2021 Hazardous Waste Scanning Project

File Form Namiag Convention.

(File_Type).(Program).(Site_Number).(YYYY-MM-DD).(File_Name).pdf

.pdf

Note 1: Each category is separated by a period "." Note 2: Each word within category is separated by an underscore "_"

Specific File Naming Convention Label:

Report. HW. 932026. 1988-04-29. Phase -I

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES PHASE II INVESTIGATION

932026

Niagara County R.D. Wheatfield Site No. 932026 Town of Wheatfield, Niagara County Final - April 1988

N T VED

APR 2 9 1988

Prepared for:

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233

Thomas C. Jorling, Commissioner Division of Hazardous Waste Remediation Michael J. O'Toole, Jr., P.E., Acting Director

Prepared by:

A Division of EA Engineering, Science, and Technology, Inc.

EA SCIENCE AND TECHNOLOGY

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES IN THE STATE OF NEW YORK

PHASE II INVESTIGATIONS NIAGARA COUNTY R.D. WHEATFIELD TOWN OF WHEATFIELD, NIAGARA COUNTY NEW YORK ID NO. 932026

Prepared for

Division of Hazardous Waste Remediation New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-0001

Prepared by

EA Science and Technology R.D. 2, Goshen Turnpike Middletown, New York 10940

A Division of EA Engineering, Science, and Technology, Inc.

April 1988

CONTENTS

		Page
1.	EXECUTIVE SUMMARY	1-1
2.	PURPOSE	2–1
3.	SCOPE OF WORK	3-1
	3.1 Record Search/Data Compilation 3.2 Field Activities	3-1 3-1
4.	SITE ASSESSMENT - NIAGARA WHEATFIELD	4-1
	 4.1 Site History 4.2 Site Topography 4.3 Hydrogeology 4.4 Site Contamination 	4-1 4-2 4-3 4-5
5.	NARRATIVE SUMMARY	5-1
6.	REMEDIAL COST ESTIMATE	6-1

APPENDIX 1 APPENDIX 2

1. EXECUTIVE SUMMARY

The Niagara County R.D. Wheatfield Site (New York State ID No. 932026) is located in the Town of Wheatfield and the City of North Tonawanda in Niagara County, New York (Figures 1-1 and 1-2). It is situated to the west of Witmer Road and generally north of Warner Avenue. The property is owned by the Town of Wheatfield.

The site was operational from 1968 until it was closed in 1976. Over 100 waste generators are believed to have used this site. The City of Niagara Falls, North Tonawanda, and Niagara Sanitation used this site for disposal of municipal refuse. Carborundum, Bell Aerospace, Goodyear, E.I. Dupont, Hooker-Durez, Olin Chemicals, NL Industries, and Roblin Steel were among the industrial users of the site. Contained in the waste are phenolic resins and molding compounds; offgrade polyvinyls; tetrachloroethylene and still residue with tetrachloroethylene; PVC skins and emulsions; brine sludge with mercury; municipal sludges; and other industrial waste. Residue from the Niagara Falls Incinerator was also dumped at the site.

U

The Phase II investigation consisted of a record and background information search; a site inspection and site interview to observe and document current conditions at the site, field activities to evaluate waste characteristics and the potential for ground-water contamination; and analytical determinations of leachate, surface water, soil and waste samples.

1–1

The field activities included geophysical surveys (conductivity and proton magnetometer); installation of test borings/monitoring wells within the landfill material, and environmental sampling of surface water, soil, leachate, and waste at the site.

Public drinking water supplies within the 3-mi radius of the site are primarily surface water supplies. No ground-water supplies are known to exist near the site. The Lockport City water intake is located nearest to the site. The intake is approximately 1.5 mi upstream of the site on the Niagara River. The North Tonawanda intake is located farther upstream approximately 2 mi from the site. The only downstream drinking water intakes are located on the Niagara River approximately 5-6 mi from the site.

Previous studies at the site have included installation of wells/borings and sampling of ground water, surface water, and soil on and near the perimeter of the site. The Phase II investigation, however, was limited to the investigation of the material in the fill, and waste and leachate characteristics. Chemical analyses of the samples are presented in Section 4.4. The Niagara County R.D. Wheatfield Site is on the National Priority List, and has a U.S. EPA lead for an RI/FS Study.

The final HRS scores for the site are as follows: Migrations Score (S_M) = 7.91; Direct Contact Score (S_{DC}) = 37.50; Fire and Explosion Score $(S_{FE}$ = 50.00). The S_M score is relatively low because no surface or ground water drinking water supplies were identified within the 3-mi radius of the site.

S_{DC} is high because the site is easily accessible to the public, and leachate flowing in drainage ditches and swales was found to contain heavy metals, elevated levels of total phenols, and priority pollutant organics.

COORDINATES: Latitude: 43 03'55' Longitude:78 54'22'

NIAGARA COUNTY R.D.-WHEATFIELD SITE

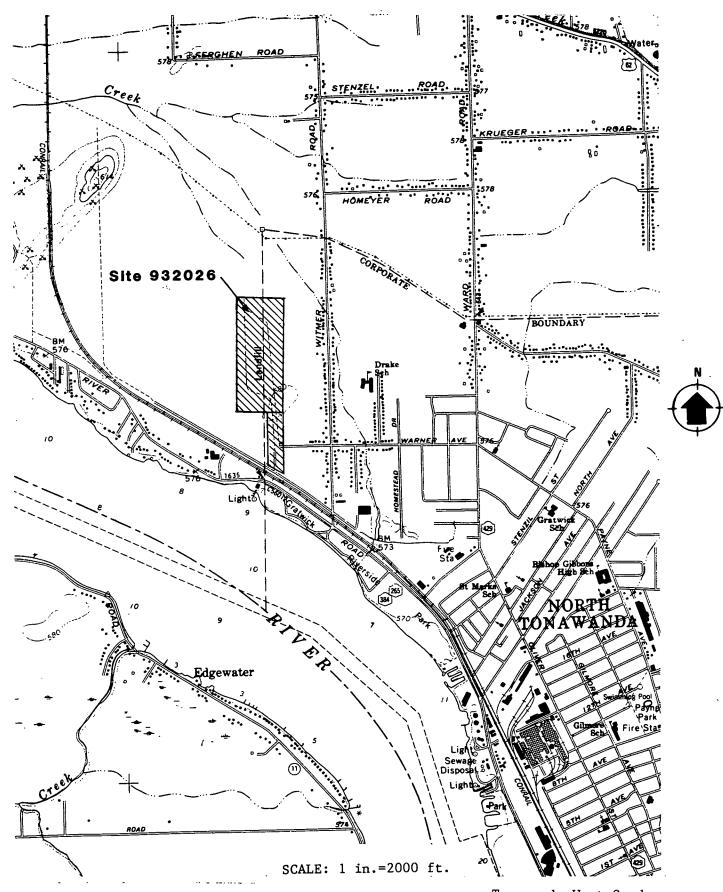


Figure 1-1. Site locator map

. .

Tonawanda West Quad NYSDOT 7.5 Minute Series 1976 Edition

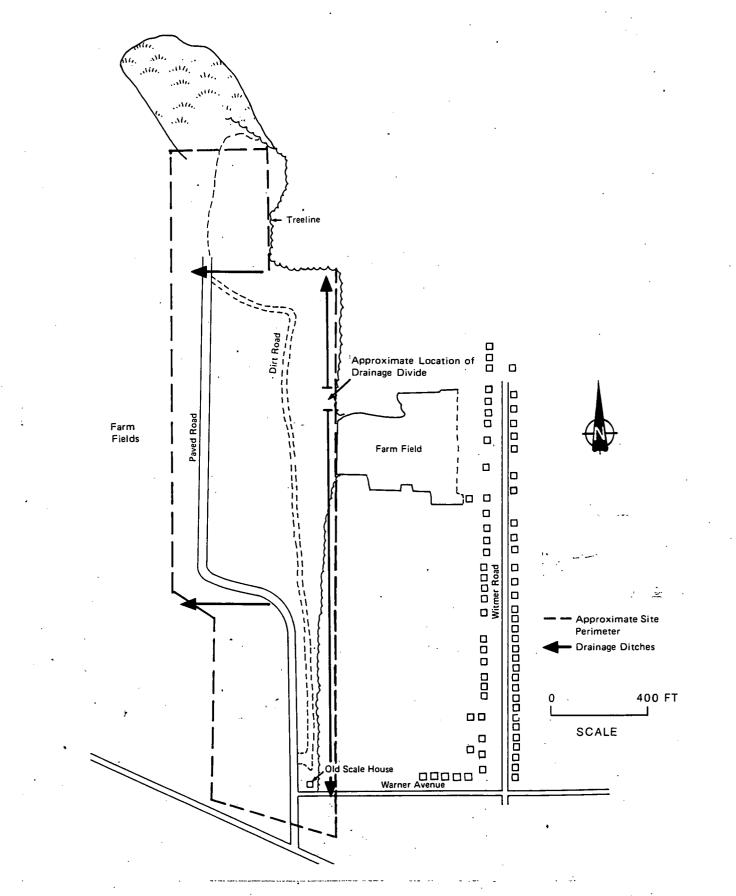


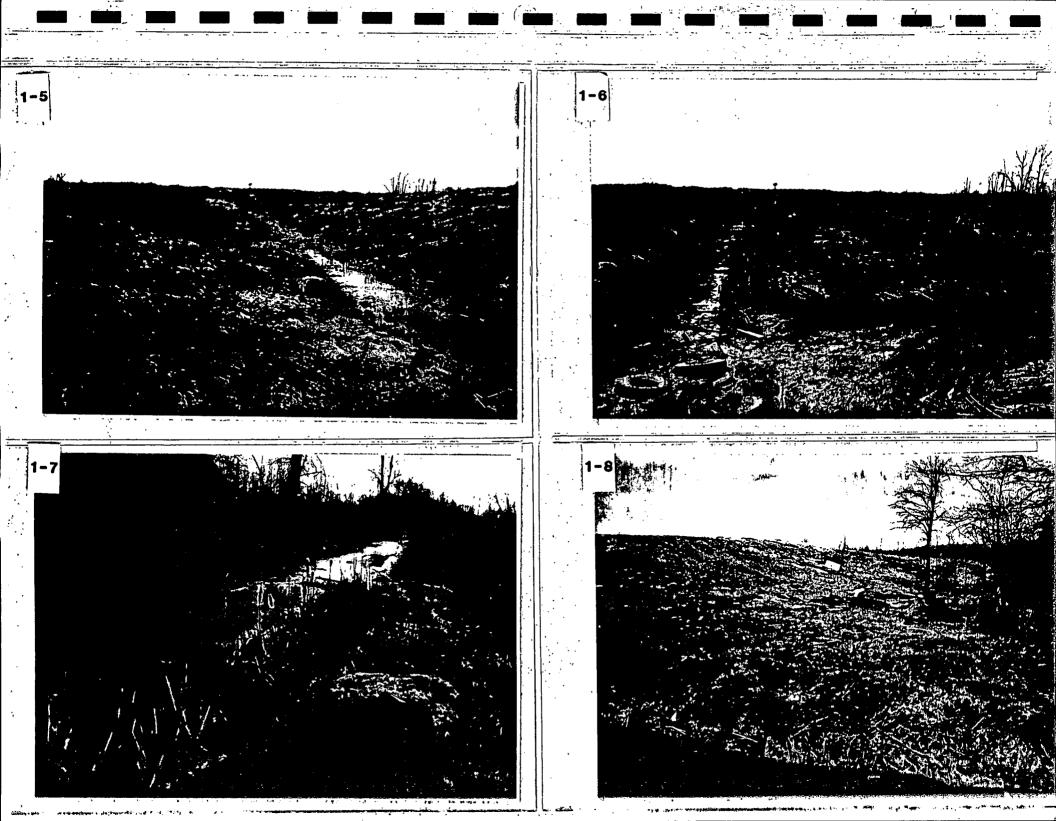
FIGURE 1-2. Site sketch Niagara/Wheatfield site.

