2017 PERIODIC REVIEW REPORT

CC Metals and Alloys, LLC Witmer Road Niagara, New York

Submitted to:

New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, NY 14203-2915

Attn: Mr. Michael Hinton

Prepared by:

88 Riberia Street • St. Augustine, FL 32084 • Ph: (904) 824-6999 • Fax: (904) 824-0726 • www.lan-fl.com

LAN Ref # 2.3643.19 April 28, 2017

2017 PERIODIC REVIEW REPORT

CC Metals and Alloys, LLC Witmer Road Property Town of Niagara, NY

This report was prepared under the direction and review of the undersigned persons. It is hereby certified that in our professional judgment, the content of this report meets with industry standards, satisfies the requirements of the New York State Department of Environmental Conservation, and follows generally acceptable engineering principals.

Guy D. Van Doren, P.E.

Date: April 28, 2017

>

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	ite No.	932001C	Site Details	Box	l	
SI	te Name SKV	V Newco Inc.				
Ci	te Address: W ty/Town: Niag bunty: Niagara te Acreage: 9.	ara	Zip Code: 14305			
Re	eporting Period	l: June 03, 20	013 to April 01, 2017			
				YES	NC	C
1.	Is the inform	ation above co	orrect?	X		
	If NO, include	e handwritten	above or on a separate sheet.			
2.	Has some or tax map ame	all of the site	property been sold, subdivided, merged, or und g this Reporting Period?	dergone a □	×	
3.	Has there be (see 6NYCR	en any chang R 375-1.11(d)	e of use at the site during this Reporting Period)?			X
ł.	Have any fed for or at the p	leral, state, an property during	nd/or local permits (e.g., building, discharge) be g this Reporting Period?	en issued □	×	
		and a second of the				
	If you answe that docume	ered YES to q entation has b	uestions 2 thru 4, include documentation or been previously submitted with this certifica	r evidence tion form.		
5.	that docume	ntation has t	uestions 2 thru 4, include documentation or been previously submitted with this certifica oing development?	r evidence tion form. □		X
j.	that docume	ntation has t	been previously submitted with this certifica	tion form.		X
5.	that docume	ntation has t	been previously submitted with this certifica	tion form. □	NO	×
	Is the site cur	rrently undergo	been previously submitted with this certifica	tion form. □ Box 2	NO	×
i.	Is the site cur	rrently undergo	oeen previously submitted with this certifica	Ition form.	NO	
i.	Is the site cur Is the current Are all ICs/EC	site use consi site nace and	ore previously submitted with this certifica oing development?	Ition form.	NO	
	Is the site cur Is the current Are all ICs/EC IF THE DO	site use consi cs in place and ANSWER TO D NOT COMPI	oing development? istent with the use(s) listed below? d functioning as designed?	tion form. □ Box 2 YES ☆ ★ te below and ontinue.		

SITE NO. 932001C		Box 3
Description of	nstitutional Controls	
<u>Parcel</u> 130.16-1-10	Owner CC Metals and Alloys, LLC (fo	Institutional Control ormerly SKW) Ground Water Use Restriction
		Landuse Restriction O&M Plan Site Management Plan
Description of E	ngineering Controls	Box 4
Parcel	Engineering Contro	1
30.16-1-10		
	Cover System Fencing/Access Co	ntrol

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the certification; 	tion o	f, and
	b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and gener engineering practices; and the information presented is accurate and compete.	n this o ally ac	certification cepted
		YES	NO
		×	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true:	each I all of	nstitutional the
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is the date that the Control was put in-place, or was last approved by the Departme	uncha nt;	anged since
	 (b) nothing has occurred that would impair the ability of such Control, to protect p the environment; 	oublic	health and
	(c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control;	the rea	medy,
	 (d) nothing has occurred that would constitute a violation or failure to comply with Management Plan for this Control; and 	the S	ite
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the	the site	e, the ment.
		YES	NO
		×	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
		an Inc	
A	Corrective Measures Work Plan must be submitted along with this form to address the	se iss	ues.

		IC CERTIFICATIONS SITE NO. 932001C	
			Box 6
l certify the statement Penal Law	at all information and made herein is punis	nable as a Class "A" misdemear	ITATIVE SIGNATURE are true. I understand that a false nor, pursuant to Section 210.45 of the
	print name	atprint busine	less address
am certifyi	ng as		(Owner or Remedial Party)
or the Site	named in the Site De	etails Section of this form.	

	IC/EC CERTIFICA	TIONS	
Qualified	Environmental Pro	ofessional Signature	Box 7
certify that all information in Boxes 4 ounishable as a Class "A" misdemean	and 5 are true. I u	nderstand that a false sta	atement made herein i
	or, pursuant to Sec	ation 210,45 of the Penal	Law.
	at		
print name m certifying as a Qualified Environme	print	business address or the (Owner or Reme	dial Party)
print name m certifying as a Qualified Environme	print	or the	dial Party)
	print	or the	dial Party)

ſ

PERIODIC REVIEW REPORT (PRR)

FOR CC METALS AND ALLOYS, LLC WITMER ROAD

TABLE OF CONTENTS

SECTION NO.		TITLE	PAGE NO.
1.0	EXECUTIVE SUMMA	RY	1
A.		UMMARY OF SITE, NATURE AND ND REMEDIAL HISTORY	
B.		THE REMEDIAL PROGRAM TO A VES FOR THE SITE	
1.		JRING THE REPORTING PERIOD ECTIVES FOR THE SITE	
C.	COMPLIANCE		2
1.	ELEMENTS OF THE S INSTITUTIONAL/ENG MONITORING PLAN,	AS OF NON-COMPLIANCE REGAE SITE MANAGEMENT PLAN (SMP, GINEERING CONTROL (IC/EC) PL AND THE OPERATION & MAINT	I.E., THE JAN, THE YENANCE (O&M)
2.		BE TAKEN AND SCHEDULE TO C	
D.	RECOMMENDATION	[S	2
1.	RECOMMEND WHET	THER ANY CHANGES TO THE SM	P ARE NEEDED2
2.		CHANGES TO THE FREQUNECY F CCREASE)	
2.0	SITE OVERVIEW		2
A.	EATURES, SURROUN	LOCATION, BOUNDARIES (FIGU DING AREA, AND THE NATURE A RIOR TO SITE REMEDIATION	AND EXTENT OF

B.	DESCRIBE THE CHRONOLOGY OF THE MAIN FEATURES OF THE REMEDIALPROGRAM FOR THE SITE, THE COMPONENTS OF THE SELECTED REMEDY, CLEANUP GOALS, SITE CLOSURE CRITERIA, AND ANY SIGNIFICANT CHANGES TO THE SELECTED REMEDY THAT HAVE BEEN MADE SINCE REMEDY SELECTION
3.0	EVALUATE REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS
4.0	DECLARATION OF COVENENT AND RESTRICTIONS
5.0	MONITORING PLAN COMPLIANCE REPORT4
A.	COMPONENETS OF THE MONITORING PLAN (TABULAR) PRESENTATIONS PREFERRED)-DESCRIBE THE REQUIRMENTS OF THE MONITORING PLAN BY MEDIA (I.E., SOIL, GROUNDWATER, SEDIMENT, ETC.) AND BY ANY REMEDIAL TECHNOLOGIES BEING USED AT THE SITE
B.	SUMMARY OF MONITORING COMPLETED DURING REPORTING PERIOD- DESCRIBE THE MONITORING TASKS ACTUALLY COMPLETED DURING THIS PRR REPORTING PERIOD. TABLES AND/OR FIGURES SHOULD BE USED TO SHOW ALL DATA
C.	CONCLUSIONS AND RECOMMENDATIONS FOR CHANGES-PROVIDE OVERALL CONCLUSIONS REGARDING THE MONITORING COMPLETED AND THE RESULTING EVALUATIONS REGARDING REMEDIAL EFFECTIVENESS
6.0	OPERATION & MAINTENANCE (O&M) PLAN COMPLIANCE REPORT5
A.	COMPONENTS OF O&M PLAN-DESCRIBE THE REQUIRMENTS OF THE O&M PLAN INCLUDING REQUIRED ACTIVITIES, FREQUNECIES, RECORD KEEPING, ETC
B.	SUMMARY OF O&M COMPLETED DURING REPORTING PERIOD-DESCRIBE THE O&M TASKS ACTUALLY COMPLETED DURING THIS PRR REPORTING PERIOD
C.	EVALUATION OF REMEDIAL SYSTEMS-BASED UPON THE RESULTS OF THE O&M ACTIVITIES COMPLETED, EVALUATE THE ABILITY OF EACH COMPONENT OF THE REMEDY SUBJECT TO O&M REQUIREMENTS TO PERFORM AS DESIGNED/EXPECTED
D.	O&M DEFICIENCIES-IDENTIFY ANY DEFICIENCIES IN COMPLYING WITH THE O&M PLAN DURING THE PRR REPORTING PERIOD

E.	CONCLUSIONS AND RECOMMENDATIONS FOR IMPOROVEMENTS-
	PROVIDE AN OVERALL CONCLUSION REGARDING O&M FOR THE SITE
	AND IDENTIFY ANY SUGGESTED IMPROVEMENTS REQUIRING CHANGES
	IN THE O&M PLAN7
7.0	OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS7
A.	COMPLIANCE WITH SMP-FOR EACH COMPONENT OF THE SMP (I.E. IC/EC,
	MONITORING, O&M), SUMMARIZE7
1.	WHETHER ALL REQUIRMENTS OF EACH PLAN WERE MET DURING THE
	REPORTING PERIOD
2.	ANY REQUIRMENTS WERE NOT MET7
3.	PROPOSED PLANS AND A SCHEDULE FOR COMING INTO FULL
	COMPLIANCE7

LIST OF FIGURES

FIGURE	TITLE
1	SITE LOCATION
2	SITE PLAN
3	GROUNDWATER FLOW DIRECTION (4/28/2016)

LIST OF APPENDICES

APPENDIX	TITLE
1	MODIFIED GROUNDWATER MONITORING PLAN
2	OPERATION AND MAINTENANCE PLAN
3	SKW HISTORICAL PERMITS
4	ANNUAL GROUNDWATER ANALYTICAL SUMMARY
5	LABORATORY ANALYTICAL REPORT
6	LANDFILL INSPECTION CHECKLIST
7	PHOTOGRAPHIC DOCUMENTATION
8	LAND CARE DOCUMENTATION

PERIODIC REVIEW REPORT (PRR)

FOR CC METALS AND ALLOYS, LLC WITMER ROAD

1.0 EXECUTIVE SUMMARY A. PROVIDE A BRIEF SUMMARY OF SITE, NATURE AND EXTENT OF CONTAMINATION, AND REMEDIAL HISTORY.

CC Metals and Alloys, Inc. formerly known as SKW Metals and Alloys, Inc. (CCMA or SKW), owns a portion (SKW Property) of the "Vanadium Corporation of America" (Vanadium Site) site No. 932001, which is listed in the New York State Department of Environmental Conservation's (NYSDEC) Registry of Inactive Hazardous Waste Disposal Sites (Registry). A site location map is provided in Figure 1. A map showing the limits of the CCMA Property is provided in Figure 2. The Vanadium site has been divided into 3 operable units (OUs) based on current property ownership. OU #1 is owned by CCMA and consists of a landfill that occupies a part of the northern portion of the property. The landfill consists of Cells No. 1 and No. 2. The landfill was properly closed in 1992-1993 in accordance with NYSDEC regulations and the NYSDEC approved the closure in 1994. The presence of hazardous waste has created significant threats to human health and/or the environment. As noted in the Record of Decision dated March 2006 in the past, portions of the Vanadium site have been used for the disposal of waste from the on-site and off-site manufacturing of specialty steel products. These activities resulted in the disposal of hazardous wastes, containing ferromanganese slag, calcium hydroxide, and ferrochromium dust, and ferrochromium silicon dusts. These wastes have contaminated the surface soils, subsurface soils, shallow groundwater, surface water run-off, sediments and drainage pathways at the site.

Conferences with NYSDEC personnel developed a plan and scope of work that was agreed upon to install an earthen cap to manage and reduce stormwater infiltration on areas surrounding the landfill proper (Cells No. 1 and No. 2). The plan also addressed drainage onto the SKW property from adjoining properties through berm construction and re-grading, and establishment and fertilization of groundcover in areas surrounding Cells No.1 and No. 2.

B. EFFECTIVENESS OF THE REMEDIAL PROGRAM TO ACHIEVE THE REMEDIAL OBJECTIVES FOR THE SITE.

Based on the results of the Remedial Investigation and Feasibility Study (RI/FS) for the Vanadium site the NYSDEC selected a No Further Action for OU #1 on March 31, 2006.

1. PROGRESS MADE DURING THE REPORTING PERIOD TOWARD MEETING THE REMEDIAL OBJECTIVES FOR THE SITE

The site continues to meet the remedial objectives through following the monitoring plan (App.1) and implementing the operation and maintenance plan developed for the site. (App. 2) The progress made during the reporting period exemplifies that ability of the remedial program to be successful in the future.

C. COMPLIANCE

1. IDENTIFY ANY AREAS OF NON-COMPLIANCE REGARDING THE MAJOR ELEMENTS OF THE SITE MANAGEMENT PLAN (SMP,I.E., THE INSTITUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN, THE MONITORING PLAN, AND THE OPERATION & MAINTENANCE (O&M) PLAN).

The CCMA site did not experience any non-compliance issues for the 2016 calendar year in regards to the (IC/EC) Plan, the Monitoring Plan or the (O&M) Plan.

2. PROPOSE STEPS TO BE TAKEN AND SCHEDULE TO CORRECT ANY AREAS OF NON-COMPLIANCE.

Not applicable at this time.

D. RECOMMENDATIONS

1. RECOMMEND WHETHER ANY CHANGES TO THE SMP ARE NEEDED

No changes to the SMP are necessary at this time.

2. RECOMMEND ANY CHANGES TO THE FREQUNECY FOR SUBMITTAL OF PRRS (INCREASE, DECREASE)

The CCMA OU#1 site is of relative low concern and the need to increase the submittal of PRRS is not necessary. It is recommended that submittal of PRRS continue at the annual frequency.

2.0 SITE OVERVIEW

A. DESCRIBE THE SITE LOCATION, BOUNDARIES (FIGURE), SIGNIFICANT EATURES, SURROUNDING AREA, AND THE NATURE AND EXTENT OF CONTAMINATION PRIOR TO SITE REMEDIATION.

The subject landfill is located on the south side of NY Highway #31, approximately two miles northeast of the intersection of NY Highway #31 and Hyde Park Boulevard in/near Niagara, NY. CCMA, formerly known as SKW Metals and Alloys, Inc., received a NYSDEC Permit to operate the subject solid waste disposal facility in 1980. The landfill consisted of two landfill cells that were designed for the disposal of baghouse dusts from the nearby ferroalloy production

plant. According to historical engineering documents there were two cells known as Cell No. 1 and Cell No. 2, that were permitted under the NYSDEC permit. Cell No. 1 has a 5-foot clay liner with leachate collection system, while Cell No. 2 has a 2-foot clay liner with leachate collection system. Permit #2585 (App. 3) issued by NYSDEC provided the closure requirements of this landfill. A closure plan was submitted on January 28, 1988, and was subsequently approved. Since that time, CCMA has been performing the required post-closure monitoring as required by the regulations and set forth in the closure plan.

B. DESCRIBE THE CHRONOLOGY OF THE MAIN FEATURES OF THE REMEDIALPROGRAM FOR THE SITE, THE COMPONENTS OF THE SELECTED REMEDY, CLEANUP GOALS, SITE CLOSURE CRITERIA, AND ANY SIGNIFICANT CHANGES TO THE SELECTED REMEDY THAT HAVE BEEN MADE SINCE REMEDY SELECTION.

In response to the NYSDEC's inclusion of the Vanadium Site on the Registry, CCMA entered into an Order on Consent in 1998 with the NYSDEC, Index No. B9-0470-94-12, a copy of which was attached to and made a part of a Declaration of Covenants and Restrictions which was recorded in the Niagara County's Clerk's Office on July 30, 1998. CCMA undertook remedial measures to address conditions in a n area in the southeast portion of the property, which measures included regarding to (i) eliminate off-site surface water runoff from entering the property, (ii) isolate on-site stormwater to prevent contact with underlying soil and groundwater, (iii) produce a site drainage system for the property to control stormwater discharge from the property and (iv) eliminate on-site low lying areas where surface water could accumulate. NYSDEC approved the remedial measures completion report in a letter dated January 13,2000 and the Declaration of Covenants and Restrictions recorded at the Niagara County Clerk Office on July 30, 1998 automatically terminated upon satisfaction of the obligations imposed under the Order on Consent.

3.0 EVALUATE REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

Groundwater Monitoring continues to show positive results for the OU#1 site. As of 2014 groundwater monitoring events were adjusted from a semi-annual to annual occurrence. Appendix 4 (Annual Groundwater Analytical Summary) illustrates the results of the groundwater monitoring events from 2013 thru 2016. Exceedances are illustrated as being bold values in the table.

4.0 DECLARATION OF COVENENT AND RESTRICTIONS

Following the completion of the interim remedial measure a covenant & restriction was developed, approved and filed. This document remains in full force.

5.0 MONITORING PLAN COMPLIANCE REPORT A. COMPONENETS OF THE MONITORING PLAN (TABULAR) PRESENTATIONS PREFERRED)-DESCRIBE THE REQUIRMENTS OF THE MONITORING PLAN BY MEDIA (I.E., SOIL, GROUNDWATER, SEDIMENT, ETC.) AND BY ANY REMEDIAL TECHNOLOGIES BEING USED AT THE SITE.

Provisions have been made for groundwater and surface water monitoring for Cells 1 and 2. Implementation of this program during the facility's post-closure period provides the required data to evaluate the potential effects of Cells 1 and 2 on both the site's ground and surface water. A series of five monitoring wells are utilized to monitor the quality of groundwater contained in the permeable sediments overlying the bedrock. Appendix 4 (Annual Groundwater Analytical Summary) illustrates the results of the groundwater monitoring events from 2013 thru 2016. Exceedances are illustrated as being bold values in the table.

B. SUMMARY OF MONITORING COMPLETED DURING REPORTING PERIOD-DESCRIBE THE MONITORING TASKS ACTUALLY COMPLETED DURING THIS PRR REPORTING PERIOD. TABLES AND/OR FIGURES SHOULD BE USED TO SHOW ALL DATA.

Based on groundwater elevation data obtained from the monitoring wells during the April 2016 monitoring period, groundwater flows in a southerly direction across the site. (Figure 3) This is consistent with recorded historic groundwater flow patterns. Surface water quality is monitored using samples obtained from the site's drainage retention swale. In addition, samples are obtained from the landfill leachate sump (LS-1).

Monitoring wells MW-3R, MW-5R, MW-12, MW-BR1, and MW-14N are indicated on Figure 2 showing locations, monitoring well sampling point top-of-casing elevations, and surface water drainage patterns. Based on the site's previously noted groundwater flow direction (southerly), monitoring well 3R is used to provide upgradient data, while monitoring wells 5R, 12, BR1, and 14N provide data on groundwater quality downgradient of the site's disposal areas (Cells 1 and 2).

Cell 1 was closed to all waste materials and covered with a minimum of 18 inches of low permeability compacted soil (maximum permeability of 1.0×10^{-7} cm/sec) and 6 inches of soil capable of supporting vegetative growth. It is reported that Cell 2 was similarly closed. Surface water runoff from the closed facilities does not come in contact with the waste materials previously deposited in Cells 1 and 2. However, as a precaution surface water samples are taken at the southwest corner of the site, where surface water collects and flows into the stormwater drainage pipe and then offsite to the City of Niagara Falls combined sewer system (sample location SW-1).

Groundwater and surface water analytical samples are collected by TestAmerica Laboratories, Inc. (TestAmerica). Historically samples have been collected on a semi-annual basis. However,

LAN submitted a *Request for Modification of Groundwater Sampling Plan* to the NYSDEC dated October 2013 which requested a change from semi-annual to annual sampling. This request was based on a thorough statistical analysis of historic water quality data collected to that time. In a letter dated March 2014 from the NYSDEC, the requested modification to annual sampling was approved. As such, samples are now analyzed on an annual basis for routine parameters; specific conductivity, temperature, pH, Eh, turbidity, COD, TOC, TDS, SO4, Cl, Br, Pb, Mn, K, and Na. In addition, annual samples are analyzed for baseline parameters; As, Ba, Cr, Cr+6, Hg, Se, and B. Samples are also obtained for Volatile Organic Compounds (VOCs) as specified in the New York State Regulation 6 NYCRR Part 360, §360-2.11(d)(6) Water Quality Analysis Tables, Baseline Parameters list.

The following laboratory analytical methods were utilized: VOCs analyzed via Method 8260C (VOCs by GC/MS); Metals analyzed via method 6010C (ICP); Mercury analyzed via Method 7470A (CVAA); General Chemistry Methods for bromide, chloride, sulfate via Method 300.0, Chemical Oxygen Demand (COD) via Method 410.4, Total Disolved Solids (TDS) via Method SM 2540C, Hexavalent Chromium-Cr (VI) via Method SM 3500 CR B, and Total Organic Carbon (TOC) via Method SM 5310D. Field parameters such as water temperature, pH, conductivity, turbidity and ORP were measured by the TestAmerica field personnel during the well sampling. Refer to the laboratory analytical report in Appendix 5.

C. CONCLUSIONS AND RECOMMENDATIONS FOR CHANGES-PROVIDE OVERALL CONCLUSIONS REGARDING THE MONITORING COMPLETED AND THE RESULTING EVALUATIONS REGARDING REMEDIAL EFFECTIVENESS.

Overall there have been no significant changes in water quality during the past year. A summary of groundwater quality data for the past year, as well as historic analytical data inclusive of the last six monitoring events, is provided in Appendix 4.

6.0 OPERATION & MAINTENANCE (O&M) PLAN COMPLIANCE REPORT A. COMPONENTS OF O&M PLAN-DESCRIBE THE REQUIRMENTS OF THE O&M PLAN INCLUDING REQUIRED ACTIVITIES, FREQUNECIES, RECORD KEEPING, ETC.

LAN is responsible for conducting and filing a Waste Management Facility Maintenance Inspection Report. The inspection report consists of a checklist, which covers the following annual evaluation.

- Bank and cover erosion
- Settlement
- Cover soil integrity
- Condition of vegetative cover
- Condition of monitoring wells
- Site security

If items are encountered during the inspections that are of significant environmental concern, necessary corrective actions are undertaken as expeditiously as possible. Notices of these actions, if necessary, are reported to the NYSDEC explaining the nature and location of the problem and the corrective action taken.

B. SUMMARY OF O&M COMPLETED DURING REPORTING PERIOD-DESCRIBE THE O&M TASKS ACTUALLY COMPLETED DURING THIS PRR REPORTING PERIOD.

On November 9 & 10, 2016 the required annual inspection was conducted by a representative of LAN.

A copy of the inspection checklist is included as Appendix 6. Photographic documentation is included as Appendix 7. The following is a synopsis of the findings of the inspection.

- The landfill cells and surrounding property were mowed and cleared of debris (fallen limbs/branches) the day before the inspection and found in very good condition.
- Sevenson Environmental Services, Inc. (Sevenson) accessed the property to inspect an adjacent property on which they had performed environmental clean-up in 2014. There were no impacts to the CCMA property as a result of this access. This should be the last year that Sevenson needs to access their wetland through the CCMA property.
- No evidence of erosion or impact to the site was noted during the inspection.
- The 15" corrugated high-density polyethylene (HDPE) drainage pipe located at the SW-1 surface water sample location, repaired following the 2013 inspection, was found to be in proper working order.
- All monitoring wells and sampling locations were found in proper working order and in good condition.
- A fallen tree in the NW portion of the site was cleared by A-1 Land Care on 12/2/2016. Refer to Appendix 8.
- Areas of the fence required clearing of vegetative growth. This work was conducted by A-1 Land Care on 12/2/2016 (Appendix 8).

C. EVALUATION OF REMEDIAL SYSTEMS-BASED UPON THE RESULTS OF THE O&M ACTIVITIES COMPLETED, EVALUATE THE ABILITY OF EACH COMPONENT OF THE REMEDY SUBJECT TO O&M REQUIREMENTS TO PERFORM AS DESIGNED/EXPECTED.

The remedial system continues to meet the O&M requirements to perform as designed.

D. O&M DEFICIENCIES-IDENTIFY ANY DEFICIENCIES IN COMPLYING WITH THE O&M PLAN DURING THE PRR REPORTING PERIOD.

No deficiencies were identified during the PRR reporting year.

E. CONCLUSIONS AND RECOMMENDATIONS FOR IMPOROVEMENTS-PROVIDE AN OVERALL CONCLUSION REGARDING O&M FOR THE SITE AND IDENTIFY ANY SUGGESTED IMPROVEMENTS REQUIRING CHANGES IN THE O&M PLAN.

All required post-closure activities for the 2016 year have been conducted. Items of concern discovered during the annual site inspection were noted and appropriate corrective actions were implemented. Continued annual post-closure monitoring and inspections will be conducted to ensure the landfill is functioning as designed, and does not pose a threat to humans and/or the environment.

7.0 OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS A. COMPLIANCE WITH SMP-FOR EACH COMPONENT OF THE SMP (I.E. IC/EC, MONITORING, O&M), SUMMARIZE; I. WHETHER ALL REQUIRMENTS OF EACH PLAN WERE MET

1. WHETHER ALL REQUIRMENTS OF EACH PLAN WERE MET DURING THE REPORTING PERIOD

All requirements made by the Monitoring and O&M plans were met during the reporting period.

2. ANY REQUIRMENTS WERE NOT MET

Not applicable.

3. PROPOSED PLANS AND A SCHEDULE FOR COMING INTO FULL COMPLIANCE.

OU#1 is currently in full compliance and scheduled accordingly.

FIGURE 1

SITE LOCATION

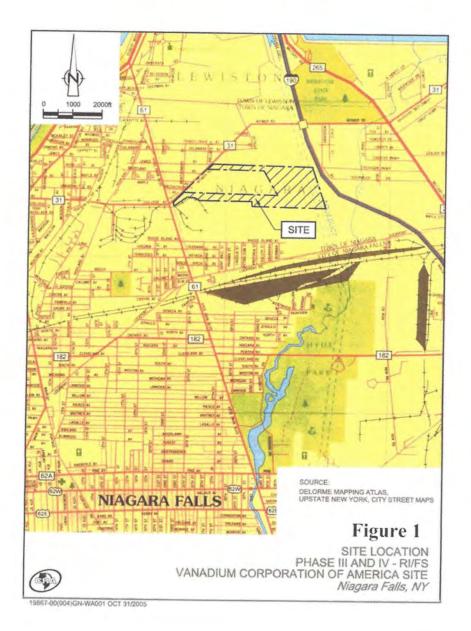


FIGURE 2

SITE PLAN

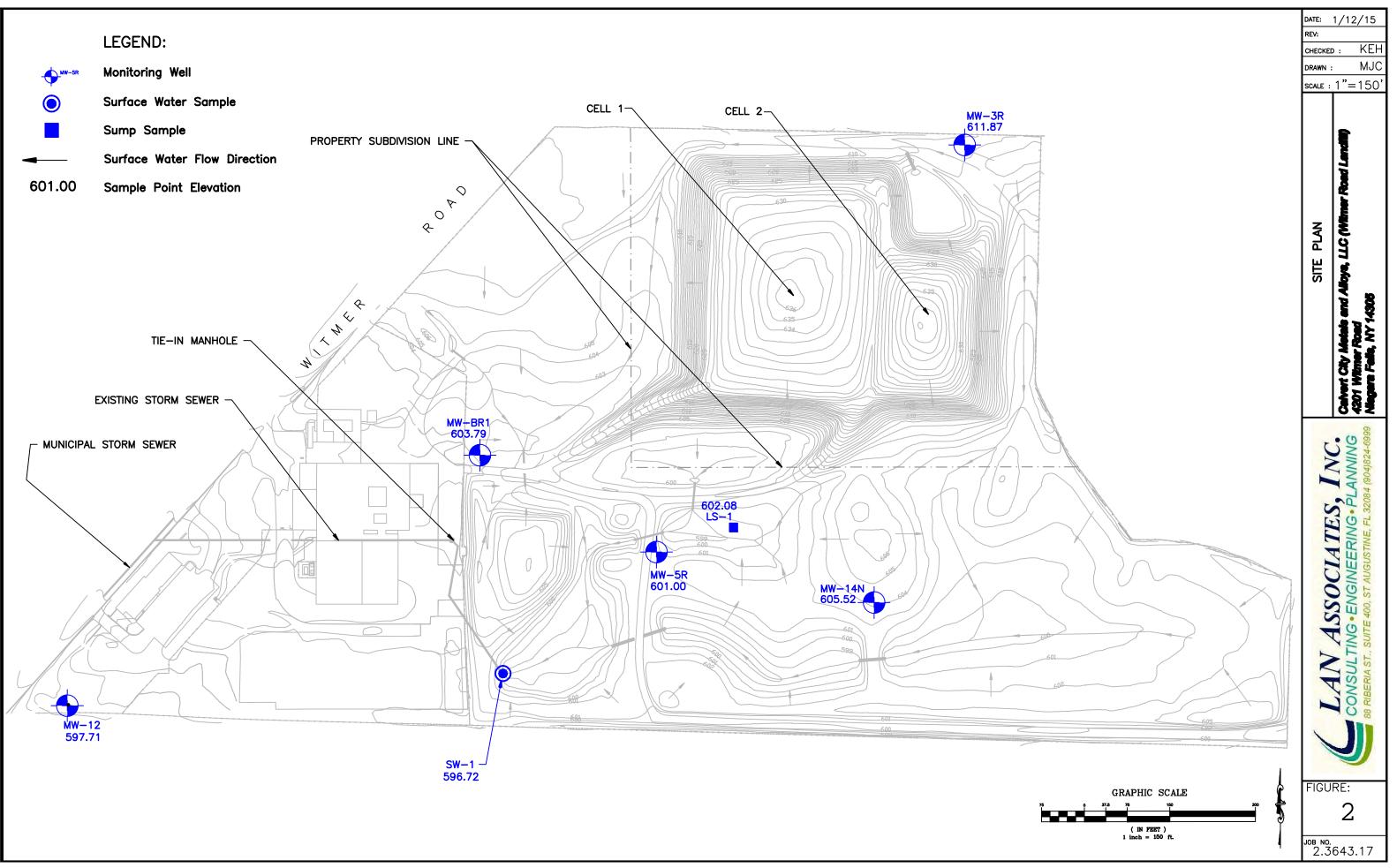
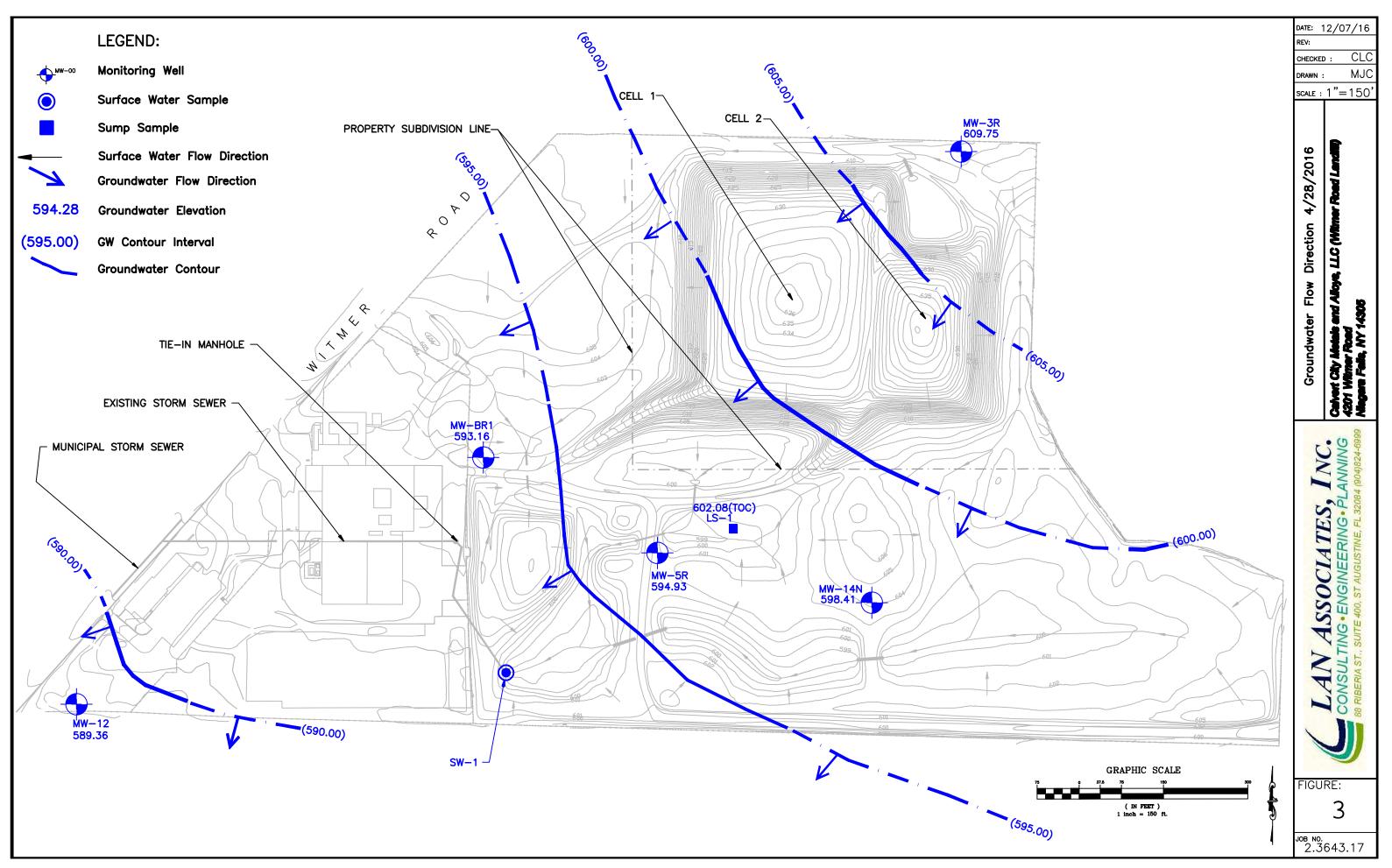



FIGURE 3

GROUNDWATER FLOW DIRECTION (4/28/2016)

APPENDIX 1

MODIFIED GROUNDWATER MONITORING PLAN

New York State Department of Environmental Conservation

Division of Materials Management, Region 9

270 Michigan Avenue, Buffalo, New York 14203-2915 Phone: (716) 851-7220 • **FAX:** (716) 851-7226 **Website:** <u>www.dec.ny.gov</u>

RECEIVED MAR 1 4 2014

March 11, 2014

Mr. Guy D. VanDoren, P.E. President LAN Associates, Inc. 88 Riberia Street, Suite 400 St. Augustine, Florida 32084

Dear Mr. VanDoren:

CC Metals and Alloys #32N04

The Divisions of Materials Management and Remediation have reviewed the document "Request for Modification of Groundwater Sampling Plan" submitted with your letter dated November 5, 2013 prepared on behalf of CC Metals and Alloys for its closed landfill on Witmer Road in the town of Niagara. This document requested a reduction in monitoring frequency from semi-annual to annual, and provided supporting information for the request.

Both Divisions agree that based on the data presented, this request can be granted. Therefore, annual sampling will be required in 2014 and subsequent years, unless the annual sampling data indicates any issues which would warrant a return to semi-annual sampling.

If you have any questions, please contact this office at (716) 851-7220.

Sincerely,

Mary E M. Jutonto

Mary É. McIntosh, C.P.G. Engineering Geologist 2

MEM/ed

 cc: Mr. Dennis Weiss, Regional Materials Management Engineer Mr. Michael Hinton, Division of Environmental Remediation Mr. David Matthews, LAN Associates Mr. Edward Bredniak, CC Metals and Alloys

November 5, 2013

VIA UPS GROUND

Ms. Mary McIntosh, C.P.G. Engineering Geologist II New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, NY 14203-2999

> Subject: CC Metals and Alloys, LLC Witmer Road Solid Waste Management Facility LAN Ref. #2.3643.17

Dear Ms. McIntosh:

Per your telephone conversation with Dave Matthews of LAN Associates, Inc. (LAN), on behalf of CC Metals and Alloys, LLC (CCMA), enclosed is one original report of the *Request for Modification of Groundwater Sampling Plan*, for your review and approval.

If you have any questions after reviewing this report, please do not hesitate to contact me directly at (904) 824-6999.

Very truly yours,

Guy D. VanDoren, P.E. President

GVD:kk 2.3643.17-L-NYSDEC-GWPlanMod Req-131105-gvd

Enclosure: Request for Modification of Groundwater Sampling Plan dated 10/30/2013

Copies to: Mr. Gary Joiner, Plant Manager, CCMA

REQUEST FOR MODIFICATION OF GROUNDWATER SAMPLING PLAN OCTOBER 2013

WITMER ROAD SOLID WASTE MANAGEMENT FACILITY Niagara, NY

Submitted to:

New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, NY 14203-2999

> Attention: Ms. Mary McIntosh, C.P.G. Engineering Geologist II

Prepared by:

88 Riberia Street, Suite 400 • St. Augustine, FL 32084 Ph: (904) 824-6999 • Fax: (904) 824-0726 • www.lan-fl.com

LAN Ref. #2.3643.17 October 30, 2013

REQUEST FOR MODIFICATION OF GROUNDWATER SAMPLING PLAN OCTOBER 2013

CC Metals and Alloys, LLC Witmer Road Solid Waste Management Facility Niagara, NY

TABLE OF CONTENTS

Section No.	Title	Page No.
1.0 INTROE	DUCTION	1
2.0 SITE DE	SCRIPTION/HISTORY	2
3.0 GROUN	DWATER MONITORING/FLOW/HYDROGEOLOGY	3
4.0 STATIS	FICAL ANALYSIS OVERVIEW	3
	ETER SPECIFIC ANALYSIS ional Notes on Chlorides	
6.0 SUMMA	RY AND CONCLUSION	8
7.0 SAMPLI	NG PLAN RECOMMENDATIONS	8

LIST OF APPENDICES

Appendix	Title
Α	WASTE MANAGEMENT PERMIT NO. 2585
В	SITE PLAN
С	GRAPHICAL REPRESENTATIONS OF HISTORICAL DATA
D	HISTORICAL PARAMETER STATISTICAL VALUES

REQUEST FOR MODIFICATION OF GROUNDWATER SAMPLING PLAN OCTOBER 2013

CC Metals and Alloys, LLC Witmer Road Solid Waste Management Facility Niagara, NY

1.0 INTRODUCTION

The following report is submitted to the New York State Department of Environmental Conservation (NYSDEC) by LAN Associates, Inc. (LAN), on behalf of CC Metals and Alloys, LLC (CCMA), as a request to modify the groundwater sampling plan for the Witmer Road Solid Waste Management Facility Permit #2585 (Appendix A). This report is submitted in compliance with NYSDEC regulations Chapter 4, Part 360-2.11(c)(5)(iv)(c), Chapter 4, Part 360-2.15(k)(4).

CCMA has been collecting data in accordance with the facility's groundwater sampling plan. The data collection began in 1991, to monitor the condition of the groundwater at the Witmer Road site. In 1998, CCMA implemented interim remedial measures (IRM) to reduce stormwater infiltration and remove potentially deleterious material from the site. In 2004, the collected data was analyzed by LAN to determine the effectiveness of the IRM. Based on this analysis, a request for modification was submitted to NYSDEC which recommended removing certain parameters from the sampling plan and reducing the frequency of measurements. The recommendations were accepted by NYSDEC. The sampling frequency was changed from quarterly to semi-annually, and the following parameters were omitted from future sampling events:

Parameters

AlkalinityColor, TrueAluminumCopperAmmoniaTotal CyanideAntimonyHardnessBerylliumIronCadmiumMagnesiumCalciumNickel	Silver Thallium Vanadium Zinc Biological Oxygen Demand Sol Hexavalent Chromium
Cobalt Nitrate	Total Kjeldahl Nitrogen

The modified sampling plan has been implemented since 2004. Recently, LAN performed an analysis of the data to determine if a second request for modification is warranted. This report contains an analysis of the data collected from 1991 through 2012, and concludes by recommending that CCMA submit a request for modification to reduce the frequency of measurements from semi-annual to annual. Justification for this request is provided herein.

2.0 SITE DESCRIPTION/HISTORY

The subject landfill is located on the south side of New York Highway 31, approximately two miles northeast of the intersection of New York Highway 31 and Hyde Park Boulevard in/near Niagara, New York. CCMA, formerly known as SKW Metals and Alloys, Inc., received a NYSDEC Permit to operate the solid waste disposal facility in 1980. The landfill consisted of two landfill cells designed for the disposal of baghouse dust from the nearby ferroalloy production plant. According to historical engineering documents, there were two cells known as Cell No. 1 and Cell No. 2, which were permitted under the NYSDEC permit. Cell No. 1 has a five-foot clay liner with leachate collection system, while Cell No. 2 has a two-foot clay liner with leachate collection system. Permit #2585 issued by NYSDEC provided the closure requirements of this landfill. A closure plan was submitted on January 28, 1988, and was subsequently approved. Since that time, CCMA has been performing the required post-closure monitoring as required by the regulations and set forth in the closure plan.

In 1997, SKW and LAN submitted a report to NYSDEC entitled *Remedial Investigation and Recommended Interim Remedial Measures for SKW Metals and Alloys, Witmer Road Property.* In this report and the conferences with NYSDEC personnel that followed, a scope of work was agreed upon to perform the following tasks:

- 1. Remove industrial and other wastes from the areas surrounding, and to the south of, the landfill cells;
- 2. Re-grade the area surrounding, and to the south of, the landfill cells for effective stormwater drainage; and
- 3. Cover the re-graded areas with clay to reduce permeability.

Since the monitoring program began, many upgradient well and leachate sump parameters have steadily decreased, and began converging with those of the upgradient well. Parameters which have New York state effluent groundwater maximum allowable concentrations¹ (NY-MACs) have shown fewer, if not the absence of, contraventions of these values since the closure was approved. The statistical analyses in Section 4.0 demonstrate that, while the IRM did not aim to mitigate landfill pollution, it has resulted in reduced groundwater contamination and contributed to the improvement of the environmental integrity of the landfill.

A previous request for modification was written in 2004. Based on a statistical analysis of the parameter measurements which compared the pre-IRM period to the post-IRM period, LAN recommended that various parameters be removed from the program and the frequency of measurements be changed from quarterly to annually. Twenty-four of the requested parameter removals (all of them except for those of boron and total organic

¹¹ 6 NYCRR Part 703.6 Table 3

content) were accepted, and the monitoring frequency was changed to semi-annual rather than annual. Since the 2004 request for modification, measurements have shown that many parameters have continued to stabilize and remain at levels below those of the pre-IRM period. Section 5.0 statistical analysis justifies the current recommendation to change the monitoring frequency from semi-annual to annual.

3.0 GROUNDWATER MONITORING/FLOW/HYDROGEOLOGY

A robust record of groundwater elevation data confirms the upgradient and downgradient status of each well. A review of groundwater elevation data indicates a hydrogeological flow gradient from northeast (upgradient) to southwest (downgradient). The record indicates no groundwater flow reversals. A site plan with groundwater elevations is attached from a former baseline monitoring report to show representative groundwater flow during the period of record (Appendix B).

Four existing wells and a landfill leachate sump have been used to monitor groundwater conditions at the subject landfill since 2004. Well 3R is hydrogeologically upgradient, Well 5R is hydrogeologically downgradient. Well 14N is laterally downgradient, and Well 12 is the furthest downgradient.

Since 2004, additional measurements have been taken at a downgradient bedrock well – indicated as Well BR1 – as well as at a surface water location which has a downgradient orientation with respect to Well 3R.

4.0 STATISTICAL ANALYSIS OVERVIEW

Currently, each parameter is measured twice per year. A statistical analysis has been performed to determine if parameter measurements have continued to stabilize and remain below pre-IRM levels. The analysis for Wells 3R, 5R, 14N, 12, and the leachate sump included:

- Comparing arithmetic means, arithmetic standard deviations, medians, and geometric means of each parameter between the following periods
 - Pre-IRM period: 1991 through 1998
 - Post-IRM period, pre-Report²: 1999 through May, 2004
 - Post-IRM period, post-Report: September, 2004, through present
 - Post-IRM period: 1999 through present
 - Overall period: 1991 through present
- Graphically comparing upgradient well measurements to downgradient well measurements
- Comparing well measurements to NY-MACs
- Comparing ranges of arithmetic mean (+/- standard deviation) between parameters to test for significant difference; if the ranges overlapped, the data sets were not considered to be significantly different

² Refers to the previous request for modification report, which considered data up until May of 2004.

• Considering measurements that were below the detection limit

Surface water and Well BR1 measurements were not taken before the IRM period. Therefore, LAN was unable to compare pre-IRM levels to post-IRM levels at these measurement locations. Consequently, the analysis of the surface water and Well BR1 parameter measurements consisted solely of:

- Analyzing data trends
- Comparing bedrock measurements to upgradient well measurements and corresponding NY-MACs
- Comparing surface water measurements to NYSDEC water quality standards³

For each parameter discussed in this report, three graphical representations of the data are presented in Appendix C:

- Comparison of leachate and downgradient well measurements to upgradient well measurements
- Comparison of bedrock well measurements to upgradient well measurements
- Surface water measurement data

All results which were non-detect (i.e. below the detection limit⁴) are shown on the graphs as the detection limits themselves. The tables containing the statistical values and arithmetic mean (+/- standard deviation) for wells with pre-IRM data and leachate are included in Appendix D.

5.0 PARAMETER SPECIFIC ANALYSIS

The parameters analyzed in the following table were chosen because they best represent the extent to which the IRM results in reduced groundwater contamination and contributed to the improvement of the environmental integrity of the area. The parameters omitted from this report have also shown some degree of declination, but not as much as the included parameters (e.g. boron and chemical oxygen demand have shown an overall decrease since the IRM, but have been slightly trending up since 2009 and 2011, respectively). Some of the omitted parameters, while showing overall decreases, still yield significantly higher measurements in the downgradient wells than in the upgradient well.

³ 6 NYCRR Part 703.5 Table 1 for Class C surface water

⁴ The detection limit is the value below which the instrument of measurement is unable to detect the analyte. A reporting limit is the detection limit multiplied by a greater-than-one factor; this limit is the threshold below which a measurement is detected but not believed by the measurer to be reasonably accurate.

Parameter Analysis

Parameter	NY-MAC	Analysis
Arsenic		- No wells have ever shown contraventions of the NY-MAC
	0.05 mg/L	- Most measurements have been well below the NY-MAC, sometimes by as much as an order of magnitude
		- Most measurement results have been below the detection limit
		- No significant difference between arsenic content of the downgradient and upgradient wells
		- Bed rock measurements are similar to upgradient well measurements (below detection limit and well-below NY-MAC)
		- Surface water measurements are also roughly one order of
		magnitude lower than the water quality standard
		- No wells have ever shown contraventions of the NY-MAC
	2.0 mg/L	- Graphical representation shows that most measurements have been well below the NY-MAC
		- No measurement has ever exceeded 0.2 mg/L, which is an order of
		magnitude below the NY-MAC
Barium		- No significant difference between barium content of the upgradient and most downgradient wells
		- Bedrock measurements show slightly higher results than those of the upgradient well, but still remain about an order of magnitude lower than the NY-MAC
		- No water quality standard for surface water concentrations of
		barium, but measurements show a decreasing trend
	0.05 mg/L	- Historically, there have been two contraventions of the limit:
Lead		• One occurred in 1999, and the other occurred in 2000 (however, this measurement was below the detection limit, and the detection limit was greater than the NY-MAC)
		- Many lead measurements have been below the detection limit
		- Graphical representation of the data shows that downgradient and upgradient well measurements have converged and remained well below the NY-MAC
		- Since the previous request for modification, no measurements have exceeded 0.005 mg/L, which is an order of magnitude below the NY-MAC
		- No significant difference between upgradient and downgradient well measurements
		- Bedrock measurements are similar to upgradient well measurements (below detection limit and well below NY-MAC)
		- Surface water measurements were below the water quality standard* and have also been below the detection limit

Parameter	NY-MAC	Analysis
Mercury	0.0014 mg/L	 No wells have ever shown contraventions of the NY-MAC Most measurements have been below detection limit Graphical representation of data shows that measurements have converged and been well below the NY-MAC Since the IRM period, all measurements have been below 40 percent of the NY-MAC No significant difference between upgradient and downgradient well measurements The six well curves overlapping indicate mercury measurements have always been below detection limit Surface water measurements and bedrock well measurements have also resulted in non-detect
Specific Conductance	N/A	 Graphical representation of data shows that upgradient and downgradient well measurements have converged Since the IRM period, data has also shown a decrease in specific conductance over all wells Bedrock measurements have also shown a converging trend with upgradient well measurements Surface water measurements show a decreasing trend (no water quality standard)
Sulfate	500 mg/L	 There have been no contraventions of the limit since 1995 (before the IRM period) Since the IRM period itself, sulfate measurements have dropped to mostly below 50 percent of the NY-MAC No significant difference between downgradient and upgradient well measurements Measurements also show lower levels of sulfate in the bedrock than in the upgradient well Surface water measurements indicate a decreasing trend of sulfates (no water quality standard) Sulfate is also a good chemical indicator for the oxyanion-ligand group, indicating that concentration of that group is also decreasing and stabilizing with time
Turbidity	N/A	 Since the IRM period, measurement results for upgradient and downgradient wells have converged Downgradient well measurements are not significantly different than upgradient well measurements Bedrock measurements have also shown a converging trend with upgradient well measurements Surface water measurements show a decreasing trend (no water quality standard)

Parameter Analysis (Cont'd)

Parameter	NY-MAC	Analysis
Chloride		- No contraventions of the NY-MAC since 1992
	500 mg/L	 Since the IRM period, all measurements have been below 250 mg/L, 50 percent of the NY-MAC Bedrock measurements have also shown a converging trend with upgradient well measurements Surface water measurements show a decreasing trend (no water quality standard)
Elemental Chromium	N/A	- Downgradient well measurements are not significantly different than upgradient well measurements
		 Measurements from the leachate still seem, graphically, to be fluctuating significantly Bedrock measurements have been lower than those of upgradient well
		- Surface water measurements have shown a decreasing trend
		- Surface water measurements are below water quality standard*
рН	Upper: 8.5 Lower: 6.5	 Before the IRM period, there have been 15 contraventions of the limits since 1991: Between the IRM period and the previous request for modification, there were seven contraventions No contraventions since previous request for modification Measurement of 17.0 made on September 22, 2009, was thrown out as an outlier. Trends indicate that pH has become more steady and consistent Bedrock measurements have shown zero contraventions of pH limits Surface water measurements indicate one contravention in 2007
Total Dissolved Solids		 Since the IRM period, there have been two contraventions of the NY-MAC: One was in 2002, and the other was in 2003, both before previous request for modification. No contraventions have occurred since 2003 All downgradient well measurements, except for those from Well 12, are not significantly different than upgradient well measurements Bedrock measurements show lower levels of total dissolved solids than those of the upgradient well Surface water measurements show two contraventions of the water quality standard: One in 2004, and one in 2011

Parameter Analysis (Cont'd)

* The water quality standard for surface water is only available for 2004, because this value fluctuates depending on the measurement of hardness, and hardness measurements ceased after 2004.

5.1 Additional Notes on Chlorides

Graphically, the measurements seem to be converging. However, downgradient wells are still significantly higher than upgradient wells. While this warrants further data gathering, measurements have been declining and have been relatively consistent since the IRM period.

Chlorides are the best chemical indicators for the compact, non-metallic, and halogen anions, and are commonly used as a tracer or first indicator of breakthrough for dissolved constituents in porous media. The fact that chloride levels have been decreasing and stabilizing over the past 20 years demonstrates the success of the IRM program.

6.0 SUMMARY AND CONCLUSION

Interim remedial measures implemented in 1998, were conducted to mitigate the potential contamination in surrounding groundwater from the general site, which had been a metal processing area. Since the IRM was completed, many parameter concentrations have dropped and stabilized; downgradient well measurements have converged with those of upgradient wells; and there has been a 78 percent decrease in the frequency of contraventions of the NY-MACs. Since 2004, based on NYSDEC's approval of LAN's previous request for modification, parameters have been measured semi-annually instead of the quarterly frequency that was required before that time. Since the 2004 modification request, parameters have either continued to decrease or have shown continued stabilization. While there are some parameters that have not converged (upgradient concentrations equaling downgradient concentrations), there are no parameters that have shown discontinuous results. Therefore, the semi-annual sampling does not give further understanding of the site conditions than annual. For these reasons, annual sampling is recommended for the current parameters.

7.0 SAMPLING PLAN RECOMMENDATIONS

Parameter graphs show a clear trend toward convergence of parameter concentrations over wells (upgradient and downgradient), and stability of parameter concentration over the period of record. As such, LAN and CCMA recommend that the frequency of analysis be reduced from semi-annual year to annual.

APPENDIX A

SKW HISTORICAL WASTE MANAGEMENT PERMIT NO. 2585

s s	PERMIT			~	2585 EXPIRATION DATE
Under	the Environmenta	l Conservation Law, Ar	ticle 27, Title 7,	Part 360	October 31, 1984
	X CONSTRUCT		ITIAL ISSUE NEWAL	🔲 REISSUAN	
KW ALLOYS,		ADDRESS OF PE 3801 High		Niagara Falls, NY	TELEPHONE NO. 716/285-1252
LOCATION OF PROJECT Town Niagara	10.	^{nty} Niagara	l Region 9	Conservation Regional Office Headquarters ware Avenue, Buff	2
DESCRIPTION OF PROJE Construct and		lloys, Inc. Landfi		ON-SITE SUPERVISOR William Lozow	
		GENERAL	CONDITION	S	
		e of the Environmental Conser-		arried out under this permit	t shall conform to the approved

- The permittee shall file in the office of the Environmental Conservation Region specified above, a notice on intention to commence work at least 48 hours in advance of the time of commencement and shall also notify said office promptly in writing of the completion of the work.
- The permitted work shall be subject to inspection by an authorized representative of the Department of Environmental Conservation who may order the work suspended if the public interest so requires.
- 3. As a condition of the issuance of this permit, the applicant has accepted expressly, by the execution of the application, the full legal responsibility for all damages, direct or indirect, of whatever nature, and by whomever suffered, arising out of the project described herein and has agreed to indemnify and save harmless the State from suits, actions, damages and costs of every name and description resulting from the said project.
- All work carried out under this permit shall conform to the approved plans and specifications. Any amendments must be approved by the Department of Environmental Conservation prior to their implementation.

