

REMOVAL SUPPORT TEAM EPA CONTRACT 68-W-00-113

Weston Solutions, Inc.
Federal Programs Division
Suite 201
1090 King Georges Post Road
Edison, New Jersey 08837-3703
732-225-6116 • Fax 732-225-7037
www.westonsolutions.com

May 19, 2003

Kevin Matheis, On-Scene Coordinator U.S. Environmental Protection Agency - Region 2 Removal Action Branch 2890 Woodbridge Avenue Edison, NJ 08837

EPA CONTRACT NO: 68-W-00-113

TDD NO: 02-03-03-0016

DOCUMENT CONTROL NO: RST-02-F-00983

SUBJECT: DUSSAULT FOUNDRY, LOCKPORT, NEW YORK

REMEDIAL ACTION REPORT; CLOSURE OF THREE UNDERGROUND

STORAGE TANKS

Dear Mr. Matheis:

Enclosed please find the Remedial Action Report relating to the closure of the three underground storage tanks at the Dussault Foundry site located in Lockport, Niagara County, New York. If you have any questions or comments, please call me at (732) 225-6116, extension 213.

Very truly yours,

WESTON SOLUTIONS, INC.

M. Mahnkopf

Michael Mahnkopf Project Manager

Enclosure

TDD File No. 02-03-03-0016

REMEDIAL ACTION REPORT (RAR) CLOSURE OF THREE UNDERGROUND STORAGE TANKS

DUSSAULT FOUNDRY SITE LOCKPORT, NIAGARA COUNTY, NEW YORK

Prepared by

Removal Support Team Weston Solutions, Inc., Federal Programs Division, Edison, New Jersey 08837

Prepared for

U.S. Environmental Protection Agency Region II - Removal Action Branch, Edison, New Jersey 08837

> DCN #: RST-02-F-00983 TDD #: 02-03-03-0016

Approved by:	
RST	
M. Mahkopf Michael Mahnkopf	Date: 5/19/03
Michael Mahnkopf	-//-/
Project Manager	
RST Christoph Stannik	Date: 5/14/03
Group Leader	
USEPA	
	Date:
Kevin Matheis	
On-Scene Coordinator	

TABLE OF CONTENTS

		<u>Pa</u>	ige
1.0	BAC	KGROUND	1
2.0	INT	RODUCTION	2
3.0	UST	-1, 2,000 GALLON, ISOPROPANOL, UST	2
	3.1	The Tank Closure Procedure	2
	3.2	Soils Assessment Procedure	4
	3.3	Analytical Results and Discussion	4
4.0	UST	-2, 4,000 GALLON, DIESEL/NO. 2 FUEL OIL, UST	5
	4.1	The Tank Closure Procedure	5
	4.2	Soils Assessment Procedure	6
	4.3	Analytical Results and Discussion	7
5.0	UST	-3, 1,000 GALLON, DIESEL/NO. 2 FUEL OIL, UST	8
	5.1	The Tank Closure Procedure	9
	5.2	Soils Assessment Procedure	10
	5.3	Analytical Results and Discussion	10
6.0	SITE	E SPECIFIC QUALITY ASSURANCE/QUALITY CONTROL PLAN	12
	6.1	Sampling Equipment and Methods	12
	6.2	Chain of Custody	13
	6.3	Quality Assurance/Quality Control Samples	13
	6.4	Sample QA/QC Data	14
	6.5	Sample Shipment/Documentation	14

TABLE OF CONTENTS (continued)

LIST OF TABLES

TABLE 1: Post Excavation Soil Sample Results

LIST OF APPENDICES

APPENDIX 1: NYSDEC, Technical And Administrative Guidance Memorandum

(TAGM) #4046, Determination of Soil Cleanup Objectives and

Cleanup Levels

APPENDIX 2: Analytical Results (Form I's) & Data Packages

APPENDIX 3: Site Maps/Figures

1.0 BACKGROUND

The former Dussault Foundry site (Site) is located at 2 Washburn Street, Lockport, Niagara County, New York (Figure 1). The Dussault Foundry was in operation from approximately 1912 until 1995. Prior tenants at the Site from the 1880s until 1912 included the Charles Rake Mill Machinery Works and Levan Planing Mill and Cigar Box Manufacturing. The property has been vacant since 1995 and is still owned by Dussault Foundry.

The Site is located in a mixed industrial and residential area and comprises approximately 5.6 acres. Hazardous substances in drums and tanks are situated in and adjacent to the two on-site buildings known as the Cleaning Building and the Foundry Building. To the north of the site is Market Street, which is separated from the Dussault property by a 90-foot slope overlooking Market Street and the Erie Canal. Railroad tracks and a tourist train stop border the property to the south and west. Light industrial and residential properties are located within ¼ mile south of the site. To the east of the Site are residential properties and a tavern.

On October 1, 2002, EPA and RST conducted an expedited removal assessment (ERA) with representatives of the New York State Department of Environmental Conservation (NYSDEC), Niagara County Health Department (NCHD) and the Niagara County Department of Planning. Field tests performed during the ERA identified 11 drums containing characteristic hazardous wastes. Composite samples generated from grab samples were collected from 20 of the 200 drums on site and submitted for laboratory analysis. Analytical results indicated the presence of various hazardous substances and wastes contained in the drums including reactive wastes, corrosive wastes, lead, chromium, pyrene and toxaphene. The Site contained five above ground storage tanks (ASTs) that were in poor condition, two of which leaked all or part of their contents. The Site contained one, 2,000 gallon, isopropanal underground storage tank (UST), one, 4,000 gallon, diesel fuel/No. 2 fuel oil, UST and one, 1,000 gallon UST that reportedly contained diesel fuel/No. 2 fuel oil.

RST's scope of work for this project involved oversight during the decommissioning and removal of the USTs by WRS Infrastructure & Environment, Inc. and implementation of the subsequent subsurface soils evaluation. The subsurface evaluation included the collection and laboratory analysis of post excavation soil samples.

This report discusses all activities associated with the removal of the three USTs mentioned above. UST removal activities were performed on April 17, 2003.

2.0 INTRODUCTION

WRS Infrastructure & Environment, Inc. (WRS), under contract to USEPA, removed the following USTs at the Dussault Foundry site. See Drawing 1 - General Site Plan.

► 1 X 2,000 gallon, isopropanol, UST, located along the southern exterior perimeter of the Foundry Building (UST-1);

During UST decommissioning activities, it was observed that UST-1 measured 64" in diameter and 12' in length and contained approximately 2" of bottom residual.

▶ 1 X 4,000 gallon, diesel/No. 2 fuel oil UST, located along the northern exterior perimeter of the Foundry Building (UST-2);

During UST decommissioning activities, it was observed that UST-2 measured 64" in diameter and 24' in length and contained approximately 12" of material.

► 1 X 1,000 gallon, diesel/No. 2 fuel oil, UST, located along the northern exterior perimeter of the Foundry Building (UST-3);

During UST decommissioning activities, it was observed that UST-3 measured 48" in diameter and 10' 9" in length and was empty.

3.0 UST-1, 2,000 GALLON, ISOPROPANOL, UST

UST decommissioning activities for UST-1 were performed on April 17, 2003.

3.1 The Tank Closure Procedure

The subject UST was closed in accordance with API Bulletin 1604 "Recommended Practice for Abandonment or Removal of Used Underground Storage Tanks".

The basic procedures were as follows:

- 1. The overburden material (12") overlying the subject UST was removed and staged on polyethylene sheeting. The overburden material was field screened with a photoionization detector (PID). All PID measurements were negative (0 ppm).
- 2. A combustible gas indicator meter was used to measure oxygen concentration and level of flammable vapors as a percent of its lower explosive limit (LEL).
- 3. The tank interior was made "safe" by inerting its atmosphere with carbon dioxide gas (dry ice) at a rate of 2 pounds per 100 gallons of tank capacity. The concentration of oxygen inside the tank was reduced to a level insufficient to support combustion by replacing the oxygen with the carbon dioxide. Based on the capacity of the subject UST, approximately 40 pounds of dry ice was crushed and distributed evenly inside the tank.
- 4. The UST was excavated, staged on polyethylene sheeting and placed in a secure location with blocking around it to prevent movement.
- 5. Once it was determined the subject tank was safe for entry, it was opened and cleaned following API 2015 "Standards for Cleaning Petroleum Storage Tanks".
- 6. All bottom residual was removed from the tank and containerized in 55 gallon drums. The transportation and off-site disposal of the material will occur at a later date. See the project file for a copy of the disposal documentation.
- 7. UST-1 was rendered useless and labeled to warn against reuse, former contents and vapor state. The tank was cut up, added to, and disposed with the non-RCRA hazardous debris generated during site operations.
- 8. The subject UST excavation was backfilled with the previously staged overburden material.

3.2 Soils Assessment Procedure

Soils assessment procedures were performed on April 17, 2003 in accordance with the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation, "Draft DER-10, Technical Guidance For Site Investigation And Remediation" document, dated December 2002.

Soil samples were analyzed by GLA Laboratories, 1008 W. Ninth Avenue, King of Prussia, PA 19406, (610) 337-9992, New York State Department of Health (NYSDOH) Certification No. 11593. GLA Laboratories was subcontracted by WRS.

During UST removal activities, visual observations of the subject UST indicated sound structural integrity of the subject UST system. Groundwater was encountered in the excavation at 6.33' below ground surface.

In accordance with NYSDEC guidance, four sidewall soil samples (DF-IPA-01 through DF-IPA-04) were collected at the 0-6" interval directly above the soil/water interface (5.83' - 6.33' depth interval below ground surface). See Drawing 2 for soil sample locations.

There was no pipe run associated with the subject UST. Therefore, the collection and analysis of pipe run samples was not required.

A total of four soil samples were analyzed for volatile organic compounds (VOCs) and isopropanol (IPA).

3.3 Analytical Results and Discussion

Analytical results indicated that IPA concentrations were not detected (ND) in soil samples DF-IPA-01 through DF-IPA-04. VOC concentrations were also not detected (ND) in soil sample DF-IPA-04. Soil sample DF-IPA-01 exhibited concentrations of acetone (7.0 ppm) and carbon disulfide (0.011 ppm). Soil samples DF-IPA-02 and DF-IPA-03 exhibited benzene concentrations of 0.0013 ppm and 0.0014 ppm respectively and toluene concentrations of 0.005 ppm and 0.0031 respectively.

Soil sample DF-IPA-01 exhibited an acetone concentration (7.0 ppm) in excess of its NYSDEC recommended soil cleanup objective of 0.2 ppm as stated in the "NYSDEC Technical And Administrative Guidance Memorandum (TAGM) #4046, Determination of Soil Cleanup Objectives and Cleanup Levels" document (see Appendix 1).

All remaining contaminant concentrations were below their applicable recommended soil cleanup objectives. Analytical results are summarized in Table 1 and Drawing 2. The analytical results (Form I's) and the data package are included in Appendix 2.

4.0 UST-2, 4,000 GALLON, DIESEL/NO. 2 FUEL OIL, UST

UST decommissioning activities for UST-2 were performed on April 17, 2003.

4.1 The Tank Closure Procedure

The subject UST was closed in accordance with API Bulletin 1604 "Recommended Practice for Abandonment or Removal of Used Underground Storage Tanks". The basic procedures were as follows:

- 1. The overburden material (48") overlying the subject UST was removed and staged on polyethylene sheeting. The overburden material was field screened with a photoionization detector (PID). All PID measurements were negative (0 ppm).
- All liquid was pumped from the tank. Approximately 200 gallons of liquid material was
 containerized in 55-gallon drums. The transportation and off-site disposal of the
 material will occur at a later date. See the project file for a copy of the disposal
 documentation.
- 3. Upon removal of all liquid, the subject UST was excavated, staged on polyethylene sheeting and placed in a secure location with blocking around it to prevent movement.
- 4. A combustible gas indicator meter was used to measure oxygen concentration and level of flammable vapors as a percent of its lower explosive limit (LEL).

- 5. The tank interior was made "safe" by inerting its atmosphere with carbon dioxide gas (dry ice) at a rate of 2 pounds per 100 gallons of tank capacity. The concentration of oxygen inside the tank was reduced to a level insufficient to support combustion by replacing the oxygen with the carbon dioxide. Based on the capacity of the subject UST, approximately 80 pounds of dry ice was crushed and distributed inside the tank.
- 6. Once it was determined the subject tank was safe for entry, it was opened and cleaned following API 2015 "Standards for Cleaning Petroleum Storage Tanks".
- 7. All sludge/solids were removed from the tank and containerized in 55 gallon drums. The transportation and off-site disposal of the material will occur at a later date. See the project file for a copy of the disposal documentation.
- 8. UST-2 was rendered useless and labeled to warn against reuse, former contents and vapor state. The tank was cut up, added to, and disposed with the non-RCRA hazardous debris generated during site operations.
- The subject UST excavation was backfilled with the previously staged overburden material.

4.2 Soils Assessment Procedure

Soils assessment procedures were performed on April 17, 2003 in accordance with the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation, "Draft DER-10, Technical Guidance For Site Investigation And Remediation" document, dated December 2002.

Soil samples were analyzed by GLA Laboratories, 1008 W. Ninth Avenue, King of Prussia, PA 19406, (610) 337-9992, New York State Department of Health (NYSDOH) Certification No. 11593. GLA Laboratories was subcontracted by WRS.

During UST removal activities, visual observations of the subject UST indicated sound structural integrity of the subject UST system. Groundwater was not encountered in the excavation.

In accordance with NYSDEC guidance, five soil samples (DF-FO-01 through DF-FO-05) were collected at the 0-6" interval directly below the centerline of the subject UST (9.33' - 9.83' interval below ground surface). See Drawing 3 for soil sample locations.

There was no pipe run associated with the subject UST. Therefore, the collection and analysis of pipe run samples was not required.

A total of five soil samples were analyzed for VOCs and base neutral organic compounds (BNs).

4.3 Analytical Results and Discussion

Analytical results indicated that VOC concentrations were not detected (ND) in soil samples DF-FO-01. Analytical results indicated that soil sample DF-FO-01 exhibited the following individual BN compounds: benzo (a) anthracene (0.21 ppm); benzo (a) pyrene (0.36 ppm); benzo (b) fluoranthene (0.49 ppm); benzo (g,h,i) perylene (0.35 ppm); benzo (k) fluoranthene (0.19 ppm); chrysene (0.27 ppm); fluoranthene (0.25 ppm); indeno (1,2,3-cd) pyrene (0.35 ppm); phenanthrene (0.13 ppm) and pyrene (0.24 ppm).

Analytical results indicated that soil sample DF-FO-02 exhibited respective benzene and o-xylene concentrations of 0.0029 ppm and 0.0022 ppm. Analytical results also indicated that soil sample DF-FO-02 exhibited the following individual BN compounds: benzo (a) anthracene (0.11 ppm); benzo (a) pyrene (0.15 ppm); benzo (b) fluoranthene (0.35 ppm); benzo (g,h,i) perylene (0.14 ppm); benzo (k) fluoranthene (0.11 ppm); chrysene (0.23 ppm); fluoranthene (0.25 ppm); indeno (1,2,3-cd) pyrene (0.14 ppm); phenanthrene (0.29 ppm) and pyrene (0.32 ppm).

Analytical results indicated that soil sample DF-FO-03 exhibited respective benzene, carbon disulfide and tetrachloroethene concentrations of 0.0018 ppm, 0.0024 ppm and 0.0012 ppm. Analytical results also indicated that soil sample DF-FO-03 exhibited the following individual BN compounds: benzo (a) anthracene (0.28 ppm); benzo (a) pyrene (0.38 ppm); benzo (b) fluoranthene (0.53 ppm); benzo (g,h,i) perylene (0.25 ppm); benzo (k) fluoranthene (0.18 ppm); chrysene (0.37 ppm); fluoranthene (0.5 ppm); indeno (1,2,3-cd) pyrene (0.25 ppm); phenanthrene (0.23 ppm) and pyrene (0.45 ppm).

Analytical results indicated that soil sample DF-FO-04 exhibited a benzene concentration of 0.0025 ppm. Analytical results also indicated that soil sample DF-FO-04 exhibited the following individual BN compounds: benzo (b) fluoranthene (0.13 ppm); chrysene (0.1 ppm); fluoranthene (0.15 ppm); phenanthrene (0.12 ppm) and pyrene (0.14 ppm).

Analytical results indicated that soil sample DF-FO-05 exhibited the following individual VOC compounds: acetone (0.15 ppm); benzene (0.0019 ppm); ethylbenzene (0.0033 ppm); p,m-xylene (0.014 ppm) and o-xylene (0.01 ppm). Analytical results also indicated that soil sample DF-FO-05 exhibited the following individual BN compounds: acenaphthene (1.5 ppm); fluorene (1.5 ppm); 2-methylnaphthalene (10 ppm); naphthalene (1.1 ppm) and phenanthrene (7.6 ppm).

As discussed above, soil samples DF-FO-01, DF-FO-02 and DF-FO-03 exhibited respective benzo (a) pyrene concentrations of 0.36 ppm, 0.15 ppm and 0.38 ppm. These concentrations exceeded the NYSDEC recommended soil cleanup objective for benzo (a) pyrene of 0.061 ppm or its method detection limit (MDL) of 0.1 ppm (in this case). Refer to the "NYSDEC Technical And Administrative Guidance Memorandum (TAGM) #4046, Determination of Soil Cleanup Objectives and Cleanup Levels" document (see Appendix 1).

As discussed above, soil sample DF-FO-03 exhibited a benzo (a) anthracene concentration of 0.28 ppm, which exceeded its NYSDEC recommended soil cleanup objective of 0.224 ppm. Refer to the "NYSDEC Technical And Administrative Guidance Memorandum (TAGM) #4046, Determination of Soil Cleanup Objectives and Cleanup Levels" document (see Appendix 1).

All remaining contaminant concentrations were below their applicable recommended soil cleanup objectives. Analytical results are summarized in Table 1 and Drawing 3. The analytical results (Form I's) and the data package are included in Appendix 2.

5.0 UST-3, 1,000 GALLON, DIESEL/NO. 2 FUEL OIL, UST

UST decommissioning activities for UST-3 were performed on April 17, 2003.

5.1 The Tank Closure Procedure

The subject UST was closed in accordance with API Bulletin 1604 "Recommended Practice for Abandonment or Removal of Used Underground Storage Tanks". The basic procedures were as follows:

- 1. The overburden material (48") overlying the subject UST was removed and staged on polyethylene sheeting. The overburden material was field screened with a photoionization detector (PID). All PID measurements were negative (0 ppm).
- 2. The UST was excavated, staged on polyethylene sheeting and placed in a secure location with blocking around it to prevent movement.
- 3. A combustible gas indicator meter was used to measure oxygen concentration and level of flammable vapors as a percent of its lower explosive limit (LEL).
- 4. The tank interior was made "safe" by inerting its atmosphere with carbon dioxide gas (dry ice) at a rate of 2 pounds per 100 gallons of tank capacity. The concentration of oxygen inside the tank was reduced to a level insufficient to support combustion by replacing the oxygen with the carbon dioxide. Based on the capacity of the subject UST, approximately 20 pounds of dry ice was crushed and distributed inside the tank.
- Once it was determined the subject tank was safe for entry, it was opened and cleaned following API 2015 "Standards for Cleaning Petroleum Storage Tanks".
- 6. All sludge/solids were removed from the tank and containerized in 55 gallon drums. The transportation and off-site disposal of the material will occur at a later date. See the project file for a copy of the disposal documentation.
- 7. UST-3 was rendered useless and labeled to warn against reuse, former contents and vapor state. The tank will be scrapped at a later date with other scrap metal generated from building demolition.

8. The subject UST excavation was backfilled with the previously staged overburden material.

5.2 Soils Assessment Procedure

Soils assessment procedures were performed on April 17, 2003 in accordance with the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation, "Draft DER-10, Technical Guidance For Site Investigation And Remediation" document, dated December 2002.

Soil samples were analyzed by GLA Laboratories, 1008 W. Ninth Avenue, King of Prussia, PA 19406, (610) 337-9992, New York State Department of Health (NYSDOH) Certification No. 11593. GLA Laboratories was subcontracted by WRS.

During UST removal activities, visual observations of the subject UST indicated sound structural integrity of the subject UST system. Groundwater was not encountered in the excavation.

In accordance with NYSDEC guidance, three soil samples (DF-FO-06 through DF-FO-08) were collected at the 0-6" interval directly below the centerline of the subject UST (8.0' - 8.5' interval below ground surface). See Drawing 3 for soil sample locations.

There was no pipe run associated with the subject UST. Therefore, the collection and analysis of pipe run samples was not required.

A total of three soil samples were analyzed for VOCs and BNs.

5.3 Analytical Results and Discussion

Analytical results indicated that VOC concentrations were not detected (ND) in soil samples DF-FO-08. Analytical results indicated that BN concentrations were not detected (ND) in soil sample DF-FO-06.

Analytical results indicated that soil sample DF-FO-06 exhibited a benzene concentration of 0.0014 ppm.

Analytical results indicated that soil sample DF-FO-07 exhibited respective benzene and toluene concentrations of 0.0028 ppm and 0.0024 ppm. Analytical results also indicated that soil sample DF-FO-07 exhibited the following individual BN compounds: benzo (a) anthracene (0.3 ppm); benzo (a) pyrene (0.49 ppm); benzo (b) fluoranthene (0.95 ppm); benzo (g,h,i) perylene (0.41 ppm); benzo (k) fluoranthene (0.34 ppm); chrysene (0.46 ppm); dibenz (a,h) anthracene (0.12 ppm); fluoranthene (0.25 ppm); indeno (1,2,3-cd) pyrene (0.42 ppm); phenanthrene (0.13 ppm) and pyrene (0.26 ppm).

Analytical results also indicated that soil sample DF-FO-08 exhibited the following individual BN compounds: acenaphthene (0.23 ppm); benzo (a) anthracene (0.35 ppm); benzo (a) pyrene (0.71 ppm); benzo (b) fluoranthene (0.91 ppm); benzo (g,h,i) perylene (0.57 ppm); benzo (k) fluoranthene (0.3 ppm); chrysene (0.42 ppm); dibenz (a,h) anthracene (0.15 ppm); fluoranthene (0.4 ppm); indeno (1,2,3-cd) pyrene (0.58 ppm); phenanthrene (0.22 ppm) and pyrene (0.43 ppm).

As discussed above, soil samples DF-FO-07 and DF-FO-08 exhibited respective benzo (a) anthracene concentrations of 0.3 ppm and 0.35 ppm, which exceeded its NYSDEC recommended soil cleanup objective of 0.224 ppm. Refer to the "NYSDEC Technical And Administrative Guidance Memorandum (TAGM) #4046, Determination of Soil Cleanup Objectives and Cleanup Levels" document (see Appendix 1).

As discussed above, soil samples DF-FO-07 and DF-FO-08 exhibited respective chrysene concentrations of 0.46 ppm and 0.42 ppm, which exceeded its NYSDEC recommended soil cleanup objective of 0.4 ppm. Refer to the "NYSDEC Technical And Administrative Guidance Memorandum (TAGM) #4046, Determination of Soil Cleanup Objectives and Cleanup Levels" document (see Appendix 1).

As discussed above, soil samples DF-FO-07 and DF-FO-08 exhibited respective dibenz (a,h) anthracene concentrations of 0.12 ppm and 0.15 ppm. These concentrations exceeded the NYSDEC recommended soil cleanup objective for dibenz (a,h) anthracene of 0.014 ppm or its method detection limit (MDL) of 0.1 ppm (in this case).

Refer to the "NYSDEC Technical And Administrative Guidance Memorandum (TAGM) #4046, Determination of Soil Cleanup Objectives and Cleanup Levels" document (see Appendix 1).

Analytical results are summarized in Table 1 and Drawing 3. The analytical results (Form I's) and the data package are included in Appendix 2.

6.0 SITE SPECIFIC QUALITY ASSURANCE/QUALITY CONTROL PLAN

The objective of this QA/QC plan is to provide analytical results which are legally defensible in a court of law. The QA/QC plan incorporated procedures for field sampling, chain of custody, laboratory analyses, and reporting to assure generation of sound analytical results. Sampling procedures were conducted in accordance with USEPA protocols.