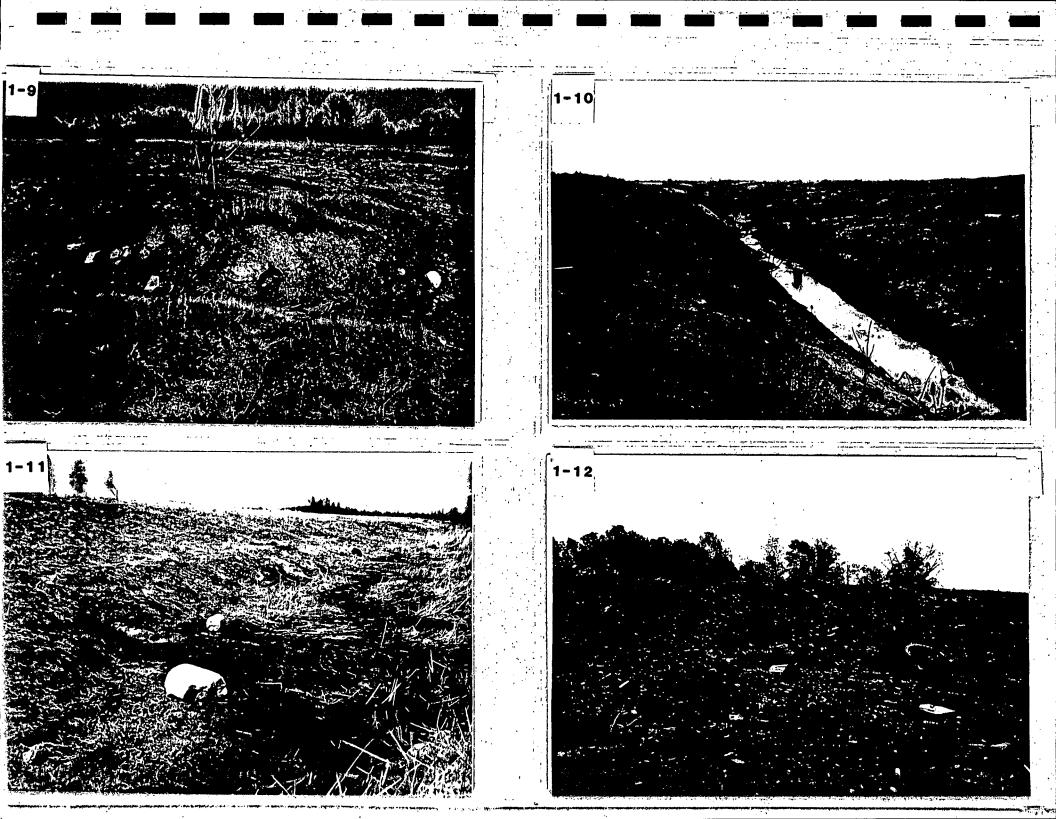
THE FOLLOWING IMAGE(S) ARE THE BEST COPY AVAILABLE

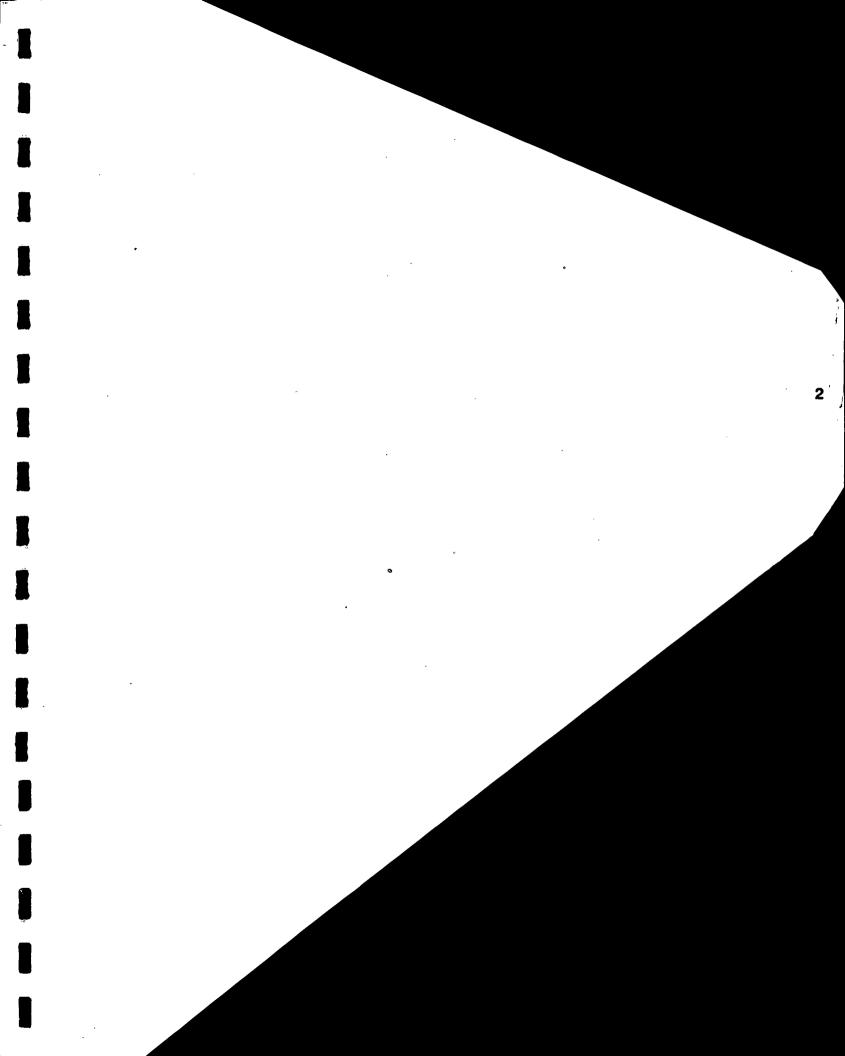
THE FOLLOWING IMAGE(S) ARE THE BEST COPY AVAILABLE

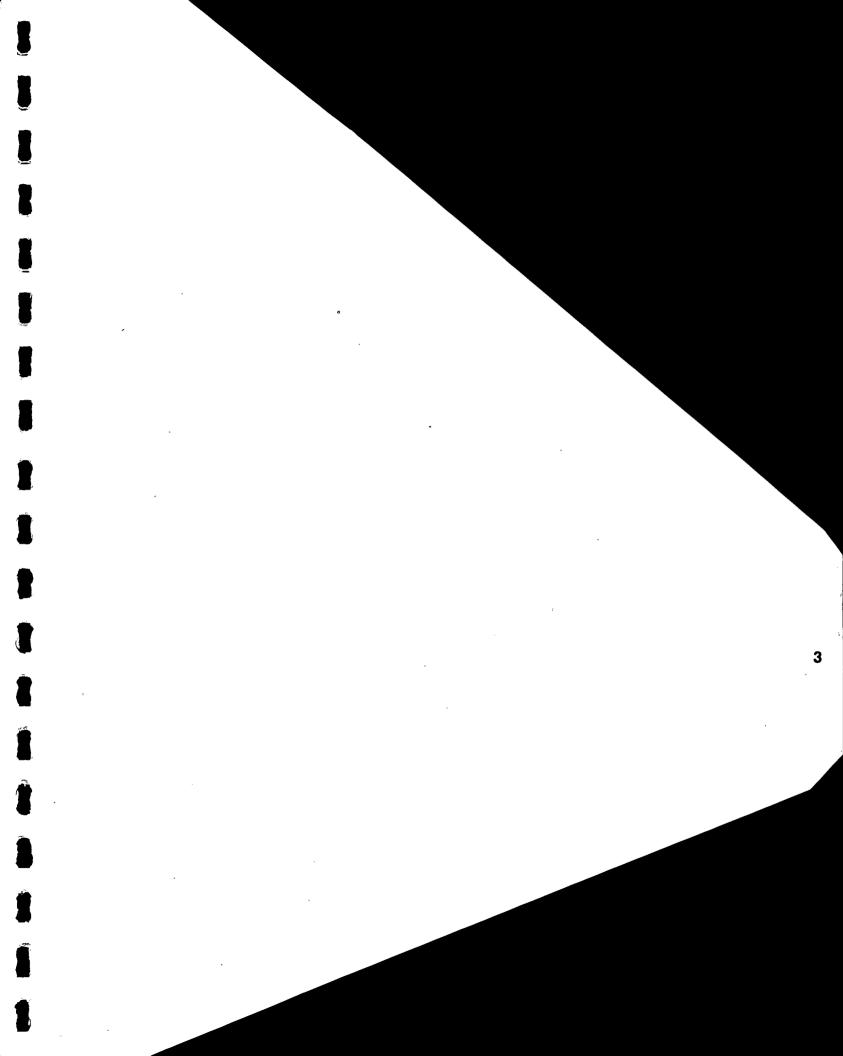
THE FOLLOWING IMAGE(S) ARE THE BEST COPY AVAILABLE

THE FOLLOWING IMAGE(S) ARE THE BEST COPY AVAILABLE


THE FOLLOWING IMAGE(S) ARE THE BEST COPY AVAILABLE


InStream, LLC




PHOTO LOG - NIAGARA/WHEATFIELD

<u>Photo</u>	Description
1–1	Southern-most end of site, paved road lined with debris.
1-2	View north from southern portion of site.
1-3	View northwest across southern portion of site.
1-4	View north along eastern slope of site.
1-5	View of drainage ditch west between two landfill cells.
1-6	Same ditch, west of access road off site. Open fields on either side of ditch.
1–7	Same ditch as Photos 1-5 and 1-6 looking east; surface water sample NW-S1 collected from ditch near rock in foreground.
1–8	View of the eastern edge of the landfill's north cell.
1-9	Dry seep in central portion of site view from west $^{ ensuremath{\ell}}$ cell looking east.
1–10	Drainage ditch between two landfill cells trending north-south.
1-11	Seep on eastern edge of site.
1-12	Western slope of north cell, cap is eroding.
1-13	Monitoring Well NW-A and wastewater discharge drum shot full of holes.
1-14	EA personnel collecting sample from Monitoring Well NW-D.
1–15	Drum at southern end of site (sample NW-D1).
1 16	View east across site, homes visible in background.

2. PURPOSE

The goal of the Phase II investigation of this site was to: (1) obtain available records on the site history from state, federal, county, and local agencies; (2) obtain additional information on site topography, geology, local surface and ground-water use, contamination assessments, and local demographics; (3) interview site owners, operators, and other groups or individuals knowledgeable of site operations; (4) conduct a site inspection to observe current conditions; (5) perform geophysical surveys at the site to aid in selecting safe locations for drilling monitoring wells; (6) install test borings/monitoring wells and perform leachate and environmental sampling to evaluate the character of the landfill leachate and surface water as requested by NYSDEC; and (7) prepare a Phase II report. The Phase II report includes a Hazard Ranking Score (HRS), an assessment of the available information, and a recommendation for remedial work. The Phase II investigation focused on the waste characterization and environmental sampling of surface water/soils adjacent to the site.

3. SCOPE OF WORK

3.1 RECORD SEARCH/DATA COMPILATION

A record search/data compilation and interviews were conducted as part of the Phase II investigation at the Niagara County R.D. Wheatfield site. Appendix 1.3.1-1 contains a list of agencies or individuals contacted during Phase II.

3.2 FIELD ACTIVITIES

3.2.1 Site Reconnaissance

EA Science and Technology conducted a site reconnaissance on 17 April 1985 to familiarize key project personnel with the site. During the site reconnaissance, visible wastes and leachate seeps were located, tentative locations for test borings/observation wells and sampling points were selected, accessibility was evaluated, and surficial organic vapor measurements were taken to enable the Safety Officer to develop specific health and safety requirements for the field activities. Organic vapors were detected at seeps and cracks in the fill during the site reconnaissance. Photographs were taken of the site and significant features were noted. A photo log is provided in Chapter 1.

3.2.2 Geophysical Survey

A proton magnetometer survey was performed in four selected areas by Delta Geophysical, Inc. under EA Science and Technology supervision on 26-28 June 1985. These areas were potential drilling areas within the fill, and were labelled A, B, C, and D (Figure 3-1). Areas C and D were covered by a single blanket grid pattern because of their proximity to each other. The purpose of the geophysical survey was to non-destructively, accurately, and costeffectively evaluate the subsurface conditions of these areas of the site with regard to buried ferrous material, possible drums. These surveys were performed in order to determine areas relatively free of buried ferrous material so that four monitoring wells could be located. The results of this work and the chosen well locations are contained within Appendix 1.3.2-1.

3.2.3 Observation Well Installation

Based on the available data from previous studies and the magnetometer survey, four test borings/monitoring wells were installed at the site on 21-23 August and 26 August 1985. The proton-magnetometer survey was conducted over the landfill in order to determine zones relatively free of buried ferrous material so that the four monitoring well locations could be established. Locations of the wells are shown in Figure 3-1. Four monitoring wells were installed in the fill material with a CME-75, truck- mounted, drill rig. The drilling was performed by Drill & Test of Orchard Park, New York, under the fulltime supervision of an EA geologist.

No upgradient or downgradient well locations were chosen as such, since the purpose as determined by NYSDEC was to install wells within the landfill. Four areas were chosen to randomly cover the site. The specific locations within these four areas were then selected based on the proton-magnetometer survey. The wells were located away from areas of apparent buried metal to the extent possible. Well NW-A (Figure 3-1) is located in the south end of the main fill area. Well NW-B is located north of NW-A, in the central section of the main fill area. Wells NW-C and NW-D are located in the northern 'cell' area. This area is mounded and located somewhat apart from the rest of the main fill area.

Split-spoon (24 in. length, 2 in 0.D.) samples were taken every 5 ft in the fill. Split-spoon samples, air around the boring, and headspace over the boring were monitored with a flame ionization detector (with organic filter cartridge) during drilling operations. Organics were detected at wells B, C, and D, and Level C protection was worn during drilling operations. In addition, the borehole was monitored for explosive levels of gases with a combustible gas indicator. Readings beyond the explosive limit were recorded, especially at NW-C. When these levels were approached, drilling was stopped until the gases dissipated to a safe level. During drilling, all fluids and wastes from each borehole were placed in 55-gallon drums, sealed, and bolted closed. These drums were labelled and left at each well site for disposal by NYSDEC. Boring logs and well schematics are provided as Figures 3-2 through 3-5. Because all four monitoring wells were installed in the fill material, no soil samples were collected for sieve analysis. Appendix 1.3.2-2 provides details of the field procedures used.

3–3

Upon the completion of the wells, the vertical elevation of the upper rim of each PVC well casing was surveyed. Well casings were surveyed at the Niagara/Wheatfield site on 21 October 1985 by a 2-man team using a Kern Swiss GKOA surveying instrument and surveying rod. An elevation of 100 ft was assumed at well NW-D (Table 3-1).

In-well pumping tests were attempted at the Niagara/Wheatfield site on 19-20 October 1985. A 3/4-in. polyethelene hose was attached to a centrifugal pump at ground level. The hose was lowered down to the bottom of the well. An initial static water level was recorded with an electronic sounder. Pumping was begun and changes in static water level (drawdown) were measured and recorded over time. However the sounding probe malfunctioned due to the high conductivity or turbidity of the leachate. All fluids were discharged into 55-gallon drums. The drums were sealed, bolted closed, labelled, and left near the wells for disposal by NYSDEC. Pumping tests were not attempted on NW-A or NW-C because there was only 4 inches of water in NW-A, and water level in NW-C was too deep for the centrifugal pump to draw water. The polyethylene hose used for one well was discarded (into waste drums). Due to the sounding probe malfunction, insufficient drawdown data were obtained to reliably estimate the local hydraulic characteristics of the fill materials.

3.2.4 Sampling

Sampling of the Niagara County R.D. Wheatfield site was initially completed in one day on 8 November 1985. The sampling program included four leachate from the wells, two surface water, four soil, and one drum samples. Not enough drum sample was collected during initial sampling, therefore, additional sample was

collected from the drum on 3 April 1986. The locations are noted on Figure 3-1. A surficial leachate sample was planned for collection from the site, however, there was insufficient flow at the time of EA's sampling to collect a sufficient volume of sample. Therefore, no leachate sample was collected. Due to missed holding times (PCB, pesticides, and BNAs), the site was resampled on 13 March 1987. Three well samples (NW-A, NW-C, and NW-D) and two surface water samples (NW-S1 and NW-S2) were analyzed for PCB and pesticides of the Hazardous Substance List. Well NW-B could not be sampled because the PVC well casing was damaged by shifting fill material and a bailer would not fit down the well. One drum sample (NW-D1) and two soil samples (NW-S1 and NW-S2) were analyzed for PCBs, pesticides, and BNA's of the Hazardous Substance List.

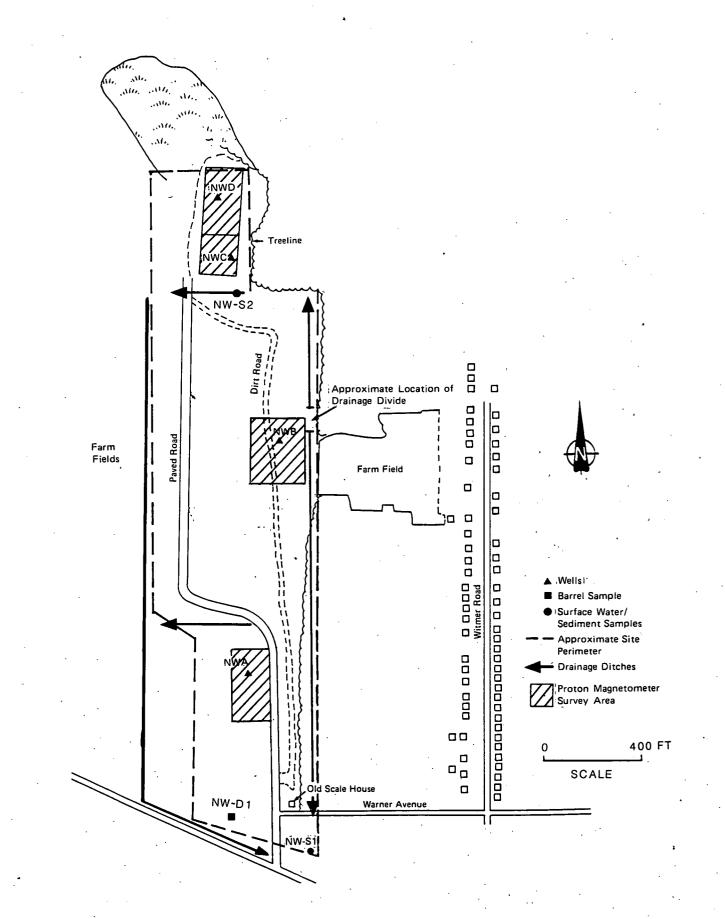
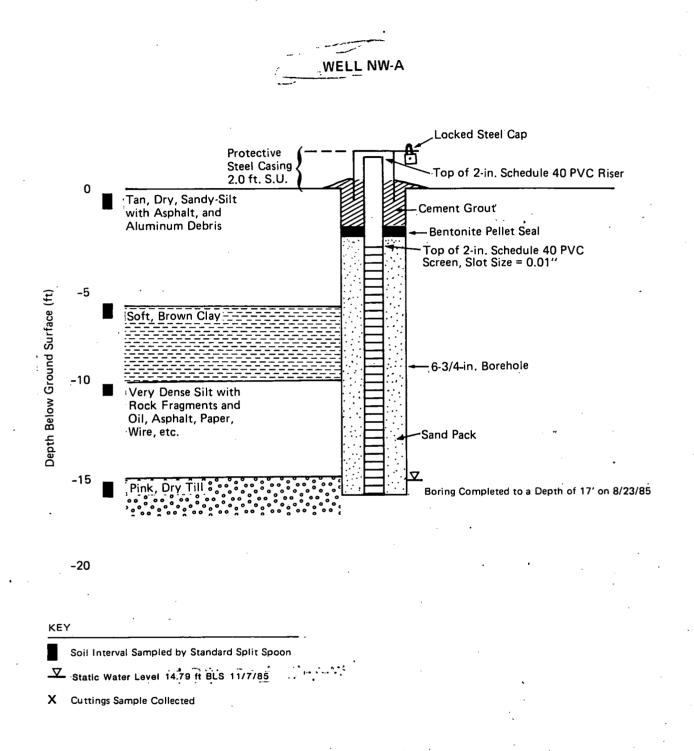
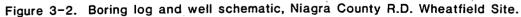
Purging of monitoring wells for the initial sampling was completed on 7 November 1985 using clean Teflon bailers at each of the wells, NW-A, NW-C, and NW-D. A centrifugal pump with clean 1/2-in. diameter polyethylene discharge hose was used at well NW-B. Approximately one bore hole volume (bailed dry) from Well NW-A and four bore hole volumes each from Wells NW-B, NW-C, and NW-D were removed during purging. Purging for the resampling effort was completed on 12 March 1987. EA's Field Records of purging and sampling are presented in Figures 3-6 and 3-11. All fluids were discharged into new 55-gal drums, sealed, bolted closed, labelled, and left onsite. The wells were allowed to recharge and clear overnight, and were sampled the following day. The sampling procedures are detailed in Appendix 1.3.2-3.

