B&B Engineers & Geologists of new york, p.c.

an affiliate of Geosyntec Consultants

2024 Site Management Periodic Review Report – Durez North Tonawanda

NYSDEC Site No. 932018

Durez North Tonawanda Interceptor Trench
700 Walck Road

North Tonawanda, New York

Prepared for

Glenn Springs Holdings, Inc.

Prepared by

B&B Engineers & Geologists of New York, P.C. PO Box 351 Ransomville, NY 14131

Project Number TR1045

January 30, 2025 Revised May 7, 2025

EXECUTIVE SUMMARY

Glenn Springs Holdings, Inc. (GSH), an Occidental Chemical Corporation (OCC) affiliate, assumed operation, maintenance, and monitoring (OM&M) responsibilities for the former Durez North Tonawanda Facility Interceptor Trench (IT) (Site) from OCC effective July 1, 1998. Since that time, pursuant to the individual Site documents and subsequent approved modifications, GSH has conducted routine monitoring and maintenance programs at the Site. On October 1, 2008, GHD Services, Inc. (GHD), formerly Conestoga-Rovers & Associates (CRA), was retained to perform operation, maintenance, monitoring, and reporting activities for the Site under contract to and direct management of GSH. On August 1, 2022, B&B Engineers and Geologists of New York, P.C. (B&B), an affiliate of Geosyntec Consultants, Inc. (Geosyntec), was retained by GSH to perform operation, maintenance, monitoring, and reporting activities for the Site.

Approximately 37.9 million gallons of groundwater was collected from the IT, treated, and discharged in calendar year 2024. Water is discharged to the nearby City of North Tonawanda stormwater sewer under the authority of a New York State Department of Environmental Conservation State Pollutant Discharge Elimination System Permit (SPDES) (Permit No. NY0001198). The volume of water treated and discharged was reported in the monthly SPDES Discharge Monitoring Reports (DMRs) submitted to the New York State Department of Environmental Conservation (NYSDEC). The 2024 semiannual groundwater contours and measured water levels at the piezometer clusters indicate that an overall inward gradient to the IT is being maintained. Therefore, the purpose and primary objective of the IT are being met.

Groundwater samples are collected annually from the Site for chemical analysis. The analytical results from the April 2024 groundwater monitoring event indicate that no volatile organic compounds (VOCs) or total recoverable phenolics were detected at concentrations greater than the laboratory method detection limits (MDLs). These results are consistent with Site historical data.

Per comment No. 1 in the NYSDEC's response letter for the 2022 Periodic Review Report (PRR) for Durez NT/Inlet Site, GSH agreed to pump piezometer T-2A to dry (pump all groundwater and NAPL to the extent possible out of T-2A) to evaluate if the formation still contains mobile non-aqueous phase liquid (NAPL). On September 10, 2024, T-2A was pumped dry and subsequently checked for the presence of NAPL. No NAPL was observed to be present which would indicate there is no mobile NAPL. Additionally, during the semiannual water level rounds, select wells were monitored in the vicinity of T-2A to demonstrate that an inward gradient was present in the area of T-2A. The water level rounds were completed in March and September 2024 and demonstrated that there is an inward gradient in the vicinity of T-2A. This is important since, should there still be mobile NAPL present in the vicinity of T-2A, it will be captured by the IT due to the inward groundwater gradient.

The groundwater monitoring program is conducted to collect the hydraulic and groundwater chemical data necessary to evaluate both the effectiveness of the IT and long-term trends in groundwater chemistry in select monitoring wells. The hydraulic data collected in calendar year

2024 indicates that the IT is functioning effectively, and the chemical groundwater data collected demonstrates that the IT continues to prevent off-Site migration of impacted groundwater.

In addition a to completing the routine operation, maintenance and monitoring for the groundwater collection system and the treatment system, GSH also completed drainage improvements primarily in the area near Harding Avenue, cleared trees to address root infiltration issues in the IT, cleaned and video inspected portions of the IT to remove root infiltration obstructions and assess areas of the IT where historical outward gradient issues have occurred, cleared trees and vegetation in various areas of the site to improve access to wells and resolve intermittent antenna communication issues for the treatment system and repaired the Site access road.

TABLE OF CONTENTS

Exe	cutive	Summary		1
1.	Intro	duction		1
2.	Dure	ez North To	onawanda Facility/IT Site	2
	2.1	Site Mon 2.1.1 2.1.2	PurposeScope	2
	2.2	Hydrauli 2.2.1 2.2.2 2.2.3	c Effectiveness of the IT	4 4
	2.3	Groundw 2.3.1	vater Quality Monitoring Summary of Groundwater Chemistry Results	
3.	Grou	undwater C	Collection System and Panhandle Remediation	8
	3.1	Groundw	vater Collection System	8
	3.2	Panhandl	le Remediation	9
4.	Site	Activities		10
	4.1	IT Maint 4.1.1 4.1.1.1 4.1.1.2	Cleaning and Video Findings	10 10
	4.2	Well Ma	intenance and Replacement	12
	4.3	Drainage 4.3.1	Elmprovement Activities	
	4.4	Process A	Activities	15
	4.5	Non-Pro	cess Activities	16
5.	Con	clusions		17
	5.1	Summary	y	17
6.	Reco	ommendati	ions	19

LIST OF TABLES

Table 2.1	2024 Precipitation Data
Table 2.2	2024 Groundwater Elevations
Table 2.3	2024 T-2A NAPL Presence – Hydraulic Monitoring
Table 2.4	T-2A NAPL Pumping – 2008-2024
Table 2.5	2024 Groundwater Chemistry Monitoring Analytical Results
Table 3.1	Amount of Groundwater Collected, Treated, and Discharged
	LIST OF FIGURES
Figure 1.1	Site Location Map
Figure 1.2	Site Plan
Figure 2.1	Groundwater Contour Map – March 7, 2024
Figure 2.2	Groundwater Contour Map – September 4, 2024
Figure 2.3	Groundwater Elevations near T-2A – March 7, 2024
Figure 2.4	Groundwater Elevations near T-2A – September 4, 2024
Figure 4.1	2024 Drainage Improvement Project – IT Video Inspection and Cleanout Findings
Figure 4.2	2024 Drainage Improvement Project – Tree Removal Areas
Figure 4.3	2024 Drainage Improvement Project – New Bermed Areas
Figure 4.4	2024 Drainage Improvement Project – Storm Sewer and Catchbasin Installation
Figure 4.5	2024 Drainage Improvement Project – Road Improvements and Clearing Activities
	LIST OF APPENDICES
Appendix A	2024 Institutional and Engineering Controls Certification Form
Appendix B	Monitoring Well Purge Records
Appendix C	Quality Assurance/Quality Control Report
Appendix D	Historical Groundwater Chemistry Monitoring Analytical Results
Appendix E	Landfill Cap, Site Cover, and Fence Inspection and IT System Manhole and NAPL Collection Well Inspection Forms
Appendix F	Imported Fill Documentation
Appendix G	Drainage Improvement Photo Log
Appendix H	Waste Manifests

1. INTRODUCTION

Glenn Springs Holdings, Inc. (GSH), an Occidental Chemical Corporation (OCC) affiliate, assumed operation, maintenance, and monitoring (OM&M) responsibilities for the former Durez North Tonawanda Facility Interceptor Trench (IT) (Site) (Figure 1.1) from OCC effective July 1, 1998. On October 1, 2008, GHD Services, Inc. (GHD), formerly Conestoga-Rovers & Associates (CRA), was retained to perform operation, maintenance, monitoring, and reporting activities for the Site under contract to and direct management of GSH. On August 1, 2022, B&B Engineers and Geologists of New York, P.C. (B&B), an affiliate of Geosyntec Consultants, Inc. (Geosyntec), was retained by GSH to perform operation, maintenance, monitoring, and reporting activities for the Site.

This report was prepared on behalf of OCC and covers operation, maintenance, and monitoring activities for calendar year 2024. The completed 2024 NYSDEC Institutional and Engineering Controls Certification Form is included as Appendix A.

This report describes the monitoring and maintenance activities conducted and presents the data collected at the Site between January 1, 2024 and December 31, 2024.

1

2. DUREZ NORTH TONAWANDA FACILITY/IT SITE

Pursuant to Appendix B of the *Durez Partial Consent Judgment* (PCJ), groundwater monitoring at the former OCC Durez Division North Tonawanda Plant is being conducted as part of the Site-wide groundwater remediation program. This monitoring began on October 2, 1989, prior to the installation of a groundwater remediation system, the principal component of which is a perimeter groundwater interceptor trench. This report presents data obtained during the 2024 calendar year.

Sitewide semiannual hydraulic monitoring for the period covered by this annual report was conducted in March and September 2024. The annual groundwater quality monitoring was conducted April 10-11, 2024. All work conducted during 2024 was performed in accordance with the protocols and requirements in Appendix B of the PCJ "Monitoring, Operations, and Maintenance Plan" (1989) and subsequent Minor Modification #10, Rev. 2 "Minor Change to Appendix B "Monitoring, Operations, and Maintenance Plan" (September 1999).

This report summarizes the purpose and scope of the current groundwater monitoring program, discusses the hydraulic effectiveness of the IT, and provides a summary of groundwater chemistry monitoring results. The completed NYSDEC 2024 *Institutional and Engineering Controls Certification Form* is included in Appendix A.

2.1 Site Monitoring

2.1.1 Purpose

The purpose and primary design objectives of the IT are:

- to collect and capture groundwater located inside the IT that could otherwise migrate off the Site, and
- to collect and capture groundwater located outside the Site by creating an inward hydraulic gradient toward the IT (lower groundwater elevation in the trench than in the piezometers outside the trench)

The IT groundwater monitoring program is conducted to collect the hydraulic and groundwater quality data necessary to evaluate the effectiveness of the IT and the long-term trends in groundwater quality in selected monitoring wells.

2.1.2 Scope

The hydraulic monitoring program consists of semiannual measurements of water levels in 48 monitoring wells located on and off the Site and semiannual measurement of water levels in 36 on-Site piezometers. The piezometer arrays consist of three wells (A, B, and C): the first well (A) is located on the outside perimeter of IT; the second well (B) is located in the IT bedding material; and the third well (C) is located in the interior (Plant side) of the IT for a total of twelve, 3-well piezometers arrays. The piezometer arrays are referred to as the "T-Series" piezometers and

have been monitored since their installation in August 1990. The monitoring well and piezometer locations are presented on Figure 1.2.

The groundwater quality monitoring program at the Site consists of annual sampling and chemical analyses of groundwater collected from seven monitoring wells located off and on the Site. The selection and utilization of these wells are consistent with the requirements specified in the PCJ or from approved minor changes to the PCJ. All groundwater samples collected in 2024 were analyzed for the Site-specific list of targeted organic compounds, total recoverable phenolics, and total organic carbon (TOC).

Specific conductance, pH, and temperature were measured in the field during sample collection. The results of the annual monitoring are further discussed in Section 2.3.

2.2 Hydraulic Effectiveness of the IT

Total monthly precipitation in Niagara Falls and Buffalo, New York during 2024 (obtained from the National Oceanic and Atmospheric Administration [NOAA]) is provided in Table 2.1. Monthly precipitation for both areas is provided since the Site is approximately equidistant between both official weather stations. In 2024, 26.60 inches of rain was recorded at the NOAA Niagara Falls station while 36.72 inches rain was recorded at the NOAA Buffalo station. It is reasonable to conclude that an average of the two recorded rainfall totals was received at the Durez NT site (i.e., approximately 31.7 inches).

Groundwater elevation contour maps developed using groundwater elevations measured on March 7 and September 4, 2024 (presented as Figures 2.1 and 2.2, respectively) show the configuration of the water table surface for each monitoring event. Due to the steep hydraulic gradient created by the IT (lower groundwater elevation in the trench than in the piezometers inside and outside the trench), not all of the contour lines immediately adjacent to the IT can be shown on the contour maps. Groundwater elevations for 2024 are presented in Table 2.2. Two additional monitoring wells, NP-19 and NP-27 were hydraulically monitored in addition to the monitoring wells and piezometers in the current hydraulic monitoring program to provide additional hydraulic information in the vicinity of piezometer T-2A. The significance of piezometer T-2A is further discussed in Section 2.2.3.

Groundwater elevations for the T-series piezometers are presented on Figures 2.1 and 2.2 to show the magnitude of the hydraulic gradient adjacent to the IT. The water levels in a number of the piezometers (A, B, and C piezometers, respectively) were dry when measured due to the influence of the trench and limited local recharge. Pumping from the IT is maintained such that the water level is below the top of the glaciolacustrine clay unit, which serves as the lower confining unit for the overburden groundwater at the Site. Maintaining this lowered groundwater elevation causes the IT to act as a continuous sump surrounding the Site.

2.2.1 Spring Hydraulic Monitoring Event

During the March 7, 2024 hydraulic monitoring event (refer to Figure 2.1), an inward gradient was observed at all twelve trench piezometer arrays with the exception of piezometer arrays T-3, T-5, and T-6.

- A review of the elevation data for piezometer array T-3 indicates that the elevation of the IT (T-3B-574.25 feet [ft]) was 0.44 feet higher than the exterior T-3A (573.81 ft) piezometer elevation. T-3 is located along the western edge of the property on a section of the IT that runs north to south between Wilson and Harding Avenue (i.e., between manholes MH17+20.8 and MH19+76.3). Groundwater elevations for nearby wells MW-1 (574.35 ft) and NP-35 (571.63 ft) indicate that the groundwater elevation is variable in this area with a minor gradient towards the IT.
- A review of the elevation data for piezometer array T-5 indicates that the elevation of the IT (T-5B-574.10 ft) was 2.18 ft higher than the exterior T-5A (571.92 ft) piezometer elevation. T-5 is located north of Lift Station 2 (29+85.3) on the northern portion of the IT. The nearest monitoring well to T-5 is NP-22A, which had a groundwater elevation of 573.61 ft which is 1.69 ft higher than the T-5A elevation and therefore would indicate that the groundwater gradient for that area is towards the IT.
- A review of the elevation data for piezometer array T-6 indicates that the elevation of the IT (T-6B-574.08 ft) was 0.07 ft (0.84 inches) higher than the exterior T-6A (574.01 ft) piezometer elevation. T-6 is located north of the T-5 piezometer array on a section of the IT that runs north to south parallel to Farnsworth Avenue. A 0.07 ft gradient is very low and therefore further analysis was not completed. It is speculated that the whatever is the cause of the outward gradient at the T-5 piezometer cluster south of the T-6 cluster is likely effecting water elevations near the T-6 piezometer array also.

None of the 12 piezometer arrays were dry during the March monitoring event.

2.2.2 Fall Hydraulic Monitoring Event

During the September 4, 2024 hydraulic monitoring event (refer to Figure 2.2), an inward gradient was observed at each of the trench piezometer arrays. At 9 of the 12 piezometer arrays (T-2, T-4, T-5, T-6, T-7, T-8, T-9, T-11, and T-13), at least one of the A, B or C piezometers in the array was dry. However, using the elevation of the bottom of the dry well, an inward gradient was still observed at each of these locations. The following discussions provide additional information for each piezometer array that had one or more piezometer that was dry to support an inward gradient towards the IT.

• For the T-2 piezometers, the T-2B (trench) and T-2C (interior) piezometers were dry. When the bottom depth of piezometer T-2B (563.95 ft) is compared to the groundwater elevation in piezometer T-2A (568.04 ft), which is located directly outside of the IT, an inward hydraulic gradient towards the trench was present at this array.

- At the T-5 piezometer locations, the T-5A piezometers was dry. When the groundwater elevation of piezometer T-5B (565.91 ft) (trench) is compared to the bottom depth of piezometer T-5A (570.98 ft), which is located directly outside of the IT, an inward hydraulic gradient towards the trench was present at this array.
- A review of the elevation data for piezometer array T-4 shows that the bottom depth of the IT (T-4B-565.59 ft) was 4.38 feet lower than the exterior T-4A bottom depth of 569.97 ft, which is located directly outside of the IT. Therefore, an inward hydraulic gradient towards the trench was present at this array.
- When the groundwater elevation in piezometer T-6B (565.98 ft) is compared to the bottom depth of piezometer T-6A (569.98 ft), which is located directly outside of the IT, and the groundwater elevation in the nearby monitoring well NP-22A (568.87 ft), which is located outside of the IT and in close proximity to array T-6, an inward hydraulic gradient towards the trench can be assumed to be present at this location.
- Piezometer array T-7 is located on a lateral of the IT that is perpendicular to the IT. As such T-7A and T-7C would both be considered exterior piezometers. Piezometers T-7B and T-7A were both dry during the monitoring event with bottom elevations of 565.81 ft and 569.47 ft, respectively. Piezometer T-7C had water present and a groundwater elevation of 567.15 ft. Based on the bottom elevation of 565.18 ft for the IT (T-7B), an inward gradient can be concluded since the elevation at T-7A is 3.66 ft higher and at T-7C is 1.34 ft higher than the trench.
- A review of the elevation data for piezometer array T-8 indicates that the elevation of the IT (T-8B) is 570.24 ft which is lower than the bottom elevation of piezometer T-8A which was 571.02 ft. This would indicate an inward gradient.
- When the groundwater elevation in piezometer T-9B (568.44 ft) is compared to the bottom elevation of piezometer T-9A (571.00 ft), which is located directly outside of the IT, the T-9B elevation is 2.56 ft lower than the exterior elevation. This would indicate an inward gradient for this location.
- When the bottom depth of piezometer T-11B (566.25 ft) is compared to the groundwater elevation in piezometer T-11A (569.67 ft) an inward hydraulic gradient towards the trench was present at this location.
- Piezometer array T-13 had a dry piezometer for the interior location (T-13C); however, the exterior piezometer elevation (T-13A) was 568.17 ft while the trench (T-13B) groundwater elevation was 562.27 ft. This indicates an inward gradient. The dry interior piezometer is not relevant since the bottom elevation of the piezometer is higher than the water elevation in the trench and monitoring location is interior to the Site. Groundwater interior to the site needs to be either captured by the trench or contained within the Site. In this situation, the groundwater is being captured by the trench since the gradient is towards the trench.

2.2.3 Hydraulic Containment at the T-2 Piezometer Cluster

In December 2008, GSH submitted a letter to the NYSDEC detailing 1) the discovery of NAPL presence in T-2A, and 2) the investigation activities that were conducted to identify the cause of the NAPL presence. Subsequently, GSH and the NYSDEC agreed that GSH would continue to pump the NAPL from the T-2A location and monitor hydraulic conditions at T-2A and surrounding wells to demonstrate a continued inward gradient towards the IT in this area.

Per comment No. 1 of the NYSDEC's response letter for the 2022 Periodic Review Report (PRR) for Durez NT/Inlet Site, GSH agreed to pump piezometer T-2A to dry (pump all groundwater and NAPL to the extent possible out of T-2A) to evaluate if the formation still contains mobile NAPL. Although GSH is only required to check T-2A for the presence of NAPL annually, T-2A was checked for NAPL during both semi-annual hydraulic monitoring events on March 7, 2024, and September 10, 2024. No NAPL was observed during either monitoring event. Table 2.3 presents the groundwater elevations observed during the semiannual (March and September) hydraulic monitoring at T-2A and surrounding monitoring wells. Groundwater elevations in these wells and piezometers from the March 7 and September 4, 2024 monitoring events are shown on Figures 2.3 and 2.4, respectively. As indicated in Section 2.2, an inward gradient into the trench was present at piezometer array T-2 during both semiannual monitoring events. Table 2.4 shows the total amount of NAPL pumped from T-2A and the NAPL thickness from 2008 through 2024.

2.3 Groundwater Quality Monitoring

Groundwater quality monitoring at the Site consists of seven monitoring wells (NP-22A, NP-23, NP-27, P-32A, NP-35, NP-44, and NP-46) sampled annually. The annual groundwater sampling event was conducted in April 10, 2024. Three of the seven monitoring wells (NP-22A, P-32A, and NP-46) produced a sufficient volume of groundwater for sampling during this event. Wells NP-23, NP-27, NP-35, and NP-44 did not yield sufficient groundwater to either purge prior to sampling or sample after purging and, therefore, were considered "dry". Purge records for this event are presented in Appendix B.

Groundwater samples were submitted to the New York State Department of Health (NYSDOH) National Environmental Laboratory Approval Program (NELAP New York ID #10145) certified laboratory ALS Environmental (ALS) located in Rochester, New York for analysis for the following analytes/parameters and associated required method detection and reporting limits:

Table A Analytical Analytes/Parameters

Targeted Organic Compounds	Reporting Limit (RL) (μg/L)	Method Detection Limit (MDL) (μg/L)
Benzene	1.0	0.20
Chlorobenzene	1.0	0.20
Toluene	1.0	0.20
2-Chlorotoluene	1.0	0.20
1,2-Dichlorobenzene	1.0	0.20
1,4-Dichlorobenzene	1.0	0.20
1,2,3-Trichlorobenzene	1.0	0.25
1,2,4-Trichlorobenzene	1.0	0.34
Total Recoverable Phenolics	5.0	2.9
TOC	1,000.0	500

Notes:

μg/L – micrograms per liter

In addition to the above analytes, measurements of pH, temperature, specific conductivity, turbidity, dissolved oxygen (DO), and oxidation/reduction potential (ORP) were conducted and documented in the field by the sampling team. The quality assurance/quality control (QA/QC) review for the sampling event is presented in Appendix C.

2.3.1 Summary of Groundwater Chemistry Results

A summary of the analytical results for the 2024 groundwater quality monitoring event is presented in Table 2.5. Volatile organic compounds (VOCs) and total recoverable phenolics were not detected above the laboratory RLs in the samples collected from the three wells sampled. As indicated in the QA/QC review in Appendix C, the laboratory reported results to the laboratory's MDL for each analyte. These MDLs are shown in Table A above. With the exception of the MDL for total recoverable phenolics, these MDLs are less than or equal to the New York State (NYS) Class GA Groundwater Standards (Class GA Groundwater Standards) set forth in the NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 1998). No detections for total recoverable phenolics were reported. TOC concentrations were detected above the RL, but there is no NYS water quality standard for TOC. Historical groundwater data is presented in Appendix D. A comparison of the April 2024 results to the historical data indicates that the April 2024 sample results are within the historical range for the Site. The IT continues to prevent off-Site migration of Site groundwater as well since no detections were observed in wells outside of the IT.

3. GROUNDWATER COLLECTION SYSTEM AND PANHANDLE REMEDIATION

This section has been prepared to fulfill the requirements for the Groundwater Collection System and Panhandle Remediation Annual Report as set forth in Appendix B of the PCJ. The *Operation and Maintenance (O&M) Manual*, dated July 2019, provides procedures and protocols for the instrumentation, operation, maintenance, and inspection of the system.

3.1 Groundwater Collection System

The groundwater collection system consists of an 8,300-foot long groundwater IT, one lateral trench that extends off the former plant property to the south in the southwest corner of the IT, one lateral trench that extends to the north of the IT on the north portion of the property, three lift stations, and a main collection pump station (Figure 1.2). The IT creates a closed-loop groundwater sink and a groundwater flow divide around the Site between on-site impacted areas and clean off-site areas. Underground piping conveys collected groundwater to a NAPL decanter and then into two aboveground steel storage tanks from which the water is pumped to an on-Site activated carbon treatment system. The collected water is treated by the on-Site process. After treatment with granular activated carbon (GAC), the treated water is discharged under the Site's NYSDEC SPDES permit (No. NY0001198) to the City of North Tonawanda storm sewer system.

Since 2011, all collected groundwater has been recovered through the IT. Approximately 37.9 million gallons of groundwater from the IT were collected, treated, and discharged in 2024 compared to 40.6 million gallons in 2023. Table 3.1 summarizes the volume of water treated and discharged on a per month per year basis. The volume of water treated and discharged was reported to the NYSDEC in the monthly NYSDEC SPDES Discharge Monitoring Reports (DMRs). It is worth noting that no groundwater was treated and discharged in February 2024. The treatment system was shut down from January 29, 2024 to March 3, 2024 due to a pipe break in the main feed piping from the main lift station to the decanter. The damaged piping was disassembled and replaced by Camtech Plumbing and Mechanical of Niagara Falls, New York in February 2024 and treatment resumed in March. At the same time, repair of the backwash piping from the treatment building to the decanter was also completed. The main feed line repairs included the replacement of approximately 85 linear feet of 3-inch steel piping with 3-inch CPVC piping, re-installation of the heat tracing wiring, and installation of new 2-inch thick polyisocyanurate pipe covering with ZeroPerm® vapor barrier. The repair of the backwash piping included the replacement of approximately 160 linear feet of 2-inch steel piping with 2-inch CPVC piping, re-installation of the heat tracing wires, and installation of new 2-inch thick polyisocyanurate pipe covering with ZeroPerm® vapor barrier.

A lateral drain is present and runs from the bedding of the City of North Tonawanda storm sewer located in Walck Road to trench manhole MH-4+20.2. This lateral is designed to drain the sewer bedding into the IT system to capture any chemistry potentially present in the bedding. Semiannual inspections of each of the trench manholes were performed on June 26 and November 12, 2024.

The inspection results are included in Appendix E. In August and September 2024, Kandey Company, Inc. was retained to clean and conduct video inspections of specific sections of the IT. The cleaning activities are further discussed in Section 4.3 as a component of the Site drainage improvements.

Inspection of the treatment system carbon beds and groundwater collection system is conducted on a daily basis. The inspections conducted in 2024 did not identify any significant issues with the treatment and the groundwater collections system except for a minor sensor that needed to be replaced and sections of pipe that needed to be replaced on the backwash and the main feed pipes running from the treatment building to the decanter. The treatment and groundwater collection systems functioned as designed.

3.2 Panhandle Remediation

The inspections required by the panhandle monitoring program were conducted on June 26, 2024, and November 11, 2024. The inspection forms for 2024 are included in Appendix E.

Vegetation is plentiful, native species of wetland/forestland plants are colonizing the area, and there are no obvious symptoms of stress. In addition to the native colonization, native trees and shrubs were planted in the areas surrounding the engineered wetlands and along the access road on the east side of the panhandle area. The ditch culverts are in good condition, and there is good accessibility to monitoring wells.

4. SITE ACTIVITIES

The activities and repairs performed in 2024 are summarized in the sections below. The activities are grouped into four categories: IT Maintenance, Monitoring Well/Piezometer Maintenance, Process, and Non-Process. Process Activities are activities that influenced the treatment system for the Site; Non-Process Activities are activities performed on Site during the year that had no impact on the treatment system for the Site.

4.1 IT Maintenance

The semiannual inspections of the trench manholes, which were performed on June 26, 2024, and November 12, 2024, revealed minor sediment buildup was occurring within the IT. Inspection forms are included in Appendix E. There were some surcharged conditions observed during the June 2024 inspections, however those conditions were not observed during the November 2024 inspection. Root growth obstructions have been a historical occurrence within various sections of the IT resulting in periodic cleaning of the IT to remove root growth. In August and September 2024, Kandey Company, Inc. was retained to operate a high-pressure jetter vac truck to "cut out" the possible root obstructions to the extent possible within specific sections of the IT (Refer to Figure 4.1 for cleaning and video inspection locations and findings). The cleaning activities took place over a period of five days. Once the IT was cleaned, it was videoed to inspect the IT for possible damage from root infiltration, to ensure the cleaning was effective at removing roots and any other debris and to ensure the IT was in good general condition.

4.1.1 Cleaning and Video Findings

4.1.1.1 Cleaning Activities

Prior to cleaning, varying levels of surcharged conditions were observed from Lift Station 2 downstream to manhole MH4 located on the southwest corner of the property. From manhole MH8 downstream to manhole MH4, the IT was surcharged with about one foot of groundwater prior to cleaning. From Lift Station 1 downstream to MH10, the IT was surcharged with about 10 feet to 15 feet of groundwater in each manhole. From Lift Station 2 downstream to Lift Station 1, similar surcharge conditions were observed. Cleaning progressed from the downstream manhole MH4 upstream to Lift Station 2. This section of the IT was cleaned and video inspected in an effort to remove potential root obstructions thereby improving the operation of the IT and to identify potential cause for historical outward gradients at piezometers T-3 and T-4 located downstream of Lift Station 2 and at piezometers T-5 and T-6 upstream of Lift Station 2.

In addition to cleaning IT downstream of Lift Station 2 and 1, the IT was also cleaned from Lift Station 3 downstream to manhole MH40. This section of the IT was cleaned and video inspected in an effort to improve operation of the IT and determine any potential structural issues associated with the IT that may be causing historical outward gradients at the T-8 piezometer array.

4.1.1.2 Video Inspection

In general, all sections of the IT that were video inspected were in good condition with no structural issues and only minor to no visible damage resulting from root infiltration. Any damage that was observed was inconsequential and does not require repairs. It was observed during the inspection that the configuration of the IT is not a flat, straight pipeline, but instead somewhat variable in that it rises and falls and shifts side-to-side between manholes. The rise and fall of the pipe cause sections of the IT to have pockets of standing water and that result in minor surcharged conditions (less than 6-inches of groundwater) observed at a manhole.

The results of the video inspection are summarized as follow:

- The video inspection from MH10 downstream to MH8 and again from MH8 downstream to MH5 indicated only minor root infiltration. From MH5 downstream to MH4, there was no observed root infiltration. As indicated earlier, this section of the IT had minor surcharge conditions. Once the IT was cleaned, the surcharge conditions decreased but did remain to a limited extent due to the pipe rising and falling in this section which creates localized pockets of surcharged groundwater.
- From Lift Station 1 downstream to MH 10, there was substantial signs of root infiltration that were removed during cleaning with no significant damage. In addition to observing root infiltration, pea gravel was observed in the IT piping from Lift Station 1 downstream for about 10 feet. It was concluded that the pea gravel had infiltrated into the IT around the pipe connection coming from the Lift Station where groundwater was observed flowing into the pipe around the connection. The pea gravel was removed to the extent possible during cleaning and a minor amount remained in the pipe; the amount will not impede the ability of the IT to function properly. Once cleaning had been completed in this section, the significant surcharge conditions were eliminated.
- From MH23 downstream to Lift Station 1, substantial root infiltration was observed which
 would explain the significant surcharged conditions in this section of the IT observed prior
 to the cleaning activities. Aside from observing the significant root infiltration, no other
 issues were noted. Once cleaning was complete, the surcharge conditions in the manholes
 were eliminated.
- From Lift Station 2 downstream to MH23, there was minor to moderate root infiltration. No damage to the IT piping was observed. Once the cleaning was complete, the significant surcharge conditions were eliminated.
- Video inspection from Lift Station #3 downstream to MH43 could not be completed to due to an unknown obstruction for the camera. Also, the video camera was under water during the inspection which did not allow for the obstruction to be visually identified. Downstream flow through the manholes was running freely, indicating that groundwater is flowing through the IT despite the obstruction that blocked the camera (Note: the jetter-vac was able to clean this section and nothing was observed to indicate damage to the IT).

4.2 Well Maintenance and Replacement

Well inspections conducted during July 2024 indicated that no repairs were required at the Site.

Routine maintenance performed on other wells included repairing locks, touch-up painting and replacing J-plugs.

4.3 Drainage Improvement Activities

In September and October of 2024, significant drainage improvement activities were performed throughout the Site, primarily in the area near Harding Avenue starting at the section of the IT from manhole MH23 (adjacent to Harding Avenue) downstream to MH17 located on Wilson Avenue. The Harding Avenue drainage improvements activities were completed to address seasonal (late winter/early spring) flooding along Harding Avenue. Appendix G has photos of flooding that occurred in January 2024 along Harding Avenue.

The scope of the work, conducted in coordination with the City of North Tonawanda, included the construction of surface drainage retention berms, removal of several mature trees that were impacting the IT via root infiltration, raising the elevation of the Site access road, and installation of storm sewers and associated catch basins along Harding Avenue for the City of North Tonawanda.

In addition to completing the surface drainage improvements, several areas were cleared of trees and vegetative underbrush, including both cells of the engineered wetland, along the access path leading to well NP-46 on north side of the northern fence line, along the path along the eastern fence line leading to well P-29, in the area around well P-17, the line of sight path from Lift Station #3 southwest towards the retention tanks to resolve intermittent antenna communication issues, and in the area south of Harding Avenue (removed dead Ash trees and other underbrush to facilitate re-grading the area).

Figures 4.2, 4.3, 4.4, and 4.5 show the extent of the scope of work and the location where the work was completed.

4.3.1 Surface Drainage Retention Berms

Extensive tree removal occurred prior to the construction of the drainage retention berms. Figure 4.2 shows the section of the IT in which trees were removed. Heinz Tree and Land Services, LLC of Sanborn, New York completed the tree removal for on-site activities while the City of North Tonawanda Department of Public Works (DPW) completed tree removals in the right-of-way along Harding Avenue. Each tree on-site was cut to grade to the extent practicable. All material that could be mulched (up to 10-inches in diameter) was mulched and stored on site for future use in landscape areas around the treatment building. For the trees along Harding Avenue that the City DPW removed, they also removed the stumps in order to facilitate the later installation of a new storm sewer. Appendix G has photos of the tree removal activities. Once tree removal

was completed in the area along Harding Avenue, the construction of the drainage retention berms commenced.

Four surface drainage retention berms were constructed as a part of the Site improvements. Figure 4.3 shows the location of the berms that were installed. Hannon Land Clearing of Ransomville, New York was retained to remove the fence along Harding Avenue, clear dead Ash trees from the area south of Harding Avenue and cut down mature trees too close to the IT in the same area, construct the berms, hydroseed the berms, and provide asphalt millings to raise the access road.

Berm #1 was installed east of the water treatment building parallel to the southern fence line near wells P-6A and the T-12 piezometer array. The berm was installed to prevent surface runoff from migrating from the interior of the site to Walck Road via a north-south drainage swale. The berm area that was installed was approximately 160 feet long by 30 feet wide by 4 feet in height on the center line of the berm The berm was constructed using imported clay and covered with approximately 6-inches of topsoil from Hannon Land Clearing, Ransomville, New York. Once the berm was constructed, it was hydro-seeded with a contractor mix of fescue, rye, and Kentucky blue grass. Appendix G has photographs of the berm and work activities.

Berm #2 was installed north of Lift Station #2 in a low-lying area along the fence line to eliminate the potential for surface runoff from rain and snowmelt from leaving the site along the fence line. The berm area that was installed was approximately 300 feet long by 20 feet wide by 2 feet in height on the western edge and tapering down to about 8-inches on height on the eastern edge. The berm was constructed using imported clay and covered with approximately 6-inches of topsoil from Hannon Land Clearing, Ransomville, New York. The soils were analyzed by NYSDOH NELAP (NELAP New York ID #10145) certified laboratory ALS Environmental (ALS) located in Rochester, New York. Appendix F contains the lab results and Table F.1, which compares the lab results to the DER-10, Appendix 5 – Allowable Constituent Levels for Imported Fill or Soil for a Commercial or Industrial Use site. The results of the testing for both the clay and the topsoil indicate that it was compliant with Appendix 5 requirements. Once the berm was constructed, it was hydro-seeded with a contractor mix of fescue, rye, and Kentucky blue grass. Appendix G has photographs of the berm and project work activities.

Berm #3 was the largest and ran parallel along the fence line from manhole MH23 (on Harding Avenue) downstream nearly to manhole MH17 (on Wilson Avenue). The total linear distance of the berm was approximately 820 feet. The berm varied in height depending on the surface topography along the fence line from approximately 4 feet thick near MH23 to approximately 2.5 feet thick near MH17. The target elevation of the new berm was 576.5 feet which is the ground surface elevation to the east of manhole MH23. The width of the berm varied from approximately 25 feet to as wide as 45 feet near MH19, however the average width was approximately 30 feet. The berm was constructed to slope over the 30-foot width from the highpoint at the fence line inward to the property where it was blended to match the existing surface topography. The berm slopes sharply downward over a 3-foot width at the fence line to the existing grade outside the property. Once the clay berm had been constructed, it was covered with approximately 6-inches

of topsoil. Once the berm was constructed, it was hydro-seeded with a contractor mix of fescue, rye, and Kentucky blue grass. To facilitate the installation of the berm along Harding Avenue from MH23 to MH19, the fence was removed and recycled and replaced with a new fence at the end of the project. In addition to removing the fence, manholes MH23 and MH19 were also raised since both sit in the high point of the berm. MH23 was raised 3 feet (to a new elevation of 577.44 ft) while MH19 was raised 2.5 feet (new elevation of 577.25). Stimm Associates, Inc, of Buffalo, New York was retained to install the manhole extensions. Once the berm was complete, it provides for an area of approximately 70,700 square feet for the retention of rain and snow melt and surface runoff from the interior of the site. With an average depth of 2.5 feet for the area, this equates to a rough holding capacity of 1.32M gallons. Appendix G has photographs of the berm and work activities.

Berm #4 identified on Figure 4.3 is not a berm so much as an area where a drainage swale was brought to the surrounding existing grade. The drainage swale was filled to eliminate a capture point for surface runoff that could then flow east to west along the ditch to off-Site areas along Wilson Avenue. The swale was filled with clay and then covered with approximately 6-inches of topsoil.

In addition to completing the drainage retention berms, GSH also assisted the City of North Tonawanda with the installation of approximately 630 linear feet of new 8-inch HDPE storm sewer and four 24-inch by 24-inch by 48-inch-high, square catch basins and one flared endpoint along the 630-foot length of storm sewer. Figure 4.4 shows the locations of the catch basins and the storm sewer that were installed in the City of North Tonawanda right-of-way. This work was completed as a component of a larger storm water management effort that the City of North Tonawanda was completing at the eastern end of Harding Avenue to eliminate off-Site surface water drainage onto the Durez NT site and contributing to flooding issues along Harding Avenue.

Stimm Associates, Inc. of Buffalo, New York was retained to install the storm sewer and catch basins. The 8-inch HDPE piping was installed approximately 5 feet below grade in a bed of pea gravel and then covered to within 1 foot of grade with #2 run-of-crusher. The granular materials were supplied by the City of North Tonawanda. The remainder of the excavation was backfilled grade with the excavated soil and topsoil and then hydroseeded. The soil was placed back in the reverse order to how it was removed with deeper materials placed into the excavation first and ending with the upper materials and topsoil placed on top of the excavation. Any excess topsoil material excavated during the storm sewer installation was reused to grade the surface area in the same location. The excess excavated topsoil is estimated to be approximately 30 to 40 yards and consisted of clean, dark brown topsoil and a limited amount of brown sandy, silty clay. No material was disposed or removed from the Site. The City of North Tonawanda will complete the installation in 2025 by installing paving from the street to the catch basin since the catch basins sit approximately 3 feet from the streets edge due to a natural gas utility line running beneath the edge of the street pavement. Appendix G has photos of the storm sewer installation activities.

No further drainage improvements to the aforementioned areas are anticipated for 2025, however, GSH will monitor the improvement areas as well as the remainder of the site.

4.4 Process Activities

Activities that were performed during 2024 related to the Site's collection and treatment process are listed below:

- Performed as needed preventative maintenance on Site equipment throughout the year,
- Relaced approximately 150 feet of 4-inch steel backwash pipe from treatment building to top of decanter with CPVC piping,
- Installed new pipe insulation along backwash pipe from treatment building to decanter,
- Replaced approximately 90 feet of 4-inch steel main raw water feed piping from the treatment building to the top of the decanter with CPVC piping
- Installed new pipe insulation on main raw water feed line
- Installed heat trace "on" indicator lights on the backwash and the main raw water feed piping
- Replaced retention tank water level sensors from pressure transducers to pulse doppler units,
- Repaired a broken pipe in Lift Station #1
- Completed a carbon change on one 20,000-pound main treatment bed and both 2,500-pound sacrificial carbon beds
- Completed maintenance on multi-media filtration units and replaced filter media in the three units
- Shipped for regeneration 25,000-pounds of spent activated carbon (manifest 009193764SKS)
- Shipped spent filter media solids for off-Site hazardous waste disposal (manifest 019275468FLE)
- Shipped miscellaneous piping debris for off-Site hazardous waste disposal (manifest 008991848SKS).

The tracking of hazardous waste is performed by regulated hazardous waste manifests. A summary of the Site's annual hazardous waste generation is reported to the NYSDEC in the *Annual Hazardous Waste Report*. The *Annual Hazardous Waste Report* summarizes the quantities, transporters, and disposal methods.

A total of 30,104.39 pounds of hazardous waste was generated from Site activities in 2024. The waste materials were sent off Site for disposal in accordance with applicable laws and regulations. The waste generated consisted of piping debris, spent filter media, and a spent activated carbon. Copies of the disposal manifests are in Appendix H.