23269.5

- The permittee is responsible for obtaining any other permits, approvals, easements and rights-of-way which may be required for this project.
- 6. By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with Part 360 and the special conditions. Any variances granted by the Department of Environmenta i Conservation to Part 360 must be in writing and attached hereto.

SPECIAL CONDITIONS

- Your application for a variance from 6NYCRR Part 360.8(b) (exemption from daily cover) is hereby approved. In the event that the deposited ferro silicon sludges become dried and create a fugitive dust problem, either on or off site, steps shall be taken to remedy the situation.
- Upon the filling of the landfill, two feet of cover material shall be applied to the surface of the landfill. The top 6 inches shall be of a soil suitable for sustaining a vegetative cover crop to avoid erosion.
- 3. Quarterly reports shall be submitted indicating the volume of material which has been placed into the landfill and shall be submitted on the first business day of the months of November, February, May and August.
- 4. Semi-annual reports shall be submitted to the Region 9 Office containing the analytical results of the monitoring well sampling program and surface water sampling program as included in the permit for Landfill #1.
- 5. Within 60 days of the effective date of this permit, a certificate of deposit, bond or other negotiable instrument, payable to the Commissioner of the NYS Department of Environmental Conservation, shall be forwarded to this Region 9 Office in the amount of \$5,000 to cover costs of closure and monitoring. The life of this undertaking shall be for the permit life (October 31, 1984).
- 6. The issuance of this permit does not relieve the applicant from the compliance with other State, Federal or local laws, ordinances or regulations.
- 7. Prior to the expiration date of this permit, the landfill shall be properly closed and maintained to prevent adverse environmental health impacts, such as contravention of surface or groundwater quality standards, gas migration, odors, and vectors. Proper ISSUE DATE DISSUING OFFICER

SIGNATURE Witten 1.5,# ! X.

SKW ALLOYS, INC. 3801 Highland Avenue Niagara Falls, NY 14305

1

Permit to Construct and Operate - Permit #2585 Expiration Date - 10/31/84 Facility #32N04

- 2 -

...........

SPECIAL CONDITIONS (cont'd)

7. closure includes covering with a minimum of 2 feet of final cover, establishment of a grass cover crop, and sufficient grading to divert water off the fill area in order to minimize infiltration and to preclude ponding.

?

E #4 Date

New York State Department of Environmental Conservation 584 Delaware Avenue, Buffalo, New York 14202

Robert F. Flacke Commissioner

May 30, 1980

Mr. LeRoy C. Wintersteen, Manager Environmental Control SKW Alloys, Inc. P.O. Box 368 Niagara Falls, NY 14302

Re:

: Permit to Operate Solid Waste Management Facilities Permit No. 2133 Niagara (T), Niagara County

Dear Mr. Wintersteen:

This will acknowledge receipt of the Certification of Construction and "As Built" drawings for the above facility. These materials are accepted for record purposes and are included in our files on the project.

We are transmitting herewith Permit No. 2133, Permit to Operate the Solid Waste Management Facility. The permit contains special conditions which require monitoring, record keeping, and reporting which should be followed, as well as the other conditions in the permit.

If you have any questions pertaining to the permit, the operation of the facility or the monitoring and reporting requirements, please do not hesitate to contact the writer or Mr. Tygert at 716/842-4311.

Very truly yours,

Robert J. Mitrey, P.E. Associate Sanitary Engineer

JST: sk

cc: Niagara County Health Dept. Secured Landfill Contractors, Inc. Mr. Richard Snyder, P.E. Albany, Division of Solid Waste

Under the Environmental Content	ERMIT Values Law 2 Artis in 22.5		
CONSTRUCTION CONSTRUCTION CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR	ADDRESS OF PERMITTEE	ETMODITIC Internet Trible, 197 11/202 Internet Second Office	TION TELPENN SY 716/2015/1252
Elization SECONTRON OF PROJECT Scility Highler Managemetab Provided Scility Highler Managemetab Provided	CENERAL CONDI		non, ligr, žny, totkin f shit celen to the segret
 action Region Spectford above, a belief of an above at the time shall also regive and which presently to be the time shall also regive and which presently is set of the term. 2. The permitted work shall be independent it imper representative infide. Department of first making one may write the work set as independent. 	ntentical fai connecter, and a for commencement and a line of the completion for first of the completion for first lay an automiced for the Connected for the	lans det specifications for aner spectored of pottermonial Conse tion. In provider is respondate for a station provideration of relations to privit.	ducate du st he approved by the reation prior to their institution building any other permits, ap- ny which may be transfed he
5. At a condition of the invadors of this permit, in the condition of the invadors of this permit, constraint for the constraint of the	The applicant has at () Instant. The fail legal () Cation. The fail legal () C of whatever before, C spect described herein (the State tear sate)	r acceptance of this permit, the pe officient again, strict of suppliance officients. Any variances granted by procession to Part, still major by in-	with Part 1961 and the spin of the Department of Excloremental
	SPECIAL CONDI Page 1 of 2	CIONS	
1. The this pends is act to children of this Poy 11, prising 27, purt 200 of the contained to have the generalizated to have the many of complete the for extension.	Main provintions () Failes and Insulation Failes and Insulation Failes and Insulation Conserved Robes and Sec.	ia di ting tenna di tin Galeria tinta di ting Linga ting tennitaria di	the event of arring or the Another of the York or other the resident

A second second of a second second

30, 1980 rge 2 of 2 一种名词称建立的时间的建 Permit #2133 a 🖞 the acception of the acception of the second sec . K 4.建物的外部成熟的方法的方法 and and a second s 7.

-

36

That only the materials described in the approved engineering report, prepared by Richard R. Snyder, P.E., dated June 18, 1979, and approved ammendments thereto, be placed in the facility.

1. 法投资的资料委员会

고고 같은 방법을 알았다.

That daily records of the quantity of waste naterial placed in the facility be main-tained, and that an annual survey be submitted to this office on the anniversary date of this permit. The surmary should include the total quantity of wastes disposed of and an estimate of the remaining life and/or volume of the facility. É

1

S. ()

. Marine -1,2 . an tang Ang tang Sanak 🔒 de la compañía de la comp Section. يتعادين والم al Rozani Antonio $\label{eq:constraint} \left\{ \begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{5} \\ \lambda_{5}$ ч. С ingen i -to the state 81 B &

549 Q

			Madara	an Appela	()				n Date
	REISSUANCE	MODIFICATION	tering it. Torin Light	and weither			York, 14202		5/30/83 Expiration
	REIS	MOM					584 Delaware Avenue, Buffalo, New York, 14202		5/30/80 Issue Date
	ъ			llity		Officer	ware Avenue.		No.
	INITIAL ISSUE	RENEWAL		Solid Waste Management Facility	on Law, Facilities)	Issuing	584 Dela	Address	Permit N
C		The.	0	Solid Waste M	DNSErvation Law , e Management Facilities)	t site in d is in a	al condi- request.		•
		SKW Allovs.	Falls, New Y	IS:	tal Con id waste	→ -=	and special c yone upon requ		Conservation
	CONSTRUCTION	OPERATION sued to:	8, Niagara I	escribe	Nironmental Co Part 360 (Solid Waste	st be posted on protected from o the public.	th the general oe shown to an		
	CON CON	× OPEF n issue	P.O. Box 36	oject ^o d	I e Envir itle 5, Part	E: This Notice of Permit must be posted on the project such a manner that it is protected from weather and location readily visible to the public.	A copy of the Permit with the general and special condi- tions noted therecn will be shown to anyone upon request.	ate	of Environmental
		As been issued to:	address: P.O. Box 368, Niagara Falls,	for a project described as:	under the Environmental Control of Article 27, Title 5, Part 360 (Solid Waste	NOTE: • This Notic such a ma location r	 A copy of tions note 	New York State	Department o
		É 	3	J J	4 6			Ne	

)ermit	2585
Unler the Lavironmental Cleases	ervation Low, Article 77, 11the 7, Part 360	FFECTIVE PATE - REISSUANCE Cotober 20, 1281 WODIFICATION
Plane Tilly and To Star PLLOYS, TAK. ICE Allow DE PROJECT Tem. Mis Gasta Enscription of PROJECT Enscription of PROJECT Enscription of PROJECT	filagara Gio Delerant fi	Friender Hollen (1997) Frieder (1997) Friede
 The presider shall lie in the wints of the schert Resider rewitten density above ref wert at trainf 42 feese if about of the time state size while and which these is a sector of the time 	Descent matrix Country . A. All work, Second and Second of To Country of the Second Area and Area marked Second Second	eder 1915 generat stall contern in the anorare at a stall dependent to be all in dependent in the second. Constrained war in the second-
 is the west. is presided whet that the advect to their measuration, of the the persons of the rester may rate the work succeeded in the public to 	L. The permitter is re- stice by astronymic files. In provide, semimerik mai, Gregorial servets files project. His project.	person for the relations any other permits, apa- ant replaced-way which may be required for the general, the personner agreed that the permit is
3. So, a needline of the research of the period registed expressive, by the valuation of the ap- incomenciality for all demonstration of the ap- incomenciality where not addressed, which is the fir- and by where not addressed, which is not of the and has append by addressed which is not any further with has append by addressed which you append to the activity demonstration of the set of every name at from the said areast.	entrations, the definition of the second sec	etes granted by the Department of Environmental We was be in writing and an third be ready Physics and the matter physics are an environmental to the second physics are an environmental to the s
	SPECIAL CONDITIONS	
izeriy enterget. In the p	tance from FMYFMP Part 360,8761 (a ment that the deposited ferry silf blem, mither on or off site, steps	ent succes we gat differ and
	edifield, the feet of dover naterial The too 6 inches shall be of a sol avoid erosion.	shell by applied to the I suitable for suitaining
 Duarterly reports shall be ninced into the landfill a of Accoher. Entrury, Tay 	substituted indicating the volume of shell be submitted on the first and fugurt.	f meterial which has tweet bisiness day of the combine
results of the roll foring included in the abruit, for	ne sonnittet Gortee Pusidi A fiff Well alending program and turfitt Landfill 41.	e contoining the contribution
Environmentel Tenservalle 15,000 to enviro costs of a	ctive date of this permit, a cert t, payable to the Cornissioner of . shall be forwarded to this Cenin losume and publication. The life o	
	er 11. (ett) t does not mileye the environment cal territoring of provide the	
7. Frite is this extination for	te of this nergif, the leaff is a rest to the second state of the	
		let at let a start

SKW ALLOYS, INC. 3801 Highland Avenue agara Falls, NY 14305

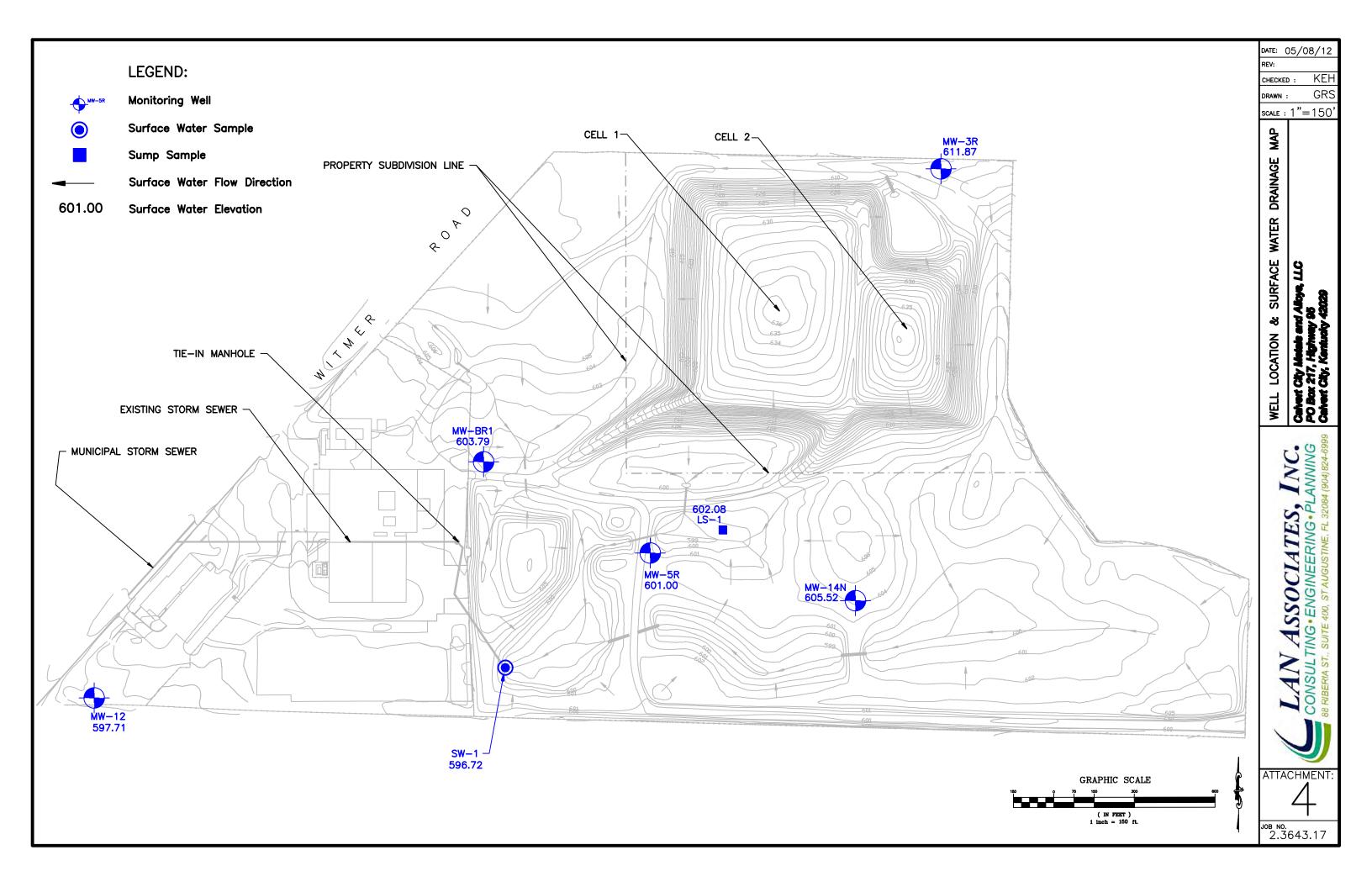
Permit to Construct and Cperate - Permit #2585 Expiration Date - 10/31/84 Facility #32N04

2

SPECIAL CONDITIONS (cont'd)

2 -

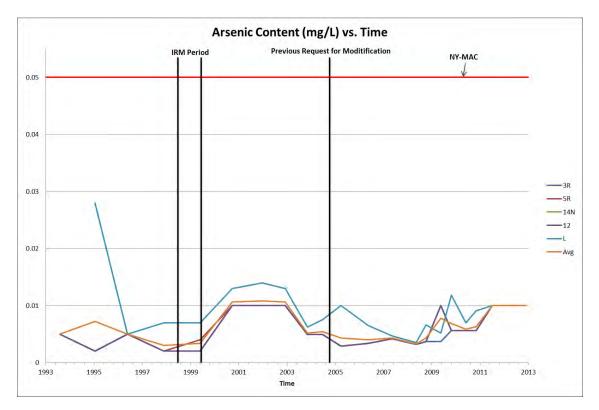
 $\sum_{i=1}^{n-1} \frac{\sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1$

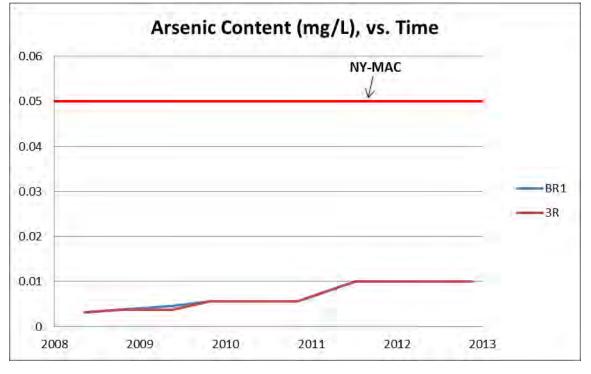

2 유민출 2 문 2

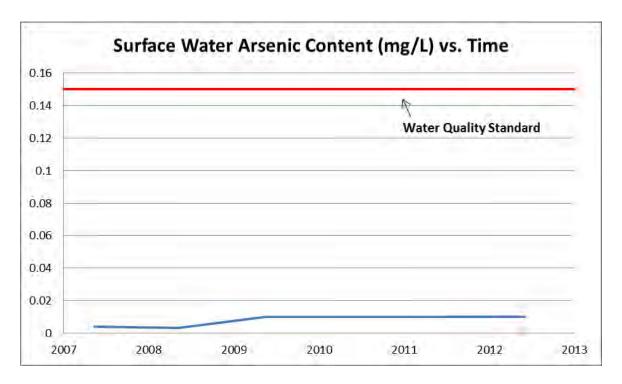
7. closure includes covering with a minimum of 2 feet of final cover, establishment of a grass cover crop, and sufficient grading to divert water off the fill area in order to minimize infiltration and to preclude ponding.

Permit Admi Date addition of the second s 2.5 A. Standard and the second of the second second

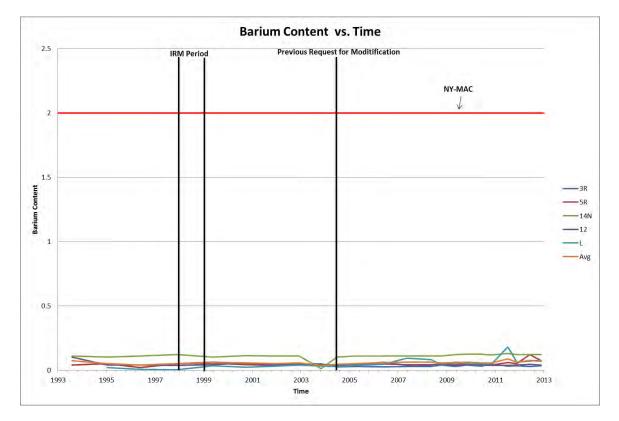
APPENDIX B

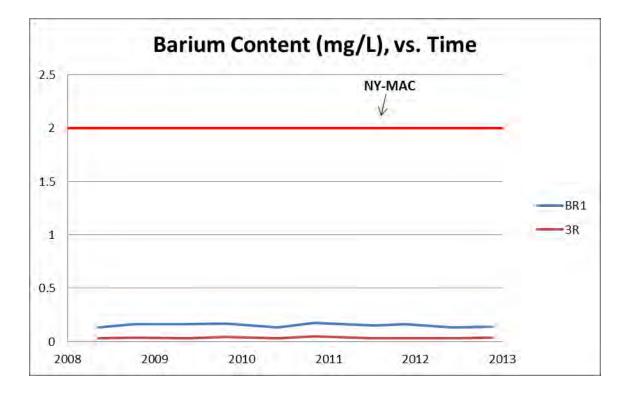

SITE PLAN

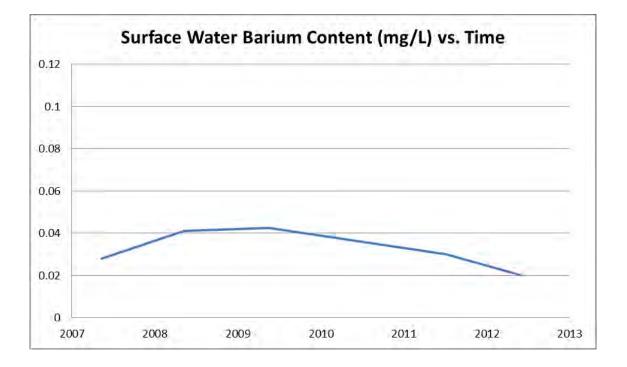


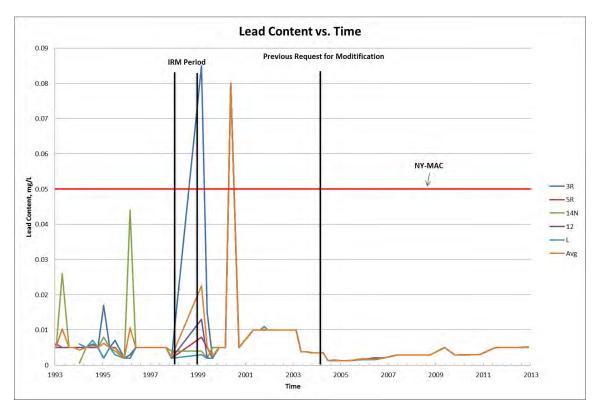

APPENDIX C

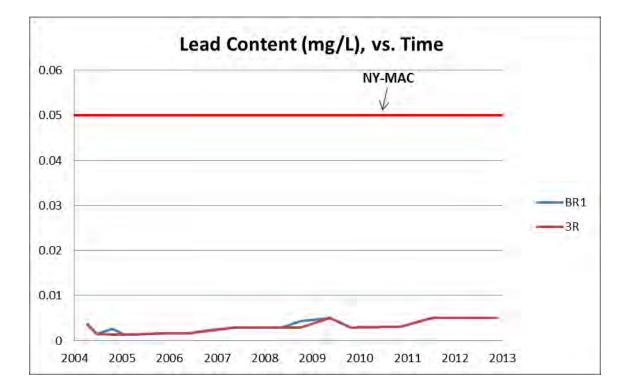
GRAPHICAL REPRESENTATIONS OF HISTORICAL DATA

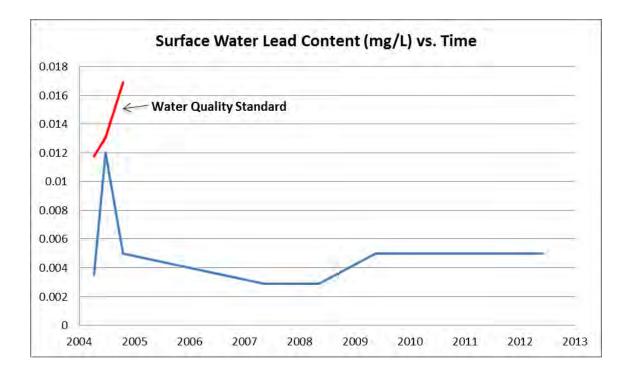

Arsenic Content (mg/L)

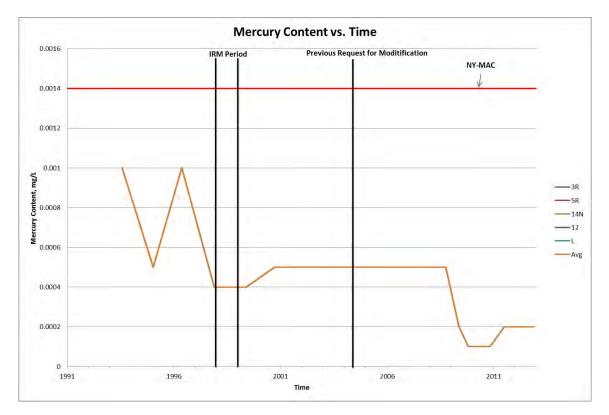


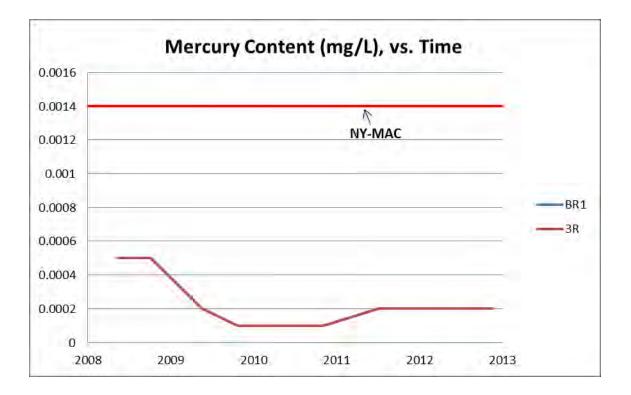


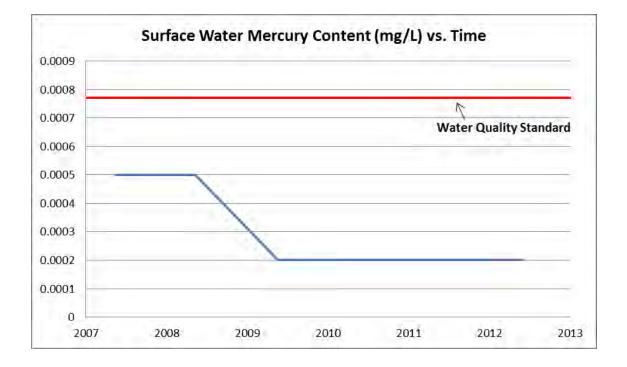

Barium Content (mg/L)

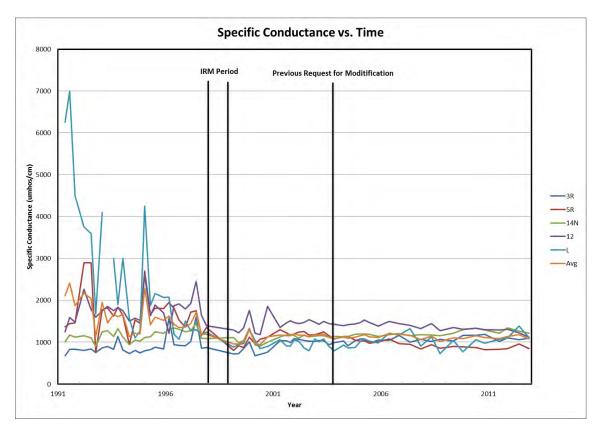




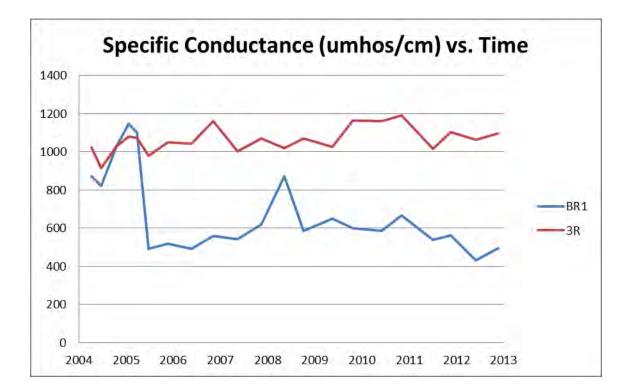


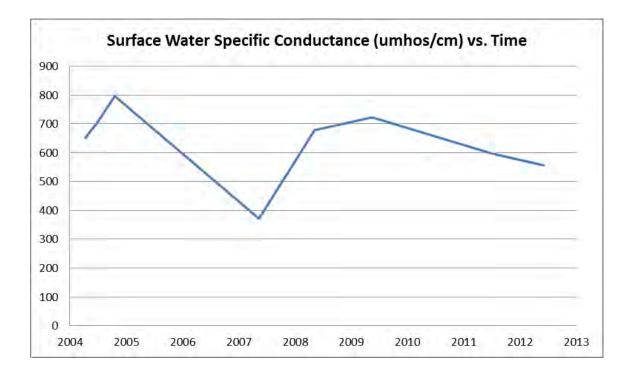


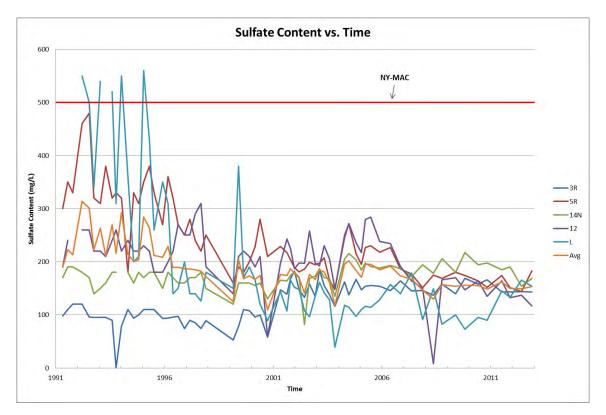




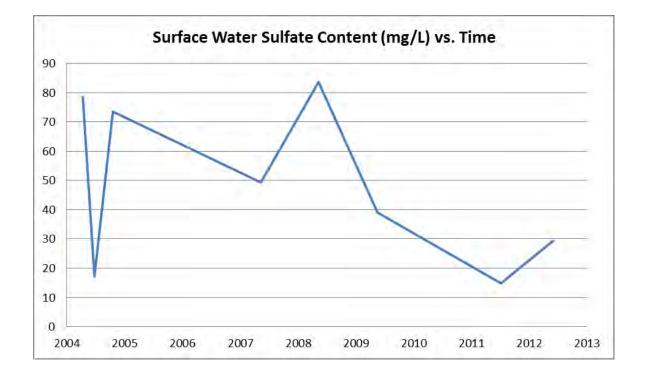
Mercury Content (mg/L)

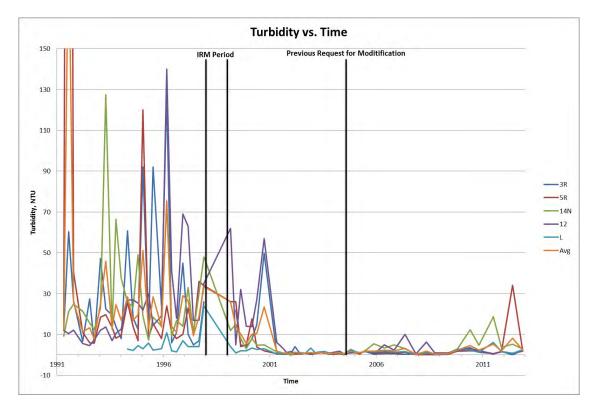


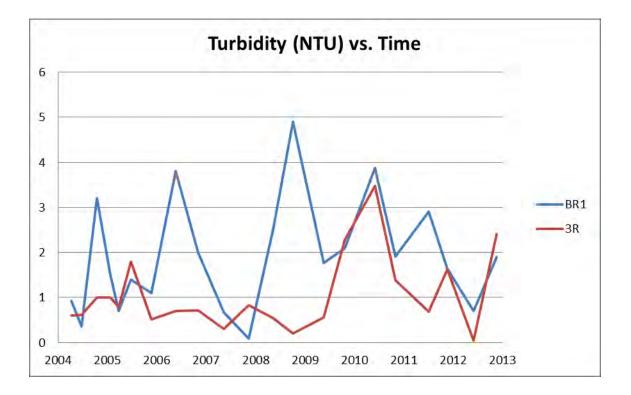


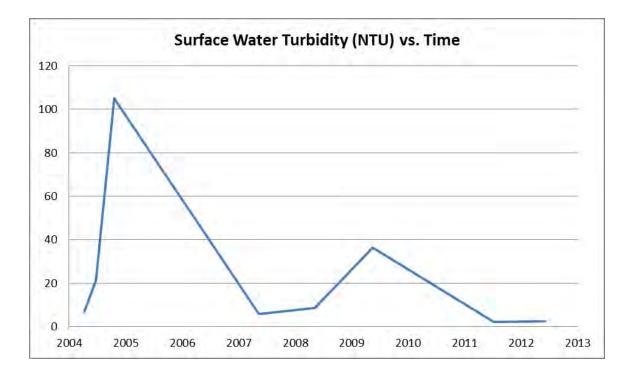


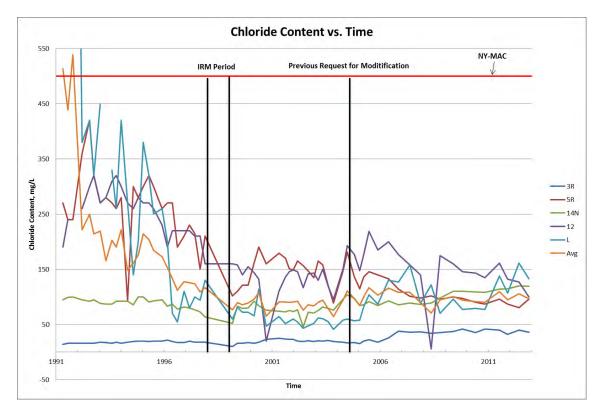
Specific Conductance (umhos/cm)

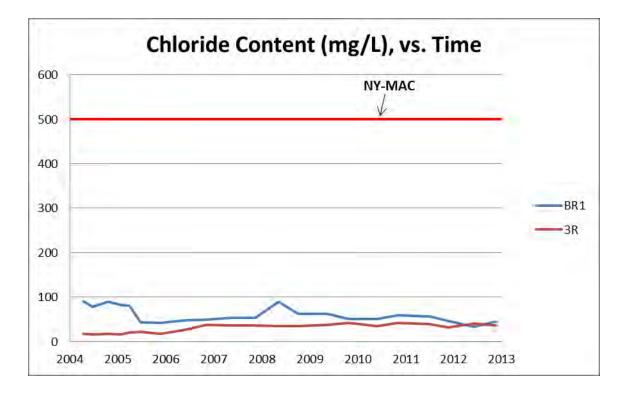


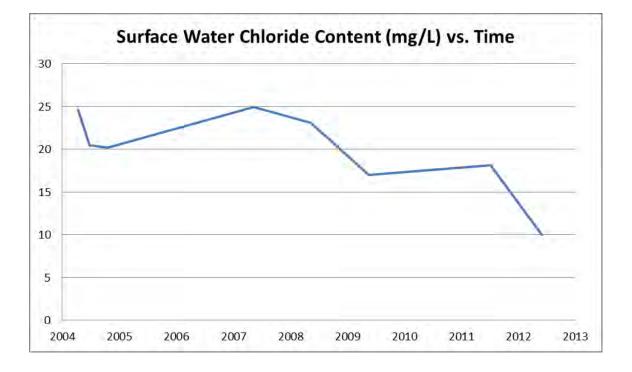

Sulfate Content (mg/L)

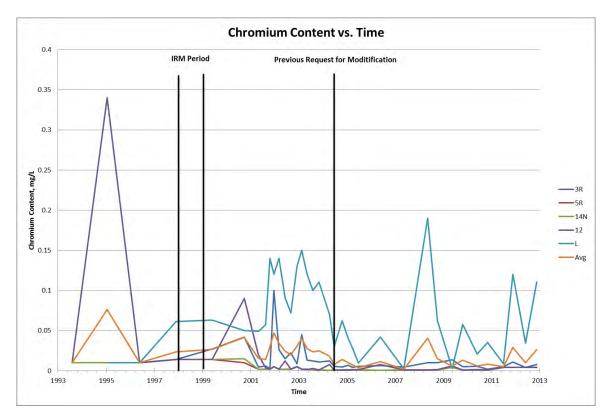




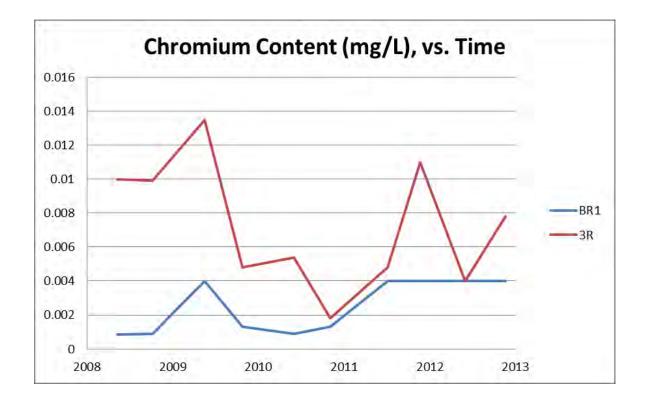

Turbidity (NTU)

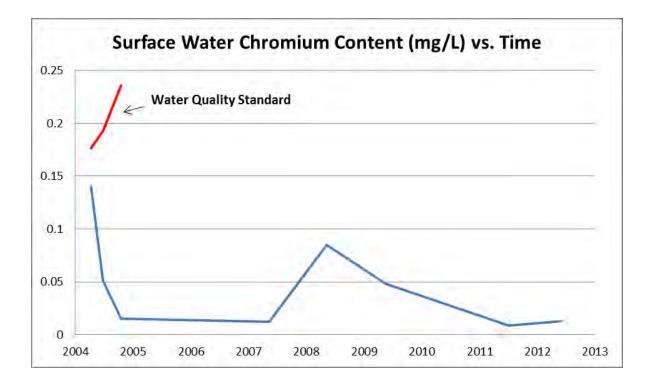


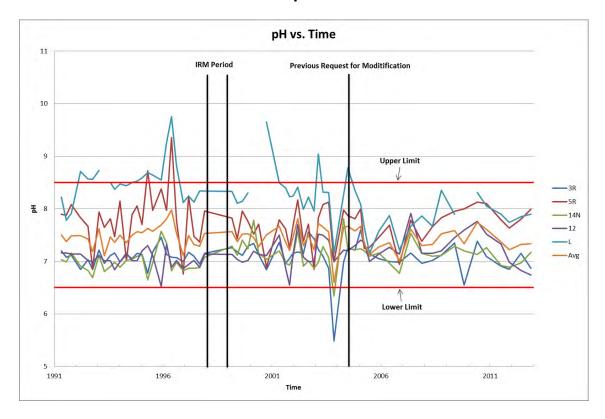


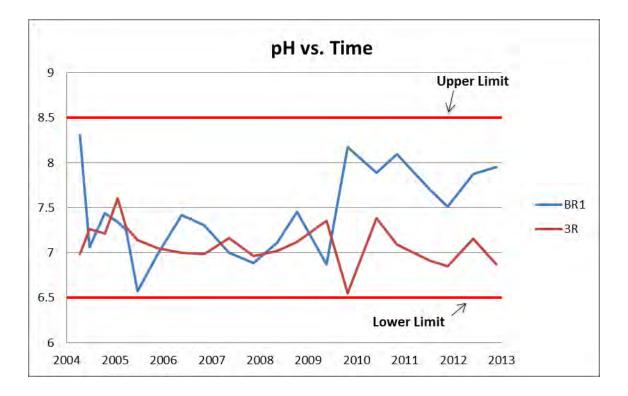


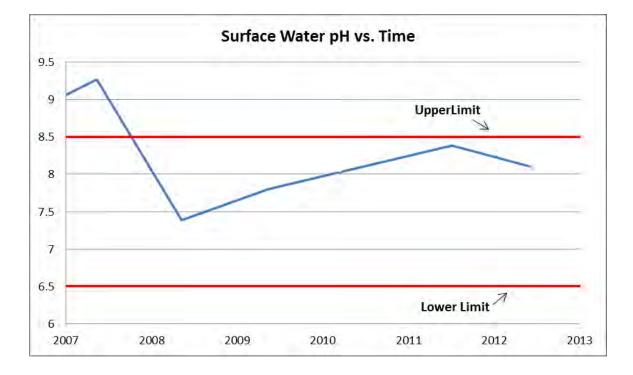
Chloride Content (mg/L)

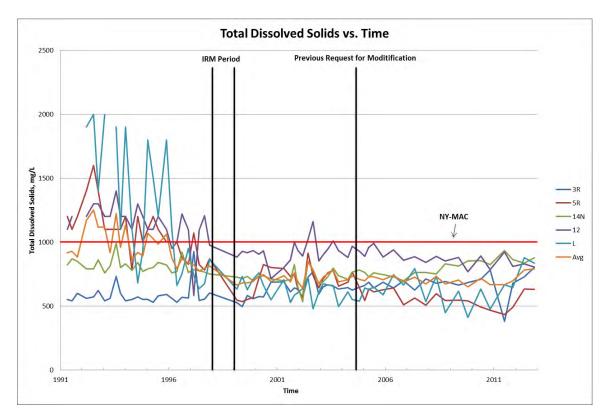




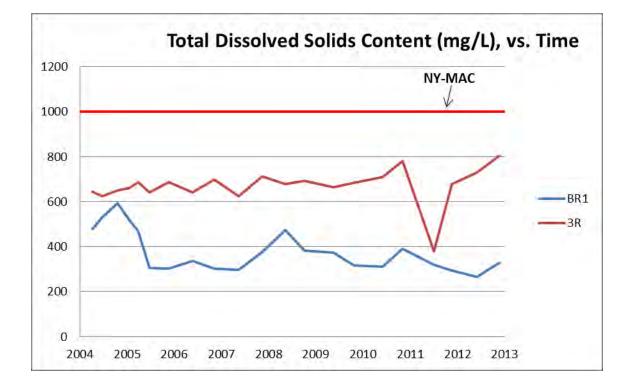


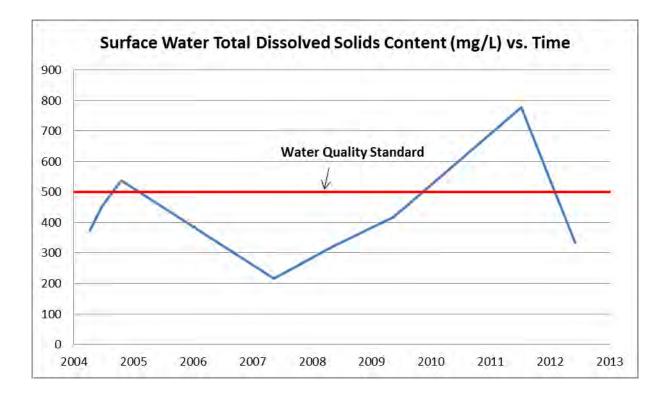

Elemental Chromium Content (mg/L)

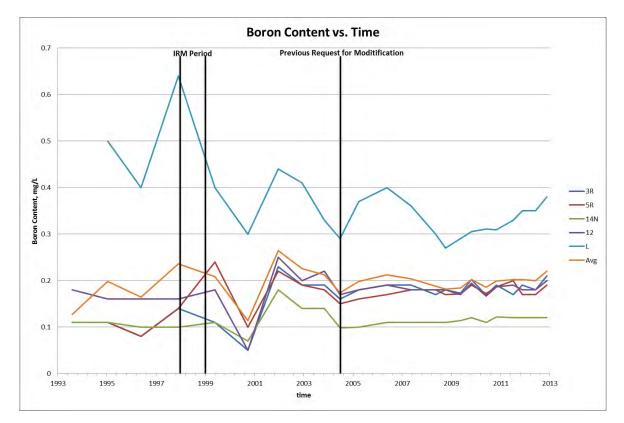


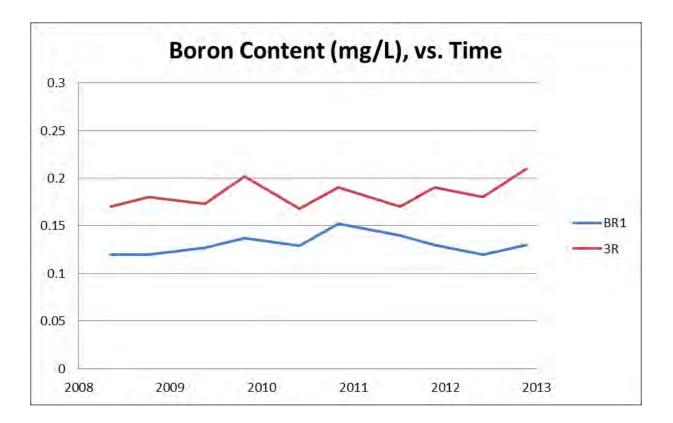


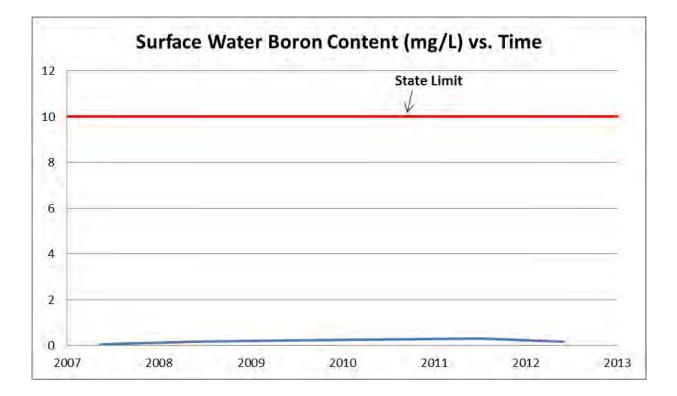
рΗ

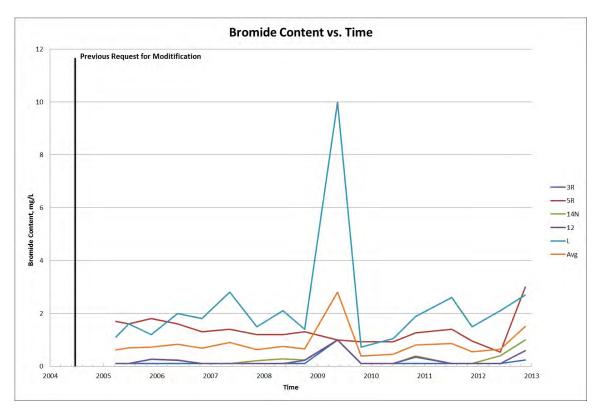




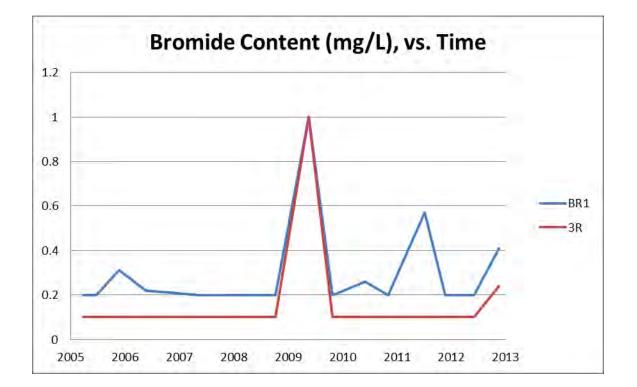


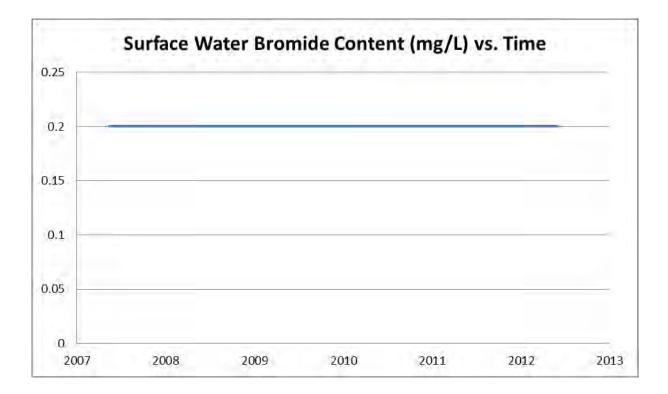

Total Dissolved Solids (mg/L)

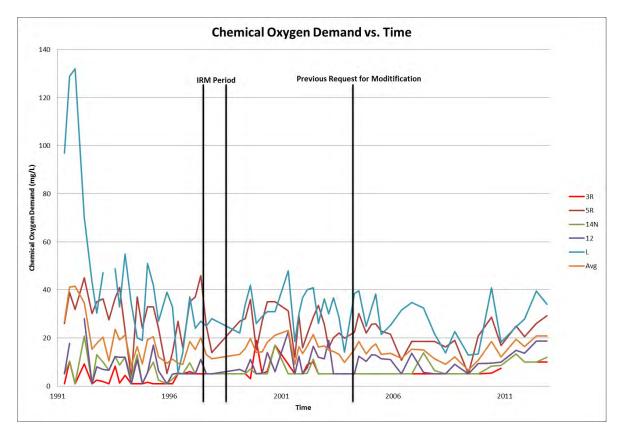


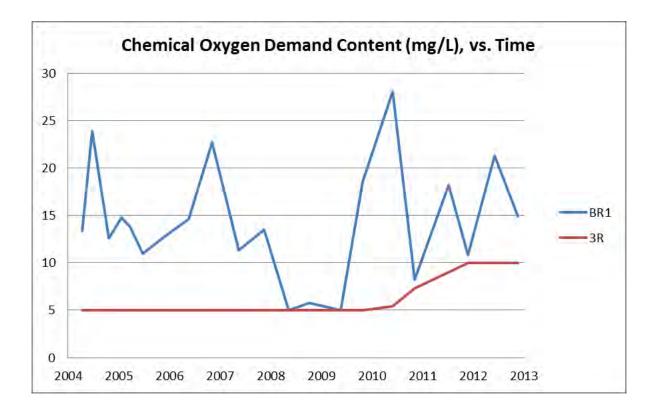


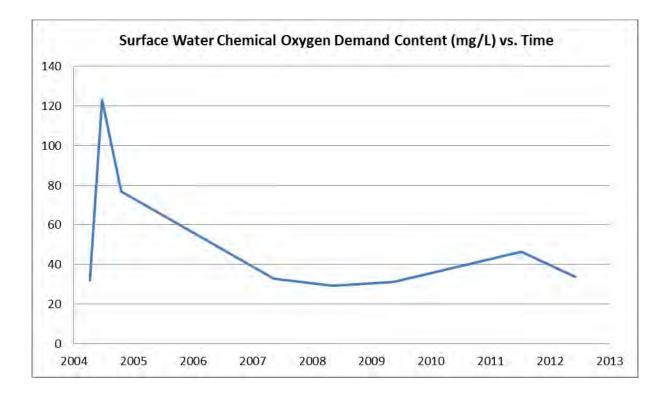
Boron Content (mg/L)

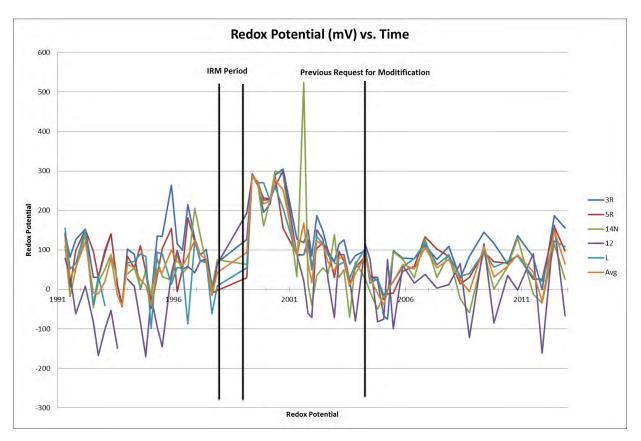




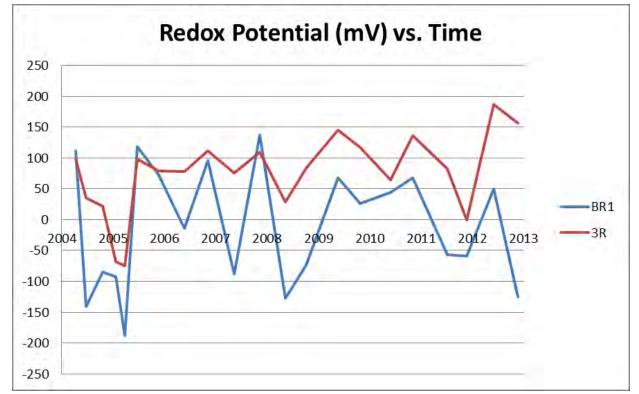


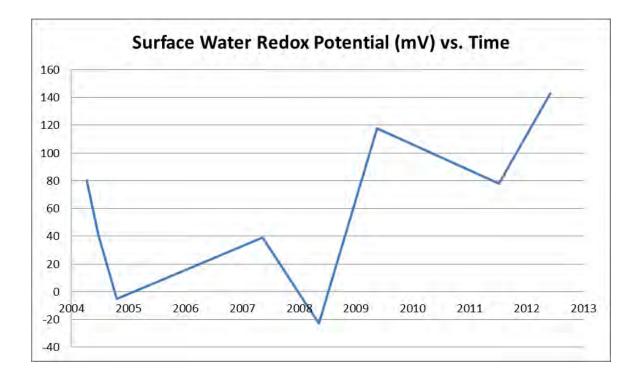

Bromide Content (mg/L)

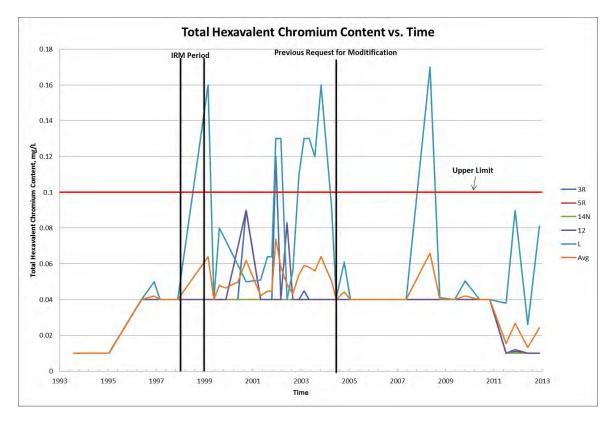


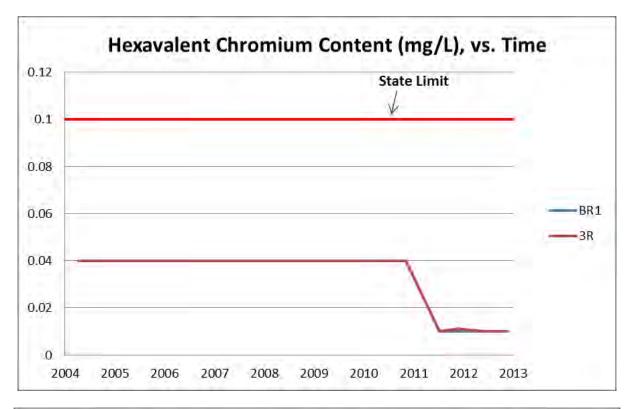


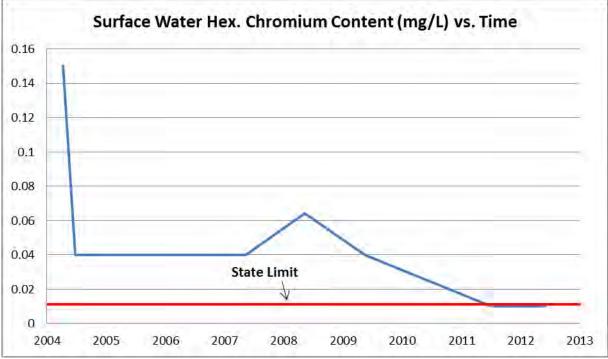
Chemical Oxygen Demand (mg/L)