6.1 Sampling Equipment and Methods

Samples were collected at the locations and depths as described in this report. Procedural changes dictated by field conditions were fully documented in the field notes.

Equipment utilized for this project were dedicated plastic scoops and spatulas.

All samples were transferred immediately after collection into sample bottles selected by parameter as listed below.

The type of sample container required for the Dussault Foundry UST soils assessment were as follows:

- a. Volatile Organic Compounds 3 X 5g En Core Samplers;
- b. Isopropanol 3 X 5g En Core Samplers;
- c. Base Neutral Organic Compounds 8 oz glass bottle;

All soil samples were packed on ice immediately following collection.

All samples were labeled with the following information:

- a. sample number;
- b. date and time of collection;
- c. site name;
- d. sample collector's initials;
- e. analyses required.

Accurate field notes were maintained which included the information listed above. Additional information included, but was not limited to:

- a. sample location sketch;
- b. sample method;
- c. general comments, including any modification from the sample plan.

6.2 Chain of Custody

Chain of custody was maintained for all samples. Chain of custody originated with the collection of the samples and was maintained until the samples were relinquished to the laboratory.

The chain of custody form detailed the following information:

- a. sample identification number;
- b. sample collection date and time;
- c. sample matrix;
- d. expected contaminant concentration (low, medium, high);
- e. sample type (grab or composite);
- f. sample preservation;
- g. analytical parameters;
- h. name(s) and signatures(s) of sampler(s);
- i. signatures(s) of individual(s) with control over samples.

6.3 Quality Assurance/Quality Control Samples

Because a Level 1 QA objective was specified for this project, the collection of QA/QC samples (duplicates, matrix spikes/matrix spike duplicates) was not required.

6.4 Sample QA/QC Data

A Reduced Deliverable Format QA/QC package was provided for all samples submitted for analysis.

6.5 Sample Shipment/Documentation

On 04/17/03, four soil samples (DF-IPA-01 through DF-IPA-04) were shipped to GLA Laboratories via Federal Express Airbill No. 837726191267. On 04/18/03, eight soil samples (DF-FO-01 through DF-FO-08) were shipped to GLA Laboratories via Federal Express Airbill No. 837726191245. Copies of the airbills are included in Appendix 2.

TABLE 1

DUSSAULT FOUNDRY, LOCKPORT, NEW YORK POST EXCAVATION SOIL SAMPLE RESULTS

Page 1

Sample ID	Date	Depth (below	Analytical Parameters	Location
		grade)	and Results (ppm)	
DF-IPA-01	04/17/03	5.83' - 6.33'	Acetone = 7.0 Carbon disulfide = 0.011 Isopropanol = None detected	2,000 Gallon, IPA UST
DF-IPA-02	04/17/03	5.83' - 6.33'	Benzene = 0.0013 Toluene = 0.005 Isopropanol = None detected	2,000 Gallon, IPA UST
DF-IPA-03	04/17/03	5.83' - 6.33'	Benzene = 0.0014 Toluene = 0.0031 Isopropanol = None detected	2,000 Gallon, IPA UST
DF-IPA-04	04/17/03	5.83' - 6.33'	VOCs = None detected Isopropanol = None detected	2,000 Gallon, IPA UST
DF-FO-01	04/17/03	9.33' - 9.83'	VOCs = None detected Benzo (a) anthracene = 0.21 Benzo (a) pyrene = 0.36 Benzo (b) fluoranthene = 0.49 Benzo (g,h,i) perylene = 0.35 Benzo (k) fluoranthene = 0.19 Chrysene = 0.27 Fluoranthene = 0.25 Indeno (1,2,3-cd) pyrene = 0.35 Phenanthrene = 0.13 Pyrene = 0.24	4,000 Gallon, Diesel/No. 2 Fuel Oil UST
DF-FO-02	04/17/03	9.33' - 9.83'	Benzene = 0.0029 o-xylene = 0.0022 Benzo (a) anthracene = 0.11 Benzo (b) fluoranthene = 0.35 Benzo (g,h,i) perylene = 0.14 Benzo (k) fluoranthene = 0.11 Chrysene = 0.23 Fluoranthene = 0.25 Indeno (1,2,3-cd) pyrene = 0.14 Phenanthrene = 0.29 Pyrene = 0.32	4,000 Gallon, Diesel/No. 2 Fuel Oil UST

TABLE 1

DUSSAULT FOUNDRY, LOCKPORT, NEW YORK POST EXCAVATION SOIL SAMPLE RESULTS

Page 2

				Page Z
Sample ID	Date	Depth (below grade)	Analytical Parameters and Results (ppm)	Location
DF-FO-03	04/17/03	9.33' - 9.83'	Benzene = 0.0018 Carbon disulfide = 0.0024 Tetrachloroethene = 0.0012 Benzo (a) anthracene = 0.28 Benzo (b) fluoranthene = 0.53 Benzo (g,h,i) perylene = 0.25 Benzo (k) fluoranthene = 0.18 Chrysene = 0.37 Fluoranthene = 0.5 Indeno (1,2,3-cd) pyrene = 0.25 Phenanthrene = 0.23 Pyrene = 0.45	4,000 Gallon, Diesel/No. 2 Fuel Oil UST
DF-FO-04	04/17/03	9.33' - 9.83'	Benzene = 0.0025 Benzo (b) fluoranthene = 0.13 Chrysene = 0.1 Fluoranthene = 0.15 Phenanthrene = 0.12 Pyrene = 0.14	4,000 Gallon, Diesel/No. 2 Fuel Oil UST
DF-FO-05	04/17/03	9.33' - 9.83'	Acetone = 0.15 Benzene = 0.0019 Ethylbenzene = 0.0033 p,m-xylene = 0.014 o-xylene = 0.01 Acenaphthene = 1.5 Fluorene = 1.5 2-Methylnaphthalene = 10 Naphthalene = I.1 Phenanthrene = 7.6	4,000 Gallon, DieseI/No. 2 Fuel Oil UST
DF-FO-06	04/17/03	8.0' - 8.5'	Benzene = 0.0014 BNs = None Detected	I,000 Gallon, Diesel/No. 2 Fuel Oil UST

TABLE 1

DUSSAULT FOUNDRY, LOCKPORT, NEW YORK POST EXCAVATION SOIL SAMPLE RESULTS

Page 3

Sample ID	Date	Depth (below grade)	Analytical Parameters and Results (ppm)	Location
DF-FO-07	04/17/03	8.0' - 8.5'	Benzene = 0.0028 Toluene = 0.0024 Benzo (a) anthracene = 0.3 Benzo (b) fluoranthene = 0.95 Benzo (g,h,i) perylene = 0.41 Benzo (k) fluoranthene = 0.34 Chrysene = 0.46 Dibenz (a,h) anthracene = 0.12 Fluoranthene = 0.25 Indeno (1,2,3-cd) pyrene = 0.42 Phenanthrene = 0.13 Pyrene = 0.26	1,000 Gallon, Diesel/No. 2 Fuel Oil UST
DF-FO-08	04/17/03	8.0' - 8.5'	VOCs = None detected Acenaphthene = 0.23 Benzo (a) anthracene = 0.35 Benzo (a) pyrene = 0.71 Benzo (b) fluoranthene = 0.91 Benzo (g,h,i) perylene = 0.57 Benzo (k) fluoranthene = 0.3 Chrysene = 0.42 Dibenz (a,h) anthracene = 0.15 Fluoranthene = 0.4 Indeno (1,2,3-cd) pyrene = 0.58 Phenanthrene = 0.22 Pyrene = 0.43	1,000 Gallon, Diesel/No. 2 Fuel Oil UST

APPENDIX 1

NYSDEC, TECHNICAL AND ADMINISTRATIVE GUIDANCE MEMORANDUM (TAGM) #4046, DETERMINATION OF SOIL CLEANUP OBJECTIVES AND CLEANUP LEVELS

More information from this division:

Division of Environmental Remediation **More TAGMs**

TECHNICAL AND ADMINISTRATIVE GUIDANCE **MEMORANDUM #4046**

DETERMINATION OF SOIL CLEANUP OBJECTIVES AND CLEANUP LEVELS

TO:

Regional Haz. Waste Remediation Engineers, Bureau

Directors, and Section Chiefs

FROM:

Michael J. O'Toole, Jr., Director, Division of Hazardous Waste

Remediation

SUBJECT: DIVISION TECHNICAL AND ADMINISTRATIVE GUIDANCE

MEMORANDUM: DETERMINATION OF SOIL CLEANUP

OBJECTIVES AND CLEANUP LEVELS

DATE:

JAN 24, 1994

Michael J. O'Toole, Jr. (signed)

Appendix A - Recommended Soil Cleanup Objectives

Appendix

B - Total Organic Carbon (TOC)

Table 1 - Volatile Organic Contaminants

Table 2 - Semi-Volatile Organic Contaminants

Table 3 - Organic Pesticides / Herbicides and PCBs

Table 4 - Heavy Metals

The cleanup goal of the Department is to restore inactive hazardous waste sites to predisposal conditions, to the extent feasible and authorized by law. However, it is recognized that restoration to predisposal conditions will not always be feasible.

1. INTRODUCTION:

This TAGM provides a basis and procedure to determine soil cleanup levels at individual Federal Superfund, State Superfund, 1986 EQBA Title 3 and Responsible Party (RP) sites, when the Director of the DHWR determines that cleanup of a site to predisposal conditions is not possible or feasible.

The process starts with development of soil cleanup objectives by the Technology Section for the contaminants identified by the Project Managers. The Technology Section uses the procedure described in this TAGM to develop soil cleanup objectives.

Attainment ofthese generic soil cleanup objectives will, at a minimum, eliminate all significant threats to human health and/or the environment posed by the inactive hazardous waste site. Project Managers should use these cleanup objectives in selecting alternatives in the Feasibility Study (FS). Based on the proposed selected remedial technology (outcome of FS), final site specific soil cleanup levels are established in the Record of Decision (ROD) for these sites.

It should be noted that even after soil cleanup levels are established in the ROD, these levels may prove to be unattainable when remedial construction begins. In that event, alternative remedial actions or institutional controls may be necessary to protect the environment.

2. BASIS FOR SOIL CLEANUP OBJECTIVES:

The following alternative bases are used to determine soil cleanup objectives:

- Human health based levels that correspond to excess lifetime cancer risks of one in a million for Class A¹ and B² carcinogens, or one in 100,000 for Class C³ carcinogens. These levels are contained in USEPA's Health Effects Assessment Summary Tables (HEASTs) which are compiled and updated quarterly by the NYSDEC's Division of Hazardous Substances Regulation;
- 2. Human health based levels for systemic toxicants, calculated from Reference Doses (RfDs). RfDs are an estimate of the daily exposure an individual (including sensitive individuals) can experience without appreciable risk of health effects during a lifetime. An average scenario of exposure in which children ages one to six (who exhibit the greatest tendency to ingest soil) is assumed. An intake rate of 0.2 gram/day for a five-year exposure period for a 16-kg child is assumed. These levels are contained in USEPA's Health Effects Assessment Summary Tables (HEASTs) which are compiled and updated quarterly by the NYSDEC's Division of Hazardous Substances Regulation;
- 3. Environmental concentrations which are protective of groundwater/drinking water quality; based on promulgated or proposed New York State Standards;
- 4. Background values for contaminants; and
- Detection limits.

A recommendation on the appropriate cleanup objective is based on the criterion that produces the most stringent cleanup level using criteria a, b, and c for organic chemicals, and criteria a, b, and d for heavy metals. If criteria a and/or b are below criterion d for a contaminant, its background value should be used as the cleanup objective. However, cleanup objectives developed using this approach must be, at a minimum, above the method detection limit (MDL) and it is preferable to have the soil cleanup objectives above the Contract Required Quantitation Limit (CRQL) as defined by NYSDEC. If the cleanup objective of a compound is "non-detectable", it should mean that it is not detected at the MDL. Efforts should be made to obtain the best MDL detection possible when selecting a laboratory and analytical protocol.

3. DETERMINATION OF SOIL CLEANUP GOALS FOR ORGANICS IN SOIL FOR PROTECTION OF WATER QUALITY

The water/soil partitioning theory is used to determine soil cleanup objectives which would be protective of groundwater/drinking water quality for its best use. This theory is conservative in nature and assumes that contaminated soil and groundwater are in direct contact. This theory is based upon the ability of organic matter in soil to adsorb organic chemicals. The approach predicts the maximum amount of contamination that may remain in soil so that leachate from the contaminated soil will not violate groundwater and/or drinking water standards.

This approach is not used for heavy metals, which do not partition appreciably into soil organic matter. For heavy metals, eastern USA or New York State soil background values may be used as soil cleanup objectives. A list of values that have been tabulated is attached. Soil background data near the site, if available, is preferable and should be used as the cleanup objective for such metals. Background samples should be free from the influences of this site and any other source of contaminants. Ideal background samples may be obtained from uncontaminated upgradient and upwind locations.

Protection of water quality from contaminated soil is a two-part problem. The first is predicting the amount of contamination that will leave the contaminated media as leachate. The second part of the problem is to determine how much of that contamination will actually contribute to a violation of groundwater standards upon reaching and dispersing into groundwater. Some of the

contamination which initially leaches out of soil will be absorbed by other soil before it reaches groundwater. Some portion will be reduced through natural attenuation or other mechanism.

PART A: PARTITION THEORY MODEL

There are many test and theoretical models which are used to predict leachate quality given a known value of soil contamination. The Water-Soil Equilibrium Partition Theory is used as a basis to determine soil standard or contamination limit for protection of water quality by most of the models currently in use. It is based on the ability of organic carbon in soil to adsorb contamination. Using a water quality value which may not be exceeded in leachate and the partition coefficient method, the equilibrium concentration (Cs) will be expressed in the same units as the water standards. The following expression is used:

Allowable Soil Concentration $Cs = f \times Koc \times Cw \dots (1)$

Where: f = fraction of organic carbon of the natural soil medium.

Koc = partition coefficient between water and soil media. Koc can be estimated by the following equation:

log Koc = 3.64 - 0.55 log S

S = water solubility in ppm Cw = appropriate water quality value from TOGS 1.1.1

Most Koc and S values are listed in the Exhibit A-1 of the USEPA Superfund Public Health Evaluation Manual (EPA/540/1-86/060). The Koc values listed in this manual should be used for the purpose. If the Koc value for a contaminant is not listed, it should be estimated using the above mentioned equation.

PART B: PROCEDURE FOR DETERMINATION OF SOIL CLEANUP OBJECTIVES

When the contaminated soil is in the unsaturated zone above the water table, many mechanisms are at work that prevent all of the contamination that would leave the contaminated soil from impacting groundwater. These mechanisms occur during transport and may work simultaneously. They include the following: (1) volatility, (2) sorption and desorption, (3) leaching and diffusion, (4) transformation and degradation, and (5) change in concentration of contaminants after reaching and/or mixing with the groundwater surface. To account for these mechanisms, a

correction factor of 100 is used to establish soil cleanup objectives. This value of 100 for the correction is consistent with the logic used by EPA in its Dilution Attenuation Factor (DAF) approach for EP Toxicity and TCLP. (Federal Register/Vol. 55, No. 61, March 29, 1990/Pages 11826-27). Soil cleanup objectives are calculated by multiplying the allowable soil concentration by the correction factor. If the contaminated soil is very close (<3' - 5') to the groundwater table or in the groundwater, extreme caution should be exercised when using the correction factor of 100 (one hundred) as this may not give conservative cleanup objectives. For such situations the Technology Section should be consulted for site-specific cleanup objectives.

Soil cleanup objectives are limited to the following maximum values. These values are consistent with the approach promulgated by the States of Washington and Michigan.

- 1. Total VOCs < 10 ppm.
- 2. Total Semi VOCs < 500 ppm.
- 3. Individual Semi VOCs < 50 ppm.
- 4. Total Pesticides < 10 ppm.

One concern regarding the semi-volatile compounds is that some of these compounds are so insoluble that their Cs values are fairly large. Experience (Draft TOGS on Petroleum Contaminated Soil Guidance) has shown that soil containing some of these insoluble substances at high concentrations can exhibit a distinct odor even though the substance will not leach from the soil. Hence any time a soil exhibits a discernible odor nuisance, it shall not be considered clean even if it has met the numerical criteria.

4. DETERMINATION OF FINAL CLEANUP LEVELS:

Recommended soil cleanup objectives should be utilized in the development of final cleanup levels through the Feasibility Study (FS) process. During the FS, various alternative remedial actions developed during the Remedial Investigation (RI) are initially screened and narrowed down to the list of potential alternative remedial actions that will be evaluated in detail. These alternative remedial actions are evaluated using the criteria discussed in TAGM 4030, Selection of Remedial Actions at Inactive Hazardous Waste Sites, revised May 15, 1990, and the preferred remedial action will be selected. After the detailed evaluation of the preferred remedial action, the final cleanup levels which can be actually achieved using the preferred remedial action must be established. Remedy selection, which will include final cleanup levels, is the subject of TAGM 4030.

Recommended soil cleanup objectives that have been calculated by the Technology Section are presented in Appendix A. These objectives are based on a soil organic carbon content of 1% (0.01) and should be adjusted for the actual organic carbon content if it is known. For determining soil organic carbon content, use attached USEPA method (Appendix B). Please contact the Technology Section, Bureau of Program Management for soil cleanup objectives not included in Appendix A.

TAGM 4046 Footnotes:

- 1. Class A are proved human carcinogens
- 2. Class B are probable human carcinogens
- 3. Class C are possible human carcinogens

Appendix A - Recommended Soil Cleanup Objectives:

Table 1 - Volatile Organic Contaminants

Table 2 - Semi-Volatile Organic Contaminants

Table 3 - Organic Pesticides / Herbicides and PCBs

<u>Table 4 - Heavy Metals</u>

Appendix B - Total Organic Carbon (TOC)

APPENDIX B TO TAGM 4046

Conventional Sediment Variables Total Organic Carbon (TOC) March 1986

TOTAL ORGANIC CARBON (TOC)

USE AND LIMITATIONS

Total organic carbon is a measure of the total amount of nonvolatile, volatile, partially volatile, and particulate organic compounds in a sample. Total organic carbon is independent of the oxidation state of the organic compounds and is not a measure of the organically bound and inorganic elements that can contribute to the biochemical and chemical oxygen demand tests.

Because inorganic carbon (e.g., carbonates, bicarbonates, free CO₂) will interfere with total organic carbon determinations, samples should be treated to remove inorganic carbon before being analyzed.

FIELD PROCEDURES

Collection

Samples can be collected in glass or plastic containers. A minimum

sample size of 25 g is recommended. If unrepresentative material is to be removed from the sample, it should be removed in the field under the supervision of the chief scientist and noted on the field log sheet.

Processing

Samples should be stored frozen and can be held for up to 6 months under that condition. Excessive temperatures should not be used to thaw samples.

LABORATORY PROCEDURES

Analytical Procedures

- Equipment
 - Induction furnace

e.g., Leco WR-12, Dohrmann DC-50, Coleman CH analyzer, Perkin Elmer 240 elemental analyzer, Carlo-Erba 1106

- Analytical balance
 - 0.1 mg accuracy
- Desiccator
- Combustion boats
- o 10 percent hydrochloric acid (HCL)
- Cupric oxide fines (or equivalent material)
- Benzoic acid or other carbon source as a standard.
- Equipment preparation
 - Clean combustion boats by placing them in the induction furnace at 950° C. After being cleaned, combustion boats should not be touched with bare hands.
 - Cool boats to room temperature in a desiccator.
 - Weigh each boat to the nearest 0.1 mg.
- Sample preparation
 - Allow frozen samples to warm to room temperature.
 - Homogenize each sample mechanically, incorporating any overlying water.
 - Transfer a representative aliquot (5-10 g) to a clean container.
- Analytical procedures
 - Dry samples to constant weight at 70 + 2°C. The drying temperature is relatively low to minimize loss of volatile organic compounds.
 - Cool dried samples to room temperature in a desiccator.
 - Grind sample using a mortar and pestle to break up aggregates.
 - Transfer a representative aliquot (0.2-0.5 g) to a clean,

preweighed combustion boat.

- o Determine sample weight to the nearest 0.1 mg.
- o Add several drops of HCL to the dried sample to remove carbonates. Wait until the effervescing is completed and add more acid. Continue this process until the incremental addition of acid causes no further effervescence. Do not add too much acid at one time as this may cause loss of sample due to frothing. Exposure of small samples (i.e., 1-10 mg) having less than 50 percent carbonate to an HCL atmosphere for 24-48 h has been shown to be an effective means of removing carbonates (Hedges and Stern 1984). If this method is used for sample sizes greater than 10 mg, its effectiveness should be demonstrated by the user.
- o Dry the HCL-treated sample to constant weight at 70 + 2° C.
- o Cool to room temperature in a desiccator.
- Add previously ashed cupric oxide fines or equivalent material (e.g., alumina oxide) to the sample in the combustion boat.
- \circ Combust the sample in an induction furnace at a minimum temperature of 950 + 10 $^{\rm o}$ C.
- Calculations
 - If an ascarite-filled tube is used to capture CO₂, the carbon content of the sample can be calculated as follows:

Percent carbon =
$$\frac{A (0.2729) (100)}{B}$$

Where:

A = the weight (g) of CO₂ determined by weighing the ascarite tube before and after combustion

B = dry weight (g) of the unacidified sample in the combustion boat

0.2729 = the ratio of the molecular weight of carbon to the molecular weight of carbon dioxide

A silica gel trap should be placed before the ascarite tube to catch any moisture driven off during sample combustion. Additional silica gel should be placed at the exit end of the ascarite tube to trap any water that might be formed by reaction of the trapped CO₂ with the NaOH in the ascarite.

 If an elemental analyzer is used, the amount of CO₂ will be measured by a thermal conductivity detector. The instrument should be calibrated daily using an empty boat blank as the zero point and at least two standards. Standards should bracket the expected range of carbon concentrations in the samples.

QA/QC Procedures

It is critical that each sample be thoroughly homogenized in the laboratory before a subsample is taken for analysis. Laboratory homogenization should be conducted even if samples were homogenized in the field.

Dried samples should be cooled in a desiccator and held there until they are weighed. If a desiccator is not used, the sediment will accumulate ambient moisture and the sample weight will be overestimated. A color-indicating desiccant is recommended so that spent desiccant can be detected easily. Also, the seal on the desiccator should be checked periodically and, if necessary, the ground glass rims should be greased or the "O" rings should be replaced.

It is recommended that triplicate analyses be conducted on one of every 20 samples, or on one sample per batch if less than 20 samples are analyzed. A method blank should be analyzed at the same frequency as the triplicate analyses. The analytical balance should be inspected daily and calibrated at least once per week. The carbon analyzer should be calibrated daily with freshly prepared standards. A standard reference material should be analyzed at least once for each major survey.

DATA REPORTING REQUIREMENTS

Total organic carbon should be reported as a percentage of the dry weight of the unacidified sample to the nearest 0.1 unit. The laboratory should report the results of all samples (including QA replicates, method blanks, and standard reference measurements) and should note any problems that may have influenced sample quality. The laboratory should also provide a summary of the calibration procedure and results (e.g., range covered, regression equation, coefficient of determination).

