

GLENN SPRINGS HOLDINGS, INC. MILLER SPRINGS REMEDIATION MANAGEMENT, INC.

ANNUAL MONITORING REPORT – 2001

HYDE PARK RRT PROGRAM NIAGARA FALLS, NEW YORK

TABLE OF CONTENTS

1.0	INTRODUCTION							
2.0	SOURCE CONTROL SYSTEM							
	2.1	SOURCE CONTROL WELL PUMPING	2					
	2.2	NAPL VOLUME EVALUATION	2					
	2.3	HYDRAULIC MONITORING	4					
3.0	INTERMI	EDIATE FORMATIONS	5					
	3.1	HYDRAULIC MONITORING AND GROUNDWATER SAMPLING	5					
	3.2	ANALYTICAL RESULTS	5					
	3.3	IFW - APL PLUME FLUX	6					
	3.4	CONCLUSION	6					
4.0	GORGE F	FACE SEEP SURVEY	7					
	4.1	SEEP SURVEY RESULTS	7					
	4.2	SEEP SAMPLING	.11					
	4.3	RECOMMENDATIONS	.11					
5.0	BLOODY	RUN MONITORING	13					
	5.1	GROUNDWATER SAMPLING	13					
	5.2	ANALYTICAL RESULTS	13					
	5.3	HYDRAULIC MONITORING RESULTS	.13					
6.0	COLLECT	FED LIQUIDS MONITORING	15					
	6.1	APL CONTAINMENT SYSTEM	15					
	6.2	EXISTING OBCS SYSTEM (ON-SITE SYSTEM)	.15					
	6.3	RRT OBCS (OFF-SITE SYSTEM)	15					
	6.4	SC SYSTEM	16					
	6.5	DECANTERS	.16					
7.0	BEDROC	K NAPL/APL RATIO TESTING	18					
	7.1	NAPL/APL RATIO TESTING PROGRAM PROTOCOLS	18					
	7.2	NAPL/APL RATIO TEST RESULTS	.18					
	7.3	CONCLUSIONS AND RECOMMENDATIONS	.19					
8.0	EXISTING	G WELL SURVEY	20					
	8.1	SURVEY RESULTS	.20					
9.0	SEMI-AN	NUAL MANHOLE INSPECTION	21					

LIST OF FIGURES (Following Text)

- FIGURE 2.1 SOURCE CONTROL SYSTEM WELL LOCATIONS
- FIGURE 3.1 IFW MONITORING WELL LOCATIONS
- FIGURE 4.1 GORGE SEEP LOCATIONS
- FIGURE 4.2 SEEPS 5 AND 6
- FIGURE 4.3 SEEPS 7 AND 8
- FIGURE 5.1 BLOODY RUN MONITORING WELL LOCATIONS
- FIGURE 7.1 PURGE WELL LOCATIONS
- FIGURE 9.1 MANHOLE LOCATIONS

LIST OF TABLES

- TABLE 2.1SOURCE CONTROL SYSTEM MONITORING WELL WATER LEVELS
- TABLE 3.1IFW ANALYTICAL RESULTS
- TABLE 4.1GORGE SEEP ANALYTICAL RESULTS
- TABLE 5.1GROUNDWATER SAMPLING SUMMARY
- TABLE 5.2BR WELL ANALYTICAL RESULTS
- TABLE 5.3BLOODY RUN MONITORING PROGRAM HYDRAULIC MONITORING
DATA
- TABLE 6.1WET WELL A ANALYTICAL RESULTS
- TABLE 6.2WET WELL C ANALYTICAL RESULTS
- TABLE 6.3WET WELL D ANALYTICAL RESULTS
- TABLE 6.4DECANTER NO. 1 (BEDROCK) ANALYTICAL RESULTS
- TABLE 6.5DECANTER NO. 2 (OVERBURDEN) ANALYTICAL RESULTS
- TABLE 6.6DECANTER NO. 3 (SOURCE CONTROL) ANALYTICAL RESULTS
- TABLE 6.7MONTHLY CHEMICAL MASS LOADING SUMMARY
- TABLE 7.1APL/NAPL RATIO TESTING
- TABLE 8.1WELL INSPECTION SURVEY
- TABLE 9.1SEMI-ANNUAL MANHOLE INSPECTION

LIST OF APPENDICES

APPENDIX A QUARTERLY NAPL ACCUMULATION

1.0 INTRODUCTION

The groundwater pumping activities conducted at the Hyde Park Landfill Site are regularly monitored for containment performance and the results are reported quarterly. In addition to the quarterly monitoring activities, there are several miscellaneous programs that are performed semi-annually or annually.

This report presents the monitoring data collected during the 15-month period between October 2000 and December 2001 for the programs which are conducted at annual and semi-annual frequencies. Future annual reports will present data collected over a 12 month period between January and December. Reporting of data from quarterly monitoring programs are presented in separate quarterly monitoring reports.

This report is organized as follows:

- i) Introduction (Section 1.0);
- ii) Source Control System (Section 2.0);
- iii) Intermediate Formations (Section 3.0);
- iv) Gorge Face Seep Survey (Section 4.0);
- v) Bloody Run Monitoring (Section 5.0);
- vi) Collected Liquids Monitoring (Section 6.0);
- vii) Bedrock NAPL/APL Ratio Testing (Section 7.0);
- viii) Annual Monitoring Well Inspection (Section 8.0); and
- ix) Overburden Barrier Collection System Inspection (Section 9.0).

This report has been prepared for Miller Springs Remediation Management, Inc. (MSRM), which has been assigned the responsibility for managing the Hyde Park Requisite Remedial Technology (RRT) Program under the direction of Glenn Springs Holdings, Inc. (GSHI), a subsidiary of Occidental Petroleum Corporation.

An electronic copy of the full text, figures, tables and historic data associated with this report are included on the attached CD as Adobe Acrobat ".pdf" files. All quality assurance/quality control (QA/QC) reports associated with the analytical data described in this report are kept on file for review at the MSRM office in Niagara Falls, New York and are included on the attached CD as Adobe Acrobat ".pdf" files.

2.0 SOURCE CONTROL SYSTEM

Six Source Control (SC) extraction wells and nine monitoring wells were installed in the Hyde Park Landfill at the locations presented on Figure 2.1. One extraction well (SC-1) has subsequently been converted into a monitoring well due to insufficient non-aqueous phase liquid (NAPL) volume being present at this location. The purpose of the SC extraction wells is to reduce the amount of chemicals migrating downward from the landfill by removing any remaining NAPL from within the landfill waste materials. The activities performed to ensure achievement of this objective are described in the following subsections. The data collected to demonstrate and/or evaluate the effectiveness of the activities are also presented in the following subsections.

2.1 SOURCE CONTROL WELL PUMPING

Well No.	Date	Volume
2, 3 & 4	10-25-00	17 gallons
2, 3 & 4	12-04-00	32 gallons
2, 3 & 4	01-23-01	49 gallons
2 & 4	03-02-01	37 gallons
2 & 4	03-06-01	22 gallons
2	05-03-01	6 gallons
2 & 4	06-29-01	0 gallons
2, 3 & 4	08-24-01	0 gallons
2, 3 & 4	12-07-01	0 gallons

Routine SC well pumping activity for the year was as follows:

Note: SC well pumping is based on hydraulic recovery in each of the wells. SC-5 and SC-6 did not recover to sufficient levels for pumping between October 2000 and December 2001. All flow from the SC system was measured from one in-line flow meter during the 2001 reporting period. A total of 163 gallons of liquid were removed.

2.2 NAPL VOLUME EVALUATION

In order to determine the amount of NAPL contributed by each SC well, ratios of NAPL to aqueous phase liquid (APL) are determined annually at each SC well. The determination of the NAPL/APL ratio is conducted by pumping each well dry, once per

day on three consecutive days. The pumped liquid from each well is collected in a 55-gallon drum. Upon completion of the pumping, the volumes of APL and NAPL removed from each well are measured and these volumes form the ratios.

The NAPL/APL ratio field tests were conducted at the SC wells over the three day period between August 29 and August 31, 2001. The NAPL/APL ratio field sheets are attached as Appendix B of this report. The results of the individual well NAPL/APL ratio determinations for 2001 are presented below:

Extraction Well	Total Volume Extracted (gallons)	APL Volume (gallons)	NAPL Volume (gallons)	%NAPL
SC-2	16.3	0	16.3	100
SC-3	21.5	0	21.5	100
SC-4	9.5	0	9.5	100
SC-5	0	0	0	0
SC-6	0	0	0	0

Based on the NAPL/APL ratio field testing data from the SC wells, the volume of collected NAPL per SC well has been estimated as follows:

	NAPL Volume (gallons)							
Extraction Well	NAPL/APL Test 3 Day Recovery	Assumed Bi-Monthly Volume	Approximate Extrapolated Annual Total					
SC-2	16.3	16.3	97.8					
SC-3	21.5	21.5	129					
SC-4	9.5	9.5	57					
SC-5	-	-	-					
SC-6	-	-	-					
		Total:	283.8					

The measured total volume of liquid collected by the SC system of 163 gallons (assumed to consist entirely of NAPL) and the volume of NAPL manually removed during the NAPL/APL ratio testing of 47.3 gallons represents a total of 210.3 gallons of NAPL collected by the SC System during the 2001 annual monitoring period. During the 2000 annual monitoring period, the NAPL/APL ratio testing predicted that 408 gallons of NAPL would be collected by the SC System. This estimate corresponds with the measured volume collected and falls within the potential estimation error.

Based on the current rate of recharge into the Source Control Wells, it is anticipated that the wells will be pumped once every two months. Assuming a yield equivalent to the recovery during the NAPL/APL Ratio Test, approximately 284 gallons of NAPL are expected to be recovered from the Source Control System. This estimate represents a significant decline from historic NAPL recovery estimates and represents a gradual decline in NAPL recovery in more recent years. Much of the decline is a result of reduced operating head of APL within the landfill driving less NAPL coupled with the removal of NAPL from the vicinity of the extraction wells.

2.3 <u>HYDRAULIC MONITORING</u>

Table 2.1 presents recorded water levels for the Source Control System monitoring wells during the 2001 annual monitoring period. These water levels indicate groundwater table fluctuations beneath the landfill cap that range from 0 to 2.3 feet, however, these changes in groundwater elevation correspond to pumping of the SC wells. Historical water level data dating back to 1992 are presented on the enclosed CD under the filename OEW.pdf. It is evident from the historic water level data that the combination of capping of the landfill and pumping from the Source Control Wells has de-watered the landfill to the approximate level of the bottoms of the OEW monitoring wells.

3.0 INTERMEDIATE FORMATIONS

Chemical monitoring of the Intermediate Formations is performed annually, along with a calculation of the associated bedrock flux, if required. Seven Intermediate Formations Wells (IFWs) were installed as shown on Figure 3.1. However, as per the Hyde Park Future Monitoring and Assessment Requirements (April 1996), monitoring is currently performed only at IFW-5. The Hyde Park Future Monitoring and Assessment Requirements states, "The Intermediate Formations have proven to be a bedrock unit with very low transmissivity. Repeated monitoring events indicated that well IFW-5 was the only monitoring well which could consistently yield sufficient water to collect a sample, and even at this location sampling efforts typically spanned two to four days. Therefore, future hydraulic and chemical monitoring will be based on data from IFW-5 only."

3.1 HYDRAULIC MONITORING AND GROUNDWATER SAMPLING

Purging of IFW-5 began on August 13, 2001, with the static water level being measured prior to any water removal. Historical water level data from each of the seven IFWs dating back to 1990 is presented on the enclosed CD under the filename IFW.pdf. As required by established protocols, IFW-5 was purged to dryness on 3 consecutive days. Sample collection was completed on August 16, 2000. The sample was submitted for analysis of the following parameters:

APL Plume Flux Parameters	Sample Volume	Detection Level
Chloroform	3 x 40 ml	1.0 μg/L
Aroclor 1248(Total PCBs)	2 x 1L	1.0 µg/L
Mirex	1 x 1L	1.0 µg/L
2,3,7,8-TCDD	3 x 1L	500 pg/L

3.2 <u>ANALYTICAL RESULTS</u>

The analytical results for the August 16, 2001 sample are presented in Table 3.1.