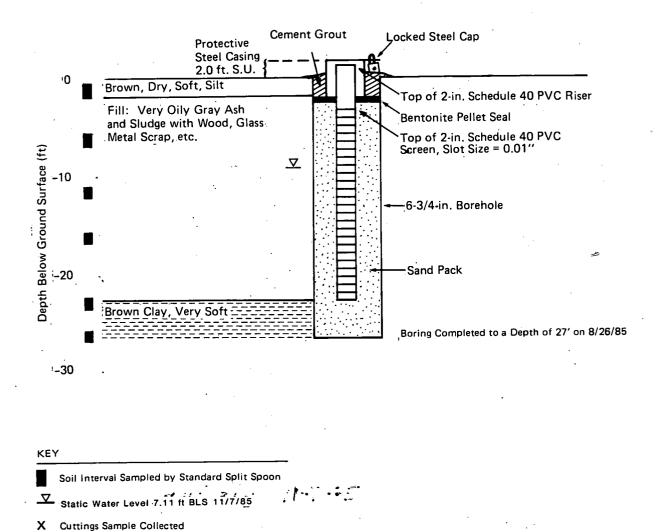
The analytical program for the monitor wells, surface water, soil, and drum samples included both organic and inorganic parameters of the Hazardous Substance List (HSL).

	<u>.</u>	bservation Well			Liquid Lev	el/Leachate
Well No.	Stickup (ft above Ground Surface)	Total Depth (ft below Ground Surface)	Elevation of MP* (ft)	Date	Depth (ft below MP*)	Elevation** (ft)
NW-A	1.33	17.0	95.48	11/7/85	16.70	78.78
NW-B	1.86	23.0	96.43	11/7/85	9.01	87.42
NW-C	1.90	43.0	105.66	11/7/85	25.10	80.06
NW-D	1.80	38.0	99.88	11/7/85	15.30	84.58
NW-A	1.33	17.0	95.48	3/12/87	8.97	86.51
NW-B	1.86	23.0	96.43	3/12/87	7.64	88.79
NW-C	1.90	43.0	105.66	3/12/87	25.85	79.81
NW-D	1.80	38.0	99.88	, 3 /12/8 7	10.10	89.78

TABLE 3-1 NIAGARA COUNTY R.D. WHEATFIELD SITE SUMMARY OF MONITORING WELL DATA

* MP = Measuring point (top of PVC).
** Vertical Benchmark (BM), Assumed Datum = 100.00, Top of Steel Casing - Well NW-D.


FIGURE 3-1. Monitoring well and sample locations.

· · · · · · · ·

• •:

WELL NW-B

.

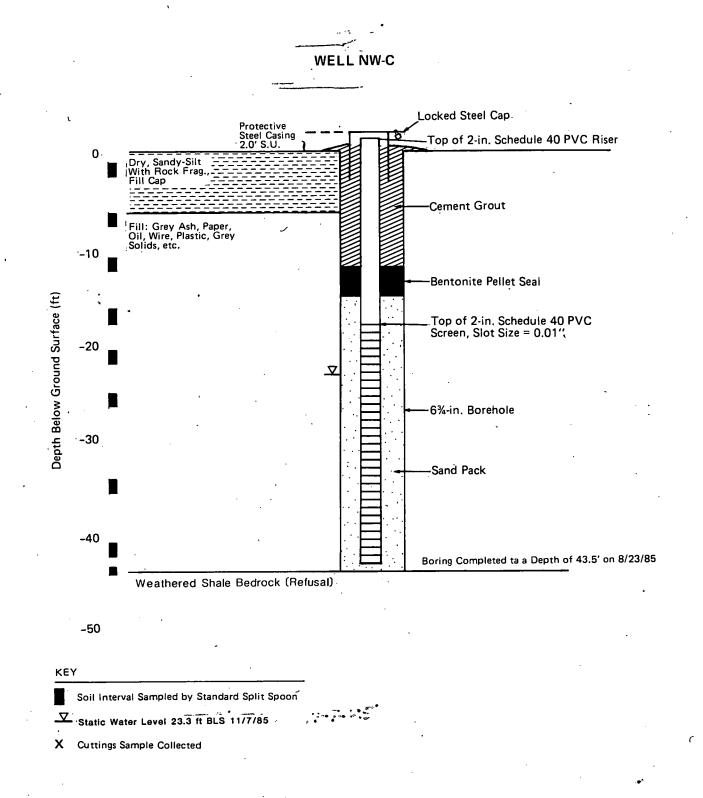
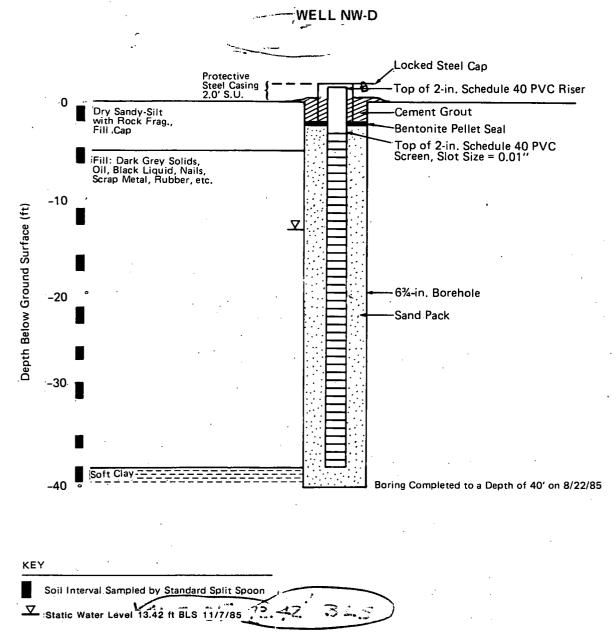



Figure 3-4. Boring log and well schematic, Niagra County R.D. Wheatfield Site.

X Cuttings Sample Collected

Figure 3-5. Boring log and well schematic, Niagra County R.D. Wheatfield Site.

Site: <u>NIAG</u> Comments:	ARA/WH	EATPY	ELD -		t No: <u><i>DEC:</i></u> Weather Com	ndition			easured by: JNK,
Vali No./	Vepth to		Hessurement	BOTTOM OF BOREHOLE	Purge	# 2570 BOREHULE VOLUME	Cal. H ₂ 0		Page / of Z REMARKS
WW-A	<u>Water</u> 16.70	Time. /200	Reference TOPVC	BORENOLE	Hethod 11/2 // TEFLON BAILEK	(GAL) 6.24	24.97	Volume BAILED DRY~S	
NW-B	9.01	1340	TOPVC.	27.0'	CENTRIFUGA	9.91	39.66	<u>~</u> 40	BAD ODOR; LIQUID GRI
NWIC	25.10'	1050	TOPVC	43,8'	IZTEFLON TEFLON BAILER	16.08	64.33	BAILED = 55	
NW-D	15.30	.0820	TOPVC	40.0'	1'2" TEFLON BAILER	19.69	58.75	= 55 = 55) HOT WATER (? CHEM RXN
		•		· · · · · · · · · · · · · · · · · · ·					FILL ON
•									FIRE UNDERC (UNLIKEL)
·									
,				-					
					·	•			
									* ESTIMATED POROSITY OF GRAVEL PACK USED

1

!

Site: NIAGA	RA/WHE	ATFIEL	-»	Project No	: DEC SZN	3 Date:	11-8-85	Moasur	ed by: JNK, CK
Cómments:	/				Weather Co	ndition	: SUNN	Y, 50°	· · · · · · · · · · · · · · · · · · ·
Vell No./ . Permit No.	Depth. to Wate	Time	Measurement Reference	Purging	Sample Method	•Temp •	p11	Specific Conduct,	Page Z of Z IVEMARKS
NW-A		1200			12 TEFLON BRILER			1,380	
NW-B.		1130			-11		6.16	7,200	
NW-C		1000		· · · · ·	11		5,40	16,500	•
Νω-D		0930			11		6.3Z	3,250	
SURFACE WATER									
NW-SJ		1300			CLEAN C'BOTTLE		5.45	335	
NW-52		0850			11		7,89	210	
NW -53									NOT ENOUGH SEEP AVAILADLE
NW-54			· · · · · · · · · · · · · · · · · · ·		•				SAMPLE

•

• •

.

Figure 3-7

۰.

..

FIELD RECORD OF WELL GAUGING, PURGING AND SAMPLING

site: Niagara/Wheatfield Well No: <u>NW-A</u> Gauge Date: <u>3-12-87</u> Time: <u>0830</u> Weather: <u>Synny</u> N 20°F Well Condition: Well locked, holes shot in steel CASing PUC casing broken About 1' from top. Well Diameter (inches): <u>D''PVC well in GTV'' dia. borehole</u> Mading Odor (describe): <u>No HNW Above background</u> Sounding Method: ______ Measurement Reference: Top of PUC Stick up/down (ft): 1.33 Above ground surface (1) Well Depth (ft): 18.33 Purge Date: 3-12-87 Time: 0915 (2) Depth to Liquid (ft): _____ Purge Method: <u>Centrifugel pump</u> (3) Depth to Water (ft): 8.97 Purge Rate (gpm): 9/10 (4) Liquid Depth [(1)-(2)]: <u>9.36</u> Purge Time (min): <u>3.5 Min.</u> Borchole Liquid Volume [(4)xF] (gal): 5.63 Purge Volume (gal): 3.5 (5) Did Well Pump Dry? Describe: Ves, initial discharge clear <u>after 2 gal. furn cloudy black.</u> Samplers: <u>Tomforter / Lor. Rosers</u> 0900 hrs. Sampling Date: 3 - 13 - 87Time: Sample Type: GRAB Split? No With Whom: _____ Comments and Observations:

FIGURE 3-8

*Conversion: Lig	uid Depth to Volume	Conver	sion_	Inches	to Fr	actional	Feet
Well Diameter	Gallon/ft	1	•08	5	.42	9	•75
		1 1/2	.12	5 1/2	•46	9 1/2	•79
2"	0.16	2	.16	6	•50 ⁻	10	• 83
4"	0.65	2 1/2	.21	6 1/2	•54	10 1/2	• 87
6"	1.47	3	.25	7	•58	11	.91
8"	2.61	3 1/2	.29	7 1/2	.62	11 1/2	•95
1 2"	5.87	4	•33	8	.56		
		4 1/2	•37	8 1/2	•70		

* Multiply liquid depth by gallons/ft.

FIELD RECORD OF WELL GAUGING, PURGING AND SAMPLING

Site: Niagana / Wheatfield Well No: <u>NN-B</u> Gauge Date: <u>3-12-87</u> Time: <u>0900</u> Weather: <u>Sunny</u> 2007 Well Condition: Locked, holes shot in 55-gal. drums NEAK Well. Well Diameter (inches): 2' PVC well in 6³/4" borehole Odor (describe): No HNW REAding, Smelled of methane electronic Sounding Method: QED indicator Measurement Reference: Top of PUC Stick up/down (ft): _____.56 (1) Well Depth (ft): <u>24.86</u> Purge Date: <u>3-12-87</u> Time: <u>0945</u> Depth to Liquid (ft): _____ Purge Method: _____ (2) (3) Depth to Water (ft): 7.4 / Purge Rate (gpm): _____ (4) Liquid Depth [(1)-(2)]: 17.22 Purge Time (min): bore hole (5) Liquid Volume [(4)xF] (gal): 10.3 Purge Volume (gal): Did Well Pump Dry? Describe: No water level dropped below lift cap Acity of pump. Attempted to bail remander, however unable to get bailer down well due to a bend in Averall CASING. Samplers: ___ Sampling Date: _____ Time: _____ Split? _____ With Whom: ____ Sample Type: ____ Comments and Observations: <u>Could not sample well due to</u> bend in PVC well (possible cause by shifting within IAndfill).

FIGURE 3-9

*Conversion: Liqui	<u>d Depth to Volume</u>	<u>Conver</u>	sion	Inches	to Fr	actional	<u>Feet</u>
Well Diameter	Gallon/ft	1	.08	-	.42	9	•75
		1 1/2		5 1/2		9 1/2	•79
2"	0.16	2	•16			10	•83
4"	0.65	2 1/2	.21	6 1/2	•54	10 1/2	• 87
6"	1.47	3	•25	7	•28	11	.91
8"	2.61	3 1/2	.29	7 1/2	.62	11 1/2	•95
12"	5.87	4	•33	8	• 56		
	•	4 1/2	•37	8 1/2	•70		

* Multiply liquid depth by gallons/ft.

· .

FIELD RECORD OF WELL GAUGING, PURGING AND SAMPLING

Site: NiAgARA / Wheat field Well No: <u>NW-WC</u> Gauge Date: <u>3-12-87</u> Time: <u>0840</u> Weather: <u>Sunny</u> 20°F Well Condition: locked, Well Diameter (inches): a" PVC well in Giy" bore hale Odor (describe): <u>No HNu Above background</u>, <u>Smell Rotten</u> Sounding Method: QED indicator Measurement Reference: Top PUC Stick up/down (ft): _______ (1) Well Depth (ft): 44.5 Purge Date: 3-12-87 Time: 1300 hrs. (2) Depth to Liquid (ft): 25.85 Purge Method: BAiled (3) Depth to Water (ft): _____ Purge Rate (gpm): _____ (4) Liquid Depth [(1)-(2)]: 18.65 Purge Time (min): me burchole (5) / Liquid Volume [(4)xF] (gal): 11.19 Purge Volume (gal): 25 Jal Did Well Pump Dry? Describe: No, Bouid in well was leachate black and smelled. Tom Poeter / Lori Logers Samplers: Sampling Date: <u>3-13-87</u> Time: ____ 0830 Sample Type: Grab Split? No With Whom: Comments and Observations:

FIGURE 3-10

*Conversion: Liqu	<u>id Depth to Volume</u>	<u>Conver</u>	sion	Inches	to Fr	actional	<u>Feet</u>
Well Diameter	Gallon/ft	1	.08	5	.42	. 9 .	•75
		1 1/2	•12	5 1/2	•46	9 1/2	.79
2"	0.16	2	.16	6	•50	10	• 83
4"	0.65	2 1/2	.21	6 1/2	•54	10 1/2	•87
6"	1.47	3	.25	7	·58	11	.91
8"	2.61	3 1/2	.29	7 1/2	•62	11 1/2	•95
12"	5.87	4	•33	8	• 56		
		4 1/2	•37	8 1/2	•70	e. *	i

* Multiply liquid depth by gallons/ft.