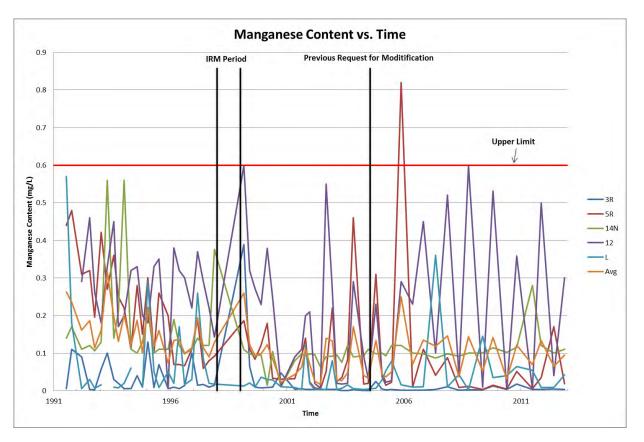




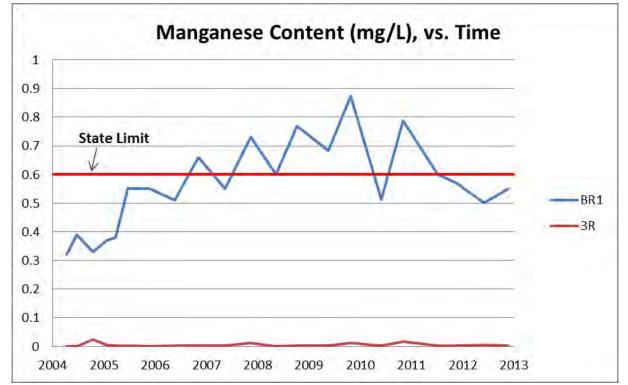


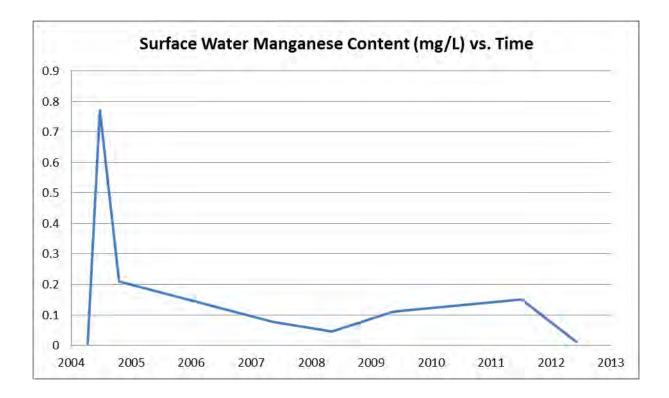

Redox Potential (mV)

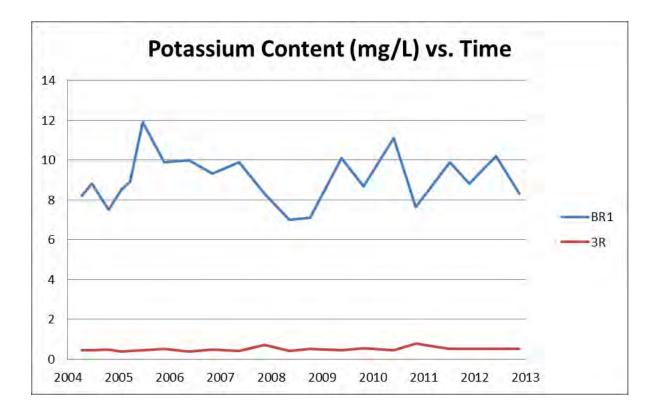


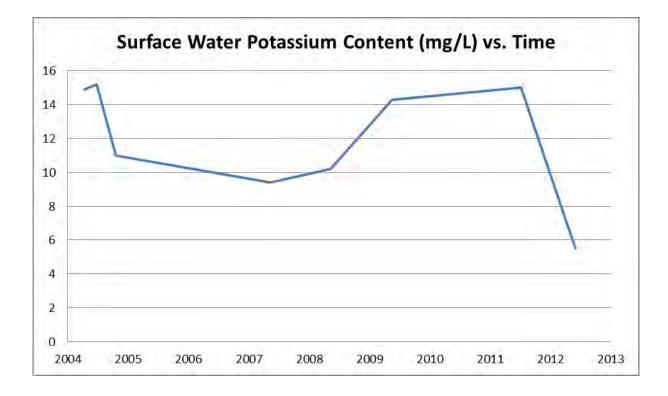


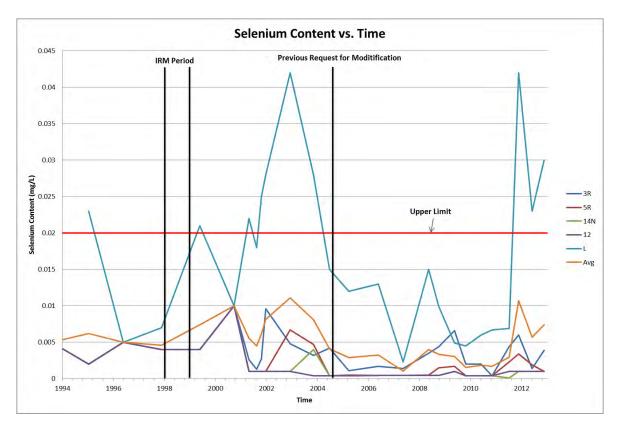
Total Hexavalent Chromium Content (mg/L)



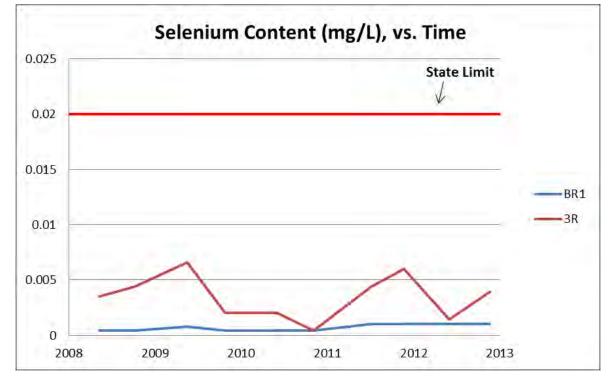


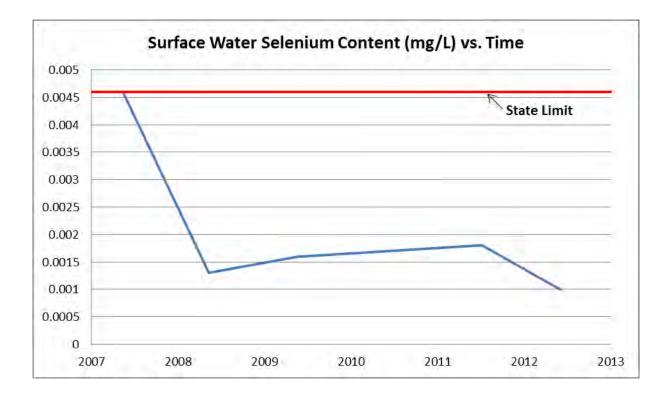

Manganese Content (mg/L)

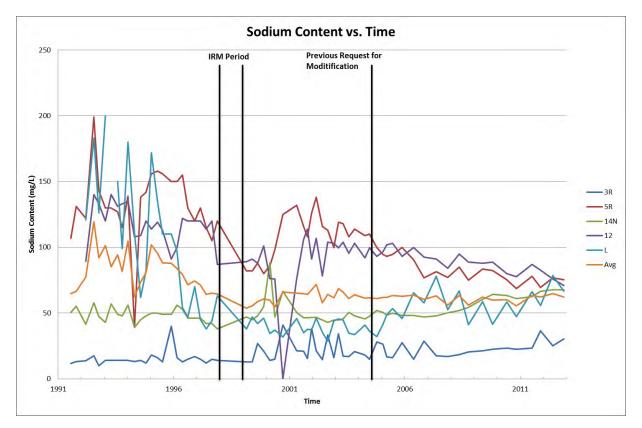


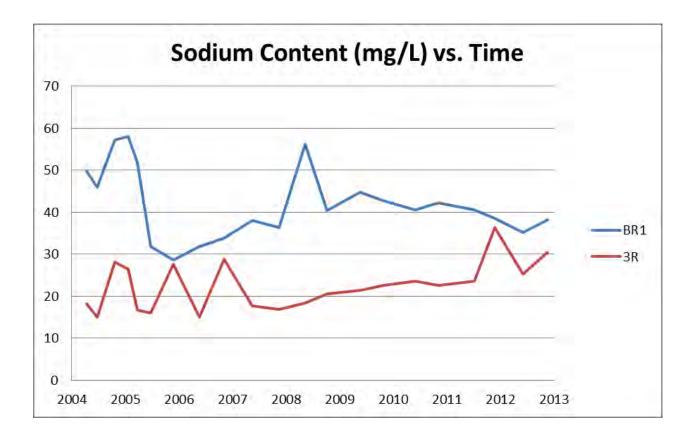


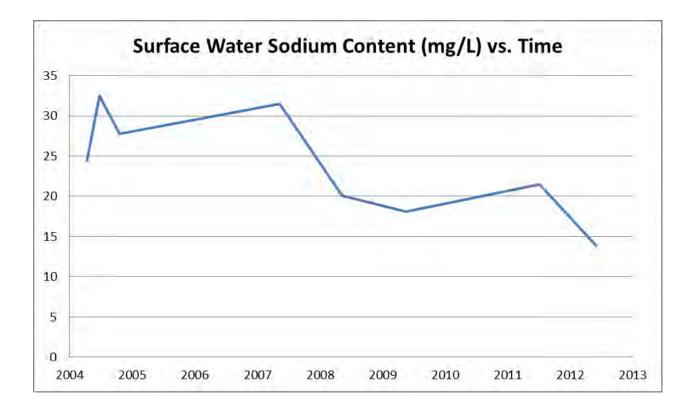
Potassium Content (mg/L)

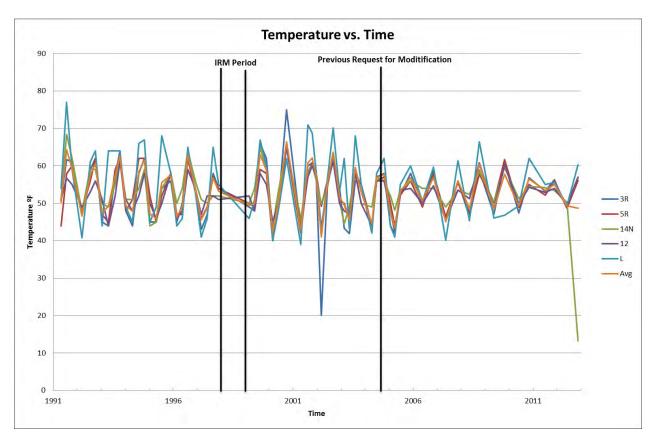


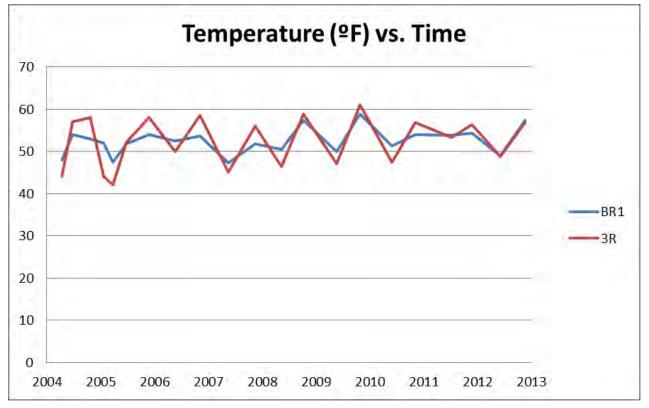


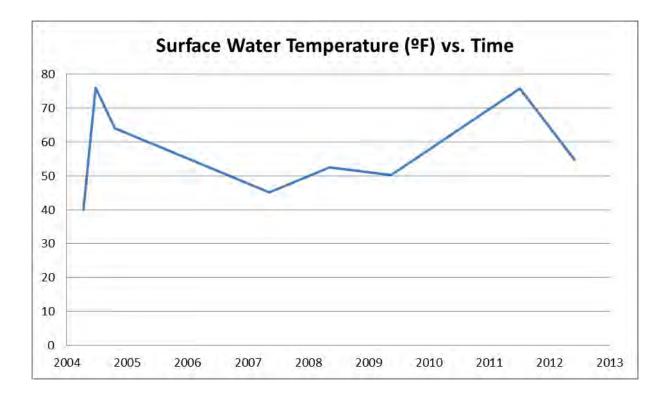


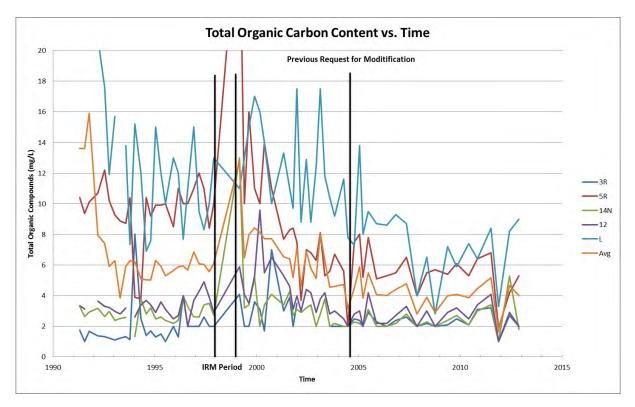

Selenium Content (mg/L)

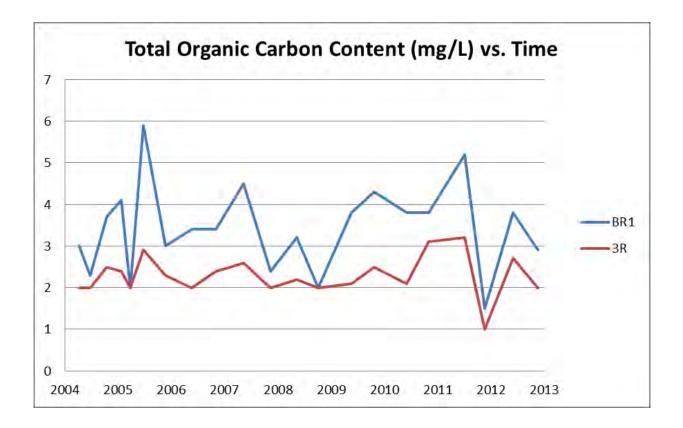


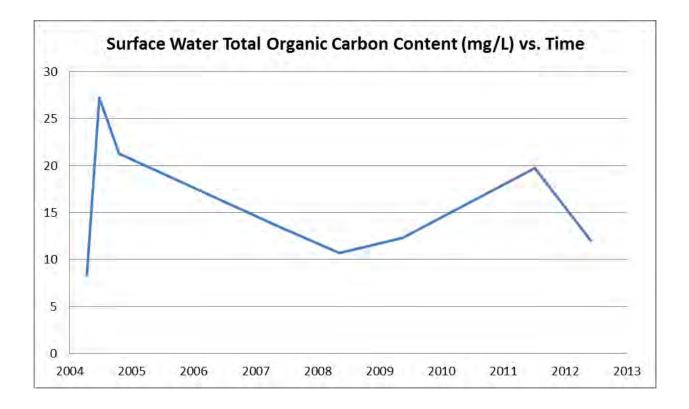

Sodium Content (mg/L)






Temperature (ºF)





Total Organic Carbon Content (mg/L)

APPENDIX D

HISTORICAL PARAMETER STATISTICAL VALUES

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	3.50E-03	3.50E-03	3.50E-03	3.50E-03	1.33E-02	5.05E-03
	FIE-IRM	1.73E-03	1.73E-03	1.73E-03	1.73E-03	1.27E-02	1.72E-03
	Post-IRM, Pre-report	6.97E-03	7.30E-03	6.97E-03	6.97E-03	1.01E-02	7.66E-03
		3.49E-03	2.98E-03	3.49E-03	3.49E-03	3.57E-03	3.36E-03
Arithmetic	Arithmetic Mean* Post-IRM Overall	5.99E-03	6.48E-03	6.48E-03	6.48E-03	8.03E-03	6.69E-03
Mean*		2.92E-03	3.03E-03	3.03E-03	3.03E-03	2.58E-03	2.61E-03
		6.30E-03	6.74E-03	6.63E-03	6.63E-03	8.69E-03	7.00E-03
		3.05E-03	2.96E-03	3.09E-03	3.09E-03	2.99E-03	2.81E-03
		5.81E-03	6.17E-03	6.09E-03	6.09E-03	9.32E-03	6.66E-03
	Overall	3.03E-03	3.02E-03	3.11E-03	3.11E-03	5.08E-03	2.73E-03
	Pre-IRM	3.50E-03	3.50E-03	3.50E-03	3.50E-03	7.00E-03	5.00E-03
	Post-IRM, Pre-report	7.45E-03	7.45E-03	7.45E-03	7.45E-03	1.03E-02	8.01E-03
Median	Post-IRM, Post-report	5.60E-03	5.60E-03	5.60E-03	5.60E-03	9.10E-03	6.30E-03
	Post-IRM	5.60E-03	5.60E-03	5.60E-03	5.60E-03	9.10E-03	6.30E-03
	Overall	5.00E-03	5.00E-03	5.00E-03	5.00E-03	8.30E-03	5.88E-03
	Pre-IRM	3.16E-03	3.16E-03	3.16E-03	3.16E-03	9.93E-03	4.82E-03
Coomotrio	Post-IRM, Pre-report	6.03E-03	6.77E-03	6.03E-03	6.03E-03	9.57E-03	6.98E-03
Geometric	Post-IRM, Post-report	5.38E-03	5.81E-03	5.81E-03	5.81E-03	7.59E-03	6.21E-03
Mean	Post-IRM	5.58E-03	6.10E-03	5.88E-03	5.88E-03	8.17E-03	6.44E-03
	Overall	5.05E-03	5.44E-03	5.28E-03	5.28E-03	8.39E-03	6.13E-03

Arsenic Content, mg/L

* Subtended with artithmetic standard deviation

Comments

- New York Effluent Groundwater Upper Limitation 0.05 mg/L

- All well measurements have been well below effluent groundwater limitation

- Most data have been below detection limit

- Downgradient well measurements are not significantly higher than upgradient measurements

	Mean + SD	Mean - SD							
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average			
Post-IRM, Pre-report	1.0E-02	4.3E-03	3.5E-03	3.5E-03	6.5E-03	4.3E-03			
Post-IRM, Post-report	8.9E-03	3.4E-03	3.4E-03	3.4E-03	5.5E-03	4.1E-03			
Post-IRM	9.3E-03	3.8E-03	3.5E-03	3.5E-03	5.7E-03	4.2E-03			

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	0.0400	0.0400	0.1100	0.0540	0.0090	0.0538
	FIE-IRM	0.0141	0.0141	0.0082	0.0307	0.0096	0.0139
	Post-IRM, Pre-report	0.0467	0.0432	0.0908	0.0432	0.0308	0.0509
	FOSt-IINIX, FIE-IEPOIT	0.0121	0.0055	0.0395	0.0071	0.0062	0.0088
Arithmetic	Post-IRM Post-report	0.0326	0.0538	0.1172	0.0413	0.0687	0.0627
Mean*		0.0061	0.0220	0.0067	0.0064	0.0375	0.0098
		0.0370	0.0505	0.1089	0.0419	0.0567	0.0590
		0.0105	0.0189	0.0249	0.0065	0.0357	0.0108
	Overall	0.0375	0.0486	0.1091	0.0440	0.0502	0.0581
	Overall	0.0109	0.0183	0.0227	0.0136	0.0372	0.0113
	Pre-IRM	0.0450	0.0450	0.1100	0.0400	0.0050	0.0518
	Post-IRM, Pre-report	0.0485	0.0420	0.1055	0.0410	0.0305	0.0539
Median	Post-IRM, Post-report	0.0302	0.0470	0.1200	0.0400	0.0616	0.0608
	Post-IRM	0.0330	0.0430	0.1100	0.0400	0.0460	0.0580
	Overall	0.0350	0.0430	0.1100	0.0400	0.0437	0.0574
	Pre-IRM	0.0376	0.0376	0.1098	0.0490	0.0058	0.0525
Geometric	Post-IRM, Pre-report	0.0451	0.0429	0.0730	0.0427	0.0303	0.0502
Mean	Post-IRM, Post-report	0.0321	0.0510	0.1171	0.0410	0.0624	0.0621
IVIEALI	Post-IRM	0.0358	0.0483	0.1009	0.0415	0.0496	0.0581
	Overall	0.0361	0.0462	0.1024	0.0427	0.0371	0.0571

Barium Content, mg/L

* Subtended with artithmetic standard deviation

Comments

- New York Effluent Groundwater Upper Limitation 2 mg/L

- All well measurements have been well below effluent groundwater limitation

- Downgradient well measurements are not significantly higher than upgradient measurements

	Mean + SD	Mean - SD							
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average			
Post-IRM, Pre-report	5.9E-02	3.8E-02	5.1E-02	3.6E-02	2.5E-02	4.2E-02			
Post-IRM, Post-report	3.9E-02	3.2E-02	1.1E-01	3.5E-02	3.1E-02	5.3E-02			
Post-IRM	4.8E-02	3.2E-02	8.4E-02	3.5E-02	2.1E-02	4.8E-02			

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	5.84E-03	4.84E-03	7.57E-03	4.52E-03	4.70E-03	5.59E-03
	FIE-IRM	3.85E-03	1.89E-03	9.11E-03	1.08E-03	1.61E-03	2.35E-03
	Post-IRM, Pre-report	1.44E-02	1.03E-02	1.01E-02	1.04E-02	9.95E-03	1.10E-02
	tic Post-IRM Post-report	2.29E-02	1.63E-02	1.63E-02	1.63E-02	1.64E-02	1.65E-02
Arithmetic		2.95E-03	2.95E-03	2.97E-03	2.99E-03	2.96E-03	2.97E-03
Mean*		1.41E-03	1.41E-03	1.40E-03	1.38E-03	1.43E-03	1.41E-03
		8.98E-03	6.80E-03	6.71E-03	6.87E-03	6.63E-03	7.20E-03
		1.74E-02	1.23E-02	1.23E-02	1.23E-02	1.23E-02	1.25E-02
	Overall	7.77E-03	6.05E-03	7.03E-03	6.01E-03	5.93E-03	6.58E-03
	Overall	1.39E-02	9.70E-03	1.11E-02	9.86E-03	9.86E-03	9.91E-03
	Pre-IRM	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03
	Post-IRM, Pre-report	1.00E-02	8.00E-03	5.00E-03	1.00E-02	5.00E-03	1.00E-02
Median	Post-IRM, Post-report	2.90E-03	2.90E-03	2.90E-03	2.90E-03	2.90E-03	2.90E-03
	Post-IRM	4.40E-03	4.40E-03	3.90E-03	3.80E-03	3.65E-03	4.40E-03
	Overall	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03
	Pre-IRM	5.10E-03	4.50E-03	5.38E-03	4.34E-03	4.37E-03	5.21E-03
Coomotrio	Post-IRM, Pre-report	7.86E-03	6.66E-03	6.45E-03	6.53E-03	6.12E-03	7.11E-03
Geometric Mean	Post-IRM, Post-report	2.63E-03	2.63E-03	2.65E-03	2.69E-03	2.64E-03	2.65E-03
wear	Post-IRM	4.67E-03	4.28E-03	4.23E-03	4.28E-03	4.10E-03	4.45E-03
	Overall	4.83E-03	4.37E-03	4.63E-03	4.30E-03	4.20E-03	4.73E-03

Lead Content, mg/L

* Subtended with artithmetic standard deviation

Comments

- New York Effluent Groundwater Upper Limitation 0.05 mg/L

- Two contraventions of limit since IRM: One in 1999, and the other was because detection limit > state limit

- All measurements since 1999 have been below state limitation
- Most measurements are below detection limit
- Downgradient well measurements are not significantly different than upgradient well measurements
- Overall reduction and stabilization of parameter measurements

	Mean + SD	Mean - SD						
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average		
Post-IRM, Pre-report	3.74E-02	-6.00E-03	-6.24E-03	-5.97E-03	-6.46E-03	-5.44E-03		
Post-IRM, Post-report	4.37E-03	1.54E-03	1.57E-03	1.61E-03	1.53E-03	1.56E-03		
Post-IRM	2.64E-02	-5.47E-03	-5.57E-03	-5.45E-03	-5.68E-03	-5.32E-03		

Mercury Content, mg/L

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	7.25E-04	7.25E-04	7.25E-04	7.25E-04	6.33E-04	7.25E-04
		3.20E-04	3.20E-04	3.20E-04	3.20E-04	3.21E-04	3.20E-04
	Post-IRM, Pre-report	4.83E-04	4.83E-04	4.83E-04	4.83E-04	4.83E-04	4.83E-04
		4.08E-05	4.08E-05	4.08E-05	4.08E-05	4.08E-05	4.08E-05
Arithmetic		2.92E-04	2.92E-04	2.92E-04	2.92E-04	2.92E-04	2.92E-04
Mean*		1.75E-04	1.75E-04	1.75E-04	1.75E-04	1.75E-04	1.75E-04
		3.53E-04	3.53E-04	3.53E-04	3.53E-04	3.53E-04	3.53E-04
		1.71E-04	1.71E-04	1.71E-04	1.71E-04	1.71E-04	1.71E-04
	Overall	4.17E-04	4.17E-04	4.17E-04	4.17E-04	3.91E-04	4.17E-04
	Overall	2.42E-04	2.42E-04	2.42E-04	2.42E-04	2.11E-04	2.42E-04
	Pre-IRM	7.50E-04	7.50E-04	7.50E-04	7.50E-04	5.00E-04	7.50E-04
	Post-IRM, Pre-report	5.00E-04	5.00E-04	5.00E-04	5.00E-04	5.00E-04	5.00E-04
Median	Post-IRM, Post-report	2.00E-04	2.00E-04	2.00E-04	2.00E-04	2.00E-04	2.00E-04
	Post-IRM	5.00E-04	5.00E-04	5.00E-04	5.00E-04	5.00E-04	5.00E-04
	Overall	5.00E-04	5.00E-04	5.00E-04	5.00E-04	5.00E-04	5.00E-04
	Pre-IRM	6.69E-04	6.69E-04	6.69E-04	6.69E-04	5.85E-04	6.69E-04
Geometric	Post-IRM, Pre-report	4.82E-04	4.82E-04	4.82E-04	4.82E-04	4.82E-04	4.82E-04
Mean	Post-IRM, Post-report	2.42E-04	2.42E-04	2.42E-04	2.42E-04	2.42E-04	2.42E-04
wear	Post-IRM	3.01E-04	3.01E-04	3.01E-04	3.01E-04	3.01E-04	3.01E-04
	Overall	3.46E-04	3.46E-04	3.46E-04	3.46E-04	3.30E-04	3.46E-04

* Subtended with artithmetic standard deviation

Comments

- New York Effluent Groundwater Upper Limitation 0.0014 mg/L
- Never any contraventions of state limitation
- Most measurements, while at detection limit, are well below state limitation
- Overall reduction and stabilization of parameter measurements

	Mean + SD	Mean - SD							
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average			
Post-IRM, Pre-report	5.24E-04	4.43E-04	4.43E-04	4.43E-04	4.43E-04	4.43E-04			
Post-IRM, Post-report	4.68E-04	1.17E-04	1.17E-04	1.17E-04	1.17E-04	1.17E-04			
Post-IRM	5.24E-04	1.81E-04	1.81E-04	1.81E-04	1.81E-04	1.81E-04			

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	906	1693	1168	1749	2555	1606
	FIE-IRM	221	506	130	319	1639	371
	Post-IRM, Pre-report	936	1120	1109	1437	958	1112
	hmetic Post-IRM Post-report	137	131	95	159	118	95
Arithmetic		1073	929	1217	1363	1050	1126
Mean*		60	84	61	104	165	49
		1001	1030	1160	1402	1002	1119
	FOST-IRM	127	146	96	139	148	76
	Overall	964	1291	1163	1539	1599	1311
	Overall	175	467	110	283	1265	338
	Pre-IRM	840	1647	1145	1750	1900	1561
	Post-IRM, Pre-report	1005	1155	1129	1443	930	1130
Median	Post-IRM, Post-report	1068	943	1194	1351	1060	1126
	Post-IRM	1030	1030	1163	1424	1016	1128
	Overall	998	1164	1157	1470	1078	1173
	Pre-IRM	886	1624	1160	1723	2161	1567
Coomotrio	Post-IRM, Pre-report	925	1112	1105	1429	951	1108
Geometric	Post-IRM, Post-report	1071	926	1215	1359	1038	1125
Mean	Post-IRM	992	1019	1156	1395	991	1116
	Overall	949	1225	1158	1516	1338	1276

Specific Conductance (umhos/cm)

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter

- Measurements have converged to upgradient well measurements
- Overall reduction and stabilization of measurements

	Mean + SD		Mean - SD						
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average			
Post-IRM, Pre-report	1073	989	1014	1278	839	1017			
Post-IRM, Post-report	1133	846	1156	1259	885	1078			
Post-IRM	1128	883	1064	1263	854	1043			

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	93.24	316.92	170.00	231.60	321.18	223.94
	FIE-IRM	22.50	66.02	13.23	32.62	158.45	40.88
	Post-IRM, Pre-report	128.86	204.10	162.07	201.67	143.94	168.13
	Post-IRM, Post-report	36.93	33.48	28.47	45.31	63.74	25.53
Arithmetic		151.53	183.79	188.53	175.42	122.03	164.26
Mean*		9.89	27.72	14.32	64.08	30.82	18.64
	Post-IRM	139.63	194.45	174.64	189.20	133.53	166.29
	FOST-IKIVI	29.60	32.17	26.26	55.89	51.43	22.32
	Overall	121.35	242.70	172.85	205.51	200.12	189.00
	Overall	35.24	77.03	22.16	52.30	136.11	41.80
	Pre-IRM	95.00	320.00	170.00	220.00	310.00	212.67
	Post-IRM, Pre-report	138.00	199.00	165.00	205.00	142.00	174.00
Median	Post-IRM, Post-report	147.00	177.00	190.00	164.00	116.00	156.30
	Post-IRM	145.50	189.50	176.00	197.00	130.50	168.60
	Overall	120.00	219.00	173.00	210.00	148.50	184.12
	Pre-IRM	75.86	310.30	169.49	229.44	282.83	220.62
Coomotrio	Post-IRM, Pre-report	122.68	201.59	159.23	194.39	133.09	166.03
Geometric	Post-IRM, Post-report	151.23	181.86	188.00	151.59	118.30	163.27
Mean	Post-IRM	135.50	191.97	172.30	172.73	125.85	164.71
	Overall	107.82	231.94	171.21	192.66	167.74	184.81

Sulfate Content mg/L

* Subtended with artithmetic standard deviation

Comments

- New York Effluent Groundwater Upper Limitation 500 mg/L

- No contraventions since 1995

- Sulfate content has been well-below limitation since IRM period and have been converging to upgradient values

- Downgradient well measurements are not significantly higher than upgradient well measurements

'- Overall reduction and stabilization of parameter measurements

	Mean + SD		Mean - SD						
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average			
Post-IRM, Pre-report	161	156	174	111	91	146			
Post-IRM, Post-report	169	162	148	133	82	144			
Post-IRM	157	166	151	153	64	147			

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	30.8	48.3	29.5	25.9	5.4	30.6
	Pie-iRivi	31.8	144.9	26.4	28.2	5.7	39.7
	Post-IRM, Pre-report	5.8	4.4	3.2	11.1	1.6	5.4
	FOST-IRM, FIE-IEPOIT	11.8	8.1	4.2	18.4	1.1	7.6
Arithmetic	Post-IRM, Post-report	1.1	2.9	4.2	2.3	1.7	2.4
Mean*	FOST-INM, FOST-TEPOT	0.9	7.6	4.6	2.4	1.3	1.9
	Post-IRM	3.5	3.7	3.6	6.9	1.7	4.0
	FOST-IRM	8.7	7.8	4.3	14.0	1.2	5.8
	Overall	14.4	21.2	14.0	14.4	2.7	14.5
	Overall	24.9	92.7	21.1	22.6	3.5	28.2
	Pre-IRM	18.8	13.7	21.4	17.0	4.0	19.2
	Post-IRM, Pre-report	0.9	0.8	0.9	1.6	1.2	1.1
Median	Post-IRM, Post-report	0.8	1.3	2.9	1.6	1.5	2.0
	Post-IRM	0.8	0.9	1.8	1.6	1.4	1.8
	Overall	4.0	3.1	5.5	5.9	1.7	6.7
	Pre-IRM	19.9	17.3	22.7	18.3	4.0	21.8
Geometric	Post-IRM, Pre-report	1.5	1.1	1.4	3.2	1.2	2.2
Mean	Post-IRM, Post-report	0.8	1.0	2.7	1.5	1.3	1.8
wean	Post-IRM	1.1	1.0	1.9	2.3	1.3	2.0
	Overall	3.5	3.1	5.1	5.1	1.8	5.1

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter

- Measurements have converged to upgradient well measurements
- Downgradient well measurements are not significantly higher than upgradient well measurements
 Upgradient well measurements of 168 on 1/27/99 thrown out as outlier
- '- Overall reduction and stabilization of parameter measurements

	Mean + SD	Mean - SD							
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average			
Post-IRM, Pre-report	2	-5	0	0	0	0			
Post-IRM, Post-report	12	-4	-1	-7	0	-2			
Post-IRM	39	-71	-7	-8	-1	-14			

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	17.85	261.81	88.58	251.20	425.56	209.22
	FIE-IRM	1.85	64.24	8.93	43.14	534.74	114.13
	Post-IRM, Pre-report	19.25	146.67	77.14	135.15	60.84	87.81
	F Ost-IIXI0; F Te-Teport	3.41	27.16	12.57	33.18	15.62	11.29
Arithmetic	Post-IRM, Post-report	31.71	107.96	99.48	150.79	102.69	98.53
Mean*	FOST-INIXI; FOST-REPORT	8.91	20.39	12.83	44.72	31.93	11.24
	Post-IRM	25.17	128.28	87.75	142.58	80.72	92.90
	FOST-IRM	9.07	30.88	16.87	39.37	32.31	12.37
	Overall	22.28	180.88	88.08	184.36	213.35	138.72
	Overall	7.98	80.51	14.20	66.92	369.39	91.55
	Pre-IRM	18.00	270.00	91.50	260.00	260.00	180.30
	Post-IRM, Pre-report	19.40	151.00	76.20	143.00	59.90	90.28
Median	Post-IRM, Post-report	35.30	100.00	97.40	158.00	96.00	96.80
	Post-IRM	21.65	127.00	85.15	146.00	71.10	91.88
	Overall	19.25	157.50	87.00	161.00	94.00	106.64
	Pre-IRM	17.75	252.69	88.11	247.48	259.97	188.90
Coomotrio	Post-IRM, Pre-report	18.92	144.04	76.06	127.12	59.27	87.09
Geometric Mean	Post-IRM, Post-report	30.27	106.24	98.71	131.69	98.01	97.89
IVIEALI	Post-IRM	23.65	124.65	86.08	129.27	75.26	92.06
	Overall	21.12	164.66	86.88	165.95	121.24	122.19

Chloride Content mg/L

* Subtended with artithmetic standard deviation

Comments

- New York Effluent Groundwater Upper Limitation

500 mg/L

- No contraventions since before IRM period

- Downgradient and leachate well measurements are still significantly higher than upgradient well measurements
- Overall reduction and stabilization of parameter measurements

	Mean + SD	Mean - SD						
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average		
Post-IRM, Pre-report	23	120	65	102	45	77		
Post-IRM, Post-report	41	88	87	106	71	87		
Post-IRM	34	97	71	103	48	81		

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	0.0055	0.0110	0.0113	0.0935	0.0270	0.0328
	FIE-IRM	0.0010	0.0020	0.0023	0.1643	0.0294	0.0395
	Post-IRM, Pre-report	0.0220	0.0033	0.0036	0.0107	0.0933	0.0266
		0.0244	0.0037	0.0044	0.0218	0.0381	0.0106
Arithmetic	Post-IRM, Post-report	0.0065	0.0018	0.0018	0.0025	0.0515	0.0128
Mean*	FOST-INIX, FOST-TEPOT	0.0031	0.0015	0.0015	0.0021	0.0505	0.0104
	Post-IRM	0.0143	0.0026	0.0027	0.0066	0.0724	0.0197
	FOST-IRM	0.0188	0.0029	0.0034	0.0158	0.0489	0.0125
	Overall	0.0139	0.0035	0.0036	0.0163	0.0685	0.0208
	Overall	0.0177	0.0038	0.0042	0.0575	0.0489	0.0153
	Pre-IRM	0.0050	0.0100	0.0100	0.0120	0.0100	0.0155
	Post-IRM, Pre-report	0.0125	0.0020	0.0020	0.0033	0.0955	0.0255
Median	Post-IRM, Post-report	0.0055	0.0009	0.0009	0.0014	0.0376	0.0099
	Post-IRM	0.0082	0.0019	0.0017	0.0020	0.0620	0.0169
	Overall	0.0100	0.0020	0.0020	0.0033	0.0610	0.0169
	Pre-IRM	0.0054	0.0109	0.0112	0.0263	0.0183	0.0199
Geometric	Post-IRM, Pre-report	0.0143	0.0023	0.0023	0.0042	0.0849	0.0244
Mean	Post-IRM, Post-report	0.0059	0.0014	0.0014	0.0019	0.0295	0.0097
IVIEALI	Post-IRM	0.0091	0.0018	0.0018	0.0028	0.0500	0.0154
	Overall	0.0093	0.0022	0.0022	0.0036	0.0459	0.0159

Chromium Content, mg/L

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter
- Downgradient well measurements are not significantly higher than upgradient measurements
- Leachate measurementes still fluctuate significantly

	Mean + SD	Mean - SD						
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average		
Post-IRM, Pre-report	4.64E-02	-3.35E-04	-8.13E-04	-1.11E-02	5.52E-02	1.60E-02		
Post-IRM, Post-report	9.64E-03	3.24E-04	3.36E-04	4.22E-04	9.93E-04	2.43E-03		
Post-IRM	3.31E-02	-2.79E-04	-6.49E-04	-9.19E-03	2.35E-02	7.25E-03		

рΗ

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	7.08	7.84	6.98	7.04	8.51	7.48
	Pre-IRM	0.14	0.54	0.19	0.16	0.40	0.19
	Post-IRM, Pre-report	7.09	7.64	7.16	7.16	8.33	7.46
	Post-IRM, Pie-report	0.41	0.39	0.32	0.26	0.48	0.26
Arithmetic	Post-IRM, Post-report	7.09	7.71	7.12	7.28	7.84	7.40
Mean*	F OST-INM, F OST-TEPOT	0.23	0.32	0.17	0.30	0.33	0.19
	Post-IRM	7.09	7.67	7.14	7.21	8.09	7.43
	FOST-IRM	0.33	0.35	0.26	0.28	0.48	0.23
	Overall	7.09	7.74	7.08	7.14	8.26	7.45
	Overall	0.27	0.44	0.25	0.25	0.49	0.21
	Pre-IRM	7.11	7.89	6.98	7.02	8.50	7.50
	Post-IRM, Pre-report	7.15	7.71	7.12	7.13	8.30	7.50
Median	Post-IRM, Post-report	7.09	7.79	7.15	7.27	7.87	7.35
	Post-IRM	7.14	7.77	7.14	7.15	8.11	7.46
	Overall	7.12	7.80	7.08	7.14	8.31	7.49
	Pre-IRM	7.08	7.82	6.98	7.04	8.50	7.48
Coomotrio	Post-IRM, Pre-report	7.08	7.63	7.15	7.15	8.32	7.45
Geometric Mean	Post-IRM, Post-report	7.08	7.70	7.12	7.27	7.83	7.40
IVICALI	Post-IRM	7.08	7.66	7.14	7.21	8.08	7.43
	Overall	7.08	7.73	7.07	7.14	8.25	7.45

* Subtended with artithmetic standard deviation

Comments

 New York Effluent Groundwater Upper Limitation 	8.5
- New York Effluent Groundwater Lower Limitation	6.5

- 15 contraventions of limitations Pre-IRM

- 7 contraventions of limitations Post-IRM, Pre-Report

- Zero contraventions since previous request for modification

- One measurement of a pH of 17 thrown out as an outlier

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	583.62	1081.92	811.54	1140.96	1253.82	961.86
	FIE-IRM	80.56	196.92	54.81	156.78	506.40	140.61
	Post-IRM, Pre-report	623.38	697.62	722.57	921.81	628.05	718.69
		65.30	105.28	65.05	87.84	77.83	48.89
Arithmetic	Post-IRM, Post-report	673.26	560.11	797.68	873.84	637.53	708.48
Mean*	FOST-INIX, FOST-TEPOT	84.13	66.26	61.86	59.40	124.57	37.06
	Post-IRM	647.08	632.30	758.25	899.03	632.55	713.84
	FOST-IRM	78.04	112.01	73.34	78.57	101.44	43.43
	Overall	622.08	809.42	779.24	992.08	853.00	811.54
	Overall	84.42	267.30	71.21	164.47	429.73	153.78
	Pre-IRM	560.00	1100.00	795.00	1200.00	1100.00	917.75
	Post-IRM, Pre-report	631.00	714.00	726.00	928.00	632.00	705.80
Median	Post-IRM, Post-report	684.00	546.00	782.00	883.00	640.00	705.80
	Post-IRM	652.50	627.50	748.50	890.00	634.50	705.80
	Overall	615.00	756.00	773.00	939.00	671.00	748.70
	Pre-IRM	579.41	1065.14	809.87	1127.92	1156.08	952.36
Coomotrio	Post-IRM, Pre-report	620.12	689.88	719.62	917.83	623.29	717.15
Geometric Mean	Post-IRM, Post-report	666.94	556.29	795.44	871.93	625.64	707.58
IVIEALI	Post-IRM	641.94	622.84	754.69	895.73	624.41	712.59
	Overall	616.54	769.44	775.96	978.77	776.95	798.84

Total Dissolved Solids, mg/L

* Subtended with artithmetic standard deviation

Comments

- New York Effluent Groundwater Upper Limitation 1,000 mg/L
- No contraventions since before previous request for modification
- Well 12 values are still significantly higher than upgradient values
- Overall reduction and stabilization of parameter measurements

	Mean + SD	Mean - SD						
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average		
Post-IRM, Pre-report	689	592	658	834	550	670		
Post-IRM, Post-report	757	494	736	814	513	671		
Post-IRM	725	520	685	820	531	670		

Boron Content, mg/L

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	0.1100	0.1100	0.1050	0.1650	0.5133	0.1814
	FIE-IRM	0.0245	0.0245	0.0058	0.0100	0.1206	0.0464
	Post-IRM, Pre-report	0.1550	0.1800	0.1230	0.1783	0.3617	0.1996
	Post-IRM, Post-report Post-IRM	0.0650	0.0502	0.0385	0.0691	0.0631	0.0511
Arithmetic		0.1841	0.1776	0.1143	0.1828	0.3327	0.1983
Mean*		0.0128	0.0112	0.0066	0.0091	0.0389	0.0111
		0.1749	0.1784	0.1171	0.1814	0.3418	0.1987
		0.0384	0.0280	0.0214	0.0372	0.0480	0.0284
	Overall	0.1636	0.1665	0.1150	0.1786	0.3652	0.1957
	Overall	0.0438	0.0378	0.0200	0.0345	0.0836	0.0316
	Pre-IRM	0.1100	0.1100	0.1050	0.1600	0.5000	0.1810
	Post-IRM, Pre-report	0.1750	0.1850	0.1250	0.1900	0.3650	0.2100
Median	Post-IRM, Post-report	0.1800	0.1720	0.1140	0.1800	0.3300	0.2000
	Post-IRM	0.1800	0.1800	0.1140	0.1800	0.3300	0.2020
	Overall	0.1800	0.1710	0.1100	0.1800	0.3500	0.2000
	Pre-IRM	0.1079	0.1079	0.1049	0.1648	0.5040	0.1768
Geometric	Post-IRM, Pre-report	0.1393	0.1733	0.1177	0.1601	0.3570	0.1932
Mean	Post-IRM, Post-report	0.1837	0.1773	0.1141	0.1826	0.3306	0.1980
wear	Post-IRM	0.1683	0.1760	0.1153	0.1752	0.3387	0.1965
	Overall	0.1558	0.1617	0.1134	0.1733	0.3576	0.1929

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter

- Downgradient well measurements are not significantly higher than upgradient well measurements
- Leachate sump content is still significantly higher than that of the upgradient well

- Other wells have shown stabilization

	Mean + SD							
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average		
Post-IRM, Pre-report	0.22	0.13	0.08	0.11	0.30	0.15		
Post-IRM, Post-report	0.20	0.17	0.11	0.17	0.29	0.19		
Post-IRM	0.21	0.15	0.10	0.14	0.29	0.17		

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	N/A	N/A	N/A	N/A	N/A	N/A
	FIE-IRM	N/A	N/A	N/A	N/A	N/A	N/A
	Post-IRM, Pre-report	0.1000	2.2000	0.1000	0.1000	0.7400	0.6480
	Arithmetic Mean* Post-IRM, Post-report Post-IRM	N/A	N/A	N/A	N/A	N/A	N/A
Arithmetic		0.1612	1.3588	0.2829	0.2206	2.2388	0.8525
Mean*		0.2188	0.5332	0.2869	0.2402	2.0857	0.5565
		0.1578	1.4056	0.2728	0.2139	2.1556	0.8411
	1 031-1111	0.2128	0.5540	0.2817	0.2347	2.0540	0.5420
	Overall	0.1578	1.4056	0.2728	0.2139	2.1556	0.8411
	Overall	0.2128	0.5540	0.2817	0.2347	2.0540	0.5420
	Pre-IRM	N/A	N/A	N/A	N/A	N/A	N/A
	Post-IRM, Pre-report	0.1000	2.2000	0.1000	0.1000	0.7400	0.6480
Median	Post-IRM, Post-report	0.1000	1.3000	0.2100	0.1000	1.8000	0.7000
	Post-IRM	0.1000	1.3000	0.1550	0.1000	1.7000	0.6900
	Overall	0.1000	1.3000	0.1550	0.1000	1.7000	0.6900
	Pre-IRM	N/A	N/A	N/A	N/A	N/A	N/A
Geometric	Post-IRM, Pre-report	0.1000	2.2000	0.1000	0.1000	0.7400	0.6480
Mean	Post-IRM, Post-report	0.1206	1.2740	0.2004	0.1592	1.8326	0.7578
wear	Post-IRM	0.1193	1.3132	0.1928	0.1551	1.7426	0.7513
	Overall	0.1193	1.3132	0.1928	0.1551	1.7426	0.7513

Bromide Content, mg/L

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter

- Leachate and most downgradient well measurements are not significantly higher than upgradient well measurements - Well 5R content is still significantly higher than that of the upgradient well

	Mean + SD			Mean - SD		
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
Post-IRM, Pre-report	N/A	N/A	N/A	N/A	N/A	N/A
Post-IRM, Post-report	0.38	0.83	0.00	-0.02	0.15	0.30
Post-IRM	0.37	0.85	-0.01	-0.02	0.10	0.30

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	3.31	28.64	7.12	7.94	44.45	18.29
	FIE-IRM	2.84	11.16	4.87	6.20	31.92	9.22
	Post-IRM, Pre-report	6.81	25.31	5.98	9.43	32.35	15.98
	Post-IRM, Post-report Post-IRM	4.08	7.13	2.89	5.26	8.28	3.57
Arithmetic		5.98	20.63	7.24	10.61	26.88	14.41
Mean*		1.93	5.98	3.14	4.31	8.80	3.93
		6.43	23.09	6.58	9.99	29.75	15.23
		3.25	6.94	3.04	4.81	8.87	3.78
	Overall	5.18	25.28	6.79	9.20	35.41	16.44
	Overall	3.44	9.18	3.84	5.43	21.95	6.60
	Pre-IRM	1.66	31.00	5.32	5.50	34.10	17.08
	Post-IRM, Pre-report	5.00	27.00	5.00	6.90	31.00	15.58
Median	Post-IRM, Post-report	5.00	20.90	5.00	10.20	25.20	13.58
	Post-IRM	5.00	22.15	5.00	9.70	30.50	15.11
	Overall	5.00	25.75	5.00	7.60	31.60	15.34
	Pre-IRM	2.31	25.08	5.28	5.74	35.95	16.44
Coomotrio	Post-IRM, Pre-report	6.08	24.25	5.62	8.25	31.18	15.58
Geometric Mean	Post-IRM, Post-report	5.76	19.42	6.70	9.72	25.37	13.86
wean	Post-IRM	5.93	21.82	6.11	8.92	28.27	14.74
	Overall	4.07	23.05	5.77	7.53	31.01	15.39

Chemical Oxygen Demand (mg/L)

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter

- Outlier omitted: Well 3R, 6/3/2011, TOC = 146 mG/L

- Wells 5R and L continue to have significantly higher measurements than upgradient well

	Mean + SD	Mean - SD							
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average			
Post-IRM, Pre-report	10.89	18.18	3.09	4.17	24.06	12.41			
Post-IRM, Post-report	7.91	14.65	4.10	6.30	18.08	10.48			
Post-IRM	9.68	16.15	3.54	5.18	20.89	11.45			

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	0.0325	0.0325	0.0325	0.0325	0.0371	0.0328
	FIE-IRM	0.0139	0.0139	0.0139	0.0139	0.0125	0.0141
	Post-IRM, Pre-report	0.0464	0.0400	0.0400	0.0449	0.0916	0.0510
		0.0201	0.0000	0.0000	0.0147	0.0424	0.0100
Arithmetic		0.0326	0.0325	0.0325	0.0326	0.0548	0.0370
Mean*		0.0133	0.0134	0.0134	0.0132	0.0349	0.0124
		0.0404	0.0368	0.0368	0.0393	0.0743	0.0450
		0.0186	0.0094	0.0094	0.0152	0.0428	0.0130
	Overall	0.0390	0.0360	0.0360	0.0391	0.0678	0.0433
	Overall	0.0180	0.0103	0.0103	0.0156	0.0402	0.0139
	Pre-IRM	0.0400	0.0400	0.0400	0.0400	0.0400	0.0400
	Post-IRM, Pre-report	0.0400	0.0400	0.0400	0.0400	0.0860	0.0486
Median	Post-IRM, Post-report	0.0400	0.0400	0.0400	0.0400	0.0400	0.0400
	Post-IRM	0.0400	0.0400	0.0400	0.0400	0.0535	0.0421
	Overall	0.0400	0.0400	0.0400	0.0400	0.0502	0.0420
	Pre-IRM	0.0283	0.0283	0.0283	0.0283	0.0339	0.0285
Geometric	Post-IRM, Pre-report	0.0441	0.0400	0.0400	0.0434	0.0819	0.0501
Mean	Post-IRM, Post-report	0.0285	0.0283	0.0283	0.0286	0.0487	0.0346
wear	Post-IRM	0.0365	0.0344	0.0344	0.0359	0.0641	0.0427
	Overall	0.0349	0.0332	0.0332	0.0352	0.0580	0.0402

Total Hexavalent Chromium Content, mg/L

* Subtended with artithmetic standard deviation

Comments

- New York Effluent Groundwater Upper Limitation

- Data still fluctuates and there have still been some contraventions of the effluent groundwater limit

	Mean + SD							
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average		
Post-IRM, Pre-report	0.066	0.040	0.040	0.030	0.049	0.041		
Post-IRM, Post-report	0.046	0.019	0.019	0.019	0.020	0.025		
Post-IRM	0.059	0.027	0.027	0.024	0.032	0.032		

0.1 mg/L

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	89.77	67.35	53.92	-19.32	43.83	45.82
	FIE-IRM	70.41	62.91	54.78	85.08	68.44	48.55
	Post-IRM, Pre-report	152.38	121.05	119.10	108.81	126.33	125.53
	1 031-1110, 1 10-10001	80.92	87.92	146.75	124.17	87.63	92.07
Arithmetic	Post-IRM. Post-report	75.21	56.63	35.32	-1.11	57.89	44.79
Mean*		69.35	49.48	61.69	88.14	39.53	49.68
	Post-IRM	115.73	90.45	79.30	56.60	93.83	87.18
	F OST-INIM	84.26	78.46	120.81	120.76	76.53	84.58
	Overall	105.50	81.35	69.54	27.40	75.08	70.89
	Overall	79.56	73.11	100.87	113.95	77.01	74.92
	Pre-IRM	95.00	70.00	51.00	8.00	60.50	52.50
	Post-IRM, Pre-report	126.00	96.00	55.00	90.00	88.00	85.60
Median	Post-IRM, Post-report	82.00	59.00	29.00	12.00	57.00	52.20
	Post-IRM	110.50	84.50	45.00	49.00	75.00	68.40
	Overall	100.00	78.00	50.00	27.00	68.00	61.50
	Pre-IRM	N/A	N/A	N/A	N/A	N/A	N/A
Coomotrio	Post-IRM, Pre-report	N/A	N/A	N/A	N/A	N/A	N/A
Geometric	Post-IRM, Post-report	N/A	N/A	N/A	N/A	N/A	N/A
Mean	Post-IRM	N/A	N/A	N/A	N/A	N/A	N/A
	Overall	N/A	N/A	N/A	N/A	N/A	N/A

Redox Potential (mV)

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter

- Data continues to fluctuate significantly

	Mean + SD	Mean - SD							
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average			
Post-IRM, Pre-report	233.30	33.13	-27.65	-15.36	38.71	33.46			
Post-IRM, Post-report	144.56	7.15	-26.37	-89.24	18.36	-4.89			
Post-IRM	199.99	11.99	-41.51	-64.16	17.30	2.60			

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	3.5E-02	2.2E-01	1.8E-01	2.7E-01	8.4E-02	1.6E-01
	FIE-IRM	4.0E-02	1.3E-01	1.3E-01	1.1E-01	1.3E-01	5.8E-02
	Post-IRM, Pre-report	2.7E-02	9.3E-02	8.7E-02	1.9E-01	2.1E-02	8.4E-02
		8.4E-02	1.1E-01	2.7E-02	1.7E-01	2.9E-02	6.1E-02
Arithmetic		5.6E-03	9.4E-02	1.1E-01	2.3E-01	5.4E-02	9.8E-02
Mean*		6.5E-03	1.9E-01	4.2E-02	2.1E-01	8.2E-02	5.6E-02
		1.7E-02	9.3E-02	9.9E-02	2.1E-01	3.6E-02	9.1E-02
		6.2E-02	1.5E-01	3.7E-02	1.9E-01	6.2E-02	5.8E-02
	Overall	2.4E-02	1.4E-01	1.3E-01	2.3E-01	5.4E-02	1.2E-01
	Overall	5.5E-02	1.5E-01	9.2E-02	1.7E-01	9.6E-02	6.7E-02
	Pre-IRM	1.5E-02	2.0E-01	1.2E-01	2.9E-01	2.0E-02	1.4E-01
	Post-IRM, Pre-report	3.0E-03	5.1E-02	9.4E-02	2.0E-01	1.0E-02	7.1E-02
Median	Post-IRM, Post-report	3.0E-03	2.3E-02	1.0E-01	2.3E-01	3.5E-02	9.5E-02
	Post-IRM	3.0E-03	3.5E-02	9.8E-02	2.1E-01	1.5E-02	7.8E-02
	Overall	5.0E-03	8.8E-02	1.0E-01	2.3E-01	2.0E-02	1.2E-01
	Pre-IRM	1.7E-02	1.8E-01	1.5E-01	2.3E-01	3.3E-02	1.5E-01
Geometric	Post-IRM, Pre-report	4.2E-03	5.3E-02	7.7E-02	9.8E-02	1.1E-02	6.5E-02
Mean	Post-IRM, Post-report	3.7E-03	3.0E-02	1.1E-01	9.3E-02	2.7E-02	8.4E-02
wear	Post-IRM	3.9E-03	4.1E-02	9.1E-02	9.6E-02	1.7E-02	7.3E-02
	Overall	7.0E-03	7.2E-02	1.1E-01	1.3E-01	2.1E-02	9.6E-02

