OFFICE COPY - DO NOT REMOVE

DECLARATION STATEMENT - RECORD OF DECISION

E.I. Du Pont de Nemours and Company Niagara Falls, New York 14302 Site Code: 932013 Classification Code: 2

STATEMENT OF PURPOSE

This Record of Decision sets forth the selected Interim Remedial Action Plan for the Du Pont Site. This Interim Remedial Action Plan was developed in accordance with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and the New York State Environmental Conservation Law (ECL). The selected interim remedial plan complies to the maximum extent practicable with the National Oil and Hazardous Substance Pollution Contingency Plan, 40 CFR Part 300, of 1985.

STATEMENT OF BASIS

This decision is based upon the Record of the NYSDEC for the Du Pont Niagara Plant site and upon public input to the Interim Remedial Action Plan proposed by Du Pont. A copy of the pertinent documents is available at the Niagara Falls Public Library, 1425 Main Street, Niagara Falls, New York and at the New York State Department of Environmental Conservation, 600 Delaware Avenue, Buffalo, New York. A bibliography of those documents included as part of the Record of the NYSDEC is contained in Appendix B.

DESCRIPTION OF THE SELECTED REMEDY

The selected remedial action plan will control the off-site migration of contaminants from the plant site and, consequently, will provide for protection of environment and of public health. It is technically feasible and it complies with statutory requirements. Briefly, the selected interim remedial action plan includes the following:

- * Twenty-two pumping wells (5 have already been installed) will be installed along the east-west axis of the plant site. Each will pump groundwater at a rate of 1-5 gpm. Collected groundwater will be treated by a water treatment plant to be constructed on the plant grounds and the effluent will be discharged to the City of Niagara Falls Waste Water Treatment Plant.
- * Plant bedrock zones (West Plant area) will continue to be controlled by the Olin pumping well. Pumped water, before use by Olin as non-contact cooling water at its production lines, is treated by carbon adsorption units and then discharged under SPDES permit.

- A monitoring plan has been established to assess the effectiveness of the interim remediation plan by 1) measuring the water levels in piezometers and selected plant site monitoring wells, 2) analyzing for the chemistry of groundwater in specified plant site monitoring wells.
- * The effectiveness of the Interim Remediation Plan for the total plant site will be evaluated periodically by the NYSDEC to assess the success of the remediation plan. Adjustments and modifications to the rate of operations or modifications to the groundwater collection system (overburden and bedrock) shall be made as deemed necessary.

DECLARATION

The selected Interim Remedial Action Plan is protective of human health and the environment. The remedy selected will meet the substantive requirements of the Federal and State laws, regulations and standards that are applicable or relevant and appropriate to the remedial action. The remedy will satisfy, to the maximum extent practicable, the statutory preference for remedies that employ treatment that reduce toxicity, mobility or volume as a principal element. This statutory preference will be met by eliminating the mobility of contaminants with a direct pathway of migration to the Niagara River, by treatment of groundwater to reduce toxicity and by treating the organics that are stripped and condensed from groundwater.

JAN - 3 1990

Date

Edward O. Sullivan Deputy Commissioner Office of Environmental Remediation New York State Department of Environmental Conservation

RECORD OF DECISION Du Pont Niagara Plant Interim Remedial Action Plan

TABLE OF CONTENTS

	-		Page						
I.	Site	e Location and Description							
II.	Site	History							
III.	Problem Identification								
	A. B.	1 2							
		 Building 107 Area Gill Creek and the Building 310 Area West Yard Maintenance Area Adams Avenue Sewer Outfall 006 							
	c.	Problem Identification - Bedrock	3						
		 Niagara River Olin Production Well New York Power Authority (NYPA) Conduits Man-made Passageways 							
IV.	Enfc	forcement Status							
v.	Goals and Objectives for Remediation								
		Overall Goals Plant Site - Overburden Plant Site - Bedrock	5 5 6						
VI.	Sum	ary, Evaluation and Selection of Alternatives	6						
	А.	Evaluation Process							
VII.	Sumn	mary of the State Decision	11						
	А. В.	Public Participation Summary of Selected Remedial Action	11 12						

Ĵ.

APPENDICES

A. Figures and Tables

Record of the NYSDEC - Bibliography в.

LIST OF FIGURES

Figure 1 - Project Location Map
Figure 2 - Du Pont Plant Site
Figure 3 - History of Chemical Processes
Figure 4 - Indicator Organic Concentration Contours
Figure 5 - Location of Historical Processes and Events
Figure 6 - Location of Past and Present Remedial Areas
Figure 7 - Isopack maps of Fill/Overburden
Figure 8 - Groundwater Elevation Contours
Figure 9 - Typical sections of Lockport Formation
Figure 10 - Pumping wells system Routing & Treatment
Figure 11 - Simulation: Groundwater Levels in Overburden Zone
Figure 12 - Simulation: Groundwater Levels in Top-of-bedrock Zone
Figure 13 - Typical Well Pumping Confirguration
Figure 14 - Groundwater Treatment Process Schematic

LIST OF TABLES

Table 1 - List of References for Remedial Action Program Table 2 - Alternatives and Evaluation - Overburden Groundwater Remediation

Table 3 - Plant groundwater analyses

Table 4 - Non-point source loading indicator organic totals

I. SITE LOCATION AND DESCRIPTION

The E.I. Du Pont de Nemours and Company's Buffalo Avenue Site is located in Niagara Falls, bordered by Buffalo Avenue to the north and the Robert Moses Parkway (which runs adjacent to the Niagara River) to the south. Gill Creek divides the 52 acre site into approximately equal sections to the east and west of the stream channel. Figure 1 and 2 show the location of the Du Pont Plant Site.

The Niagara Plant is in a heavily industrialized area of Niagara Falls predominantly occupied by chemical industries. There are also residential areas north of Buffalo Avenue.

II. SITE HISTORY

The Du Pont Niagara Plant has been in operation since 1898, when the Niagara Electro Chemical Company began the manufacture of sodium. Du Pont acquired the plant in 1930 and since then, several products, both organic and inorganic chemicals, have been manufactured in continuous operation. Figure 3 shows the primary products and the times at which manufacture occurred.

From 1983 through 1988, extensive Remedial Investigations were carried out by Du Pont to determine the type and extent of contamination. To date, more than 60 integrated studies of the subsurface contamination or related conditions have been completed. The chronology of remedial investigation and reports are summarized in Table 1. All the reports listed in Table 1 are included as part of the Record of the NYSDEC for the Du Pont Plant site remediation plan.

III. PROBLEM IDENTIFICATION

A. Definition of Site and Operable Units

Numerous geologic, hydrogeologic and subsurface contamination investigations that have been conducted in the past have determined that the groundwater in both overburden and bedrock within the plant site is highly contaminated by past plant operations, disposal activities and spills (Table 3 and Figure 4). Identification of possible waste disposal areas within the plant was carried out in 1978 and remedial action was taken to remove or isolate sources of contamination. (See Section III-B) Figure 5 shows the location of historical processes and events, and Figure 6 identifies the area where Du Pont, in conjunction with the NYSDEC, has taken voluntary remedial action to mitigate the environmental impact of these areas. As the Du Pont remedial program developed, two (2) separate operable units were developed. Although they are not completely independent, each unit requires different remedial efforts:

- 1. Overburden: Overburden groundwater in both parts of the plant site (West Plant and East Plant) is contaminated with Du Pont chemicals. Various historical locations of plant processes, as well as waste disposal locations, are identified on Figure 5.
- 2. Bedrock: Like overburden, bedrock groundwater in the entire plant site is contaminated with varying degrees of plant chemicals.

B. Problem Identification - Overburden

The plant is underlain by unconsolidated overburden material consisting of fill, glacial lake deposits, and glacial till. As a result of the regional glacial events, the overburden soils were found to vary widely in material type, density, thickness, and aerial extent. Figure 7 shows the combined fill and overburden thickness encountered throughout the plant area. Overburden groundwater movement and chemistry has been studied since 1983 (Figure 8 and Table 3). Since 1985, Du Pont has been submitting quarterly reports to DEC relative to hydrological data and groundwater chemistry.

Groundwater in overburden, as stated before, is highly contaminated by past plant operation, disposal activities and spills. Identification of possible waste disposal areas within the plant was carried out in 1978, and since then, several identified contamination sources were remediated. They are:

1. Building 107 Area

Contamination in the B-107 area consisted of chlorinated organics. The area was used as a tank heel cleanout for many years and a remediation which involved excavation and removal of chlorinated organic sludge from the area and from the adjacent copper disposal pit was performed between December 1980 and May 1981. With the approval of the NYSDEC, approximately 4300 cubic yards of potentially contaminated material was removed to a level of 500 ppm (total organics) which was considered to be an acceptable soil clean up guideline at that time.

2. Gill Creek and the Building 310 Area

PCB's contamination was found in Gill Creek sediments and in Building 310. Remediation of these two areas which consisted of removing PCB-contaminated soil and sediments to the top of bedrock was carried out between September 1980 and November 1981. A total of approximately 11,600 cubic yards of contaminated soil was removed. For this remediation, 50 ppm PCB's clean up level for soil was used, an acceptable soil clean up level at that time.

3. West Yard Maintenance Area

The remediation of the west yard maintenance area, primarily contaminated with barium and cyanide was performed during fall 1985 and spring 1986. The area was paved to minimize infiltration of precipitation. A perimeter cutoff wall was also installed to minimize lateral seepage of water.

4. Adams Avenue Sewer

The Adams Avenue Sewer, an abandoned sewer that extends from a location on plant and flows to the west property boundary, has been identified as a possible pathway for off-plant contamination migration. In June 1986, to mitigate this preferential migration pathway, this sewer was plugged and a cutoff wall was installed across the sewer bedding.

5. Outfall 006

This is one of the SPDES outfalls on the plant property that was determined to be infiltrated with volatile organics. An abandoned line 003 which has connections to 006 was plugged off at several locations in 1988 to mitigate the potential infiltration into 006.

C. Problem Identification - Bedrock

Beneath the overburden soils of the plant is the Lockport Dolomite Formation, a fractured dolomite averaging approximately 153 feet thick and divided into five members (Figure 9). Several fracture zones that were identified during the plant monitoring well installation are continuously monitored for bedrock groundwater chemistry and for groundwater flow direction (Figure 8 and Table 3). This information is forwarded to DEC via the Quarterly reports noted in III, B.

The Rochester Shale Formation, directly beneath the Lockport Dolomite, was investigated and found to be relatively impermeable. Further studies to evaluate the integrity of four Rochester zone monitoring wells concluded that the minor contamination found in these wells was from leakage through the grout seal around the wells. Therefore, it was decided that all Rochester zone wells be monitored for groundwater water levels only. Groundwater in bedrock is similarly contaminated with plant related chemicals (Figure 4 and Table 3). It is believed that the migration of contaminants into the bedrock has occurred through existing vertical fractures which hydraulically connect the horizontal fracture zones and can act as pathways for contaminant migration.

Groundwater flow in the bedrock is influenced by many factors, the most important ones are as follows:

1. Niagara River

The Niagara River fluctuates depending on the time of the year and in response to the removal of water by the New York Power Authority. The effect of the river fluctuation can be observed in the bedrock in the B through F fracture zones and laterally for a limited portion of the plant site.

2. Olin Production Well

Olin Chemical, Inc. maintains cooling water production wells immediately northwest of the Du Pont Plant Site. Pumping over the years has resulted in an area of influence which extends under the western portion of the Du Pont Plant Site approximately to Gill Creek. The eastern portion of the plant site is not affected.

3. New York Power Authority (NYPA) Conduits

As seen on Figure 1, the water conduits for the Robert Moses Niagara Power System are located approximately 0.2 miles up river of the Dupont Plant Site. NYPA drawings show

the presence of drains surrounding the tunnels which appear to act as a drain (sink), thereby, creating a local depression in the groundwater. This depression may account for flow from the plant toward the northeast.

4. Man-made Passageways

The Adams Avenue sewer was identified as a possible pathway for off-plant contamination migration. The sewer and its bedding were plugged off with a cement-bentonite wall in June of 1986.

In summary, groundwater flow in bedrock in the western portion of the plant is influenced by the Olin production wells; in the eastern portion, the groundwater flow is influenced by the NYPA water conduits toward the north/northeast.

IV. ENFORCEMENT STATUS

The Du Pont Niagara Plant site RI/FS activities have been proceeding under a voluntary program since 1983. Implementation of the Interim Remedial Action Program discussed herein will enable the company to create a hydraulic barrier in the overburden (A-zone) that will reduce lateral off-plant contaminant migration and, over time, will minimize the potential for contamination within the bedrock zones. During the initial operating period (ten years), Du Pont and the Department may mutually agree to adjustment and modifications to the rate of operations or modification to the Interim Remediation Program based upon the results of the assessment reports which will be submitted to the Department after the end of the first three years of operation and annually thereafter. After reviewing the plant remediation performance data over the ten (10) year period, the Department shall determine whether the Interim Remedial Program is to be continued for an additional ten (10) years, or for a different period, and whether the program should be modified or adjusted during such continued operation, or whether the program may be discontinued.

V. GOALS AND OBJECTIVES FOR REMEDIATION

A. Overall Goals

The overall goal of the Interim Remediation plan for the Du Pont Niagara Plant site is to effectively control the off-site migration of contaminants from the plant site. Presently, pumping of the Olin production wells is controlling off-plant migration of contaminants within the bedrock zones of the western portion of the plant site. Once the overburden remediation system is in operation, over time, the potential for bedrock contamination from the overburden will be reduced. The specific objectives of remedial efforts for each operable unit are described in V B and C.

B. Plant Site Overburden

The objectives of the interim remediation system are:

- * To create a hydraulic barrier in the overburden (A-zone) that will reduce lateral off-plant contaminant migration by pumping groundwater from a line of 22 collection wells to a new water treatment facility. Treated water will be discharged to the City of Niagara Falls Waste Water Treatment Plant.
- * To install and operate a new water treatment facility to strip and condense contaminants present in groundwater. Periodically, condensed organics will be shipped off-plant as hazardous waste.

C. Plant Site Bedrock

Off-site migration of contaminants from bedrock zones in the western plant area will continue to be controlled by pumping the Olin production wells. The effectiveness of this system has been consistent over the years, and the contaminant off-plant loading rate calculations since 1984 indicate that 75-85 percent non-point source containment is being achieved. Water from the production wells is treated by carbon adsorption units prior to use by Olin as non-contact cooling water, and it is then discharged to a SPDES permitted outfall.

Du Pont has entered into an agreement with Olin to use the production wells for an indefinite period of time for bedrock remediation. The success of the in-place bedrock remediation will be assessed during the initial operating period (ten years) and thereafter (see Section IV: Enforcement Status).

VI. SUMMARY, EVALUATION AND SELECTION OF ALTERNATIVES

This section outlines the alternatives considered, the evaluation of these alternatives, and the final selection to be included in the Interim Remediation Plan.

A. The Evaluation Process

No new remedial alternatives were evaluated for the bedrock due to the control by the Olin well water production system.

Considering that less than a pound per day of contaminants which have no negative health impact on populations (R.44 in Table 1), are leaving the East Plant area bedrock, it was concluded at this time that no remediation would be required. However, the effectiveness of the Interim Remediation plan for the bedrock shall be evaluated periodically by the Department to assess the success of the remediation plan, and adjustments and modifications to the rate of operation or modification to the bedrock groundwater collection system shall be made as deemed necessary.

A number of alternatives were evaluated for remediation of the plant overburden. The criteria used to evaluate these remedial alternatives were:

- a) overall protection of human health and the environment
- b) reduction of toxicity, mobility and volume of contaminants
- c) environmental effectiveness (short and long term)
- d) technical feasibility and reliability
- e) compliance with applicable or relevant and appropriate requirements
- f) cost
- g) community acceptance

6

Alternatives were evaluated for the overburden remediation included:

- 1. no action
- excavation
- ². bioreclamation
 - 4. solidification
- 5. flushing
- б. passive containment (horizontal and/or vertical grouting)
- 7. active containment with conventional treatment of groundwater

A Phase I Remediation Study was conducted to identify and evaluate available remediation alternatives. Out of this study, three general areas of the Niagara Plant site were identified and were recommended to be included in the remediation program. They are:

- * West Yard
- * West Plant Site
- * East Plant Site

Specific conclusions regarding remediation of these three areas were developed based on results of the evaluation of the remedial alternatives as presented in Table 2.

A Phase II Remediation Study further refined the remedial action alternative that would be most cost effective and appropriate for application at the three plant locations.

The West Yard area was considered separate from the East and West Plant sites because of its location and the nature of contamination. The NYSDEC agreed that barrier walls and capping of the West Yard was most acceptable in terms of its environmental effectiveness. This was completed between the fall of 1985 and spring of 1986.

The selected remediation alternatives for both the East and West Plant Sites were evaluated and are described below. A more detailed description of each alternative can be found in R.8 and R.11 (Table 1).

Alternative 1: No Action

Under this alternative, the plant site contaminants would continue to migrate from overburden and bedrock as presented in Table 4. This alternative would not protect the environment, nor would it provide overall protection of human health. Furthermore, it would not reduce the toxicity, mobility, or volume of contaminants in groundwater, nor would it comply with Applicable or Relevant and Appropriate Requirements (ARARs).

Alternative 2: Excavation

This alternative consists of excavation, transportation and disposal of meterials. This alternative was not considered because mass excavation is not possible due to plant operation, buildings and utility line congestion.

Alternative 3: Bioreclamation

Bioreclamation techniques for remediation of contaminated groundwater contained in the overburden material (A-zone) has been considered. The feasibility of bioreclamation in groundwater is determined by the presence of:

1. Biodegradable organic compounds to sustain bacterial growth;

2. Sufficient nitrogen, phosphorus, and sulfur; and

3. Trace metals (potassium, iron, molybdenum, zinc, etc.

Additionally, maintaining the proper pH and temperature, providing sufficient contact time for bacteria to act on the contaminated groundwater, and having low levels of toxic materials in groundwater will determine the success of the bioreclamation.

Considering the concentration and the type of specific compounds present in the Buffalo Avenue plant site groundwater, and the degree of treatment needed to meet the Best Available Technology (BAT) target levels for volatile compounds, the bioreclamation technique was found to be inappropriate.

Treatment of the overburden groundwater with "biologically active granular activated carbon column" was also considered but was found to be unsuitable for the treatment of water containing higher concentration of organic materials where uncontrolled biological activity may occur. The result can be the development of anaerobic conditions, seriously upsetting the process performance and creating odor and corrosion problems.

Alternative 4: Solidification

The wastes which are the best candidate for solidification are wastes that contain high concentrations of heavy metals or inorganic salts. In general, these wastes do not exist at the Niagara Plant site, therefore, it has little applicability.