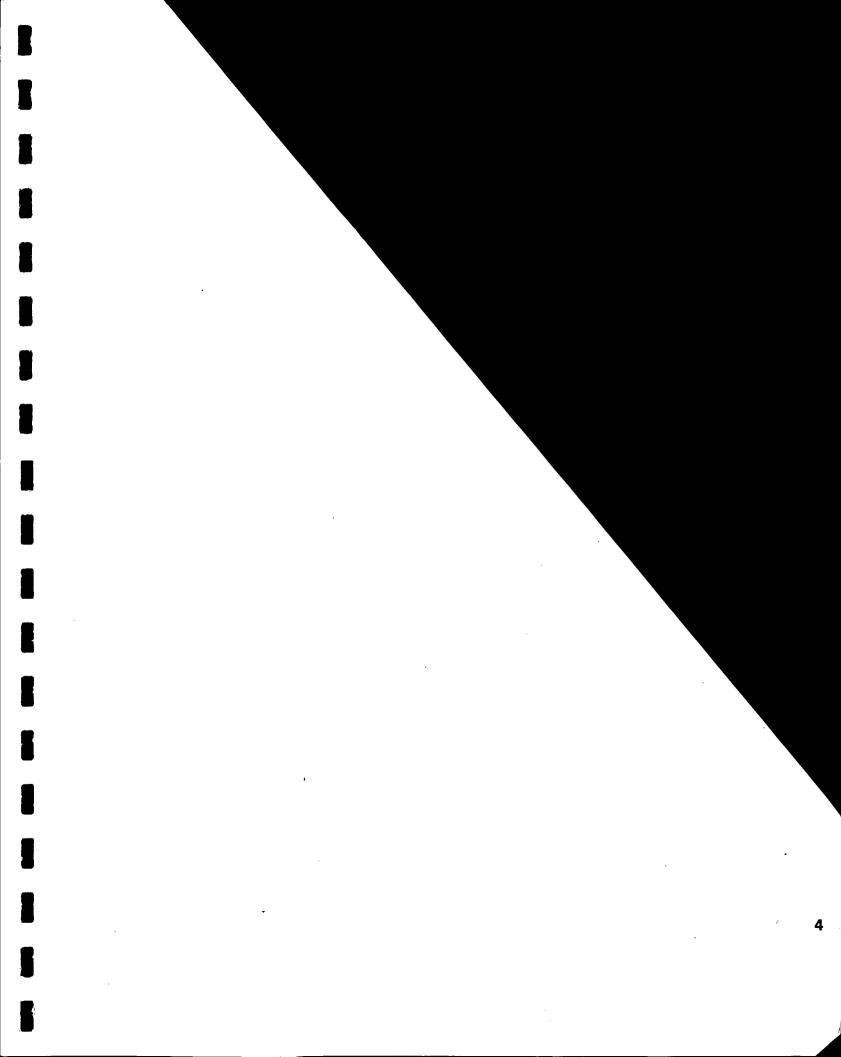
FIELD RECORD OF WELL GAUGING, PURGING AND SAMPLING

site: NiAGARA /Wheatfield Well No: <u>NW-WD</u> Gauge Date: <u>5-12-87</u> Time: <u>0950</u> Weather: <u>Sunny</u> 200 No Lock, holes shot in Well Condition: Well Diameter (inches): <u>2" PUC well in 634</u>" borehole Odor (describe): 3 ppm Above Have Background. Putrid Sounding Method: QED indicator Measurement Reference: Top of RVC Stick up/down (ft): ____.80 Well Depth (ft): <u>39.9</u> Purge Date: <u>3-12-57</u> Time: <u>1350</u> (1) (2) Depth to Liquid (ft): 10.10 Purge Method: Deviled (3) Depth to Water (ft): _____ Purge Rate (gpm): _____ (4) Liquid Depth [(1)-(2)]: Purge Time (min): _____ Liquid Volume [(4)xF] (gal): 17.88 Purge Volume (gal): 36 (5) Did Well Pump Dry? Describe: No, liquid from well was black And SMelled bAd (leAchate) Samplers: Tom Korter / Lori Rogers Sampling Date: 3-13-87 Time: 0810 Sample Type: _____ Split? _____ With Whom: _____ Comments and Observations:

FIGURE 3-11

<u>Conversion: Liquid</u>	<u>Depth to Volume</u>	<u>Conver</u>	sion	Inches	to Fractional	Feet
Well Diameter	Gallon/ft	1 _1 1/2		5 5 1/2	.42 9 .46 9 1/2	•75 •79
2"	0.16	2	.16	6	•50 10	• 83
4"	0.65	2 1/2	.21	6 1/2	.54 10 1/2	•87
6"	1.47	3	.25	7	.58 11	. 91
8"	2.61	3 1/2	.29	7 1/2	.62 11 1/2	•95
12"	5.87	4	.33	8	•56	
		4 1/2	•37	8 1/2	•70	

• Multiply liquid depth by gallons/ft. · , . .


•

and the state of the . · · · · · ·

. . .

•: ÷ •.

· · · · · ·

4. SITE ASSESSMENT

4.1 SITE HISTORY

The Niagara County R.D. Wheatfield site, currently owned by the Town of Wheatfield, occupies approximately 50 acres off Witmer Road generally west and north of Warner Avenue (Figure 1-1). At the time the site was active, the owner of record was the County of Niagara. The Niagara County Refuse Solid Waste Agency opened the Wheatfield landfill in 1968. The site was closed in October 1976 after a history of operational problems and violations of Part 19 of the New York State Sanitary Code (and later Part 360 of the 6 NYCRR) (Appendix 1.4.1-1).

Over 100 waste generators are believed to have disposed at this site. The City of Niagara Falls, North Townawanda, and Niagara Sanitation used this site for disposal of municipal refuse. Carborundum, Bell Aerospace, Goodyear, E.I. Dupont, Hooker-Durez, Olin Chemicals, NL Industries, and Roblin Steel were among the industrial users of the site (Appendixes 1.4.1-1, 1.4.1-2, 1.4.1-3 and 1.4.1-4). It is estimated over 12,000 tons of industrial waste, including sludges, liquids, and solids, have been deposited (Appendix 1.4.1-4). During the site's operation, wastes accepted included municipal wastes, sewage sludge, and significant quantities of industrial and hazardous wastes (Appendixes 1.4.1-1, 1.4.1-3, and 1.4.1-4). Residue from the Niagara Falls Incinerator was also dumped at the site (Appendix 1.4.1-5).

Problems such as pooling of water and chemicals, odors, unrestricted access and leachate leaving the site were recorded while the facility was active (Appendixes 1.4.1-5 and 1.4.1-6). In 1972 and 1973, several reports show that leachate from this site entered the Niagara River in large quantities via drainage ditches. On at least one occasion, this leachate formed a large brown plume in the river. Odors have been detected along the shoreline. Oil was found in the ditches onsite on numerous occasions and water in these ditches was often strongly septic (Appendixes 1.4.1-1 and 1.4.1-7).

An incident involving a teenager who developed a rash after playing on the site was reported to the Niagara County Health Department. No cause for the rash was conclusively identified (Appendix 1.4.1-8).

The site was never properly closed and inspections revealed problems with scavenger dumping, protruding refuse, unrestricted access, erosion, lack of vegetation, pooling of water, clogged ditches and flowing leachate streams. Grading is rough and uneven and general site drainage is poor in many areas (Appendix 1.4.1-1 and EA Site Inspection).

4.2 SITE TOPOGRAPHY

The Niagara Wheatfield is an inactive landfill which received industrial and municipal wastes. The site has a slope varying from 5 to 30 percent with an average slope of less than 10 percent. The nearest downslope surface water is a wetland adjacent to the north edge of the site which drains north to Black

Creek which is approximately 0.25 mi northwest from the site. Two drainage ditches (one through the site and one on the perimeter of the site) drain runoff from the site south to the Niagara River (Figure 3-1).

The distance to the nearest residence is approximately 200 ft east of the site, and the nearest commercial establishment is 1,000 ft west of the site (Appendix 1.4.2-1). There are no community water supplies within 3 mi and down river of the site (Appendixes 1.4.1-1 and 1.4.2-2).

4.3 SITE HYDROGEOLOGY

The Niagara/Wheatfield site is located just west of North Tonawanda, New York, within the Erie-Niagara Basin of the Erie-Ontario Lowlands of the Interior Lowlands Physiographic Province (Appendix 1.4.3-1). The site is located upstream from Niagara Falls in the Niagara River Valley (Figure 1-1). The area is characterized by a surficial lacustrine clay deposit with thin sand stringers overlying the Camillus Shale of Paleozoic age (Appendixes 1.4.3-2 and 1.4.3-3).

In 1983, under a project for U.S. EPA, NUS Corporation installed five bedrock monitoring wells around the perimeter of the site. Depth to bedrock for the wells were reported to be as follows: Well No. 1 - 42.5 ft below ground surface (bgs), Well No. 2 - 36 ft bgs, Well No. 3 - 35 ft bgs, Well No. 4 -38 ft bgs, and Well No. 5-55 ft bgs. The borings were completed 10 ft into bedrock. Type of bedrock was not indicated, only that bedrock was fractured in all five wells and all the wells had high rates of recharge (Appendix 1.4.3-4).

The lacustrine clay deposits in the Erie-Ontario Lowlands form a thin skin over till and bedrock. The clays are so impermeable as to yield no water to the wells (Appendix 1.4.3-1).

During EA's Phase II investigation, four wells were installed within the filled area. Fifteen ft of fill at NW-A rests on what appears to be a pink glacial till. Fill at NW-B (23 ft thick) rests on clay. Fill at NW-C (43.5 ft thick) rests on bedrock, and fill at NW-D (38 ft thick) rests on a gravel/sand/clay mixture (Figures 3-2 through 3-5).

The clay layer (over bedrock) seems to have been excavated at the north cell area (NW-C) with the deposited fill resting on bedrock. Also, the fill cap of sandy-silt is in a degrading condition, especially evident during the Phase II investigation at the northern cell where erosion on the west side has created several 1-ft deep channels.

Liquid levels reflect leachate level within the fill at a given point, and are not necessarily related to ground-water level. Liquid is probably perched at different depths within the fill. Well data suggests leachate may be moving locally west and south. A hydraulic gradient of 2 percent can be estimated but may not be meaningful due to the non-uniform distribution of liquid in the fill. Water levels in the wells fluctuate a great deal depending on the season, except for Well NW-C, which may indicate that the leachate is hydraulically connected to bedrock which directly underlies the fill in that well location (Table 3-1).

Leachate was relatively clear at well NW-A, but was dark grey at Wells B, C, and D. Leachate was found to be highly conductive at NW-C and had a low pH. Leachate at NW-B was also very conductive. Leachate at NW-D appeared to be smoking, possibly due to chemical reaction within the fill. Also, surface water sample S-1 exhibited a low pH.

Based on available data, there is potential for a hydraulic connection between the fill and the bedrock aquifer, as indicated in the north cell (NW-C), where fill rests on bedrock.

A short-term low-yield pump test was attempted at NW-B and NW-D, however due to the condition of the wells, accurate values could not be obtained (Section 3.2.3 and Appendix 1.3.2-2).

No known water supply wells are located in the vicinity (within 3 mi) of the site (Appendix 1.4.2-2).

4.4 SITE CONTAMINATION

The Niagara County R.D.-Wheatfield landfill site reportedly received a variety of industrial and hazardous waste. Waste disposal at the site included: caustic soda, perchloroethylene, tetrachloroethylene, phenolic wastes, and miscellaneous chemical wastes (Appendixes 1.4.1-1, 1,4.1-3, and 1.4.1-4). The Niagara County Health Department has sampled leachate and surface water at and near the site on numerous occasions in the past. Analysis was performed for 13 metals, phenol, COD, suspended residuals, and dissolved residuals. Chromium, lead, iron, and magnesium were detected in the leachate (surface

water) entering the Niagara River. However, the concentrations were reportedly not significant. A sediment sample was also collected from a ditch at the center of the site and analyzed for PCB's. Only a low concentration of Aroclor 1260 (.25 mg/kg) was detected (Appendixes 1.4.1-1 and 1.4.4-1).

A number of limited studies have been conducted on the site. In September 1980 the U.S. EPA collected two surface water (leachate) and five sediment samples from ditches at the site. In June 1981, the New York State Department of Environmental Conservation (NYSDEC) collected four surface water and four sediment samples from the ditches. Thirteen priority pollutant organics were detected in the surface water. Phenol, trans-1,2-dichloroethylane, and heptachlor exceeded U.S. EPA critierion for maximum permissable concentration in drinking water. Several heavy metals were also detected. Elevated levels of heavy metals and a number of organic compounds were found in the sediment samples (Table 4-1 and Appendixes 1.4.3-2 and 1.4.4-2).

In 1982, the U.S. Geological Survey drilled 10 test holes at the site and collected 10 soil samples (substrate) as well as 2 ground-water samples. The samples were analyzed for organic compounds. Only three priority pollutants were found, all below quantifiable detection limits (Appendix 1.4.3-2).

NUS Corporation collected surface water and sediment from the in 1980, 1981, and 1983, for the U.S. EPA. The results of samples collected in 1983 found no organic priority pollutants on the site. However, sample results from 1980 and 1981 showed a number of PAH's, phthalates, and pesticides (Appendix 1.4.4-3).

In June 1985, a Geometrics G-856 proton magnetometer was used to evaluate subsurface conditions for large concentrations of buried ferrous material. Interpretation and analysis of the data pointed up zones where subsurface ferrous material may be present. Both high and moderate anomalous zones are shown in Plates 2-4 of Appendix 1.3.2-1. The high anomalous zones indicate larger amounts of ferrous material relative to the moderate anomalous zones.

Leachate in Fill Material

Liquid samples were taken from each of the four wells (NW-A, NW-B, NW-C, and NW-D) installed in the fill during the initial sampling on 2 November 1985. Wells NW-A, NW-C, and NW-D were resampled on 13 March 1985 for PCB and pesticide analysis. Well NW-B could not be resampled. Analytical results are presented in Table 4-2.

Elevated concentrations of the following volatile organic compounds were detected in the wells: methylene chloride, acetone, 2-butanone, toluene, benzene, 4-methyl-2 pentanone, ethylbenzene, chlorobenzene, m-xylene, o&p xylene, and styrene. Methylene chloride, acetone, and 2-butanone were detected in the method blank, however, the levels detected in the wells were at least two magnitudes higher in the well samples except for methylene chloride in Wells NW-A and NW-B which were similar to the levels detected in the method blanks. Toluene, benzene, 4-methyl-2 pentanone, and ethylbenzene were detected in all four wells; chlorobenzene, m-xylene, and o&p xylene in Wells NW-B, NW-C, and NW-D; and styrene in Well NW-C. Some of the concentrations of these volatile compounds were at levels below the increased detection limit affected by dilution due to the high concentration of some of the other compounds.

Elevated concentrations of the following semi-volatile compounds were detected in the well samples: phenol, 2-methyl phenol, and 4-methyl phenol in all of the wells; 2,4-dimethyl phenol in Wells NW-B and NW-D; and benzl alcohol, napthalene, diethyl phthalate, and pentachlorophenol in one well each at levels below the increased detection limit affected by dilution. Wells NW-C and NW-D located in the northern end of the site exhibited the higher organic concentration levels.

For metals concentrations, Well NW-C contained the highest concentrations with arsenic, barium, chromium, iron, lead, manganese, and zinc all above NYS quality standards for Class GA ground water, best use of water as a source of potable water supply (6NYCRR, Part 701). Total cyanide was detected in all the well samples at low levels, and total phenols were found in all wells with the highest levels in Well NW-C. No pesticides or PCB's were detected in any of the wells.

Ground Water

The monitoring wells east of the site were sampled by U.S. Geological Survey in September 1980. Only two priority pollutants were found, both below quantifiable detection limits. The samples contained 15 organic non-priority pollutants, of which only 4 were above quantifiable detection limits (Appendix 1.4.3-2).

The ground-water samples were collected by NUS Corporation from monitoring wells surrounding the site, in May 1983. The samples were analyzed for priority pollutants. Methylene chloride, acetone, and bis(2-ethylhexyl)

phthalate were the only organics detected in the ground-water samples. Acetone was used for decontamination of field equipment and probably is a sampling artifact. Inorganic concentrations detected in the ground-water were not significant (Appendix 1.4.4-3).