From the analytical data results it can be seen that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was observed at a detectable concentration (28 picograms/liter (pg/L)), however, the concentration of this analyte is well below the RRT required detection level of 500 pg/L No other analytes were detected in the Intermediate Formations monitoring sample.

3.3 IFW - APL PLUME FLUX

The RRT Stipulation identifies the procedure for which the APL Plume Flux from the Hyde Park Landfill through the Intermediate Formations is to be calculated. The stipulated procedure is to collect aliquots from each of the IFWs based on the proportion of the groundwater flow and composite them for one analysis. As IFW-5 is the only well to produce water, the "composite" consists only of the sample from IFW-5.

The levels of the APL Plume Flux Parameters Aroclor 1248 (total PCBs), 2,3,7,8-TCDD, chloroform, and mirex in the collected sample were below the respective detection levels; therefore, the flux for these parameters is not calculated.

3.4 <u>CONCLUSION</u>

No compounds were detected above APL Plume monitoring levels. Thus, no APL Plume flux calculations were performed. The Rochester Formation continues to serve as an effective barrier to vertical migration of the Hyde Park contaminants. Intermediate Formations, therefore, no further action is required at this time.

The next Intermediate Formations sampling round (IFW-5) will be conducted in August 2002.

4.0 GORGE FACE SEEP SURVEY

The annual field survey of the accessible pathways along the Niagara Gorge between the New York Power Authority (NYPA) fence on the Lower Access Road and the Garfield Avenue Outfall Sewer was conducted by MSRM, along with representatives of the New York State Department of Environmental Conservation (NYSDEC) and the United States Environmental Protection Agency (EPA). The purpose of the survey is to monitor the status of previously identified seeps/wet areas and to identify new flowing seeps/wet areas. The team of survey members who participated on July 24, 2001 consisted of:

- Gerry Pietraszek NYSDEC;
- Rick Passmore GSHI;
- Martin Derby TAMS Consultants (for EPA);
- Don Booth (MSRM);
- Chris Neville SSP&A;
- Jim Thornton CRA (for MSRM); and
- Jon Williams CRA (for MSRM).

The weather was warm ($\sim 85^{\circ}$ F), humid, and partly cloudy.

4.1 <u>SEEP SURVEY RESULTS</u>

During the survey, all of the seep/wet areas identified during previous surveys were re-examined and a re-evaluation of the proposed remedial action was conducted. The seep locations are presented on Figure 4.1. It should be noted that NYPA added slope stability fence fabric along portions of the gorge face in the spring of 2000 to protect the access road.

A total of 29 seep locations and eight culverts, as well as the Garfield Street Outfall Sewer and the Bloody Run outlet, were visited and inspected for variations in flow and exposed wet areas. Descriptions of the observations from each remaining seep are listed in the following summary of survey results.

A more extensive survey of the area from the NYPA Guardhouse to the Garfield Street Tunnel was also completed to determine whether or not additional seeps could be located. During the survey a potential new seep was spotted near the river approximately 25 feet south of Seep 21. Further investigation revealed that it was not a new seep but just standing water remaining from an earlier rain shower the morning of July 24.

It should be noted that in the summary odor is only mentioned if the seep or culvert had an odor in the past. If odor is not mentioned it was never a problem.

SEEP SURVEY RESULTS

Seep No.	Description	Notes
1	Dry, sparse vegetation, seep basin is clear, no odor.	APW 1 and 2 in operation since April 1997
2 (Culv. 6)	Damp area 0 to 30 feet north of seep (from Lockport/Rochester contact) Steady flow (~1 gpm), minor green algae and grass on face of Rochester Shale, several wet and dripping areas, seep basin totally full of rock.	Sampled August 15, 2001 ND for all parameters no fence present
2.(Ditch line)	Intermittent ditch flow, 160 feet in length (begins 75 feet south of south wall of Seep 2 and ends 35 feet north of north wall of Seep 2), no odor, green moss, heavy vegetation. Heavy talus in ditch line.	
3 (Тор)	Very heavy phragmities reeds on north and south sides of Bloody Run concrete box culvert. Dryer than normal.	Fenced
3 (Bottom) (Culv. 5)	Wet, heavy vegetation, seep basin is clear. (At Bloody Run box culvert)	Remediated Same as 2000.
4	Numerous dripping areas (2 to 3 gpm), heavy vegetation, no odor. 90 feet south of south wall of Seep 4, heavy vegetation to Seep 4, face of Medina is damp. Ditch line is wet.	Fence in place
5	Damp rock face, occasional light dripping (upper area) (Figure 4.2).	Remediated Same as 2000.
6	Damp rock face (lower area) (Figure 4.2).	Remediated Same as 2000.
7a	Covered with local rock, heavy vegetation.	Remediated

Seep No.	Description	Notes
7b	Covered with local rock.	Remediated
7c	Exposed channel, flow between rocks (~10-15 gpm).	Remediated
7d	Wet and flowing (~10-15 gpm) over top of Irondequoit (waterfall), no odor.	Sampled August 15, 2001 ND for all parameters (ND in 1999 and 2000)
7e	Flowing water beneath rocks, heavy vegetation.	No action required.
7f	Exposed channel flow.	Refer to 7e
7g	Open flow area.	Refer to 7e
7h	Medium/light vegetation, open channel flow.	Refer to 7e
7i	Heavy vegetation, no apparent flow. One or two minor damp areas.	Refer to 7e
8	No flow, heavy vegetation, no odor.	No action required
11a	Inlet area at waters edge covered with local rock, sediment infilling.	Remediated Same as 2000.
11b 12	Dry (south of south Bloody Run fence). Steady flow out of culvert from NYPA south tunnel, ~25 gpm, no odor.	Same as 2000. Sampled August 15, 2001 ND for all parameters (ND in 1999 and 2000)
14	North - approximately 80 to 100 feet south of south fence line of Seep 3, wet face on Reynales approximately 30' wide, water originates from Irondequoit/Reynales contact.	Same as 2000.
16	Approximately 320 feet north of the North fence line of Seep 1, slightly moist rock face at north and south ends. Moisture from the Lockport/ Rochester contact onto the Rochester.	Same as 2000.
17a	North - area approximately 150 feet north of north wall of Seep 2, slight dripping at Irondequoit/Reynales contact.	No action required

Seep No.	Description	Notes
17b	South - damp area over bottom portion of Rochester Shale at approximately 100 feet north of north wall of Seep 2.	No action required Same as 2000.
18	0 to 75' north of north wall of Seep 3 Heavy vegetation on rock face but no visible seepage observed. Ditch line wet with <1 gpm flow coming from Seep 3.	18 a and b consolidated into one seep in 2001.
19	Approximately 120 feet south of south end of wing wall, rock face dry. No visible flow in ditch, some vegetation.	No action required
20	Area 80 to 100 feet north of north fence line of Seep 4 at base of Grimsby Sandstone down into the Power Glenn Shale. Presently dry.	No action required
21	Area 375 feet south of Seep 7 (Devil's Hole stairs), by river, dry	Remediated
Bloody Run	No visible flow. No odor. Heavy talus.	Area fenced along shoreline and upslope. Fence in good condition. Rock continuing to pile up against fence.

During the seep survey, the following culverts were also inspected and the observed conditions were as follows:

CULVERT SURVEY RESULTS

Culvert No.	Description	Notes
1	Picks up ditch flow to DI at station 0+00, Dry.	No action required
2	Inlet is open. Standing water, no odor Outlet has heavy vegetation no flow and no odor.	No action required
3	Inlet is open. Damp soil. Outlet is wet. No flow.	No action required
4	Inlet is open and dry. Outlet is dry. No flow.	No action required

Culvert No.	Description	Notes
5	Inlet is open. Dry, no flow. At outlet slight flow (<1 gpm) 40' west (downstream of outlet). No odor.	No action required.
6	Standing water at the outlet, water is clear, no odor, inlet buried at Seep 2.	No action required. Same as 2000
7	Dry, no flow, inlet buried, heavy vegetation at outlet.	No action required. Same as 2000.
8	Dry, outlet visible. Inlet visible and open.	No action required
Garfield Avenue Sewer	Slight flow (<1 gpm) at exposed original outlet, typical sewer odor, continual caving into former	No action required.
	archway (Whirlpool Sandstone)	Additional washouts since 1998. Parks Dept built a pedestrian walkway (with culverts) across the path in the summer of 1999

Figure 4.1 shows the general locations of all the seep/wet areas and culverts discussed in this report. Figures 4.2 and 4.3 show some specific details about Seeps 5 and 6 as well as 7 and 8, respectively.

4.2 <u>SEEP SAMPLING</u>

Three seeps identified as No. 2, No. 7d, and No. 12 were sampled on August 15, 2001 and analyzed for the APL Plume Definition Parameters. The analytical results for these samples are presented in Table 4.1 showing no detections of any of the APL Plume Flux Parameters.

4.3 <u>RECOMMENDATIONS</u>

The water in the area above the waterfall at Seep 7d was sampled. The sample was non-detect and as such, the waterfall will not be diverted and Seep 7f does not need to be covered with local rock.

The sample from Seep 12 was non-detect for all parameters. Therefore, no remedial action is required to prevent access to this open channel flow.

The sample from Seep 2 was non-detect for all parameters. Therefore, no remedial action is required to prevent access to this open channel flow.

5.0 BLOODY RUN MONITORING

Subsequent to remediation of the Bloody Run overburden soils north of the Hyde Park Landfill Site, four Bloody Run Monitoring Wells (BRs) were installed to determine if Hyde Park chemicals remain in the upper 15 feet of bedrock at concentrations above the Bloody Run Monitoring Levels. The BR well locations are presented on Figure 5.1. Groundwater samples were collected quarterly in 1994, semi-annually in 1995 and 1996, and annually in 1997, 1998, 1999, and 2000. Sampling continues to be performed on an annual basis. This report presents the analytical data collected during the 2001 annual sampling event.

5.1 **GROUNDWATER SAMPLING**

The 2001 sampling event was conducted on August 27, 2001. During this event, a total of five samples were collected, including four groundwater well samples and one duplicate sample. A summary of all samples collected is presented in Table 5.1.

The Bloody Run monitoring wells (BR-1, BR-2, BR-3, and BR-4) were all purged following measurement of static water levels using a submersible pump. Upon completion of purging activities, each well was sampled using a dedicated Teflon bailer.

Each of the collected samples was analyzed for the Bloody Run Monitoring Parameters. Sample sets for each well, as well as the duplicate sample, consisted of two 40 mL vials for monochlorobenzene (MCB) and monochlorotoluene (MCT) analyses and one 1-liter amber glass bottle for hexachlorobutadiene (HCB) and trichlorophenol (TCP) analyses.

5.2 <u>ANALYTICAL RESULTS</u>

The analytical results for the Bloody Run monitoring well samples are presented in Table 5.2. None of the compounds of interest were detected in any of the wells at levels exceeding the Bloody Run Monitoring Levels or above the laboratory detection limits. Table 5.2 presents the analytical results for the Bloody Run monitoring wells.

5.3 <u>HYDRAULIC MONITORING RESULTS</u>

Water level elevations measured prior to purging the Bloody Run monitoring wells are presented on Table 5.3. The water level data continues to show that a hydraulic head

differential of approximately 15 feet from east to west exists within the upper 15 feet of bedrock beneath the Bloody Run area. Historical water level data dating back to 1995 is presented on the enclosed CD under the filename BR.pdf.

6.0 COLLECTED LIQUIDS MONITORING

Monitoring of the collected liquids from the various remedial systems was performed as required. The systems monitored were as follows:

- i) APL Containment System;
- ii) Existing OBCS System (On-Site System);
- iii) RRT OBCS (Off-Site System);
- iv) SC System; and
- v) Decanters.

6.1 <u>APL CONTAINMENT SYSTEM</u>

Operation of the APL Plume Containment System commenced on March 3, 1997. Monitoring data is provided in the individual Quarterly Monitoring Reports.

6.2 EXISTING OBCS SYSTEM (ON-SITE SYSTEM)

An annual sample was collected from Wet Well A on August 1, 2001. The analytical results are summarized in Table 6.1. The reported concentrations are comparable to those observed in 2000.