4.5 Non-Process Activities

Activities that were performed on Site during the year that were not part of the collection and/or treatment process are as follows:

- Performed Site beautification and maintenance of shrubs and bushes around the Treatment Process Building and mowed grassed areas,
- Performed annual backflow preventer inspection,
- Removed downed trees and branches,
- Completed drainage improvements along Harding Avenue and other areas of the Site
- Installed storm sewers and catch basins for the City of North Tonawanda as a component of the Site drainage improvements
- Fence replacement along Harding Avenue as a component of the Site drainage improvements

5. CONCLUSIONS

5.1 Summary

The purpose and primary design objective of the IT is to capture and collect groundwater that could otherwise migrate off the Site and to capture and collect groundwater located outside the Site by creating a hydraulic gradient toward the trench. Approximately 37.9 million gallons of groundwater from the IT were collected, treated, and discharged in calendar year 2024. The 2024 groundwater contours and measured water levels at the piezometer clusters indicate that an inward gradient to the IT is being maintained. Therefore, the purpose and primary objective of the IT are being met.

The IT groundwater monitoring program is conducted to collect the hydraulic and groundwater chemical data necessary to evaluate the effectiveness of the IT and long-term trends in groundwater chemistry in selected monitoring wells. The hydraulic data collected in 2024 indicate that the IT is functioning effectively. The chemical groundwater data collected in 2024 demonstrate that the IT continues to intercept potentially impacted groundwater and prevent it from migrating off the Site.

The analytical results from the 2024 groundwater monitoring event showed no detectable concentrations of VOCs or total recoverable phenolics above the laboratory RLs. A comparison of the historical groundwater data and the April 2024 sample results indicate that the April 2024 results are within the historical range for the Site and that the IT continues to prevent off-Site migration of Site groundwater.

In 2024, the NAPL presence at piezometer T-2A was monitored through an annual measurement and semiannual water level rounds at select wells to demonstrate an inward gradient in the vicinity of T-2A (as indicated by a lower groundwater elevation in T-2A than monitoring wells farther outside of the IT besides T-2A). A NAPL presence check was performed on March 7, 2024, and again on September 10, 2024. No NAPL was observed to be present during those events. Therefore, no additional NAPL was removed.

During the March 2024 hydraulic monitoring event, an outward gradient was observed at piezometers T-3, T-5 and T-6. During the September 2024 hydraulic monitoring event, an inward gradient was observed at all piezometer arrays including at piezometer T-8 which has had a history of demonstrating an outward gradient. During both events, the T-8 piezometer array demonstrated a marginal inward gradient. As such GSH recommends continuing to monitor the T-8 piezometer array semiannually as required. GSH cleaned the IT and removed a large number of trees growing above the IT in 2024 to ensure inward gradients were observed year-round for the IT as well as to reduce the potential of the IT becoming obstructed with root infiltration and the need for future cleaning.

In addition to completing the cleaning and inspection of the IT, GSH completed surface drainage improvement activities near the Harding Avenue area to mitigate to the extent possible potential for surface runoff into the drainage features along Harding Avenue. Additional minor drainage

B&B Engineers & Geologists of new york, p.c.

an affiliate of Geosyntec Consultants

and grading improvements were completed in other areas of the Site to ensure that surface runoff remains on Site and infiltrates into the ground for capture by the IT.

In 2025, GSH will continue to monitor the IT and treatment systems in accordance with NYSDEC approved site documents and permits. GSH will also continue to monitor site drainage conditions and fence lines for.

6. **RECOMMENDATIONS**

Based on the performance of the system and historical data trends, GSH has no additional recommendations for program changes at this time. GSH will continue to monitor and evaluate the IT and Durez NT treatment systems for Site improvements associated with the operation, maintenance, and monitoring activities and make recommendations to the NYSDEC as appropriate.

Tables

2024 Precipitation Data Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

Month	Niagara Falls (Inches of Water)	Buffalo (Inches of Water)
January	2.18	5.67
February	0.30	1.04
March	0.67	2.12
April	2.83	4.58
May	1.63	2.61
June	4.00	4.78
July	3.75	2.87
August	2.56	2.38
September	2.11	2.99
October	1.76	1.94
November	2.48	2.19
December	2.33	3.55
Total	26.60	36.72

Notes:

Data shown are for Niagara Falls and Buffalo, New York, obtained from the National Oceanic & Atmospheric Administration

TR1045-Rpt 18-2024 PRR TBL Page 1 of 1

2024 Groundwater Elevations Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

	Reference	Bottom of			
Well ID	Elevation	Well Elevation	March 7, 2024	September 4, 2024	
	(ft. AMSL)	(ft. AMSL)		.,	
MW-1	574.52	565.29	574.35	569.00	
MW-3	577.01	564.77	573.41	568.83	
MW-4	576.40	564.18	573.64	569.15	
NP-10	579.79	567.99	575.16	572.06	
NP-13	576.69	567.72	574.22	568.29	
NP-15	578.91	568.28	575.99	571.01	
NP-16	578.35	570.91	576.05	Dry, <570.91	
NP-19	576.66	568.86	571.66	Dry, <568.786	
NP-2	577.37	567.64	Dry, <569.14	572.75	
NP-20	577.62	569.09	569.14	Dry, <569.136	
NP-21	576.90	568.62	573.35	572.38	
NP-22A	577.63	565.69	573.61	568.87	
NP-23	577.92	569.03	569.42	569.30	
NP-24	578.97	569.14	574.56	571.52	
NP-25	578.33	568.35	573.48	573.75	
NP-26	577.71	571.13	574.55	572.87	
NP-27	577.22	567.37	571.10	567.33	
NP-32	577.25	571.45	574.62	Dry, <571.37	
NP-35	577.42	567.50	571.63	569.52	
NP-37	577.45	571.10	571.25	571.24	
NP-38	578.09	571.21	574.67	Dry, <571.16	
NP-4	577.16	567.81	576.83	576.74	
NP-41	577.65	570.97	574.04	Dry, <570.86	
NP-42	576.58	570.15	570.70	570.69	
NP-43	577.08	571.12	573.71	Dry, <570.11	
NP-44	576.63	570.31	566.33	565.83	
NP-45	576.33	572.66	567.89	567.11	
NP-46	576.87	567.71	571.93	567.81	
NP-51	577.36	568.38	572.69	572.65	
NP-6	575.21	568.87	572.09	571.29	
NP-8	577.20	568.37	574.28	570.92	
P-1	578.88	571.27	574.31	573.83	
P-11	580.14	569.95	575.57	573.87	
P-13	581.43	568.54	576.14	574.44	
P-16	578.32	570.99	574.98	575.00	
P-17	577.46	572.00	574.71	575.22	
P-1-96	574.93	567.85	571.15	568.02	
P-19A	580.01	567.83	573.91	571.52	
P-23	578.83	571.70	573.91	Dry, <571.68	
P-27			574.22		
P-27 P-29	580.25 578.74	569.50 570.98	575.86	572.25 572.82	
P-29 P-2-96	574.57	568.49	571.55		
P-2-96 P-30	579.28	571.28	571.55	Dry, <568.56 572.67	
P-30 P-31	578.15	569.10	572.00	569.51	
P-31 P-32A	577.67	565.70	569.55	568.84	
P-32A P-34	577.67		572.82	568.55	
P-34 P-3-96		566.39			
	574.42	567.76	568.95	Dry, <567.87	
P-6A P-7	578.93	566.13	572.94	570.96	
	577.46	567.91	573.75	572.17	
SP-3	575.30	565.77	569.73	568.78	

TR1045-Rpt 18-2024 PRR TBL Page 1 of 2

2024 Groundwater Elevations Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

	Reference	Bottom of		
Well ID	Elevation	Well Elevation	March 7, 2024	September 4, 2024
	(ft. AMSL)	(ft. AMSL)	, ,	
T-10A	576.64	569.73	571.69	570.12
T-10B	577.29	567.69	569.54	567.68
T-10C	577.00	569.71	570.43	570.04
T-11A	577.10	569.56	569.99	569.67
T-11B	577.27	565.89	569.29	Dry, <566.246
T-11C	577.69	570.54	571.01	Dry, <570.51
T-12A	574.64	567.41	568.54	568.42
T-12B	574.92	563.81	565.97	564.07
T-12C	575.45	568.43	571.13	569.90
T-13A	575.09	568.18	568.46	568.17
T-13B	575.07	561.78	565.83	562.27
T-13C	574.98	569.39	570.29	Dry, <569.616
T-2A	577.86	565.94	571.21	568.04
T-2B	578.73	563.90	566.13	Dry, <563.951
T-2C	578.81	570.28	570.69	Dry, <570.226
T-3A	577.71	569.02	573.81	568.98
T-3B	577.92	564.26	574.25	566.74
T-3C	578.00	565.83	573.93	567.89
T-4A	579.68	569.95	574.17	Dry, <569.966
T-4B	579.72	565.62	573.82	Dry, <565.586
T-4C	580.17	568.21	574.22	Dry, <570.646
T-5A	579.40	570.75	571.92	Dry, <570.98
T-5B	578.63	564.14	574.10	565.91
T-5C	575.74	572.41	574.87	572.81
T-6A	578.98	569.94	574.01	Dry, <569.98
T-6B	579.22	565.18	574.08	565.98
T-6C	580.41	568.62	575.19	569.28
T-7A	578.77	571.52	574.09	Dry, <569.47
T-7B	576.07	570.13	571.94	Dry, <565.81
T-7C	576.72	571.33	572.33	567.15
T-8A	575.87	571.11	574.23	Dry, <571.02
T-8B	575.97	565.99	574.16	570.24
T-8C	578.82	572.78	573.70	569.22
T-9A	579.12	571.04	574.07	Dry, <571
T-9B	575.91	568.43	571.26	568.44
T-9C	578.24	571.79	575.22	Dry, <571.81

Notes:

ft. AMSL - Feet above mean sea level

Dry - No water found in well at time of measurement

NM - Not measured

TR1045-Rpt 18-2024 PRR TBL Page 2 of 2

2024 T-2A NAPL Presence - Hydraulic Monitoring Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

Well ID	Groundwa	er Elevations		
Well ID	March 7, 2024	September 4, 2024		
NP-13	574.22	568.29		
NP-19	571.66	Dry, <568.786		
NP-20	569.14	Dry, <569.136		
NP-27	571.10	567.33		
NP-35	571.63	569.52		
NP-4	576.83	576.74		
P-1	574.31	573.83		
P-1-96	571.15	568.02		
P-2-96	571.55	Dry, <568.56		
P-3-96	568.95	Dry, <567.87		
T-12A	568.54	568.42		
T-12B	565.97	564.07		
T-12C	571.13	569.90		
T-13A	568.46	568.17		
T-13B	565.83	562.27		
T-13C	570.29	Dry, <569.616		
T-2A	571.21	568.04		
T-2B	566.13	Dry, <563.951		
T-2C	570.69	Dry, <570.226		
T-3A	573.81	568.98		
T-3B	574.25	566.74		
T-3C	573.93	567.89		

Notes:

Elevations shown are in feet above mean sea level Dry - No water found in well at time of measurement NAPL - Non-Aqueous Phase Liquid NM - Not measured

TR1045-Rpt 18-2024 PRR TBL Page 1 of 1

T-2A NAPL Pumping - 2008-2024 Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

Date	NAPL Extracted	NAPL Thickness
Date	(ounces)	(inches)
10/29/2008	32	NM
10/30/2008	8	NM
10/31/2008	8	NM
11/3/2008	8	NM
11/11/2008	8	NM
11/18/2008	6	3
12/3/2008	6	3
12/30/2008	6	3
03/31/2009	6	3
4/14/2009	6	3
04/28/2009	6	3
05/14/2009	5	3
05/28/2009	3	2
06/10/2009	3	2
06/16/2009	3	2
06/24/2009	3	3
07/07/2009	3	3
07/15/2009	3	3
07/31/2009	1 1	1 1
08/14/2009	1 1	1
08/31/2009	 	1 1
09/08/2009	1 1	1 1
09/24/2009	 	1
10/8/2009	1 1	1
10/22/2009	 	1
11/5/2009	1 1	1 1
11/18/2009	1 1	1
11/25/2009	1 1	1
12/9/2009	1 1	1
12/23/2009	1 1	1
04/06/2010	1	1
04/19/2010	1	1
05/03/2010	1	1
05/19/2010	<u>† </u>	1
06/02/2010	 	1
06/16/2010	 	1
06/30/2010	 	1
07/13/2010	1 1	1
03/28/2011	1 1	1
10/4/2011	0.2	0.2
03/23/2012	2	0.04
06/11/2012	2	0.04
08/14/2012	2	0.02
11/06/2012	8	0.02
02/06/2013	0	1.2
	0	0.2
05/03/2013	0	0.2
08/01/2013	0	U.3 Trace
11/06/2013	0	0.8
02/24/2014		1
05/23/2014	0	0.8

TR1045-Rpt 18-2024 PRR TBL Page 1 of 2

T-2A NAPL Pumping - 2008-2024 Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

- .	NAPL Extracted	NAPL Thickness
Date	(ounces)	(inches)
08/08/2014	0	27.0*
11/19/2014	0	0.5
02/19/2015	0	0.1
04/08/2015	0	0.17
09/02/2015	0	0.17
11/19/2015	0	0.36
02/04/2016	0	0.15
05/04/2016	0	0.11
08/12/2016	0	0.11
11/30/2016	0	Trace
02/10/2017	0	0.03
05/26/2017	0	0.09
08/02/2017	0	Trace
12/07/2017	0	Trace
11/21/2018	0	Trace
11/12/2019	0	0.24
08/05/2020	0	0.48
08/25/2021	0	Trace
05/21/2022	0	Trace
04/19/2023	0.1	Trace
04/26/2023	0	Trace
09/14/2023	0	None
03/07/2024	0	None
09/10/2024	0	None

Total NAPL Removed: 158.3 ounces

Notes:

NAPL - Non-Aqueous Phase Liquid

 * - NAPL thickness represents an outlier reading with possible measurement ε NM - Not measured

TR1045-Rpt 18-2024 PRR TBL Page 2 of 2

2024 Groundwater Monitoring Analytical Results Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

Sample Location			mple Location:	NP-22A ⁽³⁾	NP-22A ⁽³⁾	NP-46	P-32A
			Sample ID:	NP-22A-0424	NP-70-0424	NP-46-0424	P-32A-0424
			Sample Date:	4/10/2024	4/10/2024	4/10/2024	4/10/2024
					Duplicate		
	Groundwater		Reporting				
Parameter (1)	Standard ⁽²⁾	Units	Limit				
Volatile Organic Compounds							
1,2,3-Trichlorobenzene	5	μg/L	1.0	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	μg/L	1.0	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	3	μg/L	1.0	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3	μg/L	1.0	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorotoluene	5	μg/L	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	1	μg/L	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5	μg/L	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5	μg/L	1.0	1.0 U	1.0 U	1.0 U	1.0 U
General Chemistry							
Phenolics (total)	0.001	mg/L	0.0050	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Total organic carbon (TOC)	-	mg/L	1.0	4.5	4.5	2.0	1.9
,							
Field Parameters							
pH, field	6.5-8.5	s.u.	-	6.70	6.70	6.76	7.16
Temperature, field	-	deg C (deg F)	-	10.77 (51.39)	10.77 (51.39)	13.09 (55.56)	15.18 (59.32)
Conductivity, field	-	mS/cm	-	5.62	5.62	0.890	3.26
Turbidity, field	-	NTU	-	3.57	3.57	4.55	3.14
Dissolved oxygen (DO), field	-	mg/L	-	0.89	0.89	5.18	3.45
Oxidation/reduction potential (ORP),	-	mV	-	-8	-8	212	176

Notes:

- (1) Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgement; except analyses for
- (2) Total Recoverable Phenolics were reported as Phenols in February 1984
- (3) Groundwater standards are NYS Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

NP-22A was installed in November 1993, approximately 10 feet from the former location of NP-22

μg/L - Micrograms per liter

mg/L - Milligrams per liter

s.u. - Standard Unit

mS/cm- Millisiemens per centimeter

NTU - Nephelometric Turbidity Unit

mV - millivolts

U - Not detected at associated value

- Not applicable

Table 3.1

Amount of Groundwter Collected, Treated, and Discharged
Durez North Tonawanda
Glenn Springs Holdings, Inc.
North Tonawanda, New York

	2009	2010	2011	2012	2013	2014	2015	2016
January	3,485,190	3,854,930	2,650,700	5,335,740	3,231,360	4,586,280	1,934,470	3,048,280
February	4,612,420	2,209,340	2,978,010	4,444,102	4,124,780	3,409,460	986,810	2,897,631
March	3,881,280	5,066,000	6,251,990	2,705,340	3,531,350	4,826,570	4,195,900	5,775,869
April	4,021,260	3,996,780	5,471,000	2,535,380	3,691,220	5,182,290	5,870,300	4,796,230
Мау	1,930,190	2,023,190	6,065,870	2,810,520	2,280,410	5,079,766	2,141,730	1,851,760
June	595,340	1,693,990	3,351,220	857,290	4,342,820	1,485,230	1,963,520	582,440
July	2,080,260	646,180	1,275,310	224,970	2,947,920	697,720	1,409,860	182,150
August	2,157,280	669,660	272,930	205,560	1,234,630	837,390	539,320	428,300
September	695,660	313,300	715,090	213,460	942,990	480,540	773,640	189,880
October	1,179,660	0	3,694,708	1,355,530	4,396,380	409,690	1,331,590	521,980
November	2,092,380	1,783,707	2,620,180	1,694,640	4,239,560	286,940	1,337,830	575,645
December	5,686,910	3,022,380	5,363,970	2,699,450	3,946,630	1,726,420	1,708,220	1,763,175
Total	32,417,830	25,279,457	40,710,978	25,081,982	38,910,050	29,008,296	24,193,190	22,613,340

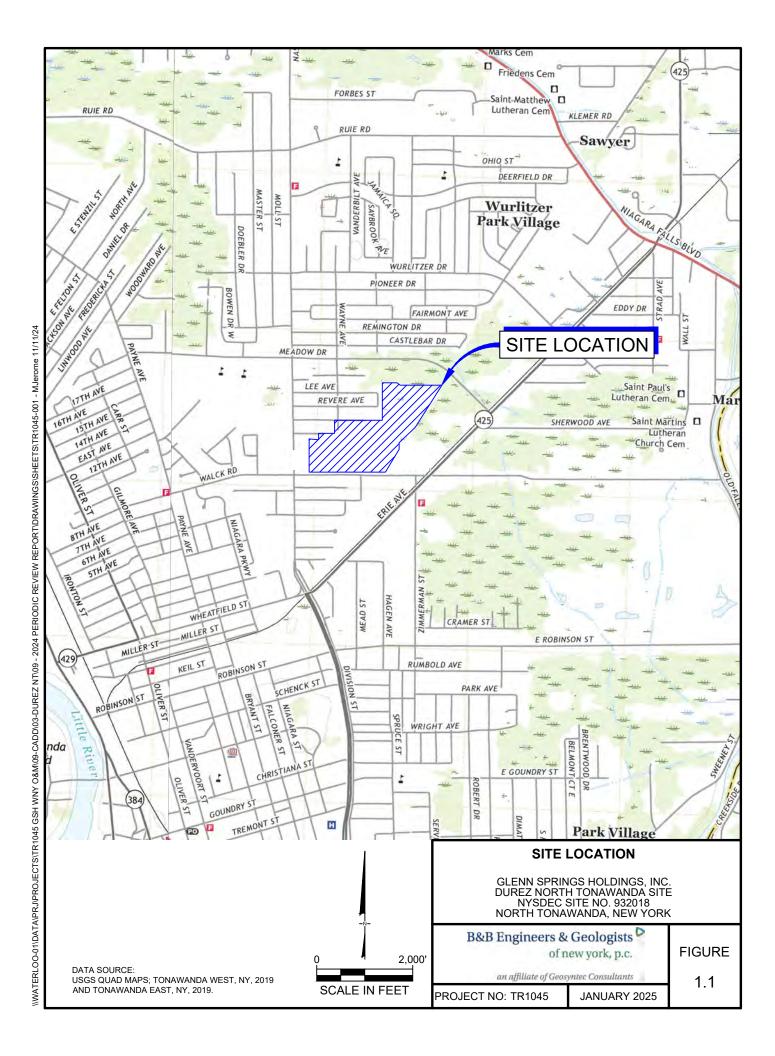
Note:

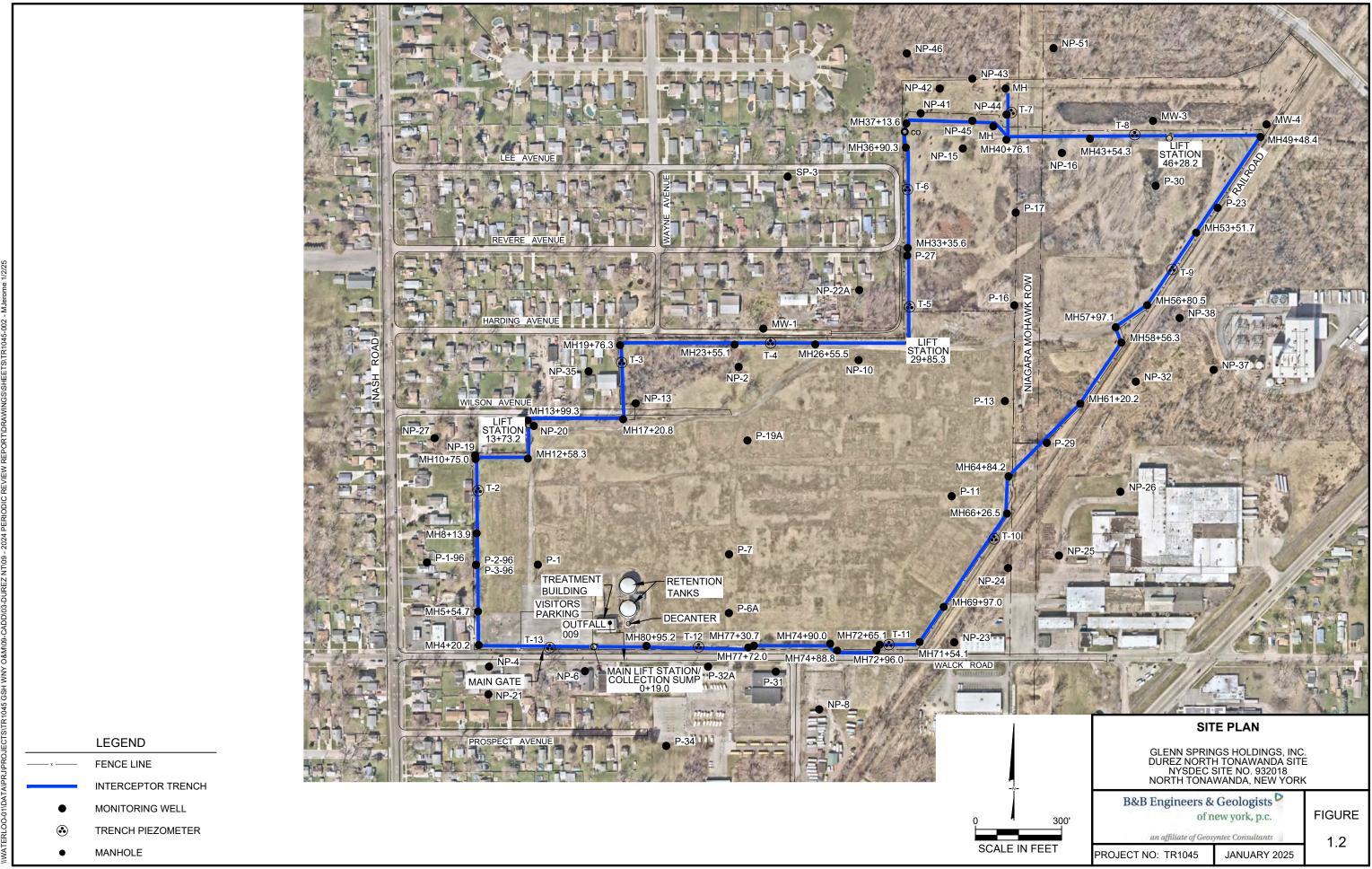
Monthly and Yearly volumetric totals are in gallons

TR1045-Rpt 18-2024 PRR TBL Page 1 of 2

Table 3.1

Amount of Groundwter Collected, Treated, and Discharged
Durez North Tonawanda
Glenn Springs Holdings, Inc.
North Tonawanda, New York


	2017	2018	2019	2020	2021	2022	2023	2024
January	3,145,950	4,550,700	4,361,440	5,541,190	3,580,021	2,881,880	5,812,375	3,233,895
February	2,599,070	4,004,679	4,596,070	4,870,160	1,180,919	3,423,608	3,996,489	0
March	4,298,730	5,187,190	4,649,250	5,149,140	3,538,430	5,451,527	5,898,348	4,360,483
April	5,191,048	5,309,607	4,698,900	3,841,705	2,176,840	5,263,058	4,846,879	5,048,000
Мау	5,559,150	3,563,278	4,949,220	3,209,035	1,858,220	5,214,183	3,447,446	4,444,599
June	2,256,230	915,630	1,971,240	1,149,370	1,064,800	2,735,077	2,725,274	3,415,631
July	1,295,926	116,300	360,630	735,150	2,441,750	1,836,383	2,546,831	3,499,965
August	2,003,040	428,220	1,385,590	545,670	1,134,480	1,308,156	3,473,990	2,793,881
September	586,360	550,600	772,620	197,160	1,753,210	1,765,447	1,382,112	2,159,035
October	1,996,940	659,860	1,367,960	291,870	1,973,280	1,855,375	1,270,055	2,246,750
November	3,937,280	3,534,687	3,152,030	875,099	4,027,370	3,011,779	1,411,136	2,585,885
December	2,814,870	4,117,818	5,043,910	2,180,211	3,263,500	4,040,583	3,800,068	4,137,070
Total	35,684,594	32,938,569	37,308,860	28,585,760	27,992,820	38,787,056	40,611,002	37,925,195


Note:

Monthly and Yearly volumetric totals are in gallons

TR1045-Rpt 18-2024 PRR TBL Page 2 of 2

Figures

WATER LEVELS AT INTERCEPTOR TRENCH (IT)								
		MEASUF	KED					
	TRENCH PIEZOMETER	Α	В	С				
	T-2	571.21	566.13	570.69				
	T-3	573.81	574.25	573.93				
	T-4	574.17	573.82	574.22				
	T-5	571.92	574.10	574.87				
	T-6	574.01	574.08	575.19				
	T-7	574.09	571.94	572.33				
	T-8	574.23	574.16	573.70				
	T-9	574.07	571.26	575.22				
	T-10	571.69	569.54	570.43				
	T-11	569.99	569.29	571.01				
	T-12	568.54	565.97	571.13				
	T-13	568.46	565.83	570.29				
	<u>KEY</u>							
A B C	B IN IT BACKFILL							

LEGEND

INTERCEPTOR TRENCH
INWARD GRADIENT (SEE NOTE 1)

INTERCEPTOR TRENCH
OUTWARD GRADIENT (SEE NOTE 2)

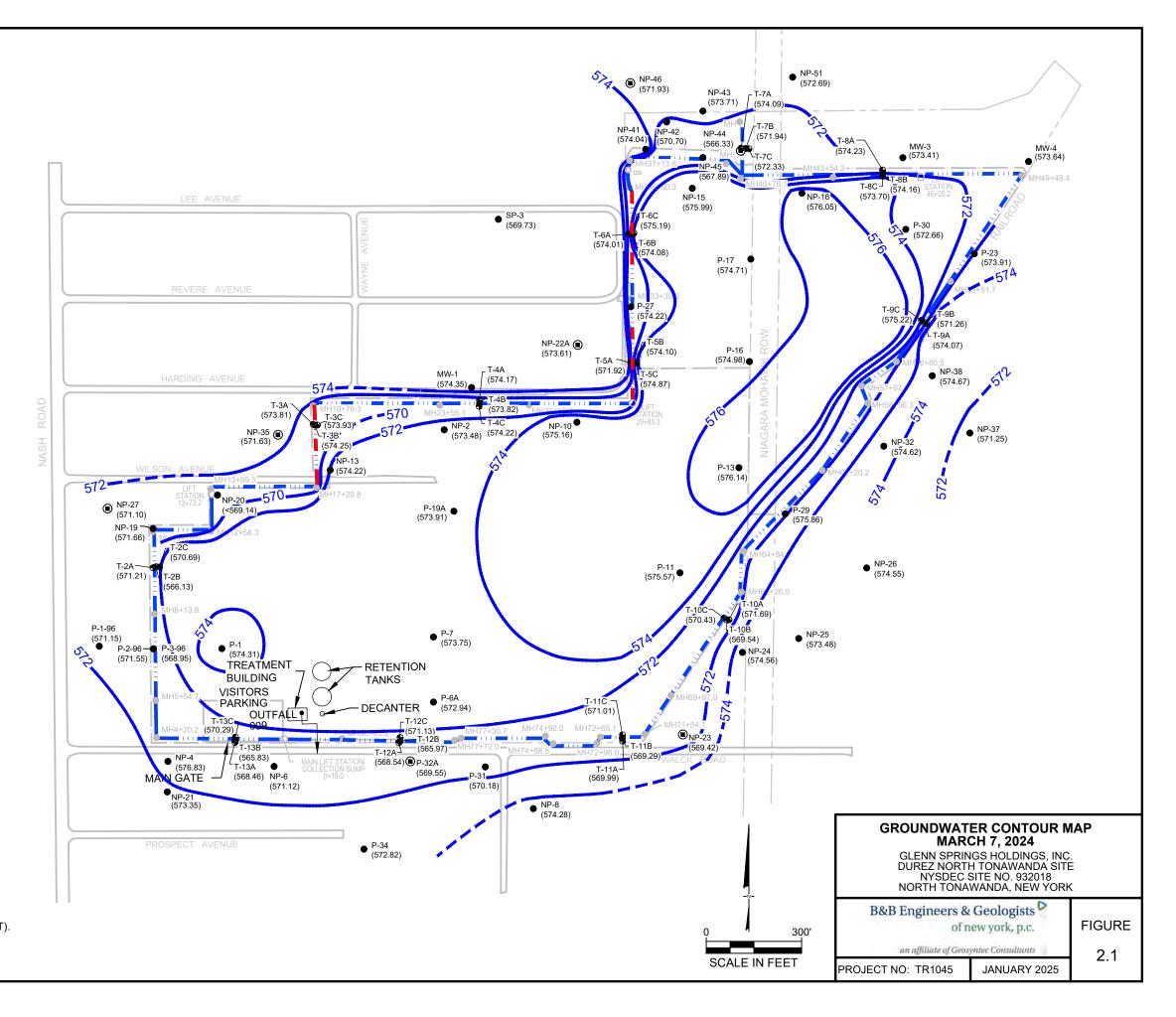
—572— GROUNDWATER CONTOUR (DASHED WHERE INFERRED)

MONITORING WELL

(571.15) GROUNDWATER ELEVATION (ft AMSL)

PIEZOMETER

MONITORING WELL PART OF GROUNDWATER CHEMISTRY MONITORING PROGRAM


MANHOLE

(<569.14) DRY DEPTH ELEVATION (ft AMSL)

NOTES

1. INWARD GRADIENT INDICATES WATER LEVELS AT TRENCH PIEZOMETER B (IN IT BACKFILL) IS LOWER THAN THE CORRESPONDING TRENCH PIEZOMETER A (OFFSITE SIDE OF IT).

2. OUTWARD GRADIENT INDICATES WATER LEVELS AT TRENCH PIEZOMETER B IS EQUAL TO OR HIGHER THAN THE CORRESPONDING TRENCH PIEZOMETER A.

WATER LEVELS AT INTERCEPTOR TRENCH (IT) **MEASURED** TRENCH В С PIEZOMETER <563.95 <570.23 T-2 568.04 T-3 568.98 566.74 567.89 T-4 <569.97 <565.59 <570.65 T-5 <570.98 565.91 572.81 T-6 <569.98 565.98 569.28 T-7 <569.47 <565.81 567.15 T-8 <571.02 570.24 569.22 T-9 <571.00 568.44 <571.81 567.68 T-10 570.12 570.04 <566.25 <570.51 T-11 569.67 T-12 568.42 564.07 569.90 T-13 568.17 562.27 <569.62 KEY OFFSITE SIDE OF IT B IN IT BACKFILL

LEGEND

INTERCEPTOR TRENCH INWARD GRADIENT (SEE NOTE 1)

INTERCEPTOR TRENCH OUTWARD GRADIENT (SEE NOTE 2)

572 GROUNDWATER CONTOUR (DASHED WHERE INFERRED)

MONITORING WELL

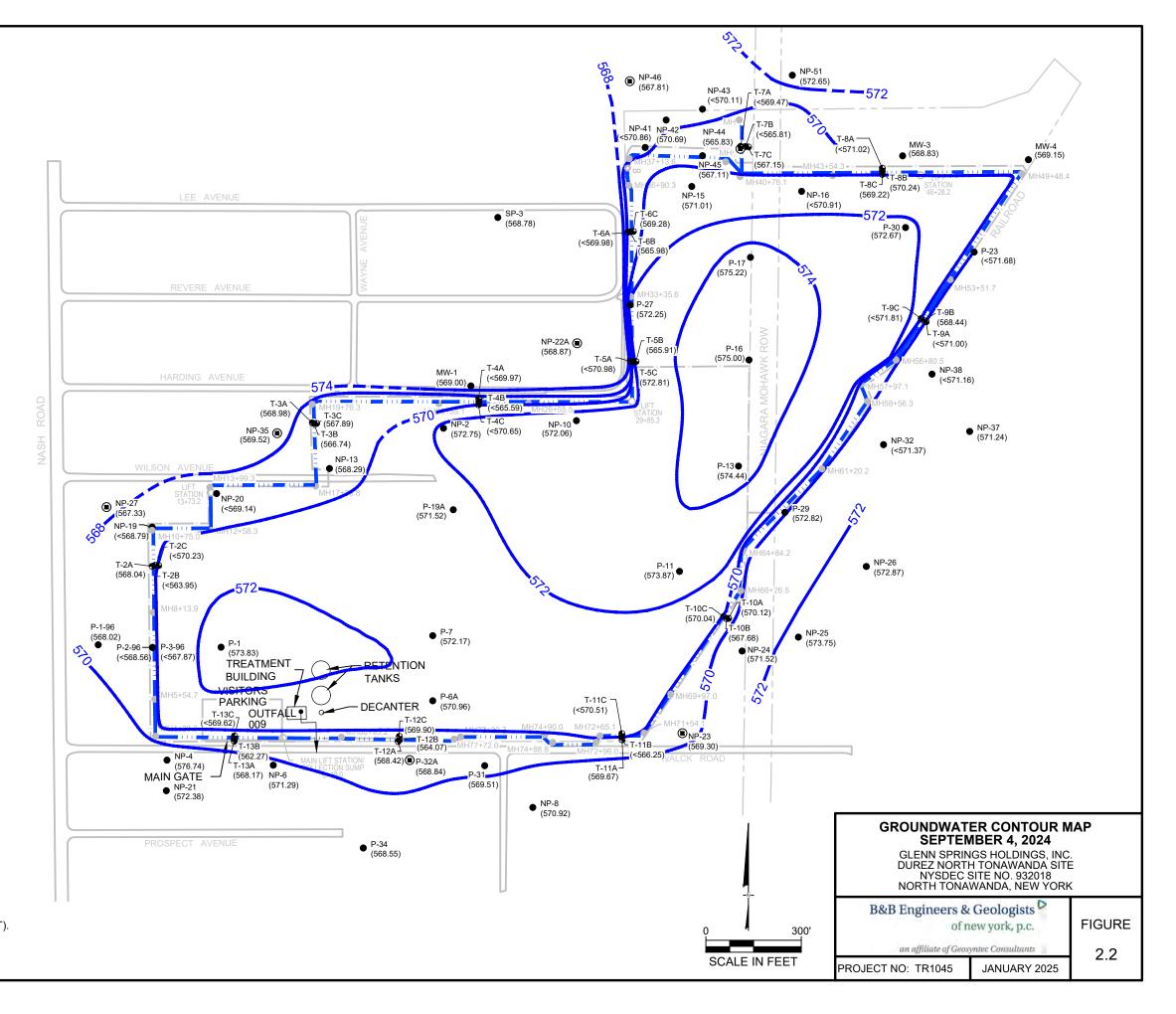
(562.27) GROUNDWATER ELEVATION (ft AMSL)