Surface Water

The surface water samples S1 and S2, collected during EA's Phase II investigation, did not have concentrations of any organics (volatile or semi-volatile) greater than levels detected in the method blanks. The only elevated concentrations of contaminants were detected in sample S2 (surface water at the site's northern portion) which had levels of aluminum (3.0 mg/liter), iron (4.5 mg/liter), magnesium (18 mg/liter), and zinc (7.0 mg/liter). Of these, zinc is above quality standards for Class D, suitable for secondary contact recreation (6NYCRR, Part 701). Elevated levels of total phenols (0.21 mg/liter) were also detected in surface water sample S1 in (refer to Table 4-2 for summary of analytical results).

Soil

Soil samples were also taken at S1 and S2. Iron and magnesium concentrations were above average soil conditions, however, the concentrations were not out of the range of observed natural soil conditions. Three volatiles (methylene chloride, acetone, and 2-butanone) were detected in the soil samples. However, the method blanks had similar quantities. Six semi-volatile organic compounds were detected in soil sample S-1. However, none were present above the quantifiable detection limits (Table 4-2).

No data available.

Waste

Air

The drum sample was composed of relatively inert material and no significant concentrations of any of the HSL parameters were observed. However, the drum sample was ignitable (Table 4-2).

4–10

TABLE 4-1 PAST STUDY RESULTS-ANALYSES OF SURFACE WATER AND BOTTOM SEDIMENTS FROM DRAINAGE DITCHES AT NIAGARA COUNTY REFUSE DISPOSAL SITE, WHEATFIELD, N.Y., [Blanks indicate less than detection limit, dashes indicate not analyzed]

•	U.S. EPA (1		(1980) AND NYSDE	C (1981)	
		ater (ug/L)		erial (ug/kg)	
	Maximum	Mean	Maximum	Mean	
norganic Constituents					
Antimony			4,000	2,600	
Arsenic	30	2 5	7,800	6,300	
Beryllium			16,000	10,600	
Cadmium			3,800	800	
Chromium		·	23,000	14,100	· · · ·
Copper	52	20	61,000	34,000	
Lead	160+	3 2	84,000	47,000	
Mercury	1.58	0.4	14,200	3,200	· · · · · · · · · · · · · · · · · · ·
Nickel	100	20	45,000	16,400	
Selenium			200	60	
Silver			400	240	
Zinc	174	61	1,500,000	390,000	
rganic Compounds					
Priority pollutants					
Benzene			0.5	0.2	
Chlorobenzene			5	1	
Chloroform			4	2	
1,2-Dichloroethane			4	1	
Trans-1,2-dichloroethylene	37+	 7+	12	2	
1,2-Dichloropropane			1	1	·
Ethylbenzene	8	2	3	1	
Methylene chloride	2	1	31	+ 15	
Tetrachloroethylene	56	11 [°]	19	4	
Toluene	31	6	4	1	
1,1,1-Trichloroethane			0.5	0.1	
Trichloroethylene	8	2	5	2	
Vinyl chloride	2	0.4			
b-BHC			58	6	
W-BHC			90 .	10	
4,4'-DDE			11	3	
PCB-1248			320	53	
PCB-1254			180	37 .	
Phenol	34,000+	5,666+	1,900	333	
Acenaphthene			17	4	

Not i The analytical program is taken the the total and the history which a provide the termination of the second one support to Appendice on provide the providence of the providence of the complete contract data provide the providence of the providence of the complete contract data provide the providence of the prov

TABLE 4-1 (Cont.)

	Surface wa	ter (ug/L)		rial (ug/kg)	
	Maximum	Mean	Maximum	Mean	
Drganic Compounds (continued)			•		
Priority pollutants (continued)					
Acenaphthylene			130	14	
Anthracene			2,000	273	
Benzo(a)pyrene	`		2,300	299	
Benzo(b)fluoranthene			2,200	282	
Benzo(ghi)perylene			7,605	845	
Bis(2-ethylhexyl)phthalate	330	57	6,900	2,444	
Butylbenzyl phthalate	0.8	0.1 .	330	64	
Chrysene			3,200	356	
1,2-Dichlorobenzene			39	8	
1,3-Dichlorobenzene			59	17	
1,4-Dichlorobenzene			59	17	
Di-n-butyl phthalate	9	2	470	217	
Di-n-octyl phthalate	10	2	170	19	
Fluoranthene			2,500	319	
Fluorene			93	15	
Hexachlorobenzene			39	4	
Naphthalene			160	34 273	
Phenanthrene			2,000	2/3	
Pyrene			2,000	254	
1,2,4-Trichlorobenzene			47	6	
Benzo(a)anthracene			3,200	356	
Indeno(1,2,3-cd)pyrene			820	91	
2,4-Dimthyl phenol			990	110	
Heptachlor	0.13+	0.04+		•	
Nonpriority pollutants					
Trichlorofluoromethane			1	0.2	•
Diethyl phthalate	40	7	180	67	

+ Exceeds U.S. EPA criterion for maximum permissable concentration in drinking water.

.

		-	Water Samples						
М	-12-85 lethod lank I	Trip Blank No. 1	NW WA	NW WB	NW WC	NW WD	NW 	NW 52	
VOLATILE ORGANICS (ug/L)							_		
Methylene chloride	10	. 6B	51B	BDL ^B	3000B	150B	BCRDL	BCRDL	
Acetone	28	BCRDL ^B	740B	1200B	6400B	1900B	BCRDL ^B	BCRDL	
2-Butanone	BCRDL	BCRDL ^B	250B	360B	1400B	920B		BCRDL	
Benzene			180	54	BDL	73			
Trans-1.2-Dichloroethene			BDL						
4-Methyl-2-Pentanone			210	BDL	BDL	210			
Toluene			150	180	2100	650			
Chlorobenzene				28	BDL	BDL			
Ethylbenzene			55	160	BDL	54			
Styrene					810	,			
M-Xylene				260	290	120			
o & p-Xylene	•			220	BDL	96			
SEMI VOLATILES 12-6-85									
Phenol			110	690	-270,000	15,000			
Benzyl Alcohol '			•			BDL			
2-Methyl Phenol		•	28	BDL	13,000	1,800			
			160	340	5,800	, 3,200			
2,4-Dimethyl Phenol				120		170			
Naphthalene				BDL					
 Diethyl Phthalate					BDL				
Pentachlorophenol						BDL			
Di-N-Butyl Phthalate	550								
Bis(2-Ethylhexyl) phthalate	2,400	318		BDL	230B	BDL		88	
 Tot. Cyanide (mg/L)		<0.01	0.02	0.04	0.15	0.04	0.02	<0.0	
Tot. Phenols (mg/L)		<0.05	0.74	385	744	46.8	0.21	0.0	

TABLE 4-2 NIAGARA WHEATFIELD -- SUMMARY OF PHASE II ANALYTICAL RESULTS

TABLE 4-2 (Cont.)

		Trip Blank No. 1			Water Samp	les		
Parameter	Method Blank I		NW WA	NW WB	NW WC	NW WD	NW 51	NW S 2
METALS (mg/L)			•					
Aluminum	•		12.0	0.50	21.0	16.0	0.40	3.00
Antimony				BCRDL	0.45	BCRDL		
Arsenic		0.025		0.020	0.062	BCRDL		
Barium		1.0	0.62	0.42	3.10	0.26	0.05	0.15
Berylium		0.005						
Cadmium			BCRDL	BCRDL	0.012	0.016	BCRDL	BCRDL
Calcium			280	250	3,000	490	90.0	60.0
Chromium		BCRDL	0.013	0.06	0.98	0.055	BCRDL	BCRDL
Cobalt					0.30			
Copper		0.032	0.046	BCRDL	0.16	0.064	BCRDL	0.032
Iron			180	68.0	1,400	140	0.38	4.50
Lead			0.016	0.015	0.36	0.074	BCRDL	0.023
Magnesium			170	130	1,000	200	18.0	18.0
Manganese		0.16	1.28	1.41	20.8	1.41	0.09	0.49
Mercury				0.0003	0.0002	0.001		
Nickel		0.56	0.07	0.07	0.86	0.05		0.14
Potassium			13.0	1,200	700	100	5.00	5.00
Silver					BCRDL			
Sodium	•		25.0	1,020	2,700	310	10.0	19.0
Thallium				0.005				
Vanadium					0.31	0.08		
Zinc		0.06	0.20	18.0	100	4.60	0.07	7.00

NOTE: BCRDL = Detected below contract required detection limit; BDL = indicates estimated value. Detected below increased detection limit affected by dilution (refer to CLP report); B = detected in method blank. The analytical program included the full HSL, however, this summary table includes only those parameters detected in at least one sample. Refer to Appendix 3 (bound separately) of this report for the complete CLP analytical data package.

	11-13-85 Method Blank II	Trip Blank	Soil	Sample	Drum NW-D1	Drum NW-D1 EP TOX Extract
Parameter	ug/L	<u>No. 1</u>	NW-S1	NW-S2	Bulk	mg/L
VOLATILE ORGANICS						•
Methylene chloride	BCRDL	6 ^B	4 9 ^B	85 ^B	82 ^B	•
Acetone	BCRDL	BCRDL ^B	56 ^B	36 ^B	29 ^B	₽ ,
2-Butanone	BCRDL	BCRDL ^B	BCRDL ^B	BCRDL ^B	BCRDL	•
	•		· •.			
SEMI VOLATILES ¹ (ug Phenanthrene Di-N-Butyl Phthalate		•		BCRDL BCRDL BCRDL	. . ,	•
Fluoranthène 				BCRDL	·	
Fluoranthene Pyrene				BCRDL		•
Pyrene Benzo(a)Anthracene	<u> </u>	 B				•
Pyrene	thalate	31 ^B		BCRDL	BCRDL	•
 Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl) ph	thalate	31 ^B	<0.2	BCRDL BCRDL BCRDL	BCRDL <0.2	•
Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl) ph Chrysene	thalate		<0.2 <2	BCRDL BCRDL BCRDL		•
Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl) ph Chrysene Tot. Cyanide (mg/L)	thalate	<0.01		BCRDL BCRDL BCRDL <0.2	<0.2	•
Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl) ph Chrysene Tot. Cyanide (mg/L) Tot. Phenols (mg/L) METALS (mg/kg)	thalate	<0.01		BCRDL BCRDL BCRDL <0.2	<0.2	•
Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl) ph Chrysene Tot. Cyanide (mg/L) Tot. Phenols (mg/L) METALS (mg/kg) Aluminum	thalate	<0.01	<2	BCRDL BCRDL BCRDL <0.2 <2	<0.2 <2	•
Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl) ph Chrysene Tot. Cyanide (mg/L) Tot. Phenols (mg/L)	thalate	<0.01	<2	BCRDL BCRDL BCRDL <0.2 <2	<0.2 <2 2,650	•

TABLE 4-3 NIAGARA WHEATFIELD -- SUMMARY OF PHASE II ANALYTICAL RESULTS

.

TABLE 4-3 (Cont.)

.

	11-13-85		· · · ·		Drum NŴ-D1
•	Method	Trip		Drum	EP TOX
	Blank II	Blank	Soil Sample	NW-D1	Extract
Parameter	ug/L	No. 1	NW-S1 NW-S2	Bulk	mg/L

METALS	(mg/kg)	(cont.)	
--------	---------	---------	--

		1	•		
Berylium	0.005	0.35	0.34	BCRDL	+
Cadmium		0.82	0.17	2.1	
Calcium		43,000	3,200	3000	*
Chromium	BCRDL	7.0	9.5	3.24	0:026
Cobalt		3.3	2.6	BCRDL	*
Copper		24	10	10	•
Iron	,	14,000	9,400	12,000	*
Lead		110	31	20	
 Magnesium		15,000	1,700	1,320	*
Manganese	0.16	274	106	145	• •
Mercury		0.17	0.24		
Nickel	0.56	10	10	3.0	*
Potassium	· · · · · · · · · · · · · · · · · · ·	890	850	583	*
Selenium		BCRDL	0.26	BCRDL	
Silver		BCRDL	0.076		
Sodium		86	75	BCRDL	*
					•
Tin		2.2			*
Vanadium		11	12		•
Zinc	0.06	220	· 74	29.6	*

5 . · · • . . o ۰ .

TAB	L	E	4	3	(Con	t	•)

					•
					Drum
	11-13-85				NW-D1
	Method	Trip		Drum	EP TOX
	Blank II	Blank	Soil Sample	NW-D1	Extract
Parameter	ug/L	<u>No. 1</u>	NW-S1 NW-S2	Bulk	ng/L

HAZARDOUS CHARACTERISTICS

Corrosivity	5.3	
Ignitability	Ignitable (35C)	
Reactivity	Not Reactive	

* Not analyzed.

NOTE: BCRDL = detected below contract required detection limit (refer to CLP report);

B = detected in method blank. The analytical program included the full HSL, however, this summary table includes only parameters detected in at least one sample. Refer to Appendix 3 (bound separately) of this report for the complete CLP analytical data package.

1 Results for the soil and drum samples are from the resampling on 13 March 1987.

** Note: For the following samples no pesticides and PCB were reported above the detection limit. However, in the QA/QC review, substantial peaks were noted in the retention time windows for delta-BHC, heptachlor and dieldrin.

Sample ID	Matrix	Analysis
NW-S1	Water	Pest./PCB's
NW-S2	Water	Pest./PCB's
NW-WA	Water	Pest./PCB's
NW-WC	Water	Pest./PCB's
NW-WD	Water	Pest./PCB's
NW-D1	Soil	BNA's, Pest./PCB's
NW-S1	Soil	BNA's, Pest./PCB's
NW-S2	Soil	BNA's, Pest./PCB's

For soil samples NW-D1, NW-S1, NW-S2, the holding times were exceeded for BNA's, Pesticides and PCB's, and the data is invalid. No data on these parameters is in Table 4-3. There is data in the EA QA/QC Appendix on these samples.

** CORRECTED VERSION WRITTEN BY NYSDEC

0

.

,

.

5.1

5. NARRATIVE SUMMARY

The Niagara Wheatfield site is located off Warner and Witmer Roads in the Town of Wheatfield, Niagara County, New York. The site is presently owned by the Town of Wheatfield, but Niagara County owned and operated the landfill while it was active. The site opened in 1968 and was closed in October 1976 after a history of operational problems and violations of Part 19 of the New York State Sanitary Code.

More than 100 waste generators, including the City of Niagara Falls, Niagara Sanitation, E.I. Dupont, Olin Chemicals, and Roblin Steel, used this site to deposit wastes containing phenolic resins and molding compounds, offgrade polyvinyls, PVC skins and emulsions, brine sludge with mercury and other various trash. The site was never properly closed and many of the operational problems which resulted in its closure still exist today. These include inadequate cover, unrestricted access, pooling of water and chemicals, odors and leachate leaving the site. Grading is rough and uneven and general site drainage is poor.