New York State Department of Environmental Conservation

Services Programs (Subject Index) Search Highlights Contact Us Home

More information from this division:

APPENDIX A of TAGM #4046

TABLE 1

Recommended soil cleanup objectives (mg/kg or ppm) Volatile Organic Contaminants Shortcut to TAGM 4046 Tables for SVOCs | Pesticides/PCBs | Heavy Metals

Rec. Soil CRQL Cleanup (ppb) Objective (ppm)	0.2	90.0	2.7	0.3	2.7	9.0	1.7	1.9	0.3
CRC (ppl	10	2	2	10	2	2	2	10	2
USEPA Health Based (ppm) Carcin- Systemic ogens Toxicants	8,000	N/A	300,000	4,000	8,000	90	2,000	N/A	800
USEF Base Card	N/A	24	N/A	N/A	N/A	5.4	N/A	N/A	114
a ** Allowable Soil Soil cleanup conc., objectives Cs (ppm) to protect GW quality (ppm)	0.11	90.0	2.7	0.3	2.7	9.0	1.7	1.9	0.30
a Allowable soil conc., Cs (ppm)	0.0011	0.0006	0.027	0.003	0.027	900.0	0.017	0.019	0.003
Groundwater Allowable Soil clea Criteria, Cw (ug/l or ppb)	50	0.7	50	50	50	5	5	50	7
Partition Coefficient, Koc	2.2	83	54 *	4.5 *	54 *	110 *	330	37 *	31
Contaminant	Acetone	Benzene	Benzoic Acid	2-Butanone	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform

NYSDEC TAC	NYSDEC TAGM #4046 - VÓCs Soil Cleanup Críteria Table	î Criteria Table	. •••! . ••	on's	75 hy		•	,	Page 2 of 3
	Dibromochloromethane N/A	N/A	50	N/A	N/A	N/A	N/A	5	N/A
	1,2-Dichlorobenzene	1,700	4.7	0.079	7.9	N/A	N/A	330	7.9
	1,3-Dichlorobenzene	310 *	5	0.0155	1.55	N/A	N/A	330	1.6
	1,4-Dichlorobenzene	1,700	5	0.085	8.5	N/A	N/A	330	8.5
	1,1-Dichloroethane	30	5	0.002	0.2	N/A	N/A		0.2
	1,2-Dichloroethane	14	5	0.001	0.1	7.7	N/A	5	0.1
	1,1-Dichloroethene	65	5	0.004	0.4	12	700	5	0.4
	1,2-Dichloroethene (trans)	29	2	0.003	0.3	N/A	2,000	2	0.3
	1-3 dichloropropane	51	5	0.003	0.3	N/A	N/A	5	0.3
	Ethylbenzene	1,100	5	0.055	5.5	N/A	8,000	2	5.5
	113 Freon (1,1,2 Trichloro- 1,2,2 Trifluoroethane)	1,230 *	5	0.060	6.0	N/A	200,000	5	6.0
	Methylene chloride	21	5	0.001	0.1	93	2,000	5	0.1
	4-Methyl-2-Pentanone	* 61	50	0.01	1,0	N/A	N/A	10	1.0
	Tetrachloroethene	277	5	0.014	1.4	14	800	2	1.4
	1,1,1-Trichloroethane	152	5	0.0076	0.76	N/A	2,000	2	0.8
	1,1,2,2- Tetrachloroethane	118	2	900.0	9.6	35	N/A	5	9.0
	1,2,3-trichloropropane	68	5	0.0034	0.34	N/A	80	5	0.4
	1,2,4-trichlorobenzene	* 029	5	0.034	3,4	N/A	N/A	330	3.4
	Toluene	300	5	0.015	1.5	N/A	20,000	5	1.5
	Trichloroethene	126	5	0.007	0.70	64	N/A	5	0.7
	Vinyl chloride	22	2	0.0012	0.12	N/A	N/A	10	0.2
	Xylenes	240	5	0.012	1.2	N/A	200,000	1 1	1.2

- a. Allowable Soil Concentration $Cs = f \times Cw \times Koc$
- b. Soil cleanup objective = Cs x Correction Factor (CF)

N/A is not available

- log Koc = -0.55 log S + 3.64, where S is solubility in water in ppm. All other Koc values are experimental values. Partition coefficient is calculated by using the following equation:
- ** Correction Factor (CF) of 100 is used as per TAGM #4046
- *** As per TAGM #4046, Total VOCs < 10 ppm.

Note: Soil cleanup objectives are developed for soil organic carbon content (f) of 1%, and should be adjusted for the actual soil organic carbon content if it is known.

Back to top of page

Environmental Conservation New York State Department of

More information from this division:

APPENDIX A of TAGM #4046

Recommended soil cleanup objectives (mg/kg or ppm) Semi-Volatile Organic Contaminants Shortcut to TAGM 4046 Tables for VOCs | Pesticides/PCBs | Heavy Metals

Contaminant	Partition Coefficient, Koc	Groundwater Allowable Soil Standards/ Soil Clea Criteria, Conc., Obje (ug/l or ppb)	a Allowable soil conc., Cs (ppm)	a h ** Allowable Soil soil cleanup conc., objectives Cs (ppm) to protect GW quality (ppm)	USEPA Health Based (ppm) Carcin- Systemic ogens Toxicants	Health ppm) Systemic Toxicants	CRQL (ppb)	*** Rec. Soil Cleanup Objective (ppm)
	4,600	20	6.0	90.06	N/A	5,000	330	50.0 ***
Acenaphthylene	2,056 *	20	0.41	41.0	N/A	N/A	330	41.0
	13.8	5	0.001	0.1	123	N/A	330	0.1
	14,000	50	7.00	700.0	N/A	20,000	330	50.0 ***
	1,380,000	0.002	0.03	3.0	0.224	N/A	330	0.224 or MDL
Benzo (a) pyrene	5,500,000	0.002 (ND) 0.110	0.110	11.0	0.0609	N/A	330	0.061 or MDL
	550,000	0.002	0.011	1.1	N/A	N/A	330	1.1

4-4	
-	
\sim 1	
۳,	
<u>_e</u>	
2	
-ಡ	
_	
ಡ	
~ ご	
១	
.=	
بر.	
J	
Q	•
- 5	•
Ξ	
ď	
.≌	
$\overline{\mathbf{C}}$	
_	
, <u>,</u>	
٠,>	
91	
Ś	
\tilde{z}	
\supset	
SV	
S	
٠.	
٠.	
으	
7	
·₩	
#	
·≥	
5	
\preceq	
Ϋ́	
TAGN	
CT	
SUE	
\neg	
S	
\succ	
ァ	
$\overline{}$	

Benzo (g,h,l) 1,600,000 5 Benzo (k) 1,600,000 0.002 0.011 Benzo (k) 550,000 0.002 0.011 bis(2-ethylhexyl) 8,706 * 50 4.35 Butylbenzylphthlate 2,430 50 0.004 Chrysene 200,000 0.002 0.004 4- Chloroaniline 43 **** 50 0.002 4- Chlorophenol 15 * 50 0.002 2-Chlorophenol 15 * 50 0.002 Dibenzofuran 1,230 * 50 0.062 Dibenzofuran 1,230 * 50 0.002 Dibenzofuran 1,230 * 50 0.002 Dibenzofuran 33,000,000 50 1,650 3,3- 3,3- 50 0.004 2,4-Dinitrophenol 38 5 0.002 2,6-Dinitrophenol 38 5 0.002 Diethylphthlate 40 50 0.002 Dinethylphthlate 40						
ene 550,000 0.002 ylhexyl) 8,706 * 50 zylphthlate 2,430 5.00 aniline 43 **** 5 shenol 15 * 50 shenol 15 * 50 a,h) 33,000,000 50 enzidine 1,230 * 5 cophenol 38 5 thlate 142 50 cotoluene 198* 5 thlate 162* 50 cotoluene 198* 5 cotoluene 1	ις.	800	N/A	N/A	330	50.0 ***
8,706 * 50 2,430 50 200,000 0.002 43 **** 5 47 5 1,230 * 5 33,000,000 50 1,230 * 5 33,000,000 50 1,230 * 5 1,230 * 5 1,230 * 5 1,230 * 5 1,47 5 1,42 5 40 50 162* 50 162* 50 2,346 * 50 38,000 50	002	1.1	N/A	N/A	330	1.1
e 2,430 50 200,000 0.002 43 **** 5 43 **** 5 47 50 1,230 * 5 33,000,000 50 N/A N/A 38 5 198* 5 40 50 162* 50 2,346 * 50 38,000 50		435.0	50	2,000	330	50.0 ***
200,000 0.002 43 **** 5 47 5 1,230 * 5 1,230 * 5 33,000,000 50 N/A N/A 38 5 198* 5 40 50 162* 50 2,346 * 50 38,000 50		122.0	N/A	20,000	330	50.0 ***
43 **** 5 47 5 15 * 50 1,230 * 5 33,000,000 50 N/A N/A 38 5 198* 5 40 50 162* 50 2,346 * 50 38,000 50	200	0.4	N/A	N/A	330	0.4
47 5 15 * 50 1,230 * 5 33,000,000 50 N/A N/A 380 1 38 5 198* 5 40 50 162* 50 2,346 * 50 38,000 50	5 0.0022	0.22	200	300	330	0.220 or MDL
15 * 50 1,230 * 5 33,000,000 50 N/A N/A 380 1 198* 5 40 50 162* 50 2,346 * 50 38,000 50	5 0.0024	0.24	N/A	N/A	330	0.240 or MDL
1,230 * 5 33,000,000 50 N/A N/A 380 1 198* 5 40 50 162* 50 2,346 * 50 38,000 50		0.8	N/A	400	330	0.8
33,000,000 50 N/A N/A N/A 198* 5 142 50 162* 50 2,346 * 50 38,000 50		6.2	N/A	N/A	330	6.2
N/A N/A 380 1 38 5 198* 5 142 50 40 50 162* 50 2,346 * 50 38,000 50	50	165,000	0.0143	N/A	330	0.014 or MDL
380 1 38 5 198* 5 40 50 162* 50 2,346 * 50 38,000 50		N/A	N/A	N/A	N/A	N/A
38 5 198* 5 142 50 40 50 162* 50 2,346 * 50 38,000 50		0.4	N/A	200	330	0.4
198* 5 142 50 40 50 162* 50 2,346 * 50 38,000 50		0.2	N/A	200	1,600	0.200 or MDL
142 50 40 50 162* 50 2,346 * 50 38,000 50		1.0	1.03	N/A	330	1.0
40 50 162* 50 2,346 * 50 38,000 50)	7.1	N/A	000'09	330	7.1
162* 50 2,346 * 50 38,000 50)	2.0	N/A	80,000	330	2.0
2,346 * 50 38,000 50		8.1	N/A	8,000	330	8.1
38,000 50		120.0	N/A	2,000	330	50.0 ***
	(1900.0	N/A	3,000	330	50.0 ***
Fluorene 7,300 50 3.5		350.0	N/A	3,000	330	20.0 ***
Hexachlorobenzene 3,900 0.35 0.014	35	1,4	0.41	09	330	0.41

KGM #4046 - SVOCs Soil Cleanup Criteria Table 2	Jeanup Criteria	Table 2		•••	A ME		* ***** ******************************	Page 3 of 4
Indeno (1,2,3-cd) pyrene	1,600,000	0.002	0.032	3.2	N/A	N/A	330	3.2
Isophorone	88,31 *	50	0.044	4.40	1,707	20,000	330	4.40
2- methylnaphthalene	727 *	50	0.364	36.4	N/A	N/A	330	36.4
2-Methylphenol	15	2	0.001	0.1	N/A	N/A	330	0.100 or MDL
4-Methylphenol	17	50	600.0	6.0	N/A	4,000	330	6.0
Naphthalene	1,300	10	0.130	13.0	N/A	300	330	13.0
Nitrobenzene	36	2	0.002	0.2	N/A	40	330	0.200 or MDL
2-Nitroaniline	86	2	0.0043	0.43	N/A	N/A	1,600	1,600 0.430 or MDL
2-Nitrophenol	65	2	0.0033	0.33	N/A	N/A	330	0.330 or MDL
4-Nitrophenol	21	2	0.001	0.1	N/A	N/A	1,600	1,600 0.100 or MDL
3-Nitroaniline	93	2	0.005	0.5	N/A	N/A	1,600	1,600 0.500 or MDL
Pentachlorophenol	1,022	1	0.01	1.0	N/A	2,000	1,600	1.0 or MDL
Phenanthrene	4,365 *	50	2.20	220.0	N/A	N/A	330	50.0 ***
Phenol	27	1	0.0003	0.03	N/A	50,000	330	0.03 or MDL
Pyrene	13,295 *	50	6.65	665.0	N/A	2,000	330	50.0 ***
2,4,5- Trichlorophenol	* 68	1	0.001	0.1	N/A	8,000	330	0.1

NYSDEC TAGM #4046 - SVOCs Soil Cleanup Criteria Table 2

- a. Allowable Soil Concentration Cs = $f \times Cw \times Koc$
- b. Soil cleanup objective = Cs x Correction Factor (CF)

N/A is not available

MDL is Method Detection Limit

- Partition coefficient is calculated by using the following equation: log Koc = -0.55 log S + 3.64, where S is solubility in water in ppm. Other Koc values are experimental values.
- ** Correction Factor (CF) of 100 is used as per TAGM #4046
- As per TAGM #4046, Total VOCs < 10 ppm., Total Semi- VOCs < 500ppm. and Individual Semi-VOCs < 50 ppm. * *
- Koc is derived from the correlation Koc = 0.63 Kow (Determining Soil Response Action Levels..... ***

Soil cleanup objectives are developed for soil organic carbon content (f) of 1%, and EPA/540/2-89/057). Kow is obtained from the USEPA computer database 'MAIN'. should be adjusted for the actual soil organic carbon content if it is known. Note:

Back to top of page

APPENDIX 2

ANALYTICAL RESULTS (FORM I'S) & DATA PACKAGES

Project Manager: David Sembrot

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075

Reported: 04/29/03 09:13

ANALYTICAL REPORT FOR SAMPLES

×	Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
	DF-IPA-01	K304462-01	Soil	04/17/03 14:30	04/18/03 12:00
,	DF-IPA-02	K304462-02	Soil	04/17/03 14:40	04/18/03 12:00
	DF-IPA-03	K304462-03	Soil	04/17/03 14:50	04/18/03 12:00
	DF-IPA-04	K304462-04	Soil	04/17/03 15:00	04/18/03 12:00

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

925 Canal Street Suite 3701

Bristol PA, 19007

Project: Dussault Foundry/Lockport, NY

Project Number: 501075 Project Manager: David Sembrot

Reported: 04/29/03 09:13

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-IPA-01 (K3	304462-01) Soil	Sampled: 04/17/03 14:30	Receive	d: 04/18/0	3 12:00					
** Acetone		7000	6300	ug/kg dry	50	3042313	04/23/03	04/25/03	EPA 8260B	DILN
Benzene		ND	1.3	"	1	*	"	"	**	
Bromodichloror	nethane	ND	1.3	"	n	"	"	n	n	
Bromoform		ND	2.5	"	*	*	*	"	"	
Bromomethane		ND	2.5	"	"	**	,,	"	"	
2-Butanone		ND	150	**	"	"	*	"	*	O8
Carbon disulfic	de	11	2.5	"	"	"	**	"	"	
· Carbon tetrachle	oride	ND	2.5		"	"	*	*	•	
Chlorobenzene		ND	2.5	H	•	"	**	••	,	
Chlorodibromo	methane	ND	2.5	н	"	"	*	"	"	
Chloroethane		ND	5.0	н	"	"	n	•	"	
Chloroform		ND	2.5	n	"	"	n	"	"	11
Chloromethane		ND	2.5	н	"	"	n	"	**	
1,1-Dichloroeth	ane	ND	2.5	H	"	"	'n.	"	**	
1,2-Dichloroeth	ane	ND	2.5	n	"	v	*	**	**	
1,1-Dichloroeth		ND	2.5	**	"	"	*	"	*	
cis-1,2-Dichlore	ethene	ND	2.5	"	,1	**	"	"		
trans-1,2-Dichle		ND	2.5	**	"	**	"	"		
1,2-Dichloropro		ND	2.5	**	"	"	,,	"	"	
cis-1,3-Dichlore		ND	2.5	**	"	11		"	н	
trans-1,3-Dichlo	propropene	ND	2.5	,	"	"	**	••	*	
Ethylbenzene		ND	2.5	n	"	"	,	"	n	11
2-Hexanone		ND	13	H	**	"	n	"	**	
Methylene chlor	ride	ND	38	,	.,	"		"	•	
4-Methyl-2-pen		ND	13	н	"	"	*	n		
"Methyl tert-buty	l ether	ND	2.5		"	"	n	"	•	
Styrene		ND	2.5	†1	**	"	"	*		
1,1,2,2-Tetrachl	oroethane	ND	2.5	**		"	"	*	,	
Tetrachloroethe	ne	ND	1.3	**	"	"	"	**		
Toluene		ND	2.5	**	. ,,	"	"	•	**	11
1,1,1-Trichloroe	ethane	ND	2.5	"	*	**	"	**	**	
1,1,2-Trichloroe	ethane	ND	2.5	"	"	"	"	•	••	
Trichloroethene		ND	1.3		"	"	*	••	**	
Trichlorofluoro	methane	ND	2.5	"	"	**	"	,,	••	
Vinyl chloride		ND	2.5	*	"		*	**		
p,m-Xylene		ND	5.0	H	"	"	"	**	n	
o-Xylene		. ND	2.5	"	*	n	11	"	*	
Xylenes (total)		ND	7.6		*	**	"	"	*	
Surrogate: Dibr	omofluorometha	ne	103 %	60-	140	"	"	"	"	
-Surrogate: 1,2-1		14	108 %	60-	140	"	"	"	"	
Surrogate: Tolu	ene-d8		102 %	60-	140	"	"	"	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075
Project Manager: David Sembrot

Reported: 04/29/03 09:13

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-1PA-02 (K304462-02) Soil	Sampled: 04/17/03 14:40	Receive	d: 04/18/03	3 12:00		-			
Acetone	ND	5000	ug/kg dry	50	3042313	04/23/03	04/25/03	EPA 8260B	DIL
Benzene	1.3	1.0	н	1	**	*	"	11	
Bromodichloromethane	ND	1.0	и	н	"	n	ı)	н	
Bromoform	ND	2.0	H	н	19	n	n	n .	
Bromomethane	ND	2.0	ŧ		17	**	"	"	
2-Butanone	ND	120	W	H	"	"	"	**	O
Carbon disulfide	ND	2.0	n	н	**	H	n	"	
Carbon tetrachloride	ND	2.0	Př	н	**	*	••	**	
Chlorobenzene	ND	2.0	W	н	**	n	а	**	
Chlorodibromomethane	ND	2.0	**	н	19	n	**	H	
Chloroethane	ND	4.0	**	H	11	11	n	11	
Chloroform	ND	2.0	**	н	#	n	**	11	1
Chloromethane	ND	2.0	**	н	**	"	"	"	
1,1-Dichloroethane	ND	2.0	**	н	†1	"	n	"	
1,2-Dichloroethane	ND	2.0	••	**	11	n		11	
1,1-Dichloroethene	ND	2.0		17	*1	"	"	"	
cis-1,2-Dichloroethene	ND	2.0	u	н	"	"	n	n	
trans-1,2-Dichloroethene	ND	2.0	11	n	"	11			
1,2-Dichloropropane	ND	2.0	11	н	н	*	+	17	
cis-1,3-Dichloropropene	ND	2.0	**	н	н	*	"	**	
trans-1,3-Dichloropropene	ND	2.0	н	N	u	h	**	•	
Ethylbenzene	ND	2.0	н	11		11	"		1
2-Hexanone	ND	10	н	**	,,	"	,,	9	•
Methylene chloride	ND	30	**	**	**		**	**	
4-Methyl-2-pentanone	ND	10	н	**	H		"	11	
Methyl tert-butyl ether	ND	2.0	"		11	n	n	,,	
Styrene	ND ND	2.0	•	,,	H	,,	n		
1,1,2,2-Tetrachloroethane	ND ND	2.0	H)	**	er e	,,	"	**	
Tetrachloroethene	ND ND	1.0	,,	n	,,	н	,,	**	
Toluene	5.0	2.0		**	,,	Ħ	25	**	1
1,1,1-Trichloroethane	ND	2.0	H	71	,,		,,	u	1
1,1,2-Trichloroethane	ND ND	2.0	,	n	,,	,,	,,	#	
Trichloroethene	ND ND	1.0	+1		,,	n		**	
Trichlorofluoromethane	ND ND	2.0	#	,,	**	"	,,	"	
Vinyl chloride	ND ND	2.0	91	n	,,	n			
p,m-Xylene	ND ND	4.0	11	,,		**	**	··	
o-Xylene	ND ND	2.0	"	11		**	,,	**	
Xylenes (total)	ND ND	6.0	" "	 n	,,	"	,,	19	
						"	n	"	
Surrogate: Dibromofluoromethan		102 %	60-1		"	"	,,	"	
Surrogate: 1,2-Dichloroethane-d	4	105 %	60-1						
Surrogate: Toluene-d8		101 %	60-1	40	"	"	"	"	

· GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075 Project Manager: David Sembrot Reported: 04/29/03 09:13

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
DF-IPA-03 (K304462-03) Soil	Sampled: 04/17/03 14:50	Receive	d: 04/18/03	12:00					
Acetone	ND	510	ug/kg dry	1	3042313	04/23/03	04/25/03	EPA 8260B	O
Benzene	1.4	1.0	H	**	**	**	"	н	
Bromodichloromethane	ND	1.0	"	"	"	**	"	**	
Bromoform	ND	2.0	"	"	11	"	"	**	
Bromomethane	ND	2.0	.,	"	**	"	"	"	
2-Butanone	ND	120	"	"	н	"	"	"	C
Carbon disulfide	ND	2.0	**	**	н	**	"	**	
Carbon tetrachloride	ND	2.0	"	"	н	"	"	"	
Chlorobenzene	ND	2.0	17	"	"	"	"	"	
Chlorodibromomethane	ND	2.0	"	**	*	"	н	**	
Chloroethane	ND	4.0	19	n	*	"	н	**	
Chloroform	ND	2.0	n	19	н	**	н	n	1
Chloromethane	ND	2.0	*	n	"	"	*	•	
1,1-Dichloroethane	ND	2.0	и	H	"	**	,	*	
1,2-Dichloroethane	ND	2.0	*	11	"	Ħ	"	H	
1,1-Dichloroethene	ND	2.0	11	*	"	"	11	TI TI	
cis-1,2-Dichloroethene	ND	2.0	19	**	"	"	11	"	
trans-1,2-Dichloroethene	ND	2.0	19	11	*	"	11	**	
1,2-Dichloropropane	ND	2.0	11	11	н	"	11	**	
cis-1,3-Dichloropropene	ND	2.0	19	11	n	"	**	**	
trans-1,3-Dichloropropene	ND	2.0	11	*	*	"	"	**	
Ethylbenzene	ND	2.0	11	11			11	13	
2-Hexanone	ND	10	11	"	*	"	"	11	
Methylene chloride	ND	30	"	18	н	н	4	39	
4-Methyl-2-pentanone	ND	10	"	"	17	"		19	
Methyl tert-butyl ether	ND	2.0	"	"	**	n	•	H	
Styrene	ND	2.0	,,	**	71			11	
1,1,2,2-Tetrachloroethane	ND	2.0	51	"	**	"	"	H	
Tetrachloroethene	ND	1.0	**	"	••	,,	"	n	
Toluene	3.1	2.0	н	"		**	n	**	
1,1,1-Trichloroethane	ND	2.0	н	**	"	**	"	n	
1,1,2-Trichloroethane	ND	2.0	и	n	"	"	"	"	
Trichloroethene	ND	1.0	n	*		**	,,		
Trichlorofluoromethane	ND	2.0		*1		**	**	"	
Vinyl chloride	ND	2.0		19	**	"	**		
p,m-Xylene	ND	4.0	11	"	**		"	*1	
o-Xylene	ND	2.0	11	"	#	,,	u		
Xylenes (total)	ND	6.0	11	"	*	**	U		
Surrogate: Dibromofluorometha		102 %	60-1			"	"	"	
Surrogate: 1,2-Dichloroethane-a	14	107 %	60-1	40	"	"	"	"	
Surrogate: Toluene-d8		101 %	60-1	40	"	"	"	n	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Tom Lyon, Project Manager