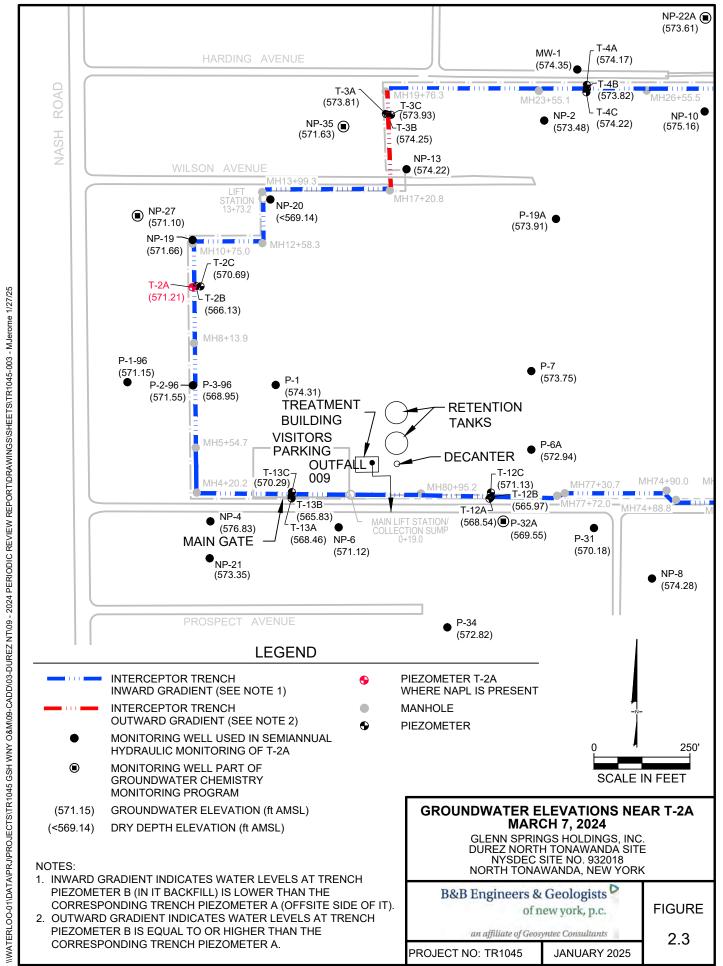
PIEZOMETER

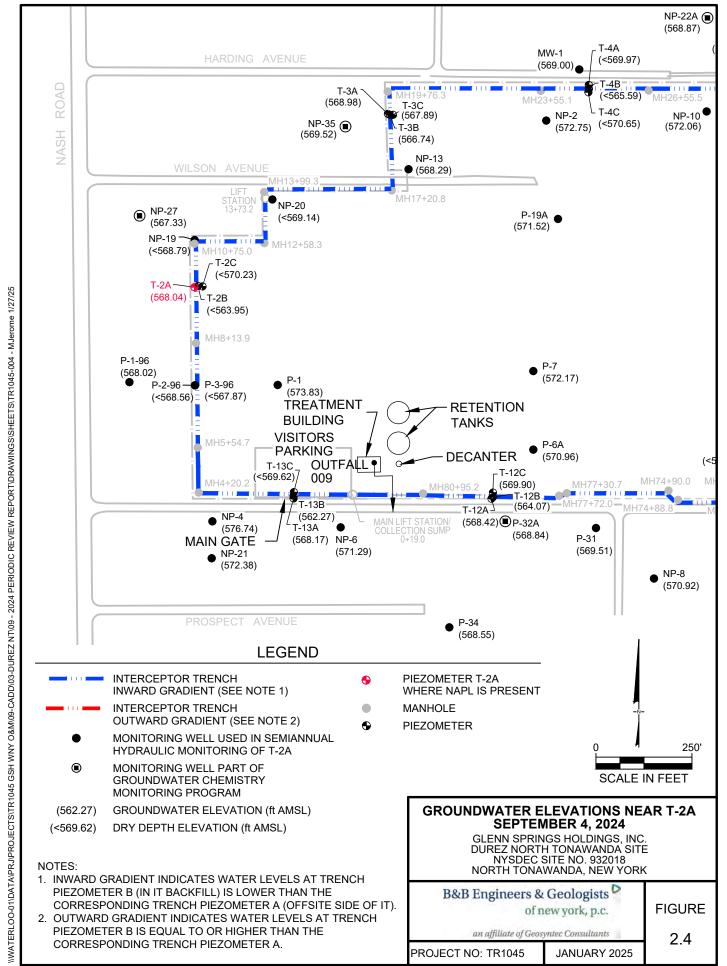
MONITORING WELL PART OF GROUNDWATER CHEMISTRY

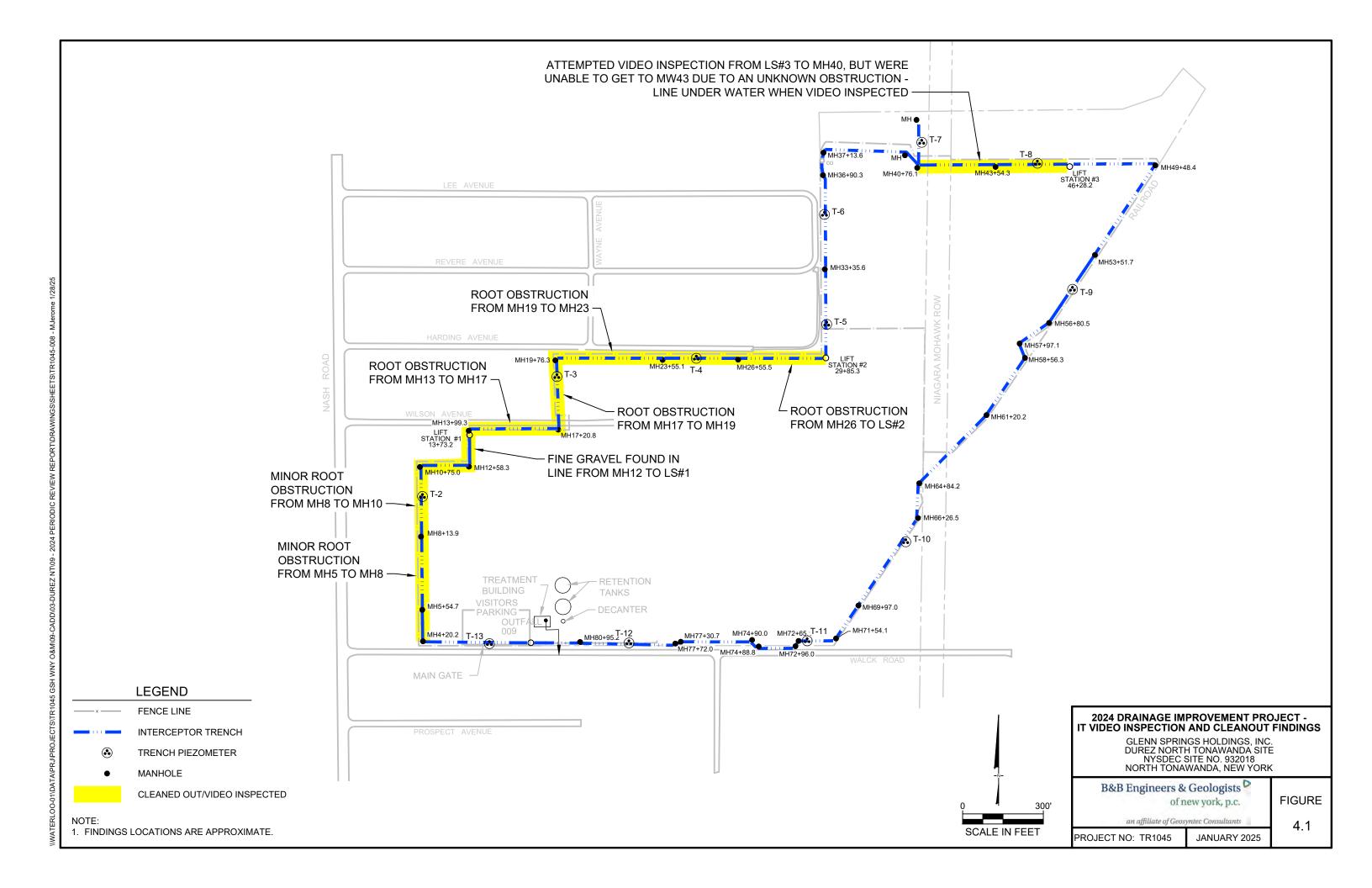
MONITORING PROGRAM

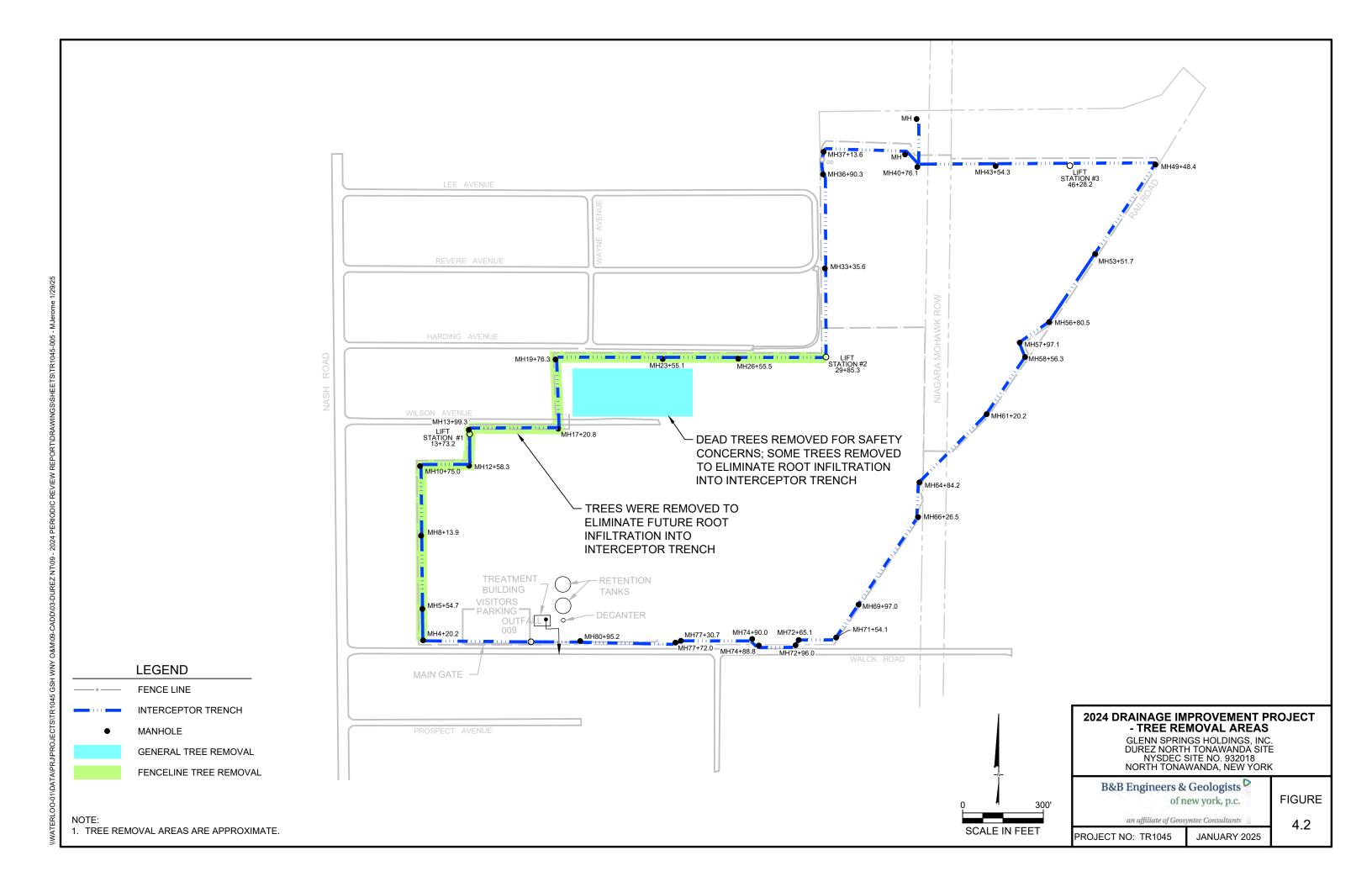
MANHOLE

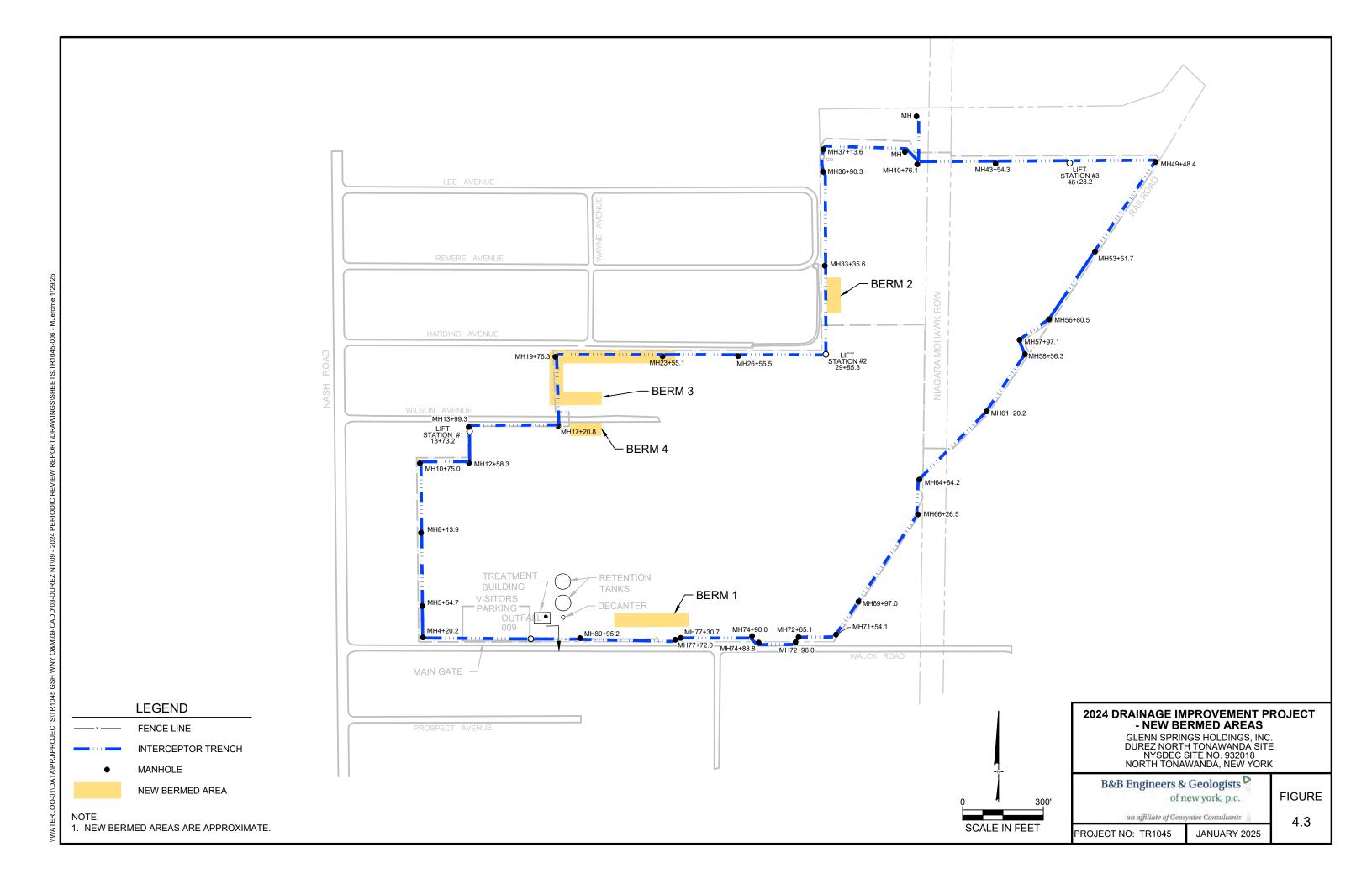

C PLANT SIDE OF IT

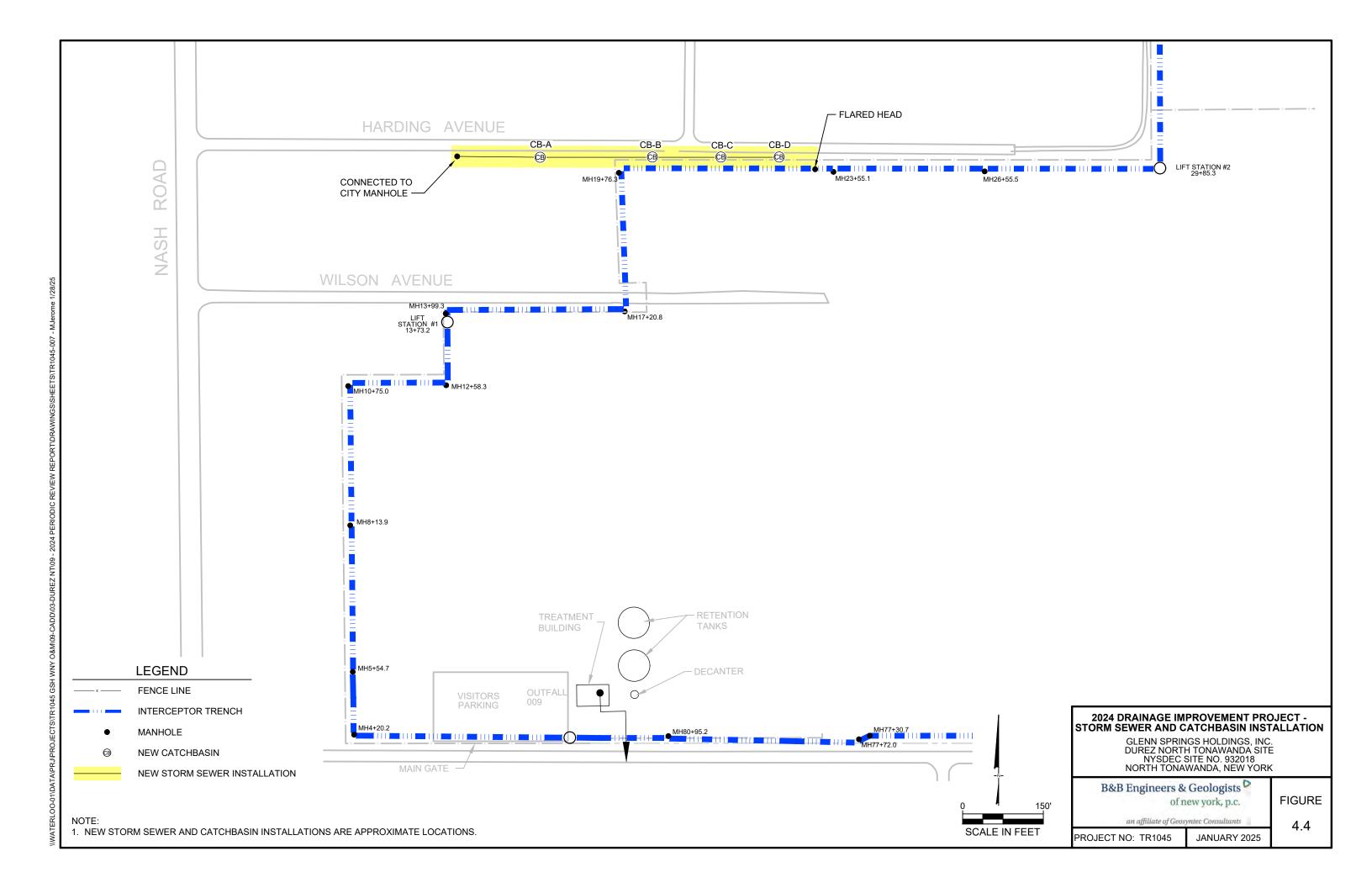

(<569.62) DRY DEPTH ELEVATION (ft AMSL)

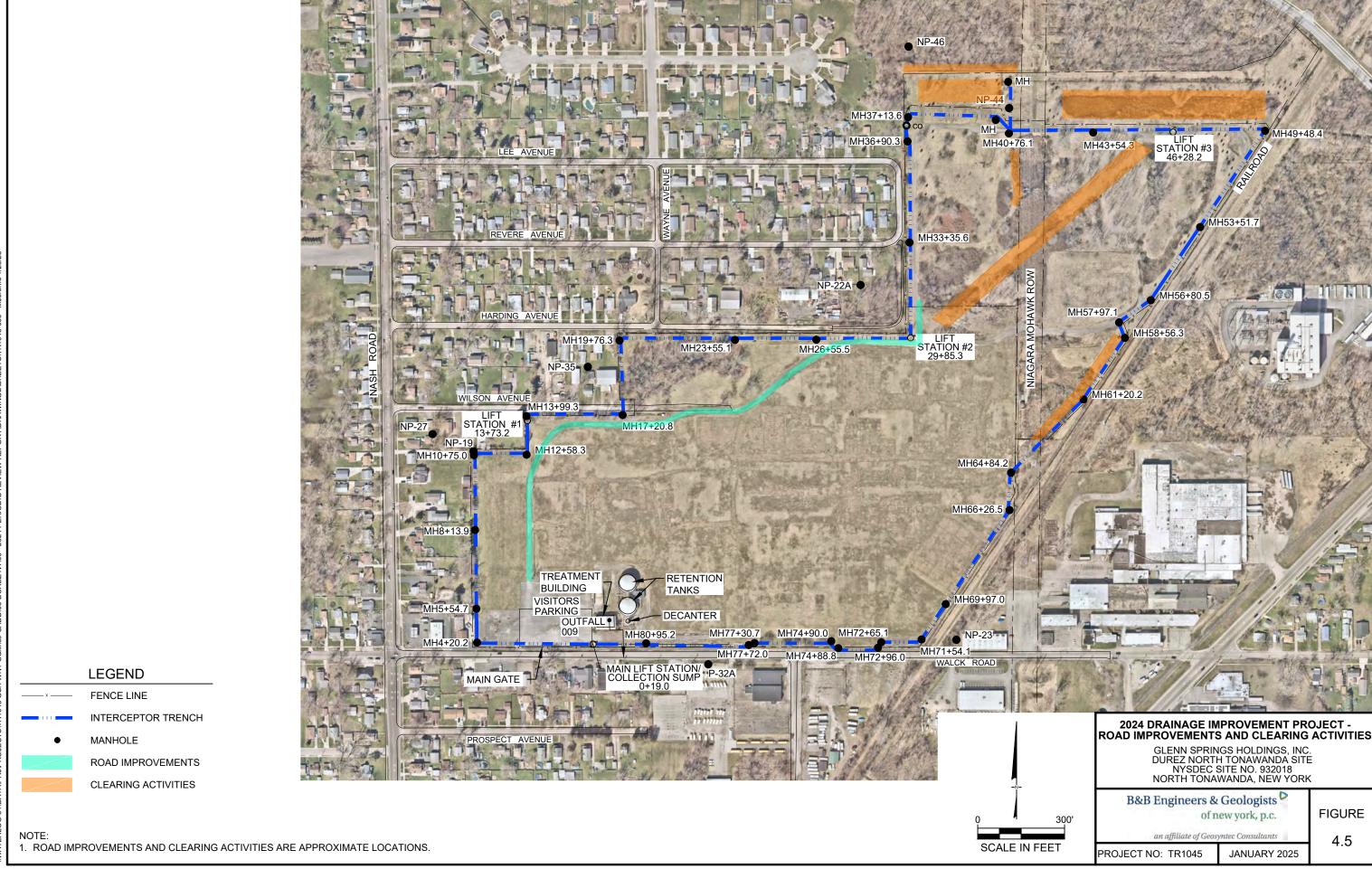

NOTES:


INWARD GRADIENT INDICATES WATER LEVELS AT TRENCH
PIEZOMETER B (IN IT BACKFILL) IS LOWER THAN THE
CORRESPONDING TRENCH PIEZOMETER A (OFFSITE SIDE OF IT).


2. OUTWARD GRADIENT INDICATES WATER LEVELS AT TRENCH PIEZOMETER B IS EQUAL TO OR HIGHER THAN THE CORRESPONDING TRENCH PIEZOMETER A.







Appendix A 2024 Institutional and Engineering Controls Certification Form

NEW YORK ST ATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

11/12/2024

Joseph Branch
Project Manager
OCC/Glenn Springs Holdings, Inc.
7601 Old Channel Trail
Montague, MI 49437
Joseph Branch@oxy.com

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: Durez Div. - Occidental Chemical Corp.

Site No.: 932018

Site Address: Walck Road/River Road

North Tonawanda, NY 14120

Dear Joseph Branch:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **January 30, 2025**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Professional Engineer (PE). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Benjamin Mcpherson, the Project Manager, at 716-851-7235 or benjamin.mcpherson@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation 700 Delaware Ave Buffalo, NY 14209-2202

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

Occidental Chemical Corporation - joseph branch@oxy.com

ec: w/ enclosures

Benjamin Mcpherson, Project Manager

Andrea Caprio, Hazardous Waste Remediation Supervisor, Region 9

GHD - Margaret Popek - margaret.popek@ghd.com

GHD - John Pentilchuk - John.Pentilchuk@ghd.com

B&B Engineers and Geologists of New York, P.C. - Dennis Hoyt - dhoyt@geosyntec.com

The following parcel owner did not receive an ec:

National Grid - Parcel Owner

Oar Marina, Llc - Parcel Owner

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No	. 932018	Site Details	Box 1			
Site Na	me Durez Div Occidental Che	mical Corp.				
	lress: Walck Road/River Road	Zip Code: 14120				
	vn: North Tonawanda Niagara	Walck Road = 67.45 acres				
	eage: 73.300 72.23	River Road (Inlet) = 4.78 acres				
Reporti	ng Period: January 1, 2024 to Dec	ember 31, 2024				
			YES	NO		
1. Is th	ne information above correct?			×		
If N	O, include handwritten above or or	n a separate sheet.				
	some or all of the site property be map amendment during this Repo	en sold, subdivided, merged, or undergone a rting Period?		X		
	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?					
	. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?					
		thru 4, include documentation or evidence busly submitted with this certification form.				
5. Is th	ne site currently undergoing develo	pment?		×		
			Box 2			
			YES	NO		
	ne current site use consistent with tustrial	the use(s) listed below?	×			
7. Are	all ICs in place and functioning as	designed?				
		UESTION 6 OR 7 IS NO, sign and date below a REST OF THIS FORM. Otherwise continue.	and			
A Corre	ctive Measures Work Plan must b	e submitted along with this form to address t	hese iss	ues.		
Signatui	e of Owner, Remedial Party or Design	gnated Representative Date				

SITE NO. 932018 Box 3

Description of Institutional Controls

Parcel

Owner

Institutional Control

181.20-2-9

Oar Marina, LLC

Monitoring Plan O&M Plan

Site Operation, Maintenance and Monitoring (OMM) is conducted by the RP in accordance with the February 1989 Record of Decision and approved work plans. At the Inlet Site, site management includes groundwater quality monitoring, NAPL removal from extraction wells during the off-boating season, and maintenance of the cover system.

Groundwater Quality Monitoring; Durez Third Stipulation and PCJ and associated minor changes to the PCJ (currently minor change number 10, Rev.2, September 1999).

DNAPL Removal: Inlet Monitoring Plan, GHD 2019.

182.06-3-19

Occidental Chemical Corporation

Monitoring Plan O&M Plan

Site Operation, Maintenance and Monitoring (OMM) is conducted by the RP in accordance with the February 1989 Record of Decision and approved work plans.

182.06-3-20

Occidental Chemical Corporation

Monitoring Plan
O&M Plan

Site Operation, Maintenance and Monitoring (OMM) is conducted by the RP in accordance with the February 1989 Record of Decision and approved work plans.

182.06-3-21

Occidental Chemical Corporation

Monitoring Plan O&M Plan

Site Operation, Maintenance and Monitoring (OMM) is conducted by the RP in accordance with the February 1989 Record of Decision and approved work plans.

182.07-1-14

Occidental Chemical Corporation

Monitoring Plan O&M Plan

Record of Decision (ROD); February 25, 1989.

Appendix B, Durez Partial Consent Judgement (PCJ) "Monitoring, Operations, and Maintenance Plan" (1989) Subsequent Minor Modification #10, Rev. 2 "Minor Change to Appendix B" Monitoring, Operations, and Maintenace Plan" (September 1999) (Minor Change No. 10) groundwater monitoring.

PCJ 1992; amended by Minor Change No. 5 to allow for semi-annual reporting to the NYSDEC on quarterly hydraulic groundwater data.

Plant Site: OMM includes operation, maintenance and monitoring of the cover system, groundwater collection system, groundwater conveyance system, groundwater treatment system, groundwater monitoring wells, fencing/access points and the panhandle area.

182.32.-1-47

Occidental Chemical Corporation

Monitoring Plan O&M Plan

Site Operation, Maintenance and Monitoring (OMM) is conducted by the RP in accordance with the February 1989 Record of Decision and approved work plans.

p/o 182.07-1-17

National Grid

Monitoring Plan O&M Plan

Site Operation, Maintenance and Monitoring (OMM) is conducted by the RP in accordance with the February 1989 Record of Decision and approved work plans.

Box 4

Description of Engineering Controls

Parcel <u>Engineering Control</u>

181.20-2-9

Cover System

Groundwater Containment

Monitoring Wells Subsurface Barriers

Sheet pile wall, NAPL extraction wells and cover system.

182.06-3-19

Groundwater Treatment System

Cover System

Groundwater Containment Leachate Collection Fencing/Access Control

At the Plant Site, OMM includes operation, maintenance and monitoring of the cover system, groundwater collection system, groundwater conveyance system, groundwater treatment system, goundwater monitoring wells, fencing/access points and the panhandle area.

182.06-3-20

Groundwater Treatment System

Cover System

Groundwater Containment Leachate Collection Fencing/Access Control

At the Plant Site, OMM includes operation, maintenance and monitoring of the cover system, groundwater collection system, groundwater conveyance system, groundwater treatment system, groundwater monitoring wells,fencing/access points and the panhandle area.

182.06-3-21

Parcel <u>Engineering Control</u>

Groundwater Treatment System

Cover System

Groundwater Containment

Leachate Collection Fencing/Access Control

At the Plant Site, OMM includes operation, maintenance and monitoring of the cover system, groundwater collection system, groundwater conveyance system, groundwater treatment system, goundwater monitoring wells, fencing/access points and the panhandle area.

182.07-1-14

Point-of-Entry Water Treatment

Monitoring Wells

Groundwater Treatment System

Cover System

Groundwater Containment Leachate Collection Fencing/Access Control

Soil cover system with encompassing groundwater interceptor trench and conveyance to an onsite treatment plant.

182.32.-1-47

Groundwater Treatment System

Cover System

Groundwater Containment Leachate Collection Fencing/Access Control

At the Plant Site, OMM includes operation, maintenance and monitoring of the cover system, groundwater collection system, groundwater conveyance system, groundwater treatment system, groundwater monitoring wells, fencing/access points and the panhandle area.

p/o 182.07-1-17

Monitoring Wells

Groundwater Treatment System

Cover System

Groundwater Containment

Leachate Collection Fencing/Access Control

At the Plant Site, OMM includes operation, maintenance and monitoring of the cover system, groundwater collection system, groundwater conveyance system, groundwater treatment system, groundwater monitoring wells and fencing/access points. The Right Of Way (ROW) for National Grid is on site. Reporting is done by the RP; OCC/Glenn Springs Holdings, Inc.

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	lacktriangledown
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. 932018

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Joseph Branch	at _	7601 Old Channel Trail	
print name	_	print business address	
am certifying as Owner			(Owner or Remedial Party)
for the Site named in the Site Details Se	ection	n of this form.	
Signature of Owner, Remedial Party, or	Des		<i>1-29-2025</i> Date
Rendering Certification			7

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

B&B Engineers & Geologists of New York P.C.

at PO Box 351 Ransomville, NY 14131

print name print business address

am certifying as a Professional Engineer for the Owner (Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

for Rubel

Stamp (Required for PE)

29 January 2024

Date

Enclosure 3

Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.

II. Site Overview (one page or less)

- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.

III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

IV. IC/EC Plan Compliance Report (if applicable)

- A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
- B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).

V. Monitoring Plan Compliance Report (if applicable)

- A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
- B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
- C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
- D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
- E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.

VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)

- A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
- B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.

- C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.
- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.

VII. Overall PRR Conclusions and Recommendations

- A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
- B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.

C. Future PRR Submittals

- 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
- 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

Appendix B Monitoring Well Purge Records

B&B Engineers & Geologists of new york, p.c.

Monitoring Well Record for Low-Flow Purging

an affiliate of Geosyntec Consultants

	iate of Geosyntec Consultants	- 11.012021
Logo	Project Name: DUREZ NT ANNUAL Project Number: TR1045-15A-410	Personal: S GARDIVER Well Diameter, D (cm/in): 1,25"
Well Data:	Well No.: NP-35 Constructed Well Depth (m/ft): Measured Well Depth (m/ft):	Initial Depth to Water (m/ft): 5135 Start Purge Time: 1151

Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU) ±10%	DO (mg/L) ±10%	pH (Units)	ORP (m) ±10
					7	2.410	8.65	100
LA	7.23		was a second district of the second district	The state of the s	-			88
104	8.35	3.00			-	1		84
	910	A.25	14,07	0.292	30.1	1.13	010-1	0-1
1 1 -	50.4.4.4.11	E RIDGINIG	11 9.74	BOTTOM	9.97	VSUFFICIE	INT VOL	MME
WELL WENT	DRY WHI	E TURBING	MI					
LE								
			-					
						1		
								-
								-
	(mL/min)	(mL/min) Water (m/ft) 64 7.23 64 8.35 9.60	Pumping Rate (mL/min) Depth to Water (m/ft) Initial Water Level (3) (m/ft) Precision regular(5): 1,88 LA 8.35 3.00 9.100 A.25	Pumping Rate (mL/min) Depth to Water (m/ft) Initial Water Level(3) (m/ft) Temp (°C) Precision regular(5): ±3% LA 7.23 1.88 14.93 LA 8.35 3.00 14.21 9.60 A.25 14,07	Pumping Rate (mL/min) Depth to Water (m/ft) Initial Water Level(3) (m/ft) Temp (°C) Conductivity (mS/cm) b4 7.23 1.88 14.93 0.305 b4 8.35 3.00 14.21 0.297 9.60 4.25 14,07 0.292	Pumping Rate (mL/min) Depth to (mL/min) Initial Water Level (mft) Temp (°C) Conductivity (mS/cm) Initial Water (NTU) b 1.23 1.88 14.93 0.305 48.9 b 1.88 14.93 0.297 34.5 b 1.88 14.21 0.297 34.5 1.00 1.25 14.07 0.292 30.1	Pumping Rate (mL/min) Depth to (mL/min) Initial Water Level(3) (m/ft) Temp (°C) Conductivity (mS/cm) Initial Water (NTU) DO (mg/L) b Precision regular(5): ±3% ±3% ±10% ±10% b 1,23 1,88 14,93 0,305 48,9 2,440 b 4 8,35 3,00 14,21 0,297 34,5 1.47 c 9,00 4,25 14,07 0,292 30.1 1.13	Pumping Rate (mL/min) Depth to (mL/min) Initial Water Level(s) (m/ft) Temp (°C) Conductivity (mS/cm) Initial Water (m/ft) pH (Units) b Precision regular(s): ±3% ±3% ±10% ±10% ±0.1 b 1.88 14.93 0.305 48.9 2.4Lo 8.65 b 3.35 3.00 14.21 0.297 34.5 1.47 8.80 b 4.25 14.07 0.292 30.1 1.13 8.84

	Sample Time:
Sample ID:	
	a say the Markette

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2ft) above any sediment accumulated at the well bottom.

The wall screen volume will be based on a 1.52 m (5ft) screen length (L). For metric units $V_n = n^*(r^2)^*L$ in mL, where (r=D/2) and L are in cm.

For Imperial units, Va=n*(r2)*L)(2.54)3, where r and L are in inches The drawdown from the initial water level should not exceed 0.1 m (0.3ft). The pumping rate should not exceed 500 mL/min.

Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged = Vp/Vs.

For conductivity, the average value of three readings ±3%

harm Hardner

B&B Engineers & Geologists of new york, p.c.

Monitoring Well Record for Low-Flow Purging

an affiliate of Geosyntec Consultants

an affili	iate of Geosyntee Consumm	Date: 4/10/2024
Project Data:	Project Name: DURFZ NT ANNUAL Project Number: TRIOAS-ISA-A10	Personal: S GARDNER 1.25"
Well Data:	www.t. 11 TaT I (17) / /	Initial Depth to Water (m/ft): _/0.30 Start Purge Time:

	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU) ±10%	DO (mg/L) ±10%	pH (Units)	ORP (mV
Time	(RAR ALI RIBERLY)		Precision regular(5):	±3%	±3%	21070			
12.10	THE WOOT N	BV WHII E	PURBING WIL	10.82	BOTTOM 10.9	2 INSI	PFICIENT	VOLUM	E
OR READ	INGS AND S	AMPLE	PURBING WIL						
									1
									-

	Sample Time:
Sample ID:	
**	50 C = (3ft) chove any sediment accumulated at the well bottom.

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2ft) above any sediment accumulated at the well bottom.

The wall screen volume will be based on a 1.52 m (5ft) screen length (L). For metric units V_n=n*(r²)*L in mL, where (r=D/2) and L are in cm.

For Imperial units, V,=n*(r2)*L)(2.54)3, where r and L are in inches The drawdown from the initial water level should not exceed 0.1 m (0.3ft). The pumping rate should not exceed 500 mL/min.

(4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged = Vp/Vs. Shawn Hardner

(5) For conductivity, the average value of three readings ±3%

B&B Engineers & Geologists of new york, p.c.

Monitoring Well Record for Low-Flow Purging

an affiliate of Geosyntec Consultants

Project Data:	Project Name: DUREZ NT ANNUAL	Date: 4/10/2023
•	Project Number: TR1045-15A-410	Personal: 'S GARDNER
Well Data:	Well No.: NP-23	Well Diameter, D (cm/in): 1.25
	Constructed Well Depth (m/ft):	Initial Depth to Water (m/ft): 8.66
	Measured Well Depth (m/ft):	Start Purge Time:

Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	pH (Unis)	ORP (mV)
			Precision regular ⁽⁵⁾ :	±3%	±3%	±10%	±10%	±0.1	±10
	* INSUFFICI	ENT VOLLI	ME FOR READ	NGS AND	SAMPLING				
	Вопом	OF WELL	8.93	NO SAMPI	ETAKEN				
- clay									

Sample ID:	Sample Time:

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2ft) above any sediment accumulated at the well bottom.

(2) The wall screen volume will be based on a 1.52 m (5ft) screen length (L). For metric units $V_a = n^*(r^2)^*L$ in mL, where (r=D/2) and L are in cm. For Imperial units, $V_a = n^*(r^2)^*L$)(2.54)³, where r and L are in inches

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3ft). The pumping rate should not exceed 500 mL/min.

(4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged = Vp/Vs.

(5) For conductivity, the average value of three readings ±3%

Shaim Hardner

B&B Engineers & Geologists of new york, p.c.

an affiliate of Geosyntec Consultants

Project Data: Well Data:	Project Name Project Numb Well No.: N Constructed V Measured We	: DIREZ Noer: TRIO45: 0-27 Well Depth (m/f	TANNUAL -15A-410		Personal: S G Well Diameter, Initial Depth to Start Purge Tir	D (cm/in): _ Water (m/fi): 513	5" 5	
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft) Precision regular ⁽⁵⁾ :	Temp (°C) ±3%	Conductivity (mS/cm) ±3%	Turbidity (NTU) ±10%	DO (mg/L) ±10%	pH (Units)	ORP (mV) ±10
	70	1-10	1.75	15.35	0.800	26.1	2.05	7.76	-11
1124	78	7.10	3.69	14.76	0,655	13.5	1.16	8.00	19
x 1127 \all	FIL WENT	DRY WHIL	E RURGING	W/L 9.71	BOTTOM (7.82 IN	SUFFICIEN	T VOLU	ME
FOR SAMPL									

Monitoring Well Record for Low-Flow Purging

	Sample Time:
Sample ID:	

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2ft) above any sediment accumulated at the well bottom.

(2) The wall screen volume will be based on a 1.52 m (5ft) screen length (L). For metric units $V_n = n^*(r^2)^*L$ in mL, where (r=D/2) and L are in cm.

For Imperial units, Va=n*(r2)*L)(2.54)3, where r and L are in inches The drawdown from the initial water level should not exceed 0.1 m (0.3ft). The pumping rate should not exceed 500 mL/min.

Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be cearing, or unless

stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged = Vp/Vs,

For conductivity, the average value of three readings ±3%

B&B Engineers & Geologists C of new york, p.c.

an affiliate of Geosyntec Consultants

				Total Control of the Control
Project Data:	Project Name:	DUREZ	NT	ANNUAL -410

Project Number: TR1645-15A-410

Well No.: NP-22A

Constructed Well Depth (m/ft): Well Data:

Monitoring Well Record for Low-Flow Purging

Personal: S GARDNER Well Diameter, D (cm/in): 3,601 Initial Depth to Water (m/ft): Start Purge Time: 0954

Measured Well Depth (m/ft): Drawdown from Turbidity Conductivity **Initial Water** pH (Units) ORP (mV) Depth to Pumping Rate DO (mg/L) (NTU) (mS/cm) Temp (°C) Level(3) (m/ft) ±10 Water (m/ft) ±0.1 (mL/min) ±10% ±10% ±3% Time Precision regular(5): ±3% 183 10. Lolo 4.05 10010 101 96 0.76 0.83

5.62

Sample ID: NP-22A-042A

Notes: BLIND DUPLICATE - NP-70-042A

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2ft) above any sediment accumulated at the well bottom. Sample Time: 1055

(2) The wall screen volume will be based on a 1.52 m (5ft) screen length (L). For metric units $V_n=n^*(r^2)^*L$ in mL, where (r=D/2) and L are in cm.

For Imperial units, Vo=n*(r2)*L)(2.54)3, where r and L are in inches

The drawdown from the initial water level should not exceed 0.1 m (0.3ft). The pumping rate should not exceed 500 mL/min.

Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be charing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged = Vp/Vs.

For conductivity, the average value of three readings ±3%

1046

6.70

6.70

0.87

B&B Engineers & Geologists of new york, p.c.

an affiliate of Geosyntec Consultants

200	ate of Geosyntec Consultants	
Project Data:	Project Name: DUREZ NT ANNUAL Project Number: TR1045-15A-410	Personal: S GARDNER Well Diameter, D (cm/in): 2"
Well Data:	Well No.: P-32A Constructed Well Depth (m/ft): Measured Well Depth (m/ft):	Initial Depth to Water (m/ft): 8.38 Start Purge Time: 123

Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temp (°C) ±3%	Conductivity (mS/cm) ±3%	Turbidity (NTU) ±10%	DO (mg/L) ±10%	pH (Units) ±0.1	ORP (m\ ±10
		1 0	Precision regular ⁽⁵⁾ :		3.25	6.46	5.93	7.30	170
240	100	8,44	0.06	16,11	The state of the s		3.61	719	174
745	100	8.44	0.00	15.25	3.30	3.65	-	717	176
200		8.44	0.06	15.06	3.30	3,43	3,40	7.17	-
200	1000	8.44	0.06	15.18	3,26	3.14	3.45	7.16	176
250	100	0,71	0,00						
				,					
								-	
									-
									-
									1
						-			
						1		42	

Sample ID: P-32A-0424	Sample Time: 1300
Ottom 19-1	

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2ft) above any sediment accumulated at the well bottom.

The wall screen volume will be based on a 1.52 m (5ft) screen length (L). For metric units V_n=n*(r²)*L in mL, where (r=D/2) and L are in cm.

For Imperial units, Va=n*(r2)*L)(2.54)3, where r and L are in inches The drawdown from the initial water level should not exceed 0.1 m (0.3ft). The pumping rate should not exceed 500 mL/min.

Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged = Vp/Vs.

For conductivity, the average value of three readings ±3%

Monitoring Well Record for Low-Flow Purging

B&B Engineers & Geologists of new york, p.c.

