APPENDIX B

SITE-SPECIFIC LITHOLOGIC DESCRIPTIONS

TABLE OF CONTENTS

		<u> </u>	<u>Page</u>
1.0	INTRODU	JCTION	B-1
2.0	LITHOLO	OGIC UNIT DESCRIPTIONS	B-2
3.0	NEAR-VE	ERTICAL FRACTURES.	B-8
		<u>LIST OF FIGURES</u> (Following Text)	
		(Following Follo)	
FIGUR	E B.1	STRATIGRAPHIC UNIT THICKNESSES	
		<u>LIST OF TABLES</u> (Following Text)	
TABLE	E B.1	STRATIGRAPHIC NOMENCLATURE COMPARISON	
TABLE	E B.2	NEAR-VERTICAL FRACTURES LOGGED IN BOREHOLES	

LIST OF ATTACHMENTS (Following Text)

ATTACHMENT 1 PHOTOGRAPHS OF NEARBY OUTCROPS AND DRILL CORE

1.0 INTRODUCTION

The logging of drill core with respect to lithology and formation contacts for the bedrock sequence in the vicinity of the Site and the presence of vertical fractures are described in this Appendix. The stratigraphic nomenclature of Brett et al. (1995) is used. These lithologic descriptions are based on the logging of available drill core from boreholes installed from 1991 to the present. Lithologic descriptions are provided only for the units encountered at the Site, the Eramosa Formation, the Goat Island Formation, the Gasport Formation, the DeCew Formation, and the Rochester Shale. The lithology of the deeper stratigraphic units encountered during the drilling of the Intermediate Formation Wells (CRA, 1990) are not discussed in this Appendix.

2.0 LITHOLOGIC UNIT DESCRIPTIONS

The bedrock nomenclature system used in classifying the bedrock units at the Site during previous investigations was based on the nomenclature systems of Zenger (1965) and Rickard (1975). However, two Site-specific variations from these nomenclature systems were noted. Each unit name was essentially that of Rickard (1975), with the exception of the uppermost unit. Rickard (1975) named the uppermost unit the Guelph Formation for the Niagara region, the equivalent of the Oak Orchard Formation found further east in New York State. The nomenclature used at the Site retained the name Oak Orchard Formation for this unit (the previous Oak Orchard Member of Zenger, 1965) (Table B.1). The second variation was in the description and upper contact of the Gasport Formation. During early investigations at the Site, the upper portion of the Gasport Formation (the Pekin Member of Brett et al., 1995) was not recognized, because of the similar lithology to the overlying Goat Island Formation. The Gasport Formation, as defined during historical Site investigations and with concurrence of the NYSDEC, thus consisted only of the lower unit, composed of coarse crystalline, crinoidal dolostone (the Gothic Hill Member of Brett et al., 1995). Consequently, the upper portion of the Gasport Formation (the Pekin Member of Brett et al., 1995) was included in the overlying Goat Island Formation (Table B.1). The following descriptions utilize the nomenclature of Brett et al. (1995) with the previous nomenclature as used by CRA/NYSDEC (1979) in brackets.

The Stratigraphic and Instrumentation Logs from pre-2001 drilling programs utilize the historic nomenclature. The Stratigraphic and Instrumentation Logs for the 2001 drilling program, included in Appendix D, utilized the nomenclature of Brett et al. (1995).

Many of the unit contacts described below are more readily visible in nearby outcrops due to the scale of view and the weathering effects that may accentuate lithologic differences between units. The lack of weathering effects and smaller scale of view in drill core can make determination of unit contacts more difficult and subject to error. Due to the gradational nature of several unit contacts, the lithological similarities of many units, the subjective nature of picking unit contacts, and other potential errors described in Section 3.0 of the main report and in Appendix G, all stratigraphic contacts should be considered accurate to approximately \pm 3 feet.

Photographs of nearby outcrops and drill core, referenced in the following discussion, are included in Attachment 1.

Eramosa Formation (Lower Oak Orchard Formation)

The Eramosa Formation is a thick- to thin-bedded, dark brownish-gray, bituminous dolomite that emits a petroliferous odor from fresh surfaces. Some horizons contain small white chert nodules. The Eramosa Formation contains continuous shale partings near the bottom and becomes alternating massive- and thin-bedded. The Eramosa Formation also contains small to large bioherms. The Eramosa Formation appears in outcrop as thick- to massive-bedded, separated by layers of thin-bedded material. The thickness of the Eramosa Formation varies from 0 to 67 feet at the Site and averages 30 feet thick. The Eramosa Formation is the uppermost bedrock unit across the Site, except where missing due to erosion. Thus a true unit thickness cannot be determined in the vicinity of the Site. The Eramosa Formation is not exposed in outcrops in the vicinity of the Site.

Eramosa Formation/Vinemount Member of Goat Island Formation Contact (Oak Orchard Formation/Eramosa Formation Contact)

The contact between the Eramosa Formation and the Vinemount Member of the Goat Island Formation is generally sharp and easy to identify. The base of the Eramosa Formation becomes very fine-grained and contains numerous, closely spaced, deformed shale layers. Fossils are common within these shale layers. The Vinemount Member begins within the first fine-grained beds that do not contain fossils. There is sometimes a noticeable color change from dark gray to light gray. The Eramosa Formation/Vinemount Member contact is not exposed in outcrops in the vicinity of the Site.

Vinemount Member of the Goat Island Formation (Eramosa Formation)

The Vinemount Member of the Goat Island Formation is a light to dark gray, medium-to thin-bedded, fine-grained, argillaceous dolomite with thin shale partings. The Vinemount Member is commonly bituminous and emits a petroliferous odor from fresh surfaces. The Vinemount Member contains closely spaced shale partings covering approximately 1 foot vertically near the bottom of the unit. The Vinemount Member appears in outcrop near the Site as thin- to medium-bedded with irregular, discontinuous shale layers, and partings. The thickness of the Vinemount Member, where uneroded, ranges from 18 to 24 feet at the Site and averages 20 feet thick (Figure B.1). Across the western portion of the Site, the Vinemount Member forms the uppermost bedrock unit and is erosionally truncated. The bedding of the Vinemount Member is visible on Photograph 1 and the top portion of Photograph 13. The overall competent nature of the drill core is visible on Photographs 14, 15, and 16.

Vinemount Member/Ancaster Member Contact (Eramosa Formation/Goat Island Formation Contact)

The contact between the Vinemount Member and the Ancaster Member of the Goat Island Formation is difficult to visually identify in drill core. The contact is conformable and gradational and generally there is no color change. At the base of the Vinemount Member, the shale layers become very closely spaced (<1/2 inch) over an approximate 1-foot interval. Just below these beds, the grain size of the rock starts to increase from fine-grained to medium-grained. Where the grain size becomes predominantly medium-grained, the Ancaster Member begins. The location of the grain size change beneath the lower shale layers varies across the Site from less than a few inches to greater than 2 feet. The contact between the Vinemount Member and the Ancaster Member is visible on Photograph 2. The contact in drill core is visible, but difficult to see, on Photograph 6.

Ancaster Member of the Goat Island Formation (Upper Goat Island Formation)

The Ancaster Member of the Goat Island Formation is a medium ash-gray, thin to medium-bedded, fine-grained dolomite. The unit weathers to light tan and regionally, contains nodules of distinctive pale, cream-colored chert (Brett et al., 1995). At the Site, chert is uncommonly encountered and was not observed in outcrop. In outcrop, the Ancaster Member appears regularly spaced and medium bedded. The Ancaster and the underlying Niagara Falls Members have previously been grouped together at the Site. The combined thickness of these two members at the Site ranges from 13 to 24 feet and averages 19 feet thick (Figure B.1). The bedding of the Ancaster Member is visible on Photographs 3 and 13. The overall competent nature of the drill core is visible on Photograph 16.

Ancaster Member/Niagara Falls Member Contact (Upper Goat Island Formation /Lower Goat Island Formation Contact)

The contact between the Ancaster Member and Niagara Falls Member of the Goat Island Formation has not been discretely logged at the Hyde Park Landfill Site.

Niagara Falls Member of the Goat Island Formation (Lower Goat Island Formation)

The Niagara Falls Member of the Goat Island Formation is a light olive to brownish-gray, saccharoidal, medium-grained, thick- to massive-bedded, porous, and vuggy dolomite. The vugs and mineralization in the Niagara Falls Member noted in Brett et al. (1995) to occur regionally are not commonly encountered in drill core at the Site. In outcrop, the Niagara Falls Member appears massive with few fractures. The bedding of the Niagara Falls Member is visible on Photographs 4 and 13. The overall competent nature of the drill core is visible on Photograph 17.

Niagara Falls Member/Pekin Member Contact (Goat Island Formation/Gasport Formation Contact)

The contact between the Niagara Falls Member of the Goat Island Formation and the Pekin Member of the Gasport Formation is conformable but generally fairly easy to identify. Toward the base of the Niagara Falls Member the rock becomes very uniform in grain size and color (medium-grained and medium gray) and commonly breaks at stylolites spaced approximately 2 to 3 feet apart. At the top of the Pekin Member, a noticeable textural change in the rock occurs, from lack of structure to a very deformed structure, the color of the rock also becomes slightly darker. Within the first 2 to 3 feet of the Pekin Member, the bedding becomes thin and crinoid fossil fragments may be present. The contact between the Niagara Falls Member and the Pekin Member is visible on Photograph 4. The contact in drill core is visible on Photograph 17.

Pekin Member of the Gasport Formation (Gasport Formation)

The Pekin Member is an argillaceous, dark gray, fine-grained, thin- to medium-bedded dolomicrite. The Pekin Member was not officially recognized historically as part of the Gasport Formation at the Site. In outcrop, the Pekin Member displays deformed, irregular shale partings of limited lateral extent. The shale partings are often closely spaced in outcrop. The Pekin Member ranges in thickness from 11 to 24 feet and averages 16 feet thick at the Site (Figure B.1). The thick bedding is visible on Photographs 5, 6, 7, and the bottom of Photograph 13. The overall competent nature of the Pekin Member is visible in drill core on Photographs 17 and 18.

Pekin Member/Gothic Hill Member Contact (Goat Island Formation/Gasport Formation Contact)

The contact between the Pekin Member and Gothic Hill Member of the Gasport Formation is generally sharp and easy to identify. The Gothic Hill Member is characterized as being a thick bedded crinoidal grainstone. The base of the Pekin Member often contains thin beds (approximately 4 inches thick) with crinoid fragments separated by thin beds of dolostone with shale layers. The contact between these two units is commonly marked by a shale parting. The contact between the Pekin Member

and the Gothic Hill Member is visible on Photograph 7. The contact is visible in drill core on Photograph 20.

Gothic Hill Member of the Gasport Formation (Gasport Formation)

The Gothic Hill Member of the Gasport Formation is a thick- to massive-bedded, dark olive-gray to light pink, dolomitic limestone (primarily crinoidal grainstone and crinoidal dolomite). The Gothic Hill Member appears in outcrop as a massive unit, which is generally unfractured horizontally. Low-angle cross-stratification is apparent in outcrop and the fossil fragments are commonly visible in relief due to differential weathering. The Gothic Hill Member ranges in thickness from 4 to 16 feet and averages 7 feet thick at the Site (Figure B.1). The massive bedding of this unit and cross-stratification are visible on Photographs 7, 8, 9, and 10. The overall competent nature of the drill core is visible on Photograph 20.

Gothic Hill Member/DeCew Formation Contact (Gasport Formation/DeCew Formation Contact)

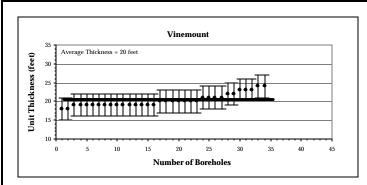
The contact between the Gasport Formation and the DeCew Formation is sharp and easy to identify. This contact is marked by the loss of crinoid fragments and a change from medium- to coarse-grained to fine-grained. The contact between the Gothic Hill Member and the DeCew Formation is visible on Photographs 9 and 10.

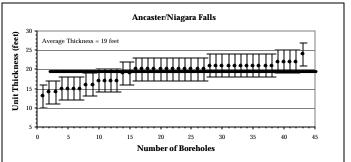
DeCew Formation

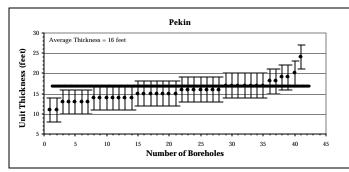
The DeCew Formation is a variably bedded, dark-gray to olive-gray, argillaceous to sandy, fine-grained dolomite that locally contains shale partings and interbeds up to a few inches thick. It commonly shows contorted and enterolithic bedding. The contorted and enterolithic bedding was postulated by Brett et al. (1995) to be caused by a seismic disturbance. In outcrop, the contorted and enterolithic bedding weathers differentially, showing the bedding details in relief. In outcrop near the Site, the contorted and enterolithic bedding of the DeCew Formation occupies approximately the middle one-third of the unit. The top of the contorted and enterolithic bedding forms an irregular bedding plane surface overlain and draped by similar argillaceous to sandy dolomite with near-horizontal bedding. The DeCew Formation ranges in thickness from 8 to 13 feet and averages 11 feet thick at the Site (Figure B.1). The variations in bedding within the DeCew Formation is readily apparent on Photographs 9, 11, and 12. The upper portion of the DeCew Formation is visible in drill core on Photograph 20. There is no apparent erosion or weathering on the top of the DeCew Formation, at the shale parting that forms the contact with the overlying Gothic Hill Member, although this

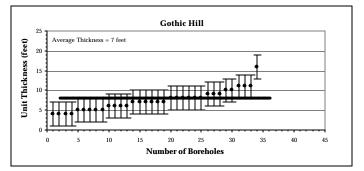
contact is considered to be a regional unconformity (Brett et al., 1995). The rust staining visible in drill core on Photograph 20 is caused by oxidation of the core box metallic hardware.

DeCew Formation/Rochester Shale Contact


The contact between the DeCew Formation and Rochester Shale is conformable and somewhat difficult to visually identify in drill core. The contact is determined by the flatness of the bedding, the first horizontal bedding marks the top of the Rochester Shale. In addition, the Rochester Shale becomes significantly softer below the DeCew Formation/Rochester Shale contact. The contact between the DeCew Formation and the Rochester Shale is visible on Photograph 12.


Rochester Shale


The Rochester Shale is a medium-gray to black calcareous mudstone with thin interbeds of calcareous to dolomitic calcisiltite and calcarenite. In outcrop, the upper portion of the Rochester Shale weathers rapidly to a crumbly texture of small shale fragments partially covered by light colored evaporative mineral coatings. The full thickness of the Rochester Shale was penetrated during the installation of the Intermediate Formation Wells (IFW). The Rochester Shale ranges in thickness from 56 to 63 feet and averages 59 feet based on these seven IFW monitoring wells. The bedding and rapid weathering of this unit are apparent on the lower portion of Photograph 12.


3.0 NEAR-VERTICAL FRACTURES

Near-vertical fractures were encountered in available drill core and were logged during the lithologic logging process. The depths of these vertical fractures from ground surface are presented in Table B.2. As well, this table includes three near-vertical fractures visible from borehole video logging (C1U, C2M) that were not noted to be present in the drill core.

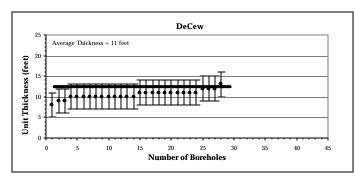


figure B.1
STRATIGRAPHIC UNIT THICKNESSES
SITE CHARACTERIZATION REPORT
HYDE PARK LANDFILL SITE
Town of Niagara, New York

Note: Error bars represent ± 3 feet.

TABLE B.1

STRATIGRAPHIC NOMENCLATURE COMPARISON SITE CHARACTERIZATION REPORT HYDE PARK LANDFILL SITE TOWN OF NIAGARA, NEW YORK

<u>Zenger (1965)</u> (NY Bull.404)		<u>Rickard (1975)</u> (NY Map Series 24)			<u>CRA/</u>	NYSDEC (1979)	Brett, et al. (1995) (USGS Bull.2086)			
Lockport Formation	Oak Orchard Member	Lockport Group	Guelph Dolomite		Lockport Group	Oak Orchard Formation	Lockport Group	Guelph Dolomite Eramosa Dolomite		
	Eramosa Member Goat Island member		Eramosa Formation Goat Island Formation			Eramosa Formation		Goat Island Dolomite	Vinemount Member Ancaster Member	
	Gasport Member		Gasport Formation		Goat Island Formation Gasport Formation		Gasport Dolomite	Niagara Falls Member Pekin Member Gothic Hill Member		
	DeCew Member	Clinton	DeCew Dolomite			DeCew Formation	Clinton	DeCew Dolomite		
Clinton Group	Rochester Shale	Group	Rochester Shale		Clinton Group	Rochester Shale	Group	Rochester Shale	Burleigh Hill Member Lewiston Member	

Note: The Gasport Formation as used by CRA at the Site is composed of the Gothic Hill Member only.

The Pekin Member of the Gasport Formation was historically included in the overlying Goat Island Dolomite.

TABLE B.2 Page 1 of 3

NEAR-VERTICAL FRACTURES LOGGED IN BOREHOLES SITE CHARACTERIZATION REPORT HYDE PARK LANDFILL SITE TOWN OF NIAGARA, NEW YORK

Well Location	Ground Surface Elevation (ft. AMSL)	Top of Bedrock Elevation (ft. AMSL)	Fracture 1 Top Bottom (Depth ft. bgs)		Fract Top (Depth	Bottom	Fracti Top (Depth	Bottom	Fract Top (Depth	Bottom
A1U	598.0	571		racturing Noted						
A2U	593.5	572	30.8	31.0						
AB1L	588.0	561	No Vertical F	racturing Noted						
AB1M	588.0	565	No Vertical F	racturing Noted						
AB1U	587.9	559	No Vertical F	racturing Noted						
ABP-1	571.9	554	No Vertical F	racturing Noted						
ABP-2	574.9	558	No Vertical F	racturing Noted						
ABP-3 (1)	591.1 (1)	562 (1)	No Vertical F	racturing Noted						
ABP-4	588.1	561	No Vertical F	racturing Noted						
ABP-5	589.3	561	No Vertical F	racturing Noted						
ABP-7	574.4	566	No Vertical F	racturing Noted						
ABP-8	575.1	534	No Vertical F	racturing Noted						
AFW-1L	570.9	565	57.0	61.0						
AFW-2L	592.2	579	15.2	15.6	17.5	19.5	21.5	22.5		
AFW-3L	589.3	577	12.5	13.2	17.0	18.0				
AGW-1L	591.4	576	19.5	21.5	23.6	23.8				
AGW-2L	608.4	593	16.0	17.5	31.5	32.0				
AGW-3L	628.3	612	38.4	38.6	51.8	52.1	56.6	56.8	86.5	89.8
APW-1	569.0	555	No Vertical F	racturing Noted						
APW-2	574.0	531		racturing Noted						
B1L	589.7	562	28.0	29.0						
B2L	588.0	564	55.9	56.0						
BR-1	582.6	559	23.6	23.8						
BR-2	581.6	557		racturing Noted						
BR-3	582.0	559	24.4	24.5						
BR-4	583.5	557		racturing Noted						
C1U	591.6	562	30.5 (1)	32.5 (1)						
C1L	591.4	562	91.0	93.0	95.0	97.0				
C2M	590.1	560	59 (1)	63 (1)	71 (1)	79 (1)				

TABLE B.2 Page 2 of 3

NEAR-VERTICAL FRACTURES LOGGED IN BOREHOLES SITE CHARACTERIZATION REPORT HYDE PARK LANDFILL SITE TOWN OF NIAGARA, NEW YORK

Well Location	Ground Surface Elevation (ft. AMSL)	Top of Bedrock Elevation (ft. AMSL)	Fracture 1 Top Bottom (Depth ft. bgs)		Top Bottom		Top	ture 2 Bottom 1 ft. bgs)	Fracture 3 Top Bottom (Depth ft. bgs)	Fracture 4 Top Bottom (Depth ft. bgs)
C2L	590.2	560	59.0	63.0	71.0	76.0				
CD1L	596.6	563	36.5	37.4						
CD1M	596.8	568	No Vertical F	racturing Noted						
CD1U	596.9	573	33.3	38.1	52.7	52.8				
CD2M	596.1	563	No Vertical F	racturing Noted						
CD3U	593.4	562	31.1	31.4						
CD4U	588.9	574	13.7	16.5						
CD5U	588.2	566	No Vertical F	racturing Noted						
CD6U	588.6	562	No Vertical F	racturing Noted						
D1L	592.7	572	23.6	24.2						
D2L	589.4	576	No Vertical F	racturing Noted						
D4L	598.6	575	No Vertical F	racturing Noted						
E1L	594.0	577	21.0	21.5						
E2L	591.3	576		racturing Noted						
E3L	593.1	578	23.7	23.8						
E5U	598.6	587	No Vertical F	racturing Noted						
F1L	602.0	599	44.2	44.8						
F2L	597.6	587	29.2	29.4	34.8	35.0				
F3L	597.6	580	No Vertical F	racturing Noted						
G1L	615.6	607	9.5	10.5	13.2	16.0				
G2L	609.8	600	45.2	45.8	51.5	53.4				
G3L (BH4-95)	617.7	60604	No Vertical F	racturing Noted						
G4U	610.6	597	No Vertical F	racturing Noted						
G5L	605.5	598	126.5	126.8						
G5U (T-2)	610.6	603	8.2	8.5	14.5	14.8	49.9 50.2			
H1L	618.9	606	No Vertical F	racturing Noted						
H2L	619.3	613	14.3	14.5						
HT-2 (BH2-95)	600.2	579	No Vertical F	racturing Noted						
J1L	606.8	591	18.2	18.4	30.2	30.4				

TABLE B.2 Page 3 of 3

NEAR-VERTICAL FRACTURES LOGGED IN BOREHOLES SITE CHARACTERIZATION REPORT HYDE PARK LANDFILL SITE TOWN OF NIAGARA, NEW YORK

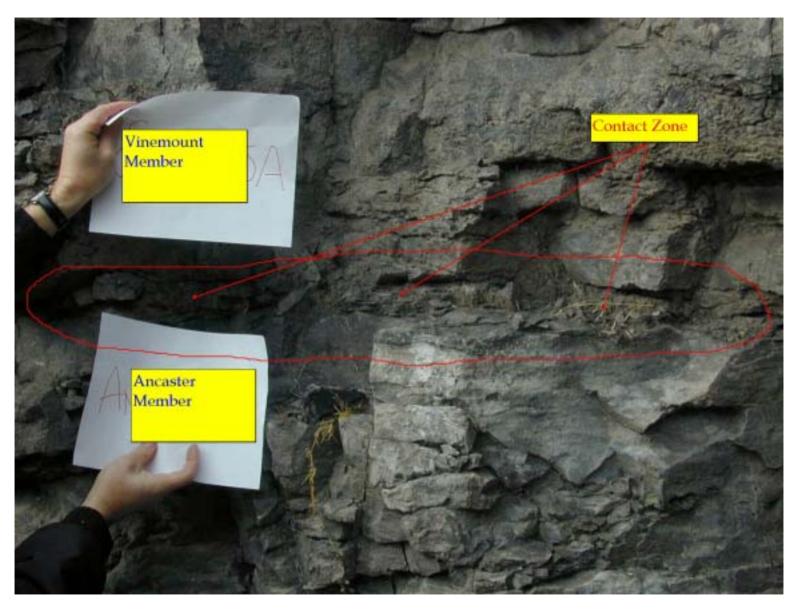
Well Location	Ground Surface Elevation (ft. AMSL)	Top of Bedrock Elevation (ft. AMSL)	Fracture 1 Top Bottom (Depth ft. bgs)	Fract Top (Depth	Bottom	Fract Top (Depth	Bottom	Fractu Top (Depth f	Bottom
J2L	608.0	593	24.2 24.8	33.0	33.2				
J3L	600.2	584	No Vertical Fracturing Noted						
J5L	606.1	591	No Vertical Fracturing Noted						
J5M	604.6	593	No Vertical Fracturing Noted						
J5U	604.5	591	No Vertical Fracturing Noted						
JH1L	624.4	610	No Vertical Fracturing Noted						
MW1-2001	595.4	577	18.0 20.0						
MW2-2001	594.4	573	No Vertical Fracturing Noted						
MW3-2001	589.8	560	No Vertical Fracturing Noted						
MW4-2001	588.8	559	No Vertical Fracturing Noted						
MW5-2001	591.7	559	No Vertical Fracturing Noted						
MW6-2001	591.2	559	No Vertical Fracturing Noted						
MW7-2001	590.3	561	No Vertical Fracturing Noted						
171777 2001	000.0	001	Two vertical Flucturing Protect						
PMW-1L	597.4	563	100.5 100.8	102.6	102.9				
PMW-3L	604.6	590	No Vertical Fracturing Noted						
PW-1L	596.8	581	No Vertical Fracturing Noted						
PW-2L	600.0	580	No Vertical Fracturing Noted						
PW-3L	602.8	588	No Vertical Fracturing Noted						
PW-4M	610.3	599	11.2 11.5	30.9	31.1	35.8	36.0	39.7	40.0
PW-6UR(T-1)	611.3	604	No Vertical Fracturing Noted						
PW-6MR(T-3)	612.1	605	8.1 8.5	12.5	12.7	45.8	46.2	67.5	67.6
PW-7U (CD-2U)	596.7	563	No Vertical Fracturing Noted						
PW-8U	593.7	563	No Vertical Fracturing Noted						
PW-8M	597.0	561	No Vertical Fracturing Noted						
PW-9U	591.8	562	No Vertical Fracturing Noted						
PW-10U	597.8	579	19.0 19.5	26.2	26.5				

Notes:

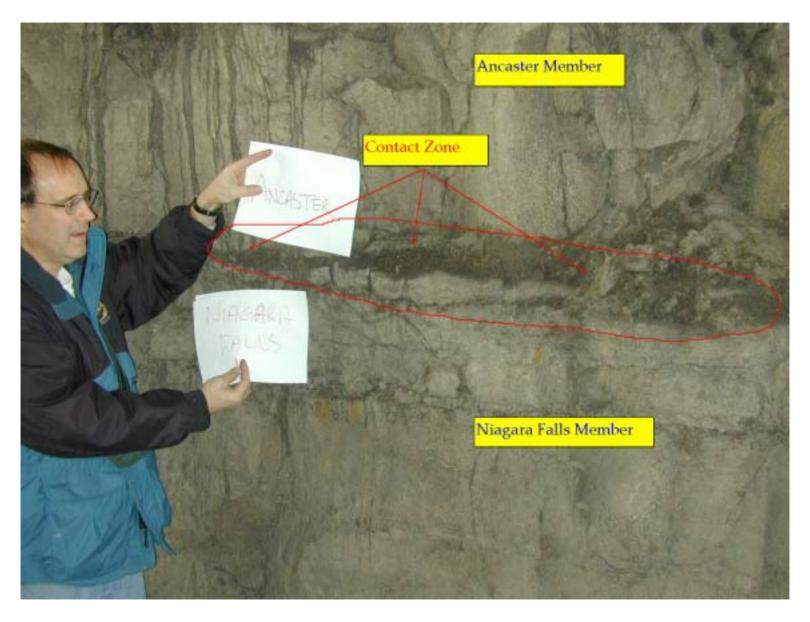
ft. AMSL - feet Above Mean Sea Level.

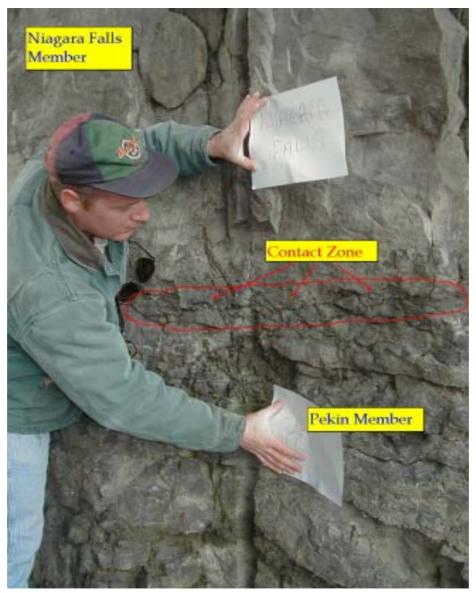
ft. bgs - feet below ground surface

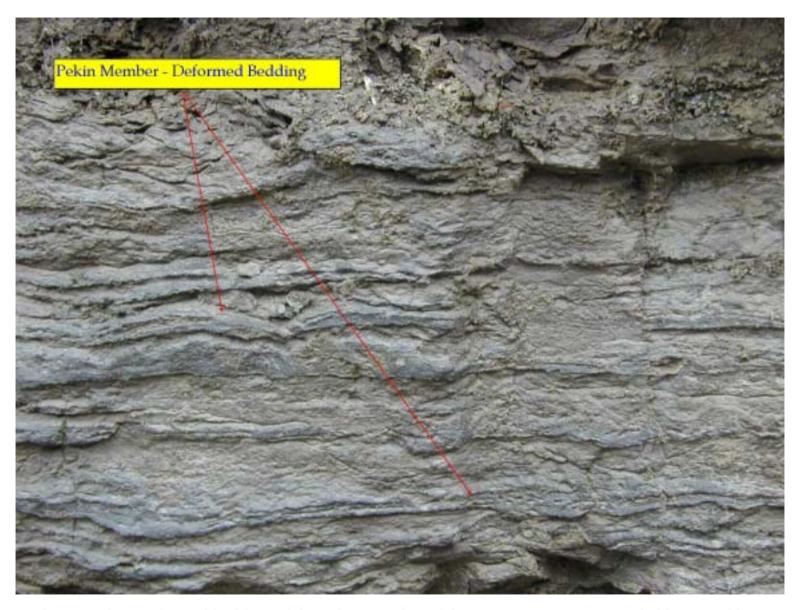
Only boreholes for which drill core was available are listed.

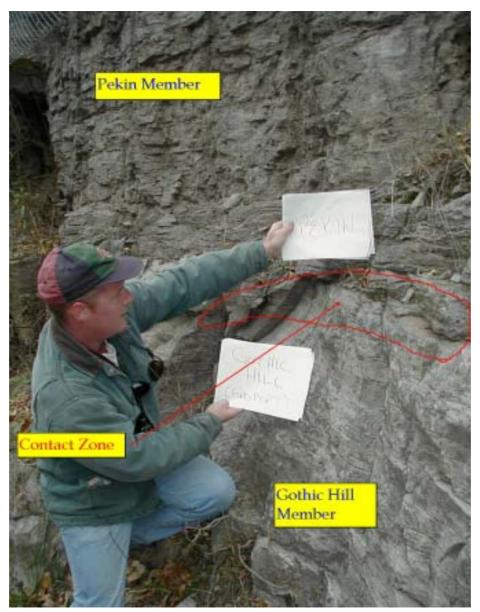

(1) Fracture identified from borehole video log.

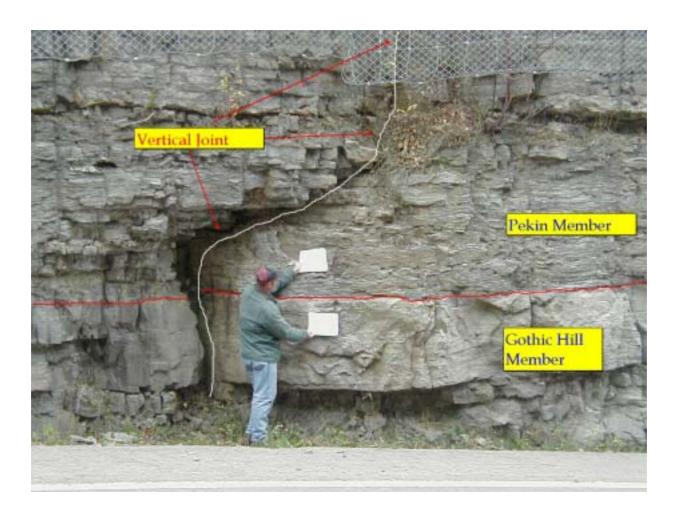
ATTACHMENT 1


PHOTOGRAPHS OF NEARBY OUTCROPS AND DRILL CORE

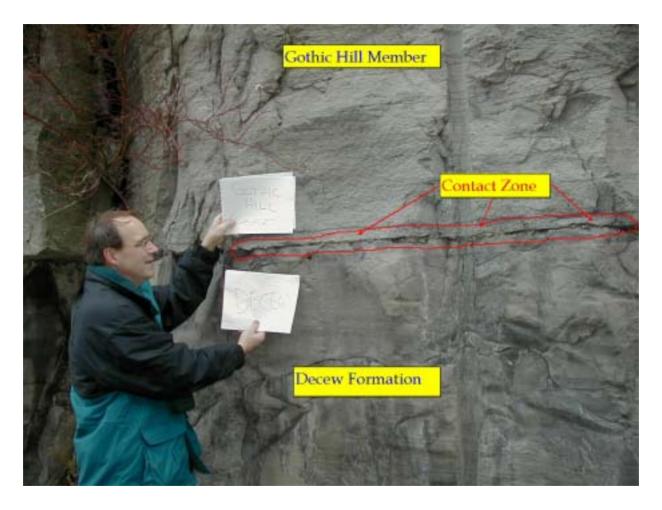

Photograph 1. Horizontal bedding, bedding plane fractures, and vertical fractures in the Vinemount Member of the Goat Island Formation. NYPA Access Road.


Photograph 2. Contact between the Vinemount Member and the Ancaster Member of the Goat Island Formation. NYPA Access Road.

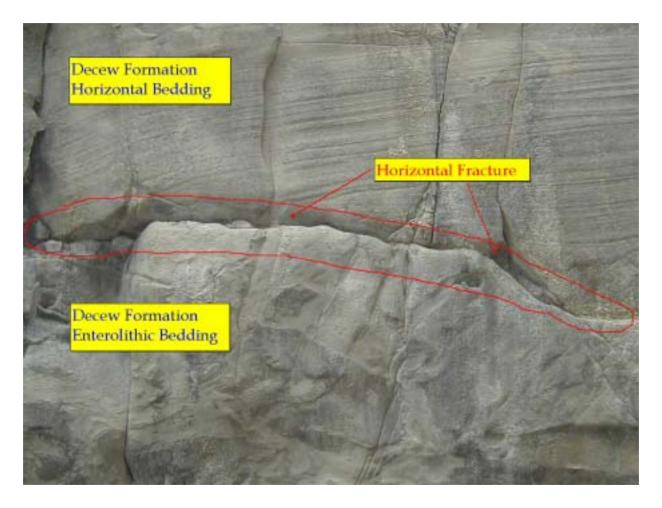

Photograph 3. Contact between the Ancaster Member and the Niagara Falls Member of the Goat Island Formation. Note the thick to massive bedding in each member. NYPA Access Road.

