

2019 Periodic Review Report

Durez North Tonawanda Interceptor Trench NYSDEC Site No. 932018

Glenn Springs Holdings, Inc.

Executive Summary

Glenn Springs Holdings, Inc. (GSH), an Occidental Chemical Corporation (OCC) affiliate, assumed operation, maintenance, and monitoring (OM&M) responsibilities for the former Durez North Tonawanda Facility Interceptor Trench (IT) (Site) from OCC effective July 1, 1998. Since that time, pursuant to the individual Site documents and subsequent approved modifications, GSH has conducted routine monitoring and maintenance programs at the Site. Since October 1, 2008, the Site's groundwater extraction system has been operated by GHD, formerly Conestoga-Rovers & Associates (CRA), under direct management of GSH.

Approximately 37.3 million gallons of groundwater from the IT were collected, treated, and discharged in 2019. The volume of water treated and discharged was reported in the monthly Discharge Monitoring Reports (DMRs) submitted to the New York State Department of Environmental Conservation (NYSDEC). The 2019 semiannual groundwater contours and measured water levels at the piezometer clusters indicate that an overall inward gradient to the IT is being maintained. Therefore, the purpose and primary objective of the IT are being met.

Groundwater samples are collected annually from the Site for chemical analysis. The analytical results from the April 2019 groundwater monitoring event indicate that no volatile organic compounds (VOCs) or total recoverable phenolics were detected at concentrations above the laboratory method detection limits (MDLs), which are less than or equal to the New York State (NYS) water quality standards and guidance values for Class GA (potable) groundwater. These results are consistent with Site historical data.

In 2019, GSH monitored non-aqueous phase liquid (NAPL) presence at piezometer T-2A through one annual NAPL thickness measurement and semiannual water level rounds at select wells to demonstrate an inward gradient in the vicinity of T-2A (as indicated by a lower groundwater elevation in T-2A than monitoring wells farther outside of the IT than T-2A). The water level rounds were completed in April and September 2019. The thickness of the NAPL at T-2A observed during the annual NAPL thickness monitoring event in November 2019 was insufficient to warrant pumping at the well. Therefore, no NAPL was removed.

The groundwater monitoring program is conducted to collect the hydraulic and groundwater chemical data necessary to evaluate both the effectiveness of the IT and long-term trends in groundwater chemistry in select monitoring wells. The hydraulic data collected in 2019 indicates that the IT is functioning effectively, and the chemical groundwater data collected demonstrates that the IT continues to prevent off-Site migration of impacted groundwater.

Table of Contents

1.	Introc	luction		. 1
2.	Durez	z North Tor	nawanda Facility/IT Site	. 1
	2.1	Site Monit	toring	. 1
		2.1.1 2.1.2	Purpose Scope	
	2.2	Hydraulic	Effectiveness of the IT	2
		2.2.1	Hydraulic Containment at the T-2 Piezometer Cluster	4
	2.3	Groundwa	ater Quality Monitoring	5
		2.3.1	Summary of Groundwater Chemistry Results	6
3.	Grou	ndwater Co	Ilection System and Panhandle Remediation	6
	3.1	Groundwa	ater Collection System	7
	3.2	Panhandl	e Remediation	7
4.	Site A	Activities		. 8
	4.1	IT Mainte	nance	8
	4.2	Well Main	tenance and Replacement	8
	4.3	Process A	Activities	8
	4.4	Non-Proc	ess Activities	8
5.	Conc	lusions		9
	5.1	Summary		. 9

Figure Index

Figure 1.1	Site Plan
Figure 2.1	Groundwater Contour Map - April 11, 2019
Figure 2.2	Groundwater Contour Map - September 11, 2019
Figure 2.3	Groundwater Elevations near T-2A - April 11, 2019
Figure 2.4	Groundwater Elevations near T-2A - September 11, 2019

Table Index

- Table 2.2 2019 Water Level Elevations
- Table 2.3 2019 T-2A NAPL Pumping
- Table 2.4 2019 T-2A NAPL Presence Hydraulic Monitoring
- Table 2.5 2019 Groundwater Chemistry Monitoring Analytical Results

Appendix Index

- Appendix A 2019 Institutional and Engineering Controls Certification Form
- Appendix B Monitoring Well Purge Records
- Appendix C Quality Assurance/Quality Control Report
- Appendix D Historical Groundwater Chemistry Monitoring Analytical Results
- Appendix E Landfill Cap, Site Cover, and Fence Inspection and IT System Manhole and NAPL Collection Well Inspection Forms

1. Introduction

Glenn Springs Holdings, Inc. (GSH), an Occidental Chemical Corporation (OCC) affiliate, assumed operation, maintenance, and monitoring (OM&M) responsibilities for the former Durez North Tonawanda Facility Interceptor Trench (IT) (Site) from OCC effective July 1, 1998. Since that time, pursuant to the individual Site documents and subsequent approved modifications, GSH has conducted routine monitoring and maintenance programs at the Site. Since October 1, 2008, the Site's groundwater extraction system has been operated by GHD, formerly Conestoga-Rovers & Associates (CRA), under direct management of GSH.

This report describes the monitoring and maintenance activities conducted and presents the data collected at the Site between January 1, 2019 and December 31, 2019.

2. Durez North Tonawanda Facility/IT Site

Pursuant to Appendix B of the Durez Partial Consent Judgment (PCJ), groundwater monitoring at the former OCC Durez Division North Tonawanda Plant is being conducted as part of the Site-wide groundwater remediation program. This monitoring began on October 2, 1989, prior to the installation of a groundwater remediation system, the principal component of which is a perimeter groundwater IT. This report presents data obtained during the 2019 calendar year, which is the 30th year of IT operation.

Site-wide hydraulic monitoring for the period covered by this annual report was conducted in April and September 2019. Groundwater quality monitoring was conducted in April 2019. All work conducted during 2019 was performed in accordance with the protocols and requirements in Appendix B of the PCJ "Monitoring, Operations, and Maintenance Plan" (1989) and subsequent Minor Modification #10, Rev. 2 "Minor Change to Appendix B "Monitoring, Operations, and Maintenance Plan" (September 1999).

This report summarizes the purpose and scope of the current groundwater monitoring program, discusses the hydraulic effectiveness of the IT, and provides a summary of groundwater chemistry monitoring results. The completed New York State Department of Environmental Conservation (NYSDEC) 2019 Institutional and Engineering Controls Certification Form is included in Appendix A.

2.1 Site Monitoring

2.1.1 Purpose

The purpose and primary design objectives of the IT are:

- i) To collect and capture groundwater located inside the IT that could otherwise migrate off the Site
- ii) To collect and capture groundwater located outside the Site by creating an inward hydraulic gradient toward the IT (lower groundwater elevation in the trench than in the piezometers outside the trench)

The post-IT groundwater monitoring program is conducted to collect the hydraulic and groundwater quality data necessary to evaluate the effectiveness of the IT and the long-term trends in groundwater quality in selected monitoring wells.

2.1.2 Scope

The hydraulic monitoring program currently consists of semiannual measurements of water levels in 48 monitoring wells located on and off the Site and semiannual measurement of water levels in 36 on-Site piezometers located in 12 arrays. The piezometer arrays consist of three wells (A, B, and C): the first well (A) is located on the outside perimeter of IT; the second well (B) is located in the center or in IT backfill; and the third well (C) is located in the Plant side of the IT for a total of 36 piezometers. The piezometer arrays are referred to as the "T-Series" piezometers and have been monitored since their installation in August 1990. The monitoring well and piezometer locations are presented on Figure 1.1.

The groundwater quality monitoring program at the Site consists of annual sampling and chemical analyses of groundwater collected from seven monitoring wells located off and on the Site. The selection and utilization of these wells are consistent with the requirements specified in the PCJ or from approved minor changes to the PCJ. All groundwater samples collected in 2019 were analyzed for the Site-specific list of targeted organic compounds, total recoverable phenolics, and total organic carbon (TOC).

Specific conductance, pH, and temperature were measured in the field during sample collection. The results of the annual monitoring are further discussed in Section 2.3.

2.2 Hydraulic Effectiveness of the IT

Total monthly precipitation in Niagara Falls and Buffalo, New York during 2019 (obtained from the National Oceanic and Atmospheric Administration [NOAA]) is provided in Table 2.1. Monthly precipitation for both areas is provided since the Site is approximately equidistant between both official weather stations.

Groundwater elevation contour maps developed using groundwater elevations measured on April 11 and September 11, 2019 (presented as Figures 2.1 and 2.2, respectively) show the configuration of the water table surface for each measurement event. Due to the steep hydraulic gradient created by the IT (lower groundwater elevation in the trench than in the piezometers outside the trench), not all of the contour lines immediately adjacent to the IT can be shown on the contour maps. Groundwater elevations for 2019 are presented in Table 2.2. In 2019, two additional monitoring wells, NP-19 and NP-27, were hydraulically monitored in addition to the monitoring wells and piezometers in the current hydraulic monitoring program to provide additional hydraulic information in the vicinity of piezometer T-2A. The significance of piezometer T-2A is explained in further detail in Section 2.2.1.

Groundwater elevations for the T-series piezometers are presented on Figures 2.1 and 2.2 to show the magnitude of the hydraulic gradient adjacent to the IT. The water levels in a number of the piezometers ("A", "B", and "C" piezometers, respectively) were dry when measured due to the influence of the trench and limited local recharge. Pumping from the IT is maintained such that the water level is below the top of the glaciolacustrine clay unit, which serves as the lower confining unit

for the overburden groundwater at the Site. Maintaining this lowered groundwater elevation causes the IT to act as a continuous sump surrounding the Site.

During the April 11, 2019 hydraulic monitoring event (refer to Figure 2.1), an inward gradient was observed at all trench piezometers. At six piezometer arrays (T-2, T-4, T-5, T-6, T-7, and T-11), at least one of the piezometers in the array was dry. However, an inward gradient was still observed at each of these locations, as follows:

- When the observed depth of piezometer T-2B (563.90 feet above mean sea level [ft. AMSL]) is compared to the water elevation in piezometer T-2A (571.24 ft. AMSL), which is located directly outside of the IT, it is clear that an inward hydraulic gradient into the trench was present at this array.
- When the water elevation in piezometer T-4B (565.63 ft. AMSL) is compared to the water elevation in monitoring well MW-1 (573.61 ft. AMSL), which is located outside of the IT and in close proximity to array T-4, it is clear that an inward hydraulic gradient into the trench was present at this location.
- When the observed depth of piezometer T-5B (564.09 ft. AMSL) is compared to the water elevation in monitoring well NP-22A (574.25 ft. AMSL), which is located outside of the IT and in close proximity to array T-5, it is clear that an inward hydraulic gradient into the trench was present at this location. In addition, the water elevation in piezometer T-5C (573.14 ft. AMSL) located inside the IT is lower than the water elevation in NP-22A located outside of the IT.
- When the water elevation in piezometer T-6B (566.00 ft. AMSL) is compared to the water elevation in monitoring well SP-3 (570.01 ft. AMSL), which is located outside of the IT and in close proximity to array T-6, it is clear that an inward hydraulic gradient into the trench was present at this location.
- When the observed depth of piezometer T-7B (565.79 ft. AMSL) is compared to the water elevation in piezometer T-7A (569.75 ft. AMSL), which is located directly outside of the IT, it is clear that an inward hydraulic gradient into the trench was present at this array.
- When the observed depth of piezometer T-11B (565.94 ft. AMSL) is compared to the water elevation in piezometer T-11A (569.88 ft. AMSL), which is located directly outside of the IT, it is clear that an inward hydraulic gradient into the trench was present at this array.

During the September 11, 2019 hydraulic monitoring event (refer to Figure 2.2), an inward gradient was observed at the locations of all trench piezometer arrays. At 9 of the 13 piezometer arrays (T-2 through T-8, T-10, and T-11), at least one of the piezometers in the array was dry. However, an inward gradient was still observed at each of these locations, as follows:

- When the observed depth of piezometer T-2B (563.90 ft. AMSL) is compared to the water elevation in piezometer T-2A (568.15 ft. AMSL), which is located directly outside of the IT, it is clear that an inward hydraulic gradient into the trench was present at this array.
- When the water level elevation in piezometer T-3B (566.42 ft. AMSL) is compared to the water elevation in piezometer NP-35 (568.26 ft. AMSL), which is located outside of the IT and in close proximity to array T-3, it is clear that an inward hydraulic gradient into the trench was present at this location.

- When the observed depth of piezometer T-4B (565.54 ft. AMSL) is compared to the water elevation in monitoring well MW-1 (569.61 ft. AMSL), which is located outside of the IT and in close proximity to array T-4, it is clear that an inward hydraulic gradient into the trench was present at this location.
- When the observed depth of piezometer T-5B (564.09 ft. AMSL) is compared to the water elevation in piezometer NP-22A (569.10 ft. AMSL), which is located outside of the IT and in close proximity to array T-5, it is clear that an inward hydraulic gradient into the trench was present at this location.
- When the water elevation in piezometer T-6B (565.73 ft. AMSL) is compared to the water elevation in monitoring well SP-3 (569.01 ft. AMSL), which is located outside of the IT and in close proximity to array T-6, it is clear that an inward hydraulic gradient into the trench was present at this location.
- When the observed depth of piezometer T-7B (565.78 ft. AMSL) is compared to the water elevations in monitoring wells NP-51 (573.27 ft. AMSL) and NP-42 (570.70 ft. AMSL), which are located outside of the IT and in close proximity to array T-7, it is clear that an inward hydraulic gradient into the trench was present at this location.
- When the water elevation in piezometer T-8B (572.40 ft. AMSL) is compared to the water level elevation in monitoring well MW-3 (569.54 ft. AMSL), which is located outside of the IT and in close proximity to array T-8, and the observed depth of piezometer T-8A (570.99 ft. AMSL), which is located directly outside of the IT, it appears that an outward gradient away from the trench may have been present at this location. However, when these water elevations are compared to the water elevation in monitoring well NP-51 (573.27 ft. AMSL), which is located even farther outside of the IT and is also in close proximity to array T-8, an overall inward hydraulic gradient into the trench was apparent at this location. Furthermore, no evidence of chemical migration was observed at this location.
- When the observed depth of piezometer T-10B (567.48 ft. AMSL) is compared to the water elevation in piezometer T-10A (569.92 ft. AMSL), which is located directly outside of the IT, it is clear that an inward hydraulic gradient into the trench was present at this location.
- When the observed depth of piezometer T-11B (565.94 ft. AMSL) is compared to the water elevation in piezometer T-11A (569.72 ft. AMSL), which is located directly outside of the IT, it is clear that an inward hydraulic gradient into the trench was present at this array.

2.2.1 Hydraulic Containment at the T-2 Piezometer Cluster

During the October 2008 semiannual hydraulic monitoring event at the Site, non-aqueous phase liquid (NAPL) was observed in the T-2A piezometer.

In December 2008, GSH submitted a letter to the NYSDEC detailing 1) the discovery of NAPL presence in T-2A, and 2) the investigation activities that were conducted to identify the cause of the NAPL presence. GSH and the NYSDEC agreed that GSH would continue to pump the NAPL from the T-2A location and monitor hydraulic conditions weekly at T-2A and surrounding wells to demonstrate a continued inward gradient towards the IT in this area as indicated by a lower groundwater elevation in T-2A than monitoring wells farther outside of the IT than T-2A (P-1-96 and NP-27).

Based on the 2011 results demonstrating consistent hydraulic containment and extended periods without NAPL presence, it was recommended in the 2011 Periodic Review Report (PRR) that biweekly pumping of T-2A and weekly hydraulic monitoring be reduced in frequency to quarterly pumping of T-2A and quarterly hydraulic monitoring of the selected wells. GSH continued to monitor the NAPL presence at piezometer T-2A through biweekly pumping of T-2A and weekly hydraulic monitoring at the select wells shown in Table 2.4, until approval for modification of the program was received on May 11, 2012. Following approval from the NYSDEC, the frequency of monitoring was changed to guarterly. In the 2015 PRR, GSH indicated that NAPL extraction at piezometer T-2A had been impractical and unnecessary for the past 3 years, and, as such, recommended that quarterly NAPL pumping at T-2A and the associated quarterly hydraulic monitoring of the selected wells proximate to T-2A be discontinued. In a letter dated July 12, 2016, the NYSDEC approved reducing the frequency of NAPL pumping at T-2A from quarterly to annually. This change was implemented in 2018. In the 2017 PRR, GSH recommended that the guarterly hydraulic monitoring at piezometer T-2A and nearby wells be reduced from guarterly to semiannually, as consistent hydraulic containment (inward gradient) had been demonstrated in the vicinity of the T-2A piezometer cluster since 2012. In a letter dated June 4, 2018, the NYSDEC approved this recommendation. This change was implemented immediately following receipt of the letter, with the November 2018 hydraulic monitoring event for the select wells around T-2A representing the first semiannual event.

During 2019, no NAPL was pumped from the T-2A piezometer (see Table 2.3) as the thickness was insufficient to allow for pumping. Table 2.4 presents the semiannual hydraulic monitoring at T-2A and surrounding monitoring wells. Water elevations in these wells and piezometers from the April 11 and September 11, 2019 monitoring events are shown on Figures 2.3 and 2.4, respectively. These elevations demonstrate the presence of an inward gradient in this area as indicated by a lower groundwater elevation in T-2A than monitoring wells farther outside of the IT than T-2A (i.e., P-1-96 and NP-27).

2.3 Groundwater Quality Monitoring

Groundwater quality monitoring at the Site consists of seven monitoring wells (NP-22A, NP-23, NP-27, P-32A, NP-35, NP-44, and NP-46) sampled annually. The annual groundwater sampling event was conducted in April 2019. Four of the seven monitoring wells (NP-22A, NP-27, P-32A, and NP-46) produced a sufficient volume of groundwater for sampling during this event. Wells NP-23, NP-35, and NP-44 did not yield sufficient groundwater to either purge prior to sampling or sample after purging and, therefore, were considered "dry". Purge records for this event are presented in Appendix B.