6.3 <u>RRT OBCS (OFF-SITE SYSTEM)</u>

The sampling frequency for the OBCS was reduced from semi-annual to annual in 1998. Samples were collected from Wet Wells C and D on August 1, 2001. Table 6.2 summarizes the sample analytical results for Wet Well C and Table 6.3 summarizes the results for Wet Well D. The reported concentrations were comparable to those observed in 2000 and also with concentrations of APL collected from Decanter No. 2 as described in Section 6.5 of this report.

6.4 <u>SC SYSTEM</u>

The volume of NAPL collected by the SC system is described in Section 2.0 of this report. Samples of APL that is collected by the SC system are collected from Decanter No. 3 for chemical analysis as described in Section 6.5 of this report.

6.5 <u>DECANTERS</u>

Representative APL samples are collected from the three decanters monthly and submitted for analysis of the collected liquids monitoring program (CLMP) parameters. Tables 6.4, 6.5, and 6.6 present the sample analytical results for Decanters 1, 2, and 3 respectively for the annual reporting period. A description of each decanter's source is provided below:

- Decanter No. 1 Bedrock Purge Well System (PWs and APWs)
- Decanter No. 2 Overburden Barrier Collection System
- Decanter No. 3 Source Control System

Using the analytical results from the monthly decanter samples (Tables 6.4 through 6.6) and semi-annual APW CLMP samples (Tables 6.1 through 6.3) with the monthly flow totals for each of the systems, chemical mass loadings were calculated for each of the collection systems. Chemical mass was not calculated for the SC system because this system pumps nearly 100 percent NAPL as is evident by the results of the annual NAPL/APL ratio testing. Table 6.7 presents a summary of the monthly chemical mass removed by each of the other collection systems during the 2001 annual reporting period.

It can be seen on Table 6.7 that the majority of chemical mass removed is from the NAPL Plume Containment System Bedrock Purge Wells (PWs) with a total of 1,427 pounds of contaminants removed during the 2001 annual reporting period. The Overburden Collection Systems (OBCS and EBCS) removed a total of 344 pounds of contaminants during the 2001 annual reporting period. Only 2.6 pounds of contaminants were collected by the APL Plume Containment System during the 2001 annual reporting period. It is expected that the chemical mass removed by the APL Plume Containment System will remain minimal as the NAPL Plume Containment Purge Wells are preventing the migration of contaminants away from the Site.

Chemical mass loading data will continue to be collected and reported in future annual monitoring reports.

7.0 BEDROCK NAPL/APL RATIO TESTING

NAPL/APL ratio determinations are performed annually for each bedrock purge well (PW) at the Site. The locations of the PWs are presented on Figure 7.1. This annual testing program is used to evaluate where effective pumping for NAPL is being accomplished. This report presents the seventh annual NAPL/APL ratio-testing program.

7.1 NAPL/APL RATIO TESTING PROGRAM PROTOCOLS

The individual purge well NAPL/APL ratio tests were performed using a trailer mounted 300-gallon polyethylene storage tank. The tests were conducted by diverting pumped groundwater into the storage tank using a sampling port at the well head. The storage tank is graduated for volume determination. The collected liquid was allowed to settle for a minimum of four hours prior to NAPL/APL quantification to ensure maximum phase separation.

NAPL, when present, was removed from the bottom of the tank using a peristaltic pump following decanting. The NAPL was pumped into a graduated bucket so that the volume could be accurately determined. The peristaltic pump was turned off and the remaining APL was removed from the tank using a centrifugal trash pump. The APL volume was calculated by subtracting the decanted NAPL volume from the previously measured storage tank volume. All collected NAPL was drummed for off-Site disposal and the APL was pumped into a sump at the Hyde Park Storage Facility from which liquids are collected and treated.

The storage tank was decontaminated following each individual test. The tank was cleaned with a water spray if NAPL was not present. The water was then removed with the centrifugal pump and discharged to the Hyde Park Storage Facility sump. The tank was cleaned with solvents (i.e., Bio-T-Max) and rinsed with water following tests where NAPL was present. The centrifugal pump was used to remove the wash water for discharge to the Hyde Park Storage Facility sump.

7.2 <u>NAPL/APL RATIO TEST RESULTS</u>

The 2001 annual purge well NAPL/APL ratio tests were completed between August 13 and September 21, 2001.

Twelve operational wells were tested initially following a period during which the particular purge well pump had not experienced extensive shutdowns (more than several hours) during the previous week. If no NAPL was recovered during the initial test, a second test was conducted for confirmation. During the retest, the purge well pump was shut down for a minimum of 24 hours prior to commencing the second test. This shutdown period allowed any NAPL present in the well to accumulate prior to pumping. A second test was completed at six wells (PW-2M, PW-2L, PW-3L, PW-5UR, PW-6UR, and PW-6MR).

The results of the NAPL/APL ratio testing are summarized in Table 7.1.

7.3 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

The 2001 NAPL/APL ratio tests indicated that measurable NAPL volumes were available from five of the twelve purge wells tested. The purge wells which produced measurable NAPL volumes during normal operating conditions were PW-1L (0.25 gallons), PW-2UR (3.5 gallons), PW-3M (8 gallons), PW-4U (1 gallon), and PW-4M (40 milliliters). In addition, PW-1U produced trace NAPL volume indicated as a sheen on the pumped water. Historically, it is these same six purge wells that produce measurable quantities of NAPL.

Table 7.1 summarizes this information including the calculated NAPL/APL ratios at each purge well and projected annual NAPL volumes. The total estimated NAPL volume that could be removed via the Bedrock NAPL Plume Containment System was approximately 15,769 gallons over the past year. Manual NAPL level measurements were made monthly in Decanter No. 1, over the past year 2,666 gallons of NAPL were removed from the Bedrock NAPL Plume Containment System. The projected volume of NAPL that could be removed from the NAPL Plume Containment System and the actual volume of NAPL removed are significantly different, the reason for this difference is believed to be in the NAPL/APL ratio test method. Specifically, for wells that are turned off prior to testing. When the wells are turned off NAPL accumulates at the bottom of the well and upon restarting the pumps for the test a large volume of NAPL is collected indicating a much larger NAPL/APL ratio than what is occurring during normal pump operation. When these ratios are extrapolated to estimate an annual total, the volume of NAPL determined is unrealistically high.

8.0 EXISTING WELL SURVEY

An annual inspection of all Hyde Park purge and monitoring wells was performed. This includes an assessment of whether well repairs and/or replacement are required.

8.1 <u>SURVEY RESULTS</u>

The well inspection survey was performed in August 2001. The inspection results are summarized in Table 8.1. A total of eight wells were identified as requiring minor repairs (indicated with boxes in Table 8.1). No major repairs were required. All repairs have been completed.

9.0 <u>SEMI-ANNUAL MANHOLE INSPECTION</u>

During the 2001 annual reporting period a semi-annual inspection of OBCS, Existing Barrier Collection System (EBCS) and wet well manholes was established. The purpose of this program is to identify maintenance issues and potential leaks within these systems. The inspections consist of visually inspecting the integrity of the manholes and the security of the surface completions (manhole covers). The depth of each manhole and the amount of water within each manhole are also measured. Notes are also recorded as to sludge buildup in the manholes and the presence of chemical odors.

During the 2001 reporting period one round of manhole inspections was performed on July 26, 2001. Table 9.1 presents a summary of the manhole inspection. One manhole (OBCS manhole 33) was identified as needing repairs; these repairs have been made.

In general, the inspection revealed that the OBCS is performing as designed. The water level elevations observed indicate that the system is draining properly.

The manhole inspections will be performed semi-annually and reported in future annual reports.

TABLES

TABLE 2.1

SOURCE CONTROL SYSTEM HYDRAULIC MONITORING DATA HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

Well ID: Type: Casing Elevation: Ground Elevation:	OEW-1 O 619.88 611.80	OEW-1 O 619.88 611.80	OEW-2 O 630.17 617.60	OEW-3 O 637.61 615.70	OEW-4 O 639.16 630.50	OEW-5 O 636.00 628.40	OEW-6 O 630.97 623.50	OEW-7 O 630.51 620.90	OW33-82 O 627.49 621.60	OW35-82 O 632.47 618.90
09/07/00	600.66	600.66	596.12	596.86	610.86	NAPL	Dry	NAPL	Obstructed	Obstructed
10/05/00	602.10	602.10	598.02	598.74	612.74	NAPL	Dry	NAPL	Obstructed	Obstructed
11/03/00	601.58	601.58	598.07	598.71	612.69	NAPL	Dry	NAPL	Obstructed	Obstructed
12/06/00	600.88	600.88	598.15	598.58	612.66	NAPL	Dry	NAPL	Obstructed	Obstructed
01/11/01	600.55	600.55	598.17	598.71	-	NAPL	Drv	NAPL		
02/01/01	600.13	600.13	598.17	598.56	612.64	NAPL	Drv	NAPL	Obstructed	Obstructed
03/01/01	599.58	599.58	598.17	598.76	612.63	NAPL	5	NAPL	Obstructed	Obstructed
04/09/01	599.95	599.95	598.23	598.71	612.66	NAPL	Dry	Dry	Obstructed	Obstructed
05/11/01	599.22	599.22	598.34	598.78	612.69	NAPL	Dry	NAPL		
06/13/01	599.03	599.03	598.37	598.69	612.67	NAPL	Dry	NAPL	Obstructed	Obstructed
07/02/01	598.93	598.93	598.35	598.61	612.66	NAPL	Dry	NAPL	Obstructed	Obstructed
08/03/01	598.81	598.81	598.17	598.51	612.64	NAPL	Dry	NAPL	Obstructed	Obstructed
09/06/01	598.61	598.61	598.39	598.61	612.69	NAPL	Dry	NAPL	Obstructed	Obstructed
10/19/01	598.41	598.41	598.42	598.63	612.71	636.00	Dry	630.51	Obstructed	Obstructed
11/06/01	598.33	598.33	598.42	598.65	612.71	636.00	Dry	630.51	Obstructed	Obstructed
12/05/01	598.22	598.22	598.45	598.61	612.66	NAPL	Dry	NAPL	Obstructed	Obstructed

Notes: All elevations in Feet Above Mean Sea Level. O - Overburden Well

TABLE 3.1

INTERMEDIATE FORMATIONS ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

		Sample Location: Sample ID: Sample Date:	IFW-5 IFW5801 08/16/01
Parameter	Unit	Action Level	
Aroclor 1248 (Total PCBs)	ug/L	1	1.0 U
Perchloropentacyclodecane (Mirex)	ug/L	1	1.0 U
Chloroform	ug/L	10	10.0 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	pg/L	500	28

Notes:

U - Non-detect at associated value. pg/L - Picograms per Liter. ug/L - Micrograms per Liter.

