner Effluent (SS-1) Hexavalent Chromium           .038         0.050 mg/L         Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                       |
| 615.9         T7 Water Level Reading           614.2         86.6         T8 Water Elevation         T8 Air Pressure (psi)           Auto         Pump P8 Operational Status           79,781,268         Flow Meter Reading           17.0         Average System Flow           READING         Standard           .022         0.011 mg/L         Calcium Settling Pond Effluent (T3) Hexavalent Chromium           .043         0.050 mg/L         Calcium Settling Pond Effluent (T3) Total Chromium           ND         0.011 mg/L         Iron Settling Pond Effluent (T6) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7) Hexavalent Chromium           ND         0.050 mg/L         Engineered Wetland Effluent (T7) Total Chromium           .009         0.011 mg/L         Southwest Corner Effluent (SS-1) Hexavalent Chromium           .038         0.050 mg/L         Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                         |
| Auto   Pump P8 Operational Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Auto Pump P8 Operational Status  79,781,268 Flow Meter Reading  17.0 Average System Flow  READING Standard LOCATION/PARAMETER  .022 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium  .043 0.050 mg/L Calcium Settling Pond Effluent (T3) Total Chromium  ND 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium  ND 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium  ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium  ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium  ND 0.050 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium  .009 0.011 mg/L Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| T9,781,268  To Standard  To Calcium Settling Pond Effluent (T3) Hexavalent Chromium  ND 0.050 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium  ND 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium  ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium  ND 0.050 mg/L Southwest Corner Effluent (T7) Total Chromium  ND 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium  Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Average System Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| READING     Standard     LOCATION/PARAMETER       .022     0.011 mg/L     Calcium Settling Pond Effluent (T3) Hexavalent Chromium       .043     0.050 mg/L     Calcium Settling Pond Effluent (T3) Total Chromium       ND     0.011 mg/L     Iron Settling Pond Effluent (T6) Hexavalent Chromium       ND     0.050 mg/L     Iron Settling Pond Effluent (T6) Total Chromium       ND     0.011 mg/L     Engineered Wetland Effluent (T7) Hexavalent Chromium       ND     0.050 mg/L     Engineered Wetland Effluent (SS-1) Hexavalent Chromium       .009     0.011 mg/L     Southwest Corner Effluent (SS-1) Hexavalent Chromium       .038     0.050 mg/L     Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .022 0.011 mg/L Calcium Settling Pond Effluent (T3) Hexavalent Chromium .043 0.050 mg/L Calcium Settling Pond Effluent (T3) Total Chromium ND 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium ND 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium .009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium .038 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| .043 0.050 mg/L Calcium Settling Pond Effluent (T3) Total Chromium  ND 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium  ND 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium  ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium  ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium  .009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium  .038 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND 0.011 mg/L Iron Settling Pond Effluent (T6) Hexavalent Chromium  ND 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium  ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium  ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium  .009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium  .038 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ND 0.050 mg/L Iron Settling Pond Effluent (T6) Total Chromium  ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium  ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium  .009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium  .038 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND 0.011 mg/L Engineered Wetland Effluent (T7) Hexavalent Chromium  ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium  .009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium  .038 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND 0.050 mg/L Engineered Wetland Effluent (T7) Total Chromium  .009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium  .038 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .009 0.011 mg/L Southwest Corner Effluent (SS-1) Hexavalent Chromium .038 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| .038 0.050 mg/L Southwest Corner Effluent (SS-1) Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| pH READING SAMPLE LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.72 Calcium Settling Pond Effluent (T3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.97 Iron Settling Pond Effluent (T6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.18 Engineered Wetland Effluent (T7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Notes: Routine site visit. Cleaned and calibrated T3A, T3B, and T6B pH probes, pH returned to normal value. Performed field chrome testing on T3, T6, T7, and SW Corner. Rotated valves in T1. Checked mouse bait. Checked auto drain on air compressor. Looked at pump cycles to ensure check valves were operating properly.. Removed vegetation from T7 outlet pipe.

### **Attachment E.2**

### GCTS Monthly Flow Calculations January – December 2021

### Monthly Flow Calculations January 2021

| Date      | Maximum<br>Flow (gpm)     | Average<br>Flow Rate<br>(gpm)   | Total Daily<br>Flow (Gal)           | Total Gallons<br>To Date (Gal) | Run Time<br>(hours) | Run Time<br>(minutes)     |
|-----------|---------------------------|---------------------------------|-------------------------------------|--------------------------------|---------------------|---------------------------|
| 1/1/2021  |                           | (O1 /                           | ` ′                                 | `                              | 24                  | ()                        |
| 1/2/2021  | 45                        | 0.33                            | 477                                 | 76,519,326                     | 24                  | 0                         |
| 1/3/2021  | 45                        | 0.76                            | 1,095                               | 76,520,421                     | 24                  | 0                         |
| 1/4/2021  | 45                        | 0.34                            | 495                                 | 76,520,916                     | 24                  | 0                         |
| 1/5/2021  | 45<br>45                  | 0.47                            | 678                                 | 76,521,594                     | 24                  | 0                         |
| 1/6/2021  |                           | 0.29                            | 413                                 | 76,522,007                     | 24                  | 0                         |
| 1/7/2021  | 45<br>45                  | 0.31                            | 451                                 | 76,522,458                     | 24                  | 0                         |
| 1/8/2021  | -                         | 0.16                            | 232                                 | 76,522,690                     | 24                  | 0                         |
| 1/9/2021  | 45                        | 0.33                            | 472                                 | 76,523,162                     | 24                  | 0                         |
| 1/10/2021 | 45<br>45                  | 0.16                            | 225                                 | 76,523,387                     | 24                  | 0                         |
| 1/10/2021 | 45                        | 0.33                            | 474                                 | 76,523,861                     | 24                  | 0                         |
| 1/11/2021 |                           | 0.50                            | 725                                 | 76,524,586                     | 24                  | 0                         |
| 1/13/2021 | 45                        | 0.51                            | 729                                 | 76,525,315                     | 24                  | 0                         |
| 1/13/2021 | 45                        | 0.34                            | 491                                 | 76,525,806                     | 24                  | 0                         |
| 1/14/2021 | 45                        | 0.34                            | 492                                 | 76,526,298                     | 24                  | 0                         |
| 1/13/2021 | 45                        | 0.48                            | 693                                 | 76,526,991                     | 24                  | 0                         |
| 1/17/2021 | 45                        | 0.28                            | 402                                 | 76,527,393                     | 24                  | 0                         |
| 1/18/2021 | 45                        | 0.15                            | 218                                 | 76,527,611                     | 24                  | 0                         |
| 1/19/2021 | 45                        | 0.32                            | 466                                 | 76,528,077                     | 24                  | 0                         |
| 1/19/2021 | 45                        | 0.17                            | 238                                 | 76,528,315                     | 24                  | 0                         |
| 1/20/2021 | 45                        | 0.34                            | 492                                 | 76,528,807                     | 24                  | 0                         |
|           | 45                        | 0.34                            | 483                                 | 76,529,290                     |                     |                           |
| 1/22/2021 | 45                        | 0.17                            | 239                                 | 76,529,529                     | 24                  | 0                         |
| 1/23/2021 | 45                        | 0.32                            | 465                                 | 76,529,994                     | 24                  | 0                         |
| 1/24/2021 | 45                        | 0.32                            | 456                                 | 76,530,450                     | 24                  | 0                         |
| 1/25/2021 | 45                        | 0.16                            | 225                                 | 76,530,675                     |                     | 0                         |
| 1/26/2021 | 45                        | 0.34                            | 491                                 | 76,531,166                     | 24                  | -                         |
| 1/27/2021 | 45                        | 0.32                            | 455                                 | 76,531,621                     | 24                  | 0                         |
| 1/28/2021 | 45                        | 0.28                            | 399                                 | 76,532,020                     | 24                  | 0                         |
| 1/29/2021 | 45                        | 0.14                            | 200                                 | 76,532,220                     | 24                  | 0                         |
| 1/30/2021 | 45                        | 0.29                            | 424                                 | 76,532,644                     | 24                  | 0                         |
| 1/31/2021 | 45                        | 0.14                            | 199                                 | 76,532,843                     | 24                  | 0                         |
|           | 45.0                      | 0.31                            | 13,994                              | 76,532,843                     | 31                  | 100%                      |
|           | Daily<br>Maximum<br>(GPM) | Monitoring Period Average (GPM) | Monitoring<br>Period Total<br>(GAL) | Cumulative<br>Total (GAL)      | Runtime<br>(Days)   | Operational<br>Percentage |