Manganese Content, mg/L

* Subtended with artithmetic standard deviation

Comments

- New York Effluent Groundwater Upper Limitation

- Contravention in 2005 (Well 5R), measurement at limit in 2008 (Well 12)

- Data still fluctuates significantly

- Visually, downgradient wells seem to have significantly higher measurements than upgradient well

	Mean + SD							
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average		
Post-IRM, Pre-report	0.112	-0.012	0.059	0.015	-0.008	0.023		
Post-IRM, Post-report	0.012	-0.098	0.071	0.013	-0.028	0.043		
Post-IRM	0.079	-0.057	0.062	0.015	-0.025	0.032		

0.6 mg/L

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	1.327	37.391	2.905	9.203	167.136	40.723
	FIE-IRM	0.485	21.672	0.879	1.943	79.861	17.232
	Post-IRM, Pre-report	1.067	27.052	3.508	6.400	51.124	17.830
	1 031-1110, 1 10-10001	0.854	12.456	3.245	1.555	8.706	4.023
Arithmetic	Post-IRM, Post-report	0.485	31.174	2.608	5.867	65.779	21.183
Mean*		0.101	11.166	0.102	0.799	14.710	4.709
	Post-IRM	0.790	29.010	3.080	6.147	58.085	19.422
	F OST-IIRIM	0.682	11.894	2.369	1.268	13.917	4.627
	Overall	0.997	32.233	3.014	7.263	96.781	27.615
	Overall	0.664	16.710	1.940	2.133	71.320	15.279
	Pre-IRM	1.100	26.900	2.600	8.800	178.500	41.448
	Post-IRM, Pre-report	0.610	21.400	2.600	6.800	51.000	16.702
Median	Post-IRM, Post-report	0.470	31.200	2.600	5.900	65.800	21.130
	Post-IRM	0.500	30.100	2.600	6.300	55.050	19.636
	Overall	0.770	28.000	2.600	7.000	64.000	22.196
	Pre-IRM	1.262	30.319	2.799	9.054	146.869	36.019
Coomotrio	Post-IRM, Pre-report	0.818	24.618	2.986	6.054	50.404	17.403
Geometric Mean	Post-IRM, Post-report	0.476	29.829	2.606	5.816	64.192	20.729
wearr	Post-IRM	0.633	26.969	2.799	5.940	56.539	18.911
	Overall	0.825	28.211	2.799	6.928	79.334	24.229

Potassium Content, mg/L

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter

- Downgradient and leachate well measurements are still significantly higher than upgradient well measurements

	Mean + SD		Mean - SD						
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average			
Post-IRM, Pre-report	1.9	14.6	0.3	4.8	42.4	13.8			
Post-IRM, Post-report	0.6	20.0	2.5	5.1	51.1	16.5			
Post-IRM	1.5	17.1	0.7	4.9	44.2	14.8			

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	4.00E-03	4.00E-03	4.00E-03	4.00E-03	1.17E-02	5.20E-03
	FIE-IRM	1.41E-03	1.41E-03	1.41E-03	1.41E-03	9.87E-03	6.93E-04
	Post-IRM, Pre-report	4.71E-03	3.31E-03	2.60E-03	2.20E-03	2.32E-02	7.21E-03
	1 0st-mm, 1 re-report	3.06E-03	3.33E-03	3.09E-03	3.12E-03	9.20E-03	2.39E-03
Arithmetic	Post-IRM, Post-report	2.98E-03	1.14E-03	5.74E-04	6.43E-04	1.36E-02	3.78E-03
Mean*	T OST-INM, T OST-TEPOT	1.96E-03	9.55E-04	3.09E-04	2.94E-04	1.16E-02	2.70E-03
	Post-IRM	3.69E-03	2.03E-03	1.40E-03	1.28E-03	1.75E-02	5.18E-03
	POSI-IRIVI	2.55E-03	2.43E-03	2.17E-03	2.09E-03	1.15E-02	3.06E-03
	0: ::::::::::::::::::::::::::::::::::::	3.74E-03	2.33E-03	1.80E-03	1.70E-03	1.68E-02	5.19E-03
	Overall	2.39E-03	2.40E-03	2.26E-03	2.22E-03	1.13E-02	2.81E-03
	Pre-IRM	4.50E-03	4.50E-03	4.50E-03	4.50E-03	7.00E-03	5.00E-03
	Post-IRM, Pre-report	4.00E-03	1.00E-03	1.00E-03	1.00E-03	2.20E-02	7.40E-03
Median	Post-IRM, Post-report	2.00E-03	5.00E-04	4.40E-04	4.40E-04	9.90E-03	3.04E-03
	Post-IRM	3.35E-03	1.00E-03	1.00E-03	1.00E-03	1.50E-02	4.27E-03
	Overall	3.70E-03	1.25E-03	1.00E-03	1.00E-03	1.50E-02	4.80E-03
	Pre-IRM	3.76E-03	3.76E-03	3.76E-03	3.76E-03	9.30E-03	5.17E-03
Geometric	Post-IRM, Pre-report	3.93E-03	2.00E-03	1.59E-03	1.23E-03	2.16E-02	6.85E-03
Mean	Post-IRM, Post-report	2.34E-03	8.48E-04	4.91E-04	5.86E-04	9.96E-03	3.09E-03
wear	Post-IRM	2.89E-03	1.20E-03	7.93E-04	7.93E-04	1.37E-02	4.28E-03
	Overall	3.01E-03	1.43E-03	1.01E-03	1.01E-03	1.31E-02	4.40E-03

Selenium Content, mg/L

* Subtended with artithmetic standard deviation

Comments

- New York Effluent Groundwater Upper Limitation 0.02 mg/L

- Leachate continues to show measurements above the limit

	Mean + SD			Mean - SD		
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
Post-IRM, Pre-report	7.77E-03	-1.43E-05	-4.89E-04	-9.18E-04	1.40E-02	4.81E-03
Post-IRM, Post-report	4.94E-03	1.90E-04	2.65E-04	3.49E-04	1.94E-03	1.08E-03
Post-IRM	6.25E-03	-4.03E-04	-7.72E-04	-8.10E-04	5.98E-03	2.13E-03

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	15.2	132.3	48.2	116.2	104.5	82.1
	FIE-IRM	5.5	28.0	5.6	15.7	49.8	15.1
	Post-IRM, Pre-report	21.3	108.0	49.9	94.7	39.2	62.3
	1 031-1110, 1 10-10001	8.5	16.9	10.1	11.4	5.5	4.7
Arithmetic	Post-IRM, Post-report	23.0	83.0	55.9	88.9	55.6	61.3
Mean*	T OST-INM, T OST-TEPOT	5.7	9.8	7.6	8.8	12.7	2.7
	Post-IRM	22.1	96.1	52.7	91.9	47.0	61.8
	POSI-IRIVI	7.2	18.7	9.4	10.5	12.6	3.9
	Overall	19.4	110.0	51.0	101.2	67.4	69.6
	Overall	7.4	28.7	8.4	17.3	41.5	13.9
	Pre-IRM	14.0	130.0	48.0	120.0	104.5	80.8
	Post-IRM, Pre-report	18.2	110.0	46.7	97.6	37.7	61.6
Median	Post-IRM, Post-report	22.6	81.4	52.1	88.9	55.9	62.2
	Post-IRM	21.0	93.9	48.4	92.0	45.2	62.1
	Overall	16.9	110.0	48.2	99.6	48.1	64.3
	Pre-IRM	14.6	128.2	47.9	115.1	92.8	80.8
Geometric	Post-IRM, Pre-report	20.0	106.7	49.2	94.1	38.8	62.2
Mean	Post-IRM, Post-report	22.4	82.5	55.4	88.5	54.2	61.2
wear	Post-IRM	21.1	94.4	52.0	91.3	45.5	61.7
	Overall	18.3	106.2	50.4	99.7	58.6	68.5

Sodium Content, mg/L

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter

- Downgradient and leachate well measurements are still significantly higher than upgradient well measurements

'- Overall stabilization of parameter measurements

	Mean + SD		Mean - SD					
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average		
Post-IRM, Pre-report	30	91	40	83	34	58		
Post-IRM, Post-report	29	73	48	80	43	59		
Post-IRM	29	77	43	81	34	58		

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	53.1	53.3	54.2	51.9	55.9	53.7
	Pre-IRM	7.1	6.3	5.9	4.3	10.1	6.1
	Post-IRM, Pre-report	52.4	53.2	54.1	52.6	55.3	53.5
	1 031-1110, 1 10-10001	11.5	6.9	6.3	6.3	10.6	7.7
Arithmetic	Post-IRM, Post-report	52.4	52.7	51.2	52.4	53.2	52.4
Mean*	T OST-INM, T OST-TEPOT	5.9	4.7	9.7	4.6	8.0	4.8
	Post-IRM	52.4	53.0	52.7	52.5	54.3	53.0
	POSI-IRIVI	9.1	5.9	8.1	5.5	9.4	6.4
	0	52.7	53.1	53.3	52.3	54.9	53.3
	Overall	8.4	6.0	7.3	5.0	9.6	6.3
	Pre-IRM	54.0	52.5	53.0	51.5	56.5	53.6
	Post-IRM, Pre-report	55.0	55.0	54.0	52.0	57.0	53.0
Median	Post-IRM, Post-report	53.2	52.2	53.4	53.4	55.0	53.2
	Post-IRM	54.6	53.6	53.4	53.2	55.0	53.1
	Overall	54.0	52.6	53.4	52.0	55.0	53.2
	Pre-IRM	52.6	52.9	53.9	51.8	55.0	53.3
Coomotrio	Post-IRM, Pre-report	50.9	52.8	53.7	52.2	54.3	53.0
Geometric Mean	Post-IRM, Post-report	52.1	52.5	49.5	52.2	52.6	52.2
wean	Post-IRM	51.5	52.7	51.7	52.2	53.5	52.6
	Overall	51.9	52.8	52.5	52.1	54.1	52.9

Temperature, ° F

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter

Statistic	Time Period	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average
	Pre-IRM	1.94	9.59	2.82	3.30	16.62	6.90
	FIE-IRM	1.39	1.93	0.56	0.62	13.05	2.89
	Post-IRM, Pre-report	2.87	9.10	3.53	4.30	12.32	6.59
	rost-intil, rie-report	1.37	5.77	2.33	1.70	2.97	2.04
Arithmetic	Post-IRM, Post-report	2.32	5.66	2.45	2.71	7.53	4.13
Mean*	FOST-INIXI, FOST-TEPOT	0.49	1.42	0.87	0.78	2.49	0.97
	Post-IRM	2.57	7.46	3.02	3.54	10.04	5.42
	POSI-IRM	1.02	4.58	1.86	1.55	3.64	2.03
	0	2.30	8.30	2.94	3.45	12.57	6.00
	Overall	1.22	3.89	1.49	1.28	9.08	2.49
	Pre-IRM	1.59	10.00	2.64	3.27	12.00	5.99
	Post-IRM, Pre-report	2.00	7.70	3.20	4.10	11.80	6.46
Median	Post-IRM, Post-report	2.30	5.50	2.20	2.80	8.00	4.06
	Post-IRM	2.20	6.45	2.70	3.05	9.25	4.76
	Overall	2.00	8.20	2.70	3.20	10.40	5.73
	Pre-IRM	1.71	9.31	2.76	3.25	13.78	6.51
Coomotrio	Post-IRM, Pre-report	2.64	7.87	3.15	4.03	11.99	6.31
Geometric	Post-IRM, Post-report	2.26	5.44	2.33	2.58	7.07	4.00
Mean	Post-IRM	2.43	6.60	2.73	3.26	9.33	5.08
	Overall	2.09	7.56	2.74	3.26	10.84	5.60

Total Organic Carbon Cotent mg/L

* Subtended with artithmetic standard deviation

Comments:

- No federal/state effluent groundwater limitation for this parameter

- Well L continues to have significantly higher values than upgradient well

'- Overall reduction of parameter measurements

	Mean + SD	Mean - SD					
	Well 3R	Well 5R	Well 14N	Well 12	Well L	Average	
Post-IRM, Pre-report	4.24	3.33	1.19	2.60	9.35	4.54	
Post-IRM, Post-report	2.81	4.24	1.58	1.92	5.04	3.17	
Post-IRM	3.58	2.88	1.16	1.99	6.40	3.39	

APPENDIX 2

OPERATION AND MAINTENANCE PLAN

OPERATION MONITORING AND MAINTENANCE MANUAL CELLS 1 AND 2

FOR CC METALS AND ALLOYS, LLC WITMER ROAD

TABLE OF CONTENTS

SE (CTIO	N NO.	TITLE	PAGE NO.
1.0	INT	RODU	CTION	1
2.0	PRC	OCEDUI	RE FOR AMENDING POST-CLOSURE MONITORING AND	
	MA	INTEN	ANCE OPERATIONS MANUAL	1
3.0	POS	ST-CLC	SURE MAINTENANCE REQUIREMENTS	2
4.0			SURE GROUNDWATER AND SURFACE WATER SAMPLI	. – .
	4.1	4.1.1	ATION AND CONSTRUCTION OF MONITORING POINT Monitoring Well Location and Construction Surface Water Monitoring Points	5
	4.2	MON	ITORING FREQUENCY AND PARAMETERS	6
	4.3	SAM	PLING PERSONNEL AND EQUIPMENT REQUIREMEN	TS7
	4.4	SAM	PLING PROCEDURES	7
	4.5	4.5.1 4.5.2	ORATORY QUALITY ASSURANCE PLAN Personnel Responsibilities Analytical Quality Assurance Data Validation and Reporting	
	4.6	CON	TINGENCY MONITORING REQUIREMENTS	11
	4.7	REP	ORTING AND RECORDKEEPING REQUIREMENTS	

LIST OF APPENDICES

APPENDIX	TITLE
Α	Deed Restriction
В	Inspection Checklist
С	Well Location & Surface Water Drainage Map
D	SOP Groundwater/Surface Water Sampling
${f E}$	TestAmerica Quality Assurance Manual

OPERATION MONITORING AND MAINTENANCE MANUAL CELLS 1 AND 2

FOR CC METALS AND ALLOYS, LLC WITMER ROAD

1.0 INTRODUCTION

The following provides a post-closure maintenance and monitoring plan for the CC Metals and Alloys, LLC (CCMA) landfill Cells 1 and No. 2. These facilities are located at a 9.76 acre site adjacent to Witmer Road in the Town of Niagara. Waste disposed in Cell 1 includes ferrosilicon and ferrochromium metal baghouse dusts and waste disposed in Cell 2 contains ferroalloy dust.

Cell 1 was constructed in 1980 per a New York State Department of Environmental Conservation (NYSDEC) Part 360 Permit (#2133). It was closed in 1990 per a NYSDEC approved closure plan. Cell 2 was constructed in 1983 per a NYSDEC Part 360 Permit (#2585). Per NYSDEC Order on Consent 87-152A waste deposition into Cell 2 was stopped on September 30, 1991. Cell 2 was closed in 1992.

The principal objective of this manual is to provide the necessary instructions for the following:

- 1) Proper maintenance of all facility components,
- 2) Groundwater and surface water sampling and analysis, and
- 3) Interpretation of ground and surface water monitoring data. Adherence to this post-closure monitoring and maintenance program is required by 6 NYCRR Part 360 for a minimum period of thirty (30) years after final closure of Cells 1 and 2.

The information provided in this post-closure monitoring and maintenance operations manual is utilized by CCMA personnel and its consultants.

2.0 PROCEDURE FOR AMENDING POST-CLOSURE MONITORING AND MAINTENANCE OPERATIONS MANUAL

This post-closure monitoring and maintenance operations manual should be reviewed at regular intervals (initially once every three years) to ensure that it remains consistent with both the regulations and the technology concerning post-closure monitoring and maintenance at the Witmer Road site. All necessary modifications will be made under the

direction of a professional engineer licensed in the State of New York.

Since this plan (after approval) will be incorporated as a binding agreement between CCMA and the NYSDEC, any proposed modifications to this plan will be submitted to the NYSDEC for approval.

Upon receipt of NYSDEC approval, the changes will be made and the updated plan will be placed on file at the CC Metals and Alloys, Amherst, New York, office.

3.0 POST-CLOSURE MAINTENANCE REQUIREMENTS

The goals of the post-closure maintenance plan for the CCMA, Witmer Road Site, are as follows:

- 1) Ensure that structural integrity of closed Cells 1 and 2 is being properly maintained.
- 2) Correct any problems that might occur at the site before they have a chance to develop to such a degree that adverse environmental impacts might result.
- 3) Follow a program in which all involved parties (CCMA, regulatory agencies, and the public) have a sense of confidence that the site will not create problems which cannot be reasonably handled with minimum impacts.
- 4) Properly maintain the drainage pathways and controls implemented under the Interim Remedial Measure (IRM) order established in 1999.
- 5) Annual certification of the Deed Restriction (Institutional Control) filed with the Niagara County Clerk and recorded May 3, 2001, in Book 3114 on Page 291, ensuring it is still in effect and has not been altered. A copy of the Deed Restriction is included as Appendix A.

The post-closure maintenance plan can be summarized as follows:

- 1) LAN Associates, Inc. will be responsible for filing a Waste Management Facility Maintenance Inspection Report. Included in this inspection report will be a checklist which covers the following annual evaluation:
 - a) Bank and cover erosion,
 - b) Settlement,
 - c) Cover soil integrity,
 - d) Condition of vegetative cover, and
 - e) Condition of monitoring wells.

2) If any problems are encountered during the inspections that may be of significant environmental concern, the necessary corrective actions will be undertaken as expeditiously as possible. Notice of these actions will be reported to the NYSDEC explaining the nature and location of the problem and the corrective action taken.

Post-closure maintenance requirements are expected to be minimal. However, areas where some maintenance may be necessary include landfill cover, berms, surface water drainage ditch, and groundwater monitoring wells.

Adequate information is not available to actually calculate how much subsidence will occur with Cells 1 and 2, however, only an insignificant amount of subsidence is expected. This is based on the results from compaction tests previously done on waste materials contained in Cells 1 and 2. In addition, the materials contained in these cells will not undergo any decomposition. Slopes utilized in the closures of Cells 1 and 2 will ensure that their final slope, after settling and subsidence, will be greater than three percent. A slope greater than three percent will allow for adequate surface water runoff rates.

Any deficiencies noted either during the sites scheduled or unscheduled inspections will be corrected as expeditiously as possible. While each situation must be evaluated on a case by case basis, a plan of action has been prepared to deal with those situations which are most likely to occur.

Landfill cover deterioration should be minimal. However, some will undoubtedly occur due to freeze-thaw effects, water erosion, etc. Such deterioration must be corrected as quickly as possible.

The vegetative growth covering the closed cells will be allowed to return to its natural state. The vegetative cover on the landfill cells as well as the drainage areas will be mowed once per year between September 1st and December 31st. If significant bare spots should develop, an attempt will be made to determine the cause. Factors which will be considered include the presence of excessive moisture, excessive dryness, wrong pH, or the absence of the proper soil nutrients. When the cause is determined, remedial action will be taken.

Both wind and water erosion of the landfill cover can occur. While this is not expected to be a significant problem, any erosion which does occur must be taken care of expeditiously. Repair will bring lines and grades to their original configuration. If the erosion can be attributed to inadequate original design, the necessary design modifications will be made and implemented (after receipt of NYSDEC approval). Future modifications could include changes in slope gradients or protection of slopes by riprap.

The facility's annual report will include notations concerning both scheduled and

unscheduled facility inspections. Inspections will be performed on an annual basis. An inspection checklist created specifically for the property will be used when performing the inspections. A copy of the inspection checklist is included as Appendix B. Annual inspections are appropriate because the landfill has been closed for 16 years with no disruption to the integrity of the system. Information will include the date and time of the inspection, inspector's name, and a summary of all problems observed and remedial actions taken.

Records of all inspections will be retained for a minimum period of seven (7) years (see Appendix B, Inspection Checklist). In addition, summary reports and records of all incidents requiring initiation of the site's contingency plan or resulting in human health or environmental damage will be prepared and maintained for a minimum period of seven (7) years.

It is important to note that the drainage system on the property is protected by a Deed Restriction. The Deed Restriction serves as a covenant for the land that binds all future property owners. Therefore, any person wishing to engage in any activity on the property that could interfere significantly with the completed closure and remedial program is required to obtain written approval from the NYSDEC and the New York State Department of Health, or any New York State agency created to protect the environment. A copy of the Deed Restriction is included in Appendix A.

4.0 POST-CLOSURE GROUNDWATER AND SURFACE WATER SAMPLING AND ANALYSIS PLAN

The following provides a post-closure site groundwater and surface water sampling and analysis plan for the Witmer Road landfill site. Its primary objective is to provide data relating to the site's groundwater and surface water quality during the solid waste management facility's post-closure period.

Factors which were given consideration in the design of this plan include the following:

- 1) Ground and surface water monitoring requirements at a non-hazardous waste management landfill facility as stipulated in 6 NYCRR Part 360 Solid Waste Management Facilities (effective December 31, 1988),
- 2) Physical and chemical characteristics of waste materials deposited in Cells No. 1 and 2,
- 3) Site's hydrological conditions,
- 4) Pollution potential of site as exemplified by the type of waste materials present, and
- 5) Groundwater use.

Items which are addressed in this post-closure groundwater and surface water sampling and analysis plan include the following:

- 1) Locations and construction of monitoring points,
- 2) Discussion of monitoring frequency and parameters,
- 3) Sampling personnel and equipment requirements,
- 4) Sampling procedures,
- 5) Sample handling,
- 6) Analytical procedures,
- 7) Laboratory quality assurance plan,
- 8) Data analysis,
- 9) Contingency monitoring requirements, and
- 10) Data reporting requirements.

By developing and implementing a comprehensive, site specific groundwater sampling and analysis program the potential for problems to arise when obtaining, handling, preserving, and analyzing samples will be minimized.

4.1 LOCATION AND CONSTRUCTION OF MONITORING POINTS

The post-closure monitoring program for Cells 1 and 2 includes groundwater and surface water monitoring. Implementation of this program during the facility's post-closure period will provide the required data to evaluate the effects of Cells 1 and 2 on both the site's ground and surface water. A series of five (5) wells will be utilized to monitor the quality of the groundwater contained in the permeable sediments overlying the bedrock. These wells were utilized to monitor the effects of Cells 1 and 2 on the site's groundwater during the operation of these facilities. Based upon previous data from these monitoring wells, groundwater flows in a southerly direction across the site. Surface water quality will be monitored using samples obtained from the site's drainage ditch.

4.1.1 Monitoring Well Location and Construction

Sample points (wells) 3R, 5R, 12, BR1, and 14N are indicated on the Well Location and Surface Water Drainage Map showing baseline locations, monitoring well elevations, and surface water drainage patterns (Appendix C). Based upon the site's previously noted groundwater flow direction (southerly), monitoring well 3R can be used to provide upgradient data while monitoring wells 5R, 12, BR1, and 14N provide data on

groundwater quality downgradient of the site's disposal areas (Cells 1 and 2).

"It has been reported that the wells are installed at the depth of refusal. Well #12 is constructed of 4-inch PVC with the lower two feet slotted with 1/16 inches wide horizontal slots spaced approximately 1 inch apart. The slots are covered with a stainless steel well screen. A sand pack was placed from the bottom of the well upward for approximately five feet. Bentonite pellets were utilized to provide a seal at the clavey-silt level. Loose bentonite was then placed around the monitoring well through most of the impervious lake sediment zone to the surface to prevent water seepage from the "perched" water table. Monitoring wells 3R, 5R, BR1, and 14N are constructed of 2-inch PVC risers attached to 5-foot lengths of PVC 10 slot screen. The PVC screens were installed immediately above the dense loamy glacial till which overlies the site's bedrock. The screen interval and associated sand column surrounding the screens extend partially above the screens. Bentonite pellet seals were utilized to separate the sand pack from the cement-bentonite grout seal. Each well casing is surrounded at the ground surface by a continuous pour concrete cap and well apron (minimum radius of 3 feet and minimum thickness of 4 inches)."¹

4.1.2 Surface Water Monitoring Points

Cell 1 closure resulted in all waste materials being covered with a minimum of 18 inches of low permeability compacted soil (maximum permeability of 1.0 x 10 cm/sec) and 6 inches of soil capable of supporting vegetative growth. It is reported that Cell 2 was similarly closed. It is very unlikely that surface water runoff from the closed facilities has any contact with the waste materials previously deposited in Cells 1 and 2. However, samples will be taken from the location of the discharge flow control valve (SW-1) located in the southwest corner of site where surface water collects and flows into the stormwater drainage pipe and then offsite to the City of Niagara Falls sewer system.

4.2 MONITORING FREQUENCY AND PARAMETERS

Groundwater sample points will include monitoring wells 3R, 5R, 12, BR1, and 14N. Based upon an isopotential map of the site's groundwater, monitoring well 3R will provide upgradient data while monitoring wells 5R, 12, BR1, and 14N will provide data on groundwater quality downgradient of Cells 1 and 2. Surface water sampling will be performed at point SW-1. In addition, samples will be

¹ Original Post Closure Monitoring and Maintenance Operations Manual by Snyder Engineering 1991

obtained from the landfill leachate sump (LS-1). Site monitoring frequency will be on a semi-annual basis. Samples will be analyzed on a semi-annual basis for routine parameters; specific conductivity, temperature, pH, Eh, turbidity, COD, TOC, TDS, SO4, Cl, Br, Pb, Mn, K, and Na. In addition, semi-annual samples will be analyzed for baseline parameters; As, Ba, Cr, Cr+6, Hg, Se, and B. Annual samples will be obtained for Volatile Organic Compounds (VOCs) that are specified in the New York State Regulation 6 Part NYCRR 360 baseline parameter list. The laboratory analytical method for the VOCs is SW-846 method 8260.

4.3 SAMPLING PERSONNEL AND EQUIPMENT REQUIREMENTS

The laboratory utilized to implement the site's post-closure groundwater and surface water monitoring program must be approved by the NYSDEC. The laboratory must be approved to perform the required analyses for all parameters of concern. All sampling personnel must be properly trained in the collection and handling of groundwater and surface water samples. They must be familiar with all equipment required to collect a representative sample of groundwater from wells such as those present at the Witmer Road site. Sampling personnel must have a minimum two years of technical training in chemistry, environmental science, or other technical discipline. This educational requirement may be waived for personnel with a minimum of five years experience in the collection of environmental samples.

4.4 SAMPLING PROCEDURES

Standard Operating Procedure (SOP) No. BR-FS-005, Groundwater/Surface Water Sampling is included in Appendix D. The procedure for the sampling of the sump (LS-1) is performed under the standard operating procedures outlined in Appendix D. The actual sample itself is obtained through the use of a bailer dropped down into the sump.

4.5 LABORATORY QUALITY ASSURANCE PLAN

The primary objective of the Quality Assurance Plan for CCMA groundwater and surface water monitoring program is to ensure that the analytical results obtained from the program are reliable, statistically valid, and properly documented. As previously noted, CCMA will only utilize a laboratory for program implementation which has been approved by the NYSDEC. The basis of this quality assurance program is the establishment of methods which will be followed in obtaining the analytical results for each sample. Procedures (including quality assurance samples, replicates, spikes, and standards calibration) will be established and used for validating the methods utilized by the analytical laboratory and as an indicator of potential sources of cross-contamination. This will help ensure that the laboratory generates precise, accurate, and reliable data.

Test America Laboratories, Inc. located in Buffalo, New York, is currently the laboratory chosen to perform the sampling. A complete quality assurance manual for Test America is included in Appendix E.

4.5.1 Personnel Responsibilities

LAN Associates, Inc. will be responsible for ensuring that the required groundwater and surface water monitoring program at the Witmer Road site is correctly carried out. Their responsibilities will include the following:

- 1) Overall responsibility for management of the analytical program and validity of all data,
- 2) Selection of an analytical laboratory to perform sample analyses,
- 3) Performance monitoring of analytical laboratory and review of all analytical protocols required for measuring and monitoring,
- Submission of all analytical data to New York State Department of Environmental Conservation, Town of Niagara, and Niagara County Health Department.

A project coordinator is to be designated by the analytical laboratory. This individual is to have responsibility for the following:

- 1) Communication with CCMA Environmental Manager or designated representative regarding the groundwater and surface water analysis program,
- 2) Monitor sampling and/or analytical techniques and recommend modifications as required,
- 3) Verify that laboratory quality control and analytical procedures are being followed as specified in the Quality Control Plan when laboratory personnel are analyzing CCMA groundwater and surface water samples,
- 4) Review raw analytical data and check arithmetic calculations for a minimum of 20% of the samples analyzed (includes inspection of reduced data, calibration curves and bound laboratory notebooks),
- 5) Receive groundwater and surface water samples at the laboratory and verify that incoming samples correspond to the chain of

custody sheet,

- 6) Maintain records of all incoming samples and track samples while they are being processed,
- 7) Prepare quality control samples for analysis as required to satisfy quality assurance requirements,
- 8) Approve completed data and analytical report before transmittal to CC Metals and Alloys, LLC.

A sampling coordinator is to be designated by the analytical laboratory. This individual is to have responsibility for the following:

- 1) Determine appropriate sampling equipment and sample containers,
- 2) Train field personnel in the necessary sampling and field analytical procedures,
- 3) Insure that all samples are collected, labeled, preserved, and stored as specified in other sections of this report,
- 4) Check that all required sample documentation is correct and is transmitted with the samples,
- 5) Check on field sampling to insure that it is being done correctly.

4.5.2 Analytical Quality Assurance

Specific analytical methods often prescribe the necessary specific quality assurance procedures. In order to achieve a high degree of accuracy (degree of measurement or average of measurements agreement with an accepted reference or true value obtained from executing a method in a particular laboratory using an interference free matrix), the laboratory must do the following:

- 1) References used as reference standards must be the highest purity commercially available materials and must be certified by the supplier.
- 2) Each instrument utilized in performing the analyses must be checked on each day that the samples are run in order to demonstrate performance.
- 3) Recovery factors for individual contaminants are determined for the analytical method which is utilized.

4) Analytical results for spiked level of the contaminant under evaluation in a replicate sample must be within the required limits for the contaminant under evaluation.

Full documentation of all analyses must be kept in notebooks and be available for inspection at the designated laboratory by either a representative of CCMA or the NYSDEC.

4.5.3 Data Validation and Reporting

The principal steps that will be used to verify the data integrity during data collection and reporting are as follows:

- 1) Project coordinator will review raw data generated by the laboratory chemist. It will be reviewed against calibration and quality control records, to ensure both the adequacy of documentation and the reliability of the data.
- 2) When the previously noted review has been completed, the data will be considered validated and a report will be prepared for submission to CCMA.
- 3) All laboratory notes and records will be maintained and stored in an accessible place.

A variety of samples will be analyzed at regular intervals to assess possible contamination from either the field and/or the laboratory. These include blank, spiked, and replicate samples. Blank samples include:

- Field blanks are exposed to field and sampling conditions and analyzed in order to assess possible contamination from the field. A bottle is filled with de-ionized water and is transported to the sampling location and is returned to the laboratory in a manner identical to the handling procedure used for the samples.
- 2) Method blanks are prepared in the laboratory and are analyzed in order to determine the background of each of the reagents or solvents used in an analysis.

Spiked samples will be spiked (as prescribed by the analytical method) with one or more selected compounds prior to extraction and analysis. Concentration data will be used to calculate the recovery of the compounds. Such samples will provide a measure of sample preparation and analysis procedures accuracy.

Replicate samples are analyzed in order to establish control and assess the precision of an analysis and/or of sampling. Field replicates are obtained in order to assess the adequacy of overall sampling and handling procedures. Laboratory replicates are prepared in the laboratory and analyzed in order to assess the reproducibility of the laboratory procedures used.

4.6 CONTINGENCY MONITORING REQUIREMENTS

All waste materials which have been deposited by CCMA Cells 1 and 2 at the Witmer Road site were approved by the NYSDEC. In the unlikely event that significant groundwater contamination is detected, a contingency plan will be enacted. Objectives of this groundwater contingency plan will be as follows:

- 1) Confirm whether significant quantities of contaminants have entered the groundwater at the CCMA Witmer Road site from the waste materials previously deposited by CCMA in Cells No. 1 and 2,
- 2) If significant quantities of contaminants have entered the groundwater, determine their consequences and the rate and extent of their migration.

Under normal circumstances, Objective #1 will be satisfied by the site's groundwater monitoring program as previously described. However, if a statistical analysis of monitoring data from upgradient and downgradient wells utilizing the Student's t-test at the 0.01 level of significance indicates a significant difference in groundwater quality, additional samples will be obtained and analyzed. If the difference cannot be attributed to sampling or analytical errors, a written notice that the facility may be affecting the groundwater must be sent within 14 days to Region 9 of the NYSDEC.

During the next semi-annual sampling event, each monitoring well involved in triggering the contingency monitoring plan will be sampled and analyzed for the baseline parameters as defined by Water Quality Analysis Table in 6 NYCRR Part 360-2.1 1(c)(6). Every attempt will be made to report the analytical results to the NYSDEC within 30 days after the sampling date. In any case, the results will be reported to the NYSDEC within 14 days after receipt of results from the certified analytical laboratory.

In the event that the NYSDEC determines that any potential contamination as reflected by the baseline monitoring results poses an immediate threat to public health or the environment, CCMA will provide the NYSDEC with a corrective action plan. Upon receipt of plan approval from the NYSDEC, CCMA will implement the corrective action plan.

When the corrective action plan is implemented, the sampling and analysis for baseline parameters will be performed at least semi-annually until the conditions for curtailing contingency water quality monitoring are satisfied as follows:

- 1) Elevated parameter(s) is demonstrated not to be landfill derived, or
- 2) Remediation of release by landfill is demonstrated to be complete.

In addition, the contingency water quality monitoring may be reduced or discontinued with the approval of the NYSDEC, if such monitoring is no longer necessary to protect public health or the environment.

If during analysis for baseline parameters, contamination by any toxic metal, cyanide, volatile organic compound, or other substance identified in Appendix 33 of 6 NYCRR Part 373-2 occurs, CCMA will sample the appropriate environmental monitoring points in the next scheduled sampling event after receiving the analytical results from the laboratory. Each sample will be analyzed for all the expanded parameters listed in the Water Quality Analysis Table. Unless the NYSDEC requires more frequent sampling to evaluate a potential or adverse environmental impact or perceived health risk or until the previously noted conditions for curtailing contingency water quality monitoring are satisfied, subsequent annual analyses of these monitoring points will include all routine parameters and those baseline and expanded parameters that were elevated or were implicated in the expected pattern.

4.7 **REPORTING AND RECORDKEEPING REQUIREMENTS**

Copies of all semi-annual monitoring reports will be sent to the following:

- Ms. Mary McIntosh Senior Engineering Geologist New York State Department of Environmental Conservation Region 9 270 Michigan Avenue Buffalo, New York 14203-2999
- Town of Niagara
 7105 Lockport Road
 Niagara Falls, New York 14305

In addition, CCMA will prepare and submit an annual summary report concerning facility post-closure maintenance and monitoring. This report will be certified by a Professional Engineer registered in the State of New York. It will be submitted to the NYSDEC Region 9 Solid Waste Regional Engineer no later than 60 days after the first day of January each year. These records will be retained for a minimum period of seven years.

Analytical data records which will be retained during the post-closure period include the following:

- 1) All chemical analyses of waste materials,
- 2) All EP toxicity and TCLP test data performed on waste material samples,
- 3) All chemical analyses and associated monitoring well elevations obtained as part of the site's groundwater and surface water monitoring program.

APPENDIX 3

SKW HISTORICAL PERMITS

5 4		PERMIT		₩	2585 EXPIRATION DATE
Under 1	he Environmental Co	nservation Law, Article	27, Title 7,	Part 360	October 31, 1984
	I CONSTRUCTION	X INITIAL		🔲 REISSUAN	····•
KW ALLOYS,		ADDRESS OF PERMITTE 3801 Highland		iagara Falls, NY	TELEPHONE NO. 716/285-1252
LOCATION OF PROJECT Town Niagara	1.0	Niagara	Region 9	Headquarters are Avenue, Buff	₽
DESCRIPTION OF PROJE Construct and		ys, Inc. Landfill #		ON-SITE SUPERVISOR William Lozow	
		GENERAL CO	NDITIONS		
	hall file in the office of the pecified above, a notice of the pecified above.		4. All work ca	rried out under this permi	t shall conform to the approved

- The permittee shall file in the office of the Environmental Conservation Region specified above, a notice on intention to commence work at least 48 hours in advance of the time of commencement and shall also notify said office promptly in writing of the completion of the work.
- The permitted work shall be subject to inspection by an authorized representative of the Department of Environmental Conservation who may order the work suspended if the public interest so requires.
- 3. As a condition of the issuance of this permit, the applicant has accepted expressly, by the execution of the application, the full legal responsibility for all damages, direct or indirect, of whatever nature, and by whomever suffered, arising out of the project described herein and has agreed to indemnify and save harmless the State from suits, actions, damages and costs of every name and description resulting from the said project.
- All work carried out under this permit shall conform to the approved plans and specifications. Any amendments must be approved by the Department of Environmental Conservation prior to their implementation.

23269.5

- The permittee is responsible for obtaining any other permits, approvals, easements and rights-of-way which may be required for this project.
- 6. By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with Part 360 and the special conditions. Any variances granted by the Department of Environmenta i Conservation to Part 360 must be in writing and attached hereto.

SPECIAL CONDITIONS

- Your application for a variance from 6NYCRR Part 360.8(b) (exemption from daily cover) is hereby approved. In the event that the deposited ferro silicon sludges become dried and create a fugitive dust problem, either on or off site, steps shall be taken to remedy the situation.
- Upon the filling of the landfill, two feet of cover material shall be applied to the surface of the landfill. The top 6 inches shall be of a soil suitable for sustaining a vegetative cover crop to avoid erosion.
- 3. Quarterly reports shall be submitted indicating the volume of material which has been placed into the landfill and shall be submitted on the first business day of the months of November, February, May and August.
- 4. Semi-annual reports shall be submitted to the Region 9 Office containing the analytical results of the monitoring well sampling program and surface water sampling program as included in the permit for Landfill #1.
- 5. Within 60 days of the effective date of this permit, a certificate of deposit, bond or other negotiable instrument, payable to the Commissioner of the NYS Department of Environmental Conservation, shall be forwarded to this Region 9 Office in the amount of \$5,000 to cover costs of closure and monitoring. The life of this undertaking shall be for the permit life (October 31, 1984).
- 6. The issuance of this permit does not relieve the applicant from the compliance with other State, Federal or local laws, ordinances or regulations.
- 7. Prior to the expiration date of this permit, the landfill shall be properly closed and maintained to prevent adverse environmental health impacts, such as contravention of surface or groundwater quality standards, gas migration, odors, and vectors. Proper ISSUE DATE DISSUING OFFICER

SIGNATURE Witten 1.5,# ! X.

SKW ALLOYS, INC. 3801 Highland Avenue Niagara Falls, NY 14305

)

Permit to Construct and Operate - Permit #2585 Expiration Date - 10/31/84 Facility #32N04

- 2 -

...........

SPECIAL CONDITIONS (cont'd)

7. closure includes covering with a minimum of 2 feet of final cover, establishment of a grass cover crop, and sufficient grading to divert water off the fill area in order to minimize infiltration and to preclude ponding.

?

E #4 Date

New York State Department of Environmental Conservation 584 Delaware Avenue, Buffalo, New York 14202

Robert F. Flacke Commissioner

May 30, 1980

Mr. LeRoy C. Wintersteen, Manager Environmental Control SKW Alloys, Inc. P.O. Box 368 Niagara Falls, NY 14302

Re:

: Permit to Operate Solid Waste Management Facilities Permit No. 2133 Niagara (T), Niagara County

Dear Mr. Wintersteen:

This will acknowledge receipt of the Certification of Construction and "As Built" drawings for the above facility. These materials are accepted for record purposes and are included in our files on the project.

We are transmitting herewith Permit No. 2133, Permit to Operate the Solid Waste Management Facility. The permit contains special conditions which require monitoring, record keeping, and reporting which should be followed, as well as the other conditions in the permit.

If you have any questions pertaining to the permit, the operation of the facility or the monitoring and reporting requirements, please do not hesitate to contact the writer or Mr. Tygert at 716/842-4311.

Very truly yours,

Robert J. Mitrey, P.E. Associate Sanitary Engineer

JST: sk

cc: Niagara County Health Dept. Secured Landfill Contractors, Inc. Mr. Richard Snyder, P.E. Albany, Division of Solid Waste

Tuder the Invitonmental Const	ERMIT Valies Care Attick 27-1		Inclumes 2153 Freedoment Marcales
CONSTRUCTION CONSTRUCTION CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR	ADDRESS OF PERMITTRE	ETMODITIC Internet Trible, 197 11/202 Internet Second Office	TION TELPENN SY 716/2015/1252
Elization SECONTRON OF PROJECT Scility Highler Managemetab Provided Scility Highler Managemetab Provided	CENERAL CONDI		anden, Biggry Zenty (Dorthin) Ander, Biggry Zenty (Dorthin)
 action Region Spectford above, a belief of an above at the time shall also regive and which presently to be the time shall also regive and which presently is set of the term. 2. The permitted work shall be independent it imper representative infide. Department of first making one may write the work set as independent. 	ntention for connection and of commencement and line of the completion for if the completion for the second barrier for the second barrie	lans det specifications for aner operiment of potimeraneial Conse tion. In provider is respondible for a station provideration of reported	ducate du st he approved by the reation prior to their institution building any other permits, ap- ny which may be transfed he
5. At a condition of the invadors of this permit, in the condition of the invadors of this permit, constraint for the constraint of the	The applicant bas, ac	r acceptance of this permit, the pe officient again, strict of suppliance officients. Any variances granted by procession to Part, still major by in-	with Part 1961 and the special the Department of Excloremental
	SPECIAL CONDI Page 1 of 2	CIONS	
1. Then this pounds is not be utoletion of this Pow It, initian 27, burt 200 of the initian 27, burt 200 of the generalization of nor other generalization of nor other ge	Minis provide long of Failest and Tagainstation Failest and Depail at long failest and Depail at long any environment of the second	ia di ting tenna di tin Galatini tinta di ting Linga ting tennitaria d	the event of sevent of footnet() as Yout as other the response

A second second of a second second

30, 1980 rge 2 of 2 一种名词称建立的时间的建 Permit #2133 a 🖞 the second s . K 4.建物的外部成熟的方法的方法 and and a second s 7.

-

36

That only the materials described in the approved engineering report, prepared by Richard R. Snyder, P.E., dated June 18, 1979, and approved ammendments thereto, be placed in the facility.

1. 法投资的资料委员会

요즘 같은 것 않는 것 같아.

That daily records of the quantity of waste naterial placed in the facility be main-tained, and that an annual survey be submitted to this office on the anniversary date of this permit. The surmary should include the total quantity of wastes disposed of and an estimate of the remaining life and/or volume of the facility. É

1 S. ()

. Marine -1,2 . an tang Ang tang Sanak 🔒 de la compañía de la comp Section. يتعادين والم al Rozani Antonio $\label{eq:constraint} \left\{ \begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{5} \\ \lambda_{5}$ ч. С ingen i -to the state 81 B &

549 Q

			Martin -	a tradição e s	()				n Date
	REISSUANCE	MODIFICATION	teren t Pow Sere	Constant Constant			York, 14202		5/30/83 Expiration
	REIS	MOM					584 Delaware Avenue, Buffalo, New York, 14202		5/30/80 Issue Date
	ъ			ility		Officer	ware Avenue.		No.
	INITIAL ISSUE	RENEWAL		Solid Waste Management Facility	DN Law, Facilities)	Issuing	584 Dela	Address	Permit N
C		The.	New York, 14302	Solid Waste M	DNSErvation Law , e Management Facilities)	t site in d is in a	al condi- request.		· · ·
		SKW Allovs.	Falls, New Y	IS:	tal Con id waste	I ₩	and special c yone upon requ		Conservation
	CONSTRUCTION	OPERATION sued to:	8, Niagara I	escribe	Nironmental Co Part 360 (Solid Waste	st be posted on protected from o the public.	th the general oe shown to an		
	CON CON	× OPEF n issue	P.O. Box 36	oject ^d	I e Envir itle 5, Part	E: This Notice of Permit must be posted on the project such a manner that it is protected from weather and location readily visible to the public.	A copy of the Permit with the general and special condi- tions noted therecn will be shown to anyone upon request.	ate	of Environmental
		As been issued to:	address: P.O. Box 368, Niagara Falls,	for a project described as:	under the Environmental Control of Article 27, Title 5, Part 360 (Solid Waste	NOTE: • This Notic such a ma location r	 A copy of tions note 	New York State	Department o
		É 	J	ļ				Ne	÷ D€

	Ĵermit 🥄	2585
Unler the Lavironmental Cleases	ervation Low, Article 77, 11the 7, Part 360 MINITIAL ESSUE RENEWAL	FFECTIVE PATE - REISSUANCE Petober 20, 1281 WODIFICATION
Plan Tiven DO Stan BLLOYS, IM., In America Provide Transmission (County, County, Mission, County, County, Mission, County, County, Mission, County, County, Mission, County, C	History Contents for the state	Filericki (TELETROME INC. 1430) Exclude (Office Sector Sector
c. The president shall lie in the office of the second state of the second state for the second state of the second state o	Constrained Construction All sources construction forematics Technologies for the Plant and operational forematics and construction for the second operation of the second operation ope	order" this proves shall construct to the anyword and Argeneric constants of the anyword by the anemal Conservation, where its the substruction
<pre>is the west. I is presided which that the address to their measurementation of the linguithment of the entropy may sole the work as well is the public to</pre>	L Des permitten in an rich be an anteriord provide, constants which be served on who and a secondary of all the acceleration	preside: he referring any other provide an and rights-of-way which may be readed for grant, the presider agreed that the provider (considering with for 250 and the provider
3. See a constitute of the constance of this period control expression by the constant of the spectrum encoders within for all demonstrations of the spectrum and by where the address's stilling by of the and has agreed to address's stilling by of the articles, damaged using conterport, summarily actives, damaged using conterport, summarily from the said artigett.	encation, des des angel committenes, des estat encates d'altabases annues Consistention fre for 1 mages i d'estribut morris a l'im State fram saits,	en grannen bei bei Dege meent of Defensionen in 19 waar bei verfteg ond enter til Defensionen in 19 waar bei verfteg ond onter til Defensionen in 19 defensionen in defe
	SPECIAL CONDITIONS	
izeriy enterget. In the p	tance from FMYFMP Part 369,8(b) in ment that the deposited ferro sill blen, either on or off sitt, steps	çon all'adis becque differation
	wifil, two feet of daver material The top 6 inches shall be of a sol avoid erosion.	shall be applied to the Isuttable for suitaining
 Duarterly reports shall be ninced into the landfill a of Accoher. Entrury, Tay 		f meterial which has twee little to the south a second second second second second second second second second s
results of the roll foring included in the abruit, for	ne seine test to taa Tuston 3 minin Well campling program and tusfict Landfill H1.	e contrining the contribution
Environmentel Tenservalle 15,000 to enviro costs of a	ctive date of this permit, a cert t, pryship to the Corristioner of , shall be forwarded to this legin losume and configures. The life o	
	er 11. fett 1 daes not melleve the souther 24 amilional of groups in	
7. Tricrity this sector transmission and the sector	te of this nervit, the target i the sufficient for the transfer is the sufficient of the sufficient of	
		And the second second

SKW ALLOYS, INC. 3801 Highland Avenue agara Falls, NY 14305

Permit to Construct and Cperate - Permit #2585 Expiration Date - 10/31/84 Facility #32N04

2

SPECIAL CONDITIONS (cont'd)

2 -

 $\sum_{i=1}^{n-1} \frac{\sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1$

2 유민출 - 19 - 2

7. closure includes covering with a minimum of 2 feet of final cover, establishment of a grass cover crop, and sufficient grading to divert water off the fill area in order to minimize infiltration and to preclude ponding.