CRA 1069 (303)

TABLE 4.1

GORGE FACE SEEP ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

	Sample Location: Sample ID: Sample Date:	Seep-2 SEEP-2801 08/15/01	Seep- 7D SEEP- 7D 801 08/15/01	Seep-12 SEEP-12801 08/15/01
Parameter	Unit			
Volatiles				
2-Chlorotoluene	ug/L	3.00 U	3.00 U	3.00 U
3-Chlorotoluene	ug/L	3.00 U	3.00 U	3.00 U
4-Chlorotoluene	ug/L	3.00 U	3.00 U	3.00 U
Monochlorotoluenes (MCT), Total	ug/L	3.00 U	3.00 U	3.00 U
Monochlorobenzene (MCB)	ug/L	10.0 U	10.0 U	10.0 U
m-Monochlorobenzotrifluoride	ug/L	3.00 U	3.00 U	3.00 U
o-Monochlorobenzotrifluoride	ug/L	3.00 U	3.00 U	3.00 U
p-Monochlorobenzotrifluoride	ug/L	3.00 U	3.00 U	3.00 U
Monochlorobenzotriflourides (MCBTF), Total	ug/L	3.00 U	3.00 U	3.00 U
Semi-Volatiles				
1,2,3-Trichlorobenzene	ug/L	3.00 U	3.00 U	3.00 U
1,2,4-Trichlorobenzene	ug/L	3.00 U	3.00 U	3.00 U
1,3,5-Trichlorobenzene	ug/L	3.00 U	3.00 U	3.00 U
1,2,3,4-Tetrachlorobenzene	ug/L	5.00 U	5.00 U	5.00 U
1,2,4,5-Tetrachlorobenzene	ug/L	5.00 U	5.00 U	5.00 U
2,4,5-Trichlorophenol (TCP)	ug/L	10.0 U	10.0 U	10.0 U
Trichlorobenzenes (TCB), Total	ug/L	3.00 U	3.00 U	3.00 U
Tetrachlorobenzenes (TTCB), Total	ug/L	5.00 U	5.00 U	5.00 U
Octachlorocyclopentene (C-58)	ug/L	10.0 U	10.0 U	10.0 U
Pesticides				
alpha-BHC	ug/L	0.250 U	0.250 U	0.250 U
beta-BHC	ug/L	0.250 U	0.250 U	0.250 U
delta-BHC	ug/L	0.250 U	0.250 U	0.250 U
gamma-BHC (Lindane)	ug/L	0.250 U	0.250 U	0.250 U
Hexachlorocyclohexane (BHC), Total	ug/L	0.250 U	0.250 U	0.250 U
General Chemistry				
Total Organic Carbon (TOC)	mg/L	2.8	3.0	2.0
Phenolics (Total)	mg/L	0.005 U	0.00808	0.00607
Total Organic Halides (TOX)	ug/L	583	121	101

Notes:

J - Estimated at associated value.

U - Not detect at associated value.

TABLE 5.1

BLOODY RUN MONITORING PROGRAM SAMPLE KEY AND FIELD OBSERVATIONS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

Sample ID	Well No.	Date	Time	pH (su)	Conductivity (uS/cm)	Temperature (°C)	Turbidity (NTU)	Water Quality	Comment
BR1801	BR-1	08/27/01	9:40	8.44	78	13.2	-	Cloudy	MS/MSD
BR2801	BR-2	08/27/01	8:55	7.22	73	12.1	-	Clear	
BR3801	BR-3	08/27/01	10:30	7.14	1306	13.1	160	Cloudy, Odorless	
BR4801	BR-4	08/27/01	9:45	7.14	1299	12.1	150	Cloudy, Odorless	
BR5801	BR-1	08/27/01	8:00	7.14	1299	12.1	150	-	Duplicate BR-4

Notes:

Not available.
°C Degrees Celsius.
MS/MSD Matrix Spike / Matrix Spike Duplicate.
NTU Normal Turbidity Units.
su Standard pH units.
uS/cm MicroSiemens per centimeter.

TABLE 5.2

BLOODY RUN MONITORING PROGRAM ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

	Sample Location: Sample ID: Sample Date:	BR-1 BR1801 08/27/01	BR-2 BR2801 08/27/01	BR-3 BR3801 08/27/01	BR-4 BR4801 08/27/01	BR-5 BR5801 08/27/01
Parameter	Unit					
Volatiles						
2-Chlorotoluene	ug/L	3.00 U				
3-Chlorotoluene	ug/L	3.00 U				
4-Chlorotoluene	ug/L	3.00 U				
Chlorobenzene	ug/L	10.0 U				
Semi-Volatiles						
2,4,5-Trichlorophenol	ug/L	10.0 U				
Hexachlorobenzene	ug/L	10.0 U				

Notes: U - Non-detect at associated value. ug/L - Micrograms per Liter.

TABLE 5.3 BLOODY RUN MONITORING PROGRAM HYDRAULIC MONITORING DATA HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

Well I.D. Date		Top of Casing Elevation (ft. AMSL)	Water Level Depth (ft. BTOC)	Water Level Elevation (ft. AMSL)	
BR-1	8/27/01	583.35	11.95	571.4	
BR-2	8/27/01	582.07	22.46	559.61	
BR-3	8/27/01	582.55	22.12	560.43	
BR-4	8/27/01	583.84	28.02	555.82	

Notes:

Ft. AMSL Feet Above Mean Sea Level.

Ft. BTOC Feet Below Top of Casing.

WET WELL A ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

Samp S	ole Location: Sample ID: Sample Date:	Wet Well A WWA801 08/01/01
Parameter	Unit	
Volatiles		
2-Chlorotoluene	ug/L	3750
3-Chlorotoluene	ug/L	75.0 U
4-Chlorotoluene	ug/L	2560
Monochlorotoluenes (MCT), Total	ug/L	6310
Monochlorobenzenes (MCB)	ug/L	1720
o-Monochlorobenzotrifluoride	ug/L	1150
m-Monochlorobenzotrifluoride	ug/L	356
p-Monochlorobenzotrifluoride	ug/L	1660
Monochlorobenzotriflourides (MCBTF), Tota	l ug/L	3166
Semi-Volatiles		
1,2,3-Trichlorobenzene	ug/L	101
1,2,4-Trichlorobenzene	ug/L	495
1,3,5-Trichlorobenzene	ug/L	75.0 U
Trichlorobenzenes (TCB), Total	ug/L	596
1,2,3,4-Tetrachlorobenzene	ug/L	570
1,2,4,5-Tetrachlorobenzene	ug/L	292
Tetrachlorobenzenes (TTCB), Total	ug/L	862
2,4,5-Trichlorophenol	ug/L	2980
Octachlorocyclopentene	ug/L	150 U
Pesticides		
alpha-BHC	ug/L	497
beta-BHC	ug/L	25.3
delta-BHC	ug/L	246
gamma-BHC (Lindane)	ug/L	174
Hexachlorocyclohexanes (BHC), Total	ug/L	942.3
General Chemistry		
Chloride	mg/L	5000
Phenolics (Total)	mg/L	386
Total Organic Carbon (TOC)	mg/L	1800
Total Organic Halides (TOX)	ug/L	3260000

Notes: U - Non-detect at associated value. ug/L - Micrograms per Liter. mg/L - Milligrams per Liter.

WET WELL C ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

S	ample Location: Sample ID: Sample Date:	Wet Well C WWC801 08/01/01
Parameter	Unit	
2 Chlorotoluono	ur /I	500
2 Chlorotoluone	ug/L	300 15 0 U
4 Chlorotoluono	ug/L	13.0 U 358
4-Chiorotoluones (MCT) Total	ug/L	330 858
Monochlorobonzonos (MCR)	ug/L	000 225
a Manachlarabanzatrifluarida	ug/L	325
m-Monochlorobonzotrifluorida	ug/L	50.3
n-Monochlorobonzotrifluorida	ug/L	186
Monochlorobonzotriflouridos (MCBTE)	ug/L Total ug/I	267 2
wonochiorobenzou mourides (web IF)	, Iotai ug/L	307.5
Semi-Volatiles		
1.2.3-Trichlorobenzene	ug/L	76.3
1.2.4-Trichlorobenzene	ug/L	364
1.3.5-Trichlorobenzene	ug/L	15.0 U
Trichlorobenzenes (TCB), Total	ug/L	440.3
1,2.3,4-Tetrachlorobenzene	ug/L	930
1,2,4,5-Tetrachlorobenzene	ug/L	452
Tetrachlorobenzenes (TTCB), Total	ug/L	1382
2,4,5-Trichlorophenol	ug/L	583
Octachlorocyclopentene	ug/L	15.0 U
Pesticides	-	
alpha-BHC	ug/L	85.2
beta-BHC	ug/L	15.9
delta-BHC	ug/L	33.7
gamma-BHC (Lindane)	ug/L	48.3
Hexachlorocyclohexanes (BHC), Total	ug/L	183.1
General Chemistry		
Chloride	mg/L	360
Phenolics (Total)	mg/L	44.6
Total Organic Carbon (TOC)	mg/L	25
Total Organic Halides (TOX)	ug/L	589000

Notes: U - Non-detect at associated value. ug/L - Micrograms per Liter. mg/L - Milligrams per Liter.

WET WELL C ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

	Sample Location: Sample ID: Sample Date:	Wet Well D WWD801 08/01/01
Parameter	Unit	
Volatiles		
2-Chlorotoluene	ug/L	310
3-Chlorotoluene	ug/L	6.00 U
4-Chlorotoluene	ug/L	142
Monochlorotoluenes (MCT), Total	ug/L	452
Monochlorobenzenes (MCB)	ug/L	93.0
o-Monochlorobenzotrifluoride	ug/L	62.6
m-Monochlorobenzotrifluoride	ug/L	28.7
p-Monochlorobenzotrifluoride	ug/L	95.2
Monochlorobenzotriflourides (MCBTF), Total ug/L	186.5
Semi-Volatiles		
1,2,3-Trichlorobenzene	ug/L	34.2
1,2,4-Trichlorobenzene	ug/L	134
1,3,5-Trichlorobenzene	ug/L	6.00 U
Trichlorobenzenes (TCB), Total	ug/L	168.2
1,2,3,4-Tetrachlorobenzene	ug/L	70.7
1,2,4,5-Tetrachlorobenzene	ug/L	42.8
Tetrachlorobenzenes (TTCB), Total	ug/L	113.5
2,4,5-Trichlorophenol	ug/L	35.9
Octachlorocyclopentene	ug/L	3.00 U
Pesticides		
alpha-BHC	ug/L	17.4
beta-BHC	ug/L	2.87
delta-BHC	ug/L	9.46
gamma-BHC (Lindane)	ug/L	7.33
Hexachlorocyclohexanes (BHC), Total	ug/L	37.06
General Chemistry		
Chloride	mg/L	390
Phenolics (Total)	mg/L	0.437
Total Organic Carbon (TOC)	mg/L	31
Total Organic Halides (TOX)	ug/L	4270

Notes: U - Non-detect at associated value. ug/L - Micrograms per Liter. mg/L - Milligrams per Liter.

DECANTER NO.1 (BEDROCK) ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

S	Sample Location: Sample ID: Sample Date:	Bedrock	Bedrock	Bedrock	Bedrock	Bedrock	Bedrock	Bedrock	Bedrock	Bedrock	Bedrock
		MD1-0900 09/06/00	MD1-01000 10/03/00	MD1 - 1100 11/01/00	MD1 12/01/00	MD1-101 01/02/01	MD1-0201 02/15/01	MD1-301 03/02/01	MD1-401 04/03/01	MD1-501 05/01/01	MD1-601 06/04/01
Parameter	linit										
Volatiles	Cint										
2-Chlorotoluene	ug/L	1800	1600	1600 J	1300	1800	1100 J	890	1100	850	180
3-Chlorotoluene	ug/L	8.0 U	8.0 U	8.0 U	30 U	30 U	30 U	15 U	30 U	15 U	3.0 U
4-Chlorotoluene	ug/L	820	1500	920 J	850	1300	840 J	690	810	590	130
Monochlorotoluenes (MCT). Total	ug/L	2620	3100	2520	2150	3100	1940	1580	1910	1440	310
Monochlorobenzenes (MCB)	ug/L	550	920	600 J	560	470	780	630	670	570	98
o-Monochlorobenzotrifluoride	ug/L	400	410	260	270	260	260	410	420	330	69
m-Monochlorobenzotrifluoride	ug/L	130	130	82	83	120	99	140	170	100	22
p-Monochlorobenzotrifluoride	ug/L	600	560	350	330	620	380	630	730	470	100
Monochlorobenzotriflourides (MCBTF), Tota	al ug/L	1130	1100	692	683	1000	739	1180	1320	900	191
Semi-Volatiles											
1,2,3-Trichlorobenzene	ug/L	47	69	54	86	42	47	54	740	69	54
1,2,4-Trichlorobenzene	ug/L	180	240	190	330	310	240 J	250	3900	300 J	260
1,3,5-Trichlorobenzene	ug/L	5 U	5 U	5 U	14 U	3 U	14 U	14 U	56 U	15 U	28 U
Trichlorobenzenes (TCB), Total	ug/L	227	309	244	416	352	287	304	4640	369	314
1,2,3,4-Tetrachlorobenzene	ug/L	240	240	220	420	140	180	220	6100	220	290
1,2,4,5-Tetrachlorobenzene	ug/L	72	110	100	170	70	75	85	2600	120	140
Tetrachlorobenzenes (TTCB), Total	ug/L	312	350	320	590	210	255	305	8700	340	430
2,4,5-Trichlorophenol	ug/L	300	280 J	200	360	330	42 J	320	700 J	290	320
Octachlorocyclopentene	ug/L	10 U	10 U	10 U	47 U	10 U	47 U	47 U	190 U	50 U	94 U
Pesticides											
alpha-BHC	ug/L	80	87	100	130 J	98	100	100	430	100	120 J
beta-BHC	ug/L	42	10	11	17 J	58	10	9.5	47	14	18 J
delta-BHC	ug/L	40	33	38	42 J	34	31	27	110	34	33 J
gamma-BHC (Lindane)	ug/L	47	48	53	68 J	55	55	50	210	58	64 J
Hexachlorocyclohexanes (BHC), Total	ug/L	209	178	202	257	245	196	186.5	797	206	235
General Chemistry											
Chloride	mg/L	673	575	674	824	596	614	710	572	458	487
Phenolics (Total)	mg/L	8.5	7.7	7.5	8.7	7.3 J	7.6	9.0	7.7	7.0	10.2
Total Organic Carbon (TOC)	mg/L	30.9	34.0	28.9	38.4	28.4	35.4	33.7	28.3	30.8	45.0
Total Organic Halides (TOX)	ug/L	12600	10900	13000	14600	8940	14400	13600	13500	16600	15400

Notes:

J - Estimated at associated value.