Monitoring Well Record for Low-Flow Purging

an affiliate of Geosyntec Consultants

Project Data:	Project Name: DUREZ NT ANNUAL	Date: 4/10/2024
	Project Number: TRIOAS-15A-410	Personal: S'GARDVER
Well Data:	Well No.: NP-ALO	Well Diameter, D (cm/in): 1,25"
	Constructed Well Depth (m/ft):	Initial Depth to Water (m/ft): 4,46
	Measured Well Depth (m/ft):	Start Purge Time: 1413

Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	pH (Units)	ORP (mV)
			Precision regular ⁽⁵⁾ :	±3%	±3%	±10%	±10%	±0.1	±10
1420	96	4.55	0.09	18.09	0.872	9.75	6.11	6.86	180
1425	960	4.55	0.09	13,66	0.903	8.82	5.38	6.79	200
1430		4.55	0.09	13.24	0.892	3.80	5,29	6.78	206
1435		4.55	0.09	13.16	0.893	3.08	5,21	6.76	210
1440	96	4.55	0.09	13.09	0.890	4.55	5.18	6.76	212
				1					
Hirkony and a second state of									49
- Company of the Comp									

Sample ID: NP-46-0424	Sample Time: 1445

Notes:

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2ft) above any sediment accumulated at the well bottom.
- (2) The wall screen volume will be based on a 1.52 m (5ft) screen length (L). For metric units $V_n = n^*(r^2)^*L$ in mL, where (r=D/2) and L are in cm. For Imperial units, $V_n = n^*(r^2)^*L$)(2.54)³, where r and L are in inches

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3ft). The pumping rate should not exceed 500 mL/min.

(4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged = Vp/ys.

(5) For conductivity, the average value of three readings ±3%

Sham Haidhur

Appendix C Quality Assurance/Quality Control Report

Data Verification Report

May 01, 2024

То	Joseph Branch	Project No.	11223794
Copy to	Dennis Hoyt, Christa Bucior	DVR No.	69
Alicia Ferber	Alicia Ferber/eew	Contact No.	720-245-2755
Project Name	Glenn Springs Holdings, Inc Durez NT	Email	Alicia.ferber@ghd.com
Subject	Analytical Results and Data Verification Annual SPDES Glenn Springs Holdings, Inc Durez NT North Tonawanda, New York April 2024		

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

1. Introduction

This document details a data verification of analytical results for water samples collected in support of the Annual SPDES event at the NT Durez site during April 2024. Samples were submitted to ALS Environmental (ALS) located in Rochester, New York. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3.

Standard GHD report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody form, finished report forms, method blank data, recovery data from surrogate spikes/laboratory control samples (LCS)/ matrix spike samples (MS), and field QC samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced in Table 1 and applicable guidance from the documents entitled:

- 1. "National Functional Guidelines for Inorganic Superfund Methods Data Review", Environmental Protection Agency (EPA) 542-R-20-006, November 2020.
- National Functional Guidelines for Organic Superfund Methods Data Review", EPA 540-R-20-005, November 2020

Items 1 and 2 will subsequently be referred to as the "Guidelines" in this report.

2. Sample Holding Time and Preservation

The sample holding time criteria for the analyses are summarized in Table 3. The sample chain of custody document and analytical report were used to determine sample holding times. All samples were analyzed within the required holding times.

All samples were properly preserved, delivered on ice and stored by the laboratory at the required temperature (0-6°C).

3. Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per analytical batch.

All method blank results were non-detect, indicating that laboratory contamination was not a factor for this investigation.

4. Surrogate Spike Recoveries - Organic Analyses

In accordance with the methods employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for volatile organic compound (VOC) determinations were spiked with the appropriate number of surrogate compounds prior to sample analysis.

Surrogate recoveries were assessed against laboratory control limits. All surrogate recoveries were within the laboratory control limits.

5. Laboratory Control Sample Analyses

LCS are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects.

For this study, LCS were analyzed at a minimum frequency of 1 per analytical batch.

The LCS contained all compounds/analytes of interest. All LCS recoveries were within the laboratory control limits, demonstrating acceptable analytical accuracy.

6. Field QA/QC Samples

The field QA/QC consisted of 1 trip blank sample, and 1 field duplicate sample.

Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, 1 trip blank sample was submitted to the laboratory for VOC analysis. All results were non-detect for the compounds of interest.

Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, 1 field duplicate sample set was collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with these duplicate samples must be less than 50 percent for water.

All field duplicate results met the above criteria, demonstrating acceptable sampling and analytical precision.

7. Analyte Reporting

The laboratory reported detected results down to the laboratory's sample-specific method detection limit (MDL) for each analyte. No positive analyte detections less than the RL but greater than the sample-specific MDL were reported. Non-detect results were presented as non-detect at the RL in Table 2.

8. Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable without qualification.

Regards,

Alicia Ferber

Digital Intelligence - Data Management Team - Data Validator

Table 1

Sample Collection and Analysis Summary Annual SPDES Glenn Springs Holdings, Inc. - Durez NT North Tonawanda, NY April 2024

Sample Delivery Group	Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	Analysis/Parameters			
						NOC	Phenolics	TOC	Comments
R2402980	NP-22A-0424	NP-22A	Groundwater	04/10/2024	10:55	Х	X	Х	MS/MSD
	NP-46-0424	NP-46	Groundwater	04/10/2024	14:45	X	Χ	Χ	
	NP-70-0424	NP-22A	Groundwater	04/10/2024	10:55	X	Χ	Χ	FD(NP-22A-0424)
	NTTRIP041024	Trip Blank	Water Quality Control Matrix	04/10/2024	09:30	X			Trip Blank
	P-32A-0424	P-32A	Groundwater	04/10/2024	13:00	Χ	X	Χ	

Notes:

FD - Field Duplicate Sample of sample in parenthesis

MS/MSD - Matrix Spike/Matrix Spike Duplicate

VOC - Volatile Organic Compounds

TOC - Total Organic Carbon

Table 2

Analytical Results Summary Annual SPDES Glenn Springs Holdings, Inc. - Durez NT North Tonawanda, NY April 2024

Location ID:		NP-22A	NP-22A	NP-46	P-32A
Sample Name:		NP-22A-0424	NP-70-0424	NP-46-0424	P-32A-0424
Sample Date:		04/10/2024	04/10/2024	04/10/2024	04/10/2024
			Duplicate		
Parameters	Unit				
Volatile Organic Compounds					
1,2,3-Trichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorotoluene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U
General Chemistry					
Phenolics (total)	mg/L	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Total organic carbon (TOC)	mg/L	4.5	4.5	2.0	1.9

Note:

U - Not detected at the associated reporting limit

Table 3

Analytical Methods Annual SPDES Glenn Springs Holdings, Inc. - Durez NT North Tonawanda, NY April 2024

Parameter	Method	Matrix	Collection or Extraction to Analysis (Days)
Volatile Organic Compounds	EPA 624	Groundwater	14
Phenolics	EPA 420.4	Groundwater	28
TotaL Organic Carbon (TOC)	SM5310B	Groundwater	28

Method References:

EPA - "Methods for Chemical Analysis of Water and Waste," EPA-600/4-79-020,

revised March 1983, with subsequent revisions

SM - "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992,

with subsequent revisions

Appendix D Historical Groundwater Chemistry Monitoring Analytical Results

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units										
			Feb-84	Jun-93	Oct-93	Dec-94	Mar-95	Jun-95	Sep-95	Dec-95	Mar-96	Jun-96
Benzene	1	μg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
Toluene	5	μg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
Monochlorobenzene	5	μg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
2-Chlorotoluene	5	μg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
1,4-Dichlorobenzene	3	μg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
1,2-Dichlorobenzene	3	μg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
1,2,4-Trichlorobenzene	5	μg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
1,2,3-Trichlorobenzene	5	μg/L	U	Dry	Dry	1 U	5 U	1 U	1 U/1 U	1 U/1 U	1 U/1 U	1 U/1 U
Total Targeted Organics	NA	μg/L	0	Dry	Dry	0	0	0	0/0	0/0	0/0	0/0
Total Recoverable Phenolics	1	μg/L	1	Dry	Dry	15	13	9	5 U/5 U	5 U/5 U	5 U/5 U	5 U/5 U
TOC	NA	mg/L	4	Dry	Dry	7.4	3.5	4.6 U	6.0/4.6	3.6/3.6	2.7/3.0	2.2/2.0
pН	6.5 - 8.5	S.U.	6.6	Dry	Dry	7.5	6.92	6.63	7.55	7.75	6.69	7.88
Conductivity	NA	mS/cm	1,500	Dry	Dry	758	682	804	944	536	906	568
Temperature	NA	Celsius	3	Dry	Dry	6.4	5.6	20.6	16.2	5.0	4.4	16.1
			Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98	Jun-98	Sep-98	Dec-98
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
Toluene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
Monochlorobenzene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
2-Chlorotoluene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
1,4-Dichlorobenzene	3	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
1,2-Dichlorobenzene	3	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
1,2,4-Trichlorobenzene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
1,2,3-Trichlorobenzene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dry	1 U	Dry
Total Targeted Organics	NA	μg/L	0	0	0	0	0	0	0	Dry	0	Dry
Total Recoverable Phenolics	1	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	Dry	5 U	Dry
TOC	NA	mg/L	14	3.7 J	5.3	1.4	3.2	2.7	1.6	Dry	74.8	Dry
рН	6.5 - 8.5	S.U.	6.61	7.48	7.33	7.46	7.32	7.8	7.1	Dry	7.32	Dry
Conductivity	NA	mS/cm	680	890	900	860	1100	950	790	Dry	850	Dry
Temperature	NA	Celsius	15.5	7.9	5.1	14.4	13.8	7.2	5.0	Dry	16.2	Dry

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02	May-03	May-04	Jul-05
Benzene	1	μg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
Toluene	5	μg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
Monochlorobenzene	5	μg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
2-Chlorotoluene	5	μg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
1,4-Dichlorobenzene	3	μg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
1,2-Dichlorobenzene	3	μg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
1,2,4-Trichlorobenzene	5	μg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
1,2,3-Trichlorobenzene	5	μg/L	1 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1.00 U	1.0 U
Total Targeted Organics	-	μg/L	0	0	Dry	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	μg/L	6 J	13	Dry	9	5 U	5 U	239	7.66	5 U	29
TOC	-	mg/L	2.6 U	2.78	Dry	2.28	2.9	5.1	4.6	3.8	4.9	3.7
pH	6.5 - 8.5	S.U.	4.68	6.24	Dry	6.4	5.82	6.31	7.46	6.58	6.99	7.08
Conductivity	-	mS/cm	600	800	Dry	8090	765	820	937	561	920	72.5
Temperature	-	Celsius	6.2	11.2	Dry	10	5.5	10.4	8	6.8	10.3	11
			Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12	Apr-13	Apr-14	Apr-15
Benzene	1	μg/L	1.0 U									
Toluene	5	μg/L	1.0 U									
Monochlorobenzene	5	μg/L	1.0 U									
2-Chlorotoluene	5	μg/L	1.0 U	0.32 J	1.0 U							
1,4-Dichlorobenzene	3	μg/L	1.0 U									
1,2-Dichlorobenzene	3	μg/L	1.0 U									
1,2,4-Trichlorobenzene	5	μg/L	1.0 U									
1,2,3-Trichlorobenzene	5	μg/L	1.0 U									
Total Targeted Organics	NA	μg/L	0	0.32	0	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	μg/L	10 U	10 U	10 U	10U	34	12	10 U	0.01	14	10 U
TOC	NA	mg/L	2.9	3.4	2.8	2.02	3.5	2.7	2.8	2.4	2.4	1.6
pН	6.5 - 8.5	S.Ŭ.	6.96	6.82	6.78	7.89	8.14	6.95	5.73	7.28	7.28	7.05
Conductivity	NA	mS/cm	712	960	1041	10180	1030	902	944	1.242	1.242	0.78
Temperature	NA	Celsius	15.4	10.3	16.1	9.33	9.98	9.51	9.87	7.84	7.84	9.8

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-22/NP-22A

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units									
			Apr-16	Apr-17	Apr-18	Apr-19	May-20	Apr-21	May-22	Apr-23	Apr-24
Benzene	1	μg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
Toluene	5	μg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
Monochlorobenzene	5	μg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
2-Chlorotoluene	5	μg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
1,4-Dichlorobenzene	3	μg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
1,2-Dichlorobenzene	3	μg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
1,2,4-Trichlorobenzene	5	μg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
1,2,3-Trichlorobenzene	5	μg/L	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U	1.0 U/1.0 U
Total Targeted Organics	NA	μg/L	0	0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
Total Recoverable Phenolics	1	μg/L	5.0 U	5.0 U	5.0 U/5.0 U	5.0 U/5.0 U	5.0 U/5.0 U	5.0 U/5.0 U	5.0 U/5.0 U	5.0 U/5.0 U	5.0 U/5.0 U
TOC	NA	mg/L	10.5	3.3	2.7/2.6	3.0/3.0	3.5/3.9	2.0/2.3	47.3/3.9	1.0/4.1	4.5/4.5
рН	6.5 - 8.5	S.U.	6.98	6.28	6.27	6.85	8.31	7.18	7.01	6.76	6.70
Conductivity	NA	mS/cm	0.94	0.97	1.19	1.05	1.71	5.05	4.13	4.19	5.62
Temperature	NA	Celsius	6.3	7.6	3.9	9.5	12.9	8.1	11.7	7.2	10.77

Notes:

(1)

U

- Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported in Phenols in February 1984

(2) - Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

- Interceptor Trench operation began in October 1990; first full month of operation was November 1990; represented by dashed vertical line above

- NP-22A was installed in November 1993, approximately 10 feet from the former location of NP-22

Dry - Dry well or insufficient sample for analyses

- Estimated at associated value - Not analyzed or not available NA

- Standard Unit S.U.

TOC - Total Organic Carbon

- Not detected at associated value

- Micrograms per liter μg/L

mS/cm - Microsiemens per centimeter

- Concentration exceeds New York State water quality standards

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Sum-83	Jan-89	Dec-93	Mar-94	Jun-94	Sep-94	Dec-94	Mar-95	Jun-95	Sep-95
								-				-
Benzene	1	μg/L	9	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
Toluene	5	μg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
Monochlorobenzene	5	μg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
2-Chlorotoluene	5	μg/L	2	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
1,4-Dichlorobenzene	3	μg/L	U	4	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
1,2-Dichlorobenzene	3	μg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
1,2,4-Trichlorobenzene	5	μg/L	3	1	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
1,2,3-Trichlorobenzene	5	μg/L	U	U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	Dry
Total Targeted Organics	-	μg/L	14	5	0	0	0	0	0	0	0	Dry
Total Recoverable Phenolics	1	μg/L	1	NA	5 U	5 U	27	10	2	5 U	5 U	Dry
TOC	-	mg/L	1	NA	3	6.7	3.8	8.5	4.5	2.8	I	Dry
рН	6.5 - 8.5	S.U.	7	6.5	8.25	7.68	7.7	7.45	7.75	7	6.71	Dry
Conductivity	-	mS/cm	610	3100	486	1440	740	870	851	356	430	Dry
Temperature	-	Celsius	20	5.7	7.5	8.8	19.3	12.1	7.8	6	21.3	Dry
			Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Monochlorobenzene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Chlorotoluene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Total Targeted Organics	-	μg/L	0	0	0	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
TOC	-	mg/L	5.2	2.3	2.1	4.6	3.8 J	41	1.1	8.8	3.9	2.0
рН	6.5 - 8.5	S.U.	7.56	6.53	7.57	6.53	7.17	7.82	7.47	7.53	7.11	7.30
Conductivity	-	mS/cm	480	770	388	480	896	425	400	820	600	1055
Temperature	-	Celsius	5.4	3.9	16.7	16.4	7.9	5.0	15.1	16.2	8.8	6.8

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units										
			Jun-98	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02
Benzene	1	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Toluene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Monochlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
2-Chlorotoluene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
1,4-Dichlorobenzene	3	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
1,2-Dichlorobenzene	3	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
1,2,4-Trichlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
1,2,3-Trichlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Total Targeted Organics	NA	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Total Recoverable Phenolics	1	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
TOC	-	mg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
рН	6.5 - 8.5	S.U.	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Conductivity	NA	mS/cm	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Temperature	NA	Celsius	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
			May-03	May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12
Dannana	4		-	-	D.m.		Dmi		•	_	-	
Benzene Toluene	1 5	µg/L	Dry	Dry	Dry Dry	Dry Dry	Dry	1.0 U 1.0 U	Dry Dry	Dry Dry	Dry Dry	Dry
Monochlorobenzene	5	µg/L	Dry	Dry Dry	Dry	Dry	Dry Dry	1.0 U	Dry	Dry Dry	Dry	Dry Dry
2-Chlorotoluene	5	μg/L	Dry Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
1,4-Dichlorobenzene	3	μg/L μg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
1,2-Dichlorobenzene	3	μg/L μg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
1,2,4-Trichlorobenzene	5 5	μg/L μg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
1,2,3-Trichlorobenzene	5 5	μg/L μg/L	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry	Dry	Dry	Dry
Total Targeted Organics	NA	μg/L μg/L	Dry	Dry	Dry	Dry	Dry	0	Dry	Dry	Dry	Dry
Total Recoverable Phenolics	1	μg/L μg/L	Dry	Dry	Dry	Dry	Dry	10 U	Dry	Dry	Dry	Dry
TOC	NA	mg/L	Dry	Dry	Dry	Dry	Dry	18.6	Dry	Dry	Dry	Dry
pH	6.5 - 8.5	S.U.	Dry	Dry	Dry	Dry	Dry	7.74	Dry	Dry	Dry	Dry
Conductivity	0.5 - 0.5 NA	mS/cm	Dry	Dry	Dry	Dry	Dry	443	Dry	Dry	Dry	Dry
Temperature	NA	Celsius	Dry	Dry	Dry	Dry	Dry	20.8	Dry	Dry	Dry	Dry
51 4141 6	1 17 1	00.0.00	٠.,	2.,	٠.,	٠.,	2.,	_0.0	٠.,	2.,	2.,	2.,

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-23

Parameter ⁽¹⁾	Groundwater											
Parameter	Standard (2)	Units	Apr-13	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19	May-20	Apr-21	May-22
Benzene	1	μg/L	Dry									
Toluene	5	μg/L	Dry									
Monochlorobenzene	5	μg/L	Dry									
2-Chlorotoluene	5	μg/L	Dry									
1,4-Dichlorobenzene	3	μg/L	Dry									
1,2-Dichlorobenzene	3	μg/L	Dry									
1,2,4-Trichlorobenzene	5	μg/L	Dry									
1,2,3-Trichlorobenzene	5	μg/L	Dry									
Total Targeted Organics	NA	μg/L	Dry									
Total Recoverable Phenolics	1	μg/L	Dry									
TOC	NA	mg/L	Dry									
pН	6.5 - 8.5	S.U.	Dry									
Conductivity	NA	mS/cm	Dry									
Temperature	NA	Celsius	Dry									

			Apr-23	Apr-24
Benzene	1	μg/L	Dry	Dry
Toluene	5	μg/L	Dry	Dry
Monochlorobenzene	5	μg/L	Dry	Dry
2-Chlorotoluene	5	μg/L	Dry	Dry
1,4-Dichlorobenzene	3	μg/L	Dry	Dry
1,2-Dichlorobenzene	3	μg/L	Dry	Dry
1,2,4-Trichlorobenzene	5	μg/L	Dry	Dry
1,2,3-Trichlorobenzene	5	μg/L	Dry	Dry
Total Targeted Organics	NA	μg/L	Dry	Dry
Total Recoverable Phenolics	1	μg/L	Dry	Dry
TOC	NA	mg/L	Dry	Dry
pH	6.5 - 8.5	S.U.	Dry	Dry
Conductivity	NA	mS/cm	Dry	Dry
Temperature	NA	Celsius	Dry	Dry

Notes:

(1) - Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984 (2)

- Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

- Interceptor Trench operation began in October 1990; first full month of operation was November 1990

- Dry well or insufficient sample for analyses Dry

- Estimated at associated value - Data unavailable

NA - Not analyzed or not available

S.U. - Standard Unit

TOC - Total Organic Carbon

U - Not detected at associated value

μg/L - Micrograms per liter

- Microsiemens per centimeter mS/cm

- Concentration exceeds New York State water quality standards

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Sum-83	Dec-93	Mar-94	Jun-94	Sep-94	Dec-94	Mar-95	Jun-95	Sep-95	Dec-95
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA NA	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	U U U U U U 0 14 U 4 6.8 1,570 15	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 3 2.4 7.58 805 7.4	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 11 7.48 1890 8.6	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 2.9 6.96 840 17.5	Dry	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 6 5 7.43 716 7.6	5 U 5 U 5 U 5 U 5 U 5 U 5 U 0 5 U 1.6 7.46 546 5.7	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 2.6 6.41 631 20.2	Dry	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 3.4 7.52 555 4.1
			Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98	Jun-98
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA NA	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 1.2 6.85 780 3.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 1.1 7.37 600 16.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 2.9 6.94 630 17.8	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 4.2 J 7.34 990 8.7	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 3.7 7.42 920 4.5	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 1 U 8.01 910 16.1	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 2.4 7.27 1000 15.4	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 3.0 7.13 850 6.2	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 1.3 7.28 820 5.9	Dry

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02	May-03
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
			May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12	Apr-13
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA NA	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Dry	Dry	Dry	Dry	1.0 U 1.0 U 1.0 U 6.0 U 1.0 U 1.0 U 1.0 U 0 12 U 19.9 6.74 930 19.2	Dry	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0 25U 1.5 NA NA	Dry	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.1 1.0 U 1.1 10 U 1.9 7.05 504 11.52	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 0 0.01 9.4 7.85 0.627 6.9

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-27

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19	May-20	Apr-21	May-22	Apr-23
Benzene	1	μg/L	1.0 U	Dry	1.0 U	1.0 U	Dry					
Toluene	5	μg/L	1.0 U	Dry	1.0 U	1.0 U	Dry					
Monochlorobenzene	5	μg/L	1.0 U	Dry	1.0 U	1.0 U	Dry					
2-Chlorotoluene	5	μg/L	1.0 U	Dry	1.0 U	1.0 U	Dry					
1,4-Dichlorobenzene	3	μg/L	1.0 U	Dry	1.0 U	1.0 U	Dry					
1,2-Dichlorobenzene	3	μg/L	1.0 U	Dry	1.0 U	1.0 U	Dry					
1,2,4-Trichlorobenzene	5	μg/L	1.0 U	Dry	1.0 U	1.0 U	Dry					
1,2,3-Trichlorobenzene	5	μg/L	1.0 U	Dry	1.0 U	1.0 U	Dry					
Total Targeted Organics	NA	μg/L	0	0	0	0	0	0	Dry	0	0	Dry
Total Recoverable Phenolics	1	μg/L	3.1 J	10 U	5.0 U	5.0 U	5.0 U	5.0 U	Dry	5.0 U	5.0 U	Dry
TOC	NA	mg/L	1.6	1.0	11.3	2.4	2.5	1.6	Dry	2.0	4.1	Dry
pH	6.5 - 8.5	S.U.	7.85	7.74	7.62	6.62	7.93	6.84	Dry	7.69	8.18	Dry
Conductivity	NA	mS/cm	0.627	0.647	0.556	0.69	0.487	0.581	Dry	0.85	0.64	Dry
Temperature	NA	Celsius	6.9	6.9	5.9	6.8	5.3	7.3	Dry	7.6	10.3	Dry
			Apr-24									
Benzene	1	μg/L	Dry									
Toluene	5	μg/L	Dry									
Monochlorobenzene	5	μg/L	Dry									
2-Chlorotoluene	5	μg/L	Dry									
1,4-Dichlorobenzene	3	μg/L	Dry									
4.6.70.11	_	"										

Notes:

(1)

(2)

TOC

Conductivity

Temperature

рΗ

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Total Targeted Organics

Total Recoverable Phenolics

- Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984

- Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

Dry

Dry

Dry Dry

Dry

Dry

Dry

Dry Dry

- Interceptor Trench operation began in October 1990; first full month of operation was November 1990

5

5

ΝA

NA

6.5 - 8.5

NA

NA

μg/L

μg/L

μg/L

μg/L

μg/L

mg/L

S.U.

mS/cm

Celsius

Dry - Dry well or insufficient sample for analyses

- Estimated at associated value Not analyzed or not availableStandard Unit NA

S.U.

TOC - Total Organic Carbon

- Not detected at associated value U

- Micrograms per liter μg/L

mS/cm - Microsiemens per centimeter

- Concentration exceeds New York State water quality standards

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Sum-83	Jan-89	Jun-93	Oct-93	Jun-94	Sep-94	Dec-94	Mar-95	Jun-95	Sep-95
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA NA	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	7 U 310 2 120 82 U U 521 14 U 4 7.1 1,940 20	1 U 25 U 7 10 U U 43 30 28 6.2 100000	1 U 1 U 5 2 3 3 1 U 1 U 13 1 1 1	1 U 1 U 1 U 1 U 1 U 1 U 1 U 2 S 1 U 1 U 2 S 1 U 1 U 2 S 1 U 1 U 2 S 1 U 1 U 1 U 2 S 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 3.8 7.04 8120 20.2	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 19 11 7.1 759 6.3	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 16 9.3 7.48 6150 10.3	5 U 5 U 5 U 5 U 5 U 5 U 5 U 0 0 5 U 3.4 6.82 3830 8.2	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 4.7 6.2 951 18.6	1 U 1 U 1 U 1 U 3 U 1 U 1 U 0 5 U 3.4 7.29 12740 20.2
			Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA NA	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 3.4 7.43 5,310 6.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 5.4 6.54 4910 4.4	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 3.4 7.38 2460 16.1	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 5.7 6.72 2810 16.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 5.2 6.84 8120 11.3	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 6.2 7.11 3000 6.2	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 1.9 7.27 6200 15.1	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 2.5 7.04 4700 17.7	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 3.9 6.79 6200 10.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 2.3 7.30 5200 7.2

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Jun-98	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02
Benzene	1	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Monochlorobenzene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Chlorotoluene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,3-Trichlorobenzene	5	μg/L	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Total Targeted Organics	NA	μg/L	0	0	0	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	μg/L	5 U	5 U	5 U	5 U	28	5	10	5 U	5 U	185
тос	NA 0.5.0.5	mg/L	3.7	76.8	4	3.0 U	3.23	1 U.0	4.39	3	4.2	2.7
pH	6.5 - 8.5	S.U.	7.34	7.18	6.9	6.12	6.8	-	6.86	6.78	6.97	7.65
Conductivity Temperature	NA NA	mS/cm Celsius	4,000 16.7	4300 17.1	4000 14.1	3000 5.5	3500 16.9	3670 20	3570 12.8	3700 6.5	2520 13.5	3270 9.3
			May-03	May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12
Benzene	1	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
Toluene	5	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
Monochlorobenzene	5	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
2-Chlorotoluene	5	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	0.33 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
1,4-Dichlorobenzene	3	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	0.36 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
1,2-Dichlorobenzene	3	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	0.23 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
1,2,4-Trichlorobenzene	5	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
1,2,3-Trichlorobenzene	5	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U/1.0 U
Total Targeted Organics	NA	μg/L	0	0	0	0	0.92	0	0	0	0	0/0
Total Recoverable Phenolics	1	μg/L	5 U	5 U	10 U	10 U	10 U	10 U	10 U	26 U	79	10 U/10 U
TOC	NA 0 5 0 5	mg/L	3.6	4.3	3.3	2.2	3.9	3.1	2.31	2.5	2	2.0/1.9
pH	6.5 - 8.5	S.U.	7.35	7.17	7.28	7.42	6.87	6.82	8.12	NA	7.23	6.96
Conductivity	NA NA	mS/cm	3570	4290	3110 17.1	2270	3960	4180	3210	NA	5440	3790
Temperature	NA	Celsius	8.3	12	17.1	21.5	13.1	19.2	11.16	NA	10.44	11.58

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York P32A

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units										
			Apr-13	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19	May-20	Apr-21	May-22
Benzene	1	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Monochlorobenzene	5	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorotoluene	5	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	3	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,3-Trichlorobenzene	5	μg/L	1.00 U	1.00 U	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Total Targeted Organics	NA	μg/L	0	0	0	0	0/0	0	0	0	1.0 U	0
Total Recoverable Phenolics	1	μg/L	0.01	4.1 J	10 U	3.5 J	5 U/5 U	5.0 U	5.0 U	5.0 U	1.0 U	5.0 U
TOC	NA	mg/L	2.3	2.4	1.6	9.4	2.6/2.6	2.6	2.2	2.3	2.2	1.7
рН	6.5 - 8.5	S.U.	7.42	7.28	7.41	7.05	6.76	5.57	6.06	8.61	8.61	7.31
Conductivity	NA	mS/cm	3	1	2.9	3.18	3.12	4.88	4.32	4.14	1.0/4.5	4.4
Temperature	NA	Celsius	9.27	7.84	10.2	7.9	8.3	6.5	10.4	16.0	9.9	13.3
			Apr-23	Apr-24								
Benzene	1	μg/L	1.00 U	1.0 U								
Toluene	5	μg/L	1.00 U	1.0 U								

Notes	s

(1)

(2)

Conductivity

Temperature

TOC

рН

Monochlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Total Targeted Organics

Total Recoverable Phenolics

2-Chlorotoluene

- Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984

- Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

1.0 U

1.0 U

1.0 U

1.0 U

1.0 U

1.0 U

0/0

5.0 U

1.9

7.16

3.260

15.18

1.00 U

1.00 U

1.00 U

1.00 U

1.00 U

1.00 U

0

5.00 U

2.6

7.28

10.8

- Interceptor Trench operation began in October 1990; first full month of operation was November 1990

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

mg/L

S.Ū.

mS/cm

Celsius

Dry - Dry well or insufficient sample for analyses

J - Estimated at associated value
NA - Not analyzed or not available

S.U. - Standard Unit

TOC - Total Organic Carbon

U - Not detected at associated value

 $\mu g/L$ - Micrograms per liter

mS/cm - Microsiemens per centimeter

- Concentration exceeds New York State water quality standards

5

NA

1

NA

6.5 - 8.5

NA

NA

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Sum-83	Dec-93	Mar-94	Jun-94	Sep-94	Dec-94	Mar-95	Jun-95	Sep-95	Dec-95
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	U U U U U U 0 14 U 4 6.9 930 21	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 11 4 7.27 876 8	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 11 8.2 1590 8.1	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 80 5.5 7.08 920 17.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 14 7 6.45 740 20	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 12 10 7.34 825 6.1	5 U 5 U 5 U 5 U 5 U 5 U 5 U 0 10 4.4 7.02 499 5.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 11 6.94 694 18.3	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 10.6 7.46 905 21.05	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 8.6 7.42 696 4.9
			Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98	Jun-84
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA NA	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 2.8 6.77 790 3.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 2.4 7.86 596 20.5	1 U/1 U 1.9/1.6 J 1 U/1 U 1 U/1 U 1 U/1 U 1 U/1 U 1 U/1 U 1 U/1 U 1.9/1.6 J 5 U 4.4 6.93 680 17.3	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 4.2 J 7.71 1000 7.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 6.2 7.47 1000 4.7	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 1.6/1.7 7.92 900 18.0	1 U/1 U 1 U/1 U 0/0 5 U/5 U 4.0/4.2 7.22 1100 16.8	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 4.2 8.66 1000 5.3	1 U/1 U 1 U/1 U 1 U/1 U 1 U/1 U 1 U/1 U 1 U/1 U 1 U/1 U 0/0 5 U/5 U 2.5/2.4 7.20 890 5.9	Dry

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02	May-03
Benzene	1	μg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
Toluene	5	μg/L	Dry	Dry	Dry	Dry	Dry	1.5	1 U	Dry	Dry	Dry
Monochlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
2-Chlorotoluene	5	μg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
1,4-Dichlorobenzene	3	μg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
1,2-Dichlorobenzene	3	μg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
1,2,4-Trichlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
1,2,3-Trichlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	1 U	1 U	Dry	Dry	Dry
Total Targeted Organics	NA	μg/L	Dry	Dry	Dry	Dry	Dry	1.5	0	Dry	Dry	Dry
Total Recoverable Phenolics	1	μg/L	Dry	Dry	Dry	Dry	Dry	69	5 U	Dry	Dry	Dry
TOC	NA	mg/L	Dry	Dry	Dry	Dry	Dry	3.52	3.1	Dry	Dry	Dry
pH	6.5 - 8.5	S.U.	Dry	Dry	Dry	Dry	Dry	6.68	6.3	Dry	Dry	Dry
Conductivity	NA	umhos/cm	Dry	Dry	Dry	Dry	Dry	6863	564	Dry	Dry	Dry
Temperature	NA	Celsius	Dry	Dry	Dry	Dry	Dry	9.8	6.7	Dry	Dry	Dry
			May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12	Apr-13
Benzene	1	μg/L	Dry									
Toluene	5	μg/L	Dry									
Monochlorobenzene	5	μg/L	Dry									
2-Chlorotoluene	5	μg/L	Dry									
1,4-Dichlorobenzene	3	μg/L	Dry									
1,2-Dichlorobenzene	3	μg/L	Dry									
1,2,4-Trichlorobenzene	5	μg/L	Dry									
1,2,3-Trichlorobenzene	5	μg/L	Dry									
Total Targeted Organics	NA	μg/L	Dry									
Total Recoverable Phenolics	1	μg/L	Dry									
TOC	NA	mg/L	Dry									
pH	6.5 - 8.5	S.U.	Dry									
Conductivity	NA	umhos/cm	Dry									
Temperature	NA	Celsius	Dry									

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-35

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19	May-20	Apr-21	May-22	Apr-23
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA NA	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA NA	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Dry									1.0/4.5

Notes:

(1)

(2)

- Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984

- Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

- Interceptor Trench operation began in October 1990; first full month of operation was November 1990

Dry - Dry well or insufficient sample for analyses

- Estimated at associated value

Not analyzed or not availableStandard Unit NA

S.U.

TOC - Total Organic Carbon

- Not detected at associated value U

- Micrograms per liter μg/L

mS/cm - Microsiemens per centimeter

- Concentration exceeds New York State water quality standards

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	May-85	Dec-85	Dec-88	Jun-93	Oct-93	Dec-93	Mar-94	Jun-94	Sep-94	Dec-94
Benzene	1	ug/l	700	70	920	1 U	Dry	Dry	Dry	1 U	Dry	1 U
Toluene	і Б	µg/L	13	70 2	6	1 U	Dry	Dry	Dry	1 U	Dry	1 U
Monochlorobenzene	5	µg/L	9500	2500	14000	1 U	Dry	Dry	Dry	1 U	Dry	1 U
2-Chlorotoluene	5	μg/L μg/L	U	2300	3	1 U	Dry	Dry	Dry	1 U	Dry	1 U
1,4-Dichlorobenzene	3	μg/L	2700	2900	2900	1 U	Dry	Dry	Dry	1 U	Dry	1 U
1.2-Dichlorobenzene	3	μg/L	700	990	1100	1 Ü	Dry	Dry	Dry	1 U	Dry	1 U
1,2,4-Trichlorobenzene	5	μg/L	31	48	39	1 Ü	Dry	Dry	Dry	1 U	Dry	1 U
1,2,3-Trichlorobenzene	5	μg/L	15	14	2	1 U	Dry	Dry	Dry	1 U	Dry	1 U
Total Targeted Organics	ŇA	μg/L	13659	6525	18970	0	Dry	Dry	Dry	0	Dry	0
Total Recoverable Phenolics	1	μg/L	1750	4650	600	ŇA	Dry	Dry	Dry	24	Dry	5
TOC	NA	mg/L	131	33	19	9.4	Dry	Dry	Dry	8.8	Dry	12
pH	6.5 - 8.5	S.U.	7.7	6.8	6.9	7.01	Dry	Dry	Dry	1	Dry	7.15
Conductivity	NA	umhos/cm	140	1430	NA	885	Dry	Dry	Drý	1	Dry	1234
Temperature	NA	Celsius	19	10	NA	15	Dry	Dry	Drý	1	Dry	6.5
			Mar-95	Jun-95	Sep-95	Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97
	,				•				•			
Benzene	1	μg/L	5 U	1 U	Dry	1 U	1 U	0.22 J	1 U	1 U	1 U	1 U
Toluene	5	μg/L	5 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Monochlorobenzene	5	μg/L	5 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1 U	1.9
2-Chlorotoluene	5 3	μg/L	5 U	1 U 1 U	Dry	1 U 1 U	1 U 1 U	1.4 1 U	1 U	1 U 1 U	1 U 1 U	1 U
1,4-Dichlorobenzene	ა ვ	μg/L	5 U 5 U	1 U	Dry	1 U	1 U	1 U	1 U 1 U	1 U	1 U	1 U 1 U
1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	•	μg/L	5 U	1 U	Dry	_	1 U	1 U	1 U	1 U	1 U	1 U
	5	μg/L			Dry	1 U						
1,2,3-Trichlorobenzene	5	μg/L	5 U	1 U	Dry	1 U	1 U	1 U	1 U	1 U	1 U	1 U 0
Total Page versible Phonelies	NA 1	μg/L	0 17	0 11	Dry	0 5 U	0 5 U	1.6 J 5 U	0 5 U	0 5 U	0 5 U	5 U
Total Recoverable Phenolics TOC	NA	μg/L	5.8	7.1	Dry Dry	9.1	2.4	2.2	6.2	3.2	6.1	
pH	NA 6.5 - 8.5	mg/L S.U.	6.06	6.3	Dry Dry	9.1 7.56	2. 4 7.14	2.2 8.01	6.63	3.2 7.38	7.12	1.3 7.73
рп Conductivity	0.5 - 6.5 NA	umhos/cm	1234	868	Dry	1080	965	832	1020	1200	1000	980
Temperature	NA NA	Celsius	6.5	20.2	Dry	4.3	3.3	632 20	16.2	7.2	3.5	19.0
remperature	INA	Ceisius	0.5	20.2	טו∪	4.5	5.5	20	10.2	1.4	3.5	19.0

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Sep-97	Dec-97	Mar-98	Jun-98	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99
Benzene	1	μg/L	Dry	1 U/1 U	1 U	Dry						
Toluene	5	μg/L	Dry	1 U/1 U	1 U	Dry						
Monochlorobenzene	5	μg/L	Dry	1 U/1 U	1 Ü	Dry	Dry	Dry	Drý	Dry	Drý	Dry
2-Chlorotoluene	5	μg/L	Dry	1 U/1 U	1 U	Dry	Dry	Dry	Drý	Dry	Dry	Dry
1,4-Dichlorobenzene	3	μg/L	Dry	1 U/1 U	1 U	Dry						
1,2-Dichlorobenzene	3	μg/L	Dry	1 U/1 U	1 U	Dry						
1,2,4-Trichlorobenzene	5	μg/L	Dry	1 U/1 U	1 U	Dry						
1,2,3-Trichlorobenzene	5	μg/L	Dry	1 U/1 U	1 U	Dry						
Total Targeted Organics	NA	μg/L	Dry	0/0	0	Dry						
Total Recoverable Phenolics	1	μg/L	Dry	5 U/5 U	5 U	Dry						
TOC	NA	mg/L	Dry	3.4/3.6	1.8	Dry						
рН	6.5 - 8.5	S.U.	Dry	7.18	7.10	Dry						
Conductivity	NA	umhos/cm	Dry	1000	1000	Dry						
Temperature	NA	Celsius	Dry	7.0	3.5	Dry						
			Apr-00	May-01	Apr-02	May-03	May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09
Benzene	1	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry
Toluene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry
Monochlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	0.26 J	Dry
2-Chlorotoluene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry
1,4-Dichlorobenzene	3	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	0.26 J	Dry
1,2-Dichlorobenzene	3	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	0.14 J	Dry
1,2,4-Trichlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry
1,2,3-Trichlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	Dry
Total Targeted Organics	NA	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	0.66	Dry
Total Recoverable Phenolics	1	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	NA	Dry
TOC	NA	mg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	NA	Dry
pH	6.5 - 8.5	S.U.	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	6.52	Dry
Conductivity	NA	umhos/cm	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	443	Dry
Temperature	NA	Celsius	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	23.1	Dry

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-44

Parameter (1)	Groundwater Standard ⁽²⁾	Units	May-10	May-11	Apr-12	Apr-13	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 5 5 NA 1 NA 6.5 - 8.5 NA NA	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
			May-20	Apr-21	May-22	Apr-23	Apr-24					
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Dry	Dry	Dry	Dry	Dry					