Permit Admi Date addition of the second s 2.5 A. Standard and the second of the second 心道. a the second second 동네는 전 영향은 그 가슴을 en Britte

APPENDIX 4

ANNUAL GROUNDWATER ANALYTICAL SUMMARY

APPENDIX 4

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
			Well 1	4N								
SAMPLE DATE	-	NA	4/26/2013		10/25/2013		5/13/2014		4/23/2015		4/28/2016	
TOP OF CASING ELEVATION	-	Feet	605.52		605.52		605.52		605.52		605.52	
WATER LEVEL	-	Feet	7.12		8.13		6.83		6.81		7.11	
WATER ELEVATION (BEFORE PURGE)	-	Feet	598.40		597.39		598.69		598.71		598.41	
WELL BOTTOM	-	Feet	26.35		26.35		26.35		26.35		26.50	
ARSENIC	0.025	mg/l	0.010	U	0.010	U	0.015	U	0.015	U	0.015	U
BARIUM	1	mg/l	0.11		0.12		0.11		0.11		0.12	
BORON, (TOTAL)	1	mg/l	0.11		0.13		0.12		0.11		0.11	
BROMIDE	-	mg/l	0.20	U	0.20	U	0.20	U	2.00	U	0.32	U
CHEMICAL OXYGEN DEMAND	-	mg/l	10.4		10.0	U	10.0	U	10.0	U	10.0	U
CHLORIDE	-	mg/l	117		109		92		110.0		132.0	
CHROMIUM	0.05	mg/l	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0004	U
Eh	-	M.Volts	175		168		74		132		67	
HEXAVALENT CHROMIUM	0.05	mg/l	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U
LEAD	0.025	mg/l	0.0050	U	0.0050	U	0.0100	U	0.010	U	0.010	U
MANGANESE	0.3	mg/l	0.08		0.120		0.07		0.130		0.090	
MERCURY	0.0007	mg/l	0.00020	U	0.00020	U	0.00020	U	0.00020	U	0.00020	U
PH	between 6.5 to 8.5	S.U	6.99		7.01		6.87		7.01		6.98	
POTASSIUM	-	mg/l	2.5		3.0		2.4		2.4		2.6	
SELENIUM	0.01	mg/l	0.0010	U	0.0010	U	0.0250	U	0.025	U	0.025	U
SODIUM	20	mg/l	63.8		73.9		57.8		58.2		68.8	
SPECIFIC CONDUCTANCE	-	Umhos/cm	1139		1181		1163		1201		1368	
SULFATE	250	mg/l	175		171		168		162		160	
TEMPERATURE	-	°F	52.16		54.68		58.28		47.48		50.18	
TOTAL DISSOLVED SOLIDS	not to exceed 500	mg/l	857		829		837		809		844	
TOTAL ORGANIC CARBON	-	mg/l	2.6		2.3		3.1		2.5		2.0	
TURBIDITY	not exceed 5	N.T.U	1.93		5.11		2.51		1.93		2.48	

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
			Well	14N								
1,1,1,2-Tetrachloroethane	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,1-Trichloroethane	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2-Trichloroethane	1	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethene	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2,3-Trichloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dibromo-3-chloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dibromomethane	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene	3	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	0.6	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloropropane	1	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene	3	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
2-Butanone / Methyl Ethyl Ketone	-	ug/l	10.0	U	10	U	10	U	10	U	10	U
2-Hexanone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
4-Methyl-2-pentanone / Methyl Isobutyl Ketone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Acetone	-	ug/l	10.0	U	10.0	U	10.0	U	10.0	U	10	U
Acetonitrile	-	ug/l	40.0	U	40.0	U	15.0	U	15.0	U	15	U
Benzene	1	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	U	1.0	U
Bromochloromethane	5	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	U	1.0	U
Bromodichloromethane	-	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	U	1.0	U
Bromoform	-	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	U	1.0	U
Bromomethane	-	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	U	1.0	U
Carbon Disulfide	60	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Carbon Tetrachloride	5	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	U	1.0	U
Chlorobenzene	5	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	U	1.0	U
Chloroethane	5	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	U	1.0	U
Chloroform	7	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	U	1.0	U
Chloromethane	-	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ū	1.0	Ŭ	1.0	Ŭ
cis-1,2-Dichloroethene	5	ug/l	28	-	29	-	28	_	28	-	21	-
cis-1,3-Dichloropropene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromochloromethane	-	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ū	1.0	Ŭ	1.0	Ŭ
Dibromomethane	5	ug/l	1.0	Ŭ	1.0	U	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ
Ethylbenzene	5	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ
Iodomethane	-	ug/l	1.0	Ŭ	1.0	U	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ
m/p-Xylenes	-	ug/l	2.0	Ŭ	2.0	Ŭ	2.0	U	2.0	Ŭ	2.0	U
Methylene chloride	5	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	U	1.0	Ŭ	1.0	U
o-Xylene	-	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	U	1.0	Ŭ	1.0	U
Styrene	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Tetrachloroethene	-	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	U	1.0	Ŭ	1.0	U
Toluene	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-Dichloroethene	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,3-Dichloropropene	0.4	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,4-Dichloro-2-butene	5	ug/l	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Trichloroethene	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Trichlorofluoromethane	5	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Vinyl acetate	-	U U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
	2	ug/l		U		U	5.0	U	5.0 1.4	U	5.0	U
Vinyl chloride	۷ ک	ug/l	1.6		2.4		1.0	U	1.4	1	1.1	

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
			Well	3R								
SAMPLE DATE	-	NA	4/26/2013		10/25/2013		5/13/2014		4/23/2015		4/28/2016	
TOP OF CASING ELEVATION	-	Feet	611.87		611.87		611.87		611.87		611.87	
WATER LEVEL	-	Feet	2.09		3.55		1.65		1.93		2.12	
WATER ELEVATION (BEFORE PURGE)	-	Feet	609.78		608.32		610.22		609.94		609.75	
WELL BOTTOM	-	Feet	12.05		12.05		12.05		12.05		12.05	
ARSENIC	0.025	mg/l	0.010	U	0.010	U	0.015	U	0.015	U	0.015	U
BARIUM	1	mg/l	0.028		0.034		0.028		0.025		0.027	
BORON, (TOTAL)	1	mg/l	0.16		0.20		0.16		0.14		0.15	
BROMIDE	-	mg/l	0.20	U	0.20	U	0.20	U	2.00	U	0.20	U
CHEMICAL OXYGEN DEMAND	-	mg/l	10.0	U	10.0	U	16.3		12.5		10.0	U
CHLORIDE	-	mg/l	35.9		37.9		35.9		37.1		47.8	
CHROMIUM	0.05	mg/l	0.0052		0.0040	U	0.0040	U	0.0040	U	0.0040	U
Eh	-	M.Volts	112		148		168		131		158	
HEXAVALENT CHROMIUM TOTAL	0.05	mg/l	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U
LEAD	0.025	mg/l	0.0050	U	0.0050	U	0.0100	U	0.010	U	0.010	U
MANGANESE	0.3	mg/l	0.0030	U	0.0190		0.003	U	0.0047	U	0.0035	U
MERCURY	0.0007	mg/l	0.00020	U	0.00020	U	0.00020	U	0.00020	U	0.00020	U
PH	between 6.5 to 8.5	S.U	6.99		6.89		6.96		6.85		6.51	
POTASSIUM	-	mg/l	0.50	U	0.55		0.50	U	0.50	U	0.50	U
SELENIUM	0.01	mg/l	0.0023		0.0010	U	0.0250	U	0.025	U	0.025	U
SODIUM	20	mg/l	23.8		29.0		24.1		22.2		23.8	
SPECIFIC CONDUCTANCE	-	Umhos/cm	999		1069		1055		1177		1131	
SULFATE	250	mg/l	155		154		147		147		148	
TEMPERATURE	-	oF	49.46		56.32		57.02		42.98		48.38	
TOTAL DISSOLVED SOLIDS	not to exceed 500	mg/l	702		735		731		749		669	
TOTAL ORGANIC CARBON	-	mg/l	2.9		2.8		5.0		2.6		1.9	
TURBIDITY	not exceed 5	N.T.U	1.87		3.56		0.92		1.07		1.82	

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
			Well	3R								
1,1,1,2-Tetrachloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,1-Trichloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2-Trichloroethane	1.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2,3-Trichloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dibromo-3-chloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dibromoethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	0.6	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloropropane	1.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
2-Butanone / Methyl Ethyl Ketone	-	ug/l	10	U	10	U	10	U	10	U	10	U
2-Hexanone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
4-Methyl-2-pentanone / Methyl Isobutyl Ketone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Acetone	-	ug/l	10.0	U	10.0	U	10.0	U	10	U	10	U
Acetonitrile	-	ug/l	40.0	U	40.0	U	15.0	U	15	U	15	U
Benzene	1	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromochloromethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromodichloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromoform	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromomethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Carbon Disulfide	60	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Carbon Tetrachloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chlorobenzene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroform	7.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,2-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,3-Dichloropropene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromochloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromomethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Ethylbenzene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Iodomethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
m/p-Xylenes	-	ug/l	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Methylene chloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
o-Xylene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Styrene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Tetrachloroethene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Toluene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,3-Dichloropropene	0.4	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,4-Dichloro-2-butene	5.0	ug/l	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Trichloroethene	5.0	ug/l	1.0	Ŭ	1.0	U	1.0	U	1.0	Ŭ	1.0	U
Trichlorofluoromethane	5.0	ug/l	1.0	Ŭ	1.0	U	1.0	U	1.0	Ŭ	1.0	Ŭ
Vinyl acetate	-	ug/l	5.0	Ŭ	5.0	U	5.0	U	5.0	Ŭ	5.0	U
Vinyl chloride	2	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
			Well	5R								
SAMPLE DATE	-	NA	4/26/2013		10/25/2013		5/13/2014		4/23/2015		4/28/2016	
TOP OF CASING ELEVATION	-	Feet	601.67		601.67		601.67		601.67		601.67	
WATER LEVEL	-	Feet	5.07		6.35		5.51		5.44		6.74	
WATER ELEVATION (BEFORE PURGE)	-	Feet	596.25		596.25		596.25		596.23		594.93	
WELL BOTTOM	-	Feet	19.75		19.75		19.75		19.74		19.74	
ARSENIC	0.025	mg/l	0.010	U	0.010	U	0.015	U	0.015	U	0.015	U
BARIUM	1	mg/l	0.064		0.063		0.053		0.043		0.056	
BORON, (TOTAL)	1	mg/l	0.18		0.20		0.18		0.18		0.17	
BROMIDE	-	mg/l	0.7		1.30		1.0		0.84		0.98	
CHEMICAL OXYGEN DEMAND	-	mg/l	15.8		25.7		27.1		12.8		10.0	
CHLORIDE	-	mg/l	94.9		94.7		80.6		92.8		85.6	
CHROMIUM	0.05	mg/l	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U
Eh	-	M.Volts	120		144		135		110		115	
HEXAVALENT CHROMIUM TOTAL	0.05	mg/l	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U
LEAD	0.025	mg/l	0.0050	U	0.0050	U	0.0100	U	0.010	U	0.010	U
MANGANESE	0.3	mg/l	0.010		0.370		0.01		0.0160		0.0190	
MERCURY	0.0007	mg/l	0.00020	U	0.00020	U	0.00020	U	0.00020	U	0.00020	U
PH	between 6.5 to 8.5	S.U	7.86		7.70		7.85		7.87		7.78	
POTASSIUM	-	mg/l	25.8		24.3		20.8		18.5		20.1	
SELENIUM	0.01	mg/l	0.0010	U	0.0010	U	0.0250		0.025	U	0.025	U
SODIUM	20	mg/l	75.1		88.5		68.5		67.7		70.3	
SPECIFIC CONDUCTANCE	-	Umhos/cm	818		857		825		851		886	
SULFATE	250	mg/l	178		183		157		157		164	
TEMPERATURE	-	°F	50.36		53.96		56.12		44.96		48.20	
TOTAL DISSOLVED SOLIDS	not to exceed 500	mg/l	552		587		545		490		531	
TOTAL ORGANIC CARBON	-	mg/l	5.1		6.4		5.8		5.4		4.5	
TURBIDITY	not exceed 5	N.T.U	2.71		2.91		2.68		1.07		1.29	

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
			Well	5R								
1,1,1,2-Tetrachloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,1-Trichloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2-Trichloroethane	1.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2,3-Trichloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dibromo-3-chloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dibromoethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	0.6	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloropropane	1.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
2-Butanone / Methyl Ethyl Ketone	-	ug/l	10	U	10	U	10	U	10	U	10	U
2-Hexanone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
4-Methyl-2-pentanone / Methyl Isobutyl Ketone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Acetone	-	ug/l	10.0	U	10.0	U	10.0	U	10	U	10	U
Acetonitrile	-	ug/l	40.0	U	40.0	U	15.0	U	15	U	15	U
Benzene	1	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromochloromethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromodichloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromoform	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromomethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Carbon Disulfide	60	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Carbon Tetrachloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chlorobenzene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroform	7.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,2-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,3-Dichloropropene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromochloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromomethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Ethylbenzene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Iodomethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
m/p-Xylenes	-	ug/l	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Methylene chloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
o-Xylene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Styrene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Tetrachloroethene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Toluene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,3-Dichloropropene	0.4	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,4-Dichloro-2-butene	5.0	ug/l	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U
Trichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Trichlorofluoromethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Vinyl acetate	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Vinyl chloride	2	ug/l	1.0	Ŭ	1.0	U	1.0	Ŭ	1.0	Ŭ	1.0	U

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
			Well	12								
SAMPLE DATE	-	NA	4/26/2013		10/25/2013		5/13/2014		4/23/2015		4/28/2016	
TOP OF CASING ELEVATION	-	Feet	597.71		597.71		597.71		597.71		597.71	
WATER LEVEL	-	Feet	8.02		9		8.29		7.95		8.35	
WATER ELEVATION (BEFORE PURGE)	-	Feet	589.69		588.71		589.42		589.76		589.36	
WELL BOTTOM	-	Feet	19.65		19.65		19.65		19.65		19.65	
ARSENIC	0.025	mg/l	0.010	U	0.010	U	0.015	U	0.015	U	0.015	U
BARIUM	1	mg/l	0.038		0.038		0.040		0.036		0.042	
BORON, (TOTAL)	1	mg/l	0.19		0.19		0.17		0.17		0.18	
BROMIDE	-	mg/l	0.20		0.20	U	0.20	U	2.00	U	0.20	U
CHEMICAL OXYGEN DEMAND	-	mg/l	12.0		15.9		20.1		10.0		10.0	
CHLORIDE	-	mg/l	137		107		108		108		144	
CHROMIUM	0.05	mg/l	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U
Eh	-	M.Volts	181		142		186		136		149	
HEXAVALENT CHROMIUM TOTAL	0.05	mg/l	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U
LEAD	0.025	mg/l	0.0050	U	0.0050	U	0.0100	U	0.010	U	0.010	U
MANGANESE	0.3	mg/l	0.01		0.097		0.009		0.0160		0.0160	
MERCURY	0.0007	mg/l	0.00020		0.00020	U	0.00020	U	0.00020	U	0.00020	U
PH	between 6.5 to 8.5	S.U	7.22		7.00		7.19		7.20		7.39	
POTASSIUM	-	mg/l	4.7		5.3		4.0		4.2		4.6	
SELENIUM	0.01	mg/l	0.0010	U	0.0010	U	0.0250	U	0.025	U	0.025	U
SODIUM	20	mg/l	75.5		77.5		61.6		58.3		77.7	
SPECIFIC CONDUCTANCE	-	mg/l	1144		1080		1204		1162		1294	
SULFATE	250	mg/l	147		117		142		127		135	
TEMPERATURE	-	F	50.00		52.5		60.4		46.9		49.5	
TOTAL DISSOLVED SOLIDS	not to exceed 500	mg/l	829		727		854		755		774	
TOTAL ORGANIC CARBON	-	mg/l	2.6		2.6		3.6		2.7		2.1	
TURBIDITY	not exceed 5	N.T.U	2.87		4.02		2.71		1.67		1.78	

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
			Well	12								
1,1,1,2-Tetrachloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,1-Trichloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2-Trichloroethane	1.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2,3-Trichloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dibromo-3-chloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dibromoethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	0.6	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloropropane	1.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
2-Butanone / Methyl Ethyl Ketone	-	ug/l	10	U	10	U	10	U	10	U	10	U
2-Hexanone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
4-Methyl-2-pentanone / Methyl Isobutyl Ketone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Acetone	-	ug/l	10.0	U	10.0	U	10.0	U	10	U	10	U
Acetonitrile	-	ug/l	40.0	U	40.0	U	15.0	U	15	U	15	U
Benzene	1	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromochloromethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromodichloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromoform	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromomethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Carbon Disulfide	60	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Carbon Tetrachloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chlorobenzene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroform	7.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,2-Dichloroethene	5.0	ug/l	2.1		5.5		2.9		3.3		2.0	
cis-1,3-Dichloropropene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromochloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromomethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Ethylbenzene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Iodomethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
m/p-Xylenes	-	ug/l	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Methylene chloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
o-Xylene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Styrene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Tetrachloroethene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Toluene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,3-Dichloropropene	0.4	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,4-Dichloro-2-butene	5.0	ug/l	5.0	U	5.0	Ŭ	1.0	U	1.0	U	1.0	U
Trichloroethene	5.0	ug/l	1.0	Ŭ	1.0	U	1.0	U	1.0	U	1.0	Ŭ
Trichlorofluoromethane	5.0	ug/l	1.0	Ŭ	1.0	U	1.0	U	1.0	U	1.0	Ŭ
Vinyl acetate	-	ug/l	5.0	Ŭ	5.0	U	5.0	U	5.0	U	5.0	Ŭ
Vinyl chloride	2	ug/l	1.0	Ŭ	7.4	Ŭ	1.0	Ŭ	1.0	U	1.0	Ŭ

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
Sump (Leachate)												
SAMPLE DATE	-	NA	4/26/2013		10/25/2013		5/13/2014		4/23/2015		4/28/2016	
TOP OF CASING ELEVATION	-	Feet	602.08		602.08		602.08		602.08		602.08	
WATER LEVEL	-	Feet	NA		NA		NA		NA		NA	
WATER ELEVATION (BEFORE PURGE)	-	Feet	NA		NA		NA		NA		NA	
WELL BOTTOM	-	Feet	NA		NA		NA		NA		NA	
ARSENIC	0.025	mg/l	0.012		0.010	U	0.015	U	0.015	U	0.015	U
BARIUM	1	mg/l	0.061		0.042		0.033		0.032		0.057	
BORON, (TOTAL)	1	mg/l	0.35		0.26		0.02		0.21		0.32	
BROMIDE	-	mg/l	1.7		1.7		2.7		1.2		2.3	
CHEMICAL OXYGEN DEMAND	-	mg/l	27.5		20.3		30.2		13.1		11.6	F1
CHLORIDE	-	mg/l	150		81.6		103.0		91.5		70.6	
CHROMIUM	0.05	mg/l	0.03		0.037		0.004	U	0.019		0.037	
еН	-	M.Volts	135		83		128		112		105	
HEXAVALENT CHROMIUM TOTAL	0.05	mg/l	0.022		0.034		0.010	U	0.021		0.021	
LEAD	0.025	mg/l	0.0050	U	0.0050	U	0.0100	U	0.010	U	0.010	U
MANGANESE	0.3	mg/l	0.007		0.0078		0.0520		0.016		0.016	
MERCURY	0.0007	mg/l	0.00020	U	0.00020	U	0.00020	U	0.00020	U	0.00020	U
рН	between 6.5 to 8.5	S.U	8.01		7.90		8.08		7.92		7.59	
POTASSIUM	-	mg/l	86.5		68.7		42.8		41.4		74.2	
SELENIUM	0.01	mg/l	0.012		0.003		0.0250	U	0.025	U	0.025	U
SODIUM	20	mg/l	72.8		47.2		45.1		40.6		74.0	
SPECIFIC CONDUCTANCE	-	Umhos/cm	1160		714		745		791		1202	
SULFATE	250	mg/l	154		72		92.9		85.7		68.2	
TEMPERATURE	-	°F	45.68		53.60		53.1		43.88		45.50	
TOTAL DISSOLVED SOLIDS	not to exceed 500	mg/l	778		443		480		456		681	
TOTAL ORGANIC CARBON	-	mg/l	7.0		5.2		6.5		5.8		6.8	
TURBIDITY	not exceed 5	N.T.U	2.27		1.76		1.72		0.92		1.48	

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
Sump (Leachate)												
1,1,1,2-Tetrachloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,1,1-Trichloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,1,2,2-Tetrachloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,1,2-Trichloroethane	1.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,1-Dichloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,1-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,2,3-Trichloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,2-Dibromo-3-chloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,2-Dibromoethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,2-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,2-Dichloroethane	0.6	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,2-Dichloropropane	1.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
1,4-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
2-Butanone / Methyl Ethyl Ketone	-	ug/l	10	U	10	U	10	U	10	U	20	U
2-Hexanone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	10.0	U
4-Methyl-2-pentanone / Methyl Isobutyl Ketone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	10.0	U
Acetone	-	ug/l	10.0	U	10.0	U	10.0	U	10	U	20	U
Acetonitrile	-	ug/l	40.0	Ū	40.0	U	15.0	Ū	15	Ū	30	U
Benzene	1	ug/l	1.0	Ū	1.0	U	1.0	Ū	1.0	Ū	2.0	U
Bromochloromethane	5.0	ug/l	1.0	Ū	1.0	U	1.0	Ū	1.0	Ū	2.0	U
Bromodichloromethane	-	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	2.0	U
Bromoform	-	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	2.0	U
Bromomethane	-	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	2.0	U
Carbon Disulfide	60	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	2.0	U
Carbon Tetrachloride	5.0	ug/l	1.0	Ū	1.0	U	1.0	Ū	1.0	Ū	2.0	U
Chlorobenzene	5.0	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	2.0	U
Chloroethane	5.0	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	2.0	U
Chloroform	7.0	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	U	1.0	Ŭ	2.0	U
Chloromethane	-	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	2.0	U
cis-1,2-Dichloroethene	5.0	ug/l	1.0	Ŭ	1.0	U	1.0	U	1.0	U	2.0	Ŭ
cis-1,3-Dichloropropene	-	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	U	2.0	Ŭ
Dibromochloromethane	-	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	U	2.0	Ŭ
Dibromomethane	5.0	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	U	1.0	U	2.0	U
Ethylbenzene	5.0	ug/l	1.0	Ŭ	1.0	U	1.0	U	1.0	U	2.0	Ŭ
Iodomethane	-	ug/l	1.0	U	1.0	Ŭ	1.0	U	1.0	U	2.0	Ŭ
m/p-Xylenes	-	ug/l	2.0	U	2.0	U	2.0	U	2.0	U	4.0	U
Methylene chloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
o-Xylene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
Styrene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
Tetrachloroethene	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
Toluene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
trans-1,2-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
trans-1,3-Dichloropropene	0.4	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
trans-1,4-Dichloro-2-butene	5.0	ug/l	5.0	U	5.0	U	5.0	U	1.0	U	2.0	U
Trichloroethene	5.0	ug/l	5.0 1.0	U	5.0 1.0	U	1.0	U	1.0	U	2.0	U
Trichlorofluoromethane	5.0	ug/i ug/i	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U
Vinyl acetate	-	U	5.0	U	5.0	U	5.0	U	5.0	U	10.0	U
	2	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	2.0	U
Vinyl chloride	Ζ	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
BR-1												
SAMPLE DATE	-	NA	4/26/2013		10/25/2013		5/13/2014		4/23/2015		4/28/2016	
TOP OF CASING ELEVATION	-	Feet	603.79		603.79		603.79		603.79		603.79	
WATER LEVEL	-	Feet	10.59		11.52		10.44		10.52		10.63	
WATER ELEVATION (BEFORE PURGE)	-	Feet	593.20		592.27		593.35		593.27		593.16	
WELL BOTTOM	-	Feet	35.85		35.85		35.85		39.92		39.92	
ARSENIC	0.025	mg/l	0.010	U	0.010	U	0.015	U	0.015	U	0.015	U
BARIUM	1	mg/l	0.16		0.13		0.13		0.088		0.10	
BORON, (TOTAL)	1	mg/l	0.15		0.13		0.15		0.12		0.13	
BROMIDE	-	mg/l	0.26		0.20	U	0.64		0.40		0.20	U
CHEMICAL OXYGEN DEMAND	-	mg/l	10.0	U	15.9		24.5		10.0		10.0	U / F1
CHLORIDE	-	mg/l	59.9		38.7		54.4		44.6		51.2	
CHROMIUM	0.05	mg/l	0.0040	U	0.0040	U	0.0040	U	0.0040	U	0.0040	U
еН	-	M.Volts	151		117		48		114		32.000	U
HEXAVALENT CHROMIUM TOTAL	0.05	mg/l	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U
LEAD	0.025	mg/l	0.0050	U	0.0050	U	0.0100	U	0.010	U	0.010	U
MANGANESE	0.3	mg/l	0.55		0.45		0.50		0.20		0.21	
MERCURY	0.0007	mg/l	0.00020	U	0.00020	U	0.00020	U	0.00020	U	0.00020	U
pH	between 6.5 to 8.5	S.U	7.56		7.80		7.57		7.69		7.59	
POTASSIUM	-	mg/l	10.2		11.3		9.2		8.7		9.4	^
SELENIUM	0.01	mg/l	0.0010	U	0.0010	U	0.0250	U	0.025	U	0.025	U
SODIUM	20	mg/l	39.9		37.3		37.0		30.9		36.2	
SPECIFIC CONDUCTANCE	-	Umhos/cm	563		419		549		450		488	
SULFATE	250	mg/l	77.6		59.2		74.3		51.5		53.8	
TEMPERATURE	-	°F	51.98		53.60		56.12		49.1		50.2	
TOTAL DISSOLVED SOLIDS	not to exceed 500	mg/l	364		288		385		267		271	
TOTAL ORGANIC CARBON	-	mg/l	2.5		4.1		3.9		3.3		2.7	
TURBIDITY	not exceed 5	N.T.U	2.90		3.10		2.48		1.10		1.26	

Annual Groundwater Analytical Summary

1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane	5.0 5.0 5.0 1.0 5.0 5.0 0.04 0.04 5.0 3.0 0.6 1.0	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	BR- 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1 U U U U U U U U U U U U U	1.0 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U	1.0 1.0 1.0 1.0	U U U U	1.0 1.0 1.0 1.0	U U U	1.0 1.0 1.0	UU
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichloropethane 1,2-Dichloropethane	5.0 5.0 1.0 5.0 5.0 0.04 0.04 5.0 3.0 0.6	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U	1.0 1.0 1.0 1.0		1.0 1.0	UU	1.0 1.0	U U	1.0	U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenane	5.0 1.0 5.0 0.04 0.04 5.0 3.0 0.6	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0 1.0 1.0	U U U U	1.0 1.0 1.0	U U	1.0	Ŭ	1.0	Ŭ		-
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	1.0 5.0 5.0 0.04 0.04 5.0 3.0 0.6	ug/l ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0 1.0	U U U	1.0 1.0	U			-		1.0	
1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropenane 1,2-Dichloropenane 1,2-Dichloropenane 1,2-Dichloropenane 1,2-Dichloropenane	5.0 5.0 0.04 0.04 5.0 3.0 0.6	ug/l ug/l ug/l ug/l ug/l	1.0 1.0 1.0 1.0	U U	1.0	•	1.0	U	10			U
1,1-Dichloroethene 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	5.0 0.04 0.04 5.0 3.0 0.6	ug/l ug/l ug/l ug/l	1.0 1.0 1.0	Ŭ	-	11			1.0	U	1.0	U
1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	0.04 0.04 5.0 3.0 0.6	ug/l ug/l ug/l	1.0 1.0	-	1.0	0	1.0	U	1.0	U	1.0	U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	0.04 5.0 3.0 0.6	ug/l ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	5.0 3.0 0.6	ug/l	-		1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	3.0 0.6	~	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane 1,2-Dichloropropane	0.6	ua/l		U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloropropane		ug/i	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
	1.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1.4 Dichlarahanzana	1.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
2-Butanone / Methyl Ethyl Ketone	-	ug/l	10	U	10	U	10	U	10	U	10	U
2-Hexanone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
4-Methyl-2-pentanone / Methyl Isobutyl Ketone	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Acetone	-	ug/l	10.0	U	10.0	U	10.0	U	10	U	10	U
Acetonitrile	-	ug/l	40.0	U	40.0	U	15.0	U	15	U	15	U
Benzene	1	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	U
Bromochloromethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	U
Bromodichloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	U
Bromoform	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	U
Bromomethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	U
Carbon Disulfide	60	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Carbon Tetrachloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chlorobenzene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroform	7.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,2-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	Ŭ	1.0	U
cis-1,3-Dichloropropene	-	ug/l	1.0	U	1.0	U	1.0	Ŭ	1.0	Ŭ	1.0	U
Dibromochloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	U
Dibromomethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	U
Ethylbenzene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	U
Iodomethane	-	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	U
m/p-Xylenes	-	ug/l	2.0	U	2.0	U	2.0	U	2.0	Ŭ	2.0	U
Methylene chloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	U
o-Xylene	-	ug/l	1.0	U	1.0	Ŭ	1.0	U	1.0	Ŭ	1.0	U
Styrene	5.0	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	U	1.0	Ŭ	1.0	Ŭ
Tetrachloroethene	-	ug/l	1.0	U	1.0	Ŭ	1.0	U	1.0	U	1.0	Ŭ
Toluene	5.0	ug/l	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ	1.0	Ŭ
trans-1.2-Dichloroethene	5.0	ug/l	1.0	U	1.0	Ŭ	1.0	U	1.0	Ŭ	1.0	Ŭ
trans-1,3-Dichloropropene	0.4	ug/l	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	Ŭ
trans-1,4-Dichloro-2-butene	5.0	ug/l	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Trichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Trichlorofluoromethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Vinyl acetate	-	ug/l	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Vinyl chloride	2	ug/l	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U

Annual Groundwater Analytical Summary

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
SW-1												
SAMPLE DATE	-	NA	4/26/2013		10/25/2013		5/13/2014		4/23/2015		4/28/2016	
TOP OF CASING ELEVATION	-	Feet	596.72		596.72		596.72		NS		NS	
WATER LEVEL	-	Feet	NA		NA		NA		NS		NS	
WATER ELEVATION (BEFORE PURGE)	-	Feet	NA		NA		NA		NS		NS	
WELL BOTTOM	-	Feet	NA		NA		NA		NS		NS	
ARSENIC	0.15 ⁽²⁾	mg/l	0.01	U	0.010	U	0.015	U	NS		NS	
BARIUM	1	mg/l	0.033		0.016		0.021		NS		NS	
BORON, (TOTAL)	10 ⁽²⁾	mg/l	0.13		0.088		0.17		NS		NS	
BROMIDE	-	mg/l	0.2	U	0.20	U	0.20	U	NS		NS	
CHEMICAL OXYGEN DEMAND	-	mg/l	44.5		45.2		58.9		NS		NS	
CHLORIDE	-	mg/l	23.2		10.7		18.2		NS		NS	
CHROMIUM	0.05	mg/l	0.0074		0.004	U	0.0040	U	NS		NS	
Eh	-	M.Volts	109		91		124		NS		NS	
HEXAVALENT CHROMIUM TOTAL	0.011 ⁽²⁾	mg/l	0.01	U	0.010	U	0.010	U	NS		NS	
LEAD	0.025	mg/l	0.005	U	0.0050	U	0.0100	U	NS		NS	
MANGANESE	0.3	mg/l	0.026		0.0038		0.016		NS		NS	
MERCURY	0.0007	mg/l	0.0002	U	0.00020	U	0.00020	U	NS		NS	
PH	between 6.5 to 8.5	S.U	8.05		7.9		8.51		NS		NS	
POTASSIUM	-	mg/l	11.7		6.3		10.8		NS		NS	
SELENIUM	0.0046 ⁽²⁾	mg/l	0.001	U	0.0010	U	0.0250	U	NS		NS	
SODIUM	20	mg/l	17.5		13.3		19.1		NS		NS	
SPECIFIC CONDUCTANCE	-	Umhos/cm	535		435		480		NS		NS	
SULFATE	250	mg/l	37.2		53.9		15.1		NS		NS	
TEMPERATURE	-	°F	60.98		51.98		65.48		NS		NS	
TOTAL DISSOLVED SOLIDS	not to exceed 500	mg/l	366		281		311		NS		NS	
TOTAL ORGANIC CARBON	-	mg/l	13.9		13.7		18.4		NS		NS	
TURBIDITY	not exceed 5	N.T.U	6.59		3.12		4.69		NS		NS	

ATTACHMENT 2

Annual Groundwater Analytical Summary

CC Metals and Alloys, LLC Town of Niagara, NY - Witmer Road

Quarter	Class GA Standard ⁽¹⁾	Units	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
			SW	-1								
1,1,1,2-Tetrachloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,1,1-Trichloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,1,2,2-Tetrachloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,1,2-Trichloroethane	1.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,1-Dichloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,1-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,2,3-Trichloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,2-Dibromo-3-chloropropane	0.04	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,2-Dibromoethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,2-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,2-Dichloroethane	0.6	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,2-Dichloropropane	1.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
1,4-Dichlorobenzene	3.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
2-Butanone	-	ug/l	10	U	10	U	10	U	NS		NS	-
2-Hexanone	-	ug/l	5.0	U	5.0	U	5.0	U	NS		NS	-
4-Methyl-2-pentanone	-	ug/l	5.0	U	5.0	U	5.0	U	NS		NS	
Acetone	-	ug/l	10.0	U	10.0	U	10.0	U	NS		NS	
Acetonitrile	-	ug/l	40.0	U	40.0	U	15.0	U	NS		NS	
Benzene	1	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Bromochloromethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Bromodichloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Bromoform	-	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Bromomethane	-	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Carbon Disulfide	60	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Carbon Tetrachloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Chlorobenzene	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Chloroethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Chloroform	7.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Chloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
cis-1,2-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
cis-1,3-Dichloropropene	-	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Dibromochloromethane	-	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Dibromomethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
Ethylbenzene	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
lodomethane	-	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
m/p-Xylenes	-	ug/l	2.0	U	2.0	U	2.0	U	NS		NS	
Methylene chloride	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
o-Xylene	-	ug/l	1.0	Ŭ	1.0	U	1.0	U	NS		NS	
Styrene	5.0	ug/l	1.0	U	1.0	Ŭ	1.0	U	NS		NS	
Tetrachloroethene	-	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	+ 1
Toluene	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	
trans-1,2-Dichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	+ 1
trans-1,3-Dichloropropene	0.4	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	+
trans-1.4-Dichloro-2-butene	5.0	ug/l	5.0	U	5.0	U	1.0	U	NS		NS	+
Trichloroethene	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	+
Trichlorofluoromethane	5.0	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	+
Vinyl acetate	-	ug/l	5.0	U	5.0	U	5.0	U	NS	+	NS	+
Vinyl chloride	2	ug/l	1.0	U	1.0	U	1.0	U	NS		NS	+

ATTACHMENT 2

Annual Groundwater Analytical Summary

CC Metals and Alloys, LLC Town of Niagara, NY - Witmer Road

Quarter	Class GA Standard ⁽¹⁾	Jnits	1st H/13	Qual.	2nd H/13	Qual.	2014	Qual.	2015	Qual.	2016	Qual.
---------	-------------------------------------	-------	----------	-------	----------	-------	------	-------	------	-------	------	-------

⁽¹⁾ Class GA fresh groundwaters; Water Quality Standards Surface Waters and Groundwater, NYSDEC Chapter X Division of Water, Part 703.5

(2) Class C fresh surface waters; Water Quality Standards Surface Waters and Groundwater, NYSDEC Chapter X Division of Water, Part 703.5

Qualifiers:

B: Analyte was detected in the associated Method Blank.

^ Instrument related QC is outside acceptance limits NS: Not Sampled

Result in Bold Text: Exceeds Class GA Standard

CF6: Results confirmed by reanalysis. D: Data reported from a dilution.

D02: Dilution required due to sample matrix effects.

D08: Dilution required due to high concentration of target analyte(s)

F1: MS and/or MSD Recovery is outside acceptance limits

U: Not detected at the reporting limit (or MDL or EDL if shown)

APPENDIX 5

LABORATORY ANALYTICAL REPORT

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-99235-1

Client Project/Site: Witmer Road G/W Sampling Event: Witmer Road G/W

For:

LAN Associates 88 Riberia Street Suite 400 St. Augustine, Florida 32084

Attn: Katie Kulik

lough V. Giacomayze

Authorized for release by: 5/11/2016 3:45:54 PM Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868 judy.stone@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Surrogate Summary	22
QC Sample Results	23
QC Association Summary	32
Lab Chronicle	36
Certification Summary	39
Method Summary	40
Sample Summary	41
Chain of Custody	42
Field Data Sheets	43
Receipt Checklists	54

MS and/or MSD Recovery is outside acceptance limits.

3

Qualifiers

Metals		Л
Qualifier	Qualifier Description	
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.	
General Ch	nemistry	
Qualifier	Qualifier Description	

	GI	os	isa	irv
--	----	----	-----	-----

F1

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 480-99235-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-99235-1

Receipt

The samples were received on 4/28/2016 3:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.5° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-300770 recovered outside acceptance criteria, low biased, for 1,1,2-Trichloro-1,2,2-trifluoroethane, 1,1-Dichloroethene, and Cyclohexane. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated samples were non-detect for these analytes, the data have been reported. The following samples are impacted: BR-1 (480-99235-1), MW-3R (480-99235-2), MW-12 (480-99235-3), MW-14N (480-99235-4), MW-5R (480-99235-5) and Leachate (480-99235-6).

Method(s) 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: Leachate (480-99235-6). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following volatile samples were analyzed with significant headspace in the sample vials: MW-3R (480-99235-2), MW-12 (480-99235-3) and MW-14N (480-99235-4). Significant headspace is defined as a bubble greater than 6 mm in diameter.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-300766 recovered above the upper control limit for Vinyl Chloride. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data have been reported. The following sample is impacted: Trip Blank (480-99235-7).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-300766 recovered outside acceptance criteria, low biased, for 1,2-Dichloroethane, Dibromomethane, and Dichlorobromomethane. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated sample was non-detect for these analytes, the data have been reported. The following sample is impacted: Trip Blank (480-99235-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-3R (480-99235-2), MW-12 (480-99235-3) and MW-14N (480-99235-4). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following samples were diluted due to the nature of the sample matrix: BR-1 (480-99235-1) and Leachate (480-99235-6). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-5R (480-99235-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The Low Level Continuing Calibration Verification (CCVL 480-299451/15) contained Total Potassium above the upper quality control limit. All reported samples BR-1 (480-99235-1), (LCS 480-299015/2-A), (LCSD 480-299015/3-A), (MB 480-299015/1-A), (480-99235-B-1-B MS), (480-99235-B-1-C MSD) and (480-99235-B-1-A PDS) associated with this CCVL were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample ID: BR-1

Lab Sample ID: 480-99235-1

5

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field EH/ORP	32				millivolts	1	_	Field Sampling	Total/NA
pH, Field	7.59				SU	1		Field Sampling	Total/NA
Specific Conductance	488				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field (C)	10.1				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	1.26				NTU	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.10		0.0020		mg/L	1	_	6010C	Total/NA
Boron	0.13		0.020		mg/L	1		6010C	Total/NA
Manganese	0.21		0.0030		mg/L	1		6010C	Total/NA
Potassium	9.4	٨	0.50		mg/L	1		6010C	Total/NA
Sodium	36.2		1.0		mg/L	1		6010C	Total/NA
Chloride	51.2		1.0		mg/L	2		300.0	Total/NA
Sulfate	53.8		4.0		mg/L	2		300.0	Total/NA
Total Dissolved Solids	271		10.0		mg/L	1		SM 2540C	Total/NA
Total Organic Carbon	2.7		1.0		mg/L	1		SM 5310D	Total/NA

Client Sample ID: MW-3R

Lab Sample ID: 480-99235-2

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field EH/ORP	158				millivolts	1	_	Field Sampling	Total/NA
pH, Field	6.51				SU	1		Field Sampling	Total/NA
Specific Conductance	1131				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field (C)	9.1				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	1.82				NTU	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.027		0.0020		mg/L	1	_	6010C	Total/NA
Boron	0.15		0.020		mg/L	1		6010C	Total/NA
Chromium	0.0040		0.0040		mg/L	1		6010C	Total/NA
Manganese	0.0035		0.0030		mg/L	1		6010C	Total/NA
Sodium	23.8		1.0		mg/L	1		6010C	Total/NA
Chloride	47.8		5.0		mg/L	10		300.0	Total/NA
Sulfate	148		20.0		mg/L	10		300.0	Total/NA
Total Dissolved Solids	669		10.0		mg/L	1		SM 2540C	Total/NA
Total Organic Carbon	1.9		1.0		mg/L	1		SM 5310D	Total/NA

Client Sample ID: MW-12

Lab Sample ID: 480-99235-3

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field EH/ORP	149				millivolts	1	_	Field Sampling	Total/NA
pH, Field	7.39				SU	1		Field Sampling	Total/NA
Specific Conductance	1294				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field (C)	9.7				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	1.78				NTU	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	2.0		1.0		ug/L	1	_	8260C	Total/NA
Barium	0.042		0.0020		mg/L	1		6010C	Total/NA
Boron	0.18		0.020		mg/L	1		6010C	Total/NA
Manganese	0.016		0.0030		mg/L	1		6010C	Total/NA
Potassium	4.6		0.50		mg/L	1		6010C	Total/NA
Sodium	77.7		1.0		mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-12 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	144		5.0		mg/L	10	300.0	Total/NA
Sulfate	135		20.0		mg/L	10	300.0	Total/NA
Total Dissolved Solids	774		10.0		mg/L	1	SM 2540C	Total/NA
Total Organic Carbon	2.1		1.0		mg/L	1	SM 5310D	Total/NA

Client Sample ID: MW-14N

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field EH/ORP	67				millivolts	1	_	Field Sampling	Total/NA
pH, Field	6.98				SU	1		Field Sampling	Total/NA
Specific Conductance	1368				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field (C)	10.1				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	2.48				NTU	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	21		1.0		ug/L	1	_	8260C	Total/NA
/inyl chloride	1.1		1.0		ug/L	1		8260C	Total/NA
Barium	0.12		0.0020		mg/L	1		6010C	Total/NA
Boron	0.11		0.020		mg/L	1		6010C	Total/NA
Manganese	0.090		0.0030		mg/L	1		6010C	Total/NA
Potassium	2.6		0.50		mg/L	1		6010C	Total/NA
Sodium	68.8		1.0		mg/L	1		6010C	Total/NA
Bromide	0.32		0.20		mg/L	1		300.0	Total/NA
Chloride	132		5.0		mg/L	10		300.0	Total/NA
Sulfate	160		20.0		mg/L	10		300.0	Total/NA
Total Dissolved Solids	844		10.0		mg/L	1		SM 2540C	Total/NA
Total Organic Carbon	2.0		1.0		mg/L	1		SM 5310D	Total/NA

Client Sample ID: MW-5R

Lab Sample ID: 480-99235-5

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field EH/ORP	115				millivolts	1	_	Field Sampling	Total/NA
pH, Field	7.78				SU	1		Field Sampling	Total/NA
Specific Conductance	886				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field (C)	9.0				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	1.29				NTU	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.056		0.0020		mg/L	1	-	6010C	Total/NA
Boron	0.17		0.020		mg/L	1		6010C	Total/NA
Manganese	0.019		0.0030		mg/L	1		6010C	Total/NA
Potassium	20.1		0.50		mg/L	1		6010C	Total/NA
Sodium	70.3		1.0		mg/L	1		6010C	Total/NA
Bromide	0.98		0.40		mg/L	2		300.0	Total/NA
Chloride	85.6		1.0		mg/L	2		300.0	Total/NA
Sulfate	164		4.0		mg/L	2		300.0	Total/NA
Total Dissolved Solids	531		10.0		mg/L	1		SM 2540C	Total/NA
Total Organic Carbon	4.5		1.0		mg/L	1		SM 5310D	Total/NA

Client Sample ID: Leachate

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 480-99235-6

Lab Sample ID: 480-99235-3

Lab Sample ID: 480-99235-4

Client Sample ID: Leachate (Continued)

Lab Sample ID: 480-99235-6

5

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D Method	Prep Type
Field EH/ORP	105				millivolts	1	Field Sampling	Total/NA
pH, Field	7.59				SU	1	Field Sampling	Total/NA
Specific Conductance	1202				umhos/cm	1	Field Sampling	Total/NA
Temperature, Field (C)	7.5				Degrees C	1	Field Sampling	Total/NA
Turbidity, Field	1.48				NTU	1	Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Barium	0.057		0.0020		mg/L	1	6010C	Total/NA
Boron	0.32		0.020		mg/L	1	6010C	Total/NA
Chromium	0.037		0.0040		mg/L	1	6010C	Total/NA
Manganese	0.016		0.0030		mg/L	1	6010C	Total/NA
Potassium	74.2		0.50		mg/L	1	6010C	Total/NA
Sodium	74.0		1.0		mg/L	1	6010C	Total/NA
Bromide	2.3		0.20		mg/L	1	300.0	Total/NA
Chloride	70.6		2.5		mg/L	5	300.0	Total/NA
Sulfate	68.2		10.0		mg/L	5	300.0	Total/NA
Chemical Oxygen Demand	11.6	F1	10.0		mg/L	1	410.4	Total/NA
Total Dissolved Solids	681		10.0		mg/L	1	SM 2540C	Total/NA
Chromium, hexavalent	0.021		0.010		mg/L	1	SM 3500 CR B	Total/NA
Total Organic Carbon	6.8		1.0		mg/L	1	SM 5310D	Total/NA

Client Sample ID: Trip Blank

No Detections.

Lab Sample ID: 480-99235-7

Client Sample ID: BR-1

Date Collected: 04/28/16 13:23 Date Received: 04/28/16 15:30

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		05/09/16 23:13	1
1,1,1-Trichloroethane	ND	1.0	ug/L		05/09/16 23:13	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		05/09/16 23:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L		05/09/16 23:13	1
1,1,2-Trichloroethane	ND	1.0	ug/L		05/09/16 23:13	1
1,1-Dichloroethane	ND	1.0	ug/L		05/09/16 23:13	1
1,1-Dichloroethene	ND	1.0	ug/L		05/09/16 23:13	1
1,2,3-Trichloropropane	ND	1.0	ug/L		05/09/16 23:13	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		05/09/16 23:13	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		05/09/16 23:13	1
1,2-Dibromoethane	ND	1.0	ug/L		05/09/16 23:13	1
1,2-Dichlorobenzene	ND	1.0	ug/L		05/09/16 23:13	1
1,2-Dichloroethane	ND	1.0	ug/L		05/09/16 23:13	1
1,2-Dichloropropane	ND	1.0	ug/L		05/09/16 23:13	1
1,3-Dichlorobenzene	ND	1.0	ug/L		05/09/16 23:13	1
1,4-Dichlorobenzene	ND	1.0	ug/L		05/09/16 23:13	1
2-Butanone (MEK)	ND	10	ug/L		05/09/16 23:13	1
2-Hexanone	ND	5.0	ug/L		05/09/16 23:13	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L		05/09/16 23:13	1
Acetone	ND	10	ug/L		05/09/16 23:13	1
Acetonitrile	ND	15	ug/L		05/09/16 23:13	1
Benzene	ND	1.0	ug/L		05/09/16 23:13	1
Bromochloromethane	ND	1.0	ug/L		05/09/16 23:13	1
Bromodichloromethane	ND	1.0	ug/L		05/09/16 23:13	1
Bromoform	ND	1.0	ug/L		05/09/16 23:13	1
Bromomethane	ND	1.0	ug/L		05/09/16 23:13	1
Carbon disulfide	ND	1.0	ug/L		05/09/16 23:13	1
Carbon tetrachloride	ND	1.0	ug/L		05/09/16 23:13	1
Chlorobenzene	ND	1.0	ug/L		05/09/16 23:13	1
Chloroethane	ND	1.0	ug/L		05/09/16 23:13	1
Chloroform	ND	1.0	ug/L		05/09/16 23:13	1
Chloromethane	ND	1.0	ug/L		05/09/16 23:13	1
cis-1,2-Dichloroethene	ND	1.0	ug/L		05/09/16 23:13	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		05/09/16 23:13	1
Cyclohexane	ND	1.0	ug/L		05/09/16 23:13	1
Dibromochloromethane	ND	1.0	ug/L		05/09/16 23:13	1
Dibromomethane	ND	1.0	ug/L		05/09/16 23:13	1
Dichlorodifluoromethane	ND	1.0	ug/L		05/09/16 23:13	1
Ethylbenzene	ND	1.0	ug/L		05/09/16 23:13	1
lodomethane	ND	1.0	ug/L		05/09/16 23:13	1
Isopropylbenzene	ND	1.0	ug/L		05/09/16 23:13	1
m,p-Xylene	ND	2.0	ug/L		05/09/16 23:13	1
Methyl acetate	ND	2.5	ug/L		05/09/16 23:13	1
Methylcyclohexane	ND	1.0	ug/L		05/09/16 23:13	1
Methylene Chloride	ND	1.0	ug/L		05/09/16 23:13	1
o-Xylene	ND	1.0	ug/L		05/09/16 23:13	1
Styrene	ND	1.0	ug/L		05/09/16 23:13	1
Tetrachloroethene	ND	1.0	ug/L		05/09/16 23:13	1
Toluene	ND	1.0	ug/L		05/09/16 23:13	1

Lab Sample ID: 480-99235-1 Matrix: Ground Water

5

6

RL

MDL Unit

D

Prepared

Client Sample ID: BR-1 Date Collected: 04/28/16 13:23 Date Received: 04/28/16 15:30

Temperature, Field (C)

Turbidity, Field

Analyte

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

Lab Sample ID: 480-99235-1 Matrix: Ground Water

Analyzed

Dil Fac

1

1

Analyte	Result	Quaimer			Unit	U	Flepaleu	Analyzeu	DirFac
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/09/16 23:13	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/09/16 23:13	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			05/09/16 23:13	1
Trichloroethene	ND		1.0		ug/L			05/09/16 23:13	1
Trichlorofluoromethane	ND		1.0		ug/L			05/09/16 23:13	1
Vinyl acetate	ND		5.0		ug/L			05/09/16 23:13	1
Vinyl chloride	ND		1.0		ug/L			05/09/16 23:13	1
Xylenes, Total	ND		2.0		ug/L			05/09/16 23:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 137					05/09/16 23:13	1
4-Bromofluorobenzene (Surr)	98		73 - 120					05/09/16 23:13	1
Toluene-d8 (Surr)	103		71 _ 126					05/09/16 23:13	1
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 21:25	1
Barium	0.10		0.0020		mg/L		04/29/16 11:25	04/29/16 21:25	1
Boron	0.13		0.020		mg/L		04/29/16 11:25	04/29/16 21:25	1
Chromium	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 21:25	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/29/16 21:25	1
Manganese	0.21		0.0030		mg/L		04/29/16 11:25	04/29/16 21:25	1
Potassium	9.4	^	0.50		mg/L		04/29/16 11:25	04/29/16 21:25	1
Sodium	36.2		1.0		mg/L		04/29/16 11:25	04/29/16 21:25	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/29/16 21:25	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		05/02/16 09:10	05/02/16 13:44	1
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20		mg/L			05/05/16 16:05	1
Chloride	51.2		1.0		mg/L			05/04/16 00:00	2
Sulfate	53.8		4.0		mg/L			05/04/16 00:00	2
Chemical Oxygen Demand	ND	F1	10.0		mg/L			05/02/16 05:22	1
Total Dissolved Solids	271		10.0		mg/L			05/04/16 08:26	1
Chromium, hexavalent	ND		0.010		mg/L			04/28/16 21:58	1
Total Organic Carbon	2.7		1.0		mg/L			05/05/16 04:53	1
Method: Field Sampling - Field Sam									
Analyte		Qualifier	NONE	NONE		D	Prepared	Analyzed	Dil Fac
Field EH/ORP	32				millivolts			04/28/16 13:23	1
pH, Field	7.59				SU			04/28/16 13:23	1
Specific Conductance	488				umhos/cm			04/28/16 13:23	1

04/28/16 13:23

04/28/16 13:23

Degrees C

NTU

10.1

1.26

Client Sample ID: MW-3R Date Collected: 04/28/16 11:07 Date Received: 04/28/16 15:30

Toluene

Lab Sample ID: 480-99235-2 Matrix: Ground Water

Method: 8260C - Volatile Organic Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane		1.0	ug/L		05/09/16 23:40	
1,1,1-Trichloroethane	ND	1.0	ug/L		05/09/16 23:40	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		05/09/16 23:40	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L		05/09/16 23:40	
1,1,2-Trichloroethane	ND	1.0	ug/L		05/09/16 23:40	
1,1-Dichloroethane	ND	1.0	ug/L		05/09/16 23:40	
1,1-Dichloroethene	ND	1.0	ug/L		05/09/16 23:40	
1,2,3-Trichloropropane	ND	1.0	ug/L		05/09/16 23:40	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		05/09/16 23:40	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		05/09/16 23:40	
1,2-Dibromoethane	ND	1.0	ug/L		05/09/16 23:40	
1,2-Dichlorobenzene	ND	1.0	ug/L		05/09/16 23:40	
1,2-Dichloroethane	ND	1.0	ug/L		05/09/16 23:40	
1,2-Dichloropropane	ND	1.0	ug/L		05/09/16 23:40	
1,3-Dichlorobenzene	ND	1.0	ug/L		05/09/16 23:40	
1,4-Dichlorobenzene	ND	1.0	ug/L		05/09/16 23:40	
2-Butanone (MEK)	ND	10	ug/L		05/09/16 23:40	
2-Hexanone	ND	5.0	ug/L		05/09/16 23:40	
4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L		05/09/16 23:40	
Acetone	ND	10	ug/L		05/09/16 23:40	
Acetonitrile	ND	15	ug/L		05/09/16 23:40	
Benzene	ND	1.0	ug/L		05/09/16 23:40	
Bromochloromethane	ND	1.0	ug/L		05/09/16 23:40	
Bromodichloromethane	ND	1.0	ug/L		05/09/16 23:40	
Bromoform	ND	1.0	ug/L		05/09/16 23:40	
Bromomethane	ND	1.0	ug/L		05/09/16 23:40	
Carbon disulfide	ND	1.0	ug/L		05/09/16 23:40	
Carbon tetrachloride	ND	1.0	ug/L		05/09/16 23:40	
Chlorobenzene	ND	1.0	ug/L		05/09/16 23:40	
Chloroethane	ND	1.0	ug/L		05/09/16 23:40	
Chloroform	ND	1.0	ug/L		05/09/16 23:40	
Chloromethane	ND	1.0	ug/L		05/09/16 23:40	
cis-1,2-Dichloroethene	ND	1.0	ug/L		05/09/16 23:40	
cis-1,3-Dichloropropene	ND	1.0	ug/L		05/09/16 23:40	
Cyclohexane	ND	1.0	ug/L		05/09/16 23:40	
Dibromochloromethane	ND	1.0	ug/L		05/09/16 23:40	
Dibromomethane	ND	1.0	ug/L		05/09/16 23:40	
Dichlorodifluoromethane	ND	1.0	ug/L		05/09/16 23:40	
Ethylbenzene	ND	1.0	ug/L		05/09/16 23:40	
lodomethane	ND	1.0	ug/L		05/09/16 23:40	
Isopropylbenzene	ND	1.0	ug/L		05/09/16 23:40	
m,p-Xylene	ND	2.0	ug/L		05/09/16 23:40	
Methyl acetate	ND	2.5	ug/L		05/09/16 23:40	
Methylcyclohexane	ND	1.0	ug/L		05/09/16 23:40	
Methylene Chloride	ND	1.0	ug/L		05/09/16 23:40	
o-Xylene	ND	1.0	ug/L		05/09/16 23:40	
Styrene	ND	1.0	ug/L		05/09/16 23:40	
Tetrachloroethene	ND	1.0	ug/L		05/09/16 23:40	
	שאו 	1. U	uy/L		00,00,10 20.40	

TestAmerica Buffalo

1

05/09/16 23:40

1.0

ug/L

ND

Client Sample ID: MW-3R Date Collected: 04/28/16 11:07 Date Received: 04/28/16 15:30

Temperature, Field (C)

Turbidity, Field

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-99235-2 Matrix: Ground Water

6

1

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
rans-1,2-Dichloroethene	ND		1.0		ug/L			05/09/16 23:40	
rans-1,3-Dichloropropene	ND		1.0		ug/L			05/09/16 23:40	
rans-1,4-Dichloro-2-butene	ND		1.0		ug/L			05/09/16 23:40	1
Trichloroethene	ND		1.0		ug/L			05/09/16 23:40	1
Trichlorofluoromethane	ND		1.0		ug/L			05/09/16 23:40	1
Vinyl acetate	ND		5.0		ug/L			05/09/16 23:40	1
Vinyl chloride	ND		1.0		ug/L			05/09/16 23:40	1
Xylenes, Total	ND		2.0		ug/L			05/09/16 23:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		66 - 137					05/09/16 23:40	1
4-Bromofluorobenzene (Surr)	97		73 - 120					05/09/16 23:40	1
Toluene-d8 (Surr)	103		71 - 126					05/09/16 23:40	1
Method: 6010C - Metals (ICP)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 21:41	1
Barium	0.027		0.0020		mg/L		04/29/16 11:25	04/29/16 21:41	1
Boron	0.15		0.020		mg/L		04/29/16 11:25	04/29/16 21:41	1
Chromium	0.0040		0.0040		mg/L		04/29/16 11:25	04/29/16 21:41	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/29/16 21:41	1
Manganese	0.0035		0.0030		mg/L		04/29/16 11:25	04/29/16 21:41	1
Potassium	ND		0.50		mg/L		04/29/16 11:25	05/02/16 09:45	1
Sodium	23.8		1.0		mg/L		04/29/16 11:25	04/29/16 21:41	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/29/16 21:41	1
Method: 7470A - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		05/02/16 09:10	05/02/16 13:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20		mg/L			05/05/16 16:19	1
Chloride	47.8		5.0		mg/L			05/04/16 00:15	10
Sulfate	148		20.0		mg/L			05/04/16 00:15	10
Chemical Oxygen Demand	ND		10.0		mg/L			05/02/16 05:22	1
Total Dissolved Solids	669		10.0		mg/L			05/04/16 17:13	1
Chromium, hexavalent	ND		0.010		mg/L			04/28/16 21:58	1
Total Organic Carbon	1.9		1.0		mg/L			05/05/16 05:10	1
Method: Field Sampling - Field San	npling								
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field EH/ORP	158				millivolts			04/28/16 11:07	1
pH, Field	6.51				SU			04/28/16 11:07	1

04/28/16 11:07

04/28/16 11:07

Degrees C

NTU

9.1

1.82

Client Sample ID: MW-12 Date Collected: 04/28/16 14:09 Date Received: 04/28/16 15:30