### Monthly Flow Calculations February 2021

|           | Maximum          | Average<br>Flow Rate | Total Daily           | Total Gallons             | Run Time          | Run Time               |
|-----------|------------------|----------------------|-----------------------|---------------------------|-------------------|------------------------|
| Date      | Flow (gpm)       | (gpm)                | Flow (Gal)            | To Date (Gal)             | (hours)           | (minutes)              |
| 2/1/2021  | 45               | 0.14                 | 200                   | 76,533,043                | 24                | 0                      |
| 2/2/2021  | 0                | 0.00                 | 0                     | 76,533,043                | 24                | 0                      |
| 2/3/2021  | 0                | 0.00                 | 0                     | 76,533,043                | 24                | 0                      |
| 2/4/2021  | 0                | 0.00                 | 0                     | 76,533,043                | 24                | 0                      |
| 2/5/2021  | 0                | 0.00                 | 0                     | 76,533,043                | 24                | 0                      |
| 2/6/2021  | 45               | 0.14                 | 203                   | 76,533,246                | 24                | 0                      |
| 2/7/2021  | 45               | 0.13                 | 191                   | 76,533,437                | 24                | 0                      |
| 2/8/2021  | 45               | 0.01                 | 16                    | 76,533,453                | 24                | 0                      |
| 2/9/2021  | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/10/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/11/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/12/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/13/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/14/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/15/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/16/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/17/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/18/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/19/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/20/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/21/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/22/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/23/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/24/2021 | 0                | 0.00                 | 0                     | 76,533,453                | 24                | 0                      |
| 2/25/2021 | 45               | 0.13                 | 193                   | 76,533,646                | 24                | 0                      |
| 2/26/2021 | 45               | 0.13                 | 194                   | 76,533,840                | 24                | 0                      |
| 2/27/2021 | 45               | 0.34                 | 485                   | 76,534,325                | 24                | 0                      |
| 2/28/2021 | 45               | 0.15                 | 221                   | 76,534,546                | 24                | 0                      |
|           |                  |                      |                       |                           |                   |                        |
|           | 45.0             | 0.04                 | 1,703                 | 76,534,546                | 28                | 100%                   |
|           | Daily            | Monitoring<br>Period | Monitoring            | , ,                       | D 4'              |                        |
|           | Maximum<br>(GPM) | Average<br>(GPM)     | Period Total<br>(GAL) | Cumulative<br>Total (GAL) | Runtime<br>(Days) | Operational Percentage |

#### Monthly Flow Calculations March 2021

| Date      | Maximum<br>Flow (gpm)     | Average<br>Flow Rate<br>(gpm)   | Total Daily<br>Flow (Gal)           | Total Gallons<br>To Date (Gal) | Run Time<br>(hours) | Run Time<br>(minutes)  |
|-----------|---------------------------|---------------------------------|-------------------------------------|--------------------------------|---------------------|------------------------|
| 3/1/2021  | 45                        | 0.16                            | 225                                 | 76,534,771                     | 24                  | 0                      |
| 3/2/2021  | 45                        | 0.51                            | 736                                 | 76,535,507                     | 24                  | 0                      |
| 3/3/2021  | 46                        | 1.99                            | 2,870                               | 76,538,377                     | 24                  | 0                      |
| 3/4/2021  | 45                        | 0.70                            | 1,014                               | 76,539,391                     | 24                  | 0                      |
| 3/5/2021  | 45                        | 0.16                            | 226                                 | 76,539,617                     | 24                  | 0                      |
| 3/6/2021  | 45                        | 0.15                            | 215                                 | 76,539,832                     | 24                  | 0                      |
| 3/7/2021  | 45                        | 0.14                            | 203                                 | 76,540,035                     | 24                  | 0                      |
| 3/8/2021  | 0                         | 0.00                            | 0                                   | 76,540,035                     | 24                  | 0                      |
| 3/9/2021  | 0                         | 0.00                            | 0                                   | 76,540,035                     | 24                  | 0                      |
| 3/10/2021 | 0                         | 0.00                            | 0                                   | 76,540,035                     | 24                  | 0                      |
| 3/11/2021 | 0                         | 0.00                            | 0                                   | 76,540,035                     | 24                  | 0                      |
| 3/12/2021 | 45                        | 0.13                            | 194                                 | 76,540,229                     | 24                  | 0                      |
| 3/13/2021 | 45                        | 0.28                            | 400                                 | 76,540,629                     | 24                  | 0                      |
| 3/14/2021 | 45                        | 0.14                            | 207                                 | 76,540,836                     | 24                  | 0                      |
| 3/15/2021 | 45                        | 0.29                            | 416                                 | 76,541,252                     | 24                  | 0                      |
| 3/16/2021 | 45                        | 0.29                            | 424                                 | 76,541,676                     | 24                  | 0                      |
| 3/17/2021 | 45                        | 0.15                            | 219                                 | 76,541,895                     | 24                  | 0                      |
| 3/18/2021 | 45                        | 0.29                            | 419                                 | 76,542,314                     | 24                  | 0                      |
| 3/19/2021 | 45                        | 0.15                            | 209                                 | 76,542,523                     | 24                  | 0                      |
| 3/20/2021 | 45                        | 0.14                            | 203                                 | 76,542,726                     | 24                  | 0                      |
| 3/21/2021 | 45                        | 0.27                            | 387                                 | 76,543,113                     | 24                  | 0                      |
| 3/22/2021 | 45                        | 0.18                            | 262                                 | 76,543,375                     | 24                  | 0                      |
| 3/23/2021 | 45                        | 0.48                            | 687                                 | 76,544,062                     | 24                  | 0                      |
| 3/24/2021 | 45                        | 0.32                            | 455                                 | 76,544,517                     | 24                  | 0                      |
| 3/25/2021 | 45                        | 0.15                            | 223                                 | 76,544,740                     | 24                  | 0                      |
| 3/26/2021 | 45                        | 0.61                            | 884                                 | 76,545,624                     | 24                  | 0                      |
| 3/27/2021 | 45                        | 0.30                            | 431                                 | 76,546,055                     | 24                  | 0                      |
| 3/28/2021 | 45                        | 0.44                            | 639                                 | 76,546,694                     | 24                  | 0                      |
| 3/29/2021 | 45                        | 0.98                            | 1,416                               | 76,548,110                     | 24                  | 0                      |
| 3/30/2021 | 45                        | 1.18                            | 1,703                               | 76,549,813                     | 24                  | 0                      |
| 3/31/2021 | 45                        | 1.80                            | 2,590                               | 76,552,403                     | 24                  | 0                      |
|           | 46.0                      | 0.40                            | 17,857                              | 76,552,403                     | 31                  | 100%                   |
|           | Daily<br>Maximum<br>(GPM) | Monitoring Period Average (GPM) | Monitoring<br>Period Total<br>(GAL) | Cumulative<br>Total (GAL)      | Runtime<br>(Days)   | Operational Percentage |

### Monthly Flow Calculations April 2021

| Date      | Maximum<br>Flow (gpm)     | Average<br>Flow Rate<br>(gpm)            | Total Daily<br>Flow (Gal)           | Total Gallons<br>To Date (Gal) | Run Time<br>(hours) | Run Time<br>(minutes)     |
|-----------|---------------------------|------------------------------------------|-------------------------------------|--------------------------------|---------------------|---------------------------|
| 4/1/2021  | 45                        | 1.92                                     | 2,762                               | 76,555,165                     | 24                  | 0                         |
| 4/2/2021  | 45                        | 2.30                                     | 3,313                               | 76,558,478                     | 24                  | 0                         |
| 4/3/2021  | 45                        | 2.51                                     | 3,612                               | 76,562,090                     | 24                  | 0                         |
| 4/4/2021  | 45                        | 2.55                                     | 3,671                               | 76,565,761                     | 24                  | 0                         |
| 4/5/2021  | 45                        | 2.55                                     | 3,676                               | 76,569,437                     | 24                  | 0                         |
| 4/6/2021  | 45                        | 2.83                                     | 4,077                               | 76,573,514                     | 24                  | 0                         |
| 4/7/2021  | 45                        | 2.98                                     | 4,289                               | 76,577,803                     | 24                  | 0                         |
| 4/8/2021  | 45                        | 3.26                                     | 4,698                               | 76,582,501                     | 24                  | 0                         |
| 4/9/2021  | 45                        | 3.93                                     | 5,663                               | 76,588,164                     | 24                  | 0                         |
| 4/10/2021 | 45                        | 4.50                                     | 6,475                               | 76,594,639                     | 24                  | 0                         |
| 4/11/2021 | 45                        | 4.58                                     | 6,599                               | 76,601,238                     | 24                  | 0                         |
| 4/12/2021 | 45                        | 5.05                                     | 7,270                               | 76,608,508                     | 24                  | 0                         |
| 4/13/2021 | 45                        | 4.75                                     | 6,845                               | 76,615,353                     | 24                  | 0                         |
| 4/14/2021 | 45                        | 4.13                                     | 5,949                               | 76,621,302                     | 24                  | 0                         |
| 4/15/2021 | 45                        | 4.54                                     | 6,537                               | 76,627,839                     | 24                  | 0                         |
| 4/16/2021 | 45                        | 4.90                                     | 7,053                               | 76,634,892                     | 24                  | 0                         |
| 4/17/2021 | 45                        | 4.53                                     | 6,522                               | 76,641,414                     | 24                  | 0                         |
| 4/18/2021 | 45                        | 2.31                                     | 3,331                               | 76,644,745                     | 24                  | 0                         |
| 4/19/2021 | 45                        | 3.65                                     | 5,254                               | 76,649,999                     | 24                  | 0                         |
| 4/20/2021 | 45                        | 3.55                                     | 5,105                               | 76,655,104                     | 24                  | 0                         |
| 4/21/2021 | 45                        | 4.08                                     | 5,875                               | 76,660,979                     | 24                  | 0                         |
| 4/22/2021 | 45                        | 5.63                                     | 8,111                               | 76,669,090                     | 24                  | 0                         |
| 4/23/2021 | 45                        | 3.53                                     | 5,086                               | 76,674,176                     | 24                  | 0                         |
| 4/24/2021 | 45                        | 3.43                                     | 4,937                               | 76,679,113                     | 24                  | 0                         |
| 4/25/2021 | 45                        | 3.23                                     | 4,650                               | 76,683,763                     | 24                  | 0                         |
| 4/26/2021 | 45                        | 3.22                                     | 4,642                               | 76,688,405                     | 24                  | 0                         |
| 4/27/2021 | 45                        | 5.57                                     | 8,019                               | 76,696,424                     | 24                  | 0                         |
| 4/28/2021 | 45                        | 3.05                                     | 4,395                               | 76,700,819                     | 24                  | 0                         |
| 4/29/2021 | 45                        | 2.97                                     | 4,281                               | 76,705,100                     | 24                  | 0                         |
| 4/30/2021 | 45                        | 1.17                                     | 1,678                               | 76,706,778                     | 24                  | 0                         |
|           | 45.0                      | 3.57                                     | 154,375                             | 76,706,778                     | 30                  | 100%                      |
|           | Daily<br>Maximum<br>(GPM) | Monitoring<br>Period<br>Average<br>(GPM) | Monitoring<br>Period Total<br>(GAL) | Cumulative<br>Total (GAL)      | Runtime<br>(Days)   | Operational<br>Percentage |