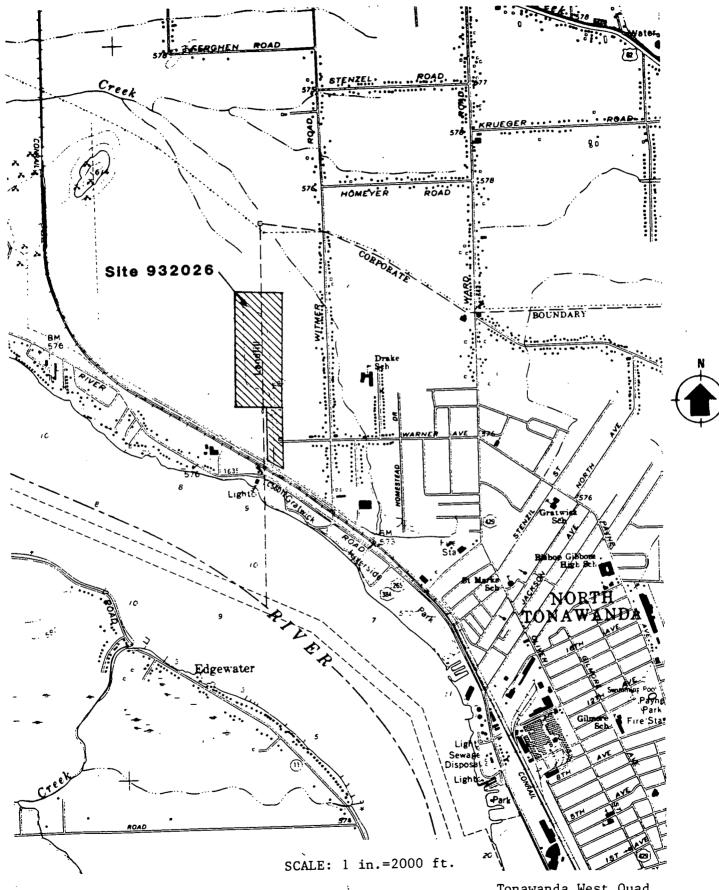
The site is less than a 0.5-mi from the Niagara River, the water source for North Tonawanda (upgradient of the site) and many surrounding communities. A wetland which drains to Black Creek is adjacent to the site. However, the distance to all water supply intakes is greater than 3 mi. Black Creek is 0.25 mi from the north slope of the landfill. There is a residence approximately 200 ft and a commercial establishment 1,000 ft from the landfill. Ground water is not a source of drinking water for the surrounding community.

Analysis of samples collected by EA from onsite monitoring wells, drainage ditches, and soil near the ditches detected elevated concentrations of several organic compounds, phenols, iron, and zinc in the fill.

.

.

v


•

σ

5.2

COORDINATES: Latitude: 43 03'55' Longitude:78 54'22'

NIAGARA COUNTY R.D.-WHEATFIELD SITE

Tonawanda West Quad NYSDOT 7.5 Minute Series 1976 Edition •

.

.

5.3

.

-

•

Federal Register / Vol. 47. No. 137 / Friday, July 16. 1982 / Rules and Regulations

Feelby neme:
Town of Wheatfield, Niagara County
EPA Region:
Person(s) in charge of the tackty: Town of Wheatfield
2800 Church Road
N. Tonawanda, New York 14120
EA Engineering, Science and 3 July 1986
General description of the teating: Technology, Inc. (For example: lendill, surface impoundment, ple, container; types of hazardous substances; location of the
techy: contamination route of major concern; types of information needed for rating; egency ection, etc.) The Niagara Wheatfield is an inactive landfill which was
operational from 1968 to 1976. The site was used by a number
of industries and has received over one million tons of wastes
containing phenolic resins, PVC skins & emulsions, sludge,
and other various trash.
Scores: $S_{M} = 7.9 $

FIGURE 1 HRS COVER SHEET

MLLING CODE MID-48-C

.1

	Ground Water Route Work Sheet								
	Rating Factor		-	ed Value le One)		lulti- Ni er	Score	Max. Score	Ref. (Section)
0	Observed Release)	0	45		1	0	45	3.1
	If observed releas If observed releas	-		•	_				
2	Route Characterist Depth to Aquiler Concern		0 1 2	3		2	6	6	3.2
	Net Precipitation Permeability of the Unasturated Zo	he	012	3		1 1	2 0	3 3	
	Physical State		0 1 2	3		1	3	3	
			Total Route Ch	aracteristics S	core		11	15	
3	Containment		0 1 2	3		1	3	з	3.3
0	Waste Characteris Toxicity/Persiste Hezerdous Waste Quantity	ence	0 3 6 0 1 2	9 12 15 (B 3 4 5 6	7 (8)	1	18 8	18 8	3.4
		:	Total Weste Ch	eracteristics Se	core		26	26	
5	Targets Ground Water Ui Distance to Near Well/Population Served	rest	0 1 12 16 1 24 30 3	2 3 8 8 10 8 20 12 35 40		3 1	1 0	9 40	- 3.5
			Totai Tai	gets Score			1	49	
٦	tf time 1 is 45, 1 If kine 1 is 0, m		1 . 4 . (3			858	57,330	÷
0	Divide line 6 by	y 57,330 a	and multiply by	100	sq]w -	1.50		

FIGURE 2 GROUND WATER ROUTE WORK SHEET

31234

E

Surface Water Route Work Sheet								
	Rating Factor		gned Value rcle One)		iulti- lier	Score	Max. Score	Ref. (Section)
	Observed Release	٥	45 ^		1	0	45	4.1
	If observed release if observed release							
3	Route Characteristic Facility Slope and Terrain	-	2 3		1	3	3	4.2
	1-yr, 24-hr, Rainfal Distance to Neare: Water		2 3 2 3		1 2	2 6	3 6	
	Physical State	0 1	2 3		1	3	3	•
		Total Route (Characteristics S	icore		14	15	
3	Containment	0 1	2 3		1	2	3	4.3
•	Waste Characteristic Toxicity/Persisten Hazardous Waste Quantity	_	6 9 12 15 (8) 2 3 4 5 6		1	18 8 -	- 18 8	4.4
							•	
	Г	Total Waste (Characteristics S	icore	Π	2 <u></u> 6	26	
5	Targets Surface Water Use Distance to a Sens Environment	•	2 3 2 3		3 2.	໋5∵∗ 6	9	4.5
`	Population Served to Water Intake Downstream	Distance 0 4 12 18 24 30			1	0	40	
	<u> </u>	Total 1	argets Score			<u>,</u> 12	55	
	If line 1 is 45, mi If line 1, is 0, mul				2	3,736	64.350	
7]	Divide line 6 by 6	i4,350 and multiply b	y 100	5,,		13.6	مي اليوني و 1 مو اورو	,

FIGURE 7 SURFACE WATER ROUTE WORK SHEET

	· · · · · ·	Air Route Work Shee	et		·	
	Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)
1	Observed Release	0 45	1	0	45	5.1
	Date and Location:			-		
	Sampling Protocol:					•
		B _e = 0. Enter on line (5) In proceed to line (2)				•
2	Waste Characteristica Reactivity and Incompatibility	0 7 2 3	1		3	5.2
	Toxicity Hazardous Waste Quantity	0 1 2 3 0 1 2 3 4 5 6	3 7 8 1		9 8	
		-	•			
	•	Total Waste Characteristics Sc	ere	-	20	
3	Targets Population Within 4-Mile Radius Distance to Sensitive	0 9 12 15 x8 21 24 27 30 0 1 2 3	1		30 6 ·	5.3
	Environment Land Use	0 1 2 3	1	• •	3	
		· · ·				
	· · · · · ·					•
		Total Targets Score		·	39	
4	Autophy () x (2) x	3		0	35, 100	
<u>.</u>	Nvide line 4 by 35.	100 and multiply by 100	s	0'		

FIGURE 9 AIR ROUTE WORK SHEET

BILLING CODE 6808-68-C

•	\$. s ²
Groundweter Route Score (Sgw)	1.50	2.25
Surface Water Route Score (S _{SW})	13.6	184.96
Air Route Score (Sa)	0	0
$s_{gw}^2 + s_{sw}^2 + s_{a}^2$		187.21
$\sqrt{s_{gw}^2 + s_{gw}^2 + s_a^2}$		13.68
$\sqrt{s_{gw}^2 + s_{gw}^2 + s_a^2} / 1.73 = s_M =$		791

l

ŀ

FIGURE 10 WORKSHEET FOR COMPUTING SM

Federal Register / Vol. 47. No. 137 / Friday, July 16. 1982 / Rules and Regulations

Rating Factor	Assigned Value (Circle One)	Mulli- plier	Score	Max. Score	Ref. (Section)
	1 3	1	3	3	7.1
2 Waste Characteristic: Direct Evidence Ignitability Reactivity Incompatibility Hazardous Waste Quantity	3 0 (1) 2 (0) 1 2 (0) 1 (0)		3 1 0 8	3 3 3 3 8	7.2
	•• • • • • • • •				
	Total Waste Characteristics Score		,12	20	
Image: Second system Image: Second system	0 1 2 3	1 1 1 1 1 1	4 2' 3 3 4	• •	7.3
	Total Targets Score	-	20	24	
A Multiply 1 x 2	× 3		720	1,440	-
5 Divide line 4 by 1	,440 and multiply by 100	SFE -	50.0		

BLUES CODE MAN-MA-C

۰.

í.

		Direct Contact Work S	iheet							
	Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)				
0	Observed Incident	0 45	1	0	45	8.1				
	If line 1 is 45, proceed to line 4 If line 1 is 0, proceed to line 2									
2	Accessibility	0 1 2 3	1	3	3	0.2				
3	Containment	0 (15)	1	15	15	8.3				
•	Waste Characteristics Toxicity	0 1 2 3	5	15	15	8.4				
3	Targets Population Within a 1-Mile Radiua Distance to a Critical Habitat	0 1 2 (3) 4 5 (0) 1 2 3 -	4	12 , 0	20 12	8.5				
	· · ·	·		-	-	•				
		Total Targets Score	• تتلويه ،	12	35					
6		y 1 x 4 x 5 2 x 3 x 4 x 5	10 1 1 10 10 10 10 10 10 10 10 10 10 10	6 8,100	21,600					
	Divide line 6 by 21,80	0 and multiply by 100	\$ _{DC} -	37.5						
		FIGURE 12 DIRECT CONTACT WO	RK SHEET	FIGURE 12 DIRECT CONTACT WORK SHEET						

4

BILLING CODE SEE-SE-C

, . .

.

. ,

. .

. .

. . .

٩

· ·

1

5.4

ļ

.

.

DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

INSTRUCTIONS: As briefly as possible, summarize the information you used to assign the score for each factor (e.g., "Waste quantity = 4,230 drums plus 800 cubic yards of sludges"). The source of information should be provided for each entry and should be a bibliographic-type reference. Include the location of the document.

FACILITY NAME: Niagara Wheatfield

LOCATION: Town of Wheatfield, Niagara County, New York

DATE SCORED: 3 July 1986

PERSON SCORING: Gloria D. McCleary

PRIMARY SOURCES(S) OF INFORMATION (e.g., EPA region, state, FIT, etc.)

EA Science and Technology, Phase II Field Activities Niagara County Health Department Files New York State Department of Environmental Conservation Files

FACTORS NOT SCORED DUE TO INSUFFICIENT INFORMATION:

Air.

COMMENTS OR QUALIFICATIONS:

Ground-water and surface water migration routes had low target values (i.e., no water supplies), but no detailed house to house survey of water supply sources was conducted.

1 OBSERVED RELEASE

Contaminants detected (5 maximum):

None. Wells were placed in the landfill.

Assigned value = 0.

Rationale for attributing the contaminants to the facility:

2 ROUTE CHARACTERISTICS

Depth to Aquifer of Concern

Name/description of aquifer(s) of concern:

Bedrock; Camillus shale.

Reference: 2.

Depth(s) from the ground surface to the highest seasonal level of the saturated zone (water table[s]) of the aquifer of concern:

8 ft.

Depth from the ground surface to the lowest point of waste disposal/storage:

43.5 ft.

Reference: 3 (Figure 3-4).

Depth to Aquifer of Concern:

0 ft. Fill appears to be within perched ground water.

Assigned value = 3.

Reference: 1.

Net Precipitation

Mean annual or seasonal precipitation (list months for seasonal):

34 in.

Reference: 4.

Mean annual lake or seasonal evaporation (list months for seasonal):

26 in.

Reference: 1.

Net precipitation (subtract the above figures):

8 in.

Assigned value = 2.

Reference: 1.

Permeability of Unsaturated Zone

Soil type in unsaturated zone:

Clay and shale.

Reference: 3 (Section 4.3 and Figures 3-2 through 3-5).

Permeability associated with soil type:

```
Approximately 10^{-7} cm/sec.
```

Assigned value = 0.

Reference: 1.

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

3

Liquids, solids, sludge.

Assigned value = 3.

References: 1, 5, 6 and 7.

3 CONTAINMENT ,

Containment

Method(s) of waste or leachate containment evaluated:

No liner and leachave collection at the landfill.

Reference: 3 (well logs, Figures 3-2 through 3-5).

Method with highest score:

No liner and inadequate leachate collection (evidence of leachate on site inspection).

Assigned value = 3.

Reference: 1.

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated:

Phenol	Benzene	m-xylene
Toluene	4-methyl-2-pentanone	o&p-xylene
Iron	ethylbenzene	styrene
Magnesium	chlorobenzene	2,4-dimethyl phenol
Zinc	Arsenic	Lead

Reference: 3 (Section 4.4 and Table 4-2).

Compound with highest score:

Zinc, arsenic, lead, and iron.

Assigned value = 18.

Reference: 1.

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

12,494.3 tons.

Reference: 5.

Basis of estimating and/or computing waste quantity:

Records of waste disposal.

Assigned value = 8.

Reference: 1.

5 TARGETS

Ground Water Use

Use(s) of aquifer(s) of concern within a 3-mile radius of the facility:

There are no known wells completed in the aquifer of concern within a 3-mi radius of the site, but aquifer is usable.

Assigned value = 1.

References: 1, 8, 9, and 10.

Distance to Nearest Well

Location of nearest well drawing from <u>aquifer</u> of <u>concern</u> or occupied building not served by a public water supply:

Not applicable.

Distance to above well or building:

Not applicable.

Population Served by Ground Water Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from <u>aquifer(s)</u> of <u>concern</u> within a 3-mile radius and populations served by each:

Population served by public water supply.

Assigned value = 0.

References: 1, 8, and 9.

Computation of land area irrigated by supply well(s) drawing from <u>aquifer(s)</u> of <u>concern</u> within a 3-mile radius, and conversion to population (1.5 people per acre):

None.

Reference: 11.

Total population served by ground water within a 3-mile radius:

Zero.

Assigned value = 0.

Reference: 1.

SURFACE WATER ROUTE

1 OBSERVED RELEASE

Contaminants detected in surface water at the facility or downhill from it (5 maximum):

None.

Assigned value = 0.

Reference: 1.

Rationale for attributing the contaminants to the facility:

2 ROUTE CHARACTERISTICS

Facility Slope and Intervening Terrain

Average slope of facility in percent:

5 to 30 percent.

Reference: 7.

Name/description of nearest downslope surface water:

Marsh, adjacent north, which discharges to Black Creek. References: 7 and 12. Average slope of terrain between facility and above-cited surface water body in percent:

Wetland/pond adjacent to site.

Assigned value = 3.

Reference: 1.

Is the facility located either totally or partially in surface water?

Yes. Marshy area within/adjacent to the site.

Assigned value = 3.

References: 1 and 7.

Is the facility completely surrounded by areas of higher elevation?

7

No. Site and surrounding area are relatively flat.

Reference: 12.

1-Year, 24-Hour Rainfall in Inches

2.1 in.

Assigned value = 2.

Reference: 1.

Distance to Nearest Downslope Surface Water

Adjacent to site.

Assigned value = 3.

Reference: 7.

Physical State of Waste

Solids, liquids, and sludges.

Assigned value = 3.

References: 5, 6, 7, and 1.

3 CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Runoff diversion and cover.

Method with highest score:

Inadequate cover and leachate discharging via ditches.

Assigned value = 2.

Reference 7.

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated

Phenol	Lead
Toluene	trans-1,2-dichloroethylene
Iron	Heptachlor
Magnesium	Tetrachloroethylene
Zinc	Arsenic

Reference: 3 (Section 4.4; Tables 4-1 and 4-2).

Compound with highest score:

Lead, arsenic, and heptachlor.

Assigned value = 18.

Reference 1.

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

12,494.3 tons.

Reference: 5.

Basis of estimating and/or computing waste quantity:

Landfill records.

Assigned value = 8.

Reference: 1.

5 TARGETS

Surface Water Use

Use(s) of surface water within 3 miles downstream of the hazardous substance:

No known drinking water/irrigation uses. Recreation.

Assigned value = 2.

References: 1, 8, and 11.

Is there tidal influence?

No.

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

None within 2 mi.

Assigned value = 0.

Reference: 12.

Distance to 5-acre (minimum) freshwater wetland, if 1 mile or less:

Wetland adjacent to the site.

Assigned value = 3.

References: 7 and 15.