U - Non-detect at associated value.

ug/L - Micrograms per Liter.

mg/L - Milligrams per Liter.

DECANTER NO.1 (BEDROCK) ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

	Sample Location:	Bedrock	Bedrock	Bedrock	Bedrock	Bedrock	Bedrock	
	Sample ID:	MD1-701	MD1 0801	MD1-901	MD1-1001	MD1-1101	MD1-1201	
	Sample Date:	07/03/01	08/01/01	09/04/01	10/01/01	11/15/01	12/03/01	
Parameter	Unit							
Volatiles								
2-Chlorotoluene	ug/L	430	917	1710	1530	223	564	
3-Chlorotoluene	ug/L	6.0 U	11.1	3.00 U	3.00 U	3.00 U	3.00 U	
4-Chlorotoluene	ug/L	320	424	1210	423	95.8	371	
Monochlorotoluenes (MCT), Total	ug/L	750	1352.1	2920	1953	318.8	935	
Monochlorobenzenes (MCB)	ug/L	400	415	1090	387	146	345	
o-Monochlorobenzotrifluoride	ug/L	270	223	730	173	82.0	183	
m-Monochlorobenzotrifluoride	ug/L	90	92.8	252	85.5	24.5	89.1	
p-Monochlorobenzotrifluoride	ug/L	390	321	975	271	86.2	276	
Monochlorobenzotriflourides (MCBTF), Tota	al ug/L	750	636.8	1957	529.5	192.7	548.1	
Semi-Volatiles								
1,2,3-Trichlorobenzene	ug/L	52	92.7	162	83.0	21.2	77.7	
1,2,4-Trichlorobenzene	ug/L	220	371	736	323	71.3	312	
1,3,5-Trichlorobenzene	ug/L	15 U	3.00 U	3.00 U	3.00 U	3.00 U	3.00 U	
Trichlorobenzenes (TCB), Total	ug/L	272	463.7	898	406	92.5	389.7	
1,2,3,4-Tetrachlorobenzene	ug/L	250	120	339	154	30.0	188 J	
1,2,4,5-Tetrachlorobenzene	ug/L	120	44.3	137	58.3	13.1 J	79.9 J	
Tetrachlorobenzenes (TTCB), Total	ug/L	370	164.3	476	212.3	43.1	267.9	
2,4,5-Trichlorophenol	ug/L	240	153	561	152	254 J	271 J	
Octachlorocyclopentene	ug/L	50 U	3.00 U	10.0 U	10.0 U	10.0 UJ	10.0 UJ	
Pesticides								
alpha-BHC	ug/L	120	97.3	230	69.2	174 J	68.4 J	
beta-BHC	ug/L	12	11.4	20.3	10.2	27.5 J	9.28 J	
delta-BHC	ug/L	34	39.4	87.2	23.6	69.7 J	13.1 J	
gamma-BHC (Lindane)	ug/L	62	55.6	139	38.0	99.1 J	44.0	
Hexachlorocyclohexanes (BHC), Total	ug/L	228	203.7	476.5	141	370.3	134.78	
General Chemistry								
Chloride	mg/L	378	460	740 J	540	580 J	500	
Phenolics (Total)	mg/L	6.8	8.70	16.0	3.97	0.382	5.38	
Total Organic Carbon (TOC)	mg/L	27.0	34	65	17	18	20	
Total Organic Halides (TOX)	ug/L	12200	2060000 J	18200 J	5970	6710 J	7050	

Notes:

J - Estimated at associated value.

U - Non-detect at associated value.

ug/L - Micrograms per Liter. mg/L - Milligrams per Liter.

DECANTER NO.2 (OVERBURDEN) ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

	Sample Location: Sample ID: Sample Date:	Overburden MD2-0900 09/06/00	Overburden MD2-01000 10/03/00	Overburden MD2 - 1100 11/01/00	Overburden MD2 12/01/00	Overburden MD2-101 01/02/01	Overburden MD2-0201 02/15/01	Overburden MD2-301 03/02/01	Overburden MD2-401 04/03/01
Parameter	Unit								
Volatiles									
2-Chlorotoluene	ug/L	1400	1400	1100	500 D	1100	270	640	360
3-Chlorotoluene	ug/L	3.2 U	3.0 UJ	6.4 U	6.0 U	24 U	6.0 U	15 U	12 U
4-Chlorotoluene	ug/L	330	370	400	200	600	180	460	230
Monochlorotoluenes (MCT), Total	ug/L	1730	1770	1500	200	1700	450	1100	590
Monochlorobenzenes (MCB)	ug/L	150	320 J	250	90	66 J	250	410	140
o-Monochlorobenzotrifluoride	ug/L	150	150 J	120	68	54	35	280	130
m-Monochlorobenzotrifluoride	ug/L	55	48 J	40	23	32	12	58	52
p-Monochlorobenzotrifluoride	ug/L	240	230 J	150	100	290	60	360	260
Monochlorobenzotriflourides (MCBTF), Total	ug/L	445	428	310	191	376	107	698	442
Semi-Volatiles									
1,2,3-Trichlorobenzene	ug/L	26	26	25	20	37	6 J	26	12
1,2,4-Trichlorobenzene	ug/L	74	95	87	78	220	31	130	51
1,3,5-Trichlorobenzene	ug/L	5 U	5 U	5 U	14 U	14 U	14 U	14 U	3 U
Trichlorobenzenes (TCB), Total	ug/L	100	121	112	98	257	37	156	63
1,2,3,4-Tetrachlorobenzene	ug/L	140	110	120	150	150	19 J	120	36
1,2,4,5-Tetrachlorobenzene	ug/L	40	52	56	62	67	11 J	57	17
Tetrachlorobenzenes (TTCB), Total	ug/L	180	162	176	212	217	30	177	53
2,4,5-Trichlorophenol	ug/L	280	210 J	150	150	250	110	280	220
Octachlorocyclopentene	ug/L	10 U	10 U	10 U	47 U	47 U	47 U	47 U	9 U
Pesticides									
alpha-BHC	ug/L	25	55	51	32 J	44	16	79	29
beta-BHC	ug/L	16	6.8	6.2	4.9 J	21	2.8	18	4.3
delta-BHC	ug/L	13	20	16	13 J	18	8.4	22	11
gamma-BHC (Lindane)	ug/L	11	24	22	13 J	19	7.4	40	10
Hexachlorocyclohexanes (BHC), Total	ug/L	65	105.8	95.2	62.9	102	34.6	159	54.3
General Chemistry									
Chloride	mg/L	541	566	665	518	505	482	640	345
Phenolics (Total)	mg/L	8.8	4.1	5.0	3.2	0.015	2.6	4.5	5.6
Total Organic Carbon (TOC)	mg/L	42.4	35.8	28.7	26.2	6.5	17.3	25.2	20.4
Total Organic Halides (TOX)	ug/L	13000	10300	7890	7110	11400	4060	8060	6120

Notes:

J - Estimated at associated value.

U - Non-detect at associated value.

ug/L - Micrograms per Liter. mg/L - Milligrams per Liter.

Page 1 of 3

DECANTER NO.2 (OVERBURDEN) ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

	Sample Location: Sample ID: Sample Date:	Overburden MD2-501 05/01/01	Overburden MD2-601 06/04/01	Overburden MD2-701 07/03/01	Overburden MD2-0801 08/01/01	Overburden MD2-0801DL 08/01/01	Overburden MD3-0801-3DL 08/01/01	Overburden MD2 0801 08/01/01	Overburden MD2-901 09/04/01
Parameter	Unit								
Volatiles									
2-Chlorotoluene	ug/L	1500	24	520	-	-	-	3680	3850
3-Chlorotoluene	ug/L	38 U	0.60 U	12 U	-	-	-	15.0 U	3.00 U
4-Chlorotoluene	ug/L	240	11	54	-	-	-	280	283
Monochlorotoluenes (MCT), Total	ug/L	1740	35	574	-	-	-	3960	4133
Monochlorobenzenes (MCB)	ug/L	220	6.7	41	-	-	-	126	117
o-Monochlorobenzotrifluoride	ug/L	110	5.1	31	-	-	-	125	139
m-Monochlorobenzotrifluoride	ug/L	37 J	1.4	15	-	-	-	51.6	57.7
p-Monochlorobenzotrifluoride	ug/L	170	7.7	52	-	-	-	198	196
Monochlorobenzotriflourides (MCBTF), Total	ug/L	317	14.2	98	-	-	-	374.6	392.7
Semi-Volatiles									
1,2,3-Trichlorobenzene	ug/L	25 J	5 J	6	-	-	-	47.7	43.7
1,2,4-Trichlorobenzene	ug/L	130	31	24	-	-	-	184	167
1,3,5-Trichlorobenzene	ug/L	56 U	14 U	3 U	-	-	-	15.0 U	3.00 U
Trichlorobenzenes (TCB), Total	ug/L	155	36	30	-	-	-	231.7	210.7
1,2,3,4-Tetrachlorobenzene	ug/L	190	28	32	-	-	-	83.3	75.6
1,2,4,5-Tetrachlorobenzene	ug/L	98	14 J	21	-	-	-	33.8	36.9
Tetrachlorobenzenes (TTCB), Total	ug/L	288	42	53	-	-	-	117.1	112.5
2,4,5-Trichlorophenol	ug/L	400	85	61	-	-	-	171	191
Octachlorocyclopentene	ug/L	190 U	47 U	9 U	-	-	-	3.00 U	10.0 U
Pesticides									
alpha-BHC	ug/L	65	20 J	15	-	-	-	72.2	47.1
beta-BHC	ug/L	11	2.5 J	2.0	-	-	-	9.57	5.85
delta-BHC	ug/L	22	5.7 J	3.9	-	-	-	29.4	19.8
gamma-BHC (Lindane)	ug/L	30	9.8 J	6.2	-	-	-	26.1	19.0
Hexachlorocyclohexanes (BHC), Total	ug/L	128	38	27.1	-	-	-	137.27	91.75
General Chemistry									
Chloride	mg/L	454	330	451	-	-	-	390	460 J
Phenolics (Total)	mg/L	12.6	1.3	1.4	-	-	-	3.47	0.185
Total Organic Carbon (TOC)	mg/L	63.2	11.1	15.8	-	-	-	28	20
Total Organic Halides (TOX)	ug/L	20900	4570	6500	-	-	-	10500000	8190 J

Notes:

J - Estimated at associated value.

U - Non-detect at associated value.

ug/L - Micrograms per Liter. mg/L - Milligrams per Liter.