### Monthly Flow Calculations May 2021

| Date      | Maximum<br>Flow (gpm)     | Average<br>Flow Rate<br>(gpm)            | Total Daily<br>Flow (Gal)           | Total Gallons<br>To Date (Gal) | Run Time<br>(hours) | Run Time<br>(minutes)     |
|-----------|---------------------------|------------------------------------------|-------------------------------------|--------------------------------|---------------------|---------------------------|
| 5/1/2021  | 0                         | 0.00                                     | 0                                   | 76,706,778                     | 24                  | 0                         |
| 5/2/2021  | 0                         | 0.00                                     | 0                                   | 76,706,778                     | 24                  | 0                         |
| 5/3/2021  | 0                         | 0.00                                     | 0                                   | 76,706,778                     | 24                  | 0                         |
| 5/4/2021  | 0                         | 0.00                                     | 0                                   | 76,706,778                     | 24                  | 0                         |
| 5/5/2021  | 0                         | 0.00                                     | 0                                   | 76,706,778                     | 24                  | 0                         |
| 5/6/2021  | 0                         | 0.00                                     | 0                                   | 76,706,778                     | 24                  | 0                         |
| 5/7/2021  | 45                        | 1.41                                     | 2,031                               | 76,708,809                     | 24                  | 0                         |
| 5/8/2021  | 45                        | 0.71                                     | 1,025                               | 76,709,834                     | 24                  | 0                         |
| 5/9/2021  | 45                        | 0.42                                     | 610                                 | 76,710,444                     | 24                  | 0                         |
| 5/10/2021 | 45                        | 0.13                                     | 192                                 | 76,710,636                     | 24                  | 0                         |
| 5/11/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/12/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/13/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/14/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/15/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/16/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/17/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/18/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/19/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/20/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/21/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/22/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/23/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/24/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/25/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/26/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/27/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/28/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/29/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/30/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 5/31/2021 | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
|           | 45.0                      | 0.09                                     | 3,858                               | 76,710,636                     | 31                  | 100%                      |
|           | Daily<br>Maximum<br>(GPM) | Monitoring<br>Period<br>Average<br>(GPM) | Monitoring<br>Period Total<br>(GAL) | Cumulative<br>Total (GAL)      | Runtime<br>(Days)   | Operational<br>Percentage |

# Monthly Flow Calculations June 2021

| Date      | Maximum<br>Flow (gpm)     | Average<br>Flow Rate<br>(gpm)            | Total Daily<br>Flow (Gal)           | Total Gallons<br>To Date (Gal) | Run Time<br>(hours) | Run Time<br>(minutes)     |
|-----------|---------------------------|------------------------------------------|-------------------------------------|--------------------------------|---------------------|---------------------------|
| 6/1/2021  | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 6/2/2021  | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 6/3/2021  | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 6/4/2021  | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 6/5/2021  | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 6/6/2021  | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 6/7/2021  | 0                         | 0.00                                     | 0                                   | 76,710,636                     | 24                  | 0                         |
| 6/8/2021  | 45                        | 0.65                                     | 941                                 | 76,711,577                     | 24                  | 0                         |
| 6/9/2021  | 0                         | 0.00                                     | 0                                   | 76,711,577                     | 24                  | 0                         |
| 6/10/2021 | 45                        | 0.12                                     | 170                                 | 76,711,747                     | 24                  | 0                         |
| 6/11/2021 | 47                        | 0.23                                     | 333                                 | 76,712,080                     | 24                  | 0                         |
| 6/12/2021 | 5                         | 0.01                                     | 9                                   | 76,712,089                     | 24                  | 0                         |
| 6/13/2021 | 0                         | 0.00                                     | 0                                   | 76,712,089                     | 24                  | 0                         |
| 6/14/2021 | 47                        | 0.37                                     | 531                                 | 76,712,620                     | 24                  | 0                         |
| 6/15/2021 | 45                        | 0.12                                     | 174                                 | 76,712,794                     | 24                  | 0                         |
| 6/16/2021 | 47                        | 0.11                                     | 154                                 | 76,712,948                     | 24                  | 0                         |
| 6/17/2021 | 0                         | 0.00                                     | 0                                   | 76,712,948                     | 24                  | 0                         |
| 6/18/2021 | 0                         | 0.00                                     | 0                                   | 76,712,948                     | 24                  | 0                         |
| 6/19/2021 | 0                         | 0.00                                     | 0                                   | 76,712,948                     | 24                  | 0                         |
| 6/20/2021 | 0                         | 0.00                                     | 0                                   | 76,712,948                     | 24                  | 0                         |
| 6/21/2021 | 47                        | 0.65                                     | 935                                 | 76,713,883                     | 24                  | 0                         |
| 6/22/2021 | 46                        | 0.13                                     | 182                                 | 76,714,065                     | 24                  | 0                         |
| 6/23/2021 | 0                         | 0.00                                     | 0                                   | 76,714,065                     | 24                  | 0                         |
| 6/24/2021 | 0                         | 0.00                                     | 0                                   | 76,714,065                     | 24                  | 0                         |
| 6/25/2021 | 0                         | 0.00                                     | 0                                   | 76,714,065                     | 24                  | 0                         |
| 6/26/2021 | 0                         | 0.00                                     | 0                                   | 76,714,065                     | 24                  | 0                         |
| 6/27/2021 | 0                         | 0.00                                     | 0                                   | 76,714,065                     | 24                  | 0                         |
| 6/28/2021 | 0                         | 0.00                                     | 0                                   | 76,714,065                     | 24                  | 0                         |
| 6/29/2021 | 0                         | 0.00                                     | 0                                   | 76,714,065                     | 24                  | 0                         |
| 6/30/2021 | 0                         | 0.00                                     | 0                                   | 76,714,065                     | 24                  | 0                         |
|           | 47.0                      | 0.08                                     | 3,429                               | 76,714,065                     | 30                  | 100%                      |
|           | Daily<br>Maximum<br>(GPM) | Monitoring<br>Period<br>Average<br>(GPM) | Monitoring<br>Period Total<br>(GAL) | Cumulative<br>Total (GAL)      | Runtime<br>(Days)   | Operational<br>Percentage |

# Monthly Flow Calculations July 2021

| Date      | Maximum<br>Flow (gpm)     | Average<br>Flow Rate<br>(gpm)   | Total Daily<br>Flow (Gal)           | Total Gallons<br>To Date (Gal) | Run Time<br>(hours) | Run Time<br>(minutes)     |
|-----------|---------------------------|---------------------------------|-------------------------------------|--------------------------------|---------------------|---------------------------|
| 7/1/2021  | 0                         | 0.00                            | 0                                   | 76,714,065                     | 24                  | 0                         |
| 7/2/2021  | 0                         | 0.00                            | 0                                   | 76,714,065                     | 24                  | 0                         |
| 7/3/2021  | 0                         | 0.00                            | 0                                   | 76,714,065                     | 24                  | 0                         |
| 7/4/2021  | 0                         | 0.00                            | 0                                   | 76,714,065                     | 24                  | 0                         |
| 7/5/2021  | 0                         | 0.00                            | 0                                   | 76,714,065                     | 24                  | 0                         |
| 7/6/2021  | 0                         | 0.00                            | 0                                   | 76,714,065                     | 24                  | 0                         |
| 7/7/2021  | 47                        | 0.13                            | 189                                 | 76,714,254                     | 24                  | 0                         |
| 7/8/2021  | 45                        | 2.38                            | 3,434                               | 76,717,688                     | 24                  | 0                         |
| 7/9/2021  | 44                        | 0.12                            | 177                                 | 76,717,865                     | 24                  | 0                         |
| 7/10/2021 | 45                        | 0.13                            | 187                                 | 76,718,052                     | 24                  | 0                         |
| 7/11/2021 | 48                        | 9.27                            | 13,346                              | 76,731,398                     | 24                  | 0                         |
| 7/12/2021 | 46                        | 10.70                           | 15,402                              | 76,746,800                     | 24                  | 0                         |
| 7/13/2021 | 46                        | 2.86                            | 4,121                               | 76,750,921                     | 24                  | 0                         |
| 7/14/2021 | 45                        | 18.98                           | 27,330                              | 76,778,251                     | 24                  | 0                         |
| 7/15/2021 | 45                        | 22.50                           | 32,393                              | 76,810,644                     | 24                  | 0                         |
| 7/16/2021 | 45                        | 23.84                           | 34,332                              | 76,844,976                     | 24                  | 0                         |
| 7/17/2021 | 44                        | 26.47                           | 38,113                              | 76,883,089                     | 24                  | 0                         |
| 7/18/2021 | 44                        | 16.68                           | 24,023                              | 76,907,112                     | 24                  | 0                         |
| 7/19/2021 | 46                        | 5.56                            | 8,010                               | 76,915,122                     | 24                  | 0                         |
| 7/20/2021 | 46                        | 24.70                           | 35,572                              | 76,950,694                     | 24                  | 0                         |
| 7/21/2021 | 45                        | 22.65                           | 32,612                              | 76,983,306                     | 24                  | 0                         |
| 7/22/2021 | 45                        | 14.71                           | 21,189                              | 77,004,495                     | 24                  | 0                         |
| 7/23/2021 | 45                        | 18.55                           | 26,711                              | 77,031,206                     | 24                  | 0                         |
| 7/24/2021 | 44                        | 18.47                           | 26,591                              | 77,057,797                     | 24                  | 0                         |
| 7/25/2021 | 44                        | 17.76                           | 25,577                              | 77,083,374                     | 24                  | 0                         |
| 7/26/2021 | 44                        | 20.47                           | 29,471                              | 77,112,845                     | 24                  | 0                         |
| 7/27/2021 | 44                        | 20.58                           | 29,638                              | 77,142,483                     | 24                  | 0                         |
| 7/28/2021 | 44                        | 21.30                           | 30,675                              | 77,173,158                     | 24                  | 0                         |
| 7/29/2021 | 44                        | 23.02                           | 33,144                              | 77,206,302                     | 24                  | 0                         |
| 7/30/2021 | 44                        | 22.11                           | 31,836                              | 77,238,138                     | 24                  | 0                         |
| 7/31/2021 | 44                        | 20.77                           | 29,909                              | 77,268,047                     | 24                  | 0                         |
|           | 48.0                      | 12.41                           | 553,982                             | 77,268,047                     | 31                  | 100%                      |
|           | Daily<br>Maximum<br>(GPM) | Monitoring Period Average (GPM) | Monitoring<br>Period Total<br>(GAL) | Cumulative<br>Total (GAL)      | Runtime<br>(Days)   | Operational<br>Percentage |