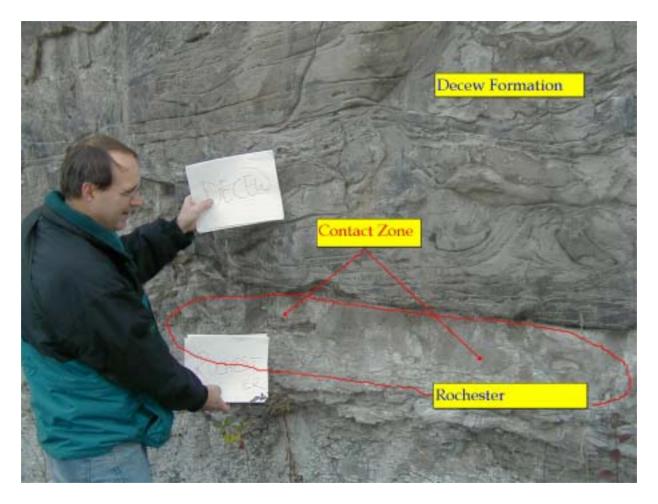

Photograph 4. Contact between Niagara Falls Member of the Goat Island Formation and the Pekin Member of the Gasport Formation. NYPA Access Road.

Photograph 5. Deformed bedding of the Pekin Member of the Gasport Formation, probably caused by stromatolites. NYPA Access Road.


Photograph 6. Contact between the Pekin Member and the Gothic Hill Member of the Gasport Formation. NYPA Access Road.


Photograph 7. Contact between the Pekin Member and the Gothic Hill Member of the Gasport Formation. Note the large vertical joint (steeply dipping in the center of the photograph) within the Pekin Member. NYPA Access Road.


Photograph 8. Cross-bedding within the coarse-grained Gothic Hill Member of the Gasport Formation. Note the vertical joint and lack of bedding plane fractures. NYPA Access Road.


Photograph 9. Contact between the Gothic Hill Member of the Gasport Formation and the DeCew Formation. Note large vertical joint on left side of photograph. NYPA Access Road.


Photograph 10. Contact between Gothic Hill Member of the Gasport Formation and the DeCew Formation. Note the massive nature of each unit and overall lack of bedding plane fractures. NYPA Access Road.

Photograph 11. Bedding plane contact between near-horizontal bedding and enterolithic bedding within the DeCew Formation. NYPA Access Road.

Photograph 12. Contact between the DeCew Formation and the Rochester Shale. Note the enterolithic bedding in the DeCew Formation near the "Contact Zone" label and overlying near-horizontal bedding near the "DeCew Formation" label. NYPA Access Road.

Photograph 13. Stratigraphic section and contact zones, Goat Island Formation and Pekin Member of the Gasport Formation. NYPA Access Road.

Photograph 14. B2L core showing Vinemount Member of Goat Island Formation.

Photograph 15. B1L core showing Vinemount Member of Goat Island Formation.


Photograph 16. B1L core showing Vinemount Member/Ancaster Member contact.

Photograph 17. B2L core showing Niagara Falls Member/Pekin Member contact.

Photograph 18. B1L core showing Pekin Member of Gasport Formation.

Photograph 19. Close-up of C1L core showing Pekin Member of Gasport Formation.

Photograph 20. B2L core showing Pekin Member / Gothic Hill Member contact and Gothic Hill Member/DeCew Formation contact.

APPENDIX C

QUANTUM ENGINEERING CORPORATION ELECTROMAGNETIC BOREHOLE FLOWMETER TESTING REPORT

Results of Field Tests with the Electromagnetic Borehole Flowmeter At the Hyde Park Landfill Site Niagara Falls, NY

by

William R. Waldrop And Hubert S. Pearson

November 2001

Quantum Engineering Corporation

112 Tigitsi Lane, Tellico Village Loudon, Tennessee 37774

Phone (865) 458-0506 FAX (865) 458-0504

Web Site: www.qec-ebf.com

Introduction

Quantum Engineering Corporation (QEC) conducted flowmeter tests at the Hyde Park Landfill in Niagara Falls, New York. The tests were performed under subcontract to Conestoga-Rovers & Associates, Inc. (CRA) of Niagara Falls, New York. The instrument system used, the Electromagnetic Borehole Flowmeter (EBF), was designed expressly for such tests as performed at the Hyde Park Landfill (Young and Waldrop, 1989). Data from this procedure provide a cost-effective method to define a profile of hydraulic conductivity throughout the screened or uncased portion of the saturated zone. It also provides the hydrogeologic flow conditions occurring naturally in each well. The QEC team that performs EBF tests are inventors of the instrument system. They have conducted similar tests for a wide range of geohydrology throughout the United States.

Field data were collected at 44 wells at the site during an 11-day period in August 2001. The tests were conducted according to a scope of work developed jointly by staff of QEC, CRA and S.S. Papadopulos & Associates, Inc. (SSP&A). This report presents results from the field tests as well as describes the test protocol and the EBF system used.

The Borehole Flowmeter Method

The flowmeter method represents a reasonably simple approach for assessing the relative hydraulic conductivity in porous media or flow through fractured rock at discrete positions in a screened well or uncased borehole. This method is equally effective for evaluating the direction of ambient flow caused by vertical hydrostatic pressure gradients throughout the depth of a borehole. The technique involves measuring at arbitrarily selected intervals as water is transmitted through a well under ambient and induced pumping conditions.

In principal, the flowmeter method is very straightforward. Consider the test setup for the well shown in Figure 1. When water is pumped into or from the well at a constant rate for an extended time (i.e. typically about 10 minutes), then the water surface level inside the well will adjust until it reaches equilibrium. At that time, water is being induced into (or from) the well at the same rate as that being pumped near the surface. Water is entering or exiting the well horizontally throughout the screened or open interval of the well and flowing vertically within the well. The objective is to measure the vertical distribution of the horizontal flow into or from the well. The horizontal flow rate at each stratum is indicative of the hydraulic conductivity of those strata as discussed by Molz, et.-al. (1990).

Under ideal conditions, the probe is sealed to the wall such that any vertical flow must pass through the recording zone of the meter. Then the flow into or from the well below the meter is recorded as it flows vertically in the well. For some applications, it is not possible to effect a complete seal with the wall and prevent bypass flow. For such cases, it is often desirable, but not essential, to determine the percentage of flow rate bypassing the recording section of the probe and correct the probe readings accordingly.

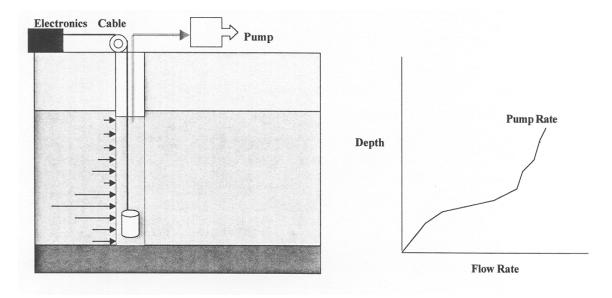


Figure 1. Apparatus and Geometry of a Borehole Flowmeter Test

A flowmeter test for a well is initiated by measuring for ambient flow throughout the screened or uncased section of the well. This is typically initiated with the flowmeter at the bottom of the screen where flow rates should be zero. The probe is then raised one increment. After any flow disturbance caused by the probe movement has subsided, the vertical flow at that station is recorded. This process is repeated throughout the entire screened or uncased region. These ambient flows reveal the presence of vertical pressure gradients, positive or negative, between strata, and provide a baseline for analyzing induced flow into the well during pumping.

Once the ambient flow pattern has been recorded, the induced flow test is initiated by pumping into or from the well at a constant rate. The water surface is monitored to determine when equilibrium conditions have been achieved. At that time, the probe is systematically moved vertically with flow rates recorded at predetermined intervals throughout the well screen or uncased region. Data at each depth are displayed on a digital readout and stored in a data file of a portable computer. These tests can be

performed with equal accuracy by injecting flow into the well at a constant rate instead of pumping.

Data analysis is also relatively simple. The lateral inflow from each stratum is calculated by successively subtracting the cumulative flow measured at those strata from the cumulative flow recorded at the level immediately below. Hydraulic conductivity can be calculated for those strata by using the Cooper-Jacob formula for horizontal flow to a well. The ratio of local hydraulic conductivity K_i to average K_{ave} for each well is computed using Equation 7 from Molz and Young (1993),

$$K_i \: / \: K_{ave} = \left(\left(Delta \: Q_i \: - \: Delta \: q_i \right) \: / \: Delta \: z \right) \: / \: \left(Q_{pump} \: / \: b \right) \: ; \: i = 1, 2, \: ... \: n$$
 where

Delta Q_i = Flow from the ith layer in the well;

Delta q_i = Ambient flow from the ith layer of the well;

Delta z = ith layer thickness;

 Q_{pump} = Flow rate pumped from the well during the induced flow test; and b = Aquifer thickness.

Additional details are presented in Molz, et. al., (1994).

The Electromagnetic Borehole Flowmeter

The EBF measures flow using Faraday's Law of Induction. This principal states that the voltage induced by a conductor moving at right angles through a magnetic field is directly proportional to the velocity of the conductor through the field. The flowing water is the conductor, the electromagnet generates the magnetic field, and the electrodes measure the induced voltage. The electronics attached to the electrodes transmit a voltage directly proportional to the velocity of the water flowing through the interior of the probe. The voltage produced by the water movement through the probe is insensitive to the conductivity of the water as long as the water is conductive.

This method of measuring velocity provides essentially an instantaneous response to changes in flow rates. Data are typically recorded and averaged over 60 seconds for each data point during a static test of a particular stratum. The total time required to position the probe to a desired depth, allow the flow to settle from the disturbance of movement, record a data point, and document notes is about five minutes.

The external dimension of the downhole probe is designed to fit snugly into a Schedule 40 two-inch diameter pipe. Two probes are available - one with a half-inch inside throat diameter and another with a one-inch throat diameter. The performance specifications of both probes are presented in Table 1.

Table 1: Performance Specifications of the EBF Probes

	1/2 Inch id Probe	1 Inch id Probe
Minimum Flow	10 mL/min (0.0026 gpm)	40 mL/min (0.011 gpm)
Minimum Velocity	0.131 cm/sec (0.0043 fps)	0.131 cm/sec (0.0043 fps)
Maximum Flow	10 L/min (2.64 gpm)	40 L/min (10.6 gpm)
Maximum Velocity	131 cm/sec (4.3 fps)	131 cm/sec (4.3 fps)

Both probes are designed such that the electromagnets, electrodes and electronic components are fixed in place, tested and then potted with a watertight epoxy. The probes have no moving parts and have smooth exterior surfaces for easy cleaning.

Because the EBF can accurately record extremely low flow rates, it is possible to record ambient flow rates occurring naturally in wells, as well as the influx of flows during pumping. The flowmeter measures flow in either direction with equal accuracy.

This new instrument system has proved to be useful in support of environmental groundwater investigations throughout the USA during the seven years that it has been produced commercially. The publications by Young, et al (1998), Molz, et al (1994), Hutchins and Acree (2000) and Molz and Young (1993) provide examples of results from several such applications available in the scientific literature. Examples of data and analysis methods are also presented in the QEC web site at www.qec-ebf.com.

The downhole probe, cable, and aboveground electronics box is shown in Figure 2. The compactness of the system makes it easy to transport, ship and handle in the field.

Figure 2: The Electromagnetic Borehole Flowmeter System

Test Results

Hubert Pearson of QEC, a member of the invention team and experienced in conducting EBF tests, served as test engineer. Staff of CRA and SSP&A assisted throughout in conducting these tests. Jon Williams of CRA and Christopher Neville of SSP&A provided guidance for test objectives to assure that test data would be consistent with their needs for defining the hydrogeology at this site.

The flowmeter test was performed with the QEC EBF system using the one-inch inside diameter (i.d.) probe. A one-half inch diameter probe was available, but was not used. Although the one-half inch probe provides better resolution for ambient flow, it was found in the field that the larger i.d. probe is more effective in uncased boreholes where it is sometimes not possible to achieve a complete seal to the walls. The impact of the coarser resolution of the larger i.d. probe on the identification of flow zones was considered to be negligible. This was because the primary results used for the identification of the flow zones were obtained under injection conditions. The injection testing was conducted at rates that were much higher than the 0.011 gpm lower flow limit for the one-inch probe.

Calibration of the EBF system was checked prior to the initial test, but no adjustments were required. Experience has shown that the EBF system is not subject to calibration drift. This is attributable to the design features of the electronics and the fabrication method by which the electronics of the probe are encased in watertight epoxy. The calibration curve for the EBF system used is presented in Figure 3.

The EBF system produced a linear signal throughout the range of flows tested. Upward flows were designated as positive as the sign convention used throughout all testing.

QEC furnished the EBF system, and a water level measuring device. CRA provided a portable generator and a potable water supply used for injection during the test.

The wells were drilled to a pre-determined depth before solid steel casings were installed in the upper portion of each well. The EBF tests were performed in the lower uncased

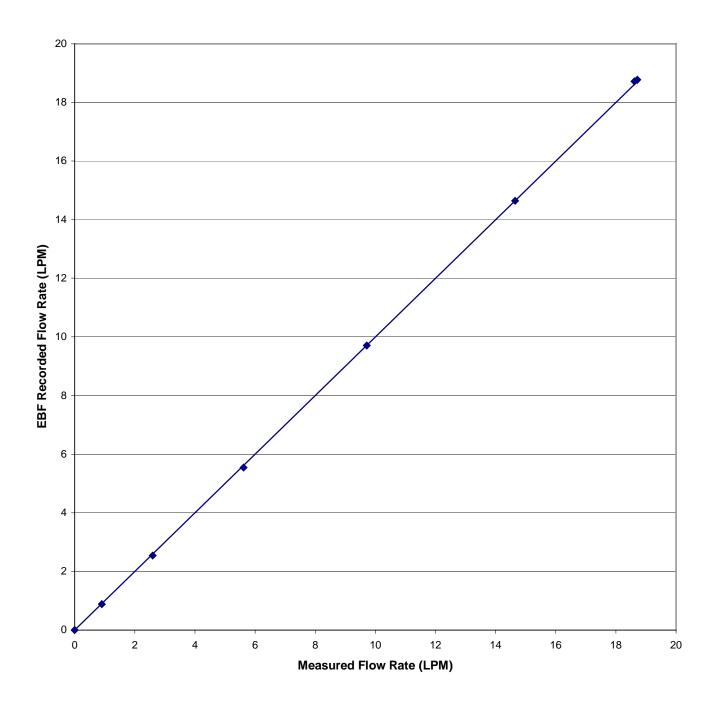
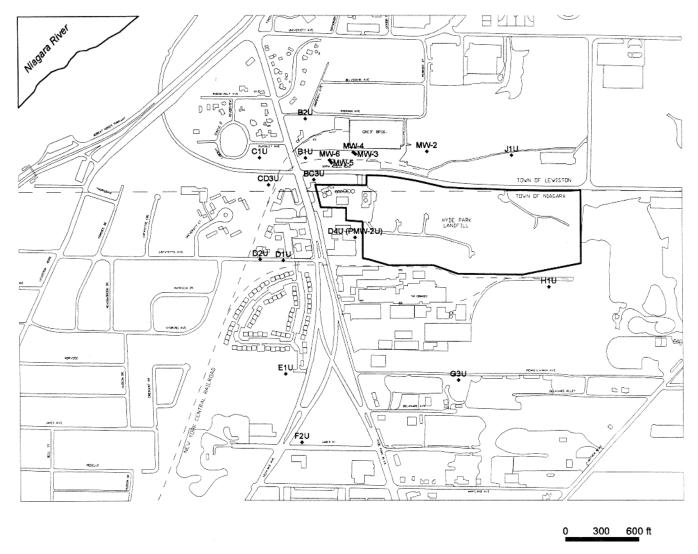


Figure 3: Calibration Curve for the One Inch EBF System

portion of rock. The wells tested fell into three classes depending upon the depth of each well. Wells were labeled U, M, and L denoting the uncased portion in the Upper, Middle, and Lower zones, respectively. The uncased portion of the wells of the Upper zone typically extended between depths of 25 and 50 feet below grade, the Middle zone between 50 and 80 feet, and the Lower zone between 80 and 110 feet, depending on the depth of the overburden. Five new monitoring wells, with depths of up to 50 feet, were also tested. The locations of all wells tested relative to the Hyde Park Landfill are shown in Figures 4 through 6.

The solid casings of the wells were nominally 3 7/8 inches in diameter. This precluded use of the inflatable packer since this is slightly less than the outside diameter of the inflatable packer for the EBF downhole probe. Instead of using the packer to prevent bypass flow around the exterior of the probe, a collar with a hard rubber outer ring cut to the approximate size of the uncased borehole was used to restrict vertical flow around the probe. This collar restricted much of the vertical flow, but being of a fixed diameter in an uncased hole, the seal was sometimes incomplete. Nevertheless, this approach was usually adequate for isolating flow rates into or from major fractures during ambient and injection testing. Since the objective of the flowmeter testing was to identify flow zones, no attempt was made to correct probe readings to account for leakage around the probe.


The test for each well was initiated with a test of ambient flow in the well. This was followed by an induced flow test. Water was injected at a constant rate instead of pumping for the induced flow test. Equilibrium conditions were established by injecting water into the well for about 10 minutes at a low sustained flow rate of about 1.0 gpm or less. This provided a vertical profile of flow rate throughout the uncased interval of the well. Well parameters including the effect on water surface due to injecting water are shown in Table 2. The vertical profile of flow rate combined with the ambient flow rate for each well provided the location and relative importance of fractures throughout the uncased portion of each well. The engineers also attempted to test well J1L, but the test was aborted when they encountered an obstruction at a depth of 95 feet. However, a slug test conducted at the time indicated that this well was very tight.

A discrepancy exists between the recorded injection flow rate and the maximum flow rate recorded by the flowmeter at the uppermost test measurement for several wells. This was the case for four of the five monitoring wells tested. This discrepancy is likely caused by an incomplete seal with the wall to prevent bypass flow. As long as the percentage of bypass flow was reasonably consistent, then the recorded flow profile is adequate for predicting the location of significant fractures. An abrupt change in the flow rate recorded between different depths indicates that flow has entered or exited the well. Bypass flow may affect the magnitude of the recorded flow rate, but not the percentage change between stations. However, in such cases, some discretion is advised when interpreting results.

Graphs of the vertical profile of induced and ambient flow rates for each well are presented in Appendix A. The profiles of ambient and induced flow rates were plotted as recorded. Whenever ambient flow rates were considered significant, a profile of Net Induced Flow Rate was computed by subtracting ambient flow rate from the induced flow at corresponding depths. Each graph also contained an additional profile that included QEC's interpretation of the data. This profile is intended to eliminate such effects as variations in cross-sectional diameter of the uncased borehole and other data anomalies. The Interpreted profile reflects an intended correction to the Net Induced profile.

Each graph also includes notation based on the authors' interpretation of fracture locations, explanation of unusual data, or other information noted while conducting the test or analyzing the data. Much of this information is based on the experience of the authors, but is obviously open to different interpretations of others. It is included to assist those using these data in conjunction with results from other geophysical tests.

Combining results from the EBF tests with those from geophysical tests should provide hydrogeologists with a reasonable understanding of the hydrogeology in the vicinity of each well.

Figure 4: Location of Upper Zone Wells Tested

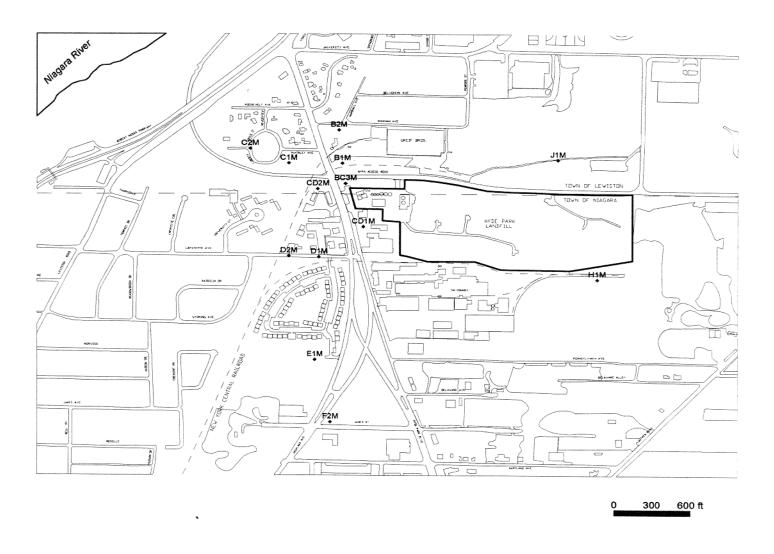
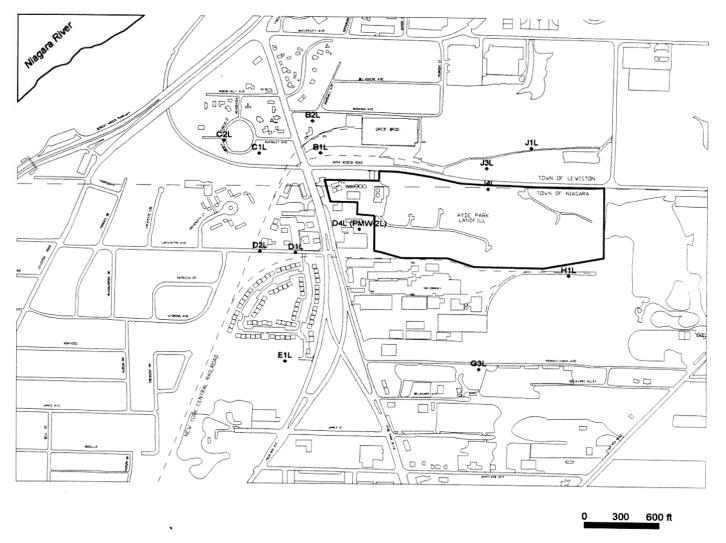



Figure 5: Location of Medium Zone Wells Tested

Figure 6: Location of Lower Zone Wells Tested

Table 2: Parameters of Wells Tested

Well No.	Bottom of Casing (Note 1)	Bottom of Well (Note 1)	Ambient Flow Direction	Injection Test Successful	Static Depth to	Injected Depth to	Injection Rate
					Water	Water	
	(ft.)	(ft.)		(Note 2)	(ft.)	(ft.)	(gpm)
7.17		10-			10.07		
B1L	87	107	Negligible	No	49.05	-	-
B1M	60	85	Negligible	Yes	43.40	42.90	0.87
B1U	32	60	Negligible	Yes	25.63	24.30	1.90
B2L	78	98	Negligible	No	48.70	-	- 2.05
B2M	52	75	Negligible	Yes	2407	42.60	2.85
B2U	27	51	Down	Yes	26.95	20.85	0.80
BC3M	66	87	Negligible	Yes	52.14	49.60	0.34
BC3U	35	62	Negligible	No	29.08	-	
0.17	2.7	100				72.20	2.4
C1L	85	103	Negligible	Yes	55.00	53.20	3.4
C1M	59	81	Negligible	Yes	49.15	48.55	3.4
C1U	31	58	Down	Yes	28.60	28.60	1.8
C2L	80	101	Negligible	Yes	49.40	38.30	0.30
C2M	56	80	Negligible	Yes	44.24	29.60	0.20
CD1M	64	88	Negligible	Yes	52.08	51.70	0.33
CD2M	64	90	Negligible	Yes	53.45	53.45	0.34
CD3U	28	60	Negligible	Yes	28.33	13.35	0.35
D1L	86	110	Negligible	No	61.00	11.88	0.1
D1M	50	86	Negligible	Yes	47.08	46.83	5.9
D1U	20	50	Down	Yes	15.58	3.40	5.9
D2L	88	110	Negligible	No	55.70	-	-
D2M	48	87	Up	Yes	43.78	43.53	0.34
D2U	13	48	Down	Yes	13.30	12.05	0.30
D4L	98	128	Negligible	No	61.94	N/A	0.30
D4U	21	55	Negligible	Uncertain	17.28	16.85	0.52
E1L	98	121	Negligible	No	46.29	28.40	0.24
E1M	56	96	Negligible	No	49.91	-	0.27
E1U	21	56	Down	Yes	20.24	19.33	3.8
F2L	102	126	Negligible	No	40.95	-	-
F2M	61	99	Negligible	Yes	52.12	51.65	0.29
F2U	7	57	Down/Up	Yes	22.40	22.11	0.32
G3L	131	150	Negligible	Yes	37.15	36.85	0.34
G3U	15	66	Down	Yes	28.95	27.85	0.48

Table 2: Parameters of Wells Tested (Continued)

Well No.	Bottom of Casing (Note 1) (ft.)	Bottom of Well (Note 1) (ft.)	Ambient Flow Direction	Injection Test Successful (Note 2)	Static Depth to Water (ft.)	Injected Depth to Water (ft.)	Injection Rate (gpm)
	100				12.00	40.00	0.11
H1L	130	145	Negligible	Yes	62.90	49.00	0.16
H1M	60	129	Negligible	Yes	65.28	63.10	1.30
H1U	15	59	Negligible	Yes	16.73	14.78	1.40
J1M	50	101	Up	Yes	51.03	50.10	5.1
J1U	18	47	Down	Yes		16.32	0.39
J3L	103	123	Down	Yes	44.99	42.15	0.33
J4L	103	122	Negligible	Yes	41.84	41.10	0.30
MW 2	23	35	Down	Yes	23.90	34.0	1.13
MW 3	35	51	Down	Yes	35.75	33.6	0.75
MW 4	34	50	Negligible	Yes	36.60	34.0	0.30
MW 5	37	52	Down	Yes	40.40	38.7	1.76
MW 6	37	52	Negligible	Yes	39.55	31.2	2.30

- 1) Well depths shown are approximate based on measurements from the top of casing during EBF tests.
- 2) An unsuccessful injection test usually indicates the well would not accept water at a sustained rate. See notes on graphs of the profile of flow rates in Appendix A for an explanation for individual wells.

References

Hutchins, S.R. and S.D. Acree (2000), <u>Ground Water Sampling Bias Observed in Shallow, Conventional Wells,</u> Ground Water Monitoring and Remediation, Vol. 20 (1), pp. 86-93.

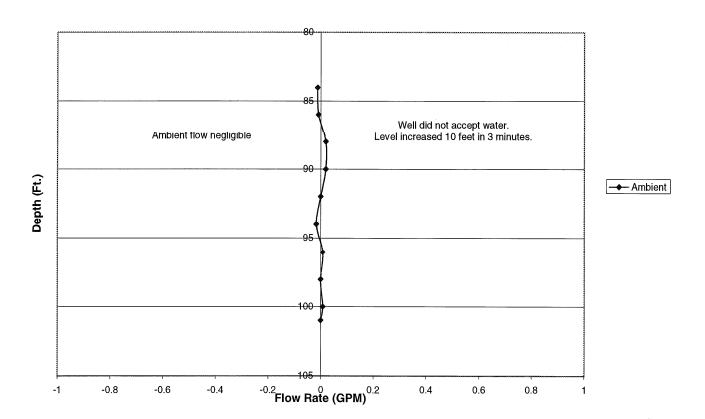
Molz, F.J., Oktay Guven, and J.G. Melville, (1990), <u>Measurement of Hydraulic</u>

<u>Conductivity Distributions - A Manual of Practice</u>, U.S. Environmental Protection

Agency Technical Report, EPA/600/8-90/046.

Molz, F.J., G.K. Boman, S.C. Young, and W.R. Waldrop, (1994), <u>Borehole Flowmeters:</u> Field Application and Data Analysis, Journal of Hydrology No. 163, pp. 347-371.

Molz, F.J. and S.C. Young, (1993), <u>Development and Application of Borehole</u> <u>Flowmeters for Environmental Assessment</u>, The Log Analyst, pp. 13-23, January-February 1993.


Young, S.C., H.E. Julian, H.S. Pearson, F.J. Molz and G.K. Boman, (1998) <u>Application of the Electromagnetic Borehole Flowmeter</u>, U.S. Environmental Protection Agency Research Report EPA/600/R-98/058, August 1998.

Young, S.C. and W.R. Waldrop, (1989), <u>An Electromagnetic Borehole Flowmeter for Measuring Hydraulic Conductivity Variability</u>, Proceedings of the Conference on New Techniques in Groundwater, National Water Well Association, Dallas, Texas.

Appendix A

Profiles of Ambient and Induced Flow Rates

Figure A-1: Profile of Flow Rate in Well B1L

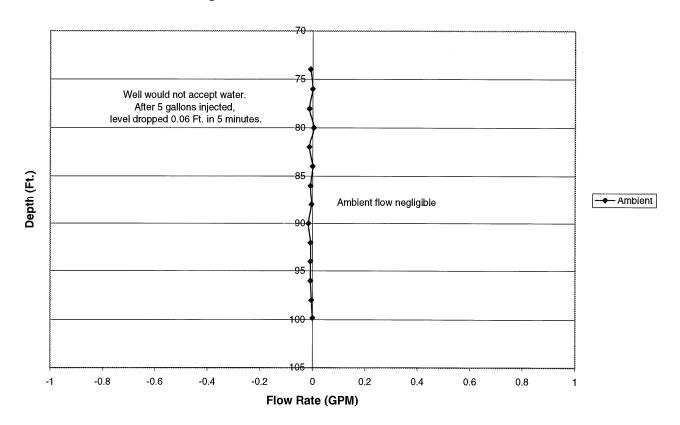

Injection Rate = 0.87 Fluctuation in flow rate in upper region attributed to loose fit of probe to wall. Ambient flow negligible Depth (Ft.) - Ambient -----Injected 📤 - - Probable Major fracture between depths of 70 and 72 Ft. -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 -1 0.4 Flow Rate (GPM)

Figure A-2: Profile of Flow Rates in Well B1M

25 30 Essentially all injected flow exited well immediately below casing between depths of 30 & 32 feet. Depth (Ft.) ◆ Ambient Ambient flow negligible -1.2 -2 -1.8 -1.6 -1.4 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 Flow Rate (GPM)

Figure A-3: Profile of Flow Rates in Well B1U

Figure A-4: Profile of Flow Rates In Well B2L

Injection Rate = 2.8 GPM Ambient flow negligible Collar had a loose fit above 64 feet. Collapse of material noted in this region. Depth (Ft.) – Ambient ~ Injected 🔹 - - Probable -3.2 -2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 Flow Rate (GPM)

Figure A-5: Profile of Flow Rates in Well B2M

Injection Rate = 0.8 GPM 25 Loose collar fit in this region. Depth (Ft.) – Ambient Most injected flow exiting well between 34 & 36 Ft. -- Injected - Net Induced -- - Probable Ambient flow entering at 28 Ft. and exiting at 36 Ft. -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 Flow Rate (GPM)

Figure A-6: Profile of Flow Rates in Well B2U

Figure A-7: Profile of Flow Rates in Well BC3M

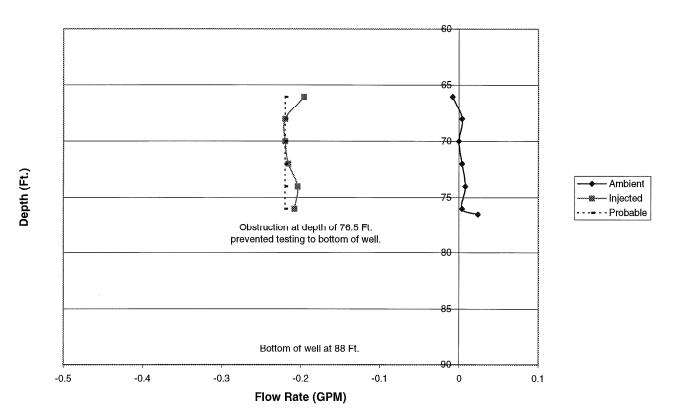


Figure A-8: Profile of Flow Rate in Well BC3U

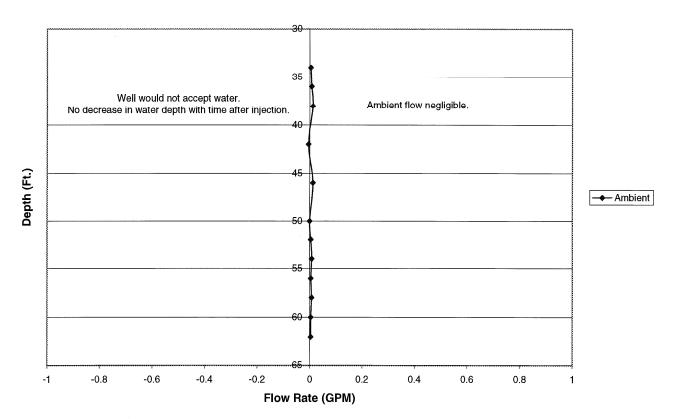
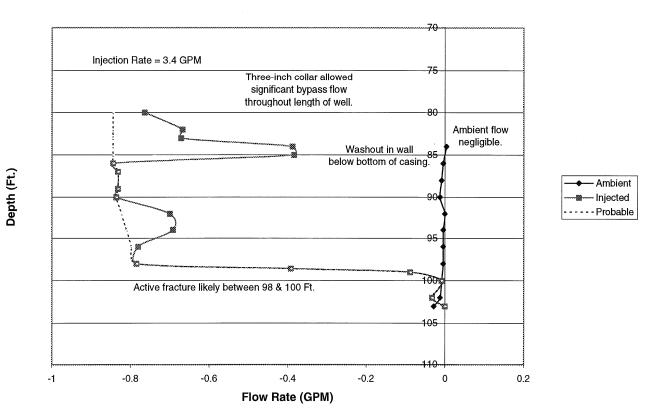



Figure A-9: Profile of Flow Rates in Well C1L

This well had a 4-inch casing and a 6-inch open bore.
This caused significant bypass flow around the probe.

55

Ambient flow is likely negligible.

All flow likely exiting well between depths of 73 & 74 feet.

75

Figure A-10: Profile of Flow Rates in Well C1M

Depth (Ft.)