DECANTER NO.2 (OVERBURDEN) ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

	Sample Location: Sample ID: Sample Date:	Overburden MD2-1001 10/01/01	Overburden MD2-1101 11/01/01	Overburden MD2-1201 12/03/01
Parameter	Unit			
Volatiles				
2-Chlorotoluene	ug/L	39700 J	669	355
3-Chlorotoluene	ug/L	3.00 J	3.00 U	3.00 U
4-Chlorotoluene	ug/L	600 J	60.4	74.2
Monochlorotoluenes (MCT), Total	ug/L	40303	729.4	429.2
Monochlorobenzenes (MCB)	ug/L	107 J	50.0 U	28.8
o-Monochlorobenzotrifluoride	ug/L	88.9 J	46.8	52.6
m-Monochlorobenzotrifluoride	ug/L	35.8 J	27.7	3.00 U
p-Monochlorobenzotrifluoride	ug/L	130 J	80.7	88.4
Monochlorobenzotriflourides (MCBTF), Total	ug/L	254.7	155.2	141
Semi-Volatiles				
1,2,3-Trichlorobenzene	ug/L	40.6 J	17.1	22.8
1,2,4-Trichlorobenzene	ug/L	151 J	37.3	81.2
1,3,5-Trichlorobenzene	ug/L	3.00 J	3.00 U	3.00 U
Trichlorobenzenes (TCB), Total	ug/L	194.6	54.4	104
1,2,3,4-Tetrachlorobenzene	ug/L	113	20.5	105 J
1,2,4,5-Tetrachlorobenzene	ug/L	56.6	9.91	40.7 J
Tetrachlorobenzenes (TTCB), Total	ug/L	169.6	30.41	145.7
2,4,5-Trichlorophenol	ug/L	178	58.3	84.2 J
Octachlorocyclopentene	ug/L	10.0 U	10.0 U	10.0 UJ
Pesticides				
alpha-BHC	ug/L	35.1 J	14.3 J	23.2 J
beta-BHC	ug/L	8.39 J	4.56 J	4.33 J
delta-BHC	ug/L	14.4 J	7.20 J	9.38
gamma-BHC (Lindane)	ug/L	16.6 J	6.15 J	11.4 J
Hexachlorocyclohexanes (BHC), Total	ug/L	74.49	32.21	48.31
General Chemistry				
Chloride	mg/L	340	190 J	120
Phenolics (Total)	mg/L	0.573	0.577	0.456
Total Organic Carbon (TOC)	mg/L	24	6.1	6.5
Total Organic Halides (TOX)	ug/L	15300	2340 J	1690

Notes:

J - Estimated at associated value.

U - Non-detect at associated value.

ug/L - Micrograms per Liter.

mg/L - Milligrams per Liter.

Page 1 of 2

DECANTER NO.3 (SOURCE CONTROL) ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

Sa	mple Location: Sample ID: Sample Date:	Source Control MD3-0900 09/06/00	Source Control MD3-01000 10/03/00	Source Control MD3 - 1100 11/01/00	Source Control MD3 12/01/00	Source Control MD3-101 01/02/01	Source Control MD3-0201 02/15/01	Source Control MD3-301 03/02/01	Source Control MD3-401 04/03/01
Parameter	Unit								
Volatiles									
2-Chlorotoluene	ug/L	1600 J	1500	1200	840	950	270	220	510
3-Chlorotoluene	ug/L	16 U	8.0 U	8.0 U	30 U	15 U	6.0 U	6.0 U	60 U
4-Chlorotoluene	ug/L	360 J	550	580	430	630	180	130	320
Monochlorotoluenes (MCT), Total	ug/L	1960	2050	1780	1270	1580	450	350	830
Monochlorobenzenes (MCB)	ug/L	120 J	10 U	280	140	20 J	330	190	200
o-Monochlorobenzotrifluoride	ug/L	160	130	180	130	16	17	34	180
m-Monochlorobenzotrifluoride	ug/L	44	41	46	50	9.2 J	6.0	9.1	50 J
p-Monochlorobenzotrifluoride	ug/L	240	160	210	190	250	49	110	310
Monochlorobenzotriflourides (MCBTF),	Total ug/L	444	331	436	370	275.2	72	153.1	540
Semi-Volatiles									
1,2,3-Trichlorobenzene	ug/L	29	16	16	13 J	12 J	3	4	20
1,2,4-Trichlorobenzene	ug/L	100	91	82	85	72	11	21	94
1,3,5-Trichlorobenzene	ug/L	9 U	10 U	10 U	28 U	14 U	3 U	3 U	11 U
Trichlorobenzenes (TCB), Total	ug/L	129	107	98	98	84	14	25	114
1,2,3,4-Tetrachlorobenzene	ug/L	150	72	85	94	68	10	19	74
1,2,4,5-Tetrachlorobenzene	ug/L	56	57	71	78	29	6	7	33
Tetrachlorobenzenes (TTCB), Total	ug/L	206	129	156	172	97	16	26	107
2,4,5-Trichlorophenol	ug/L	520	480 J	410 J	430	140	61	47	340
Octachlorocyclopentene	ug/L	19 U	20 U	20 U	93 U	47 U	9 U	9 U	37 U
Pesticides									
alpha-BHC	ug/L	62	45	67	38 J	7.5	6.8	17	53
beta-BHC	ug/L	59	2.5 U	11	3.6 J	3.4	0.91	3.0	8.4
delta-BHC	ug/L	17	11	17	8.8 J	2.4	2.3	4.3	5.6
gamma-BHC (Lindane)	ug/L	33	18	30	10 J	2.5	2.1	8.4	19
Hexachlorocyclohexanes (BHC), Total	ug/L	171	74	125	60.4	15.8	12.11	32.7	86
General Chemistry									
Chloride	mg/L	502	937	683	746	312	441	452	327
Phenolics (Total)	mg/L	18.7	29.0	31.0	31.6	0.0050 U	2.0	0.67	3.5
Total Organic Carbon (TOC)	mg/L	66.8	192	90.2	100	4.0	14.1	6.7	24.6
Total Organic Halides (TOX)	ug/L	14600	38600	20200	18500	1110	5090	2380	7810

Notes:

J - Estimated at associated value.

U - Non-detect at associated value.

ug/L - Micrograms per Liter. mg/L - Milligrams per Liter.

DECANTER NO.3 (SOURCE CONTROL) ANALYTICAL RESULTS HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

Sa	mple Location:	Source Control	Source Control	Source Control	Source Control	Source Control	Source Control	Source Control	Source Control
	Sample ID: Sample Date:	MD3-501 05/01/01	MD3-601 06/04/01	MD3-701 07/03/01	MD 3 0801 08/01/01	MD 3-901 09/04/01	MD3-1001 10/01/01	MD3-1101 11/01/01	MD3-1201 12/03/01
Parameter	Unit								
Volatiles									
2-Chlorotoluene	ug/L	270	180	1700	989	1170	2190	1000 J	347
3-Chlorotoluene	ug/L	6.0 U	4.8 U	30 U	15.0 U	3.00 U	30.0 U	3.00 U	3.00 U
4-Chlorotoluene	ug/L	180	63	620	292	571	357	298	145
Monochlorotoluenes (MCT), Total	ug/L	450	243	2320	1281	1741	2547	1298	492
Monochlorobenzenes (MCB)	ug/L	180	28	300	182	338	194	184	193
o-Monochlorobenzotrifluoride	ug/L	81	28	320	148	304	171	166	86.5
m-Monochlorobenzotrifluoride	ug/L	27	6.7	80	46.8	100	56.9	52.8	28.1
p-Monochlorobenzotrifluoride	ug/L	140	36	360	182	366	219	194	109
Monochlorobenzotriflourides (MCBTF),	Total ug/L	248	70.7	760	376.8	770	446.9	412.8	223.6
Semi-Volatiles									
1,2,3-Trichlorobenzene	ug/L	9 J	22	46 J	104	131	70.0	74.3	53.0
1,2,4-Trichlorobenzene	ug/L	48	120	270	422	524	375	367	177
1,3,5-Trichlorobenzene	ug/L	14 U	14 U	56 U	15.0 U	3.00 U	30.0 U	3.00 U	3.00 U
Trichlorobenzenes (TCB), Total	ug/L	57	142	316	526	655	445	441.3	230
1,2,3,4-Tetrachlorobenzene	ug/L	49	81	350	265	295	159	44.7 J	121 J
1,2,4,5-Tetrachlorobenzene	ug/L	26	76	210	114	124	63.2	24.0 J	66.4 J
Tetrachlorobenzenes (TTCB), Total	ug/L	75	157	560	379	419	222.2	68.7	187.4
2,4,5-Trichlorophenol	ug/L	150	390	510	138	396	115	56.3 J	107 J
Octachlorocyclopentene	ug/L	47 U	47 U	190 U	3.00 U	10.0 U	10.0 U	10.0 UJ	10.0 UJ
Pesticides									
alpha-BHC	ug/L	36	56 J	130	154	166	85.8	83.8	44.7 J
beta-BHC	ug/L	3.5	7.6 J	18	17.2	16.2	9.82	9.05	4.77
delta-BHC	ug/L	8.9	14 J	39	58.2	49.2	26.4	23.1	13.5
gamma-BHC (Lindane)	ug/L	16	26 J	67	72.7	72.7	35.3	41.0	27.5 J
Hexachlorocyclohexanes (BHC), Total	ug/L	64.4	103.6	254	302.1	304.1	157.32	156.95	90.47
General Chemistry									
Chloride	mg/L	390	781	796	520	790 J	590	500 J	670
Phenolics (Total)	mg/L	5.1	28.8	56.5	8.97	8.29	3.29	4.74	5.21
Total Organic Carbon (TOC)	mg/L	25.8	128	198	28	35	15	17	47
Total Organic Halides (TOX)	ug/L	5540	24100	36500	922000	8460 J	5520	5060 J	11700
-									

Notes:

J - Estimated at associated value.

U - Non-detect at associated value.

ug/L - Micrograms per Liter. mg/L - Milligrams per Liter.

MONTHLY CHEMICAL MASS LOADING SUMMARY HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

		CHEMICAL MASS REM	(OVED (lbs.)
Month	Bedrock Purge Wells (PWs)	APL Purge Wells (APWs)	Overburden Collection System (OBCS)
Oct-00	121	0.15	4
Nov-00	86	0.17	3
Dec-00	93	0.14	8
Jan-01	106	0.17	14
Feb-01	76	0.26	14
Mar-01	96	0.24	46
Apr-01	392	0.24	17
May-01	24	0.07	23
Jun-01	44	0.09	1
Jul-01	63	0.11	0
Aug-01	25	0.31	2
Sep-01	120	0.25	3
Oct-01	82	0.17	197
Nov-01	32	0.1	3
Dec-01	67	0.11	9
Total	1427	2.58	344

TABLE 7.1

NAPL PLUME CONTAINMENT SYSTEM PURGE WELLS NAPL/APL RATIO TEST RESULTS SUMMARY HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

	Test	No. 1		Test No. 2			NAPL/APL		
		Vo. (gal	lume llons)		Vol (gal	ume lons)	Ratio (% NAPL by	Aproximate Annual	Estimated Annual
Well I.D.	Date (Time)	APL	NAPL	Date (Time)	APL	NAPL	Volume of APL)	Flow Rate (gpm)	NAPL Volume (gallons)
PW-1U	August 7, 2001 (15 min.)	50	Sheen	-	-	-	0.000000	0.30	0
PW-1L	September 21, 2001 (15 min.)	300	0.25	-	-	-	0.000833	6.80	2,978
PW-2UR	September 21, 2001 (60 min.)	300	3.50	-	-	-	0.011667	1.10	6,745
PW-2M	September 19, 2001 (10 min.)	300	0	September 20, 2001 (10 min.)	300	0	0.000000	24.00	0
PW-2L	August 7, 2001 (80 min.)	300	0	August 13, 2001 (30 min.)	300	0	0.000000	1.30	0
PW-3M	August 14, 2001 (25 min.)	300	8.00	-	-	-	0.026667	0.30	4,205
PW-3L	August 13, 2001 (18 min.)	300	0	August 14, 2002 (20 min.)	300	0	0.000000	4.40	0
PW-4U	September 11, 2001 (45 min.)	200	1	-	-	-	0.005000	0.70	1,840
PW-4M	September 11, 2001 (25 min.)	300	0.001	-	-	-	0.000003	0.40	1
PW-5UR	September 19, 2001 (25 min.)	300	0	September 20, 2001 (35 min.)	300	0	0.000000	3.10	0
PW-6UR	September 6, 2001 (22 min.)	250	0	September 7, 2001 (30 min.)	250	0	0.000000	2.00	0
PW-6MR	September 6, 2001 (25 min.)	300	0	September 7, 2001 (20 min.)	300	0	0.000000	3.00	0