.

### Monthly Flow Calculations August 2021

| Date      | Maximum<br>Flow (gpm)     | Average<br>Flow Rate<br>(gpm)            | Total Daily<br>Flow (Gal)           | Total Gallons<br>To Date (Gal) | Run Time<br>(hours) | Run Time<br>(minutes)     |
|-----------|---------------------------|------------------------------------------|-------------------------------------|--------------------------------|---------------------|---------------------------|
| 8/1/2021  | 44                        | 19.62                                    | 28,246                              | 77,296,293                     | 24                  | 0                         |
| 8/2/2021  | 44                        | 17.63                                    | 25,387                              | 77,321,680                     | 24                  | 0                         |
| 8/3/2021  | 44                        | 17.01                                    | 24,494                              | 77,346,174                     | 24                  | 0                         |
| 8/4/2021  | 44                        | 20.10                                    | 28,941                              | 77,375,115                     | 24                  | 0                         |
| 8/5/2021  | 44                        | 18.17                                    | 26,165                              | 77,401,280                     | 24                  | 0                         |
| 8/6/2021  | 44                        | 17.52                                    | 25,230                              | 77,426,510                     | 24                  | 0                         |
| 8/7/2021  | 44                        | 18.02                                    | 25,947                              | 77,452,457                     | 24                  | 0                         |
| 8/8/2021  | 44                        | 16.80                                    | 24,197                              | 77,476,654                     | 24                  | 0                         |
| 8/9/2021  | 44                        | 16.78                                    | 24,162                              | 77,500,816                     | 24                  | 0                         |
| 8/10/2021 | 44                        | 16.65                                    | 23,982                              | 77,524,798                     | 24                  | 0                         |
| 8/11/2021 | 44                        | 16.81                                    | 24,207                              | 77,549,005                     | 24                  | 0                         |
| 8/12/2021 | 44                        | 16.33                                    | 23,511                              | 77,572,516                     | 24                  | 0                         |
| 8/13/2021 | 44                        | 15.19                                    | 21,870                              | 77,594,386                     | 24                  | 0                         |
| 8/14/2021 | 44                        | 14.29                                    | 20,575                              | 77,614,961                     | 24                  | 0                         |
| 8/15/2021 | 44                        | 13.76                                    | 19,810                              | 77,634,771                     | 24                  | 0                         |
| 8/16/2021 | 44                        | 13.31                                    | 19,173                              | 77,653,944                     | 24                  | 0                         |
| 8/17/2021 | 44                        | 16.15                                    | 23,256                              | 77,677,200                     | 24                  | 0                         |
| 8/18/2021 | 44                        | 15.31                                    | 22,045                              | 77,699,245                     | 24                  | 0                         |
| 8/19/2021 | 44                        | 14.62                                    | 21,052                              | 77,720,297                     | 24                  | 0                         |
| 8/20/2021 | 44                        | 14.14                                    | 20,360                              | 77,740,657                     | 24                  | 0                         |
| 8/21/2021 | 43                        | 13.31                                    | 19,168                              | 77,759,825                     | 24                  | 0                         |
| 8/22/2021 | 43                        | 12.75                                    | 18,357                              | 77,778,182                     | 24                  | 0                         |
| 8/23/2021 | 43                        | 13.50                                    | 19,440                              | 77,797,622                     | 24                  | 0                         |
| 8/24/2021 | 43                        | 13.98                                    | 20,138                              | 77,817,760                     | 24                  | 0                         |
| 8/25/2021 | 43                        | 14.65                                    | 21,089                              | 77,838,849                     | 24                  | 0                         |
| 8/26/2021 | 43                        | 14.75                                    | 21,247                              | 77,860,096                     | 24                  | 0                         |
| 8/27/2021 | 43                        | 14.40                                    | 20,740                              | 77,880,836                     | 24                  | 0                         |
| 8/28/2021 | 43                        | 13.62                                    | 19,617                              | 77,900,453                     | 24                  | 0                         |
| 8/29/2021 | 43                        | 15.63                                    | 22,503                              | 77,922,956                     | 24                  | 0                         |
| 8/30/2021 | 43                        | 13.25                                    | 19,084                              | 77,942,040                     | 24                  | 0                         |
| 8/31/2021 | 43                        | 12.22                                    | 17,599                              | 77,959,639                     | 24                  | 0                         |
|           | 44.0                      | 15.49                                    | 691,592                             | 77,959,639                     | 31                  | 100%                      |
|           | Daily<br>Maximum<br>(GPM) | Monitoring<br>Period<br>Average<br>(GPM) | Monitoring<br>Period Total<br>(GAL) | Cumulative<br>Total (GAL)      | Runtime<br>(Days)   | Operational<br>Percentage |

### Monthly Flow Calculations September 2021

|           |            | Average              |                    |                      |          |             |
|-----------|------------|----------------------|--------------------|----------------------|----------|-------------|
|           | Maximum    | Flow Rate            | <b>Total Daily</b> | <b>Total Gallons</b> | Run Time | Run Time    |
| Date      | Flow (gpm) | (gpm)                | Flow (Gal)         | To Date (Gal)        | (hours)  | (minutes)   |
| 9/1/2021  | 43         | 11.73                | 16,897             | 77,976,536           | 24       | 0           |
| 9/2/2021  | 43         | 11.30                | 16,279             | 77,992,815           | 24       | 0           |
| 9/3/2021  | 43         | 10.77                | 15,513             | 78,008,328           | 24       | 0           |
| 9/4/2021  | 43         | 10.85                | 15,628             | 78,023,956           | 24       | 0           |
| 9/5/2021  | 43         | 11.44                | 16,473             | 78,040,429           | 24       | 0           |
| 9/6/2021  | 43         | 10.09                | 14,527             | 78,054,956           | 24       | 0           |
| 9/7/2021  | 43         | 10.28                | 14,802             | 78,069,758           | 24       | 0           |
| 9/8/2021  | 42         | 17.00                | 24,486             | 78,094,244           | 24       | 0           |
| 9/9/2021  | 42         | 10.23                | 14,730             | 78,108,974           | 24       | 0           |
| 9/10/2021 | 42         | 9.74                 | 14,021             | 78,122,995           | 24       | 0           |
| 9/11/2021 | 42         | 9.51                 | 13,699             | 78,136,694           | 24       | 0           |
| 9/12/2021 | 42         | 10.51                | 15,137             | 78,151,831           | 24       | 0           |
| 9/13/2021 | 42         | 10.77                | 15,507             | 78,167,338           | 24       | 0           |
| 9/14/2021 | 42         | 11.63                | 16,742             | 78,184,080           | 24       | 0           |
| 9/15/2021 | 42         | 10.33                | 14,879             | 78,198,959           | 24       | 0           |
| 9/16/2021 | 42         | 9.28                 | 13,366             | 78,212,325           | 24       | 0           |
| 9/17/2021 | 42         | 9.24                 | 13,299             | 78,225,624           | 24       | 0           |
| 9/18/2021 | 42         | 9.09                 | 13,089             | 78,238,713           | 24       | 0           |
| 9/19/2021 | 42         | 8.73                 | 12,566             | 78,251,279           | 24       | 0           |
| 9/20/2021 | 42         | 8.88                 | 12,785             | 78,264,064           | 24       | 0           |
| 9/21/2021 | 42         | 8.43                 | 12,139             | 78,276,203           | 24       | 0           |
| 9/22/2021 | 42         | 11.71                | 16,856             | 78,293,059           | 24       | 0           |
| 9/23/2021 | 42         | 13.77                | 19,831             | 78,312,890           | 24       | 0           |
| 9/24/2021 | 42         | 11.75                | 16,919             | 78,329,809           | 24       | 0           |
| 9/25/2021 | 42         | 9.95                 | 14,326             | 78,344,135           | 24       | 0           |
| 9/26/2021 | 42         | 9.41                 | 13,551             | 78,357,686           | 24       | 0           |
| 9/27/2021 | 42         | 9.46                 | 13,618             | 78,371,304           | 24       | 0           |
| 9/28/2021 | 42         | 9.26                 | 13,337             | 78,384,641           | 24       | 0           |
| 9/29/2021 | 42         | 9.48                 | 13,655             | 78,398,296           | 24       | 0           |
| 9/30/2021 | 42         | 9.14                 | 13,167             | 78,411,463           | 24       | 0           |
|           | 43.0       | 10.46                | 451,824            | 78,411,463           | 30       | 100%        |
|           | Daily      | Monitoring<br>Period | Monitoring         | , ,                  | n .:     |             |
|           | Maximum    | Average              | Period Total       | Cumulative           | Runtime  | Operational |
|           | (GPM)      | (GPM)                | (GAL)              | Total (GAL)          | (Days)   | Percentage  |