Groundwater samples were submitted to the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified laboratory ALS Environmental (ALS) located in Rochester, New York for analysis for the following analytes/parameters:

Targeted Organic Compounds	Reporting Limit (RL) (µg/L)	Method Detection Limit (MDL) (μg/L)
Benzene	1	0.20
Chlorobenzene	1	0.20
Toluene	1	0.20
2-Chlorotoluene	1	0.20
1,2-Dichlorobenzene	1	0.20
1,4-Dichlorobenzene	1	0.20
1,2,3-Trichlorobenzene	1	0.20
1,2,4-Trichlorobenzene	1	0.25
Total Recoverable Phenolics	5	1
TOC	1,000	500
Notes: µg/L- micrograms per liter		

In addition to the above analytes, measurements of pH, temperature, and specific conductivity were conducted and documented in the field by the sampling team. The quality assurance/quality control (QA/QC) review for the sampling event is presented in Appendix C.

2.3.1 Summary of Groundwater Chemistry Results

A summary of the analytical results for the 2019 groundwater quality monitoring event is presented in Table 2.5. The concentrations of volatile organic compounds (VOCs) and total recoverable phenolics in the samples collected from the four wells sampled were not detected above the laboratory RLs. As indicated in the QA/QC review in Appendix C, the laboratory reported results down to the laboratory's MDL for each analyte. These MDLs are shown in the table above and are less than or equal to the New York State (NYS) water quality standards and guidance values for Class GA (potable) groundwater. No analyte detections less than the RL but greater than the MDL were reported. TOC concentrations were detected above the RL, but there is no NYS water quality standard for TOC. Historical groundwater data are presented in Appendix D of this report and demonstrate that the April 2019 sample results are within the historical range for the Site and that the IT continues to prevent off-Site migration of Site groundwater.

3. Groundwater Collection System and Panhandle Remediation

This section has been prepared to fulfill the requirements for the Groundwater Collection System and Panhandle Remediation Annual Report as set forth in Appendix B of the PCJ. The Operation and Maintenance (O&M) Manual, dated July 2019, provides procedures and protocols for the instrumentation, operation, maintenance, and inspection of the system.

3.1 Groundwater Collection System

The groundwater collection system consists of an 8,300-foot long groundwater IT, one lateral trench that extends off the former plant property to the south, one lateral trench that extends off to the north of the property, three lift stations, and a main collection pump station (Figure 1.1). The IT creates a closed-loop groundwater sink and flow divide around the Site. Underground piping conveys collected groundwater into two aboveground steel storage tanks from which the water is pumped to an on-Site carbon treatment system. The collected water is treated by the on-Site process. After treatment with granular activated carbon (GAC), the treated water is discharged under the Site's NYSDEC State Pollutant Discharge Elimination System (SPDES) permit (No. NY0001198) to the City of North Tonawanda storm sewer system.

In 2001 and prior years, the Site's groundwater collection system consisted of the IT and a storm water collection sump. Since 2011, all collected groundwater has been recovered through the IT. Approximately 37.3 million gallons of groundwater from the IT were collected, treated, and discharged in 2019 compared to 32.9 million gallons in 2018. The volume of water treated and discharged was reported to the NYSDEC in the monthly NYSDEC SPDES Discharge Monitoring Reports (DMRs).

A lateral drain is present and runs from the bedding of the City of North Tonawanda storm sewer located in Walck Road to trench manhole MH-4+20.2. This lateral is designed to drain the sewer bedding into the IT system to capture any chemistry present in the bedding.

Semiannual inspections of each of the trench manholes and NAPL collectors were performed on May 14 and September 3, 2019. The inspection results are included in Appendix E.

Inspection of the treatment system carbon beds and groundwater collection system is conducted on a monthly basis. The inspections conducted in 2019 show that the treatment system carbon bed and the groundwater collections system are functioning as designed.

3.2 Panhandle Remediation

Prior to 2014, the panhandle monitoring program consisted of a quarterly visual verification of the condition of revegetated areas including evidence of vegetative stress, subsidence, development of drainage features, and ponding. In 2014, the inspections changed from quarterly to semiannual as recommended in the 2013 PRR. This report was approved by NYSDEC in a letter dated September 22, 2014. The inspections were conducted on May 14, 2019 and September 3, 2019. The inspection forms for 2019 are included in Appendix E.

In addition, historical panhandle construction activities completed in accordance with the OM&M Upgrades Site Drainage Improvement Work Plan (CRA, August 2012) have resulted in changes to pitch and drainage in the northeast corner of the Site. In the fall of 2014, additional work activities associated with the OM&M upgrades were completed at the Site, which addressed sedimentation, surface ponding, and erosion at various locations along the periphery of the engineered wetland and eastern drainage ditch. Vegetation is plentiful, native species of wetland/forestland plants are colonizing the area, and there are no obvious symptoms of stress. In addition to the native colonization, native trees and shrubs were planted in the areas surrounding the engineered wetlands

and along the access road on the east side of the panhandle area. The ditch culverts are in good condition, and there is good accessibility to monitoring wells.

4. Site Activities

The activities and repairs performed in 2019 are summarized in the sections below. The activities are grouped into four categories: IT Maintenance, Monitoring Well/Piezometer Maintenance, Process, and Non-Process. Process Activities are activities that influenced the treatment system for the Site; Non-process Activities are activities performed on Site during the year that had no impact on the treatment system for the Site.

4.1 IT Maintenance

The semiannual inspections of the trench manholes, which were performed on May 14, 2019 and September 3, 2019, verified that no sediment buildup was occurring within the IT. Inspection forms are included in Appendix E.

4.2 Well Maintenance and Replacement

Well inspections conducted during July 2019 indicated that maintenance was required at several monitoring wells and piezometers at the Site. The maintenance performed included repairing locks; replacing/repairing concrete pads, curb boxes, and stick-up risers (including the damaged riser on T-5A); and replacing J-plugs.

4.3 **Process Activities**

Activities that were performed during 2019 related to the Site's collection and treatment process are listed below:

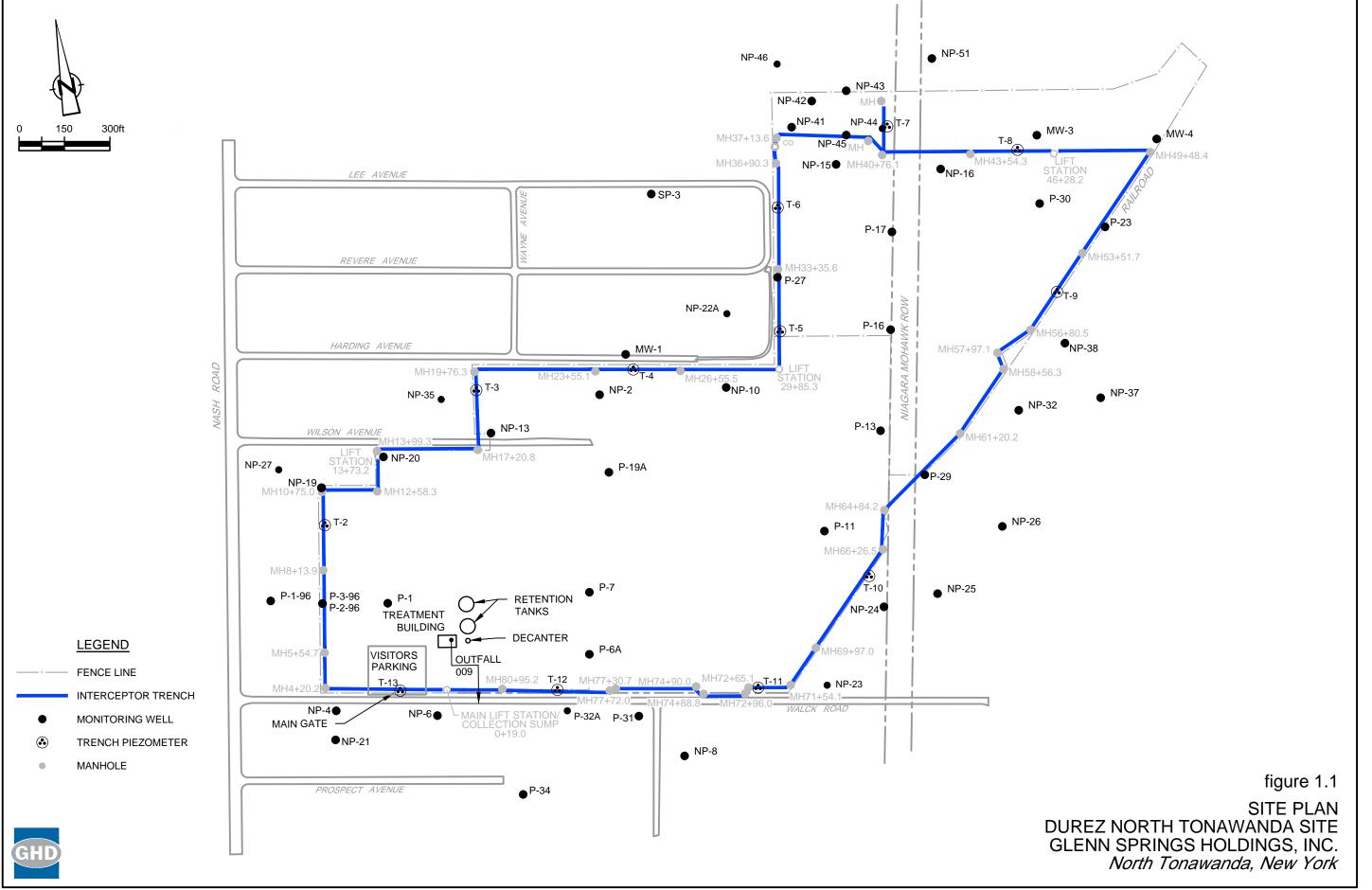
- Performed preventative maintenance on Site equipment throughout the year
- Replaced the carbon in both sacrificial carbon beds and in one main carbon bed
- Replaced an electrical utility pole near the process building
- Tested all heat tracing to ensure operational before winter
- Transported hazardous waste generated at the Site off Site for disposal

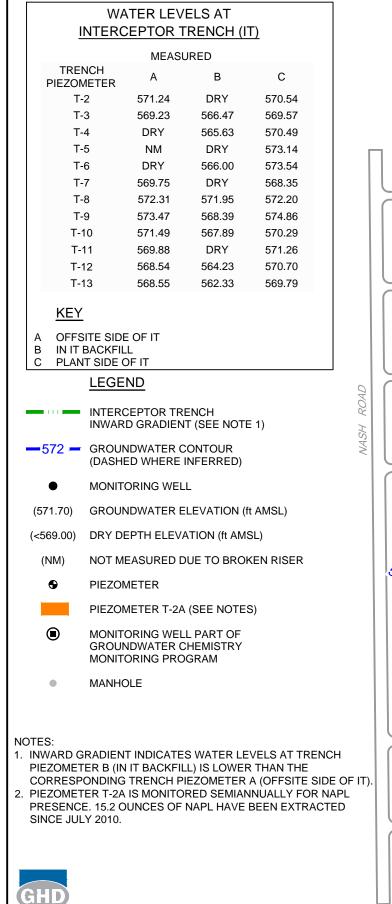
4.4 Non-Process Activities

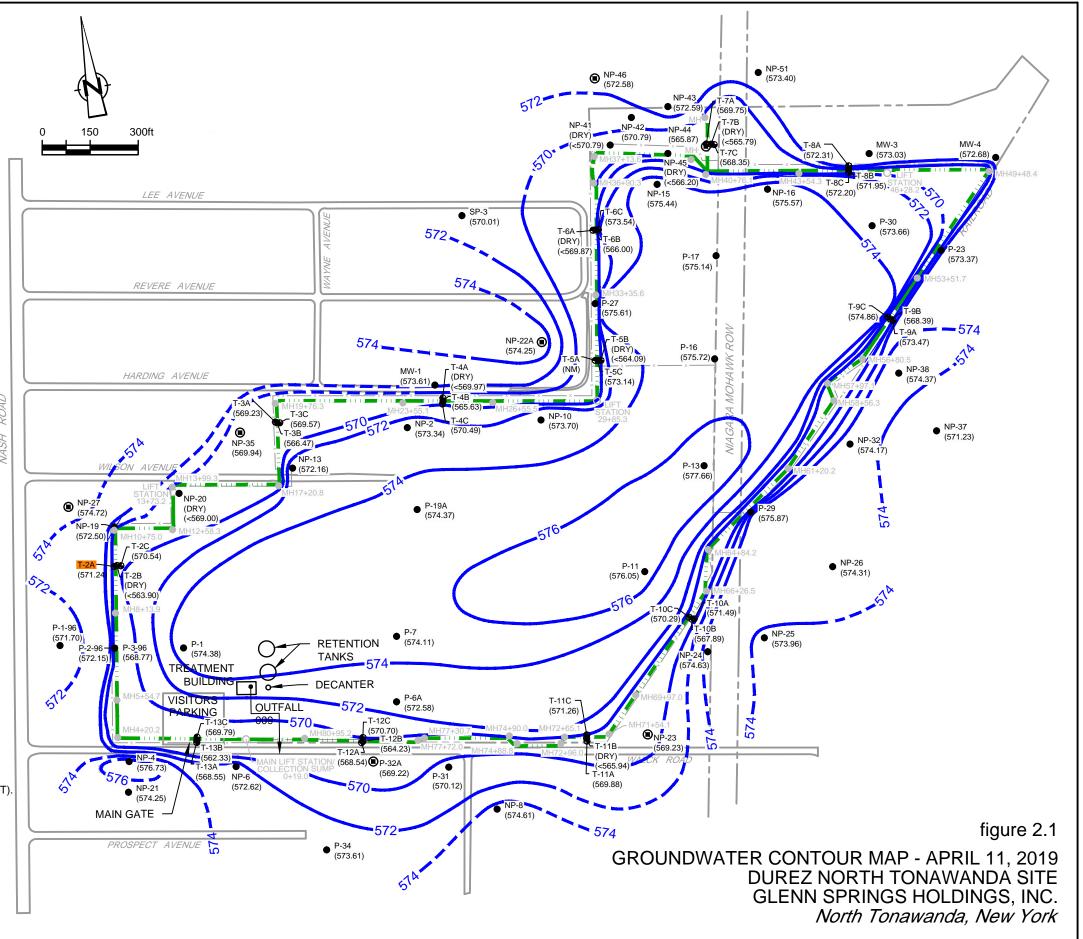
Activities that were performed on Site during the year that were not part of the collection and/or treatment process are as follows:

- Performed Site beautification and maintenance of shrubs and bushes around the Treatment Process Building
- Mowed grassed areas
- Performed annual backflow preventer inspection
- Replaced the electrical room roof