Alternative 5: Flushing

Contraction of the Contraction of the

By this technique, contaminants in soil medium are solubilized, the ensuing leachate is collected and treated. This alternative is impractical at the Buffalo Avenue Plant site for the following reasons:

.

- 1. The plant site is non-homogeneous, which limits the hydraulic effectiveness of the system.
- 2. The presence of buildings and underground utility lines significantly reduces the environmental effectiveness of a flushing system.
- 3. Non-soluble compounds will not be flushed away.
- 4. The positive head may cause a vertical migration of contaminants into bedrock zones.

Alternative 6: Passive Containment with Collection of Groundwater

As a passive containment, horizontal and/or vertical grouting of the Buffalo Avenue Plant site was considered along with the operation of an active groundwater collection system. This alternative was found to be impractical for the following reasons:

- 1. The presence of buildings and the nature of the fill (shotrocks) along the Robert Moses Parkway, would make it difficult to construct a uniform grout curtain and verify its continuity.
- 2. By constructing a grout curtain along the perimeter of the plant site, the possibility of bringing back the off-plant contaminants into the groundwater collection system and treating them would have been impossible.
- 3. It was determined that a circumscribing slurry wall would have an insignificant impact on the total hydraulic load of the groundwater collection system in the plant site.

Alternative 7: Active Containment

This is the preferred alternative, which consists of a network of pumping wells as seen on Figure 10. Based on current information and analysis of the site investigation, Risk Assessment and Feasibility Study, the NYSDEC believes that this alternative for the overburden remediation is consistent with the requirements of both Federal and State laws, regulations and standards that are applicable or relevant and appropriate to the remedial action. This alternative will mitigate contamination leaving the site through the overburden. This, as seen in Table 4, will amount to a 2-3 pound/day contaminant flux reduction which otherwise is discharged into the Niagara River. In addition, the preferred alternative will, over time, clean up the Buffalo Avenue plant site's contaminated groundwater, thereby reducing the potential vertical migration of plant's contaminants into bedrock zones. This, in turn, should reduce the off-site contaminant flux through bedrock zones.

Several groundwater modelling/simulations were conducted to estimate the groundwater withdrawal rate necessary to adequately prevent contamination from leaving the site through the overburden and to assist in designing a system (Figure 11, 12). An overburden remediation system consisting of a line of 22 pumping wells along the east-west axis of the plant was designed.

The proposed groundwater treatment system (Figure 14) is a process whereby contaminated groundwater is collected from the 22 pumping wells along the axis of the Niagara Plant. A schematic for a typical pumping well is shown in Figure 13. It is anticipated that each pumping well will yield approximately 1-5 gpm, for a maximum combined yield of 110 gpm. Collected water will be processed at the treatment plant with steam and the stripped organics will be condensed, stored and periodically shipped off site as hazardous waste. This technology will meet all indicated BAT target levels for volatile compounds.

Effluent from the treatment plant will be monitored and discharged to the City of Niagara Falls Waste Water Treatment Plant which will further remove any remaining organics and inorganics from the effluent.

A monitoring program will be in place to evaluate and confirm that the remediation system is performing properly and is meeting the specified performance criteria. Periodically, quality of effluent from the water treatment plant will be analyzed to ensure it meets the discharge criteria. No groundwater discharges will be permitted until the discharge criteria for effluent is satisfied. In addition, selected monitoring wells at the plant site will be monitored periodically to determine the long term effect of pumping on the plant site groundwater quality. Furthermore, the establishment of a hydraulic barrier in both the overburden and bedrock zones will be monitored by measuring water elevations in existing utility and monitoring wells and in new piezometers placed throughout the plant site. In summary, the Interim Remedial Action plan for the Niagara Plant overburden groundwater has been assessed to be the most appropriate plan and includes the following features:

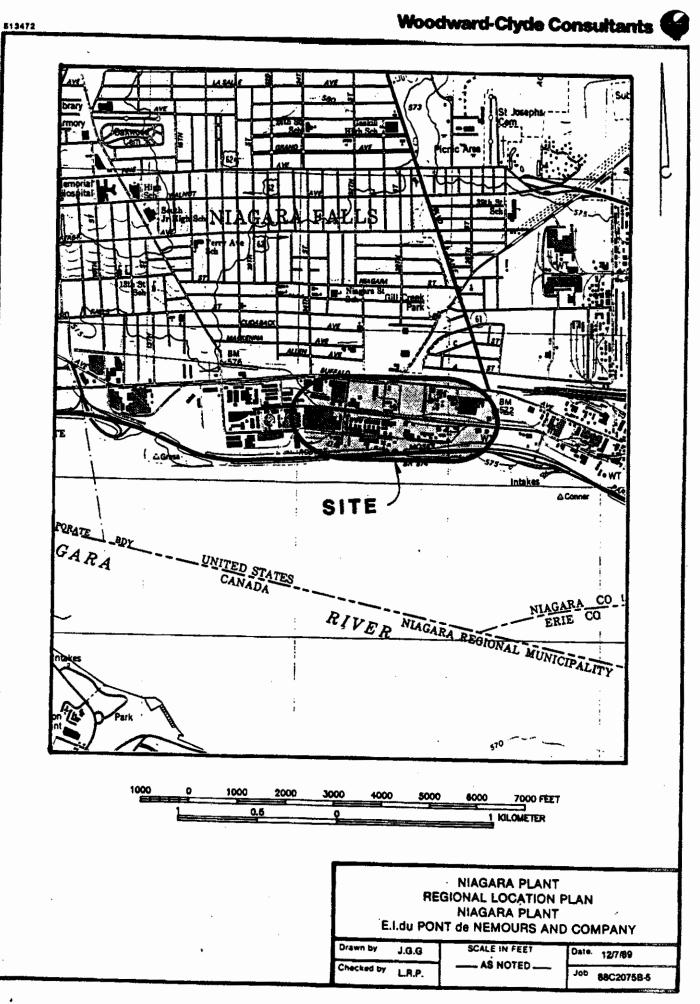
- 1. This alternative provides a high level of protection to the environment by mitigating the migration of contaminants and by removing contaminated groundwater from the Du Pont plant site.
- 2. This alternative provides for permanent reduction in the toxicity, mobility and volume of contaminants found in overburden and bedrock groundwater.
- 3. This alternative is implemented using conventional construction methods and is technically the most reliable alternative considered.
- 4. This alternative is flexible enough to meet the performance objective of the Interim Remedial Action Plan by 1) adjusting the pumping rate of individual wells, and or 2) optimizing the total number of pumping wells at a given period.

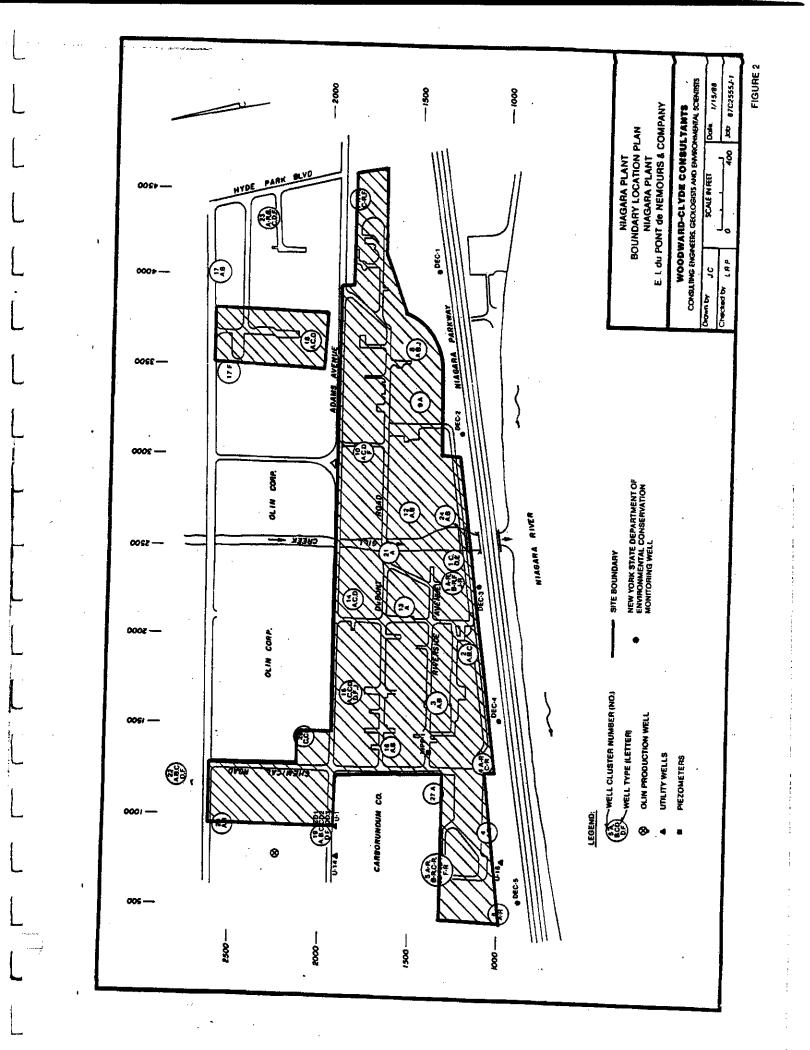
VII. SUMMARY OF THE STATE DECISION

A. Public Participation

Citizen Participation activities for the Du Pont Niagara Plant site began in September 1989 with the establishment of a local document repository at the Niagara Falls Public Library. A citizen participation plan was finalized in October 1989.

A public meeting was held on October 19, 1989, to present the proposed site remedial action plan and to receive public input. A 30-day comment period was held for additional public input. Despite notice to local citizens, only one citizen attended the meeting. No input was received at the meeting. No technical comments were received during the 30-day comment period, although several verbal comments were received from the Erie and Niagara Counties Regional Planning Board (ENCRPB). These comments basically requested that plant site groundwater quality data be shared with other on-going projects in Niagara County.

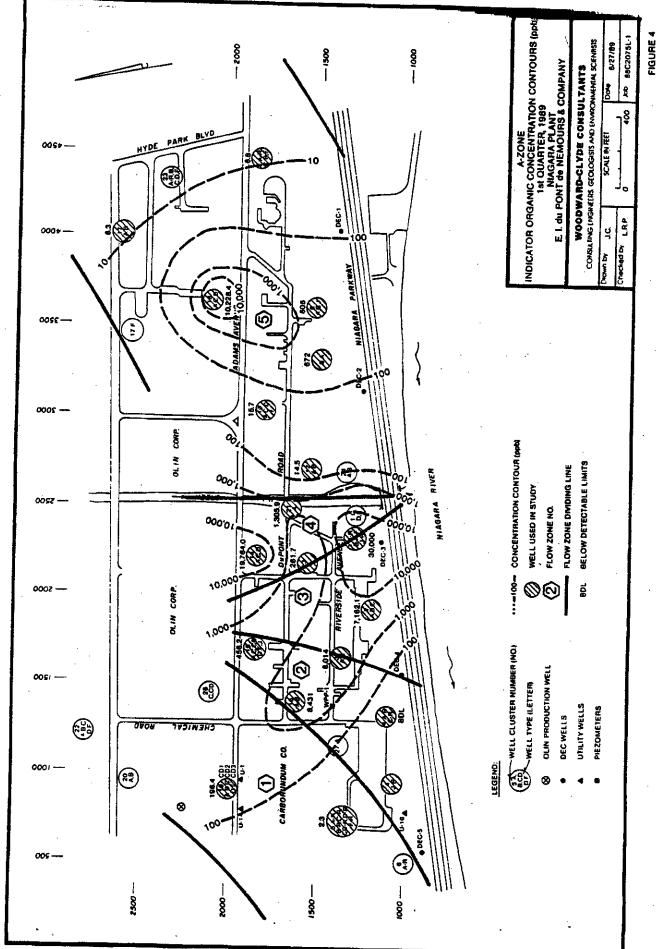

A transcript of the public meeting has been made part of the Administrative Record and is available to the public at the document repositories. No responsiveness summary was prepared due to lack of technical questions and comments from the public. Following the public meeting, a brief meeting summary was sent to the site contact list. However, no additional public inquiries were received.

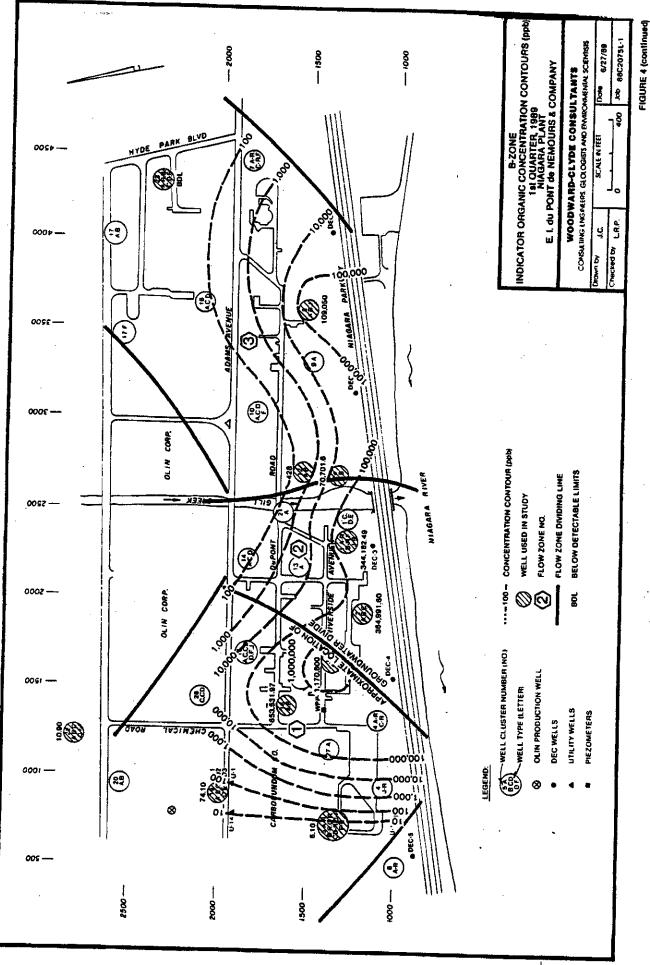

B. Summary of Selected Remedial Action

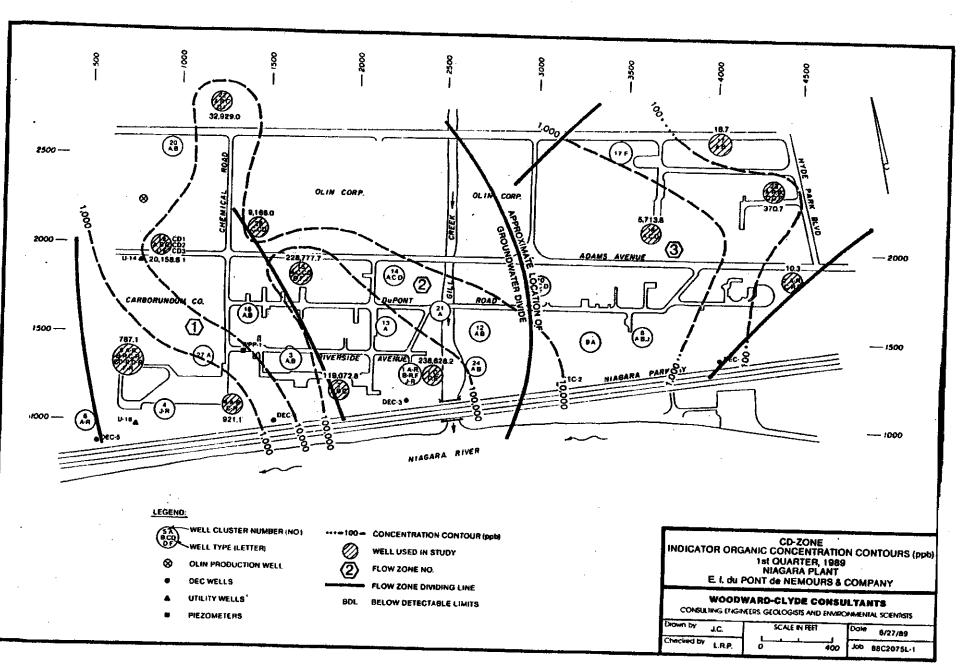
The Interim Remedial Action Plan for the Du Pont Niagara Plant has been selected to mitigate the migration of contaminants from the plant's overburden and bedrock zones. The remedial plan includes provision for the collection and treatment of contaminated groundwater. Effluent from the overburden treatment system will be further treated at the City of Niagara Falls Wastewater Treatment Plant. The bedrock groundwater will continue to be treated at the Olin's carbon adsorption units and discharged under a SPDES permit. Long term monitoring, and the annual assessment of the program are also important elements included in the remedial plan.

DU PONT RECORD OF DECISION APPENDIX A

FIGURES AND TABLES

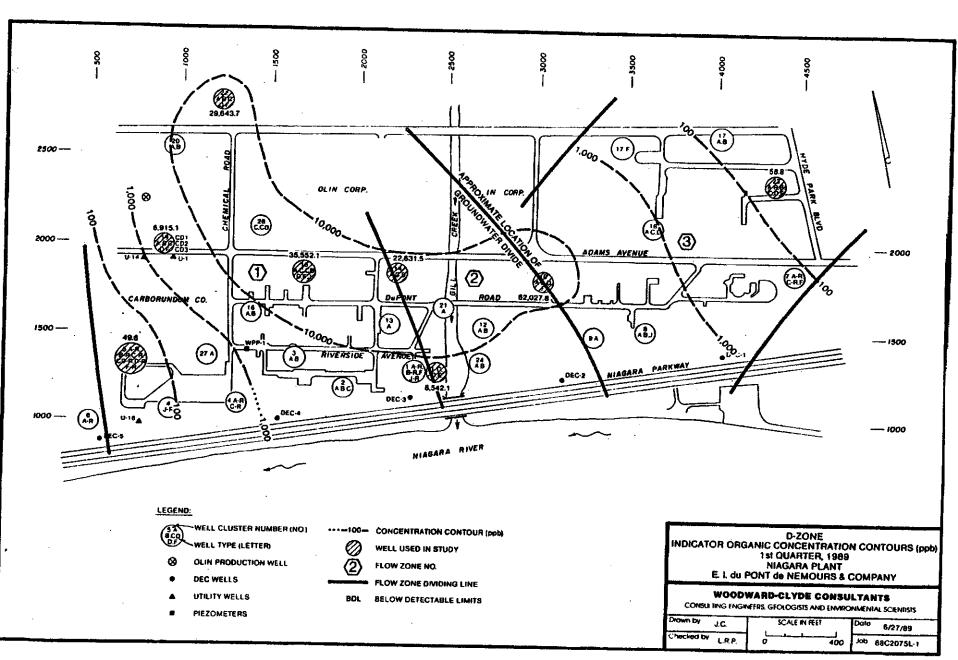



HISTORY OF CHEMICAL PROCESSES (1900's) REMEDIAL ACTION PROGRAM DUPONT NIAGARA FALLS PLANT NIAGARA FALLS, NEW YORK .