-3

-3.5

-2.5

-2

Flow Rate (GPM)

-1.5

-1

-0.5

0

0.5

Injection Rate = 1.8 GPM Loose fit for collar in casing. Some bypass flow above 30 Ft. Ambient flow enters in fracture between 30 & 31 Ft. Depth (Ft.) — Ambient ···· Injected -- Net Induced Ambient & injected flow exits between 43 & 45 Ft. ----Probable -2.3 -1.8 -1.3 -0.8 -0.3 0.2 Flow Rate (GPM)

Figure A-11: Profile of Flow Rates in Well C1U

Figure A-12: Profile of Flow Rates in Well C2L

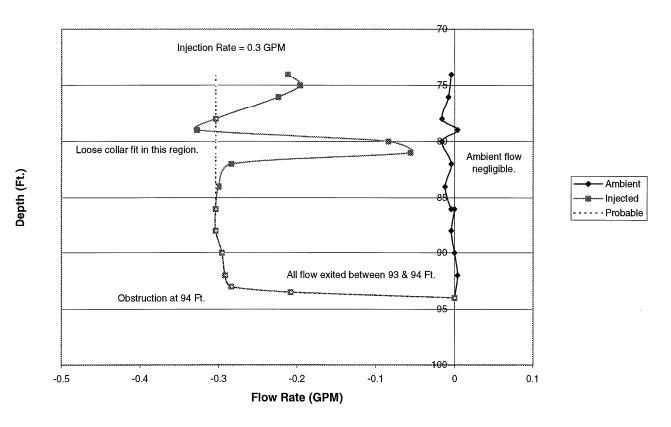
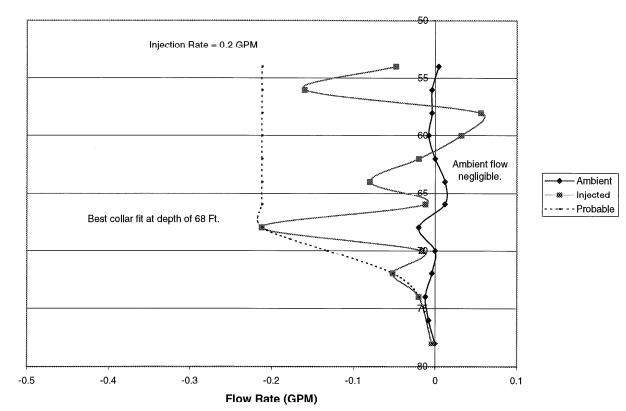



Figure A-13: Profile of Flow Rates in Well C2M

Depth (Ft.)

Figure A-14: Profile of Flow Rates in Well CD1M

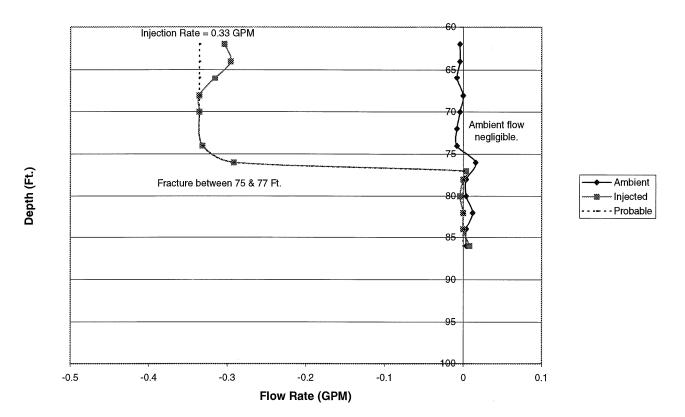
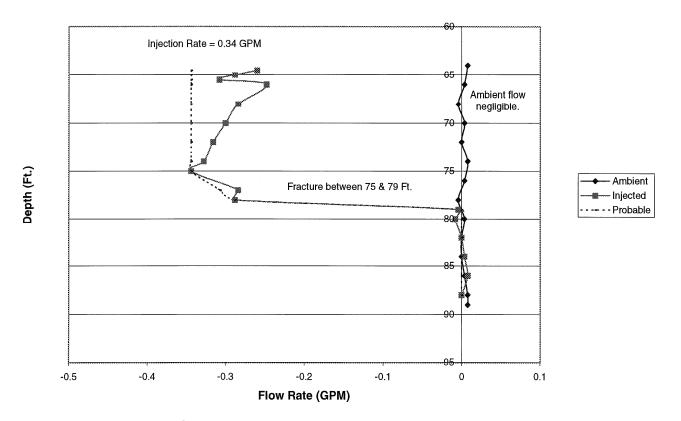



Figure A-15: Profile of Flow Rates in Well CD2M

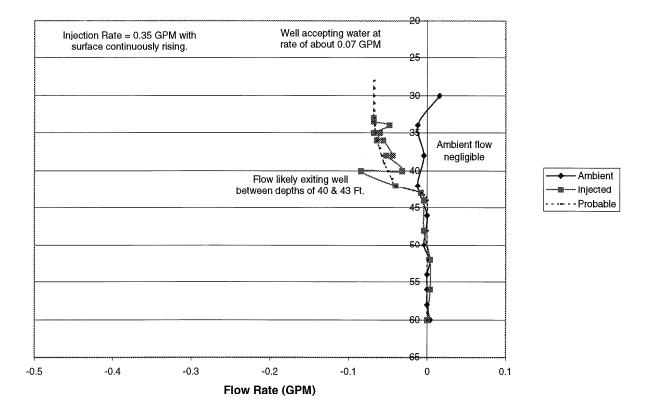
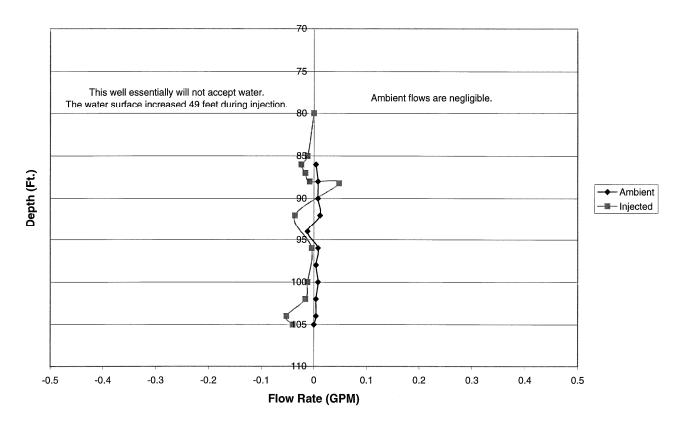



Figure A-16: Profile of Flow Rates in Well CD3U

Figure A-17: Profile of Flow Rates in Well D1L

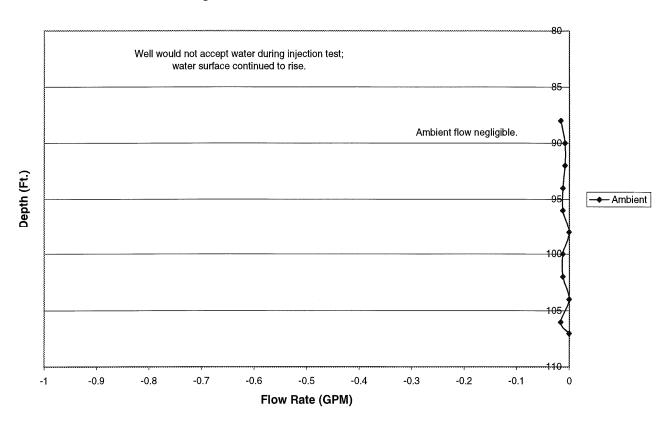

50 Ambient flow negligible. Collar did not seal as well at 60 feet or deeper. Depth (Ft.) - Ambient -----Injected ----Probable Flow exited well between 76 & 78 Ft. 80 -4 -3 -2 -1 0 -5 Flow Rate (GPM)

Figure A-18: Profile of Flow Rates in Well D1M

Injection Rate = 5.9 GPM Fracture at 22 Ft. Depth (Ft.) Ambient flow downward. - Ambient Fracture between 28 & 30 Ft. -----Injected --- Net Induced - --- Probable Fracture between 32 & 34 Ft. Fracture at 47 Ft. -3 -6 -5 -4 -2 -1 0 Flow Rate (GPM)

Figure A-19: Profile of Flow Rates in Well D1U

Figure A-20: Profile of Flow Rate in Well D2L

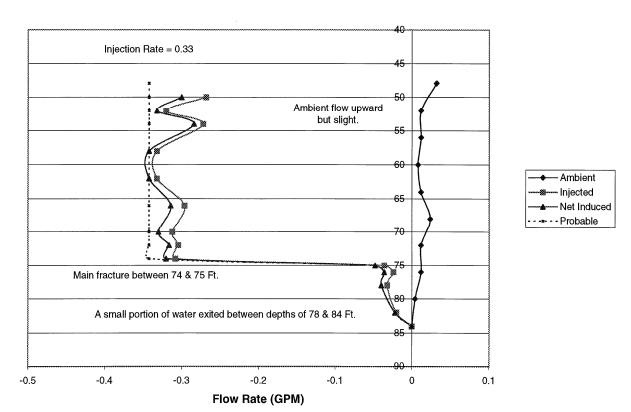


Figure A-21: Profile of Flow Rates in Well D2M

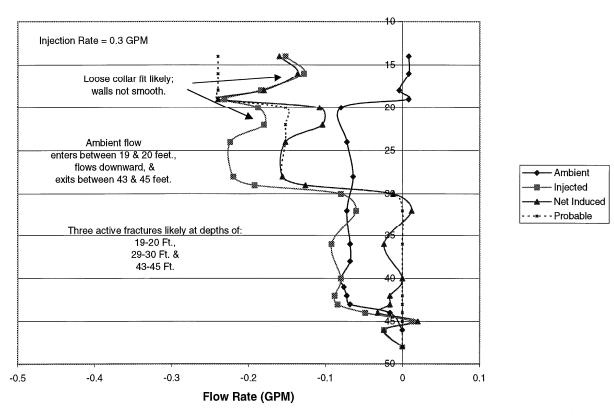
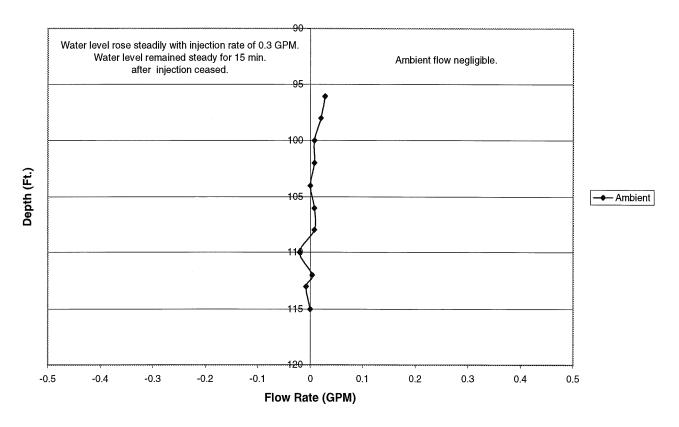



Figure A-22: Profile of Flow Rates in Well D2U

Figure A-23: Profile of Flow Rate in Well D4L

Injection Rate = 0.52 GPM Unable to measure flow below the casing. The collar was exceptionally loose below the casing.

Either flow is exiting the well immediately below the casing , or more likely Depth (Ft.) -◆- Ambient there is excessive bypass flow to prevent meaningful measurements. This may also be the case for ambient flow measurements. -0.5 -0.4 -0.3 -0.6 -0.2 -0.1 0 0.1 Flow Rate (GPM)

Figure A-24: Profile of Flow Rates in Well D4U

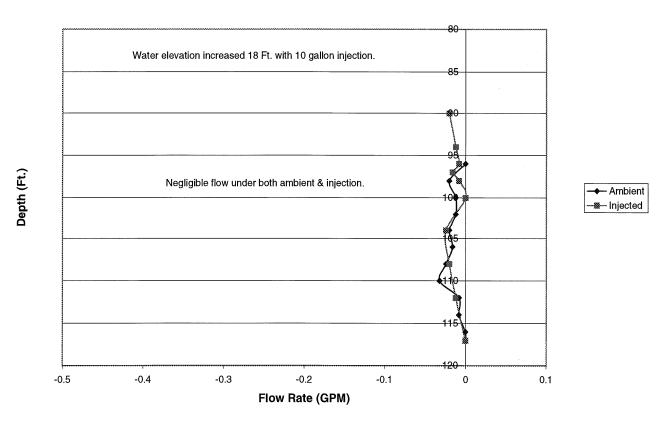
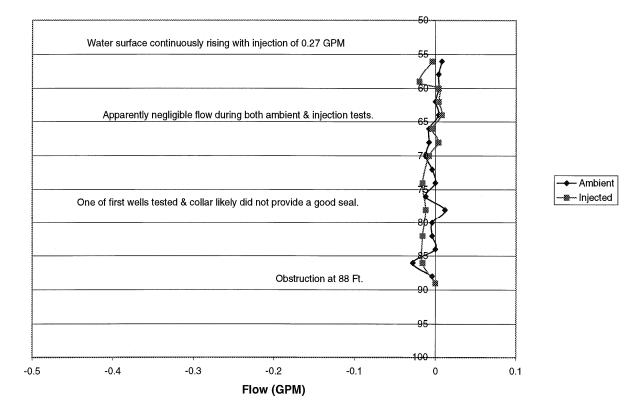



Figure A-26: Profile of Flows in Well E1M

15 Ambient entering between 20 - 22 Ft. Ambient Downward Cavity likely between 31-35 Ft. ◆— Ambient Injected -- Net Induced Cavity likely between 36-37 Ft. -x- - - Probable Flow negligible below 38 Ft. -3.5 -2.5 -1.5 -0.5 0 0.5 Flow Rate (GPM)

Figure A-27: Profile of Flow Rates in Well E1U

Figure A-28: Profile of Ambient Flow in Well F2L

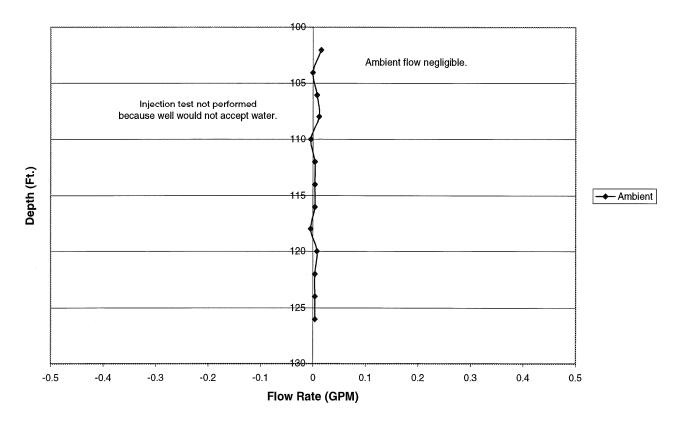
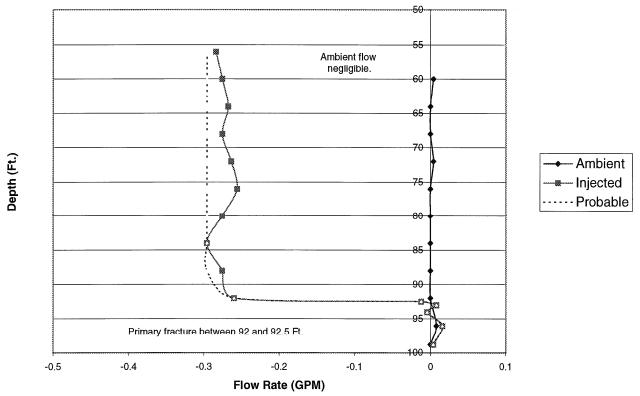
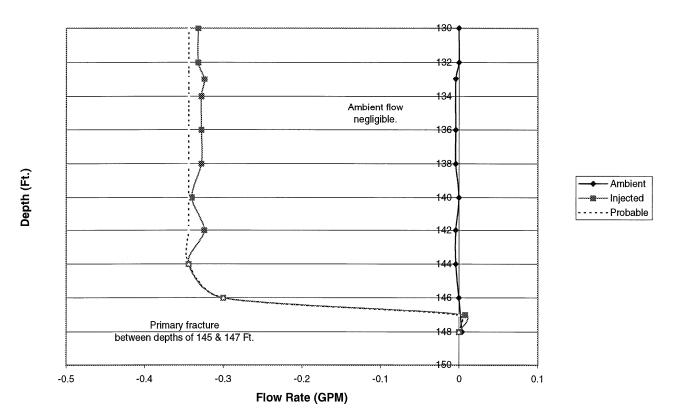



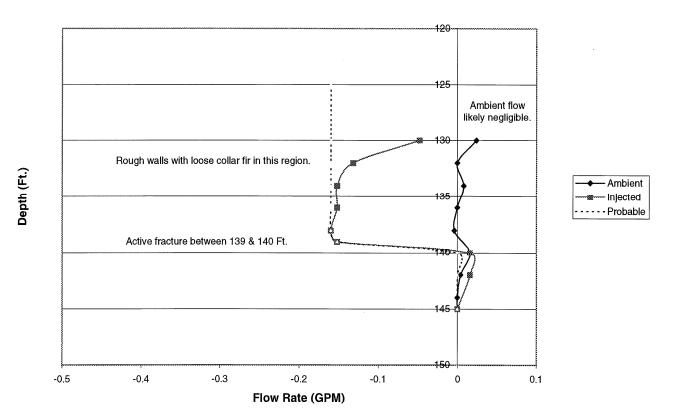
Figure A-29: Profile of Flow Rates in Well F2M



Bottom of casing at 7 Ft. Ambient flow likely entering from a fracture above the water surface. Active fracture probable between 25 & 26 Ft. - Ambient --- Injected -- Net Induced Ambient flow upward in this region. ---Probable Active fracture probable between 40 & 42 Ft. Flow rates negligible below 42 Ft. -0.3 -0.2 -0.5 -0.4 -0.1 0 0.1

Flow Rate (GPM)

Figure A-30: Profile of Flow Rates in Well F2U


Figure A-31: Profile of Flow Rates in Well G3L

Ambient flow entering the well between 29 & 30 Ft. and flowing flowing downward. Very rough wall with many cavities. 30 Depth (Ft.) Ambient --- Injected - Net Injected · - - - Probable Fracture likely between 46 & 52 Ft. 50 Water exiting the well between obstruction at 58.5 Ft. and bottom at 65.7 Ft. -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 Flow Rate (GPM)

Figure A-32: Profile of Flow Rates in Well G3U

Figure A-33: Profile of Flow Rates in Well H1L

Depth (Ft.) - Ambient ------Injected Net Induced ---- Probable Fracture between 112 & 113 Ft. Ambient flow enters at 113 Ft. & exits at 116 Ft. Fracture between 116 & 117 Ft. 120 -1.5 -0.5 -2 -1 0 0.5 Flow Rate (GPM)

Figure A-34: Profile of Flow Rates in Well H1M

Fracture between 18 & 21 Ft. Fracture between 24 & 25 Ft. Depth (Ft.) --- Ambient Essentially no flow below 25 Ft. -----Injected 35 · - - - - Probable -0.8 -1.2 -0.6 -0.4 -0.2 -1.6 -1.4 -1 0 0.2 Flow Rate (GPM)

Figure A-35: Profile of Flow Rate in Well H1U

Fracture between 83 & 84 Ft.

80

Ambient flow upward.

Fracture between 93 & 95 Ft.

100

Fracture between 93 & 95 Ft.

Figure A-36: Profile of Flow Rates in Well J1M

Ambient flow downward. Flow enters the well between 17 & 20 Ft., and exits between depths of 22 & 23 Ft. Depth (Ft.) - Ambient ----Injected --- Net Injected -- - Probable Essentially no flow below depth of 23 Ft. -0.4 -0.3 -0.2 -0.1 0 0.1 -0.5 Flow Rate (GPM)

Figure A-37: Profile of Flow Rates in Well J1U

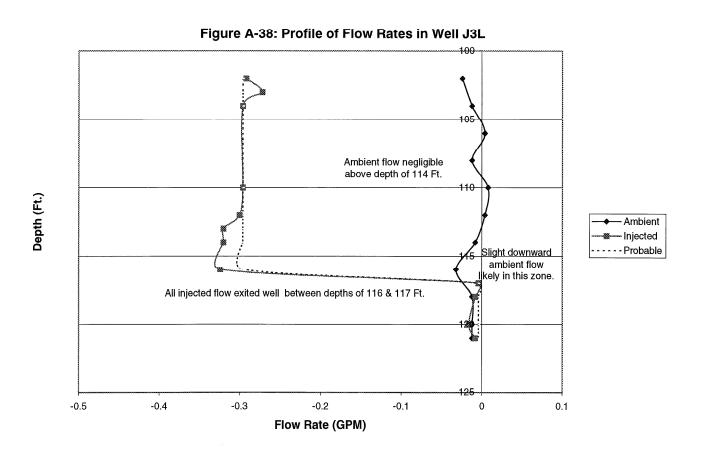
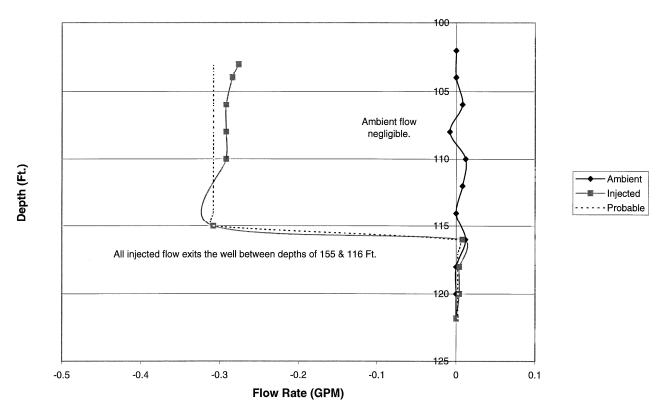



Figure A-39: Profile of Flow Rates in Well J4L

Depth (Ft.) - Ambient 28 ■ Injected ♣— Net Induced ----Probable Fracture between 31.5 & 32 Ft. Ambient flow downward between 31.5 & 34.5 Ft. Fracture between 33.5 & 34.5 Ft. -0.3 -0.2 0.1 -0.5 -0.4 -0.1 0 0.2 Flow Rate (GPM)

Figure A-40: Profile of Flow Rates in Well MW 2

Ambient Flow entered well between 40 & 41 Ft. and flow downward. Fracture between depth of 40 & 43 Ft. Depth (Ft.) - Ambient - Injected Net Induced ---Probable Obstruction at 45 Ft. precluded sampling at lower depths. Fracture between depth of 45 & 51 Ft. Well depth reported as 51 Ft. -0.6 -0.5 -0.4 -0.3 -0.2 -0.8 -0.7 -0.1 Flow Rate (GPM)

Figure A-41: Profile of Flow Rates in Well MW 3

Hose apparently kinked during injection. 35 Ambient Flow Negligible. Depth (Ft.) - Ambient ■ Injected ----Probable All flow exited well between depth of 44 & 45 Ft. -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 Flow Rate (GPM)

Figure A-42: Profile of Flow Rates in Well MW 4

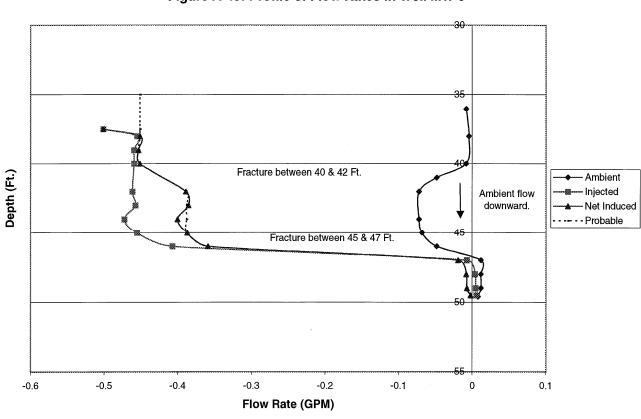


Figure A-43: Profile of Flow Rates in Well MW 5

Loose collar fit. 35 Ambient flow negligible. Depth (Ft.) Two fractures likely between 43 & 44 Ft. and between 45 & 46 Ft. - Ambient -----Injected ----Probable -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 Flow rate (GPM)

Figure A-44: Profile of Flow Rates in Well MW 6

APPENDIX D

STRATIGRAPHIC AND INSTRUMENTATION LOGS

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: AB1U

DATE COMPLETED: September 12, 2001
DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCR	IPTION & REMARKS	ELEV. ft AMSL	MONITOR IN	ISTALLATION	~		SAMI		
	NORTHING: 1142098.7 EASTING: 1026699.49	TOP OF RISER GROUND SURFACE	589.53			NUMBER	INTERVAL	REC (ft)	'N' VALUE	
-2 -4 -6 -8	OVERBURDEN (not sample (see overburden stratigraphy	d) for well AB1L)			— 4"Ø BLACK STEEL CASING — CEMENT/ BENTONITE GROUT		2			
-14 -16 -18 -20				-	CEMENT/ BENTONITE GROUT					
-22 -24										
-26					— 10"ø					
-28	END OF OVERBURDEN HO	LE @ 28.5ft BGS			— 10"Ø BOREHOLE					
-30										
-32										
-34										

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: AB1U

DATE COMPLETED: September 12, 2001

DRILLING METHOD: HSA/Wet Rotary

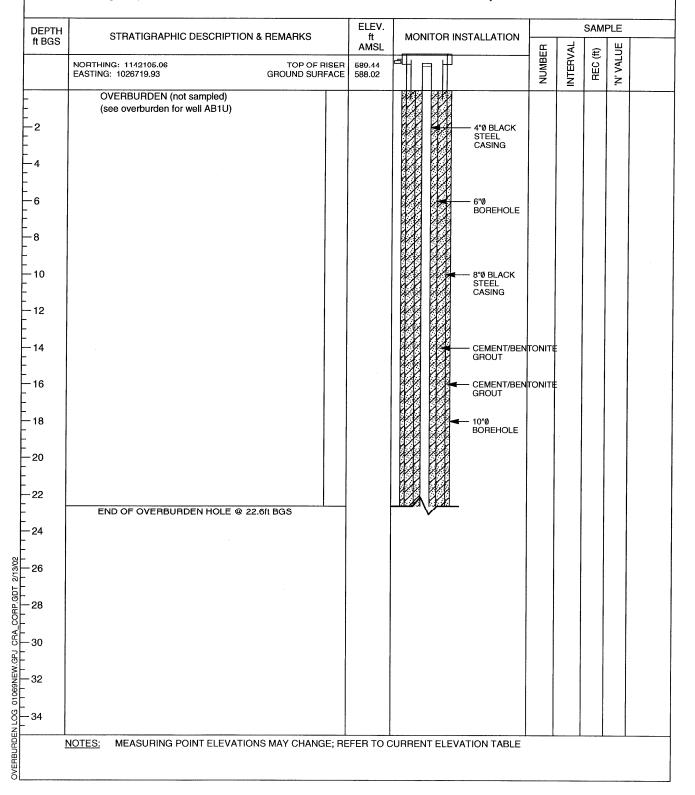
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	Water Return (%)
-28	BEDROCK (not sampled)	559.36	10"0 BOREHOLE CEMENT/ BENTONITE				
-30	- mechanical breaks: 30.8 and 34.6 ft BGS	557.36	GROUT 6"Ø BOREHOLE				
-32 -34	DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor from fresh surfaces			1	92	67	100
-36	- shaley partings: 31.4, 31.9, 32.0, 32.4, 32.9, 33.1, 33.4, 33.8, 34.3, and 35.5 ft BGS vugs: 38.4 and 35.1 ft BGS						·
-38	- shaley partings: 35.6, 36.2, 36.6, 37.2, and 38.0 ft BGS - closed horizontal fracture, gypsum coated @ 38.2 ft BGS						
-40	- vugs: 38.4 and 40.0 ft BGS - mechanical breaks: 39.0, 39.7, 39.9, and 40.1 ft BGS - shaley partings: 41.3, 41.6, 41.7, 42.2, 42.8,			2	100	86	80
-42	and 42.9 ft BGS - closed horizontal fracture coated with gypsum and sphalerite @ 42.6 ft BGS	545.46	HQ COREHOLE				
-44	DOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member): medium ash-grey, thin to medium-bedded,	542.86					
-46	fine-grained, weathers to light tan, typically contains abundant nodules of distinctive pale, cream-colored chert END OF BOREHOLE @ 45.0ft BGS						
-48						,	
-50							
-52							
-54							
-56							
-58							
-60							
N		FER TO C	CURRENT ELEVATION TABLE				

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30


CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: AB1M

DATE COMPLETED: August 28, 2001

DRILLING METHOD: HSA/Wet Rotary

Page 1 of 2

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: AB1M

DATE COMPLETED: August 28, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	6	ELEV. ft AMSL	MONITO	R INSTALLATION	RUN	CORE RECOVERY %	RQD %	Water Return (%)
- 22 - 24	BEDROCK (not sampled) (see bedrock for well AB1U)		565.42						
-26									
-28									
-30									
-32					4"Ø BLACK STEEL CASING				
34									
38					CEMENT/BEN GROUT	TONITE			
40									
42	DOLOSTONE (Goat Island		544.52						
46	Formation-Ancaster/Niagara Falls Member): medium ash-grey, thin to medium-bedded, fine-grained, weathers to light tan, typically contains abundant nodules of distinctive pale, cream-colored chert	/ / / /				1	100		100
· 48	Gram colored crieft	/ / / /			HQ COREHOLE				
50	- mechanical breaks: 43.9, 45.0, 45.5, 47.4, 48.0, 50.8, 54.3, 56.2, 57.1, 57.9 (shaley), 58.5 (shaley), 60.1, 61.6, 62.6, 63.1, 64.9, 65.2, 65.4, 67.8, 68.0, 68.8, 69.3, 69.7, 70.7,	7				2	100	80	100
52	53.2, 65.4, 67.8, 68.0, 66.0, 69.3, 69.7, 70.7, 71.0, 71.6, 72.3, 73.2, 73.6, 74.3, 74.6, 76.3, 77.0, 77.6, 77.8, and 78.3 ft BGS	7							
54		7							

Page 2 of 2

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: AB1M

DATE COMPLETED: August 28, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	MONITOR INSTALLATION			RUN	CORE RECOVERY %	FQD %	Water Return (%)
-56		/ / /						ac.		
- 60 - 62 - 64	DOLOMICRITE (Gasport Formation-Pekin Member): dark-grey, fine-grained, thin to medium-bedded, argillaceous -abundance of crinoids at Goat Island/Gasport contact		525.42				3	99	92	75
- 66 - 68 - 70 - 72 - 74	slightly weathered horizontal fractures: 64.1 and 64.2 ft BGS very broken and fractured, slightly weathered between 64.5 and 64.7 ft BGS				◀	HQ COREHOLE	4	93	81	50
76 /8 80 82	- gypsum-lined closed fracture @ 77.2 ft BGS DOLOMITIC LIMESTONE (Gasport Formation-Gothic Hill Member): dark olive-grey to light pink, thick to massive-bedded, primarily crinoidal grainstone and crinoidal dolomite - mechanical breaks: 79.0, 80.4, 80.5, 81.8, and 83.5 ft BGS		509.62				5	100	93	50
84	END OF BONEHOLE @ 85.5ft BQS		502.52							
88										

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: AB1L

DATE COMPLETED: September 11, 2001 DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION	& REMARKS	ELEV.	MONITOR IN	STALLATION	-		SAM		
	NORTHING: 1142109.27 EASTING: 1026737.66	TOP OF NISEN GROUND SURFACE	590.05 587.97		-	NUMBER	INTERVAL	REC (ft)	'N' VALUE	a C
	ASPHALT		587.77							
	GW-GRAVEL, fill		F0F 07		Alia Di A Oli	SS1	X	8.0	19	0
-2	CL-CLAY, some silt, yellowish-orang slight plasticity, dense	ge, dry,	585.97		— 4"Ø BLACK STEEL CASING	SS2	X	1.7	15	0
-4						SS3		1.4	13	0
-6						SS4	$\langle \rangle$	1.3	26	0
-8						SS5	$\langle \rangle$			
-10					– 8"Ø BLACK STEEL CASING		$\langle \rangle$	1.9	20	0
-12					CASING	SS6	$\langle \rangle$	1.5	7	0
-14					- CEMENT/BEN	SS7 TONITE	\triangle	2.0	22	0
-16					GROUT - CEMENT/BEN GROUT	SS8	Δ	2.0	9	0
- 18	- moist below 17 ft BGS				GROUT 10"0	SS9	X	2.0	19	0
					BOREHOLE	SS10	X	2.0	wH	0
-20	- wet below 20 ft BGS					SS11	\forall	2.0	wн	0
-22						SS12	\forall	2.0	4	0
-24						SS13	$\langle \rangle$	1.7	1	0
-26						k	$\langle \rangle$			
-28	END OF OVERBURDEN HOLE @ 2	7.3ft BGS				SS14		1.3	>50	0
-30										
-32										
-34										
								- 1		

Page 1 of 3

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: AB1L

DATE COMPLETED: September 11, 2001 DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN	CORE RECOVERY %	HQD %	Water Return (%)
- - - -28	BEDROCK (not sampled)	560.67			RE		8
- 20	(see bedrock stratigraphy for well AB1U and AB1M)						
-30							
-32			4"0 BLACK STEEL CASING				
-34			4º0 BLACK STEEL CASING CEMENT/BEN GROUT 6º0 BOREHOLE				
-36			XXXXX				
-38			CEMENT/BEN GROUT	TONITE			
-40							
-42							
-44			← 6"Ø BOREHOLE				
-46							
-48							
-50							
-52							
-54							
-56							
-58							
-60							

Page 2 of 3

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: AB1L

DATE COMPLETED: September 11, 2001 DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	SCRIPTION & REMARKS		STRATIGRAPHIC DESCRIPTION & REMARKS ELEV. ft AMSL MONITOR INSTALLATION		OR INSTALLATION	RUN	CORE RECOVERY %	RQD %	Water Return (%)
-62							<u> </u>			
-64					4"Ø BLACK STEEL CASING					
- 66					o/lonva					
-68					CEMENT/BEN GROUT	TONITE	Ē			
-70										
-72					€ 6"Ø BOREHOLE					
-74										
-76					HQ COREHOLE					
-78			508.97							
-80	DOLOMITIC LIMESTONE (Gasport Formation-Gothic Hill Member): dark olive-grey to light pink, thick to massive-bedded, primarily crinoidal grainstone and crinoidal dolomite					1	100	80	100	
82	- mechanical breaks: 79.9, 83.7, and 85.1 ft BGS - shaley partings: 79.6 and 80.1 ft BGS									
84	,, °									
-86	DOLOMITE (Decew Formation): medium-grey, fine-grained, thin to thick-bedded, argillaceous		501.67			2	100	95	100	
-88	- mechanical breaks: 87.5, 88.5, 90.1, 90.6, 93.1, 93.7, 94.0, 94.3, and 94.5 ft BGS	/ / /								
90		/ //								
92		7								
94	- shaley parting @ 95.1 ft BGS	7	100.47			3	97	90	100	
	IOTES: MEASURING POINT ELEVATIONS MAY CHA	NGE: P	492.47	LIBBENT	ELEVATION TARLE					

Page 3 of 3

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

BEDROCK LOG 01069NEW.GPJ CRA_CORP.GDT 2/13/02

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: AB1L

DATE COMPLETED: September 11, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN	CORE RECOVERY %	RQD %	Water Return (%)
98	SHALE (Rochester Shale Formation): dark-grey to black, massively bedded, dolomitic - shaley parting @ 97.1 ft BGS END OF BOREHOLE @ 97.5ft BGS	490.47			BE		X
100	~						
102							
104							
106		-					
80							
10					* *		
12							
14							
16							
18						-	
20							
22			.•		.	-	
24							
26							
28							
30							

Page 1 of 1

PROJECT NAME: Hyde Park RRT

HOLE DESIGNATION: CD-5U

PROJECT NUMBER: 01069-30

DATE COMPLETED:

CLIENT: MSRM

DATE COM LETED.