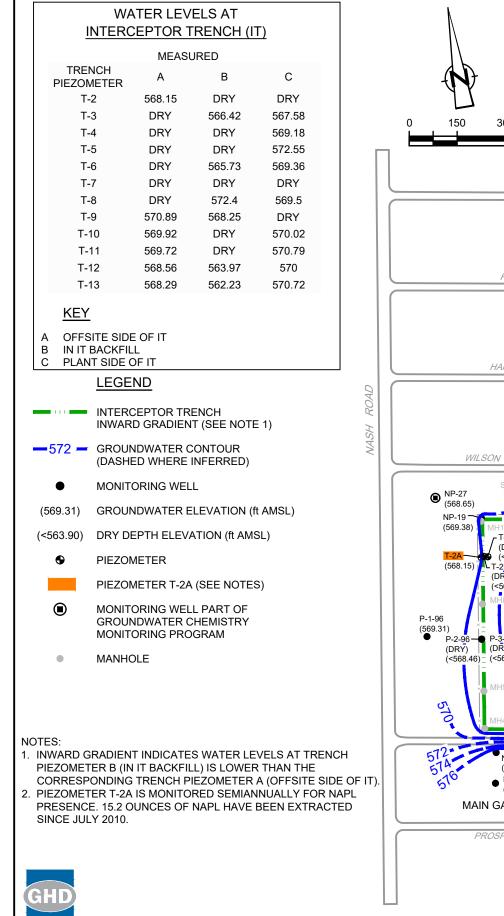
5. Conclusions

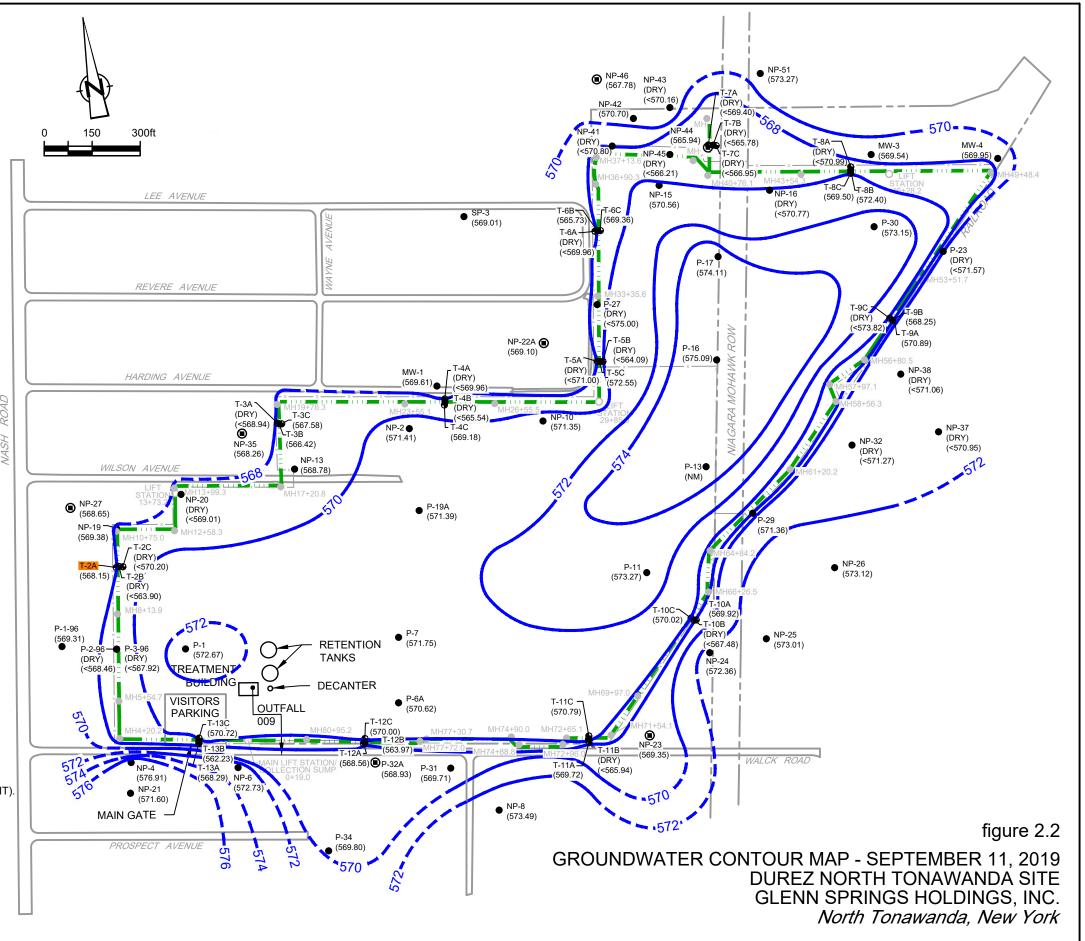

5.1 Summary

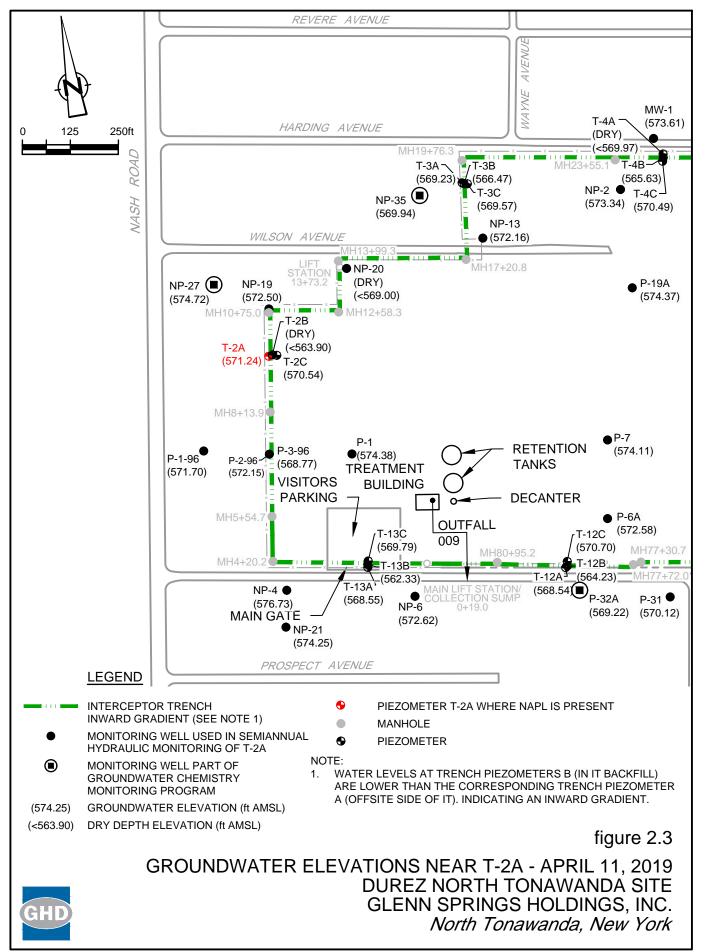

The purpose and primary design objective of the IT is to capture and collect groundwater that could otherwise migrate off the Site and to capture and collect groundwater located outside the Site by creating a hydraulic gradient toward the trench. Approximately 37.3 million gallons of groundwater from the IT were collected, treated, and discharged in 2019. The 2019 groundwater contours and measured water levels at the piezometer clusters indicate that an inward gradient to the IT is being maintained. Therefore, the purpose and primary objective of the IT are being met.

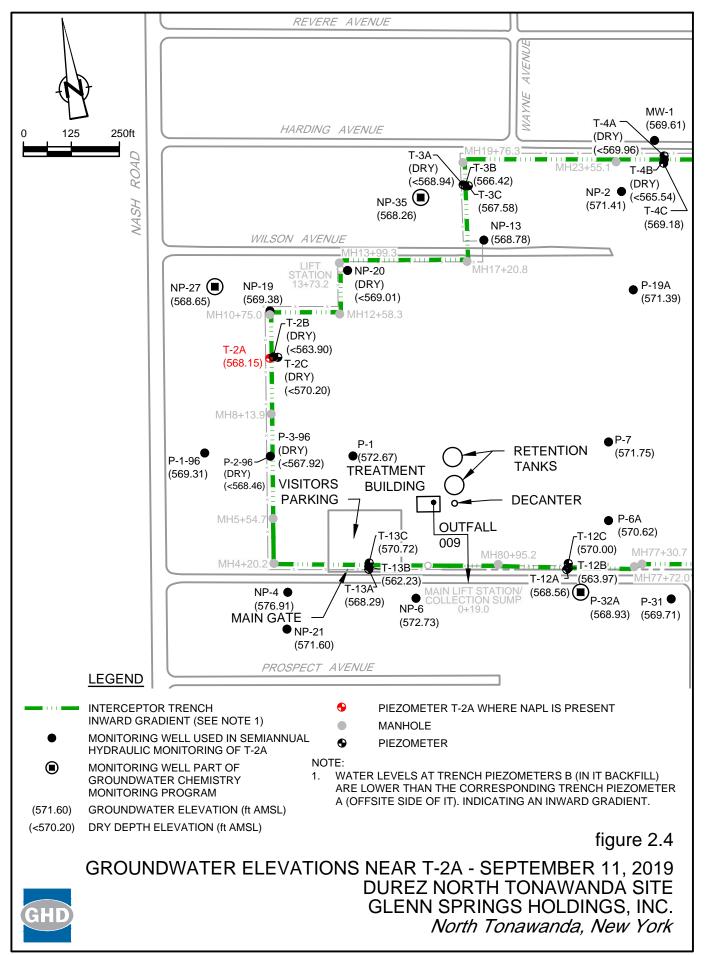

The post-IT groundwater monitoring program is conducted to collect the hydraulic and groundwater chemical data necessary to evaluate the effectiveness of the IT and long-term trends in groundwater chemistry in selected monitoring wells. The hydraulic data collected in 2019 indicate that the IT is functioning effectively. The chemical groundwater data collected in 2019 demonstrate that the IT continues to intercept impacted groundwater and prevent it from migrating off the Site.

The analytical results from the 2019 groundwater monitoring event showed no detectable concentrations of VOCs or total recoverable phenolics above the laboratory MDLs, which are less than or equal to the NYS water quality standards and guidance values for Class GA (potable) groundwater. Historical groundwater data demonstrate that the April 2019 sample results are within the historical range for the Site and that the IT continues to prevent off-Site migration of Site groundwater.


In 2019, the NAPL presence at piezometer T-2A was monitored through an annual measurement and semiannual water level rounds at select wells to demonstrate an inward gradient in the vicinity of T-2A (as indicated by a lower groundwater elevation in T-2A than monitoring wells farther outside of the IT than T-2A). The thickness of the NAPL at T-2A in 2019 was insufficient to warrant pumping at the well. Therefore, no NAPL was removed.






N:\CA\Waterloo\Legacy\CAD\drawings\07000s\07406\07406-reports\07406-60-403(037)\07406-60-403(037)GN\07

N:\CA\Waterloo\Legacy\CAD\drawings\07000s\07406\07406-reports\07406-60-403(037)\07406-60-403(037)GN\07406-60-403(037)GN-WA003.DWG Plot Date: MAR 19, 2020

2019 Precipitation Data Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

Month	Niagara Falls (Inches of Water)	Buffalo (Inches of Water)
January	1.48	5.71
February	1.21	3.29
March	2.02	2.73
April	2.88	3.07
May	4.85	3.54
June	3.51	4.59
July	2.99	1.83
August	4.04	3.62
September	4.37	6.28
October	4.46	5.82
November	0.83	1.97
December	3.34	5.38
Total	35.98	47.83

Notes:

Data shown are for Niagara Falls and Buffalo, New York, obtained from the National Oceanic & Atmospheric Administration

2019 Water Level Elevations Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

	Reference Elevation	Bottom of Well Elevation		
Well ID	(ft. AMSL)	(ft. AMSL)	April 11, 2019	September 11, 2019
MW-1	574.52	565.29	573.61	569.61
MW-3	577.01	564.77	573.03	569.54
MW-4	576.40	564.18	572.68	569.95
NP-10	579.79	567.99	573.70	571.35
NP-13	576.69	567.72	572.16	568.78
NP-15	579.01	568.28	575.44	570.56
NP-16	578.39	570.91	575.57	Dry, <570.77
NP-19	576.66	568.86	572.50	569.38
NP-2	577.37	567.64	573.34	571.41
NP-20	577.62	569.09	Dry, <569.00	Dry, <569.01
NP-21	576.90	568.62	574.25	571.60
NP-22A	577.63	565.69	574.25	569.10
NP-23	577.92	569.03	569.23	569.35
NP-24	578.97	569.14	574.63	572.36
NP-25	578.33	568.35	573.96	573.01
NP-26	577.71	571.13	574.31	573.12
NP-27	577.22	567.37	574.72	568.65
NP-32	577.25	571.45	574.17	Dry, <571.27
NP-35	577.42	567.50	569.94	568.26
NP-37	577.45	571.10	571.23	Dry, <570.95
NP-38	578.09	571.21	574.37	Dry, <571.06
NP-4	577.16	567.81	576.73	576.91
NP-41	577.69	570.97	Dry, <570.79	Dry, <570.80
NP-42	576.64	570.15	570.79	570.70
NP-43	577.13	571.12	572.59	Dry, <570.16
NP-44	578.93	570.31	565.87	565.94
NP-45	579.55	572.66	Dry, <566.20	Dry, <566.21
NP-46	576.87	567.71	572.58	567.78
NP-51	577.36	568.38	573.40	573.27
NP-6	575.21	568.87	572.62	572.73
NP-8	577.20	568.37	574.61	573.49
P-1	578.88	571.27	574.38	572.67
P-11	580.14	569.95	576.05	573.27
P-13	581.23	568.54	577.66	NM**
P-16	577.11	570.99	575.72	575.09
P-17	577.46	572.00	575.14	574.11
P-1-96	574.93	567.85	571.70	569.31
P-19A	580.01	567.83	574.37	571.39
P-23	578.83	571.70	573.37	Dry, <571.57
P-27	580.14	569.50	575.61	Dry, <575.00
P-29	579.13	570.98	575.87	571.36
P-2-96	574.57	568.49	572.15	Dry, <568.46
P-30	579.28	571.28	573.66	573.15
P-31	578.15	569.10	570.12	569.71
P-32A	577.67	565.70	569.22	568.93
P-34	576.12	566.39	573.61	569.80
P-3-96	574.42	567.76	568.77	Dry, <567.92
P-6A	577.43	566.13	572.58	570.62
P-7	577.46	567.91	574.11	571.75

2019 Water Level Elevations Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

Well ID	Reference Elevation (ft. AMSL)	Bottom of Well Elevation (ft. AMSL)	April 11, 2019	September 11, 2019
SP-3	575.30	565.77	570.01	569.01
T-10A	576.64	569.73	571.49	569.92
T-10B	577.29	567.69	567.89	Dry, <567.48
T-10C	577.00	569.71	570.29	570.02
T-11A	577.10	569.56	569.88	569.72
T-11B	577.52	565.89	Dry, <565.94	Dry, <565.94
T-11C	577.79	570.54	571.26	570.79
T-12A	574.64	567.41	568.54	568.56
T-12B	574.92	563.81	564.23	563.97
T-12C	575.45	568.43	570.70	570.00
T-13A	575.09	568.18	568.55	568.29
T-13B	575.07	561.78	562.33	562.23
T-13C	574.98	569.39	569.79	570.72
T-2A	577.86	565.94	571.24	568.15
T-2B	578.73	563.90	Dry, <563.90	Dry, <563.90
T-2C	578.81	570.28	570.54	Dry, <570.20
T-3A	577.71	569.02	569.23	Dry, <568.94
T-3B	577.92	564.26	566.47	566.42
T-3C	578.00	565.83	569.57	567.58
T-4A	579.68	569.95	Dry, <569.97	Dry, <569.96
T-4B	579.72	565.62	565.63	Dry, <565.54
T-4C	580.17	568.21	570.49	569.18
T-5A	579.40	570.75	NM	Dry, <571.00
T-5B	578.63	564.14	Dry, <564.09	Dry, <564.09
T-5C	575.74	572.41	573.14	572.55
T-6A	578.98	569.94	Dry, <569.87	Dry, <569.96
T-6B	579.22	565.18	566.00	565.73
T-6C	580.41	568.62	573.54	569.36
T-7A	578.76	571.52	569.75	Dry, <569.40
T-7B	578.22	570.13	Dry, <565.79	Dry, <565.78
T-7C	578.46	571.33	568.35	Dry, <566.95
T-8A	575.87	571.11	572.31	Dry, <570.99
T-8B	575.97	565.99	571.95	572.40
T-8C	580.26	572.78	572.20	569.50
T-9A	579.14	571.04	573.47	570.89
T-9B	575.91	568.43	568.39	568.25
T-9C	578.27	571.79	574.86	Dry, <573.82

Notes:

ft. AMSL	 Feet above mean sea level
Dry	- No water found in well at time of measurement
NM	- Not measured due to damaged riser

2019 T-2A NAPL Pumping Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

Date		NAPL Extracted (ounces)	NAPL Thickness (inches)
11/12/2019		0	0.02 foot
	Total NAPL Removed:	0.0	

Notes:

NAPL - Non-Aqueous Phase Liquid

2019 T-2A NAPL Presence - Hydraulic Monitoring Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

	Monitoring Data			
Well ID	04/11/2019	09/11/2019		
NP-13	572.16	568.78		
NP-19	572.50	569.38		
NP-20	Dry, <569.00	Dry, <569.01		
NP-27	574.72	568.65		
NP-35	569.94	568.26		
NP-4	576.73	576.91		
P-1	574.38	572.67		
P-1-96	571.70	569.31		
P-2-96	572.15	Dry, <568.46		
P-3-96	568.77	Dry, <567.92		
T-12A	568.54	568.56		
T-12B	564.23	563.97		
T-12C	570.70	570.00		
T-13A	568.55	568.29		
T-13B	562.33	562.23		
T-13C	569.79	570.72		
T-2A	571.24	568.15		
T-2B	Dry, <563.90	Dry, <563.90		
T-2C	570.54	Dry, <570.20		
T-3A	569.23	Dry, <568.94		
T-3B	566.47	566.42		
T-3C	569.57	567.58		

Notes:

Elevations shown are in feet above mean sea level

Monitoring changed from quarterly to semiannually on June 4, 2018 as per letter from New York State Department of Environmental Conservation (NYSDEC) dated June 4, 2018

Dry - No water found in well at time of measurement

NAPL - Non-Aqueous Phase Liquid

2019 Groundwater Chemistry Monitoring Analytical Results Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

		•	le Location: Sample ID: ample Date:	NP-22A ⁽³⁾ NP-22A-0419 04/22/2019	NP-22A NP-70-0419 04/22/2019 Duplicate	NP-27 NP-27-0419 04/23/2019	NP-46 NP-46-0419 04/22/2019	P-32A P-32A-0419 04/22/2019
	Groundwater		Reporting					
Parameter ⁽¹⁾	Standard ⁽²⁾	Units	Limit					
Volatile Organic Compounds								
1,2,3-Trichlorobenzene	5	µg/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	µg/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	3	µg/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3	µg/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorotoluene	5	µg/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	1	µg/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5	µg/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5	µg/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
General Chemistry								
Phenolics (Total)	0.001	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Total Organic Carbon (TOC)	-	mg/L	1	3.0	3.0	1.6	3.3	2.2
Field Parameters								
Temperature	-	Celsius	-	9.5	9.5	7.3	7.7	10.4
рН	6.5 - 8.5	SU	-	6.85	6.85	6.84	5.99	6.06
Conductivity	-	mS/cm	-	1.05	1.05	0.581	0.96	4.32

Notes:

-

⁽¹⁾ - Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984

⁽²⁾ - Groundwater standards are NYS Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

⁽³⁾ - NP-22A was installed in November 1993, approximately 10 feet from the former location of NP-22

µg/L - Micrograms per liter

mg/L - Milligrams per liter

SU - Standard Unit

mS/cm - Millisiemens per centimeter

U - Not detected at associated value

- Not applicable

GHD | 2019 Periodic Review Report | 007406 (37)

Appendix A 2019 Institutional and Engineering Controls Certification Form

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

11/21/2019

Joseph Branch Project Manager OCC/Glenn Springs Holdings, Inc. 7601 Old Channel Trail Montague, MI 49437

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal Site Name: Durez Div. - Occidental Chemical Corp. Site No.: 932018 Site Address: Walck Road/River Road North Tonawanda, NY 14120

Dear Joseph Branch:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **January 30, 2020**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Professional Engineer (PE). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Brian Sadowski, the Project Manager, at 716-851-7220 or brian.sadowski@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation 270 Michigan Ave Buffalo, NY 14203-2915

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

cc: w/ enclosures

Oar Marina, LLC

ec: w/ enclosures

Brian Sadowski, Project Manager Stanley Radon, Hazardous Waste Remediation Supervisor, Region 9

GHD - Margaret Popek - margaret.popek@ghd.com GHD - John Pentilchuk - jpentilchuk@ghd.com ghd - dennis hoyt - dennis.hoyt@ghd.com

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.