Page 4 of 13

(610) 337-9992 FAX (610) 337-9939

WRS

925 Canal Street Suite 3701

Bristol PA, 19007

Project: Dussault Foundry/Lockport, NY

Project Number: 501075
Project Manager: David Sembrot

Reported: 04/29/03 09:13

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

		Reporting	Labora						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-IPA-04 (K304462-04) Soil	Sampled: 04/17/03 15:00	Receive	d: 04/18/03	12:00					
Acetone	ND		-	1	3042313	04/23/03	04/25/03	EPA 8260B	O
Benzene	ND	1.0	н	н	**	"	**	h	
Bromodichloromethane	ND	1.0	"	"	"	"	"	**	
Bromoform	ND	2.0	"	"	"	**	*	•	
Bromomethane	ND	2.0	"	**	14	**	"	"	
2-Butanone	ND	120	"	19	н	**	"	"	O
Carbon disulfide	ND	2.0	"	**	**	"	"	n	
Carbon tetrachloride	ND	2.0	"	"	**	n	11	"	
Chlorobenzene	ND	2.0	"	17	**	r,	"	•	
Chlorodibromomethane	ND	2.0	"	**	*		"	"	
Chloroethane	ND	4.0	"	"	"	"		**	
Chloroform	ND	2.0	11			"		**	1
Chloromethane	ND	2.0	11		"	"	"	н	
1,1-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.0	"	**	"	"		**	
1,1-Dichloroethene	ND	2.0	н	"	,,	**	"	**	
cis-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.0	**	**	"	"	"	"	
1,2-Dichloropropane	ND	2.0	**	19	"	"	"	*1	
cis-1,3-Dichloropropene	ND	2.0	**	"	"	*	**	н	
trans-1,3-Dichloropropene	ND	2.0	18	17	**	"	**	"	
Ethylbenzene	ND	2.0	"	**	**	"	,,	"	1
2-Hexanone	ND	10	Ħ	"	*	"	**	11	
Methylene chloride	ND	30	н		**	**	*	"	
4-Methyl-2-pentanone	ND	10	**	11	"	h	"	"	
Methyl tert-butyl ether	ND	2.0	"	**		"	"	n	
Styrene	ND	2.0	**	н	"	H	*1	n	
1,1,2,2-Tetrachloroethane	ND	2.0	**	**	"	"	17	"	
Tetrachloroethene	ND	1.0	••	**	*	"	**	•	
Toluene	ND	2.0	**	*	*	"	•	n	1
1,1,1-Trichloroethane	ND	2.0	**	**	**	"	**	"	
1,1,2-Trichloroethane	ND	2.0	n	**	"	"	**	"	
Trichloroethene	ND	1.0	"	**	•	11	"	"	
Trichlorofluoromethane	ND	2.0	Ħ		**	**	**	"	
Vinyl chloride	ND	2.0	"	"	"	*	71	"	
p,m-Xylene	ND	4.0	n	н		n	"		
o-Xylene	ND	2.0	**	"		"	"	19	
Xylenes (total)	ND	6.0	н	"	*	**	**		
Surrogate: Dibromofluorometha	ne	100 %	60-14		"	"	"	n	
Surrogate: 1,2-Dichloroethane-d	4	106 %	60-14	40	"	"	"	"	
Surrogate: Toluene-d8		99.3 %	60-14	10	"	"	"	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/29/03 09:13

Physical Parameters by APHA/ASTM/EPA Methods

GLA Laboratories

_		ъ .:							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-IPA-01 (K304462-01) Soil	Sampled: 04/17/03 14:30	Received	: 04/18/03	12:00					
% Solids	79.2	0.01 %	by Weight	I	3042307	04/23/03	04/23/03	EPA 160.3	
DF-1PA-02 (K304462-02) Soil	Sampled: 04/17/03 14:40	Received	: 04/18/03	12:00					
% Solids	82.4	0.01%	by Weight	1	3042307	04/23/03	04/23/03	EPA 160.3	
DF-IPA-03 (K304462-03) Soil	Sampled: 04/17/03 14:50	Received	: 04/18/03	12:00					
% Solids	80.4	0.01%	by Weight	1	3042307	04/23/03	04/23/03	EPA 160.3	
DF-IPA-04 (K304462-04) Soil	Sampled: 04/17/03 15:00	Received	: 04/18/03	12:00					
% Solids	80.2	0.01%	by Weight	. 1	3042307	04/23/03	04/23/03	EPA 160.3	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/29/03 09:13

Industrial Solvent Scan by EPA Method 3810/8015 (Modified)

Great Lakes Analytical--Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-IPA-01 (K304462-01) Soil	Sampled: 04/17/03 14:30	Received	1: 04/18/03	3 12:00		_			QC
Isopropanol	ND	12.6	mg/kg dry	1	3040665	04/25/03	04/25/03	8015M	
DF-IPA-02 (K304462-02) Soil	Sampled: 04/17/03 14:40	Received	l: 04/18/0 3	3 12:00					QC
Isopropanol	ND	12.1	mg/kg dry	1	3040665	04/25/03	04/25/03	8015M	
DF-IPA-03 (K304462-03) Soil	Sampled: 04/17/03 14:50	Received	1: 04/18/03	3 12:00					QC
Isopropanol	ND	12.4	mg/kg dry	1	3040665	04/25/03	04/28/03	8015M	
DF-IPA-04 (K304462-04) Soil	Sampled: 04/17/03 15:00	Received	l: 04/18/03	3 12:00					QC
IsopropanoI	ND	12.5	mg/kg dry	1	3040665	04/25/03	04/25/03	8015M	

* GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Tom Lyon, Project Manager

Page 7 of 13

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075 Project Manager: David Sembrot

Reported: 04/29/03 09:13

Percent Solids

Great Lakes Analytical--Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-IPA-01 (K304462-01) Soil	Sampled: 04/17/03 14:30	Received	: 04/18/0	3 12:00					
% Solids	79.2	0.200	%	1	3040451	04/17/03	04/25/03	EPA 5035 7.5	
DF-IPA-02 (K304462-02) Soil	Sampled: 04/17/03 14:40	Received	: 04/18/0	3 12:00					
% Solids	82.4	0.200	%	I	3040451	04/17/03	04/25/03	EPA 5035 7.5	_
DF-1PA-03 (K304462-03) Soil	Sampled: 04/17/03 14:50	Received	: 04/18/0	3 12:00					
% Solids	80.4	0.200	%	1	3040451	04/17/03	04/25/03	EPA 5035 7.5	
DF-IPA-04 (K304462-04) Soil	Sampled: 04/17/03 15:00	Received	: 04/18/0	3 12:00					
% Solids	80.2	0.200	%	1	3040451	04/17/03	04/25/03	EPA 5035 7.5	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075

Project Manager: David Sembrot

Reported: 04/29/03 09:13

Volatile Organic Compounds by EPA Method 8260B - Quality Control **GLA Laboratories**

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ı

Blank (3042313-BLK1)				Prepared: 04/23/03 Analyzed: 04/25/03
Acetone	ND		ug/kg wet	
Benzene	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	2.0	0	
Bromomethane	ND	2.0	11	
2-Butanone	ND	100	11	
Carbon disulfide	ND	2.0	11	
Carbon tetrachloride	ND	2.0	н	
Chlorobenzene	ND	2.0	н	
Chlorodibromomethane	ND	2.0	"	
Chloroethane	ND	4.0	n	
Chloroform	ND	2.0	•	
Chloromethane	ND	2.0	*	
1,1-Dichloroethane	ND	2.0	"	
1,2-Dichloroethane	ND	2.0	"	
1,1-Dichloroethene	ND	2.0	"	
cis-1,2-Dichloroethene	ND	2.0	"	
trans-1,2-Dichloroethene	ND	2.0	**	
1,2-Dichloropropane	ND	2.0	•	
cis-1,3-Dichloropropene	ND	2.0	"	
trans-1,3-Dichloropropene	ND	2.0	"	
Ethylbenzene	ND	2.0	"	
2-Hexanone	ND	10	"	
Methylene chloride	ND	30	"	
4-Methyl-2-pentanone	ND	10	"	
Methyl tert-butyl ether	ND	2.0	•	
Styrene	ND	2.0	"	
1,1,2,2-Tetrachloroethane	ND	2.0	,	
Tetrachloroethene	ND	1.0	•	
Toluene	ND	2.0	"	
1,1,1-Trichloroethane	ND	2.0	"	
1,1,2-Trichloroethane	ND	2.0	**	
Trichlorocthene	ND	1.0	"	
Trichlorofluoromethane	ND	2.0	18	
Vinyl chloride	ND	2.0	**	

ND

ND

ND

4.0

2.0

6.0

GLA Laboratories

p,m-Xylene

Xylenes (total)

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 9 of 13

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/29/03 09:13

Volatile Organic Compounds by EPA Method 8260B - Quality Control GLA Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3042313 - EPA 5030B [P/T]					_					
Blank (3042313-BLK1)				Prepared:	04/23/03	Analyzed	: 04/25/03			
Surrogate: Dibromofluoromethane	49.9		ug/kg wet	50.0		99.8	60-140		,	
Surrogate: 1,2-Dichloroethane-d4	48.8		"	50.0		97.6	60-140			
Surrogate: Toluene-d8	50.1		"	50.0		100	60-140			
LCS (3042313-BS1)				Prepared:	04/23/03	Analyzed	: 04/25/03	_		
Chloroform	62.2	2.0	ug/kg wet	50.0		124	80-120			G
1,1-Dichloroethene	51.3	2.0	"	50.0		103	80-120			
1,2-Dichloropropane	59.6	2.0	"	50.0		119	80-120			
Ethylbenzene	64.0	2.0	**	50.0		128	80-120			G
Toluene	63.4	2.0	*1	50.0		127	80-120			G
Vinyl chloride	57.2	2.0	*	50.0		114	80-120			
Surrogate: Dibromofluoromethane	49.7		"	50.0		99.4	60-140			
Surrogate: 1,2-Dichloroethane-d4	49.9		"	50.0		99.8	60-140			
Surrogate: Toluene-d8	49.8		"	50.0		99.6	60-140			
LCS (3042313-BS2)				Prepared:	04/23/03	Analyzed	1: 04/25/03			
Chloroform	63.3	2.0	ug/kg wet	50.0		127	80-120			
1,1-Dichloroethene	51.9	2.0	*1	50.0		104	80-120			
1,2-Dichloropropane	61.2	2.0	**	50.0		122	80-120			
Ethylbenzene	62.6	2.0	*	50.0		125	80-120			
Toluene	63.2	2.0	**	50.0		126	80-120			
Vinyl chloride	51.5	2.0	H	50.0		103	80-120			
Surrogate: Dibromofluoromethane	49.6		"	50.0		99.2	60-140			
Surrogate: 1,2-Dichloroethane-d4	49.8		"	50.0		99.6	60-140			
Surrogate: Toluene-d8	50.4		"	50.0		101	60-140			
LCS Dup (3042313-BSD2)				Prepared	: 04/23/03	Analyzed	1: 04/25/03			
Chloroform	65.4	2.0	ug/kg wet	50.0		131	80-120	3.26	20	
1,1-Dichloroethene	53.1	2.0		50.0		106	80-120	2.29	20	
1,2-Dichloropropane	62.9	2.0	"	50.0		126	80-120	2.74	20	
Ethylbenzene	62.8	2.0	"	50.0		126	80-120	0.319	20	
Toluene	65.3	2.0		50.0		131	80-120	3.27	20	
Vinyl chloride	53.4	2.0	"	50.0		107	80-120	3.62	20	
Surrogate: Dibromofluoromethane	51.0		"	50.0		102	60-140			
Surrogate: 1,2-Dichloroethane-d4	50.0		"	50.0		100	60-140			
Surrogate: Toluene-d8	50.8		"	50.0		102	60-140			

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Project Number: 501075

Reported:

Bristol PA, 19007

Project Manager: David Sembrot

04/29/03 09:13

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control

GLA Laboratories

34		Reporting	Spike	Source		%REC		RPD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD_	Limit	Notes
Batch 3042307 - General Prep WC									
Duplicate (3042307-DUP1)	Sour	rce: K304421-01	Prepared a	& Analyze	ed: 04/23/0	03			
% Solids	80.9	0.01 % by Weig	ht	80.4			0.620	5	
Duplicate (3042307-DUP2)	Sour	rce: K304457-01	Prepared a	& Analyze	ed: 04/23/0	03			
% Solids	76.2	0.01 % by Weig	ht	76.8			0.784	5	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Tom Lyon, Project Marager

Page 11 of 13

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075 Project Manager: David Sembrot Reported: 04/29/03 09:13

Industrial Solvent Scan by EPA Method 3810/8015 (Modified) - Quality Control Great Lakes Analytical--Buffalo Grove

M	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
•	- I many to	resur	Link	Oma		Result	70142.0	Linus	МЪ	Linut	110(03
	Batch 3040665 - EPA 5021										
•	Blank (3040665-BLK1)				Prepared	& Analyz	ed: 04/25/0	03			
	Isopropanol	ND	10.0	mg/kg wet							
10.16	LCS (3040665-BS1)				Prepared .	& Analyz	ed: 04/25/0	03			
	Isopropanol	11.8	10.0	mg/kg wet	12.5		94.4	70-130			
	Matrix Spike (3040665-MS1)	Sou	rce: K3044	62-04	Prepared:	04/25/03	Analyzed	: 04/28/03			
· »- #	Isopropanol	4.05	1.25	mg/kg dry	15.6	ND	26.0	70-130			
	Matrix Spike Dup (3040665-MSD1)	Sou	rce: K3044	62-04	Prepared	& Analyz	ed: 04/25/0	03			
	lsopropanol	2.30	1.25	mg/kg dry	15.5	ND	14.8	70-130	55.1	20	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Project Number: 501075

Reported: 04/29/03 09:13

Bristol PA, 19007

Project Manager: David Sembrot

Notes and Definitions

DILN Due to matrix interference and or sample dilution the detection limits for this sample have been elevated.

G3 The laboratory control spike recoveries associated with this sample were above the laboratory's established acceptance criteria.

O8 The preservative in this sample produced ketones, the detection limits have been elevated for those compounds.

QC The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source

method acceptance criteria.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WORK ORDER

K304462

Printed: 4/21/2003 11:52:06AM

GLA Laboratories

Client: WRS Project: Dussault Foundry/Lockport, NY	Project Manager: Tom Lyon Project Number: 501075
Report To: WRS M. Mahnkopf 925 Canal Street Suite 3701 Bristol, PA 19007 Phone: (609) 499-6540	Invoice To: WRS Accounts Payable 925 Canal Street Suite 3701 Bristol, PA 19007 Phone:267-540-0048
Fax: (609) 499-6545	Fax: 267-540-0049
Date Due: 04/25/03 16:00 (5 day TAT)	Data Received: 04/19/02 12:00
Received By: Jake Zanck Logged In By: Oswaldo Burgos	Date Received: 04/18/03 12:00 Date Logged In: 04/21/03 10:15
Samples Received at: 0°C Custody Seals No Received On Ice Yes Containers Intact Yes COC/Labels Agree Yes Preservation Confir Yes	

A a Yarata	Due	ТАТ	Expires	Comments
Analysis	Due	IAI	Expires	Comments
•• K304462-01 DF-IPA-01 [Soil] Sampled 04/17/03	14:30 East	ern	
8260	04/25/03 12:00	5	05/01/03 14:30	
Solids, Dry Weight	04/25/03 12:00	5	05/17/03 14:30	
K304462-02 DF-IPA-02 [Soil] Sampled 04/17/03	14:40 East	ern	
8260	04/25/03 12:00	5	05/01/03 14:40	
Solids, Dry Weight	04/25/03 12:00	5	05/17/03 14:40	
K304462-03 DF-IPA-03 [Soil] Sampled 04/17/03	14:50 East	ern	
8260	04/25/03 12:00	5	05/01/03 14:50	
Solids, Dry Weight	04/25/03 12:00	5	05/17/03 14:50	· · · · · · · · · · · · · · · · · · ·
K304462-04 DF-IPA-04 [Soil] Sampled 04/17/03	15:00 East	ern	
8260	04/25/03 12:00	5	05/01/03 15:00	
Solids, Dry Weight	04/25/03 12:00	5	05/17/03 15:00	
GLA - Buffalo Grove K304462-01 DF-IPA-01 [Soil] Sampled 04/17/03	14:30 East	ern	
Misc. Subcontract	04/25/03 12:00	5	10/14/03 14:30	Industrial Alcohols (Isopropanol only)
K304462-02 DF-IPA-02 [Soil] Sampled 04/17/03	14:40 East	ern	
Misc. Subcontract	04/25/03 12:00	5	10/14/03 14:40	Industrial Alcohols (Isopropanol only)
K304462-03 DF-IPA-03 [Soil] Sampled 04/17/03	14:50 East	ern	
Misc. Subcontract	04/25/03 12:00	5	10/14/03 14:50	Industrial Alcohols (Isopropanol only)

WORK ORDER

K304462

Printed: 4/21/2003 11:52:06AM

GLA Laboratories

Client: WRS

Project: Dussault Foundry/Lockport, NY

Project Manager:

Tom Lyon

Project Number:

501075

Analysis

TAT

Expires

Comments

GLA - Buffalo Grove

K304462-04 DF-IPA-04 [Soil] Sampled 04/17/03 15:00 Eastern

Misc. Subcontract

04/25/03 12:00

10/14/03 15:00

Industrial Alcohols (Isopropanol only)

CHAIN OF CUSTODY REPORT

100 ... Nint....... King of Prussia, PA 19406

(610) 337-9992 FAX (610) 337-9939

	,		() Week 1H)	
Client: URS Clo DUSSAIT FOUNTY	Bill To: URS		TAT: Standard 5 DAY 1 DAY 4 DAY 2 DAY < 24 HRS.	SS.
Address: 2 (MASHBUKH ST.	Address:		DATE RESULTS NEEDED: $4/24/03$	
Lak poet NY 14094			TEMPERATURE UPON RECEIPT:	
12/2	D3 State & Program:	Phone #: () Fax #: ()		
Sudy		037/	/ SAMPLE /	
Sampler: MM B	1 3/02/	Preservative Used (S) (S) ANALYSIS	0 /	
PO/Quote #: SO/ 075	LOST CONF. LOST SWIT SOLUTION SIGNATURE LOST SWIT SWIT SWIT SWIT SWIT SWIT SWIT SW	TO TO WILL TO WELL TO THE TOP TO	E / (SE SE) LABORATORY (SE SE SE) LABORATORY	ORY
4/17/62 143	lies o	ナカ	2 > 1	7-01
	\top			
PID:	Ohh)	ナナナ ナ		-07
	0>1	7 1 + 3		707
PID:	-	۲ -		2
>	1600	ナナイ	-	300
PID:	_	_		12
2			-	
PID:				
9				
PID:				
7]				
PID:				
8				
PID:				
6				
PID:	25.55	yel de a lost	14 4/16/3	
101		-		
RELINGUISHED 4/17/75-3 REGEIVED	Salashing 10	RELINQUISHED DATE	TE RECEIVED DATE	ъ ч
RELINOUISHED DATE PACEIVED	DATE	BELINOLIISHED DATE	RECEIVED	Ë
TIME	TIME			LI)
COMMENTED TEL VOCS VIA EPA MET	METHOD SHOB (2) 3	air longery of - Alt	ELA METHOD 3015	
)		Scon. leg pour	Lyon PAGE / OF	
		challi. d	-	

Senders Copy	Packages up to 150 lbs. Devery commence to be been to some even. Overnight Fack First Overnight Even control of the packet locations are some defense to execute the packet locations.	اد	Odivery commitment raylo later Acons stress. ight Fedex 3Day Freight Third busness day	* Declared vasua limit \$500	Attack Attack	(Credit Card CastyCheck	Exp. One Total Declared Value?	value. See back for details. FedEx Use Only Marking september.	uting claims a greature Library claims
	4a Express Package Service FedEx Prioring Overnight	FedEx 20ey Second business Saver That business day The business day The foreign can be realed a Memory charge the pound rea The Function Foreign Canada Anna Cana		•	Special Handling SATURDAY Delivery SATURDAY Observed Facts From Committee of the con-	Does this signates contain stangarous goods? Vomerous contains the class of the contains and traperous Goods (enclosing Dry ke) cannot be shipped in Frides, packaging.	Sander Bill to: Law Line Common Sander Common Third Party Common		10ur Mahiliny is lancted to \$100 unless you declare a higher velue. See back for details. Release Signature San to authorize deleny verbue detaining squares.	By signing you authorize us to definer this shipment without obtaining a signature and signed to andemnity and hold us hamiless from any resulting clients. Few. Date 1001-Part #15781-401994-3001 Feds.#RRHED NU S.A. WCS.
Federal USA Airbill Trees Barpess	1 From Prince Provided Sander's Fadex 1189-0302-1		Company W.K.S. Address & WASHBURN ST.	,	Recipient's TDM LYDIN SAMPE MEMOT 337-9992	A LABOLA	Address DD 8 W. MIN-TT4 AVP. To HOLD's Helds bearing, print Facts, extensu. We cannot dehiver to P.D. boase or P.D. 2IP codes. Addresss	King OF 11351A State 19 19406	By using this Arbill you agree to the service conclusions on the back of this Arbill you agree to the service conclusions on the back of this Arbill you agree to the service conclusions on the back of this Arbill you agree to the service conclusions on the back of this Arbill you agree to the service conclusions.	and in our current Service Guade, including terms that thint our habiting. Questions? Visit our Web site at fedex.com or cell 1,800.Go.FedEx® 800,463,3339.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/28/03 13:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DF-FO-01	K304466-01	Soil	04/17/03 18:15	04/19/03 11:45
DF-FO-02	K304466-02	Soil	04/17/03 18:20	04/19/03 11:45
DF-FO-03	K304466-03	Soil	04/17/03 18:25	04/19/03 11:45
DF-FO-04	K304466-04	Soil	04/17/03 18:30	04/19/03 11:45
DF-FO-05	K304466-05	Soil	04/17/03 18:35	04/19/03 11:45
DF-FO-06	K304466-06	Soil	04/17/03 18:40	04/19/03 11:45
DF-FO-07	K304466-07	Soil	04/17/03 18:45	04/19/03 11:45
DF-FO-08	K304466-08	Soil	04/17/03 18:50	04/19/03 11:45

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701Project Number: 501075Reported:Bristol PA, 19007Project Manager: David Sembrot04/28/03 13:50

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

				101105					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-FO-01 (K304466-01) Soil	Sampled: 04/17/03 18:15	Received	: 04/19/03	11:45	_				A-01a, O7
Acetone	ND	270	ug/kg dry	1	3042409	04/24/03	04/26/03	EPA 8260B	
Benzene	ND	2.7	**	11	"	"	"		
* Bromodichloromethane	ND	2.7	"		**	n	"	**	
Bromoform	ND	5.3	*	"	"	"	n	11	
Bromomethane	ND	5.3	**	**	"	н		н .	
2-Butanone	ND	270	**	**		"	"	n	
Carbon disulfide	ND	5.3	*	n	"	12	"	**	
· Carbon tetrachloride	ND	5.3		"	"	11	"	12	
Chlorobenzene	ND	5.3		"	*	0	"	**	
Chlorodibromomethane	ND	5.3	**	"	**	Ħ	"	"	
Chloroethane	ND	11	**	11	**	"	'n	**	
Chloroform	ND	5.3	**	*	**	H	"	"	
Chloromethane	ND	5.3		H		"	"	n	
1,1-Dichloroethane	ND	5.3		**	"	11	11	**	
1,2-Dichloroethane	ND	5.3		.,		11	11		
1,1-Dichloroethene	ND	5.3	**	•	*	**	"		10
→ cis-1,2-Dichloroethene	ND	5.3	н		н	11	"	11	
trans-1,2-Dichloroethene	ND	5.3	11	0	,,	**	"	"	
1,2-Dichloropropane	ND	5.3	,,	**	**	н	н	11	
cis-1,3-Dichloropropene	ND	5.3	•	н	**	н	,	,,	
trans-1,3-Dichloropropene	ND	5.3	"	н	**	n		"	
Ethylbenzene	ND	5.3	**	H	"	H	**	и	
2-Hexanone	ND	27	"	**	**	**		,,	
Methylene chloride	ND	80		**	**	**	**		
4-Methyl-2-pentanone	ND	27	*	**	**		#	,,	
	ND	5.3	n	**	**	**	**		
Styrene	ND	5.3	*	**	**	"	**	"	
1,1,2,2-Tetrachloroethane	ND	5.3	н	"	**	"	**	**	
Tetrachloroethene	ND	2.7	11	**	•		н	**	
Toluene	ND	5.3	*		n	"	**	11	
1,1,1-Trichloroethane	ND	5.3	н	**	**	19	H	**	
1,1,2-Trichloroethane	ND	5.3	**		"	**	,,		
→ Trichloroethene	ND	2.7	*	**	**	**	**	"	
Trichlorofluoromethane	ND	5.3	"		**	**			
Vinyl chloride	ND	5.3	"	••	h		*	"	
p,m-Xylene	ND	11	"		**	"	n	,,	
o-Xylene	ND	5.3	**	t)	"	**	"	11	
Xylenes (total)	ND	16	"	"	17	**	Ħ	**	
Surrogate: Dibromofluoromethan		97.9 %	60-1	140	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d	4	101 %	60-1	140	"	"	"	"	
Surrogate: Toluene-d8		96.6 %	60-1	140	,,	"	"	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075
Project Manager: David Sembrot