LOCATION: Niagara Falls, NY

DRILLING METHOD: HSA/Wet Rotary FIELD PERSONNEL: J. Raby, P. Kryger

DEPTH ft BGS STRATIGRAPHIC DESCRIPTION & REMARKS NORTHING: 1141348.77 EASTING: 1026048.56 OVERBURDEN (not sampled) - 4"0 BLACK STEEL CASING	REC (ft)	INTERVAL	INTERVAL	NUMBER			AMSL 588.38	P OF RISER			แ ษตร
OVERBURDEN (not sampled) -2 -4		=	=				500.17	SURFACE	GROUND SU	NORTHING: 1141348.77 EASTING: 1026048.56	
8 10 CEMENT/ BENTONITE GROUT 12 14 16 18 END OF OVERBURDEN HOLE @ 18.0ft BGS 20 22 24 26 28 30 32 32					STEEL CASING - CEMENT/ BENTONITE GROUT			O SURFACE.	GROUND SU	OVERBURDEN (not sampled)	-4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30

Page 1 of 2

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: CD-5U

DATE COMPLETED:

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	MON	NITOR IN	ISTALLATION	RUN	CORE RECOVERY %	RQD %	Water Return (%)
-18	BEDROCK (not sampled)		570.17							
-22	DOLOMITE (Eramosa Formation): dark	7	566.17							
-24	brownish-grey, thick to thin-bedded, bituminous, emits a petroliferous odor from fresh surfaces, some horizons contain small white chert nodules - fractures: 22.6, 22.8, and 23.4 ft BGS	7/					1	85	50	0
-28	- mechanical break @ 24.8 ft BGS - shaley parting @ 26.4 ft BGS DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings,	7, 7, 7, 7, 7,	561.57				2	96	66	0
-30	commonly bituminous, emits a petroliferous odor from fresh surfaces - mochanical broake: 25.9, 26.0, 28.1, 28.2, 28.3, 28.7, 29.5, 34.1, 34.5, 36.1, 37.2, 37.7, 37.8, 38.8, 39.4, 40.0, 40.4, 42.2, and 42.25 ft BGS	7/		·						
-34	- shaley partings: 26.6, 26.65, 27.2, 27.3, 27.5, 27.7, 30.3, 35.3, 41.2, 41.7, 43.1, 43.3, 44.8, 45.1, and 45.3 ft BGS					— HQ COREHOLE	3	100	92	0
-38	- faractures: 38.0 (with mineralization) and 46.1 ft BGS	7 7 7 7 7								
· 42		7 7 7 7 7 7								
46	DOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member): medium ash-grey, thin to medium-bedded, fine-grained, weathers to light tan, typically	7', 7', 7', 7', 7',	542.47				4	100	87	0
-50	contains abundant nodules of distinctive pale, cream-colored chert - fractures: 46.4 and 48.2 ft BGS - mechanical breaks: 48.6, 49.6, 49.8, and 49.9 ft BGS	77 77 77								

Page 2 of 2

PROJECT NAME: Hyde Park RRT

HOLE DESIGNATION: CD-5U

PROJECT NUMBER: 01069-30

DATE COMPLETED:

CLIENT: MSRM

DRILLING METHOD: HSA/Wet Rotary

LOCATION: Niagara Falls, NY

FIELD PERSONNEL: J. Raby, P. Kryger

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN	CORE RECOVERY %	HQD %	Water Return (%)
	END OF BOREHOLE @ 51.0ft BGS	537.17		Z	REC		Wa
-52							
-54							·
-56					-		
-58							
60							
60							
62							
64							
66							
68							
70							
=							
72							
74							
76							
78					E		
30							
32							
84							

FDROCKIOG

Page 1 of 1

PROJECT NAME: Hyde Park RRT

HOLE DESIGNATION: CD-6U

PROJECT NUMBER: 01069-30

LOCATION: Niagara Falls, NY

DATE COMPLETED:

CLIENT: MSRM

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIP	TION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION			SAMI	
***	NORTHING: 1141518.27 EASTING: 1026111.43	TOP OF RISER GROUND SURFACE	588.71 588.61	HH	NUMBER	INTERVAL	REC (ft)	'N' VALUE
	OVERBURDEN (not sampled)					_		
-2								
-4				4"0 BLACK				
6				STEEL CASING				
8								
10	·			CEMENT/ BENTONITE GROUT				
12								
14				◄ — 10"ØBOREHO) LE			
16								
18								
20								
22								
24	END OF OVERBURDEN HOLE	@ 24.5ft BGS						
26						-		
28			:					
30								
32								
34								

CLIENT: MSRM

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 1 of 1

PROJECT NAME: Hyde Park RRT

HOLE DESIGNATION: CD-6U

PROJECT NUMBER: 01069-30

DATE COMPLETED:

DRILLING METHOD: HSA/Wet Rotary

LOCATION: Niagara Falls, NY

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	MONIT	OR INSTALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	Water Return (%)
- 24	BEDROCK (not sampled)		564.11						
26	DOLOSTONE (Goat Island	_	562.11						
-28	Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor from fresh surfaces					1	100	46	100
-30 -32	 mechanical breaks: 26.6, 26.7, 26.8, 26.9, 27.05, 27.1, 27.7, 28.3, 29.0, 29.2, 29.5, 29.7, 29.8, 30.2, 30.4, 32.6, 34.4, 34.65, 35.5, 35.7, 38.7, 38.0, 39.6, 40.8, and 43.2 ft BGS fractures: 32.2 and 36.6 ft BGS 	7		·					
-34	- shaley partings: 30.7, 33.5, 33.55, 34.6, 38.4, and 39.8 ft BGS				← HQ				
-36		7	·		COREHOLE	2	99	80	90
-38	•	7							
-42	DOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member): medium ash-grey, thin to medium-bedded, fine-grained, weathers to light tan, typically	7/ 7/ 7/	548.51						
-44	contains abundant nodules of distinctive pale, cream-colored chert - fracture @ 41.9 ft BGS - mechanical breaks: 44.9, 46.0, 48.0, 48.9, 49.9, 50.6, 52.8, 52.9, 54.4, and 54.9 ft BGS	7/							
-46	- shaley partings: 43.7, 43.8, 45.0, 46.8, 48.6, and 50.8 ft BGS					3	100	90	90
-48		7 7 7 7							
-52		7							
-54						4	98	96	80
-56	END OF BOREHOLE @ 56.2ft BGS	\square	532.41						

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5U

DATE COMPLETED: August 14, 2001 DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARK	(S	ELEV.	MONITOR INS	STALLATION			SAMF		
		OF RISER SURFACE	606.10 604.52			NUMBER	INTERVAL	REC (ft)	N' VALUE	
	Not sampled.						_		1	
-2	OH-SILT and CLAY (TOPSOIL), gravel	1/ 2/1/x	603.52		- CEMENT/ BENTONITE	SS1	X		32	
-4	ML/CL-SILT and CLAY		601.52		GROUT	SS2	X		33	
-6	ML/CL-CLAY and SILT, brown, dry		599.52		- 10"Ø BOREHOLE	SS3	X		19	
-8					- CEMENT/ BENTONITE GROUT	SS4	X		34	
- 10	ML-SILT (TILL), some gravel, brown, wet		595.52		- 4"Ø BLACK STEEL CASING	SS5	\bigvee		45	
-12	Weathered Bedrock		593.52		- 6"Ø BOREHOLE	SS6				
- 14	END OF OVERBURDEN HOLE @ 13.5ft BGS				BOHEHOLE			-		
-16				-						
- 18				·						
-20										
-22										
-24										
-26										
-28										
∙30										
·32										
∙34										
	NOTES: MEASURING POINT ELEVATIONS MAY CH WATER FOUND ¥	HANGE; RI	FER TO (CURRENT ELEVA	TION TABLE			1		

Page 1 of 2

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

BEDROCK LOG 01069NEW.GPJ CRA_CORP.GDT 2/13/02

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5U

DATE COMPLETED: August 14, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	MONITOR	INSTALLATION	RUN	CORE RECOVERY %	RQD %	Water Return (%)
					6"Ø BOREHOLE		<u>—</u>		
14	DOLOMITE (Eramosa Formation): dark brownish-grey, thick to thin-bedded, bituminous, emits a petroliferous odor from fresh surfaces, some horizons contain small	7/	591.02			1	60	0	50
16	white chert nodules	7							
18	 fractures with iron staining (possible overburden washing down into fracture): 17.8 and 18.2 ft BGS 	/ / /							
20	 fractures: 13.8, 14.0, 14.1, 14.3, 14.5, 14.6, 20.2 (broken along plane of calcite-filled vugs), 22.7, and 32.3 ft BGS 	77				2	100	73	20
22									
24	- mechanical breaks: 15.0, 15.8, 16.1, 16.4, 16.7, 17.7, 18.9, 19.2, 19.8, 21.4, 21.85, 21.9, 22.5, 24.0, 26.1, 28.0, 28.9, 29.55, 30.3, 30.4, 31.7, 36.3, 37.0, 37.3, 37.4, 38.3, 39.2, 41.0,	// //			HQ COREHOLE				
26	and 44.3 ft BGS								
28	- shaley partings: 15.9, 17.2, 17.35, 22.3, 25.6, 25.9, 27.2, 27.5, and 43.5 ft BGS	7							
30	 fracture with extensive mineralization (gypsum, calcite, and very small amounts of shpalerite and galena) @ 30.0 ft BGS 	77				3	97	78	0
32	 fracture with extensive mineralization (gypsum and caloite) @ 30.9 ft BGS abundant fossils (colonial corals) between 33.0 and 36.5 ft BGS 								_
34	co.o and co.o it bac								ı
36	- mineral partings: 24.5, 25.0, 44.9, and 45.0 ft BGS	7							
38									
40		// //			,	4	98	95	0
42	 abundant vugs, partially/wholely infilled with gysum, samll vugs cotain visible calcite crystals between 42.0 and 47.0 ft BGS 								
44	- fractures with mineralization: 45.9, 46.0, 46.5, 47.2, 47.5, and 47.6 ft BGS								
46	- mecahnical break @ 46.2 ft BGS	7							

Page 2 of 2

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

BEDROCK LOG 01069NEW.GPJ CRA_CORP.GDT 2/13/02

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5U

DATE COMPLETED: August 14, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN	CORE RECOVERY %	RQD %	Water Return (%)
48 50 52 54	DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor from fresh surfaces - mecahnical breaks: 48.3, 48.6, 49.1, 50.2, 50.7 (on small galena-filled vug), 52.5, 53.5, 53.9, 54.0, 54.3, 56.2, 56.8, and 60.3 ft BGS - partings with gypsum-filled vugs: 50.5, 58.1, and 58.6 ft BGS - shaley partings: 48.1, 51.7, and 54.7 (on vug	556.42 7 7 7 7 7	HO.	5	100	81	0
56 58 60	with gypsum and calcite crystalization), 57.8, and 58.05 ft BGS Z - fracture with gypsum @ 58.9 ft BGS		HQ COREHOLE	6	100	96	0
62	END OF BOREHOLE @ 60.5ft BGS	544.02					
66							
72							
74							
⁷ 6							
0							

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5M

DATE COMPLETED: August 30, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPT	ION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	-	ا ا	SAMI	F
	NORTHING: 1141471.71 EASTING: 1028121.17	TOP OF RISER GROUND SURFACE	606.37		NUMBER	INTERVAL	REC (ft)	'N' VALUE
	OVERBURDEN (not sampled)				-			-
	(see overburden stratigraphy for	well J5U)	-					
-2				CEMENT/BEI	NTONITE			
-4				CEMENT/BEI GROUT	TONITE			
-6				8"Ø BLACK STEEL CASING				
-8				10"0 BOREHOLE				
				4"0 BLACK				
-10				4"0 BLACK STEEL CASING				
40								
-12	END OF OVERBURDEN HOLE	@ 12.0ft BGS						
-14								-
'								
-16								
- 18								
								Ī
-20								
		1						
-22								
-24								
-26								
-28								
-30								
20								
·32								
.24								
34								
	NOTES: MEASURING POINT ELEVA	TIONS MAY CHANGE: BE	FER TO C	CURRENT ELEVATION TABLE				

Page 1 of 3

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5M

DATE COMPLETED: August 30, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN	CORE RECOVERY %	HQD %	Water Return (%)
-12 -	BEDROCK (not sampled) (see bedrock stratigraphy for well J5U)	- 592.62			.		
-14							
-16							
-18			6"0				
-22			6°% BOREHOLE 4°% BLACK STEEL CASING CEMENT/BEN				
-24							
-26							
-30			4"Ø BLACK				
-32			4"0 BLACK STEEL CASING				
-34							
-36							
-38	,		M M GDOUT	TONITE			
-40			GHOUT				
-44							
<u>N</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO C	CURRENT ELEVATION TABLE				

Page 2 of 3

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5M

DATE COMPLETED: August 30, 2001 DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	Mary right and the special second second	ELEV. ft AMSL	MON	IITOR I	NSTALLATION	RUN	CORE RECOVERY %	RQD %	Water Return (%)
							٦	RECO	P.C	Water
-46				XXX					·	
-48										
-50						4"Ø BLACK STEEL CASING				
-52						o/tollva				
-54			·			6"Ø	-			
-56		-				BOREHOLE				
-58				XXXX		CEMENT/BEN GROUT	TONIT			
-60	- shaley partings: 60.0, 62.1, 66.4, and 67.0 ft BGS		544.12							
-62	DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous	7/								
-64	odor from fresh surfaces - mechanical breaks: 61.7, 61.9, 63.6, 65.6, 66.1, 68.8, 69.5, 70.8, and 70.9 ft BGS - fractures: 62.8, 65.2, and 71.2 ft BGS						1	97	94	100
-66	- Haddies. 02.0, 00.2, and 71.2 it bus	7								
-68										
-70	DOLOSTONE (Goat Island	Ź	533.32		4	HQ COREHOLE				
·72	Formation-Ancaster/Niagara Falls Member): medium ash-grey, thin to medium-bedded, fine-grained, weathers to light tan, typically contains abundant nodules of distinctive pale, cream-colored chert	7								
76	- mechanical breaks: 71.4, 72.4, 72.5, 73.2, 73.6, 74.6, 75.3, 76.6, 77.0, 77.5, 79.1, 80.6, 82.9, 84.3, 84.8, 87.1, 91.1, 92.3, 92.4, 93.2, 94.0, 97.2, and 98.7 ft BGS	/ / /					2	100	85	90
78	 fractures: 71.7, 80.6, 82.8, 83.2 (with gypsum), 86.5 (with gypsum), 86.7 (with gypsum and sphalerite), 88.4, 90.2, 91.9 (very 	7								

Page 3 of 3

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5M

DATE COMPLETED: August 30, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	Water Return (%)
-82	vuggy with gypsum mineralization) ft BGS Z	Z Z Z				***	
- 84 - 86	- shaley partings: 81.6, 89.7, 95.7, 99.0, and 99.05 ft BGS	Z Z Z		3	97	92	0
-88		Z Z Z					
-90	Z Z Z	Z Z Z	HQ COREHOLE				
-92	DOLOMICRITE (Gasport Formation-Pekin Member): dark-grey, fine-grained, thin to medium-bedded, argillaceous -abundance of crinoids at Goat Island/Gasport	512.52 					
-96	contact			4	100	96	0
-98							
-100	END OF BOREHOLE @ 100.5ft BGS	504.12					
-104							
- 106				,			
-108 -110 -112 -114							
112							
-114							

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5L

DATE COMPLETED: September 10, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION &	REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	e.		SAMF	
	NORTHING: 1141449.01 EASTING: 1028117.61	TOP OF RISER GROUND SURFACE	607.79 606.08		NUMBER	INTERVAL	REC (ft)	'N' VALUE
	OVERBURDEN (not sampled) (see overburden stratigraphy for J5U)							
-2				4"0 BLACK STEEL CASING				
-4				CEMENT/BEN GROUT	TONITE	•		
-6				8"Ø BLACK STEEL CASING				
-8				CEMENT/BEN GROUT	TONITE			
-10				= 10"0 BOREHOLE				
-12	END OF OVERBURDEN HOLE @ 11.8	oft BGS						
-14								
16								
18								
-20				,				
-22								
-24		·						
-26								
-28								
30								
32								
34								

Page 1 of 4

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5L

DATE COMPLETED: September 10, 2001 DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN	CORE RECOVERY %	FQD %	Water Return (%)
-12 -14 -16 -18 -20 -22 -24 -26 -30 -32 -34 -36 -38 -40	BEDROCK (not sampled) (see Bedrock stratigraphy for well J5M)	594.58	4*Ø BLACK STEEL CASING CEMENT/BEN GROUT 6*Ø BOREHOLE			FQD %	Water Rett (%)
-42			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				

Page 2 of 4

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5L

DATE COMPLETED: September 10, 2001 DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN	CORE RECOVERY %	RQD %	Watər Return (%)
			54 F4		RECC	Œ	Wats
-46							
-48							
-50			6"0 BOREHOLE				
-52							
-54			CEMENT/DEN	TONIT			
-56			CEMENT/BEN GROUT	ONITE	-		
-58			6"0 BOREHOLE CEMENT/BEN GROUT 4"0 BLACK STEEL CASING				
-60			4"Ø BLACK STEEL CASING				
-62			O O O O O O O O O O O O O O O O O O O				
-64							
-66							
-68							
·70							
72							
74			E-1 E-1				(
76							
78							
TON	TES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	EER TO C	URBENT ELEVATION TABLE				

Page 3 of 4

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5L

DATE COMPLETED: September 10, 2001
DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	MONITOR INS	TALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	Water Return (%)
- 82									
84					- 6"Ø BOREHOLE				
88									
90					CEMENT/BEN GROUT	TONITE	Ē		
94					4"Ø BLACK STEEL				
98					CASING				
00	DOLOMICRITE (Gasport Formation-Pekin Member): dark-grey, fine-grained, thin to medium-bedded, argillaceous -abundance of crinoids at Goat Island/Gasport		506.98	N N		1 2	100	100	100
02	contact - mechanical breaks: 99.6, 100.1, 101.6, 101.9, 102.1, 104.0, 104.6, 105.6, 106.6, 109.0, 110.1, and 110.8 ft BGS					-	100	58	100
06	- fractures: 104.3 and 107.6 ft BGS - shaley partings: 103.8, 104.8, 107.5, and				HQ COREHOLE	3	100	91	100
08 -	DOLOMITIC LIMESTONE (Gasport Formation-Gothic Hill Member): dark olive-grey to light pink, thick to massive-bedded, primarily crinoidal grainstone and crinoidal dolomite	7	498.08		-				
12	DOLOMITE (Decew Formation): medium-grey, fine-grained, thin to thick-bedded, argillaceous	7/	494.08						
14	IOTES: MEASURING POINT ELEVATIONS MAY CHAI	7							

Page 4 of 4

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: J5L

DATE COMPLETED: September 10, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	Water Return (%)
				N S	BEC	č	Wate
-116 -118 -120	- mechanical breaks: 113.8, 114.9, 116.5, 117.1, 118.9, 121.3, 122.8, 123.0, 125.2, 125.3, and 125.4 ft BGS - shaley partings: 114.3, 118.7, and 119.7 ft BGS - fractures: 120.0, 122.5, 123.9, and 124.1 ft BGS		HQ COREHOLE	4	100	94	100
- 124	SHALE (Rochester Shale Formation): dark-grey to black, massively bedded, dolomitic	481.48 480.08		5	100	77	100
- 128	END OF BOREHOLE @ 126.0ft BGS						
- 130					,		
- 132					-		
- 134			·				
- 136							
- 138							
- 140							
142		-					
- 144							
146							
148					-		

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW1-2001

DATE COMPLETED: July 18, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION 8	REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION		r	SAME		
	NORTHING: 1141743.95 EASTING: 1027388.74	TOP OF RISER GROUND SURFACE	597.16 595.41		NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	OVERBURDEN					=		-	
-2	See stratigraphy for well PW-10U for Overburden.		·				-		
-4				6°0 BOREHOLE					
-6				10"0 BOREHOLE					
-8				CEMENT/ BENTONITE GROUT					
-10									
- 12				4"Ø BLACK STEEL CASING					
- 14	1.								
-16	END OF OVERBURDEN HOLE @ 15.	Oft BGS							
- 18									
-20									
·22									
-24									
·26									
·28									
30									
32									
34									

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW1-2001

DATE COMPLETED: July 18, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	SORE RECOVERY %	RQD %	Water Return (%)
			IMO IMO		Ë		×
	BEDROCK (not sampled)	580.41	6"0				
-16	DOLONITE (Farmer Farmer)	578.41	BOREHOLE 4"Ø BLACK STEEL				
- 18	DOLOMITE (Eramosa Formation): dark brownish-grey, thick to thin-bedded, bituminous, emits a petroliferous odor from fresh surfaces, some horizons contain small white chert nodules	Z Z	CASING				
-20	-extensive fracturing and weathering (vertical fracture from 17.2 to 19.5), small vugs, some colonial corals @ 17.0 to 19.5 ft BGS	4 Z 7		1	98	66	0
-22	- abundance of small vugs @ 19.5 to 21.3 ft BGS - weathered fractures: 18.2, 19.0, 19.8, 20.8,	Z					
-24	21.3, 29.5, 29.8, 30.6, 31.0, and 31.2 ft BGS - no vugs, chert inclusions, higher shale content @ 21.3 to 23.9 ft BGS - shaley partings: 22.0, 22.9, 27.5, and 28.2 ft	Z Z					
-26	BGS - highly weathered fracture @ 23.8 ft BGS - abundance of vugs (some with calcite of	Z Z					
-28	sphalerite crystals) and corals with some stylolites @ 23.9 to 31.0 ft BGS - mechanical breaks: 25.8 and 31.5 ft BGS	Z Z		2	100	75	0
-30	- mineral parting @ 31.6 ft BGS - small vein with calcite crystals on perimeter	Z Z	COREHOLE				
-32	and sphalerite crystals on the inside @ 31.6 to 31.8 ft BGS DOLOSTONE (Goat Island	≠ 563.21 Z					
-34	Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings,	Z Z		3	100	67	0
-36	commonly bituminous, emits a petroliferous odor from fresh surfaces - shaly partings: 32.25, 32.5, 32.7, 32.8, 33.7, 34.5, 34.7, 35.0, 35.7, 36.3, and 37.1 ft BGS	Z Z 557.91					
-38	END OF BOREHOLE @ 37.5ft BGS	557.81	_				l
-40							
-42							
-44							
-46							
-48							

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW2-2001

DATE COMPLETED: July 19, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION			SAMI	PLE	
ft BGS		AMSL	MONITOR INSTALLATION	3ER	IVAL	(£)	I.U.E.	
	NONTHING: 1141702.65 TOP OF RIGER EASTING: 1027393.5 GROUND SURFACE	596.04 594.42		NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	OVERBURDEN							
-2	See stratigraphy for well PW-10U for Overburden.							
-4			10"Ø BOREHOLE		-			
-8			CEMENT/ BENTONITE GROUT			-		
			GIIOO1					
-10			442.514.61					
-12			4"Ø BLACK STEEL CASING					
-14								
-16			6"Ø BOREHOLE					
-18								
-20		572.92						
-22	BEDROCK (not sampled)	5/2.92	4"Ø BLACK STEEL CASING				ŀ	
-24	END OF OVERBURDEN HOLE @ 22.5ft BGS		CASING					
-26								
-28								
-30		į.				,		
-32								
-34								
<u> </u>	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	LL CURRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

BEDROCK LOG 01069NEW.GPJ CRA CORP.GDT 2/13/02

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW2-2001

DATE COMPLETED: July 19, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN	CORE RECOVERY %	RQD %	Water Return (%)
-22	BEDROCK (not sampled) DOLOMITE (Eramosa Formation): dark brownish-grey, thick to thin-bedded, bituminous,	572.92 571.92	4º0 BLACK STEEL CASING				
-24	emits a petroliferous odor from fresh surfaces, some horizons contain small white chert nodules - mechanical breaks: 26.7, 28.6, and 31.7 ft BGS			1	100	100	100
-28							
-30 -32			HQ COREHOLE	2	100	89	100
-34	DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor	561.92					
-36	from fresh surfaces - mechanical breaks: 32.6, 32.8, 33.1, and 33.9 ft BGS END OF BOREHOLE @ 35.1ft BGS	559.32					
· 38 · 40		,					
·42							
44							
46							
50							
52							
·54							

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW3-2001

DATE COMPLETED: July 26, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION	& REMARKS	ELEV.	MONITOR II	NSTALLATION			SAMI		
	NORTHING: 1141799.31 EASTING: 1026826.96	TOP OF RISER GROUND SURFACE	591.26 589.76			NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	OVERBURDEN									
- - 2 -	See stratigraphy for well PW-9U for Overburden.									
-4 -4					—— 10°Ø					
- 6 - 6					— 10"0 BOREHOLE		-			
- -8 -					CEMENT/ BENTONITE GROUT					
-10 -										
-12					— 4"Ø BLACK STEEL CASING					
-14										
-16										
-18										
-20					CEMENT/ BENTONITE GROUT					
-22										
-24										
-26		i.	-							
-28										
-30	END OF OVERBURDEN HOLE @ 30	0.0ft BGS								
-32										
-34										
<u></u>	NOTES: MEASURING POINT ELEVATION	NS MAY CHANGE; RE	FER TO C	URRENT ELEV	ATION TABLE					

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW3-2001

DATE COMPLETED: July 26, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	FQD %	Water Return (%)
-30 -32 -34 -36 -38 -40 -42 -44 -48 -48 -50 -52	BEDROCK (not sampled) DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor from fresh surfaces - shaly partings: 35.1, 36.2, 41.4, 41.5, 46.5, and 47.2 ft BGS - mechanical breaks: 32.1 to 33.2, 34.3, 35.4, 36.7, 37.4, 38.6, 38.8, 38.95, 39.85, 40.2, 40.7, 41.0, and 43.0 ft BGS - vugs with mechanical breaks: 43.8 and 43.9 ft BGS - vug @ 44.0 ft BGS - yatially filled fracture DOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member): medium ash-grey, thin to medium-bedded, fine-grained, weathers to light tan, typically contains abundant nodules of distinctive pale, cream-colored chert - mechanical breaks: 48.0 and 48.2 ft BGS END OF BOREHOLE @ 50.0ft BGS	559.76 557.76	6°0 BOREHOLE 4°0 BLACK STEEL CASING HQ COREHOLE	1 2 3	OC 883 99 91	79 89	100 70
-60 -62							

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW4-2001

DATE COMPLETED: July 27, 2001

DRILLING METHOD: HSA/Wet Rotary FIELD PERSONNEL: J. Raby, P. Kryger

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION			SAMI	PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL		H	AL.	£	UE	
	NORTHING: 1141816.56 TOP OF RISER EASTING: 1026802.81 GROUND SURFACE	590.90 588.82		NUMBER	INTERVAL	REC (ft)	'N' VALUE	
-	OVERBURDEN							
_ 2 	See stratigraphy for well PW-9U for Overburden.							
-4			10"0					
-6			BOREHOLE					
_ -8			CEMENT/ BENTONITE GROUT					
_ 10								
-								
- 12 -			4*Ø BLACK STEEL CASING					-
14 								
16					-			
_ 18								
20			CEMENT/ BENTONITE GROUT					
- - -22			GROUT					
- - 24								
-								
26								
-26 -28 -30 -32 -34								
30	END OF OVERBURDEN HOLE @ 30.0ft BGS							
_ _ 32			-					e e
- - -								
<u></u> 34 −								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	FER TO C	CURRENT ELEVATION TABLE			•		

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW4-2001

DATE COMPLETED: July 27, 2001

DRILLING METHOD: HSA/Wet Rotary FIELD PERSONNEL: J. Raby, P. Kryger

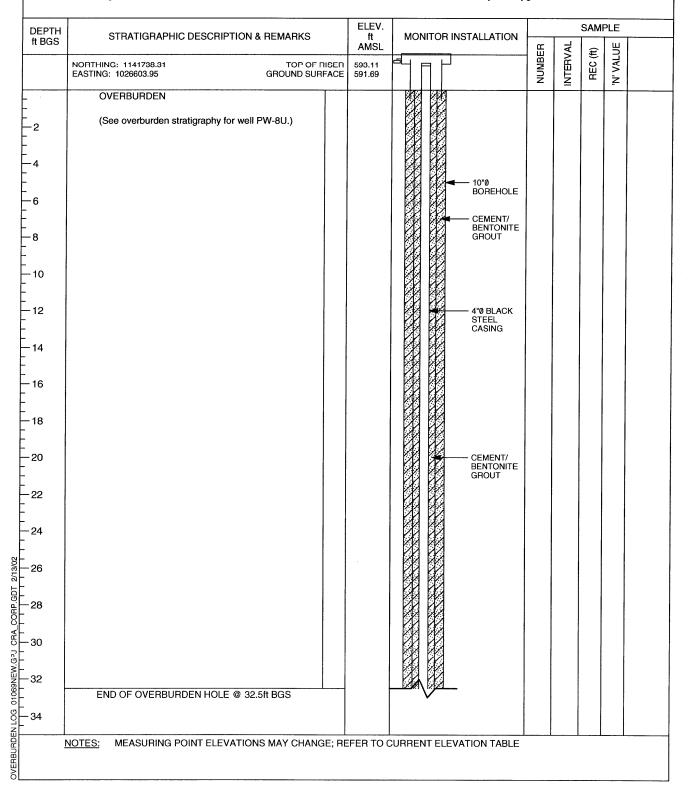
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	Water Return (%)
-30 -32 -34	BEDROCK (not sampled) DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous. emits a petroliferous odor from fresh surfaces - mechanical break: 33.1, 33.5, 33.6, 34.5,	558.82 556.82	6°0 BOREHOLE 4°0 BLACK STEEL CASING	1	71	66	100
-36 -38 -40 -42	34.9, 35.4, 36.8, 38.4, 38.7, 39.1, 39.8, 40.6, 40.95, 42.4, 42.9, 43.6, 43.8, 44.25, 46.7, 47.7, 48.2, and 49.8 ft BGS - shaly partings: 36.6, 37.8, 38.2, 38.8, 40.0, 41.0, and 43.5 ft BGS - partially infilled fracture @ 44.5 ft BGS			2	100	85	75
-46 -48 -50	- possible fracture with partial gypsum infilling @ 48.35 ft BGS DOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member): medium ash-grey, thin to medium-bedded, fine-grained, weathers to light tan, typically contains abundant nodules of distinctive pale, cream-colored chert	540.32 538.52	→ HQ COREHOLE	3	100	99	70
-54	END OF BOREHOLE @ 50.3ft BGS						
-58			s.				
-60							

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM


LOCATION: Niagara Falls, NY

HOLE DESIGNATION:

MW5-2001

DATE COMPLETED: July 25, 2001

DRILLING METHOD: HSA/Wet Rotary

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW5-2001

DATE COMPLETED: July 25, 2001

DRILLING METHOD: HSA/Wet Rotary FIELD PERSONNEL: J. Raby, P. Kryger

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	Water Return (%)
-32	BEDROCK (not sampled)	- 559.19	6"0				-
-34			BOREHOLE 4"0 BLACK				
-36	DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous	557.19	Ed STEEL CASING	1	100	100	90-95
-38 -40	odor from fresh surfaces - mechanical breaks: 33.1, 33.5, 35.9, 37.7, 38.2, 40.3, 41.47, 43.3, 47.6, and 47.9 ft BGS - shaly partings: 33.8, 37.8, 39.0, 40.75, 41.3, 43.4, 43.75, 44.5, 45.5, 45.8, 46.5, 48.6, and						
-42	49.3 ft BGS			2	100	100	90-95
-44	- fracture with gypsum mineralization @ 44.05						
-46	- vugs: 45.5 and 46.5 to 47.0 ft BGS		COREHOLE				
-48	- fracture with extensive mineralization (probably plugged)			3	100	90	90-95
-50	DOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member): medium ash-grey, thin to medium-bedded, fine-grained, weathers to light tan, typically	542.19 541.69		-			
-52	contains abundant nodules of distinctive pale, cream-colored chert END OF BOREHOLE @ 50.0ft BGS						
-54							
-56							
-58			·				
- 60							
]							
-62							
-64							

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW6-2001

DATE COMPLETED: July 25, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION 8	& REMARKS	ELEV. ft AMSL	MONITOR INS	TALLATION	<u></u>		SAME		
	NORTHING: 1141760.93 EASTING: 1026600.12	TOP OF RISER GROUND SURFACE	592.66 591.16			NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	OVERBURDEN									
-2 -2	(See stratigraphy for well PW-8U for Overburden.)									
-4					- 10 "0					
-6					- 10"Ø BOREHOLE - CEMENT/					
-8					CEMENT/ BENTONITE GROUT					
-10										
-12					4"Ø BLACK STEEL CASING					
- 14										
-16										
-18										
-20					CEMENT/ BENTONITE GROUT					
-22										
-24										
-26										
-28										
-30										
-32	END OF OVERBURDEN HOLE @ 32.	5ft BGS								
-34	NOTES: MEASURING POINT ELEVATION									

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

2/13/02

CRA_CORP.