2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.

3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No.	932018	Si	te Details		B	ox 1	
Site	e Name Du	ırez Div Occidenta	l Chemic	al Corp.				
		Walck Road/River Ro	ad Z	Zip Code: 14120				
Co	City/Town:North TonawandaCounty: NiagaraWalck Road: 67.45 acresSite Acreage:79.90072.23River Road: 4.78 acres							
Re	porting Perio	od: December 31, 20	18 to Dec	ember 31, 2019				
						YI	ES	NO
1.	Is the infor	mation above correct	?					X
	If NO, inclu	ide handwritten abov	e or on a s	separate sheet.				
2.		or all of the site propo nendment during this	•		nerged, or underg	one a		X
3.		been any change of ι RR 375-1.11(d))?	se at the	site during this Re	porting Period			X
4.	•	ederal, state, and/or property during this	•		discharge) been is	ssued		X
		wered YES to quest nentation has been						
5.	Is the site	currently undergoing	developm	ent?				X
						В	ox 2	
						YI	ES	NO
δ.	Is the curre Industrial	ent site use consisten	t with the	use(s) listed belov	v?	X		
7.	Are all ICs	/ECs in place and fun	ctioning a	s designed?		X		
	IF TI	HE ANSWER TO EITH DO NOT COMPLETI						
A C	Corrective N	leasures Work Plan r	าust be รเ	ubmitted along wit	th this form to add	dress thes	e iss	ues.
Sig	nature of Ov	vner, Remedial Party o	r Designat	ted Representative		Date		

SITE NO. 932018		Box 3		
Description of Institut Parcel 181.20-2-9	t ional Controls <u>Owner</u> Oar Marina, LLC	Institutional Control		
		Monitoring Plan O&M Plan		
Site Operation, Maintenance and Monitoring (OMM) is conducted by the RP in accordance with the February 1989 Record of Decision and approved work plans. At the Inlet Site, site management includes groundwater quality monitoring, NAPL removal from extraction wells during the off-boating season and maintenance of the cover system.				
Groundwater Quality Monitoring; Durez Third Stipulation and PCJ and associated minor changes to the PCJ (currently minor change number 10, Rev.2, September 1999).				
DNAPL Removal; Inlet Mon 182.06-3-19	itoring Plan, Rust 1995. Occidental Chemical Corporation	Monitoring Plan O&M Plan		
	and Monitoring (OMM) is conducted by the R cision and approved work plans. Occidental Chemical Corporation	P in accordance with the Monitoring Plan O&M Plan		
	and Monitoring (OMM) is conducted by the R cision and approved work plans. Occidental Chemical Corporation	P in accordance with the Monitoring Plan O&M Plan		
Site Operation, Maintenance and Monitoring (OMM) is conducted by the RP in accordance with the February 1989 Record of Decision and approved work plans. 182.07-1-14 Occidental Chemical Corporation				
		Monitoring Plan O&M Plan		

Appendix B, Durez Partial Consent Judgement (PCJ) "Monitoring, Operations, and Maintenance Plan" (1989) Subsequent Minor Modification #10, Rev. 2 "Minor Change to Appendix B" Monitoring, Operations, and Maintenace Plan"(September 1999) (Minor Change No. 10) groundwater monitoring.					
PCJ 1992; amended by Minor Change No. 5 to allow for semi-annual reporting to the NYSDEC on quarterly hydraulic groundwater data.					
Plant Site: OMM includes operation, maintenance and monitoring of the cover system, groundwater collection system, groundwater conveyance system, groundwater treatment system, groundwater monitoring wells, fencing/access points and the panhandle area. 182.07-1-17 National Grid					
	Monitoring Plan O&M Plan				
February 1989 Record of Decision and	toring (OMM) is conducted by the RP in accordance with the approved work plans. al Chemical Corporation Monitoring Plan O&M Plan				
Site Operation, Maintenance and Monitoring (OMM) is conducted by the RP in accordance with the February 1989 Record of Decision and approved work plans.					
	Box 4				
Description of Engineering Con	Box 4				
Description of Engineering Con	Box 4				
Description of Engineering Cor	Box 4				
Description of Engineering Con	Box 4 trols Engineering Control Cover System Groundwater Containment Monitoring Wells Subsurface Barriers				
Description of Engineering Con Parcel 181.20-2-9	Box 4 <u>Engineering Control</u> Cover System Groundwater Containment Monitoring Wells Subsurface Barriers and cover system.				
Description of Engineering Con Parcel 181.20-2-9 Sheet pile wall, NAPL extraction wells a	Box 4 Atrols Engineering Control Cover System Groundwater Containment Monitoring Wells Subsurface Barriers and cover system. Groundwater Treatment System Cover System Groundwater Containment Leachate Collection				
Description of Engineering Con Parcel 181.20-2-9 Sheet pile wall, NAPL extraction wells a 182.06-3-19 At the Plant Site, OMM includes operat	Box 4 Atrols Engineering Control Cover System Groundwater Containment Monitoring Wells Subsurface Barriers and cover system. Groundwater Treatment System Cover System Groundwater Containment Leachate Collection Fencing/Access Control ion, maintenance and monitoring of the cover system, water conveyance system, groundwater treatment system,				
Description of Engineering Con Parcel 181.20-2-9 Sheet pile wall, NAPL extraction wells a 182.06-3-19 At the Plant Site, OMM includes operat groundwater collection system, ground goundwater monitoring wells, fencing/a	Box 4 Atrols Engineering Control Cover System Groundwater Containment Monitoring Wells Subsurface Barriers and cover system. Groundwater Treatment System Cover System Groundwater Containment Leachate Collection Fencing/Access Control ion, maintenance and monitoring of the cover system, water conveyance system, groundwater treatment system,				

Parcel	Engineering Control	
	Groundwater Treatment System	
	Cover System	
	Groundwater Containment	
	Leachate Collection	
	Fencing/Access Control	
At the Plant Site, OMM includes operation	on, maintenance and monitoring of the cover system,	
groundwater collection system, groundw	vater conveyance system, groundwater treatment system,	
goundwater monitoring wells, fencing/ac 182.07-1-14	ccess points and the panhandle area.	
	Point-of-Entry Water Treatment	
	Monitoring Wells	
	Groundwater Treatment System	
	Cover System	
	Groundwater Containment	
	Leachate Collection	
	Fencing/Access Control	
Soil cover system with encompassing g	roundwater interceptor trench and conveyance to an onsite	
treatment plant.		
182.07-1-17		
	Monitoring Wells	
	Groundwater Treatment System	
	Cover System	
	Groundwater Containment	
	Leachate Collection	
	Fencing/Access Control	
	on, maintenance and monitoring of the cover system,	
groundwater collection system, groundwater conveyance system, groundwater treatment system,		
groundwater monitoring wells and fencing/access points. The Right Of Way (ROW) for National Grid is		
on site. Reporting is done by the RP; O	CC/Glenn Springs Holdings, Inc.	
182.321-47		
	Groundwater Treatment System	
	Cover System	
	Groundwater Containment	
	Leachate Collection	
	Fencing/Access Control	
	on, maintenance and monitoring of the cover system,	
groundwater collection system, groundwater conveyance system, groundwater treatment system,		
groundwater monitoring wells, fencing/access points and the panhandle area.		

l

	Box 5					
	Periodic Review Report (PRR) Certification Statements					
	I certify by checking "YES" below that:					
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;					
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted					
	engineering practices; and the information presented is accurate and compete. YES NO					
	\mathbf{X}					
	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institution or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:					
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;					
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;					
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;					
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and					
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.					
	YES NO					
	\mathbf{X}					
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.					
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
	Signature of Owner, Remedial Party or Designated Representative Date					

IC CERTIFICATIONS SITE NO. 932018					
		Box 6			
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. Joseph A. Branch at 7601 Old Channel Trail, Montague, MI 49437					
print name	print business ad	······································			
am certifying as	Owner	(Owner or Remedial Party)			
for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Date Rendering Certification					

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Snyder at 2055 Niagara Falls Blud, Niagara print business address 1 Kichard Ealls, am certifying as a Professional Engineer for the Remedual Parts (Owner or Remedial Party) STATE NEW OF RD EER 252020 Signature of Professional Engineer, for the Owner or Date ROFFES Remedial Party, Rendering Certification PE)

Enclosure 3 Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

- IV. IC/EC Plan Compliance Report (if applicable)
 - A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
 - B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
 - B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.

- C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.
- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.
- VII. Overall PRR Conclusions and Recommendations
 - A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
 - B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
 - C. Future PRR Submittals
 - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
 - 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

Appendix B Monitoring Well Purge Records

Appendix B

North Tonawanda Plant Monitoring Key 2019

Well #	Station #	Blind	MS/MSD	DEC Split	Date
NP-22A NP-23 NP-27 NP-35 NP-44 NP-46 P-32A	NP-22A NP-23 NP-27 NP-35 NP-44 NP-46 P-32A	Х	х		04/22/2019 Dry 04/23/2019 Dry Dry 04/22/2019 04/22/2019

Notes:

DEC	- New York State Department of Environmental Conservation
MS/MSD	- Matrix Spike/Matrix Spike Duplicate Sample
Blind	- Field duplicate (blind) sample
Dry	- No water found in well at time of measurement

Measu Constructed Wel Measured Wel	Well No.: our PID (ppm): rement Point: I Depth (m/ft):		- 27	S	Saturated Screen L Depth to Pump In Well Diamete Well Screen Volu Initial Depth to	take (m/ft) ⁽¹⁾ : er, D (cm/in): ime, V _s (L) ^{\4} ;	0	52	-			
Time &935 0940 0945 0955 0955 1000 1085	Pumping Rate (mL/min) 90 96 84 84	3.69 4.51 5.45 6.58 8.30 9.19	Drawdown from Initial Water Level ⁽³⁾ (m/ft) ccision Required: 1,37 2,19 3,23 4,26 5,98 6,87 7 Ft	Temperature °C $\pm 3\%$ 9.1 8.9 9.6 7.2 7.2 7.3 hall b	Conductivity (mS/cm) $\pm 0.005 \text{ or } 0.01^{(6)}$ 0.683 0.683 0.627 0.627 0.611 0.607 0.595 0.587 0.587 0.587	Turbidity NTU $\pm 10\%$ 137 74.4 61.3 32.8 11.2 9.60 12.6 3	DO (mg/L) ±10% 7,26 6 55 7.82 9.33 3.11 1.87 2.15	pH ±0.1 Units 6 76 6 75 6 85 6 85 6 85 6 85 6 85	ORP (mV) ±10 mV -63.6 -67.3 -63.8 -30.6 -67.0 -76.2 -66.2	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾	
(2) The wellFor Imperiation (3) The draw	p [°] intake will be screen volume erial units, V _s =ח vdown from the	placed at the will be based *(r ²)*L* (2.54) ³ initial water le	on a 1.52 metres (, where r and L an	inf or at a minin 5-foot) screen le e in inches eed 0.1 m (0.3 ft	um of 0.6 m (2 ft) a ngth (L). For metric). The pumping rate	e should not e	iment accumu (r ²)*L in mL, v xceed 600 ml ss purge wate	ilated at the vhere r (r≕D/ ∠/min. er remains vi	sually turbid	i cm. I	nst. Contr L NF08 I GSH06	1334 214

and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be (4)stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm. (5)

GHD Form SP-01 - Revision 0 - July 1, 2015

Purge @ 093Z

Turb GSH 06215

Sand Blin	ple II d Duf	D NP	- 22A- -70-04	લ્વાય 19	Time	- 193		Vonitoring 1	Well Record	for Low-Flow Purging (Form SP-09)
Project Data: Project Name: Ref, No.:		NT A	onnual		Date: Personnel:	4ZZ	119			
Monitoring Well Data: Well No.: Vapour PID (ppm): Measurement Point: Constructed Well Depth (m/ft): Measured Well Depth (m/ft): Depth of Sediment (m/ft):				aturated Screen L Depth to Pump In Well Diamet Well Screen Volu Initial Depth to	take (m/ft) ⁽¹⁾ : er, D (cm/in): ime, V _s (L) ⁽⁴⁾ :		Z.89	•		·
Depth of Sediment (m/it): Pumping Rate (mL/min) 1358 1403 1408 1418 1418 1428 1433	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft) cision Required: 0 - 18 0 - 20 0 - 20 0 - 20	Temperature °C ±3% 9.6 9.4 9.4 9.4 9.2 9.4 9.4 9.3 9.5	Conductivity (mS/cm) $\pm 0.005 \text{ or } 0.01^{(5)}$ 1.78 1.66 1.35 1.20 1.20 1.09 1.09 1.09	Turbidity NTU ±10% 4.69 6.25 2.73 1.46 2.11 0.81 1.98 1.47	DO (mg/L) ±10% 2.45 2.22 1.91 1.83 1.87 1.76 1.66 1.66	pH ±0.1 Units 6 73 6 76 6 78 6 78 6 77 6 71 6 69 6 75 6 85	ORP (mV) ±10 mV -54.1 -59.5 -70.1 -75.4 -79.7 -93.9 -90.7 -90.7	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾

Notes:

The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. (1)(2)

For Imperial units, $V_s = \pi^* (r^2)^* L^* (2.54)^3$, where r and L are in inches

The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min. (3)

Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid (4) and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm. (5)

GHD Form SP-01 - Revision 0 - July 1, 2015

Start Purpe C 1350

Turb GSH 06215 W/L NF08334 YSI GSH 06214 Carpendies-1017

Inst. Control 4'S W/L NF 00334 YSI GSH 06214

Turb GSH 062/5

Project Data:	Project Name: Ref. No.:	Durez S3716	NT A	innual		Date: Personnel:	4/22 D 7	2019 Yran			
Meas Constructed W Measured W	eil Data: Well No.: pour PID (ppm): surement Point: 'eil Depth (m/ft): 'eil Depth (m/ft): Sediment (m/ft):	-	<u>-35</u>	s	aturated Screen L Depth to Pump In Well Diametr Well Screen Volu Initial Depth to	take (m/ft) ⁽¹⁾ : er, D (cm/in): ime, V _s (L) ⁽⁴⁾ :		· 39			,
	Pumping Rate	Depth to Water	Drawdown from Initial Water Level ⁽³⁾	Temperature °C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	рН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾
Time	(mL/min)	(m/ft)	(m/ft) cision Required:	±3 %	±0.005 or 0.01 ⁽⁵⁾	±10 %	±10 %	±0.1 Units	±10 mV		~
1071	2/.	845	1.06	10.3	0 775	9.71	4.15	7.51	-24.5		<u>in 1</u>
1031	36	8.93	154	9.7	0.218	6.37	2.23	6.96	-36-9		
1036	- 57	$\frac{O}{2}$	714	44	0 214	5.27	z.83	7.06	- 42-3		
1041	36	986		10.5	0.215	5.92	3.16	7-14	-41.5		
1046		7.89		_ 10 0	0						
				Fina	W/L=	9.86					
		_ kle		<u> </u>						8	
		4122 19	1510	WIL 9.	86 NO	recou	erv k	vell C	NN	6 Samp	4 Taken_
		- mire r	_1010_	1-1-1	00		1		1	1	
				· · · · · · · · · · · · · · · · · · ·							
						102					
			l								
1			1	I							

Notes:

The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. (1) (2)

For Imperial units, $V_s{=}\pi^*(r^2)^*L^*~(2.54)^3$, where r and L are in inches

The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min. (3)

Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid (4) and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm. (5)

GHD Form SP-01 - Revision 0 - July 1, 2015

Purge @ 1023

yran

Project Data:			P- 32			Date: Personnel:	4/22 D.Ty	/19			
Measured W	Well No.: pour PID (ppm): surement Point: 'ell Depth (m/ft):		52 A	S	aturated Screen L Depth to Pump In Well Diamete Well Screen Volu Initial Depth to	ength (m/ft): take (m/ft) ⁽¹⁾ : er, D (cm/in): ime, V _s (L) ^(*) :					· · · · · · · · · · · · · · · · · · ·
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from initial Water Level ⁽³⁾ (m/ft)	Temperature °C	Conductivity (mS/cm)	Turbidity NTU ±10 %	DO (mg/L)	pH ±0.1 Units	ORP (mV) ±10 mV	Volume Purged, Vp (L)	No. of Well Screen Volume Purged ⁽⁴⁾
1243 1248 1253 1258	. /00	8.11 8.12	0.07		+0.005 or 0.01 ⁽⁵⁾ -1.82 -1.88 -4.87 -4.71 -4.71	±10% 234 177 176 1-19 1.00	826 681 687 5.82 557	642 620 609 612 601	38.7 37.9 34.6 30.6 17.0		
1303	100	812	0.08 0.08	10.5 10.1 10.4	4-54 4.41 4-32	0.64	<u>5.14</u> <u>4.79</u>	6-06	8-9 4-1		
			1,								

Notes:

The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. (1) (2)Inst. Control#'S YSI OSH 06214 W/L NF 08334

For Imperial units, $V_s = \pi^* (r^2)^* L^* (2.54)^3$, where r and L are in inches

- The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (3) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid

(4) and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm. (5)

rart Guze C 1240

) (yuar

Turb cast 06215

GHD Form SP-01 - Revision 0 - July 1, 2015

	Sampl	e II	D NP 5	-46-0	419	. ×		. 1	Vonitoring	Weil Record	for Low-Flow Purgi (Form SP-(
Project Data:	Project Name:	Dire		Annia	3	Date: Personnel:	<u> </u>	2/19	S.		
Measured W	Il Data: Well No.: bour PID (ppm): surement Point: ell Depth (m/ft): ell Depth (m/ft): Sediment (m/ft):	<u> </u>	.46	s	aturated Screen L Depth to Pump In Well Diamete Well Screen Volu Initial Depth to	take (m/ft) ⁽¹⁾ : er, D (cm/in): ime, V _s (L) ^{(4/} :		13	•		14 - Cal
Time	Pumping Rate (mL/miñ)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft) cision Required:	Temperature °C ±3 %	Conductivity (mS/cm) ±0.005 or 0.01 ⁽⁵⁾	Turbidity NTU ±10 %	DO (mg/L) ±10 %	pH ±0.1 Units	ORP (mV) ±10 mV	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾
1144 1154 1154 1159 1204	112 116 120 120	3 27 3 29 3 30 3 31	004 006 007 008	8.0 7.8 7.8 7.8 7.8 7.7	0.95 0.96 0.96 0.96 0.96	5,70 1.99 0.87 1.05 1.56	10.02 8.65 8.26 8.29 8.14	654 628 613 604 599	588 56.4 53.9 49.5		
								1			

Notes:

The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = n^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. (1) (2)

For Imperial units, $V_{s}{=}\pi^{*}(r^{2})^{*}L^{*}\left(2.54\right)^{3}$, where r and L are in inches

The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min. (3)

Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid (4) and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm. (5)

GHD Form SP-01 - Revision 0 - July 1, 2015

Start Purge @ 1139

) upor

Inst. Control #'s it's GSH 06215

YSI GSH 06214

W/L NF 08334

Monitoring Well Record for Low-Flow Purging

(Form SP-09)

Mea onstructed V Measured V	Well Data: Well No.: apour PID (ppm): asurement Point: Vell Depth (m/ft): Vell Depth (m/ft): Sediment (m/ft):		- 44	5 	aturated Screen I Depth to Pump Ir Well Diamet Well Screen Volu Initial Depth to	take (m/ft) ⁽¹⁾ :				No; of Well		
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temperature °C ±3 %	Conductivity (mS/cm) ±0.005 or 0.01 ⁽⁶⁾	Turbidity NTU ±10 %	DO (mg/L) ±10 %	pH ±0.1 Units	ORP (mV) ±10 mV	Volume Purged, Vp (L)	No: of Well Screen Volumes Purged ⁽⁴⁾	
		Prec	ision Required ⁽⁶⁾ :	13 74	20.005 01 0.01							
		CG -	1.1.	ome fo	r read	ngs o	r Sai	mpling				
	* In	sufficie	ni vole	price To	reas.	0		1		12		
		5	B	tom c	f well	11.03						
			17									
										18		
	-									1		
			-			8						
			-			×						
		-			1		ļ				12	
	8					<u> </u>						
		<u> </u>				S	ample Time:	:				
ampte ID:						-						
iotes:						(0.4) - hour o	ou codiment	accumulated	at the well b	ottom.	i.	
1)	The pump Intak	e will be place	d at the well scree	n mid-point or at metres (5-foot) s	a minimum of 0.6 r creen length (L). F	or metric units,	$V_{g}=n^{*}(r^{2})^{*}L$	in mL, where	r (r=D/2) and	l L are In cm.	1 - 1	
2)	22	1	> /2 EAN where r	and L are in Inch	As					In	st. Contro	
3) 4)	The drawdown Purging will con and appears to	from the initial htinue until stat be clearing, o	water level should bilization is achiever r unless stabilization	t not exceed 0.1 r ed or until 20 well on parameters an	n (0,3 ft). The pun I screen volumes he e varying slightly or					turbid KUL	st. Contre NF083	
	stabilizing), No.	of Well Scree	en Volumes Purgeo	d= Vp/Vs.	±0.005 mS/cm or w	here conductiv	ity >1 mS/cm	1 ±0.01 mS/cm	۱.		-	

Monitoring Well Record for Low-Flow Purging (Form SP-09)

				(Form SP-c
ð. 0		24 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		
572				
	Detai	4/22/19		

Nitoring Well D Vapo Measur Structed Well Jeasured Well		NP-			aturated Screen L Depth to Pump In Wall Diamete	itake (m/ft) ^(*) : _		<u> </u>			
Vapo Measur estructed Well leasured Well Depth of Sec Time	Well No.: _ our PID (ppm): _ irement Point: _ i Depth (m/ft): _ i Depth (m/ft): _ odiment (m/ft): _ Pumping			s	Depth to Pump In Wall Diameter	itake (m/ft) ^(*) : _	-			-, -	=
Time	I Depth (m/ft): I Depth (m/ft): I diment (m/ft): Pumping				Mall Screen Volu	ar. D (cm/in):			2		
Depth of Sec Time	odiment (m/ft); _		÷ -		Vedit Goldoni - Old	ıme, V _a (L) ⁽²⁾ : _		.62		- 13	
					Initial Depth to	water (m/it)	Q	2	s T n ²²		No: of Well
		Depth to Water	Drawdown from Initial Water Levei ⁽³⁾	Temperature °C	Conductivity	Turbidity NTU	DO (mg/L)	рН	ORP (mV)	Volume Purged, Vp (L)	Screen Volumes Purged ^[4]
*	(mL/mtn)	(m/ft)	(m/ft) sion Regulred ⁽⁵⁾ :	±3 %	±0.005 or 0.01 ⁽⁶⁾	±10 %	±10 %	±0.1 Units	±10 mV		1
*		Preg		•= <u>E</u>							
*		9 I		~				<u> </u>		<u>8</u>	20142-77
*		-11 21				5	Linc			2	1999 (March 1997)
	Inserfac	ient 1	volume 1	for Kee	dings c	Samp	Ing				
					Klell 895					8	240.00
	-		Botto	m of 1	Klell 895			N			
8						22				339	1
8				10							1
					- 11	8					
		10-10-5									Der se
		8	8 _ L2 >		·					100	
		:0 00 7		. e		E =	<u> </u>	_ <u></u>	<u></u>		
						e	ample Time			The star	
mple ID:						-	ampia mila				1 1
tes:										a file an	
ιες. Υ Υ Έ	The pump intake The well screen For imperial unit	will be place volume will be s. V,=n*(r²)*L	d at the well screen based on a 1.52 * $(2.54)^3$, where r	n mid-point or at metres (5-foot) se and L are in inche	a minimum of 0.6 m creen length (L). Fo es	n (2 ft) above a or metric units,	ny sediment V _s =n*(r ²)*L	: accumulated : . in mL, where i	at the well be r (r=D/2) and	I L are in cm.	at Cent
n se se s	The drawdown fr	om the initial	water level should	not exceed 0.1 m	n (0.3 ft). The pum	ping rate shoul	id not excee	a SUU ML/MIN.	ains visually	turbid	101- 2011
F	Purging will cont and appears to t stabilizing), No.	inue until stat be clearing, or of Well Scree	ollization is achieve unless stabilization n Volumes Purged	ed or until 20 well on parameters are I= Vp/Vs.	es m (0.3 ft). The pum l screen volumes ha e varying slightly ou ±0.005 mS/cm or wi	ive been purge itside of the sta	ibilization of	terta and appe	ar to be	wlL	NF0833
F					In and I Olam a see	bara conductiv	w/21/03/Cb	1. <u>20.0 [[</u> 0/6]]	***		

Dat Jun

Appendix C Quality Assurance/Quality Control Report

May 9, 2019

To:	Clint Babcock	Ref. No.:	007406
	Pm		
From:	Paul McMahon/adh/177	Tel:	716-205-1970
CC:	Joseph Branch, Dennis Hoyt, Darrell Crockett, Paul Fowler, Maggie Popek		
Subject:	Analytical Results and Reduced Validation Annual Groundwater Monitoring Program Former North Tonawanda Plant Site North Tonawanda, New York April 2019		

1. Introduction

The following document details a reduced validation of analytical results for groundwater samples collected in support of the Annual Groundwater Monitoring Program at the former North Tonawanda, New York Plant Site in April 2019. ALS Environmental (ALS) in Rochester, New York analyzed the samples for the following:

Parameter	Methodology
Volatile Organic Compounds (VOCs)	USEPA 624.1.1
Total Recoverable Phenolics	USEPA 420.4 ²
Total Organic Carbon (TOC)	Standard Method 5310C

A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A copy of the chain of custody form is attached.

Standard GHD report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody form, finished report forms, method blank data, recovery data from surrogate spikes, laboratory control samples (LCS), matrix spikes, and field QC samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods and the documents entitled:

¹ 40 CFR Part 136 "Guidelines Establishing Test Procedures for the Analysis of Pollutants", United States Environmental Protection Agency (USEPA).

² "Methods for Chemical Analysis of Water and Wastes", USEPA-600/4-79-220, March 1983 (with all subsequent revisions).

- i) "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review", USEPA 540-R-10-011, January 2010
- ii) "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review", USEPA 540-R-08-01, June 2008

Items i) and ii) will subsequently be referred to as the "Guidelines" in this Memorandum.

2. Sample Holding Time and Preservation

The sample holding time criteria for the analyses are summarized in the analytical methods. The sample chain of custody document and analytical report were used to determine sample holding times. All samples were analyzed within the required holding times.

All samples were properly preserved, delivered on ice, and stored by the laboratory at the required temperature (0-6°C).

3. Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of one per analytical batch. All method blank results were non-detect, demonstrating laboratory contamination was not a factor for this investigation.

4. Surrogate Spike Recoveries - Organic Analyses

In accordance with the method employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for VOC analyses were spiked with the appropriate number of surrogate compounds prior to sample analysis.

Surrogate recoveries were assessed against the laboratory control limits. All surrogate recoveries were within the laboratory acceptance criteria.

5. Laboratory Control Sample Analyses

LCS are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects.

For this study, LCS were analyzed at a minimum frequency of one per analytical batch.

5.1 Organic Analyses

The LCS contained the compounds of interest. All LCS recoveries were within the laboratory control limits, demonstrating acceptable analytical accuracy.

5.2 Inorganic Analyses

The LCS contained all analytes of interest. LCS recoveries were assessed per the "Guidelines". All LCS recoveries were within the control limits, demonstrating acceptable analytical accuracy.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the preparation process, measurement procedures, and accuracy of a particular analysis, samples are spiked with known concentrations of the analytes of concern and analyzed as MS/MSD samples. The relative percent difference (RPD) between the MS and MSD is used to assess analytical precision.

MS/MSD analyses were performed as specified in Table 1.

6.1 Organic Analyses

The MS/MSD sample was spiked with all compounds of interest. All percent recoveries and RPD values were within the laboratory control limits, demonstrating acceptable analytical accuracy and precision.

6.2 Inorganic Analyses

The MS/MSD sample was spiked with the analytes of interest, and the results were evaluated using the "Guidelines". All percent recoveries and RPD values were within the control limits, demonstrating acceptable analytical accuracy and precision.

7. Field QA/QC Samples

The field QA/QC consisted of one trip blank sample and one field duplicate sample set.

7.1 Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, one trip blank was submitted to the laboratory for VOC analysis. All results were non-detect for the compounds of interest.

7.2 Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, one field duplicate sample set was collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with the duplicate sample must be less than 50 percent.

All field duplicate results were within acceptable agreement, demonstrating good sampling and analytical precision.

8. Analyte Reporting

The laboratory reported detected results down to the laboratory's method detection limit (MDL) for each analyte. No positive analyte detections less than the reporting limit (RL) but greater than the MDL were reported. Non-detect results were presented as non-detect at the RL in Table 2.

9. Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable without qualification.

Table 1

Sample Collection and Analysis Summary Annual Groundwater Monitoring Program Former North Tonawanda Plant Site North Tonawanda, New York April 2019

Analysis/Parameters

Sample ID	Location ID	Collection Date	Collection Time	VOCs	Phenols	TOC	Comments
NP-22A-0419	NP-22A	04/22/2019	14:35:00	х	х	Х	
NP-70-0419	NP-22A	04/22/2019	14:35:00	Х	Х	Х	Duplicate of NP-22A-0419
NP-27-0419	NP-27	04/23/2019	10:40:00	Х	Х	Х	
NP-46-0419	NP-46	04/22/2019	12:05:00	Х	Х	Х	
P-32A-0419	P-32A	04/22/2019	13:20:00	Х	Х	Х	MS/MSD
NTTRIP-042219	-	04/22/2019	-	Х			Trip Blank

Notes:

TOC - Total Organic Carbon

VOCs - Volatile Organic Compounds

MS - Matrix Spike

MSD - Matrix Spike Duplicate

- - Not applicable

Table 2

Analytical Results Summary Annual Groundwater Monitoring Program Former North Tonawanda Plant Site North Tonawanda, New York April 2019

Sam	ocation ID: pple Name: mple Date:	NP-22A NP-22A-0419 04/22/2019	NP-22A NP-70-0419 04/22/2019 Duplicate	NP-27 NP-27-0419 04/23/2019	NP-46 NP-46-0419 04/22/2019	P-32A P-32A-0419 04/22/2019
Parameters	Unit					
Volatile Organic Compounds						
1,2,3-Trichlorobenzene	µg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	µg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	µg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorotoluene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	µg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
General Chemistry						
Phenolics (total)	mg/L	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Total organic carbon (TOC)	mg/L	3.0	3.0	1.6	3.3	2.2

Notes:

U - Not detected at the associated reporting limit

	E	VENT	COMP	LET	Έ				C	The Chain-of-Custody is a LEGAL DO	nalytical Requ	est Docum nust be completed acc
ILEN SPRINGS HOLDING		t To: Paul Мсп	ahon	Labe	oratory: /		ab Information		and the second	Event Info		01-1
05 97TH STREET	Сору	To:										
OVE CANAL AGARA FALLS, NEW Y	OPK 44204 Javala	- T				ocation:	1565 JEFFERS 360	SON RD.		SSOW	Ref#:	
none: 716-283-0111	PO:					t, NY 146					······	
x:		t Name: DURE					RADY KALKN		(Samp	ler Name: NTVR	AN	
	GW					ue Date:	TAT: 10)	\	/·`		demonstration and the constration of the constratio
mail: paul.mcmahon@gi	hd.com Projec	t Number: 007	406		QC Requ	irements	-					
Sample Identification	Valid Matrix Code WG Groundwater WB Borehole Wate WS Surface Water SO Soil SE Sediment	r	Date Collected	Time Collected	Phenol/Toc(H2SO4)	VOC 624(none)	Remarks	Samp Temp in C Received Sealed Co Samples I	on ice Y/N poler Y/N			
IP-22A-0419		w	04/22/2019	14:35	1	3						
JP-27-0419		w	04/23/2019	10;40	1	3	·					
P-46-0419		W	04/22/2019	12:05	1	3						
IP-70-0419		w	04/22/2019	14:35	1	3						
ITTRIP-042219		W	04/22/2019	00:00	-	3						
-32A-0419			04/22/2019	13:20	3	9	MS/MSD					
otal Bottles		I		1	7	24	Grand Tota	1:31				
	NO. OF COOLERS RE		Y:				DATE	ПМЕ	RECIEVED BY:		DATE	ттме
ab Courier	1	haven	NAVA	mer			412319	1130	Augo	L.K.	4/24/29	1225
IRBILL#:		1	y L		~~~~		1/24/19	143	- KA	Wil alla	Elor L	a 14:25

.

. . .

1

ļ

t

.

. .