Reported: 04/28/03 13:50

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

			Labor						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-FO-02 (K304466-02) Soil	Sampled: 04/17/03 18:20	Received	: 04/19/03	11:45					
Acetone	ND	100	ug/kg dry	1	3042409	04/24/03	04/24/03	EPA 8260B	
Benzene	2.9	1.0	"	"	"	*	**	"	
Bromodichloromethane	ND	1.0	n	"	"	*	**	"	
Bromoform	ND	2.0	"	"	"	"	n	"	
Bromomethane	ND	2.0	"	"	11	"	"	*	
2-Butanone	ND	100	"	"	"	"	•	"	
Carbon disulfide	ND	2.0	**	n	**	"	"	H	
Carbon tetrachloride	ND	2.0	,,	"	"	"	"	**	
Chlorobenzene	ND	2.0	"	"	"	**	"	n	
Chlorodibromomethane	ND	2.0	•	"	"	"	"	**	
Chloroethane	ND	4.0	"	"	"	"	19	10	
Chloroform	ND	2.0	"	"	"	"	**	"	
Chloromethane	ND	2.0	**	"		н	11	. "	
1,1-Dichloroethane	ND	2.0		"	"	,	11	"	
1,2-Dichloroethane	ND	2.0	11		"		11	••	
1,1-Dichloroethene	ND	2.0	,,			н	"	11	
cis-1,2-Dichloroethene	ND	2.0	11	"	"	H		**	
trans-1,2-Dichloroethene	ND	2.0	"	,,	,,	"		,,	
1,2-Dichloropropane	ND	2.0		,,	"	,,	,,	,,	
cis-1,3-Dichloropropene	ND	2.0	,,	"	,,	,,		"	
trans-1,3-Dichloropropene	ND	2.0	•		н	11	,,	,	
Ethylbenzene	ND ND	2.0	,,		"	"	**	,,	
2-Hexanone	ND ND	10	,,	,,	н	,,		,,	
	ND ND		,,	,,	н	,,		"	
Methylene chloride		30	"	,,	"			"	
4-Methyl-2-pentanone	ND	10	,,	,,	**	"		,	
Methyl tert-butyl ether	ND	2.0	,,		,,	,,	,,	**	
Styrene	ND	2.0		,,	,,				
1,1,2,2-Tetrachloroethane	ND	2.0		,	,,		"	"	
Tetrachloroethene	ND	1.0			"		"		
Toluene	ND	2.0	,	,,	,			"	
1,1,1-Trichloroethane	ND	2.0						"	
1,1,2-Trichloroethane	ND	2.0	,,		"				
Trichloroethene	ND	1.0			"	"	"	"	
Trichlorofluoromethane	ND	2.0	,				-	"	
Vinyl chloride	ND	2.0	,					"	
p,m-Xylene	ND	4.0	. "		"			,,	
o-Xylene	2.2	2.0	11	"	"	"	**	"	
Xylenes (total)	ND	6.0		**		"			
Surrogate: Dibromofluoromethe	ane	109 %	60-	140	"	"	"	"	
Surrogate: 1,2-Dichloroethane-	d4	122 %	60-	140	"	"	"	"	
Surrogate: Toluene-d8		109 %	60-	140	"	"	"	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075 Project Manager: David Sembrot

Reported: 04/28/03 13:50

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
DF-FO-03 (K304466-03) Soil				11:45					
Acetone	ND		ug/kg dry	1	3042409	04/24/03	04/24/03	EPA 8260B	
Benzene	1.8	1.0	" .	11	"	14	н	"	
Bromodichloromethane	ND	1.0		"	"	н	"	"	
Bromoform	ND	2.0	,,	"	"	11	"	"	
Bromomethane	ND	2.0	"	"	**	**	"	"	
2-Butanone	ND	100	11	"	n	"	**	"	
Carbon disulfide	2.4	2.0	**	н	**	"	"	н	
Carbon tetrachloride	ND	2.0	**	11	"	**	"	"	
Chlorobenzene	ND	2.0	17	"	"	tt	"	"	
Chlorodibromomethane	ND	2.0	"	"	"	n	"	*	
Chloroethane	ND	4.0	**	"	"	,,	"	**	
Chloroform	ND	2.0	"	**	"	"	"	**	
Chloromethane	ND	2.0	**	**	"	"	"	"	
1,1-Dichloroethane	ND	2.0	**	11	11	"	n	"	
1,2-Dichloroethane	ND	2.0	**	"	"	"	"	**	
1,1-Dichloroethene	ND	2.0	н	"	"	"	"	**	
cis-1,2-Dichloroethene	ND	2.0	н	"	"	Ħ		"	
trans-1,2-Dichloroethene	ND	2.0	**	"	"	,	"	"	
1,2-Dichloropropane	ND	2.0	**	"	"	n	**	,,	
cis-1,3-Dichloropropene	ND	2.0	**	"	"	Ħ	"		
trans-1,3-Dichloropropene	ND	2.0	"	"	"	17	"	et .	
Ethylbenzene	ND	2.0	"	" .	"	"	"		
2-Hexanone	ND	10	"	**	"	"	••	"	
Methylene chloride	ND	30	"	11	"	**	n	**	
4-Methyl-2-pentanone	ND	10	"	"	"	"	"	*	
Methyl tert-butyl ether	ND	2.0	"	"	"	"	"	n	
Styrene	ND	2.0	"	79	"	*		"	
1,1,2,2-Tetrachloroethane	ND	2.0	**	**	*	"	"	**	
Tetrachloroethene	1.2	1.0	**	H	*	**	*	n	
Toluene	ND	2.0	"		"	"	"	н	
1,1,1-Trichloroethane	ND	2.0	**	*		**	11	**	
1,1,2-Trichloroethane Trichloroethene	ND	2.0	"	**	"	,,	"	**	
Trichlorofluoromethane	ND	1.0	"	*	"	**			
	ND	2.0	"	"	,	,,	"		
Vinyl chloride	ND	2.0	"		,,	"		"	
p,m-Xylene o-Xylene	ND ND	4.0	"	**	н	"	,,	,,	
Xylenes (total)	ND ND	2.0 6.0	"	"	,	,,	,,	"	
Surrogate: Dibromofluorometha		113 %	60-1		"	"	"	"	
Surrogate: 1,2-Dichloroethane-c Surrogate: Toluene-d8	14	126 % 119 %	60-1-		"	"	"	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Project Number: 501075 Bristol PA, 19007 Project Manager: David Sembrot

Reported: 04/28/03 13:50

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

			OLA	Labora						
	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	DF-FO-04 (K304466-04) Soil	Sampled: 04/17/03 18:30	Received	: 04/19/03	11:45			-		
	Acetone	ND	100	ug/kg dry	1	3042409	04/24/03	04/26/03	EPA 8260B	
	Benzene	2.5	1.0	"	"	H	*	н	"	
	Bromodichloromethane	ND	1.0	"	"	,,	11	H	"	
	Bromoform	ND	2.0	"	"	"	"	H	**	
. ,	Bromomethane	ND	2.0	"	H	"	"	н	n	
	2-Butanone	ND	100	"	**	"	*	*	"	
	Carbon disulfide	ND	2.0		**	"	"	**	"	
	Carbon tetrachloride	ND	2.0	"	n	"	"	н	"	
	Chlorobenzene	ND	2.0	n	*	"	"	н	n	
	Chlorodibromomethane	ND	2.0	**	H	n	n	11	"	
	Chloroethane	ND	4.0	"	**	**	"	11	"	
6 - 4	Chloroform	ND	2.0	n	ja .	**	"	**	11	
	Chloromethane	ND	2.0	"	"	**	**	**	"	
1198	1,1-Dichloroethane	ND	2.0	"		**	•	**		
	1,2-Dichloroethane	ND	2.0		"	"	*	,	"	
	1,1-Dichloroethene	ND	2.0	,,	"	11	н	**		10
	cis-1,2-Dichloroethene	ND	2.0		"	"	**	**	•	
	trans-1,2-Dichloroethene	ND	2.0	"	"	"	11	•	,,	
***	1,2-Dichloropropane	ND	2.0	"	"	"	"	**	"	
	cis-1,3-Dichloropropene	ND	2.0	н	*	**	"	**	"	
	trans-1,3-Dichloropropene	ND	2.0	11	**	**	"	n		
	Ethylbenzene	ND	2.0	**	**	11	"	"	н	
	2-Hexanone	ND	10	"	"	**	17	**	11	
	Methylene chloride	ND	30	"	**	**	"	n	"	
	4-Methyl-2-pentanone	ND	10	н	,,	**	**	19	"	
	Methyl tert-butyl ether	ND	2.0	н	,		"	.,	**	
	Styrene	ND	2.0	**	11	"	,,	"	10	
	1,1,2,2-Tetrachloroethane	ND	2.0	11		"	H	н	n	
	Tetrachloroethene	ND	1.0	"	**		,	**	**	
	Toluene	ND	2.0	"	"	,,	"	0	**	
	1,1,1-Trichloroethane	ND	2.0	н	•	н	,,	"	**	
	1,1,2-Trichloroethane	ND	2.0	*	"	**	n	11	n	
	Trichloroethene	ND	1.0	"	**	*1	"	н	"	
	Trichlorofluoromethane	ND	2.0	"	**	"	"	**	"	
	Vinyl chloride	ND	2.0	n	**	"	"	"	"	
	p,m-Xylene	ND	4.0	"	**	**	"	u u		
	o-Xylene	ND	2.0	"	"	**	"	"	"	
	Xylenes (total)	ND	6.0	"	**		**	н	"	
	Surrogate: Dibromofluorometh	ane	107 %	60-1	140	"		"	"	
	Surrogate: 1,2-Dichloroethane-		120 %	60-1		"	"	"	"	
	Surrogate: Toluene-d8		119 %	60-1		n	"	n	"	
	-		. •							

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/28/03 13:50

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Pтерагеd	Analyzed	Method	No
DF-FO-05 (K304466-05) Soil	Sampled: 04/17/03 18:35	Received	: 04/19/03	11:45					
Acetone	150		ug/kg dry	1	3042409	04/24/03	04/24/03	EPA 8260B	
Benzene	1.9	1.0	н	"	"	**	"	"	
Bromodichloromethane	ND	1.0	"	**	**	"	"		
Bromoform	ND	2.0	"	*	**	11	"	"	
Bromomethane	ND	2.0	"	"	н	*	**	"	
2-Butanone	ND	100	"	**	"	11	"	"	
Carbon disulfide	ND	2.0	"	"	"	"	*	"	
Carbon tetrachloride	ND	2.0	"	**	"	"	"	"	
Chlorobenzene	ND	2.0	*	17	"	"	19	**	
Chlorodibromomethane	ND	2.0	"	"	"	"	11	"	
Chloroethane	ND	4.0	**	"	"	**	**	"	
Chloroform	ND	2.0	"	"	11	19	**	"	
Chloromethane	ND	2.0	"	"	"	"	#	"	
1,1-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.0	"	"	"	"	*	**	
1,1-Dichloroethene	ND	2.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.0	"	u	"	"	**	"	
1,2-Dichloropropane	ND	2.0	"	"	"	"	"	**	
cis-1,3-Dichloropropene	ND	2.0	"	"	"	"	**	Ħ	
trans-1,3-Dichloropropene	ND	2.0	11	"	"	n	**	**	
Ethylbenzene	3.3	2.0	11	"	n	"		**	
2-Hexanone	ND	10	"	*	n	"	"	"	
Methylene chloride	ND	30	"	н	n	"	"	"	
4-Methyl-2-pentanone	ND	10	"	"	*	"	n	"	
Methyl tert-butyl ether	ND	2.0	"	"	n	"	H	"	
Styrene	ND	2.0	**	**	*	"	n	n	
1,1,2,2-Tetrachloroethane	ND	2.0	"	11	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	*	"	**	"	
Toluene	3.3	2.0	**	"	*	"	**	**	
1,1,1-Trichloroethane	ND	2.0	"	"	"	"	Ħ	**	
1,1,2-Trichloroethane	ND	2.0	**	"	n	"	н	H	
Trichloroethene	ND	1.0	"	"	**	"	11	**	
Trichlorofluoromethane	ND	2.0	"	"	"	"	"	"	
Vinyl chloride	ND	2.0	"	"	11	"	"	"	
p,m-Xylene	14	4.0	"	"	,,	"	**	"	
o-Xylene	10	2.0	*	"	"	"	"	"	
Xylenes (total)	24	6.0	н	"	"	11	n	n	
Surrogate: Dibromofluoromethe	ane	107 %	60-	140	"	"	"	"	
Surrogate: 1,2-Dichloroethane-		120 %	60-		"	"	"	"	
Surrogate: Toluene-d8		107 %	60-		"	"	"	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/28/03 13:50

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

Reporting											
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note		
DF-FO-06 (K304466-06) Soil	Sampled: 04/17/03 18:40	Received	: 04/19/03	11:45							
Acetone	ND		ug/kg dry	1	3042409	04/24/03	04/24/03	EPA 8260B			
Benzene	1.4	1.0	"	"	"	"	"	"			
Bromodichloromethane	ND	1.0	"	**	"	"	"	**			
Bromoform	ND	2.0	"	"	"	"	"	"			
Bromomethane	ND	2.0	"	"	"	"	"	"			
2-Butanone	ND	100	"	"	**	"	"	"			
Carbon disulfide	ND	2.0	**	"	"	"	"	11			
Carbon tetrachloride	ND '	2.0	"	"	"	"	"	11			
Chlorobenzene	ND	2.0	11	17	"	"	**	11			
Chlorodibromomethane	ND	2.0	11	н	"	**	**	*			
Chloroethane	ND	4.0	11	"	"	n	"	н			
Chloroform	ND	2.0	*	**	"	H	"	n			
Chloromethane	ND	2.0	"	"	"	**	"	н			
1,1-Dichloroethane	ND	2.0	n	"	"	**	"	11			
1,2-Dichloroethane	ND	2.0	11	"	"	"	"	11			
1,1-Dichloroethene	ND	2.0	H	"	**	"	"	н			
cis-1,2-Dichloroethene	ND	2.0	"	"	"	,	"	H			
trans-1,2-Dichloroethene	ND	2.0	н	**	"	**	•	"			
1,2-Dichloropropane	ND	2.0	**	"	**	n	*	"			
cis-1,3-Dichloropropene	ND	2.0	*	"	"	*	**	"			
trans-1,3-Dichloropropene	ND	2.0	**	"	**	н	•	**			
Ethylbenzene	ND	2.0	**	"	"	"	,,	U			
2-Hexanone	ND	10	n	"	н	"	"	**			
Methylene chloride	ND	30	n	"	**	"	"	н			
4-Methyl-2-pentanone	ND	10	**	"	**	н	"	n			
Methyl tert-butyl ether	ND	2.0	**	**	"	n	•	11			
Styrene	ND	2.0	n	"	"	n	11	n			
1,1,2,2-Tetrachloroethane	ND	2.0	**	н	"	"	"	11			
Tetrachloroethene	ND	1.0	**	•	"	•	••	n			
Toluene	ND	2.0	"	"	"	н	н	17			
1,1,1-Trichloroethane	ND	2.0	"	"	•	**	,,	"			
1,1,2-Trichloroethane	ND	2.0	"	"	"	*1	,	"			
Trichloroethene	ND	1.0	"	"	"	"	**	**			
Trichlorofluoromethane	ND	2.0	"	"	"	"	"	11			
Vinyl chloride	ND	2.0	17	**	"	•	"	"			
p,m-Xylene	ND	4.0	н	**	**	"	"	••			
o-Xylene	ND	2.0	н	*	**	"	"	17			
Xylenes (total)	ND	6.0	н	"	"	•	"	H			
Surrogate: Dibromofluorometho	ine	113 %	60-1	140	,,	"	"	"			
Surrogate: 1,2-Dichloroethane-		127 %	60-1		"	"	"	"			
Surrogate: Toluene-d8		120 %	60-1		"	"	"	"			

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

925 Canal Street Suite 3701

Bristol PA, 19007

Project: Dussault Foundry/Lockport, NY

Project Number: 501075

Project Manager: David Sembrot

Reported: 04/28/03 13:50

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-FO-07 (K304466-07) Soil	Sampled: 04/17/03 18:45	Received	: 04/19/03	11:45					
Acetone	ND	100	ug/kg dry	1	3042409	04/24/03	04/26/03	EPA 8260B	
Benzene	2.8	1.0	n	"	"	"	"	**	
Bromodichloromethane	ND	1.0	"	"	"	"	**	**	
Bromoform	ND	2.0	n	"	"	"	"	**	
Bromomethane	ND	2.0	**	"	"	**	"	"	
2-Butanone	ND	100	**	"	"	H	"	"	
Carbon disulfide	ND	2.0	18	"	**	**	"	n	
Carbon tetrachloride	ND	2.0	**	11	"	11	"	"	
Chlorobenzene	ND	2.0	*	"	н	"	,,		
Chlorodibromomethane	ND	2.0	"	**	"	"	•		
Chloroethane	ND	4.0	**	•	"	"	"	**	
Chloroform	ND	2.0	*	"	"	"	"		
Chloromethane	ND	2.0	н	"	"	"	"	**	
1,1-Dichloroethane	ND	2.0		"	"	•	"	"	
1,2-Dichloroethane	ND	2.0	H		v	"	"	"	
1,1-Dichloroethene	ND	2.0	**	"		"	"	10	1
cis-1,2-Dichloroethene	ND	2.0	*	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.0	*	"	"	11	"	**	
· 1,2-Dichloropropane	ND	2.0	н	10	"	"	"	10	
cis-1,3-Dichloropropene	ND	2.0	n		**	11	и	19	
trans-1,3-Dichloropropene	ND	2.0	н	"	"	"	11	"	
Ethylbenzene	ND	2.0	n	•	"	"	"		
2-Hexanone	ND	10	и	"	"	"	"	"	
Methylene chloride	ND	30	*	"	"	11	"	"	
4-Methyl-2-pentanone	ND	10	17	"	"	"	"	"	
Methyl tert-butyl ether	ND	2.0	n		10	"	н	"	
Styrene	ND	2.0	n	"	**	"	"	*	
1,1,2,2-Tetrachloroethane	ND	2.0	**	**	"	"	n	*	
Tetrachloroethene	ND	1.0	"	•	"	*	и	n	
Toluene	2.4	2.0	"	*	"	"	н	"	
1,1,1-Trichloroethane	ND	2.0	**	Ħ		"	n	,	
1,1,2-Trichloroethane	ND	2.0	"	"	"		и	"	
Trichloroethene	ND	1.0	"	**	*	n	11	**	
Trichlorofluoromethane	ND	2.0	**	"	"	,,	"	19	
Vinyl chloride	ND	2.0	**	"	"	"	"	**	
p,m-Xylene	ND	4.0	**	•	"	"	"	**	
o-Xylene	ND	2.0	н	"	"	**	"	**	
Xylenes (total)	ND_	6.0	**	"	"	"	•	11	
Surrogate: Dibromofluorometha	ine	108 %	60-	140	"	"	,,	"	
Surrogate: 1,2-Dichloroethane-		121 %	60-		"	"	"	"	
Surrogate: Toluene-d8		118 %	60-		"	,,	"	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

925 Canal Street Suite 3701

Bristol PA, 19007

Project: Dussault Foundry/Lockport, NY

Project Number: 501075

Project Manager: David Sembrot

Reported: 04/28/03 13:50

Volatile Organic Compounds by EPA Method 8260B

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-FO-08 (K304466-08) Soil	Sampled: 04/17/03 18:50	Received	: 04/19/03	11:45					A-01, O7
Acetone	ND	230	ug/kg dry	1	3042409	04/24/03	04/26/03	EPA 8260B	
Benzene	ND	2.3	"	"	11	"	**	**	
Bromodichloromethane	ND	2.3	n	н	н	"	"	"	
Bromoform	ND	4.7	и	н	"	"	"		
Bromomethane	ND	4.7	н	n	"	"	"	,	
2-Butanone	ND	230	"	"		*	"	,	
Carbon disulfide	ND	4.7	**	"	"	*	"	**	
Carbon tetrachloride	ND	4.7	**	,,	"	"		**	
Chlorobenzene	ND	4.7	**	"	11	"	n	••	
Chlorodibromomethane	ND	4.7	"	"	"	"	"	"	
Chloroethane	ND	9.3	19	"	"	"	**	**	
Chloroform	ND	4.7	**	"	17	"	••	**	
Chloromethane	ND	4.7	11	,	"	"	"	**	
1,1-Dichloroethane	ND	4.7	11	11	"	11	,,		
1,2-Dichloroethane	ND	4.7	11	,	*	11	,,	**	
1,1-Dichloroethene	ND	4.7	"	"	"	"	"	**	10
cis-1,2-Dichloroethene	ND	4.7	n	n		11	"	**	
trans-1,2-Dichloroethene	ND	4.7	н	P	"	**		**	
1,2-Dichloropropane	ND	4.7	н	*	**	**	"		
cis-1,3-Dichloropropene	ND	4.7	н	**	"	**	"	"	
trans-1,3-Dichloropropene	ND	4.7	**	**	"	"	"		
Ethylbenzene	ND	4.7	"	**	**	,,			
2-Hexanone	ND	23	*	n	,,	"	"	**	
Methylene chloride	ND	70	"	"	"			**	
4-Methyl-2-pentanone	ND	23	19	10	"	"		**	
Methyl tert-butyl ether	ND	4.7	11	11	*	"	"	,,	
Styrene	ND	4.7	**	**	**	"		**	
1,1,2,2-Tetrachloroethane	ND	4.7	11	11	**	"		**	
Tetrachloroethene	ND	2.3	"	"	"	"		"	
Toluene	ND	4.7	**	**	*	•	"	**	
1,1,1-Trichloroethane	ND	4.7	*	**	**	"		**	
1,1,2-Trichloroethane	ND	4.7	"	,,	"	•	"	**	
Trichloroethene	ND	2.3	**	"	•	"	"	,,	
Trichlorofluoromethane	ND	4.7	"	"	"	"	,,	P1	
Vinyl chloride	ND	4.7	n	"	•	*	11		
p,m-Xylene	ND	9.3	11	*		**	"		
o-Xylene	ND	4.7	"	*	.,	**	"		
Xylenes (total)	ND	14	"	"	"	"	"	•	
Surrogate: Dibromofluoromethe		99.2 %	60-	140	"	"	"	,,	
Surrogate: 1,2-Dichloroethane-		104 %		140	"	"	"	,,	
Surrogate: 1,2-Dictioroemane- Surrogate: Toluene-d8		97.7 %		140	**	"	"	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075 Project Manager: David Sembrot Reported: 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