01069NEW.GPJ

BEDROCK LOG

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW6-2001

DATE COMPLETED: July 25, 2001

DRILLING METHOD: HSA/Wet Rotary FIELD PERSONNEL: J. Raby, P. Kryger

ELEV. DEPTH Water Return (%) STRATIGRAPHIC DESCRIPTION & REMARKS ft AMSL MONITOR INSTALLATION CORE RECOVERY RUN NUMBER ft BGS FQD % 32 558.66 BEDROCK (not sampled) 6"Ø BOREHOLE 4"Ø BLACK -34 556.66 STEEL DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine 100 100 90 -36 grained. argillaceous. thin shale partings. commonly bituminous, emits a petroliferous odor from fresh surfaces -38 - mechanical breaks: 33.1, 33.3, 33.7, 33.8, 35.8, 36.4, 36.5, 36.7, 38.3, 38.9, 40.0, 40.6, 43.0, and 49.4 ft BGS - shaly partings: 35.6, 40.7, 42.5, 42.9, 48.1, 48.7, and 49.6 ft BGS -40 2 100 81 90 - large gypsum filled vugs @ 41 ft BGS - gypsum filled fracture @ 41.1 ft BGS 42 44 HQ COREHOLE -46 - gypsum filled fracture @ 46.4 ft BGS 3 100 85 70-75 48 542.56 DOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member): -50 medium ash-grey, thin to medium-bedded, 541.16 fine-grained, weathers to light tan, typically contains abundant nodules of distinctive pale, cream-colored chert 52 - fracture and/or mechanical break with gypsum and sphalerite crystals @ 49.2 (t -54 END OF BOREHOLE @ 50.0ft BGS -56 GD. -58 -60 -62 -64 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM LOCATION: Niagara Falls, NY HOLE DESIGNATION: MW7-2001

DATE COMPLETED: July 3, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DES	CRIPTION & REMARKS	ELEV.	MONITOR INS	STALLATION			SAM	г	I
	NORTHING: 1141707.04 EASTING: 1026866.6	TOP OF RIS				NUMBER	INTERVAL	REC (ft)	'N' VALUE	G.
	TOPSOIL	<u> 7</u>	1			Z	_ <u>Z</u>		ž	ļ
			589.68			SS1	\bigvee	1.3	7	0
	CL-CLAY, trace medium medium plasticity with ad	ded moisture				001	$/ \setminus$	'	′	"
-2										
						SS2	Χ	0.7	19	0
-4						l k	$\langle - \rangle$			
					— 4"Ø BLACK STEEL	SS3	\times	1.6	11	0
-6					STEEL CASING		\triangle			
						SS4	\diagdown	0.0		
_						554	\triangle	8.0	14	0
-8							$\overline{}$			
						SS5	Х	1.0	10	0
-10					- CEMENT/ BENTONITE	K	()			
					GROUT	SS6	X	1.6	10	0
-12	- moist below 12 ft BGS						\triangle			
						207	$\setminus A$		40	
						SS7	\wedge	2.0	19	0
-14						K				
					10"ØBOREHOI	ESS8	XI	2.0	12	0
-16						K	$\left\langle \cdot \cdot \right\rangle$			
						SS9	\bigvee	2.0	16	0
-18							\leq			
							$\setminus A$			_
						SS10	ΛI	1.7	8	0
-20						K	$\langle \ \ \rangle$			
						SS11	ХΙ	2.0	8	0
-22						K	\longrightarrow			
						SS12	\bigvee	2.0	9	0
-24							\leq			
2-7	- wet below 24.5 ft BGS						$\setminus A$			
ŀ						SS13	ΧI	1.4	7	0
-26	 Rock fragments 					K	$\langle \cdot \rangle$			
						SS14	ХΙ	1.7	43	0
-28						K	$\stackrel{\prime}{\rightarrow}$	ŀ		
[561.28					j		
-30	END OF OVERBURDEN	HULE @ 29.2ft BGS								
50										
ŀ										
-32									l	
									ŀ	
-34									į	
·										
1	NOTES: MEASURING POINT	ELEVATIONS MAY CHANGE;	REFER TO	CURRENT ELEVA	TION TABLE					

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: MW7-2001

DATE COMPLETED: July 3, 2001

DRILLING METHOD: HSA/Wet Rotary

-30 Db bi bi bi bi bi bi bi	BEDROCK DOLOMITE (Eramosa Formation): dark prownish-grey, thick to thin-bedded, pituminous, emits a petroliferous odor from resh surfaces, some horizons contain small white chert nodules DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor from fresh surfaces fractures: 29.0-29.3, and 45.5 (fracture with open vug) Shaley parting: 29.55, 29.95, 30.75, 31.0, 32.35, 33.1, 33.5, 34.0, 34.4, 34.5, 38.7, 39.2, 39.9, 40.1, 40.2, 42.8, 43.8, 44.2, 47.3, and 47.9 ft BGS mechanical breaks: 29.7, 33.7, 36.6, 37.0, 37.6, 37.8, 39.6, 40.7, 42.0, 42.3, 42.4, 44.2, 45.2, 45.3, and 45.7 ft BGS		561.08 560.88			— HQ - COREHOLE	NUMBER 3	100 94	75	00 Water Return (%)
-30 Dbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	DOLOMITE (Eramosa Formation): dark brownish-grey, thick to thin-bedded, pituminous, emits a petroliferous odor from resh surfaces, some horizons contain small white chert nodules DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor from fresh surfaces fractures: 29.0-29.3, and 45.5 (fracture with open vug) Shaley parting: 29.55, 29.95, 30.75, 31.0, 32.35, 33.1, 33.5, 34.0, 34.4, 34.5, 38.7, 39.2, 39.9, 40.1, 40.2, 42.8, 43.8, 44.2, 47.3, and 47.9 ft BGS mechanical breaks: 29.7, 33.7, 36.6, 37.0, 37.6, 37.8, 39.6, 40.7, 42.0, 42.3, 42.4, 44.2,						2			
-30 Dbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	DOLOMITE (Eramosa Formation): dark brownish-grey, thick to thin-bedded, pituminous, emits a petroliferous odor from resh surfaces, some horizons contain small white chert nodules DOLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor from fresh surfaces fractures: 29.0-29.3, and 45.5 (fracture with open vug) Shaley parting: 29.55, 29.95, 30.75, 31.0, 32.35, 33.1, 33.5, 34.0, 34.4, 34.5, 38.7, 39.2, 39.9, 40.1, 40.2, 42.8, 43.8, 44.2, 47.3, and 47.9 ft BGS mechanical breaks: 29.7, 33.7, 36.6, 37.0, 37.6, 37.8, 39.6, 40.7, 42.0, 42.3, 42.4, 44.2,		560.88		4		2			
-32 fr w D F -34 da gg cx -36 -1 -38 -1 -40 -1 -42 -44	resh surfaces, some horizons contain small white chert nodules ODLOSTONE (Goat Island Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor from fresh surfaces fractures: 29.0-29.3, and 45.5 (fracture with open vug) Shaley parting: 29.55, 29.95, 30.75, 31.0, 32.35, 33.1, 33.5, 34.0, 34.4, 34.5, 38.7, 39.2, 39.9, 40.1, 40.2, 42.8, 43.8, 44.2, 47.3, and 47.9 ft BGS mechanical breaks: 29.7, 33.7, 36.6, 37.0, 37.6, 37.8, 39.6, 40.7, 42.0, 42.3, 42.4, 44.2,							94	75	100
-34	Formation-Vinemount Member): light to lark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor from fresh surfaces fractures: 29.0-29.3, and 45.5 (fracture with open vug) Shaley parting: 29.55, 29.95, 30.75, 31.0, 32.35, 33.1, 33.5, 34.0, 34.4, 34.5, 38.7, 39.2, 39.9, 40.1, 40.2, 42.8, 43.8, 44.2, 47.3, and 47.9 ft BGS mechanical breaks: 29.7, 33.7, 36.6, 37.0, 37.6, 37.8, 39.6, 40.7, 42.0, 42.3, 42.4, 44.2,						3			
-3838383939393939 -	fractures: 29.0-29.3, and 45.5 (fracture with open vug) Shaley parting: 29.55, 29.95, 30.75, 31.0, 32.35, 33.1, 33.5, 34.0, 34.4, 34.5, 38.7, 39.2, 39.9, 40.1, 40.2, 42.8, 43.8, 44.2, 47.3, and 47.9 ft BGS mechanical breaks: 29.7, 33.7, 36.6, 37.0, 37.6, 37.8, 39.6, 40.7, 42.0, 42.3, 42.4, 44.2,					CONLINE	3			
-42 -44 -46	32.35, 33.1, 33.5, 34.0, 34.4, 34.5, 38.7, 39.2, 39.9, 40.1, 40.2, 42.8, 43.8, 44.2, 47.3, and 47.9 ft BGS mechanical breaks: 29.7, 33.7, 36.6, 37.0, 37.6, 37.8, 39.6, 40.7, 42.0, 42.3, 42.4, 44.2,						3			
-42 -44 -46	37.6, 37.8, 39.6, 40.7, 42.0, 42.3, 42.4, 44.2,	7	,				3			,
-44		7/7/	*					100	88	100
-46										
		7								:
40		7/ 7/								
Fo	OOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member):	/	542.18							[
-50 fir	nedium ash-grey, thin to medium-bedded, ine-grained, weathers to light tan, typically contains abundant nodules of distinctive pale, tream-colored chert	7					4	100	96	80-90
· · · · · · · · · · · · · · · · · · ·	Shaley parting: 50.8, 53.0, 53.55 ft BGS	7								
	mechanical breaks: 48.9, 50.3, 51.3, 52.1, 53.9, and 54.5 ft BGS	7								
-56 E	ND OF BOREHOLE @ 55.5ft BGS		534.78					-		
-58										
- 60				-						
-62										

CLIENT: MSRM

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Hyde Park RRT

HOLE DESIGNATION: PW-7U

PROJECT NUMBER: 01069-30

DATE COMPLETED:

DRILLING METHOD: HSA/Wet Rotary

LOCATION: Niagara Falls, NY

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION			SAMF	PLE	
ft BGS	STRATIGNAFIIC DESCRIPTION & REMARKS	AMSL	MONITOR INSTALLATION	8	/AL	ft)	UE	
	NORTHING: 1141543.65 GROUND SURFACE EASTING: 1026223.72 TOP OF RISER			NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	OVERBURDEN (see overburden stratigraphy for well CD-2U)		- EXTRACTION WELL CHAMBER					
			12"Ø STEEL CASING					
- 16 - - - 18								
- -20 - - -22			CEMENT/ BENTONITE GROUT					
- 24 			20' 0					
206 - 26			20° Ø BOREHOLE					
28 - - - - - - - - - - - - - - - - - - -								
30								
- 32 - 32	END OF OVERBURDEN HOLE @ 32.0ft BGS							
5 - - 34 34								
200 - 26 - 26 - 27 - 27 - 27 - 27 - 27 - 27	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (CURRENT ELEVATION TABLE					

Page 1 of 2

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: PW-7U

DATE COMPLETED:

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	,
-32	BEDROCK (see bedrock stratigraphy for well CD-2U)	- 564.72					
-34							
-36							
-38							
-40			11 7/8"0 BOREHOLE				
-42							
-44							
-46							
-48							
-50							
-52							
-54							
-56							
-58							
-60	,						
-62							
-64		532.72					

Page 2 of 2

PROJECT NAME: Hyde Park RRT

HOLE DESIGNATION: PW-7U

PROJECT NUMBER: 01069-30

DATE COMPLETED:

CLIENT: MSRM

DRILLING METHOD: HSA/Wet Rotary

LOCATION: Niagara Falls, NY

FIELD PERSONNEL: J. Raby

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN	CORE RECOVERY %	RQD %	
66	END OF BOREHOLE @ 65.0ft BGS				ш		
68							
70							
72							
74							
76							
78							
30							
32							
34							
86							
88					-		
00							
90							
92							
1							
94							
96							
98							

FDROCKIO

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: PW-8U

DATE COMPLETED: July 5, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & RE	MARKS	ELEV.	MONITOR INSTA	ALLATION		т	SAMI		1
	NORTHING: 1141704.94 CR EASTING: 1026603.26	OUND SUNFACE TOP OF RISER	593.65 589.78			NUMBER	INTERVAL	REC (ft)	N' VALUE	PI
		FOE OF HISER				ž	Ξ	۳.	Ž	
	TOPSOIL		593.45				$\mathbb{N}/$			
	CL-CLAY, trace medium grained sand, ligh brown, dry, high plasticity, dense	' ///			XTRACTION	1		0.8	17	0
-2					VELL CHAMBER					
						2	X	1.0	28	0
-4			589.15				$\langle \cdot \rangle$			
	FILL, brick, cinders, black		000110			3	X	0.4	17	0
-6	WI 4 * 1 * * * * * * * * * * * * * * * * *		587.35				$\left\langle -\right\rangle$			
	CL-CLAY, trace medium grained sand, light-brown, dry, high plasticity, dense					4	X	1.8	15	0
-8							$\langle - \rangle$			
						5	\setminus	1.5	13	0
-10					2"Ø STEEL		\triangle			
					ASING	6	\bigvee	1.1	11	. 0
- 12	- becomes moist			₽	-					
12	boomes most					7	\bigvee	2.0	4.5	
						′	\wedge	2.0	15	0
-14										
						8	X	2.0	12	0
-16						ľ	$\langle \gamma \rangle$			
						9	XI	2.0	12	0
-18							$\langle \cdot \rangle$	j		
						10	XI	2.0	5	0
-20	- becomes wet				EMENT/ ENTONITE		$\left\langle \cdot \right\rangle$			
					ROUT	11	XI	2.0	4	0
-22						k	$\langle \cdot \rangle$			
	- some rock fragments					12	X	2.0	6	0
-24						ļ	\triangle			
					o" Ø	13	\bigvee		wH	0
-26					OREHOLE		$\angle \setminus$			ŭ
						14	$\bigvee 1$	2.0	14	•
.20						14	\wedge	2.0	14	. 0
-28							abla			
						15	X	0.9	9	0
-30 ∤	WEATHERED ROCK		563.65		EMENT/	16	$\langle \cdot \rangle$	0.7	9	0
				B G	EMENT/ ENTONITE ROUT	*	$\overline{}$			-
-32	END OF OVERBURDEN HOLE @ 32.0ft B	GS		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ROUT 2"Ø STEEL ASING					
-34										
	NOTES. MEASURING DOMESTIC	N/ 0114316 = :-								
<u> </u>	NOTES: MEASURING POINT ELEVATIONS MA WATER FOUND ♀	AY CHANGE; RE	:FER TO C	JUHHENT ELEVATION	ON TABLE					

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: PW-8U

DATE COMPLETED: July 5, 2001

DRILLING METHOD: HSA/Wet Rotary

FIELD PERSONNEL: J. Raby, P. Kryger

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	FQD %	Water Return (%)
	WEATHERED ROCK	563.65	CEMENT/		뿐		>
			BENTONITE GROUT 12"Ø STEEL			·	
-32	BEDROCK DOLOSTONE (Goat Island	561.65	CASING	1	60	70	100%
-34	Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous	7		2	100	60	100%
-36	odor from fresh surfaces -fractured @ 31.0 to 31.6 ft BGS - gypsum and calcite filled vugs: 41.5, 42.1, 42.7, 44.0, 46.25	7	-				
-38	- shaley partings: 32.1, 34.0, 34.7, 37.4, 37.75, 39.5, 39.9, 40.4, 40.8, 43.25, 43.6, 45.45, 48.2, 48.8, 49.9, 52.0, 53.8, and 54.5	7					
-40	- mechanical breaks: 33.7, 34.5, 35.6, 37.3, 38.6, 39.4, 40.6, 40.9, 45.7, 46.6, 50.5, 55.0	/ / /	■ 11 7/8"0 BOREHOLE	3	100	86	~100%
-42 -44	- fractures with small, well formed calcite crystals @ 42.8 ft BGS	/ // //					
-46	- sphalerite filled vug	, <u>/</u> , <u>/</u> ,/					
-48		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-			
-50	<u>2</u> 2	, <u> </u>		4	99	96	75
-52		/ / /					
-54	DOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member):	539.25 538.15					
-56	medium ash-grey, thin to medium-bedded, fine-grained, weathers to light tan, typically contains abumdant nodules of distinctive pale, cream-colored chert	530.10					
-58	END OF BOREHOLE @ 55.5ft BGS						
-60							
-62							
-64							

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page I of I

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: PW-8M

DATE COMPLETED: June 30, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS		MONITOR INSTALLATION	SAMPLE				
ft BGS	NORTHING: 1141602.21 GROUND SURFACE		MONTOTTINGTALLATION	NUMBER	INTERVAL	REC (ft)	N' VALUE	PID
	TOPSOIL TOP OF RISER	593.18		ž	Ē	<u>~</u>	Ž	
_2	CL-CLAY, trace medium grained sand, light brown, dry, high plasticity, dense	596.41	– EXTRACTION WELL	1	\boxtimes	1.2	18	0
- -4			CHAMBER	2	\boxtimes	0.9	21	0
_ 6	FILL, black ash, wood fragments, glass	591.11	30" Ø BOREHOLE	3	\boxtimes	1.5	39	0
- - -8		588.81	v i i i i	4	X	1.3	22	0
10	ML-SILT, some clay, trace to little fine grained sand, light brown, moist, low plasticity	000.01	CEMENT/	5	\boxtimes	0.9	17	0
12			BENTONITE GROUT	6	\boxtimes	1.1	26	0
14		583.01		7	X	1.1	37	0
- - - 16	CL-CLAY, trace sand, light brown, dry, high plasticity, dense		22" ØBOREHOLE	8	X	1.2	13	0
-18				9	X	2.0	21	0
20				10	X	1.2	16	0
-22	- rock fragments		12" Ø STEEL	11	X	0.5	19	0
- - - -24	- Took Hagments		CASING	12	X	1.0	18	0
- - - -26			CEMENT/ BENTONITE	- 13	X	2.0	16	0
E			GROUT	14	X	2.0	9	0
28 			18" Ø STEEL CASING	15	X	1.9	7	0
				16	X	2.0	4	0
3-			CEMENT/ BENTONITE GROUT	17	X	2.0	11	0
34								
- 36 	END OF OVERBURDEN HOLE @ 36.0ft BGS		- KONT -					
100 - 38 - 100 - 38 - 100 - 38 - 100 - 38 - 100								
<u>1</u>	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REWATER FOUND WATER FOUND WATER FOUND WATER FOUND WATER FOUND WATER FOUND WATER FO	EFER TO C	CURRENT ELEVATION TABLE					
5								

BEDROCK LOG 01069NEW.GPJ CRA_CORP.GDT 2/14/02

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 1 of 2

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30 CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: PW-8M

DATE COMPLETED: June 30, 2001
DRILLING METHOD: HSA/Wet Rotary

ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	6	ELEV. ft AMSL	MONITOR IN	NSTALLATION	RUN	CORE RECOVERY %	HQD %	Water Return (%)
-36 <u>-</u>	BEDROCK DOLOSTONE (Goat Island Formation-Vinemount Member): light to	7	561.01 559.51		— CEMENT/	1 2	100	0	90 90
-40	dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous odor from fresh surfaces -extremely weathered @ 36.0-37.5 ft BGS				BENTONITE GROUT —— 12" Ø STEEL CASING				
-42	not sampled due to low RQD (37.5-42.0 ft BGS) DOLOSTONE (Goat Island Formation-Vinemount Member) (cont)		555.01		18" ØSTEEL CASING				
-46	- shaly partings: 42.6, 42.85, 43.5, 44.8, 45.4, 45.90, 45.95, 46.2, 46.7, 48.25, 48.55, 48.60, 50.0, 50.2, and 50.4 ft BGS	7				3	100	86	90
-48	 mechanical breaks: 43.0, 43.2, 44.0, 46.0, 45.7, 46.7 (with gypsum infilling), 47.6, 48.2, 50.4, 53.5, 54.2, 54.3, 54.5 ft BGS gypsum filled vugs: 47.9, 49.3, 49.6, and 52.2-52.3 ft BGS 	/ / / /							
-52	- possible fracture with gypsum infilling: 46.8, 48.75, 48.95, 49.1, 49.75, 50.8, and 52.6 ft BGS	/				4	100	75	50
-56	DOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member): medium ash-grey, thin to medium-bedded, fine-grained, weathers to light tan, typically contains abumdant nodules of distinctive pale, cream-colored chert	/ / / / / /	542.21						
60	- shaly partings: 55.8, 57.8, 60.6, 77.8, 78.7, 80.1, 84.3, and 88.2 ft BGS	7 7 7 7			11 7/0" Ø BOREHOLE	5	100	85	25
64	- break along stylolite - mechanical breaks: 55.2, 55.6 (with trace gypsum), 58.8, 60.3, 64.0, 64.6, 64.9, 69.2, 69.7, 70.1, 71.1, 72.3, 76.3, 78.4, 79.1, 80.6, 80.9, 81.1, 81.3, 84.5, 82.0, 82.1, 82.3, 82.6, 82.9, 83.6, 84.1, 85.1, 85.8, 86.6, 87.1, and	/ / / / /							
-68	89.2 ft BGS - fractures: 57.5, 85.0 (with trace gypsum), 60.1, 76.8 (with gypsum), and 77.9 (with gypsum) - abundance of stylolites @ 70-75 ft BGS	7/ 7/ 7/ 7/				6	97	97	O.F.
72		/	:			ס	9/	97	25

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 2

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: PW-8M

DATE COMPLETED: June 30, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	Water Return (%)
- - -76	- fractured and weathered @ 75.5-76.0 ft BGS DOLOMICRITE (Gasport Formation-Pekin Member): dark-grey, fine-grained, thin to	521.71	■ 11 7/8" Ø BOREHOLE		<u> </u>	-	
-78 -80 -82	Member): dark-grey, fine-grained, thin to medium-bedded, argillaceous - weathered fracture/parting @ 77.3-77.4 ft BGS			7	98	71	25
- 84 - 86			UI UI				
-88	END OF BOREHOLE @ 86.0ft BGS		HQ COREHOLE CEMENT/ BENTONITE	8	100	86	50
-90 -92	DOLOMITIC LIMESTONE (Gasport Formation-Gothic Hill Member): dark olive-grey to light pink, thick to massive-bedded, primarily crinoidal grainstone and crinoidal dolomite -abundance of crinoids at Goat Island/Gasport contact	507.51 507.21	BENTONITE GROUT				
-94 -96	Comact						
-98							
- 100							
-104							
- 106 - 108							
-110							
-112 <u>!</u>	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	FER TO C	CURRENT ELEVATION TABLE				

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: PW-9U

DATE COMPLETED: July 13, 2001

DRILLING METHOD: HSA

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARK	RAPHIC DESCRIPTION & REMARKS ft					SAMPLE					
ft BGS			AMSL	MONITOR INSTA		NUMBER	INTERVAL	REC (ft)	'N' VALUE	PIO		
		SURFACE OF RISER	591.79 588.00			NON	NTE	REC	ž	₫		
_	TOPSOIL	7,1/2	591.19	M. JA			7					
F 1	CL-CLAY, trace medium grained sand, light		331.13		VTDAOTION	1	lΧ	1.3	7	0		
<u>-</u> 2	brown, dry, high plasticity			- W	XTRACTION ELL		$\langle - \rangle$					
			1	2	HAMBER	2		0.7	19	0		
+ .						-	$ \wedge $	0.7	13	U		
-4							$\langle \cdot \rangle$					
F			1			3	Х	1.6	11	0		
<u>-</u> 6							\longleftrightarrow					
ļ. I				1 2 2		4	\bigvee	0.8	13	0		
F. 1						.	$/ \setminus$	0.0		· ·		
⊢ 8				1 Ø Ø								
t l						5	Х	1.0	10	0		
- 10				12	"Ø STEEL		$\langle - \rangle$					
<u> </u>					ASING	6		1.6	10	0		
F 10	maint						$/ \setminus$.			
 12	- moist								Ì			
						7	X	2.0	19	0		
- 14							(-)		l			
-						8	\times	2.0	12	0		
- - 16							$\angle V$	ł				
F '0						1			- 1			
				CI BE		9	XI	2.0	16	0		
<u></u> 18						k	$(\!$		ŀ			
F						10	\times	1.7	8	0		
L ₂₀					EMENT/		$\angle \setminus$					
F 20				l l i	ENTONITE	ſ	$\setminus A$					
F				l d d G	TUOF	11	ΧI	2.0	8	0		
-22						k	$\langle - \rangle$					
F						12	\times I	2.0	9	0		
L ₂₄							$\angle \Delta$					
F - 1	- wet					[$\setminus A$					
ıF l				16 BC	" Ø DREHOLE	13	ΧI	1.4	7	0		
26	- rock fragments					k	(\cdot)					
<u>.</u>						14	XI	1.7	43	0		
-28						k	$\angle A$.			
t l								İ		1		
F	auger refusal @ 29.5 ft BGS	////	562.59 562.29				l					
30	BEDROCK	Ĺ,Z										
t l	DOLOSTONE (Goat Island Formation-Vinemount Member): light to					ŀ	İ			1		
-32	dark-drey, medium to thin-bedded, very fine											
<u> </u>	grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous											
F	odor from fresh surfaces									-		
-34	END OF OVERBURDEN HOLE @ 31.5ft BGS											
	NOTES: MEASURING POINT ELEVATIONS MAY CH	ANGE: DE	EER TO C	LIBBENT ELEVATIO	NTARIE			L		-		
	WATER FOUND W	, atol, 17L	_, _,, , , , ,	JOHNEINT ELEVATIO	IN INDLL							
	······································											
L												

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: PW-9U

DATE COMPLETED: July 13, 2001

DRILLING METHOD: HSA

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	MONITOR INSTALLATION	RUN	CORE RECOVERY %	RQD %	Water Return (%)
						<u>~</u>		>
- 32 -					1	100	70	100
- - 34 -	- shaly partings: 29.9, 31.3, 31.9, 32.7, 36.0, 37.75, 39.0, 40.4, 41.4, 41.7, 45.0, 46.6, 48.2, 49.8, 50.4, and 52.0 ft BGS	/ / / /			2	100	100	<100
- 36 -	- fractures: 30.1-30.7 and 44.6 ft BGS (vug with a hollow cavity through the core)							
- 38 	- mechanical breaks: 34.0, 35.6, 36.7, 38.1, 38.75, 39.1, 41.0, 42.7, 43.1, 44.1, 44.2, 47.0, and 50.1 ft BGS	7						
40 				◄ 11 7/8"0 BOREHOLE	3	100	76	<100
- 42 -								
- 44 -		7	-					
- 46 -		H						
- 48 -	- large vug with calcite on walls and gypsum in center @ 48 ft BGS							
- 50 -	ctulality parting year larged @ 51.3 ft BCS	7		CEMENT/ BENTONITE GROUT	4	100	96	<100
- 52 -	- stylolite parting, very jagged @ 51.3 ft BGS	Ź	539.19	HQ COREHOLE				
- - -54 -	DOLOSTONE (Goat Island Formation-Ancaster/Niagara Falls Member): medium ash-grey, thin to medium-bedded, fine-grained, weathers to light tan, typically contains abundant nodules of distinctive pale,		536.79					
- -56 -	cream-colored chert - shaly partings: 53.0 ft BGS END OF BOREHOLE @ 55.0ft BGS							
- 58 -								
-60								
- - -62								
- - -64								
1	NOTES: MEASURING POINT ELEVATIONS MAY CHANG WATER FOUND ₹	GE; RE	FER TO C	URRENT ELEVATION TABLE				

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: PW-10U

DATE COMPLETED: July 2, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft	MONITOR INSTALLATION		т	SAMI		
	NORTHING: 1141749.95 GROUND SURFACE EASTING: 1027386.41 TOP OF RISER	597.84 594.01		NUMBER	INTERVAL	REC (ft)	N' VALUE	PID
· · · · · · · · · · · · · · · · · · ·	TOPSOIL	597.64			≤		۷.	
- - -2	CL-CLAY, trace medium grained sand, light brown, dry, high plasticity, dense		– EXTRACTION WELL	1	X	1.1	14	0
- - -			CHAMBER	2	X	1.3	17	0
-4 -	FILL, black, cinders, some glass	592.84	4 20" Ø BOREHOLE	3		1.3	16	0
-6	TIEE, Diable, Officials, Some glass			4		1.7	22	0
-8	CL-CLAY, trace medium grained sand, light	589.84			()			v
10	brown, dry, high plasticity, dense		12"Ø STEEL CASING	5	\triangle	1.5	6	0
- 12			L CAOING	6	\boxtimes	1.9	7	0
•			CEMENT/ BENTONITE	7	X	0.0	16	NA
- 14			GROUT	8		1.6	7	0
-16	- wet		¥	9	\bigcirc	0.3	21	0
- 18	- some gravel, fractured rock				$\angle A$			
	END OF OVERBURDEN HOLE @ 18.5ft BGS							
-20								
-22								
-24								
-26								
-28								
-30								
-32								
-34								

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 1 of 1

PROJECT NAME: Hyde Park RRT

PROJECT NUMBER: 01069-30

CLIENT: MSRM

LOCATION: Niagara Falls, NY

HOLE DESIGNATION: PW-10U

DATE COMPLETED: July 2, 2001

DRILLING METHOD: HSA/Wet Rotary

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	Water Return (%)
	- wet		¥				
-18 .	- some gravel, fractured rock BEDROCK DOLOMITE (Eramosa Formation): dark	579.34		1	88	60	100
-20	brownish-grey, thick to thin-bedded, bituminous, emits a petroliferous odor from fresh surfaces, some horizons contain small white chert nodules	<u>r</u>	■ 11 7/8"0 BOREHOLE				
-22	- vugs @ 22.5 ft BGS			2	95	72	100
-24	- fractures: 19.0-19.5, 19.75 (with iron staining), 20.5-20.8, 21.2-21.3, 23.65 (with gypsum and iron staining), 26.0-26.8, 37.85 (with gypsum and calcite), 34.8, and 35.6 ft BGS			_			
-28	- mechanical breaks: 18.7, 22.0, 25.55, 26.0, 31.5, 33.4, 34.5, and 35.4 ft BGS - shaly partings: 32.1 ft BGS						
-30	7/2/2			3	100	100	100
-32				ī			
-34			CEMENT/				
-36	DOLOSTONE (Goat Island	561.94	BENTONITE GROUT HQ	. 4	99	77	100
-38	Formation-Vinemount Member): light to dark-drey, medium to thin-bedded, very fine grained, argillaceous, thin shale partings, commonly bituminous, emits a petroliferous		COREHOLE				
-40	odor from fresh surfaces - shaly partings: 36.3, 36.5, 36.8, 36.85, and 37.2 ft BGS	557.34					
-42	- mechanical breaks: 38.6, and 39.0 ft BGS END OF BOREHOLE @ 40.5ft BGS						
· 44							
-46							
-48							
-50							
1	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F	I A	CURRENT ELEVATION TABLE				·

APPENDIX E.1

MAPPING OF VERTICAL FRACTURES NEAR THE HYDE PARK LANDFILL SITE

Hyde Park Landfill Site Niagara Falls, New York

Mapping of Vertical Fractures Near the Hyde Park Landfill Site

Prepared For:

Miller Springs Remediation Management Inc. and Glenn Springs Holdings, Inc.

Prepared By:

February 12, 2001

Table of Contents

	Page
List of Figures	ii
Section 1 Introduction	1
Section 2 Vertical Fracture Mapping	4
Section 3 Interpretations	9
Section 4 References	12

List of Figures

Figure 1	vertical fracture mapping from exposed bedrock
Figure 2	Summary of Lockport Group nomenclature in the Niagara region (from Brett and
	others, 1995)
Figure 3	Locations of vertical fractures
Figure 4	Locations and orientations of vertical fractures
Figure 5	Hypothesized vertical fractures
Figure 6	Joint orientations determined from Silurian and Devonian rocks in the Niagara
	Peninsula (after Williams and others, 1985)

Section 1 Introduction

On Thursday, September 6, Rick Passmore (GSHI), Jon Williams (CRA) and Chris Neville (SSP&A) examined the face of the Niagara River gorge close to the Hyde Park Landfill Site. This examination was intended to be a quick survey to identify major water-bearing vertical fractures, and thereby obtain additional basic data that might be useful in understanding the structure of the zones of different hydraulic response at the Site. If these fractures can be correlated to features at the Site, they may be incorporated in the revised characterization and groundwater model of the Site.

Location of mapping

The fracture mapping was conducted along the access road to the New York Power Authority (NYPA) Niagara Project. This is the same rock cut that was examined for the *Lockport Formation Investigation* in 1983, reported in CRA (1983).

The location of the mapping is shown on Figure 1. For this mapping, we examined the full length of the NYPA access road between the Robert Moses Parkway and the powerhouse. To obtain a better impression of fracture orientations, we examined vertical fractures along both faces of the rock cut, where possible. The western face of the rock cut drops off about 200 ft north of the Parkway, and along this side we examined the gorge face along a path that follows the river. Our walk along the path terminated back at the Limestone Cave.

Geologic setting

The cut for the NYPA access road exposes the rocks of the Lockport Dolomite, the Decew Dolomite and Rochester Shale of the Clinton Group, and units below the Rochester Shale. Although we observed a horizontal groundwater seep near the contact between the Decew Dolomite and the Rochester (indicated by wetness on the rock face and by a horizontal fringe of vegetation), we did not observe any vertical fractures that extended into the Rochester Shale

Several stratigraphic nomenclatures have been adopted for the rocks of the Niagara region. These nomenclatures are summarized on Figure 2. In all previous investigations at the Site, the nomenclature of Zenger has been adopted (Zenger, 1962; Zenger, 1965; Zenger, 1966). The United States Geological Survey suggests that the most appropriate stratigraphic designations are described in Brett and others (1995).

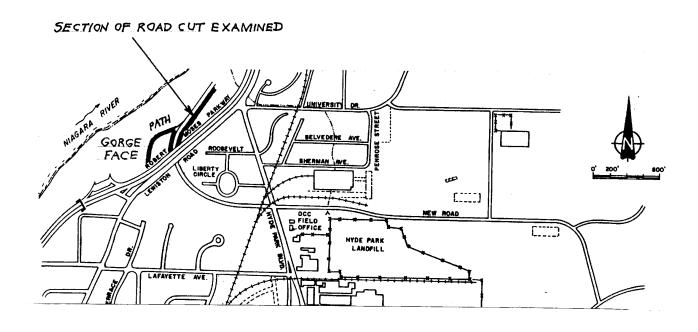


Figure 1. Location of vertical fracture mapping from exposed bedrock

	Zenger	USGS (1995)			
	Overburden	Overburden			
	Oak Orchard	Eramosa (Dolomite & Argilaceous Dolomite)			
Lockport Group	Eramosa	Vinemount (Argilaceous Dolomite)			
Lockp	Goat Island	Ancaster & Niagara Falls (Dolomite)	Lockport Group		
		Pekin (Argilaceous Limestone)			
	Gasport	Gothic Hill (Limestone)			
	Decew	Decew (Dolomite)	dnc		
Clinton Group	Rocheste	er (Shale)	Clinton Group		

Figure 2. Summary of Lockport Group nomenclature at the Hyde Park Site

Section 2 Vertical Fracture Mapping

In this limited investigation, we attempted to identify accessible fractures that appeared to provide a significant vertical conduit to fluid flow near the Site. Our criteria included fracture length, visual evidence of flowing water, presence of vegetation, and where possible, continuity across both faces of the rock cut.

Table 1 lists the locations and orientations of the identified vertical fractures. The locations of the fractures were estimated in the field using a hand-held GPS unit. Field coordinates were converted from the reported latitude and longitude, based on the NAD 83 datum. Figure 3 shows the locations of the fractures. Our experience with this GPS unit at the Site suggests that its reported locations are correct within approximately ±150 ft. Where possible, the strike orientations of the fractures were also measured with a hand compass. The corrected strike orientations of the fractures are shown on Figure 4.