Appendix D Historical Groundwater Chemistry Monitoring Analytical Results

Table D.1

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-22/NP-22A

– (1)	Groundwater											
Parameter ⁽¹⁾	Standard ⁽²⁾	Units	Feb-84	Jun-93	Oct-93	Dec-94	Mar-95	Jun-95	Sep-95	Dec-95	Mar-96	Jun-96
Benzene	1	µg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
Toluene	5	µg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
Monochlorobenzene	5	µg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
2-Chlorotoluene	5	µg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
1,4-Dichlorobenzene	3	µg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
1,2-Dichlorobenzene	3	µg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
1,2,4-Trichlorobenzene	5	µg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
1,2,3-Trichlorobenzene	5	µg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
Total Targeted Organics	NA	µg/L	0	Dry	Dry	0	0	0	0/0	0/0	0/0	0/0
Total Recoverable Phenolics	1	µg/L	1	Dry	Dry	15	13	9	5 U/5 U	5 U/5 U	5 U/5 U	5 U/5 U
TOC	NA	mg/L	4	Dry	Dry	7.4	3.5	4.6 U	6.0/4.6	3.6/3.6	2.7/3.0	2.2/2.0
рН	6.5 - 8.5	S.U.	6.6	Dry	Dry	7.5	6.92	6.63	7.55	7.75	6.69	7.88
Conductivity	NA	mS/cm	1,500	Dry	Dry	758	682	804	944	536	906	568
Temperature	NA	Celsius	3	Dry	Dry	6.4	5.6	20.6	16.2	5.0	4.4	16.1

			Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98	Jun-98	Sep-98	Dec-98
Benzene	1	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
Toluene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
Monochlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
2-Chlorotoluene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
1,4-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
1,2-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
1,2,4-Trichlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
1,2,3-Trichlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
Total Targeted Organics	NA	µg/L	0	0	0	0	0	0	0	Dry	0	Dry
Total Recoverable Phenolics	1	µg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	Dry	5 U	Dry
TOC	NA	mg/L	14	3.7 J	5.3	1.4	3.2	2.7	1.6	Dry	74.8	Dry
pH	6.5 - 8.5	S.U.	6.61	7.48	7.33	7.46	7.32	7.8	7.1	Dry	7.32	Dry
Conductivity	NA	mS/cm	680	890	900	860	1100	950	790	Dry	850	Dry
Temperature	NA	Celsius	15.5	7.9	5.1	14.4	13.8	7.2	5.0	Dry	16.2	Dry

Table D.1

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-22/NP-22A

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	l lucita										
Parameter	Standard	Units	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02	May-03	May-04	Jul-05
Benzene	1	µg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
Toluene	5	µg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
Monochlorobenzene	5	µg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
2-Chlorotoluene	5	µg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
1,4-Dichlorobenzene	3	µg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
1,2-Dichlorobenzene	3	µg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
1,2,4-Trichlorobenzene	5	µg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
1,2,3-Trichlorobenzene	5	µg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
Total Targeted Organics	-	µg/L	0	0	Dry	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	µg/L	6 J	13	Dry	9	5 U	5 U	239	7.66	5 U	29
TOC	-	mg/L	2.6 U	2.78	Dry	2.28	2.9	5.1	4.6	3.8	4.9	3.7
рН	6.5 - 8.5	S.U.	4.68	6.24	Dry	6.4	5.82	6.31	7.46	6.58	6.99	7.08
Conductivity	-	mS/cm	600	800	Dry	8090	765	820	937	561	920	72.5
Temperature	-	Celsius	6.2	11.2	Dry	10	5.5	10.4	8	6.8	10.3	11

			Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12	Apr-13	Apr-14	Apr-15
Benzene	1	µg/L	1.0 U									
Toluene	5	µg/L	1.0 U									
Monochlorobenzene	5	µg/L	1.0 U									
2-Chlorotoluene	5	µg/L	1.0 U	0.32 J	1.0 U							
1,4-Dichlorobenzene	3	µg/L	1.0 U									
1,2-Dichlorobenzene	3	µg/L	1.0 U									
1,2,4-Trichlorobenzene	5	µg/L	1.0 U									
1,2,3-Trichlorobenzene	5	µg/L	1.0 U									
Total Targeted Organics	NA	µg/L	0	0.32	0	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	µg/L	10 U	10 U	10 U	10U	34	12	10 U	0.01	14	10 U
TOC	NA	mg/L	2.9	3.4	2.8	2.02	3.5	2.7	2.8	2.4	2.4	1.6
рН	6.5 - 8.5	S.U.	6.96	6.82	6.78	7.89	8.14	6.95	5.73	7.28	7.28	7.05
Conductivity	NA	mS/cm	712	960	1041	10180	1030	902	944	1.242	1.242	0.78
Temperature	NA	Celsius	15.4	10.3	16.1	9.33	9.98	9.51	9.87	7.84	7.84	9.8

Table D.1

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-22/NP-22A

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units				
			Apr-16	Apr-17	Apr-18	Apr-19
Benzene	1	µg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
Toluene	5	µg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
Monochlorobenzene	5	µg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
2-Chlorotoluene	5	µg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
1,4-Dichlorobenzene	3	µg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
1,2-Dichlorobenzene	3	µg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
1,2,4-Trichlorobenzene	5	µg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
1,2,3-Trichlorobenzene	5	µg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
Total Targeted Organics	NA	µg/L	0	0	0/0	0/0
Total Recoverable Phenolics	1	µg/L	5.0 U	5.0 U	5.0 U/5.0 U	5.0 U/5.0 U
TOC	NA	mg/L	10.5	3.3	2.7/2.6	3.0/3.0
рН	6.5 - 8.5	S.U.	6.98	6.28	6.27	6.85
Conductivity	NA	mS/cm	0.94	0.97	1.19	1.05
Temperature	NA	Celsius	6.3	7.6	3.9	9.5

Notes:

- (1) Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported in Phenols in February 1984
- ⁽²⁾ Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998
 - Interceptor Trench operation began in October 1990; first full month of operation was November 1990; represented by dashed vertical line above - NP-22A was installed in November 1993, approximately 10 feet from the former location of NP-22
- Dry Dry well or insufficient sample for analyses
- J Estimated at associated value
- NA Not analyzed or not available
- S.U. Standard Unit
- TOC Total Organic Carbon
- U Not detected at associated value
- µg/L Micrograms per liter
- mS/cm Millisiemens per centimeter
 - Concentration exceeds New York State water quality standards

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-23 (Near Conrail Tracks)

D (1)	Groundwater											
Parameter ⁽¹⁾	Standard ⁽²⁾	Units	Sum-83	Jan-89	Dec-93	Mar-94	Jun-94	Sep-94	Dec-94	Mar-95	Jun-95	Sep-95
Benzene	1	µg/L	9	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
Toluene	5	µg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
Monochlorobenzene	5	µg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
2-Chlorotoluene	5	µg/L	2	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
1,4-Dichlorobenzene	3	µg/L	U	4	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
1,2-Dichlorobenzene	3	µg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
1,2,4-Trichlorobenzene	5	µg/L	3	1	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
1,2,3-Trichlorobenzene	5	µg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
Total Targeted Organics	-	µg/L	14	5	0	0	0	0	0	0	0	Dry
Total Recoverable Phenolics	1	µg/L	I	NA	5 U	5 U	27	10	2	5 U	5 U	Dry
TOC	-	mg/L	I	NA	3	6.7	3.8	8.5	4.5	2.8	I	Dry
рН	6.5 - 8.5	S.U.	7	6.5	8.25	7.68	7.7	7.45	7.75	7	6.71	Dry
Conductivity	-	mS/cm	610	3100	486	1440	740	870	851	356	430	Dry
Temperature	-	Celsius	20	5.7	7.5	8.8	19.3	12.1	7.8	6	21.3	Dry

			Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98
Benzene	1	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Monochlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Chlorotoluene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Total Targeted Organics	-	µg/L	0	0	0	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	µg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
TOC	-	mg/L	5.2	2.3	2.1	4.6	3.8 J	41	1.1	8.8	3.9	2.0
рН	6.5 - 8.5	S.U.	7.56	6.53	7.57	6.53	7.17	7.82	7.47	7.53	7.11	7.30
Conductivity	-	mS/cm	480	770	388	480	896	425	400	820	600	1055
Temperature	-	Celsius	5.4	3.9	16.7	16.4	7.9	5.0	15.1	16.2	8.8	6.8

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-23 (Near Conrail Tracks)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units										
i arameter	Standard	Units	Jun-98	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02
Benzene	1	µg/L	Dry									
Toluene	5	µg/L	Dry									
Monochlorobenzene	5	µg/L	Dry									
2-Chlorotoluene	5	µg/L	Dry									
1,4-Dichlorobenzene	3	µg/L	Dry									
1,2-Dichlorobenzene	3	µg/L	Dry									
1,2,4-Trichlorobenzene	5	µg/L	Dry									
1,2,3-Trichlorobenzene	5	µg/L	Dry									
Total Targeted Organics	NA	µg/L	Dry									
Total Recoverable Phenolics	1	µg/L	Dry									
TOC	-	mg/L	Dry									
рН	6.5 - 8.5	S.U.	Dry									
Conductivity	NA	mS/cm	Dry									
Temperature	NA	Celsius	Dry									

			May-03	May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12
Benzene	1	µg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
Toluene	5	µg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
Monochlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
2-Chlorotoluene	5	µg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
1,4-Dichlorobenzene	3	µg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
1,2-Dichlorobenzene	3	µg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
1,2,4-Trichlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
1,2,3-Trichlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
Total Targeted Organics	NA	µg/L	Dry	Dry	Dry	Dry	Dry	0	Dry	Dry	Dry	Dry
Total Recoverable Phenolics	1	µg/L	Dry	Dry	Dry	Dry	Dry	10 U	Dry	Dry	Dry	Dry
TOC	NA	mg/L	Dry	Dry	Dry	Dry	Dry	18.6	Dry	Dry	Dry	Dry
рН	6.5 - 8.5	S.U.	Dry	Dry	Dry	Dry	Dry	7.74	Dry	Dry	Dry	Dry
Conductivity	NA	mS/cm	Dry	Dry	Dry	Dry	Dry	443	Dry	Dry	Dry	Dry
Temperature	NA	Celsius	Dry	Dry	Dry	Dry	Dry	20.8	Dry	Dry	Dry	Dry

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-23 (Near Conrail Tracks)

D (1)	Groundwater	11							
Parameter ⁽¹⁾	Standard ⁽²⁾	Units	Apr-13	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19
Benzene	1	µg/L	Dry						
Toluene	5	µg/L	Dry						
Monochlorobenzene	5	µg/L	Dry						
2-Chlorotoluene	5	µg/L	Dry						
1,4-Dichlorobenzene	3	µg/L	Dry						
1,2-Dichlorobenzene	3	µg/L	Dry						
1,2,4-Trichlorobenzene	5	µg/L	Dry						
1,2,3-Trichlorobenzene	5	µg/L	Dry						
Total Targeted Organics	NA	µg/L	Dry						
Total Recoverable Phenolics	1	µg/L	Dry						
TOC	NA	mg/L	Dry						
рН	6.5 - 8.5	S.U.	Dry						
Conductivity	NA	mS/cm	Dry						
Temperature	NA	Celsius	Dry						

Notes:

- (1) Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984
- ⁽²⁾ Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998
 - Interceptor Trench operation began in October 1990; first full month of operation was November 1990
- Dry Dry well or insufficient sample for analyses
- J Estimated at associated value
- I Data unavailable
- NA Not analyzed or not available
- S.U. Standard Unit
- TOC Total Organic Carbon
- U Not detected at associated value
- µg/L Micrograms per liter
- mS/cm Millisiemens per centimeter
- Concentration exceeds New York State water quality standards

Table D.3

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-27 (Wilson and Nash)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units										
i arameter	otandaru	onito	Sum-83	Dec-93	Mar-94	Jun-94	Sep-94	Dec-94	Mar-95	Jun-95	Sep-95	Dec-95
Benzene	1	µg/L	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry	1 U
Toluene	5	µg/L	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry	1 U
Monochlorobenzene	5	µg/L	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry	1 U
2-Chlorotoluene	5	µg/L	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry	1 U
1,4-Dichlorobenzene	3	µg/L	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry	1 U
1,2-Dichlorobenzene	3	µg/L	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry	1 U
1,2,4-Trichlorobenzene	5	µg/L	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry	1 U
1,2,3-Trichlorobenzene	5	µg/L	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry	1 U
Total Targeted Organics	NA	µg/L	0	0	0	0	Dry	0	0	0	Dry	0
Total Recoverable Phenolics	1	µg/L	14 U	3	5 U	5	Dry	6	5 U	5 U	Dry	5 U
TOC	NA	mg/L	4	2.4	11	2.9	Dry	5	1.6	2.6	Dry	3.4
рН	6.5 - 8.5	S.U.	6.8	7.58	7.48	6.96	Dry	7.43	7.46	6.41	Dry	7.52
Conductivity	NA	mS/cm	1,570	805	1890	840	Dry	716	546	631	Dry	555
Temperature	NA	Celsius	15	7.4	8.6	17.5	Dry	7.6	5.7	20.2	Dry	4.1

			Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98	Jun-98
Benzene	1	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry
Toluene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry
Monochlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry
2-Chlorotoluene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry
1,4-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry
1,2-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry
1,2,4-Trichlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry
1,2,3-Trichlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry
Total Targeted Organics	NA	µg/L	0	0	0	0	0	0	0	0	0	Dry
Total Recoverable Phenolics	1	µg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	Dry
TOC	NA	mg/L	1.2	1.1	2.9	4.2 J	3.7	1 U	2.4	3.0	1.3	Dry
рН	6.5 - 8.5	S.U.	6.85	7.37	6.94	7.34	7.42	8.01	7.27	7.13	7.28	Dry
Conductivity	NA	mS/cm	780	600	630	990	920	910	1000	850	820	Dry
Temperature	NA	Celsius	3.9	16.9	17.8	8.7	4.5	16.1	15.4	6.2	5.9	Dry

Table D.3

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-27 (Wilson and Nash)

(4)	Groundwater											
Parameter ⁽¹⁾	Standard ⁽²⁾	Units	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02	May-03
Benzene	1	µg/L	Dry									
Toluene	5	µg/L	Dry									
Monochlorobenzene	5	µg/L	Dry									
2-Chlorotoluene	5	µg/L	Dry									
1,4-Dichlorobenzene	3	µg/L	Dry									
1,2-Dichlorobenzene	3	μg/L	Dry									
1,2,4-Trichlorobenzene	5	µg/L	Dry									
1,2,3-Trichlorobenzene	5	µg/L	Dry									
Total Targeted Organics	NA	μg/L	Dry									
Total Recoverable Phenolics	1	µg/L	Dry									
TOC	NA	mg/L	Dry									
pH	6.5 - 8.5	S.U.	Dry									
Conductivity	NA	mS/cm	Dry									
Temperature	NA	Celsius	Dry									

			May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12	Apr-13
Benzene	1	µg/L	Dry	Dry	Dry	Dry	1.0 U	Dry	1.0 U	Dry	1.0 U	1.0 U
Toluene	5	µg/L	Dry	Dry	Dry	Dry	1.0 U	Dry	1.0 U	Dry	1.0 U	1.0 U
Monochlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	1.0 U	Dry	1.0 U	Dry	1.0 U	1.0 U
2-Chlorotoluene	5	µg/L	Dry	Dry	Dry	Dry	6.0 U	Dry	1.0 U	Dry	1.0 U	1.0 U
1,4-Dichlorobenzene	3	µg/L	Dry	Dry	Dry	Dry	1.0 U	Dry	1.0 U	Dry	1.0 U	1.0 U
1,2-Dichlorobenzene	3	µg/L	Dry	Dry	Dry	Dry	1.0 U	Dry	1.0 U	Dry	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	1.0 U	Dry	1.0 U	Dry	1.1	1.0 U
1,2,3-Trichlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	1.0 U	Dry	1.0 U	Dry	1.0 U	1.0 U
Total Targeted Organics	NA	µg/L	Dry	Dry	Dry	Dry	0	Dry	0	Dry	1.1	0
Total Recoverable Phenolics	1	µg/L	Dry	Dry	Dry	Dry	12 U	Dry	25U	Dry	10 U	0.01
TOC	NA	mg/L	Dry	Dry	Dry	Dry	19.9	Dry	1.5	Dry	1.9	9.4
рН	6.5 - 8.5	S.U.	Dry	Dry	Dry	Dry	6.74	Dry	NA	Dry	7.05	7.85
Conductivity	NA	mS/cm	Dry	Dry	Dry	Dry	930	Dry	NA	Dry	504	0.627
Temperature	NA	Celsius	Dry	Dry	Dry	Dry	19.2	Dry	NA	Dry	11.52	6.9

Table D.3

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-27 (Wilson and Nash)

(1)	Groundwater							
Parameter ⁽¹⁾	Standard ⁽²⁾	Units	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19
Benzene	1	µg/L	1.0 U					
Toluene	5	µg/L	1.0 U					
Monochlorobenzene	5	µg/L	1.0 U					
2-Chlorotoluene	5	µg/L	1.0 U					
1,4-Dichlorobenzene	3	µg/L	1.0 U					
1,2-Dichlorobenzene	3	µg/L	1.0 U					
1,2,4-Trichlorobenzene	5	µg/L	1.0 U					
1,2,3-Trichlorobenzene	5	µg/L	1.0 U					
Total Targeted Organics	NA	µg/L	0	0	0	0	0	0
Total Recoverable Phenolics	1	µg/L	3.1 J	10 U	5.0 U	5.0 U	5.0 U	5.0 U
TOC	NA	mg/L	1.6	1.0	11.3	2.4	2.5	1.6
рН	6.5 - 8.5	S.U.	7.85	7.74	7.62	6.62	7.93	6.84
Conductivity	NA	mS/cm	0.627	0.647	0.556	0.69	0.487	0.581
Temperature	NA	Celsius	6.9	6.9	5.9	6.8	5.3	7.3

Notes:

- (1) Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984
- ⁽²⁾ Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998
- Interceptor Trench operation began in October 1990; first full month of operation was November 1990
- Dry Dry well or insufficient sample for analyses
- J Estimated at associated value
- NA Not analyzed or not available
- S.U. Standard Unit
- TOC Total Organic Carbon
- U Not detected at associated value
- µg/L Micrograms per liter
- mS/cm Millisiemens per centimeter
 - Concentration exceeds New York State water quality standards

Table D.4

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York P-32/P-32A (Walck Road)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units										
Faranieler	Stanuaru	Units	Sum-83	Jan-89	Jun-93	Oct-93	Jun-94	Sep-94	Dec-94	Mar-95	Jun-95	Sep-95
Benzene	1	µg/L	7	1	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U
Toluene	5	µg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U
Monochlorobenzene	5	µg/L	310	25	5	10	1 U	1 U	1 U	5 U	1 U	1 U
2-Chlorotoluene	5	µg/L	2	U	2	1 U	1 U	1 U	1 U	5 U	1 U	1 U
1,4-Dichlorobenzene	3	µg/L	120	7	3	12	1 U	1 U	1 U	5 U	1 U	3 U
1,2-Dichlorobenzene	3	µg/L	82	10	3	3	1 U	1 U	1 U	5 U	1 U	1 U
1,2,4-Trichlorobenzene	5	µg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U
1,2,3-Trichlorobenzene	5	µg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U
Total Targeted Organics	NA	µg/L	521	43	13	25	0	0	0	0	0	0
Total Recoverable Phenolics	1	µg/L	14 U	30	1	1	5	19	16	5 U	5 U	5 U
TOC	NA	mg/L	4	28	1	1	3.8	11	9.3	3.4	4.7	3.4
рН	6.5 - 8.5	S.U.	7.1	6.2	1	1	7.04	7.1	7.48	6.82	6.2	7.29
Conductivity	NA	mS/cm	1,940	100000	1	1	8120	759	6150	3830	951	12740
Temperature	NA	Celsius	20	12	1	1	20.2	6.3	10.3	8.2	18.6	20.2

			Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98
Benzene	1	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Monochlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Chlorotoluene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Total Targeted Organics	NA	µg/L	0	0	0	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	µg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
TOC	NA	mg/L	3.4	5.4	3.4	5.7	5.2	6.2	1.9	2.5	3.9	2.3
рН	6.5 - 8.5	S.U.	7.43	6.54	7.38	6.72	6.84	7.11	7.27	7.04	6.79	7.30
Conductivity	NA	mS/cm	5,310	4910	2460	2810	8120	3000	6200	4700	6200	5200
Temperature	NA	Celsius	6.9	4.4	16.1	16.9	11.3	6.2	15.1	17.7	10.9	7.2

Table D.4

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York P-32/P-32A (Walck Road)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units										
Farameter	Stanuaru	onits	Jun-98	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02
Benzene	1	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Monochlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Chlorotoluene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Total Targeted Organics	NA	µg/L	0	0	0	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	µg/L	5 U	5 U	5 U	5 U	28	5	10	5 U	5 U	185
TOC	NA	mg/L	3.7	76.8	4	3.0 U	3.23	1 U.0	4.39	3	4.2	2.7
рН	6.5 - 8.5	S.U.	7.34	7.18	6.9	6.12	6.8	-	6.86	6.78	6.97	7.65
Conductivity	NA	mS/cm	4,000	4300	4000	3000	3500	3670	3570	3700	2520	3270
Temperature	NA	Celsius	16.7	17.1	14.1	5.5	16.9	20	12.8	6.5	13.5	9.3

			May-03	May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12
Benzene	1	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
Toluene	5	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
Monochlorobenzene	5	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
2-Chlorotoluene	5	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	0.33 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
1,4-Dichlorobenzene	3	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	0.36 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
1,2-Dichlorobenzene	3	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	0.23 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
1,2,4-Trichlorobenzene	5	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
1,2,3-Trichlorobenzene	5	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
Total Targeted Organics	NA	µg/L	0	0	0	0	0.92	0	0	0	0	0/0
Total Recoverable Phenolics	1	µg/L	5 U	5 U	10 U	10 U	10 U	10 U	10 U	26 U	79	10 U/10 U
TOC	NA	mg/L	3.6	4.3	3.3	2.2	3.9	3.1	2.31	2.5	2	2.0/1.9
рН	6.5 - 8.5	S.U.	7.35	7.17	7.28	7.42	6.87	6.82	8.12	NA	7.23	6.96
Conductivity	NA	mS/cm	3570	4290	3110	2270	3960	4180	3210	NA	5440	3790
Temperature	NA	Celsius	8.3	12	17.1	21.5	13.1	19.2	11.16	NA	10.44	11.58

Page 3 of 3

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York P-32/P-32A (Walck Road)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Apr-13	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19
Benzene	1	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U
Toluene	5	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U
Monochlorobenzene	5	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U
2-Chlorotoluene	5	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	3	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U
1,2,3-Trichlorobenzene	5	µg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U
Total Targeted Organics	NA	µg/L	0	0	0	0	0/0	0	0
Total Recoverable Phenolics	1	µg/L	0.01	4.1 J	10 U	3.5 J	5 U/5 U	5.0 U	5.0 U
TOC	NA	mg/L	2.3	2.4	1.6	9.4	2.6/2.6	2.6	2.2
pH	6.5 - 8.5	S.U.	7.42	7.28	7.41	7.05	6.76	5.57	6.06
Conductivity	NA	mS/cm	3	1	2.9	3.18	3.12	4.88	4.32
Temperature	NA	Celsius	9.27	7.84	10.2	7.9	8.3	6.5	10.4

Notes:

- (1) - Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984
- (2) - Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998
 - Interceptor Trench operation began in October 1990; first full month of operation was November 1990
- Dry well or insufficient sample for analyses Dry
- Estimated at associated value J
- NA - Not analyzed or not available
- Standard Unit S.U.
- тос - Total Organic Carbon
- Not detected at associated value U
- µg/L - Micrograms per liter
- mS/cm Millisiemens per centimeter
 - Concentration exceeds New York State water quality standards

Table D.5

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-35 (Harding and Wilson)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units										
Falameter	Stanuaru	Units	Sum-83	Dec-93	Mar-94	Jun-94	Sep-94	Dec-94	Mar-95	Jun-95	Sep-95	Dec-95
Benzene	1	µg/L	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U
Toluene	5	µg/L	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U
Monochlorobenzene	5	µg/L	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U
2-Chlorotoluene	5	µg/L	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	µg/L	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	µg/L	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	µg/L	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	5	µg/L	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	1 U
Total Targeted Organics	NA	µg/L	0	0	0	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	µg/L	14 U	11	5 U	80	14	12	10	5 U	5 U	5 U
TOC	NA	mg/L	4	4	11	5.5	7	10	4.4	11	10.6	8.6
рН	6.5 - 8.5	S.U.	6.9	7.27	8.2	7.08	6.45	7.34	7.02	6.94	7.46	7.42
Conductivity	NA	umhos/cm	930	876	1590	920	740	825	499	694	905	696
Temperature	NA	Celsius	21	8	8.1	17.9	20	6.1	5.9	18.3	21.05	4.9

			Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98	Jun-84
Benzene	1	µg/L	1 U	1 U	1 U/1 U	1 U	1 U	1 U	1 U/1 U	1 U	1 U/1 U	Dry
Toluene	5	µg/L	1 U	1 U	1.9/1.6 J	1 U	1 U	1 U	1 U/1 U	1 U	1 U/1 U	Dry
Monochlorobenzene	5	µg/L	1 U	1 U	1 U/1 U	1 U	1 U	1 U	1 U/1 U	1 U	1 U/1 U	Dry
2-Chlorotoluene	5	µg/L	1 U	1 U	1 U/1 U	1 U	1 U	1 U	1 U/1 U	1 U	1 U/1 U	Dry
1,4-Dichlorobenzene	3	µg/L	1 U	1 U	1 U/1 U	1 U	1 U	1 U	1 U/1 U	1 U	1 U/1 U	Dry
1,2-Dichlorobenzene	3	µg/L	1 U	1 U	1 U/1 U	1 U	1 U	1 U	1 U/1 U	1 U	1 U/1 U	Dry
1,2,4-Trichlorobenzene	5	µg/L	1 U	1 U	1 U/1 U	1 U	1 U	1 U	1 U/1 U	1 U	1 U/1 U	Dry
1,2,3-Trichlorobenzene	5	µg/L	1 U	1 U	1 U/1 U	1 U	1 U	1 U	1 U/1 U	1 U	1 U/1 U	Dry
Total Targeted Organics	NA	µg/L	0	0	1.9/1.6 J	0	0	0	0/0	0	0/0	Dry
Total Recoverable Phenolics	1	µg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U/5 U	5 U	5 U/5 U	Dry
TOC	NA	mg/L	2.8	2.4	4.4	4.2 J	6.2	1.6/1.7	4.0/4.2	4.2	2.5/2.4	Dry
pH	6.5 - 8.5	S.U.	6.77	7.86	6.93	7.71	7.47	7.92	7.22	8.66	7.20	Dry
Conductivity	NA	umhos/cm	790	596	680	1000	1000	900	1100	1000	890	Dry
Temperature	NA	Celsius	3.9	20.5	17.3	7.9	4.7	18.0	16.8	5.3	5.9	Dry

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-35 (Harding and Wilson)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02	May-03
Benzene	1	µg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
Toluene	5	µg/L	Dry	Dry	Dry	Dry	Dry	1.5	1 U	Dry	Dry	Dry
Monochlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	1 Ū	1 Ū	Dry	Dry	Dry
2-Chlorotoluene	5	µg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
1,4-Dichlorobenzene	3	μg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
1,2-Dichlorobenzene	3	µg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
1,2,4-Trichlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
1,2,3-Trichlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
Total Targeted Organics	NA	µg/L	Dry	Dry	Dry	Dry	Dry	1.5	0	Dry	Dry	Dry
Total Recoverable Phenolics	1	µg/L	Dry	Dry	Dry	Dry	Dry	69	5 U	Dry	Dry	Dry
TOC	NA	mg/L	Dry	Dry	Dry	Dry	Dry	3.52	3.1	Dry	Dry	Dry
рН	6.5 - 8.5	S.U.	Dry	Dry	Dry	Dry	Dry	6.68	6.3	Dry	Dry	Dry
Conductivity	NA	umhos/cm	Dry	Dry	Dry	Dry	Dry	6863	564	Dry	Dry	Dry
Temperature	NA	Celsius	Dry	Dry	Dry	Dry	Dry	9.8	6.7	Dry	Dry	Dry
			May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12	Apr-13
Benzene	1	µg/L	Dry									
Toluene	5	µg/L	Dry									
Monochlorobenzene	5	µg/L	Dry									
2-Chlorotoluene	5	µg/L	Dry									
1,4-Dichlorobenzene	3	µg/L	Dry									
1,2-Dichlorobenzene	3	µg/L	Dry									
1,2,4-Trichlorobenzene	5	µg/L	Dry									
1,2,3-Trichlorobenzene	5	µg/L	Dry									
Total Targeted Organics	NA	µg/L	Dry									
Total Recoverable Phenolics	1	µg/L	Dry									
TOC	NA	mg/L	Dry									
рН	6.5 - 8.5	S.U.	Dry									
Conductivity	NA	umhos/cm	Dry									
Temperature	NA	Celsius	Dry									

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-35 (Harding and Wilson)

	Groundwater							
Parameter ⁽¹⁾	Standard ⁽²⁾	Units						
			Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19
Benzene	1	µg/L	Dry	Dry	Dry	Dry	Dry	Dry
Toluene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry
Monochlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry
2-Chlorotoluene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry
1,4-Dichlorobenzene	3	µg/L	Dry	Dry	Dry	Dry	Dry	Dry
1,2-Dichlorobenzene	3	µg/L	Dry	Dry	Dry	Dry	Dry	Dry
1,2,4-Trichlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry
1,2,3-Trichlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry
Total Targeted Organics	NA	µg/L	Dry	Dry	Dry	Dry	Dry	Dry
Total Recoverable Phenolics	1	µg/L	Dry	Dry	Dry	Dry	Dry	Dry
TOC	NA	mg/L	Dry	Dry	Dry	Dry	Dry	Dry
рН	6.5 - 8.5	S.U.	Dry	Dry	Dry	Dry	Dry	Dry
Conductivity	NA	umhos/cm	Dry	Dry	Dry	Dry	Dry	Dry
Temperature	NA	Celsius	Dry	Dry	Dry	Dry	Dry	Dry

Notes:

- ⁽¹⁾ Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984
- ⁽²⁾ Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998
 - Interceptor Trench operation began in October 1990; first full month of operation was November 1990
- Dry Dry well or insufficient sample for analyses
- J Estimated at associated value
- NA Not analyzed or not available
- S.U. Standard Unit
- TOC Total Organic Carbon
- U Not detected at associated value
- µg/L Micrograms per liter
- mS/cm Millisiemens per centimeter
 - Concentration exceeds New York State water quality standards

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-44 (Near Northeast Lateral of Interceptor Trench)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	May-85	Dec-85	Dec-88	Jun-93	Oct-93	Dec-93	Mar-94	Jun-94	Sep-94	Dec-94
Benzene	1	µg/L	700	70	920	1 U	Dry	Dry	Dry	1 U	Dry	1 U
Toluene	5	µg/L	13	2	6	1 U	Dry	Dry	Dry	1 U	Dry	1 U
Monochlorobenzene	5	µg/L	9500	2500	14000	1 U	Dry	Dry	Dry	1 U	Dry	1 U
2-Chlorotoluene	5	µg/L	U	1	3	1 U	Dry	Dry	Dry	1 U	Dry	1 U
1,4-Dichlorobenzene	3	µg/L	2700	2900	2900	1 U	Dry	Dry	Dry	1 U	Dry	1 U
1,2-Dichlorobenzene	3	µg/L	700	990	1100	1 U	Dry	Dry	Dry	1 U	Dry	1 U
1,2,4-Trichlorobenzene	5	µg/L	31	48	39	1 U	Dry	Dry	Dry	1 U	Dry	1 U
1,2,3-Trichlorobenzene	5	µg/L	15	14	2	1 U	Dry	Dry	Dry	1 U	Dry	1 U
Total Targeted Organics	NA	µg/L	13659	6525	18970	0	Dry	Dry	Dry	0	Dry	0
Total Recoverable Phenolics	1	µg/L	1750	4650	600	NA	Dry	Dry	Dry	24	Dry	5
TOC	NA	mg/L	131	33	19	9.4	Dry	Dry	Dry	8.8	Dry	12
рН	6.5 - 8.5	S.U.	7.7	6.8	6.9	7.01	Dry	Dry	Dry	1	Dry	7.15
Conductivity	NA	umhos/cm	140	1430	NA	885	Dry	Dry	Dry	1	Dry	1234
Temperature	NA	Celsius	19	10	NA	15	Dry	Dry	Dry	1	Dry	6.5

			Mar-95	Jun-95	Sep-95	Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97
Benzene	1	µg/L	5 U	1 U	Dry	1 U	1 U	0.22 J	1 U	1 U	1 U	1 U
Toluene	5	µg/L	5 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Monochlorobenzene	5	µg/L	5 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1 U	1.9
2-Chlorotoluene	5	µg/L	5 U	1 U	Dry	1 U	1 U	1.4	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	µg/L	5 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	µg/L	5 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	μg/L	5 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	5	µg/L	5 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Total Targeted Organics	NA	µg/L	0	0	Dry	0	0	1.6 J	0	0	0	0
Total Recoverable Phenolics	1	μg/L	17	11	Dry	5 U	5 U	5 U	5 U	5 U	5 U	5 U
TOC	NA	mg/L	5.8	7.1	Dry	9.1	2.4	2.2	6.2	3.2	6.1	1.3
рН	6.5 - 8.5	S.U.	6.06	6.3	Dry	7.56	7.14	8.01	6.63	7.38	7.12	7.73
Conductivity	NA	umhos/cm	1234	868	Dry	1080	965	832	1020	1200	1000	980
Temperature	NA	Celsius	6.5	20.2	Dry	4.3	3.3	20	16.2	7.2	3.5	19.0

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-44 (Near Northeast Lateral of Interceptor Trench)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Sep-97	Dec-97	Mar-98	Jun-98	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99
Benzene	1	µg/L	Dry	1 U/1 U	1 U	Dry						
Toluene	5	µg/L	Dry	1 U/1 U	1 Ū	Dry	Dry	Dry	Drv	Dry	Dry	Dry
Monochlorobenzene	5	µg/L	Dry	1 U/1 U	1 Ū	Dry						
2-Chlorotoluene	5	μg/L	Dry	1 U/1 U	1 U	Dry						
1,4-Dichlorobenzene	3	µg/L	Dry	1 U/1 U	1 U	Dry						
1,2-Dichlorobenzene	3	µg/L	Dry	1 U/1 U	1 U	Dry						
1,2,4-Trichlorobenzene	5	µg/L	Dry	1 U/1 U	1 U	Dry						
1,2,3-Trichlorobenzene	5	µg/L	Dry	1 U/1 U	1 U	Dry						
Total Targeted Organics	NA	µg/L	Dry	0/0	0	Dry						
Total Recoverable Phenolics	1	µg/L	Dry	5 U/5 U	5 U	Dry						
TOC	NA	mg/L	Dry	3.4/3.6	1.8	Dry						
pH	6.5 - 8.5	S.U.	Dry	7.18	7.10	Dry						
Conductivity	NA	umhos/cm	Dry	1000	1000	Dry						
Temperature	NA	Celsius	Dry	7.0	3.5	Dry						
			Apr-00	May-01	Apr-02	May-03	May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09
Benzene	1	µg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry
Toluene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry
Monochlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	0.26 J	Dry
2-Chlorotoluene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry
4 4 B. 11			_ ´	- ´	_ ´	- ´	- ´	- ´	_ ´	- ´		- ´

Dry

0.26 J

0.14 J

1.0 U

1.0 U

0.66

NA

NA

6.52

443

23.1

Dry

TOC

Conductivity

Temperature

pН

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1.2.4-Trichlorobenzene

1,2,3-Trichlorobenzene

Total Targeted Organics

Total Recoverable Phenolics

3

3

5

5

NA

1

NA

6.5 - 8.5

NA

NA

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

mg/L

S.Ŭ.

umhos/cm

Celsius

Dry

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-44 (Near Northeast Lateral of Interceptor Trench)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	May-10	May-11	Apr-12	Apr-13	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19
Benzene	1	µg/L	Dry									
Toluene	5	µg/L	Dry									
Monochlorobenzene	5	µg/L	Dry									
2-Chlorotoluene	5	µg/L	Dry									
1,4-Dichlorobenzene	3	µg/L	Dry									
1,2-Dichlorobenzene	3	µg/L	Dry									
1,2,4-Trichlorobenzene	5	µg/L	Dry									
1,2,3-Trichlorobenzene	5	µg/L	Dry									
Total Targeted Organics	NA	µg/L	Dry									
Total Recoverable Phenolics	1	µg/L	Dry									
TOC	NA	mg/L	Dry									
pH	6.5 - 8.5	S.U.	Dry									
Conductivity	NA	umhos/cm	Dry									
Temperature	NA	Celsius	Dry									

Notes:

- ⁽¹⁾ Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984
- ⁽²⁾ Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998
 - Interceptor Trench operation began in October 1990; first full month of operation was November 1990
- Dry Dry well or insufficient sample for analyses
- J Estimated at associated value
- NA Not analyzed or not available
- S.U. Standard Unit
- TOC Total Organic Carbon
- U Not detected at associated value
- µg/L Micrograms per liter
- mS/cm Millisiemens per centimeter
 - Concentration exceeds New York State water quality standards