Notes:

- Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984 (2)

- Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998
- Interceptor Trench operation began in October 1990; first full month of operation was November 1990
- Dry well or insufficient sample for analyses

Dry - Estimated at associated value

- Not analyzed or not available NA

S.U. - Standard Unit

TOC - Total Organic Carbon

- Not detected at associated value

μg/L - Micrograms per liter

mS/cm - Microsiemens per centimeter

- Concentration exceeds New York State water quality standards

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Dec-85	Jan-89	Dec-93	Mar-94	Jun-94	Sep-94	Dec-94	Mar-95	Jun-95	Sep-95
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA NA	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	U 10 U U U U U U 0 500 U 10 U 6 1,045 14	U U U U U U O NA NA 6.8 11000 NA	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 6 2.1 7.18 912 8.3	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 7.8 7.32 2030 8.1	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 3.1 7.27 990 17.4	Dry	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 11 7.13 927 6.9	5 U 5 U 5 U 5 U 5 U 5 U 5 U 0 5 U 3.6 7 650 5	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 3.1 6.58 810 16.9	Dry
			Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98
Benzene Toluene Monochlorobenzene 2-Chlorotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene Total Targeted Organics Total Recoverable Phenolics TOC pH Conductivity Temperature	1 5 5 5 3 3 5 5 NA 1 NA 6.5 - 8.5 NA	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 3.4 7.71 724 5.3	1 U 1 U 1 U 1 U 1 U 1 U 1.3 1.2 2.5 5 U 1.4 6.95 870 3.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 1.7 7.52 786 18.9	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 2.8 6.28 830 14.9	1 U/1 U 1 U/1 U 0/0 5 U/5 U 3.2 J/3.7 J 7.09 1100 7.2	1 U/1 U 1 U/1 U 0/0 5 U/5 U 5.8 J/3.6 J 7.06 1000 3.7	1 U/1 U 1 U/1 U 0/0 5 U/5 U 1 U 7.00 1000 12.5	Dry	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 2.3 7.2 1000 6.3	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0 5 U 1.2 6.85 990 4.5

Parameter ⁽¹⁾	Groundwater Standard ⁽²⁾	Units	Jun-98	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Apr-00	May-01	Apr-02
Benzene	1	μg/L	Dry	1 U	Dry	Dry						
Toluene	5	μg/L	Dry	1 Ū	Dry	Drý						
Monochlorobenzene	5	μg/L	Dry	1	Dry	Dry						
2-Chlorotoluene	5	μg/L	Dry	1 U	Dry	Dry						
1,4-Dichlorobenzene	3	μg/L	Dry	1 U	Dry	Dry						
1,2-Dichlorobenzene	3	μg/L	Dry	1 U	Dry	Dry						
1,2,4-Trichlorobenzene	5	μg/L	Dry	1 U	Dry	Dry						
1,2,3-Trichlorobenzene	5	μg/L	Dry	1 U	Dry	Dry						
Total Targeted Organics	NA	μg/L	Dry	1	Dry	Dry						
Total Recoverable Phenolics	1	μg/L	Dry	5 U	Dry	Dry						
TOC	NA	mg/L	Dry	5.8	_ Dry	Dry						
рН	6.5 - 8.5	S.U.	Dry	5.52	Dry	Dry						
Conductivity	NA	mS/cm	Dry	806	Dry	Dry						
Temperature	NA	Celsius	Dry	5.8	Dry	Dry						
			May-03	May-04	Jul-05	Aug-06	Jun-07	Aug-08	Apr-09	May-10	May-11	Apr-12
Benzene	1	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
Toluene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
Monochlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
2-Chlorotoluene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
1,4-Dichlorobenzene	3	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
1,2-Dichlorobenzene	3	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
1,2,3-Trichlorobenzene	5	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.0 U	1.0 U	1.0 U/1.0 U	1.0 U
Total Targeted Organics	NA	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	0	0	0/0	0
Total Recoverable Phenolics	1	μg/L	Dry	Dry	Dry	Dry	Dry	Dry	10 U	26 U	9.4 J/14	10 U
TOC	NA	mg/L	Dry	Dry	Dry	Dry	Dry	Dry	1.67	1.6	1.9/1.8	2.1
pН	6.5 - 8.5	S.U.	Dry	Dry	Dry	Dry	Dry	Dry	7.73	8.73	6.83	6.69
Conductivity	NA	mS/cm	Dry	Dry	Dry	Dry	Dry	Dry	1013	1045	931	960
Temperature	NA	Celsius	Dry	Dry	Dry	Dry	Dry	Dry	11.8	11.49	8.72	10.43

Groundwater Chemistry Monitoring Analytical Results Durez Interceptor Trench North Tonawanda, New York NP-46

	Groundwater											
Parameter ⁽¹⁾	Standard ⁽²⁾	Units	Apr-13	Apr-14	Apr-15	Apr-16	Apr-17	Apr-18	Apr-19	May-20	Apr-24	May-22
Benzene	1	μg/L	1.0 U	1.0 U								
Toluene	5	μg/L	1.0 U	1.0 U								
Monochlorobenzene	5	μg/L	1.0 U	1.0 U								
2-Chlorotoluene	5	μg/L	1.0 U	1.0 U								
1,4-Dichlorobenzene	3	μg/L	1.0 U	1.0 U								
1,2-Dichlorobenzene	3	μg/L	1.0 U	1.0 U								
1,2,4-Trichlorobenzene	5	μg/L	1.0 U	1.0 U								
1,2,3-Trichlorobenzene	5	μg/L	1.0 U	1.0 U								
Total Targeted Organics	NA	μg/L	0	0	0	0	0	0	0	0	0	0
Total Recoverable Phenolics	1	μg/L	0.01	4.4 J	5.0 U	5.0 U						
TOC	NA	mg/L	2.1	3.2	10.4	10.4	2.3	3.2	3.3	3.1	1.0/4.5	2.3
рH	6.5 - 8.5	S.Ŭ.	7.24	7.24	6.75	6.75	6.18	7.02	5.99	7.78	8.69	7.0
Conductivity	NA	mS/cm	0.888	0.888	0.87	0.87	0.85	1.00	0.96	1.00	1.06	1.01
Temperature	NA	Celsius	9.1	9.1	6.9	6.9	7.8	5.1	7.7	14.7	9.7	11.7

			Apr-23	Apr-24
Benzene	1	μg/L	1.0 U	1.0 U
Toluene	5	μg/L	1.0 U	1.0 U
Monochlorobenzene	5	μg/L	1.0 U	1.0 U
2-Chlorotoluene	5	μg/L	1.0 U	1.0 U
1,4-Dichlorobenzene	3	μg/L	1.0 U	1.0 U
1,2-Dichlorobenzene	3	μg/L	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	μg/L	1.0 U	1.0 U
1,2,3-Trichlorobenzene	5	μg/L	1.0 U	1.0 U
Total Targeted Organics	NA	μg/L	0	0/0
Total Recoverable Phenolics	1	μg/L	5.00 U	5.0 U
TOC	NA	mg/L	2.2	2.0
pH	6.5 - 8.5	S.Ŭ.	6.97	6.76
Conductivity	NA	mS/cm	0.97	0.890
Temperature	NA	Celsius	6.7	13.09

Notes:

(1) - Monitoring wells and compounds are in accordance with Appendix B, Durez Partial Consent Judgment; except analyses for Total Recoverable Phenolics were reported as Phenols in February 1984 (2)

- Groundwater standards are New York State Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

Interceptor Trench operation began in October 1990; first full month of operation was November 1990
Dry well or insufficient sample for analyses

Dry J - Estimated at associated value

NA - Not analyzed or not available

- Standard Unit S.U.

TOC - Total Organic Carbon

U - Not detected at associated value

μg/L - Micrograms per liter

- Microsiemens per centimeter mS/cm

- Concentration exceeds New York State water quality standards

Appendix E Landfill Cap, Site Cover, and Fence Inspection and IT System Manhole and NAPL Collection Well Inspection Forms

Semiannual Site Cover and Fence Inspection

	Inspection Item	Applicable to Site	Inspect For	
1.	Landfill Cap	¥ /N	- Signs of erosion (cap, ditches, swales) - Exposure of the HDPE Liner - Areas of insufficient grass coverage - Signs of dead/dying grass - Presence of washouts - Settlement causing ponding of water - Signs of slope instability - Signs of burrowing by animals - Presence of rooting trees (cap, ditches, swales) - Signs of poor drainage in ditches/swales	Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N
2.	Site Cover	₩ N	- Signs of erosion (cap, ditches, swales) - Areas of insufficient asphalt, grass, vegetation cover - Signs of dead/ dying grass/ vegetation - Presence of Washouts - Settlement causing ponding of water - Signs of slope instability - Signs of burrowing by animals - Presence of rooting trees (cap, ditches, swales) - Signs of poor drainage in ditches/swales	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
3.	Perimeter Fence	(v) N	 Breaches in the fence Gates secure Locks in place Missing or illegible signage 	
Comr	nents/ Remarks	(Note: If repa	air/maintenance is recommended, describe its location/exten	t below)
_	esence	of burn		29
Fe	nceor	east s	ide	

Durez North Tonawanda Semiannual IT System Inspections

	1	M	anhole	DTW)		S,SG,	1111	7
Station Number	Condition	Visible Chemistry	Sediment	Water	Flow	NAPL	Amount	Date	1
Main Lift Station	600d	N(N	11.24	Speed	N	Removed		4
MH-4+20	6000	N	N	13.51	Fast	N	NIA	MIA	
MH-5+54	6000	N	N		Slow	7		MIN	4
MH-8+13	600d	N	9	11.37	Slow		MIA	MA	
MH-10+75	6000	N	Ÿ	4.23	Slow	N	NIA	MIG	
MH-12+58	600d	N	N		2/00	N	NIA	NIA	
Lift Station #1	6000	N	N	14.42	FASE	17	NA	NIA	-
MH-13+99	6000	N		8.00	SID	N	NIA	NI	
MH-17+20	Good	N	И	800	Slow	N	1	MIA	
MH-19+78	600d	N	N				NIA	MA	
MH-23+55	6009	1/1	N		Slow	V	MÀ	MA	-
MH-26_55	6000	Ü	N	6.93	Slow	N	NIV	NIO	-
Lift Station #2	6000	N	N	14.91	Fast		MA	MA	-
MH-33+35	600 d	N	M	12.01	Fast	N	NIA	NIT	-
MH-37+13	600 d	N	G.	1 -	Slow	7	NIA	MA	-
MH-40+70	6000	N	N		Slow	N		MA	-
MH-43+54	Good	N	4	10.09	No		NIA	MIU	1
Lift Station #3	6009	7	4	13.21	Figu	N	Mid	MIA	
MH-49+48	600 d	N	Ü	11.53	Flow	N	MIG	NIA	
MH-53+51	600d	N	3	9.77	FIGU	N	NIG	NA	
MH-56+60	Good	N	9	9.77	No	N	NIA	NIA	
MH-57+97	0000	14		Dry	From	N	MA	MIA	
MH-58+56					-				Prout
MH-61+20									can't
ИН-64+84	600d	N	9	11 21	515. \	x I	AUA	ALIA	wate
ИН-66+28	Gard	N	Q -	11.21	Slow	N	NIA	NIA	will look
ЛН-69+97	6009	N	6	9.20	FIDW	N	NA	NIA	in fall once
ИН-71+54	000g	N	à	11.93	Flow	N	NIU	NIA	vegetation
ИН-72+65	6000	N	7	11 511	Flow	N	MIG		dies
1H-72+96	(2004)	N	ÿ	9.35	No	N	NIA	NIA	31-03
1H-74+68	6000	N	9	875	FIOW	N	NA	NA	
1H-74+90	6009	N		8.75 E	FILM	N			
1H-77+39	6000	14	N			77		NA	
1H-77+72	Good		N	10.46			NIA	MIG	
1H-80+95	6009	N	4	10.65		N	NIA	MIA	
14-36+90	0009	N		11.57		N	NIA	NIA	

Signature: WHATBUCION

Semiannual Site Cover and Fence Inspection

1 Ac. 25 .	Applicable to Site	Inspect For	
. Landfill Cap	Y /(N)	- Signs of erosion (cap, ditches, swales)	Y/N
		- Exposure of the HDPE Liner	Y/N
		- Areas of insufficient grass coverage	Y / N
		- Signs of dead/dying grass	Y/N
		- Presence of washouts	Y/N
		- Settlement causing ponding of water	Y/N
		- Signs of slope instability	Y/N
		- Signs of burrowing by animals	Y / N
		- Presence of rooting trees (cap, ditches, swales)	Y/N
		- Signs of poor drainage in ditches/swales	Y/N
Site Cover	(V)N	- Signs of erosion (cap, ditches, swales)	YID
		- Areas of insufficient asphalt, grass, vegetation cover	Y/10
		- Signs of dead/ dying grass/ vegetation	Y/N
		- Presence of Washouts	(T)/ N
		- Settlement causing ponding of water	Y /18
		- Signs of slope instability	Y /(N)
		- Signs of burrowing by animals	(V) N
		- Presence of rooting trees (cap, ditches, swales)	YIN
		 Signs of poor drainage in ditches/swales 	YIN
Perimeter Fence	(V) N	- Breaches in the fence	YIN
		- Gates secure	(V) N
		- Locks in place	NA
		- Missing or illegible signage	YIN

Durez North Tonawanda Semiannual IT System Inspections

Date: 11/12/2024 Checked By: JADAMS, S. GARDNER

		Ma	nhole	DTW		NAPL Well		
Station Number	Condition	Visible Chemistry	Sediment	Water Depth	Flow Speed	NAPL	Amount Removed	Date Removed
Main Lift Station	Good	N	N	14.98	No FLOW	H	NIA	NIA
MH-4+20	Good	N	N	13.53		N	HIA	NIA
MH-5+54	Grood	Z	N	12.27	SLOW	N	NIA	NIA
MH-8+13	Good	7	N	11.50	Scoll	N	NIA	NIA
MH-10+75	Good	N	N	11.28	FAST	M	NIA	NIA
MH-12+58	Goon	N	N	11.53	SLOW	N	NIA	NIA
Lift Station #1	Good	1	N	14.19	FREST	N	NIA	
MH-13+99	GOOD	N	N	12.63	FAST	2	NIA	NIA
MH-17+20	Grown	N	N	11.32	MOD			NA
MH-19+78	Good	N	N	12.33		N	NA	NA
MH-23+55	Gues	N	N	12.44		N	NA	NIA
MH-26_55	Good	N	N	11.44	Swi	Z	NIA	NIA
Lift Station #2	Good	N	N	13.73	Sim	146	NIA	NA
MH-33+35	Good	N	N	DRY	NO PERON	N	NIA	NIA
MH-37+13	Good	N	N 9.3	10.43	SWW	N	NIA	NIA
MH-40+70	Good	N	N	10.09		N	MA	NIA
MH-43+54	Good	N	Y	10.24	SLOW NO	N	NA	NIA
ift Station #3	GOOD	N	N	13.50	No.	77	NIA	NIA
MH-49+48	GOOD	N	N	DRY	HE WAR	7		MIA
MH-53+51	Good	N	Y	978	NEW		NIA	MA
ИН-56+60	GOOD	N	N	DZY	MATON	M	NIA	MIA
/H-57+97	Good	N	V		Non	7 2	NIA	NIA
ЛН-58+56	G000	N	N	DRO	Eiou	7	NIA	NIA
/H-61+20	Cood	N	N	DRY	الروبط	2	NIA	MA
/H-64+84	G000	7	Y	11.47	7200	A 7. To 1	NIA	NIA
1H-66+28	CiociD	N	Y	DRY	المرا	77	NIA	NA
1H-69+97	GOOD	N	Y	12.00			NA	NA
1H-71+54	GOLD	2	N	Dey		7	NA	NA
1H-72+65	Good	nd la	Y		FLOW SLOW	7		NA
1H-72+96	Coop	N	Y		144		NA	NA
IH-74+68	Groop	1	Y	10.02		N	NA	NIA
IH-74+90	Good	N	Y	.0	NO	N.	110	NIA
H-77+39	Good	2	7	V	Scold	N	NIA	MA
H-77+72	Good	2		100	SLOW	N	MA	NLA
H-80+95	Gwo	7	7		SIEL	N	NA	NIO
H30-90	Good	N	N		Swi	2	NIA	P/A

fat a

Appendix F Imported Fill Documentation

Appendix F Table F.1

2024 Imported Soil Analysis Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

		Commercial or	Laborator	v Results	NYSDEC TAGM	USEPA Avg .Trace	
Parameter	Units	Industrial Use	Imported	Imported	4046 Eastern USA	Chemical Element Content	
		SCOs (1)	Topsoil Fill	Clay Fill	Background (3)	of Natural Soils ⁽²⁾	
Metals				,		1	
Arsenic	mg/kg	16	4.6	4.2	3-12	5	
Barium	mg/kg	400	122	128	15-600	430	
Beryllium	mg/kg	47	0.61	0.74	0-1.75	6	
Cadmium	mg/kg	7.5	0.67	-	0.1-1	0.06	
Chromium,	mg/kg	19	17.9	24.4 (4)	1.5-40	100	
Chromium, Trivalent	mg/kg	1500	17.9	24.4 **	1.5-40	100	
Copper	mg/kg	270	26.5	26.3	1-50	30	
Cyanide	mg/kg	27	-	-	NA	NA	
Lead	mg/kg	450	13.0	-	NA	10	
Manganese	mg/kg	2000	580	662	50-5,000	600	
Mercury (total)	mg/kg	0.73	0.046	-	0.001-0.2	0.03	
Nickel	mg/kg	130	18.2	32.5	0.5-0.25	40	
Selenium	mg/kg	4	-	-	NA	0.3	
Silver	mg/kg	8.3	-	-	NA	0.05	
Zinc	mg/kg	2480	58.3	66.4	9-50	50	
PCBs/Pesticides	,	•	•	•	•		
2,4,5-TP Acid	mg/kg	3.8	-	-	NA	NA NA	
4,4'-DDE	mg/kg	17	-	-	NA	NA	
4,4'-DDT	mg/kg	47	-	-	NA	NA	
4,4'-DDD	mg/kg	14	-	-	NA	NA	
Aldrin	mg/kg	0.19	-	-	NA	NA	
Alpha-BHC	mg/kg	0.02	-	-	NA	NA	
Beta-BHC	mg/kg	0.09	-	-	NA	NA	
Chlordane (alpha)	mg/kg	2.9	-	-	NA	NA	
Delta-BHC	mg/kg	0.25	-	-	NA	NA	
Dibenzofuran	mg/kg	210	-	-	NA	NA	
Dieldrin	mg/kg	0.1	-	-	NA	NA	
Endosulfan I	mg/kg	102	-	-	NA	NA	
Endosulfan II	mg/kg	102	-	-	NA	NA	
Endosulfan sulfate	mg/kg	200	-	-	NA	NA	
Endrin	mg/kg	0.06	-	-	NA	NA	
Heptachlor	mg/kg	0.38	-	-	NA	NA	
Lindane	mg/kg	0.1	-	-	NA	NA	
Polychlorinated	mg/kg	1	-	-	NA	NA	
SVOCs							
Acenaphthene	mg/kg	98	-	-	NA	NA	
Acenaphthylene	mg/kg	107	-	-	NA	NA	
Anthracene	mg/kg	500	-	-	NA	NA	
Benzo(a)anthracene	mg/kg	1	-	-	NA	NA	
Benzo(a)pyrene	mg/kg	1	-	-	NA	NA	
Benzo(b)fluoranthen	mg/kg	1.7	-	-	NA	NA	
Benzo(g,h,i)perylene	mg/kg	500	-	-	NA	NA	

Appendix F Page 1 of 3

Appendix F Table F.1

2024 Imported Soil Analysis Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

		Commercial or	Laborator	v Rosults	NYSDEC TAGM	USEPA Avg .Trace
Parameter	Units	Industrial Use	Imported	Imported	4046 Eastern USA	Chemical Element Content
- urumotor		SCOs (1)	Topsoil Fill	Clay Fill	Background (3)	of Natural Soils (2)
SVOCs		0003	Topson Fin	Clay Fill	Dackground	Of Natural Cons
Benzo(k)fluoranthen	mg/kg	1.7	-	-	l NA	l NA
Chrysene	mg/kg	1.7	_		NA NA	NA NA
Dibenz(a,h)anthrace	mg/kg	0.56	-	<u>-</u>	NA NA	NA NA
Fluoranthene	mg/kg	500	_	-	NA NA	NA NA
Fluorene	mg/kg	386	-		NA NA	NA NA
Indeno(1,2,3-	mg/kg	5.6	-	-	NA NA	NA NA
m-Cresol(s)	mg/kg	0.33	-		NA NA	NA NA
Naphthalene		12				
o-Cresol(s)	mg/kg		-	-	NA NA	NA NA
	mg/kg	0.33	-	-	NA NA	NA NA
p-Cresol(s)	mg/kg	0.33	-	-	NA NA	NA NA
Pentachlorophenol	mg/kg	0.8	-	-	NA NA	NA NA
Phenanthrene	mg/kg	500	-	-	NA	NA
Phenol	mg/kg	0.33	-	-	NA	NA
Pyrene	mg/kg	500	-	-	NA	NA NA
VOCs						
1,1,1-Trichloroethane		0.68	-	-	NA	NA
1,1-Dichloroethane	mg/kg	0.27	-	1	NA	NA
1,1-Dichloroethene	mg/kg	0.33	-	-	NA	NA
1,2-Dichlorobenzene	mg/kg	1.1	-	-	NA	NA
1,2-Dichloroethane	mg/kg	0.02	-	-	NA	NA
1,2-	mg/kg	0.25	-	-	NA	NA
1,2-	mg/kg	0.19	-	-	NA	NA
1,3-Dichlorobenzene	mg/kg	2.4	-	-	NA	NA
1,4-Dichlorobenzene	mg/kg	1.8	-	-	NA	NA
1,4-Dioxane	mg/kg	0.1	_	_	NA	NA
Acetone	mg/kg	0.05	_	-	NA	NA NA
Benzene	mg/kg	0.06	_	_	NA	NA
Butylbenzene	mg/kg	12	_	_	NA	NA NA
Carbon tetrachloride	mg/kg	0.76	_	_	NA NA	NA NA
Chlorobenzene	mg/kg	1.1	_	_	NA NA	NA NA
Chloroform	mg/kg	0.37	-	_	NA NA	NA NA
Ethylbenzene	mg/kg	1	_	_	NA NA	NA NA
Hexachlorobenzene	mg/kg	3.2	_	_	NA NA	NA NA
Methyl ethyl ketone	mg/kg	0.12	_	_	NA NA	NA NA
Methyl tert-butyl	mg/kg	0.93	_		NA NA	NA NA
Methylene chloride	mg/kg	0.95	-	-	NA NA	NA NA
Propylbenzene-n	mg/kg	3.9	_		NA NA	NA NA
Sec-Butylbenzene	mg/kg	3.9 11	<u>-</u>	-	NA NA	NA NA
Tert-Butylbenzene		5.9		-	NA NA	NA NA
Tetrachloroethene	mg/kg		-	-		
	mg/kg	1.3	-	-	NA NA	NA NA
Toluene	mg/kg	0.7	-	-	NA	NA

Appendix F Page 2 of 3

Appendix F Table F.1

2024 Imported Soil Analysis Durez North Tonawanda Glenn Springs Holdings, Inc. North Tonawanda, New York

	Commercial or		Laboratory Results		NYSDEC TAGM	USEPA Avg .Trace			
Parameter	Units	Industrial Use SCOs ⁽¹⁾	Imported Topsoil Fill	Imported Clay Fill	4046 Eastern USA Background ⁽³⁾	Chemical Element Content of Natural Soils (2)			
VOCs									
Trichloroethene	mg/kg	0.47	-	-	NA	NA			
Trimethylbenzene-	mg/kg	3.6	-	-	NA	NA			
Trimethylbenzene-	mg/kg	8.4	-	-	NA	NA			
Vinyl chloride	mg/kg		-	-	NA	NA			
Xylene (mixed)	mg/kg	1.6	-	-	NA	NA			

Note:

- paramters was non-detect at the RL. Refer to attached laboratory report for details regarding individual RLs
- Appendix 5- Allowable Constituent Levels for Imported Fill or Soil, Subdivision 5.4(e), DER-10 Technical Guidance 1 for Site Investigation and Remediation, New York State Department of Environmental Conservation, Department of Environmental Remediation (DER), May 2010
- $^{2}\,$ USEPA Office of Solid Waste and Emergency Response, HAZARDOUS WASTE LAND TREATMENT, SW 874 (April 1983), Page 273, Table 6.46
- TAGM #4046, Appendix A, Table 4, Background concentrations as reported in a 1984 survey of reference material by E. Carol McGovern, NYSDEC, January 1994
- Chromium (total) is reported and the SCO is considered to be met due to similar historical NYS background soil concentrations of Chromium

Appendix F Page 3 of 3

Service Request No:R2408714

Alicia Ferber Glenn Springs Holdings, Inc. 1526 Cole Blvd Golden, CO 80401

Laboratory Results for: NT Durez/281-402-D02-3100

Dear Alicia,

Enclosed are the results of the sample(s) submitted to our laboratory September 05, 2024 For your reference, these analyses have been assigned our service request number **R2408714**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Meghan Pedro Project Manager

CC: Dennis Hoyt

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100 Date Received: 09/05/2024

Sample Matrix: Solid

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Two solid samples were received for analysis at ALS Environmental on 09/05/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

Method 8270E, 09/10/2024: The control limit was exceeded for one or more surrogates in the Continuing Calibration Verification (CCV). The surrogates were within acceptance limits for the associated field samples. The data quality was not significantly affected and no further corrective action was taken.

Semivoa GC:

Method 8081B, 09/16/2024: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8081B, 09/16/2024: The control limits were exceeded for analytes in the Continuing Calibration Verification (CCV). The QC failure was most likely due to the composition of the sample(s) immediately preceding the failing CCV. In order to protect the integrity of the instrument, no further corrective action was taken. Results should be considered estimated.

Method 8081B, Samples -001 and -002: The Method Reporting Limit (MRL) was elevated due to less than optimal sample mass (15g) used in the microwave preparation process. The nature of the sample necessitated using less mass of sample to avoid overheating. Overheating causes the extraction solvent to vent out of the vessel and may cause damage to the microwave vessels.

Method 8082A, 09/16/2024: The control limit was exceeded for one or more surrogates in the Continuing Calibration Verification (CCV). The surrogates were within acceptance limits for the associated field samples. The data quality was not significantly affected and no further corrective action was taken.

Method 8082A, Samples -001 and -002: The Method Reporting Limit (MRL) was elevated due to less than optimal sample mass (15g) used in the microwave preparation process. The nature of the sample necessitated using less mass of sample to avoid overheating. Overheating causes the extraction solvent to vent out of the vessel and may cause damage to the microwave vessels.

Metals:

When analyzed without dilution, the concentration of one or more elements in one or more samples exceeded the associated single element interference check concentration. As per section 9.9.1 of EPA 6010D, affected samples were diluted to reduce the solution concentration of the high concentration element below the interference check concentration, whether or not the high concentration element was an analyte of interest. The dilution has increased the reporting limits accordingly.

General Chemistry:

No significant anomalies were noted with this analysis.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

M.A. Dalo

	MULLIUM TEMO		
Approved by	Ö	Date	09/18/2024

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: Topsoil Fill						
Analyte	Results	Flag	MDL	MRL	Units	Method
Aluminum, Total	12100			22	mg/Kg	6010D
Arsenic, Total	4.6			1.1	mg/Kg	6010D
Barium, Total	122			2.2	mg/Kg	6010D
Beryllium, Total	0.61			0.33	mg/Kg	6010D
Cadmium, Total	0.67			0.55	mg/Kg	6010D
Calcium, Total	4290			110	mg/Kg	6010D
Chromium, Total	17.9			1.1	mg/Kg	6010D
Cobalt, Total	8.2			5.5	mg/Kg	6010D
Copper, Total	26.5			2.2	mg/Kg	6010D
Iron, Total	21800			440	mg/Kg	6010D
Lead, Total	13.0			5.5	mg/Kg	6010D
Magnesium, Total	3860			110	mg/Kg	6010D
Manganese, Total	580			2.2	mg/Kg	6010D
Mercury, Total	0.046			0.022	mg/Kg	7471B
Nickel, Total	18.2			4.4	mg/Kg	6010D
Potassium, Total	1560			220	mg/Kg	6010D
Total Solids	83.9				Percent	ALS SOP
Vanadium, Total	25.6			5.5	mg/Kg	6010D
Zinc, Total	58.3			2.2	mg/Kg	6010D
CLIENT ID: Clay Fill		Lab	ID: R2408	3714-002		

	Lab ID: R2408714-002								
Results	Flag	MDL	MRL	Units	Method				
16000			44	mg/Kg	6010D				
4.2			2.2	mg/Kg	6010D				
128			4.4	mg/Kg	6010D				
0.74			0.65	mg/Kg	6010D				
46800			220	mg/Kg	6010D				
24.4			2.2	mg/Kg	6010D				
13			11	mg/Kg	6010D				
26.3			4.4	mg/Kg	6010D				
32200			440	mg/Kg	6010D				
13900			220	mg/Kg	6010D				
662			4.4	mg/Kg	6010D				
32.5			8.7	mg/Kg	6010D				
3340			440	mg/Kg	6010D				
320			220	mg/Kg	6010D				
84.9				Percent	ALS SOP				
35			11	mg/Kg	6010D				
66.4			4.4	mg/Kg	6010D				
	16000 4.2 128 0.74 46800 24.4 13 26.3 32200 13900 662 32.5 3340 320 84.9 35	Results Flag 16000 4.2 128 0.74 46800 24.4 13 26.3 32200 13900 662 32.5 3340 320 84.9 35	Results Flag MDL 16000 4.2 128 0.74 46800 24.4 13 26.3 32200 13900 662 32.5 3340 320 84.9 35	Results Flag MDL MRL 16000 44 4.2 2.2 128 4.4 0.74 0.65 46800 220 24.4 2.2 13 11 26.3 4.4 32200 440 13900 220 662 4.4 32.5 8.7 3340 440 320 220 84.9 35 11	Results Flag MDL MRL Units 16000 44 mg/Kg 4.2 2.2 mg/Kg 128 4.4 mg/Kg 0.74 0.65 mg/Kg 46800 220 mg/Kg 24.4 2.2 mg/Kg 13 11 mg/Kg 32200 440 mg/Kg 13900 220 mg/Kg 662 4.4 mg/Kg 32.5 8.7 mg/Kg 3340 440 mg/Kg 320 220 mg/Kg 84.9 Percent 35 11 mg/Kg				

Sample Receipt Information

Client: Glenn Springs Holdings, Inc. Service Request:R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R2408714-001	Topsoil Fill	9/4/2024	0700
R2408714-002	Clay Fill	9/4/2024	0710

٨		Chain c	of Custo	ody/	Analy	tica	al Reques	t Fo	rm						-	774	140)		SR#:				
ALS	1565 Jefferson Road, Buildi			• •	-	- 1				85 2	88 5	380	• a	sglo	bal.	com	ì			Page	e 1		of	<u> </u>
			D AREAS	<u>MUST</u>	BE COM	IPLE	TED BY THE			vative										Ĭ				
Company:	Report To:	Project Name:		NT / SA			1 -11		<u> </u>		<u> </u>							\vdash				\dashv		0. None
	jepsyntee	Project Name:	<u>ez N</u>	11 11	w box	770	d F111	┨			直	• TCLP					Filter							1. HCl
<u> </u>	ennis Hayt	Project Number:	1045	<u> ع</u> م		_					524	•	• TCLP			3	-fab							2. HNO3
d	hout@geosyntec.com	ALS Quote #: Orcie Sampler's Signatu		408				GW WW	۸		24 •	625			4	Belo	1 / P						:	3. H2SO4
11	6-345-1978		<u>.</u>	<u>ent</u>	(<u>)</u> 4	lou	FE .	sw pw	Containers		-8260) 624•524•TCLP	GC/MS SVOA (8270).	809		Herbicides - 8151 • TCLP	Metals, Total - Select Below	- Field						4	4. NAOH
	0 Box 351	Email CC:			<u> </u>		<u> </u>	S	nta		188		(B)	909	151	- Sel	Metals, Dissolved	(ا						5. Zn Acet.
L_R	lanson ville, NY 1413	Email CC:						NA	of CC	1		Ø		8	8 - s	otal	SSO	1.0					- [4	6. MeOH
	<u> </u>	State Samples (Circle or \		NY,MA	, PA, C1	r, o	ther:	J		SD	S V	SS	ides	\ <u>@</u> /	ide	s, T(s, D	A N					-	7. NaHSO4
Lab ID	Sample Co	llection In	formati	on:				Matrix	Number	MS/MSD?	GC/MS VOA	Σ	Pesticides 808	PCBs (8082) • 608	rbig	etal	etal	Cranida	_					8. Other
(ALS)	Sample ID:			 	ate	$\perp \downarrow$	Time	+	-	Σ					_	_	Σ					ightharpoonup	\dashv	Notes:
	Topsoil Fill			अपि	24	19	<u>2007</u>	S	4		*	*	€.	*	<u> </u>	*	<u> </u>	×				\dashv	ightharpoonup	
	Tops (571)				 	\bot			ļ.,		ļ.,						<u> </u>				Щ	\dashv	\dashv	
	Clay Fill			94	124	4	2710	S	4	<u> </u>	X	X	X	×		¥	_	X						
					•	Ц			<u> </u>	<u> </u>	<u> </u>						ļ					ightharpoonup	\dashv	
						Ц				<u> </u>	<u> </u>											$ \bot $	ightharpoonup	
						Ш																	ightharpoonup	
							· ·	<u> </u>																
											<u> </u>													
1 "	structions / Comments:					Ц	Turnarour				nts	F	epoi	t Re	quire	men	ts	Met	als: R	CRA 8•	PP 13•	fAL 23●	TCLP	Other (Ust)
15	ce SSOW for c araweter list spe aported fill testing	omple	He			1-3	Rush (Surcubject to Avail			y)			_Tier	II/Cat	A -Re	sults/C	QC	VOA	/svo	A Rep	oort Li	íst: TCI	L + BTE	X • TCLP •
P	grameter list spe	zcifi'z	to D	ER.	-10		lease Check w			•		<u> </u>	Tier	IV/Cat	B - D	ata					• Other			
1,	moorted fill testing	· .				-	Standard	(10 B	usines	s Days)	Valid	ation	Repor	w/. [Data		_		ice To	<u>): (X</u> :	iame	as R	eport To)
)				Da	te Required:					EDD:		Yes _	<u> </u>	lo		PO #:				<u> </u>	<u></u>	
		· 1				\coprod			Т			EDD	Туре:	1			P 1	Comp						
		elved By:	Relin	nquished	Ву:	\coprod	Received B	у:		Relia	nquish	ed By:			Recei	ved By	<u>r:</u>	R2	408	371	4		5	
	nature De Hoyt SW	/N/C)				\coprod			_								Į ìį	lenn Sp IT Dure:	√281-4 	02-002	a, Inc. 3100 8181 (8)	† (200		<u> </u>
Printed		ans				\coprod											[11							
l l	mpany Geosyntes A	LS				\coprod												Adan	######################################	<u> </u>				
	Time 0800 9-4-24 9/5/20	4 1035				Щ	Page 7 of 6	57												···				
Distribution: V	White - Lab Copy; Yellow - Return to Originator					- 1														ļ			© 7	2012 by ALS Groi

Cooler Receipt and Preservation Check Form

Project/Clie	ent <u> </u>	eosyn			Folder Number	·		·	<u> </u>		•
Cooler receiv	ed on 9 E	5/24	bу: <u>Ѕ</u>	<u>es</u>	COURIER:	ALS	UPS (FI	EDEX VE	LOCITY CLIE	NT	
1 Were Cu	istody seals or	outside of coole	r?	7	Y N 5a Did V	OA via	ls have sig'	bubbles?		Y	N(NA)
2 Custody	papers prope	rly completed (in	k, sign	ed)?	YN 5b Sig*t	oubbles:	Alk?	Y N/NA	Sulfide?	Y	N (NA)
3 Did all b	ottles arrive in	good condition	(unbrok	cen)?(YN 6 Wher	e did the	bottles ori	ginate?	ALS/ROC	CLIE	ENT
4 Circle:	Wet Ice Dry	Ice Gel packs	pres	ent?	YN 7 Soil V	OA rec	eived as:	Bulk	Encore 5035	set 1	NA
8: Temperatu	re Readings	Date: 9 5	124	Time	:1043 D:	IR#12	₫R#Ŋ	· Fro	m: Temp Blanl	c Sag	nple Bottle
Temp (°C)		4.8									
Within 0-6°		YN		Y	N Y N	Y	N	Y N	Y N	Y	
If <0°C, we	re samples from	zen? Y N	!	Y	N Y N	Y	N	Y N	Y N	Y	N
If out of ?	l'emperature,	note packing/ic	e cond	ition:	Ice mel	ted P	oorly Pack	ed (describe	d below)	Same I	Day Ruic
&Client A	Approval to F	Run Samples:		_	iding Approval Clien		at drop-off	Client no	tified by:		
All samples	held in stora	ge location:	$\frac{\sqrt{2}}{2}$	\(\sigma^1\)	oy SES on 7/5/2	24 at	1045		· -		
5035 sampl	es placed in s	torage location:			by on	at _	wit	hin 48 hours	of sampling?	Y	N
			-								
Cooler Br	eakdown/Pres	ervation Check**	: Date	e : C	1624 Time:	1830	5_	_by:) }-	•	
9. Y	Were all bottle	labels complete ((<i>i.e</i> . ana	ılysis,	preservation, etc.)?		ES NO		17.		
9. Were all bottle labels complete (i.e. analysis, preservation, etc.)? 10. Did all bottle labels and tags agree with custody papers? NO NO											
						9					
11.	Were correct c	ontainers used for	r the tes	sts ind	icated?	Q	ES NO	(NA)			
11. 1 12. 1	Were correct c Were 5035 via		r the tes extra la	sts ind abels, i	icated?	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\				_\	
11. 12. 13.	Were correct c Were 5035 via Were dissolved	ontainers used for ls acceptable (no	r the tes extra la n the fic	sts ind abels, a eld?	licated? not leaking)?	_	ES NO	Tedlar®	Bags Inflated 〈	N/A	
11. 12. 13.	Were correct c Were 5035 via Were dissolved	ontainers used for ls acceptable (no l metals filtered in	r the tes extra la n the fid Intact \ Preser	sts ind abels, a eld? Y / N	licated? not leaking)?	_	ES NO ES NO ES NO ssurized Sample I	D Vol.	Lot Adde		Final
11. 12. 13. 14. pH	Were correct c Were 5035 via Were dissolved Air Samples: (ontainers used for its acceptable (no it metals filtered it cassettes / Tubes Reagent	r the tes extra la n the fic Intact	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis	sters Pre	ES NO ES NO ES NO ssurized	D Vol.	Lot Adde		Final pH
11. 12. 13. 14. pH ≥12	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test	ontainers used for its acceptable (no it metals filtered it cassettes / Tubes Reagent NaOH	r the tes extra la n the fid Intact \ Preser	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis	sters Pre	ES NO ES NO ES NO ssurized Sample I	D Vol.	Lot Adde		
11. 12. 13. 14. 14. 14. 15. 12. 12. 12. 12. 12. 12. 12. 12. 12. 14. 15. 14. 14. 15. 14. 15. 14. 15. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test	ontainers used for its acceptable (no it metals filtered in Cassettes / Tubes Reagent NaOH HNO3	r the tes extra la n the fid Intact \ Preser	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis	sters Pre	ES NO ES NO ES NO ssurized Sample I	D Vol.	Lot Adde		
11. 12. 13. 14. 14. 14. 15. 12. 14. 14. 15. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test	ontainers used for its acceptable (no it metals filtered in Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄	r the tes extra la n the fid Intact \ Preser	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis	sters Pre	ES NO ES NO ES NO ssurized Sample I	D Vol.	Lot Adde		
11. 12. 13. 14. 14. 14. 15. 12. 15. 14. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test	ontainers used for its acceptable (no it metals filtered in Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄	r the tes extra la n the fid Intact \ Preser	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis Lot Received	sters Pre	ES NO ES NO ES NO ssurized Sample I	D Vol.	Lot Adde		
11. 12. 13. 14. 14. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test	ontainers used for ls acceptable (no l metals filtered in Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest	r the tes extra la n the fid Intact \ Preser	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis Lot Received No=Notify for 3day	sters Pre	ES NO ES NO ES NO ssurized Sample I	D Vol.	Lot Adde		
11. 12. 13. 14. 14. 14. 15. 12. 15. 14. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test	ontainers used for ls acceptable (no l metals filtered in Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN,	r the tes extra la n the fid Intact \ Preser	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis Lot Received	sters Pre	ES NO ES NO ES NO ssurized Sample I	D Vol.	Lot Adde		
11. 12. 13. 14. 14. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test	ontainers used for ls acceptable (no l metals filtered in Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,	r the tes extra la n the fid Intact \ Preser	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis Lot Received No=Notify for 3day If +, contact PM to add	sters Pre	ES NO ES NO ES NO ssurized Sample I	D Vol.	Lot Adde		
11. 12. 13. 14. 14. 14. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test	ontainers used for ls acceptable (no l metals filtered in Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN,	r the tes extra la n the fid Intact \ Preser	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis Lot Received No=Notify for 3day If +, contact PM to add Na ₂ S ₂ O ₃ (625, 608,	sters Pre	ES NO ES NO ES NO ssurized Sample I	D Vol.	Lot Adde		
11. 12. 13. 14. 14. 14. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test	ontainers used for its acceptable (no it metals filtered it cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522	r the tes extra la n the fid Intact \ Preser	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis Lot Received No=Notify for 3day If +, contact PM to add Na ₂ S ₂ O ₃ (625, 608,	sters Pre	ES NO ES NO Ssurized Sample I Adjusted	D Vol. Adde	Lot Adde	d allysis.	pH
11. 12. 13. 14. 14. 14. 14. 15. 14. 17. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test	ontainers used for its acceptable (no it metals filtered in Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	r the tes extra la n the fid Intact \(\) Preser Yes	sts ind abels, a eld? Y / N	icated? not leaking)? with MS Y / N Canis Lot Received No=Notify for 3day If +, contact PM to add Na ₂ S ₂ O ₃ (625, 608,	sters Pre	ES NO ES NO ES NO Ssurized Sample I Adjusted **VOAs at Otherwise,	D Vol. Adde	Lot Added	d allysis.	pH
11. 12. 13. 14. 14. 14. 14. 14. 15. 14. 17. 14. 17. 14. 17. 14. 17. 14. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	Were correct c Were 5035 via Were dissolved Air Samples: (Lot of test paper	ontainers used for ls acceptable (no l metals filtered in Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r the tes extra la n the fid Intact \(\) Preser Yes	sts ind abels, i eld? //N ved? No	not leaking)? with MS Y / N Canis Lot Received No=Notify for 3day If +, contact PM to add Na ₂ S ₂ O ₃ (625, 608, CN), ascorbic (phenol).	sters Pre	ES NO ES NO ES NO Ssurized Sample I Adjusted **VOAs at Otherwise,	D Vol. Adde	Lot Added	d allysis.	pH
11. 12. 13. 14. 14. 14. 14. 15. 14. 17. 14. 17. 14. 17. 15. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	Were correct of Were 5035 via Were dissolved Air Samples: (Lot of test paper	ontainers used for ls acceptable (no i metals filtered in Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r the tes extra la n the fid Intact Y Preser Yes	sts ind abels, i eld? //N ved? No	icated? not leaking)? with MS Y / N Canis Lot Received No=Notify for 3day If +, contact PM to add Na ₂ S ₂ O ₃ (625, 608,	sters Pre	ES NO ES NO ES NO Ssurized Sample I Adjusted **VOAs at Otherwise,	D Vol. Adde	Lot Added	d allysis.	pH
11. 12. 13. 14. 14. 14. 14. 15. 14. 17. 14. 17. 14. 17. 15. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	Were correct of Were 5035 via Were dissolved Air Samples: (Lot of test paper	ontainers used for ls acceptable (no l metals filtered in Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r the tes extra la n the fid Intact Y Preser Yes	sts ind abels, i eld? //N ved? No	not leaking)? with MS Y / N Canis Lot Received No=Notify for 3day If +, contact PM to add Na ₂ S ₂ O ₃ (625, 608, CN), ascorbic (phenol).	sters Pre	ES NO ES NO ES NO Ssurized Sample I Adjusted **VOAs at Otherwise,	D Vol. Adde	Lot Added	d allysis.	pH
11. 12. 13. 14. 14. 14. 14. 15. 14. 17. 14. 17. 14. 17. 15. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	Were correct of Were 5035 via Were dissolved Air Samples: (Lot of test paper	ontainers used for ls acceptable (no i metals filtered in Cassettes / Tubes Reagent NaOH HNO3 H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	r the tes extra la n the fid Intact Y Preser Yes	sts ind abels, i eld? //N ved? No	not leaking)? with MS Y / N Canis Lot Received No=Notify for 3day If +, contact PM to add Na ₂ S ₂ O ₃ (625, 608, CN), ascorbic (phenol).	sters Pre	ES NO ES NO ES NO Ssurized Sample I Adjusted **VOAs at Otherwise,	D Vol. Adde	Lot Added	d allysis.	pH

HPROD	BULK
HTR	FLDT
SUB	HGFB
ALS	. LL3541

Labels secondary reviewed by: 10 1

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

Miscellaneous Forms

REPORT QUALIFIERS AND DEFINITIONS

- Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- Ε Organics- Concentration has exceeded the calibration range for that specific analysis.
- Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- Spike was diluted out.