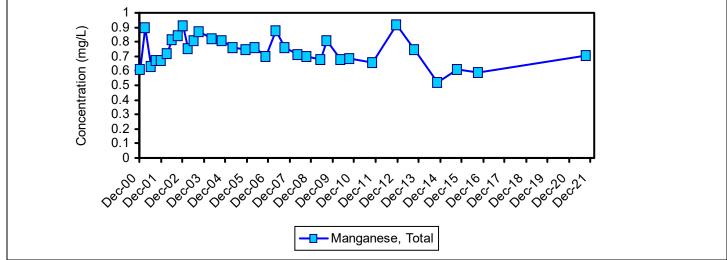
#### Monthly Flow Calculations October 2021

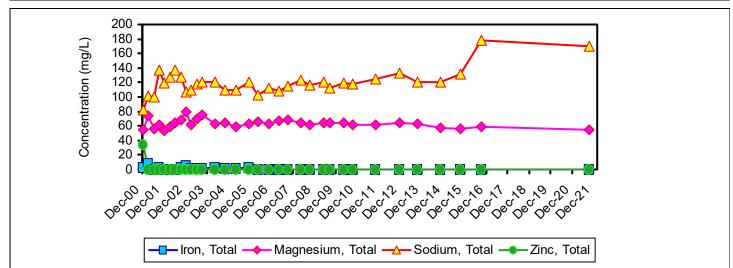
| _          | Maximum          | Average<br>Flow Rate            | Total Daily                | Total Gallons | Run Time | Run Time    |
|------------|------------------|---------------------------------|----------------------------|---------------|----------|-------------|
| Date       | Flow (gpm)       | (gpm)                           | Flow (Gal)                 | To Date (Gal) | (hours)  | (minutes)   |
| 10/1/2021  | 42               | 9.00                            | 12,964                     | 78,424,427    | 24       | 0           |
| 10/2/2021  | 42               | 9.01                            | 12,974                     | 78,437,401    | 24       | 0           |
| 10/3/2021  | 42               | 9.13                            | 13,146                     | 78,450,547    | 24       | 0           |
| 10/4/2021  | 42               | 12.85                           | 18,497                     | 78,469,044    | 24       | 0           |
| 10/5/2021  | 42               | 10.00                           | 14,405                     | 78,483,449    | 24       | 0           |
| 10/6/2021  | 42               | 9.46                            | 13,616                     | 78,497,065    | 24       | 0           |
| 10/7/2021  | 42               | 9.26                            | 13,330                     | 78,510,395    | 24       | 0           |
| 10/8/2021  | 42               | 9.20                            | 13,246                     | 78,523,641    | 24       | 0           |
| 10/9/2021  | 41               | 8.89                            | 12,805                     | 78,536,446    | 24       | 0           |
| 10/10/2021 | 41               | 8.86                            | 12,756                     | 78,549,202    | 24       | 0           |
| 10/11/2021 | 41               | 8.77                            | 12,622                     | 78,561,824    | 24       | 0           |
| 10/12/2021 | 41               | 8.77                            | 12,633                     | 78,574,457    | 24       | 0           |
| 10/13/2021 | 41               | 8.51                            | 12,258                     | 78,586,715    | 24       | 0           |
| 10/14/2021 | 41               | 8.50                            | 12,239                     | 78,598,954    | 24       | 0           |
| 10/15/2021 | 41               | 10.27                           | 14,786                     | 78,613,740    | 24       | 0           |
| 10/16/2021 | 41               | 13.01                           | 18,732                     | 78,632,472    | 24       | 0           |
| 10/17/2021 | 41               | 9.84                            | 14,163                     | 78,646,635    | 24       | 0           |
| 10/18/2021 | 41               | 9.37                            | 13,487                     | 78,660,122    | 24       | 0           |
| 10/19/2021 | 41               | 9.05                            | 13,029                     | 78,673,151    | 24       | 0           |
| 10/20/2021 | 41               | 8.93                            | 12,859                     | 78,686,010    | 24       | 0           |
| 10/21/2021 | 41               | 8.90                            | 12,809                     | 78,698,819    | 24       | 0           |
| 10/22/2021 | 41               | 8.55                            | 12,310                     | 78,711,129    | 24       | 0           |
| 10/23/2021 | 41               | 8.50                            | 12,239                     | 78,723,368    | 24       | 0           |
| 10/24/2021 | 41               | 8.40                            | 12,103                     | 78,735,471    | 24       | 0           |
| 10/25/2021 | 41               | 10.52                           | 15,144                     | 78,750,615    | 24       | 0           |
| 10/26/2021 | 41               | 15.76                           | 22,691                     | 78,773,306    | 24       | 0           |
| 10/27/2021 | 41               | 13.97                           | 20,118                     | 78,793,424    | 24       | 0           |
| 10/28/2021 | 41               | 10.97                           | 15,803                     | 78,809,227    | 24       | 0           |
| 10/29/2021 | 41               | 14.31                           | 20,611                     | 78,829,838    | 24       | 0           |
| 10/30/2021 | 41               | 17.47                           | 25,150                     | 78,854,988    | 24       | 0           |
| 10/31/2021 | 41               | 13.91                           | 20,031                     | 78,875,019    | 24       | 0           |
|            | 42.0             | 10.38                           | 463,556                    | 78,875,019    | 31       | 100%        |
|            | Daily<br>Maximum | Monitoring<br>Period<br>Average | Monitoring<br>Period Total | Cumulative    | Runtime  | Operational |
|            | (GPM)            | (GPM)                           | (GAL)                      | Total (GAL)   | (Days)   | Percentage  |

#### Monthly Flow Calculations November 2021

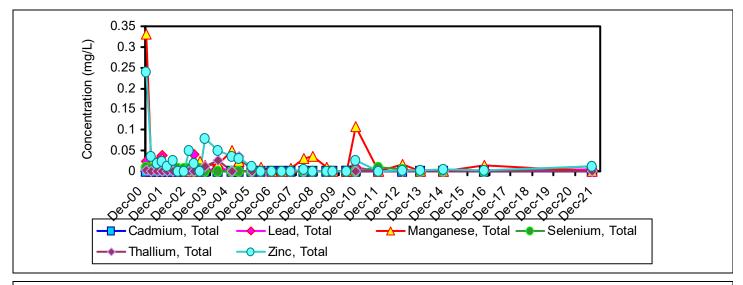
|            | Maximum          | Average<br>Flow Rate            | Total Daily                | Total Gallons | Run Time | Run Time    |
|------------|------------------|---------------------------------|----------------------------|---------------|----------|-------------|
| Date       | Flow (gpm)       | (gpm)                           | Flow (Gal)                 | To Date (Gal) | (hours)  | (minutes)   |
| 11/1/2021  | 41               | 11.60                           | 16,709                     | 78,891,728    | 24       | 0           |
| 11/2/2021  | 41               | 10.97                           | 15,802                     | 78,907,530    | 24       | 0           |
| 11/3/2021  | 41               | 10.36                           | 14,922                     | 78,922,452    | 24       | 0           |
| 11/4/2021  | 41               | 10.08                           | 14,511                     | 78,936,963    | 24       | 0           |
| 11/5/2021  | 41               | 9.81                            | 14,131                     | 78,951,094    | 24       | 0           |
| 11/6/2021  | 41               | 9.88                            | 14,223                     | 78,965,317    | 24       | 0           |
| 11/7/2021  | 41               | 9.91                            | 14,271                     | 78,979,588    | 24       | 0           |
| 11/8/2021  | 40               | 9.72                            | 13,992                     | 78,993,580    | 24       | 0           |
| 11/9/2021  | 40               | 9.76                            | 14,048                     | 79,007,628    | 24       | 0           |
| 11/10/2021 | 40               | 9.88                            | 14,233                     | 79,021,861    | 24       | 0           |
| 11/11/2021 | 40               | 10.15                           | 14,616                     | 79,036,477    | 24       | 0           |
| 11/12/2021 | 40               | 10.08                           | 14,520                     | 79,050,997    | 24       | 0           |
| 11/13/2021 | 40               | 12.65                           | 18,210                     | 79,069,207    | 24       | 0           |
| 11/14/2021 | 40               | 12.75                           | 18,353                     | 79,087,560    | 24       | 0           |
| 11/15/2021 | 40               | 15.18                           | 21,855                     | 79,109,415    | 24       | 0           |
| 11/15/2021 | 40               | 12.47                           | 17,958                     | 79,127,373    | 24       | 0           |
| 11/16/2021 | 40               | 12.25                           | 17,645                     | 79,145,018    | 24       | 0           |
| 11/17/2021 | 40               | 11.72                           | 16,870                     | 79,161,888    | 24       | 0           |
| 11/18/2021 | 40               | 11.43                           | 16,459                     | 79,178,347    | 24       | 0           |
| 11/19/2021 | 40               | 11.52                           | 16,591                     | 79,194,938    | 24       | 0           |
| 11/20/2021 | 40               | 11.88                           | 17,100                     | 79,212,038    | 24       | 0           |
| 11/21/2021 | 40               | 12.51                           | 18,014                     | 79,230,052    | 24       | 0           |
| 11/22/2021 | 40               | 11.65                           | 16,782                     | 79,246,834    | 24       | 0           |
| 11/23/2021 | 40               | 11.66                           | 16,785                     | 79,263,619    | 24       | 0           |
| 11/24/2021 | 40               | 12.15                           | 17,492                     | 79,281,111    | 24       | 0           |
| 11/25/2021 | 40               | 13.83                           | 19,915                     | 79,301,026    | 24       | 0           |
| 11/26/2021 | 40               | 12.53                           | 18,043                     | 79,319,069    | 24       | 0           |
| 11/27/2021 | 40               | 12.54                           | 18,053                     | 79,337,122    | 24       | 0           |
| 11/28/2021 | 40               | 8.53                            | 12,288                     | 79,349,410    | 24       | 0           |
| 11/29/2021 | 40               | 9.19                            | 13,238                     | 79,362,648    | 24       | 0           |
| 11/30/2021 | 41               | 11.60                           | 16,709                     | 78,891,728    | 24       | 0           |
|            | 41.0             | 11.29                           | 487,629                    | 79,362,648    | 30       | 100%        |
|            | Daily<br>Maximum | Monitoring<br>Period<br>Average | Monitoring<br>Period Total | Cumulative    | Runtime  | Operational |
|            | (GPM)            | (GPM)                           | (GAL)                      | Total (GAL)   | (Days)   | Percentage  |