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-46 (Northeast of Panhandle)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units										
			Dec-85	Jan-89	Dec-93	Mar-94	Jun-94	Sep-94	Dec-94	Mar-95	Jun-95	Sep-95
Benzene	1	µg/L	U	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry
Toluene	5	µg/L	10 U	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry
Monochlorobenzene	5	µg/L	U	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry
2-Chlorotoluene	5	µg/L	U	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry
1,4-Dichlorobenzene	3	µg/L	U	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry
1,2-Dichlorobenzene	3	µg/L	U	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry
1,2,4-Trichlorobenzene	5	µg/L	U	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry
1,2,3-Trichlorobenzene	5	µg/L	U	U	1 U	1 U	1 U	Dry	1 U	5 U	1 U	Dry
Total Targeted Organics	NA	µg/L	0	0	0	0	0	Dry	0	0	0	Dry
Total Recoverable Phenolics	1	µg/L	500 U	NA	6	5 U	5	Dry	5	5 U	5 U	Dry
TOC	NA	mg/L	10 U	NA	2.1	7.8	3.1	Dry	11	3.6	3.1	Dry
рН	6.5 - 8.5	S.U.	6	6.8	7.18	7.32	7.27	Dry	7.13	7	6.58	Dry
Conductivity	NA	mS/cm	1,045	11000	912	2030	990	Dry	927	650	810	Dry
Temperature	NA	Celsius	14	NA	8.3	8.1	17.4	Dry	6.9	5	16.9	Dry

			Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98
Benzene	1	µg/L	1 U	1 U	1 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	Dry	1 U	1 U
Toluene	5	µg/L	1 U	1 U	1 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	Dry	1 U	1 U
Monochlorobenzene	5	µg/L	1 U	1 U	1 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	Dry	1 U	1 U
2-Chlorotoluene	5	µg/L	1 U	1 U	1 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	Dry	1 U	1 U
1,4-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	Dry	1 U	1 U
1,2-Dichlorobenzene	3	µg/L	1 U	1 U	1 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	Dry	1 U	1 U
1,2,4-Trichlorobenzene	5	µg/L	1 U	1.3	1 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	Dry	1 U	1 U
1,2,3-Trichlorobenzene	5	µg/L	1 U	1.2	1 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	Dry	1 U	1 U
Total Targeted Organics	NA	µg/L	0	2.5	0	0	0/0	0/0	0/0	Dry	0	0
Total Recoverable Phenolics	1	µg/L	5 U	5 U	5 U	5 U	5 U/5 U	5 U/5 U	5 U/5 U	Dry	5 U	5 U
TOC	NA	mg/L	3.4	1.4	1.7	2.8	3.2 J/3.7 J	5.8 J/3.6 J	1 U	Dry	2.3	1.2
рН	6.5 - 8.5	S.U.	7.71	6.95	7.52	6.28	7.09	7.06	7.00	Dry	7.2	6.85
Conductivity	NA	mS/cm	724	870	786	830	1100	1000	1000	Dry	1000	990
Temperature	NA	Celsius	5.3	3.9	18.9	14.9	7.2	3.7	12.5	Dry	6.3	4.5

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-46 (Northeast of Panhandle)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Jun-98	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02
Benzene	1	µg/L	Dry	1 U	Dry	Dry						
Toluene	5	µg/L	Dry	1 U	Dry	Dry						
Monochlorobenzene 2-Chlorotoluene	5	µg/L	Dry	1 1 U	Dry Dry	Dry						
1.4-Dichlorobenzene	5 3	μg/L μg/L	Dry Dry	1 U	Dry	Dry Dry						
1.2-Dichlorobenzene	3	μg/L	Dry	10	Dry	Dry						
1.2.4-Trichlorobenzene	5	µg/L	Dry	1 U	Dry	Dry						
1,2,3-Trichlorobenzene	5	μg/L	Drv	Dry	Dry	Dry	Dry	Dry	Dry	1 U	Dry	Dry
Total Targeted Organics	NA	µg/L	Dry	1	Dry	Dry						
Total Recoverable Phenolics	1	µg/L	Dry	5 U	Dry	Dry						
TOC	NA	mg/L	Dry	5.8	Dry	Dry						
рН	6.5 - 8.5	S.U.	Dry	5.52	Dry	Dry						
Conductivity	NA	mS/cm	Dry	806	Dry	Dry						
Temperature	NA	Celsius	Dry	5.8	Dry	Dry						
			May-03	May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12
Benzene	1	µg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
Toluene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
Monochlorobenzene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
2-Chlorotoluene	5	µg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
1,4-Dichlorobenzene 1.2-Dichlorobenzene	3 3	µg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U/1.0 U 1.0 U/1.0 U	1.0 U 1.0 U
1,2,4-Trichlorobenzene	3 5	μg/L μg/L	Dry Dry	Dry Dry	Dry Dry	Dry Dry	Dry Dry	Dry Dry	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U/1.0 U	1.0 U
1,2,3-Trichlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
Total Targeted Organics	ŇĂ	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	0	0	0/0	0
Total Recoverable Phenolics	1	µg/L	Dry	Dry	Dry	Dry	Dry	Dry	10 U	26 U	9.4 J/14	10 U
TOC	NA	mg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.67	1.6	1.9/1.8	2.1
рН	6.5 - 8.5	S.U.	Dry	Dry	Dry	Dry	Dry	Dry	7.73	8.73	6.83	6.69
Conductivity	NA	mS/cm	Dry	Dry	Dry	Dry	Dry	Dry	1013	1045	931	960
Temperature	NA	Celsius	Dry	Dry	Dry	Dry	Dry	Dry	11.8	11.49	8.72	10.43

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-46 (Northeast of Panhandle)

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Apr-13	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19
Benzene	1	µg/L	1.0 U						
Toluene	5	µg/L	1.0 U						
Monochlorobenzene	5	µg/L	1.0 U						
2-Chlorotoluene	5	µg/L	1.0 U						
1,4-Dichlorobenzene	3	µg/L	1.0 U						
1,2-Dichlorobenzene	3	µg/L	1.0 U						
1,2,4-Trichlorobenzene	5	µg/L	1.0 U						
1,2,3-Trichlorobenzene	5	µg/L	1.0 U						
Total Targeted Organics	NA	µg/L	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	µg/L	0.01	4.4 J	5.0 U				
TOC	NA	mg/L	2.1	3.2	10.4	10.4	2.3	3.2	3.3
рН	6.5 - 8.5	S.U.	7.24	7.24	6.75	6.75	6.18	7.02	5.99
Conductivity	NA	mS/cm	0.888	0.888	0.87	0.87	0.85	1.00	0.96
Temperature	NA	Celsius	9.1	9.1	6.9	6.9	7.8	5.1	7.7

Notes:

- (1) Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984
- ⁽²⁾ Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998
 - Interceptor Trench operation began in October 1990; first full month of operation was November 1990
- Dry Dry well or insufficient sample for analyses
- J Estimated at associated value
- NA Not analyzed or not available
- S.U. Standard Unit
- TOC Total Organic Carbon
- U Not detected at associated value
- µg/L Micrograms per liter
- mS/cm Millisiemens per centimeter
 - Concentration exceeds New York State water quality standards

Appendix E Landfill Cap, Site Cover, and Fence Inspection and IT System Manhole and NAPL Collection Well Inspection Forms

Glenn Springs Holdings, Inc. A subsidiary of Occidental Petroleum

Durez North Tonawanda Semiannual IT System Inspections

Date: 05/14/2019

Checked By: D. Crockett

		Ма	nhole			NAPL Well		
Station Number	Condition	Visible Chemistry	Sediment	Water Depth	Flow Speed	NAPL	Amount Removed	Date Removed
Main Lift Station	Good	None	None	3'	Slow	None	None	
MH-4+20	Good	None	None	2"	Slow	None	None	
MH-5+54	Good	None	None	3"	None	None	None	
MH-8+13	Good	None	None	3"	None	None	None	
MH-10+75	Good	None	None	3"	Slow	None	None	
MH-12+58	Good	None	None	3"	Slow	None	None	
Lift Station #1	Good	None	None	2.5'	Slow	None	None	
MH-13+99	Good	None	None	3"	Slow	None	None	
MH-17+20	Good	None	None	2"	Slow	None	None	
MH-19+78	Good	None	None	3"	Slow	None	None	
MH-23+55	Good	None	None	3"	Slow	None	None	
MH-26_55	Good	None	None	2"	Slow	None	None	
Lift Station #2	Good	None	None	2.8'	Slow	None	None	
MH-33+35	Good	None	None	3"	Slow	None	None	
MH-37+13	Good	None	None	3"	None	None	None	
MH-40+70	Good	None	None	3"	None	None	None	
MH-43+54	Good	None	Yes	2"	None	None	None	
Lift Station #3	Good	None	None	3.2'	Slow	None	None	
MH-49+48	Good	None	None	3"	Slow	None	None	
MH-53+51	Good	None	None	1"	Slow	None	None	
MH-56+60	Good	None	None	0"	Slow	None	None	
MH-57+97	Good	None	None	0	Slow	None	None	
MH-58+56	Good	None	None	2"	Slow	None	None	
MH-61+20	Good	None	None	2"	Slow	None	None	
MH-64+84	Good	None	None	3"	Slow	None	None	
MH-66+28	Good	None	None	4"	Slow	None	None	
MH-69+97	Good	None	None	2"	Slow	None	None	
MH-71+54	Good	None	None	1"	None	None	None	
MH-72+65	Good	None	None	2"	None	None	None	
MH-72+96	Good	None	None	1"	Slow	None	None	
MH-74+68	Good	None	None	2"	Slow	None	None	
MH-74+90	Good	None	None	3"	Slow	None	None	
MH-77+39	Good	None	None	1"	Slow	None	None	
MH-77+72	Good	None	None	2"	Slow	None	None	
MH-80+95	Good	None	None	2"	Slow	None	None	

Glenn Springs Holdings, Inc. A subsidiary of Occidental Petroleum

Durez North Tonawanda Semiannual IT System Inspections

Date: 09/03/2019

Checked By: D. Crockett

	Manhole						NAPL Well		
Station Number	Condition	Visible Chemistry	Sediment	Water Depth	Flow Speed	NAPL	Amount Removed	Date Removed	
Main Lift Station	Good	None	None	3.5'	Slow	None	None		
MH-4+20	Good	None	None	2"	Slow	None	None		
MH-5+54	Good	None	None	3"	None	None	None		
MH-8+13	Good	None	None	3"	None	None	None		
MH-10+75	Good	None	None	3"	Slow	None	None		
MH-12+58	Good	None	None	3"	Slow	None	None		
Lift Station #1	Good	None	None	3'	Slow	None	None		
MH-13+99	Good	None	None	3"	Slow	None	None		
MH-17+20	Good	None	None	3"	Slow	None	None		
MH-19+78	Good	None	None	2"	Slow	None	None		
MH-23+55	Good	None	None	2"	Slow	None	None		
MH-26_55	Good	None	None	2"	Slow	None	None		
Lift Station #2	Good	None	None	3.0'	Slow	None	None		
MH-33+35	Good	None	None	1"	Slow	None	None		
MH-37+13	Good	None	None	2"	None	None	None		
MH-40+70	Good	None	None	2"	None	None	None		
MH-43+54	Good	None	Yes	2"	None	None	None		
Lift Station #3	Good	None	None	4.0'	Slow	None	None		
MH-49+48	Good	None	None	3"	Slow	None	None		
MH-53+51	Good	None	None	2"	Slow	None	None		
MH-56+60	Good	None	None	3"	Slow	None	None		
MH-57+97	Good	None	None	0	None	None	None		
MH-58+56	Good	None	None	0	None	None	None		
MH-61+20	Good	None	None	0	None	None	None		
MH-64+84	Good	None	None	0	None	None	None		
MH-66+28	Good	None	None	2"	Slow	None	None		
MH-69+97	Good	None	None	2"	Slow	None	None		
MH-71+54	Good	None	None	2"	None	None	None		
MH-72+65	Good	None	None	2"	None	None	None		
MH-72+96	Good	None	None	2"	Slow	None	None		
MH-74+68	Good	None	None	2"	Slow	None	None		
MH-74+90	Good	None	None	1"	Slow	None	None		
MH-77+39	Good	None	None	1"	Slow	None	None		
MH-77+72	Good	None	None	3"	Slow	None	None		
MH-80+95	Good	None	None	3"	Slow	None	None		

Glenn Springs Holdings, Inc.

A subsidiary of Occidental Petroleum

SEMIANNUAL LANDFILL CAP, SITE COVER, AND FENCE INSPECTION

ctor: Darr Ap	.4/2019 ell Crockett o Site	Inspect For - signs of erosion (cap, ditches, swales) - exposure of the HDPE Liner - areas of insufficient grass coverage - signs of dead/dying grass - presence of washouts - settlement causing ponding of water - signs of slope instability - signs of burrowing by animals - presence of rooting trees (cap, ditches, swa	Weather:	60°F Y / N Y / N
Apj ction Item to	olicable o Site	 signs of erosion (cap, ditches, swales) exposure of the HDPE Liner areas of insufficient grass coverage signs of dead/dying grass presence of washouts settlement causing ponding of water signs of slope instability signs of burrowing by animals 		Y / N Y / N Y / N Y / N Y / N
ction Item to	o Site	 signs of erosion (cap, ditches, swales) exposure of the HDPE Liner areas of insufficient grass coverage signs of dead/dying grass presence of washouts settlement causing ponding of water signs of slope instability signs of burrowing by animals 		Y / N Y / N Y / N Y / N Y / N
<u>II Cap</u>	Ν	 exposure of the HDPE Liner areas of insufficient grass coverage signs of dead/dying grass presence of washouts settlement causing ponding of water signs of slope instability signs of burrowing by animals 		Y / N Y / N Y / N Y / N Y / N
		 areas of insufficient grass coverage signs of dead/dying grass presence of washouts settlement causing ponding of water signs of slope instability signs of burrowing by animals 		Y / N Y / N Y / N Y / N
		 signs of dead/dying grass presence of washouts settlement causing ponding of water signs of slope instability signs of burrowing by animals 		Y / N Y / N Y / N
		 presence of washouts settlement causing ponding of water signs of slope instability signs of burrowing by animals 		Y / N Y / N
		 settlement causing ponding of water signs of slope instability signs of burrowing by animals 		Y / N
		signs of slope instabilitysigns of burrowing by animals		
		- signs of burrowing by animals		Y / N
		prosonce of reating troos (cap. ditches, swa		Y / N
		- presence of rooting trees (cap, uttiles, swa	iles)	Y / N
		- signs of poor drainage in ditches/swales	Y / N	
over	Y	- signs of erosion (cover, ditches, swales)		Ν
(Asphalt, Grass, Vegetation)		- areas of insufficient asphalt, grass, vegetation	Ν	
		 signs of dead/dying grass/vegetation 		Ν
		- presence of washouts		Ν
		 settlement causing ponding of water 		Ν
		 signs of slope instability 		Ν
		- signs of burrowing by animals		Ν
		- presence of rooting trees (cover, ditches, sv	wales)	Ν
		- signs of poor drainage in ditches/swales		Ν
eter Fence	Y	- breaches in fence		Ν
		- gates secure		Y
		- locks in place		Y
		- missing or illegible signage		Ν
ents/Remarks	(Note	e: If repair/maintenance is recommended, des	cribe its locatio	n/extent below)
			 presence of washouts settlement causing ponding of water signs of slope instability signs of burrowing by animals presence of rooting trees (cover, ditches, su signs of poor drainage in ditches/swales eter Fence Y breaches in fence gates secure locks in place missing or illegible signage 	 presence of washouts settlement causing ponding of water signs of slope instability signs of burrowing by animals presence of rooting trees (cover, ditches, swales) signs of poor drainage in ditches/swales eter Fence Y breaches in fence gates secure locks in place missing or illegible signage

Glenn Springs Holdings, Inc.

A subsidiary of Occidental Petroleum

SEMIANNUAL LANDFILL CAP, SITE COVER, AND FENCE INSPECTION

Site:	NT Durez Pla	ant				
Date: 09/03/2019 Inspector: Darrell Crockett		Weather: 70°F				
		kett				
Inspection Item	Applicable to Site	Inspect For				
. Landfill Cap	N	- signs of erosion (cap, ditch	ditches, swales) Y / N			
		- exposure of the HDPE Line		Y / N		
		- areas of insufficient grass of	coverage	Y / N		
		 signs of dead/dying grass 		Y / N		
		- presence of washouts		Y / N		
		 settlement causing pondin 	g of water	Y / N		
		- signs of slope instability		Y / N		
		 signs of burrowing by anim 	als	Y / N		
		- presence of rooting trees (cap, ditches, swales)	Y / N		
		- signs of poor drainage in d	itches/swales	Y / N		
. <u>Site Cover</u>	Y	- signs of erosion (cover, dit	ches, swales)	Ν		
(Asphalt, Grass, Vegetation)		- areas of insufficient asphal	t, grass, vegetation coverage	Ν		
		 signs of dead/dying grass/ 	/egetation	Ν		
		- presence of washouts		Ν		
		 settlement causing pondin 	g of water	Ν		
		 signs of slope instability 		Ν		
		 signs of burrowing by anim 	als	Ν		
		- presence of rooting trees (cover, ditches, swales)	Ν		
		- signs of poor drainage in d	itches/swales	Ν		
. <u>Perimeter Fence</u>	Y	- breaches in fence		Ν		
		 gates secure 		Y		
		 locks in place 		Y		
		- missing or illegible signage		Ν		
Comments/Rem	arks	(Note: If repair/maintenance is rec	ommended, describe its locatio	n/extent below)		

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

www.ghd.com