P:\INTRANET\QAQC\Forms Controlled\QUALIF routine rev 7.doc

- +Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- Concentration >40% difference between the two P GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Accreditations¹

NI	ELAP States
Fl	orida ID # E87674
Ne	ew Hampshire ID # 2941
Ne	ew York ID # 10145
Pe	nnsylvania ID# 68-786
Vi	rginia #460167

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory. To verify NH accredited analytes, go to https://www4.des.state.nh.us/CertifiedLabs/Certified-Method.aspx.

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Non-Certified Analytes

Certifying Agency: New York Department of Health

MethodMatrixAnalyteALS SOPSolidTotal Solids

Analyst Summary report

Client: Glenn Springs Holdings, Inc.

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Service Request: R2408714

 Sample Name:
 Topsoil Fill
 Date Collected: 09/4/24

 Lab Code:
 R2408714-001
 Date Received: 09/5/24

Sample Matrix: Solid

Analysis Method	Extracted/Digested By	Analyzed By
6010D	CDISTEFANO	NMANSEN
7471B	ECASTROVINCI	ECASTROVINCI
8081B	JVANHEYNINGEN	AFELSER
8082A	JVANHEYNINGEN	AFELSER
8260D		FNAEGLER
8270E	JVANHEYNINGEN	AMOSES
9012B	MROGERSON	MROGERSON
ALS SOP		HCASTROVINCI

 Sample Name:
 Clay Fill
 Date Collected:
 09/4/24

 Lab Code:
 R2408714-002
 Date Received:
 09/5/24

Sample Matrix: Solid

Analysis Method	Extracted/Digested By	Analyzed By
6010D	CDISTEFANO	NMANSEN
7471B	ECASTROVINCI	ECASTROVINCI
8081B	JVANHEYNINGEN	AFELSER
8082A	JVANHEYNINGEN	AFELSER
8260D		FNAEGLER
8270E	JVANHEYNINGEN	AMOSES
9012B	MROGERSON	MROGERSON
ALS SOP		HCASTROVINCI

PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

INORGANIC

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C or 6010D	3005A/3010A
6020A or 6020B	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-N-2016	SM 4500-CN-G and
Amenable and Residual	SM 4500-CN-B,C-2016
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C or 6010D	3050B
6020A or 6020B	3050B
6010C or 6010D TCLP	3005A/3010A
(1311) extract	
6010C or 6010D SPLP	3005A/3010A
(1312) extract	
7199	3060A
300.0 Anions/ 350.1/ 353.2/	DI extraction
SM 2320B/ SM 5210B/	
9056A Anions	
For analytical methods not listed, the	
method is the same as the analytical	method reference.

ORGANIC

Preparation Methods for Organic methods are listed in the header of the Results pages.

Regarding "Bulk/5035A":

For soil/solid samples submitted in soil jars for Volatiles analysis, the prep method is listed as "Bulk/5035A". The lab follows the closed-system EPA 5035A protocols once the sample is transferred to a sealed vial, but collection in bulk in soil jars does not follow the collection protocols listed in EPA 5035A. In accordance with the NYSDOH technical notice of October 2012, all results or reporting limits <200 ug/kg are to be considered estimated due to potential low bias.

Sample Results

Volatile Organic Compounds by GC/MS

Analytical Report

Client: Glenn Springs Holdings, Inc.

> **Date Collected:** 09/04/24 07:00 NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid **Date Received:** 09/05/24 10:35

Project:

Topsoil Fill **Sample Name:** Units: ug/Kg Lab Code: R2408714-001 Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260D **Prep Method:** Bulk/5035A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane	6.0 U	6.0	1	09/09/24 14:30	
1,1-Dichloroethane	6.0 U	6.0	1	09/09/24 14:30	
1,1-Dichloroethene	6.0 U	6.0	1	09/09/24 14:30	
1,2,4-Trimethylbenzene	6.0 U	6.0	1	09/09/24 14:30	
1,2-Dichlorobenzene	6.0 U	6.0	1	09/09/24 14:30	
1,2-Dichloroethane	6.0 U	6.0	1	09/09/24 14:30	
1,3,5-Trimethylbenzene	6.0 U	6.0	1	09/09/24 14:30	
1,3-Dichlorobenzene	6.0 U	6.0	1	09/09/24 14:30	
1,4-Dichlorobenzene	6.0 U	6.0	1	09/09/24 14:30	
1,4-Dioxane	120 U	120	1	09/09/24 14:30	
Methyl Ethyl Ketone	6.0 U	6.0	1	09/09/24 14:30	
p-Isopropyltoluene	6.0 U	6.0	1	09/09/24 14:30	
Acetone	6.0 U	6.0	1	09/09/24 14:30	
Benzene	6.0 U	6.0	1	09/09/24 14:30	
Carbon Tetrachloride	6.0 U	6.0	1	09/09/24 14:30	
Chlorobenzene	6.0 U	6.0	1	09/09/24 14:30	
Chloroform	6.0 U	6.0	1	09/09/24 14:30	
Methylene Chloride	6.0 U	6.0	1	09/09/24 14:30	
Ethylbenzene	6.0 U	6.0	1	09/09/24 14:30	
Isopropylbenzene (Cumene)	6.0 U	6.0	1	09/09/24 14:30	
Methyl tert-Butyl Ether	6.0 U	6.0	1	09/09/24 14:30	
Naphthalene	6.0 U	6.0	1	09/09/24 14:30	
Tetrachloroethene (PCE)	6.0 U	6.0	1	09/09/24 14:30	
Toluene	6.0 U	6.0	1	09/09/24 14:30	
Trichloroethene (TCE)	6.0 U	6.0	1	09/09/24 14:30	
Vinyl Chloride	6.0 U	6.0	1	09/09/24 14:30	
cis-1,2-Dichloroethene	6.0 U	6.0	1	09/09/24 14:30	
m,p-Xylenes	12 U	12	1	09/09/24 14:30	
n-Butylbenzene	6.0 U	6.0	1	09/09/24 14:30	
n-Propylbenzene	6.0 U	6.0	1	09/09/24 14:30	
o-Xylene	6.0 U	6.0	1	09/09/24 14:30	
sec-Butylbenzene	6.0 U	6.0	1	09/09/24 14:30	
tert-Butylbenzene	6.0 U	6.0	1	09/09/24 14:30	
trans-1,2-Dichloroethene	6.0 U	6.0	1	09/09/24 14:30	

Service Request: R2408714

Analytical Report

Client: Glenn Springs Holdings, Inc.

Date Collected: 09/04/24 07:00 **Project:** NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid **Date Received:** 09/05/24 10:35

Sample Name:

Lab Code:

Topsoil Fill Units: ug/Kg R2408714-001 Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260D

Prep Method: Bulk/5035A

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	85	31 - 154	09/09/24 14:30	
Dibromofluoromethane	101	63 - 138	09/09/24 14:30	
Toluene-d8	94	66 - 138	09/09/24 14:30	

Service Request: R2408714

Analytical Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling **Date Collected:** 09/04/24 07:10

Sample Matrix: Solid Date Received: 09/05/24 10:35

 Sample Name:
 Clay Fill
 Units: ug/Kg

 Lab Code:
 R2408714-002
 Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260D **Prep Method:** Bulk/5035A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane	5.9 U	5.9	1	09/09/24 14:53	
1,1-Dichloroethane	5.9 U	5.9	1	09/09/24 14:53	
1,1-Dichloroethene	5.9 U	5.9	1	09/09/24 14:53	
1,2,4-Trimethylbenzene	5.9 U	5.9	1	09/09/24 14:53	
1,2-Dichlorobenzene	5.9 U	5.9	1	09/09/24 14:53	
1,2-Dichloroethane	5.9 U	5.9	1	09/09/24 14:53	
1,3,5-Trimethylbenzene	5.9 U	5.9	1	09/09/24 14:53	
1,3-Dichlorobenzene	5.9 U	5.9	1	09/09/24 14:53	
1,4-Dichlorobenzene	5.9 U	5.9	1	09/09/24 14:53	
1,4-Dioxane	120 U	120	1	09/09/24 14:53	
Methyl Ethyl Ketone	5.9 U	5.9	1	09/09/24 14:53	
p-Isopropyltoluene	5.9 U	5.9	1	09/09/24 14:53	
Acetone	5.9 U	5.9	1	09/09/24 14:53	
Benzene	5.9 U	5.9	1	09/09/24 14:53	
Carbon Tetrachloride	5.9 U	5.9	1	09/09/24 14:53	
Chlorobenzene	5.9 U	5.9	1	09/09/24 14:53	
Chloroform	5.9 U	5.9	1	09/09/24 14:53	
Methylene Chloride	5.9 U	5.9	1	09/09/24 14:53	
Ethylbenzene	5.9 U	5.9	1	09/09/24 14:53	
Isopropylbenzene (Cumene)	5.9 U	5.9	1	09/09/24 14:53	
Methyl tert-Butyl Ether	5.9 U	5.9	1	09/09/24 14:53	
Naphthalene	5.9 U	5.9	1	09/09/24 14:53	
Tetrachloroethene (PCE)	5.9 U	5.9	1	09/09/24 14:53	
Toluene	5.9 U	5.9	1	09/09/24 14:53	
Trichloroethene (TCE)	5.9 U	5.9	1	09/09/24 14:53	
Vinyl Chloride	5.9 U	5.9	1	09/09/24 14:53	
cis-1,2-Dichloroethene	5.9 U	5.9	1	09/09/24 14:53	
m,p-Xylenes	12 U	12	1	09/09/24 14:53	
n-Butylbenzene	5.9 U	5.9	1	09/09/24 14:53	
n-Propylbenzene	5.9 U	5.9	1	09/09/24 14:53	
o-Xylene	5.9 U	5.9	1	09/09/24 14:53	
sec-Butylbenzene	5.9 U	5.9	1	09/09/24 14:53	
tert-Butylbenzene	5.9 U	5.9	1	09/09/24 14:53	
trans-1,2-Dichloroethene	5.9 U	5.9	1	09/09/24 14:53	

Analytical Report

Client: Glenn Springs Holdings, Inc.

Sample Matrix: Solid Date Received: 09/05/24 10:35

Sample Name: Clay Fill Units: ug/Kg

Lab Code: R2408714-002 **Basis:** Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260D **Prep Method:** Bulk/5035A

Project:

% Rec **Surrogate Name** Q **Control Limits Date Analyzed** 4-Bromofluorobenzene 92 31 - 154 09/09/24 14:53 Dibromofluoromethane 100 63 - 138 09/09/24 14:53 66 - 138 Toluene-d8 96 09/09/24 14:53

Service Request: R2408714

Semivolatile Organic Compounds by GC/MS

Analytical Report

Client: Glenn Springs Holdings, Inc.

Service Request: R2408714 **Date Collected:** 09/04/24 07:00 NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Date Received: 09/05/24 10:35 **Sample Matrix:** Solid

Sample Name: Topsoil Fill Units: ug/Kg Lab Code: R2408714-001 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
o-Cresol	390 U	390	1	09/10/24 05:53	9/9/24	
m,p-Cresols	390 U	390	1	09/10/24 05:53	9/9/24	
Acenaphthene	390 U	390	1	09/10/24 05:53	9/9/24	
Acenaphthylene	390 U	390	1	09/10/24 05:53	9/9/24	
Anthracene	390 U	390	1	09/10/24 05:53	9/9/24	
Benz(a)anthracene	390 U	390	1	09/10/24 05:53	9/9/24	
Benzo(a)pyrene	390 U	390	1	09/10/24 05:53	9/9/24	
Benzo(b)fluoranthene	390 U	390	1	09/10/24 05:53	9/9/24	
Benzo(g,h,i)perylene	390 U	390	1	09/10/24 05:53	9/9/24	
Benzo(k)fluoranthene	390 U	390	1	09/10/24 05:53	9/9/24	
Chrysene	390 U	390	1	09/10/24 05:53	9/9/24	
Dibenz(a,h)anthracene	390 U	390	1	09/10/24 05:53	9/9/24	
Dibenzofuran	390 U	390	1	09/10/24 05:53	9/9/24	
Fluoranthene	390 U	390	1	09/10/24 05:53	9/9/24	
Fluorene	390 U	390	1	09/10/24 05:53	9/9/24	
Hexachlorobenzene	390 U	390	1	09/10/24 05:53	9/9/24	
Indeno(1,2,3-cd)pyrene	390 U	390	1	09/10/24 05:53	9/9/24	
Naphthalene	390 U	390	1	09/10/24 05:53	9/9/24	
Pentachlorophenol	2000 U	2000	1	09/10/24 05:53	9/9/24	
Phenanthrene	390 U	390	1	09/10/24 05:53	9/9/24	
Phenol	390 U	390	1	09/10/24 05:53	9/9/24	
Pyrene	390 U	390	1	09/10/24 05:53	9/9/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	70	18 - 123	09/10/24 05:53	
2-Fluorobiphenyl	66	18 - 104	09/10/24 05:53	
2-Fluorophenol	62	13 - 96	09/10/24 05:53	
Nitrobenzene-d5	55	12 - 98	09/10/24 05:53	
Phenol-d6	64	16 - 95	09/10/24 05:53	
p-Terphenyl-d14	63	26 - 134	09/10/24 05:53	_

Analytical Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling **Date Collected:** 09/04/24 07:10

Sample Matrix: Solid Date Received: 09/05/24 10:35

 Sample Name:
 Clay Fill
 Units: ug/Kg

 Lab Code:
 R2408714-002
 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
o-Cresol	390 U	390	1	09/10/24 07:06	9/9/24	_
m,p-Cresols	390 U	390	1	09/10/24 07:06	9/9/24	
Acenaphthene	390 U	390	1	09/10/24 07:06	9/9/24	
Acenaphthylene	390 U	390	1	09/10/24 07:06	9/9/24	
Anthracene	390 U	390	1	09/10/24 07:06	9/9/24	
Benz(a)anthracene	390 U	390	1	09/10/24 07:06	9/9/24	
Benzo(a)pyrene	390 U	390	1	09/10/24 07:06	9/9/24	
Benzo(b)fluoranthene	390 U	390	1	09/10/24 07:06	9/9/24	
Benzo(g,h,i)perylene	390 U	390	1	09/10/24 07:06	9/9/24	
Benzo(k)fluoranthene	390 U	390	1	09/10/24 07:06	9/9/24	
Chrysene	390 U	390	1	09/10/24 07:06	9/9/24	
Dibenz(a,h)anthracene	390 U	390	1	09/10/24 07:06	9/9/24	
Dibenzofuran	390 U	390	1	09/10/24 07:06	9/9/24	
Fluoranthene	390 U	390	1	09/10/24 07:06	9/9/24	
Fluorene	390 U	390	1	09/10/24 07:06	9/9/24	
Hexachlorobenzene	390 U	390	1	09/10/24 07:06	9/9/24	
Indeno(1,2,3-cd)pyrene	390 U	390	1	09/10/24 07:06	9/9/24	
Naphthalene	390 U	390	1	09/10/24 07:06	9/9/24	
Pentachlorophenol	2000 U	2000	1	09/10/24 07:06	9/9/24	
Phenanthrene	390 U	390	1	09/10/24 07:06	9/9/24	
Phenol	390 U	390	1	09/10/24 07:06	9/9/24	
Pyrene	390 U	390	1	09/10/24 07:06	9/9/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	46	18 - 123	09/10/24 07:06	
2-Fluorobiphenyl	65	18 - 104	09/10/24 07:06	
2-Fluorophenol	64	13 - 96	09/10/24 07:06	
Nitrobenzene-d5	67	12 - 98	09/10/24 07:06	
Phenol-d6	64	16 - 95	09/10/24 07:06	
p-Terphenyl-d14	67	26 - 134	09/10/24 07:06	

Semivolatile Organic Compounds by GC

Analytical Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling Date Collected: 09/04/24 07:00

Sample Matrix: Solid Date Received: 09/05/24 10:35

 Sample Name:
 Topsoil Fill
 Units: ug/Kg

 Lab Code:
 R2408714-001
 Basis: Dry

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method: 8081B **Prep Method:** EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
4,4'-DDD	3.7 U	3.7	1	09/16/24 18:04	9/13/24	_
4,4'-DDE	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
4,4'-DDT	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Aldrin	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Dieldrin	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Endosulfan I	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Endosulfan II	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Endosulfan Sulfate	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Endrin	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Endrin Aldehyde	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Endrin Ketone	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Heptachlor	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Heptachlor Epoxide	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Methoxychlor	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
Toxaphene	72 U	72	1	09/16/24 18:04	9/13/24	
alpha-BHC	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
alpha-Chlordane	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
beta-BHC	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
delta-BHC	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
gamma-BHC (Lindane)	3.7 U	3.7	1	09/16/24 18:04	9/13/24	
gamma-Chlordane	3.7 U	3.7	1	09/16/24 18:04	9/13/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	88	10 - 159	09/16/24 18:04	
Tetrachloro-m-xylene	69	10 - 132	09/16/24 18:04	

Analytical Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling Date Collected: 09/04/24 07:10

Sample Matrix: Solid Date Received: 09/05/24 10:35

 Sample Name:
 Clay Fill
 Units: ug/Kg

 Lab Code:
 R2408714-002
 Basis: Dry

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method: 8081B **Prep Method:** EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
4,4'-DDD	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
4,4'-DDE	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
4,4'-DDT	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Aldrin	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Dieldrin	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Endosulfan I	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Endosulfan II	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Endosulfan Sulfate	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Endrin	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Endrin Aldehyde	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Endrin Ketone	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Heptachlor	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Heptachlor Epoxide	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Methoxychlor	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
Toxaphene	68 U	68	1	09/16/24 18:21	9/13/24	
alpha-BHC	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
alpha-Chlordane	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
beta-BHC	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
delta-BHC	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
gamma-BHC (Lindane)	3.5 U	3.5	1	09/16/24 18:21	9/13/24	
gamma-Chlordane	3.5 U	3.5	1	09/16/24 18:21	9/13/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	53	10 - 159	09/16/24 18:21	
Tetrachloro-m-xylene	37	10 - 132	09/16/24 18:21	

Analytical Report

Client: Glenn Springs Holdings, Inc.

NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling **Date Collected:** 09/04/24 07:00

Sample Matrix: Solid Date Received: 09/05/24 10:35

 Sample Name:
 Topsoil Fill
 Units: ug/Kg

 Lab Code:
 R2408714-001
 Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Analysis Method: 8082A **Prep Method:** EPA 3546

Project:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	72 U	72	1	09/16/24 11:23	9/13/24	
Aroclor 1221	150 U	150	1	09/16/24 11:23	9/13/24	
Aroclor 1232	72 U	72	1	09/16/24 11:23	9/13/24	
Aroclor 1242	72 U	72	1	09/16/24 11:23	9/13/24	
Aroclor 1248	72 U	72	1	09/16/24 11:23	9/13/24	
Aroclor 1254	72 U	72	1	09/16/24 11:23	9/13/24	
Aroclor 1260	72 U	72	1	09/16/24 11:23	9/13/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	76	10 - 138	09/16/24 11:23	
Tetrachloro-m-xylene	78	11 - 122	09/16/24 11:23	

Service Request: R2408714

Analytical Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling **Date Collected:** 09/04/24 07:10

Sample Matrix: Solid Date Received: 09/05/24 10:35

 Sample Name:
 Clay Fill
 Units: ug/Kg

 Lab Code:
 R2408714-002
 Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Analysis Method: 8082A **Prep Method:** EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	68 U	68	1	09/16/24 11:37	9/13/24	
Aroclor 1221	140 U	140	1	09/16/24 11:37	9/13/24	
Aroclor 1232	68 U	68	1	09/16/24 11:37	9/13/24	
Aroclor 1242	68 U	68	1	09/16/24 11:37	9/13/24	
Aroclor 1248	68 U	68	1	09/16/24 11:37	9/13/24	
Aroclor 1254	68 U	68	1	09/16/24 11:37	9/13/24	
Aroclor 1260	68 U	68	1	09/16/24 11:37	9/13/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	42	10 - 138	09/16/24 11:37	
Tetrachloro-m-xylene	45	11 - 122	09/16/24 11:37	

Metals

Analytical Report

Client: Glenn Springs Holdings, Inc.

Analysis

Service Request: R2408714 **Date Collected:** 09/04/24 07:00 **Project:** NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Date Received: 09/05/24 10:35 **Sample Matrix:** Solid

Topsoil Fill **Sample Name:** Basis: Dry

Lab Code: R2408714-001

Inorganic Parameters

	railary							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum, Total	6010D	12100	mg/Kg	22	1	09/13/24 01:56	09/11/24	
Antimony, Total	6010D	6.6 U	mg/Kg	6.6	1	09/13/24 01:56	09/11/24	
Arsenic, Total	6010D	4.6	mg/Kg	1.1	1	09/13/24 01:56	09/11/24	
Barium, Total	6010D	122	mg/Kg	2.2	1	09/13/24 01:56	09/11/24	
Beryllium, Total	6010D	0.61	mg/Kg	0.33	1	09/13/24 01:56	09/11/24	
Cadmium, Total	6010D	0.67	mg/Kg	0.55	1	09/13/24 01:56	09/11/24	
Calcium, Total	6010D	4290	mg/Kg	110	1	09/13/24 01:56	09/11/24	
Chromium, Total	6010D	17.9	mg/Kg	1.1	1	09/13/24 01:56	09/11/24	
Cobalt, Total	6010D	8.2	mg/Kg	5.5	1	09/13/24 01:56	09/11/24	
Copper, Total	6010D	26.5	mg/Kg	2.2	1	09/13/24 01:56	09/11/24	
Iron, Total	6010D	21800	mg/Kg	440	20	09/13/24 19:10	09/11/24	
Lead, Total	6010D	13.0	mg/Kg	5.5	1	09/13/24 01:56	09/11/24	
Magnesium, Total	6010D	3860	mg/Kg	110	1	09/13/24 01:56	09/11/24	
Manganese, Total	6010D	580	mg/Kg	2.2	1	09/13/24 01:56	09/11/24	
Mercury, Total	7471B	0.046	mg/Kg	0.022	1	09/12/24 11:22	09/11/24	
Nickel, Total	6010D	18.2	mg/Kg	4.4	1	09/13/24 01:56	09/11/24	
Potassium, Total	6010D	1560	mg/Kg	220	1	09/13/24 01:56	09/11/24	
Selenium, Total	6010D	1.1 U	mg/Kg	1.1	1	09/13/24 01:56	09/11/24	
Silver, Total	6010D	1.1 U	mg/Kg	1.1	1	09/13/24 01:56	09/11/24	
Sodium, Total	6010D	110 U	mg/Kg	110	1	09/13/24 01:56	09/11/24	
Thallium, Total	6010D	1.1 U	mg/Kg	1.1	1	09/13/24 01:56	09/11/24	
Vanadium, Total	6010D	25.6	mg/Kg	5.5	1	09/13/24 01:56	09/11/24	
Zinc, Total	6010D	58.3	mg/Kg	2.2	1	09/13/24 01:56	09/11/24	

Analytical Report

Client: Glenn Springs Holdings, Inc.

Service Request: R2408714 **Date Collected:** 09/04/24 07:10 **Project:** NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Date Received: 09/05/24 10:35 **Sample Matrix:** Solid

Sample Name: Clay Fill Basis: Dry

Lab Code: R2408714-002

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum, Total	6010D	16000	mg/Kg	44	2	09/13/24 19:13	09/11/24	
Antimony, Total	6010D	13 U	mg/Kg	13	2	09/13/24 19:13	09/11/24	
Arsenic, Total	6010D	4.2	mg/Kg	2.2	2	09/13/24 19:13	09/11/24	
Barium, Total	6010D	128	mg/Kg	4.4	2	09/13/24 19:13	09/11/24	
Beryllium, Total	6010D	0.74	mg/Kg	0.65	2	09/13/24 19:13	09/11/24	
Cadmium, Total	6010D	1.1 U	mg/Kg	1.1	2	09/13/24 19:13	09/11/24	
Calcium, Total	6010D	46800	mg/Kg	220	2	09/13/24 19:13	09/11/24	
Chromium, Total	6010D	24.4	mg/Kg	2.2	2	09/13/24 19:13	09/11/24	
Cobalt, Total	6010D	13	mg/Kg	11	2	09/13/24 19:13	09/11/24	
Copper, Total	6010D	26.3	mg/Kg	4.4	2	09/13/24 19:13	09/11/24	
Iron, Total	6010D	32200	mg/Kg	440	20	09/13/24 19:42	09/11/24	
Lead, Total	6010D	11 U	mg/Kg	11	2	09/13/24 19:13	09/11/24	
Magnesium, Total	6010D	13900	mg/Kg	220	2	09/13/24 19:13	09/11/24	
Manganese, Total	6010D	662	mg/Kg	4.4	2	09/13/24 19:13	09/11/24	
Mercury, Total	7471B	0.023 U	mg/Kg	0.023	1	09/12/24 11:29	09/11/24	
Nickel, Total	6010D	32.5	mg/Kg	8.7	2	09/13/24 19:13	09/11/24	
Potassium, Total	6010D	3340	mg/Kg	440	2	09/13/24 19:13	09/11/24	
Selenium, Total	6010D	2.2 U	mg/Kg	2.2	2	09/13/24 19:13	09/11/24	
Silver, Total	6010D	2.2 U	mg/Kg	2.2	2	09/13/24 19:13	09/11/24	
Sodium, Total	6010D	320	mg/Kg	220	2	09/13/24 19:13	09/11/24	
Thallium, Total	6010D	2.2 U	mg/Kg	2.2	2	09/13/24 19:13	09/11/24	
Vanadium, Total	6010D	35	mg/Kg	11	2	09/13/24 19:13	09/11/24	
Zinc, Total	6010D	66.4	mg/Kg	4.4	2	09/13/24 19:13	09/11/24	

General Chemistry

Analytical Report

Client: Glenn Springs Holdings, Inc.

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix:

Solid

Service Request: R2408714

Date Collected: 09/04/24 07:00

Date Received: 09/05/24 10:35

Sample Name:

Topsoil Fill

Lab Code: R2408714-001

Basis: Dry

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cyanide, Total	9012B	0.35 U	mg/Kg	0.35	1	09/12/24 12:33	09/11/24	

Analytical Report

Client: Glenn Springs Holdings, Inc.

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix:

Solid

Service Request: R2408714

Date Collected: 09/04/24 07:00

Date Received: 09/05/24 10:35

Sample Name:

Lab Code:

Topsoil Fill

R2408714-001

Basis: As Received

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Total Solids	ALS SOP	83.9	Percent	-	1	09/12/24 09:45	NA	

Analytical Report

Client: Glenn Springs Holdings, Inc.

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix:

Solid

Service Request: R2408714

Date Collected: 09/04/24 07:10

Date Received: 09/05/24 10:35

Basis: Dry

Sample Name: Clay Fill

Lab Code:

R2408714-002

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cyanide, Total	9012B	0.26 U	mg/Kg	0.26	1	09/12/24 12:34	09/11/24	

Analytical Report

Client: Glenn Springs Holdings, Inc.

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix:

Solid

Service Request: R2408714

Date Collected: 09/04/24 07:10

Date Received: 09/05/24 10:35

Sample Name:

Lab Code:

Clay Fill

R2408714-002

Basis: As Received

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Total Solids	ALS SOP	84.9	Percent	-	1	09/12/24 09:45	NA	

QC Summary Forms

Volatile Organic Compounds by GC/MS

QA/QC Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260D **Extraction Method:** Bulk/5035A

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	31 - 154	63 - 138	66 - 138
Topsoil Fill	R2408714-001	85	101	94
Clay Fill	R2408714-002	92	100	96
Lab Control Sample	RQ2411210-02	98	97	94
Method Blank	RQ2411210-03	97	93	95
Topsoil Fill MS	RQ2411210-04	95	102	97
Topsoil Fill DMS	RQ2411210-05	93	103	97

QA/QC Report

Client: Glenn Springs Holdings, Inc.

Service Request:

R2408714

Project:

NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Date Collected:

09/04/24

Sample Matrix: Solid

Date Received:

09/05/24

Date Analyzed: Date Extracted: 09/9/24 NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS, Unp

Sample Name: Topsoil Fill

Units:

ug/Kg

Lab Code:

R2408714-001

Basis:

Dry

Analysis Method: Prep Method:

8260D Bulk/5035A

> Matrix Spike RQ2411210-04

Duplicate Matrix Spike

RQ2411210-05

		-		•			00			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	6.0 U	47.8	59.6	80	44.3	59.6	74	44-124	8	30
1,1-Dichloroethane	6.0 U	52.0	59.6	87	48.2	59.6	81	41-138	7	30
1,1-Dichloroethene	6.0 U	46.0	59.6	77	42.5	59.6	71	46-124	8	30
1,2,4-Trimethylbenzene	6.0 U	46.6	59.6	78	40.0	59.6	67	15-141	15	30
1,2-Dichlorobenzene	6.0 U	41.3	59.6	69	34.4	59.6	58	11-152	17	30
1,2-Dichloroethane	6.0 U	56.0	59.6	94	53.8	59.6	90	49-119	4	30
1,3,5-Trimethylbenzene	6.0 U	44.4	59.6	74	38.2	59.6	64	21-148	14	30
1,3-Dichlorobenzene	6.0 U	40.9	59.6	69	34.5	59.6	58	13-151	17	30
1,4-Dichlorobenzene	6.0 U	42.8	59.6	72	34.4	59.6	58	10-151	22	30
1,4-Dioxane	120 U	1010	1190	85	1120	1190	94	49-188	10	30
Methyl Ethyl Ketone	6.0 U	42.0	59.6	70	42.0	59.6	70	13-176	<1	30
p-Isopropyltoluene	6.0 U	39.5	59.6	66	34.4	59.6	58	11-141	13	30
Acetone	6.0 U	509 E	59.6	854 *	525 E	59.6	881 *	11-183	3	30
Benzene	6.0 U	47.8	59.6	80	44.3	59.6	74	51-123	8	30
Carbon Tetrachloride	6.0 U	43.8	59.6	73	41.0	59.6	69	46-137	6	30
Chlorobenzene	6.0 U	45.6	59.6	77	39.8	59.6	67	25-129	14	30
Chloroform	6.0 U	50.8	59.6	85	47.1	59.6	79	55-118	7	30
Methylene Chloride	6.0 U	54.4	59.6	91	50.2	59.6	84	49-125	8	30
Ethylbenzene	6.0 U	43.0	59.6	72	38.7	59.6	65	23-132	10	30
Isopropylbenzene (Cumene)	6.0 U	42.0	59.6	71	37.3	59.6	63	18-133	12	30
Methyl tert-Butyl Ether	6.0 U	64.1	59.6	108	60.6	59.6	102	62-130	6	30
Naphthalene	6.0 U	56.4	59.6	95	34.0	59.6	57	10-188	50*	30
Tetrachloroethene (PCE)	6.0 U	40.3	59.6	68	36.1	59.6	61	21-137	11	30
Toluene	6.0 U	45.0	59.6	75	41.4	59.6	69	11-152	8	30
Trichloroethene (TCE)	6.0 U	44.3	59.6	74	41.4	59.6	70	23-140	6	30
Vinyl Chloride	6.0 U	51.1	59.6	86	48.7	59.6	82	59-153	5	30
cis-1,2-Dichloroethene	6.0 U	50.8	59.6	85	47.2	59.6	79	42-129	7	30
m,p-Xylenes	12 U	86.3	119	72	77.3	119	65	20-135	10	30
n-Butylbenzene	6.0 U	35.5	59.6	60	31.0	59.6	52	10-168	14	30
n-Propylbenzene	6.0 U	41.1	59.6	69	36.2	59.6	61	20-139	12	30
o-Xylene	6.0 U	44.4	59.6	75	39.5	59.6	66	26-137	13	30
sec-Butylbenzene	6.0 U	38.3	59.6	64	32.7	59.6	55	11-140	15	30
tert-Butylbenzene	6.0 U	41.4	59.6	69	35.7	59.6	60	19-148	14	30
•										

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Glenn Springs Holdings, Inc. **Service Request:**

R2408714

Project: Sample Matrix: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling Solid

Date Collected:

09/04/24

Date Received:

09/05/24

Date Analyzed:

09/9/24

Date Extracted:

NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS, Unp

Sample Name:

Topsoil Fill

Bulk/5035A

Units:

ug/Kg

Lab Code:

Prep Method:

Analyte Name

R2408714-001

Basis:

Dry

Analysis Method:

8260D

Matrix Spike

Duplicate Matrix Spike

RQ2411210-05

RQ2411210-04

RPD Sample **Spike** Spike % Rec Result Amount **RPD** Result Amount % Rec Result % Rec Limits Limit 40.7 trans-1,2-Dichloroethene 6.0 U 45.1 59.6 59.6 30 34-128

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling Date Collected: NA

Sample Matrix: Solid Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/Kg

 Lab Code:
 RQ2411210-03
 Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260D **Prep Method:** Bulk/5035A

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane	5.0 U	5.0	1	09/09/24 12:02	
1,1-Dichloroethane	5.0 U	5.0	1	09/09/24 12:02	
1,1-Dichloroethene	5.0 U	5.0	1	09/09/24 12:02	
1,2,4-Trimethylbenzene	5.0 U	5.0	1	09/09/24 12:02	
1,2-Dichlorobenzene	5.0 U	5.0	1	09/09/24 12:02	
1,2-Dichloroethane	5.0 U	5.0	1	09/09/24 12:02	
1,3,5-Trimethylbenzene	5.0 U	5.0	1	09/09/24 12:02	
1,3-Dichlorobenzene	5.0 U	5.0	1	09/09/24 12:02	
1,4-Dichlorobenzene	5.0 U	5.0	1	09/09/24 12:02	
1,4-Dioxane	100 U	100	1	09/09/24 12:02	
Methyl Ethyl Ketone	5.0 U	5.0	1	09/09/24 12:02	
p-Isopropyltoluene	5.0 U	5.0	1	09/09/24 12:02	
Acetone	5.0 U	5.0	1	09/09/24 12:02	
Benzene	5.0 U	5.0	1	09/09/24 12:02	
Carbon Tetrachloride	5.0 U	5.0	1	09/09/24 12:02	
Chlorobenzene	5.0 U	5.0	1	09/09/24 12:02	
Chloroform	5.0 U	5.0	1	09/09/24 12:02	
Methylene Chloride	5.0 U	5.0	1	09/09/24 12:02	
Ethylbenzene	5.0 U	5.0	1	09/09/24 12:02	
Isopropylbenzene (Cumene)	5.0 U	5.0	1	09/09/24 12:02	
Methyl tert-Butyl Ether	5.0 U	5.0	1	09/09/24 12:02	
Naphthalene	5.0 U	5.0	1	09/09/24 12:02	
Tetrachloroethene (PCE)	5.0 U	5.0	1	09/09/24 12:02	
Toluene	5.0 U	5.0	1	09/09/24 12:02	
Trichloroethene (TCE)	5.0 U	5.0	1	09/09/24 12:02	
Vinyl Chloride	5.0 U	5.0	1	09/09/24 12:02	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/09/24 12:02	
m,p-Xylenes	10 U	10	1	09/09/24 12:02	
n-Butylbenzene	5.0 U	5.0	1	09/09/24 12:02	
n-Propylbenzene	5.0 U	5.0	1	09/09/24 12:02	
o-Xylene	5.0 U	5.0	1	09/09/24 12:02	
sec-Butylbenzene	5.0 U	5.0	1	09/09/24 12:02	
tert-Butylbenzene	5.0 U	5.0	1	09/09/24 12:02	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/09/24 12:02	

Analytical Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling Date Collected: NA

Sample Matrix: Solid Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:RQ2411210-03Basis: Dry

Volatile Organic Compounds by GC/MS, Unp

Analysis Method: 8260D **Prep Method:** Bulk/5035A

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	31 - 154	09/09/24 12:02	
Dibromofluoromethane	93	63 - 138	09/09/24 12:02	
Toluene-d8	95	66 - 138	09/09/24 12:02	

QA/QC Report

Client: Glenn Springs Holdings, Inc.