	00's	10's	20's	30's	40's	50's	60's	70's	18
SODIUM									1
SODIUM PEROXIDE									<u>+</u> >
HYDROGEN PEROXIDE								<u> </u>	╈
SODIUM CYANIDE			l					1	\uparrow
COPPER/ZINC CYANIDE									1
AMMONIA			1						T
"C-1"s									╋
"C-2"s									T
METHANOL							Γ	<u> </u>	T
SODIUM PERBORATE								†	╈
"IMPREGNITE"								1	╈
VINYL CHLORIDE			[╧
DIPONITRILE			1					1	╋
THF			1	<u> </u>				<u> </u>	╈
N-METHYL PYRROLE									
POLYVINYL ALCOHOL			1	1					╞
POLYVINYL ACETATE			1	1	1				╈
TERACOL®					<u> </u>				
ELECTRONIC MATERIALS			1	1	1				1

PREVIOUSLY MANUFACTURED

PRESENTLY MANUFACTURED


ويستشفيه منتجا بالشر

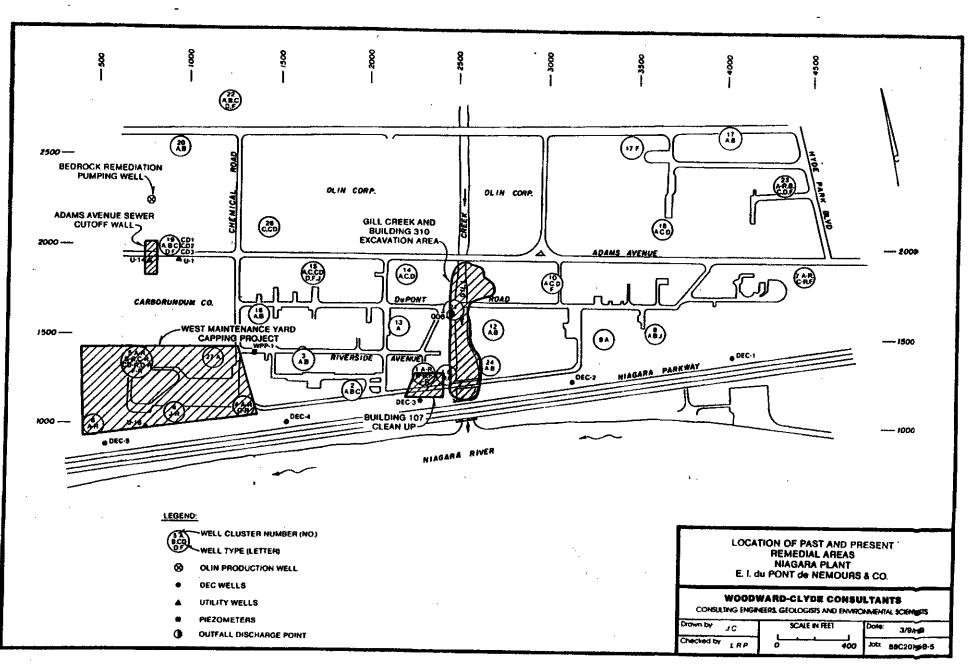
.....

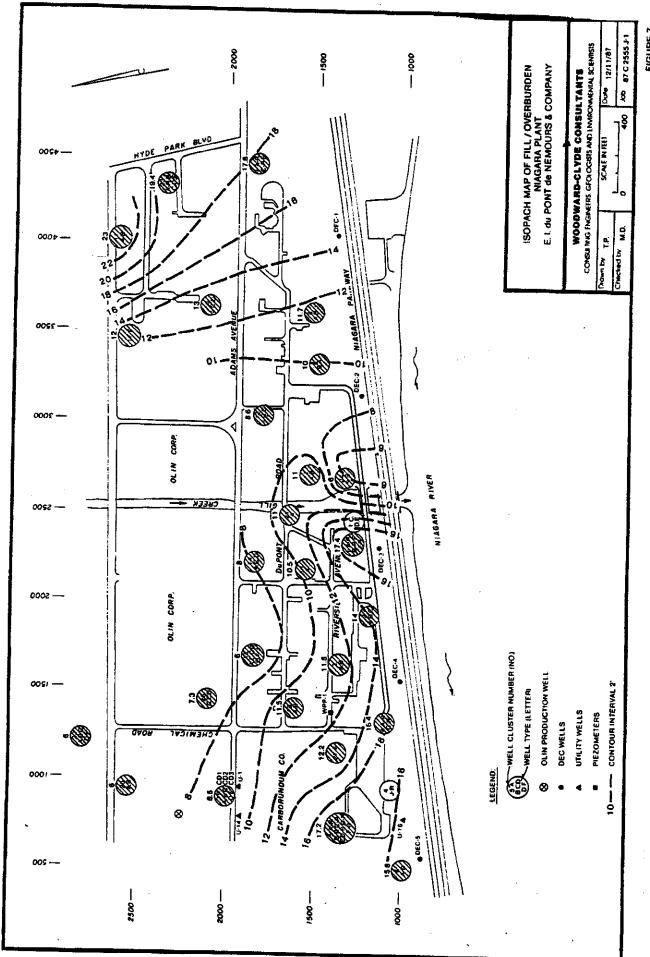
FIGURE 4 (continued)

£77.

in an oral and the same second and

FIGURE 4 (continued)




H

Ī

1

FIGLARE 6

: ;

.....

FIGURE 7

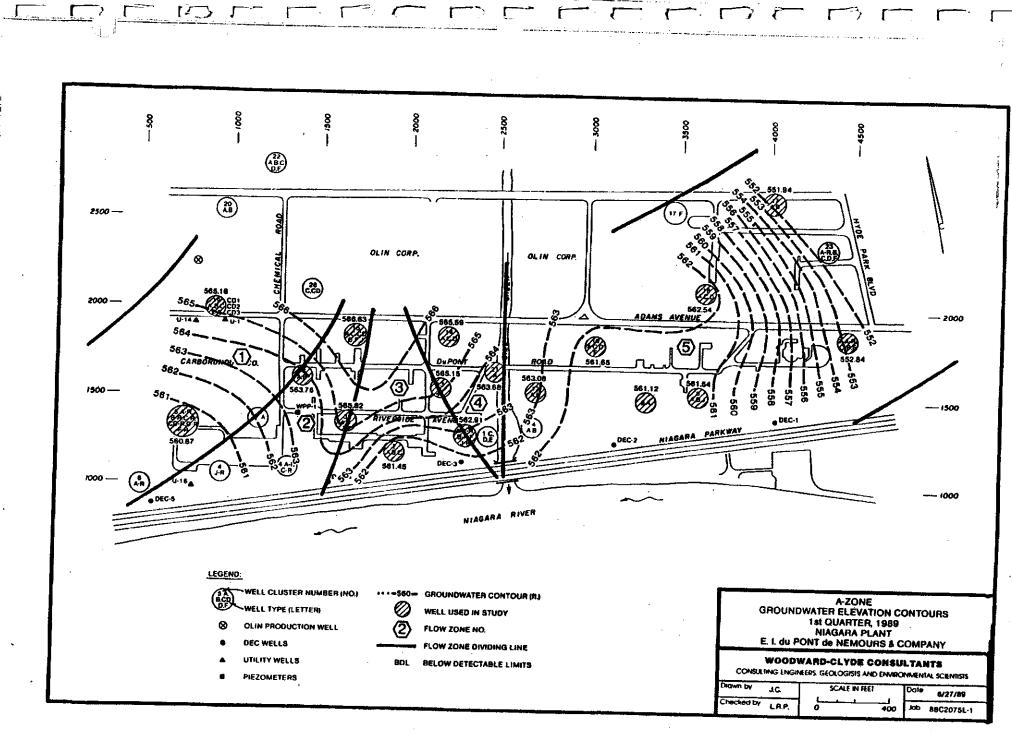
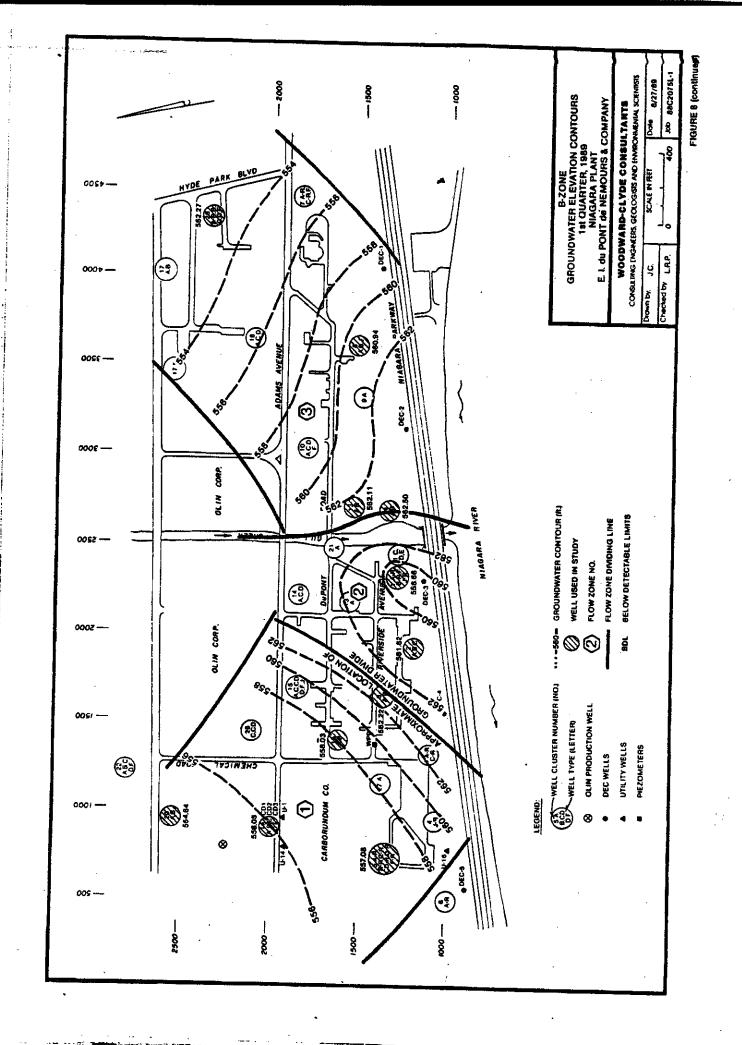
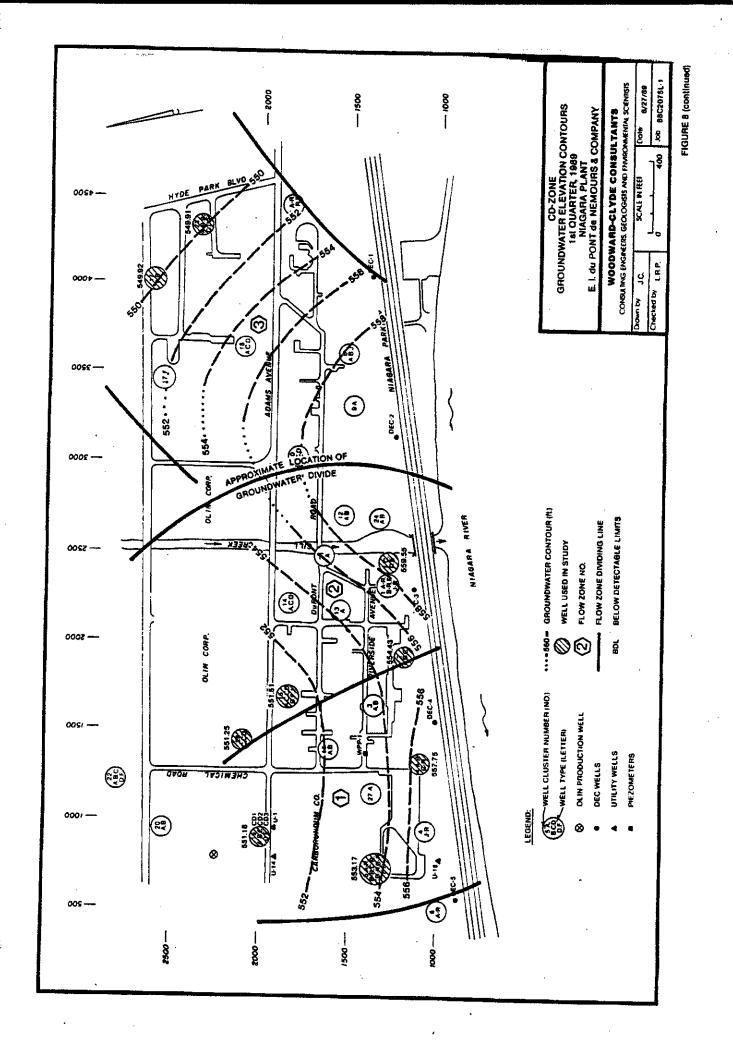