Table 1. Fracture locations and orientations

Vertical fracture	Measurement	Latitude	Longitude	Strike angle,
	Point			from true North
1	VF001	43.13445	-79.04459	272
	VF002	43.13449	-79.04439	106
2	VF003	43.13449	-79.04429	nm
	VF004	43.13467	-79.04451	nm
3	VF005	43.13475	-79.04443	nm
	VF006	43.13481	-79.04425	nm
4	VF007	43.13519	-79.04405	nm
5	VF008	43.13499	-79.04446	220
6	VF009	43.13483	-79.04485	230
7	VF010	43.13462	-79.04495	272
8	VF011	43.13454	-79.04501	280
9	VF012	43.13440	-79.04510	nm
10	VF013	43.13380	-79.04527	268

Note: "nm" indicates that a bearing was not estimated.

Observations on the individual fractures

Ten vertical fractures were identified along our traverse of the NYPA access road and the path along the Niagara River gorge. Notes on the individual fractures are presented below.

- 1. Vertical Fracture 1 is located along the NYPA access road, below the Robert Moses Parkway. The fracture can be identified across both sides of the road. Measuring point VF001 is located on the western side of the road (that is, the side closest to the Niagara River), and VF002 is located on the eastern side of the road. The fracture extends from the top of rock (Eramosa) into the Gasport. The fracture is nearly vertical in the Eramosa and Goat Island; it angles off slightly after entering the Gasport.
- 2. Vertical Fracture 2 is located further down the NYPA access road. The fracture can be identified across both sides of the road. Measuring point VF003 is located on the eastern side of the road, and VF004 is located on the western side of the road. The fracture extends from the top of the Goat Island into the Gasport. The fracture was not accessible for measuring its orientation with a compass.
- 3. Vertical Fracture 3 is the third fracture encountered proceeding down the NYPA access road. The fracture can be identified across both sides of the road, and its position is determined by measuring points VF005 and VF006. The fracture extends from the top of the Goat Island through the Decew. The fracture is close to vertical I estimated its inclination to be about 10° from the vertical. The fracture was not accessible for measuring its orientation with a compass.
- 4. Vertical Fracture 4 is the fourth fracture encountered proceeding down the NYPA access road. At this point, there is no longer a rock cut along the western side of the road. Its position is given by point VF007. The fracture extends from the top of rock (Eramosa) through the Decew to the top of the Rochester Fm. The fracture was not accessible for measuring its orientation with a compass.
- 5. Vertical Fracture 5 is the first fracture encountered proceeding southwards along the path running along the gorge face. Its position is given by point VF008. The fracture can be identified in the Gasport.
- 6. Vertical Fracture 6 is the second fracture encountered proceeding southwards along the path running along the gorge face. Its position is given by point VF009. It was possible to identify the fracture in the Gasport and Decew.
- 7. Vertical Fracture 7 is the third fracture encountered proceeding southwards along the path running along the gorge face. Its position is given by point VF010. It was possible to identify the fracture in the Gasport and Goat Island.

- 8. Vertical Fracture 8 is the fourth fracture encountered proceeding southwards along the path running along the gorge face. Its position is given by point VF011. It was possible to identify the fracture in the Gasport and Goat Island.
- 9. Vertical Fracture 9 is the fifth fracture encountered proceeding southwards along the path running along the gorge face. It is located in the crown on the Limestone Cave, and its position is given by point VF012. The fracture extended the full length of the cave. It was possible to identify the fracture in the Gasport and Goat Island.
- 10. Vertical Fracture 10 is the located along the stairs leading up from the Limestone Cave. Its position is given by point VF013. The fracture extends almost parallel to the face of the gorge. The fracture extends from the top of rock (at this location the Eramosa) to the Goat Island. Rick Passmore was able to determine its location at the sidewalk of the Robert Moses Parkway.

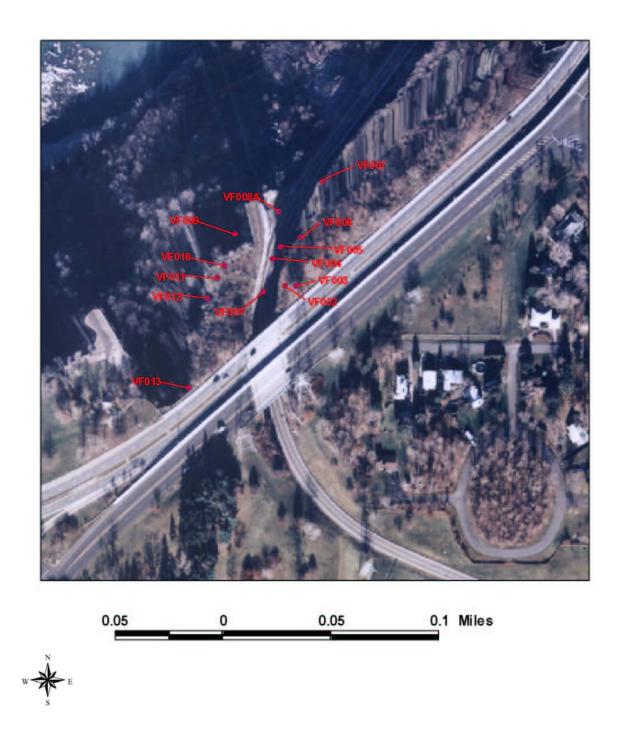


Figure 3. Locations of vertical fractures

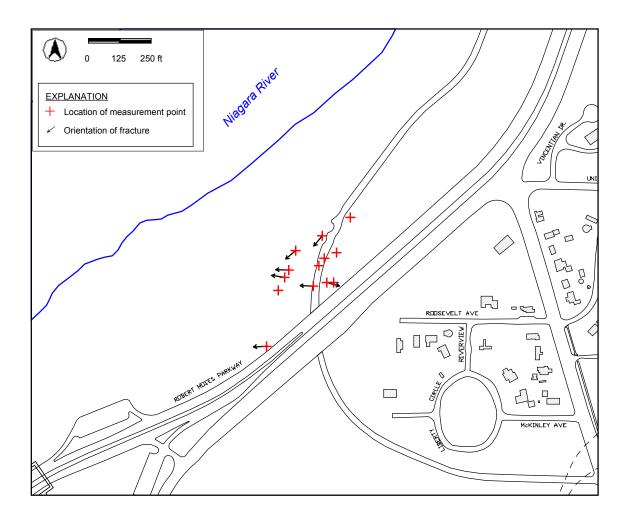


Figure 4. Locations and orientations of vertical fractures

Section 3 Interpretations

The investigation was intended as a quick survey of major water-bearing features close to the Site, rather than as a comprehensive study. A comprehensive study would consist of a survey of all outcrops in the vicinity of the Site, as well as lineament studies from topographic maps and air photos. Since only two outcrops at the gorge were examined in this study, there is not sufficient data to support definitive determination of fracture patterns at the gorge (or by extrapolation, at the Site). We can draw only some preliminary inferences from the mapping.

The mapping data suggest that there are two fracture sets in the vicinity of the gorge. The first set of fractures runs almost east-west, the strike of the second set is about 55° from north. The spacing between fractures in each set is between 50 and 100 ft. We have used the limited data to sketch "mean" vertical fracture orientations. The hypothesized distribution of fractures is shown on Figure 5.

We recognize that the fracture patterns shown on Figure 5 are speculative, being based only on the data available from a deliberately limited field examination. However, our interpretations are consistent with other data from regional geologic interpretations. Figure 6 shows the joint orientations identified by Williams and others (1985) in the Niagara region. Williams and others (1985) identified a dominant East-West fracture set with an orientation consistent with our mapping. Williams and others identified another fracture set with an orientation that is similar to the second set we show on Figure 6; however, this is not a dominant set.

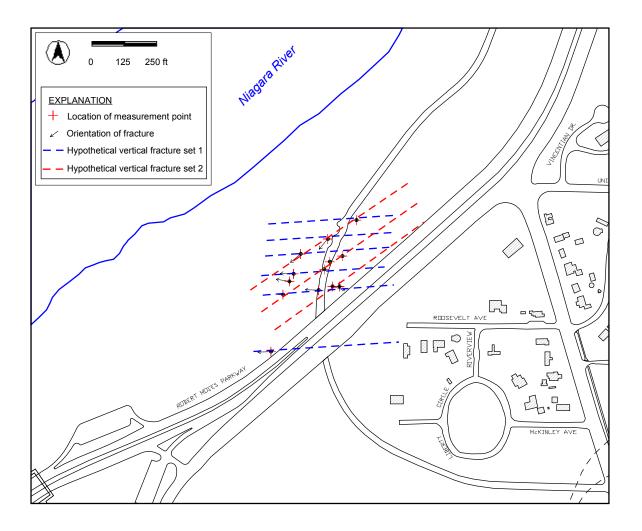


Figure 5. Hypothesized vertical fractures

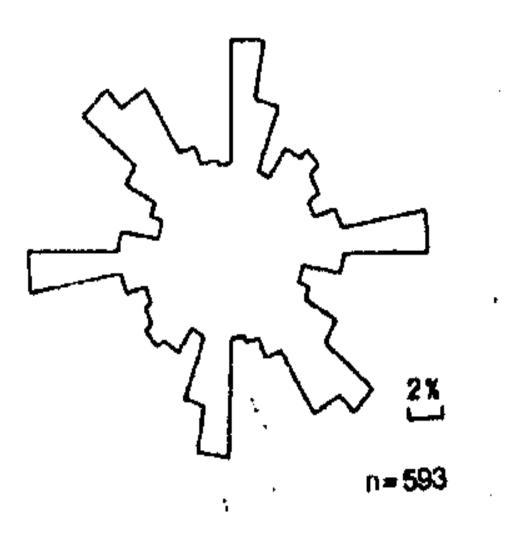


Figure 6. Joint orientations determined from Silurian and Devonian rocks in the Niagara Peninsula (after Williams and others, 1985)

Section 4 References

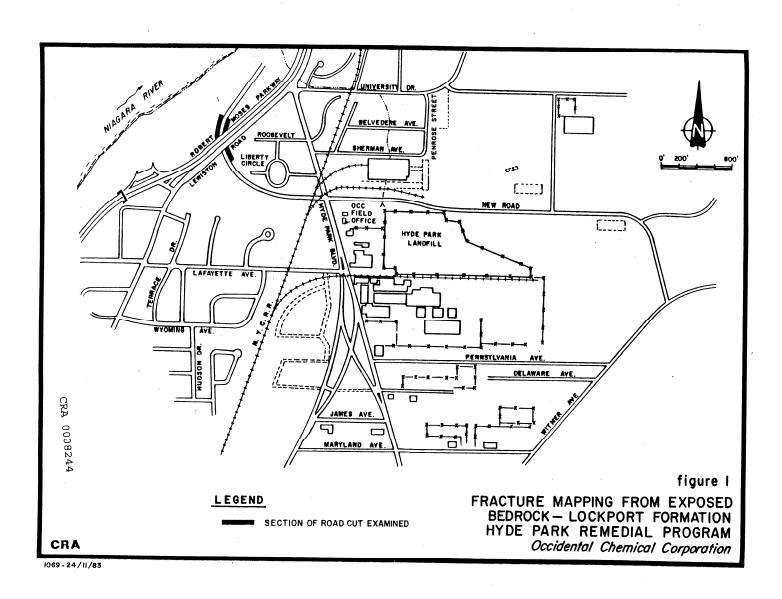
- Brett, C.E., D.H. Tepper, W.M. Goodman, S.T. LoDuca, and B.-Y. Eckert, 1995: Revised Stratigraphy and Correlations of the Provincial Series (Medina, Clinton, and Lockport Groups) in the Type Area of Western New York, United States Geological Survey, Bulletin 2086, Washington DC.
- Conestoga-Rovers & Associates, 1983: Pump Well Installation and Pump Test Results, Appendix J: Lockport Formation Investigation, Hyde Park Remedial Program, December 1983.
- Williams, H.R., D. Corkery, and E.G. Lorek, 1985: A study of joints and stress-release buckles in Paleozoic rocks of the Niagara Peninsula, southern Ontario, Canadian Journal of Earth Sciences, 22, pp. 296-300.
- Zenger, D.H., 1962: Proposed Stratigraphic Nomenclature for Lockport Formation (Middle Silurian) in New York State, American Association of Petroleum Geologists Bulletin, v. 30, p. 477-513.
- Zenger, D.H., 1965: Stratigraphy of the Lockport Formation (Middle Silurian) in New York State, New York State Museum and Science Service, Bulletin 404, 210 p.
- Zenger, D.H., 1966: The Lockport Formation in Western New York, in *Geology of Western New York*, Guidebook, E.J. Buehler (ed.), 115 p.

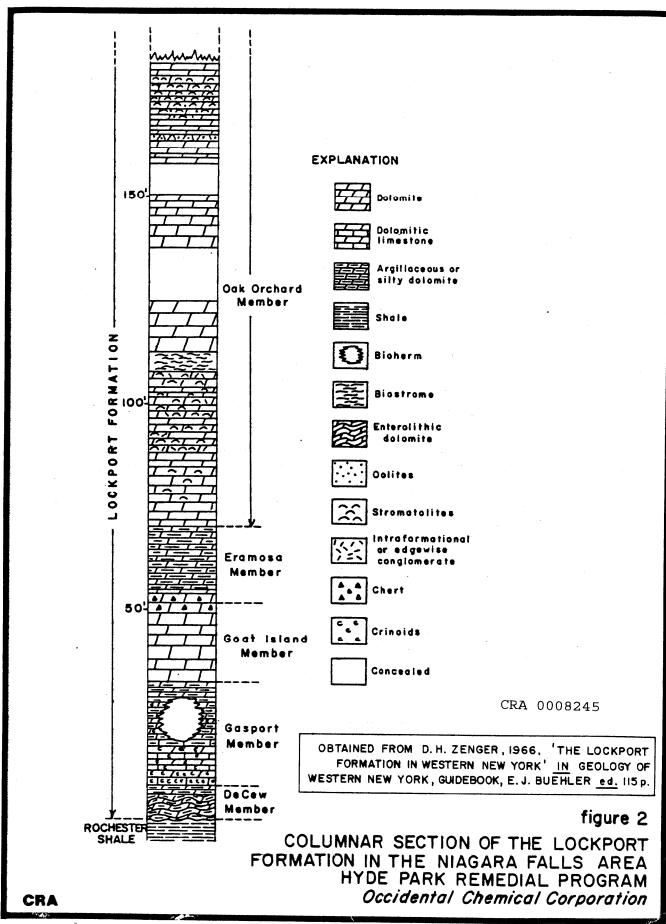
APPENDIX E.2

LOCKPORT FORMATION INVESTIGATION (CRA, 1983)

APPENDIX J

LOCKPORT FORMATION INVESTIGATION

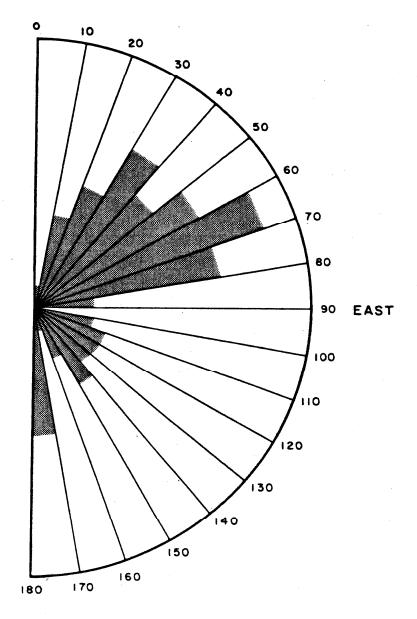

APPENDIX J


LOCKPORT FORMATION INVESTIGATION

On August 25, 1983 the Lockport Formation was examined and the fractures were recorded with respect to frequency, aperature, length and orientation. This fracture mapping was conducted at the rock cut along New Road above the PASNY hydroelectric station in the Niagara Gorge shown on Figure 1. The general stratigraphy for the Lockport Formation is presented in Figure 2.

A representative area on the rock face was outlined for each Member of the Lockport Formation as the Members were encountered along New Road. The contacts between the Oak Orchard, Eramosa and Goat Island Members were inferred during the fracture mapping. However, the results of the mapping for these 3 Members were compiled as the precise contacts were too ambiguous to plot the data separately.

Many of the natural fractures throughout the Formation showed a distinct dark brown or gray staining along the fracture face. However, some of the fractures that appeared to be natural by their orientation and magnitude, did not exhibit any evidence of staining.


Therefore, all of the fractures observed were recorded even though several fractures may have been the result of blasting during the excavation of the road cut. The natural fractures or joint sets are expected to represent a family of fractures along a distinct orientation, if the joints are well developed. The induced fractures are expected to represent a more random statistical variation. The fracture orientations were plotted with respect to true north.

The fractures were observed to be significantly more frequent in the upper part of the Formation, particularly the Oak Orchard, Eramosa and Goat Island Members. In general, the fractures were vertical to near vertical.

The frequency and orientation of the fractures are shown in Figure 3 for the upper 3 Members, in Figure 4 for the Gasport and Decew Members and in Figure 5 for all of the Lockport Formation. Generally, the fracture aperatures were less than 1/32" wide with irregular fracture surfaces. Fracture lengths were typically 0.5 to 2 feet long.

Figure 4 illustrates the low frequency of fractures in the lower portion of the Lockport Formation. The dimensions of the fractures in this section

SOUTH

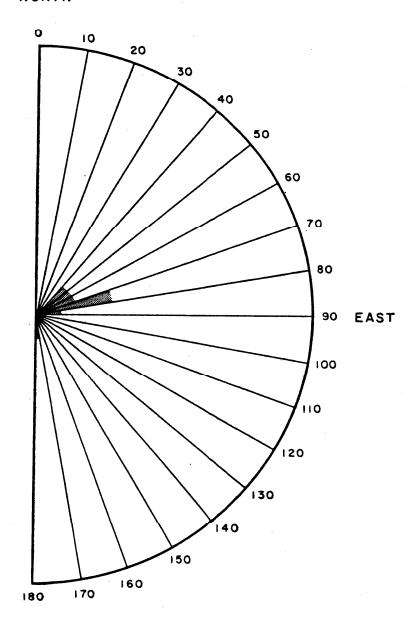

CRA 0008247

figure 3

STRIKE OF JOINT SETS FOR OAK ORCHARD, ERAMOSA AND GOAT ISLAND MEMBERS FROM ROAD CUT IN NEW ROAD ABOVE P.A.S.N.Y. HYDROELECTRIC STATION

CRA

NORTH

SOUTH

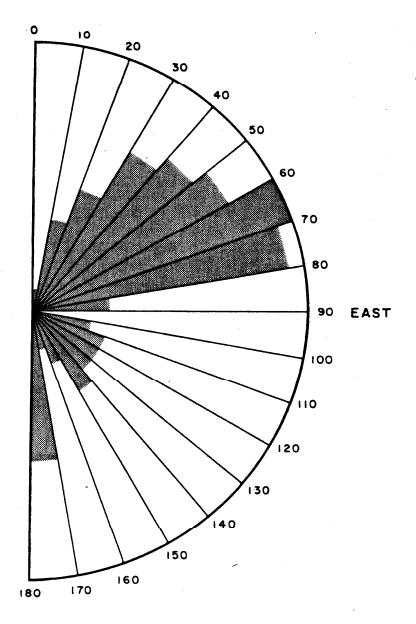

CRA 0008248

figure 4

STRIKE OF JOINTS IN GASPORT AND DECEW MEMBERS FROM ROAD CUT IN NEW ROAD ABOVE P.A.S.N.Y. HYDROELECTRIC STATION

CRA

SOUTH

CRA 0008249

figure 5

STRIKE OF JOINTS IN LOCKPORT FORMATION FROM ROAD CUT IN NEW ROAD ABOVE P.A.S.N.Y. HYDROELECTRIC STATION

CRA

were much larger than those in the rest of the Formation. Five large fractures, with aperatures of <1/32" to 4" and extending from 15 to over 40 feet, were observed in the Gasport and Decew Members. The trend of these fractures is N68°E to N86°E.

Figure 5 shows a broad variation in the attitude of the main joint set with an average strike of N50°E. The secondary joint set trends N130°E. There is a tertiary joint set trending N.S.

APPENDIX F

PETROPHYSICAL TESTING RESULTS

Hyde Park Landfill Site Niagara Falls, New York

Report on the Results of Petrophysical Tests Conducted on Samples from the Hyde Park Landfill Site

Prepared For:

Miller Springs Remediation Management Inc. and Glenn Springs Holdings, Inc.

Prepared By:

February 12, 2002

Table of Contents

		Page
Section	n 1 Introduction	1
Section	n 2 Core Samples	2
Section	n 2 Results of the Petrophysical Tests	4
2.1	Summary of results	4
2.2	Bulk density	
2.3	Porosity and grain density	
2.4	Permeability	7
2.5	Compressional velocity	
Section	n 3 Summary of Findings	11
Section	n 4 References	12

Section 1 Introduction

Core Laboratories in Houston, Texas conducted petrophysical tests on samples of bedrock drill core from the Site. The core testing was conducted to determine fundamental properties of the intact rock materials. The physical properties that were determined included:

- Bulk density;
- Porosity;
- Grain density;
- Permeability; and
- Acoustic velocity.

This memorandum documents the test methods, summarizes the results of the tests, and discusses the reliability of the results and their physical significance.

The petrophysical testing was undertaken at the suggestion and direction of Mr. Michael Metz, Chief Petrophysical Engineer, Occidental Oil and Gas Corporation (OOGC). The documentation of the petrophysical testing incorporates the technical contributions of several individuals. Staff of Core Laboratories provided details on the test methods (Art Curby, Di Jiao, and John Dacy), and Jon J. Williams, CRA, provided details on the rock sampling. Mr. Metz and members of the Hyde Park Technical Team have reviewed the final report.

Section 2 Core Samples

Core samples were obtained from the drilling of well cluster J5, installed in August 2001. The locations of the samples relative to the geologic contacts are shown on Figure 1. This figure incorporates the stratigraphic nomenclature of Brett et al. (1995), and the stratigraphic contacts developed for the revised Site characterization. The locations of the core samples were chosen to provide samples from each bedrock type at the Site, based on the previous stratigraphic model developed for the Site. According to the previous nomenclature for the Site, the sample locations correspond to:

- Samples 1 and 2: Oak Orchard Formation;
- Samples 3 and 4: Eramosa Formation;
- Samples 5 and 6: Goat Island Formation;
- Samples 7 and 8: Gasport Formation; and
- Samples 9 and 10: Decew Formation.

It was not possible to obtain an intact sample from the Rochester Shale.

The core samples were prepared following the instructions of Michael Metz (OOGC) and shipped to Core Laboratories. The samples consisted of intact rock, typically 0.5 feet long with a diameter of 3 inches.

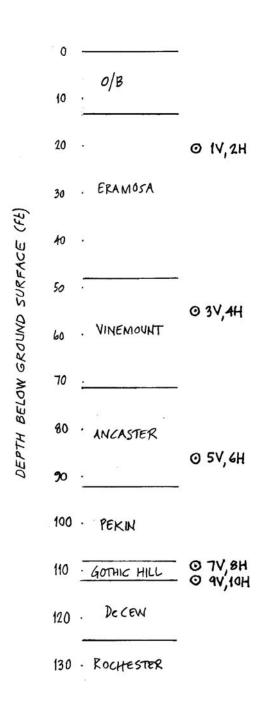


Figure 1. Locations of J5 core samples

Section 2 Results of the Petrophysical Tests

2.1 Summary of results

The results of the petrophysical tests are assembled on Table F.1. The upper portion of the table provides the results from the porosity, permeability, and grain density determinations. The quantities b(He), Beta, and Alpha are intermediate quantities for the determination of permeability. A total of 10 samples were tested from five locations; two samples from each sample were tested to obtain independent estimates of horizontal and vertical permeability.

The lower portion of Table F.1 provides the results from the bulk density determinations, and the results of the acoustic tests. The acoustic tests provided estimates of velocities, moduli and Poisson's ratios.

2.2 Bulk density

Bulk densities of five core samples were determined by estimating the volume of the samples, and measuring their mass under room temperature and pressure. The sample volumes were estimated from the average of five measurements of the diameter of each cylindrical sample. The bulk densities are summarized below.

Sample	Bulk density (g/cm³)
1V	2.73
3V	2.73
5V	2.76
7V	2.71
9V	2.71

The bulk density values are highly consistent, suggesting that the rocks of the Lockport Group have similar material properties.

2.3 Porosity and grain density

The porosity and grain density of ten core samples were determined at ambient conditions, using the Boyle's Law double-cell technique (American Petroleum Institute RP-40). With this technique, the porosity is calculated from:

Porosity = Pore Volume / (Pore Volume + Grain Volume) X 100

Grain volumes were determined using the double-cell technique with helium as the expansion gas (API RP-40, Sec 5.3.2.1). Pore volumes were determined with the double-cell technique at a net confining stress (NCS) of 800 psig, in a hydrostatic core holder (API RP-40, Sec 5.3.2.2). The final porosity and grain density determinations are summarized below.

Sample	Porosity	Grain density
	(%)	(g/cm^3)
1V	4.82	2.841
2H	5.45	2.840
3V	4.30	2.830
4H	4.31	2.828
5V	3.91	2.849
6H	3.53	2.844
7V	5.39	2.846
8H	4.79	2.846
9V	5.37	2.843
10H	7.55	2.839

The reported porosities of the samples vary over a relatively narrow range, from about 3% to 8%. This range is consistent with the general range cited by Freeze and Cherry (1979) for limestone and dolomite of 0 to 20%. The reported grain densities of the samples also vary over a relatively narrow range, from about 2.828 to 2.849 g/cm³. This range is consistent with the mineral density of dolomite, 2.85 g/cm³. The mineral density of dolomite is slightly higher than the typical value of 2.65 g/cm³ typically assumed for mineral soils (Freeze and Cherry, 1979). The value reported by Freeze and Cherry is representative of shales and quartz sands.

The narrow ranges of the reported porosities and grain densities again suggest that the rocks of the Lockport Group have similar material properties.

The internal consistency of the bulk density, porosity, and grain density measurements can be checked. If it is assumed that the samples are dry, then the bulk density can be calculated from:

$$\rho_b = (1-\phi)\rho_s$$

If it is assumed that the samples are saturated, the bulk density is given by:

$$\rho_b = \phi \rho_w + (1 - \phi) \rho_s$$

In these relations, ϕ denotes the porosity, and ρ_s and ρ_b denote the grain and bulk density, respectively. The calculated bulk densities tabulated below have been determined by substituting the reported values of porosity and grain density into the two theoretical relations.

Sample	Reported Bulk density (g/cm³)	Calculated Bulk density-Dry (g/cm ³)	Calculated Bulk density-Wet (g/cm³)
1V	2.73	2.704	2.752
3V	2.73	2.685	2.751
5V	2.76	2.708	2.777
7V	2.71	2.693	2.747
9V	2.71	2.690	2.744

The reported bulk densities generally lie between the two corresponding calculated values. This suggests that the samples underwent some drying before the bulk density determinations. The close agreement between values confirms the internal consistency of the reported measurements.

2.4 Permeability

Permeabilities were measured on ten samples, using methods described in Jones (1972, 1987, 1988) and Amaefule et al. (1988). The laboratory measurements were made by passing air through the samples. The measured permeability is "apparent", and must be corrected for the effects of gas slippage (the Klinkenberg effect). This "corrected" permeability is determined from:

$$k_{app} = k_{\infty} \left(1 + \frac{b}{P} \right)$$

where k_{app} is the measured permeability, and k_{∞} is the corrected permeability. In this relation, b denotes the Klinkenberg factor, and P denotes the mean air pressure at which the permeability was measured. The corrected permeability represents the apparent permeability extrapolated to infinite air pressure. The Core Labs results are tabulated below; these values represent the corrected permeability, the appropriate measure for subsequent estimation of the hydraulic conductivity.

Sample	Reported Permeability
	(md)
1V	4.51E-03
2H	5.50E-01
3V	5.82E-04
4H	5.31E-04
5V	1.40E-03
6H	1.11E-03
7V	1.99E-03
8H	2.45E-03
9V	1.07E-03
10H	2.44E-02

The analysis assumes that the samples are dry. The values have not been corrected for a possible reduction in permeability due to the presence of water in the pore spaces.

The hydraulic conductivity (K) is related to the permeability (k) according to:

$$K = \frac{\rho g}{\mu} k$$

where ρ is the density of water and μ is the dynamic viscosity of water, and g is the acceleration due to gravity. The groundwater temperatures determined during the geophysical logs range from between 52°F and 56°F (11°C to 13°C). For an average temperature of 12°C, the density and dynamic viscosity of water are 999.5 kg/m³ and 1.235 cP, respectively. To estimate the hydraulic conductivity in units of cm/sec, the reported permeabilities must be multiplied by a factor of 7.8388×10^{-7} . This factor incorporates the conversion from the oil-field units of millidarcies (md) defined in Muskat (1937). The estimated hydraulic conductivities are listed on the following table.

Sample	Reported Permeability (md)	Hydraulic Conductivity (cm/sec)
1V	4.51E-03	3.53E-09
2H	5.50E-01	4.31E-07
3V	5.82E-04	4.56E-10
4H	5.31E-04	4.16E-10
5V	1.40E-03	1.10E-09
6H	1.11E-03	8.70E-10
7V	1.99E-03	1.56E-09
8H	2.45E-03	1.92E-09
9V	1.07E-03	8.39E-10
10H	2.44E-02	1.91E-08

The hydraulic conductivities of the samples range from about 4×10^{-10} to 4×10^{-7} cm/sec. Figure 2 shows the envelope of reported values superimposed on the general ranges cited by Freeze and Cherry (1979). The plot shows that the hydraulic conductivities of the core samples are consistent with literature values for intact dolomites and shales. The measured values are several orders of magnitude lower than the values inferred from slug tests at the Site. This suggests that the permeability of the bedrock at the Site is controlled by fractures, and not by flow in the matrix.

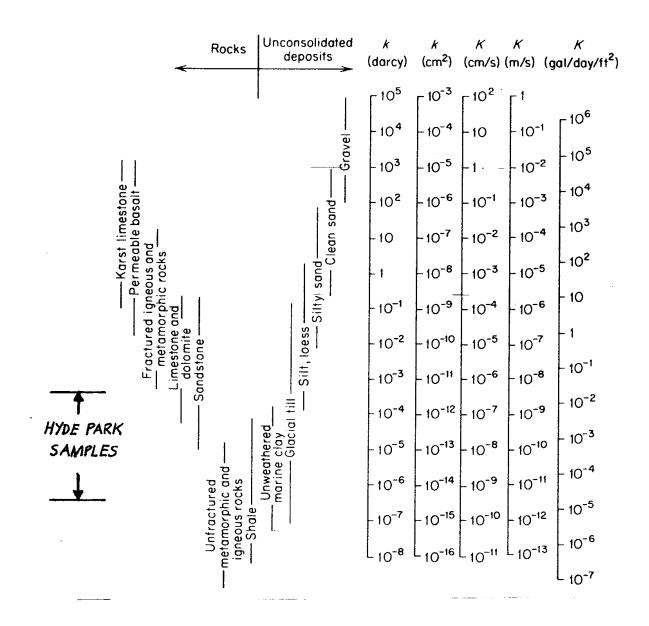


Figure 2. Range of permeabilities for the Hyde Park Landfill samples (Adapted from Freeze and Cherry, 1979)

2.5 Compressional velocity

Compressional velocities were measured on five samples, using laboratory techniques consistent with ASTM Standard D2845-1995 "Method for Laboratory Measurement of Pulsed Sonic Velocities and Ultrasonic Elastic Constants of Rock". Ultrasonic waves are passed through the sample, and the waveforms stored for subsequent analysis of the compressional and shear wave velocities. The wave velocities are calculated using the arrival times of the P and S waves and length of the sample. The dynamic moduli and dynamic Poisson's ratio are also calculated.

The compressional velocities have been used to calibrate the sonic geophysical logs used to estimate the rock porosity. The Core Labs results are tabulated below.

Sample	Compressional velocity, v
	(ft/s)
1V	18,172
3V	16,785
5V	18,921
7V	18,769
9V	17,931

The reported compressional velocities represent the properties of the rock minerals (matrix) and pore space, and are consistent with typical values from other dolomite samples (M. Metz, OOGC, personal communication, January 2002). The difference between the measured compressional velocities and tabulated values for the matrix constitutes the basis for the estimation of porosity from the sonic logs. For the matrix alone, tabulated velocity values for dolomite range from 21,000 to 24,000 ft/s (Keys, 1989; Schlumberger, 1987). Century Geophysics assumed a value of 22,700 ft/s for the interpretation of the sonic logs.

Section 3 Summary of Findings

- 1. The bulk density values are highly consistent, suggesting that the rocks of the Lockport Group have similar material properties.
- 2. The narrow ranges of the reported porosities and grain densities again suggest that the rocks of the Lockport Group have similar material properties.
- 3. The reported bulk densities are internally consistent with the reported porosities and grain densities.
- 4. The hydraulic conductivities of the core samples are consistent with literature values for intact dolomites and shales. The measured values of hydraulic conductivity are several orders of magnitude lower than the values inferred from slug tests at the Site. This suggests that the permeability of the bedrock at the Site is controlled by fractures, and not by flow in the matrix.
- 5. The reported compressional velocities are consistent with typical values for dolomite.

Section 4 References

- Amaefule, J.O., D.G. Kersey, D.M. Marschall, J.D. Powell, L.E. Valencia, and D.K. Keelan, 1988: Reservoir description: A partial synergistic engineering and geological approach based on analysis of core data, Society of Petroleum Engineers Technical Conference Paper SPE 18167.
- Brett, C.E., D.H. Tepper, W.M. Goodman, S.T. LoDuca, and B.-Y. Eckert, 1995: Revised Stratigraphy and Correlations of the Niagara Provincial Series (Medina, Clinton, and Lockport Groups) in the Type Area of Western New York, U.S. Geological Survey Bulletin 2086, Washington, DC.
- Freeze, R. A., and J.A. Cherry, 1979: **Groundwater**, Prentice-Hall, Inc., Inglewood Cliffs, New Jersey.
- Jones S.C., 1972: A Rapid Accurate Unsteady-State Klinkenberg Permeameter, *Soc. Pet. Eng. Journal*, (Oct. 1972), pp. 383-397.
- Jones, S.C., 1987: Using the inertial coefficient, β, to characterize heterogeneity in reservoir rock, Society of Petroleum Engineers Technical Conference Paper SPE 16949.
- Jones, S.C., 1988: Two-Point Determination of Permeability and PV vs. Net Confining Stress, *SPE Formation Evaluation* (March 1988), pp. 235-241.
- Keys, W.S., 1989: **Borehole Geophysics Applied to Ground-Water Investigations**, National Water Well Association, Dublin, OH.
- Muskat, M., 1937: **The Flow of Homogeneous Fluids through Porous Media**, McGraw-Hill Book Company, Inc., New York, NY.
- Schlumberger, 1987: **Log Interpretation Principles/Applications**, Schlumberger Educational Services, Houston, TX.