Toluene

Lab Sample ID: 480-99235-3 Matrix: Ground Water

Method: 8260C - Volatile Organic Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		05/10/16 00:06	1
1,1,1-Trichloroethane	ND	1.0	ug/L		05/10/16 00:06	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		05/10/16 00:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L		05/10/16 00:06	1
1,1,2-Trichloroethane	ND	1.0	ug/L		05/10/16 00:06	1
1,1-Dichloroethane	ND	1.0	ug/L		05/10/16 00:06	1
1,1-Dichloroethene	ND	1.0	ug/L		05/10/16 00:06	1
1,2,3-Trichloropropane	ND	1.0	ug/L		05/10/16 00:06	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		05/10/16 00:06	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		05/10/16 00:06	1
1,2-Dibromoethane	ND	1.0	ug/L		05/10/16 00:06	1
1,2-Dichlorobenzene	ND	1.0	ug/L		05/10/16 00:06	1
1,2-Dichloroethane	ND	1.0	ug/L		05/10/16 00:06	1
1,2-Dichloropropane	ND	1.0	ug/L		05/10/16 00:06	1
1,3-Dichlorobenzene	ND	1.0	ug/L		05/10/16 00:06	1
1,4-Dichlorobenzene	ND	1.0	ug/L		05/10/16 00:06	1
2-Butanone (MEK)	ND	10	ug/L		05/10/16 00:06	1
2-Hexanone	ND	5.0	ug/L		05/10/16 00:06	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L		05/10/16 00:06	
Acetone	ND	10	ug/L		05/10/16 00:06	1
Acetonitrile	ND	15	ug/L		05/10/16 00:06	1
Benzene	ND	1.0	ug/L		05/10/16 00:06	
Bromochloromethane	ND	1.0	ug/L		05/10/16 00:06	1
Bromodichloromethane	ND	1.0	ug/L		05/10/16 00:06	1
Bromoform	ND	1.0	ug/L		05/10/16 00:06	
Bromomethane	ND	1.0	ug/L		05/10/16 00:06	1
Carbon disulfide	ND	1.0	ug/L		05/10/16 00:06	1
Carbon tetrachloride	ND	1.0	ug/L		05/10/16 00:06	
Chlorobenzene	ND	1.0	ug/L		05/10/16 00:06	1
Chloroethane	ND	1.0	ug/L		05/10/16 00:06	1
Chloroform	ND	1.0	ug/L		05/10/16 00:06	
Chloromethane	ND	1.0	ug/L		05/10/16 00:06	1
		1.0	ug/L		05/10/16 00:06	1
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	2.0 ND	1.0			05/10/16 00:06	
Cyclohexane	ND	1.0	ug/L		05/10/16 00:06	1
	ND		ug/L		05/10/16 00:06	1
Dibromochloromethane		1.0	ug/L		05/10/16 00:06	
Dibromomethane	ND	1.0	ug/L			1
Dichlorodifluoromethane	ND	1.0	ug/L		05/10/16 00:06	1
Ethylbenzene	ND	1.0	ug/L		05/10/16 00:06	1
lodomethane	ND	1.0	ug/L		05/10/16 00:06	1
Isopropylbenzene	ND	1.0	ug/L		05/10/16 00:06	1
m,p-Xylene	ND	2.0	ug/L		05/10/16 00:06	1
Methyl acetate	ND	2.5	ug/L		05/10/16 00:06	1
Methylcyclohexane	ND	1.0	ug/L		05/10/16 00:06	1
Methylene Chloride	ND	1.0	ug/L		05/10/16 00:06	1
o-Xylene	ND	1.0	ug/L		05/10/16 00:06	1
Styrene	ND	1.0	ug/L		05/10/16 00:06	1
Tetrachloroethene	ND	1.0	ug/L		05/10/16 00:06	1

TestAmerica Buffalo

1

05/10/16 00:06

1.0

ug/L

ND

RL

MDL Unit

D

Prepared

Client Sample ID: MW-12 Date Collected: 04/28/16 14:09 Date Received: 04/28/16 15:30

Analyte

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

2.1

Lab Sample ID: 480-99235-3 Matrix: Ground Water

Analyzed

1

1 1

> 1 1 1

> 1

1

1

1 1

ac 1

1

trans-1,2-Dichloroethene	ND		1.0		ug/L			05/10/16 00:06	
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/10/16 00:06	
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			05/10/16 00:06	
Trichloroethene	ND		1.0		ug/L			05/10/16 00:06	
Trichlorofluoromethane	ND		1.0		ug/L			05/10/16 00:06	
Vinyl acetate	ND		5.0		ug/L			05/10/16 00:06	
Vinyl chloride	ND		1.0		ug/L			05/10/16 00:06	
Xylenes, Total	ND		2.0		ug/L			05/10/16 00:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	103		66 - 137					05/10/16 00:06	
4-Bromofluorobenzene (Surr)	98		73 - 120					05/10/16 00:06	
Toluene-d8 (Surr)	101		71 - 126					05/10/16 00:06	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 21:54	
Barium	0.042		0.0020		mg/L		04/29/16 11:25	04/29/16 21:54	
Boron	0.18		0.020		mg/L		04/29/16 11:25	04/29/16 21:54	
Chromium	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 21:54	
Lead	ND		0.010		mg/L		04/29/16 11:25	04/29/16 21:54	
Manganese	0.016		0.0030		mg/L		04/29/16 11:25	04/29/16 21:54	
Potassium	4.6		0.50		mg/L		04/29/16 11:25	04/29/16 21:54	
Sodium	77.7		1.0		mg/L		04/29/16 11:25	04/29/16 21:54	
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/29/16 21:54	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		05/02/16 09:10	05/02/16 13:57	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		0.20		mg/L			05/05/16 16:34	
Chloride	144		5.0		mg/L			05/04/16 00:29	1
Sulfate	135		20.0		mg/L			05/04/16 00:29	1
Chemical Oxygen Demand	ND		10.0		mg/L			05/02/16 05:22	
Total Dissolved Solids	774		10.0		mg/L			05/04/16 17:13	
Chromium, hexavalent	ND		0.010		mg/L			04/28/16 21:58	
					<u>.</u>				

Method: Field Sampling - Field Sampling

Total Organic Carbon

Analyte	Result Qualifier	NONE NONE	Unit D	Prepared	Analyzed	Dil Fac
Field EH/ORP	149		millivolts		04/28/16 14:09	1
pH, Field	7.39		SU		04/28/16 14:09	1
Specific Conductance	1294		umhos/cm		04/28/16 14:09	1
Temperature, Field (C)	9.7		Degrees C		04/28/16 14:09	1
Turbidity, Field	1.78		NTU		04/28/16 14:09	1

1.0

mg/L

05/05/16 05:26

Client Sample ID: MW-14N Date Collected: 04/28/16 11:57 Date Received: 04/28/16 15:30

Lab Sample ID: 480-99235-4 Matrix: Ground Water

5 6

Method: 8260C - Volatile Organic Analyte		Dy GC/MS Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L		05/10/16 00:33	1
1,1,1-Trichloroethane	ND		1.0	ug/L		05/10/16 00:33	1
1,1,2,2-Tetrachloroethane	ND		1.0	ug/L		05/10/16 00:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	ug/L		05/10/16 00:33	1
1,1,2-Trichloroethane	ND		1.0	ug/L		05/10/16 00:33	1
1,1-Dichloroethane	ND		1.0	ug/L		05/10/16 00:33	1
1,1-Dichloroethene	ND		1.0	ug/L		05/10/16 00:33	1
1,2,3-Trichloropropane	ND		1.0	ug/L		05/10/16 00:33	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		05/10/16 00:33	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		05/10/16 00:33	1
1,2-Dibromoethane	ND		1.0	ug/L		05/10/16 00:33	1
1,2-Dichlorobenzene	ND		1.0	ug/L		05/10/16 00:33	1
1,2-Dichloroethane	ND		1.0	ug/L		05/10/16 00:33	1
1,2-Dichloropropane	ND		1.0	ug/L		05/10/16 00:33	1
1,3-Dichlorobenzene	ND		1.0	ug/L		05/10/16 00:33	1
1,4-Dichlorobenzene	ND		1.0	ug/L		05/10/16 00:33	1
2-Butanone (MEK)	ND		10	ug/L		05/10/16 00:33	1
2-Hexanone	ND		5.0	ug/L		05/10/16 00:33	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	ug/L		05/10/16 00:33	1
Acetone	ND		10	ug/L		05/10/16 00:33	1
Acetonitrile	ND		15	ug/L		05/10/16 00:33	1
Benzene	ND		1.0	ug/L		05/10/16 00:33	1
Bromochloromethane	ND		1.0	ug/L		05/10/16 00:33	1
Bromodichloromethane	ND		1.0	ug/L		05/10/16 00:33	1
Bromoform	ND		1.0	ug/L		05/10/16 00:33	1
Bromomethane	ND		1.0	ug/L		05/10/16 00:33	1
Carbon disulfide	ND		1.0	ug/L		05/10/16 00:33	1
Carbon tetrachloride	ND		1.0	ug/L		05/10/16 00:33	1
Chlorobenzene	ND		1.0	ug/L		05/10/16 00:33	1
Chloroethane	ND		1.0	ug/L		05/10/16 00:33	1
Chloroform	ND		1.0	ug/L		05/10/16 00:33	1
Chloromethane	ND		1.0	ug/L		05/10/16 00:33	1
cis-1,2-Dichloroethene	21		1.0	ug/L		05/10/16 00:33	1
cis-1,3-Dichloropropene	ND		1.0	ug/L		05/10/16 00:33	1
Cyclohexane	ND		1.0	ug/L		05/10/16 00:33	1
Dibromochloromethane	ND		1.0	ug/L		05/10/16 00:33	1
Dibromomethane	ND		1.0	ug/L		05/10/16 00:33	1
Dichlorodifluoromethane	ND		1.0	ug/L		05/10/16 00:33	1
Ethylbenzene	ND		1.0	ug/L		05/10/16 00:33	1
lodomethane	ND		1.0	ug/L		05/10/16 00:33	1
Isopropylbenzene	ND		1.0	ug/L		05/10/16 00:33	1
m,p-Xylene	ND		2.0	ug/L		05/10/16 00:33	1
Methyl acetate	ND		2.5	ug/L		05/10/16 00:33	1
Methylcyclohexane	ND		1.0	ug/L		05/10/16 00:33	1
Methylene Chloride	ND		1.0	ug/L		05/10/16 00:33	1
o-Xylene	ND		1.0	ug/L		05/10/16 00:33	1
Styrene	ND		1.0	ug/L		05/10/16 00:33	1
Tetrachloroethene	ND		1.0	ug/L		05/10/16 00:33	1
Toluene	ND		1.0	ug/L		05/10/16 00:33	1

TestAmerica Buffalo

RL

MDL Unit

D

Prepared

Client Sample ID: MW-14N Date Collected: 04/28/16 11:57 Date Received: 04/28/16 15:30

Analyte

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

Lab Sample ID: 480-99235-4 Matrix: Ground Water

Analyzed

Analyte	Result	Quaimer	RL	WDL	Unit	U	Frepareu	Analyzeu	DIFAC
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/10/16 00:33	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/10/16 00:33	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			05/10/16 00:33	1
Trichloroethene	ND		1.0		ug/L			05/10/16 00:33	1
Trichlorofluoromethane	ND		1.0		ug/L			05/10/16 00:33	1
Vinyl acetate	ND		5.0		ug/L			05/10/16 00:33	1
Vinyl chloride	1.1		1.0		ug/L			05/10/16 00:33	1
Xylenes, Total	ND		2.0		ug/L			05/10/16 00:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		66 - 137					05/10/16 00:33	1
4-Bromofluorobenzene (Surr)	96		73 - 120					05/10/16 00:33	1
Toluene-d8 (Surr)	103		71 - 126					05/10/16 00:33	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 21:57	1
Barium	0.12		0.0020		mg/L		04/29/16 11:25	04/29/16 21:57	1
Boron	0.11		0.020		mg/L		04/29/16 11:25	04/29/16 21:57	1
Chromium	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 21:57	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/29/16 21:57	1
Manganese	0.090		0.0030		mg/L		04/29/16 11:25	04/29/16 21:57	1
Potassium	2.6		0.50		mg/L		04/29/16 11:25	04/29/16 21:57	1
Sodium	68.8		1.0		mg/L		04/29/16 11:25	04/29/16 21:57	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/29/16 21:57	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		05/02/16 09:10	05/02/16 13:59	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.32		0.20		mg/L			05/05/16 16:48	1
Chloride	132		5.0		mg/L			05/04/16 00:44	10
Sulfate	160		20.0		mg/L			05/04/16 00:44	10
Chemical Oxygen Demand	ND		10.0		mg/L			05/02/16 05:22	1
Total Dissolved Solids	844		10.0		mg/L			05/04/16 17:13	1
Chromium, hexavalent	ND		0.010		mg/L			04/28/16 21:58	1
Total Organic Carbon	2.0		1.0		mg/L			05/05/16 05:42	1
Method: Field Sampling - Field San	npling								
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field EH/ORP	67				millivolts			04/28/16 11:57	1
pH, Field	6.98				SU			04/28/16 11:57	1

1 1 pH, Field 6.98 **Specific Conductance** 1368 umhos/cm 04/28/16 11:57 1 Temperature, Field (C) 10.1 Degrees C 04/28/16 11:57 1 **Turbidity, Field** NTU 04/28/16 11:57 1 2.48

Client Sample ID: MW-5R Date Collected: 04/28/16 12:40 Date Received: 04/28/16 15:30

Lab Sample ID: 480-99235-5 Matrix: Ground Water

5 6

Method: 8260C - Volatile Organi	c Compounds by GC/MS					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		05/10/16 01:00	1
1,1,1-Trichloroethane	ND	1.0	ug/L		05/10/16 01:00	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		05/10/16 01:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L		05/10/16 01:00	1
1,1,2-Trichloroethane	ND	1.0	ug/L		05/10/16 01:00	1
1,1-Dichloroethane	ND	1.0	ug/L		05/10/16 01:00	1
1,1-Dichloroethene	ND	1.0	ug/L		05/10/16 01:00	1
1,2,3-Trichloropropane	ND	1.0	ug/L		05/10/16 01:00	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		05/10/16 01:00	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		05/10/16 01:00	1
1,2-Dibromoethane	ND	1.0	ug/L		05/10/16 01:00	1
1,2-Dichlorobenzene	ND	1.0	ug/L		05/10/16 01:00	1
1,2-Dichloroethane	ND	1.0	ug/L		05/10/16 01:00	1
1,2-Dichloropropane	ND	1.0	ug/L		05/10/16 01:00	1
1,3-Dichlorobenzene	ND	1.0	ug/L		05/10/16 01:00	1
1,4-Dichlorobenzene	ND	1.0	ug/L		05/10/16 01:00	
2-Butanone (MEK)	ND	10	ug/L		05/10/16 01:00	1
2-Hexanone	ND	5.0	ug/L		05/10/16 01:00	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L		05/10/16 01:00	
Acetone	ND	10	ug/L		05/10/16 01:00	1
Acetonitrile	ND	15	ug/L		05/10/16 01:00	1
Benzene	ND	1.0	ug/L		05/10/16 01:00	
Bromochloromethane	ND	1.0	ug/L		05/10/16 01:00	1
Bromodichloromethane	ND	1.0	ug/L		05/10/16 01:00	1
Bromoform	ND	1.0	ug/L		05/10/16 01:00	
Bromomethane	ND	1.0	ug/L		05/10/16 01:00	1
Carbon disulfide	ND	1.0	ug/L		05/10/16 01:00	1
Carbon tetrachloride	ND	1.0	ug/L		05/10/16 01:00	· · · · · · · · · · · · 1
Chlorobenzene	ND	1.0	ug/L		05/10/16 01:00	1
Chloroethane	ND	1.0	ug/L		05/10/16 01:00	1
Chloroform	ND	1.0	ug/L		05/10/16 01:00	
Chloromethane	ND	1.0	ug/L		05/10/16 01:00	1
cis-1,2-Dichloroethene	ND	1.0	ug/L		05/10/16 01:00	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		05/10/16 01:00	
Cyclohexane	ND	1.0	ug/L		05/10/16 01:00	1
Dibromochloromethane	ND	1.0	ug/L		05/10/16 01:00	1
Dibromomethane	ND	1.0	ug/L		05/10/16 01:00	
Dichlorodifluoromethane	ND	1.0	ug/L		05/10/16 01:00	1
Ethylbenzene	ND	1.0	ug/L		05/10/16 01:00	1
lodomethane					05/10/16 01:00	· · · · · · · · · · · · · · · · · · ·
Isopropylbenzene	ND ND	1.0 1.0	ug/L		05/10/16 01:00	1
			ug/L		05/10/16 01:00	•
m,p-Xylene	ND	2.0	ug/L			1
Methyl acetate	ND	2.5	ug/L		05/10/16 01:00	1
Methylcyclohexane	ND	1.0	ug/L		05/10/16 01:00	1
Methylene Chloride	ND	1.0	ug/L		05/10/16 01:00	1
o-Xylene	ND	1.0	ug/L		05/10/16 01:00	1
Styrene	ND	1.0	ug/L		05/10/16 01:00	1
	ND	1.0	ug/L		05/10/16 01:00	1
Toluene	ND	1.0	ug/L		05/10/16 01:00	1

TestAmerica Buffalo

RL

1.0

MDL Unit

ug/L

D

Prepared

Client Sample ID: MW-5R Date Collected: 04/28/16 12:40 Date Received: 04/28/16 15:30

trans-1,2-Dichloroethene

Turbidity, Field

Analyte

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

1.29

Lab Sample ID: 480-99235-5 Matrix: Ground Water

Analyzed

05/10/16 01:00

1

lians-1,2-Dichioroethene	ND		1.0		ug/L			03/10/10 01:00	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/10/16 01:00	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			05/10/16 01:00	1
Trichloroethene	ND		1.0		ug/L			05/10/16 01:00	1
Trichlorofluoromethane	ND		1.0		ug/L			05/10/16 01:00	1
Vinyl acetate	ND		5.0		ug/L			05/10/16 01:00	1
Vinyl chloride	ND		1.0		ug/L			05/10/16 01:00	1
Xylenes, Total	ND		2.0		ug/L			05/10/16 01:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		66 - 137					05/10/16 01:00	1
4-Bromofluorobenzene (Surr)	98		73 - 120					05/10/16 01:00	1
Toluene-d8 (Surr)	103		71 - 126					05/10/16 01:00	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015		mg/L		04/29/16 11:25	04/29/16 22:01	1
Barium	0.056		0.0020		mg/L		04/29/16 11:25	04/29/16 22:01	1
Boron	0.17		0.020		mg/L		04/29/16 11:25	04/29/16 22:01	1
Chromium	ND		0.0040		mg/L		04/29/16 11:25	04/29/16 22:01	1
Lead	ND		0.010		mg/L		04/29/16 11:25	04/29/16 22:01	1
Manganese	0.019		0.0030		mg/L		04/29/16 11:25	04/29/16 22:01	1
Potassium	20.1		0.50		mg/L		04/29/16 11:25	04/29/16 22:01	1
Sodium	70.3		1.0		mg/L		04/29/16 11:25	04/29/16 22:01	1
Selenium	ND		0.025		mg/L		04/29/16 11:25	04/29/16 22:01	1
- Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		05/02/16 09:10	05/02/16 14:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.98		0.40		mg/L			05/05/16 17:03	2
Chloride	85.6		1.0		mg/L			05/05/16 17:03	2
Sulfate	164		4.0		mg/L			05/05/16 17:03	2
Chemical Oxygen Demand	ND		10.0		mg/L			05/02/16 05:22	1
Total Dissolved Solids	531		10.0		mg/L			05/04/16 17:13	1
Chromium, hexavalent	ND		0.010		mg/L			04/28/16 21:58	1
Total Organic Carbon	4.5		1.0		mg/L			05/05/16 05:58	1
- Method: Field Sampling - Field Sa	mpling								
Analyte		Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field EH/ORP	115		· · · · · · · · · · · · · · · · · · ·		millivolts			04/28/16 12:40	1
pH, Field	7.78				SU			04/28/16 12:40	1
Specific Conductance	886				umhos/cm			04/28/16 12:40	1
Temperature, Field (C)	9.0				Degrees C			04/28/16 12:40	1

04/28/16 12:40

NTU

Client Sample ID: Leachate Date Collected: 04/28/16 12:15 Date Received: 04/28/16 15:30

Lab Sample ID: 480-99235-6 Matrix: Leachate

Method: 8260C - Volatile Organic Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	2.0			05/10/16 01:27	2
1,1,1-Trichloroethane	ND	2.0	ug/L		05/10/16 01:27	2
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L		05/10/16 01:27	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	ug/L		05/10/16 01:27	2
1,1,2-Trichloroethane	ND	2.0	ug/L		05/10/16 01:27	2
1,1-Dichloroethane	ND	2.0	ug/L		05/10/16 01:27	2
1,1-Dichloroethene	ND	2.0	ug/L		05/10/16 01:27	2
1.2.3-Trichloropropane	ND	2.0	ug/L		05/10/16 01:27	2
1,2,4-Trichlorobenzene	ND	2.0	ug/L		05/10/16 01:27	2
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		05/10/16 01:27	2
1,2-Dibromoethane	ND	2.0	ug/L		05/10/16 01:27	2
1,2-Dichlorobenzene	ND	2.0			05/10/16 01:27	2
			ug/L			2
1,2-Dichloroethane	ND	2.0	ug/L		05/10/16 01:27	
1,2-Dichloropropane	ND	2.0	ug/L		05/10/16 01:27	2
1,3-Dichlorobenzene	ND	2.0	ug/L		05/10/16 01:27	2
1,4-Dichlorobenzene	ND	2.0	ug/L		05/10/16 01:27	2
2-Butanone (MEK)	ND	20	ug/L		05/10/16 01:27	2
2-Hexanone	ND	10	ug/L		05/10/16 01:27	2
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		05/10/16 01:27	2
Acetone	ND	20	ug/L		05/10/16 01:27	2
Acetonitrile	ND	30	ug/L		05/10/16 01:27	2
Benzene	ND	2.0	ug/L		05/10/16 01:27	2
Bromochloromethane	ND	2.0	ug/L		05/10/16 01:27	2
Bromodichloromethane	ND	2.0	ug/L		05/10/16 01:27	2
Bromoform	ND	2.0	ug/L		05/10/16 01:27	2
Bromomethane	ND	2.0	ug/L		05/10/16 01:27	2
Carbon disulfide	ND	2.0	ug/L		05/10/16 01:27	2
Carbon tetrachloride	ND	2.0	ug/L		05/10/16 01:27	2
Chlorobenzene	ND	2.0	ug/L		05/10/16 01:27	2
Chloroethane	ND	2.0	ug/L		05/10/16 01:27	2
Chloroform	ND	2.0	ug/L		05/10/16 01:27	2
Chloromethane	ND	2.0	ug/L		05/10/16 01:27	2
cis-1,2-Dichloroethene	ND	2.0	ug/L		05/10/16 01:27	2
cis-1,3-Dichloropropene	ND	2.0	ug/L		05/10/16 01:27	2
Cyclohexane	ND	2.0	ug/L		05/10/16 01:27	2
Dibromochloromethane	ND	2.0	ug/L		05/10/16 01:27	2
Dibromomethane	ND	2.0	ug/L		05/10/16 01:27	2
Dichlorodifluoromethane	ND	2.0	ug/L		05/10/16 01:27	2
Ethylbenzene	ND	2.0	ug/L		05/10/16 01:27	2
lodomethane	ND	2.0	ug/L		05/10/16 01:27	2
Isopropylbenzene	ND	2.0	ug/L		05/10/16 01:27	2
m,p-Xylene	ND	4.0	ug/L		05/10/16 01:27	2
Methyl acetate	ND	5.0	ug/L		05/10/16 01:27	2
Methylcyclohexane	ND	2.0	ug/L		05/10/16 01:27	2
Methylene Chloride	ND	2.0	ug/L		05/10/16 01:27	2
o-Xylene	ND	2.0	ug/L		05/10/16 01:27	2
Styrene	ND	2.0	ug/L		05/10/16 01:27	2
Tetrachloroethene	ND	2.0	ug/L		05/10/16 01:27	2
Toluene	ND	2.0	ug/L		05/10/16 01:27	2

Client Sample ID: Leachate Date Collected: 04/28/16 12:15 Date Received: 04/28/16 15:30

Lab Sample ID: 480-99235-6 Matrix: Leachate

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		2.0		ug/L			05/10/16 01:27	2
trans-1,3-Dichloropropene	ND		2.0		ug/L			05/10/16 01:27	2
trans-1,4-Dichloro-2-butene	ND		2.0		ug/L			05/10/16 01:27	2
Trichloroethene	ND		2.0		ug/L			05/10/16 01:27	2
Trichlorofluoromethane	ND		2.0		ug/L			05/10/16 01:27	2
Vinyl acetate	ND		10		ug/L			05/10/16 01:27	2
Vinyl chloride	ND		2.0		ug/L			05/10/16 01:27	2
Xylenes, Total	ND		4.0		ug/L			05/10/16 01:27	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		66 - 137			-		05/10/16 01:27	2
4-Bromofluorobenzene (Surr)	98		73 - 120					05/10/16 01:27	2
Toluene-d8 (Surr)	102		71 - 126					05/10/16 01:27	2

Method: 6010C - Metals (ICP)

Analyte F	esult Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	0.015		mg/L		04/29/16 11:25	04/29/16 22:04	1
Barium	.057	0.0020		mg/L		04/29/16 11:25	04/29/16 22:04	1
Boron	0.32	0.020		mg/L		04/29/16 11:25	04/29/16 22:04	1
Chromium	.037	0.0040		mg/L		04/29/16 11:25	04/29/16 22:04	1
Lead	ND	0.010		mg/L		04/29/16 11:25	04/29/16 22:04	1
Manganese	.016	0.0030		mg/L		04/29/16 11:25	04/29/16 22:04	1
Potassium	74.2	0.50		mg/L		04/29/16 11:25	04/29/16 22:04	1
Sodium	74.0	1.0		mg/L		04/29/16 11:25	04/29/16 22:04	1
Selenium	ND	0.025		mg/L		04/29/16 11:25	04/29/16 22:04	1

Method: 7470A - Mercury (CVAA)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.00020	mg/L		05/02/16 09:10	05/02/16 14:02	1

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	2.3		0.20		mg/L			05/05/16 18:45	1
Chloride	70.6		2.5		mg/L			05/04/16 02:26	5
Sulfate	68.2		10.0		mg/L			05/04/16 02:26	5
Chemical Oxygen Demand	11.6	F1	10.0		mg/L			05/02/16 05:22	1
Total Dissolved Solids	681		10.0		mg/L			05/04/16 17:13	1
Chromium, hexavalent	0.021		0.010		mg/L			04/28/16 21:58	1
Total Organic Carbon	6.8		1.0		mg/L			05/05/16 07:19	1

Method: Field Sampling - Field Sampling

Analyte	Result Qualifier	NONE NON	E Unit D	Prepared	Analyzed	Dil Fac
Field EH/ORP	105		millivolts		04/28/16 12:15	1
pH, Field	7.59		SU		04/28/16 12:15	1
Specific Conductance	1202		umhos/cm		04/28/16 12:15	1
Temperature, Field (C)	7.5		Degrees C		04/28/16 12:15	1
Turbidity, Field	1.48		NTU		04/28/16 12:15	1

Toluene

Client Sample ID: Trip Blank Date Collected: 04/28/16 00:00 Date Received: 04/28/16 15:30

Lab Sample ID: 480-99235-7 Matrix: Water

Method: 8260C - Volatile Organic	c Compounds by GC/MS					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		05/09/16 23:29	1
1,1,1-Trichloroethane	ND	1.0	ug/L		05/09/16 23:29	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		05/09/16 23:29	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L		05/09/16 23:29	1
1,1,2-Trichloroethane	ND	1.0	ug/L		05/09/16 23:29	1
1,1-Dichloroethane	ND	1.0	ug/L		05/09/16 23:29	1
1,1-Dichloroethene	ND	1.0	ug/L		05/09/16 23:29	1
1,2,3-Trichloropropane	ND	1.0	ug/L		05/09/16 23:29	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		05/09/16 23:29	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		05/09/16 23:29	1
1,2-Dibromoethane	ND	1.0	ug/L		05/09/16 23:29	1
1,2-Dichlorobenzene	ND	1.0	ug/L		05/09/16 23:29	1
1,2-Dichloroethane	ND	1.0	ug/L		05/09/16 23:29	1
1,2-Dichloropropane	ND	1.0	ug/L		05/09/16 23:29	1
1,3-Dichlorobenzene	ND	1.0	ug/L		05/09/16 23:29	1
1,4-Dichlorobenzene	ND	1.0	ug/L		05/09/16 23:29	1
2-Butanone (MEK)	ND	10	ug/L		05/09/16 23:29	1
2-Hexanone	ND	5.0	ug/L		05/09/16 23:29	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L		05/09/16 23:29	1
Acetone	ND	10	ug/L		05/09/16 23:29	1
Acetonitrile	ND	15	ug/L		05/09/16 23:29	1
Benzene	ND	1.0	ug/L		05/09/16 23:29	1
Bromochloromethane	ND	1.0	ug/L		05/09/16 23:29	1
Bromodichloromethane	ND	1.0	ug/L		05/09/16 23:29	1
Bromoform	ND	1.0	ug/L		05/09/16 23:29	1
Bromomethane	ND	1.0	ug/L		05/09/16 23:29	1
Carbon disulfide	ND	1.0	ug/L		05/09/16 23:29	1
Carbon tetrachloride	ND	1.0	ug/L		05/09/16 23:29	1
Chlorobenzene	ND	1.0	ug/L		05/09/16 23:29	1
Chloroethane	ND	1.0	ug/L		05/09/16 23:29	1
Chloroform	ND	1.0	ug/L		05/09/16 23:29	1
Chloromethane	ND	1.0	ug/L		05/09/16 23:29	1
cis-1,2-Dichloroethene	ND	1.0	ug/L		05/09/16 23:29	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		05/09/16 23:29	1
Cyclohexane	ND	1.0	ug/L		05/09/16 23:29	1
Dibromochloromethane	ND	1.0	ug/L		05/09/16 23:29	1
Dibromomethane	ND	1.0	ug/L		05/09/16 23:29	1
Dichlorodifluoromethane	ND	1.0	ug/L		05/09/16 23:29	1
Ethylbenzene	ND	1.0	ug/L		05/09/16 23:29	1
lodomethane	ND	1.0	ug/L		05/09/16 23:29	1
Isopropylbenzene	ND	1.0	ug/L		05/09/16 23:29	1
m,p-Xylene	ND	2.0	ug/L		05/09/16 23:29	1
Methyl acetate	ND	2.5	ug/L		05/09/16 23:29	1
Methylcyclohexane	ND	1.0	ug/L		05/09/16 23:29	1
Methylene Chloride	ND	1.0	ug/L		05/09/16 23:29	1
o-Xylene	ND	1.0	ug/L		05/09/16 23:29	1
Styrene	ND	1.0	ug/L		05/09/16 23:29	1
Tetrachloroethene	ND	1.0	ug/L		05/09/16 23:29	1

TestAmerica Buffalo

1

05/09/16 23:29

1.0

ug/L

ND

RL

1.0

1.0

1.0

1.0

1.0

5.0

1.0

2.0

Limits

66 - 137

73 - 120

71 - 126

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Analyte

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Trichlorofluoromethane

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

Client Sample ID: Trip Blank Date Collected: 04/28/16 00:00 Date Received: 04/28/16 15:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

84

103

100

Qualifier

%Recovery

Lab Sample ID: 480-99235-7 Matrix: Water

Analyzed

05/09/16 23:29

05/09/16 23:29

05/09/16 23:29

05/09/16 23:29

05/09/16 23:29

05/09/16 23:29

05/09/16 23:29

05/09/16 23:29

Analyzed

05/09/16 23:29

05/09/16 23:29

05/09/16 23:29

1

1

1

1

1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Ground Wate	er				Prep Type: Total/NA
_				Percent Surrogate	Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	
480-99235-1	BR-1	109	98	103	
480-99235-2	MW-3R	101	97	103	
480-99235-3	MW-12	103	98	101	
480-99235-4	MW-14N	105	96	103	
480-99235-5	MW-5R	103	98	103	
Surrogate Legend					
12DCE = 1,2-Dichlor	oethane-d4 (Surr)				

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Leachate					Prep Type: Total/NA
Γ				Percent Surrogat	te Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	
480-99235-6	Leachate	104	98	102	
Surrogate Legend					
12DCE = 1,2-Dichlore	oethane-d4 (Surr)				
BFB = 4-Bromofluoro	benzene (Surr)				
TOL = Toluene-d8 (S	Surr)				

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

Prep Type: Total/NA

			Percent Sur	rogate Recovery (Acceptance
	12DCE	BFB	TOL	
Client Sample ID	(66-137)	(73-120)	(71-126)	
Trip Blank	84	103	100	
Method Blank	86	102	100	
Method Blank	106	99	104	
	Trip Blank Method Blank	Client Sample ID(66-137)Trip Blank84Method Blank86	Client Sample ID (66-137) (73-120) Trip Blank 84 103 Method Blank 86 102	Client Sample ID 12DCE BFB TOL Trip Blank (66-137) (73-120) (71-126) Method Blank 86 102 100

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Matrix: Water

Lab Sample ID: MB 480-300766/7

Method: 8260C - Volatile Organic Compounds by GC/MS

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5 6

Analyse HB MD Analyse Recult Qualiter RL MDL Unit D Prepared Analyzed DI Prepared Analyzed								Fieb Type.	
Analyan Result Qualifier RL MOL Unit D Prepared Analyzed Offerse 1,11,27 Terional Constraine ND 10 ugl. 050016 22.32 1 1,12,27 Terional Constraine ND 10 ugl. 050016 22.32 1 1,12,27 Terional Constraine ND 10 ugl. 050016 22.32 1 1,12,27 Terional Constraine ND 10 ugl. 050016 22.32 1 1,12,27 Terional Constraine ND 10 ugl. 050016 22.32 1 1,12,27 Terional Constraine ND 10 ugl. 050016 22.32 1 1,2.24 Terional Constraine ND 10 ugl. 050016 22.32 1 1,2.24 Terional Constraine ND 10 ugl. 050016 22.32 1 1,2.24 Terional Constraine ND 10 ugl. 050016 22.32 1 1,2.24 Terional Constraine ND 10 ugl. 050016 22.32 1 1,2.24 Terional Constra	Analysis Batch: 300766								
11,12-Transhersehme ND 10 ugl. 050916.22.2 1 1,13-Tronshorsehme ND 10 ugl. 050916.22.2 1 1,12-Tronshorsehme ND 10 ugl. 050916.22.2 1 1,2-Tronshorsehme ND 10 ugl. 050916.22.2 1 1,2-Detrocombance ND	Australia					-	Description	A	DUF
1,1-1:AbionethaneND1.0upL0500/16/22.3211,1.2-Trenkoro-1,2.2.trifucorathaneND1.0upL0500/16/22.3211,1.2-Trenkoro-1,2.2.trifucorathaneND1.0upL0500/16/22.3211,1.2-Trenkoro-1,2.2.trifucorathaneND1.0upL0500/16/22.3211,1.2-Trenkoro-1,2.2.trifucorathaneND1.0upL0500/16/22.3211,1.2-Trenkoro-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Trenkoro-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Trenkoro-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Trenkoro-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Dichron-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Dichron-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Dichron-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Dichron-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Dichron-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Dichron-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Dichron-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Dichron-1,2.trifucorathaneND1.0upL0500/16/22.3211,2-Dichron-1,2.trifucorathaneND1.0			Qualifier			D	Prepared		
1.1.2.2 TrichtoroethaneND1.0ugL0509/16.22.3211.1.2.1 TrichtoroethaneND1.0ugL0509/16.22.3211.3.2 TrichtoroethaneND1.0ugL0509/16.22.3211.3.2 TrichtoroethaneND1.0ugL0509/16.22.3211.2.3 TrichtoroethaneND1.0ugL0509/17.22.3211.2.3 TrichtoroethaneND1.0ugL0509/17.22.3211.2.3 TrichtoroethaneND1.0ugL0509/17.22.3211.2.3 TrichtoroethaneND1.0ugL0509/17.22.3211.2.4 TrichtoroethaneND1.0ugL0509/17.22.3211.2.DebtoroethaneND1.0ugL0509/17.22.3211.2.DebtoroethaneND1.0ugL0509/17.22.3211.3.DebtoroethaneND1.0ugL0509/17.22.3211.3.DebtoroethaneND1.0ugL0509/17.22.3211.3.DebtoroethaneND1.0ugL0509/17.22.3212.BuranneND5.0ugL0509/17.22.3212.BuranneND1.0ugL0509/17.22.3212.BuranneND1.0ugL0509/17.22.3212.BuranneND1.0ugL0509/17.22.3212.BuranneND1.0ugL0509/17.22.3212.BuranneND1.0ugL0509/17.22.321 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>									1
1.1.2.TrichiorsethaneND1.0upL0.500H15.22.211.1.2.TrichiorsethaneND1.0upL0.500H15.22.311.1DichiorsethaneND1.0upL0.500H15.23.211.1DichiorsethaneND1.0upL0.500H15.23.211.2.3.TrichiorgorpaneND1.0upL0.500H15.23.211.2.4.TrichiorsethaneND1.0upL0.500H15.23.211.2.4.TrichiorsethaneND1.0upL0.500H15.23.211.2.Debrono-SchorsethaneND1.0upL0.500H15.23.211.2.Debrono-SchorsethaneND1.0upL0.500H15.23.211.2.Debrono-SchorsethaneND1.0upL0.500H15.23.211.2.Debrono-SchorsethaneND1.0upL0.500H15.23.211.3.Debrono-SchorsethaneND1.0upL0.500H15.23.211.4.Debrono-SchorsethaneND1.0upL0.500H15.23.211.4.Debrono-SchorsethaneND1.0upL0.500H15.23.211.4.Debrono-SchorsethaneND1.0upL0.500H15.23.211.4.Debrono-SchorsethaneND1.0upL0.500H15.23.211.4.Debrono-SchorsethaneND1.0upL0.500H15.23.211.4.Debrono-SchorsethaneND1.0upL0.500H15.23.211.4.Debrono-SchorsethaneND1.0upL0.500H15.23.21 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>									1
1.1.2.InclutorenthmeND1.0ugL0500/16 22:3211.1.5.InclutorenthmeND1.0ugL0500/16 22:3211.2.3.TrichlorencemeND1.0ugL0500/16 22:3211.2.3.TrichlorencemeND1.0ugL0500/16 22:3211.2.5.TrichlorencemeND1.0ugL0500/16 22:3211.2.DitronencemeND1.0ugL0500/16 22:3211.2.DitronencemeND1.0ugL0500/16 22:3211.2.DitronencemeND1.0ugL0500/16 22:3211.2.DitronencemeND1.0ugL0500/16 22:3211.2.DitronencemeND1.0ugL0500/16 22:3211.2.DitronencemeND1.0ugL0500/16 22:3211.3.DitronencemeND1.0ugL0500/16 22:3212.4.LencemeND1.0ugL0500/16 22:3212.4.LencemeND1.0ugL0500/16 22:3212.4.LencemeND1.0ugL0500/16 22:3212.4.LencemeND1.0ugL0500/16 22:3214.4.LencemeND1.0ugL0500/16 22:3214.4.LencemeND1.0ugL0500/16 22:3214.4.LencemeND1.0ugL0500/16 22:3214.4.LencemeND1.0ugL0500/16 22:3214.4.LencemeND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
1.1-DichloroethaneND1.0ugl.050°14 2.23.211.1-DichloroethaneND1.0ugl.050°14 2.23.211.2-ATrichloroberzaneND1.0ugl.050°14 2.23.211.2-ATrichloroberzaneND1.0ugl.050°14 2.23.211.2-Dichroro-SchöropopaneND1.0ugl.050°14 2.23.211.2-Dichloro-SchöropopaneND1.0ugl.050°14 2.23.211.2-Dichloro-SchöropopaneND1.0ugl.050°14 2.23.211.2-DichloroberzaneND1.0ugl.050°14 2.23.211.2-DichloroberzaneND1.0ugl.050°14 2.23.211.2-DichloroberzaneND1.0ugl.050°16 2.23.211.2-DichloroberzaneND1.0ugl.050°16 2.23.211.2-DichloroberzaneND5.0ugl.050°16 2.23.212-Haranone (MEK)ND1.0ugl.050°16 2.23.212-Haranone (MEK)ND1.0ugl.050°16 2.23.212-Haranone (MEK)ND1.0ugl.050°16 2.23.212-BoronchloromethaneND1.0ugl.050°16 2.23.21BoronchloromethaneND1.0ugl.050°16 2.23.21BoronchloromethaneND1.0ugl.050°16 2.23.21BoronchloromethaneND1.0ugl.050°16 2.23.21Boronchloromethane <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></td<>									1
1.1.Dicknore/hene ND 1.0 upL 0500/16 22.32 1 1.2.3-Tricknorepane ND 1.0 upL 0500/16 22.32 1 1.2.Ditromes-3-Chloropropane ND 1.0 upL 0500/16 22.32 1 1.2.Ditromes-3-Chloropropane ND 1.0 upL 0500/16 22.32 1 1.2.Ditromeshame ND 1.0 upL 0500/16 22.32 1 1.2.Dichhorophame ND 1.0 upL 0500/16 22.32 1 1.2.Dichhorophame ND 1.0 upL 0500/16 22.32 1 1.3.Dichhorophame ND 1.0 upL 0500/16 22.32 1 1.3.Dichhorophame ND 1.0 upL 0500/16 22.32 1 2.Buanne (MEK) ND 1.0 upL 0500/16 22.32 1 2.Heanne (MIBK) ND 1.0 upL 0500/16 22.32 1 Acetonic ND 1.0 upL 0500/16 22.32 1 Brancothicromethane <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>									1
1.2.3-EnchoropropaneND1.0ug/L6509/16.23.211.2.4-Enchorop-SchloopropaneND1.0ug/L6509/16.23.211.2.Diconos-SchloopropaneND1.0ug/L6509/16.23.211.2.DichorobetnareND1.0ug/L6509/16.23.211.2.DichorobetnareND1.0ug/L6509/16.23.211.2.DichorobetnareND1.0ug/L6509/16.23.211.3.DichorobetnareND1.0ug/L6509/16.23.211.4.DichorobenzeneND1.0ug/L6509/16.23.211.4.DichorobenzeneND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.23.212.HaxonoND1.0ug/L6509/16.									
1.2Ditromo-3-ChiopropaneND1.0upL05090762.2.31.11.2Ditromo-3-ChiopropaneND1.0upL05097162.2.31.11.2Ditromo-SchiopropaneND1.0upL05097162.2.31.11.2DichlorobenzeneND1.0upL05097162.2.31.11.2DichlorobenzeneND1.0upL05097162.2.31.11.3DichlorobenzeneND1.0upL05097162.2.31.11.4DichlorobenzeneND1.0upL05097162.2.31.12Butanore (MEK)ND1.0upL05097162.2.31.12Butanore (MEK)ND1.0upL05097162.2.31.12Butanore (MEK)ND5.0upL05097162.2.31.12Butanore (MEK)ND1.0upL05097162.2.31.12Butanore (MEK)ND1.0upL05097162.2.31.12Butanore (MEK)ND1.0upL05097162.2.31.12Butanore (MEK)ND1.0upL05097162.2.31.12Butanore (MEK)ND1.0upL05097162.2.31.1BornochioromethaneND1.0upL05097162.2.31.1BornochioromethaneND1.0upL05097162.2.31.1BornochioromethaneND1.0upL05097162.2.31.1BornochioromethaneND1.0upL05097162.2.31.1BornochioromethaneND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>									1
12-Distono-3-CisloropropaneND1.0ug/L0500/16 22.3211.2-DistonoebhaneND1.0ug/L0500/16 22.3211.2-DistonoebhaneND1.0ug/L0500/16 22.3211.2-DistonoebhaneND1.0ug/L0500/16 22.3211.2-DistonoebhaneND1.0ug/L0500/16 22.3211.3-DistonoebhaneND1.0ug/L0500/16 22.3211.4-DistonoebhaneND1.0ug/L0500/16 22.3211.4-DistonoebhaneND1.0ug/L0500/16 22.3212-BaranoeND5.0ug/L0500/16 22.3212-BaranoeND5.0ug/L0500/16 22.3212-BaranoeND1.0ug/L0500/16 22.3212-BaranoeND1.0ug/L05									1
1.2 Dibromeethane ND 1.0 ugL 06/09/16/22.32 1 1.2 Dichloredbrazene ND 1.0 ugL 06/09/16/22.32 1 1.2 Dichloredbrazene ND 1.0 ugL 06/09/16/22.32 1 1.3 Dichlorobbrazene ND 1.0 ugL 06/09/16/22.32 1 1.4 Dichlorobbrazene ND 1.0 ugL 06/09/16/22.32 1 2 Buranoe (MEK) ND 1.0 ugL 06/09/16/22.32 1 2 Haxanoe (MEK) ND 5.0 ugL 06/09/16/22.32 1 2 Haxanoe (MEK) ND 1.0 ugL 06/09/16/22.32 1 4 Acetoninie ND 1.0 ugL 06/09/16/22.32 1 Acetoninie ND 1.0 ugL 06/09/16/22.32 1 Bromochoromethane ND 1.0 ugL 06/09/16/22.32 1 Bromochoromethane ND 1.0 ugL 06/09/16/22.32 1 Bromochoromethane ND 1.0 ugL 06/09/16/22.32 1 Chorob									
1.2 DichlorobenzeneND1.0ug/L0509/16 22:3211.2 DichloroppropenND1.0ug/L0509/16 22:3211.3 DichloroppropenND1.0ug/L0509/16 22:3211.4 DichlorobenzeneND1.0ug/L0509/16 22:3211.4 DichlorobenzeneND1.0ug/L0509/16 22:3212 HaxnoneND5.0ug/L0509/16 22:3212 HaxnoneND5.0ug/L0509/16 22:321AcetoneND1.0ug/L0509/16 22:321AcetoneND1.0ug/L0509/16 22:321BronzenicND1.0ug/L0509/16 22:321BronzenicND1.0ug/L0509/16 22:321BronzenicND1.0ug/L0509/16 22:321BronzenicND1.0ug/L0509/16 22:321BronzenicND1.0ug/L0509/16 22:321BronzenicND1.0ug/L0509/16 22:321BronzenicND1.0ug/L0509/16 22:321Carbo terzenic/indeND1.0ug/L0509/16 22:321ChiorobarzeneND1.0ug/L0509/16 22:321ChiorobarzeneND1.0ug/L0509/16 22:321ChiorobarzeneND1.0ug/L0509/16 22:321ChiorobarzeneND1.0ug/L0509									1
1.2-Dichloropenane ND 1.0 ugL 05/09/16 22:32 1 1.2-Dichlorophonane ND 1.0 ugL 05/09/16 22:32 1 1.3-Dichlorophonane ND 1.0 ugL 05/09/16 22:32 1 1.4-Dichlorophonane ND 1.0 ugL 05/09/16 22:32 1 2-Buanone (MEK) ND 1.0 ugL 05/09/16 22:32 1 4-Methoropenane ND 5.0 ugL 05/09/16 22:32 1 4-Methoropenane ND 1.0 ugL 05/09/16 22:32 1 4-Acetoner ND 1.0 ugL 05/09/16 22:32 1 Acetonitie ND 1.0 ugL 05/09/16 22:32 1 Bromochicomethane ND 1.0 ugL 05/09/16 22:32 1 Bromochicomethane ND 1.0 ugL 05/09/16 22:32 1 Bromochicomethane ND 1.0 ugL 05/09/16 22:32 1 Carbon distifie ND 1.0 ugL 05/09/16 22:32 1 Chioropethane </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>									1
1.2-DichloroporpaneND1.0ugL0500/16/2.3211.3-DichlorobenzeneND1.0ugL0500/16/2.3212-Budnone (MEK)ND10ugL0500/16/2.3212-Haxnone (MBK)ND5.0ugL0500/16/2.321A-dethir/2-pentanone (MBK)ND5.0ugL0500/16/2.321A-detoneND10ugL0500/16/2.321A-detonireND15ugL0500/16/2.321A-detonireND1.0ugL0500/16/2.321Bromodic/DoromethaneND1.0ugL0500/16/2.321Bromodic/DoromethaneND1.0ugL0500/16/2.321Bromodic/DoromethaneND1.0ugL0500/16/2.321Bromodic/DoromethaneND1.0ugL0500/16/2.321Bromodic/DoromethaneND1.0ugL0500/16/2.321Bromodic/DoromethaneND1.0ugL0500/16/2.321ChorobenzeneND1.0ugL0500/16/2.321ChorobenzeneND1.0ugL0500/16/2.321ChorobenzeneND1.0ugL0500/16/2.321ChorobenzeneND1.0ugL0500/16/2.321ChorobenzeneND1.0ugL0500/16/2.321ChorobenzeneND1.0ugL0500/16/2.321ChorobenzeneND1.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>									1
1.3-DichlorobenzeneND1.0ugL0509/16/2.3211.4-DichlorobenzeneND1.0ugL0509/16/2.3212-HexanoneND5.0ugL0509/16/2.3212-HexanoneND5.0ugL0509/16/2.3212-HexanoneND5.0ugL0509/16/2.321AcetoneND1.0ugL0509/16/2.321AcetonikND1.0ugL0509/16/2.321BenzeneND1.0ugL0509/16/2.321BromochloromethaneND1.0ugL0509/16/2.321BromochloromethaneND1.0ugL0509/16/2.321BromochloromethaneND1.0ugL0509/16/2.321BromochloromethaneND1.0ugL0509/16/2.321BromochloromethaneND1.0ugL0509/16/2.321Carbon teitrachlorideND1.0ugL0509/16/2.321Carbon teitrachlorideND1.0ugL0509/16/2.321ChlorobenzeneND1.0ugL0509/16/2.321ChlorobenzeneND1.0ugL0509/16/2.321ChlorobenzeneND1.0ugL0509/16/2.321ChlorobenzeneND1.0ugL0509/16/2.321ChlorobenzeneND1.0ugL0509/16/2.321ChlorobenzeneND1.0ugL0509/1									1
1.4-Dichlorobenzene ND 1.0 ug/L 0509/16 22:32 1 2-Butanone (MEK) ND 10 ug/L 0509/16 22:32 1 4-Methyl-2-pentanone (MIBK) ND 5.0 ug/L 0509/16 22:32 1 Acetonte ND 10 ug/L 0509/16 22:32 1 Acetonte ND 10 ug/L 0509/16 22:32 1 Benzene ND 10 ug/L 0509/16 22:32 1 Bronochloromethane ND 1.0 ug/L 0509/16 22:32 1 Carbon trazhloride ND 1.0 ug/L 0509/16 22:32 1 Chroroma ND 1.0 ug/L 0509/16 22:32 1 Chroroma ND 1.0 ug/L 0509/16 22:32 1 Chroroma ND 1.0 ug/L 0509/16 22:32 1									1
2-Butanone (MEK)ND10ug/L05/09/16/22.3212-HexanoneND5.0ug/L05/09/16/22.321AcetoneND10ug/L05/09/16/22.321AcetoneND10ug/L05/09/16/22.321AcetonirlieND10ug/L05/09/16/22.321BenzeneND10ug/L05/09/16/22.321BromochloromethaneND10ug/L05/09/16/22.321BromochloromethaneND10ug/L05/09/16/22.321BromochloromethaneND10ug/L05/09/16/22.321BromochloromethaneND10ug/L05/09/16/22.321Carbon terachlorideND10ug/L05/09/16/22.321Carbon terachlorideND10ug/L05/09/16/22.321ChlorobethaneND10ug/L05/09/16/22.321ChlorobethaneND10ug/L05/09/16/22.321ChlorobethaneND10ug/L05/09/16/22.321ChlorobethaneND10ug/L05/09/16/22.321ChlorobethaneND10ug/L05/09/16/22.321ChlorobethaneND10ug/L05/09/16/22.321ChlorobethaneND10ug/L05/09/16/22.321ChlorobethaneND10ug/L05/09/16/22.321DibromochloromethaneND<									1
2-Hexanone ND 5.0 ug/L 0509/16 22:32 1 4-Metty/2-pertanone (MIBK) ND 5.0 ug/L 0509/16 22:32 1 Acetonine ND 1.0 ug/L 0509/16 22:32 1 Acetoninie ND 1.0 ug/L 0509/16 22:32 1 Benzene ND 1.0 ug/L 0509/16 22:32 1 Bromochioromethane ND 1.0 ug/L 0509/16 22:32 1 Bromochioromethane ND 1.0 ug/L 0509/16 22:32 1 Bromochioromethane ND 1.0 ug/L 0509/16 22:32 1 Carbon distlife ND 1.0 ug/L 0509/16 22:32 1 Carbon distlife ND 1.0 ug/L 0509/16 22:32 1 Chioroberzene ND 1.0 ug/L 0509/16 22:32 1 Chioroberzene ND 1.0 ug/L 0509/16 22:32 1 Chioroberzene ND									1
4-Methyl-2-pentanone (MIBK) ND 5.0 ug/L 05/09/16 22:32 1 Acetonie ND 15 ug/L 05/09/16 22:32 1 Acetonitrile ND 15 ug/L 05/09/16 22:32 1 Benzene ND 1.0 ug/L 05/09/16 22:32 1 Bromochbromethane ND 1.0 ug/L 05/09/16 22:32 1 Carbon tetrachloride ND 1.0 ug/L 05/09/16 22:32 1 Chloroberazene ND 1.0 ug/L 05/09/16 22:32 1 Chlorobertane ND 1.0 ug/L 05/09/16 22:32 1 Chlorobertane ND 1.0 ug/L 05/09/16 22:32 1 Chlorobertane									1
AcetoneND10ug/L05/09/16 22.321AcetonitrifieND15ug/L05/09/16 22.321BenzeneND1.0ug/L05/09/16 22.321BromochformethaneND1.0ug/L05/09/16 22.321BromochformethaneND1.0ug/L05/09/16 22.321BromochformethaneND1.0ug/L05/09/16 22.321BromochformethaneND1.0ug/L05/09/16 22.321BromochformethaneND1.0ug/L05/09/16 22.321Carbon disulfideND1.0ug/L05/09/16 22.321Carbon disulfideND1.0ug/L05/09/16 22.321ChloroberaneND1.0ug/L05/09/16 22.321ChloroberaneND1.0ug/L05/09/16 22.321ChloroberaneND1.0ug/L05/09/16 22.321ChloroberaneND1.0ug/L05/09/16 22.321ChloroberaneND1.0ug/L05/09/16 22.321ChloroberaneND1.0ug/L05/09/16 22.321ChloroberaneND1.0ug/L05/09/16 22.321DibromochhaneND1.0ug/L05/09/16 22.321DibromochhaneND1.0ug/L05/09/16 22.321DibromochhaneND1.0ug/L05/09/16 22.321DibromochhaneND<									1
Accontrile ND 15 ug/L 05/09/16 22.32 1 Benzene ND 1.0 ug/L 05/09/16 22.32 1 Bromochloromethane ND 1.0 ug/L 05/09/16 22.32 1 Bromochloromethane ND 1.0 ug/L 05/09/16 22.32 1 Bromochloromethane ND 1.0 ug/L 05/09/16 22.32 1 Carbon disulfide ND 1.0 ug/L 05/09/16 22.32 1 Carbon disulfide ND 1.0 ug/L 05/09/16 22.32 1 Chlorobenzene ND 1.0 ug/L 05/09/16 22.32 1 Chlorobenzene ND 1.0 ug/L 05/09/16 22.32 1 Chloroberthane ND	4-Methyl-2-pentanone (MIBK)							05/09/16 22:32	1
Benzene ND 1.0 ug/L 05/09/16 22.32 1 Bromochloromethane ND 1.0 ug/L 05/09/16 22.32 1 Bromochloromethane ND 1.0 ug/L 05/09/16 22.32 1 Bromoform ND 1.0 ug/L 05/09/16 22.32 1 Bromorethane ND 1.0 ug/L 05/09/16 22.32 1 Carbon disulfide ND 1.0 ug/L 05/09/16 22.32 1 Carbon disulfide ND 1.0 ug/L 05/09/16 22.32 1 Chlorobenzene ND <td< td=""><td>Acetone</td><td></td><td></td><td></td><td></td><td></td><td></td><td>05/09/16 22:32</td><td>1</td></td<>	Acetone							05/09/16 22:32	1
BromochloromethaneND1.0ug/L05/09/16 22:321BromodichloromethaneND1.0ug/L05/09/16 22:321BromodichloromethaneND1.0ug/L05/09/16 22:321Carbon disulfideND1.0ug/L05/09/16 22:321Carbon disulfideND1.0ug/L05/09/16 22:321Carbon tetrachlorideND1.0ug/L05/09/16 22:321ChlorobenzeneND1.0ug/L05/09/16 22:321ChlorobenzeneND1.0ug/L05/09/16 22:321ChlorobenzeneND1.0ug/L05/09/16 22:321ChlorobenzeneND1.0ug/L05/09/16 22:321ChlorobenaneND1.0ug/L05/09/16 22:321ChlorobetneND1.0ug/L05/09/16 22:321CyclohexaneND1.0ug/L05/09/16 22:321CyclohexaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321IchlorobetneeND1.0ug/L05/09/16 22:	Acetonitrile			15	ug/L			05/09/16 22:32	1
BromodichloromethaneND1.0ug/L05/09/16 22:321BromodiromND1.0ug/L05/09/16 22:321BromothaneND1.0ug/L05/09/16 22:321Carbon disulfideND1.0ug/L05/09/16 22:321Carbon disulfideND1.0ug/L05/09/16 22:321ChlorobenzeneND1.0ug/L05/09/16 22:321ChlorobethaneND1.0ug/L05/09/16 22:321ChlorobethaneND1.0ug/L05/09/16 22:321cis-1,2-DichloroptheneND1.0ug/L05/09/16 22:321cis-1,3-DichloroptheneND1.0ug/L05/09/16 22:321CycloneathaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321CycloneathaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L	Benzene	ND		1.0				05/09/16 22:32	1
Bromoform ND 1.0 ug/L 05/09/16 22:32 1 Bromomethane ND 1.0 ug/L 05/09/16 22:32 1 Carbon disulfide ND 1.0 ug/L 05/09/16 22:32 1 Carbon tetrachloride ND 1.0 ug/L 05/09/16 22:32 1 Chloroethane ND 1.0 ug/L 05/09/16 22:32 1 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:32 1 Dibromochloromethane ND	Bromochloromethane							05/09/16 22:32	1
Bromomethane ND 1.0 ug/L 05/09/16 22:32 1 Carbon disulfide ND 1.0 ug/L 05/09/16 22:32 1 Carbon tetrachloride ND 1.0 ug/L 05/09/16 22:32 1 Chlorobenzene ND 1.0 ug/L 05/09/16 22:32 1 Chloroethane ND 1.0 ug/L 05/09/16 22:32 1 Cis/13-Dichloroptopene ND 1.0 ug/L 05/09/16 22:32 1 Disbromochtoroethane ND 1.0 ug/L 05/09/16 22:32 1 Disbromochtoroethane ND 1.0 ug/L 05/09/16 22:32 1 Disbromochtoroethane	Bromodichloromethane	ND		1.0	ug/L			05/09/16 22:32	1
Carbon disulfide ND 1.0 ug/L 05/09/16 22:32 1 Carbon tetrachloride ND 1.0 ug/L 05/09/16 22:32 1 Chlorobenzene ND 1.0 ug/L 05/09/16 22:32 1 Chloromethane ND 1.0 ug/L 05/09/16 22:32 1 cis-1,3-Dichloroptopene ND 1.0 ug/L 05/09/16 22:32 1 Cyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:32 1 Dichlorodifluoromethane ND 1.0 ug/L 05/09/16 22:32 1 Ichdomethane	Bromoform	ND		1.0	ug/L			05/09/16 22:32	1
Carbon tetrachloride ND 1.0 ug/L 05/09/16 22:32 1 Chlorobenzene ND 1.0 ug/L 05/09/16 22:32 1 Chloroethane ND 1.0 ug/L 05/09/16 22:32 1 cis-1.2-Dichloroethene ND 1.0 ug/L 05/09/16 22:32 1 cis-1.3-Dichloroptopene ND 1.0 ug/L 05/09/16 22:32 1 Cyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:32 1 Dichorodifluoromethane ND 1.0 ug/L 05/09/16 22:32 1 Ichdomethane ND 1.0 ug/L 05/09/16 22:32 1 Ichdomethane	Bromomethane	ND		1.0	ug/L			05/09/16 22:32	1
Chlorobenzene ND 1.0 ug/L 05/09/16 22:32 1 Chloroethane ND 1.0 ug/L 05/09/16 22:32 1 Chloroofrm ND 1.0 ug/L 05/09/16 22:32 1 Chloromethane ND 1.0 ug/L 05/09/16 22:32 1 cis-1,3-Dichloroethene ND 1.0 ug/L 05/09/16 22:32 1 cis-1,3-Dichloroethene ND 1.0 ug/L 05/09/16 22:32 1 cis-1,3-Dichloroethene ND 1.0 ug/L 05/09/16 22:32 1 Cyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:32 1 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:32 1 Iodomethane ND 1.0 ug/L 05/09/16 22:32 1 Iodomethane ND 1.0 ug/L 05/09/16 22:32 1 Iodomethane	Carbon disulfide	ND		1.0	ug/L			05/09/16 22:32	1
Chloroethane ND 1.0 ug/L 05/09/16 22:32 1 Chloroform ND 1.0 ug/L 05/09/16 22:32 1 Chloroethane ND 1.0 ug/L 05/09/16 22:32 1 cis-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:32 1 cis-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:32 1 Cyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Dibromchloromethane ND 1.0 ug/L 05/09/16 22:32 1 Dibromchloromethane ND 1.0 ug/L 05/09/16 22:32 1 Dibromothane ND 1.0 ug/L 05/09/16 22:32 1 Dibromothane ND 1.0 ug/L 05/09/16 22:32 1 Iodomethane ND 1.0 ug/L 05/09/16 22:32 1 Iodomethane ND 1.0 ug/L 05/09/16 22:32 1 Iodomethane ND	Carbon tetrachloride	ND		1.0	ug/L			05/09/16 22:32	1
Chloroform ND 1.0 ug/L 05/09/16 22:32 1 Chloromethane ND 1.0 ug/L 05/09/16 22:32 1 cis-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:32 1 cis-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:32 1 Cyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:32 1 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:32 1 Dibromomethane ND 1.0 ug/L 05/09/16 22:32 1 Dichorodifluoromethane ND 1.0 ug/L 05/09/16 22:32 1 Dichoromethane ND 1.0 ug/L 05/09/16 22:32 1 Iodomethane ND 1.0 ug/L 05/09/16 22:32 1 Iodomethane ND 1.0 ug/L 05/09/16 22:32 1 Iodomethane	Chlorobenzene	ND		1.0	ug/L			05/09/16 22:32	1
Chloromethane ND 1.0 ug/L 05/09/16 22:32 1 cis-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:32 1 cis-1,3-Dichloropopene ND 1.0 ug/L 05/09/16 22:32 1 Cyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:32 1 Dibromothane ND 1.0 ug/L 05/09/16 22:32 1 I odomethane ND 1.0 ug/L 05/09/16 22:32 1 I sopropylbenzene ND 1.0 ug/L 05/09/16 22:32 1 Methyl acetate ND 2.5 ug/L 05/09/16 22:32 1 Methylene Chloride	Chloroethane	ND		1.0	ug/L			05/09/16 22:32	1
cis-1,2-DichloroetheneND1.0ug/L05/09/16 22:321cis-1,3-DichloropropeneND1.0ug/L05/09/16 22:321CyclohexaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromothaneND1.0ug/L05/09/16 22:321DibromothaneND1.0ug/L05/09/16 22:321DichlorodifluoromethaneND1.0ug/L05/09/16 22:321EthylbenzeneND1.0ug/L05/09/16 22:321IodomethaneND1.0ug/L05/09/16 22:321IsopropylbenzeneND1.0ug/L05/09/16 22:321Methyl acetateND2.0ug/L05/09/16 22:321MethylcyclohexaneND1.0ug/L05/09/16 22:321Methylene ChlorideND1.0ug/L05/09/16 22:321o-XyleneND1.0ug/L05/09/16 22:321StyreneND1.0ug/L05/09/16 22:321	Chloroform	ND		1.0	ug/L			05/09/16 22:32	1
cis-1,3-DichloropropeneND1.0ug/L05/09/16 22:321CyclohexaneND1.0ug/L05/09/16 22:321DibromochloromethaneND1.0ug/L05/09/16 22:321DibromomethaneND1.0ug/L05/09/16 22:321DichlorodifluoromethaneND1.0ug/L05/09/16 22:321DichlorodifluoromethaneND1.0ug/L05/09/16 22:321DichlorodifluoromethaneND1.0ug/L05/09/16 22:321IodomethaneND1.0ug/L05/09/16 22:321IodomethaneND1.0ug/L05/09/16 22:321IodomethaneND1.0ug/L05/09/16 22:321IodomethaneND1.0ug/L05/09/16 22:321IodomethaneND1.0ug/L05/09/16 22:321IodomethaneND1.0ug/L05/09/16 22:321IodomethaneND2.0ug/L05/09/16 22:321Methyl acetateND2.5ug/L05/09/16 22:321Methylene ChlorideND1.0ug/L05/09/16 22:321o-XyleneND1.0ug/L05/09/16 22:321StyreneND1.0ug/L05/09/16 22:321	Chloromethane	ND		1.0	ug/L			05/09/16 22:32	1
Cyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:32 1 Dibromoethane ND 1.0 ug/L 05/09/16 22:32 1 Dichlorodifluoromethane ND 1.0 ug/L 05/09/16 22:32 1 Dichlorodifluoromethane ND 1.0 ug/L 05/09/16 22:32 1 Ethylbenzene ND 1.0 ug/L 05/09/16 22:32 1 Iodomethane ND 1.0 ug/L 05/09/16 22:32 1 Isopropylbenzene ND 1.0 ug/L 05/09/16 22:32 1 Methyl acetate ND 2.0 ug/L 05/09/16 22:32 1 Methyl acetate ND 2.5 ug/L 05/09/16 22:32 1 Methylene Chloride ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND	cis-1,2-Dichloroethene	ND		1.0	ug/L			05/09/16 22:32	1
DibromochloromethaneND1.0ug/L05/09/16 22:321DibromomethaneND1.0ug/L05/09/16 22:321DichlorodifluoromethaneND1.0ug/L05/09/16 22:321EthylbenzeneND1.0ug/L05/09/16 22:321IodomethaneND1.0ug/L05/09/16 22:321IodomethaneND1.0ug/L05/09/16 22:321IodomethaneND1.0ug/L05/09/16 22:321IsopropylbenzeneND1.0ug/L05/09/16 22:321m,p-XyleneND2.0ug/L05/09/16 22:321Methyl acetateND2.5ug/L05/09/16 22:321Methylene ChlorideND1.0ug/L05/09/16 22:321O-XyleneND1.0ug/L05/09/16 22:321StyreneND1.0ug/L05/09/16 22:321	cis-1,3-Dichloropropene	ND		1.0	ug/L			05/09/16 22:32	1
Dibromomethane ND 1.0 ug/L 05/09/16 22:32 1 Dichlorodifluoromethane ND 1.0 ug/L 05/09/16 22:32 1 Ethylbenzene ND 1.0 ug/L 05/09/16 22:32 1 lodomethane ND 2.0 ug/L 05/09/16 22:32 1 m,p-Xylene ND 2.5 ug/L 05/09/16 22:32 1 Methylcyclohexane ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 Styrene ND 1.0 <t< td=""><td>Cyclohexane</td><td>ND</td><td></td><td>1.0</td><td>ug/L</td><td></td><td></td><td>05/09/16 22:32</td><td>1</td></t<>	Cyclohexane	ND		1.0	ug/L			05/09/16 22:32	1
Dichlorodifluoromethane ND 1.0 ug/L 05/09/16 22:32 1 Ethylbenzene ND 1.0 ug/L 05/09/16 22:32 1 lodomethane ND 1.0 ug/L 05/09/16 22:32 1 lodomethane ND 1.0 ug/L 05/09/16 22:32 1 lsopropylbenzene ND 1.0 ug/L 05/09/16 22:32 1 m,p-Xylene ND 2.0 ug/L 05/09/16 22:32 1 Methyl acetate ND 2.0 ug/L 05/09/16 22:32 1 Methyloyclohexane ND 2.5 ug/L 05/09/16 22:32 1 Methylene Chloride ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 Styrene ND 1.0 ug/L 05/09/16 22:32 1	Dibromochloromethane	ND		1.0	ug/L			05/09/16 22:32	1
EthylbenzeneND1.0ug/L05/09/16 22:321lodomethaneND1.0ug/L05/09/16 22:321lsopropylbenzeneND1.0ug/L05/09/16 22:321m,p-XyleneND2.0ug/L05/09/16 22:321Methyl acetateND2.5ug/L05/09/16 22:321MethylcyclohexaneND1.0ug/L05/09/16 22:321Methylene ChlorideND1.0ug/L05/09/16 22:321o-XyleneND1.0ug/L05/09/16 22:321StyreneND1.0ug/L05/09/16 22:321	Dibromomethane	ND		1.0	ug/L			05/09/16 22:32	1
Iodomethane ND 1.0 ug/L 05/09/16 22:32 1 Isopropylbenzene ND 1.0 ug/L 05/09/16 22:32 1 m,p-Xylene ND 2.0 ug/L 05/09/16 22:32 1 Methyl acetate ND 2.5 ug/L 05/09/16 22:32 1 Methyloyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Methylene Chloride ND 1.0 ug/L 05/09/16 22:32 1 O-Xylene ND 1.0 ug/L 05/09/16 22:32 1 Styrene ND 1.0 ug/L 05/09/16 22:32 1	Dichlorodifluoromethane	ND		1.0	ug/L			05/09/16 22:32	1
Isopropylbenzene ND 1.0 ug/L 05/09/16 22:32 1 m,p-Xylene ND 2.0 ug/L 05/09/16 22:32 1 Methyl acetate ND 2.5 ug/L 05/09/16 22:32 1 Methylocylohexane ND 1.0 ug/L 05/09/16 22:32 1 Methylene Chloride ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 Styrene ND 1.0 ug/L 05/09/16 22:32 1	Ethylbenzene	ND		1.0	ug/L			05/09/16 22:32	1
m,p-Xylene ND 2.0 ug/L 05/09/16 22:32 1 Methyl acetate ND 2.5 ug/L 05/09/16 22:32 1 Methylcyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Methylene Chloride ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 Styrene ND 1.0 ug/L 05/09/16 22:32 1	lodomethane	ND		1.0	ug/L			05/09/16 22:32	1
Methyl acetate ND 2.5 ug/L 05/09/16 22:32 1 Methylcyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Methylene Chloride ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 Styrene ND 1.0 ug/L 05/09/16 22:32 1	Isopropylbenzene	ND		1.0	ug/L			05/09/16 22:32	1
Methylcyclohexane ND 1.0 ug/L 05/09/16 22:32 1 Methylene Chloride ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 Styrene ND 1.0 ug/L 05/09/16 22:32 1	m,p-Xylene	ND		2.0	ug/L			05/09/16 22:32	1
Methylene Chloride ND 1.0 ug/L 05/09/16 22:32 1 o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 Styrene ND 1.0 ug/L 05/09/16 22:32 1	Methyl acetate	ND		2.5	ug/L			05/09/16 22:32	1
o-Xylene ND 1.0 ug/L 05/09/16 22:32 1 Styrene ND 1.0 ug/L 05/09/16 22:32 1	Methylcyclohexane	ND		1.0	ug/L			05/09/16 22:32	1
Styrene ND 1.0 ug/L 05/09/16 22:32 1	Methylene Chloride	ND		1.0	ug/L			05/09/16 22:32	1
	o-Xylene	ND		1.0	ug/L			05/09/16 22:32	1
Tetrachloroethene ND 1.0 ug/L 05/09/16 22:32 1	Styrene	ND		1.0	ug/L			05/09/16 22:32	1
	Tetrachloroethene	ND		1.0	ug/L			05/09/16 22:32	1