Well I.D.	Sounded Depth (ft. BTOC)	Installed Depth (ft. BTOC)	NAPL Present	Road Box	Grout Seal	Lid/ Center Bolt	Expandable Cap	Lid 9⁄16 Bolts	Protective Casing	Labeled	Last Development Date	How Identified
OMW Wells												
OMW-1	8.27	9.07	Ν	G	G	Ν	G	Ν	G	G		W
OMW-2	6.04	6.89	Ν	G	G	Ν	G	Ν	G	G		W
OMW-3	9.75	13.77	Ν	G	G	Ν	G	Ν	G	G		W
OMW-4R	15.52	17.88	Ν	G	G	Ν	G	Ν	G	G		W
OMW-5R	13.35	11.83	Ν	G	G	Ν	G	Ν	G	G		W
OMW-6	7.64	8.27	Ν	G	G	R	G	Ν	G	G		W
OMW-7	13.77	14.59	Ν	G	G	Ν	G	Ν	G	G		W
OMW-8R	18.62	20.94	Ν	G	G	Ν	G	Ν	G	G		W
OMW-8R2	18.92		Ν	G	G	Ν	G	Ν	G	G		W
OMW-9	14.14	15.67	Ν	G	G	Ν	G	Ν	G	G		W
OMW-10	14.11		Ν	G	G	Ν	G	Ν	G	G		W
OMW-10R	15.56	17.19	Ν	G	G	Ν	G	Ν	G	G		W
OMW-11R	13.52		Ν	G	G	Ν	G	Ν	G	G		W
OMW-12R	8.60	9.75	Ν	G	G	Ν	G	Ν	G	G		W
OMW-13R	15.01	13.63	Ν	G	G	Ν	G	Ν	G	G		W
OMW-14R	8.99	13.21	Ν	G	G	Ν	G	Ν	G	G		W
OMW-15	7.42	5.94	Ν	G	G	Ν	G	Ν	G	G		W
OMW-16R	7.96	9.16	Ν	G	G	Ν	G	Ν	G	G		W
PMW Wells												
PMW-1U	62.73	64.76	Ν	Ν	G	Ν	G	G	G	G		W
PMW-1M	91	93.17	Ν	Ν	G	Ν	G	G	G	G		W
PMW-1L	112.34	114.71	Y	Ν	G	Ν	G	G	G	G		W
PMW-2U	49.8	54.19	Ν	Ν	G	G	G	Ν	G	G		W
PMW-2M	83.55	95.13	Ν	Ν	G	G	G	Ν	G	G		W
PMW-2L	112.34	126.59	Y	Ν	G	Ν	Ν	Ν	G	G		W
PMW-3U	49.16	50.20	Y	Ν	G	Ν	G	Ν	G	G		W
PMW-3M	105.35	108.87	Y	Ν	G	Ν	G	Ν	G	G		W
PMW-3L	124.62	128.01	Ν	Ν	G	Ν	G	Ν	G	G		W
PW6UMR	102.25		Ν	Ν	G	Ν	Ν	Ν	G	G		W

Well I.D.	Sounded Depth (ft. BTOC)	Installed Depth (ft. BTOC)	NAPL Present	Road Box	Grout Seal	Lid/ Center Bolt	Expandable Cap	Lid 9⁄16 Bolts	Protective Casing	Labeled	Last Development Date	How Identified
<u>AFW Wells</u>												
AFW-1U	27.71	28.54	Ν	G	G	G	G	Ν	G	G		W
AFW-1M	53.8	55.13	Ν	G	G	G	G	Ν	G	G		W
AFW-1L	79.32	80.31	Ν	G	G	G	G	Ν	G	G		W
AFW-2U	55.38	59.19	Ν	G	G	G	G	Ν	G	G		W
AFW-2M	86.18	87.13	Ν	G	G	G	G	Ν	G	G		W
AFW-2L	103.20	105.03	Ν	G	G	G	G	Ν	G	G		W
AFW-3U	46.22	47.70	Ν	G	G	G	G	Ν	G	G		W
AFW-3M	82.30	83.36	Ν	G	G	G	G	Ν	G	G		W
AFW-3L	107.46	105.53	Ν	G	G	G	G	Ν	G	G		W
AGW Wells												
AGW-1U	52.57	54.74	Ν	G	G	Ν	G	Ν	G	G		W
AGW-1M	92.93	96.16	Ν	G	G	Ν	G	Ν	G	G		W
AGW-1L	114.78	115.32	Ν	G	G	Ν	G	Ν	G	G		W
AGW-2U	66.00	66.44	DIESEL	G	G	Ν	G	Ν	G	G		W
AGW-2M	105.05	108.69	Ν	G	G	Ν	G	Ν	G	G		W
AGW-2L	132.04	133.24	Ν	G	G	Ν	G	Ν	G	G		W
AGW-3U	65.00	72.33	Ν	G	G	Ν	G	Ν	G	G		W
AGW-3M	127.5	128.1	Ν	G	G	Ν	G	Ν	G	G		W
AGW-3L	TAR	148.43	Ν	G	G	Ν	G	Ν	G	G		W
IFW Wells												
IFW-1	14.7		Ν	G	G	G	G	G	G	G		W
IFW-2	199.10		Ν	G	G	Ν	G	Ν	G	G		W
IFW-3	BLOCKED											W
IFW-4	61.1		Ν	Ν	G	R	G	Ν	G	G		W
IFW-5	240		Ν	G	G	Ν	G	Ν	G	G		W
IFW-6	BLOCKED											
IFW-7	181.4		Ν	G	G	Ν	G	Ν	G	G		

Well I.D.	Sounded Depth (ft. BTOC)	Installed Depth (ft. BTOC)	NAPL Present	Road Box	Grout Seal	Lid/ Center Bolt	Expandable Cap	Lid 9/16 Bolts	Protective Casing	Labeled	Last Development Date	How Identified
<u>CMW Wells</u>												
CMW-10B	13.55		Ν	G	G	Ν	G	G	G	G		W
CMW-1SH	18.02		Ν	G	G	Ν	G	G	G	G		W
CMW-2OB	17.82		Ν	G	G	Ν	G	G	G	G		W
CMW-2SH	40.28		Ν	G	G	Ν	G	G	G	G		W
CMW-3OB	15.90		Ν	G	G	Ν	G	G	G	G		W
CMW-3SH	36.15		Ν	G	G	Ν	G	G	G	G		W
CMW-4OB	6.99		Ν	G	G	Ν	G	G	G	G		W
CMW-4SH	17.80		Ν	G	G	Ν	G	G	G	G		W
CMW-5OB	6.78		Ν	G	G	Ν	G	G	G	G		W
CMW-5SH	28.00		Ν	G	G	Ν	G	G	G	G		W
CMW-6OB	2.20		Ν	G	G	Ν	G	G	G	G		W
CMW-6SH	18.70		Ν	G	G	Ν	G	G	G	G		W
CMW-7OB	3.89		Ν	G	G	Ν	G	G	G	G		W
CMW-7SH	23.30		Ν	G	G	Ν	G	G	G	G		W
CMW-8OB	3.23		Ν	G	G	Ν	G	G	G	G		W
CMW-8SH	10.76		Ν	G	G	Ν	G	G	G	G		W
CMW-9OB	1.54		Ν	G	G	Ν	G	G	G	G		W
CMW-9SH	11.53		Ν	G	G	Ν	G	G	G	G		W
CMW-11SH	15.62		Ν	G	G	Ν	G	G	G	G		W
CMW-110B	2.99		Ν	G	G	Ν	G	G	G	G		W
CMW-12SH	40.30		Y	G	G	Ν	G	G	G	G		W
CMW-12OB	21.60		Ν	G	G	Ν	G	G	G	G		W
Bloody Run Wel	ls											
BR-1	35.13		Ν	G	G	Ν	G	Ν	G	G		W
BR-2	39.04		Ν	G	G	Ν	G	Ν	G	G		W
BR-3	36.86		Ν	G	G	Ν	G	Ν	G	G		W
BR-4	34.42		Ν	G	G	Ν	G	Ν	G	G		W

Well I.D.	Sounded Depth (ft. BTOC)	Installed Depth (ft. BTOC)	NAPL Present	Road Box	Grout Seal	Lid/ Center Bolt	Expandable Cap	Lid 9/16 Bolts	Protective Casing	Labeled	Last Development Date	How Identified
ABP Wells												
ABP-1	45.83		Ν	G	G	Ν	G	Ν	G	G		W
ABP-2	47.76		Ν	G	G	Ν	G	Ν	G	G		W
ABP-3	58.70		Ν	G	G	Ν	G	Ν	G	G		W
ABP-4	57.90		Ν	G	G	Ν	G	Ν	G	G		W
ABP-5	57.77		Ν	G	G	Ν	G	Ν	G	G		W
ABP-6	52.27		Ν	G	G	Ν	G	Ν	G	G		W
ABP-7	61.33		Ν	G	G	Ν	G	Ν	G	G		W
ABP-8	57.74		Ν	G	G	Ν	G	Ν	G	G		W
OEW Wells												
OEW-1	NAPL		Y	G	G	Ν	Ν	Ν	G	G		W
OEW-2	NAPL		Y	G	G	Ν	Ν	Ν	G	G		W
OEW-3	NAPL		Y	G	G	Ν	Ν	Ν	G	G		W
OEW-4	NAPL		Y	G	G	Ν	Ν	Ν	G	G		W
OEW-5	NAPL		Y	G	G	Ν	Ν	Ν	G	G		W
OEW-6	NAPL		Y	G	G	Ν	Ν	Ν	G	G		W
OEW-7	NAPL		Y	G	G	Ν	Ν	Ν	G	G		W
OEW-33	NAPL		Y	G	G	Ν	Ν	Ν	G	G		W
OEW-35	NAPL		Y	G	G	Ν	Ν	Ν	G	G		W
NAPL PLUME	CONTAINME	ENT SYSTEM	MONITOR	ING WEL	LS							
A2U	51.47		Ν	Ν	G	Ν	G	G	G	G		W
AIU	56.10		Y	G	G	Ν	G	Ν	G	G		W
B1U	56.50	59.6	Ν	G	G	Ν	G	Ν	G	G		W
B1M	81.92	84.81	Ν	G	G	Ν	G	Ν	G	G		W
B1L	100.10	106.54	Ν	G	G	Ν	G	Ν	G	G		W
B2U	48.70	51.27	Ν	G	G	Ν	G	Ν	G	G		W
B2M	74.57	74.96	Ν	G	G	Ν	G	Ν	G	G		W
B2L	97.34	98.38	Ν	G	G	Ν	G	Ν	G	G		W
BC3U	52.20	54.68	Ν	G	G	Ν	G	G	G	G		W
BC3M	85.66	87.41	Ν	G	G	G	G	Ν	G	G		W
BC3L	100.50	106.38	Ν	G	G	Ν	G	G	G	G		W
C1U	55.08	57.56	Ν	G	G	Ν	G	Ν	G	G		W