TABLE F.1 Page 1 of 1

BEDROCK PHYSICAL PROPERTIES TEST RESULTS SITE CHARACTERIZATION REPORT HYDE PARK LANDFILL SITE TOWN OF NIAGARA, NEW YORK

Net

	Confining Permeability								Grain						
Sam	ple Location	Unit	Test	Depth	Stress	Porosity	Klink	enberg	K	air	b(He)	Beta	Alpha	Density	Description
	Depth (ft. bgs)		Orientation	(ft)	(psig)	(%)	(mD)	(cm²)	(mD)	(cm²)	(psi)	(per ft)	(microns)	(g/cm ³)	
J5U	20.17 - 21.05	Eramosa Fm.	Vertical	20.17	800	4.82	0.005	4.88E-09	0.010	1.09E-08	110.88	1.99E+16	2.77E+05	2.841	Dol gry xln
J5U	20.17 - 21.05		Horizontal	20.50	800	5.45	0.550	5.95E-07	0.593	6.42E-07	5.14	6.79E+11	1.17E+03	2.840	Dol gry xln svug
J5M	54.95 - 55.5	Vinemount	Vertical	54.95	800	4.30	0.001	6.30E-10	0.002	1.71E-09	176.70	1.82E+16	3.82E+04	2.830	Dol gry
J5M	54.95 - 55.5	Member	Horizontal	55.35	800	4.31	0.001	5.74E-10	0.001	1.59E-09	182.28	2.32E+16	4.29E+04	2.828	Dol gry
J5M	86 - 86.5	Niagara Falls	Vertical	86.00	800	3.91	0.001	1.51E-09	0.003	3.74E-09	142.75	9.20E+16	4.59E+05	2.849	Dol gry
J5M	86 - 86.5	Member	Horizontal	86.35	800	3.53	0.001	1.20E-09	0.003	3.05E-09	152.60	1.95E+17	7.42E+05	2.844	Dol gry
J5L	109 - 109.6	Gothic Hill	Vertical	109.00	800	5.39	0.002	2.15E-09	0.005	5.15E-09	132.04	1.25E+17	8.58E+05	2.846	Dol gry
J5L	109 - 109.6	Member	Horizontal	109.30	800	4.79	0.002	2.65E-09	0.006	6.21E-09	125.48	1.50E+16	1.27E+05	2.846	Dol gry
J5L	112 - 112.65	DeCew	Vertical	112.00	800	5.37	0.001	1.16E-09	0.003	2.94E-09	150.64	5.30E+15	2.13E+04	2.843	Dol gry styl
J5L	112 - 112.65	Formation	Horizontal	112.40	800	7.55	0.024	2.64E-08	0.028	3.06E-08	12.77	8.35E+15	6.73E+05	2.839	Dol gry

					Net	Bulk		Acoustic	Velocity		Dynamic Bulk	Dynamic Young's	Dynamic Shear	Dynamic	
Samp	le Location			Depth	Stress	Density,	Compre	essional	She	ear	Modulus,	Modulus,	Modulus,	Poisson's	Description
				(ft)	(psi)	(g/cm³)	(ft/sec)	(µs/ft)	(ft/sec)	(µs/ft)	1.00E+06	1.00E+06	1.00E+06	Ratio	
J5U	20.17 - 21.05	Eramosa Fm.	Vertical	20.17	0	2.73	18172	55.0	10833	92.3	6.40	10.58	4.32	0.22	Dol gry xln
J5M	54.95 - 55.5	Vinemount M.	Vertical	54.95	0	2.73	16785	59.6	10259	97.5	5.20	9.30	3.87	0.20	Dol gry
J5M	86 - 86.5	Niagara Falls M	Vertical	86.00	0	2.76	18921	52.9	11095	90.1	7.22	11.35	4.58	0.24	Dol gry
J5L	109 - 109.6	Gothic Hill M.	Vertical	109.00	0	2.71	18769	53.3	10794	92.6	7.21	10.68	4.26	0.25	Dol gry
J5L	112 - 112.65	DeCew Fm.	Vertical	112.00	0	2.71	17931	55.8	10556	94.7	6.32	10.05	4.07	0.23	Dol gry styl

Notes:

Dol = dolomite

gry = gray

xln = crystalline

svug = small vugs

styl = stylolite

APPENDIX G

ACCURACY OF ELEVATION MEASUREMENTS

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTRO	DDUCTION	G-1
	1.1	MAGNITUDE OF THE MEASUREMENT ERROR	G-2
	1.2	SURFACE ELEVATION SURVEY	G-2
	1.3	ACCURACY OF THE DOWNHOLE ELEVATION	
		MEASUREMENTS	G-3
2.0	ERRO	RS ASSOCIATED WITH THE IDENTIFICATION	
	OF LIT	THOLOGIC CONTACTS	G-5
3.0	CONC	CLUSIONS	G-6

LIST OF FIGURES (Following Text)

FIGURE G.1	DATA WITH MEASUREMENT ERROR BARS
FIGURE G.2	INTERPRETATION OF DATA WITH MEASUREMENT ERROR
FIGURE G.3	DIFFERENCE BETWEEN GRADE ELEVATIONS IN SITE DATABASE AND 2001 SURVEY
FIGURE G.4	COMPARISON OF NATURAL GAMMA SIGNALS FROM AGW-1U, AGW-1M, AND AGW-1L
FIGURE G.5	CHANGE IN LITHOLOGIC CONTACT PICKS

1.0 INTRODUCTION

Numerous elevation measurements are presented in this report, and correlations made across the Site based on these measurements. The accuracy of these measurements is an important consideration in the interpretation of data. This appendix presents an estimate of the uncertainty associated with certain measurements, and a discussion of how the uncertainty affects data interpretation.

Figure G.1 presents a hypothetical set of elevation measurements made along a cross section. For the purposes of this discussion, the measurements are assumed to represent the interpreted elevation of a peak on the gamma geophysical log. Each estimated elevation measurement is plotted as a dot with an associated measurement error, depicted by the error bars extending above and below the data points. Assuming that all measurements and reference points have been accurately documented, the actual elevation of the measurement is not the point, but is somewhere between the error bars. There are two key elements affecting measurement error:

- the surface elevation survey; and
- the accuracy of the downhole measuring tool (e.g., a tape along a core, a depth-to-water meter, or a geophysical instrument).

Figure G.2 presents three interpretations of the data plotted on Figure G.1:

- connects all of the reported values with straight lines;
- fits a smooth curve to the reported values; and
- provides a best-fit line to the reported values that falls within the error bars.

All three interpretations are equally valid, none are exactly right, and unless we know a-priori the actual line, there is no way to know which interpretation is the closest to being correct. In general, it is not possible to quantitatively establish the 'best' approach for presenting the relation between the data points because the shape of the surface containing them is unknown. However, it is possible to establish the most appropriate approach. According to the principle of parsimony (also referred to as Occam's Razor), if multiple hypotheses can explain the data, then the most appropriate hypothesis is the Additional details be found one that is simplest. can at http://pespmc1.vub.ac.be/OCCAMRAZ.html).

Regardless of which interpretation is presented, the accuracy of the measurements underlying the reported values must be understood to avoid over-interpreting the data.

1.1 MAGNITUDE OF THE MEASUREMENT ERROR

In the following discussion, the magnitude of the two error factors discussed above is estimated.

1.2 SURFACE ELEVATION SURVEY

During the evaluation of geophysical data for the Site Characterization Report, a number of potential outliers were identified. The investigation of these outliers included a resurvey of the grade elevation for the wells in question. Figure G.3 presents a summary of the difference between the original elevation and the December 2001 resurvey.

There are several sources for the errors in elevation plotted on Figure G.3. Three examples are described below:

- At ABP-3, the grade was lowered by 6 feet, and the well was cut down. The original
 grade was retained in the database, because the lithologic contacts are recorded in
 depth below grade at the time of drilling. Changing grade would result in
 calculation of incorrect contact elevations. However, the database grade elevation
 was used for the 2001 geophysical survey reference, resulting in an error in the
 calculation of elevations in the 2001 geophysical survey;
- There was no change in grade at the F4 well cluster. This 5-foot error is either related to an inaccurate survey, or an inaccurate transfer of the survey data into the database; and
- Well J5L was installed in 2001. The original elevation of the survey was determined upon completion of the well. The difference between the two values is 0.9 feet. Grade has probably not changed by 0.9 feet between the first survey and December 2001. The difference suggests that the survey accuracy, possibly the placement of the stadia rod, introduce an error close to 1 foot.

In this inspection of 21 resurvey measurements, there were five locations where the survey error was outside of the primary cluster of data. These five are considered to be "mistakes". That is, a transcription error or a change in grade that was not properly recorded. The remaining 16, clustered between –1 and 0 feet, are considered to reflect the precision of the measurement.

It is unusual that there were no errors between 0 and ± 1 feet. This may be because the wells selected for resurvey were identified as outliers, and were therefore a biased data set. It is also unlikely that the 'rate' of errors (5 mistakes in a sample of 21, or 24 percent), represents the general population. Based on the results of this error analysis, the error associated with grade survey is estimated to be ± 1 foot.

1.3 ACCURACY OF THE DOWNHOLE ELEVATION MEASUREMENTS

The accuracy of a downhole elevation measurement, e.g., the elevation of a gamma peak, is difficult to quantify. It is typically assumed to be the equivalent to the measuring increments of the measuring tool. For example, depth-to-water meters are typically graduated in 0.01-foot increments. However, the water level data collected during the May/June shutdown of the bedrock purge well system demonstrated that the error associated with a carefully performed hand water level measurement is much greater than the 0.01-foot graduations on the tape. The analysis demonstrated that the hand measurement errors were normally distributed with a standard deviation of 0.08 feet; that is, 36 percent of the measurements made have an error >0.08 feet (data to be published in the May/June Shutdown Report). The analysis excluded mistakes, e.g., incorrectly recording numbers, gross errors, and does not account for error associated with the survey of the top of the well casing.

The analysis of water level errors was relatively easy to perform because water levels were collected both by hand and with electronic data loggers. In contrast, downhole measurements of a gamma response or other geophysical measurement only have one set of measurements.

A simple review of the data from one well cluster, AGW-1, provides insight into the elevation error associated with the geophysical measurements. Figure G.4 shows the gamma logs from AGW-1U, AGW-1M, and AGW-1L down to an elevation of 500 ft AMSL. The gamma signals for AGW-1U and AGW-1M are from the open interval of these wells. The AGW-1L signal is through the well casing. The gamma signal passes through the well casing although it is somewhat attenuated and slightly averaged. The gamma signals of AGW-1U and AGW-1M should overlay directly on the AGW-1L signal.

Well AGW-1L is 23 feet from AGW-1M and 58 feet from AGW-1U. Because the wells are not exactly on top of each other, the comparison is potentially flawed. Consider

however, how data are interpreted. When data points separated by 500 feet or more are contoured, as is done for the Hyde Park data and at many other sites, there is an implicit assumption that the measurement taken at locations close together are very similar. This assumption is the basis of geostatistical kriging. Conceptually, the same measurement from three closely spaced wells may be interchanged, e.g., rather than using the three clustered data points, the data from any one well in the cluster will suffice. Alternatively, the mathematics of most contour routines effectively averages the values from clustered readings.

Recognizing the assumptions associated with the analysis, the comparison of the three gamma signals clearly suggests that there is an error. Two peaks are compared between AGW-1M and AGW-1L, and one between AWG-1U and AGW-1L. The peaks are offset by approximately 2 feet, 1 foot, and 1 foot, respectively. These differences appear to represent the combined error arising from a ± 1 -foot measurement error associated with the precision of the gamma tool and an offset associated with the zero-referencing of the log of the gamma tool.

This estimate of ± 1 foot measurement error is consistent with the QA/QC discussion presented in Appendix A. The comparison of gamma logs collected in the same well on two different occasions (relogs of the well), concluded that there was approximately \pm 0.6 feet of uncertainty associated with referencing the instrument to grade, and \pm 0.6 feet of uncertainty in the vertical location of the gamma peak by the gamma tool. The total uncertainty estimated in Appendix A is ± 1.2 feet.

2.0 ERRORS ASSOCIATED WITH THE IDENTIFICATION OF LITHOLOGIC CONTACTS

The previous discussion addressed errors associated with the physical downhole measurement. This section considers the uncertainty associated with the identification of a lithologic contact.

One reason for the uncertainty in the identification of a lithologic contact appears to be the description of the contact. Brett et al. (1995) refers to the Vinemount-Ancaster contact as having a "shaly interval" at the interface. Is the contact always at the lowest shaly marker, regardless of whether or not it is the same bed? Most frequently, the Vinemount-Ancaster contact is picked just below gamma peak I (GP-I) (see Section 4 of the Site Characterization Report for details). Brett et al. (1995) also state that, "a groundwater seepage zone is recognized at this contact in many outcrops." Our review has led us to the conclusion that GP-H, about 5 feet above GP-I, is where the flow zone occurs at the Site. Occasionally, the Vinemount-Ancaster has been picked at a shaly interval that appears as a gamma peak about 5 feet below GP-I (this gamma peak is not obvious in all gamma logs). Brett et al. also states that "one or more beds of coarse crinoidal debris are typically observed near the top of the Ancaster Member." The multiple criteria for the nature of a contact, and the potential for different interpretations of a contact, create a potential for different investigators, inspecting the same core or outcrop, to pick the contact at different elevations. The description of the Vinemount-Ancaster contact suggests the possibility of picking the contact ±5 feet from its true value, based on which description of the contact is given priority.

To assess the uncertainty at the Site, a comparison was made between the contact picks made when the cores collected at the Site were first inspected, right after installation, and when the cores were relogged in 2001. Obvious recording errors were not included in the comparison.

Figures G.5A, B, and C present probability plots of the change in elevation of the contact picks between the first and second logging of the cores. Changes of 4 to 5 feet may be observed. However, 2 to 3 feet of change appears to be a more typical range.

3.0 CONCLUSIONS

Three topics have been discussed in this appendix:

- Interpretation of data with errors;
- Measurement errors associated with downhole geophysics measurements; and
- Errors associated with the identification of lithologic contacts.

The discussion of the interpretation of data that contain errors demonstrates that there are multiple equally correct (or equally incorrect) ways of interpreting the same data set. It is impossible to know which method is the best. The straight line fit, being the simplest interpretation, would be selected based on the principle of parsimony. The example values presented were generated as a random error added to a straight line, and the straight line was in fact the closest to reality.

The evaluation of downhole measurement errors suggests that there is about 1 foot of error associated with the grade reference elevation, and ± 1 foot of error associated with the precision of the geophysical measurement. No other factors were considered. Based on the two factors considered, any elevation measured from the geophysical tools has an error of approximately ± 2 feet.

The review of errors associated with selection of a lithologic contact suggests that the ambiguity of the criteria used for picking a contact results in the potential for the contact to be identified at different elevations by different geologists. The graphical analysis presented compares the contact picks at two different times by the same geologist, likely reducing uncertainty. The graphical analysis suggests that the ± 3 feet error is common and errors as large as 4 to 5 feet are occasionally observed.

1069 (299)

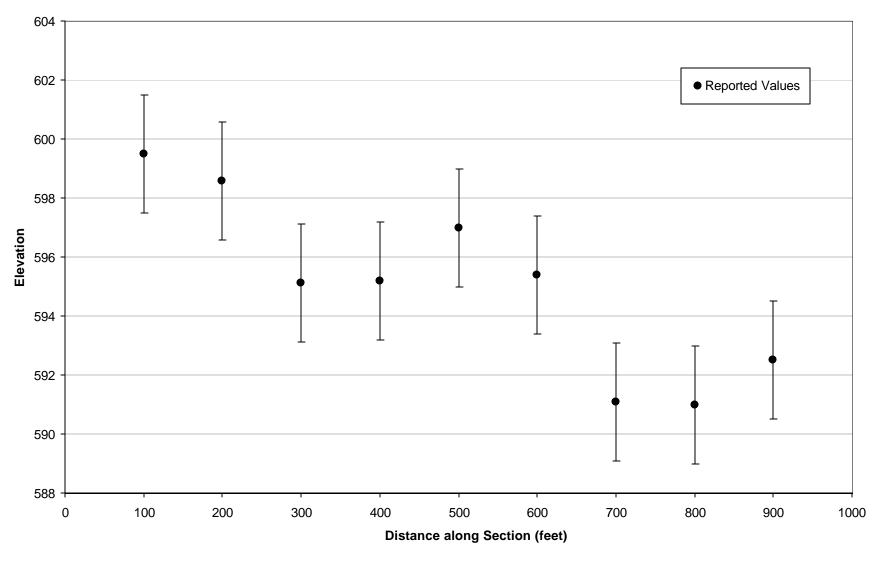


Figure G.1 Data with Measurement Error Bars

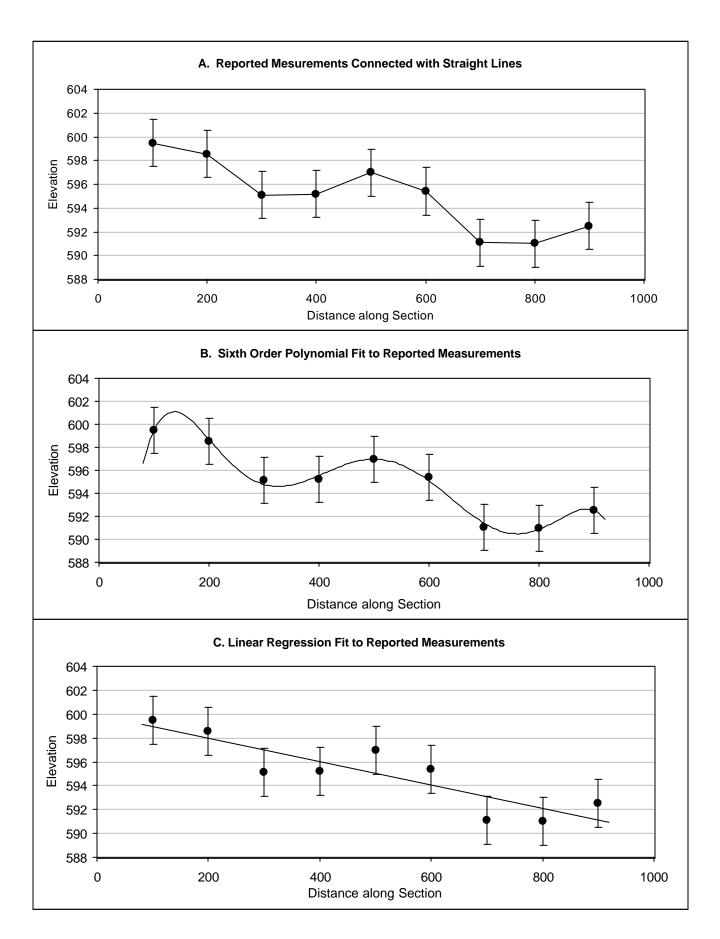


Figure G.2 Interpretation of Data with Measurement Error

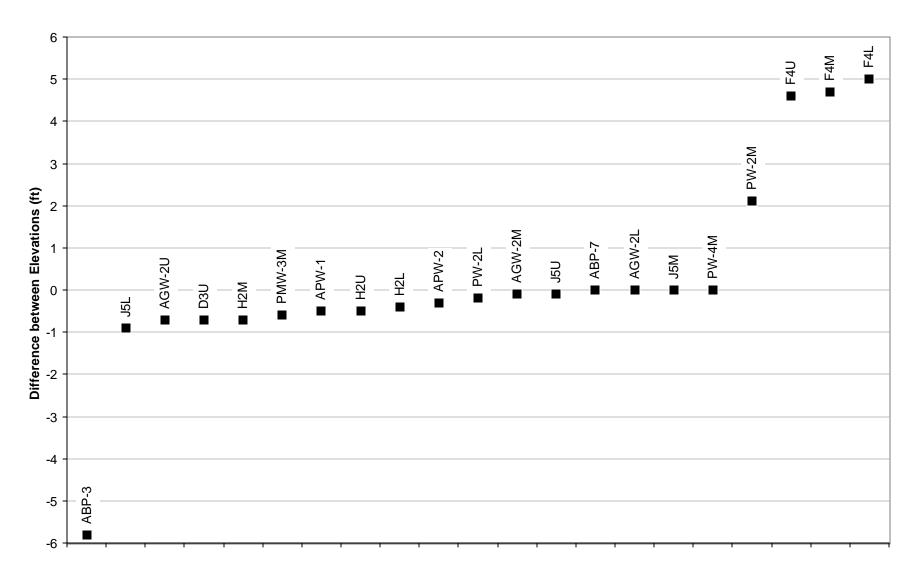


Figure G.3 Difference between Grade Elevations in Site Database and 2001 Survey

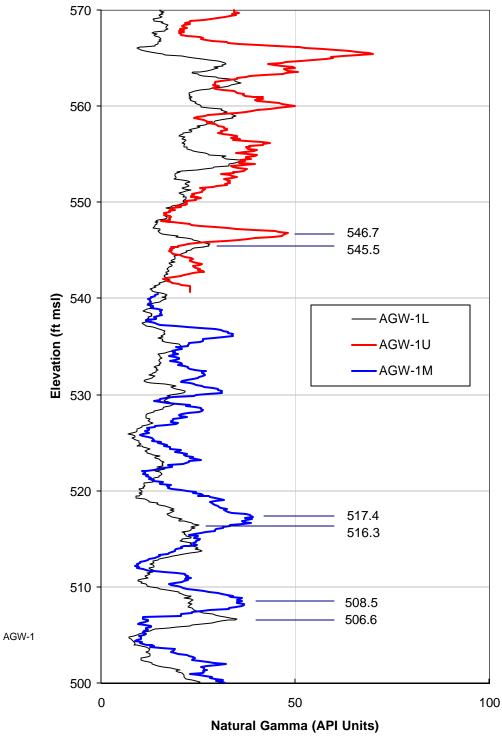


Figure G.4 Comparison of Natural Gamma Signals From AGW-1U, AGW-1M, and AGW-1L

Figure G.5 Change in Lithologic Contact Picks

APPENDIX H

SUMMARY OF PACKER FLOW TESTS AND SINGLE WELL RESPONSE TESTS

S. S. PAPADOPULOS & ASSOCIATES, INC.

Environmental & Water-Resource Consultants

Memorandum

Date: June 28, 2001

From: Christopher J. Neville and Mark A. Kuhl

To: File

SSPA Project: SSP-610

Subject: Hyde Park Landfill: Single well response tests

A relatively large number of single well response tests have been conducted at the Hyde Park Landfill Site. These tests include packer tests in boreholes and slug (recovery)/evacuation tests in completed wells. The results from the tests were not re-analyzed or used directly during the development of the Site groundwater model. The results from the single well tests were not used to assign hydraulic conductivity distributions. This was a deliberate decision based on our experience that single-well tests provide an impression of conditions only in very close proximity to the well being tested (a few well diameters). Research in settings similar to the Hyde Park Landfill has shown that interpretations are heavily weighted towards the source well (Novakowski, 1989).

Instead of using the single-well tests directly, the specifications of the bulk hydraulic properties of the bedrock were constrained by the results of the purge well tests. The constant-rate pumping tests with multiple observation wells yield better estimates of "effective" properties; however, they do not provide a detailed impression of local-scale heterogeneities. The review of the model by the USEPA and USGS provides us with an opportunity to take a closer look at all of the hydraulic conductivity data. In this memo we summarize the results of our re-examination of the results of the single well tests. Our specific objectives in re-examining the data are:

- to identify local variations in hydraulic conductivities in the bedrock zones;
- to check that the results of the packer tests are consistent with the slug test results; and
- to compare the results of the packer tests with the available hydrostratigraphic conceptualizations.

Page: 2

I. Slug testing

Results of 64 slug tests conducted in active wells at the Site are available. Some wells have been tested more than once, and 5 of the responses were not interpretable. For wells that have been tested more than once, we use the geometric mean to assign a single well. A total of 51 wells can be assigned hydraulic conductivities from slug tests (17 Upper; 10 Middle; 24 Lower). The hydraulic conductivities estimated from slug tests are plotted on attached Figures 1, 2 and 3 for the Upper, Middle, and Lower zones, respectively.

Comments on the slug test results

- 1. The figures of hydraulic conductivities suggest that there is relatively good spatial coverage over the Site. The spatial coverage is least dense in the Middle zone, and most extensive in the Lower zone. Coverage is most complete immediately west and south of the Site.
- 2. The figures of hydraulic conductivities suggest that there is relatively good spatial coverage over the Site. The spatial coverage is least dense in the Middle zone, and most extensive in the Lower zone. Coverage is most complete immediately west and south of the Site, but there are relatively few results available for the areas north and northwest of the landfill.
- 3. The hydraulic conductivity values indicate that there is significant heterogeneity at the Site.
 - In the Upper zone, the slug test K values range from 8×10^{-7} to 3×10^{-3} cm/sec.
 - In the Middle zone, the slug test K values range from 4×10^{-10} to 4×10^{-3} cm/sec.
 - In the Lower zone, the slug test K values range from 5×10^{-8} to 2×10^{-3} cm/sec.
- 4. The results from all slug tests close to the Niagara River gorge indicate low hydraulic conductivity (10^{-10} to 10^{-6} cm/sec) across all three bedrock zones.
- 5. In the Upper zone, *K* values vary abruptly across the Site. There are no obvious spatial trends. However, there does appear to be a band of relatively high conductivity connecting wells C1U, CD3U, D1U, and E5U.

Figure 4 shows the Upper zone high transmissivity zones inferred during calibration of the groundwater flow model. There are no slug tests to confirm or refute our inference of a higher T zone north of the Site. Two of the three slug tests conducted in wells that lie within the southern high T zone have higher hydraulic conductivities (> 10^{-4} cm/sec).

Page: 3

5. In the Middle zone, there appears to be a band of high conductivity connecting wells B1M, BC3M, and CD1M. It is impossible to determine whether this is actually a zone of elevated permeability, because the test results at C1M, CD2M and D1M were not interpretable.

Figure 5 shows the Middle bedrock high transmissivity zone inferred during model calibration. The high-*K* band lies within the high transmissivity zone, providing some independent suggestion of its existence.

6. In the Lower zone, *K* values vary abruptly over relatively small distances across the Site. The slug test *K* values suggest there is an area south and west of the zone that has low permeability. This area includes the gorge wells AFW-1L, AFW-2L and AFW-3L, and the off-Site wells D2L, E1L, E3L, F1L, and F2L. We have plotted this zone on Figure .

Page: 4

II. Packer testing

Packer tests were carried out in 19 boreholes at the Hyde Park Landfill Site between January and September 1991. The test results were reported in the 1991 Drilling Summary Report (CRA, 1991). The average spacing between packers was 15 ft. Slug tests have been conducted in some of the wells that were installed subsequently. As far as I am aware, no attempt was ever made to display the packer test results graphically, or to compare the results of the packer and slug testing. Although they have not been examined in detail before, the packer test data provide valuable information on the distribution of horizontal hydraulic conductivity with depth. These data are an important addition to the Site characterization. The additional slug test results also provide an excellent opportunity to evaluate the consistency between parameter estimates derived from the packer and slug tests. An assessment of the consistency between test results will be important for anticipating the value of possible future packer testing at the Site.

The wells that were packer-tested are listed on the attached table. The table also indicates whether a slug test was conducted in the corresponding completed well. Profiles of the horizontal hydraulic conductivity distribution have been prepared for each well. The profiles also include the slug test estimate of K where available. The profiles also show the "detection limit" of the packer tests. Our review of the data suggests that the lower limit on the packer-derived conductivities is 10^{-7} cm/sec, although in reality it may be an order of magnitude higher.

Comments on the packer test results

- 1. The packer test *K* profiles confirm that the bedrock properties are heterogeneous at the Site. Hydraulic conductivities vary by orders of magnitude along each borehole, and at the same elevation at two boreholes.
- 2. There appears to be only a weak Site-wide trend of hydraulic conductivity as a function of depth. In general, hydraulic conductivities tend to be higher at the top of the borehole. However, the variations in *K* along each profile do not show a clear demarcation between Upper, Middle, and Lower bedrock zones.
- 3. In most wells, there is a relatively close correlation between packer and slug test derived estimates of hydraulic conductivity. This is an encouraging result because it suggests that the packer tests can be used to obtain a reliable estimate of the near-well conductivities.

To: Find Page: 5

Listing of packer test profiles

Borehole	Slug tests
AFW-1L	AFW-1U, AFW-1M, AFW-1L
AFW-2L	AFW-2U, AFW-2M, AFW-2L
AFW-3L	AFW-3U, AFW-3M, AFW-3L
AGW-1L	
AGW-2L	
AGW-3L	
B1L	B1U, B1M, B1L
C1L	C1U, C1M (nir), C1L
D2L	D2L
E1L	E1L
F1L	F1L
G1L	G1L
H1L	H1U, H1M
J1L	J1U, J1L
PMW-1L	PMW-1L
PMW-2L	
PMW-3L	PMW-3U, PMW-3M
PW-2L	
PW-3L	

Note: nir means "not an interpretable response"