FIGURE 8

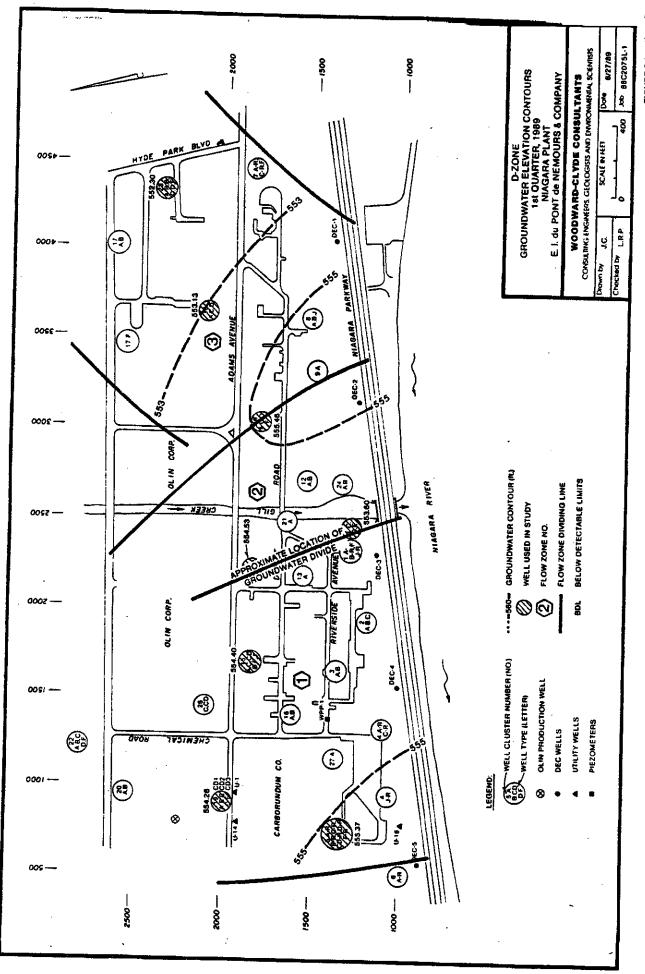
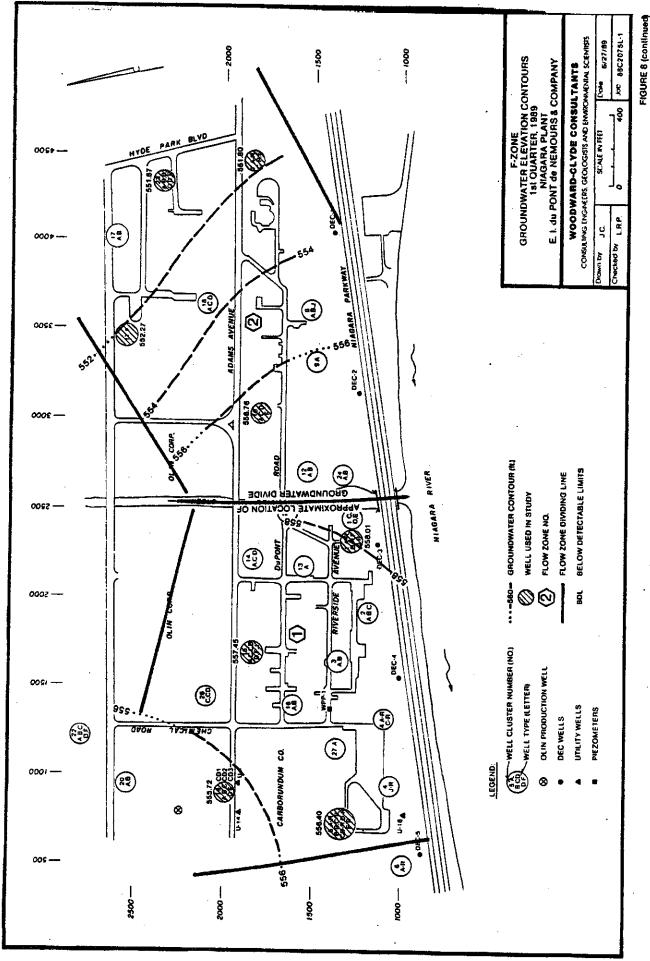
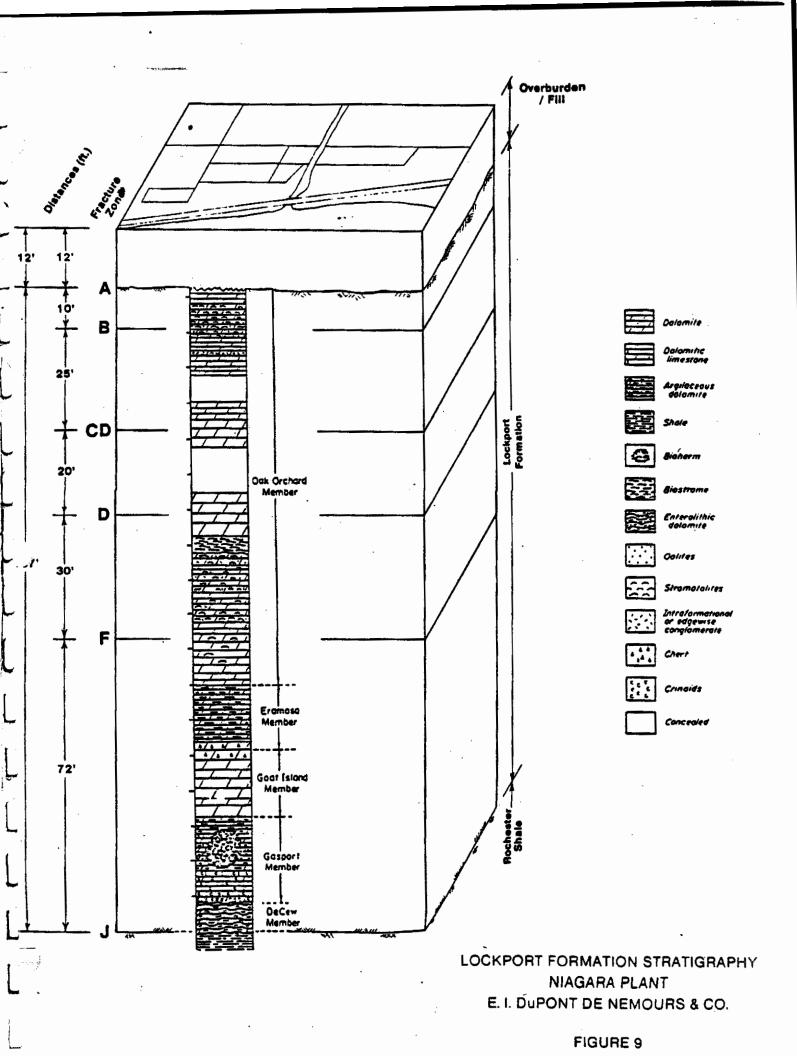
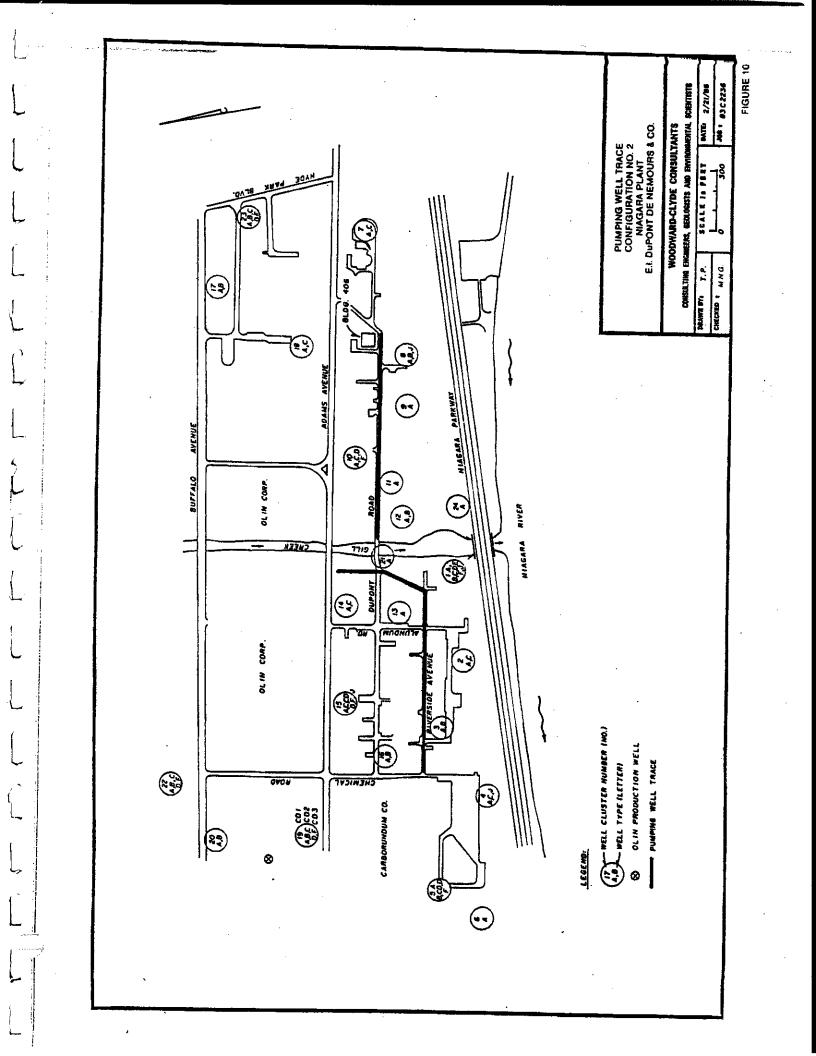
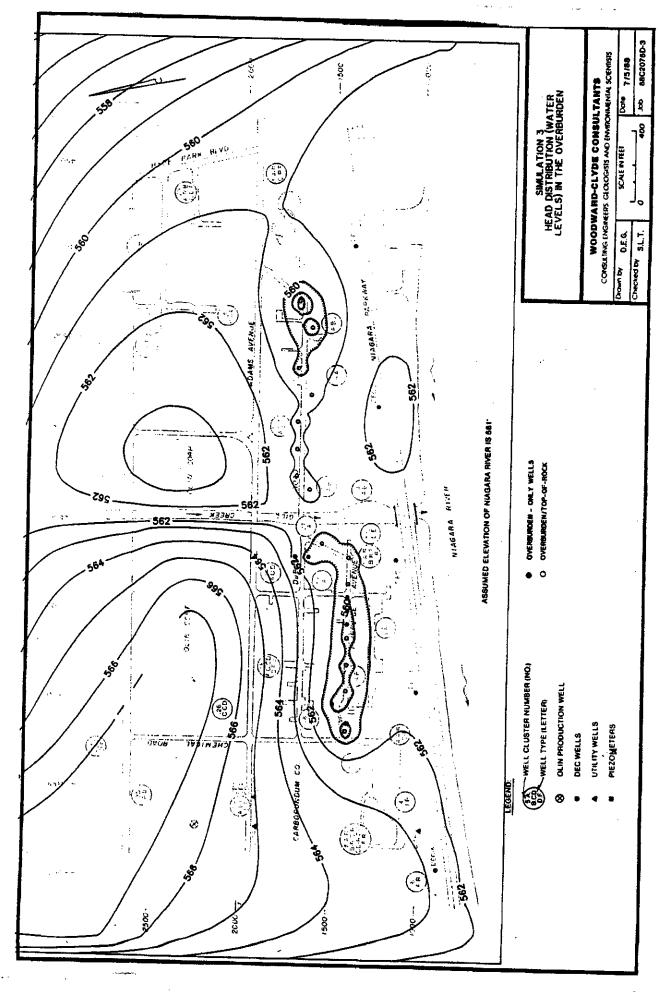
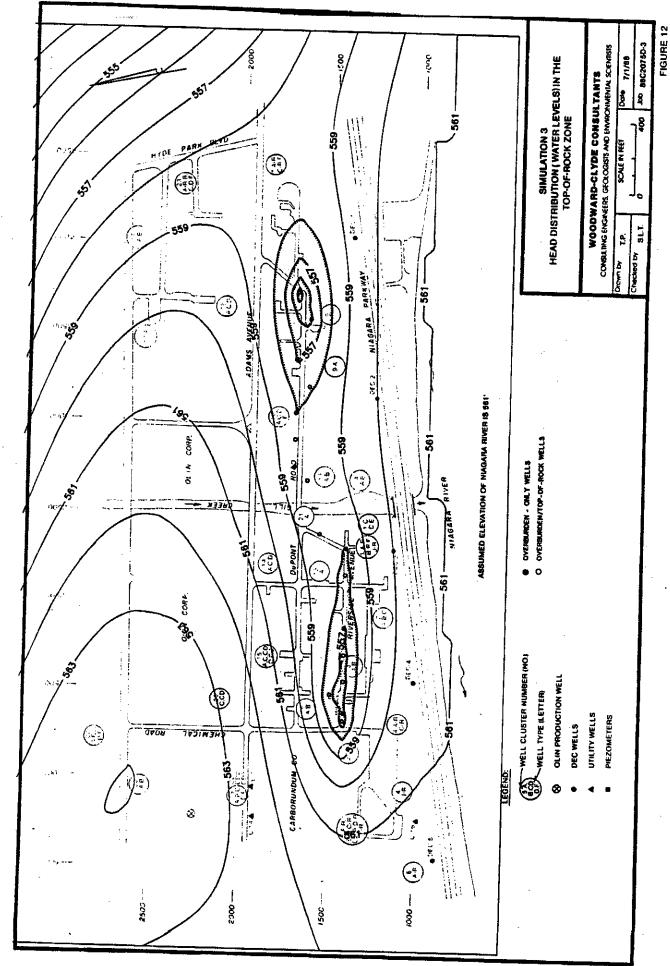
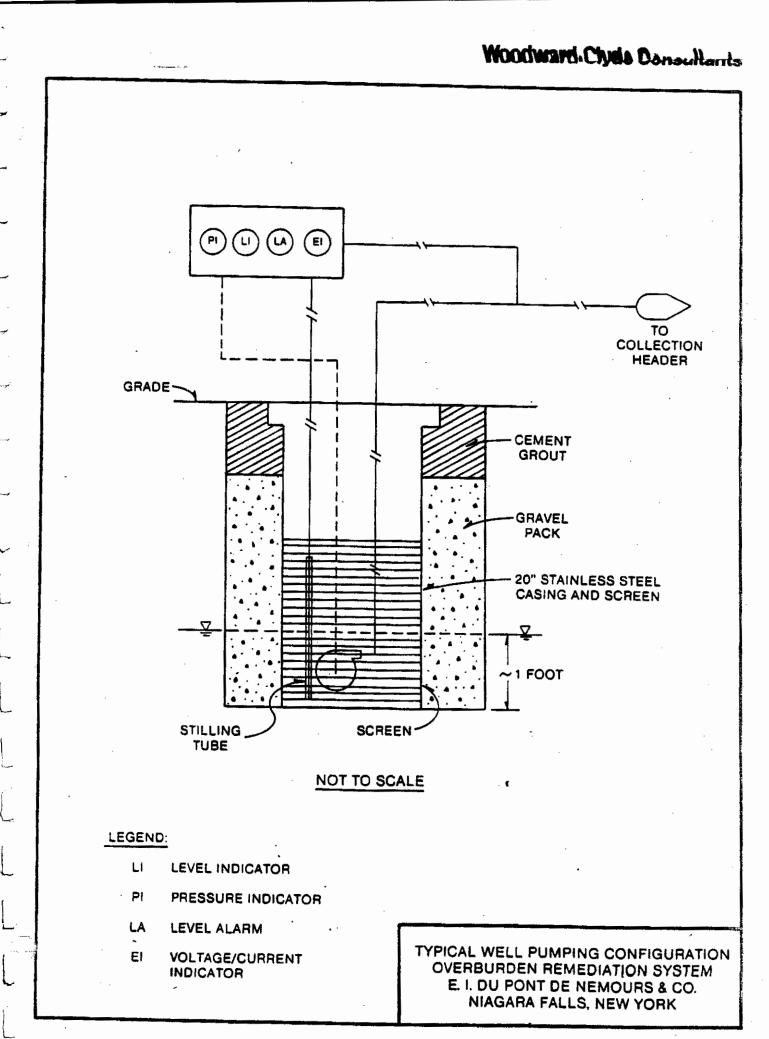






FIGURE 8 (continued)





J

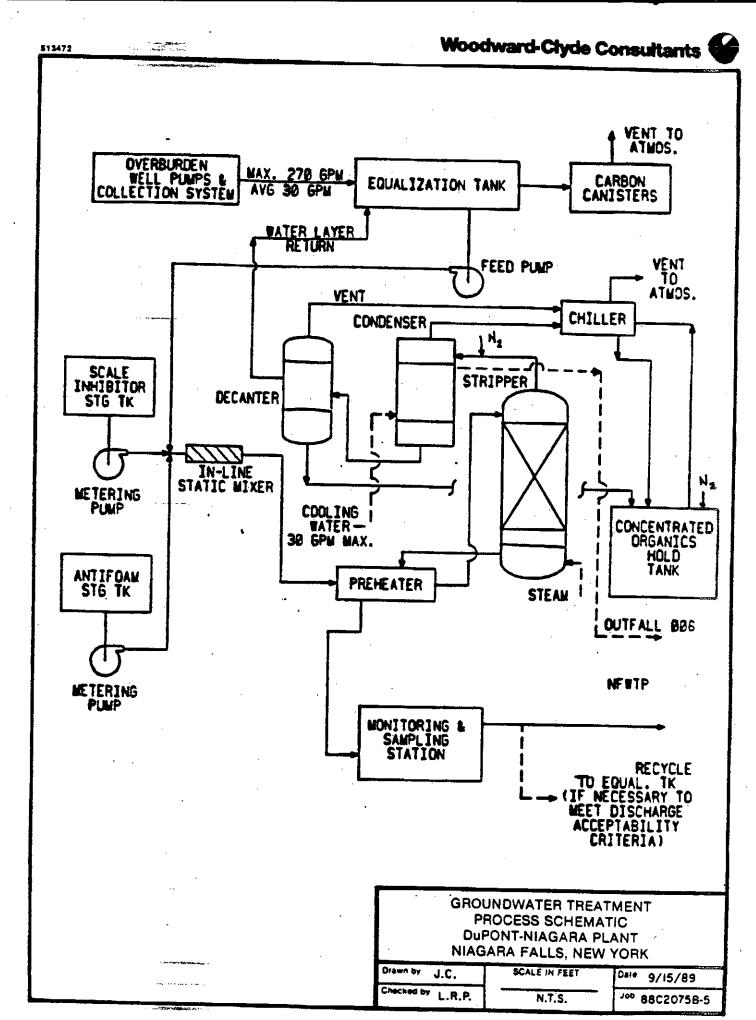

1

FIGURE 11

EIGHDC 44

FIGURE 14

. - .

...

TABLE 1

LIST OF REFERENCES INTERIM REMEDIATION PROGRAM DU PONT NIAGARA PLANT NIAGARA FALLS, NEW YORK

Reference <u>No.</u>	Document	Date of Submittal
	WOODWARD-CLYDE TO DU PONT	
R. 1	"Subsurface Investigation and Monitoring Wells"	05/01/79
R. 2	"Geohydrologic Investigations", Volumes I and II	12/23/83
R. 3	Geologic Logs	01/12/84
R. 4	"Man-made Passageways Investigation"	02/17/84
R. 5	"Review of Cleanup of B-107 Landfill and Terrain	
	Conductivity"	02/29/84
R. 6	"Supplemental Investigations & Remedial Program"	03/14/84
R. 7	"Remedial Investigation Via Recovery Wells"	03/20/84
R. 8	"Phase I Remediation Studies"	04/06/84
R. 9	Field Work Procedures Geologic Logging of Rock Core	04/06/84
R.10	"Geophysical Investigations"	04/11/84
R.11	"Phase II Remediation"	07/05/84
R.12	"Representative Samples Formulation"	09/07/84
R.13	"Groundwater Modeling for Remediation Studies"	09/27/84
R.14	"Sensitivity Analysis of Groundwater Modeling Parameter:	
R.15	"Supplemental Man-made Passageways Investigation"	10/24/84
R.16	"Supplemental Geohydrologic Investigation"	10/24/84
R.17	"Investigation of Hydraulic Connection between	
	A-zone and B-zone"	10/25/84
R.18	Project Specifications re. Adams Avenue Sewer Cutoff	11/01/84
R.19	"Contaminant Loading for Organic Compounds"	11/08/84
R.20	Fourth Quarter Contaminant Loading Results	04/16/85
R.21	"Geotechnical investigation West Yard Maintenance Area"	05/15/85
R.22	"Pump Test Program"	06/19/85
R.23	J-Zone Off-Site Contaminant Loading Rates	07/01/85
R.24	Supplemental Groundwater Modeling Analysis	07/03/85
R.25	"Groundwater Collection System"	10/18/85
R.26	"Hydraulic Comparison Tile Drain and Pumping"	12/02/85
R.27	Pump Well Design	02/26/86

Reference No.	Document I	Date of Submitte
R.28	"Monitoring Plan for A-zone Remediation"	02/26/86
R.29	"Justification of Configuration No. 2 Pumping Wells"	03/27/86
R.30	"Groundwater Monitoring Plan for Site Remediation"	03/27/86
R.31	"Hydraulic Impact of Olin Production Wells"	04/03/86
R.32	"Olin Pump Performance"	11/19/87
R.33	"Off-Site Contaminant Loading Rates, Fourth Quarter	
	1984 Through Third Quarter 1985"	04/03/86
R.34	"Off-Plant Contaminant Loading Rates, Fourth Quarter 198	
	through Third Quarter 1986"	06/10/87
R.35	"Off-Plant Contaminant Loading Rates, Fourth Quarter 198	-
R.36	"Off-Plant Contaminant Loading Rates, First Quarter 1987"	
R.37	"Off-Plant Contaminant Loading Rates,	••••••••
	Second Quarter 1987"	08/21/87
R.38	"Off-Plant Contaminant Loading Rates,	
	Third Quarter 1987"	01/08/88
R.39	"Numerical Simulation of Bedrock Water Bearing Zones"	04/08/86
R.40	"Infiltration/Inflow Study Plan"	08/28/87
R.41	"Endangerment Chemicals Loading Estimates"	06/02/87
R.42	"J-Zone Investigation"	06/11/87
R.43	"Response to DEC comments on J-Zone Investigation Repor	
R.44	"Endangerment Assessment"	10/86
R.45	"West Plant Area Endangerment Chemical Evaluation"	08/12/87
R.46	"Southwest Niagara Plant Storm Sewer Evaluation"	06/02/87
R.47	"Du Pont Niagara Plant - Infiltration Study Plan Addendum"	
R.48	"Response to DEC comments on Infiltration Plan"	11/02/87
R.49	"Adams Avenue Slurry Wall"	07/29/86
R.50	"Refinement of the Aqueous Indicator Parameter List"	10/07/86
R.51	"Groundwater Chemistry Quality Assurance/Quality Control Audit, Fourth Quarter 1985 and First	10,01,00
	Quarter 1986"	07/14/86
R.52	"Groundwater Chemistry Quality Assurance/Quality Control Audit, Second Quarter 1986 and Third	
	Quarter 1986"	12/19/86
R.53	"Groundwater Chemistry Quality Assurance/Quality	
D. 6 4	Control Audit, Fourth Quarter 1986"	07/30/86
R.54	"Groundwater Chemistry Quality Assurance/Quality	00 /07 /07
	Control Audit, First Quarter 1987"	08/27/87
R.55	"Groundwater Chemistry Quality Assurance/Quality	
	Control Audit, Second Quarter 1987"	09/16/87
R.55A	"Addendum to Groundwater Chemistry Quality Assurance/	
	Quality Control Audit, Second Quarter 1987"	10/16/87
R.56	"Groundwater Chemistry Quality Assurance/Quality	
	Control Audit, Third Quarter 1987"	11/24/87
R.56A	"Addendum to Groundwater Chemistry Quality Assurance	
	Quality Control Audit, Third Quarter 1987"	12/08/87

.