Well I.D.	Sounded Depth (ft. BTOC)	Installed Depth (ft. BTOC)	NAPL Present	Road Box	Grout Seal	Lid/ Center Bolt	Expandable Cap	Lid 9/16 Bolts	Protective Casing	Labeled	Last Development Date	How Identified
C1M	80.40	84.04	Ν	G	G	Ν	G	Ν	G	G		W
CD4U	41.1		Ν	Ν	G	Ν	G	G	G	G		W
C1L	85.20	105.76	Ν	G	G	Ν	G	Ν	G	G		W
C2U (ABP-6)	52.27	55.11	Ν	G	G	Ν	G	Ν	G	G		W
C2M	78.55	79.8	Ν	Ν	G	R	G	Ν	G	G		W
C2L	94.36	100.71	Ν	Ν	G	G	G	Ν	G	G		W
CD1L	106.83		Ν	Ν	G	Ν	G	G	G	G		W
CD1M	85.4		Ν	Ν	G	Ν	G	G	G	G		W
CD1U	63.3		Y	Ν	G	Ν	R	G	G	G		W
CD2M	91.55		Ν	G	G	Ν	G	Ν	G	G		W
CD3U	61.78		Ν	G	G	Ν	G	Ν	G	G		W
D1U	50.10	50.69	Ν	G	G	Ν	G	G	G	G		W
D1M	84.97	85.63	Ν	Ν	G	G	G	G	G	G		W
D1L	103.47	109.67	Ν	Ν	G	Ν	G	G	G	G		W
D2U	47.51	47.71	Ν	Ν	G	G	G	G	G	G		W
D2M	85.22	85.80	Ν	Ν	G	G	G	G	G	G		W
D2L	108.10	109.52	Ν	Ν	G	G	G	Ν	G	G		W
D3U	46.00		Ν	Ν	Ν	Ν	Ν	Ν	G	G		W
D4L	111.95		Ν	Ν	G	Ν	G	Ν	G	G		W
D5L	117.25	119.50	Ν	Ν	G	Ν	G	G	G	G		W
E1U	54.50	55.92	Ν	G	G	Ν	G	Ν	G	G		W
E1M	91.11	95.95	Ν	G	G	Ν	G	Ν	G	G		W
E1L	120.87	121.29	Ν	G	G	Ν	G	Ν	G	G		W
E2U	43.45	48.17	Ν	G	G	Ν	G	Ν	G	G		W
E2M	77.10	89.49	Ν	G	G	Ν	G	Ν	G	G		W
E2L	115.00	117.48	Ν	G	G	Ν	G	Ν	G	G		W
E3M	92.63	93.93	Ν	Ν	G	Ν	G	G	G	G		W
E3L	118.90		Ν	Ν	G	G	G	Ν	G	G		W
F1U	61.54	64.71	Ν	Ν	G	G	G	Ν	G	G		W
F1M	108.70	110.28	Ν	Ν	G	G	G	Ν	G	G		W
F1L	134.00	134.12	Ν	G	G	Ν	R	Ν	G	G		W
F2U	41.70	60.37	Ν	Ν	G	G	G	N	G	G		W
F2M	98.40	101.22	Ν	Ν	G	G	G	Ν	G	G		W
F2L	126.10	126.53	Ν	Ν	G	G	G	Ν	G	G		W

Well I.D.	Sounded Depth (ft. BTOC)	Installed Depth (ft. BTOC)	NAPL Present	Road Box	Grout Seal	Lid/ Center Bolt	Expandable Cap	Lid 9/16 Bolts	Protective Casing	Labeled	Last Development Date	How Identified
G1U	71.10	71.53	Ν	G	G	Ν	G	Ν	G	G		W
G1M	125.77	126.48	Ν	G	G	Ν	G	Ν	G	G		W
G1L	147.50	148.93	Ν	G	G	Ν	G	Ν	G	G		W
G2U	68.10	68.77	Ν	Ν	G	Ν	R	G	G	G		W
G2M	121.77	122.77	Ν	Ν	G	G	G	Ν	G	G		W
G2L	138.00	140.85	Ν	Ν	G	G	G	Ν	G	G		W
JH1L	144.10		Ν	G	G	Ν	G	Ν	G	G		W
F4U	55.95	58.97	Ν	Ν	G	Ν	G	G	G	G		W
F4M	103.10	103.82	Ν	Ν	G	Ν	G	G	G	G		W
F4L	119.10	125.46	Ν	G	G	Ν	G	Ν	G	G		W
F5UR	56.00	58.50	DIESEL	Ν	G	Ν	G	G	G	G		W
F3L	122.10		Ν	Ν	G	G	G	Ν	G	G		W
GHIU	38.1		Ν	G	G	Ν	R	G	G	G		W
E4U	57.69	59.75	Ν	Ν	G	Ν	G	G	G	G		W
E4M	87.88	99.78	Ν	Ν	G	Ν	G	G	G	G		W
E4L	117.04	119.57	Ν	Ν	G	Ν	G	G	G	G		W
E5U	49.11		Ν	Ν	G	Ν	G	G	G	G		W
G3U	61.57	65.44	Ν	G	G	Ν	G	Ν	G	G		W
G3M	121.78	127.76	Ν	G	G	Ν	G	Ν	G	G		W
G3L	148.51		Ν	G	G	Ν	G	Ν	G	G		W
G4U	52.10		Ν	G	G	Ν	G	Ν	G	G		W
G5U	63.40		Ν	G	G	Ν	Ν	Ν	Ν	G		W
G5L	131.50		Ν	G	G	Ν	G	G	G	G		W
H1U	55.45	58.73	Ν	G	G	Ν	G	Ν	G	G		W
H1M	120.07	129.34	Ν	G	G	Ν	G	Ν	G	G		W
H1L	143.16	144.94	Ν	G	G	Ν	G	Ν	G	G		W
H2U	50.6	58.10	Ν	G	R	Ν	G	Ν	G	G		W
H2M	126.09	128.97	Ν	G	R	Ν	G	Ν	G	G		W
H2L	149.17	152.37	Ν	G	G	Ν	G	Ν	G	G		W
H3U	66.20	73.35	Y	G	G	Ν	G	Ν	G	G		W
H3L	137.18	140.05	Ν	G	G	Ν	G	Ν	G	G		W
H4L	133.38	135.69	Ν	G	G	Ν	G	Ν	G	G		W
HT-1	23.96		Ν	G	G	Ν	G	Ν	G	G		W
HT-2	37.10		Ν	G	G	Ν	G	Ν	G	G		W

MONITORING WELL INSPECTION SURVEY SUMMARY HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

Well I.D.	Sounded Depth (ft. BTOC)	Installed Depth (ft. BTOC)	NAPL Present	Road Box	Grout Seal	Lid/ Center Bolt	Expandable Cap	Lid 9⁄16 Bolts	Protective Casing	Labeled	Last Development Date	How Identified
HT-3	12.08		Ν	G	G	Ν	G	Ν	G	G		W
J1U	44.32	47.36	Ν	G	G	Ν	G	Ν	G	G		W
J1M	100.40	90.19	Ν	G	G	Ν	G	Ν	G	G		W
J1L	122.5	125.48	Ν	G	G	Ν	G	Ν	G	G		W
J2U	45.34	47.58	Ν	G	G	Ν	G	Ν	G	G		W
J2M	97.48	103.18	Ν	G	G	Ν	G	Ν	G	G		W
J2L	127.25	127.23	Ν	G	G	Ν	G	Ν	G	G		W
J3U	46.92		Y	G	G	Ν	G	Ν	G	G		W
J3L	121.60	122.70	Ν	G	G	Ν	G	Ν	G	G		W
J4L	122.10	122.64	Ν	G	G	Ν	G	Ν	G	G		W
PPW2M	92.10		Ν	Ν	G	Ν	Ν	Ν	G	G		W
PW5UR	52.72		Y	Ν	G	Ν	Ν	Ν	G	G		W
PW6U	51.40		N W	Ν	G	Ν	Ν	Ν	G	G		W

Notes:

R Replace.

P Poor Condition.

G Good Condition.

Y Yes

N No

W Well Label

* No Repairs Required, Well to be Replaced.

Indicates Well to be Repaired.

TABLE 9.1

SEMI-ANNUAL MANHOLE INSPECTION HYDE PARK RRT PROGRAM 2001 ANNUAL REPORT

Manhole I.D.	Integrity	Security	Depth to Bottom (feet)	Standing Water Height (feet)	Notes
EBCS					
1	OK	OK	10	0	NAPL Odor Present
2	OK	OK	12.1	0.7	NAPL Present on Bottom
3	OK	OK	21.5	0.2	
4	OK	OK	17.8	1	Sludge Present on Bottom
5	OK	OK	19.4	0.5	Sludge Present on Bottom
6	OK	OK	12	0.1	Sludge Present on Bottom
7	OK	OK	12.5	0.1	Clear Water
8	OK	OK	20.1	1	Clear Water
9	OK	OK	25	0.2	Sludge Present on Bottom
10	OK	OK	19	0.025	Clear Water
11	OK	OK	12.2	0.4	Mud and Sludge
12	OK	OK	13.2	0.1	Sludge Present on Bottom
13	OK	OK	6.5	0.5	Sludge Present on Bottom
14	OK	OK	12.5	0.2	Slight NAPL Odor and Sludge on Bottom
15	OK	OK	17.2	1	Sheen on Water, NAPL Odor, Sludge
16	OK	OK	8.85	3.5	Clear Water
18	OK	OK	20	1.5	Clear Water, Sheen, NAPL Odor
OBCS					
20	OK	OK	4.8	0.6	Clear Water
21	OK	OK	6	0.2	Clear Water
22	OK	OK	6.8	0.4	Clear Water
23	OK	OK	11	Dry	
24	OK	OK	9.8	1	Clear Water
25	OK	OK	8.4	0	Sludge Present on Bottom
26	OK	OK	9	0.6	Clay Present on Bottom
27	OK	OK	10	0.3	Sludge Present on Bottom
28	OK	OK	17	2.2	Clear Water
29	OK	OK	15.9	0.8	Sludge, NAPL present, Odor
30	OK	OK	10	0.2	Sludge, NAPL present, Odor
31	OK	OK	9.8	0.7	NAPL 3-inches
32	OK	OK	9.9	1	NAPL 1-inch
33	NO	OK	8	0.6	6-inch Collar Broken, NAPL on Bottom
34	NA	NA	NA	NA	Blocked, could not access
35	OK	OK	6.8	0.5	Clear Water
35A	OK	OK	7.3	0.2	Clear Water
38	OK	OK	8	1	Clear Water
Wet Wells					
А	OK	OK	11.5	5	NAPL Present
С	OK	OK	18.5	4.5	Clear Water
D	OK	OK	22	5	Clear Water, Sludge on Bottom

FIGURES

01069-20(303)GN-NF001 MAY 24/2002

01069-20(303)GN-NF002 MAY 24/2002

01069-20(303)GN-NF004 MAY 24/2002

01069-20(303)GN-NF005 MAY 24/2002

APPENDIX A

QUARTERLY NAPL ACCUMULATION

APPENDIX A

MONTHLY NAPL ACCUMULATION HYDE PARK RRT PROGRAM

	N	APL Volume P	er	Manually		NAPL Removed				Disposed
	Decanter			Recovered		Decanter			Total	Total
	1	1 2 3 NAPL		5	1	2	3	_	Shipped (Gallons)	
		(Gallons)		(Gallons)			(Gallons)			
Dec-00	2350	3508	3384	0		0	0	0	0	0
Jan-01	2,444	3,760	3,384	30	(1)	0	0	0	0	0
Feb-01	3,196	3,572	3,384	0		0	0	0	0	0
Mar-01	3,384	3,760	3,384	0		0	0	0	0	0
1st Quarter	1,034	252	0	30		0	0	0	0	0
Apr-01	3,384	3,760	3,384	0		0	0	0	0	0
May-01	3,384	3,760	3,384	0		504	504	504	1,512	1,512
Jun-01	2,880	3,256	2,880	0		0	0	0	0	0
2nd Quarter	0	0	0	0		504	504	504	1,512	1,512
Jul-01	4,512	3,132	1,316	0		0	0	0	0	0
Aug-01	3,760	3,132	1,316	0		0	0	0	0	0
Sep-01	4,512	3,384	1,504	38	(2)	0	0	0	0	0
3rd Quarter	1,632	128	0	38		0	0	0	0	0
Oct-01	2,162	3,290	1,252	-		-	-	-	-	-
Nov-01	0	1,628	1,252	-		2,162	1,662	-	3,824	-
Dec-01	0	1,628	1,252	1	(3)	-	-	-	-	-
4th Quarter	0	0	0	1		2,162	1,662	0	3,824	3,824
		Ye	ar to Date:	69		2,666	2,166	504	5,336	5,336

Notes:

Manual Recoveries:

(1) January 25: CD1U 10.0 gals; and PMW-3U 20.0 gals.

(2) September 15: CD1U 8.0 gals; and PMW-3U 30.0 gals.

(3) December 06: CD1U 1.0 gals.