GLA Laboratories											
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
DF-FO-01 (K304466-01) Soil	Sampled: 04/17/03 18:15	Received	: 04/19/03	11:45							
Acenaphthene	ND	100	ug/kg dry	1	3042427	04/25/03	04/26/03	EPA 8270C			
Acenaphthylene	ND	100	11	"	••	н	"	11			
Aniline	ND	100	*	11	10	n	11	"			
Anthracene	ND	100	"	**	**	"	H	н			
Benz (a) anthracene	210	100	**	"	"	"	11	н			
Benzo (a) pyrene	360	100	**	n	"	"	P	n			
Benzo (b) fluoranthene	490	100	"	n	"	**	"	**			
Benzo (g,h,i) perylene	350	100	"	n		"	*	19			
Benzo (k) fluoranthene	190	100	+1			**		"			
Benzyl alcohol	ND	100	H			**	**				
Bis(2-chloroethoxy)methane	ND	100	**	**	**	"	**	•			
Bis(2-chloroethyl)ether	ND	100		"	"	"	**	"			
Bis(2-chloroisopropyl)ether	ND	100	**	11	**	,,	**	11			
Bis(2-ethylhexyl)phthalate	ND	330	••	н	"	"	**	н			
4-Bromophenyl phenyl ether	ND	100	**	*1		"	**	*			
Butyl benzyl phthalate	ND	100	**	**		"	,,	n			
4-Chloroaniline	ND	100	**	**	.,	"	"	n			
2-Chloronaphthalene	ND	100	"	•	,,	11		,,			
4-Chlorophenyl phenyl ether	ND	100	,,	**	71	**	**	,			
Chrysene	270	100	••	•	"	**		n			
Dibenz (a,h) anthracene	ND	100		11	**	11		11			
Dibenzofuran	ND	100		n	r	,,	•	"			
1,2-Dichlorobenzene	ND	100		и	**		n	,			
1,3-Dichlorobenzene	ND	100	11	п	**	"	••	n			
1,4-Dichlorobenzene	ND	100	"	"	.,	,,	*	,,			
3,3'-Dichlorobenzidine	ND	500	**	**		"		"			
Diethyl phthalate	ND	100	**	H	,,	**	,,	,,			
Dimethyl phthalate	ND	100	11	**	,,	"	,,	н			
Di-n-butyl phthalate	ND	330	**	**	**	••	,,	н			
2,4-Dinitrotoluene	ND	100	1*		.,	,,	,,				
2,6-Dinitrotoluene	ND	100	11	н	,,	•	.,	*			
Di-n-octyl phthalate	ND	100	**	*	"	"	,,	#			
Fluoranthene	250	100	**	H	,,	**	,,	#			
Fluorene	ND	100	**	н			,,	**			
Hexachlorobenzene	ND	100	**	n	**	**	н	**			
Hexachlorobutadiene	ND	100	**	н		,,	"	#			
Hexachlorocyclopentadiene	ND	100	**	11	,,		"	**			
Hexachloroethane	ND	100	**	н	н		,,	**			
Indeno (1,2,3-cd) pyrene	350	100		**	**	"	"	11			
Isophorone	ND	100	"	"	,	11	,,	**			
2-Methylnaphthalene	ND	100		**	n	**	,,	**			
Naphthalene	ND	100	,,	,,	**	11	"				

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075 Project Manager: David Sembrot Reported: 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

		<u> </u>	Labora	utorics					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-FO-01 (K304466-01) Soil	Sampled: 04/17/03 18:15	Received	: 04/19/03	11:45					
2-Nitroaniline	ND	500	ug/kg dry	1	3042427	04/25/03	04/26/03	EPA 8270C	
3-Nitroaniline	ND	500	**	*	**	"	"	,1	
· 4-Nitroaniline	ND	500	"	"	,,	"	"	"	
Nitrobenzene	ND	100	"	"	"	"	*	"	
*N-Nitrosodi-n-propylamine	ND	100	"	"	"	"		"	
N-Nitrosodiphenylamine	ND	100	н	"	"	n	*	н	
Phenanthrene	130	100	•	"	"	"	"	"	
_ Pyrene	240	100	*	"	"	"	**	**	
1,2,4-Trichlorobenzene	ND	100	н		**	"	н	"	
Surrogate: Nitrobenzene-d5		59.7 %	23-	120	"	"	"	n	
Surrogate: 2-Fluorobiphenyl		68.5 %	30-	115	"	"	n	"	
Surrogate: Terphenyl-d14		80.1 %	18-	137	"	"	"	"	
DF-FO-02 (K304466-02) Soil	Sampled: 04/17/03 18:20	Received	l: 04/19/03	11:45					
, Acenaphthene	ND	100	ug/kg dry	1	3042427	04/25/03	04/26/03	EPA 8270C	
Acenaphthylene	ND	100	"	n	"	"	**	н	
Aniline	ND	100	**	"	"	"	11	Ħ	
Anthracene	ND	100	**	n	"	n	17	*	
™ Benz (a) anthracene	110	100	**	"	"	н	**	*	
Benzo (a) pyrene	150	100	•	19	"	"	**	н	
Benzo (b) fluoranthene	350	100	**	"	"	"	*	"	
Benzo (g,h,i) perylene	140	100	•	"	**	"	**	"	
Benzo (k) fluoranthene	110	100	•	"	"	"	**	н	
. Benzyl alcohol	ND	100	**	"	"	"	11	n	
Bis(2-chloroethoxy)methane	ND	100	"	"	"	"	"	n	
Bis(2-chloroethyl)ether	ND	100	**	"	"	"	**	"	
Bis(2-chloroisopropyl)ether	ND	100	"	**	"	"	11	**	
Bis(2-ethylhexyl)phthalate	ND	330	"	**	"	"	"	"	
4-Bromophenyl phenyl ether	ND	100	**	"		17	"	11	
Butyl benzyl phthalate	ND	100	**	"	"	n	19		
4-Chloroaniline	ND	100	"	"	"	"	11	,	
2-Chloronaphthalene	ND	100	*1	"	"	11	"	"	
4-Chlorophenyl phenyl ether	ND	100	**	"	"	"		"	
Chrysene	230	100	*	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	100	n	"	"	"	"	"	
Dibenzofuran	ND	100	**	**	"	"	**	"	
1,2-Dichlorobenzene	. ND	100	"	"	"	"		"	
1,3-Dichlorobenzene	ND	100	•	**	"	"	"	"	
1,4-Dichlorobenzene	ND	100	**	**	"		"	"	
3,3'-Dichlorobenzidine	ND	500	"	"	,,	"	н	"	
Diethyl phthalate	ND	100	"	"	h	"	*	"	
Dimethyl phthalate	ND	100	"	n	**	•	1*	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
DF-FO-02 (K304466-02) Soil	Sampled: 04/17/03 18:20	Received	: 04/19/03	11:45					
Di-n-butyl phthalate	ND	330	ug/kg dry	1	3042427	04/25/03	04/26/03	EPA 8270C	
2,4-Dinitrotoluene	ND	100	"	++	"	**	"	**	
2,6-Dinitrotoluene	ND	100	"	tt	**	**	"	н	
Di-n-octyl phthalate	ND	100	"	**	"	"	н	н	
Fluoranthene	250	100	**	11	*	"	**	н	
Fluorene	ND	100	**	**	н	n	11	11	
Hexachlorobenzene	ND	100	11	19	**	"	"	*	
Hexachlorobutadiene	ND	100		**	"	n	"	11	
Hexachlorocyclopentadiene	ND	100	"	**	"	н	"	"	
Hexachloroethane	ND	100	"	P	"	n	**	"	
Indeno (1,2,3-cd) pyrene	140	100	**		**	**	n	"	
Isophorone	ND	100	H)r	**	"	**	"	
2-Methylnaphthalene	ND	100	н	н	,,	11	**	•	
Naphthalene	ND	100	,	н	н	**	17	"	
2-Nitroaniline	ND	500	*	11	**	n	**	•	
3-Nitroaniline	ND	500	**	"	"	H	"	n	
4-Nitroaniline	ND	500	"	"	"	**	"	**	
Nitrobenzene	ND	100	н	**	"	**	"	**	
N-Nitrosodi-n-propylamine	ND	100	"	**	*1	"		"	
N-Nitrosodiphenylamine	ND	100	"	"	*	"	"	17	
Phenanthrene	290	100	"	**	"	H		19	
Pyrene	320	100	"	17	"	**		**	
1,2,4-Trichlorobenzene	ND	100	**	•	"	"		"	
Surrogate: Nitrobenzene-d5		62.7 %	23-1	20	"	"	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Surrogate: 2-Fluorobiphenyl		64.3 %	30-1		"	"	"	"	
Surrogate: Terphenyl-d14		67.0 %	18-1		"	"	"	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

Analyta	Docule	Reporting	Unite	Dibtion	Ratoh	Propagad	Anahaad	Method	Note
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	iviculou	Note
DF-FO-03 (K304466-03) Soil				11:45					
Acenaphthene	ND		ug/kg dry	1	3042427	04/25/03	04/27/03	EPA 8270C	
Acenaphthylene	ND	100	"	"		"	"	14	
Aniline	ND	100	•	**	"	"	"	н	
Anthracene	ND	100	•	"	"	"	"	н	
Benz (a) anthracene	280	100	"	14	"	"	"	н	
Benzo (a) pyrene	380	100	"	н	"	"	"	,	
Benzo (b) fluoranthene	530	100	"	"	•	ıı .	"	н	
Benzo (g,h,i) perylene	250	100	"	"	"	*	"	**	
Benzo (k) fluoranthene	180	100	"	"	"	"	н	**	
Benzyl alcohol	ND	100	я		**	n	"	**	
Bis(2-chloroethoxy)methane	ND	100	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	100	*	•	н	"	"	"	
Bis(2-chloroisopropyl)ether	ND	100	,	"	"	*1	"	**	
Bis(2-ethylhexyl)phthalate	ND	330	"	"	"	'n	н	"	
4-Bromophenyl phenyl ether	ND	100	н	"	"	"		n	
Butyl benzyl phthalate	ND	100	"		"	"	n	"	
4-Chloroaniline	ND	100	,,	"	"	"	"	"	
2-Chloronaphthalene	ND	100	"	"	"	"	"	•	
4-Chlorophenyl phenyl ether	ND	100	r	,,	"	"	**	"	
Chrysene	370	100	n	"	*	n	,	**	
Dibenz (a,h) anthracene	ND	100	n		**	"	n	**	
Dibenzofuran	ND	100	и	"	,	"	н	"	
1,2-Dichlorobenzene	ND	100	Ħ		н	,,	"	**	
1,3-Dichlorobenzene	ND	100	"	,,	**	*	**	**	
1,4-Dichlorobenzene	ND	100	"	"	**	"	**	*	
3,3'-Dichlorobenzidine	ND	500	*	,,	"	*			
Diethyl phthalate	ND	100	"	n	"	"	"	"	
Dimethyl phthalate	ND	100	11	"	**	Ħ		**	
Di-n-butyl phthalate	ND	330		,,	"	**	"	**	
2,4-Dinitrotoluene	ND	100	"	,,	"	"	"	"	
2,6-Dinitrotoluene	ND	100	"	*1	"	"	"	11	
Di-n-octyl phthalate	ND	100	"	11	"		**	"	
Fluoranthene	500	100		14	"		"	"	
Fluorene	ND	100	*	"		"	**		
Hexachlorobenzene	ND	100	"	"	"				
Hexachlorobutadiene	ND	100	**		,,	"	"	"	
Hexachlorocyclopentadiene	ND	100	**	,,	**		н	"	
Hexachloroethane	ND	100	"	,,	**	**	**	**	
Indeno (1,2,3-cd) pyrene	250	100	"	**	•	,,	"		
Isophorone	ND	100		11			"		
2-Methylnaphthalene	ND	100	"	**	**	,,		,,	
Naphthalene	ND	100	**	,,		**	,		

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075
Project Manager: David Sembrot

Reported: 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-FO-03 (K304466-03) Soil	Sampled: 04/17/03 18:25	Received	: 04/19/03	11:45					
2-Nitroaniline	ND	500	ug/kg dry	1	3042427	04/25/03	04/27/03	EPA 8270C	
3-Nitroaniline	ND	500	Ħ	Ħ	"	11	"	•	
4-Nitroaniline	ND	500	н	"		"	H	u	
Nitrobenzene	ND	100	н	"	"	"	H	et	
⁴ N-Nitrosodi-n-propylamine	ND	100	P	W.	"	"	11	11	
N-Nitrosodiphenylamine	ND	100	n	H	"	0	11	11	
Phenanthrene	230	100	H		*	11	н	"	
Pyrene	450	100	**	"		**	Ħ	II .	
1,2,4-Trichlorobenzene	ND	100	**	u	"	u	11	11	
Surrogate: Nitrobenzene-d5		56.8 %	23	120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		63.7 %	30-	115	"	"	"	"	
Surrogate: Terphenyl-d14		67.4 %	18	137	"	n	"	"	
· DF-FO-04 (K304466-04) Soil	Sampled: 04/17/03 18:30	Received	: 04/19/03	11:45					
. Acenaphthene	ND	100	ug/kg dry	1	3042427	04/25/03	04/27/03	EPA 8270C	
Acenaphthylene	ND	100	"	**	"	•		n	
, Aniline	ND	100	**		"	11	"	н	
Anthracene	ND	100	ŧł	11	"	n	"	*	
™ Benz (a) anthracene	ND	100	Ħ	D.	11	n	n	H	
Benzo (a) pyrene	ND	100	n	"		н	n	H	
Benzo (b) fluoranthene	130	100	n	11	Ħ	n	"	n	
Benzo (g,h,i) perylene	ND	100	11	n	**	Ħ	11	n	
Benzo (k) fluoranthene	ND	100	n	11	17	"	"	Ħ	
Benzyl alcohol	ND	100	#	11	**	n	n	11	
Bis(2-chloroethoxy)methane	ND	100	**	11	**	**	n	11	
→ Bis(2-chloroethyl)ether	ND	100	**	Ħ	17	**	"	n	
Bis(2-chloroisopropyl)ether	ND	100	"	**	31	"	"	H	
Bis(2-ethylhexyl)phthalate	ND	330	11	11	**	**	"	"	
4-Bromophenyl phenyl ether	ND	100	"	"	"		"	n	
Butyl benzyl phthalate	ND	100	"	Ħ	u	0	**	*	
4-Chloroaniline	ND	100	11	H	**	17	11	n	
2-Chloronaphthalene	ND	100	H	н	"	11	"	"	
4-Chlorophenyl phenyl ether	ND	100	"	**	17	**	11	11	
Chrysene	100	100	11	1)	10	"	"	"	
Dibenz (a,h) anthracene	ND	100	11	"	н	"	"	и	
Dibenzofuran	ND	100	"	"	11	11	H	**	
1,2-Dichlorobenzene	ND	100	"	n	11	11	H	"	
1,3-Dichlorobenzene	ND	100	"	11	"	1+	н	"	
1,4-Dichlorobenzene	ND	100	#	**	H	11	11	"	
3,3'-Dichlorobenzidine	ND	500	**	"	17	"	н	"	
Diethyl phthalate	ND	100	**	"	**	**	11	"	
Dimethyl phthalate	ND	100	Ir	*		н	"	0	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075
Project Manager: David Sembrot

Reported: 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
DF-FO-04 (K304466-04) Soil	Sampled: 04/17/03 18:30	Received	: 04/19/03	11:45					
Di-n-butyl phthalate	ND	330	ug/kg dry	1	3042427	04/25/03	04/27/03	EPA 8270C	
2,4-Dinitrotoluene	ND	100	"	**	"	**	H	"	
2,6-Dinitrotoluene	ND	100	"	**	"	**	*	"	
Di-n-octyl phthalate	ND	100	"	n	"	"	n	"	
Fluoranthene	150	100	"	"	n	11	"	11	
Fluorene	ND	100	"	"	"	*	"	н	
Hexachlorobenzene	ND	100	"	"	"	**	••	"	
Hexachlorobutadiene	ND	100	"	"	"	**	"	"	
Hexachlorocyclopentadiene	ND	100	"	"	**	**	**	"	
Hexachloroethane	ND	100	**	"	"		19	"	
Indeno (1,2,3-cd) pyrene	ND	100	н	и	"	"	"	н	
Isophorone	ND	100	н	11	"	"	**	н	
2-Methylnaphthalene	ND	100	H	n	,,	"	н	**	
Naphthalene	ND	100	"	"	"	"	"	**	
2-Nitroaniline	ND	500	"	н	"	"	*	n	
3-Nitroaniline	ND	500	**	n	"	"	"	"	
4-Nitroaniline	ND	500	"	"	**	**	*	**	
Nitrobenzene	ND	100	**	11	н	и	**	н	
N-Nitrosodi-n-propylamine	ND	100	11	"	"	"	"	н	
N-Nitrosodiphenylamine	ND	100	"	"	**	"	"	H	
Phenanthrene	120	100	**	н	"	"	17	H	
Pyrene	140	100		"	"	*	**	н	
1,2,4-Trichlorobenzene	ND	100	"	**	**	"	n	n	
Surrogate: Nitrobenzene-d5		60.9 %	23-	120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		68.2 %	30-	115	"	"	"	"	
Surrogate: Terphenyl-d14		73.4 %	18-	137	"	"	"	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

	GLA Laboratories													
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes					
DF-FO-05 (K304466-05) Soil	Sampled: 04/17/03 18:35	Received	: 04/19/03	11:45					DILN					
Acenaphthene	1500	920	ug/kg dry	5	3042427	04/25/03	04/27/03	EPA 8270C						
Acenaphthylene	ND	920	"	**	**	•	ir .	**						
Aniline	ND	920	11	••	**	**	"							
Anthracene	ND	920	*	11	н	"	"	**						
Benz (a) anthracene	ND	920	н	"	**	#	"	**						
Benzo (a) pyrene	ND	920	"	н	"	H	n							
Benzo (b) fluoranthene	ND	920	"	H	**	"	"	**						
Benzo (g,h,i) perylene	ND	920	"	**	**	"	n	97						
Benzo (k) fluoranthene	ND	920	II.	"	**	"	"	"						
Benzyl alcohol	ND	920	"	11	и	11	"	*						
Bis(2-chloroethoxy)methane	ND	920	"	n	"	**	"	**						
Bis(2-chloroethyl)ether	ND	920	"	н	"	"	"	"						
Bis(2-chloroisopropyl)ether	ND	920	"	11	"	"	"	н						
Bis(2-ethylhexyl)phthalate	ND	3000	"	"	**	.,	"	n						
4-Bromophenyl phenyl ether	ND	920	"	"	"	,,	"	37						
Butyl benzyl phthalate	ND	920	"	"	**	"	"	"						
4-Chloroaniline	ND	920	11	"	**	"	"	**						
2-Chloronaphthalene	ND	920	"	**	"	,,	"	••						
4-Chlorophenyl phenyl ether	ND	920	"	"	"	"	"	**						
Chrysene	ND	920	"	,,	"	**	"	••						
Dibenz (a,h) anthracene	ND	920	"	n	"	n	"							
Dibenzofuran	ND	920	"	17	"	"	**	"						
1,2-Dichlorobenzene	ND	920	"	"	**	"	n	"						
1,3-Dichlorobenzene	ND	920	"	"	**	**	**	**						
1,4-Dichlorobenzene	ND	920	"	"	**	"	"	11						
3,3'-Dichlorobenzidine	ND	4600	**	"	"	"	**	11						
Diethyl phthalate	ND	920	"	n	"	n	**	н						
Dimethyl phthalate	ND	920	"	"	**	"	"	**						
Di-n-butyl phthalate	ND	3000	**	11	"	**	**	н						
2,4-Dinitrotoluene	ND	920	"	"	"	**	"	"						
2,6-Dinitrotoluene	ND	920	"	"	"	**		"						
Di-n-octyl phthalate	ND	920	,	"	"	**	"	11						
Fluoranthene	ND	920	н	"	"	"	"	"						
Fluorene	1500	920	*	**	"	**	"	"						
Hexachlorobenzene	ND	920	**	"	"	Ħ	"	"						
Hexachlorobutadiene	ND	920	**	н		"		"						
Hexachlorocyclopentadiene	ND	920	n	"	"	"		"						
Hexachloroethane	ND	920	**		"	•		"						
lndeno (1,2,3-cd) рутепе	ND	920	"			*	n	n						
Isophorone	ND	920		"	,,			"						
2-Methylnaphthalene	10000	920	"	"	**	"	н							
Naphthalene	1100	920	"	**	"	11	*	"						

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

925 Canal Street Suite 3701

Project: Dussault Foundry/Lockport, NY

Project Number: 501075

Reported:

Bristol PA, 19007 Project Manager: David Sembrot

04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
DF-FO-05 (K304466-05) Soil	Sampled: 04/17/03 18:35	Received	: 04/19/03	11:45					DILN			
2-Nitroaniline	ND	4600	ug/kg dry	5	3042427	04/25/03	04/27/03	EPA 8270C				
3-Nitroaniline	ND	4600	**	"	"	**	н	"				
4-Nitroaniline	ND	4600	tt	"	"	"	**	"				
Nitrobenzene	ND	920	19	"	"	"	**	"				
N-Nitrosodi-n-propylamine	ND	920	**	**	**	n	17	*				
N-Nitrosodiphenylamine	ND	920	н	"	Ħ	"	"	**				
Phenanthrene	7600	920	"		"	"	*	n				
Pyrene	ND	920	*1	,,	**	"	••	u				
1,2,4-Trichlorobenzene	ND	920	11	"	"	"	*	**				
Surrogate: Nitrobenzene-d5		97.8 %	23-	120	"	"	"	"	•			
Surrogate: 2-Fluorobiphenyl		100 %	30-	115	"	"	"	"				
Surrogate: Terphenyl-d14		105 %	18-	137	"	"	"	. "				
DF-FO-06 (K304466-06) Soil	Sampled: 04/17/03 18:40	Received	: 04/19/03	11:45								
Acenaphthene	ND	100	ug/kg dry	1	3042427	04/25/03	04/27/03	EPA 8270C				
Acenaphthylene	ND	100	"		**	"		**				
Aniline	ND	100	**	"	•	"	"	H				
Anthracene	ND	100	**	"	"	**	"					
Benz (a) anthracene	ND	100	**	"	**	,,	н	"				
Benzo (a) pyrene	ND	100	**		**	"	"					
Benzo (b) fluoranthene	ND	100	H	**	n	"		*				
Renzo (g h i) pervlene	ND	100		•	.,	,,	n	"				

- Aniline	ND	100	19	"	**	"	"	**	
Anthracene	ND	100	**	"	"	*	"		
Benz (a) anthracene	ND	100	**	"	**	,,	"	"	
Benzo (a) pyrene	ND	100	**	*	"	*	"	•	
Benzo (b) fluoranthene	ND	100	*	*	n	"	"	•	
Benzo (g,h,i) perylene	ND	100		•	**	"	"	"	
Benzo (k) fluoranthene	ND	100	"	H	**	**	"	"	
Benzyl alcohol	ND	100	"	19	**	"	"	"	
Bis(2-chloroethoxy)methane	ND	100	"	n	"	**	"	"	
Bis(2-chloroethyl)ether	ND	100	"	"	**	"		•	
Bis(2-chloroisopropyl)ether	ND	100	**	"		**	"	"	
Bis(2-ethylhexyl)phthalate	ND	330	**	"	**		n	"	
4-Bromophenyl phenyl ether	ND	100	*	"	"	"	**	,	
Butyl benzyl phthalate	ND	100	"	"	**	**	"	"	
4-Chloroaniline	ND	100	н	**	H	"	**	••	
2-Chloronaphthalene	ND	100	**	"	**	*	н	•	
4-Chlorophenyl phenyl ether	ND	100	н	**	17	11	••		
Chrysene	ND	100	**	"	"	"	"	**	
Dibenz (a,h) anthracene	ND	100	19	**	н	"	•	**	
Dibenzofuran	ND	100	*1	н	"	**	.,	*	
1,2-Dichlorobenzene	ND	100	**	"	n	"	,,	"	
1,3-Dichlorobenzene	ND	100	н	*	**	,,	11	**	
1,4-Dichlorobenzene	ND	100	11	"		"	"	**	
3,3'-Dichlorobenzidine	ND	500	**	"	**	"	и	**	
Diethyl phthalate	ND	100	"	**	Ħ	11		•	

100

ND

GLA Laboratories

Dimethyl phthalate

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075
Project Manager: David Sembrot