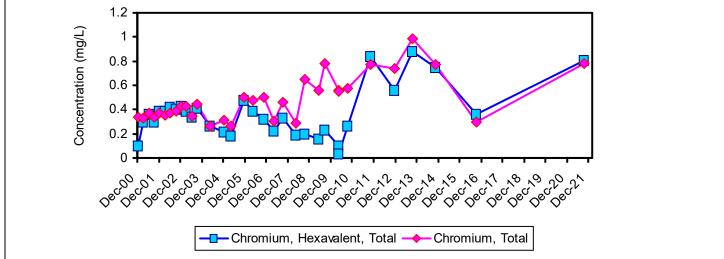
#### Monthly Flow Calculations December 2021

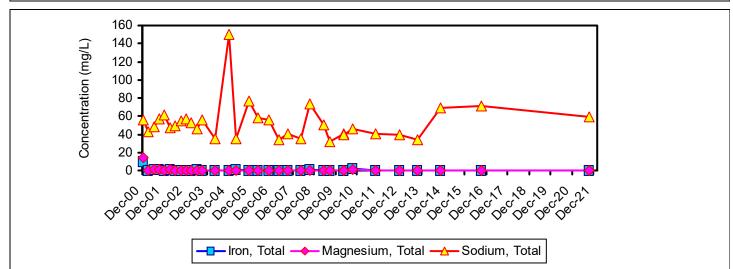

| Date       | Maximum<br>Flow (gpm)     | Average<br>Flow Rate<br>(gpm)   | Total Daily<br>Flow (Gal)           | Total Gallons<br>To Date (Gal) | Run Time<br>(hours) | Run Time<br>(minutes)     |
|------------|---------------------------|---------------------------------|-------------------------------------|--------------------------------|---------------------|---------------------------|
| 12/1/2021  | 40                        | 16.10                           | 23,185                              | 79,385,833                     | 24                  | 0                         |
| 12/2/2021  | 40                        | 15.93                           | 22,943                              | 79,408,776                     | 24                  | 0                         |
| 12/3/2021  | 40                        | 13.19                           | 18,988                              | 79,427,764                     | 24                  | 0                         |
| 12/4/2021  | 40                        | 13.27                           | 19,115                              | 79,446,879                     | 24                  | 0                         |
| 12/5/2021  | 40                        | 13.68                           | 19,699                              | 79,466,578                     | 24                  | 0                         |
| 12/6/2021  | 40                        | 20.04                           | 28,851                              | 79,495,429                     | 24                  | 0                         |
| 12/7/2021  | 40                        | 15.09                           | 21,731                              | 79,517,160                     | 24                  | 0                         |
| 12/8/2021  | 40                        | 14.91                           | 21,467                              | 79,538,627                     | 24                  | 0                         |
| 12/9/2021  | 40                        | 14.06                           | 20,247                              | 79,558,874                     | 24                  | 0                         |
| 12/10/2021 | 40                        | 14.19                           | 20,440                              | 79,579,314                     | 24                  | 0                         |
| 12/11/2021 | 40                        | 13.07                           | 18,824                              | 79,598,138                     | 24                  | 0                         |
| 12/12/2021 | 0                         | 0.00                            | 0                                   | 79,598,138                     | 24                  | 0                         |
| 12/13/2021 | 39                        | 11.26                           | 16,215                              | 79,614,353                     | 24                  | 0                         |
| 12/14/2021 | 39                        | 14.91                           | 21,476                              | 79,635,829                     | 24                  | 0                         |
| 12/15/2021 | 39                        | 16.35                           | 23,540                              | 79,659,369                     | 24                  | 0                         |
| 12/16/2021 | 39                        | 17.84                           | 25,687                              | 79,685,056                     | 24                  | 0                         |
| 12/17/2021 | 39                        | 6.16                            | 8,865                               | 79,693,921                     | 24                  | 0                         |
| 12/18/2021 | 39                        | 14.54                           | 20,937                              | 79,714,858                     | 24                  | 0                         |
| 12/19/2021 | 39                        | 17.49                           | 25,182                              | 79,740,040                     | 24                  | 0                         |
| 12/20/2021 | 39                        | 17.12                           | 24,649                              | 79,764,689                     | 24                  | 0                         |
| 12/21/2021 | 39                        | 16.96                           | 24,421                              | 79,789,110                     | 24                  | 0                         |
| 12/22/2021 | 39                        | 17.33                           | 24,956                              | 79,814,066                     | 24                  | 0                         |
| 12/23/2021 | 39                        | 17.41                           | 25,077                              | 79,839,143                     | 24                  | 0                         |
| 12/24/2021 | 39                        | 14.35                           | 20,663                              | 79,859,806                     | 24                  | 0                         |
| 12/25/2021 | 39                        | 19.28                           | 27,760                              | 79,887,566                     | 24                  | 0                         |
| 12/26/2021 | 39                        | 17.07                           | 24,583                              | 79,912,149                     | 24                  | 0                         |
| 12/27/2021 | 39                        | 16.80                           | 24,197                              | 79,936,346                     | 24                  | 0                         |
| 12/28/2021 | 39                        | 14.99                           | 21,586                              | 79,957,932                     | 24                  | 0                         |
| 12/29/2021 | 38                        | 14.79                           | 21,298                              | 79,979,230                     | 24                  | 0                         |
| 12/30/2021 | 38                        | 15.51                           | 22,333                              | 80,001,563                     | 24                  | 0                         |
| 12/31/2021 | 39                        | 14.72                           | 21,200                              | 80,022,763                     | 24                  | 0                         |
|            | 40.0                      | 14.79                           | 660,115                             | 80,022,763                     | 31                  | 100%                      |
|            | Daily<br>Maximum<br>(GPM) | Monitoring Period Average (GPM) | Monitoring<br>Period Total<br>(GAL) | Cumulative<br>Total (GAL)      | Runtime<br>(Days)   | Operational<br>Percentage |