Distance to critical habitat of an endangered species or national wildlife refuge, if 1 mile or less:

None within 1 mi.

Reference: 13.

Population Served by Surface Water

Location(s) of water supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static waterbodies) downstream of the hazardous substance and population served by each intake:

None.

Reference: 8.

Computation of land area irrigated by above-cited intake(s) and conversion to population (1.5 people per acre).

None.

Reference: 11.

Total population served:

Zero.

Name/description of nearest of above waterbodies:

Niagara River.

Distance to above-cited intakes, measured in stream miles.

Not applicable.

Assigned value = 0. Reference: 8.

AIR ROUTE

1 OBSERVED RELEASE

Not applicable based on available information. There is no information or analytical data in the files received during the record search indicating a problem with air contamination. No air sampling program was conducted during the Phase II investigation.

Contaminants detected:

None.

Date and location of detection of contaminants

Methods used to detect the contaminants:

Rationale for attributing the contaminants to the site:

2 WASTE CHARACTERISTICS

Reactivity and Incompatibility

Most reactive compound:

Most incompatible pair of compounds:

Toxicity

Most toxic compound:

Hazardous Waste Quantity

Total quantity of hazardous waste:

Basis of estimating and/or computing waste quantity:

3 TARGETS

Population Within 4-Mile Radius

Circle radius used, give population, and indicate how determined: 0 to 4 mi 0 to 1 mi 0 to 1/2 mi 0 to 1/4 mi Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

Distance to 5-acre (minimum) freshwater wetland, if 1 mile or less:

Distance to critical habitat of an endangered species, if 1 mile or less:

Land Use

Distance to commercial/industrial area, if 1 mile or less:

Distance to national or state park, forest, or wildlife reserve if 2 miles or less:

Distance to residential area, if 2 miles or less:

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?

FIRE AND EXPLOSION

1 CONTAINMENT

Hazardous substances present:

Drummed material - resin.

Type of containment, if applicable:

None:

Assigned value = 3.

References: 1 and 7.

2 WASTE CHARACTERISTICS

Direct Evidence

Type of instrument and measurements:

Sample of material onsite was collected.

Assigned value = 3.

References: 1 and 3 (Section 4.4; Table 4-2).

Ignitability

Compound used:

Ignitability test of drummed material onsite.

Assigned value = 1.

References: 1 and 3.

Reactivity

Most reactive compound:

Not applicable.

Assigned value = 0.

Reference: 3.

Incompatibility

Most incompatible pair of compounds:

Not applicable.

Assigned value = 0.

Reference: 3.

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility:

12,494.3 tons.

Reference: 5

Basis of estimating and/or computing waste quantity:

Records of waste disposal.

Assigned value = 8. '

Reference: 1.

3 TARGETS

Distance to Nearest Population

200 ft.

Assigned value = 4.

References: 1 and 7.

Distance to Nearest Building

200 ft.

Assigned value = 2.

References: 1 and 7.

Distance to Sensitive Environment

Distance to wetlands:

Adjacent to the site.

Assigned value = 3.

References: 1 and 7.

Distance to critical habitat:

None within 1 mi.

Reference: 3.

Land Use

Distance to commercial/industrial area, if 1 mile or less:

1,000 ft.

Reference: 7.

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

>2 mi.

Reference: 12.

Distance to residential area, if 2 miles or less:

200 ft.

Reference: 7.

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Adjacent to site.

Reference: 7.

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Adjacent to site.

Assigned value = 3.

Reference: 7.

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?

None.

Reference: 7.

Population Within 2-Mile Radius

(1,230 homes X 3.8) + (1/4 X 35,760 population of North Tonawanda) = 13,614.

Assigned value = 5.

References: 9 and 14.

Buildings Within 2-Mile Radius

>2,600.

Assigned value = 5.

References: 9 and 14.

DIRECT CONTACT

1 OBSERVED INCIDENT

Date, location, and pertinent details of incident:

None reported.

Assigned value = 0. References: 1 and 3.

2 ACCESSIBILITY

Describe type of barrier(s):

None. Site is actively used as a play area and dirt bike trail.

Assigned value = 3.

Reference: 7.

3 CONTAINMENT

Type of containment, if applicable:

Inadequate cover, exposed waste, and leachate discharge via ditches.

Assigned value = 15.

Reference: 7.

4 WASTE CHARACTERISTICS

Toxicity

Compounds evaluated:

Phenols.

Compound with highest score:

Phenol.

Assigned value = 3.

References: 1 and 3 (Section 4.4; Table 4-2).

5 TARGETS

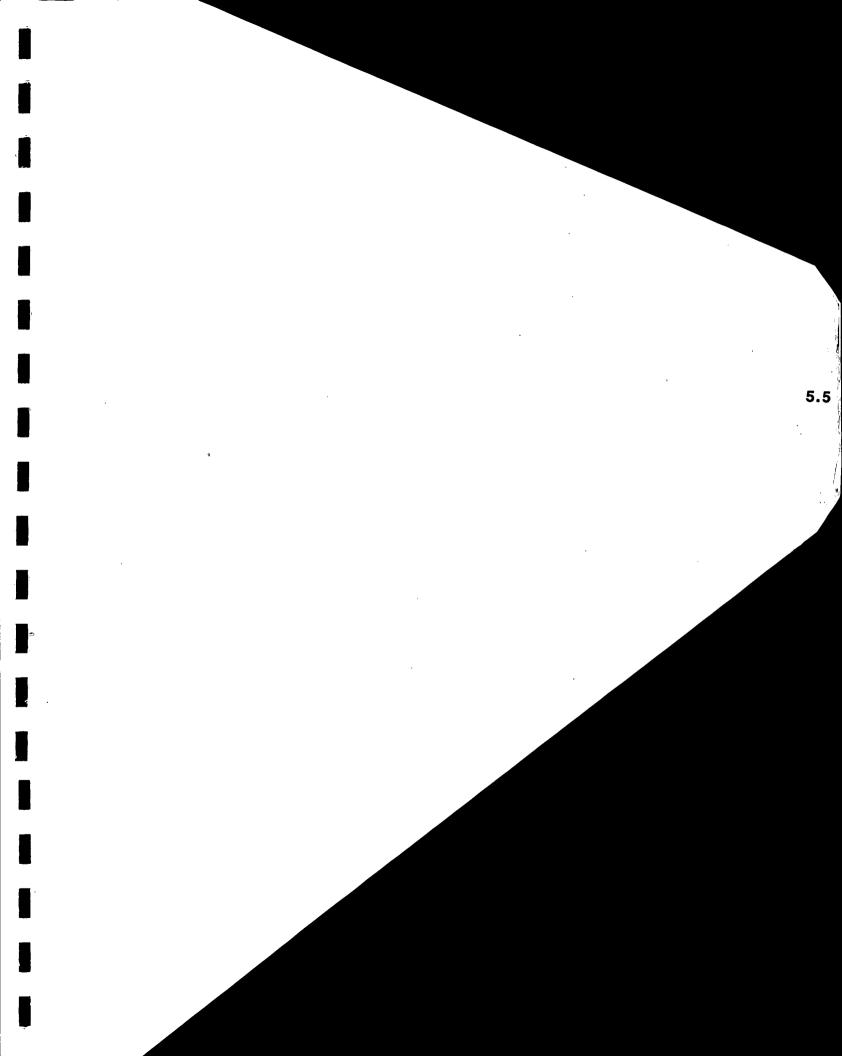
Population Within 1-Mile Radius

2,812 people (740 homes X 3.8).

Assigned value = 3.

References: 1 and 12

Distance to Critical Habitat (of Endangered Species)


>1 mi.

Assigned value = 0.

References: 1 and 13.

REFERENCES

- 1. U.S. Environmental Protection Agency. 1984. Uncontrolled Hazardous Waste Site Ranking System. A Users Manual.
- Fisher, D.W. et al. 1970. Geologic Map of New York, Niagara Sheet. New York State Museum and Science Service, Map and Chart Series No. 15. (Appendix 1.4.3-1.)
- 3. EA Science and Technology. 1985. Phase II Site Investigation Report.
- 4. Dethier, B.E. 1966. Precipitation in New York State: Cornell Univ., Agr. Expt. Sta., Bull.1009. Ithaca, New York.
- 5. New York State Department of Environmental Conservation. 1985. "Community Right-To-Know." Past Hazardous Waste Disposal Practices, January 1952 - December 1981. 1 April. (Appendix 1.4.1-4.)
- 6. Camp, Dresser & McKee, Inc. 1982. Remedial Action Master Plan (RAMP) for the Niagara County Refuse Disposal Site. (Appendix 1.4.4-1.)
- 7. EA Science and Technology. 1985. Site Reconnaissance. 17 April.
- 8. New York State Department of Health. 1982. New York State Atlas of Community Water System Sources. (Appendix 1.4.2-2.)
- 9. Niagara County Health Department. 1981. NCSWD-Wheatfield Site (DEC No. 932026). (Appendix 1.4.1-1.)
- 10. La Sala, A.M. Jr. 1968. U.S. Department of Interior Geological Survey (USGS). Ground-Water Resources of the Erie-Niagara Basin, New York. (Appendix 1.4.3-1.)
- 11. Oliver, E. 1986. USDA Soil Conservation Service. District Conservationist, Lockport Field Office. Personal Communication. 24 June. (Appendix 1.5-1.)
- 12. USGS. 1965. Tonawanda West, New York Quandrangle, 7.5-Minute Series.
- 13. Ozard, J.W. 1986. Senior Wildlife Biologist, NYSDEC. Personal Communication. 10 April. (Appendix 1.5.1-2.)
- 14. New York State Department of Transportation. 1983. New York State Map. Gazetteer.
- 15. Dietz, J. 1988. Senior Environmental Analyst, NYSDEC. Personal Communication. 25 April. (Appendix 1.5.1-3.)

United States Environmental Protection Agency

Remedial Response Washington, DC 20460 EPAronni 2070-13 July, 1981

.

Potential Hazardous Waste Site

Site Inspection Report

NIAGARA COUNTY R.D. -- WHEATFIELD SITE

€PA		ENTIAL HAZA SITE INSPEC E LOCATION AN	TION R	EPORT	01 STAT	TIFICATION TE 02 SITE NUMBER 932026
II. SITE NAME AND LOCA			-			
01 SITE NAME ILegal, common, or			02 STREE	T. ROUTE NO., OR S	PECIFIC LOCATION IDENTIFIE	R
Niagara Wheati	field		Wes	t of Witme	r Road	
Town of Wheati	field	<u> </u>	04 STATE NY	05 ZIP CODE 14120	Niagara	07COUNTY 08 CON CODE DIST
09 COORDINATES	78 _5 _4 _22 . W	10 TYPE OF OWNERS		DERAL Ownership		
III. INSPECTION INFORM	ATION 02 SITE STATUS	03 YEARS OF OPER				
4,17,85			1968	1976		N
04 AGENCY PERFORMING INSP	ECTION (Cneck all Inst apply)	·				
□ A. EPA □ B. EPA CO □ E. STATE ☑ F. STATE	CONTRACTOR EA_SCIE	VCE TECHN	_ □ с. м. <u>О</u> 1_006_Уот	JNICIPAL 🖸 D. M	IUNICIPAL CONTRACTOR	(Name of firm)
05 CHIEF INSPECTOR		06 TITLE			1SDecilyi 07 ORGANIZATION	08 TELEPHONE NO.
Dr. C. W. Houl	ik. Jr.	Princi	pal In	vestigator		301) 771-495
9 OTHER INSPECTORS		10 TITLE	. ~		1 1 ORGANIZATION	12 TELEPHONE NO
Linda Rubin		Corp.Hea	lth & S	Safety Off		(301) 771-495
John Kosloski		Geologist			EA	β01) 771-49 <u>9</u>
						()
				<u> </u>		()
						()
3 SITE REPRESENTATIVES INTI	ERVIEWED	14 TITLE	1	SADDRESS	l,	16 TELEPHONE NO
None						()
						()
						()
						()
						()
				·		()
7 ACCESS GAINED BY	18 TIME OF INSPECTION	19 WEATHER CON	DITIONS			······································
	12:30 p.m.	Sunn	uy, Cle	ear, 65 deg	grees	
V. INFORMATION AVAIL	ABLE FROM					
James S	hultz	02 OF (Agency/Organ EA Scien		Cechnology		03 TELEPHONE NO. (914) 692-670
A PERSON RESPONSIBLE FOR Gloria D. McC.		05 AGENCY	EA E Scie	Ingineering nce & Tecl gy, Inc	07 TELEPHONE NO. (301) 771– 4950	08 DATE 7/3/86 MONIH DAY YEAR

.

		PO	TENTIAL HAZA	-		I. IDENTIFICAT	
€E	PA		SITE INSPEC	TION REPOR	-	NY 93	NUMBER 2026
II. WASTE S	TATES, QUANTITIES, AN	D CHARACTER	ISTICS				
01 PHYSICAL	STATES (Check all that apply)	02 WASTE QUANT	TTY AT SITE	03 WASTE CHARA	CTERISTICS (Check all that	nDD/y!	
X A. SOLID	E. SLURRY	musi be	>lmillion t	DIS XB.COR			
C B POWDS		TONS	- 1	🖸 C. RAD	OACTIVE X G FLAI	MMABLE X K REACT	IVE
	·	CUBIC YARDS		C D. PER	SISTENT (XH IGNI	TABLE CLINCOM	
	(Specity)	NO. OF DRUMS	Unknown	<u> </u>			
III. WASTE 1				·····			
CATEGORY	SUBSTANCE N	AME	01 GROSS AMOUNT	02 UNIT OF MEASU	RE 03 COMMENTS		
(SLŪ)	SLUDGE		unknown				
OLW	OILY WASTE		unknown				
SOL	SOLVENTS						
PSD	PESTICIDES						
<u>(000)</u>	OTHER ORGANIC CH	IEMICALS	unknown				
IOC	INORGANIC CHEMIC	ALS	unknown				
ACD	ACIDS		unknown				
BAS	BASES						
MES	HEAVY METALS		unknown				
IV. HAZARD	OUS SUBSTANCES (See Ap	pendix for most frequen	l'v cited CAS Numbers;			_	
01 CATEGORY	02 SUBSTANCE N	AME	03 CAS NUMBER	04 STORAGE/I	SPOSAL METHOD	05 CONCENTRATION	06 MEASURE OF CONCENTRATION
	Methylene chlo	ride			LF	3,000	ug/L
	Phenol		108-95-2		LF	270	mg/L
	Benzene		71-43-2		LF	180	ug/L
	4-Methy1-2-Pen	tanone			LF	210	ug/L
	foluene		108-88-3	1	LF	2,100	ug/L
	Chlorobenzene		108-90-7		LF	28	ug/L
	Ethylbenzene		100-41-4		LF	160	ug/L
	Styrene		100-420-5		LF	810	ug/L
	Xylene	····	1330-20-7		LF	290	ug/L
	2-Methyl pheno	1			LF	13.0	mg/L
	4-Methyl pheno	1			LF	5.8	mg/L
	2,4 Dimethyl p				LF	170	ug/L
	Iron	· · · ·			LF	1,400	mg/L
	Zinc				LF	100	mg/L
	Magnesium				LF	1,000	mg/L
V. FEEDSTC	CKS (See Appendix to: CAS Numbe		±	I		1	1
CATEGORY	01 FEEDSTOCI		02 CAS NUMBER	CATEGORY	01 FEEDST	OCK NAME	02 CAS NUMBER
FDS	None			FDS	1		
FDS				FDS	1	······	
FDS			1	FDS	+		
FDS				FDS	<u> </u>		
	S OF INFORMATION ICAR S		I. State lijes, samola analysis -	1	-l	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Remedia NYSDEC	PA, Site Inspec al Action Maste , Right-To-Know ence and Techno	r Plan by , 1 April	Camp, Dres 1985.		26		
PA FORM 2070	.13/7-81)						