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5

Lab Sample ID: MB 480-300766/7

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Matrix: Water Analysis Batch: 300766

Carbon disulfide

Carbon tetrachloride

	IVIB	IVIB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		1.0		ug/L			05/09/16 22:32	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/09/16 22:32	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/09/16 22:32	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			05/09/16 22:32	1
Trichloroethene	ND		1.0		ug/L			05/09/16 22:32	1
Trichlorofluoromethane	ND		1.0		ug/L			05/09/16 22:32	1
Vinyl acetate	ND		5.0		ug/L			05/09/16 22:32	1
Vinyl chloride	ND		1.0		ug/L			05/09/16 22:32	1
Xylenes, Total	ND		2.0		ug/L			05/09/16 22:32	1
	MB								
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		66 - 137					05/09/16 22:32	1
4-Bromofluorobenzene (Surr)	102		73 - 120					05/09/16 22:32	1
Toluene-d8 (Surr)	100		71 - 126					05/09/16 22:32	1
Lab Sample ID: MB 480-300770/8							Client Sa	ample ID: Metho	d Blank
Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 300770									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			05/09/16 22:36	1
I,1,1-Trichloroethane	ND		1.0		ug/L			05/09/16 22:36	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			05/09/16 22:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			05/09/16 22:36	1
1,1,2-Trichloroethane	ND		1.0		ug/L			05/09/16 22:36	1
1,1-Dichloroethane	ND		1.0		ug/L			05/09/16 22:36	1
1,1-Dichloroethene	ND		1.0		ug/L			05/09/16 22:36	1
1,2,3-Trichloropropane	ND		1.0		ug/L			05/09/16 22:36	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			05/09/16 22:36	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			05/09/16 22:36	1
1,2-Dibromoethane	ND		1.0		ug/L			05/09/16 22:36	1
1,2-Dichlorobenzene	ND		1.0		ug/L			05/09/16 22:36	1
1,2-Dichloroethane	ND		1.0		ug/L			05/09/16 22:36	1
1,2-Dichloropropane	ND		1.0		ug/L			05/09/16 22:36	1
1,3-Dichlorobenzene	ND		1.0		ug/L			05/09/16 22:36	1
1,4-Dichlorobenzene	ND		1.0		ug/L			05/09/16 22:36	1
2-Butanone (MEK)			10		ug/L			05/09/16 22:36	1
	ND		10		0				
2-Hexanone	ND ND		5.0		ug/L			05/09/16 22:36	1
								05/09/16 22:36 05/09/16 22:36	1 1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L				1 1 1
4-Methyl-2-pentanone (MIBK) Acetone	ND ND		5.0 5.0		ug/L ug/L			05/09/16 22:36	1
1-Methyl-2-pentanone (MIBK) Acetone Acetonitrile	ND ND ND		5.0 5.0 10		ug/L ug/L ug/L			05/09/16 22:36 05/09/16 22:36	1
4-Methyl-2-pentanone (MIBK) Acetone Acetonitrile Benzene	ND ND ND ND		5.0 5.0 10 15		ug/L ug/L ug/L ug/L			05/09/16 22:36 05/09/16 22:36 05/09/16 22:36	1 1 1
4-Methyl-2-pentanone (MIBK) Acetone Acetonitrile Benzene Bromochloromethane	ND ND ND ND		5.0 5.0 10 15 1.0		ug/L ug/L ug/L ug/L ug/L			05/09/16 22:36 05/09/16 22:36 05/09/16 22:36 05/09/16 22:36	
2-Hexanone 4-Methyl-2-pentanone (MIBK) Acetone Acetonitrile Benzene Bromochloromethane Bromodichloromethane Bromoform	ND ND ND ND ND		5.0 5.0 10 15 1.0 1.0		ug/L ug/L ug/L ug/L ug/L			05/09/16 22:36 05/09/16 22:36 05/09/16 22:36 05/09/16 22:36 05/09/16 22:36	1 1 1 1

TestAmerica Buffalo

1

1

05/09/16 22:36

05/09/16 22:36

1.0

1.0

ug/L

ug/L

ND

ND

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5 6

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)	

Lab Sample ID: MB 480-300770/8

Matrix: Water Analysis Batch: 300770

Chloroberizene ND 1.0 ug/L 05/09/16 22:36 Chloroethane ND 1.0 ug/L 05/09/16 22:36 Cis-12-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 Cyclohexane ND 1.0 ug/L 05/09/16 22:36 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:36 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:36 Dibromoethane ND 1.0 ug/L 05/09/16 22:36 Dibromoethane ND 1.0 ug/L 05/09/16 22:36 Ichloroethane ND 1.0 ug/L 05/09/16 22:36 Ichloroethene ND 1.0 ug/L 05/09/16 22:36 Ichloroethene ND 1.0 ug/L 05/09/16 22:36 <th>Analysis Batch. 500770</th> <th>МВ</th> <th>МВ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Analysis Batch. 500770	МВ	МВ							
Chloroethane ND 1.0 ug/L 0509/16 22.36 Chloroform ND 1.0 ug/L 0509/16 22.36 Chloroform ND 1.0 ug/L 0509/16 22.36 cis-1.3-Dichloropropene ND 1.0 ug/L 0509/16 22.36 Cyclohexane ND 1.0 ug/L 0509/16 22.36 Dibromochloromethane ND 1.0 ug/L 0509/16 22.36 Ethylbenzane ND 1.0 ug/L 0509/16 22.36 Ethylbenzane ND 1.0 ug/L 0509/16 22.36 Ibdrowethane ND 1.0 ug/L 0509/16 22.36 Methylacetate ND 2.0 ug/L 0509/16 22.36 Methylacetate ND 1.0 ug/L 0509/16 22.36	Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Chloroform ND 1.0 ug/L 05/09/16 22:36 Chloromethane ND 1.0 ug/L 05/09/16 22:36 Cihoromethane ND 1.0 ug/L 05/09/16 22:36 cis-1.2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 cis-1.3-Dichloroptene ND 1.0 ug/L 05/09/16 22:36 Dichoroothane ND 1.0 ug/L 05/09/16 22:36 Idomethane ND 1.0 ug/L 05/09/16 22:36	Chlorobenzene	ND		1.0	U	ıg/L			05/09/16 22:36	1
Chloromethane ND 1.0 ug/L 05/09/16 22:36 cis-1.2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 cis-1.3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 cis-1.3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:36 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:36 Ethylbenzene ND 1.0 ug/L 05/09/16 22:36 Ethylbenzene ND 1.0 ug/L 05/09/16 22:36 Isopropylbenzene ND 1.0 ug/L 05/09/16 22:36 Isopropylbenzene ND 2.0 ug/L 05/09/16 22:36 Methyl acetate ND 2.0 ug/L 05/09/16 22:36 Methylacetate ND 1.0 ug/L 05/09/16 22:36 oxYalene ND 1.0 ug/L 05/09/16 22:36 oxYalene ND 1.0 ug/L 05/09/	Chloroethane	ND		1.0	u	ıg/L			05/09/16 22:36	1
cis-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 Cis-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 Cyclohexane ND 1.0 ug/L 05/09/16 22:36 Dibromochizomethane ND 1.0 ug/L 05/09/16 22:36 Dibromochizomethane ND 1.0 ug/L 05/09/16 22:36 Dichorophizomethane ND 1.0 ug/L 05/09/16 22:36 Iodomethane ND 1.0 ug/L 05/09/16 22:36 Iodomethane ND 1.0 ug/L 05/09/16 22:36 Iodomethane ND 1.0 ug/L 05/09/16 22:36 Isoprophybenzene ND 2.0 ug/L 05/09/16 22:36 Methyl acetate ND 2.5 ug/L 05/09/16 22:36 Methyl acetate ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36	Chloroform	ND		1.0	U	ig/L			05/09/16 22:36	1
cis-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 Cyclohexane ND 1.0 ug/L 05/09/16 22:36 Dibromonethane ND 1.0 ug/L 05/09/16 22:36 Dibromonethane ND 1.0 ug/L 05/09/16 22:36 Dichlorodifluoromethane ND 1.0 ug/L 05/09/16 22:36 Dichlorodifluoromethane ND 1.0 ug/L 05/09/16 22:36 Ethylbenzene ND 1.0 ug/L 05/09/16 22:36 Isopropylbenzene ND 1.0 ug/L 05/09/16 22:36 Methyl acetate ND 2.0 ug/L 05/09/16 22:36 Methyl acetate ND 1.0 ug/L 05/09/16 22:36 Methyl acetate ND 1.0 ug/L 05/09/16 22:36 Methyl acetate ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Tetrachlorobethene ND 1.0 ug/L 05/09/16	Chloromethane	ND		1.0	u	ıg/L			05/09/16 22:36	1
Cyclohexane ND 1.0 ug/L 05/09/16 22:36 Dibromochloromethane ND 1.0 ug/L 05/09/16 22:36 Dibromothane ND 1.0 ug/L 05/09/16 22:36 Dibromothane ND 1.0 ug/L 05/09/16 22:36 Ethylbenzene ND 1.0 ug/L 05/09/16 22:36 Iodomethane ND 1.0 ug/L 05/09/16 22:36 Iodomethane ND 1.0 ug/L 05/09/16 22:36 Iodomethane ND 1.0 ug/L 05/09/16 22:36 Methylacetale ND 2.5 ug/L 05/09/16 22:36 Methylacetale ND 1.0 ug/L 05/09/16 22:36 Methylacetale ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Tartachloroethene ND 1.0 ug/L 05/09/16 22:36 Taras-1.2-Dichlorochene ND 1.0 ug/L 05/09/16 22:36	cis-1,2-Dichloroethene	ND		1.0	U	ıg/L			05/09/16 22:36	1
Dibromechane ND 1.0 ug/L 95/09/16 22:36 Dibromoethane ND 1.0 ug/L 95/09/16 22:36 Dichoronethane ND 1.0 ug/L 95/09/16 22:36 Dichoronethane ND 1.0 ug/L 95/09/16 22:36 Iodomethane ND 1.0 ug/L 95/09/16 22:36 Iodomethane ND 1.0 ug/L 95/09/16 22:36 Isopropybenzene ND 1.0 ug/L 95/09/16 22:36 Methylacetaie ND 2.0 ug/L 95/09/16 22:36 Methylacetaie ND 2.0 ug/L 95/09/16 22:36 Methylacetaie ND 1.0 ug/L 95/09/16 22:36 OxYlene ND 1.0 ug/L 95/09/16 22:36 Syrene ND 1.0 ug/L 95/09/16 22:36 Tatachloroethene ND 1.0 ug/L 95/09/16 22:36 Tatachloroethene ND 1.0 ug/L 95/09/16 22:36 T	cis-1,3-Dichloropropene	ND		1.0	U	ig/L			05/09/16 22:36	1
Dibromomethane ND 1.0 ug/L 05/09/16 22:36 Dichlorodifluoromethane ND 1.0 ug/L 05/09/16 22:36 Ethylbenzene ND 1.0 ug/L 05/09/16 22:36 Iodomethane ND 1.0 ug/L 05/09/16 22:36 Isopropylbenzene ND 1.0 ug/L 05/09/16 22:36 Methyla cetate ND 2.0 ug/L 05/09/16 22:36 Methyla cetate ND 2.0 ug/L 05/09/16 22:36 Methyla cetate ND 2.0 ug/L 05/09/16 22:36 Methyla cetate ND 1.0 ug/L 05/09/16 22:36 Methyla cetate ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Toluene ND 1.0 ug/L 05/09/16 22:36 Trans-1,2-Dichoroethene ND 1.0 ug/L 05/09/16 22:36 <t< td=""><td>Cyclohexane</td><td>ND</td><td></td><td>1.0</td><td>U</td><td>ıg/L</td><td></td><td></td><td>05/09/16 22:36</td><td>1</td></t<>	Cyclohexane	ND		1.0	U	ıg/L			05/09/16 22:36	1
Dichlorodifluoromethane ND 1.0 ug/L 05/09/16 22.36 Ethylbenzene ND 1.0 ug/L 05/09/16 22.36 Iodomethane ND 1.0 ug/L 05/09/16 22.36 Isopropylbenzene ND 1.0 ug/L 05/09/16 22.36 Methyl acetate ND 2.0 ug/L 05/09/16 22.36 Methyl acetate ND 2.5 ug/L 05/09/16 22.36 Methyl acetate ND 1.0 ug/L 05/09/16 22.36 Methyl acetate ND 1.0 ug/L 05/09/16 22.36 Methylcyclohexane ND 1.0 ug/L 05/09/16 22.36 Styrene ND 1.0 ug/L 05/09/16 22.36 Styrene ND 1.0 ug/L 05/09/16 22.36 Tans-1.2-Dichloroethene ND 1.0 ug/L 05/09/16 22.36 Trans-1.3-Dichloroptopene ND 1.0 ug/L 05/09/16 22.36 Trans-1.4-Dichloro-2-butene ND 1.0 ug/L 05	Dibromochloromethane	ND		1.0	U	ıg/L			05/09/16 22:36	1
Ethylberzene ND 1.0 ug/L 05/09/16 22.36 lodomethane ND 1.0 ug/L 05/09/16 22.36 lsopropylbenzene ND 1.0 ug/L 05/09/16 22.36 m,p-Xylene ND 2.0 ug/L 05/09/16 22.36 Methyl acetate ND 2.5 ug/L 05/09/16 22.36 Methyl acetate ND 1.0 ug/L 05/09/16 22.36 Methyl acetate ND 1.0 ug/L 05/09/16 22.36 Methyl acetate ND 1.0 ug/L 05/09/16 22.36 Styrene ND 1.0 ug/L 05/09/16 22.36 Styrene ND 1.0 ug/L 05/09/16 22.36 Tetrachforcethene ND 1.0 ug/L 05/09/16 22.36 trans-1,2-Dichforcethene ND 1.0 ug/L 05/09/16 22.36 trans-1,4-Dichfor-2-butene ND 1.0 ug/L 05/09/16 22.36 trans-1,4-Dichfor-2-butene ND 1.0 ug/L 05/09/16 22.36	Dibromomethane	ND		1.0	U	ig/L			05/09/16 22:36	1
Iddomethane ND 1.0 ug/L 05/09/16 22:36 Isopropylbenzene ND 1.0 ug/L 05/09/16 22:36 m,p-Xylene ND 2.0 ug/L 05/09/16 22:36 Methyl acetate ND 2.5 ug/L 05/09/16 22:36 Methyla coltate ND 1.0 ug/L 05/09/16 22:36 Methylen Chloride ND 1.0 ug/L 05/09/16 22:36 o-Xylene ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Tetrachloroethene ND 1.0 ug/L 05/09/16 22:36 Toluene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloropene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichlorop-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36<	Dichlorodifluoromethane	ND		1.0	U	ıg/L			05/09/16 22:36	1
Isopropylbenzene ND 1.0 ug/L 05/09/16 22:36 m,p-Xylene ND 2.0 ug/L 05/09/16 22:36 Methyl acetate ND 2.5 ug/L 05/09/16 22:36 Methyl acetate ND 1.0 ug/L 05/09/16 22:36 Methylen Chloride ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Tetrachloroethene ND 1.0 ug/L 05/09/16 22:36 Trans-1,2-Dichloropthene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichlorofthene ND 1.0 ug/L 05/09/16 22:36 Trichlorofthene ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 1.0 ug/L 05/	Ethylbenzene	ND		1.0	u	ıg/L			05/09/16 22:36	1
np-Xylene ND 2.0 ug/L 05/09/16 22:36 Methyl acetate ND 2.5 ug/L 05/09/16 22:36 Methyl acetate ND 1.0 ug/L 05/09/16 22:36 Methylene Chloride ND 1.0 ug/L 05/09/16 22:36 O-Xylene ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Tetrachloroethene ND 1.0 ug/L 05/09/16 22:36 Toluene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 trachloroethene ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 1.0 ug/L 05/09/1	lodomethane	ND		1.0	U	ig/L			05/09/16 22:36	1
Methyl acetate ND 2.5 ug/L 05/09/16 22:36 Methylcyclohexane ND 1.0 ug/L 05/09/16 22:36 Methylcyclohexane ND 1.0 ug/L 05/09/16 22:36 Methylene Chloride ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Tetrachloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 trachoroethene ND 1.0 ug/L 05/09/16 22:36 Trichlorofluoromethane ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 1.0 ug/L<	Isopropylbenzene	ND		1.0	u	ıg/L			05/09/16 22:36	1
Methylcyclohexane ND 1.0 ug/L 05/09/16 22:36 Methylene Chloride ND 1.0 ug/L 05/09/16 22:36 o-Xylene ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Tetrachloroethene ND 1.0 ug/L 05/09/16 22:36 Toluene ND 1.0 ug/L 05/09/16 22:36 Trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloropopene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichlorofluoromethane ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 2.0 ug/L 05/09/16 22:36 Vinyl acetate ND 2.0 ug/L	m,p-Xylene	ND		2.0	u	ıg/L			05/09/16 22:36	1
Methylene Chloride ND 1.0 ug/L 05/09/16 22:36 o-Xylene ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Tetrachloroethene ND 1.0 ug/L 05/09/16 22:36 Toluene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Trichlorofluoromethane ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl chloride ND 2.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L	Methyl acetate	ND		2.5	U	ig/L			05/09/16 22:36	1
o-Xylene ND 1.0 ug/L 05/09/16 22:36 Styrene ND 1.0 ug/L 05/09/16 22:36 Tetrachloroethene ND 1.0 ug/L 05/09/16 22:36 Toluene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,3-Dichloroptopene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl acetate ND 1.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 MB MB 10 05/09/16 22:36 05/09/	Methylcyclohexane	ND		1.0	U	ıg/L			05/09/16 22:36	1
Styrene ND 1.0 ug/L 05/09/16 22:36 Tetrachloroethene ND 1.0 ug/L 05/09/16 22:36 Toluene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Trichlorofluoromethane ND 1.0 ug/L 05/09/16 22:36 Vinyl actate ND 1.0 ug/L 05/09/16 22:36 Vinyl actate ND 5.0 ug/L 05/09/16 22:36 Vinyl actate ND 2.0 ug/L 05/09/16 22:36 Vinyl chloride ND 2.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 Surrogate %Recovery Qualifier Limits	Methylene Chloride	ND		1.0	u	ıg/L			05/09/16 22:36	1
Tetrachloroethene ND 1.0 ug/L 05/09/16 22:36 Toluene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Trichlorofluoromethane ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl choride ND 2.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 MB Surrogate %Recovery Qualifier Limits 7.2-Dichloroethane-d4 (Surr) 106 66 - 137 05/09/16 22:36 Dill F 4-Bromofluorobenzene (Surr	o-Xylene	ND		1.0	U	ig/L			05/09/16 22:36	1
Toluene ND 1.0 ug/L 05/09/16 22:36 trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl chloride ND 1.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 MB MB 106 66 - 137 05/09/16 22:36 4-Bromofluorobenzene (Surr) 99 73 - 120 <td>Styrene</td> <td>ND</td> <td></td> <td>1.0</td> <td>u</td> <td>ıg/L</td> <td></td> <td></td> <td>05/09/16 22:36</td> <td>1</td>	Styrene	ND		1.0	u	ıg/L			05/09/16 22:36	1
trans-1,2-Dichloroethene ND 1.0 ug/L 05/09/16 22:36 trans-1,3-Dichloroppene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Trichlorofluoromethane ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl chloride ND 5.0 ug/L 05/09/16 22:36 Vinyl chloride ND 1.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil F 1,2-Dichloroethane-d4 (Surr) 106 66 - 137 05/09/16 22:36 05/09/16 22:36 4-Bromofluorobenzene (Surr) 99 73 - 120 05/09/16 22:36 05/09/16 22:36	Tetrachloroethene	ND		1.0	u	ıg/L			05/09/16 22:36	1
trans-1,3-Dichloropropene ND 1.0 ug/L 05/09/16 22:36 trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Trichlorofluoromethane ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl chloride ND 1.0 ug/L 05/09/16 22:36 Vinyl chloride ND 1.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 MB MB MB Imits Prepared Analyzed Dil F 1,2-Dichloroethane-d4 (Surr) 106 66 - 137 05/09/16 22:36 Dil F 4-Bromofluorobenzene (Surr) 99 73 - 120 05/09/16 22:36 Dil F	Toluene	ND		1.0	U	ıg/L			05/09/16 22:36	1
trans-1,4-Dichloro-2-butene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl chloride ND 1.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 MB MB MB Prepared Analyzed Dil F 1,2-Dichloroethane-d4 (Surr) 106 66 - 137 05/09/16 22:36 Dil F 4-Bromofluorobenzene (Surr) 99 73 - 120 05/09/16 22:36 Dil F	trans-1,2-Dichloroethene	ND		1.0	u	ıg/L			05/09/16 22:36	1
Trichloroethene ND 1.0 ug/L 05/09/16 22:36 Trichlorofluoromethane ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl chloride ND 1.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 MB MB MB 56-137 05/09/16 22:36 Dil F 1,2-Dichloroethane-d4 (Surr) 106 66-137 05/09/16 22:36 Dil F 4-Bromofluorobenzene (Surr) 99 73-120 05/09/16 22:36 Dil F	trans-1,3-Dichloropropene	ND		1.0	u	ıg/L			05/09/16 22:36	1
Trichlorofluoromethane ND 1.0 ug/L 05/09/16 22:36 Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl chloride ND 1.0 ug/L 05/09/16 22:36 Vinyl chloride ND 1.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 MB MB Exercogate MB Prepared Analyzed Dil F 1,2-Dichloroethane-d4 (Surr) 106 66 - 137 05/09/16 22:36 05/09/16 22:36 05/09/16 22:36 4-Bromofluorobenzene (Surr) 99 73 - 120 05/09/16 22:36 05/09/16 22:36	trans-1,4-Dichloro-2-butene	ND		1.0	U	ıg/L			05/09/16 22:36	1
Vinyl acetate ND 5.0 ug/L 05/09/16 22:36 Vinyl chloride ND 1.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 MB MB MB Prepared Analyzed Dil F 1,2-Dichloroethane-d4 (Surr) 106 66 - 137 05/09/16 22:36 05/09/16 22:36 4-Bromofluorobenzene (Surr) 99 73 - 120 05/09/16 22:36 05/09/16 22:36	Trichloroethene	ND		1.0	u	ıg/L			05/09/16 22:36	1
Vinyl chloride ND 1.0 ug/L 05/09/16 22:36 Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 MB MB MB Prepared Analyzed Dil F 1,2-Dichloroethane-d4 (Surr) 106 66 - 137 05/09/16 22:36 Dil F 4-Bromofluorobenzene (Surr) 99 73 - 120 05/09/16 22:36 Dil F	Trichlorofluoromethane	ND		1.0	u	ıg/L			05/09/16 22:36	1
Xylenes, Total ND 2.0 ug/L 05/09/16 22:36 MB MB MB Prepared Analyzed Dil F 1,2-Dichloroethane-d4 (Surr) 106 66 - 137 05/09/16 22:36 Dil F 4-Bromofluorobenzene (Surr) 99 73 - 120 05/09/16 22:36 Dil F	Vinyl acetate	ND		5.0	U	ıg/L			05/09/16 22:36	1
MBMBSurrogate%RecoveryQualifierLimits1,2-Dichloroethane-d4 (Surr)10666 - 13705/09/16 22:364-Bromofluorobenzene (Surr)9973 - 12005/09/16 22:36	Vinyl chloride	ND		1.0	u	ıg/L			05/09/16 22:36	1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil F 1,2-Dichloroethane-d4 (Surr) 106 66 - 137 05/09/16 22:36 0 4-Bromofiluorobenzene (Surr) 99 73 - 120 05/09/16 22:36 0	Xylenes, Total	ND		2.0	U	ıg/L			05/09/16 22:36	1
1,2-Dichloroethane-d4 (Surr) 106 66 - 137 05/09/16 22:36 4-Bromofluorobenzene (Surr) 99 73 - 120 05/09/16 22:36		МВ	MB							
4-Bromofluorobenzene (Surr) 99 73 - 120 05/09/16 22:36	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	106		66 - 137			-		05/09/16 22:36	1
Toluene-d8 (Surr) 104 71 - 126 05/09/16 22:36	4-Bromofluorobenzene (Surr)	99		73 - 120					05/09/16 22:36	1
	Toluene-d8 (Surr)	104		71 - 126					05/09/16 22:36	1

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-299015/ Matrix: Water Analysis Batch: 299451	'1-A					Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	Total/NA
	MB N	MB						
Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	0.015		mg/L		04/29/16 11:25	04/29/16 21:16	1
Barium	ND	0.0020		mg/L		04/29/16 11:25	04/29/16 21:16	1
Boron	ND	0.020		mg/L		04/29/16 11:25	04/29/16 21:16	1
Chromium	ND	0.0040		mg/L		04/29/16 11:25	04/29/16 21:16	1
Lead	ND	0.010		mg/L		04/29/16 11:25	04/29/16 21:16	1
Manganese	ND	0.0030		mg/L		04/29/16 11:25	04/29/16 21:16	1

MB MB

ND ~

ND

ND

Result Qualifier

Matrix: Water

Analyte

Sodium

Selenium

Analyte

Arsenic

Barium

Boron

Lead

Chromium

Manganese

Potassium

Sodium

Selenium

Matrix: Water

Potassium

Analysis Batch: 299451

Analysis Batch: 299451

Lab Sample ID: MB 480-299015/1-A

Lab Sample ID: LCS 480-299015/2-A

Method: 6010C - Metals (ICP) (Continued)

Client Sample ID: Method Blank

Analyzed

04/29/16 21:16

04/29/16 21:16

04/29/16 21:16

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 299015

Prep Type: Total/NA

Prep Batch: 299015

Prep Type: Total/NA

Client Sample ID: BR-1

Prep Type: Total/NA Prep Batch: 299015

Dil Fac

1

1

1

8

Lab Sample ID: LCSD 480-299015/3-A Matrix: Water

Analysis Batch: 299451							Prep I	Batch: 2	99015
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	0.400	0.432		mg/L		108	80 - 120	1	20
Barium	0.200	0.208		mg/L		104	80 - 120	0	20
Boron	0.200	0.206		mg/L		103	80 - 120	1	20
Chromium	0.400	0.403		mg/L		101	80 - 120	1	20
Lead	0.400	0.408		mg/L		102	80 - 120	0	20
Manganese	0.400	0.390		mg/L		97	80 - 120	0	20
Potassium	10.0	9.97	٨	mg/L		100	80 - 120	0	20
Sodium	10.0	10.15		mg/L		101	80 - 120	1	20
Selenium	0.400	0.401		mg/L		100	80 - 120	1	20

Lab Sample ID: 480-99235-1 MS **Matrix: Ground Water**

Analysis Batch: 299451

	Sample Sample	Spike	MS	MS				%Rec.
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	ND	0.400	0.430		mg/L		107	75 - 125
Barium	0.10	0.200	0.295		mg/L		97	75 - 125
Boron	0.13	0.200	0.321		mg/L		98	75 ₋ 125
Chromium	ND	0.400	0.392		mg/L		98	75 - 125
Lead	ND	0.400	0.402		mg/L		100	75 ₋ 125
Manganese	0.21	0.400	0.576		mg/L		92	75 ₋ 125
Potassium	9.4 ^	10.0	18.55	٨	mg/L		92	75 ₋ 125
Sodium	36.2	10.0	44.46		mg/L		82	75 ₋ 125
Selenium	ND	0.400	0.397		mg/L		99	75 - 125

TestAmerica Buffalo

RL

1.0

0.025

Spike

Added

0.400

0.200

0.200

0.400

0.400

0.400

10.0

10.0

0.400

0.50

MDL Unit

LCS LCS

0.437

0.207

0.207

0.398

0.406

0.389

10.04

0.404

9.93 ^

Result Qualifier

mg/L

mg/L

mg/L

Unit

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

D

Prepared

04/29/16 11:25

04/29/16 11:25

04/29/16 11:25

%Rec

109

103

104

100

102

97

99

100

101

D

MSD MSD

0.455

0.307

0.334

0.419

0.428

0.616

46.93

0.411

19.61 ^

MDL Unit

mg/L

Result Qualifier

Unit

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

D

Spike

Added

0.400

0.200

0.200

0.400

0.400

0.400

10.0

10.0

0.400

Matrix: Ground Water

Analyte

Arsenic

Barium

Boron

Lead

Chromium

Manganese

Potassium

Sodium

Selenium

Analyte

Mercury

Matrix: Water

Matrix: Water

Analysis Batch: 299430

Analysis Batch: 299451

Lab Sample ID: 480-99235-1 MSD

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-299058/1-A

Lab Sample ID: LCS 480-299058/2-A

Method: 6010C - Metals (ICP) (Continued)

Sample Sample

ND

0.10

0.13

ND

ND

0.21

9.4

36.2

ND

MB MB Result Qualifier

ND

Result Qualifier

%Rec.

Limits

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

%Rec

114

103

104

105

107

102

102

107

103

Prepared

05/02/16 09:10

D

Client Sample ID: BR-1

Prep Type: Total/NA

Prep Batch: 299015

RPD

6

4

4

7

6

7

6

5

3

Prep Type: Total/NA

Prep Batch: 299058

RPD

Limit

20

20

20

20

20

20

20

20

20

8

Analyzed Dil Fac 05/02/16 13:41 1

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Type: Total/NA
Prep Batch: 299058

Client Sample ID: Method Blank

Analysis Batch: 299430							Prep	Batch: 299058
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00667	0.00667		mg/L		100	80 - 120	

RL

0.00020

Lab Sample ID: 480-99235-2 MS								C	Client Samp	ple ID: MW-3R
Matrix: Ground Water									Prep T	ype: Total/NA
Analysis Batch: 299430									Prep I	Batch: 299058
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	ND		0.00667	0.00680		mg/L		102	80 - 120	
Lab Sample ID: 480-99235-2 MSD								C	Client Samp	ple ID: MW-3R

Matrix: Ground Water									Prep T	ype: To	tal/NA
Analysis Batch: 299430									Prep	Batch: 2	99058
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		0.00667	0.00675		mg/L		101	80 - 120	1	20

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-299618/4 Matrix: Water Analysis Batch: 299618							Client Sa	ample ID: Metho Prep Type: T	
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20		mg/L			05/03/16 23:31	1
Chloride	ND		0.50		mg/L			05/03/16 23:31	1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 480-299618/4 Matrix: Water												ample ID: Metho Prep Type: 1	
Analysis Batch: 299618													
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Sulfate	ND			2.0			mg/L					05/03/16 23:31	1
Lab Sample ID: LCS 480-299618/3									Cli	ent	Sample	ID: Lab Control	Sample
Matrix: Water												Prep Type: 1	otal/NA
Analysis Batch: 299618													
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Bromide			5.00		5.46			mg/L		_	109	90 - 110	
Chloride			50.0		52.25			mg/L			104	90 - 110	
Sulfate			50.0		50.42			mg/L			101	90 - 110	
Lab Sample ID: MB 480-300147/4											Client S	ample ID: Metho	d Blank
Matrix: Water												Prep Type: 1	
Analysis Batch: 300147													
	MB	МВ											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Bromide	ND			0.20			mg/L					05/05/16 15:50	1
Chloride	ND			0.50			mg/L					05/05/16 15:50	1
Sulfate	ND			2.0			mg/L					05/05/16 15:50	1
Lab Sample ID: LCS 480-300147/3									Cli	ent	Sample	ID: Lab Control	Sample
Matrix: Water												Prep Type: 1	otal/NA
Analysis Batch: 300147													
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Bromide			5.00		5.09			mg/L		_	102	90 - 110	
Chloride			50.0		51.52			mg/L			103	90 - 110	
Sulfate			50.0		50.66			mg/L			101	90 - 110	
lethod: 410.4 - COD													
Lab Sample ID: MB 480-299282/3											Client S	ample ID: Metho	d Blank
Matrix: Water												Prep Type: 1	
Analysis Batch: 299282													
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Ρ	repared	Analyzed	Dil Fac
Chemical Oxygen Demand	ND	-		10.0	-		mg/L			_		05/02/16 05:22	1

Lab Sample ID: LCS 480-299282/4					Client	t Sample	ID: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 299282							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chemical Oxygen Demand	25.0	25.05		mg/L		100	90 - 110

MS MS

MS MS

76.37 F1

Result Qualifier

70.16 F1

Result Qualifier

Spike

Added

50.0

Spike

Added

50.0

Method: 410.4 - COD (Continued)

Sample Sample

ND F1

Sample Sample

11.6 F1

Result Qualifier

Result Qualifier

Lab Sample ID: 480-99235-1 MS

Lab Sample ID: 480-99235-6 MS

Matrix: Ground Water

Chemical Oxygen Demand

Analysis Batch: 299282

Chemical Oxygen Demand

Matrix: Leachate

Analyte

Analyte

Analysis Batch: 299282

%Rec.

Limits

75 - 125

%Rec.

Limits

75 - 125

D

D

Unit

mg/L

Unit

mg/L

%Rec

%Rec

129

140

Client Sample ID: BR-1

Client Sample ID: Leachate

Prep Type: Total/NA

Prep Type: Total/NA

8

	Lab Sample ID: MB 480-299829/1										CI	ient S	ample ID: Metho	d Blank
MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 mg/L D Prepared Analyzed Dil Fac Lab Sample ID: LCS 480-299829/2 Client Sample ID: LCS 480-299829/2 Client Sample ID: Lab Control Sample Matrix: Water Analysis Batch: 299829 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec. Analyte Added Result Qualifier Unit D %Rec. Lab Sample ID: MB 480-299986/1 540 519.0 mg/L D %Rec Limits Matrix: Water Analysis Batch: 299986 State Client Sample ID: Method Blank Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Matrix: Water ND 10.0 mg/L D Prepared Analyzed Dil Fac Analyte Result Qualifier <t< th=""><th>Matrix: Water</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Prep Type: T</th><th>otal/NA</th></t<>	Matrix: Water												Prep Type: T	otal/NA
AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal Dissolved SolidsND10.0mg/LDPreparedAnalyzedDil FacLab Sample ID: LCS 480-299829/2Client Sample ID: Lab Control SampleClient Sample ID: Lab Control SampleMatrix: WaterAnalyzedSpikeLCSLCS%Rec.AnalyteAddedResultQualifierUnitD%Rec.AnalyteAddedSpikeLCSLCSLCSTotal Dissolved Solids540519.0mg/L9685 - 115Lab Sample ID: MB 480-299986/1MBMBClient Sample ID: Method Blank Prep Type: Total/NAMatrix: WaterMBMBMBAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal Dissolved SolidsND10.0mg/LDPreparedAnalyzedDil FacLab Sample ID: LCS 480-299986/2ND10.0mg/LDClient Sample ID: Lab Control Sample	Analysis Batch: 299829													
Total Dissolved Solids ND 10.0 mg/L 05/04/16 08:26 1 Lab Sample ID: LCS 480-299829/2 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec. Analyte Added Spike LCS LCS LCS Limits Total Dissolved Solids 540 519.0 mg/L 96 85 - 115 Lab Sample ID: MB 480-299986/1 Matrix: Water Client Sample ID: Method Blank Prep Type: Total/NA Matrix: Water MB MB MB Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D %Rec. Analyte Result Qualifier RL MDL Unit D Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 mg/L D 05/04/16 17:13 1 Lab Sample ID: LCS 480-299986/2 KL		MB	MB											
Lab Sample ID: LCS 480-299829/2 Matrix: Water Analysis Batch: 299829 Analyte Added Result Qualifier Unit D %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Total Dissolved Solids 540 519.0 mg/L 96 85 - 115 Lab Sample ID: MB 480-299986/1 Matrix: Water Analysis Batch: 29986 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids 05/04/16 17:13 1 Lab Sample ID: LCS 480-299986/2 Lab Sample ID: LCS 480-299986/2 Client Sample ID: Lab Control Sample	Analyte	Result	Qualifier		RL		MDL	Unit		D	Prep	ared	Analyzed	Dil Fac
Matrix: Water Prep Type: Total/NA Analysis Batch: 299829 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec. Total Dissolved Solids 540 519.0 Unit D %Rec. Limits	Fotal Dissolved Solids	ND			10.0			mg/L					05/04/16 08:26	1
Analysis Batch: 299829 Spike LCS LCS Mec. Analyte Added Result Qualifier Unit D %Rec. Lab Sample ID: MB 480-299986/1 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 mg/L D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 mg/L D Prepared Analyzed Dil Fac Lab Sample ID: LCS 480-299986/2 Client Sample ID: Lab Control Sample	Lab Sample ID: LCS 480-299829/2									Cli	ent Sa	ample	ID: Lab Control	Sample
Spike LCS LCS LCS MRec. Analyte Added Result Qualifier Unit D %Rec. Total Dissolved Solids 540 519.0 Qualifier Unit D %Rec. Lab Sample ID: MB 480-299986/1 Client Sample ID: Method Blank Client Sample ID: Method Blank Prep Type: Total/NA Matrix: Water MB MB MB D Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 mg/L D Prepared Analyzed Dil Fac Lab Sample ID: LCS 480-299986/2 ND 10.0 MDL Unit D Prepared Analyzed Dil Fac Lab Sample ID: LCS 480-299986/2 ND 10.0 MDL Unit D Prepared Analyzed Dil Fac	Matrix: Water												Prep Type: T	otal/NA
Analyte Added Result Qualifier Unit D %Rec Limits Total Dissolved Solids 540 519.0 mg/L 96 85 - 115	Analysis Batch: 299829													
Total Dissolved Solids 540 519.0 mg/L 96 85 - 115 Lab Sample ID: MB 480-299986/1 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 299986 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 mg/L Client Sample ID: LCS 480-299986/2 Dil Fac				Spike		LCS	LCS						%Rec.	
Lab Sample ID: MB 480-299986/1 Matrix: Water Analysis Batch: 299986 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 mg/L D Client Sample ID: Lab Control Sample	Analyte			Added		Result	Qua	lifier	Unit		D %	6Rec	Limits	
Matrix: Water Prep Type: Total/NA Analysis Batch: 299986 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 mg/L D Client Sample ID: LcS 480-299986/2 Client Sample ID: Lab Control Sample	Total Dissolved Solids			540		519.0			mg/L			96	85 - 115	
Analysis Batch: 299986 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 mg/L 05/04/16 17:13 1 Lab Sample ID: LCS 480-299986/2 Client Sample ID: Lab Control Sample	Lab Sample ID: MB 480-299986/1										CI	ient S	ample ID: Metho	d Blank
MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND ND 10.0 mg/L D Prepared Analyzed Dil Fac Lab Sample ID: LCS 480-299986/2 Client Sample ID: Lab Control Sample	Matrix: Water												Prep Type: T	otal/NA
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids ND ND 10.0 10.0 mg/L D Client Sample ID: LCS 480-299986/2 Client Sample ID: Lab Control Sample	Analysis Batch: 299986													
Total Dissolved Solids ND 10.0 mg/L 05/04/16 17:13 1 Lab Sample ID: LCS 480-299986/2 Client Sample ID: Lab Control Sample		MB	MB											
Lab Sample ID: LCS 480-299986/2 Client Sample ID: Lab Control Sample	Analyte	Result	Qualifier		RL		MDL	Unit		D	Prep	ared	Analyzed	Dil Fac
	Total Dissolved Solids	ND			10.0			mg/L					05/04/16 17:13	1
Matrix: Water Prep Type: Total/NA	Lab Sample ID: LCS 480-299986/2									Cli	ent Sa	ample	ID: Lab Control	Sample
													Prep Type: T	otal/NA
Analysis Batch: 299986				Spike		LCS	LCS						%Rec.	