**Attachment F** 

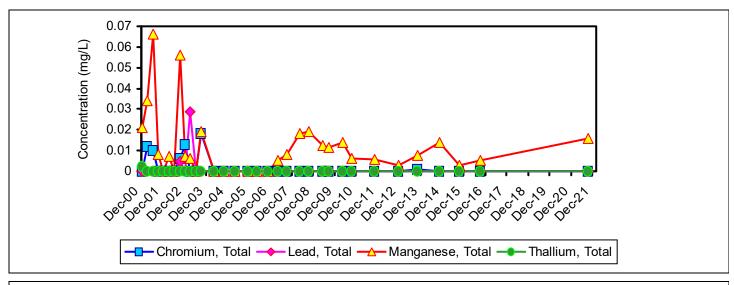
**Trend Graphs** 

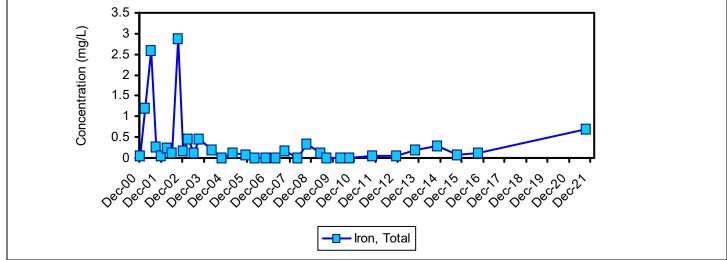

Sample Location: MW-1B
Sample Matrix: Groundwater

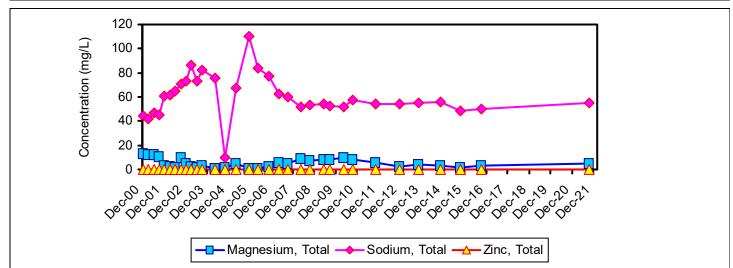


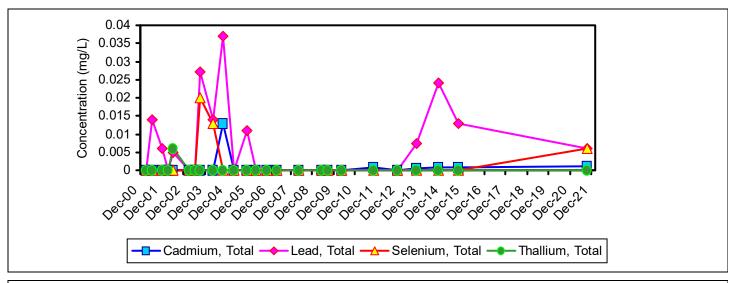


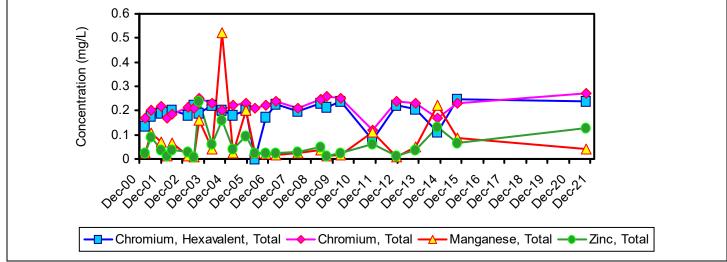


Sample Location: MW-2B
Sample Matrix: Groundwater

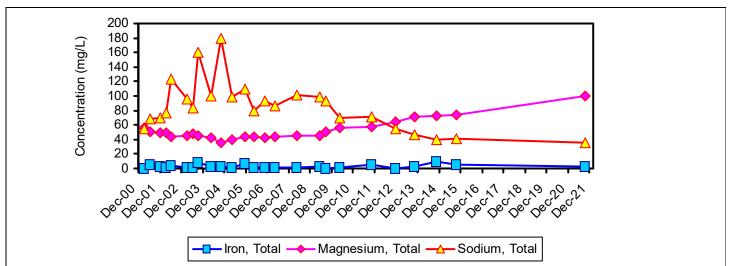


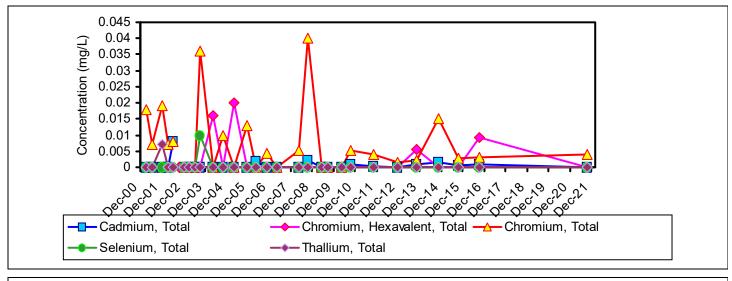


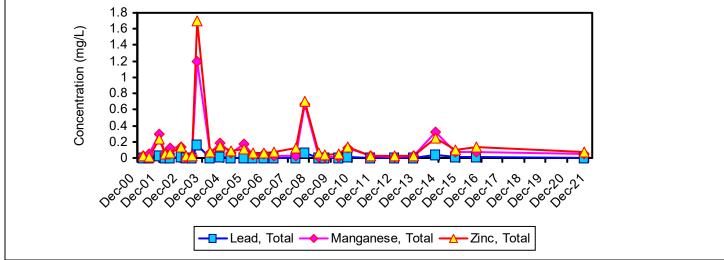


Sample Location: MW-3B
Sample Matrix: Groundwater

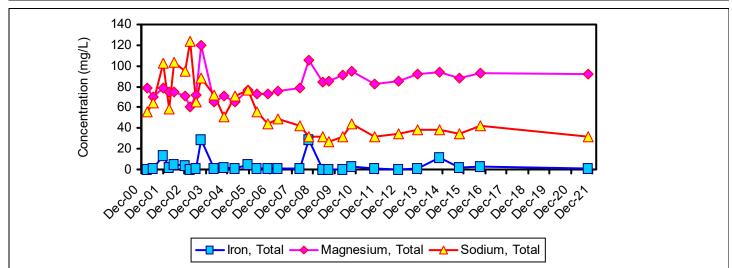


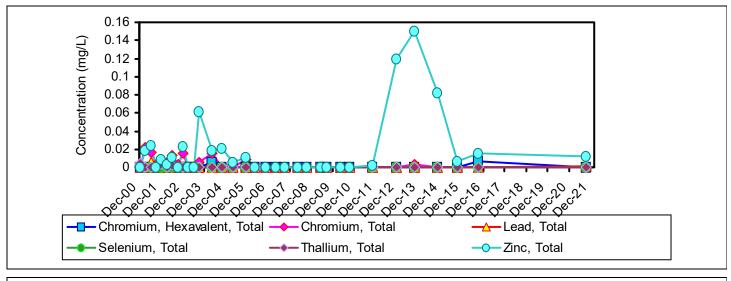


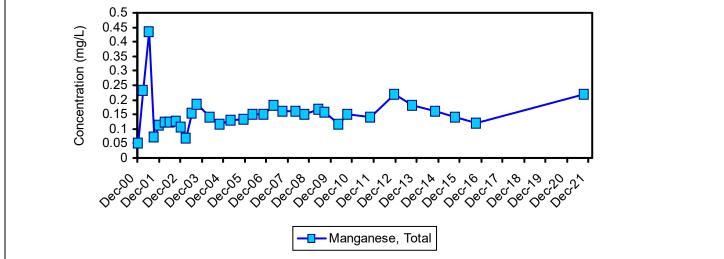


Sample Location: MW-4B
Sample Matrix: Groundwater

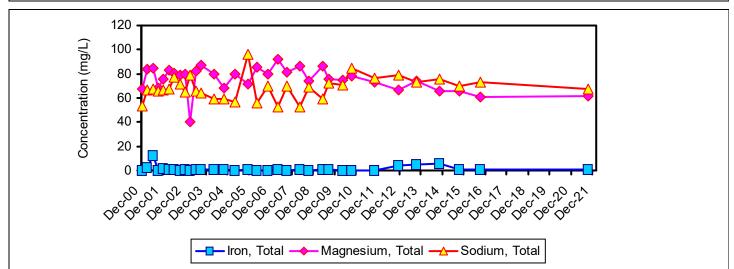


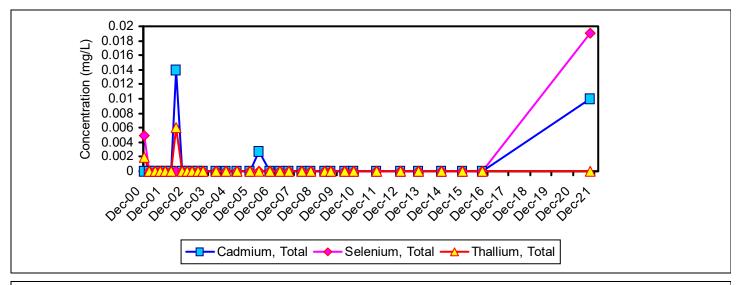


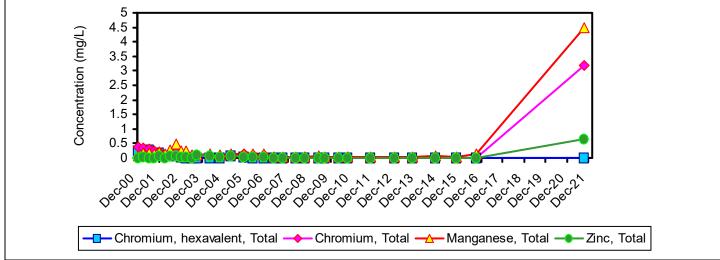


Sample Location: MW-5B
Sample Matrix: Groundwater

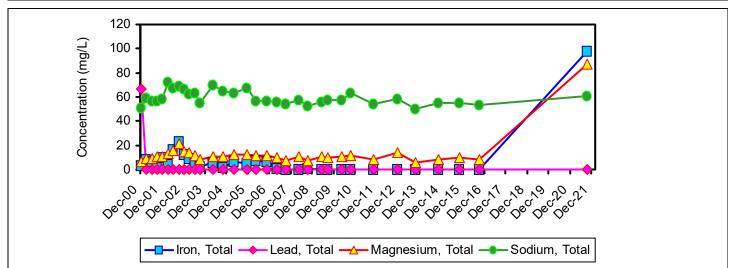


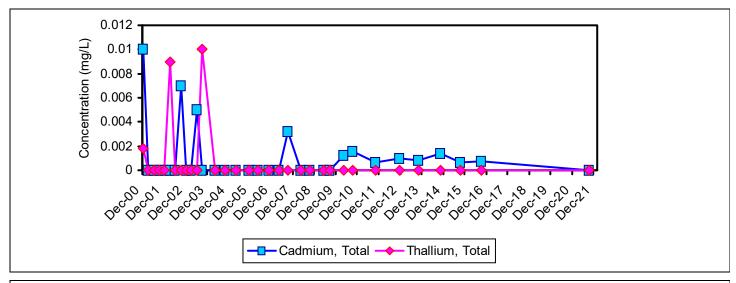


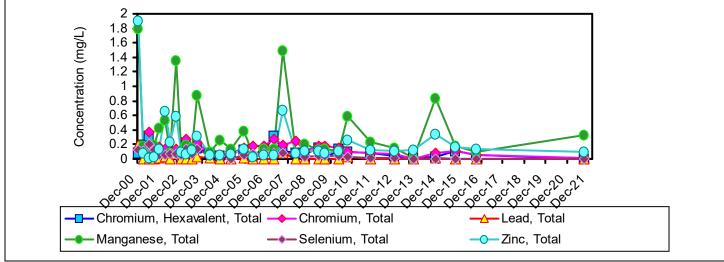


Sample Location: MW-6B
Sample Matrix: Groundwater

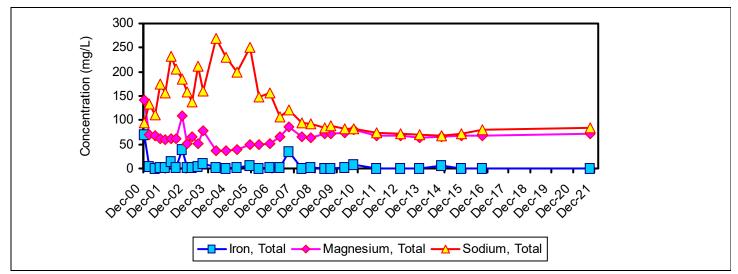




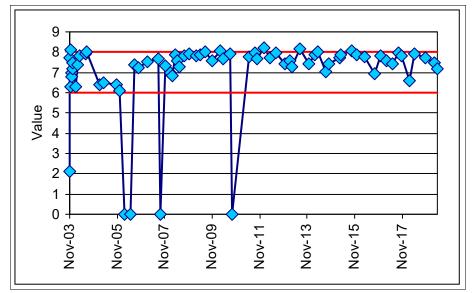


Sample Location: MW-7B
Sample Matrix: Groundwater



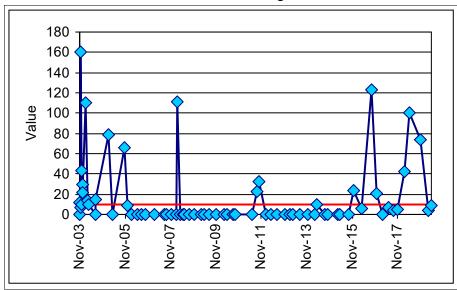



Sample Location: MW-8B
Sample Matrix: Groundwater



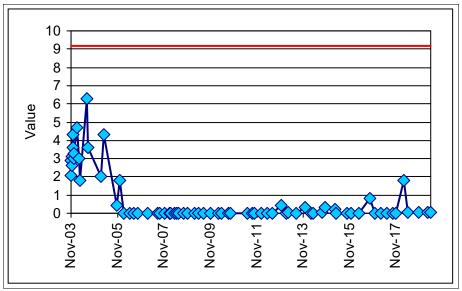






Parameter: pH

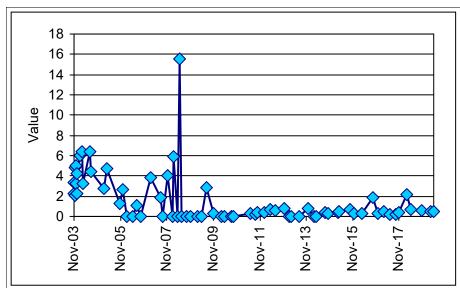
New York State Effluent Limit: 6-8 SU