Reference <u>No.</u>	Document	Date of Submittal
R.57	"Quality Assurance/Quality Control Audit Manual,	
	Fourth Quarter 1986 through Third Quarter 1987	
	for the Niagara Plant and Necco Park, Version 1.1	07/31/87
R.58	"1987 Field Audit Manual"	06/29/87
R.59	"General Testing Corporation Laboratory Audit"	10/28/87
R.60	"Non-Aqueous Phase Liquid Chemistry Quality	
	Assurance/Quality Control Audit for the Niagara	
	Plant	09/15/87
R.61	"Effects of Cap Emplacement on Endangerment	
	Chemical Migration, West Yard Niagara Plant"	01/25/88
R.62	"Long-Term Pump Test Procedures"	01/25/88
R.63	"Quality Assurance/Quality Control Audit Manual,	41, 10, 50
	Fourth Quarter 1987 through Third Quarter 1989,	
	Niagara Plant and Necco Park, Version 2.0"	02/26/88
R.64	"Off-Plant Contaminant Loading Rates,	02/20/00
	Fourth Quarter 1987"	.03/11/88
R.65	"Groundwater Chemistry, Quality Assurance/	.05/11/00
	Quality Control Audit, Fourth Quarter 1987"	03/11/88
R.66	"Draft Version 2 Remedial Action Program,	00/11/00
11100	Niagara Plant, Niagara Falls, New York"	03/14/88
R.67	"Groundwater Chemistry Quality Assurance/	03/12/00
	Quality Control Audit, First Quarter 1988"	05/18/88
R.68	"Off-Plant Contaminant Loading Rates,	00/10/08
	First Quarter 1988"	06/17/88
R.69	"1988 Field Audit, Niagara Plant"	07/07/88
R.70	"General Testing Corporation Laboratory Audit"	07/14/88
R.71	"Effectiveness Evaluation Adams Avenue	01/14/00
	Sewer Slurry Wall"	08/11/88
R.72		
R.73	"Evaluation of Overburden Remediation System" "Off-Plant Contaminant Loading Rates, Second Quarter 198	
R.74		8" 10/06/88
R.14	"Groundwater Chemistry Quality Assurance/	11/04/00
R.75	Quality Control Audit, Second Quarter 1988"	11/04/88
Rat 0	"Response to NYSDEC letter; WCC Evaluation of	01/00/20
1) 70	Overburden Remediation System Report"	01/20/89
R.76	"Groundwater Chemistry Quality Assurance/	61 /64 /65
T) 80	Quality Control Audit, Third Quarter 1988"	01/24/89
R.77	"Off-Plant Contaminant Loading Rates, Third Quarter 1988	" 02/02/89
R.78	"Response to NYSDEC letter, QA/QC Audit Manual	
	Version 2.0 and Fourth Quarter 1987 Groundwater	
	Chemistry QA/QC Audit"	02/07/89
R.79	"Off-Plant Contaminant Loading Rates,	03/22/89
	Fourth Quarter 1988"	

Reference <u>No.</u>	Document	Date of Submittal
R.80	"Groundwater Chemistry Quality Assurance/Quality Control Audit, Fourth Quarter 1988"	03/28/89
R.81	"Draft Version 2, Remedial Action Program, Niagara Plant, Niagara Falls, New York"	03/14/89
R.82	"Long Term Pump Test, WCC Response to NYSDEC Comments"	03/25/89
R.83	"Overburden Remediation System Projected Time to Reach Steady State Conditions"	06/08/89
R.84	"Groundwater Chemistry Quality Assurance/Quality Control Audit, First Quarter 1989 Data Niagara Plant"	06/19/89
R.85	"Response to EPA Comments on the Quality Assurance/ Quality Control Manual Version 2.0 with Regards to the Niagara Plant"	07/05/89
R.86	"Response to Comments in February 16, 1989 NYSDEC Letter"	07/05/89
R.87	"Off-Plant Contaminant Loading Rates, First Quarter 1989"	07/19/89

The follow references were added after September 21, 1989 "Final Report Du Pont Niagara Falls Plant Remediation Summary Report" was issued.

R.88	"General Testing Corporation, Laboratory Audit 1989"	08/10/89
R.89	"1989 Field Audit, Niagara Plant"	08/16/89
R.90	"Final Report Du Pont Niagara Falls Plant Remediation	09/21/89
	Summary Report"	
R.9 1	"Off-Plant Contaminant Loading Rates, Second Quarter 1989"	10/18/89
R.92	"Groundwater Chemistry Quality Assurance/Quality	11/02/89
	Control Audit, Second Quarter 1989 Data, Niagara Plant"	