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling Date Analyzed: 09/09/24

Sample Matrix: Solid

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unp

Units:ug/Kg Basis:Dry

Service Request: R2408714

Lab Control Sample

RQ2411210-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane	8260D	20.9	20.0	104	68-123
1,1-Dichloroethane	8260D	19.3	20.0	96	76-123
1,1-Dichloroethene	8260D	19.2	20.0	96	67-147
1,2,4-Trimethylbenzene	8260D	18.8	20.0	94	67-121
1,2-Dichlorobenzene	8260D	19.3	20.0	96	75-116
1,2-Dichloroethane	8260D	19.5	20.0	97	74-116
1,3,5-Trimethylbenzene	8260D	18.8	20.0	94	66-122
1,3-Dichlorobenzene	8260D	19.1	20.0	95	72-118
1,4-Dichlorobenzene	8260D	19.1	20.0	96	72-117
1,4-Dioxane	8260D	346	400	86	59-147
Methyl Ethyl Ketone	8260D	17.8	20.0	89	67-129
p-Isopropyltoluene	8260D	19.5	20.0	98	58-128
Acetone	8260D	18.7	20.0	93	32-154
Benzene	8260D	19.1	20.0	95	77-114
Carbon Tetrachloride	8260D	20.2	20.0	101	51-123
Chlorobenzene	8260D	18.5	20.0	92	79-115
Chloroform	8260D	18.7	20.0	94	76-115
Methylene Chloride	8260D	18.5	20.0	93	72-118
Ethylbenzene	8260D	18.9	20.0	94	64-118
Isopropylbenzene (Cumene)	8260D	20.1	20.0	100	60-123
Methyl tert-Butyl Ether	8260D	19.1	20.0	96	76-118
Naphthalene	8260D	22.9	20.0	115	68-127
Tetrachloroethene (PCE)	8260D	19.3	20.0	96	58-124
Toluene	8260D	18.8	20.0	94	72-116
Trichloroethene (TCE)	8260D	19.5	20.0	97	69-118
Vinyl Chloride	8260D	20.2	20.0	101	59-153
cis-1,2-Dichloroethene	8260D	19.4	20.0	97	79-113
m,p-Xylenes	8260D	37.9	40.0	95	68-118
n-Butylbenzene	8260D	19.1	20.0	96	54-131
n-Propylbenzene	8260D	18.7	20.0	93	59-126
o-Xylene	8260D	18.4	20.0	92	71-116
sec-Butylbenzene	8260D	18.6	20.0	93	54-128
tert-Butylbenzene	8260D	18.9	20.0	95	58-123
Printed 9/18/2024 12:03:23 PM			Super	set Reference:24-00	00708279 rev 00

QA/QC Report

Client: Glenn Springs Holdings, Inc.

NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix:

Project:

Solid

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unp

Units:ug/Kg
Basis:Dry

Service Request: R2408714

Date Analyzed: 09/09/24

Lab Control Sample

RQ2411210-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
trans-1 2-Dichloroethene	8260D	17.8	20.0	89	73-114

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid

SURROGATE RECOVERY SUMMARY

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Extraction Method:** EPA 3546

		2,4,6-Tribromophenol	2-Fluorobiphenyl	2-Fluorophenol
Sample Name	Lab Code	18 - 123	18 - 104	13 - 96
Topsoil Fill	R2408714-001	70	66	62
Clay Fill	R2408714-002	46	65	64
Method Blank	RQ2411178-01	91	73	73
Lab Control Sample	RQ2411178-02	95	77	74
Duplicate Lab Control Sample	RQ2411178-03	73	58	55
Topsoil Fill MS	RQ2411178-04	31	29	28
Topsoil Fill DMS	RQ2411178-05	40	35	34

QA/QC Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid

SURROGATE RECOVERY SUMMARY

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Extraction Method:** EPA 3546

		Nitrobenzene-d5	Phenol-d6	p-Terphenyl-d14
Sample Name	Lab Code	12 - 98	16 - 95	26 - 134
Topsoil Fill	R2408714-001	55	64	63
Clay Fill	R2408714-002	67	64	67
Method Blank	RQ2411178-01	70	75	85
Lab Control Sample	RQ2411178-02	72	76	84
Duplicate Lab Control Sample	RQ2411178-03	54	57	62
Topsoil Fill MS	RQ2411178-04	28	28	29
Topsoil Fill DMS	RQ2411178-05	35	36	36

QA/QC Report

Client: Glenn Springs Holdings, Inc. **Service Request:** R2408714 NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling **Project: Date Collected:** 09/04/24 **Sample Matrix:** Solid **Date Received:** 09/05/24 Date Analyzed: 09/10/24 **Date Extracted:** 09/9/24

Duplicate Matrix Spike Summary

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Sample Name:Topsoil FillUnits:ug/KgLab Code:R2408714-001Basis:Dry

Analysis Method: 8270E **Prep Method:** EPA 3546

			Matrix Sp RQ241117		D	uplicate Mat RQ241117	_			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
o-Cresol	390 U	1290	3950	33	1650	3970	41	28-105	25	30
m,p-Cresols	390 U	1400	3950	35	1800	3970	45	25-112	25	30
Acenaphthene	390 U	1410	3950	36	1840	3970	46	34-121	26	30
Acenaphthylene	390 U	1530	3950	39	1960	3970	49	39-124	25	30
Anthracene	390 U	1500	3950	38 *	1920	3970	48 *	58-119	25	30
Benz(a)anthracene	390 U	1500	3950	38 *	1880	3970	47 *	60-114	22	30
Benzo(a)pyrene	390 U	1630	3950	41 *	2040	3970	51 *	72-128	22	30
Benzo(b)fluoranthene	390 U	1550	3950	39 *	1900	3970	48 *	64-109	20	30
Benzo(g,h,i)perylene	390 U	1530	3950	39 *	1920	3970	48 *	59-129	23	30
Benzo(k)fluoranthene	390 U	1550	3950	39 *	1920	3970	48 *	70-110	21	30
Chrysene	390 U	1540	3950	39 *	1890	3970	48 *	65-114	20	30
Dibenz(a,h)anthracene	390 U	1440	3950	37 *	1860	3970	47 *	60-128	26	30
Dibenzofuran	390 U	1420	3950	36 *	1860	3970	47	38-124	27	30
Fluoranthene	390 U	1500	3950	38 *	1910	3970	48 *	61-131	24	30
Fluorene	390 U	1450	3950	37 *	1900	3970	48	39-128	27	30
Hexachlorobenzene	390 U	1330	3950	34 *	1750	3970	44	42-135	27	30
Indeno(1,2,3-cd)pyrene	390 U	1610	3950	41 *	2000	3970	50 *	60-123	22	30
Naphthalene	390 U	1330	3950	34	1690	3970	43	21-101	24	30
Pentachlorophenol	2000 U	1150 J	3950	29 *	1520 J	3970	38 *	46-124	28	30
Phenanthrene	390 U	1420	3950	36 *	1830	3970	46 *	56-117	25	30
Phenol	390 U	1300	3950	33	390 U	3970	0 *	24-102	NC	30
Pyrene	390 U	1630	3950	41 *	1930	3970	48 *	67-118	17	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling Date Collected: NA Sample Matrix: Solid Date Received: NA

Sample Name:Method BlankUnits: ug/KgLab Code:RQ2411178-01Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
o-Cresol	330 U	330	1	09/09/24 21:49	9/9/24	
m,p-Cresols	330 U	330	1	09/09/24 21:49	9/9/24	
Acenaphthene	330 U	330	1	09/09/24 21:49	9/9/24	
Acenaphthylene	330 U	330	1	09/09/24 21:49	9/9/24	
Anthracene	330 U	330	1	09/09/24 21:49	9/9/24	
Benz(a)anthracene	330 U	330	1	09/09/24 21:49	9/9/24	
Benzo(a)pyrene	330 U	330	1	09/09/24 21:49	9/9/24	
Benzo(b)fluoranthene	330 U	330	1	09/09/24 21:49	9/9/24	
Benzo(g,h,i)perylene	330 U	330	1	09/09/24 21:49	9/9/24	
Benzo(k)fluoranthene	330 U	330	1	09/09/24 21:49	9/9/24	
Chrysene	330 U	330	1	09/09/24 21:49	9/9/24	
Dibenz(a,h)anthracene	330 U	330	1	09/09/24 21:49	9/9/24	
Dibenzofuran	330 U	330	1	09/09/24 21:49	9/9/24	
Fluoranthene	330 U	330	1	09/09/24 21:49	9/9/24	
Fluorene	330 U	330	1	09/09/24 21:49	9/9/24	
Hexachlorobenzene	330 U	330	1	09/09/24 21:49	9/9/24	
Indeno(1,2,3-cd)pyrene	330 U	330	1	09/09/24 21:49	9/9/24	
Naphthalene	330 U	330	1	09/09/24 21:49	9/9/24	
Pentachlorophenol	1700 U	1700	1	09/09/24 21:49	9/9/24	
Phenanthrene	330 U	330	1	09/09/24 21:49	9/9/24	
Phenol	330 U	330	1	09/09/24 21:49	9/9/24	
Pyrene	330 U	330	1	09/09/24 21:49	9/9/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	91	18 - 123	09/09/24 21:49	
2-Fluorobiphenyl	73	18 - 104	09/09/24 21:49	
2-Fluorophenol	73	13 - 96	09/09/24 21:49	
Nitrobenzene-d5	70	12 - 98	09/09/24 21:49	
Phenol-d6	75	16 - 95	09/09/24 21:49	
p-Terphenyl-d14	85	26 - 134	09/09/24 21:49	

QA/QC Report

Client: Glenn Springs Holdings, Inc.

Service Request: R2408714 NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling **Project:** Date Analyzed: 09/09/24

Sample Matrix: Solid

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Units:ug/Kg Basis:Dry

Lab Control Sample

Duplicate Lab Control Sample

RQ2411178-02

RQ2411178-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
o-Cresol	8270E	3050	3300	92	2290	3320	69	33-99	28	30
m,p-Cresols	8270E	3060	3300	93	2300	3320	69	32-100	28	30
Acenaphthene	8270E	3250	3300	98	2490	3320	75	41-110	26	30
Acenaphthylene	8270E	3580	3300	108	2750	3320	83	44-122	26	30
Anthracene	8270E	3610	3300	109	2750	3320	83	41-123	27	30
Benz(a)anthracene	8270E	3510	3300	106	2610	3320	79	44-116	29	30
Benzo(a)pyrene	8270E	3950	3300	119	2960	3320	89	56-146	29	30
Benzo(b)fluoranthene	8270E	3490	3300	106	2570	3320	78	47-120	30	30
Benzo(g,h,i)perylene	8270E	3910	3300	118	2960	3320	89	41-129	28	30
Benzo(k)fluoranthene	8270E	3750	3300	113	2850	3320	86	49-124	27	30
Chrysene	8270E	3510	3300	106	2620	3320	79	44-119	29	30
Dibenz(a,h)anthracene	8270E	3860	3300	117	2920	3320	88	18-146	28	30
Dibenzofuran	8270E	3330	3300	101	2560	3320	77	43-113	26	30
Fluoranthene	8270E	3540	3300	107	2680	3320	81	39-128	28	30
Fluorene	8270E	3400	3300	103	2610	3320	79	40-117	26	30
Hexachlorobenzene	8270E	3390	3300	102	2570	3320	77	35-122	27	30
Indeno(1,2,3-cd)pyrene	8270E	3960	3300	120	3040	3320	92	43-129	26	30
Naphthalene	8270E	2850	3300	86	2140	3320	65	31-93	28	30
Pentachlorophenol	8270E	2470	3300	75	2220	3320	67	36-138	11	30
Phenanthrene	8270E	3380	3300	102	2600	3320	78	39-120	26	30
Phenol	8270E	3000	3300	91	2230	3320	67	31-100	29	30
Pyrene	8270E	3550	3300	107	2670	3320	80	45-125	28	30

Semivolatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid

SURROGATE RECOVERY SUMMARY

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method: 8081B **Extraction Method:** EPA 3546

		Decachlorobiphenyl	Tetrachloro-m-xylene	
Sample Name	Lab Code	10 - 159	10 - 132	
Topsoil Fill	R2408714-001	88	69	
Clay Fill	R2408714-002	53	37	
Method Blank	RQ2411477-01	101	57	
Lab Control Sample	RQ2411477-02	101	63	
Duplicate Lab Control Sample	RQ2411477-03	112	67	

Superset Reference:24-0000708279 rev 00

Analytical Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling Date Collected: NA Sample Matrix: Solid Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/Kg

 Lab Code:
 RQ2411477-01
 Basis: Dry

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method: 8081B **Prep Method:** EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
4,4'-DDD	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
4,4'-DDE	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
4,4'-DDT	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Aldrin	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Dieldrin	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Endosulfan I	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Endosulfan II	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Endosulfan Sulfate	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Endrin	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Endrin Aldehyde	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Endrin Ketone	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Heptachlor	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Heptachlor Epoxide	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Methoxychlor	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
Toxaphene	33 U	33	1	09/16/24 17:11	9/13/24	
alpha-BHC	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
alpha-Chlordane	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
beta-BHC	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
delta-BHC	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
gamma-BHC (Lindane)	1.7 U	1.7	1	09/16/24 17:11	9/13/24	
gamma-Chlordane	1.7 U	1.7	1	09/16/24 17:11	9/13/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	101	10 - 159	09/16/24 17:11	
Tetrachloro-m-xylene	57	10 - 132	09/16/24 17:11	

QA/QC Report

Client: Glenn Springs Holdings, Inc.

Service Request: R2408714 NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling **Project:** Date Analyzed: 09/16/24

Sample Matrix: Solid

Duplicate Lab Control Sample Summary Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Units:ug/Kg Basis:Dry

Lab Control Sample

Duplicate Lab Control Sample

RQ2411477-02

RQ2411477-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
4,4'-DDD	8081B	5.37	6.62	81	5.72	6.63	86	48-121	6	30
4,4'-DDE	8081B	5.51	6.62	83	5.75	6.63	87	51-119	4	30
4,4'-DDT	8081B	6.84	6.62	103	7.13	6.63	108	51-126	4	30
Aldrin	8081B	4.90	6.62	74	5.48	6.63	83	45-109	11	30
Dieldrin	8081B	5.42	6.62	82	5.79	6.63	87	56-111	7	30
Endosulfan I	8081B	5.13	6.62	78	5.49	6.63	83	54-109	7	30
Endosulfan II	8081B	5.66	6.62	85	6.00	6.63	91	50-116	6	30
Endosulfan Sulfate	8081B	5.63	6.62	85	6.13	6.63	92	55-115	9	30
Endrin	8081B	6.20	6.62	94	6.46	6.63	97	49-124	4	30
Endrin Aldehyde	8081B	4.55	6.62	69	5.57	6.63	84	21-139	20	30
Endrin Ketone	8081B	5.36	6.62	81	5.86	6.63	88	50-124	9	30
Heptachlor	8081B	5.35	6.62	81	6.10	6.63	92	43-115	13	30
Heptachlor Epoxide	8081B	5.55	6.62	84	6.08	6.63	92	53-113	9	30
Methoxychlor	8081B	6.91	6.62	104	7.07	6.63	107	47-141	2	30
alpha-BHC	8081B	4.80	6.62	72	5.38	6.63	81	44-109	12	30
alpha-Chlordane	8081B	5.40	6.62	82	5.66	6.63	85	52-114	5	30
beta-BHC	8081B	6.14	6.62	93	6.22	6.63	94	49-119	1	30
delta-BHC	8081B	5.62	6.62	85	6.20	6.63	94	49-113	10	30
gamma-BHC (Lindane)	8081B	4.72	6.62	71	5.00	6.63	75	43-112	6	30
gamma-Chlordane	8081B	5.71	6.62	86	6.01	6.63	91	51-117	5	30

QA/QC Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid

SURROGATE RECOVERY SUMMARY

Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Analysis Method: 8082A **Extraction Method:** EPA 3546

		Decachlorobiphenyl	Tetrachloro-m-xylene	
Sample Name	Lab Code	10 - 138	11 - 122	
Topsoil Fill	R2408714-001	76	78	
Clay Fill	R2408714-002	42	45	
Method Blank	RQ2411477-01	83	67	
Lab Control Sample	RQ2411477-04	94	90	
Duplicate Lab Control Sample	RQ2411477-05	81	74	

Analytical Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling Date Collected: NA Sample Matrix: Solid Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/Kg

 Lab Code:
 RQ2411477-01
 Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Analysis Method: 8082A **Prep Method:** EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	33 U	33	1	09/16/24 10:43	9/13/24	
Aroclor 1221	67 U	67	1	09/16/24 10:43	9/13/24	
Aroclor 1232	33 U	33	1	09/16/24 10:43	9/13/24	
Aroclor 1242	33 U	33	1	09/16/24 10:43	9/13/24	
Aroclor 1248	33 U	33	1	09/16/24 10:43	9/13/24	
Aroclor 1254	33 U	33	1	09/16/24 10:43	9/13/24	
Aroclor 1260	33 U	33	1	09/16/24 10:43	9/13/24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	83	10 - 138	09/16/24 10:43	
Tetrachloro-m-xylene	67	11 - 122	09/16/24 10:43	

QA/QC Report

Client: Glenn Springs Holdings, Inc.

NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid

Project:

Service Request: R2408714

Date Analyzed: 09/16/24

Duplicate Lab Control Sample Summary Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Units:ug/Kg Basis:Dry

Lab Control Sample

Duplicate Lab Control Sample

RQ2411477-04

RQ2411477-05

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Aroclor 1016	8082A	157	167	94	137	166	83	34-141	13	30
Aroclor 1260	8082A	175	167	105	148	166	89	30-158	17	30

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Glenn Springs Holdings, Inc.

Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid

Date Collected: NA

Date Received: NA

_

Sample Name:

Method Blank

Analysis

Lab Code: R2408714-MB

Basis: Dry

Inorganic Parameters

	Allalysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum, Total	6010D	20 U	mg/Kg	20	1	09/13/24 01:04	09/11/24	
Antimony, Total	6010D	6.0 U	mg/Kg	6.0	1	09/13/24 01:04	09/11/24	
Arsenic, Total	6010D	1.0 U	mg/Kg	1.0	1	09/13/24 01:04	09/11/24	
Barium, Total	6010D	2.0 U	mg/Kg	2.0	1	09/13/24 01:04	09/11/24	
Beryllium, Total	6010D	0.30 U	mg/Kg	0.30	1	09/13/24 01:04	09/11/24	
Cadmium, Total	6010D	0.50 U	mg/Kg	0.50	1	09/13/24 01:04	09/11/24	
Calcium, Total	6010D	100 U	mg/Kg	100	1	09/13/24 01:04	09/11/24	
Chromium, Total	6010D	1.0 U	mg/Kg	1.0	1	09/13/24 01:04	09/11/24	
Cobalt, Total	6010D	5.0 U	mg/Kg	5.0	1	09/13/24 01:04	09/11/24	
Copper, Total	6010D	2.0 U	mg/Kg	2.0	1	09/13/24 01:04	09/11/24	
Iron, Total	6010D	20 U	mg/Kg	20	1	09/13/24 01:04	09/11/24	
Lead, Total	6010D	5.0 U	mg/Kg	5.0	1	09/13/24 01:04	09/11/24	
Magnesium, Total	6010D	100 U	mg/Kg	100	1	09/13/24 01:04	09/11/24	
Manganese, Total	6010D	2.0 U	mg/Kg	2.0	1	09/13/24 01:04	09/11/24	
Mercury, Total	7471B	0.020 U	mg/Kg	0.020	1	09/12/24 10:49	09/11/24	
Nickel, Total	6010D	4.0 U	mg/Kg	4.0	1	09/13/24 01:04	09/11/24	
Potassium, Total	6010D	200 U	mg/Kg	200	1	09/13/24 01:04	09/11/24	
Selenium, Total	6010D	1.0 U	mg/Kg	1.0	1	09/13/24 01:04	09/11/24	
Silver, Total	6010D	1.0 U	mg/Kg	1.0	1	09/13/24 01:04	09/11/24	
Sodium, Total	6010D	100 U	mg/Kg	100	1	09/13/24 01:04	09/11/24	
Thallium, Total	6010D	1.0 U	mg/Kg	1.0	1	09/13/24 01:04	09/11/24	
Vanadium, Total	6010D	5.0 U	mg/Kg	5.0	1	09/13/24 01:04	09/11/24	
Zinc, Total	6010D	2.0 U	mg/Kg	2.0	1	09/13/24 01:04	09/11/24	

QA/QC Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling Date Collected: 09/04/24

Sample Matrix: Solid Date Received: 09/05/24

Pete Applyaged: 00/12/24

Date Analyzed: 09/12/24 **Date Extracted:** 09/11/24

Duplicate Matrix Spike Summary Inorganic Parameters

Sample Name:Topsoil FillUnits:mg/KgLab Code:R2408714-001Basis:Dry

Analysis Method: 7471B **Prep Method:** Method

Matrix SpikeDuplicate Matrix SpikeR2408714-001MSR2408714-001DMS

RPD Sample Spike **Spike** % Rec **Analyte Name** Result % Rec Limits **RPD** Result Amount % Rec Result **Amount** Limit 0.131 20 Mercury, Total 0.046 0.134 0.112 0.112 80-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Glenn Springs Holdings, Inc.

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid

Lab Control Sample Summary Inorganic Parameters

Units:mg/Kg
Basis:Dry

Date Analyzed: 09/12/24 - 09/13/24

Service Request: R2408714

Lab Control Sample

R2408714-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Aluminum, Total	6010D	185	200	92	80-120
Antimony, Total	6010D	45.8	50.0	92	80-120
Arsenic, Total	6010D	3.5	4.0	88	80-120
Barium, Total	6010D	192	200	96	80-120
Beryllium, Total	6010D	4.76	5.00	95	80-120
Cadmium, Total	6010D	4.90	5.00	98	80-120
Calcium, Total	6010D	200	200	99	80-120
Chromium, Total	6010D	19.7	20.0	98	80-120
Cobalt, Total	6010D	48.6	50.0	97	80-120
Copper, Total	6010D	24.9	25.0	99	80-120
Iron, Total	6010D	98	100	98	80-120
Lead, Total	6010D	49.4	50.0	99	80-120
Magnesium, Total	6010D	190	200	94	80-120
Manganese, Total	6010D	46.5	50.0	93	80-120
Mercury, Total	7471B	0.089	0.100	89	80-120
Nickel, Total	6010D	47.4	50.0	95	80-120
Potassium, Total	6010D	1830	2000	92	80-120
Selenium, Total	6010D	87.6	101	87	80-120
Silver, Total	6010D	4.7	5.0	94	80-120
Sodium, Total	6010D	1870	2000	93	80-120
Thallium, Total	6010D	187	200	94	80-120
Vanadium, Total	6010D	48.9	50.0	98	80-120
Zinc, Total	6010D	46.5	50.0	93	80-120

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Glenn Springs Holdings, Inc.

Service Request: R2408714

Project: NT D

NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Date Collected: NA

Sample Matrix:

Solid

Date Received: NA

Sample Name:

Method Blank

Basis: Dry

Lab Code: R2408714-MB

Inorganic Parameters

Analysis

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q	
Cvanide, Total	9012B	0.30 U	mg/Kg	0.30	1	09/12/24 12:20	09/11/24		

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Glenn Springs Holdings, Inc. Service Request: R2408714

Project NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Date Collected: 09/04/24

Sample Matrix: Solid

Date Received: 09/05/24

Date Analyzed: 09/12/24

Replicate Sample Summary General Chemistry Parameters

Sample Name:

Clay Fill

Units: Percent

Lab Code:

R2408714-002

Basis: As Received

Duplicate

Sample

R2408714-

002DUP

Analysis Analyte Name Method

Sample Result

Result

Average

RPD Limit RPD

Total Solids

ALS SOP

MRL

84.9

84.4

84.6

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/18/2024 12:04:06 PM

Superset Reference:24-0000708279 rev 00

QA/QC Report

Client: Glenn Springs Holdings, Inc.

NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid

Project:

າg

Service Request: R2408714

Date Analyzed: 09/12/24

Lab Control Sample Summary General Chemistry Parameters

Units:mg/Kg
Basis:Dry

Lab Control Sample

R2408714-LCS1

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cyanide, Total	9012B	2.95	3.00	98	85-115

QA/QC Report

Client: Glenn Springs Holdings, Inc.

Project: NT Durez/281-402-D02-3100/11223794 Imported Fill Sampling

Sample Matrix: Solid

Lab Control Sample Summary General Chemistry Parameters

Units:mg/Kg
Basis:Dry

Service Request: R2408714

Date Analyzed: 09/12/24

Lab Control Sample

R2408714-LCS2

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cyanide, Total	9012B	17.5	18.0	97	85-115

Appendix G Drainage Improvements Photo Log

Client: Glenn Springs Holdings, Inc Project Number: TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, New York

Photograph 1:

Comments:

Flooding in Harding Ave. near intersection of Wayne Ave. in January 2024; Durez NT Site is on the left in the photograph; looking west.

Photograph 2:

Comments:

Flooding in area covering MH19 next to 795 Harding Ave. in January 2024, looking southwest.

Client: Glenn Springs Holdings, Inc Project Number: TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, New York

Photograph 3:

Comments:

Flooding in area covering MH19 next to 795 Harding Ave. in January 2024, looking south.

Photograph 4:

Comments:

Flooding along Harding Ave. near intersection of Wayne Ave. in January 2024, looking southeast.

Client: Glenn Springs Holdings, Inc Project Number: TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, New York

Photograph 5:

Comments:

Flooding along Harding Ave. in January 2024, looking east.

Photograph 6:

Comments:

Flooding down Harding Ave., looking west towards Nach Road.

Client: Glenn Springs Holdings, Inc Project Number: TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, New York

Photograph 7:

Comments:

Flood area in August 2024 from Wilson Ave., looking northeast. This represents before conditions of the area.

Photograph 8:

Comments:

Overgrown Harding Ave. fence line, looking east. This represents before conditions of the area.

Client: Glenn Springs Holdings, Inc Project Number: TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, New York

Photograph 9:

Comments:

Overgrown fence line on Wilson Ave, looking east. This represents before conditions of the area.

Photograph 10:

Comments:

Beginning clearing in the corner of Durez site between Wilson Ave. and Harding Ave., looking north.

Client: Glenn Springs Holdings, Inc Project Number: TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 11:

Comments:

In process of clearing corner of Site between Wilson Ave. and Harding Ave., looking north.

Photograph 12:

Comments:

In process of clearing corner of Site between Wilson Ave. and Harding Ave., looking north.

Client: Glenn Springs Holdings, Inc Project Number: TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 13:

Comments:

In process of clearing wooded area near MH23 parallel to Site fence on Harding Ave., looking west.

Photograph 14:

Comments:

In process of clearing wooded area near MH23 parallel to original fence on Harding Ave., looking west.

Client: Glenn Springs Holdings, Inc Project Number: TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 15:

Comments:

Tree contractor cutting trees near Lift Station #1 along Wilson Ave., looking west.

Photograph 16:

Comments:

Clearing of corner of Site between Wilson Ave. and Harding Ave., looking north.

Client: Glenn Springs Holdings, Inc Project Number: TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 17:

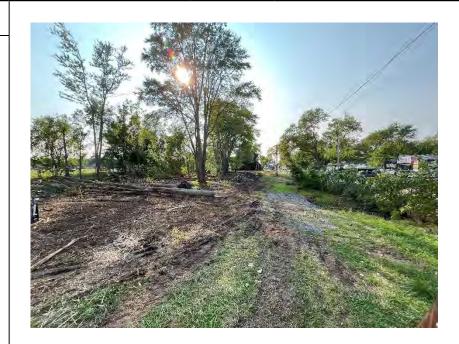
Comments:

Truck depositing clay in area for Berm 2 near T-5 piezometers, looking north.

Photograph 18:

Comments:

Corner of property parallel to Harding Ave. cleared, looking west. Temporary fence set up along Harding Ave. and scrap metal from fence demolition piled awaiting shipment to recycler. Manhole MH23 in the right foreground.


Glenn Springs Holdings, Inc **Project Number:** TR1045 **Client:**

Site Address: 700 Walck Rd North Tonawanda, NY **Location:**

Photograph 19:

Comments:

Clearing of corner of property and felled dead trees between Wilson Ave. and Harding Ave., looking west.

Photograph 20:

Comments:

Clearing of corner of property and felled dead trees between Wilson Ave. and Harding Ave., looking southwest.

Glenn Springs Holdings, Inc **Project Number:** TR1045 **Client:**

Site Address: 700 Walck Rd North Tonawanda, NY **Location:**

Photograph 21:

Comments:

Cleared fence line and gate lining Wilson Ave., looking west.

Photograph 22:

Comments:

Felled dead trees in corner of property between Wilson Ave. and Harding Ave., looking north. Stockpiled for processing and for transport to on-site stockpile location.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd North Tonawanda, NY **Location:**

Photograph 23:

Comments:

Cleared fence line parallel to Wilson Ave., looking west to Lift Station #1.

Photograph 24:

Comments:

Felled trees in corner of property between Wilson Ave. and Harding Ave. being loaded into truck for chipping, looking north.

Project Number: Glenn Springs Holdings, Inc TR1045 **Client:**

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 25:

Comments:

Clearing of Site's west fence line and communication lines, looking south.

Photograph 26:

Comments:

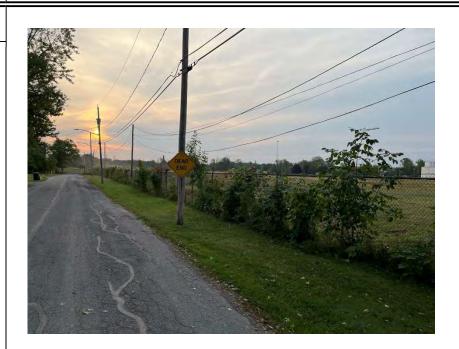
Clearing of corner of property and clay soil for berms between Wilson Ave. and Harding Ave. beginning to be installed, looking westnorthwest.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd North Tonawanda, NY **Location:**

Photograph 27:

Comments:


Flood area from Wilson Ave. with clearing in progress, looking northeast in the morning.

Photograph 28:

Comments:

Fence line along Wilson Ave. with trees removed; clearing of fence yet to be completed, looking east in the morning.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 29:

Comments:

Temporary fence line bordering Harding Ave. after clearing; clay berm roughed in, looking east.

Photograph 30:

Comments:

Cleared area near MH19 along Harding Ave.; temporary fence installed; clay berm rough in, looking southeast.

Glenn Springs Holdings, Inc **Project Number:** TR1045 **Client:**

North Tonawanda, NY **Site Address:** 700 Walck Rd **Location:**

Photograph 31:

Comments:

Road approaching Lift Station #1 during fence line clearing; note new millings installed to raise elevation of road to slow surface runoff to property's edge, looking north-northeast.

Photograph 32:

Comments:

Fenceline along back of houses on Wilson Ave. during tree clearing work, looking north-northwest.

Glenn Springs Holdings, Inc **Project Number:** TR1045 **Client:**

North Tonawanda, NY Site Address: 700 Walck Rd **Location:**

Photograph 33:

Comments:

Tree contractor organizing work activities for the day along west property fence line during tree clearing activities, looking west.

Photograph 34:

Comments:

Cleared fence line next to Lift Station #1 along Wilson Ave., looking north. Note large live trees that remain to be removed behind the lift station.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 35:

Comments:

Cleared fence line along Wilson Ave. looking east.

Photograph 36:

Comments:

Cleared fence line along Wilson Ave. next to Lift Station #1; some vines and small shrubs left to remove; looking east.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 37:

Comments:

Cleared fence line and improved site access road along Wilson Ave., looking west.

Photograph 38:

Comments:

Road improvements and cleared fence line parallel to Wilson Ave., looking west.

Glenn Springs Holdings, Inc **Project Number:** TR1045 **Client:**

Site Address: 700 Walck Rd North Tonawanda, NY **Location:**

Photograph 39:

Comments:

Road improvement parallel to Wilson Ave., looking west and Lift Station #1 in background; note large trees behind Lift Station #1 yet to be rmoved.

Photograph 40:

Comments:

Felled trees in corner of property adjacent to Wilson Ave. and along Harding Ave. awaiting processing, looking north.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd North Tonawanda, NY **Location:**

Photograph 41:

Comments:

Cleared fence line and felled trees in corner of property adjacent to Wilson Ave. Gate and along Harding Ave., looking north.

Photograph 42:

Comments:

Felled trees in corner of property adjacent to Wilson Ave. Gate and along Harding Ave., looking northeast.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 43:

Comments:

Beginning of cutting down large trees adjacent to/near Lift Station #1, looking northwest.

Photograph 44:

Comments:

Continuing tree cutting along fence line behind houses on Wilson Ave., looking northwest.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 45:

Comments:

Northeast most corner of the Site cleared near Lift Station #3 and adjacent to cell 2 of engineered wetland, looking east.

Photograph 46:

Comments:

Northeast most corner of the Site cleared near Lift Station #3, looking north at cell 2 of engineered wetland.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 47:

Comments:

Area of cell 2 of engineered wetland; clearing in progress, looking northeast.

Photograph 48:

Comments:

North most section of the Site adjacent to cell 2 of engineered wetland being cleared, looking west.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 49:

Comments:

Liner of engineered wetland in eastern cell exposed due to tree growth in cell; looking east.

Photograph 50:

Comments:

Southwest corner of cell 2 of engineered wetland; clearing in progress, looking southwest.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 51:

Comments:

Cell 2 of engineered wetland; clearing of trees in progress, looking west.

Photograph 52:

Comments:

Northern edge of cell 2 of engineered wetland showing trees yet to be cleared, looking northwest.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 53:

Comments:

Area north of cell 2 of engineered wetland cleared, looking east.

Photograph 54:

Comments:

Northern edge of cell 2 of engineered wetland cleared, looking east-southeast towards Lift Station #3.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 55:

Comments:

Line of sight from Lift Station #3 looking southwest towards retention tanks showing clearing of underbrush.

Photograph 56:

Comments:

High water overflow wall showing clearing work on north side of cell; looking west-northwest.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 57:

Comments:

Clearing outside of fence line for access to NP-43 and NP-46, looking west.

Photograph 58:

Comments:

Clearing outside of fence line for access to NP-43 and NP-46, looking west.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 59:

Comments:

Mahole extension rings for manhole extensions for MH19 and MH23.

Photograph 60:

Comments:

Cone of MH23 removed in preparation for installation of extension ring.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 61:

Comments:

Cone being lifted to be secured on ring extension for MH23.

Photograph 62:

Comments:

Cone being lifted to be secured on ring extension for MH23.

Glenn Springs Holdings, Inc TR1045 Client: **Project Number:**

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 63:

Comments:

MH-23 extension backfilled, looking north.

Photograph 64:

Comments:

MH-23 extension backfilled, looking west.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 65:

Comments:

MH19 before installation of manhole extension ring, looking west.

Photograph 66:

Comments:

New two-foot manhole extension ring for MH19, looking west.

Glenn Springs Holdings, Inc **Project Number:** Client: TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 67:

Comments:

MH19 cone nearly exposed in preparation for removal and installation of extension ring.

Photograph 68:

Comments:

MH19 cone removed and new gasket installed in preparation for new extension ring installation.

Glenn Springs Holdings, Inc TR1045 Client: **Project Number:**

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 69:

Comments:

MH19 cone removed.

Photograph 70:

Comments:

Two-foot extension ring being placed onto MH19 ring.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 71:

Comments:

Cone being placed on new extension ring for MH19.

Photograph 72:

Comments:

Cone aligned on MH19 two-foot extension ring.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 73:

Comments:

Cone aligned on MH19 two-foot extension ring and cleanout pipe reattached to cone.

Photograph 74:

Comments:

771 Harding Ave. area marked with utilities prior to storm sewer installation activities, looking west.

Glenn Springs Holdings, Inc TR1045 Client: **Project Number:**

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 75:

Comments:

Utilities marked near 795 Harding Ave.

Photograph 76:

Comments:

Excavating area near 791 Harding Ave. for CB-A.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 77:

Comments:

Measuring depth for placement of catch basin to ensure correct bottom elevation for CB-A.

Photograph 78:

Comments:

Excavation to connect storm sewer to city manhole near 771 Harding Ave.

Glenn Springs Holdings, Inc TR1045 Client: **Project Number:**

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 79:

Comments:

Storm sewer connected to city manhole near 771 Harding Ave.

Photograph 80:

Comments:

Fenced off excavation near 771 Harding Ave. at close of workday.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 81:

Comments:

CB-A placed in excavated area near 791 Harding Ave., area fenced off for end of workday.

Photograph 82:

Comments:

Pipe connected to west side of CB-A at 791 Harding Ave.

Glenn Springs Holdings, Inc **Project Number:** TR1045 **Client:**

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 83:

Comments:

CB-A excavation fenced off at end of workday.

Photograph 84:

Comments:

Pipe connected to CB-A east side.

Glenn Springs Holdings, Inc **Project Number:** TR1045 **Client:**

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 85:

Comments:

Excavation approaching 795 Harding Ave. fenced

Photograph 86:

Comments:

CB-A finished with tampered stone approach; City of North Tonawanda to finish final approach surface.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 87:

Comments:

Tampered stone at 795 Harding Ave. where storm sewer was installed, looking west.

Photograph 88:

Comments:

CB-B placed in excavation near 795 Harding Ave., looking south.

TR1045 **Client:** Glenn Springs Holdings, Inc **Project Number:**

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 89:

Comments:

Excavation fenced off near 795 Harding Ave., looking southeast.

Photograph 90:

Comments:

Excavation path for storm sewer east of CB-B, looking west.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 91:

Comments:

CB-B before being connected to pipe with hydroseeded Berm #3 in the background, looking south west.

Photograph 92:

Comments:

Cemented pipe to west side of CB-B.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 93:

Comments:

Pipe connected to east side of CB-B.

Photograph 94:

Comments:

Excavation along Berm #3 filled with pea gravel, looking east.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 95:

Comments:

Taking elevations for next catch basin (CB-C). Hydroseeded berm #3 in background, looking west.

Photograph 96:

Comments:

CB-B backfilled and tampered with stone, looking east.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 97:

Comments:

CB-B, looking north towards Harding Ave.

Photograph 98:

Comments:

Pipe connected to west side of CB-C.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 99:

Comments:

CB-C in excavation, looking east.

Photograph 100:

Comments:

Excavation backfilled over storm sewer line and ready for hydroseeding, looking west.

Glenn Springs Holdings, Inc TR1045 Client: **Project Number:**

700 Walck Rd Site Address: **Location:** North Tonawanda, NY

Photograph 101:

Comments:

Excavation for CB-D, looking east.

Photograph 102:

Comments:

CB-C installed, looking east.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 103:

Comments:

Taking elevations for storm sewer at CB-C, looking

Photograph 104:

Comments:

Inside of CB-D with pipe installed.

TR1045 **Client:** Glenn Springs Holdings, Inc **Project Number:**

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 105:

Comments:

Flared head at end of storm sewer installation, looking

Photograph 106:

Comments:

Stone covering pipe leading to flared head, looking east.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 107:

Comments:

CB-D with connected pipe covered in stone, looking

Photograph 108:

Comments:

CB-D excavation filled with stone and being tamped, looking southwest.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 109:

Comments:

CB-D excavation filled with stone and tamped, looking southwest.

Photograph 110:

Comments:

Flared head backfilled with soil, looking west; ready for stone lining of drainage swale.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd North Tonawanda, NY **Location:**

Photograph 111:

Comments:

Flared head exit lined with first layer of stone, looking

Photograph 112:

Comments:

Tree contractor arrives to remove dying Ash tree to the left of truck in corner of property between Wilson Ave. and Harding Ave., looking south.