Parameter: Total suspended solids

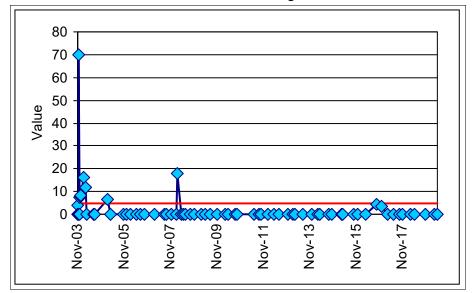
New York State Effluent Limit: 10 mg/L




Parameter: Ammonia as N

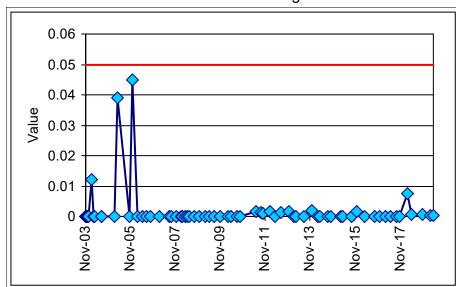
New York State Effluent Limit: 9.2 mg/L




Parameter: Total Kjeldahl nitrogen

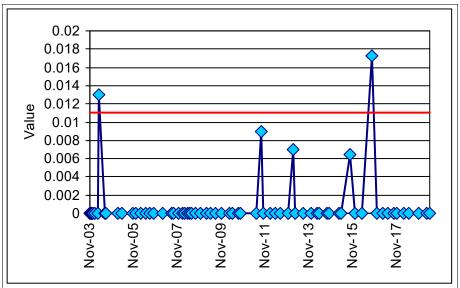
New York State Effluent Limit: Monitor




Parameter: Biochemical oxygen demand

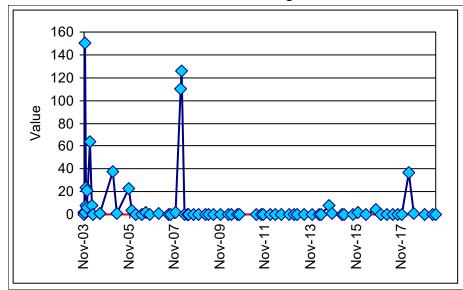
New York State Effluent Limit: 5.0 mg/L




Parameter: Total chromium

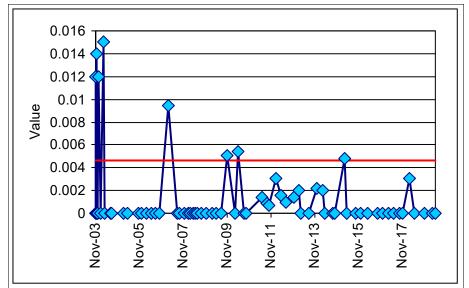
New York State Effluent Limit: 0.05 mg/L




Parameter: Hexavalent chromium

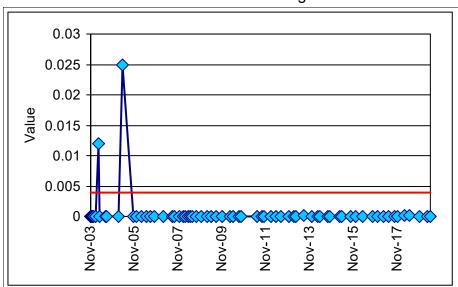
New York State Effluent Limit: 0.011 mg/L




Parameter: Iron

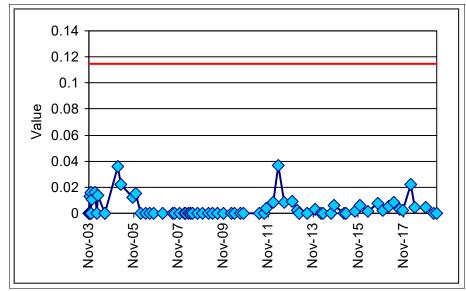
New York State Effluent Limit: 0.3 mg/L




Parameter: Selenium

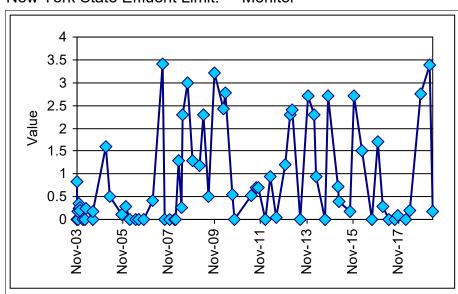
New York State Effluent Limit: 0.0046 mg/L




Parameter: Thallium

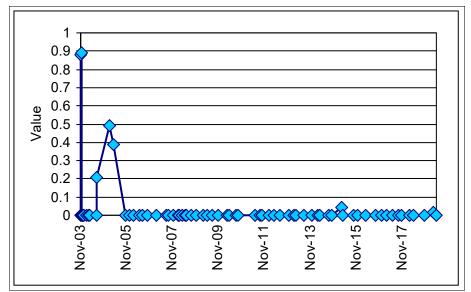
New York State Effluent Limit: 0.004 mg/L



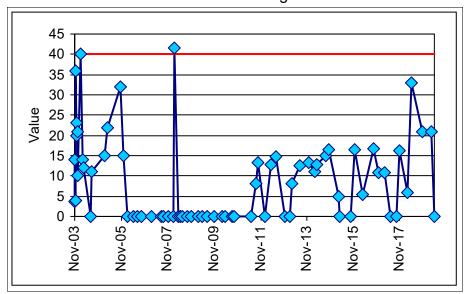

Parameter: Zinc

New York State Effluent Limit: 0.115 mg/L



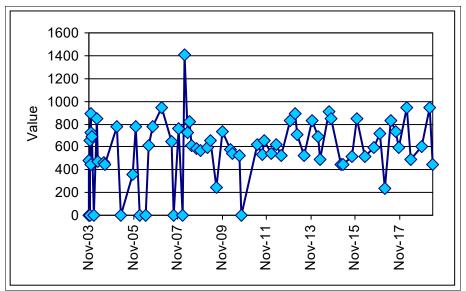

Parameter: Nitrate as N

New York State Effluent Limit: Monitor




Parameter: Nitrite as N

New York State Effluent Limit: Monitor




Parameter: Chemical oxygen demand
New York State Effluent Limit: 40 mg/L



Parameter: Total dissolved solids

New York State Effluent Limit: Monitor