Reference <u>No.</u>	Document	Date of Submittal
•	OTHER SOURCES	
S. 1	Questionnaire Results, Du Pont to Interagency	11/19/70
S.2	Task Force on Hazardous Wastes. "Groundwater Investigation Plan", Du Pont to New York	11/13/78
D. 4	Department of Environmental Conservation	5/83
S.3	"Report of The Niagara River Toxics Committee",	3/03
0.0	Toxics Committee to the EPA	10/84
S.4	"Groundwater in the Niagara Falls Area, New York"	TUIGE
0.4	N.Y. Conservation Department, Water Resources Division	1964
S.5	Data Request from New York Power Authority by WCC	11/07/84
S.6	"Niagara Power Project - Data-Statistics",	11/01/04
0.0	Power Authority of the State of New York	
	(New York Power Authority)	4/65
S.7	"Determining the Impact of Land Disposal - The	
~~~	Review of Organic Analytical Data," Environmental	
	Testing and Certification Corporation (Internal Report)	1/86
S.8	"Evaluation of Extending Pump Well Collection System	1,00
	to West Yard at Du Pont Niagara Plant" Du Pont to NYSD	EC 08/14/87
S.9	Letter, Du Pont to NYSDEC	04/22/86
S.10	"Gill Creek," Du Pont to New York State Department	• ., ==, • •
	of Environmental Conservation	01/11/82
S.11	"Final Report - Cleanup of B-107 Landfill,"	•=, -=, • -
	Du Pont to Du Pont	02/16/81
S.12	"Niagara Plant Ground Water Remediation Plans,	
	Specifications and Engineering Report"	02/05/87
<b>S.13</b>	"Du Pont Niagara Plant Ground Water Treatment	
	Facilities, Preliminary Permit Applications"	03/18/87
S.14	"Groundwater Treatment Facilities - Engineering Report -	
	and Permit Applications," Du Pont to NYSDEC	03/18/87
S.15	"Soil Excavation and Disposal Plan - Treatment	
	Facilities Construction," Du Pont to NYSDEC	01/27/87
<b>S.16</b>	"Ground Water Remediation - Ferrocyanide Treatment	
	Alternatives Review," Du Pont to NYSDEC	11/19/87
S.17	"Evaluation of Ferrocyanide Removal Facilities	
	Investment and Operating Costs," Du Pont to NYSDEC	09/08/87
S.18	"Soil Excavation and Disposal Plan for Pumping Well	
	Construction," Du Pont to NYSDEC	11/12/86
S.19	"Plan for Management of Soils and Groundwater Resulting	10/29/86
	from Excavation Work," Dupont to NYSDEC	(Rev. #2)
S.20	"E.I. du Pont de Nemours & Co., Inc., Niagara Falls (c),	
	Niagara County SPDES Permit #NY 0003328,"	
	NYSDEC to Du Pont	06/28/85
S.21	"E.I. du Pont de Nemours & Co., Inc., Niagara Falls (c),	
	Niagara County SPDES Permit #NY 0003328,"	
	Du Pont to NYSDEC	08/30/85

Reference <u>No.</u>	Document	Date of Submittal
	OTHER SOURCES (continued)	
<b>S.</b> 22	"E.I. du Pont de Nemours & Co., Inc., Niagara Falls (c), Niagara County SPDES Permit #NY 0003328," Du Pont to NYSDEC	09/10/85
S.23	"E.I. du Pont de Nemours & Co., Inc., Niagara Falls (c), Niagara County SPDES Permit #NY 0003328," Du Pont to NYSDEC	
S.24	"E.I. du Pont de Nemours & Co., Inc., Niagara Falls (c), Niagara County SPDES Permit #NY 0003328,"	11/13/85
<b>S.2</b> 5	NYSDEC to Du Pont "Reapplication for SPDES Permit NY-0003328 Including Niachlor Status of Compliance with Permit Conditions and Storm Water Discharge Information," Du Pont to NYSDEC	12/19/85
S.26	"Response to Comments on Proposed Discharge from the Plant Treatment Facilities to the Niagara Falls POTW"	10/30/87 11/02/87
S.27	"Ground Water Monitoring Program Scope of Work for Necco Park and Niagara Plant," Du Pont to NYSDEC	12/01/87
S.28	"Ground Water Sampling, Analyses, Elevations Scope of Work," Du Pont to NYSDEC	10/09/86
S.29 S.30	"Du Pont Niagara Plant - Sampling and Analytical Plan," Du Pont to NYSDEC	09/30/86
S.31	"Comments Infiltration/Inflow Study Plan Niagara Falls, New York," NYSDEC to Du Pont "Groundwater Water Monitoring Analytical Results,	12/18/87
S.32	Niagara Plant: Fourth Quarter 1986," Du Pont to NYSDE "Du Pont Niagara Plant, Hydraulic Conductivity of	C 07/27/87 12/15/87
0.02	Recently Installed Monitoring Wells," Du Pont to NYSDEC	12/13/01
S.33	"Ferrocyanide Degradation Literature Review, Du Pont Ground Water Remediation Project" Du Pont to NYSDEC	12/29/87
S.34	"Ferrocyanide Low pH Treatment Test Work, Du Pont Ground Water Remediation Project," Du Pont to NYSDEC	
S.35	"Comments on Long-Term Pump Test Proposal" NYSDEC to Du Pont	03/02/88
S.36	"SEQR Lead Agency Selection Du Pont Groundwater Remediation Application No. 90-88-0029" NYSDEC to Mayor Niagara Falls	05/24/88
S.37	"Copies of References from Draft Remedial Action Program" Du Pont to NYSDEC	06/10/88
S.38	"Request to Evaluate Additional Analysis on Niagara Plant Groundwater Samples," NYSDEC to Du Pont	07/06/88

Reference <u>No.</u>	Document	Date of Submittal
, <b></b> .	OTHER SOURCES (continued)	
S.39	"Response to Request to Evaluate Analysis on Niagara Plant Groundwater Samples," Du Pont to NYSDEC	07/22/88
S.40	"Comparison of Necco Park and Niagara Plant Safety and Health Plans - Remedial Activities," Du Pont and NYSDE	10/19/88 C
<b>S.4</b> 1	"Comments on Evaluation of Overburden Remediation System," NYSDEC to Du Pont	10/27/88
S.42	"Response to Du Pont's Comments on Niagara Plant Health and Safety Plan," NYSDEC to Du Pont	n <b>11/22/88</b>
S.43	"Du Pont Niagara Plant Remediation - Summary Report Outline," Du Pont to NYSDEC	01/18/89
S.44	"Response to comments on Safety and Health Plan, Du Pont Niagara Plant Remedial Action Program, Du Pont to NYSDEC	01/30/89
S.45	"Comments on QA/QC and Off-Plant Contaminant Loading Rates Third Quarter 1988 Data Reports"	g 02/16/89
S.46	"Response to DEC Comments on Part 373 Requirements," Du Pont to NYSDEC	02/28/89
S.47	"Du Pont Niagara Plant - Draft Remediation Summary Report, additional items" Du Pont to NYSDEC	03/20/89
S.48	"Response to Du Pont January 30, 1989 Comments on Health and Safety Plan," NYSDEC to Du Pont	04/10/89
S.49	"Response to Comments on Safety and Health Plan," Du Pont to NYSDEC	06/27/89
S.50	"Response to NYSDEC Requests Regarding the QA/QC Manual and Quarterly Audit Report" Du Pont to NYSDEC	07/13/89
S.51	"Well Maintenance Program - Scope of Work for Necco Park and Niagara Plant"	01/12/88

The following references were added after September 21, 1989 "Final Report Du Pont Niagara Falls Plant Remediation Summary Report" was issued.

S.52	"Update to Plans and Specification, Du Pont Niagara Plant Groundwater Remediation Program," Du Pont to NYSDEC	07/06/89
S.53	"Du Pont Niagara Plant - Groundwater Remediation Program, List of Changes to Quality Assurance/Quality Control Manual," Du Pont to NYSDEC	08/15/89
S.54	"Du Pont Niagara Plant - Groundwater Remediation, List of Changes to the Safety and Health Plan," Du Pont to NYSDEC	08/16/89

# TABLE 2

Techniques	<u>West Yard</u>	West Plant	East Plant
Excavation and Disposal	Practical	Possible	Possible
Passive Containment Techniques	Practical	Possible	Possible
Active Containment Techniques	N.A.	Practical	Practical
Solidification	N.A.	N.A.	N.A.
Flushing	N.A.	Practical	Possible
Bioreclamation of Contaminated Groundwater	N.A.	Possible	Possible
Conventional Treatment of Groundwater	N.A.	Practical	Practical

N.A. - Not Applicable

-

L

L

### 

	231MABHD MUTA31(DN) JATOT	<b>edd</b>	00109975	02 "928611	96,249,00	51.0259	H0*S6(1)	1575.50 ZI	1 74.429223	00°1E05	05°E061
	303 Mellinen	qdd	(50	(30	130	. 02)	(50	(50	(50	(50	150
	BIS (S-EDWITELIC) MUMERIE	اراني	0.01)	C*02 ·	0'8t	0.01)	50"3	S'EI	(10.0	2.11	12.2
	0921 83de	qdd	00.30	(20100)	05.03	(2'00	05-0)	0\$*0)	05.03	05.0)	QC'9)
	1521 IDa+		05'01	505" 90	00-0)	60 5)	05.0)	65°0)	50*40	05'0)	05.01
	+bCB 1546		05.0)	(20100	(8120	(3*00	(0.30	06'0)	00.00	(0'20	05'03
	2021 134		00.03	(20.00	01.30	(2'0)	95.0)	05'0)	05.0)	05.01	00.0)
	7161 634	edd	00-11	00.001)	(100"00	00.0011	00"11	60.11	00*1)	00111	60.()
	ZEZI ISA		00*1)	(100-00)	00.001)	00'001)	60.11	00'1)	00.1)	00.3)	00-1)
	1221 04-	and a	40.1)	00.0013	(100,00	00.00[)	00*1)	60"[]	09.1)	00.1)	80.13
	34-1+C	eld	05.0)	21"30	00.27	06.1	95.01	05.10)	(0.30	(0*20	05.0)
	38-8-		02.0)	01.00	02.22	(2"00	00.4)	SC.0)	12.1	(0.50	4C.41
		and a			90 921	2°0	0.22	06.03	68.0	(0°20)	
,	-9-3-C		00.0)	01'/0							02.0)
stiment len	3 <del>4</del> -94		40°24	0C'58	08.27	2.75	17.1	05°01	31.15	05.01	<b>62.0</b> }
	23JUL VERATILES	<b>gif</b>	0.62085	0.082219	0*0066661	\$ S974	4.59711			0-12021	5°£NJ
	3(3)(0)	<b>qil</b>	0.051	0*0002)	0.0001)	8,093	\$*QZ)	(3010	(5000"0	0.0011	0.6)
	36264+	اللبو	0'00Z)	0.0827	0.0191	90°S	(30*0	() (Q2)	(500010	0.001)	ð. <del>)</del> )
	3C3HJOHRUNDUHUU131	e file	6100C)	(2000*0	010051	0*093	0.00)	(30° 6	0*000E)	610010	6*9>
	JGLOVINGUO TAVIJI	- big	(30010	(3000*¢	(1200*8	6.042	0°0E)	0.001	£3000.8	0.9261	0.40
	342HOROROW		01002)	(1000Z)	0100011	0.053	0.053	120.0	0*0002)	010013	0.9)
	3070000001-+1		(300"0	(S000, 0	\$*000T)	0.065	8*0Z)	6'02)	(3000*0	0.001)	0.41
	HEIVOLOUCENME	-	0'90E)	6 '900E')	0100511	0.041	0.00)	0.00.)	0*000E3	0-001)	0.4)
	362600000	oid	6'00'0	( 3000, P	0'000E)	0'0+)	0.45	61023	(3008"0	01001)	8*63
			(300.0	0 00908	\$100CIZ	9-522	#"HC	(50'0	9.090.B	0.908	0.9)
	301120012000100		0.0001	4"000E)	0'00511	0.04)	0.00)	8-0C)	0.0000)	0.02()	0 1)
					0*00851	0.745	230910	5'10	33900-0	0.0100	9°12
	3GHESHOTOHILSI+	- The	1240'8	0.00101	6100018	6'0Z)	4°01)	0'01)	6*0001}	0.02)	0'2)
	<b>BANKERING TAKE-Z'1'I</b>		(100.0	0.0001)							0.901
	- TRIOLENCE -	<b>qii</b>	10400*0	\$12000°Q	104000,0	0.0572	3600*0		28000*0	0'0996	
	JULIUTIKIMILILI KORMO	ليليو	0.001)	0.00013	0.0025	(30"0	(10.0	<b>#*01</b> }	0.0001)	8*0C)	0°Z)
	3000120000000101-1-1-1	<b>9</b>	0.0011	0.00011	•*00 <u>5</u> }	{ <b>50°0</b>	0.01}	6.013	000019	0.025	4°2)
	AD-DIG VO	etd -	3590*0	0000	(200*0	(30*9	0.00)	0*0[}	#10001#	· 0°25	(3-0
	+{C(2)(*5-6)()(*0)(0)()	angel of the	0.00071	14500.0	0*00991	0.0474	2490'0	<b>0*8</b> 51	30000.0	0.866	0.469
	300013007030-1*1	- the	610018	0'0001}	\$1005)	150'0	0.013	0.01)	0100013	0.02)	0.51
	AUNIC-1'S-DIDCURELINDE	eid -	0.00()	0.00011	0.002)	0'0 <del>01</del>	2.22	0*01)	00011	0°0C)	2.SI
	BINDE OF MALER	, ili	0.0101	0.00835	0.0080	0'221	28"5	8°10Z	0.0264	0.0681	4°Z)
	1-1-9104 DIGE UNITED		0.231	0,00015	12001	0.00	0.011	8122	(1000*0	0.02)	0'Z)
	OF DIDE UNIE	<b>a</b> dd	0.002)	(2000*0	0.0025	0.0011	6 °0E)	(2010)	6100053	0*06Z)	01) I
		edd -	0.0/51	(5000.0	5158"0	D'EAC	2'16	31.0	0*00021	0*0001	0.0AE1
SELLIVIO	25180 443 54410+		A AFTI	0 00007		-	•••	• ••			
	HUMA THAT	udd	9,1)	0'1)	0.1)	0.0	0.61	0.13	0"1)	0*1)	<b>0.</b> ])
	LOLWE CANNEDE	- He	62.2Z	01.0	10.0	59.0	(0.02	(0-03	0.03	20.03	/Z 10
		edd	00(.5Z	000°//Z	005.04	051	019.9	13-200	000 .001	000 18	07.1
	IDIAL DRANC HALDER	nde			98'3	2'12	1.10	01.2	S0.7	50.5	11.6
	TOTAL ORGANIC CARDIN		4*#3	19-30		000.0}	050.03	050.0)	000.0)	050,030	60'0)
	LAINE LINENCECS	add add	(01023	050*0)	000.01					1°S	9.122
iterana rena	30/08/16	nid	243010	9,122,	0'4/2	0.055	120*8	P.11	0.271	1.2	4 116
renistra azri	· 🗶									<b></b>	
	39014034631	3	12.0	0"11	0.41	0.61	15.6	12.0	12.0	5**1	5.6
	ATENNE STREET	<u>19/4</u>	0001	0001	£00.1	000.1	000.1	566 10	1,000	100.0	1.00
	308/131003 313(3346	3/south	0526	5120	Seeo	400	3000	114	2220	78	1500
	Na la		H'/	P" #3	41.4	<b>95'</b> 2	<b>15</b> 2	£919	82 7	66°2	C7.6
I THE WEAK				-							
	. BING BTANS		89/22/11	<b>89/22/</b> 11	<b>88/22/11</b>	69/0E/11	<b>99/00/11</b>	88/22/11	98/22/11	98/22/11	2/11
VADB31A3	KITT THE PARAMETER	SLIM		NDI I VILLIEONEO	NOT INTERESTIC		CONCENTION	ND I I WEINGCHIZI	CONCENTION	NOT TARKEN SONOO	
V0403143	a an an a state	64 ·····	N-110	8-410	010	110	410	120	QZQ.	320	10

.

NOTE: ND indicates that the parameter was not detected; < indicates a detectable concentration twitter ND indicates that the detection time:  $\sim =$  indicates a concentration less than or equal to the detection time:

..

. . . . . .

. .

. . . .

sates pribeol tranimation of besu shruogmoD*

-

Ĭ

ļ

Latternow			ERNIN TEX	NELL NUMBER Off-R	NGBUT KUREN KEIT KWER OKASI DALAM	MELL MUNER	A NUMBER OF A	ALL NUMB	HELL HUNGH	יייידי יייידי איזיינער אנדר אראבע אבוז אנאנע אנדר אראבע אנדר אנאפע אנדר אראבע אבוז אנאנע	NCLA NUMBER
	PRIMETER	5L 143	CONCENTRAL LON	CONCENTION TON	CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-C	CONCERTINGIA	CONTENTINE FOR	CONCENTRAL ION	CDCD/FM1/nr	CINETENTIAL LIVE	07-R
SAPTE DATE	ĸ		<b>30/EZ/11</b>	12/07/98	12/07/88	11/23/88	11/21/86				
									8 <b>8/</b> 07/13	88/07/11	BB/0C/11
STATE COMPLEX		ļ	7.21	B.21	77	24	100 °	6.82	2.48	2.	5
				20062	0099	0104	2750	613	<b>1</b> 0		2
				844.0	866.0	264.0	1.000	0.997	t. cen	WV I	-
			1.01	C.11	12.8	14.0	13.0	10.5	11.5	12.0	1.1
OTHER PROMETERS											•
CALCHIE		E	417.0	600.0	M.N	0.000					
TUR POOLES	ខ	E	(0,000	(0.050	(0.0TO		911.0	24.6	31.5	<b>2</b> .1	7.1
TOTAL CHEMIC CANDON		£	11.20	1.24	R	1			10.030	(0.050	60.000
		F	907,000	0.093	9-120	ê. 101			21	1.0	<b>2</b>
STURE WINN	. 5	£I	1.	<b>0</b> .6)	(0.02	0.12	0.57	10.02	20.0	(0, 02 (0, 02	0. /45 (0.67
		2		A*21		•	0.13	(1.0	0.11	(1.0	0.1)
VOLAT RLES											
	×	1					(				
	!	E 1		0.21	-	_	215	~			10.0
	FIM FAF	E1		0.5			13.0			2	
		E	0.00001		,		.(1.0				
		E	8 '000' IZ								
ALL		E	12000.0	(1.0		v	A				
• 6015a (. 3-hine hine)	14 Mintenana	E 1	0.0001				0.1				
		Ę	0 1200		~	-	6				(
		L E	70000 B				A				ł
		£	8-000CI				0.11				
		E	40400.0				6.0				
		E1	0.000.0			-	9	v F		~	
TOR ACTANT IF	There	E 1	APPENDING			¢";•	ē.6				10
1.4-BIOLORDAN		 1	11-000 A				6.0				10.0
•1.1.2.2-3-3ETRACALORD	NOLDREININE	1	(1000.0	Ŭ							(15.0
3GING0000 HON		1	(1000.0								(10.0
HE LADA, CHOE THAN	¥	1	0.00001)				<b>0</b> 72				110.0
aginendarhote++1	BUTDE	Ŧ	(1000.0								(13.0
1-2-0104.04080606	DIGIDAE	£	110000.0	0.2							10.0
HE EXICAL DRUGER AND LEVE	<b>B</b> îđe	E	(15000.0								g
<b>TETHNANDATING STATE</b>	MBK	t	000010								
- HEIGE		ŧ	110000.0								15.0
		£	119000.0				0.4				0.01
IGIAL WIATRLES	en ]	Ë	570720.0		344.4	13.6		5	2,205.3		
OTHER DREWICS											
		1	<b>5</b>	5	;	1					
		- E	19		5	7 J	(0.10) 11	8	8.6	10.50	6.50
		E	5.5	0.50	1				穷 (2) (2)		5.20
		E	6.50	8.9		5 <b>5</b>		Ris			8. S
1221 8244		£	(10.00	8.5					R ::		8.0
2221 024+		E	(19.00	8.1	•	8 8		3 8	8.2		6.1
4101 CL4+		ł	110.00	(1.00				8.3	8.2	90 :: ::	6.8
5421 IS45		E	60	0.30				8.5	8.5 8.1		8.5
+PCD 1248		£	6. JO	6.50							0 1
121 124		1	00.50	10.30							5
-1240	••	£	0,50	(0°.30	_		01.0	89			8.9
BIS (2-EDMINERAL) PHD	m.) Pithate	£	1.1	(10.0		-		_			
NAPATHOL EVE		ĩ	63	(20		8	8	8	ß		
	S TRICANDER	1			i						1
			m ayria	C	33/6.56	8,60	81,40	6,10 20	50 X 50	M. 100 M. 14	112.30

٠,

.

NOTE IND indicates that the parameter was not detected. < indicates a detectable concentration below the detectable concentration testor. The detectable concentration land:

Compounds used for containing indep.

			HELL MUMBER	NELL MUMBER	WELL MINNER	NELL HUMBER	NELL NUMBER	NELL NUMBER	HELL NUMBER	HELL NUMBER	NELL NUMBER
CATEGORY	PARMETER		D6A-R	07A-R	07C-R	075	OBA	080		100	
	THE TER	UNITS	CONCENTRATION	CONCENTRATION:	CONCENTRATION	CONCENTRATIO	CONCENTRATIO	CONCENTRATION			CONCENTRATION
FIELD PARAMET	SAMPLE DATE		11/22/89	11730788	11/30/88	11/30/98	11/30/88	11/30/88	11/30/88	12/07/08	11/30/88
	PN .		. –								11/30/00
	SPECIFIC CONDUCTANCE		6.79	5.97	6.96	<b>4.2</b> 1	8.15	7.34	7.15	6.59	7.15
	SPECIFIC GRAVITY	whos/ce		2900	1800	6700	5200	3600	4209	2400	4900
	TENPERATURE	g/at	0.999	1.000	1.000	1.002	1.000	1.000	1.000	1,000	1.000
		C	11-0	t2.0	10.0	12.0	13.0	14.0	t3.0	11.0	11.5
OTHER PARAMET	ERS									-	
	CHLORIDE	PPL	2.2	17.4	34.9	730.4	1100.0				
	TOTAL PHENOLICS	een .	(8.050	(0.030	10,050	10.050	(0,050	370.0	210.0	520.0	410.0
	TOTAL DREAMLE CARGON	<b>PPA</b>	1.52	2.16	2.44	2.43		(0.050	10.050	10.050	(0,050
	total organic halogens	<b>FFn</b>	(0.025	5,000	0,197		189.00	72.70	22.60	4.07	5.42
	TOTAL EVANIDE		1.32	(0.02	10.02	3.100	55.000	75.100	19.200	0.065	3.519
	SOLLINLE BARILIN	NPD .	(1.9	{1.0	(1,9	40.02	6.67	E.60	1.73	10.02	0.07
					11.9	(1.0	(1.0	(1,0	(1.0	(1.0	(1.0
VOLATILES											
	FV3ML CHLORIDE		{2.0	(10.0	5.2	285.0	(2000.0	(2000.0	(200.0	15.1	517.0
	CHORDETHINE	ete -	(5.0	(25.0	(5.0	(25.0	(5000.0	(5000,0	(500.0	(5.0	(300.0
	1-1-DICHLORETHALENE	<b>bipp</b>	(1.0	(5.0	(1.0	(5.0	(1000.0	(1000.0	(100.0	10.0	232.0
	METHYLENE CHLORIDE	yyk.	(1.0	3.8	3.7	(5.0	2790.0	2960.0	258.0	1.6	280.0
	+TRANS-1.2-DICHLORDETHENE	200	{[.0	(5.0	(].0	16.0	(1000.0	4720.0	1100.0	{E.0	
	1+1-5[DLORGETHINE	pph .	(1.0	4.4	(1,0	(5.0	(1000.0	(1000.0	(100.0		981.0
	+ ICTS) 1+2-#ICHLORDETHENE	pph	(1.0	(5,0	3.9	745.0	(1000.0	3230.9	390.0	3.1	143.0
	+CHLOROFORM	-	í1.0	(5.0	5.1	(5.0	((090.0	(1009.0	{100.0	4.3	16300.0
	La La L-TRICHLONGETHINE	79%	i1.0	15.0	11.0	(5.0	(1000.0	(1000.0	(100.0	1.3	1100.0