Reported: 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
DF-FO-06 (K304466-06) Soil	Sampled: 04/17/03 18:40	Received	: 04/19/03	11:45					
Di-n-butyl phthalate	ND	330	ug/kg dry	1	3042427	04/25/03	04/27/03	EPA 8270C	
2,4-Dinitrotoluene	ND	100	"	"	"	"	н	n	
2,6-Dinitrotoluene	ND	100	"	"	"	**	ıı	н	
Di-n-octyl phthalate	ND	100	"	**	n	"	"	n	
Fluoranthene	ND	100	"	**	n	**	"	н	
Fluorene	ND	100	"		n	"	11	н	
Hexachlorobenzene	ND	100	"	"	"	"	*	n	
Hexachlorobutadiene	ND	100	"	"	"	"	11	*	
Hexachlorocyclopentadiene	ND	100	**	"	"	"	"	**	
Hexachloroethane	ND	100	,,	"	"	"	"	11	
Indeno (1,2,3-cd) pyrene	ND	100	**	**	"	"	"	"	
Isophorone	ND	100	n	н	**	"	"	"	
2-Methylnaphthalene	ND	100	11	"	"	"	"	11	
Naphthalene	ND	100	"	"	"		"	"	
2-Nitroaniline	ND	500	11	н	"	"	H	**	
3-Nitroaniline	ND	500	"	н	"	"	11	"	
4-Nitroaniline	ND	500	"	"	n	IT	"	н	
Nitrobenzene	ND	100	"	11	н	"	"	**	
N-Nitrosodi-n-propylamine	ND	100			**	"	11	"	
N-Nitrosodiphenylamine	ND	100	"	**	"	"	"	"	
Phenanthrene	ND	100		"	19	"	"	"	
Pyrene	ND	100	#	n	"	*	н	"	
1,2,4-Trichlorobenzene	ND	100	**	17	"	*	n	"	
Surrogate: Nitrobenzene-d5		67.7 %	23-	120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		73.1 %	30-	115	"	"	"	"	
Surrogate: Terphenyl-d14		78.0 %	18-		"	,,	#	"	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075
Project Manager: David Sembrot

Reported: 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

GLA Laboratories													
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note				
DF-FO-07 (K304466-07) Soil	Sampled: 04/17/03 18:45	Received	04/19/03	11:45									
Acenaphthene	ND		ug/kg dry	1	3042427	04/25/03	04/27/03	EPA 8270C					
Acenaphthylene	ND	100	"	"	"	"	"	"					
Aniline	ND	100	"	н	"	"		"					
Anthracene	ND	100	"	"	"	"	**	"					
Benz (a) anthracene	300	100		"	"	"	H	"					
Benzo (a) pyrene	490	100	"	н	**	**	**	"					
Benzo (b) fluoranthene	950	100	"	"	"	"	н	"					
Benzo (g,h,i) perylene	410	100	"	"	**	"	"	"					
Benzo (k) fluoranthene	340	100	**		"	"	Ħ	"					
Benzyl alcohol	ND	100	"	"	"	**	"	"					
Bis(2-chloroethoxy)methane	ND	100	"	"	11	11		**					
Bis(2-chloroethyl)ether	ND	100	"	"	n	н	Ħ	"					
Bis(2-chloroisopropyl)ether	ND	100	"	"	11	**	"	"					
Bis(2-ethylhexyl)phthalate	ND	330	**	"	H	*	•	*					
4-Bromophenyl phenyl ether	ND	100	**	**	"	*	n	"					
Butyl benzyl phthalate	ND	100	"	**	n	**	н	"					
4-Chloroaniline	ND	100	"	"	n	"	**	**					
2-Chloronaphthalene	ND	100	*1	**	11	**	**	**					
4-Chlorophenyl phenyl ether	ND	100	**	"	**	11	H	*					
Chrysene	460	100	**	"	**	**	**	"					
Dibenz (a,h) anthracene	120	100	**	11	"	•	**	"					
Dibenzofuran	ND	100	**	"	**	**	**	"					
1,2-Dichlorobenzene	ND	100	**	"	**	11	н	11					
1,3-Dichlorobenzene	ND	100	**	"	**	**	"						
1,4-Dichlorobenzene	ND	100	**	,,	**	17		"					
3,3'-Dichlorobenzidine	ND	500	**	"	**	11		**					
Diethyl phthalate	ND	100	**		**	**	**	11					
Dimethyl phthalate	ND	100	"	"	11	11	**	"					
Di-n-butyl phthalate	ND	330		"	**	**	**	,,					
2,4-Dinitrotoluene	ND	100	"	"	**	**	*	"					
2,6-Dinitrotoluene	ND	100	"	н	**	**	**	n					
Di-n-octyl phthalate	ND	100		*	"	"	**	11					
Fluoranthene	250	100		*	**	**	**	**					
Fluorene	ND	100	,,	17	**	**	**	"					
Hexachlorobenzene	ND	100	"	**	"	*	"	"					
Hexachlorobutadiene	ND	100	"	11	"	**	**	"					
Hexachlorocyclopentadiene	ND	100	**	**	"	н	"	"					
Hexachloroethane	ND	100	H	••	**	**	**	11					
Indeno (1,2,3-cd) pyrene	420	100	**	"	**	**	**	n					
Isophorone	ND	100	**	••	••		**						
2-Methylnaphthalene	ND	100			**	**	*1	**					
Naphthalene	ND	100	**	"	**	n		"					

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
DF-FO-07 (K304466-07) Soil	Sampled: 04/17/03 18:45	Received	: 04/19/03	11:45					
2-Nitroaniline	ND	500	ug/kg dry	1	3042427	04/25/03	04/27/03	EPA 8270C	
3-Nitroaniline	ND	500	**	"	If	"	n	"	
4-Nitroaniline	ND	500	79	11	n	"	"	"	
Nitrobenzene	ND	100	19	"	**	"		**	
N-Nitrosodi-n-propylamine	ND	100	11	11	17	u u	11	"	
N-Nitrosodiphenylamine	ND	100	19	"	"	н	"	11	
Phenanthrene	130	100	n	"	**	n	n	11	
Pyrene	260	100	17	"	11	n	u	11	
1,2,4-Trichlorobenzene	ND	100	"	"		n	11	11	
Surrogate: Nitrobenzene-d5		58.6 %	23-1	20	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		69.1 %	30-1		n	*	"	"	
Surrogate: Terphenyl-d14		74.9 %	18-1		"	"	"	n	
DF-FO-08 (K304466-08) Soil	Sampled: 04/17/03 18:50	Received	: 04/19/03	11:45					
Acenaphthene	230	100	ug/kg dry	1	3042427	04/25/03	04/27/03	EPA 8270C	
Acenaphthylene	ND	100	н	n	11	n	11	11	
Aniline	ND	100		Ħ	,,	,,		**	
Anthracene	ND	100	n	н	"	n	"	"	
Benz (a) anthracene	350	100	h	19	**	H	n	н	
Benzo (a) pyrene	710	100		11	"	n	**	11	
Benzo (b) fluoranthene	910	100	10	"	**	н	17	"	
Benzo (g,h,i) perylene	570	100	и	11		н	n	•	
Benzo (k) fluoranthene	300	100	19	**	**	,,	11	"	
Benzyl alcohol	ND	100	10	n	**	n	11	n	
Bis(2-chloroethoxy)methane	ND	100		11	**	. "	n	a	
Bis(2-chloroethyl)ether	ND	100	**	n	**	**	n	"	
Bis(2-chloroisopropyl)ether	ND	100	**	н		"		n	
Bis(2-ethylhexyl)phthalate	ND	3 3 0	17	n	н		Ir	"	
4-Bromophenyl phenyl ether	ND	100	H	H	**		H	n	
Butyl benzyl phthalate	ND	100	H	Ħ	**		•	"	
4-Chloroaniline	ND	100	н	"	0	**	"	n	
2-Chloronaphthalene	ND	100	11	,,	**	,,	"	**	
4-Chlorophenyl phenyl ether	ND	100	n	n	**	**	n	"	
Chrysene	420	100	**	n	n	*1	n	"	
Dibenz (a,h) anthracene	150	100	n	H	н	"		n	
Dibenzofuran	ND	100	H	**	,,		**	н	
1,2-Dichlorobenzene	ND	100	н	"	ø	H		**	
1,3-Dichlorobenzene	ND	100	н	,,	"	,,		•	
1,4-Dichlorobenzene	ND	100	"	"	11	н	н	н	
3,3'-Dichlorobenzidine	ND	500	11	n	17		,,	#	
Diethyl phthalate	ND	100	н	**		11	**	**	
Diethyl uninalate									

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Tom Lyon, Project Manager

Page 20 of 29

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075 Project Manager: David Sembrot **Reported:** 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C

GLA Laboratories

	GEAT EMBOLITORS													
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note					
DF-FO-08 (K304466-08) Soil	Sampled: 04/17/03 18:50	Received	: 04/19/03	11:45										
Di-n-butyl phthalate	ND	330	ug/kg dry	1	3042427	04/25/03	04/27/03	EPA 8270C						
2,4-Dinitrotoluene	ND	100	n	**	"	"	"	"						
2,6-Dinitrotoluene	ND	100	*	n	n	**	n	n						
Di-n-octyl phthalate	ND	100	н	**	"	11	"	n						
Fluoranthene	400	100	n	"	"	11	"	n						
Fluorene	ND	100	n	"	"	н	n.	v						
Hexachlorobenzene	ND	100	н	0	17	**	II	H						
Hexachlorobutadiene	ND	100	n	**	11	**	n	11						
Hexachlorocyclopentadiene	ND	100	H	"	"	n	**	n						
Hexachloroethane	ND	100	17	n	n	n	"	n						
Indeno (1,2,3-cd) pyrene	580	100	н	17	**	11		**						
Isophorone	ND	100	н	"	11	**	"	**						
2-Methylnaphthalene	ND	100	H	**	.,	**	"	11						
Naphthalene	ND	100	11	н	n	**	11	**						
2-Nitroaniline	ND	500	#	*	•	"	11	11						
3-Nitroaniline	ND	500	10	**	"	"	51	••						
4-Nitroaniline	ND	500	"	n	n	n	"	n						
Nitrobenzene	ND	100	**	*	n	"	••	**						
N-Nitrosodi-n-propylamine	ND	100	"	"	**	"	"	**						
N-Nitrosodiphenylamine	ND	100	"	**	**	"	"	**						
Phenanthrene	220	100	**	**	**	**	"	*1						
Pyrene	430	100	**	**	"	"	"	**						
1,2,4-Trichlorobenzene	ND	100	*	n	"	**	n	11						
Surrogate: Nitrobenzene-d5		73.4 %	23-1	120	n	"	"	"						
Surrogate: 2-Fluorobiphenyl		75.5 %	30-1	115	"	n	"	"						
Surrogate: Terphenyl-d14		78.2 %	18-1	137	"	"	"	"						

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

925 Canal Street Suite 3701

Bristol PA, 19007

Project: Dussault Foundry/Lockport, NY

Project Number: 501075 Project Manager: David Sembrot Reported: 04/28/03 13:50

Physical Parameters by APHA/ASTM/EPA Methods

GLA Laboratories

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DF-FO-01 (K304466-01) Soil	Sampled: 04/17/03 18:15	Received:	04/19/03	11:45					
% Solids	91.9	0.01%	by Weight	1	3042415	04/24/03	04/24/03	EPA 160.3	
DF-FO-02 (K304466-02) Soil	Sampled: 04/17/03 18:20	Received:	04/19/03	11:45					
% Solids	89.6	0.01%	by Weight	1	3042415	04/24/03	04/24/03	EPA 160.3	
DF-FO-03 (K304466-03) Soil	Sampled: 04/17/03 18:25	Received:	04/19/03	11:45					
% Solids	86.8	0.01%	by Weight	1	3042415	04/24/03	04/24/03	EPA 160.3	
DF-FO-04 (K304466-04) Soil	Sampled: 04/17/03 18:30	Received:	04/19/03	11:45					
% Solids	87.0	0.01%	by Weight	1	3042415	04/24/03	04/24/03	EPA 160.3	
DF-FO-05 (K304466-05) Soil	Sampled: 04/17/03 18:35	Received:	04/19/03	11:45					
% Solids	91.4	0.01%	by Weight	1	3042415	04/24/03	04/24/03	EPA 160.3	
DF-FO-06 (K304466-06) Soil	Sampled: 04/17/03 18:40	Received:	04/19/03	11:45					
% Solids	89.1	0.01%	by Weight	1	3042415	04/24/03	04/24/03	EPA 160.3	
DF-FO-07 (K304466-07) Soil	Sampled: 04/17/03 18:45	Received:	04/19/03	11:45					
% Solids	86.8	0.01%	by Weight	1	3042415	04/24/03	04/24/03	EPA 160.3	
DF-FO-08 (K304466-08) Soil	Sampled: 04/17/03 18:50	Received:	04/19/03	11:45					
% Solids	88.0	0.01%	by Weight	1	3042415	04/24/03	04/24/03	EPA 160.3	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075 Project Manager: David Sembrot Reported: 04/28/03 13:50

Volatile Organic Compounds by EPA Method 8260B - Quality Control GLA Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (3042409-BLK1)			Prepared & Analyzed: 04/24/03
Acetone	ND	100	ug/kg wet
Benzene	ND	1.0	"
Bromodichloromethane	ND	1.0	**
Bromoform	ND	2.0	*
Bromomethane	ND	2.0	H
2-Butanone	ND	100	н
Carbon disulfide	ND	2.0	н
Carbon tetrachloride	ND	2.0	н
Chlorobenzene	ND	2.0	n
Chlorodibromomethane	ND	2.0	н
Chloroethane	ND	4.0	
Chloroform	ND	2.0	н
Chloromethane	ND	2.0	н
1,1-Dichloroethane	ND	2.0	n
1,2-Dichloroethane	ND	2.0	н
1,1-Dichloroethene	ND	2.0	п
cis-1,2-Dichloroethene	ND	2.0	
trans-1,2-Dichloroethene	ND	2.0	н
1,2-Dichloropropane	ND	2.0	
cis-1,3-Dichloropropene	ND	2.0	н
trans-1,3-Dichloropropene	ND	2.0	н
Ethylbenzene	ND	2.0	n
2-Hexanone	ND	10	n
Methylene chloride	ND	30	n
4-Methyl-2-pentanone	ND	10	n
Methyl tert-butyl ether	ND	2.0	n
Styrene	ND	2.0	п
1,1,2,2-Tetrachloroethane	ND	2.0	n
Tetrachloroethene	ND	1.0	n
Toluene	ND	2.0	
1,1,1-Trichloroethane	ND	2.0	н
1,1,2-Trichloroethane	ND	2.0	n
Trichloroethene	ND	1.0	п
Trichlorofluoromethane	ND	2.0	n
Vinyl chloride	ND	2.0	n
p,m-Xylene	ND	4.0	ч
o-Xylene	ND	2.0	и
Xylenes (total)	ND	6.0	"

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701 Bristol PA, 19007 Project Number: 501075
Project Manager: David Sembrot

Reported: 04/28/03 13:50

Volatile Organic Compounds by EPA Method 8260B - Quality Control GLA Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3042409 - EPA 5030B [P/T]										
Blank (3042409-BLK1)				Prepared .	& Analyz	ed: 04/24/	03			
Surrogate: Dibromofluoromethane	49.4		ug/kg wet	50.0		98.8	60-140			
Surrogate: 1,2-Dichloroethane-d4	52.0		"	50.0		104	60-140			
Surrogate: Toluene-d8	47.0		"	50.0		94.0	60-140			
LCS (3042409-BS1)				Prepared	& Analyz	ed: 04/24/	03			
Chloroform	47.4	2.0	ug/kg wet	50.0		94.8	80-120			
1,1-Dichloroethene	40.9	2.0	н	50.0		81.8	80-120			
1,2-Dichloropropane	44.7	2.0	н	50.0		89.4	80-120			
Ethylbenzene	47.4	2.0	Ħ	50.0		94.8	80-120			
Toluene	47.7	2.0	Ħ	50.0		95.4	80-120			
Vinyl chloride	50.7	2.0	n	50.0		101	80-120			
Surrogate: Dibromofluoromethane	49.8		"	50.0		99.6	60-140			
Surrogate: 1,2-Dichloroethane-d4	51.0		н	50.0		102	60-140			
Surrogate: Toluene-d8	47.8		"	50.0		95.6	60-140			
LCS (3042409-BS2)				Prepared	& Analyz	ed: 04/24/	03			
Chloroform	46.4	2.0	ug/kg wet	50.0		92.8	80-120			
1,1-Dichloroethene	39.9	2.0	н	50.0		79.8	80-120			
1,2-Dichloropropane	44.4	2.0	н	50.0		88.8	80-120			
Ethylbenzene	46.9	2.0	19	50.0		93.8	80-120			
Toluene	47.2	2.0	**	50.0		94.4	80-120			
Vinyl chloride	52.0	2.0	"	50.0		104	80-120			
Surrogate: Dibromofluoromethane	50.1		"	50.0		100	60-140			
Surrogate: 1,2-Dichloroethane-d4	51.2		#	50.0		102	60-140			
Surrogate: Toluene-d8	47.5		"	50.0		95.0	60-140			
LCS Dup (3042409-BSD2)				Prepared	& Analyze	ed: 04/24/	03			
Chloroform	44.2	2.0	ug/kg wet	50.0	- · · · · · ·	88.4	80-120	4.86	20	
1,1-Dichloroethene	38.6	2.0	11	50.0		77.2	80-120	3.31	20	
,2-Dichloropropane	41.9	2.0	"	50.0		83.8	80-120	5.79	20	
Ethylbenzene	45.1	2.0	n	50.0		90.2	80-120	3.91	20	
Toluene	45.1	2.0	17	50.0		90.2	80-120	4.55	20	
Vinyl chloride	48.4	2.0	"	50.0		96.8	80-120	7.17	20	
Surrogate: Dibromofluoromethane	49.7		"	50.0		99.4	60-140			
Surrogate: 1,2-Dichloroethane-d4	<i>50.7</i>		"	50.0		101	60-140			
Surrogate: Toluene-d8	47.7		"	50.0		95.4	60-140			

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Project Number: 501075

Reported:

Bristol PA, 19007

Project Manager: David Sembrot

04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

GLA Laboratories

	1	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3042427 - EPA 3550B			
Blank (3042427-BLK1)			Prepared: 04/25/03 Analyzed: 04/26/03
Acenaphthene	ND	100	ug/kg wet
Acenaphthylene	ND	100	11
Aniline	ND	100	"
Anthracene	ND	100	"
Benz (a) anthracene	ND	100	п
Вепго (а) рутепе	ND	100	н
Benzo (b) fluoranthene	ND	100	11
Benzo (g,h,i) perylene	ND	100	11
Benzo (k) fluoranthene	ND	100	11
Benzyl alcohol	ND	100	n
Bis(2-chloroethoxy)methane	ND	100	n
Bis(2-chloroethyl)ether	ND	100	п
Bis(2-chloroisopropyl)ether	ND	100	"
Bis(2-ethylhexyl)phthalate	ND	330	11
4-Bromophenyl phenyl ether	ND	100	,
Butyl benzyl phthalate	ND	100	"
4-Chloroaniline	ND	100	n
2-Chloronaphthalene	ND	100	n
4-Chlorophenyl phenyl ether	ND	100	n
Chrysene	ND	100	n
Dibenz (a,h) anthracene	ND	100	n
Dibenzofuran	ND	100	II
1,2-Dichlorobenzene	ND	100	11
1,3-Dichlorobenzene	ND	100	II
1,4-Dichlorobenzene	ND	100	II.
3,3'-Dichlorobenzidine	ND	500	"
Diethyl phthalate	ND	100	II
Dimethyl phthalate	ND	100	11
Di-n-butyl phthalate	ND	330	"
2,4-Dinitrotoluene	ND	100	11
2,6-Dinitrotolucne	ND	100	v
Di-n-octyl phthalate	ND	100	11
Fluoranthene	ND	100	n
Fluorene	ND	100	11
Hexaehlorobenzene	ND	100	q
Hexachlorobutadiene	ND	100	u
Hexachlorocyclopentadiene	ND	100	II .
Hexachloroethane	ND	100	п

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 25 of 29

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Project Number: 501075

Reported:

Bristol PA, 19007 Project Manager: David Sembrot

04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control GLA Laboratories

**		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3042427 - EPA 3550B		_								
Blank (3042427-BLK1)				Prepared:	04/25/03	Analyzed	: 04/26/03			
Indeno (1,2,3-cd) pyrene	ND	100	ug/kg wet							
Isophorone	ND	100	**							
2-Methylnaphthalene	ND	100	n							
Naphthalene	ND	100	н							
2-Nitroaniline	ND	500	**							
- 3-Nitroaniline	ND	500	"							
4-Nitroaniline	ND	500	"							
Nitrobenzene	ND	100	"							
N-Nitrosodi-n-propylamine	ND	100								
N-Nitrosodiphenylamine	ND	100	н							
- Phenanthrene	ND	100	н							
Pyrene	ND	100	**							
1,2,4-Trichlorobenzene	ND	100	**							
Surrogate: Nitrobenzene-d5	1040			1670		62.3	23-120			·
Surrogate: 2-Fluorobiphenyl	1080		"	1670		64.7	30-115			
* Surrogate: Terphenyl-d]4	1110		"	1670		66.5	18-137			
- LCS (3042427-BS1)				Prepared:	04/25/03	Analyzed	: 04/26/03			
Acenaphthene	2130	100	ug/kg wet	3000		71.0	64-105			
1,4-Dichlorobenzenc	1080	100	н	1670		64.7	57-105			
2,4-Dinitrotoluene	1130	100	"	1670		67.7	62-105			
N-Nitrosodi-n-propylamine	1240	100		1670		74.3	65-105			
- Pyrene	2200	100	и	3000		73.3	64-116			
1,2,4-Trichlorobenzene	1100	100	n	1670		65.9	61-105			
Surrogate: Nitrobenzene-d5	1080		"	1670		64.7	23-120			
"Surrogate: 2-Fluorobiphenyl	1150		"	1670		68.9	30-115			
Surrogate: Terphenyl-d14	1260		"	1670		75.4	18-137			

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Project Number: 501075

Reported:

Bristol PA, 19007

Project Manager: David Sembrot 04/28/03 13:50

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control GLA Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3042427 - EPA 3550B										
Matrix Spike (3042427-MS1)	So	urce: K3044	66-02	Prepared:	04/25/03	Analyzed	: 04/27/03			
Acenaphthene	2430	100	ug/kg dry	3330	ND	73.0	64-105			
1,4-Dichlorobenzene	1190	100	"	1850	ND	64.3	60-105			
2,4-Dinitrotoluene	1250	100	"	1850	ND	67.6	63-105			
N-Nitrosodi-n-propylamine	1370	100	я	1850	ND	74.1	63-106			
Рутепе	2640	100	н	3330	320	69.7	57-107			
1,2,4-Triehlorobenzene	1250	100	"	1850	ND	67.6	61-105			
Surrogate: Nitrobenzene-d5	1240		"	1850		67.0	23-120			
Surrogate: 2-Fluorobiphenyl	1310		"	1850		70.8	30-115			
Surrogate: Terphenyl-d14	1450		"	1850		78.4	18-137			
Matrix Spike Dup (3042427-MSD1)	Son	urce: K3044	66-02	Prepared:	04/25/03	Analyzed	: 04/27/03			
Acenaphthene	2350	100	ug/kg dry	3310	ND	71.0	64-105	3.35	20	
1,4-Dichlorobenzene	1210	100	"	1840	ND	65.8	60-105	1.67	20	
2,4-Dinitrotoluene	1240	100	'n	1840	ND	67.4	63-105	0.803	20	
N-Nitrosodi-n-propylamine	1330	100	**	1840	ND	72.3	63-106	2.96	20	
Ругепе	2700	100	"	3310	320	71.9	57-107	2.25	20	
1,2,4-Triehlorobenzene	1230	100	"	1840	ND	66.8	61-105	1.61	20	
Surrogate: Nitrobenzene-d5	1210		"	1840		65.8	23-120			
Surrogate: 2-Fluorobiphenyl	1250		"	1840		67.9	30-115			
Surrogate: Terphenyl-d14	1390		"	1840		75.5	18-137			

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Bristol PA, 19007

Project Number: 501075

Project Manager: David Sembrot

Reported: 04/28/03 13:50

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control GLA Laboratories

· Mar		Reporting	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3042415 - General Prep WC					_				
Duplicate (3042415-DUP1)	Sou	rce: K304430-	01 Prepare	d & Analyz	ed: 04/24/	03			
% Solids	84.4	0.01 % b	y Weight	84.3			0.119	5	
, Duplicate (3042415-DUP2)	Sou	rce: K304442-	•02 Prepare	d & Analyz	ed: 04/24/	03			
% Solids	84.0	0.01 % b	y Weight	83.4			0.717	5	
Duplicate (3042415-DUP3)	Sou	rce: K304446-	•01 Prepare	d & Analyz	ed: 04/24/	03			
• % Solids	79.6	0.01 % b	y Weight	79.4			0.252	5	
. Duplicate (3042415-DUP4)	Sou	rce: K304449-	•01 Prepare	d & Analyz	ed: 04/24/	03			
% Solids	85.7	0.01 % b	y Weight	86.6			1.04	5	
** Duplicate (3042415-DUP5)	Sou	rce: K304450-	.04 Prepare	d & Analyz	ed: 04/24/	03			
→ % Solids	82.4	0.01 % b	y Weight	81.0			1.71	5	

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(610) 337-9992 FAX (610) 337-9939

WRS

Project: Dussault Foundry/Lockport, NY

925 Canal Street Suite 3701

Project Number: 501075

Reported: 04/28/03 13:50

Bristol PA, 19007

Project Manager: David Sembrot

Notes and Definitions

10 This compound was below the method control limits in the Check Standard associated with this sample.

A-01 Could not get good internal responses in the NaH preservative. Had to run at a lower weight in purged DI water.