			Spike	LCS	LUS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Dissolved Solids			540	532.0		mg/L		99	85 - 115		
Lab Sample ID: 480-99235-4 DU								CI	ient Sample ID	: MV	/-14N
Matrix: Ground Water									Prep Type:	Tot	al/NA
Analysis Batch: 299986											
	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		R	PD	Limit
Total Dissolved Solids	844			825.0		mg/L				2	10

TestAmerica Buffalo

Matrix: Water

Lab Sample ID: MB 480-298924/3

Method: SM 3500 CR B - Chromium, Hexavalent

Client Sample ID: Method Blank Prep Type: Total/NA

8 9

													i icp i ypc.	i otain	
Analysis Batch: 298924															
		MB I	МВ												
Analyte	R	esult (Qualifier		RL		MDL	Unit		D	Pi	repared	Analyzed	Dil	Fa
Chromium, hexavalent		ND			0.010			mg/L					04/28/16 21:58		
Lab Sample ID: LCS 480-298924/4										Clie	nt	Sample	ID: Lab Contro	I Sam	pl
Matrix: Water													Prep Type:	Total/	N.
Analysis Batch: 298924															
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qual	ifier	Unit	1	D	%Rec	Limits		
Chromium, hexavalent				0.0500		0.0524			mg/L		_	105	85 - 115		
- Lab Sample ID: 480-99235-2 MS												C	Client Sample ID	: MW -	-3
Matrix: Ground Water													Prep Type:	Total/	N
Analysis Batch: 298924															
-	Sample	Samp	le	Spike		MS	MS						%Rec.		
Analyte	Result	Qualif	fier	Added		Result	Qual	ifier	Unit	I	D	%Rec	Limits		
Chromium, hexavalent	ND			0.0500		0.0488			mg/L			98	85 - 115		
Lab Sample ID: 480-99235-1 DU													Client Sample	ID: B	R۰
Matrix: Ground Water													Prep Type:	Total/	N
Analysis Batch: 298924															
	Sample	Samp	le			DU	DU							F	RP
Analyte	Result	Qualif	fier			Result	Qual	ifier	Unit	I	D		RP	D L	.in
Chromium, hexavalent	ND					ND			mg/L		_		N	C	1

Method: SM 5310D - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-300288/27 Matrix: Water											Client S	Sample ID: Metho Prep Type:	
Analysis Batch: 300288	мв	мв											
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Total Organic Carbon	ND			1.0			mg/L					05/05/16 00:21	1
Lab Sample ID: MB 480-300288/51 Matrix: Water											Client S	Sample ID: Metho Prep Type:	
Analysis Batch: 300288													
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Total Organic Carbon	ND			1.0			mg/L					05/05/16 06:46	1
Lab Sample ID: LCS 480-300288/28									Cli	ent	Sample	ID: Lab Control	Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 300288													
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qual	lifier	Unit		D	%Rec	Limits	
Total Organic Carbon			60.0		59.87			mg/L		_	100	90 _ 110	

3 4 5

Method: SM 5310D - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: LCS 480-300288/52 Matrix: Water					Client	Sample	D: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 300288	Spike	LCS	LCS				%Rec.
• • •					_		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Organic Carbon	60.0	58.77		mg/L		98	90 - 110

GC/MS VOA

Analysis Batch: 300766

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-7	Trip Blank	Total/NA	Water	8260C	
MB 480-300766/7	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 300770

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	8260C	
480-99235-2	MW-3R	Total/NA	Ground Water	8260C	
480-99235-3	MW-12	Total/NA	Ground Water	8260C	
480-99235-4	MW-14N	Total/NA	Ground Water	8260C	
480-99235-5	MW-5R	Total/NA	Ground Water	8260C	
480-99235-6	Leachate	Total/NA	Leachate	8260C	
MB 480-300770/8	Method Blank	Total/NA	Water	8260C	

Metals

Prep Batch: 299015

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	3005A	
480-99235-1 MS	BR-1	Total/NA	Ground Water	3005A	
480-99235-1 MSD	BR-1	Total/NA	Ground Water	3005A	
480-99235-2	MW-3R	Total/NA	Ground Water	3005A	
480-99235-3	MW-12	Total/NA	Ground Water	3005A	
480-99235-4	MW-14N	Total/NA	Ground Water	3005A	
480-99235-5	MW-5R	Total/NA	Ground Water	3005A	
480-99235-6	Leachate	Total/NA	Leachate	3005A	
LCS 480-299015/2-A	Lab Control Sample	Total/NA	Water	3005A	
LCSD 480-299015/3-A	Lab Control Sample Dup	Total/NA	Water	3005A	
MB 480-299015/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 299058

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	7470A	
480-99235-2	MW-3R	Total/NA	Ground Water	7470A	
480-99235-2 MS	MW-3R	Total/NA	Ground Water	7470A	
480-99235-2 MSD	MW-3R	Total/NA	Ground Water	7470A	
480-99235-3	MW-12	Total/NA	Ground Water	7470A	
480-99235-4	MW-14N	Total/NA	Ground Water	7470A	
480-99235-5	MW-5R	Total/NA	Ground Water	7470A	
480-99235-6	Leachate	Total/NA	Leachate	7470A	
LCS 480-299058/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-299058/1-A	Method Blank	Total/NA	Water	7470A	

Analysis Batch: 299430

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	7470A	299058
480-99235-2	MW-3R	Total/NA	Ground Water	7470A	299058
480-99235-2 MS	MW-3R	Total/NA	Ground Water	7470A	299058
480-99235-2 MSD	MW-3R	Total/NA	Ground Water	7470A	299058
480-99235-3	MW-12	Total/NA	Ground Water	7470A	299058
480-99235-4	MW-14N	Total/NA	Ground Water	7470A	299058

Prep Type

Total/NA

Matrix

Ground Water

Analysis Batch: 299430 (Continued)

Client Sample ID

MW-5R

Metals (Continued)

Lab Sample ID

480-99235-5

Method

7470A

Prep Batch

299058

7 8 9 10 11

100 00200 0		1 Ottain W	Cround Water	1110/1	LUUUUU
480-99235-6	Leachate	Total/NA	Leachate	7470A	299058
LCS 480-299058/2-A	Lab Control Sample	Total/NA	Water	7470A	299058
MB 480-299058/1-A	Method Blank	Total/NA	Water	7470A	299058
Analysis Batch: 29944	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-2	MW-3R	Total/NA	Ground Water	6010C	299015
Analysis Batch: 29945	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	6010C	299015
480-99235-1 MS	BR-1	Total/NA	Ground Water	6010C	299015
480-99235-1 MSD	BR-1	Total/NA	Ground Water	6010C	299015
480-99235-2	MW-3R	Total/NA	Ground Water	6010C	299015
480-99235-3	MW-12	Total/NA	Ground Water	6010C	299015
480-99235-4	MW-14N	Total/NA	Ground Water	6010C	299015
480-99235-5	MW-5R	Total/NA	Ground Water	6010C	299015
480-99235-6	Leachate	Total/NA	Leachate	6010C	299015
LCS 480-299015/2-A	Lab Control Sample	Total/NA	Water	6010C	299015
LCSD 480-299015/3-A	Lab Control Sample Dup	Total/NA	Water	6010C	299015
MB 480-299015/1-A	Method Blank	Total/NA	Water	6010C	299015

General Chemistry

Analysis Batch: 298924

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	SM 3500 CR B	
480-99235-1 DU	BR-1	Total/NA	Ground Water	SM 3500 CR B	
480-99235-2	MW-3R	Total/NA	Ground Water	SM 3500 CR B	
480-99235-2 MS	MW-3R	Total/NA	Ground Water	SM 3500 CR B	
480-99235-3	MW-12	Total/NA	Ground Water	SM 3500 CR B	
480-99235-4	MW-14N	Total/NA	Ground Water	SM 3500 CR B	
480-99235-5	MW-5R	Total/NA	Ground Water	SM 3500 CR B	
480-99235-6	Leachate	Total/NA	Leachate	SM 3500 CR B	
LCS 480-298924/4	Lab Control Sample	Total/NA	Water	SM 3500 CR B	
MB 480-298924/3	Method Blank	Total/NA	Water	SM 3500 CR B	

Analysis Batch: 299282

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	410.4	
480-99235-1 MS	BR-1	Total/NA	Ground Water	410.4	
480-99235-2	MW-3R	Total/NA	Ground Water	410.4	
480-99235-3	MW-12	Total/NA	Ground Water	410.4	
480-99235-4	MW-14N	Total/NA	Ground Water	410.4	
480-99235-5	MW-5R	Total/NA	Ground Water	410.4	
480-99235-6	Leachate	Total/NA	Leachate	410.4	
480-99235-6 MS	Leachate	Total/NA	Leachate	410.4	
LCS 480-299282/4	Lab Control Sample	Total/NA	Water	410.4	
MB 480-299282/3	Method Blank	Total/NA	Water	410.4	

General Chemistry (Continued)

Analysis Batch: 299618

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	300.0	
480-99235-2	MW-3R	Total/NA	Ground Water	300.0	
480-99235-3	MW-12	Total/NA	Ground Water	300.0	
480-99235-4	MW-14N	Total/NA	Ground Water	300.0	
480-99235-6	Leachate	Total/NA	Leachate	300.0	
LCS 480-299618/3	Lab Control Sample	Total/NA	Water	300.0	
MB 480-299618/4	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 299829

Lab Sar	nple ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-992	35-1	BR-1	Total/NA	Ground Water	SM 2540C	
LCS 480	0-299829/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 480-	-299829/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 299986

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
480-99235-2	MW-3R	Total/NA	Ground Water	SM 2540C		_
480-99235-3	MW-12	Total/NA	Ground Water	SM 2540C		
480-99235-4	MW-14N	Total/NA	Ground Water	SM 2540C		
480-99235-4 DU	MW-14N	Total/NA	Ground Water	SM 2540C		
480-99235-5	MW-5R	Total/NA	Ground Water	SM 2540C		
480-99235-6	Leachate	Total/NA	Leachate	SM 2540C		
LCS 480-299986/2	Lab Control Sample	Total/NA	Water	SM 2540C		
MB 480-299986/1	Method Blank	Total/NA	Water	SM 2540C		

Analysis Batch: 300147

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	300.0	
480-99235-2	MW-3R	Total/NA	Ground Water	300.0	
480-99235-3	MW-12	Total/NA	Ground Water	300.0	
480-99235-4	MW-14N	Total/NA	Ground Water	300.0	
480-99235-5	MW-5R	Total/NA	Ground Water	300.0	
480-99235-6	Leachate	Total/NA	Leachate	300.0	
LCS 480-300147/3	Lab Control Sample	Total/NA	Water	300.0	
MB 480-300147/4	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 300288

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	SM 5310D	
480-99235-2	MW-3R	Total/NA	Ground Water	SM 5310D	
480-99235-3	MW-12	Total/NA	Ground Water	SM 5310D	
480-99235-4	MW-14N	Total/NA	Ground Water	SM 5310D	
480-99235-5	MW-5R	Total/NA	Ground Water	SM 5310D	
480-99235-6	Leachate	Total/NA	Leachate	SM 5310D	
LCS 480-300288/28	Lab Control Sample	Total/NA	Water	SM 5310D	
LCS 480-300288/52	Lab Control Sample	Total/NA	Water	SM 5310D	
MB 480-300288/27	Method Blank	Total/NA	Water	SM 5310D	
MB 480-300288/51	Method Blank	Total/NA	Water	SM 5310D	

9

Field Service / Mobile Lab

Analysis Batch: 300309

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-99235-1	BR-1	Total/NA	Ground Water	Field Sampling	
480-99235-2	MW-3R	Total/NA	Ground Water	Field Sampling	
480-99235-3	MW-12	Total/NA	Ground Water	Field Sampling	
480-99235-4	MW-14N	Total/NA	Ground Water	Field Sampling	
480-99235-5	MW-5R	Total/NA	Ground Water	Field Sampling	
480-99235-6	Leachate	Total/NA	Leachate	Field Sampling	

TestAmerica Buffalo

Lab Sample ID: 480-99235-1 Matrix: Ground Water

Date Collected: 04/28/16 13:23 Date Received: 04/28/16 15:30

Client Sample ID: BR-1

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	300770	05/09/16 23:13	SWO	TAL BUF
Total/NA	Prep	3005A			299015	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299451	04/29/16 21:25	AMH	TAL BUF
Total/NA	Prep	7470A			299058	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 13:44	TAS	TAL BUF
Total/NA	Analysis	300.0		2	299618	05/04/16 00:00	CAV	TAL BUF
Total/NA	Analysis	300.0		1	300147	05/05/16 16:05	CAV	TAL BUF
Total/NA	Analysis	410.4		1	299282	05/02/16 05:22	CDC	TAL BUF
Total/NA	Analysis	SM 2540C		1	299829	05/04/16 08:26	EKB	TAL BUF
Total/NA	Analysis	SM 3500 CR B		1	298924	04/28/16 21:58	DSC	TAL BUF
Total/NA	Analysis	SM 5310D		1	300288	05/05/16 04:53	DLG	TAL BUF
Total/NA	Analysis	Field Sampling		1	300309	04/28/16 13:23	FLD	TAL BUF

Client Sample ID: MW-3R Date Collected: 04/28/16 11:07 Date Received: 04/28/16 15:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	300770	05/09/16 23:40	SWO	TAL BUF
Total/NA	Prep	3005A			299015	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299451	04/29/16 21:41	AMH	TAL BUF
Total/NA	Prep	3005A			299015	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299444	05/02/16 09:45	AMH	TAL BUF
Total/NA	Prep	7470A			299058	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 13:46	TAS	TAL BUF
Total/NA	Analysis	300.0		10	299618	05/04/16 00:15	CAV	TAL BUF
Total/NA	Analysis	300.0		1	300147	05/05/16 16:19	CAV	TAL BUF
Total/NA	Analysis	410.4		1	299282	05/02/16 05:22	CDC	TAL BUF
Total/NA	Analysis	SM 2540C		1	299986	05/04/16 17:13	MGH	TAL BUF
Total/NA	Analysis	SM 3500 CR B		1	298924	04/28/16 21:58	DSC	TAL BUF
Total/NA	Analysis	SM 5310D		1	300288	05/05/16 05:10	DLG	TAL BUF
Total/NA	Analysis	Field Sampling		1	300309	04/28/16 11:07	FLD	TAL BUF

Client Sample ID: MW-12 Date Collected: 04/28/16 14:09 Date Received: 04/28/16 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	300770	05/10/16 00:06	SWO	TAL BUF
Total/NA	Prep	3005A			299015	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299451	04/29/16 21:54	AMH	TAL BUF

5 6 7

Lab Sample ID: 480-99235-2

Matrix: Ground Water

Lab Sample ID: 480-99235-3

Matrix: Ground Water

Date Collected: 04/28/16 14:09 Date Received: 04/28/16 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			299058	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 13:57	TAS	TAL BUF
Total/NA	Analysis	300.0		10	299618	05/04/16 00:29	CAV	TAL BUF
Total/NA	Analysis	300.0		1	300147	05/05/16 16:34	CAV	TAL BUF
Total/NA	Analysis	410.4		1	299282	05/02/16 05:22	CDC	TAL BUF
Total/NA	Analysis	SM 2540C		1	299986	05/04/16 17:13	MGH	TAL BUF
Total/NA	Analysis	SM 3500 CR B		1	298924	04/28/16 21:58	DSC	TAL BUF
Total/NA	Analysis	SM 5310D		1	300288	05/05/16 05:26	DLG	TAL BUF
Total/NA	Analysis	Field Sampling		1	300309	04/28/16 14:09	FLD	TAL BUF

Client Sample ID: MW-14N Date Collected: 04/28/16 11:57

Date Received: 04/28/16 15:30

Lab Sample ID: 480-99235-4

Lab Sample ID: 480-99235-5

Matrix: Ground Water

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	300770	05/10/16 00:33	SWO	TAL BUF
Total/NA	Prep	3005A			299015	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299451	04/29/16 21:57	AMH	TAL BUF
Total/NA	Prep	7470A			299058	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 13:59	TAS	TAL BUF
Total/NA	Analysis	300.0		10	299618	05/04/16 00:44	CAV	TAL BUF
Total/NA	Analysis	300.0		1	300147	05/05/16 16:48	CAV	TAL BUF
Total/NA	Analysis	410.4		1	299282	05/02/16 05:22	CDC	TAL BUF
Total/NA	Analysis	SM 2540C		1	299986	05/04/16 17:13	MGH	TAL BUF
Total/NA	Analysis	SM 3500 CR B		1	298924	04/28/16 21:58	DSC	TAL BUF
Total/NA	Analysis	SM 5310D		1	300288	05/05/16 05:42	DLG	TAL BUF
Total/NA	Analysis	Field Sampling		1	300309	04/28/16 11:57	FLD	TAL BUF

Client Sample ID: MW-5R Date Collected: 04/28/16 12:40 Date Received: 04/28/16 15:30

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	300770	05/10/16 01:00	SWO	TAL BUF
Total/NA	Prep	3005A			299015	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299451	04/29/16 22:01	AMH	TAL BUF
Total/NA	Prep	7470A			299058	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 14:00	TAS	TAL BUF
Total/NA	Analysis	300.0		2	300147	05/05/16 17:03	CAV	TAL BUF
Total/NA	Analysis	410.4		1	299282	05/02/16 05:22	CDC	TAL BUF
Total/NA	Analysis	SM 2540C		1	299986	05/04/16 17:13	MGH	TAL BUF

TestAmerica Buffalo

Lab Sample ID: 480-99235-3

Matrix: Ground Water

1 2 3 4 5 6 7 8 9 10 11

Lab Sample ID: 480-99235-5
Matrix: Ground Water

Lab Sample ID: 480-99235-6

Lab Sample ID: 480-99235-7

Matrix: Water

Matrix: Leachate

Client Sample ID: MW-5R Date Collected: 04/28/16 12:40 Date Received: 04/28/16 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 3500 CR B		1	298924	04/28/16 21:58	DSC	TAL BUF
Total/NA	Analysis	SM 5310D		1	300288	05/05/16 05:58	DLG	TAL BUF
Total/NA	Analysis	Field Sampling		1	300309	04/28/16 12:40	FLD	TAL BUF

Client Sample ID: Leachate Date Collected: 04/28/16 12:15 Date Received: 04/28/16 15:30

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		2	300770	05/10/16 01:27	SWO	TAL BUF
Total/NA	Prep	3005A			299015	04/29/16 11:25	BAE	TAL BUF
Total/NA	Analysis	6010C		1	299451	04/29/16 22:04	AMH	TAL BUF
Total/NA	Prep	7470A			299058	05/02/16 09:10	TAS	TAL BUF
Total/NA	Analysis	7470A		1	299430	05/02/16 14:02	TAS	TAL BUF
Total/NA	Analysis	300.0		5	299618	05/04/16 02:26	CAV	TAL BUF
Total/NA	Analysis	300.0		1	300147	05/05/16 18:45	CAV	TAL BUF
Total/NA	Analysis	410.4		1	299282	05/02/16 05:22	CDC	TAL BUF
Total/NA	Analysis	SM 2540C		1	299986	05/04/16 17:13	MGH	TAL BUF
Total/NA	Analysis	SM 3500 CR B		1	298924	04/28/16 21:58	DSC	TAL BUF
Total/NA	Analysis	SM 5310D		1	300288	05/05/16 07:19	DLG	TAL BUF
Total/NA	Analysis	Field Sampling		1	300309	04/28/16 12:15	FLD	TAL BUF

Client Sample ID: Trip Blank Date Collected: 04/28/16 00:00 Date Received: 04/28/16 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	300766	05/09/16 23:29	SWO	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
ew York	NELAP		2	10026	03-31-17
The following analytes	are included in this report, bu	t certification is not offered	by the governing a	uthority:	
Analysis Method	Prep Method	Matrix	Analyte	e	
Field Sampling		Ground Water	Field E	H/ORP	
Field Sampling		Ground Water	pH, Fie	eld	
Field Sampling		Ground Water	Specifi	c Conductance	
Field Sampling		Ground Water	Tempe	erature, Field (C)	
Field Sampling		Ground Water	Turbidi	ty, Field	
Field Sampling		Leachate	Field E	H/ORP	
Field Sampling		Leachate	pH, Fie	eld	
Field Sampling		Leachate	Specifi	c Conductance	
Field Sampling		Leachate	Tempe	erature, Field (C)	
Field Sampling		Leachate	Turbidi	ty, Field	

Client: LAN Associates Project/Site: Witmer Road G/W

1 2 3 4 5 6 7 8 9 10 11 12		
3 4 5 6 7 8 9 10 11		
5 6 7 8 9 10 11		
5 6 7 8 9 10 11		
6 7 8 9 10 11		
7 8 9 10 11	5	
8 9 10 11		
9 10 11		
10 11	8	
10	9	
12		
	12	

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
410.4	COD	MCAWW	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 3500 CR B	Chromium, Hexavalent	SM	TAL BUF
SM 5310D	Organic Carbon, Total (TOC)	SM	TAL BUF
Field Sampling	Field Sampling	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Client: LAN Associates Project/Site: Witmer Road G/W TestAmerica Job ID: 480-99235-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-99235-1	BR-1	Ground Water	04/28/16 13:23	04/28/16 15:30
480-99235-2	MW-3R	Ground Water	04/28/16 11:07	04/28/16 15:30
480-99235-3	MW-12	Ground Water	04/28/16 14:09	04/28/16 15:30
480-99235-4	MW-14N	Ground Water	04/28/16 11:57	04/28/16 15:30
480-99235-5	MW-5R	Ground Water	04/28/16 12:40	04/28/16 15:30
480-99235-6	Leachate	Leachate	04/28/16 12:15	04/28/16 15:30
480-99235-7	Trip Blank	Water	04/28/16 00:00	04/28/16 15:30

	0 4	Page:	Page 1 of 1					F - MeOH R - Nä2S2O3 G - Amchion S - H2SOA		K - EDTA L - EDA	Of con	រទំនិញប្រ័ ឆ្កែរ	P Special Instructions/Note:					3		Dry No Sumo E	•		samples are retained longer than 1 month) ab Archive For Months		Method of Shipment	Deterting 26/16 1530 Company	Date/Time: Company	Date/Time: Company	1#2	
cord	Carrier Tracking No(s)	E-Mail:	one@testamericainc.com	Analysis Request	*****			9	pue pue poi	i no petho in Dem Metho 1 Metho 2.1	(MOD) 910 (MOD) 910 (00 910 (00 910) (00 910 (00 910) (00 91) (00 91) (00 91) (00 9	91/01(m, MS(M, MS)) 0.0_28D - (MO 0.4 - Chemical 10C, 7470A 40C, Caled - T 80C - TCL IIat 40C, Caled - T 80C - TCL IIat 80C - TCL IIat 90C, 7470A 190 190 190 190 190 190 190 190 190 190	P P P N N Z56 S5 N N D 60 S5 N N D 60 S5	1 1 2 3 1 1	<i>i i i z 3 i</i>	1 1 2 3 1 1	Z 3	1 1 5 2 1 1 1	1 1 2 3 1 1		2		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab	Requireme	Time:	Received by Walled	Received by:	Received by:	Cooler Temperature(s) °C and Other Remarks:	
Chain of Custody Record	Z B	1413	S&S-VSS-OPUI Judy.sta					uīred		99 <u>4)</u>	Idmeg	Sample	Time G=grab) BT-TIssue, A-AIr)	e 1323 (~ Water		iyog Water	IIS7 Water	i240 Water	1215 Water	Water	Oget J i		own Radiological		Date:	21 1530 Company	Company	Company		
ŏ	Sampler	Phone:	SS		Due Date Requested:	TAT Requested (days):		PO# Purchase Orc	#OM				Sample Date	かってん							VK J		Skin Imtant Poison B Unknown			left Date/Time:	Date/Time:	Date/Time:	al No.:	
TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone 7718, 631-2600	Client Information	Client Contact	Gary Joiner Commany	CC Metals and Alloys LLC	Address: PO BOX 217	City: Calvert City	State, Zp: KY, 42029	Phone: 270-395-2155(Tel)	Email: gjoiner@ccmetals.com	Project Name: Witmer Road G/W/ Event Desc: Witmer Road G/W	Site: New York		Sample Identification	BR-1	MW-3R	MW-12	MW-14N	MW-5R	Leachate	SW-1	ARTP BLANK		Possible Hazard Identification	sted: I, II, III, IV, Ot	Empty Kit Relinquished by:	Relinquished by: Araymy All	Relinquished by:	Relinquished by:	Custody Seals Intact Custody Seal No.:	

_

Facility: <u>CCMA-Witmer</u> Rd	Sample Point I <u>D: <u>BR-1</u></u>
Field Personnel: <u>Tw, EB</u>	Sample Matrix: 6-40
MONITORTING WELL INSPECTION:	
Date/Time 41-28-16 1 1254	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser:()Unlocked (分Good ()Loose ()Flush Mount ()Damaged
If prot.casing; depth to riser below:	() Damageu
Gas Meter (Calibration/ Reading): % Gas:	% LEL:/
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm <u>//</u>
PURGE INFORMATION:	
Date / Time Initiated: 4-28-16/12.56	Date / Time Completed: <u>4-28-14/1321</u>
Surf. Meas. Pt: () Prot. Casing (/ Riser	Riser Diameter, Inches: Z-O
Initial Water Level, Feet: 10.63	Elevation. G/W MSL:
Well Total Depth, Feet: <u>39.92</u>	Method of Well Purge: peristaltic pump
One (1) Riser Volume, Gal:	Dedicated: 🔗 / N
Total Volume Purged, Gal:	Purged To Dryness Y / 🔊
Purge Observations: Low Flow	Start <u>Clear</u> Finish <u>Clear</u>
PURGE DATA. (if applicable)	

Time		ge Rate m/htz)	Cumulative Volume	Temp. (C)	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other (Orp)	Other
1311	WL 11.05	m1/min 200	·	10:2	78 7.85	488	1.24	G4 R	
1316	1108			10.2	7.71	488	1.28	57	
1321	11.08			10.1	7.59	488	1.26	32	
			· · · · · ·						

15

н. 98-

_

.

SAMPLING INFORMATION: POINT ID BR-1 Date/Time 4-78-16 1-1323 Water Level @ Sampling, Feet: 1/4	
Notor Lovel @ Sampling Feet:	
Date/Time <u>4-28-16</u> 1 1323 Water Level @ Sampling, Feet: <u>1/10</u>	28
Method of Sampling:	
Multi-phased/ layered: () Yes // No If YES: () light () heavy	
SAMPLING DATA:	
Time Temp. pH Conductivity Turb. Other Other	
$(^{\circ}C) (std units) (\mu mhos/cm) (NTU) (OTP) ()$	
1323 10.1 7.59 488 1.26 32	
INSTRUMENT CALIBRATION/CHECK DATA	
	eck Std
Mater ID# Cal Std Cal Std Cal Std 7.0 SU 1.413 Cal Std 10	NTU
	: 10%)
	<u> </u>
Solution ID#	
GENERAL INFORMATION:	
Weather conditions @ time of sampling: cloudy ~ 44	
for a management of the second s	
Sample Characteristics:	
COMMENTS AND OBSERVATIONS:	
COMMENTS AND OBSERVATIONS:	

Page 2 of 2 Page 44 of 54

5/11/2016

1

Facility: <u>CCMA-Witmer Rd</u>	Sample Point ID: <u>MW-3R</u>
Field Personnel: TW, EB	Sample Matrix: GW
MONITORTING WELL INSPECTION:	
Date/Time 4-28-16 1 1030	Cond of seal: (/ Good () Cracked% () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser:()Unlocked ()Good ()Loose ()Flush Mount ()Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	-/- % LEL:/-
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm;/ —/ —
PURGE INFORMATION:	
Date / Time Initiated: 4-28-16/1035	Date / Time Completed: $4/-2g-1c/1105$
Surf. Meas. Pt: () Prot. Casing (ARiser	Riser Diameter, Inches: <u>Z_</u>
Initial Water Level, Feet:2.1.2	Elevation. G/W MSL:
Well Total Depth, Feet: 12.05	Method of Well Purge: peristultiz pump
One (1) Riser Volume, Gal:	Method of Well Purge: <u>peristultic pump</u> Dedicated: <u>Ø</u> I R The 4-28-16
Total Volume Purged, Gal:	Purged To Dryness Y / 🕅
Purge Observations: Low Flow	Start <u>claur</u> Finish <u>Clear</u>
PURGE DATA: (if applicable)	
Time Burge Bate Cumulative Temp	pH Conductivity Turb. Other Other

Time		e Rate	Cumulative	Temp.	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other (onp)	Other
	(gpi ビント	n/htz)	Volume	(C)	- (30)	(pinnoorom)	29972.37		
1050	2.53	15@m4.5		9.4	6.20	1137 7	- 489	175	
1055	2.55	1		9.4	6.43	1124	n 1.81 2.39	158	
1100	2.56			9.3	6.46	1129	1.84	159	
1105	2,58	$\left \right $		8, 9.1	6-51	1131	1.82	158	

NYFS GW Form 12/20/11

15

••• ••••

_

.

B K Zaring Propin 2012 Prop		алан а черокалар Таратар	, ,							
SAMPLING	Informat	TION .								
POINT ID	MW-3	SR	-							
Date/Time	4-28-1	<u>la I</u>	1107	-	Water Level	l @ Sampling	, Feet:	2.58		
Method of S	ampling:	P	eristed A'C	aimp		Dedicated:	ØIN			
Multi-phased	d/ layered:	()Yes	() No		If YES:	()light	() heavy			
SAMPLING DATA:										
Time	Temp. (°C)	pH (std units)	Conductivity (µmhos/cm)		Turb. (NTU)	Other (<i>Orp</i>)	Other ()			
1107	9.1	6.51	113	1	1.82	158				
				- 						
	·		<u> </u>							
INSTRUME	NTCALIBR	ATION/CHE	CK DATA:							
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	Check.Std 1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	Check Std 10 NTU (± 10%)		
· · · · ·		•		······································	·					
						· · · · · · · · · · · · · · · · · · ·	 			
	· · · ·		• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·						
Solution ID#					-	-				
			-							
GENERALI										
Weather con	nditions @ tin	ne of samplir	ng: <u>clan</u>	dy ~41	2	· · · · ·				
	racteristics:		clear	· · · · ·	···					
COMMENT	S AND OBS	ERVATION	S:							
_										
, <u> </u>	<u>, , ,</u>	. ,								
· · · · · · · · · · · · · · · · · · ·										
I certify that protocals.	sampling pro	ocedures wer	re in accorda	ance with all	applicable El	PA, State and	I Site-Specific	;		
	4 1281/6	By:	Thomas	ulle		Company:	TAL			
			Car I Car I and and							

5/11/2016

1

Facility: <u>CCM1-Witmer Rd</u>	Sample Point ID: MW-12
Field Personnel: <u><i>W,EB</i></u>	Sample Matrix: G- W
MONITORTING WELL INSPECTION	
Date/Time 4-28-16 1 1340	Cond of seal: () Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlocked ℋGood () Loose () Flush Mount () Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas: _	~ / ~ % LEL: / -
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm;/
PURGEINFORMATION	
Date / Time Initiated: <u>4-28-16 / 1341</u>	Date / Time Completed: <u>4-28-16/1407</u>
Surf. Meas. Pt: () Prot. Casing <i>H</i> Riser	Riser Diameter, Inches: 41.0
Initial Water Level, Feet: <u>8.35</u>	Elevation. G/W MSL:
Well Total Depth, Feet: 19.65	Method of Well Purge: <u>peristalitic pamp</u>
One (1) Riser Volume, Gal:	Dedicated: Ø / N
Total Volume Purged, Gal:	Purged To Dryness Y / 🔞
Total volume Furgeu, Gal.	Fulged to Diviness 1 / 1
Purge Observations: Low - FLow	Start <u>clear</u> Finish <u>Clear</u>

Time		e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other	Other
1356	Q12 9.03	1750130	· · ·	9.7	7.38	1285	1-84	147	
1401	9.05	(30		9.7	7.38	1292	1.86	134	
1406	9.09	J		9.7	7.39	1294	1, 78	149	
	<u>.</u>								
	1								

NYFS GW Form 12/20/11

15

-

.

. . .

SAMPLING	INFORMA	ION:						
POINT ID	MW-17	2						
	4-28-1		1409	-	Water Level	@ Sampling	, Feet:	9.09
Method of S			peristaltic	.pump_	Dedicated: 🔗 / N			
Multi-phased	d/ layered:		() No		If YES:	() light	() heavy	
SAMPLING	DATA:							,
Time	Temp. (°C)	pH (std units)		uctivity os/cm)	Turb. (NTU)	Other	Other ()	
1409	9.7	7.39	120	14	1.78	149		
	·							
INSTRUME	NTGALIBR	ATION/GHE	СК ФАТА:					
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	Check.Std 1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	Check Std 10 NTU (± 10%)
	· · · · · · · · · · · · · · · · · · ·							
· · · · · · · · · · · · · · · ·								
Solution ID#								
GENERAL	NFORMAT	OŇ:						
Weather con	ditions @ tir	ne of sampli	ng: da	udy 144	·····			
Sample Chai			· ·					
COMMENT								
						-		
<u></u>	· · · · · · · · · · · · · · · · · · ·							
	, gan a baanna an a	-						·
l certify that protocals.	sampling pr	ocedures we	re in accorda	· · · · ·				c
Date:	4 1281 <i>!</i> a	By:	Tranz	Wittes		Company:	TAC	

Page 2 of 2 Page 48 of 54

_

Facility: $\underline{CCMA-w_i + mer Rd}$ Field Personnel: $\underline{TW, EB}$	Sample Point I <u>D: MW - I4N</u> Sample Matrix: 6-W
MONITORTING WELL INSPECTION	
Date/Time 4-28-16 1 1128	Cond of seal: {/ Good () Cracked % () None () Buried
Prot. Casing/riser height:	Cond of prot. Casing/riser:()Unlocked(Good ()Loose ()Flush Mount ()Damaged
If prot.casing; depth to riser below:	
Gas Meter (Calibration/ Reading): % Gas:	<u> </u>
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm)/
PURGEINEORMATION	
Date / Time Initiated: 4-28-16/ 11:30	Date / Time Completed: <u>4-28-16 / 1155</u>
Surf. Meas. Pt: () Prot. Casing	Riser Diameter, Inches: <u>2.0</u>
Initial Water Level, Feet:7.11	Elevation. G/W MSL:
Well Total Depth, Feet: 26.50	Method of Well Purge: peristal fic pump
One (1) Riser Volume, Gal:	Dedicated:
Total Volume Purged, Gal:	Purged To Dryness Y / 🕥
Purge Observations: Locu Flow	Start <u>claur w/s/</u> Finish <u>claur</u>
PURGE DATA (if applicable)	
Time Durge Pote Cumulative Tomp	nH Conductivity Turb Other Other

Time		e Rate n/htz)	Cumulative Volume	Temp. (C)	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other (<i>orp</i>)	Other
1140	WL 7.18	1m6/min 200	• -	10.3	6-99	1364	2.40	85	
1145	7.20			10.2	7.01	1365	2.46	79	
1150	7.21			10.1	6.97	1372	2.50	68	
1155	7.21			10.1	6.98	1348	2.48	67	

Page 49 of 54

15

••• 200

:-

-	<u>Мw-1</u> <u>4-28-1</u> ampling:	14N				, ,		
Date/Time Method of Sa Multi-phased SAMPLING	4-28-1	6 1				r		
Method of Sa Multi-phased SAMPLING	ampling:							
Method of Sa Multi-phased SAMPLING	ampling:					Water Level @ Sampling, Feet:		
SAMPLING			peristal		f	Dedicated:	ØIN	
		()Yes	INO		If YES:	() light	() heavy	
Time	DATA:			·				F
	Temp. (°C)	pH (std units)		uctivity os/cm)	Turb. (NTU)	Other (<i>Orp</i>)	Other ()	
1157	10.1	6.98	136	-	2.418	67		ł
1107	10.1		<u></u>		<u> </u>	101		I
					· · ·			
								National de la companya de la company
INSTRUMEN	HEGAEIDIN	ATIUN/OFF	UNDALA		+d			
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	Check.Std 1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	Check Std 10 NTU (± 10%)
		•						
		. .						

Solution ID#	····		<u> </u>	-, 0-in-				· · · ·
GENERAL II Weather cond Sample Char COMMENTS	ditions @ tir acteristics:	me of sampli	Clear	<u>eudy ~ 4</u>	4			
······								
		· .						
l certify that s protocals. Date:	sampling pro			ance with all		PA, State and Company: 2		C

Page 2 of 2 Page 50 of 54

١

5/11/2016

_

Facility: <u>CCMA-Witmer Rd</u>	Sample Point I <u>D: MW-5R</u>	
Field Personnel: TW, EB	Sample Matríx: 6-60	
Date/Time 4-28-16 / 1205	Cond of seal: (/ Good () Cracked () None () Buried	%
Prot. Casing/riser height:	Cond of prot. Casing/riser: () Unlock () Loose () () Damaged	
If prot.casing; depth to riser below:	() Danayeu	<u> </u>
Gas Meter (Calibration/ Reading): % Gas:	-1 - % LEL - / -	-
Vol. Organic Meter (Calibration/Reading):	Volatiles (ppm <u> </u>	
PURGE INFORMATION:		
	Date / Time Completed: <u>식</u> -	- <u>28-14/123</u> 7
Date / Time Initiated: U-28-16/1207 Surf. Meas. Pt: () Prot. Casing WRiser	Date / Time Completed: <u>4</u> - Riser Diameter, Inches:	- <u>28-14/123</u> 7 2.0
Date / Time Initiated: <u>4-28-16 / 1207</u>	, ,	*
Date / Time Initiated: <u>U-28-16/1207</u> Surf. Meas. Pt: () Prot. Casing URiser	Riser Diameter, Inches:	*
Date / Time Initiated: <u>U-28-16/1207</u> Surf. Meas. Pt: () Prot. Casing URiser Initial Water Level, Feet: <u>E-74 6.74</u>	Riser Diameter, Inches:	2.0
Date / Time Initiated: <u>4-28-16/1207</u> Surf. Meas. Pt: () Prot. Casing <u>KRiser</u> Initial Water Level, Feet: <u>8-74-6.74</u> Well Total Depth, Feet: <u>19.74</u>	Riser Diameter, Inches: Elevation. G/W MSL: Method of Well Purge:	2.0
Date / Time Initiated: <u>4-28-16/1207</u> Surf. Meas. Pt: () Prot. Casing <u>y</u> Riser Initial Water Level, Feet: <u>8-74</u> 6.74 Well Total Depth, Feet: <u>19.74 One (1) Riser Volume, Gal: </u>	Riser Diameter, Inches: Elevation. G/W MSL: Method of Well Purge: Dedicated: Purged To Dryness Y /	2.0

Time	Purge Rate (gpm/htz)		Cumulative Volume	Temp. (C)	pH (SU)	Conductivity (µmhos/cm)	Turb. (NTU)	Other (arp)	Other
12.22	al 7.97	Nr/min	•	9.1	7.89	8 88	1.43	112	
1237	8.31 XQ	110	· · · · · · · · · · · · · · · · · · ·	9.0	7.79	891	1054	104	
1232	8.78	90		9.0	7.78	887	1.34	114	
1237	9.03	90		9.0	7.78	88G	1.27	11 <i>5</i>	
	1								-
~									

15

н. 254

_

SAMPLING	INFORMAT	TON:									
POINT ID	MW-5	R									
		<u> </u>	1240	_	Water Level	@ Sampling	, Feet: ·	9.03			
Method of S			· ••	1412 pun	ιρ	Dedicated:	ØIN				
Multi-phase	d/ layered:		,	v	If YES:	() light	() heavy				
SAMPLING DATA:											
Time	ime Temp. pH Conductivity (°C) (std units) (μmhos/cm)				Turb. (NTU)	Other	Other ()				
12210	9.0	7.78	S	86	1.29	115		1			
			•••			<u> </u>					
INSTRUME	NT CALIBR	ATION/CHE	ekadata:								
Meter ID#	Cal Std 7.0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	Check.Std 1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	Check Std 10 NTU (± 10%)			
			······				· · ·				
		•					· · · · · · · · · · · · · · · · · · ·				
Solution ID#											
GENERAL	INFORMAT	ON:									
Weather cor	nditions @ tir	ne of samplin	ig: <u>C</u> /	andy ~4	r4-			· .			
				· · · /							
		ERVATIONS				· · · · · · · · · · · · · · · · · · ·					
		•						· · ·			
				-							
• • • • • • • • • • • • • • • • • • •											
<u> </u>											
				·							
l certify that protocals.	sampling pr	ocedures wei	e in accorda	ance with all	applicable E	PA, State and	d Site-Specifi	C			

Date: <u>U 128116</u> By: <u>Shorm Ulft</u> Company: <u>14</u>

_

Facility: <u>CCMA-Witmer Rd</u>				Sample Point ID:		Leachade		
Field Personnel: TW, EB			_	Sample Matrix:		<u>Leachade</u> <u>C-/w</u> () Grab () Composite		
SAMPLING	INFORMA	TION:	an a stand de la seconda d Referencia de la seconda de				()	Composite
Date/Time	4-28-	16 1	1215		Water Leve	I @ Sampling	, Feet:	NIA
-Method of-S	ampling:		Dipp	er		Dedicated	Y-Ø	
Multi-phased	i/ layered:	()Yes	L) No		If YES:	() light	() heavy	
SAMPLING	DATA:							
Time	Temp. (°C)	pH (SU)		luctivity .os/cm)	Turb. (NTU)	Other (cop)	Other ()	
1215	7.5	7.59	120	2	1.48	105		
INSTRUME	NT CALIBR	ATION/CHE	CK DATA:					.
Meter ID#	Cal Std 7,0 SU	Cal Std 4.0 SU	Cal Std 10.0 SU	Check Std 7.0 SU (± 10%)	Cal.Std 1,413 µmhos/cm	Check.Std 1,413 µmhos/cm (± 10%)	Cal.Std 10 NTU	Check Std 10 NTU (± 10%)
								-
Solution ID#						1		
	<u> </u>							
GENERALI	NFORMATI	ON:						n de la servicia de l Esta de la servicia de
Weather con	ditions @ tir	ne of samplir	ng: <u>cla</u>	andy ~44	/			
Sample Char	acteristics:		Clear					
COMMENTS	AND OBS	ERVATIONS	S:					
,i								
· ·								
<u> </u>								
I certify that s protocals.	sampling pro	ocedures wer	e in accorda	ance with all	applicable U	SEPA, State a	and Site-Spec	ific
	4 128116	By:	Shara-	with	م الله الله الله الله الله الله الله الل	Company:	TAC	

Login Sample Receipt Checklist

Client: LAN Associates

Login Number: 99235

List Number: 1 Creator: Janish, Carl M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

List Source: TestAmerica Buffalo

APPENDIX 6

LANDFILL INSPECTION CHECKLIST

Date 11/9/2016 - 4:00 p.m.

Weather Conditions Sunny / 45° F

Inspector Guy D. VanDoren, P.E.

CC Metals and Alloys, LLC Witmer Road Landfill Inspection Checklist

General Instructions

The inspector should note the various observations he/she makes under the various sections and questions. If any corrective actions need to be taken, they will be noted on the Checklist of Recommended Corrective Actions, Page 4 of 4. If any unusual conditions are encountered during the inspections, they should be reported to the engineer (LAN Associates, Inc., 88 Riberia St. Suite 400, St. Augustine, FL 32084, 904-824-6999).

Landfill Cover

1) Observe any areas on the cover that indicate signs of subsidence (e.g., obvious visible low spots on the cover surface where significant amounts of standing water can accumulate in puddles during significant precipitation events, check for the presence of large cracks on the surface of the cover, etc.).

The landfill area and surrounding areas were inspected. No subsidence or surface cracks were observed. Signs of flooded vegetation in the last pond were observed.

2) Check for erosional swales, washouts, etc. in the landfill cover caused by stormwater runoff.

No disturbance of the landfill cover was observed.

3) Inspect landfill vegetative cover for overall health and consistency. (e.g. check for bare spots in the vegetative cover.)

The vegetative cover is in excellent condition. The area has experienced signification rain and warm weather recently. This has resulted in healthy cover with strong root growth developing.

Weather Conditions Sunny / 45° F

Inspector Guy D. VanDoren, P.E.

4) Inspect vegetative cover for existence of unwanted woody species or the abnormal growth of weeds that may out-compete the natural vegetation.

On the landfill the vegetation was free from any vegetation that would be competitive with the cover.

Monitoring Wells and Sampling Locations

1) Check the general condition of the individual monitoring wells; make sure the bollards are intact (have not been knocked over by a vehicle), check for cracks on the concrete pad (monitor any minor cracks to ensure they do not widen and compromise the pad's integrity otherwise repairs may be necessary), make sure that the padlocks are in working condition (not stiff when unlocking the padlock), make sure that the plug on the PVC riser is present and that the threads are in good condition.

The sampling locations were inspected. They were all in order.

2) Inspect the drainage flow control valve and piping system for functionality and condition (SW-1).

The control valve has been replaced with a simple culvert protected by sand bags.

3) Inspect the sump collection tank for cracks or any visible problems that may effect the integrity of the system (LS-1)

This area was in good condition.

Surface Water Drainage

1) Inspect the overall function of the surface water drainage system. Look for signs of erosion or subsidence that could lead to offsite surface water drainage or pooling water onsite.

The surface water collection and retainage system appears to be functioning properly.

Weather Conditions Sunny / 45° F

Inspector Guy D. VanDoren, P.E.

2) Check all stormwater drainage systems (e.g. piping, manholes, drains) for overall function. Make sure there are no blockages or diversions.

The collection system is free of deleterious material and is functioning as designed.

Property

1) Check the condition of fences and gates throughout the property.

Fences are all in good condition. There is vegetation encroachment in the southwest cover (adjacent to SW-1). Arrangements are being made to get this removed.

2) Conduct a thorough investigation of the entire site for any areas of concern.

There is a fallen tree in the northwest corner that needs to be removed. Arrangements are being made to remove the tree.

Date 11/9/2016 - 4:00 p.m.

Weather Conditions Sunny / 45° F

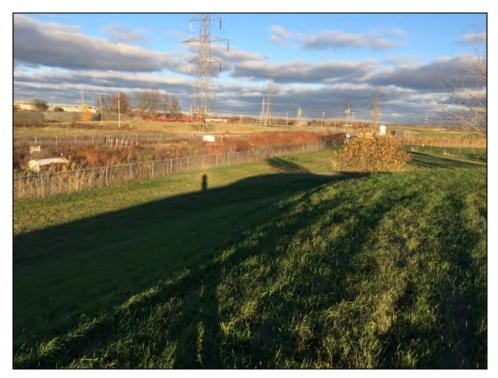
Inspector Guy D. VanDoren, P.E.

CC Metals and Alloys, LLC Checklist of Recommended Corrective Actions

Item Number	Item	Action Taken	Date of Correction	Signature
1	Remove brush in SW encroaching on fence	A-1 Land Care performed the work	12/2/2016	GVD
2	Remove fallen Tree	A-1 Land Care performed the work	12/2/2016	GVD

APPENDIX 7

PHOTOGRAPHIC DOCUMENTATION



Photograph Documentation

Witmer Road Post Annual Mowing & Maintenance

From NE of Cell 1 looking NE (IMG_2225)

From North End of Cell 1 Looking East (IMG_2226)

From North End of Cell 1 Looking West (IMG_2227)

From Cell 2 Looking West Across Cell 1 (IMG_2229)

Top of Cell 2 Looking SE (IMG_2230)

From SE Side of Cell 1 Looking SW (IMG_2234)

Appendix 7

From East Side of Cell 2 looking SE (IMG_2237)

Monitoring Well 14N (IMG_2238)

South East Side of Site Looking East (IMG_2239)

South East Side of Site Looking West (IMG_2240)

Monitoring Well 3R (IMG_2241)

Fallen Tree in NW Corner (IMG_2243)

Control Structure (pipe with sandbags) at SW-1 (IMG_2247)

Signs of Flooded Vegetation - From SW of Site Looking East (IMG_2248)

Vegetative Encroachment at SW corner (IMG_2250)

Katie Kulik

From:	Marc Lombardo <marc@a-1landcare.com></marc@a-1landcare.com>
Sent:	Friday, December 02, 2016 11:15 AM
То:	Katie Kulik
Cc:	Guy VanDoren
Subject:	RE: 2.3643.17.05 - Witmer Road Follow up Maintenance Items
Attachments:	IMG_0446.JPG; IMG_0448.JPG; IMG_0474.JPG; IMG_0471.JPG; IMG_0473.JPG

Hi Katie,

The tree removal and vegetative encroachment removal was completed today. Weather is supposed to get nasty soon so I put on two crews to get it completed. Please see attached photos for your verification of work. We were also able to remove the large stump from the fallen tree area at no extra cost, this should help with the future lawn mowing in that area. Let me know if you need anything else regarding this scope of work.

Thanks again for the business and we are looking forward to servicing your needs in the future.

Respectfully,

Marc Lombardo Operations Manager

A-1 Land Care, Inc. office (716) 754-4999 mobile (716) 251-7389 fax (716) 754-2622

From: Katie Kulik [mailto:kkulik@lan-fl.com] Sent: Thursday, December 1, 2016 8:39 AM To: Marc Lombardo Cc: Guy VanDoren Subject: RE: 2.3643.17.05 - Witmer Road Follow up Maintenance Items

Good morning Marc,

Please proceed with the follow up maintenance work at Witmer Road. Attached is the signed proposal.

Please take before and after pictures as the client is requiring this for proof of work.

Thanks very much.

Katie Kulik, AICP Compliance Manager & Planner LAN Associates, Inc. 88 Riberia Street, Suite 400 St. Augustine, FL 32084 Tel: 904-824-6999 Fax: 904-824-0726 Cell: 904-540-2288 www.lan-fl.com

my Linked in profile

NOTICE-This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

From: Marc Lombardo [mailto:marc@a-1landcare.com] Sent: Monday, November 28, 2016 3:32 PM To: Katie Kulik Cc: Guy VanDoren Subject: RE: 2.3643.17.05 - Witmer Road Follow up Maintenance Items

Hi Katie,

Please see attached proposal for the tree removal/disposal per your request below. I have a crew available now, if you choose to accept our proposal and would like the work completed in December 2016.

thx

Marc Lombardo Operations Manager

A-1 Land Care, Inc. office (716) 754-4999 mobile (716) 251-7389

fax (716) 754-2622

From: Katie Kulik [mailto:kkulik@lan-fl.com] Sent: Wednesday, November 16, 2016 9:52 AM To: marc@a-1landcare.com Cc: Guy VanDoren Subject: 2.3643.17.05 - Witmer Road Follow up Maintenance Items

Good morning Marc,

Would you please provide a quote for the follow up work from your Witmer Road site inspection with Guy VanDoren on November 9, 2016?

He identified the two items needing repair to be:

- 1. Removal of a fallen tree at the NW corner of the site, and
- 2. Removal of vegetative encroachment at the SW corner fence.

I would like to include this pricing in the inspection report.

Thanks very much and have a great day.

Regards,

Katie

Katie Kulik, AICP Compliance Manager & Planner LAN Associates, Inc. 88 Riberia Street, Suite 400 St. Augustine, FL 32084 Tel: 904-824-6999 Fax: 904-824-0726 Cell: 904-540-2288 www.lan-fl.com

NOTICE—This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

A-1 Land Care Follow Up Maintenance Conducted at Witmer Road Landfill on December 2, 2016

APPENDIX 8

LAND CARE DOCUMENTATION

A-1 LAND CARE INC 1527 Ridge Road Lewiston NY 14092 (716) 754-4999 Fax (716) 754-2622 An Equal Opportunity Employer/Affirmative Action Company

11-28-16

LAN ASSOCIATES INC. 88 Riberia Street, Suite 400 St. Augustine, FL 32084

Attn: Katie Kulik RE: Site Maintenance at former landfill site in Niagara Falls, NY

Ms. Kulik,

A-1 Land Care, Inc. respectfully submits the following quote for work for the above referenced project:

Furnish all labor, equipment and supervision to complete the removal and disposal of a fallen tree at the NW corner of the site and vegetative encroachment at the SW corner fence.

Lump Sum: \$1,500.00

Sales tax at a rate of 8% will be added to final billing

We thank you for the opportunity to quote this work and look forward to hearing from you soon.

Best Regards,

Marc Lombardo Operations Manager A-1 Land Care, Inc. Customer approval to perform services:

130/20110 Date

.

Invoice

Invoice #
16598

LAN Associates 88 Riberia Street, Suite 400 St. Augustine, FL 32084

	P.O. No.	Term	s P	roject
		Due on re	ceipt	
Description		Qty	Rate	Amount
Site Maintenance at former landfill site in Niagara Falls, NY Furnish all labor, equipment and supervision to complete the removal and disposal of fallen tree at the NW corner of the site and vegetation encroachment at the SW corner fence completed on 12-2-16 Niagara County Sales Tax			1,500.00 8.00%	1,500.00 ⁻ 120.00
		-3		, N
	•	Tot	tal	\$1,620.00
		Pa	yments/Credits	\$0.00
		Ba	lance Due	\$1,620.00