	CARBON TETRACHLORICE	i i i i i i i i i i i i i i i i i i i	(1.0	(5.0	q.0	(5.0	(1000.0	(1000.0	(100.0	(1.0	(100.0
,	+TRICHLORDETRYLEDE	pph -	(6.0	(5.0	48.4	20.5	(1000.8	1310.0		(1.0	{200.0
	1.1.2-TRICHLORGETHME	<b>PPb</b>	(1.0	(5.0	(1.0	(5.0	{1000.0	{1000.0	179.0		218000.0
	+TETRACHLORCETHEDE	PPD .	(1.9	(5.0	13.4	29.2	(1000.0	(1000.0	(100.0	(1.0	(100.0
	1.4-BIOLONDUTWE	199	(3.0	212.0	173.0				613.9 Times o	13.5	4660.0
	+1,1,2,2-TETRICHLONDETHINE	140	(2.0	(10.0	(2.8	(10.0	(2009.6	(2000.0	32500.0	3.5	1300.0
	+CHLORODOZENE	-	(2.0	(10.0	(2.0	(16.0	12000.0		(200.0	4.2	1140.0
	HEIACHLORGETHINE	<b>17</b>	(3.0	(15.0	(3.0	(12.4	(3000.0	(2000.0	1200.0	17.3	4640.0
	1.4-DICHLONDBOUZENE		(2.0	(10.8	(2.0	(10.0	(2000.0	(3000.0	(300.0	(3.0	(300.0
	1.2-DICHLORONENIENE	ppb	12.0	(18.0	(2.0	{ 0,0		(2000.0	(200.0	18.7	717.0
	HE LACHLOROBUTADI EDE	220	(3.0	(15.0	(3.0		{2000.0	(2000.0	(200.0	8. 7	1050.0
	TETRANISADTHIOPHENE	ppb	(3.0	135.0	402.0	(15.0 463.0	13000.0	(3000.0	(300.0	(3.0	873.0
	-	1740	(2.0	(10.0	(2.0		152000.0		13700_0	5.3	1390.0
	TOLLENE	PPB	- (2.0	(10.0		(10,0	3890.0	(2000.0	(200.0	3.5	1790.0
	TOTAL VELATILES	pph	30	339.2	12.0 656.2	(10,4		(2000.0	(200.0	17.0	(200.0
				334.2	836. /	905.6	272880.0 2	<b>69720.0</b>	17720.0	118.4 2	46718.0
other drewitcs											
		ppb	10.50	10.50	(0.50	{0.50	(0.50	10.30	(9.50	(0.50	(5.00
	• <del>6 8</del> 1C	ppis -	(0.50	{0.30	(0.50	(0,58	10.30	19.30	10.30	(0.50	4.00
	• <b>I-U</b> C	99b	(0, 50	(0.50	(8.50	(0.50	(8.50	(0.50	(0,50	(0.50	10.30
	+D-0+C	<b>Map</b>	(0.50	(0.50	(0.50	10.50	(0.50	10.50	(0.50	10.30	(0.30
	ofCB 1221	19th	f1.00	(1.00	(1.00	(1.00	F10.00	(1.90	(1.00	10.00	(10.00
	•PCD 1232	al a state a st	(1.00	{t.00	(1.00	(2.00	(10.00	(1.00	(1.60	(1.00	(18.00
	MCB 1016	pph .	(1.00	(1,00	(L.00	(1.98	(18.00	().00	(1.00	(1.00	(19.00
	+PCB 1242	apti -	(0.50	10.30	(0, 30	(0.30	(0.50	(0.50	(0.50	(0.50	(0.50
	+PCB 1248	190	(0.50	(0.50	(0.50	(0.50	(0.50	(0.50	(0,50	10.30	30,30
	4PCB   254	erb.	(0.50	(0,50	(0.50	(0.50	(0,50	(0.50	. = .		
	PCB 1260	Ppb .	(0.50	(0.50	(0.50	(0.50	(0.50		(0.50	10.50	(0.50
	IS 12-ETHYLHEIYL) PHTHALATE	i i i i i i i i i i i i i i i i i i i	22.5	(10.0	10.0	31.8	(U.SU 84,7	10.50	3.93	(0.50	(0.50
	NPHIHALENE		120	(20	(20	(20	4447 (20	17.1	22.9	110.0	35.5
							124	(20	(20	(20)	(20
	TOTAL INDICATOR ORGANICS	PPb -	0.00	5.00	B1.20 I	287.50	<b>6890.00</b> 1	2420.00	523.93	<b>78.</b> 90 24	2347, 30

NOTE: ND indicates that the parameter was not detected, < indicates a detectable concentration below the detection limit, <= indicates a concentration less than or equal to the detection limit, NS indicates that their more infilt/finite reaction.

Γ

* Compounds used for contaminant loading rates.

L

L

Ĺ

Ĺ

L

L

ĺ

,

.

,

			NELL NUMER	NETL ALMER 129	NZI NUMBU	NCL NUMBER	NAL NORL NUMBY	NEL NUMB 140	NELL, MUNICR	NELL RANGER	AGIL NUMER
CATEGON	Paymer Ten	51,000	CONCENTRATION	CONCENTRAL (2N	CONCENTRATION	CONCENTINAT JOH	COCENTRATION	CONTINUE ION	CONCENTRATION	CONCENTRATION	CONCENTRATION
5	SWFLE DATE		88/00/11	89/22/11	88/22/11	88/00/11	12/07/ <b>HB</b>	88/00/11	00/22/11	80/62/11	89/00/11
				9 19		1		2	i	1	!
	SPECIFIC CONDUCTINGS	anhos/co	1260	22100	16200	2700	8.10 A700	00.0 1001	2100	R	1 m
	SPECIFIC GOWITY	5/#Ì	1.000	1.001	1,008	1.000	1.001	1.000	0.997	1.000	1.000
	TEMPERATURE		5.11	2.21	11.5	11.5	11.0	13.5	1.5	13.5	13.0
OTHER PARAMETERS	倉										
	CHLORIZE	ŧ	170.0	9,740,0	5100.0	166.0	2300.0	240.0	107.0	413.0	110.0
	TDTAL MERCICS	£	000.03	(0 <b>.</b> 030	CO. 050	(0.050	0.067	00,000	(0.0 <u>5</u> 0	t0. n <u>5</u> 0	(0.050
	TOTAL DREAMIC CARBON	£		221	2.68	2	61.30	10.40	20°E	5.70	6.42
	TOTAL CREANIC HALDERS	£	2.110	130.000	345.000	0.748	172.000	27.400	1.240	000.641	108.300
	STLUELE DWEILD	ŁŁ	(0.02 (1.0	(0.02 [1.0	0.03 0.13	(0-02 (1-0	9.6 0.6	10.02 (1.0	0.02	6.0 0.1	0.02 [1.6
21 are 55		:									
	WING DADRINE	£	14.2	24.7	171.0		c]000.0	540.0			11000.0
	CH. CHORETHINE	£	0.123	<b>13.0</b>	1123.0		12500.0	0.022)			6.2500.8
	1.1-DICHURCETHMEDE	£	0.0	6.0	ด้า		0.00()	74.0			(300.0
		E		••••			0.000	62.8 			13100.0
	1, 1-8104 (BRFT) HE	E 1			192.	0.11 1	0,000,0	i ș	2.1	0.02	0.00C)
	• (C(S) 1, 2-0;OA.040ETHERE	1	1020.0		1860.0		3070.0	0.00151			942.0
	HID-OND-HIM	£	6.5	11.0	606.0		1080.0	(30.0			6.00ET1
	J. J. L-INICH. CHERNE	£		0.13	1.2		(300.0	0.80			(300.0
	CAREDA TETRADALORITE	£	Ĵ	0.1	2		0.002)	0.00			1890.0
		E	0.14	13.7	1.010		0.0000.0	J820.0			90600.8
	L + 1 + 2 * AN UNUMERTANE A TERRATA REFERENCE	Ł1	0.01 0.01	9,5							
	L.+-BIDECHORITME	L 1	(15.0	9-5	0.57		(1200.0	0.020			0'0051)
	+1.1.2.2-TETRACH.ONDETHINE	E	(10.0	(2.0	0.0/1		2,3800.0	100.0			7200.6
	*CHLONDBRIDE	£	(10.0	12.0	6.00		(1000.0	1100.0			11000.0
	HEIROPLONDE THINK	Ł	0.50	ď	111.0		1680.0	0.021			(1300.0
		£	(10.0	0.5			(1000.4	(100.0			(1000.0
	L. 2-17. CALLING BALLING METATA SHIMITAN (2012	E	0.01	0.2	4.961						11000.0
	TE TRANTING THE DESIGN OF THE	E 1		0.0	2.5		(1500.0				11300.0
	• DEDUZENE	1	0,01)	(2.0	0.00		(1000.0	(100.0			0001)
	101101	£	110.0	12.0	0.00		(1000.0	(100:0			11000.0
	TOTAL VOLATILES	£	2.2252	<b>6</b> .4	12396.0		0.00311	1113.2			0.100.0
other ongravics											
		£	60.30	(0.50	(0.50	6.5	8.0	1.0	<b>6.5</b> 0	1.63	11.90
	- <del>1</del> -1	Ł	6.90	9.76	10·30	8.9	8	9.9	10.JO		5.87
		E		R (	8 1 2 1	<b>8</b> 1	81	8 9	8.6	F 1	5 8
		E 1			8						
		E	8.1	11.00	00.13	8.1	(10.00	8,1	87.13	(100.00	120.00
	1010	E	(1,00	61.00	00.11	1,00	(10.00	00.13	(1.00	(100.00	(10.00
	+1342	£	10.30	(0.30	60.30	6.5	80	6.30	9. <del>(</del>	130.00	0E'0)
	+PCB 1248	£	(d. 50	(0-20	18.40	(0.30	8.5	60.30	8.5	130.00	<b>R</b> i e
		Ł	6.9	6.50	10.50	0.30	8.5	0.30	5.5	120.00	R i
		£	10-30	(0.30	8.0	9.9	8.5	6.30	9	0.00	00
	BIS (2-ETHRIJEXN.) PHIHALATE	1	10.0	(10.0			10.0	10.0	9.6	8-5-E	0.00
		E.	3		3	8	2	071	274	0.71	2
	TUTAL INDICATOR OPSANICS	£	2522.70	96.30	12122.40	363.50 2	210150.00	19042.63	00.41	1 21.852261	161488.91

.

.

.

Compounds used for contaminant loading rates.

.

NOTE: ND indicates theil the parameter was not detected: < indicates a detectable concentration below the detection limit: <= indicates a concentration less than or equal to the detection limit: NS indicates that there was insufficient sample for analysis

ĺ

1

i 1 .

,			1900 Nett Kranca	<u>is</u> i Nguna tiba:	MÉLL NUMBER 11A	NELL NUMER DA	WHON THE	USER IN THE	ACTINATION		NELL NUTER
CATEBORY	PARANETER	UNITS	ECHCENTRAT TON	CONCENTRATION CONCENTRALION	CONTRAFTON CONCENTRATION	COCENTRATION	CONCONTRATION	CINCENTIAN ION	CONCENTION	CONCENTRAL LON	CONTENTION CONCENTRAL ION
	SAPLE DATE		08/0C/11	89/00/11	<b>BB/EZ/11</b>	12/07/00	[ 2/03 /Htt	13767700	an ( ) ( )		
FIELD PARANETERS	g i								100//A/71	B0//0/71	AH/77/11
	m Steleje (moleciance	and and the	* ^ <del>*</del>	7.17	11.03	<b>8</b> .''	7.64	<b>4.B</b> 0	<b>02-1</b>	7.84	8.23
	SPECIFIC SHOULTY		-	- 100 	0084	, i 8 '	620	3400	2700	200	021
	TEMPERATURE	; • •	13.0	13.0	11.5	0.51 0.51	000.1	1.002 1 =	900 - 	866.0	0.979
	:		• •				A*4.1	6771	c	5.51	10.5
UINER PRIMETERS				-							
		£	1-74	370.0	481.0	н. - н	9 <b>.</b> 0	630.0	140.0	B4.5	234.0
		Ł	(0.020	(0.000	(0. CDO	50°.00	(0.000	10,050	(0°,050	000.00	10.050
		£	<b>FC'</b> 2	9	140.00	2.42	1.7	1	18.00	2,0	0.41
	TOTAL UNDERLIG PROJECTS	Ł		Ê :	13.600	0.003	(Co-02)	2.540	- 990	2.810	0.352
	STATE CONTRACTOR	E	20 - DI	60.02	23,10	0.0	(0.02	(0.02	ê.03	0.11	10.02
		ŀ			11	0.11	0.11	0.0	0.0	61.0	0.1)
VILATILES		ţ									
		E 1	0.005		1200.0	0.0 1	9 - 4 -	1080.0	1600.0	196-0	42.0
	1-1-PLOK DREPHILDE	E 1	0.001		0,0003	•	• •	(100.0	( <b>2</b> ],0	12.0	6.0
	METHALINE DALONITE	E 1	278.0		0.001)	• •	9.5	0.02	7.8 ·	2	0.13
	· THE-1.7-PIOLOROFIEE	1	(100.0		1100.0			0.0Z		0. 2	(I.O
	1.1-DICHLORDETHWE	E	(100.0		342.0	0.0	•••				• •
	• (CIS) ] • 2-0(CH_DHCETHENE)	£	135.0		<b>3%6.0</b>	8-	19.3	1430.0	0.001		
		£	e in		4410.0	0.11	2,0	(20.0	6.5	9.6	
			(100.0		(100.0	0.0	(1.0	(20.0	0.0	(2)	<b></b>
	LANDAR (LINGUELING) A TOTA ANTINA FIC		0.001		(100.0	0.0	0.0	(20.0	9.5	(2.0	6.13
					0.070/		1.2	6.0.0	÷.	6.25.0	E.SE
	+ TETINOALORETNENE		11400.0					9.92		9.C	0.0
	L.4-DICALOROWIAME		0,00()		0.00()	1.0	1				
	•1.1.2.2-TETINCH.(BOETHINE		(200.0		1200.0	(2.0	0.0	9 0	(10.0	120.0	2.0
-			(200.0		(200.0	12.0	(2.0	9170	6.01)	200.0	070
	PRESERVAL CONTRACT PROPERTY		0.000		0.00[1	0.10	61.0	( <b>60.0</b>	(13.0	5.0	0.0
-	1 - 3- Dichel (Breise) (C. 2)		0.0007		(200.0	(2.0	(2.0	313.0	110.0	830.0	(2.0
-	HE SAME ADDRESS AND ADDRESS ADD				(200.0	0.0	12.0	747.0	(10.0	711.0	12.0
								(40,0	9.9	112.0	61.0
•			(200.0		(300 D			0.061		0.041	
	TULLER		(200.6		(200.0	9.6					a-21
-	TOTAL VILATILES	£	19998.0	B0.79, I	11708.0	ā	24.9	4348.0	1.81	1.1.1 6648.8	17.2
oner orswitz											
-	HH.	£	7.58	(3.00	10.50	(6.50	(0.30	(0.30	(0.50	6. S	(0.30 1
-		£	R -	0°.0	66	8.9	(9.30	(8.50	(0.30	10.30	(0°.9)
- 1		£	8:	(9 <b>-</b> 90	9°-9	6.20	(0, 30	(8.30	6.50	10,50	05.6)
- •		£	8 1 1 :	8 i 9 i	8	9.30	6.50	670	6.50	60.30	60
		E 1	8.8	10.00 10.00	8 8	8.8	8:5	(10°0)	8	10.00	1.00 1
		E 1			8.8	8 8	83	(10.00	8::	(10.00	8.1
•	PCB 1242	1	0. 0)	9	95.9			8 9 9	8 5		
-	#PCB 1248	1	(9.30	92.9	8.0	8.0	95-0	92.0)	95.9	1	
•		Ł	6.50	60.30	6. 30	8.8	00° -00	(0.30	(0.50	0.50	(0.30
- 1		£	6.50	9.10	6.50	(0.50	60.30	(0.50	(0.50	(0.30	(0.50
- 1	DIS (24 INTLAUR) MINALATE MOMMAN ENC.	£	12	0.01	2.5	15.2	110.0	110.0	10.0	(10.0	110.0
E			2	R,	8	R)	8	8	8	8	8
	iotal indicator organics	e quid	E6 '9000Z	7754.80	1431.h. CO	5.40	24.90	1288.19	4057, 40	1540.80	27.61

NOTE. ND indicates that the parameter was not detected; < indicates a detectable concentration below the detection limit; < = indicates a concentration less than or equal to the detection limit;

.

•

•

.

· Compounds used for contaminant loading rates.

ł

ļ

1

1

1

٠

MILEN         MARETIS         MILE         MARETIS         MILE	JULCE Inflati [Dw. CDUCX Withold (Dw. CDUCX Wit	1270 11/20/88 1.270 1.200 1.200 1.200 1.200 1.200 1.200 1.200	CDICDITIATION 12/07/84	21A CONCEMPANT (DI	ZZI ZZI ZDCZDRAVIENI CDCZNEAATON		
Swell Int         11/2/16         11/2/16         11/2/16         11/2/16           N         N         7.30         5.33         6.53         5.00           PELFIC CONCIONET         Non-Note         2.30         5.00         11.00         11.3           PELFIC CONCIONET         Non-Note         2.30         5.00         11.3           PELFIC CONCIONET         Non-Note         2.00         11.3         5.00           PELFIC CONCIONET         Non-Note         2.00         11.3         5.00         11.3           CONTR         Permit         Non-Note         2.00         2.00         0.00           OLITIC         Permit         Non-Note         2.00         0.00         0.00           OLITIC         Permit         Non-Note         2.00         0.00         0.00           OLITIC         Permit         Non-Note         Non-Note         Non-Note         Non-Note           Contraction         Permit         Non-Note         Non-Note         Non-Note         Non-Note           Contraction         Permit         Non-Note         Non-Note         Non-Note         Non-Non-Note           Contraction         Permit         Non-Note         Non-Note <th< th=""><th>11/30/88 5600 1.000 1.000 1.000 1.1.5 1.00 1.1.5 1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.0</th><th>11/30/88 4.85 1270 1.000 12.0 12.0</th><th>12/07/84</th><th></th><th></th><th>Ł</th><th>8</th></th<>	11/30/88 5600 1.000 1.000 1.000 1.1.5 1.00 1.1.5 1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.1.0 1.0	11/30/88 4.85 1270 1.000 12.0 12.0	12/07/84			Ł	8
FINE         Transmission         Transmission <thtransmission< th="">         Transmission</thtransmission<>		11/30/88 4.85 1270 1.000 12.0 13.0 74.4	12/07/88			-	CONCENTRATION
Maintain         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00	<b>N 8 8 9 1</b>	4.85 1270 1.000 12.0 12.0		11/30/88	12/07/88	12/07/90	12/07/08
Precipit Conditions         Montree         Low         Low <thlow< th="">         Low         Low</thlow<>	8 8 9	74.4 24.4	1				
PELIFIC GANUT         FIL 10         Los         Los         Los         Los           TERNIA         CALURIN         FIL 10         Los         Los <td>8 8. 7.</td> <td>12.0 12.0 74.4</td> <td></td> <td>9.27</td> <td>1.45</td> <td>7.65</td> <td>7.46</td>	8 8. 7.	12.0 12.0 74.4		9.27	1.45	7.65	7.46
TERMINE         11.0         11.3           TUR         Procession	8 . 9	12.0 74.4		12000	Å	002F	902
TUR.         CLARK         MM         MM         MM         MM         MM         MM         MM         MM         MM	8 . 7			1. 005	864.0	000.1	844.0
OLUBIE         TOLONIC         TOLONIC <thtolonic< th=""> <thtolonic< th=""> <thto< td=""><td><b>8</b></td><td>76.4</td><td>12.0</td><td>1.5</td><td>11.0</td><td><b>C.</b>21</td><td>13.0</td></thto<></thtolonic<></thtolonic<>	<b>8</b>	76.4	12.0	1.5	11.0	<b>C.</b> 21	13.0
OKUMUR.         MM         CLUCK         MM         MM         MM         MM<	8. 7.	76.4					
International         Processor	8 .	010		a vert			
TURL Control         The         1.1         2.77           TURL Control         0.237         7.960         7.786           TURL Control         0.027         0.027         0.027           TURL Control         0.027         0.027         0.027           TURL Control         0.027         0.027         0.027           Statut protein         7.960         7.960         7.960           PUTAL Control         7.960         7.960         7.960           Statut protein         7.96         1.1.0         7.960           PUTAL Control         7.960         7.960         7.960           PUTAL Control         7.96         1.1.0         7.960           PUTAL PROTOCONCENDER         7.96         1.1.0         7.960           PUTAL PROTOCONCENDER         7.96         1.1.0         7.960           PUT	· · ·			0.00/2	₹.	20.0	23.0
TURK CARRIE         Mail         C. Mail         <	. <b>9</b> ·			000.03	(0,020	000.03	(0. <b>0</b> 0
TOTAL CHANGE         TOTAL CHANGE<	? ·		20.00	7.46	2.68	<b>R</b>	2.51
Statut metrix         Mail         Glant         Mail			2.420	2.670	C.073	2.640	0.876
•*TMA. CALGRIE     •*TMA. CALGRI		10.02	8	1.30	<b>10.02</b>	(0,02	(0.02
*I'm. C.Lattic     ***     1:     1:     1:       0.LODETIME     ***     1:     0:     0:       1:     1:     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ***     1:     0:     0:       ****     ****		(I.0	(1.0	11.0	6.1	0.1)	2.4
MINIK DLEIKE         MIL         Li         TSK           1-1.0000Ermust         MIL         11.0         TSK           1-1.0000Ermust         MIL         11.0         TSK           MWE-1.2-PIDLONETHER         MIL         11.0         TSK           MWE-1.2-PIDLONETHER         MIL         11.0         TSK           MWE-1.2-PIDLONETHER         MIL         11.0         TSK           MWE-1.2-PIDLONETHER         MIL         11.0         TSK           MUL         MIL         MIL         11.0         TSK           MUL         MIL         MIL         11.0         TSK           MUL         MIL         MIL         MIL         TSK           MUL         MIL         MIL         TSK         MIL           MUL         MIL         MIL         MIL							
D.4.100AE.TMME     P1     (1.0     (29.0)       D.4.100A.GUTMER     P1     (1.0     (29.0)       FINE-1.2-31DLARETNEE     P1     (1.0     (29.0)       FINE-1.10-3100E.TNME     P1     (1.0     (29.0)       FINE-2.10-3100E.TNME     P1     (1.0     (29.0)       FINE-2.10-3100E.TNME     P1     (1.0     (29.0)       FINE-2.10-3100E.TNME     P1     (2.0)     (190.0)       FINE-2.20-4.000E.TNME     P1     (2.0)     (190.0)       FINE-2.20-5.000E.TNME     P1     (2.0)     (190.0)<							
1.1-910LORETMILE     70     1.10     50.0       0.1.1-910LORETMILE     70     1.10     50.0       0.1.1-910LORETMILE     70     1.10     50.0       1.1-910LORETMILE     70     1.10     50.0       1.1-910LORETMILE     70     1.10     50.0       1.1-910LORETMILE     70     1.10     50.0       0.1.1-910LORETMILE     70     1.10     50.0       0.1.1-910LORETMILE     70     1.10     50.0       0.1.1-910LORETMILE     70     71.0     50.0       0.1.1-1-10LORETMILE     70     71.0     50.0       0.1.1-1-10LORETMILE     70     71.0     50.0       0.1.1-1-10LORETMILE     70     71.0     50.0       0.1.1-1-10LORETMILE     70     71.0     50.0       0.1.1-10LORETMILE     71     71.0     50.0       0.1.1-10LORETMILE     71.0     71.0     50.0       0.1.1-10LORETMILE     71.0     71.0							10.0