Glenn Springs Holdings, Inc **Project Number:** TR1045 **Client:**

Site Address: 700 Walck Rd North Tonawanda, NY **Location:**

Photograph 113:

Comments:

Logs from single tree removed in corner of property between Wilson Ave. and Harding Ave., looking south.

Photograph 114:

Comments:

Path for vehicles to move across berm to Harding Ave. without disturbing grading, looking south. Used to move tree materials from cutting trees at 795 Harding Ave.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd North Tonawanda, NY **Location:**

Photograph 115:

Comments:

Knuckleboom removing parts of large trees lining fence between 795 Harding Ave. and the Site.

Photograph 116:

Comments:

Knuckleboom removing cut logs of large trees lining fence between 795 Harding Ave. and the Site. MH19 is adjacent to telephone pole; looking south.

Client: Glenn Springs Holdings, Inc **Project Number:** TR1045

Site Address: 700 Walck Rd North Tonawanda, NY **Location:**

Photograph 117:

Comments:

Knuckleboom removing cut logs of large trees lining fence between 795 Harding Ave. and the Site and tree contractor crew removing tree debris from Harding Ave.

Photograph 118:

Comments:

Knuckleboom removing parts of large trees lining fence between 795 Harding Ave. and the Site, looking south.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 119:

Comments:

Trees on fence line between the Site and 795 Harding Ave. after tree removal, looking west.

Photograph 120:

Comments:

Temporary fence on Harding Ave about to be removed, looking southwest.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd Location: North Tonawanda, NY

Photograph 12120:

Comments:

Temporary fence on Harding Ave being moved, looking southeast.

Photograph 12121:

Comments:

Aligning new fence poles with temporary fence line, looking southwest.

Glenn Springs Holdings, Inc **Project Number: Client:** TR1045

Site Address: 700 Walck Rd **Location:** North Tonawanda, NY

Photograph 122:

Comments:

Aligning new fence poles with temporary fence line, looking southeast.

Photograph 123:

Comments:

Installing new fence poles along Harding Ave, looking southwest.

Glenn Springs Holdings, Inc **Project Number:** TR1045 Client:

North Tonawanda, NY Site Address: 700 Walck Rd **Location:**

Photograph 124:

Comments:

Final fence installed. Looking east.

Appendix H Waste Manifests

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material change has occurred either in the characteristics or in the process generating the material change has occurred either in the characteristics or in the process generating the material change has occurred either in the characteristics or in the process generating the material change has occurred either in the characteristics or in the process generating the material change has occurred either in the characteristics or in the process generating the material change has occurred either in the characteristics or in the process generating the material change has occurred either in the characteristics or in the process generating the material change has occurred either in the characteristics or in the process generating the material change has occurred either in the characteristics or in the process generating the material change has occurred either in the characteristics or in the process generating the material characte

ase print or type.	
UNIFORM HAZARDOUS WASTE MANIFEST 1. Generator ID Number N Y D 0 0 2 1 0 6 9 3 8 2. Page 1 of 800) 483-3718 3. Emergency Response Phone (800) 483-3718 4. Manifest Tracking Number 0 0 8 9 1 8 4 8	SKS
5 Generator's Name and Address (if different than mailing address) Generator's Site Address (if different than mailing address)	
o/o Gien Springs Remediation 805 97th Street 700 Walck Road	
Niegara Falls, NY 14304 North Tonamanda NY 14120	
Generator's Priorie.	
6. Transporter 1 Company Name U.S. EPA ID Number Goulet Trucking Inc W A C 3 0 0 0 6 0 3 5	
7. Transporter 2 Company Name U.S. EPA ID Number	
17. Transporter 2 Company Name	
8. Designated Facility Name and Site Address U.S. EPA ID Number	
Clean Harbors Canada, Inc. Mighon 1952 ha	ž
4090 Telfer Road Corunna, ON NON 1G0	
Facility's Phone: (519) 864-1021	<u> </u>
9a 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit 13. Waste	Codes
HM and Packing Group (if any)) No. Type Quantity Wt./Vol.	
1UN3077, ENVIRONMENTALLY HAZARDOUS SUBSTANCES, U019 U02	7 0037
X SOLID. N.O.S., (PIPE W/CHLOROBENZENES, BENZENE), 9, PG CM (5 T 4070 407	1 0072
1 CM (5 T boto bot	
X SOLID. N.O.S., (PIPE W/CHLOROBENZENES, BENZENE), 9, PG 1 CM (5 T U070 U07	
3.	1.
3.	
4.	
4. 14. Spacial Handling Instructions and Additional Information SKSI EPA ID#NYDOR0503942 IS ACTUAL AS	
4. 14. Spacial Handling Instructions and Additional Information SKSI EPA ID#NYDOR0503942 IS ACTUAL AS	
14. Special Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator co	rfers agency
14. Special Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator of transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency conventing the content of this consignment are fully and accurately described above by the proper shipping name, and are classified.	rfere agency ence,or safety i, packaged,
14. Special Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator continuity on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convening to the purpose of transportation of the purpose of transportation efficiency convening to the purpose of transportation of the purpose of transportation efficiency convening to the purpose of transportation of the purpose of transportation efficiency convening to the purpose of transportation of transportation of transportation of the purpose of transportation of transportation of transportation of transportation of	rfere agency ence,or safety i, packaged,
14. Special Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator of transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convent marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (iff am a large quantity generator) or (b) (iff am a small quantity generator) is true.	nfers agemoy noe,or safety d, packaged, e Primary
14. Special Handling Instructions and Additional Information PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator conductive on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convening marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Month.	Ters sqency nce, or safety I, packaged, e Primary
14. Special Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator contract retained by generator of transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency conventions and abeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Signature Month. SHAWN GARDNER AS AGENT OF GSH1	Ters sqency nce, or safety I, packaged, e Primary
14. Secial Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator continuity on Initial transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency convention and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Month SHANN GARDNER AS AGENT OF GSHI	Ters sqency nce, or safety I, packaged, e Primary
4. Special Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator of the Interport of this consignment are fully and accurately described above by the proper shipping name, and are classified marked and labeled/placarded, and are in all respects in proper condition for transporter according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Signature As AGENT OF GSHI Transporter signature (for exports only): Date leaving U.S.: Port of entry/exit: Date leaving U.S.: Date leaving U.S.: 2-27-24	Ters sqency nce, or safety I, packaged, e Primary
4. Special Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator of the Interport of this consignment are fully and accurately described above by the proper shipping name, and are classified marked and labeled/placarded, and are in all respects in proper condition for transporter according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Signature As AGENT OF GSHI Transporter signature (for exports only): Date leaving U.S.: Port of entry/exit: Date leaving U.S.: Date leaving U.S.: 2-27-24	Ters sqency nce, or safety I, packaged, e Primary
4. Special Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator of the Interport of this consignment are fully and accurately described above by the proper shipping name, and are classified marked and labeled/placarded, and are in all respects in proper condition for transporter according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Signature As AGENT OF GSHI Transporter signature (for exports only): Date leaving U.S.: Port of entry/exit: Date leaving U.S.: Date leaving U.S.: 2-27-24	Tifers agemoy ence, or safety i, packaged, e Primary Day Year 27 24
14. Seedal Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator of	Titers agency ence or safety in packaged, e Primary Day Year 27 24
14. Seedal Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator of	Ters agency receipt a safety department of the primary of the prim
14. Special Handling Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator contract and interest of transporter to add or substitute additional transporters on generator's behalf for purposes of transportation efficiency comment 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am to Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Stopphure Shawn CARDNER AS AGENT OF CSHI 16. International Shipments I mport to U.S. Transporter Acthowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Month	Ters agency receipt a safety department of the primary of the prim
14. Special Hapding Instructions and Additional Information SKSI EPA ID#NYD080593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator contribution of substitute additional transporters on generator's behalf for purposes of transportation efficiency, corrections and additional and an according to applicable international and national governmental regulations. If exports, certify that the contents of this consignment confirment to firm to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's Offeror's Printed/Typed Name Month Transporter signature (for exports only): In Transporter Acthowledgment of Receipt of Materials Transporter Printed/Typed Name Month Signature Month Month Signature Month M	Ters agency receipt a safety department of the primary of the prim
4. Sense Handing Individual Indiv	Ters agency Price or safety I, packaged, e Primary Day Year 27 24 Day Year Day Year
14. Seedal Handing Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator or principle of transporter to add or substitute additional transporters on generator's behalf for purposes of transportant efficiency comments and in the second of the consignment are fully and accurately described above by the proper shoping name, and are classified and labeledplacearded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Actinovide/generator or to (if if an a small quantity generator) is true. Generator's Offeror's Printed/Typed Name Supporter Actinovided print to U.S. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Special printed/Typed Name Supporter Actinovided generator or to (if if an a small quantity generator) or to (if if an a small quantity generator) is true. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Port of entrylexit: 11. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if i	Ters agency Price or safety I, packaged, e Primary Day Year 27 24 Day Year Day Year
14. Seedal Handing Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator or principle of transporter to add or substitute additional transporters on generator's behalf for purposes of transportant efficiency comments and in the second of the consignment are fully and accurately described above by the proper shoping name, and are classified and labeledplacearded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Actinovide/generator or to (if if an a small quantity generator) is true. Generator's Offeror's Printed/Typed Name Supporter Actinovided print to U.S. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Special printed/Typed Name Supporter Actinovided generator or to (if if an a small quantity generator) or to (if if an a small quantity generator) is true. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Port of entrylexit: 11. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if i	Ters agency Price or safety I, packaged, e Primary Day Year 27 24 Day Year Day Year
14. Seedal Handing Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator or principle of transporter to add or substitute additional transporters on generator's behalf for purposes of transportant efficiency comments and in the second of the consignment are fully and accurately described above by the proper shoping name, and are classified and labeledplacearded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Actinovide/generator or to (if if an a small quantity generator) is true. Generator's Offeror's Printed/Typed Name Supporter Actinovided print to U.S. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Special printed/Typed Name Supporter Actinovided generator or to (if if an a small quantity generator) or to (if if an a small quantity generator) is true. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Port of entrylexit: 11. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if i	Ters agency Price or safety I, packaged, e Primary Day Year 27 24 Day Year Day Year
14. Seedal Handing Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator or principle of transporter to add or substitute additional transporters on generator's behalf for purposes of transportant efficiency comments and in the second of the consignment are fully and accurately described above by the proper shoping name, and are classified and labeledplacearded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Actinovide/generator or to (if if an a small quantity generator) is true. Generator's Offeror's Printed/Typed Name Supporter Actinovided print to U.S. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Special printed/Typed Name Supporter Actinovided generator or to (if if an a small quantity generator) or to (if if an a small quantity generator) is true. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Port of entrylexit: 11. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if i	Ters agency Price or safety I, packaged, e Primary Day Year 27 24 Day Year Day Year
14. Seedal Handing Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator or principle of transporter to add or substitute additional transporters on generator's behalf for purposes of transportant efficiency comments and in the second of the consignment are fully and accurately described above by the proper shoping name, and are classified and labeledplacearded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Actinovide/generator or to (if if an a small quantity generator) is true. Generator's Offeror's Printed/Typed Name Supporter Actinovided print to U.S. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Special printed/Typed Name Supporter Actinovided generator or to (if if an a small quantity generator) or to (if if an a small quantity generator) is true. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Port of entrylexit: 11. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if i	Day Year Day Year Day Year Day Year Day Year Day Year
14. Seedal Handing Instructions and Additional Information SKSI EPA ID#NYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract retained by generator or principle of transporter to add or substitute additional transporters on generator's behalf for purposes of transportant efficiency comments and in the second of the consignment are fully and accurately described above by the proper shoping name, and are classified and labeledplacearded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Actinovide/generator or to (if if an a small quantity generator) is true. Generator's Offeror's Printed/Typed Name Supporter Actinovided print to U.S. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Special printed/Typed Name Supporter Actinovided generator or to (if if an a small quantity generator) or to (if if an a small quantity generator) is true. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Port of entrylexit: 11. Transporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if if an a small quantity generator) is true. Supporter Actinovided generator or to (if if i	Day Year Day Year Day Year Day Year Day Year Day Year
## Sequip Happling Instructions and Addings Information SKSI EPA IDENTYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract telatined by generator of particular telatined by generator of generators behalf for purposes of transporters to add or substitute additional transporters on generators behalf for purposes of transports feeling name, and accurately described above by the proper splinging name, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If evoport shipment and I am the Exporter, I certify that the contents of this consignment of consent in certify that the waste iminimization statement identified in 40 CFR 26.27(3) (if I am a large united generator) of (if I am a small quantity generator) is true. Centerator's Officer's Printed Typed Name	Day Year Day Year Day Year Day Year Day Year Day Year
A Secial Happing Legispitions and Additional Transporter to add or substitute additional transporters on BEHALF OF GENERATOR. Sithorthy on Initial transporter to add or substitute additional transporters on generator of generator of marked and isbeledpleareded, and are in all respects in proper condition for transport according to applicable international and actional governmental regulations. If export shipment and I am texports, I contrib that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified marked and isbeledpleareded, and are in all respects in proper condition for transport according to applicable international and actional governmental regulations. If export shipment and I am texports, I contrib that the waste minimization statement identified in 40 CFR 262.27(a) (ff am a large quantity generator) or (b) (if I am a small quantity generator) is true. Singular as AGENT of GSHI Singular of Alternate Facility (or Generator) 18. Discrepancy Indicators Space Quantity or Generator) 18. Alternate Facility (or Generator) 18. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems)	Day Year Day Year Day Year Day Year Day Year Day Year
## Sequip Happling Instructions and Addings Information SKSI EPA IDENTYD980593842 IS ACTING AS PRIMARY EXPORTER ON BEHALF OF GENERATOR. Contract telatined by generator of particular telatined by generator of generators behalf for purposes of transporters to add or substitute additional transporters on generators behalf for purposes of transports feeling name, and accurately described above by the proper splinging name, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If evoport shipment and I am the Exporter, I certify that the contents of this consignment of consent in certify that the waste iminimization statement identified in 40 CFR 26.27(3) (if I am a large united generator) of (if I am a small quantity generator) is true. Centerator's Officer's Printed Typed Name	Day Year Day Year Day Year Day Year Day Year Day Year

MOVEMENT DOCUMENT / MANIFEST DOCUMENT DE MOUVEMENT / MANIFESTE

MN=000394614

A Generator	r / consignor n roducteur / ex	ame péditeur		méro d'identi	ition Number fication unique	•								Move N° de	ment Document / N référence du docu	lanifest Refe ment de mou	ence No. vement / manifest	•			٠.	
	leen Systems	inc.		YD980593			Carrier	name				cation Nu		23 Reference Nos. of other movement documents/manifests used / N* de référence des autres documents de mouvement/manifestes utilisés						27		
Malling addr. / A	dr. postale		Cit	y i Ville Pro	Pays	/ Postel code / Code postal	P.	iame transporteur	· · · · · · · · · · · · · · · · · · ·					,	: ·							
60 Katherine	e Street		Buf	falo NY	United States	14210	Goulet Mailing addr.	Trucking	- 1		18-8TRH		country / Pos	tel code /								
E-mail / Courrie Mary fordaliso@	r électronique safety-kleen.com				Tel. No. / 716-855-		making book.	Adi, postale		Sout		P		e postal			·				- 1. 7	
Shipping facility	y company name	/			tion Number	* 40	 		st PO Box 2	59 Deer		IA S	States 0137				rmation same as réceptionnaire/de		es mémes o	u'à ia Partie	Δ.	,
Safety-Kleen	Systems Inc.	J., GG ; G,,,,	NY	D98059384	2		E-mail / Courr jeff.goulet@go	ier électronique ulettrucking.com	1			Te 41	il. No. / N° de 13-665-1323	tel	l/	_	_		•	•		
Shipping facility Adr. de l'installa			CIĘ	y/Ville Pro	Paya	/ Postal code / Code postal									Yes / 0	ul L	No, complete	the box below / I	Non, remplir	la case ci-d	essous	
60 Katherine	e Street		Bul	falo NY	United States	14210	Vehicle	Véhicule r No. 1	Regi	stration No.		atriculation	-	Prov. 24	← Receiver	consignee	name	Unique Ide	entification			28
E-mail / Courrie Mary.fordaliso@	r électronique safety-kleen.com				Tel. No. / 716-855-2		1° remorque -	vegori	<u> </u>	21	1957F			ME	Nom de r	éceptionna	name tire/destinatai:	e Numéro d'	'identificatio	on unique		
	er / consignee na			lque Identifica		2	2" remorque -		<u> </u>										-			
11	onnaire / destinat ors Carnada, i	•			ication unique		Port of entry Point d'entrée	Queensto	n / Lewistor	Port o	f exit de sortie		•	25	Receiving facili	ty addr. / Ad	r. de l'installation	de City / Ville	Prov.	Country / F Pays (Postal co Code pos	
Mailing addr. / A	 	iio. įpiai		y / Villa Pro		/ Postal code /	Date	2024-03-2	27	Date		-										
4000 Tolfor	 Road Rural F	Pouta # 1		runna ON	Pays	Code postal	Coming Contin	antinin i cartifu	that I have receiv	and veneral o	r moundable	metarial fr	mm the		E-mail / Courrie	r électroniqu	16 "			Tel. No. / Nº	de tél	
E-mail / Courrie	r électronique	COULC #	Col	runna ON	Tel. No. /	N° de tél	generator/cons	ignor for deliver art B is complete	y to the receiver/	consignes i	s set out i	Pert A and	d that the infor	mation 26			Delivery da	te / Date de livrais	ion			29
brian.fraser@saf	ety-kleen.com ty company name	1	Uni	lque Identifica	78028827	'97 41	producteur/exp	éditeur en vue d	J'atteste avoir re le leur livraison d	u réception	naire/desti	nataire, tels	s qu'ils figurent	à la	Year / Année	Month / M	lois Day/Jo	ur I	na / Haura			4 AL.
Nom de l'entrep	rise du Installation S Canada, înc.	on de récep	tion Nu	mero d'identif 31813	ication unique			•	ents inscrits à la	partie B sor		,			2U	013	7/2/	7/1/3	1.19		.м. 🕅 г	∙м.
t}	ty addr, / Adr. de	<u> </u>	·	y / Ville Pro	v. Country Pays	/ Postal code / Code postal		rized person (pri autorisé (carac	int) lère d'imprimerie)	IGI, NO	. / N° de téi			If handling code			7 11 9				36
4090 Telfer	Road RR#1		Cos	runna ON		NON 1G0	James Ha			and the second	413-0	65-132		<u> </u>	Si code da manu	tention « aut	re » (spécifier)					
E-mail / Courrie	r électronique			dina Oit	Tel. No. /	N° de té!	Year/Année	Month / Mo	1 27	ır		Signatu	ure		ж.							
girard.rob@clear	narbors.com				519-884-3	41 61		1013	30	-	Units 8	27.	9	10	A .	Units	31 3	2 Handling 33	Shinma	nt / Envoi 34	Dana	nt. 35
Prov. code ** Code prov.	UN No. N° NU		Shi Appellati	pping name on réglementa	lre .	Class / Classe Sub. Class(es) Classe(s) sub.	Packing/category Gr. d'emballage/ categorie	Toxic by inhalat oxique par inhal		filpped L xpédiée	or/ou kg Unités	Packaging No. / N°	Codes	Phys. state État phys.	Quantity receive Quantité reçue	Ler/ou k Unités	g Comments Commentaires	Code / Code de		Refused Refuse		Veh.
⁽ⁱ⁾ 241H	UN3077	ENVIRON		HAZARDOUS LID, N.O.S.	SUBSTANCE,	9	III z	N/A - S/	0 13	636	kg	1	06-06	S41	950	Ka	Section	106	Yes		WI	6
(ii)					. :											VOS					/	
(iii)														-		-	ed at gen					
(iv)	 		•		 	1	, ,						<u> </u>		, 	3	Confirme	1				
-	11		12	:	13 14	Basel Anne	15	16	17	National co	de in coun	try of /18		19	Receiver/consig	nee certifica	tion: I certify that I	he Name of auth	orized perso	n (print)	<u></u>	37
Permit No.	Permit Line No. N° de ligne de	Shipment		D or R code	Coode	OECD Annexe VII	Code	H code	Y code	Code nat Export	ional du pa	ys o'	Customa	codes	information conta complete.			Nom de fage	nt autorisé (c	aractère d'îm	primerie)	
N° de permis	la permis	Envoi	Of / De	Code D ou	R Code C	ou Code	OCDE	Code H	Code Y	Exportation	Impo	rtation	Codes de d	ouanes	Attestation du n J'atteste que tous sont exacts et co	les renseign	ements à la partie	c Fy	117	M.		ı
(i) 713925	54	1	400	. D5	* C41	A3150; N	/A - S/O	H12	Y41				3825.61	.00.00	Signature	7	\cap		Tel, No.	N° de 16l	, ;	$\overline{}$
(H) · ,			ļ												4 (- (5198	blia	<u>U.</u>	
(iii)							7						m.:	*	TDGR additional Info additionnelle						, :	38
(iv)			4												Special Handling Attached / Cl-		spéciale As follows / Ci-cont	re.	22	24-Hour Nu Numéro 24	mber heures	39
declare that the co	gnor certification onlents of this con	signment ar	e fully and	accurately des	cribed above by	the proper shippi	ing name, and N	ame of authorize	ed person (print) dorisé (caractère	d'imprimer	ie)	Tel, N	o./N° de tél	20	121, 1120,00	T;)-'	w. carone : Grecom	. v.		800-483-37	40	2 4
are classified, pag according to appli	kaged, marked an cable international	d labelled/p	lacarded, a	ind are in all re	spects in proper	condition for tran	asport C	hris LeBarr		_ arganisti		716-	-855-2212		Date Shipped	/ Date d'exp	édition Tin	ne / Heure 21 Sc	cheduled arriv			évue .
deciare que la cor	oducteur/expédi ntenu de ce charge 'il est convenables	iment est di	acrit ci - des	ssus de tacon d	complete et exec	te car la desiona	tion officialle	gnature	\rightarrow				_		Year / Année Mo	nth / Mols [A X Jour Jour	.м. 🔲 Р.М. _{Үе}	ar / Année	Month / Mois	Day / J	lour
ing transferring day																		1111				
bien conditionné p	our être transport	é canformér	nent aux rê	glementations	e, muni de piaqu internationales	es-étiquettes et e et nationales app	à tous égards licables.	ar	<u> </u>						2 4 0	3	2 7 0 9		2 4	0 3	2	7

MANIFEST

DO NOT SIGN OR MAIL THIS DOCUMENT TO ONTARIO'S MINISTRY OF THE ENVIRONMENT, CONSERVATION, AND PARKS.

Manifest Number

Movement Document

This document is a paper copy of information submitted to Ontario's Hazardous Waste Program Registry. All parties on the manifest are required to submit information to the Registry as required by R.R.O. 1990, Reg. 347.

MN-000394616

A Generator/Consignor	Registration Number NYD 980593842	B Carrie	<u>er</u>		Registration Number 8818-8TRKH6			C Rec		Registration Number A031813	
Company Name Clean Harbors / Safety-Kleen	Email	ne UCKING, INC. lettrucking.com	20 IN BOX MAS Phor	Mailing Address 20 INDUSTRIAAL DRIVE WEST, P.O. BOX 259, SOUTH DEERFIELD, MASSACHUSETTS, 01373 Phone 4136651323 ext.			Email:	RBORS CANADA, INC.	Mailing Address RR1, 4090 Telfer Road, Corunna, Ontario, N0N1G0 Receiving Site Address LOT 8 & 9, CONC.10, MOORE TWP., TELFER ROAD CORUNNA, Ontario		
Email frank.wagner@safety-kleen.c om Phone 519-648-2544 ext. 75269	Generating Site Address 60 KATHERINE STREET, BUFFALO, New York 14210 United States	(1) Registratio 271957F	271957F			Province/State Maine Province/State				N7T7X1 Canada	
Generator Signature SIGNED Mar 27, 2024 08:27 AM Phone (716)954-0947		Carrier Signate SIGNED Mar 27, 2024 0). Jame 08:58 AM Phon	es Harris			3	Receiver Sig SIGNE Mar 28, 2024	D Marcy Scott		
Shipment Details Shipment Date Scheduled Arrival Date Mar 27 2024 (Anticipated) Shipment Date Mar 27 2024 (Anticipated) Additional information Additional information Additional information											
Special Handling	-			T.	····						
Waste Information				la mil	lu	L		a .::			T
Waste Number DG UN Number Shipping Name		Class Packir (Sub. Class) Group	Toxic by Inhalation	Quantity Shipped	Number of Packages	Packaging Code	Physical State	Quantity Received	Comments	Handling Code	Accepted/ Refused
11) 241 A X 3077 ENVIRONME SOLID, N.O.S	NTALLY HAZARDOUS SUBSTANCES,	9 111		13636.000 Kg	1	06 - Roll Off or Lugger	Solid	950.000 Kg	Quantity Shipped was estimated scaled at generator.	. Not 06 - Secure Landfill	ACCEPTED
I certify that the information contained in and accurately described above by the all respects in proper condition for transp	certify that the information contained in Part A is correct and complete. I hereby declare that the contents of this consignment are fully accurately described above by the proper shipping name, and are classified, packaged, marked and labelled/placarded, and are in Shipper's name (Print) Completed Manifest Status Completed										
in respect on a surround a surround of approach international and national governmental regulations.											

Land Disposal Restriction Notification Form

Page: 1 of 1

Printed Date :Mar 25, 2024

MANIFEST INFOR						
		nemical Corp c o	Glenn Springs Ho	, 1	Manifest Tracking	Info.
Address:	700 Walck Ro	•		008991848SKS		
EPA ID#:	NYD0021	06938		Sal	les Order No: 2401563	130-002
LINE ITEM INFOR	MATION				45	
Line Item: Pag	ge No:	Profile No:	Treatability Group		LDR/Disposal Categor	y
1. 1		CH2717929B	NON-WASTEWA	TER	2 (This is subject to LD	R.)
EPA Waste Code				EPA Wa	iste SubCategory	
U019 U027 U037 U0	70 U071 U072 U	J127 U188		NONE		
	*	<u>Čert</u>	ification 2			Applies to Manifest Line Items
Pursuant to 40 CFF Part 268.	₹ 268.7(a), I he	ereby notify that th	is Shipment contains	s waste res	stricted under 40 CFR	11.
Waste analysis dat Signature :	~ // */	W 0.	AGENT Print Nam of GSH) Date:	e <u>2</u> 	HAWN GARDNER 3/27/2024	

Clean Harbors Manifest Addendum

Page:1 of 1

NO. 2011 11 11 11 11 11 11 11 11 11 11 11 11				^	
Generator ID Number:	·	-		Sale	es Order Number:
NYD002106938	008991848SKS	_		240	1563130-002
Occidental Chemical	Corp c o Glenn Sprin	gs Holdii	ng		
700 Walck Road	,		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
North Tonawanda, N	Y14120	*	•	4	
Line #: Profile No:	Profile Description	on:	9 ₈ 7 . **	1	Waste Codes
1. CH2717929B					U072 U127 U188
	CH Container #	<u> </u>	Customer Con	<u>itainer#</u>	

Work Order #	LAW.	240156	3130	$0-\infty$	ح	
ar Till		•	1 !			
Canadian Man	ifest# _		ž.		.1	
1	16 81	\sim	10//	0 611	C	

Truck #	20-23
Trailer #	TRO-11
	#1-CHRT 27546
	2
^	3
	4

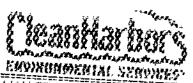
Driver (print):

Date:

Gross Weight:	20450	kg	PT
Tare Weig etvier scale	19500	kg	
Net Weigh Veights HERE	950	kg	
27/Mar/2024	3:07:09)	

(Enter Date if not on scale stamped information)

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material


<u> </u>	T	пког туре.	14.0							F	orm Approve	ed. OMB N	lo. 2050-00:
	W	FORM HAZARDOUS IASTE MANIFEST	1. Generator ID N N Y D O O	2106938	1		3. Emergency Re (800) 48		4. Manifes			ES	FLE
П	5. G	enerator's Name and Mailin CCIDENTAL Chemi	ng Address ICal Corp c	o Glenn Springs Holdir	nd				t than mailing addr	<u>IJZ</u> ess)	. 1 54	100	<u> </u>
	C/	o Glen Springs	Remediation	on 805 97th Street	''b		700 42-1-1	. O					
		iagara Falls, NY rators Phone: (716) 3		ATTN:Dennis Hovt			700 Watch North Ton:		(14120				
Ш	6. Tra	ansporter 1 Company Nam	10		<u> </u>				U.S. EPAID	Number			
Ш		ean Harbors En		Services, Inc.							322	250	
Н	7. Tra	insporter 2 Company Nam	ne "					·-·	U.S. EPA ID		/ J Z Z	<u> 2 </u>	
$\prod_{i=1}^{n}$	8 De	signated Facility Name and	d Site Address						_				
	_	ean Harbors El [U.S. EPA ID	Number			
11	30	9 American Circ Dorado, AR 717	cle						ARD	069	748:	192	
	Facili	ly's Phone: ('30 870 863-7	173					1				
	9a.	9b. U.S. DOT Description and Packing Group (if a	on (including Prope	r Shipping Name, Hazard Class, ID N	Number,		10.0	Containers	11. Total	12. Uni			
	НМ						No.	Туре	Quantity	Wt./Vol		3. Waste Co	des
뜅	X	¹ NA3077, HAZ (CHI ODOBEW			5		-	. 5	6		9016	0627	-8007
	^		ECHRO, ULI	TOTAL OF THE				- -			1070°	1	Б
GENERATOR		² .NA3077.HAZ	ARDOUS W	ASTE. SOLID. N.O.S				_		†	U019	1027	0076
۱۳I	X	(CHLOROBEN)	ZENE, HEXA	CHLOROBENZENE), 9	PG III		6	1Om	4800	D		U 03 7	0070
$\ \cdot\ $		3.	 .					- Vin	1000	ļ <u>"</u>	U071	U072	0127
			_										
		4.									1 —	† –	+
Ш												 	+
	14. Sp	ecial Handling Instructions CH2507597	and Additional Inf	ormation				i	<u> </u>	L			
	n E	narked and labeled/placard exporter, I certify that the co	led, and are in all rontents of this cons nization statement	of Substitute additional trans. N: I hereby declare that the contents espects in proper condition for transpignment conform to the terms of the aidentified in 40 CFR 262.27(a) (if I are	is of this cons port according attached EPA	g to applicat Acknowled Intity genera	e rully and accurate ble international an Igment of Consent ator) or (b) (if I am a	ely described abo d national govern	ve by the proper sh mental regulations.				
				AGENT OF BSH		Signa	/D	moher	AS AGEN		Mo	onth Day	y Year
-		emational Shipments	Import to	100/21					AS AGEN	" OF C	27H() /	<u>ه ا ه</u>	(24
_		orter signature (for export	s only):			ort from U.S		of entry/exit: leaving U.S.:	_			·	
띩		nsporter Acknowledgment of orter 1 Printed/Typed Name		als		<u> </u>							_
TRANSPORTER	R	heal Gr	Amark	ha		Signat I	ure				Mo L	nth Day	Year
影	Transp	orter 2 Printed/Typed Nam	. O. C.			Signat	ture				Mo	nth Day	
											1		100
. ⊢		crepancy	<u></u>	······································									
	18a. Di	screpancy Indication Spac	e 🔲 Quan	tity 🔲 Typ	pe		Residue		Partial Reje	ection		Full Re	jection
11							Manifest Defe						·
ĔĮį	8b. Alt	emate Facility (or Generat	tor)				Manifest Refer	ence number:	U.S. EPA ID N	umber			
FACILITY													
	_	s Phone: mature of Alternate Facility	(or Generator)										
ξĺ											I Me	onth Da	y Year
DESIGNATED	9. Haz	ardous Waste Report Man	agement Method (Codes (i.e., codes for hazardous was	te treatment,	disposal, a	nd recycling syster	ns)					
씸		¥0		2. H 040		3.		<u> </u>	4.		_		
1 2			Operator: Cartificat	ion of receipt of hazardous materials	management in the	ho			_ !				
	rinted	Typed Name	The and Confincial	or or receipt or nazaroous materials	covered by t	ne mantjest Signati	_	ittem 18a	<u> </u>	<u>-</u> .	Mo	nth . Лем	-Voor
↓ PAF	orm 8	700-22 (Rev. 12-17) P	Previous editions	are obsolete			<u> Dua</u>	<u>WW</u>	X O/\		<u></u>	2 16	16
	Clea	an Harbors has the	appropriate p	ermits for and will accept th	he waste t	he gene	U rator is shippi	r∈SIGNATE ng.	D FACILITY 72.24	TO EPA 10196:			SYSTEM Prw

72 2401966174

Clean Harbors Manifest Addendum

Page: 1 of 1

Processor and the second secon	and the second control of the second control	: 22	E. / Wi (
Generator ID Number:			Sales Cider Number.
NYD002106038	019276468FLS		2401988174
Occidental Chemical	Carp a <mark>o</mark> Glerin Spring	s Holding	
700 Walck Road		-	
North Tonawanda, NY	14120		
Line # Profile No.	Profile Description		Waste Codes
1. CH2507697	<u> </u>		U071 U072 U127
:			U188
2. CH2732757	CH Container#	<u>Customer Container#</u>	
4. Ong/32/3/			U127 U188
	CH Container#	Customer Container#	

Land Disposal Restriction Notification Form

Page:1of2

MANIFEST INFORMATION Printed Date Apr 23, 2024 Generator : Occidental Chemical Corp c o Glenn Springs Ho 700 Walck Road North Tenamanda NY 14120 019275468FLE EPAID# NYD002106822 LINE ITEM INFORMATION Sales Order No: 2401966174 Fage No: Profile No Tre that the Group: LDR Disposal Catagory CH2507897 NON-WASTEWATER 2 (This is subject to CDR.) EFA Waste Code U019 U027 U037 U070 U071 U072 U127 U183 EFA Waste SubCategory LDR Chemical Data Underlying Constituents Contaminants Chemical Hazardaus cf Subject to BENZENE Constituents Concern Treatment CHLOROBENZENE N N N Hexachlorobenzene N N m-Dichlorobenzene M Ν Ν o-Dichlorobenzene ÍV Ν Ν P-DICHLOROBENZENE N Ν M Phenoi Μ N LINE ITEM INFORMATION N Line Item Page No: Profile No: Treatability Group. LDR Disposal Category CH2732757 NON-WASTEWATER 2 (This is subject to LUR.) SPA Waste Code U018 U037 U070 U071 U072 U127 U188 NONE

Land Disposal Restriction Notification Form

Printed Date ://pr 23, 2024

	R Chemical Data		
Chemical	Underlying Hazardous Constituents	Constituents of Concern	Conteminents Subject to Treatment
BENZENE CHLOROBENZENE CHLOROFORM Hexachlorobenzene m-Dichlorobenzene p-Dichlorobenzene P-Dichlorobenzene P-DicHLOROBENZENE Phenol Tetrachloroethylene	N N N N N	N N N N N N N	M N N N N N N
Inchloromonofluoromethane	N	N	N N
<u>Certificati</u>			Applies to Manifest Line Items
Pursuant to 40 CFR 268.7(s), I hereby notify that this shi Part 268.	pment contains waste restrict	ed under 40 CFR	1. 2.
vvaste analysis data, where availability attached. Signature: Show and ward attached. Title: FILDD TEC1]		in Gardwar 18/24	AS AGENT OF

Plea	se print or type.					- Orange or	-	Approved.	OMB No.	2050-0039
1	UNIFORM HAZARDOUS 1. Generator ID N WASTE MANIFEST	002106938	2. Page 1 of 3. En	0)483	3718		193	the second comment of	S	KS
	5. Generator's Name and Mailing Address	cal Corp Cb Gl	enn Springs	T	Jurez	nan mailing addres	- Tor	awar	ida	
	Generator's Phone: 6. Transporter 1 Company Name	14304 ANN Dennis	Hoff 1		Barrier Co.	U.S. EPAID N	lumber	7		1120
	7. Transporter 2 Company Name	Environmental S	ervices, 1	no.		U.S. EPA ID N	03 ^s lumber	932	22.5	0
	Designated Facility Name and Site Address Facility's Phone: - The Phone is the Address of	15.235				U.S. EPA ID N				
Ш	Facility's Phone:	411-1112-	771-4050	Will	Kline	PAI	>00	073	6942	2
	HM and Packing Group (if any))	er Shipping Name, Hazard Class, ID Numb		10. Conta	Type	11. Total Quantity	12. Unit Wt./Vol.	13.	Waste Code	s
GENERATOR -	X 9, PGIII	down Waste, Solid	1 N-D-5-	T	CM	25,000	P	1019 4071	U027	-
- GENE	2.							MIBS		
	3.	F 722 - 224 - 2		1		7.3				
	4.									
	14. Special Handling Instructions and Additional I	Acceptance # -				1/22		- 1	political pool	arrad
	GENERATOR'S/OFFEROR'S CERTIFICAT marked and labeled/placarded, and are in a Exporter, I certify that the contents of this co I certify that the waste minimization stateme Generator's/Offeror's Printed/Typed Name	Il respects in proper condition for transport onsignment conform to the terms of the atta	according to applicable in sched EPA Acknowledgm	eternational and na ent of Consent. or (b) (if I am a sn	ational govern	mental regulations enerator) is true.	. If export si	nipment and I	am the Prim	ary
1	SHAWN GARDNER AS A	GENT OF GSHIL	Sho	un so	aid	us		17	1 124	24
INT'L	16. International Shipments Important Transporter signature (for exports only):	t to U.S.	Export from U.S		entry/exit: iving U.S.:					
TER	17. Transporter Acknowledgment of Receipt of Ma Transporter 1 Printed/Typed Name	iterials	Signature	011				Mo	nth Day	Year
TRANSPORTER	Transporter 2 Printed/Typed Name	15/4	Signature	gga	che		_	17	onth Day	1 24
E A	18. Discrepancy						-			1
	18a. Discrepancy Indication Space Qu	uantity Type		Residue	an Niverbau	Partial Re	jection		Full Re	ection
FACILITY -	18b. Alternate Facility (or Generator)			Manifest Referen	ce number:	U.S. EPA ID I	Number			
								M	onth Da	y Year
DESIGNATED	19. Hazardous Waste Report Management Meth 1.	od Codes (i.e., codes for hazardous waste 2.	treatment, disposal, and	recycling systems)	4.				
1	20. Designated Facility Owner or Operator: Certi	fication of receipt of hazardous materials or	overed by the manifest ex Signature		tem 18a	<i>(</i>) =	À		onth Day	/ Year
↓ EB	Printed/Typed Name A Form 8700-22 (Rev. 12-17) Previous editi	Brooks	Signature	mi	lae	B	ATED	ACILITY	7-122	ERATO

		Charles Armada (C. D.)				
Gen	erator Name:	Occidential Chemical Corp. c/o Glenn Springs Holdings, Inc. 700 Walck Road	NOTIFICATION AND CERTIFICATION FORM Manifest Document No.: 009193764 SKS			
Carbon Acceptance No.: 7338R		ce No.: 7338R	EPA ID #: NYD002106938			
Chec	ek 1 or 2:					
X	X 1) Waste Does Not Meet Applicable Treatment Standards - This is a restricted waste that does not meet the applicable treatment standards set forth in Subpart D of 40 CFR Part 268					
-	2) Waste Meets Applicable Treatment Standards - I certify under penalty of law that I personally have examined and am familiar with the waste through analysis and testing or through knowledge of the waste to support certification that the waste complies with the treatment standards specified in 40 CFR 268 Subpart D. I believe that the information I submitted is true, accurate, and complete. I am aware that there are significant penalties for submitting a false certification.					

List ALL waste codes that apply:

EPA HAZARDOUS WASTE CODE(s)	NWW or WW	Underlying hazardous constituents (268.2)	LDR Subcategory (if applicable)
U019	NWW	Benzene	None
U027	NWW		None
U037	NWW	Chlorobenzene	None
U071	NWW	Dichlorbenzenes (mixed isomers)	None
U072	NWW		None
U127	NWW	Hexachlorobenzene	None
U188	NWW	Phenol	None

I hereby certify that all information submitted in this and all associated documents is con	mplete and accurate, to the best of my knowledge and information
I hereby certify that all information submitted in this and all associated documents is con Signature Tech!	Date 1/24/24
AS AGENT OF 65HI	