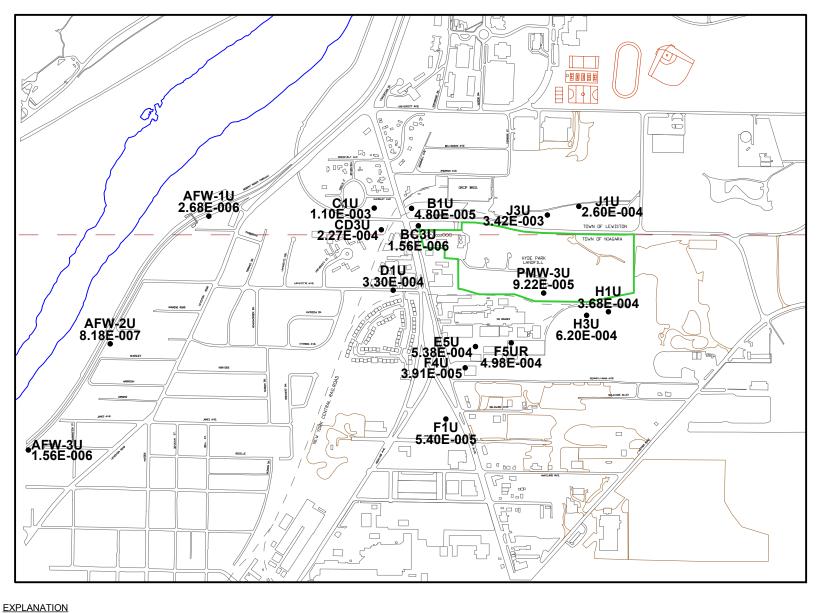


Figure 1 - Slug Test Hydraulic Conductivities - Upper Zone

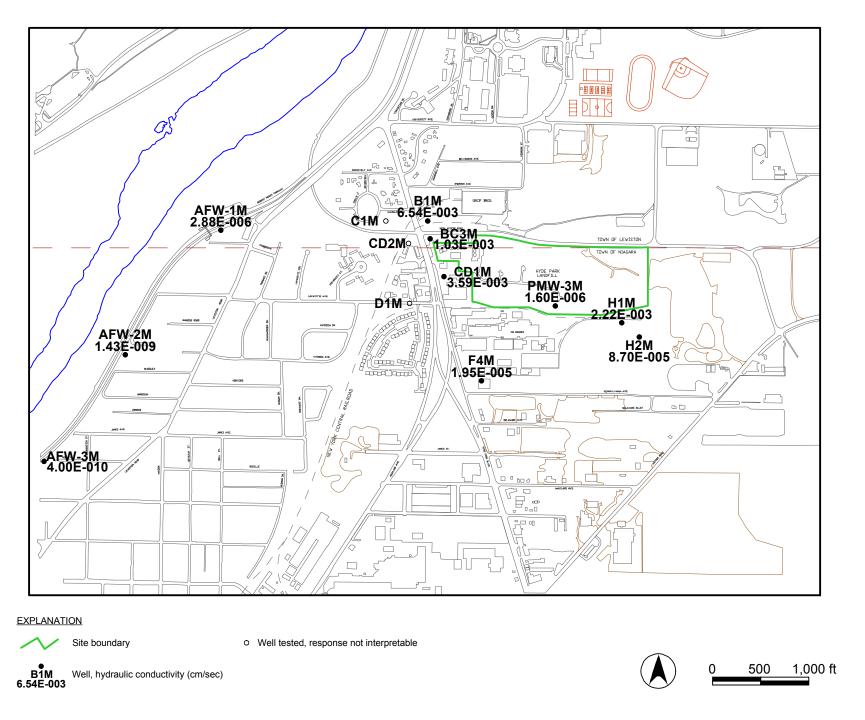


Figure 2 - Slug Test Hydraulic Conductivities - Middle Zone

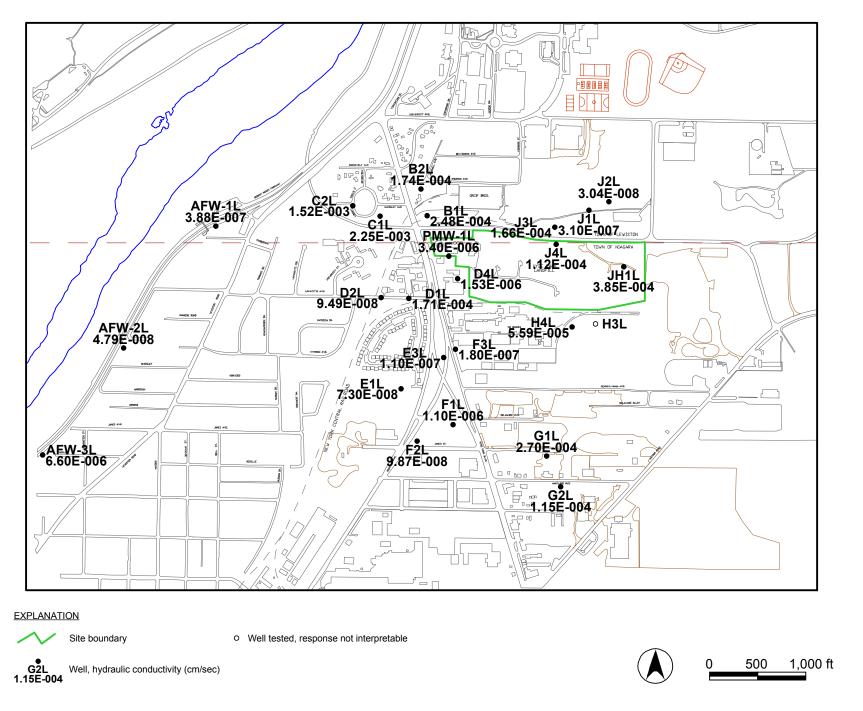


Figure 3 - Slug Test Hydraulic Conductivities - Lower Zone

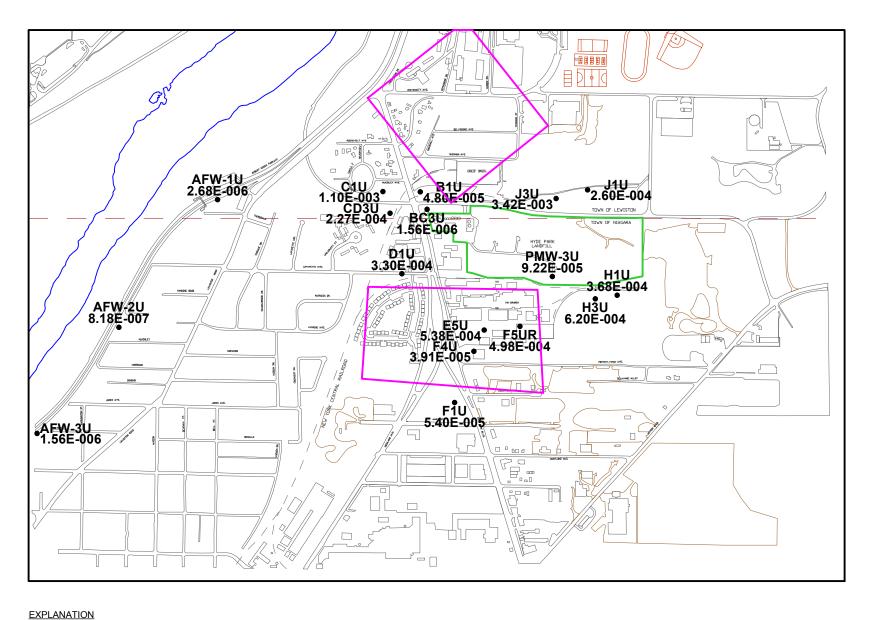


Figure 4 - Slug Test Hydraulic Conductivities - Upper Zone

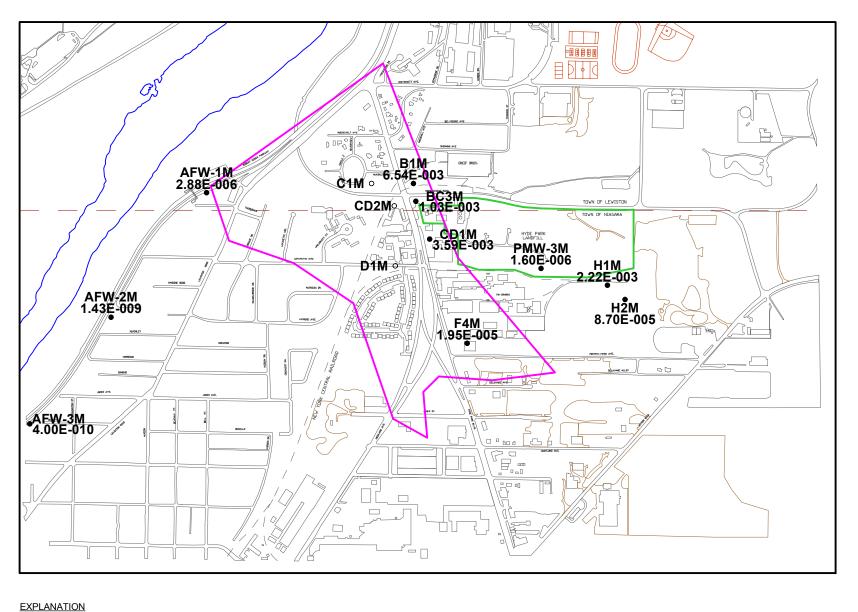


Figure 5 - Slug Test Hydraulic Conductivities - Middle Zone

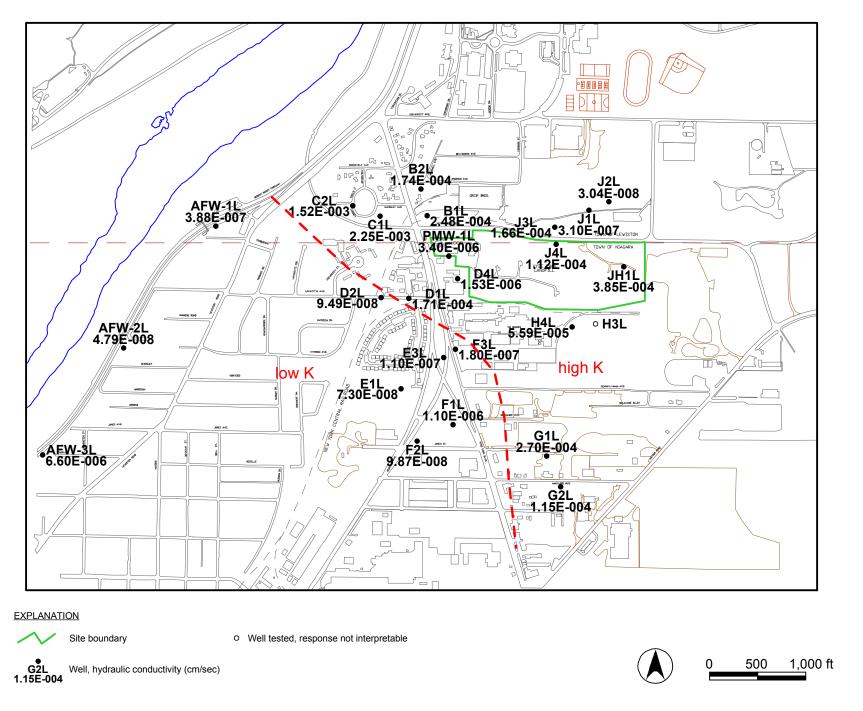
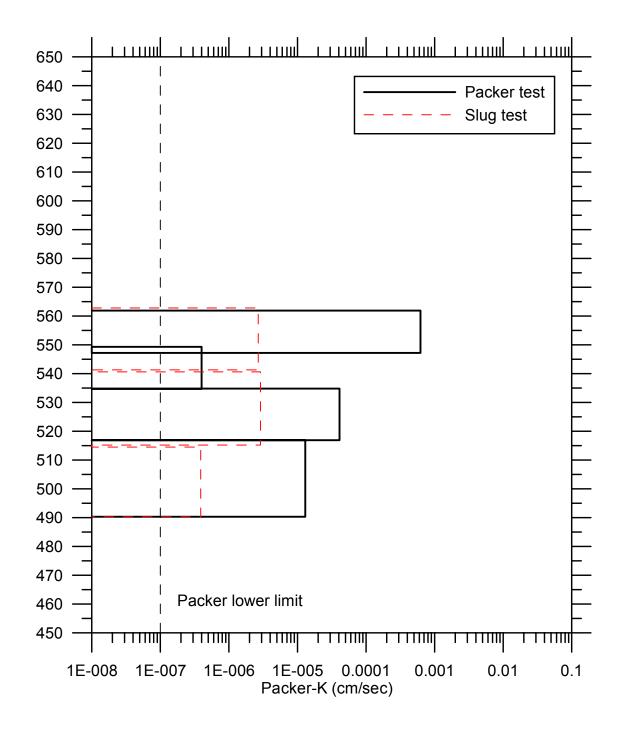
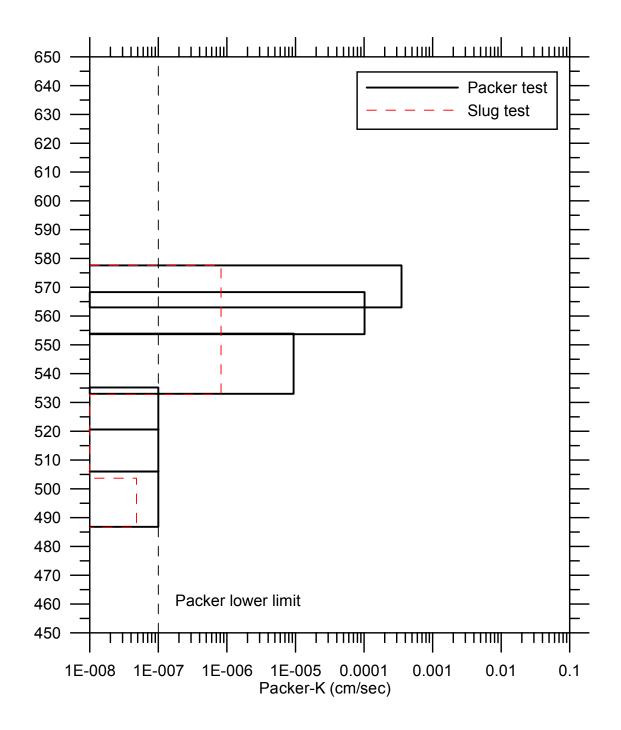
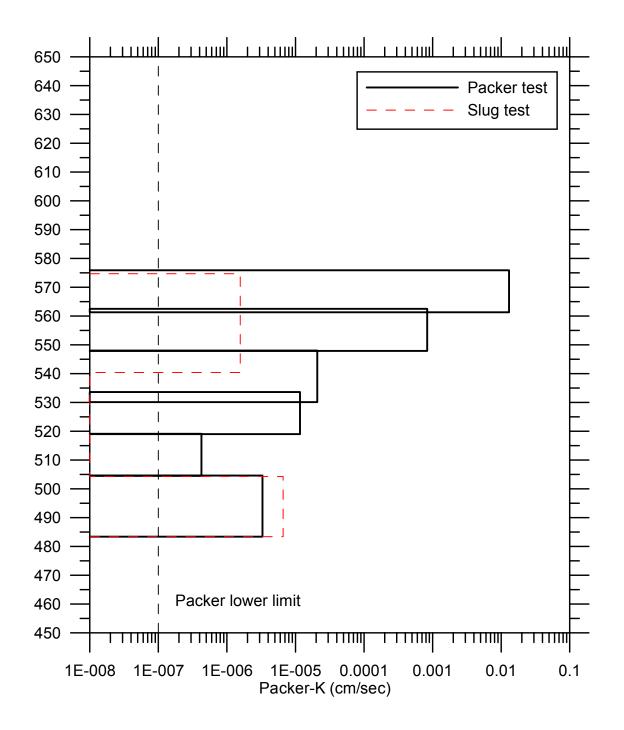
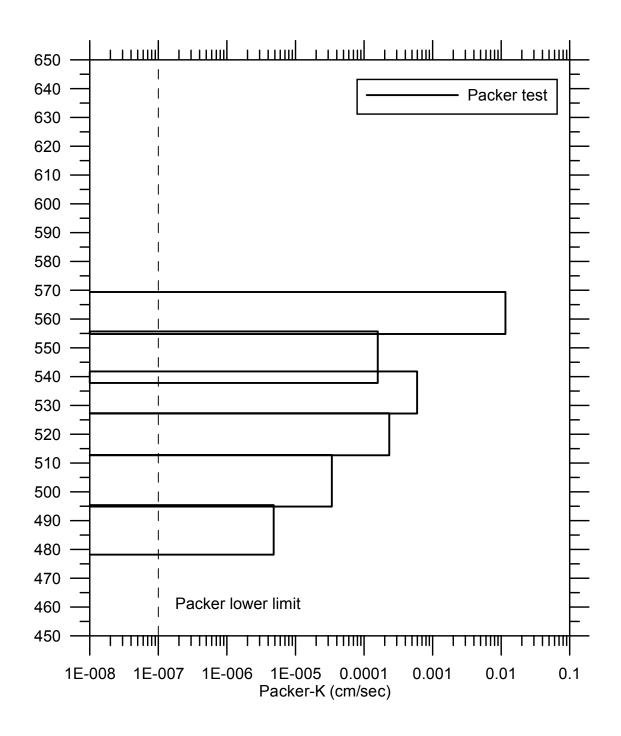
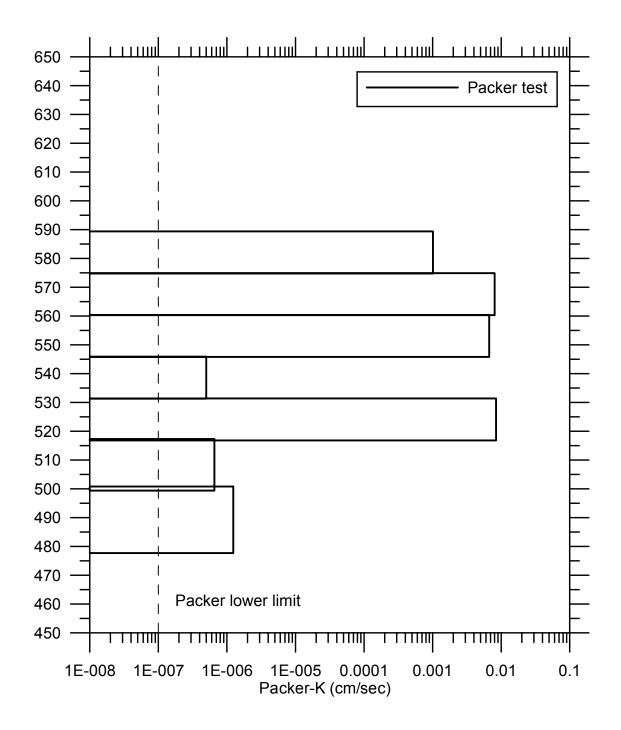
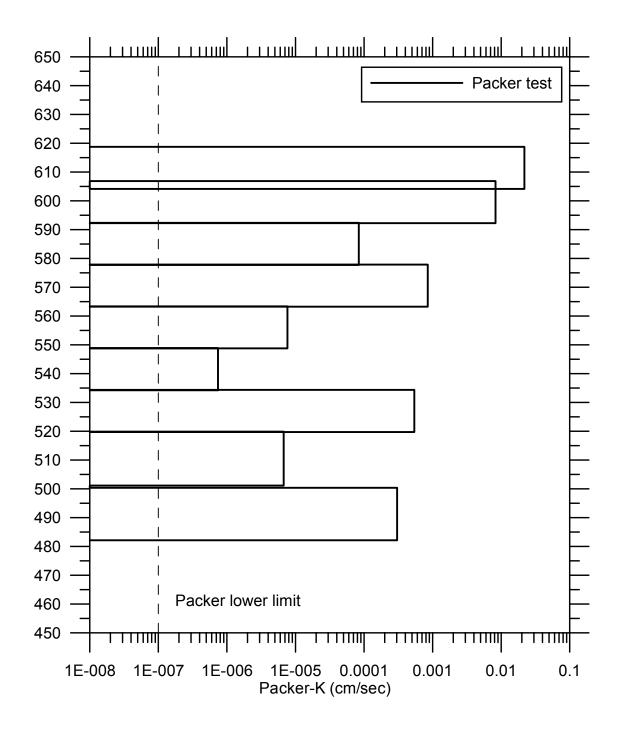




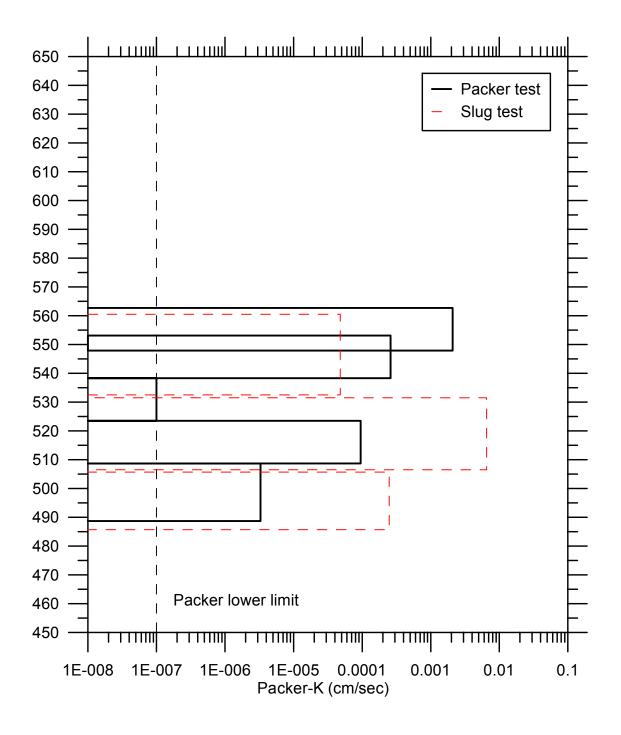
Figure 6 - Slug Test Hydraulic Conductivities - Lower Zone


AFW-1 Packer testing, July 1991

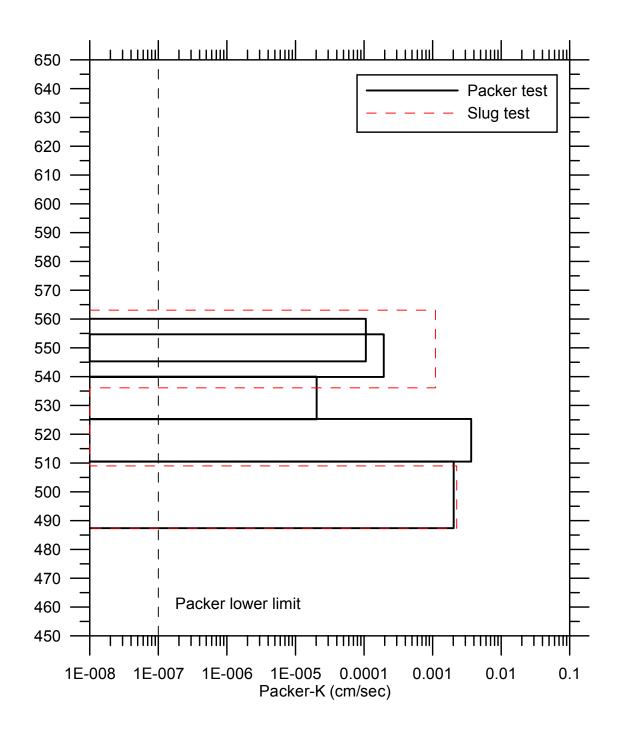

AFW-2 Packer testing, July 1991


AFW-3 Packer testing, July 1991

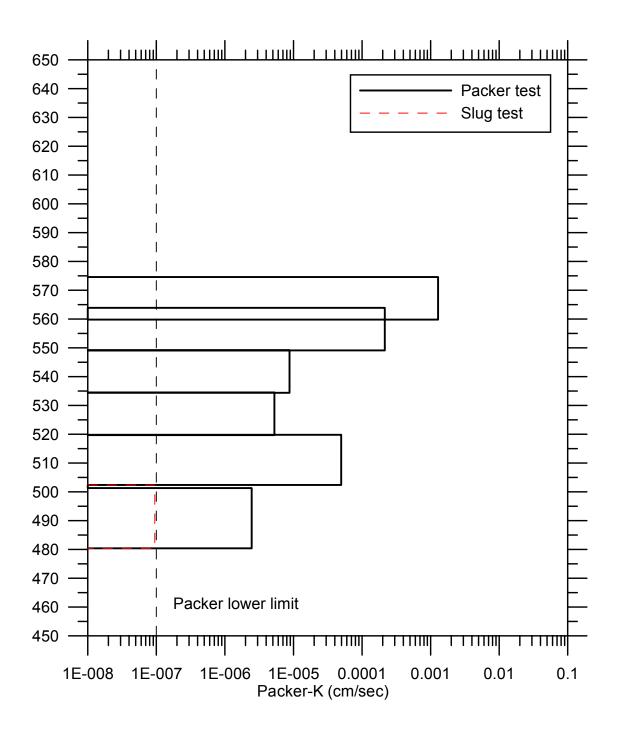

AGW-1 Packer testing, Sept. 1991

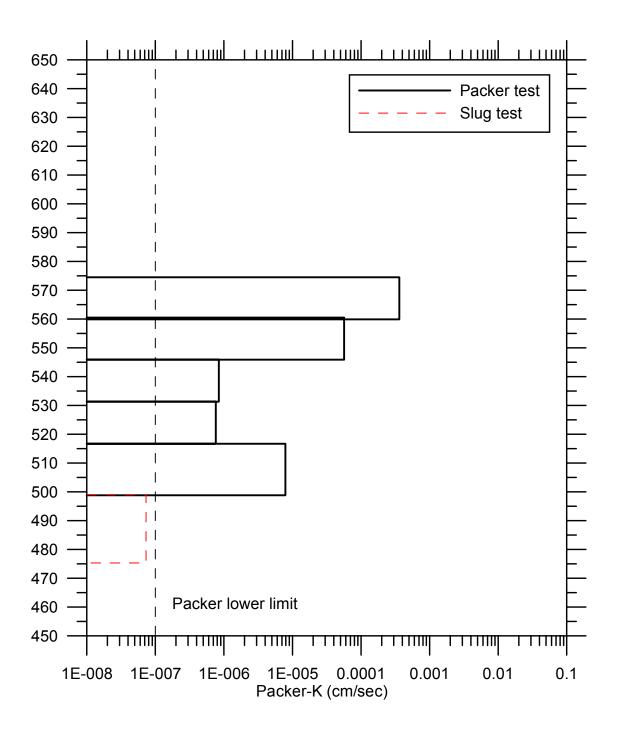


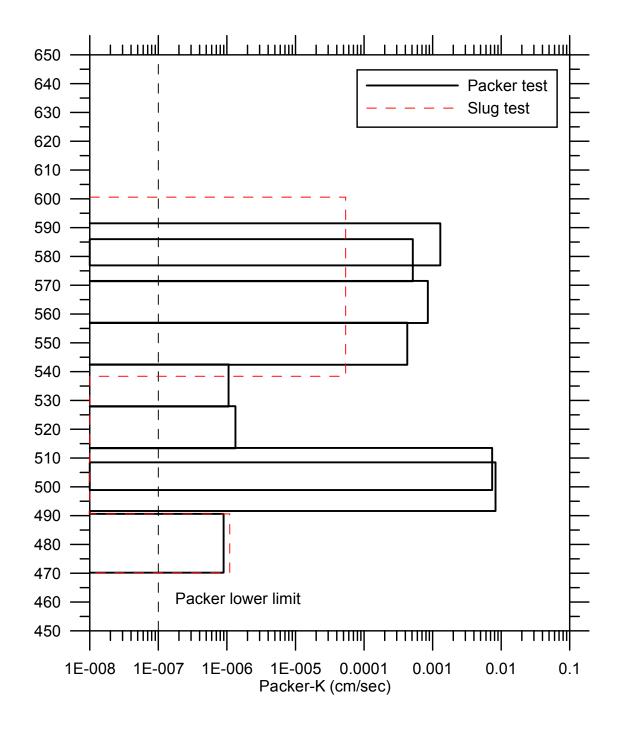
AGW-2 Packer testing, July 1991

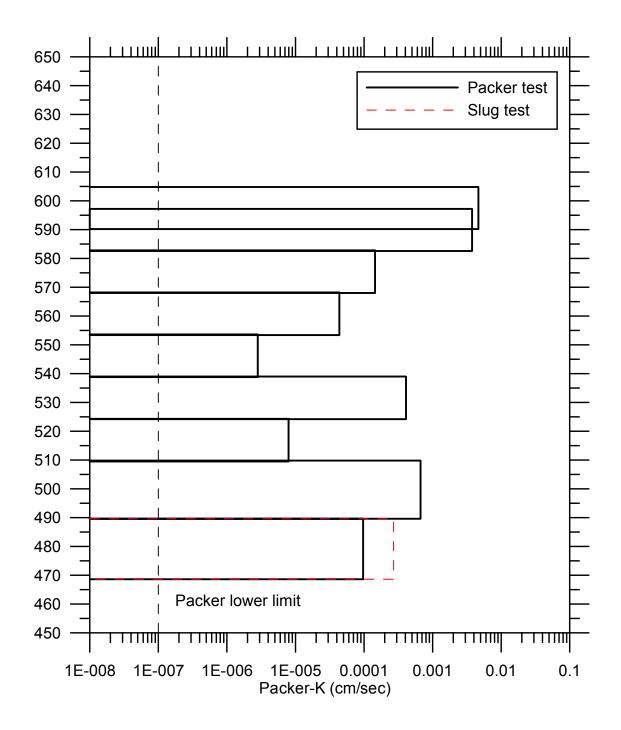


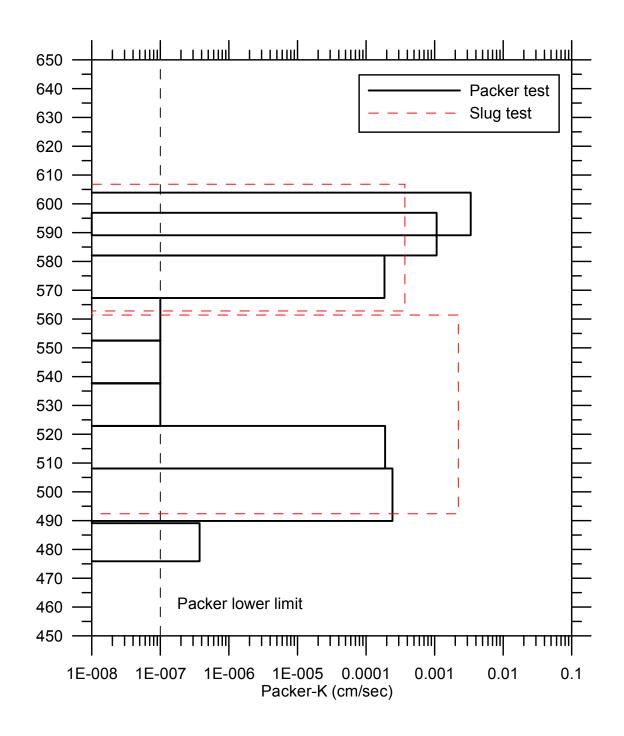
AGW-3 Packer testing, Sept. 1991

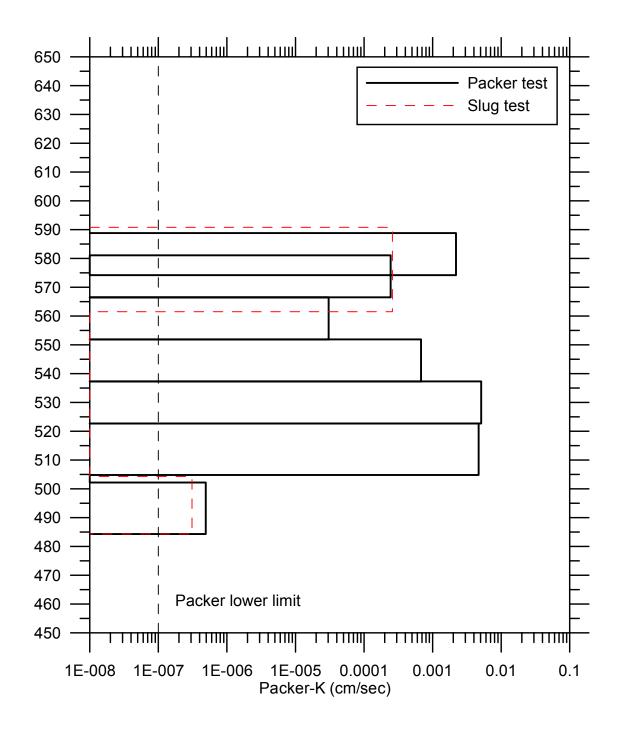


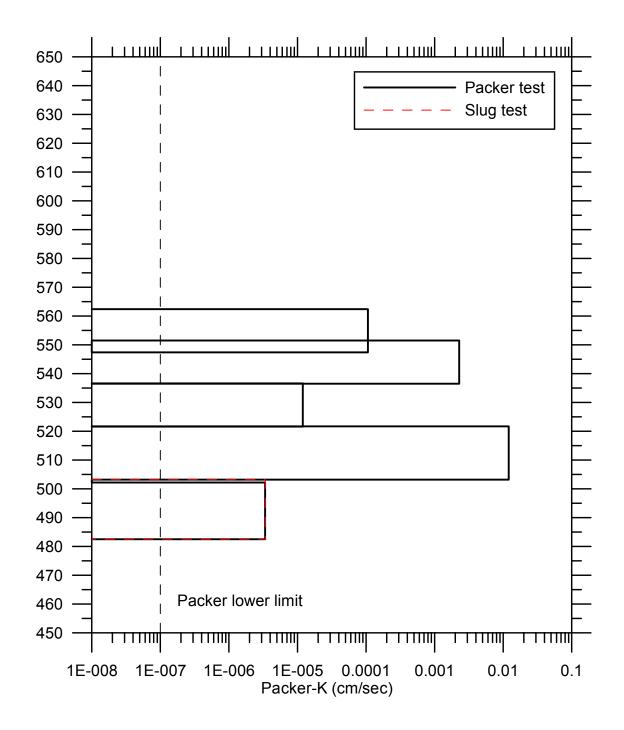

C1 Packer testing, Jan. 1991

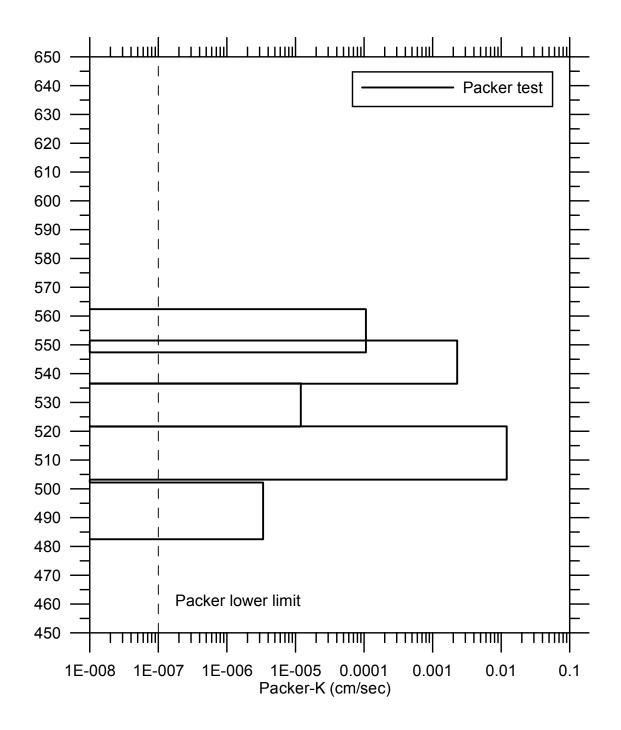

D2 Packer testing, April 1991

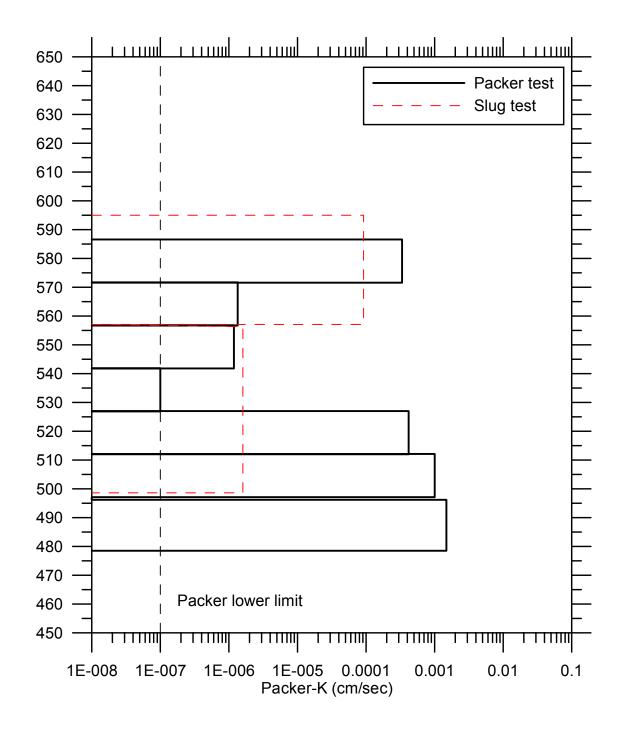

E1 Packer testing, April 1991

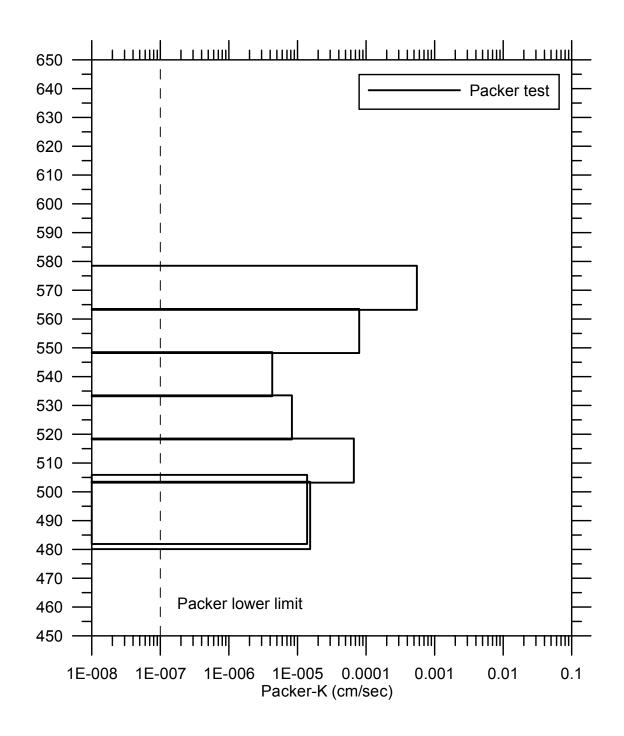

F1 Packer testing, Aug. 1991

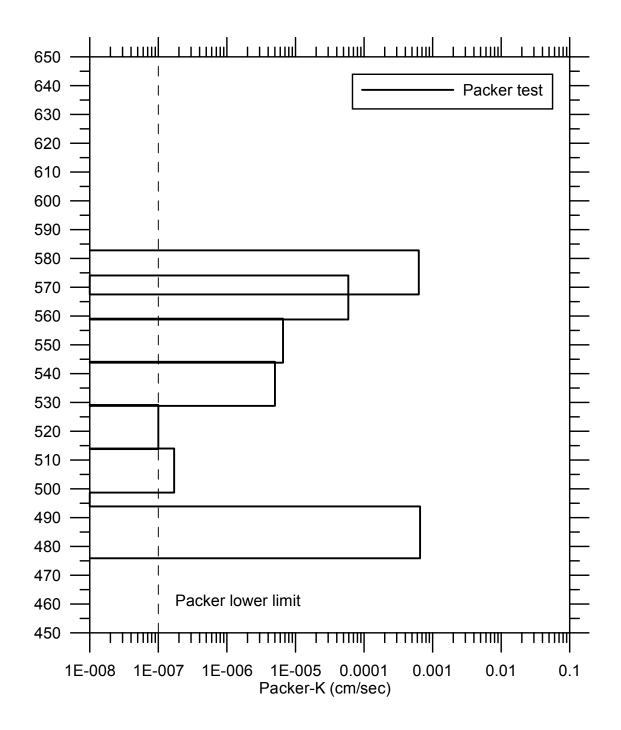

G1 Packer testing, Feb. 1991


H1 Packer testing, Feb. 1991


J1 Packer testing, March 1991


PMW-1 Packer testing, June 1991


PMW-2 Packer testing, May 1991


PMW-3 Packer testing, April 1991

PW-2L Packer testing, March 1991

PW-3L Packer testing, Feb. 1991