•FETIMADE CALORISE     ••FETIMADE CALORISE     ••     1.1     1.000.0       •FETIMADE CALORISE     ••     ••     1.1     1.000.0       •(13) 1.2 - PETICATINE     ••     1.1     0.000.0       •(14) 1.12 - PETICATINE     ••     1.1     0.000.0   <							64.6
• Newe-1, 2-9104.000ECN6         • 1.0         0.000           • 1.1 - 1102.000ECN6         • 1.0         0.000           • 0.1305.00         • 0.12         0.000           • 0.1305.00         • 0.12         0.000           • 0.1305.00         • 0.12         0.000           • 0.1305.00         • 0.12         0.000           • 0.1305.00         • 0.12         0.000           • 0.1305.00         • 0.12         0.000           • 0.1305.00         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703.000         • 0.12         0.000           • 0.11.1 - 1703							9
1.1-PICALONCETING     1.0     1.0     1.0       0.1100     1.1-PICALONCETING     1.0     1.0     1.0       0.101     1.101     1.0     1.0     1.0       0.101     1.101     1.0     1.0     1.0       0.101     1.101     1.0     1.0     1.0       0.101     1.101     1.0     1.0     1.0       0.000     1.112     1.101     1.0     1.0       0.000     1.112     1.112     1.112     1.0     1.000       0.111     1.112     1.112     1.112     1.000     1.000       0.111     1.112     1.112     1.112     1.112     1.112       1.112     1.112     1.112     1.112     1.112     1.110       1.112     1.112     1.112     1.112     1.112     1.112       1.112     1.112     1.112     1.112     1.112     1.112       1.112     1.112     1.112     1.112     1.112       1.112     1.112     1.112     1.112     1.112       1.112     1.112     1.112     1.112     1.112       1.112     1.112     1.112     1.112     1.112       1.112     1.1122     1.112     1.112     1.11							-
• (C13) 1.2 - BTOLONCTINE     • • • • • • • • • • • • • • • • • • •							
OLUBERINE         MOLUBERINE         MOLUBIRIE         MOLUBIRIE							
1.1.1-1703 Lancer mark     1.0     1.0     1.0       1.1.2-1703 Lancer mark     1.0     200,0       1.1.2-1703 Lancer mark     1.0     200,0       1.1.2-1703 Lancer mark     1.1     1.0     200,0       1.1.2-1703 Lancer mark     1.1     1.1     200,0       1.1.2-1703 Lancer mark     1.1     2.0     200,0       1.1.2-1703 Lancer mark     1.1     2.0     200,0       1.1.2-1703 Lancer mark     1.1     2.0     2.0       1.1.2-1703 Lancer mark     1.1     2.0     2.00,0       1.1.2.2-1703 Lancer mark     1.1     2.0     1.00,0       1.1.1.2.2-1703 Lancer mark     1.1     2.0     1.00,0       1.1.1.2.2-1703 Lancer mark     1.1     2.0     1.00,0       1.1.1.2.2-1703 Lancer mark     1.1     2.0     1.00,0       1.1.2.2-1703 Lancer mark     1.1     2.0     1.00,0       1.1.2.2.2-1703 Lancer mark     1.1     2.0     1.00,0       1.1.2.2.2-1703 Lancer mark     1.1     2.0     1.00,0       1.1.2.2.2.2     1.10,0     1.10,							
Description     Page     11.0     200.0       PRECONDERFINE     Page     11.0     200.0       PRECONDERFINE     Page     11.0     200.0       PRECONDERFINE     Page     12.0     200.0       PRECONDERFINE     Page     12.0     200.0       PRECONDERFINE     Page     12.0     200.0       PRECONDERFINE     Page     12.0     100.0							; ; ; ;
• INICLURETINGE     • 11.2     • 70.0       • 11.2     • 71.0     • 11.2     • 70.0       • 11.12     • 11.12     • 11.0     • 12.0     • 10.0       • • • • • • • • • • • • • • • • • • •							
1.1.2.* TRUCHARE FOR     1.1.2.* TRUCHARE FOR       1.1.2.* TRUCHARE FOR     1.1.2.* TRUCHARE FOR       1.1.2.* TRUCHARE FOR     1.1.1.2.* TRUCHARE FOR       1.1.2.* TRUCHARE FOR     1.1.1.2.* TRUCHARE FOR       1.1.2.* TRUCHARE FOR     1.1.1.2.* TRUCHARE FOR       0.1.1.2.* TRUCHARE FOR     1.1.1.2.* TRUCHARE FOR       1.1.2.* TRUCHARE FOR     1.1.2.0       1.1.2.* TRUCHARE FOR     1							
<ul> <li></li></ul>							
1.4-bit Automatives     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4     1.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1.1.1.2.0.1.000.0000     1.1.0     (130.0       1.1.1.2.0.1.000.0000     0.000.0000       0.000.00000000     0.000.0000       0.000.000000000     0.000.0000       0.1.2.00000000000     0.000.0000       0.1.2.00000000000     0.000.0000       0.1.2.00000000000     0.000.0000       0.1.2.00000000000     0.000.0000       0.1.2.000000000000     0.000.0000       0.1.2.00000000000     0.000.0000       0.1.2.00000000000     0.000.0000       0.1.2.000000000000     0.000.0000       0.1.2.000000000000     0.000.0000       0.1.2.00000000000     0.000.0000       0.1.2.000000000000000000000000000000000							
Control District     C. 0     (100.0       I							
FEMOLONETINE         Pro         1.2.0         100.0           1							
1.4 - BIOL LONGINGE     74     (13.10)       1.4 - BIOL LONGINGE     74     (13.10)       1.4 - BIOL LONGINGE     74     (13.10)       1.5 - BIOL LONGINGE     74     (13.10)       1.6 - BIOL LONGINGE     74     (13.10)       1.7 - BIOL LONGINGE     74     (13.20)       1.7 - BIOL LONGINGE     74     (13.20) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
1 ***********************************							
FEARMENTINGING         FOR         12.0         100.0           TRUNCING         FOR         12.0         (100.0           ETENENTRUMINE         FOR         12.0         (100.0           EXERCING         FOR         12.0         (100.0           EXERCING         FOR         12.0         (100.0           EXERCING         FOR         12.0         (100.0           EXERCING         FOR         12.0         (100.0           EVELOS         FOR         12.0         (100.0           EVELOS         FOR         FOR         0.20         (100.0           EVEL         FOR         FOR         0.20         0.20         0.20           EVEL         FOR         FOR         0.20         0.20 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
TENNERATION (SPEE)     77     1.1.0     (120.0)       ••••••••••••••••••••••••••••••••••••							
Million         Million         Million           Rutate         Pro         1.2.0         (130.0           Rutate         Pro         1.2.0         (100.0           Rutate         Pro         1.2.0         (100.0           Rutate         Pro         1.2.0         (100.0           Rutate         Pro         1.2.0         (100.0           Rutate         Pro         0.30         0.30							0.0L1
Matrix         Matrix<							
TUTAL VILLING         TOTAL VILLING <thtotal th="" thtdat<="" villing<="">         T</thtotal>							
Mathematical         Mathematical         Mathematical         Mathematical           40-MC         710         10.30         0.30           40-MC         710         10.30         0.30           40-MC         710         10.30         0.30           40-MC         710         0.30         0.30           40-MC         70.30         0.30         0.30           40-MC         70.30         0.30         0.30           40-MC         70.30         0.30         0.30           40-MC         70.30         0.30         0.30           40.30         70.30         0.30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.211</td>							0.211
H-MC         Pro         050         (050           H-MC         Pro         0050         (050           H-MC         Pro         0050         (050           H-MC         Pro         0050         (050           H-MC         Pro         0050         050           H-MC         Pro         0050         050           H-MC         Pro         0050         0050           H-MC         Pro         0050         0050           H-MC         Pro         0150         0050           H-MC         Pro         0150         010.00           H-MC         Pro         010.00         010.00           H-MC         Pro         010.00         010.00           H-MC         Pro         010.00         010.00           H-MC         Pro         010.00         010.00			430.0	4041.7	2007.4		130.0
M-MC         Pro         (0.30         (0.30         (0.30         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)         (0.30)					-	-	
							(9. <del>(</del> 9
10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10							97.°E
11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11							ô. Jú
70 70 70 70 70 70 70 70 70 70							6.50
							€.0
							(1.00
							(1.00
							(0.30
							656
							9.0
							6.5
		21.9	(10.0	(10.0	13.3	13.9	1.6
							8
TUTAL ANDICATUR CREAMICS PAD 57.40 1/207.13 431.10		1498. GD 67	ATG 00	200 S	22 07 LONG		

NOFE. ND indicates that the parameter was not derivicially is indicates a detectable concentration

. č,

:

### TABLE 3 (continued) 8801 3880 FOURTH OUATTER INVESTIGATION NITEGARA PLANT GROUNDWATER INVESTIGATION SISY SUBJECT INDICATOR PARAMETER ANALYSIS

99 5606	10-19519	2 82-00521	3891.00	02.98	001211	05.21	02.4	06-0955	Qéá	ZJIMBRU WICATER UNDER WEIMICS	
0Z)	(5)	02)	(50	6Z)	(50	(50	02)	(Z)	فلو	MANAMENE	
6'EI	0.01	5.22	1.11	2.21	[]]]	0'01)	0.011	0.011	çdd	BIR (S-ELHARTERAT) WHIMAYE	
05.0)	00.21	(0'20	06.01	(0.30	05.0)	05.01	05.01	02.01	qdd	9721 8334	
(0.20	00,21	05.0)	05 '0)	05.03	(0.50	05.0)	05.0)	(0-20	960	+521 834	•
(0.30	00.21	05.0)	06.01	0.50	05.01	05.01	05-0)	(0"20	qiii	8621 6349	
05.03	00 51	0[ 0]	05.01	00.00	0C.0)	05 '0)	(0.30	(0-30	ليابة	2021 83.0	
00 01	00.0015	00-01)	00.11	00'01)	00*11	00-11	00*13	60.011	أنادو	9101 404	
00.13	00.0015	00.01)	00.11	00.013	0010	00.1)	00.13	00 (01)		+6CB 1575	
00-11	00-001)	(10.00	00.15	00.011	00.17	99.1	00*1)	00-01)		1221 B34	
06.03	86.10	10'20	(0.30	00.30	05'01	05-01	05.0)	(0-20	odd	3-8-4	
	2.83	2.43	05.03	06.0)	05'01	05.0)	06.0)	05.0)		34-64	
05.01		24.0	05.01	(0.30	(0*20	05.0)	05.0)	00.0)	ليليو	34-9	
24.10	30.00		05.6)	05.01	05.01	(0.50	05.0)	0610	للبو		
PL.1	08.61	02.1KS	<b>US 87</b>		<b>va</b> v/	<b>0</b> 2 (7)			•		anen dienica
	a (a) 100		0'1992	109"3	E.14E	•.21	1.1	£*/865	edd	TOTAL VOLATION	
0*\$956	0.01100			0'Z)	0'Z)	0.2	0.2)	0.04)		30000	
\$*0¥J	(1000-0	6,000,0	6.023	0°23 0°23	0°2) 8°41	0.5)	15.0	0.04)	a di	36066	
0.043	0.00013	0*000)	. (20"0			0'C)	(3°0	0'09)	edd .	I INNANGUNICARDA	
01091	1120010	01009)	0.65	8"3 2"4	558.0		0123	0.041		3GIGNTURNO, ACME 34	
0.043	0.002()	0.004)	- 8"5()		P*91	6.21				3/3/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	
0.043	0.00013	\$*90¢1	0.023	0°Z)	0"2)	6.2)	(3.0	\$*0¥}			
0.04)	0.000()	0.000)	(20.0	0'2)	6.21	0.5)	12.0	0.041		3020003010-11	
0.085	0.0021)	0.004)	0.27.0	6.63	0'E)	(3"0	(3.0	0*09)		BINKLODI OKOSI BI	
6.001	0.0001)	010001	0.025	• "Z).	0.55	0.S)	0°Z)	0,043	44 44	-OF ONDERE	
\$.54	0.00001	0.004)	0.02)	0-2)	(3,0	0.2)	(2°0	0.061		+1*1*3*3-IEIMONTINGLINNE	
0.04)	8-00EL)	0.0041	4.20	(3°0	13.4	0.0	13.0	0°09),		300100000000000010-11	
9.0001	3950010	2940-0	142.0	2°02	0.4	<b>b*1</b> 1	- 0°t)	£.46	غلبو اللو	3GHEEMOTOMEEE+	
130.0	(20010	(300-9	0.255	0.11	0.1)	0.1>	0.13	0'02)		1.1.2-THICH.DUDETWINE	
3250°0	0*000*1		0°5Z)	2.12	1.1	0.()	0-15	£,15		3GTHLEND KOLL	
248.0	0*0098	(500*0	0°5Z)	0.0	¢*1}	0-1)	0.13	0'02)	لغو	SURACH TETRACHEORY OR THE	
0-222	0.0023	(500-0	0.255	0*13	0.0	0.1)	0.15	4 '0Z)	-	1.1.1.1.TRICHLANE	
0.002	0*00914	(300*0	0'52)	5,61	0.1)	2.5	9*1	(50.0	ble	NO.GOTC+	
0.751	6,0116	0"9/9/	5220*0	112	1.0	0.15	23	0*0591		• (C)2) 1*5-0104C000E14E34E	
120.0	0.0021	(300"0	0"52)	0.13	0.()	\$*I}	0.1)	6 °92	<b>qii</b>	1 I-DICK OKCELINNE	
(50.0	0.00010	0.0025	0"52)	0.13	5.t	0.0	C.1	8.54	eld .	*1####~1*5~DECHEUKOEUHC)@	
0.972	0.00023	0'00Z)	0.25)	0.1)	21	5-1	1.1	(5019	and a	301WTHO 3KGTWRL34+	
0.05)	0.002)	(306.0	0.25)	4.11	4.()	0.2}	<b>0*</b> 12	0.05)	فقو	3CTWIL3CHO'NCIG-1*1	
0.001)	0.00255	0,00013	0.250	12.0	0*5)	0.2)	(210	0.9015	لنلبو	30HL300013	
0.04)	0.00015	3480*0	0.981	(S*Ø	29" 1	0.25	• 2	0901	and a		
											VOLATILES
0.13	0.13	0'1}	0"1)	<b>0.1</b> 3	0-1)	0.1)	0.1)	0.1)	add	WALKING J'WATTOS	
0*03	10.02	01.0	(0*03	(0,02	(0.02	(0-05	(0°03	20.05	a di	TOTAL CYNNIOE	
21 330	000.145	062*0	0(8.1	4/110	120.4	\$20°0)	6Z0 '0	2' 440	a di la contra di la	TOTAL ORBAIC HALDERS	
2(*)	84.15	10.5	5.60	£0.#	ar	<b>/6°1</b>	3.54	141.00	a di di	TOTAL CREAKIC CANCER	
060.01	050 (0)	050.01	000101	000.0)	000.01	960.01	000.030	000-03	add -	STITUTE AND A STATE	
0.62	01009	0.0201	0-0(8	1.54	8 52	34.8	420"0	0.086	add .	38180145	
										S	oner www.ed
15.0	5-26	5.61	0.91	0"E2	5.21	5.61	570	0'01	3	MUMBER .	
666 *0	666.0	200.1	000.1	866 0	1.000	866.0	1.000	000 1	[ន/តិ	ALLAND JIJJJ36	
065	3900	0598	009E	075	0101	540	2500	0000	es/soun	33WL20000 31317345	
0C 'A	12.8	98.9	10'8	4.24	10.7	8-29	20.7	29.4		Na	
											FIELD PRIMETER
15/01/88	BB/20/21	89/22/11	38/20/21	88/20/21	<b>68</b> /20721	08//0/21	88/£0/21 .	88/20/21		LING FLANS	
CONCENTINAT (OK	CURCENTIAN ION	ND114010CENICS	CONCERTING EON.	NDILWILKEEMED	NOIJANUCENIE	NO1149EBIECONCO	NO114851N3CMCC	NOTIVALINGANIS	51100	EL BRANK	CALEBORY
\$092	390	112	12	ÖČ?	32	62	8-112	22	-		
HERE WHERE	NOGHIN TION	NOT HIMES	VIEW NTIM	IGEN TIR	NET WHEEK	NUMBER OF STREET	NUMBER OF STREET	IGMIN. TOA			

NOTE. ND indicates that the parameter was not detected; < indicates a detectable concentration below the detection limit; <= indicates a concentration less that or equal to the detection limit.

saler problem include the basic should not be a sponod no.

1

1

.

		NELL NUMER DEC?	MELL ALMERY MCCT	ACIL NUMER	ð	NELL NUMER
CATERDRY PRIMAE TEA	SLIM	CONCENTRAL (CR		COCCATANTION CONTINUED	CDHCDHTMAT (CH	CONTRAI LON
SHILE BALE		12/02/08	ani, 13/, CI			
FIELD PROMETERS			<b>20</b> //0/71	19/10/21	12/09/18	12/07/88
E		10.51	6. 30	7.41	1.U	<b>P</b>
	C/Solution	umhos/cm) 20000	11000	100	610	
	(m/#	1.022	1,008	0.000		
307LUNCLAND	U	12.0	12.0	13.0	11.5	
	£	2200.0	4700.0	110.0	5.5	300.0
	Ę	0.087	(0,000	(8.00	(0.000	
TUTAL DESCRIPTION	£	07.24	24, 70	8		
TUTAL CHEMIC INLORDES	£	2,510	446,000	7.410		
TDTAL CYANETE	ł	0.11	57 °	10.07		
SOLUTILE DARFUN	E	(1.0	11.0	0 11	17 <b>.</b> 0	<b>78-72</b>
VQ.ATRLES						
WIML CLORIDE	1		-	:		
CALONDETHME	Ŀſ		4-mm+1	0.744	12.0	(2.0
1.1-01CH DIDETHALDIE			0 00007	0.021		102.0
HETHLER OLDRIDE	1				61.0	0.1)
• THANG-1, 2-DIOLUNDETHERE	1				2.1	ŗ
L. I-BICALINGETHINE	1	•		0.761	1.7	
· (CISH: 2-BIDLONETIDE			tobe a	1.001		010
+C+C CHCF-CHH	E					
L+1+1-THICH. BACETHANE	£		(2000.0			
CARLEN TETRACALORINE	£		(200.0	9	9	
	£		12000.0	0.001	- R	
	£		(2000.0	0.00	11.0	(1.0
	£1		10109.0	310.0	5.11	0.12
+1+1+2+2-TETHACH.CHICETHANE	1		14200.0	0.001	. 6.6	
BIGINGING NO+	f		6.000.6	3/0.0		4.2
HE LACK CHIER RANG	E		(4000. 0	120.0		
1.4-9104.04296	£		(+000,0	0.00.0	10	
1,2-DICHLORDENZENE	£		0,00041	100.0	0.0	
HE LACH LONGENTADI DIE	£		(600.0	(150.0	441.0	E.
	£		14000.0	0.0211	0°E).	0.0
	£		(4000.0	(100.6	(2.0	12.0
INCLUDES TRIAN UR ATH CO	£		(4000.0	C100.0	(2.0	(2.0
	÷		501600.0	5720.0	301.2	702.6
OTHER CHEMICS						
<b>JH-</b> \$	£	(0.30	8	1.1A	2 2	<b>ş</b>
	ŧ	(0.30	1.54	005	9.6	
	£	6.50	12.70	1.20	6.3	8 9
	£		2.45	6.30	10.50	6.5
	£		(100.00	(16.00	0.1)	00.0
	Z		(100.00	(10.00	11.00	11.00
	F		(100.00	<10°00	1.00 1.00	6.15 0
	E 1		81	81	8.9	(0.50
	1	89		8 1	8.2	6.16 1
1260		8 <b>5</b>			R ::	ñi
DIS (2-ETHORETH, PHINEATE	1	0.12	3 . i x		_	
NUTRICE DIE	E	8	18	-		0.010 0.01
three fuelowing services					-	
	Ĩ.	101.00 201	201075.5%	5722.36	12°.20	er. 20

.

NOTE: ND indecates that the parameter was not detected: < indicates a detectable concentration below the detection limit; <= indicates a concentration less than or equal to the detection limit; NS indicates that there was insufficient sample for analysis.

* Compounds used for contaminant loading rates.

a.

ï

# TABLE 4

# AVERAGES TO DATE NON-POINT SOURCE LOADING INDICATOR ORGANIC TOTALS FOURTH QUARTER 1984 THROUGH FIRST QUARTER 1989 Niagara Plant E.L. du Pont de Nemours and Company

Water-Bearing Zone	Average for 4th Qtr 1984 to 4th Qtr 1988	1st Qtr 1989 Rates	Average To Date
TOTAL LOADING RATES (lb/day)			
A -	2.4	2.99	2.4
B	11.1	4.85	10.8
CD	52.9	26.24	51.4
D	0.4	0.33	0.4
F	0.4	0.09	0.4
Total	67.2	34.50	65.4
LOADING RATES TO THE OLIN PRODUCTION WELLS (ib/day)			
Α	0.0	0.00	<b>A A</b>
В	7.8	3.62	0.0 7.6
CD	49.5	26.17	48.2
D	0.3	0.32	0.3
F	0.0	0.01	0.0
Total	57.6	30.12	56.1
LOADING RATES OFF-PLANT			
Α	2.4	2.99	2.4
B .	3.3	1.23	3.2
CD	3.4	0.07	3.2
D	0.1	0.01	0.1
F	0.3	0.08	0.3
Total	9.5	4.38	9.4
TOTAL EXCLUDING A-ZONE	7.1	1.39	7.0

/WM-8M

ľ

# DU PONT RECORD OF DECISION APPENDIX B

RECORD OF THE NYSDEC - BIBLIOGRAPHY