A-01a Could not get good internal responses in the NaH preservative. Had to use low weight in purged DI water.

DILN Due to matrix interference and or sample dilution the detection limits for this sample have been elevated.

07 The reporting limits for this sample have been raised due to low sample weight, volume and/or weight to methanol volume ratio.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

GLA Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

WORK ORDER

Printed: 4/21/2003 11:25:09AM

K304466

GLA Laboratories

.Client: WRS Project: Dussault Foundry/Lockport, NY	Project Manager: Tom Lyon Project Number: 501075
Report To:	Invoice To:
WRS	WRS
M. Mahnkopf	Accounts Payable
925 Canal Street Suite 3701	925 Canal Street Suite 3701
Bristol, PA 19007	Bristol, PA 19007
Phone: (609) 499-6540	Phone :267-540-0048
Fax: (609) 499-6545	Fax: 267-540-0049
Date Due: 04/28/03 16:00 (5 day TAT)	
Received By: Jake Zanck	Date Received: 04/19/03 11:45
Logged In By: Oswaldo Burgos	Date Logged In: 04/21/03 11:16
Samples Received at: 3°C	Encores were preserved @ Login 4/19/03
Custody Seals No Received On Ice Yes	
Containers Intact Yes COC/Labels Agree Yes	
Preservation Confir Yes	

`\nalysis	Due	TAT	Expires	Comments
K304466-01 DF-FO-01	[Soil] Sampled 04/17/03	18:15 East	ern	
8260	04/28/03 12:00	5	05/01/03 18:15	
270 BN	04/28/03 12:00	5	05/01/03 18:15	
Solids, Dry Weight	04/28/03 12:00	5	05/17/03 18:15	
ζ304466-02 DF-FO-02	[Soil] Sampled 04/17/03	18:20 East	ern	
8260	04/28/03 12:00	5	05/01/03 18:20	
270 BN	04/28/03 12:00	5	05/01/03 18:20	
olids, Dry Weight	04/28/03 12:00	5	05/17/03 18:20	
304466-03 DF-FO-03	[Soil] Sampled 04/17/03	18:25 East	ern	
260	04/28/03 12:00	• 5	05/01/03 18:25	
8270 BN	04/28/03 12:00	5	05/01/03 18:25	
olids, Dry Weight	04/28/03 12:00	5	05/17/03 18:25	
K304466-04 DF-FO-04	[Soil] Sampled 04/17/03	8:30 Easte	ern	
260	04/28/03 12:00	5	05/01/03 18:30	
o270 BN	04/28/03 12:00	5	05/01/03 18:30	
Solids, Dry Weight	04/28/03 12:00	5	05/17/03 18:30	
.304466-05 DF-FO-05	[Soil] Sampled 04/17/03 1	8:35 Easte	ern	,
8260	04/28/03 12:00	5	05/01/03 18:35	
270 BN	04/28/03 12:00	5	05/01/03 18:35	
Solids, Dry Weight	04/28/03 12:00	5	05/17/03 18:35	

Printed: 4/21/2003 11:25:09AM

K304466

GLA Laboratories

"Client: WRS

Project: Dussault Foundry/Lockport, NY

Project Manager:

Tom Lyon

Project Number:

501075

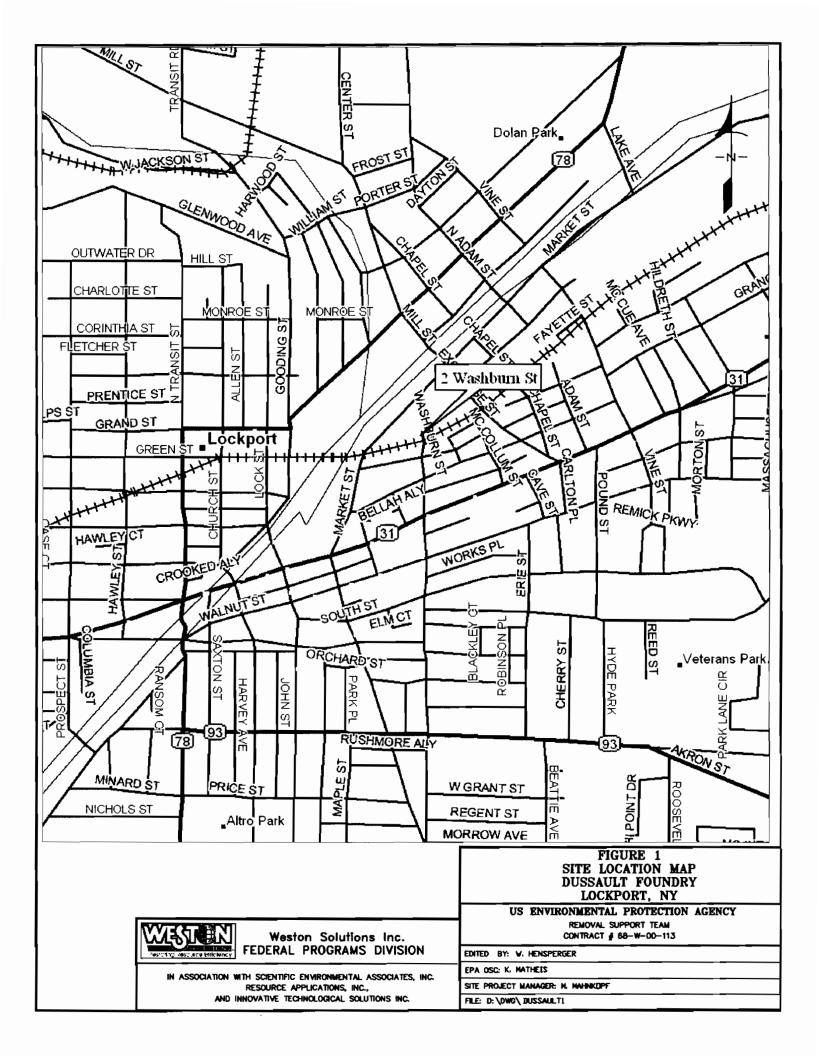
_Analysis	Due	TAT	Expires	Comments
K304466-06 DF-FO-06 [S	Soil] Sampled 04/17/03	18:40 East	ern	
8260	04/28/03 12:00	5	05/01/03 18:40	
8270 BN	04/28/03 12:00	5	05/01/03 18:40	
Solids, Dry Weight	04/28/03 12:00	5	05/17/03 18:40	
- K304466-07 DF-FO-07 [S	Soil] Sampled 04/17/03	18:45 East	ern	
3260	04/28/03 12:00	5	05/01/03 18:45	
₃3270 BN	04/28/03 12:00	5	05/01/03 18:45	
Solids, Dry Weight	04/28/03 12:00	5	05/17/03 18:45	
"K304466-08 DF-FO-08 [S	Soil] Sampled 04/17/03	18:50 Easte	ern	
8260	04/28/03 12:00	5	05/01/03 18:50	
3270 BN	04/28/03 12:00	5	05/01/03 18:50	
Solids, Dry Weight	04/28/03 12:00	5	05/17/03 18:50	,

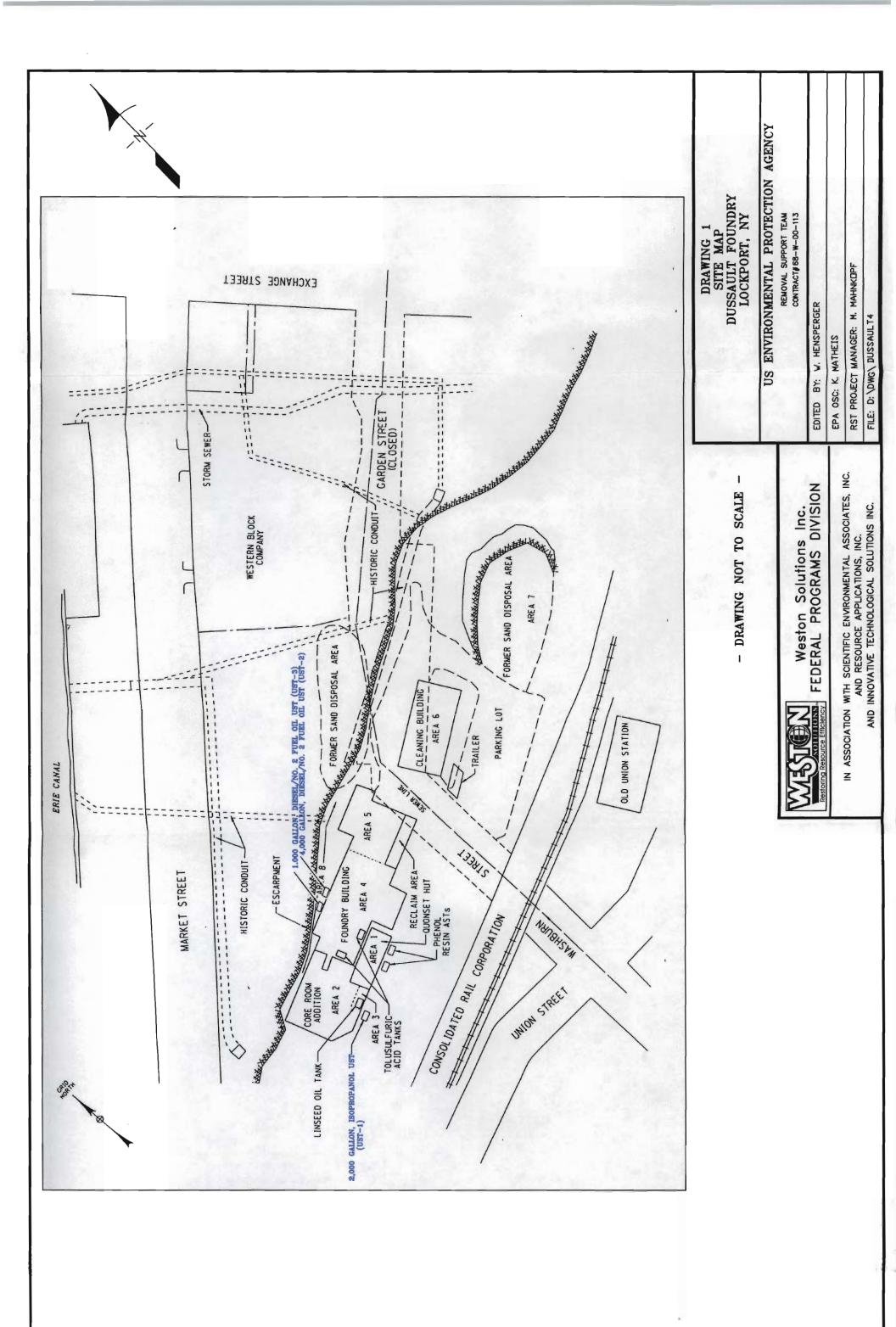
11

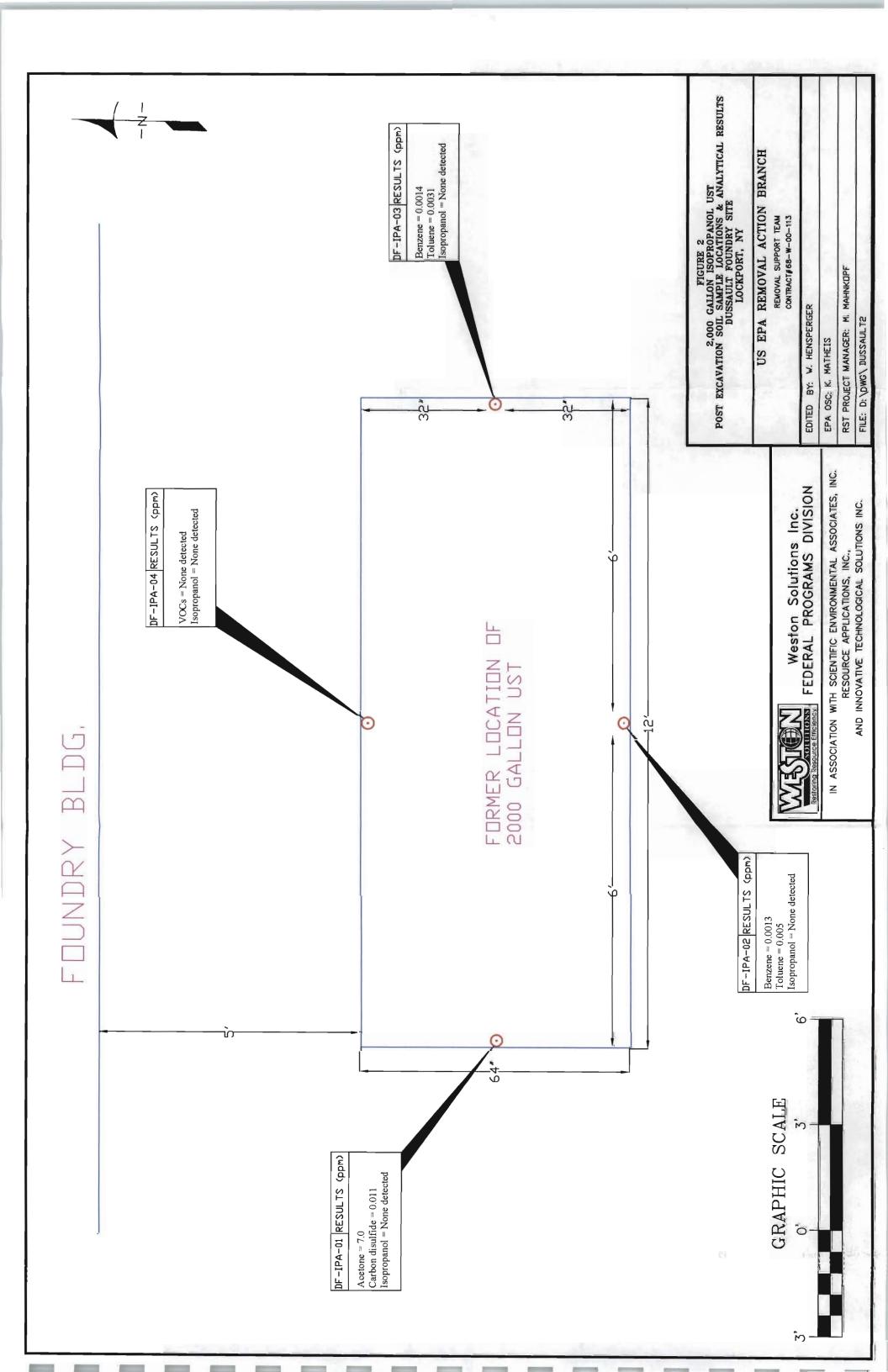
4 22/03 Date

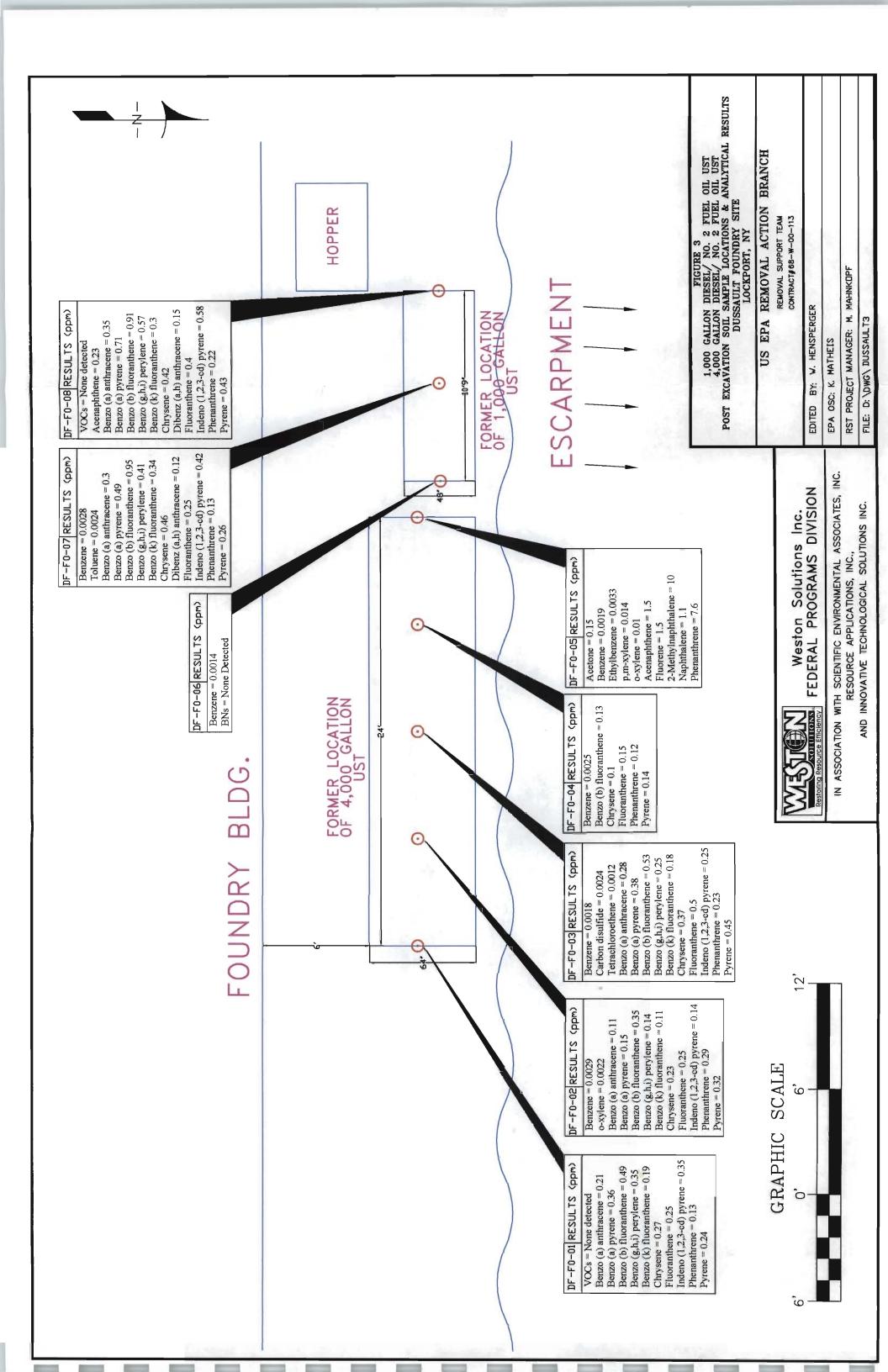
' GrAIN OF GUSTODY REPORT

King of Prussia, PA 19406


x (610) 337-9939


200 401 801 LABORATORY ID NUMBER 707 10-994405> 701 707 -03 DATE DATE TIME TIME Q. < 24 HRS. SAMPLE CONTROL TEMPERATURE UPON RECEIPT: FOR DATE RESULTS NEEDED: $oldsymbol{\mathcal{H}}_{oldsymbol{\prime}}$ PAGE 200 4 DAY 200 RECEIVED SHIPPING#: The RASE Northalx (ENS DATE TIME TIME METHING SALTIOR 40 # JATOT Phone #: (Fax #: (RELINQUISHED RELINQUISHED E 2 36 Ł Preservative Used # of Bottles ERS METHON SCOOR (5) TIME SIGNAR XIGIAN State & Program: Address: Bill To: 1:05 5021-1350 1825 1850 (25) 1842 25 1835 JIME 1815 COLLECTED Client: [NKS C/O DUSSOL/ Foundry 47 133 RECEIVED Phone #: 710 433 Fax #: 7(1c) 435 17 Enfel/h からい TIME SAS FIELD ID, LOCATION Address: 2 WASHLIN P10: PIÖ: PID: PID: PID: PID: Ð. Ö. Ë. 50107 Report to: M. Mahnksof O N かり NF. FO-06 DF- FO- 03 9 COMMENTS: 17 72L Ŝ 71550 OCKPORT 1.00 in DF - FO = DF- FB-見り OF-FO-DF-FO RELINQUISHED ンチュ PO/Quote #: Sampler: Project: 9 6


Sent for Copy	Packages up to 190 fla. Delivery commitment may be bette in some area. rd Overnight FedEx First Overnight for a feder First Overnight for a federal morning delivery to select tectors.	٦	Packages over 150 lbs. Oekvey conniment mer be less in sone asses	reight Fedex 30ay Freight Third Cogness day	· Declared value from \$500	the property of the property o) F	Credit Cerd	Esp Dins Total Declared Value*	D FedEx Use Only	Obtraining signature.	446	JSA WCS107
1.	4a Express Package Service Defects Priority Overnight Pedex Standard Overnight Next business aftencom	20 FedEx 20ay FedEx Express Saver SedEx Express Saver SedEx Express Saver Secondarian charge Care point from the present of the properties of the	4b Express Freight Service	TedEx 10ay Freight* Tecond business day *Cal for Confinesion	Packaging Fedex Pak* Fedex Pak* Fedex Pak* Incore Pak and Fedes Such Pak*	6 Special Handling SATURDAY Owner Amelian Prof. Co. FeEE Prof. Despect of FeEE Day passes Of codes	Does the suppressed controlled described the suppressed goods? Controlled Cont		/Suite/Room FedEx Credit	O. S	8 Release Signature Son to authorize deleasy without obtaining suprature	By apping you authorize us to deliner this shipment without obtaining a signature and egues to indemnify and hold us harmless from any resulting claims.	Rev Cale 10/01 + Part #1578 (2 * G) 1994 - 2001 FedEx = PRINTED IN U S A
irbill man B37726191245	Sender's FedEx 1189-0302-1	Phone (716) 438-120		N 57	State NY ZIP 1409	10e 501 07 5/10011 1942-11 (CUSTONER 546.) LABARATURE PHONE (610) 337 9892		HA COMPANIED TO DESIGN OF THE CODES	1551 State A 21P 19406		For the first with th	Questions? Visit our Web site at fedex.com	or call 1,800,60,FedEx* 800,463,3339.
Federa USA Airbill Express	Date HIS Son	Sender's Soder	Compeny WRS	Address 2 (UASHBUR)		2 Your Internal Billing Reference Fraction Internal Internal PNE STATLES Recipient's G-LA LABAGA	Company	Address + ++	King OF Pu		Meth State S)


APPENDIX 3

SITE MAPS/FIGURES