	TIAL HAZARDOUS WASTE SITE	I. IDENTIF	
	TE INSPECTION REPORT		2 SITE NUMBER 932026
	OF HAZARDOUS CONDITIONS AND INCIDENTS		
HAZARDOUS CONDITIONS AND INCIDENTS			
01 X A. GROUNDWATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: 0		POTENTIAL	C ALLEGED
No bedrock wells samples, how	04 NARRATIVE DESCRIPTION		
was placed directly on bedroo	CK.		
3 POPULATION POTENTIALLY AFFECTED. 0	02 DOBSERVED (DATE 9/6/79 &) (C		
Following substances found in	n surface water samples:from ditch		te:
Phenol, Toluene, Ethylbenzene	•		
rnenor, rordene, benyrbenzene	s, Zinc, Tradranchelle	:	
01 X C. CONTAMINATION OF AIR 03 POPULATION POTENTIALLY AFFECTED	02 C OBSERVED (DATE)	POTENTIAL	
	ON NARRATIVE DESURIPTION		
No data available.			
· · ·			
1 X. D. FIRE EXPLOSIVE CONDITIONS	02 C OBSERVED (DATE) 2	POTENTIAL	
3 POPULATION POTENTIALLY AFFECTED. 13,614	4 04 NARRATIVE DESCRIPTION		
Drummed material onsite is ig	- •		
· · · · · · · · · · · · · · · · ·			
	00 - 00000		
3 POPULATION POTENTIALLY AFFECTED. $2,812$		POTENTIAL	X ALLEGED
NCHD notified of incident. N			
	lo confirmation.		
Potential exists. Access not	lo confirmation. t controlled, inadequate cover, se	eeps obse	erved.
Potential exists. Access not	to confirmation. t controlled, inadequate cover, se	eeps obse	erved.
Potential exists. Access not	t controlled, inadequate cover, se	eeps obse	erved.
Potential exists. Access not	OS & OBSERVED (DATE)	POTENTIAL	arved.
Nond Hotffred of Incident. IN Potential exists. Access not 1 X F. CONTAMINATION OF SOIL 3 AREA POTENTIALLY AFFECTED:	t controlled, inadequate cover, se		
Potential exists. Access not	OS & OBSERVED (DATE)	POTENTIAL	
Potential exists. Access not	02 & OBSERVED (CATE) C 04 NARRATIVE DESCRIPTION	POTENTIAL	
Potential exists. Access not	02 & OBSERVED (CATE) C 04 NARRATIVE DESCRIPTION	POTENTIAL	
Potential exists. Access not	02 X OBSERVED (CATE) C 04 NARRATIVE DESCRIPTION ollutant organics and metals were	POTENTIAL found in	□ ALLEGED n samples
Potential exists. Access not	02 X OBSERVED (CATE) C 04 NARRATIVE DESCRIPTION ollutant organics and metals were	POTENTIAL	
Potential exists. Access not	02 % OBSERVED (GATE) C 04 NARRATIVE DESCRIPTION collutant organics and metals were 02 C OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION	POTENTIAL found in	□ ALLEGED n samples
Potential exists. Access not	02 % OBSERVED (GATE) C 04 NARRATIVE DESCRIPTION collutant organics and metals were 02 C OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION	POTENTIAL found in	□ ALLEGED n samples
Potential exists. Access not	02 % OBSERVED (GATE) C 04 NARRATIVE DESCRIPTION collutant organics and metals were 02 C OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION	POTENTIAL found in	□ ALLEGED n samples
Potential exists. Access not	02 % OBSERVED (GATE) C 04 NARRATIVE DESCRIPTION collutant organics and metals were 02 C OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION	POTENTIAL found in	□ ALLEGED n samples
Potential exists. Access not	02 % OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 01 utant organics and metals were C 02 ⊂ OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 02 ⊂ OBSERVED (DATE) C 03 ⊂ OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 03 ⊂ OBSERVED (DATE) C	POTENTIAL found in	□ ALLEGED n samples
Potential exists. Access not	02 % OBSERVED (CATE) C 04 NARRATIVE DESCRIPTION C 02 ⊂ OBSERVED (DATE) C 02 ⊂ OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C	POTENTIAL found in POTENTIAL	C ALLEGED
Potential exists. Access not	02 % OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 01 utant organics and metals were C 02 ⊂ OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 02 ⊂ OBSERVED (DATE) C 03 ⊂ OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 03 ⊂ OBSERVED (DATE) C	POTENTIAL found in POTENTIAL	C ALLEGED
Potential exists. Access not	02 % OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 01 utant organics and metals were C 02 ⊂ OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 02 ⊂ OBSERVED (DATE) C 03 ⊂ OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 03 ⊂ OBSERVED (DATE) C	POTENTIAL found in POTENTIAL	C ALLEGED
Potential exists. Access not	02 % OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 01 utant organics and metals were C 02 ⊂ OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 02 ⊂ OBSERVED (DATE) C 03 ⊂ OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 03 ⊂ OBSERVED (DATE) C	POTENTIAL found in POTENTIAL	C ALLEGED
Potential exists. Access not	02 ★ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 01 utant organics and metals were □ 02 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 05 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 02 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 04 NARRATIVE DESCRIPTION □ 04 NARRATIVE DESCRIPTION □	POTENTIAL found in POTENTIAL	C ALLEGED
Potential exists. Access not	02 ★ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 01 utant organics and metals were □ 02 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 05 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 02 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 04 NARRATIVE DESCRIPTION □ 04 NARRATIVE DESCRIPTION □	POTENTIAL found in POTENTIAL	C ALLEGED
Potential exists. Access not	02 X OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 01 Lutant organics and metals were C 02 C OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 03 C OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 02 C OBSERVED (DATE) C 03 C OBSERVED (DATE) C 04 NARRATIVE DESCRIPTION C 04 NARRATIVE DESCRIPTION C 04 NARRATIVE DESCRIPTION C 04 NARRATIVE DESCRIPTION C	POTENTIAL found in POTENTIAL POTENTIAL	C ALLEGED
Potential exists. Access not X F. CONTAMINATION OF SOIL AREA POTENTIALLY AFFECTED: Elevated levels of priority potential of the server	O2 © OBSERVED (DATE) © 04 NARRATIVE DESCRIPTION Dellutant organics and metals were 02 © OBSERVED (DATE) © 04 NARRATIVE DESCRIPTION in 3-mi radius of-site. 02 © OBSERVED (DATE) © 04 NARRATIVE DESCRIPTION 200 OBSERVED (DATE) © 04 NARRATIVE DESCRIPTION	POTENTIAL POTENTIAL POTENTIAL POTENTIAL people h	ALLEGED Samples C ALLEGED ALLEGED ALLEGED
Potential exists. Access not X F. CONTAMINATION OF SOIL AREA POTENTIALLY AFFECTED :	02 X OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 02 □ OBSERVED (DATE) □ 02 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 02 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 02 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 05 OBSERVED (DATE:) □ 04 NARRATIVE DESCRIPTION □ 05 OBSERVED (DATE:) □ 04 NARRATIVE DESCRIPTION □ 05 OBSERVED (DATE:	POTENTIAL POTENTIAL POTENTIAL POTENTIAL people h	ALLEGED Samples C ALLEGED ALLEGED ALLEGED ALLEGED
Potential exists. Access not X F. CONTAMINATION OF SOIL AREA POTENTIALLY AFFECTED: Elevated levels of priority potential of the server	02 X OBSERVED (CATE) □ 04 NARRATIVE DESCRIPTION □ 01 utant organics and metals were □ 02 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 03 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 02 □ OBSERVED (DATE) □ 04 NARRATIVE DESCRIPTION □ 05 OBSERVED (DATE:) □ 04 NARRATIVE DESCRIPTION □ 05 OBSERVED (DATE:) □ 04 NARRATIVE DESCRIPTION □ 05 OBSERVED (DATE:	POTENTIAL POTENTIAL POTENTIAL POTENTIAL people h	ALLEGED Samples C ALLEGED ALLEGED ALLEGED ALLEGED

,

•

.

.

.

SEPA PART 3 - DES	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT SCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENT	I. IDENTIFICA	
HAZARDOUS CONDITIONS AND INCI	DENTS (Continuea:		
	02 🗔 OBSERVED (DATE)		
None reported.			
1 C K. DAMAGE TO FAUNA 4 NARRATIVE DESCRIPTION linclude namessi of 1	02 OBSERVED (DATE:)		
None reported.			
1 C L. CONTAMINATION OF FOOD CHAIN 4 NARRATIVE DESCRIPTION	02 🖸 OBSERVED (DATE)		
None Reported.			
1 24 M. UNSTABLE CONTAINMENT OF WAS (Son's Runoff Standing Louids Learing d'ums) 3 POPULATION POTENTIALLY AFFECTED.	STES 02 X OBSERVED (DATE. 12/5/79) 04 NARRATIVE DESCRIPTION	2 POTENTIAL	
Leachate/runoff is appar	rent.		
1 I N. DAMAGE TO OFFSITE PROPERTY 4 NARRATIVE DESCRIPTION	02 _ OBSERVED (DATE)		
None reported.			
1 _ O CONTAMINATION OF SEWERS. STO 4 NARRATIVE DESCRIPTION	DRM DRAINS, WWTPs 02 🗇 OBSERVED (DATE:)		
None reported.	· .		
1 XP. ILLEGAL/UNAUTHORIZED DUMPING 4 NARRATIVE DESCRIPTION	G 02 & OBSERVED (DATE 12/5/79)		
EA Site Inspection. Achas occurred.	ccess to the site is unrestricted and	unauthorized	dumping
5 DESCRIPTION OF ANY OTHER KNOWN, F	POTENTIAL, OR ALLEGED HAZARDS		
None			-
	AFFECTED: 1000 people live within 1-mile	of the site	•
COMMENTS			·····
SOURCES OF INFORMATION (Crie specific	c references. e. g., state likes, sample analysis, reports;		<u></u>
	WD-Wheatfield Site (DEC #92026)	<u>_</u> ·	
Report of Site Inspecti Report by RECRA Research	ion of 12/5/79 by R. Flint ch, Inc., Jan 10, 1983		
EA Site Inspection 4/17	7/85		

•

•

.

	POTENTIA		RDOU	S WASTE SITE		I. IDENT	IFICATION		
SITE INSPECTION						01 STATE	NY 932026		
	PART 4 - PERMI	T AND DE	SCRIP	TIVE INFORMAT	ION		952020		
II. PERMIT INFORMATION			<u> </u>	····			·· ···································		
01 TYPE OF PERMIT ISSUED (Check all Ihai apply;	02 PERMIT NUMBER	03 DATE I	SSUED	04 EXPIRATION DATE	05 COMMENTS				
🚍 A. NPDES									
D. RCRA									
E. RCRA INTERIM STATUS									
C F SPCC PLAN						· · · · · ·			
XG STATE (Specify) Landfill				1976		. <u></u> .			
C H LOCAL									
	1								
II. SITE DESCRIPTION		I	I						
1 STORAGE DISPOSAL (Check an Inst apply) 0	2 AMOUNT 03 UNIT C	FMEASURE	04 TR	ATMENT (Check all Inet ap	Oly)	05 OTH	IER		
		-		NCENERATION					
C B. PILES				NCENERATION	CTION		A. BUILDINGS ON SITE		
X C. DRUMS, ABOVE GROUND				HEMICAL/PHYSICAL					
D. TANK, ABOVE GROUND			🗆 D. E	BIOLOGICAL			•		
E. TANK, BELOW GROUND	50 acr		🗆 E. V	VASTE OIL PROCESS	ING	06 ARE	A OF SITE		
X F. LANDFILL	<u>50 acr</u>	es	🗆 F. S	OLVENT RECOVERY			50		
		<u> </u>	. ⊑ G. 0	THER RECYCLING/P	RECOVERY		50 (Acres)		
C H. OPEN DUMP			⊟н. с	THER		1			
STOTER SUFIACE dumpin	ng			10000	~11				
poor in areas. Seeps erosion of cover mater			1 00		uuuuquuu				
V. CONTAINMENT									
1 CONTAINMENT OF WASTES (Check one)									
C A. ADEQUATE. SECURE	E B. MODERATE	🗆 C. IN	ADEQU	ATE, POOR	X D. INSECU	RE. UNSO	UND. DANGEROUS		
2 DESCRIPTION OF DRUMS, DIKING, LINERS, BA	BRIERS, ETC						· · · · · · · · · · · · · · · · · · ·		
	broken. There	e is no	bar		~~				
Drums are rusted and				rier or lin	er.				
Drums are rusted and Not sufficient cover.				rier or lin	er .				
				rier or lin	er.				
Not sufficient cover.				rier or lin					
Not sufficient cover.				rier or lin					
Not sufficient cover.				rier or lin	er .				
Not sufficient cover. ACCESSIBILITY 01 WASTE EASILY ACCESSIBLE: XYES 02 COMMENTS		uentlv				 			
Not sufficient cover. ACCESSIBILITY OI WASTE EASILY ACCESSIBLE: XYES O2 COMMENTS Site is totally access	□NO sible and freq	uently	use						
Not sufficient cover. V. ACCESSIBILITY O1 WASTE EASILY ACCESSIBLE: XYES O2 COMMENTS Site is totally access there are numerous sho	□NO sible and freq otgun shells o	n site	useo.						
Not sufficient cover. V. ACCESSIBILITY 01 WASTE EASILY ACCESSIBLE: XYES 02 COMMENTS Site is totally access there are numerous sho 7. SOURCES OF INFORMATION (CTO SPEC	□ NO sible and freq otgun shells o frc references. e.g. state fres. same	n site	useo.						
Not sufficient cover. V. ACCESSIBILITY OI WASTE EASILY ACCESSIBLE: XYES O2 COMMENTS Site is totally access there are numerous sho I. SOURCES OF INFORMATION (Crit spec- EA Site Inspection - 4	□ NO sible and freq otgun shells o frc references. e.g. state fres. same	n site	useo.			- d			
Not sufficient cover. V. ACCESSIBILITY O1 WASTE EASILY ACCESSIBLE: XYES O2 COMMENTS Site is totally access there are numerous sho I. SOURCES OF INFORMATION (Cressed EA Site Inspection - C NCHD File	INO sible and freq otgun shells o frc references. e.g. state fres. samp 4/17/85	n site	useo.			d			
Not sufficient cover. ACCESSIBILITY OI WASTE EASILY ACCESSIBLE: 3 YES O2 COMMENTS Site is totally access there are numerous sho LSOURCES OF INFORMATION (CR0 SOOC EA Site Inspection - 4	INO sible and freq otgun shells o frc references. e.g. state fres. samp 4/17/85	n site	useo.			d			
Not sufficient cover. V. ACCESSIBILITY OI WASTE EASILY ACCESSIBLE: & YES OZ COMMENTS Site is totally access there are numerous sho I. SOURCES OF INFORMATION (Cressed EA Site Inspection - C NCHD File	INO sible and freq otgun shells o frc references. e.g. state fres. samp 4/17/85	n site	useo.			d			

E

•

							NTIFICATION	
Sepa		SITE INSPEC				01 STA NY	11 02 SITE NUMBER 932026	
	PART 5 - WATER	, DEMOGRAPH	C, AND ENVIR	ONME	TAL DATA			
II. DRINKING WATER SUPPLY								
Check as applicable)		02 STATUS		-		03	DISTANCE TO SITE	
SURFACE	WELL	ENDANGER	D AFFECTED	о мо	NITORED			
	B. 🗆	A. 🗆	B . 🖸		c . 🗆	A .	4(mi)	
	D. 🖸	D. 🗆	E. 🖸		F. ()	B	(mi)	
III. GROUNDWATER								
01 GROUNDWATER USE IN VICINITY (Check	one:					_		
	B. DRINKING (Other sources evaluate COMMERCIAL, INI (No other water source)	DUSTRIAL, IRRIGATIO	(Limited of	RCIAL, INI	DUSTRIAL, IRRIGAT	10N 2	D NOT USED UNUSEABI	£
02 POPULATION SERVED BY GROUND WA	rer0		03 DISTANCE TO N	NEAREST	DRINKING WATER Y	/ELL	>5(mi)	
04 DEPTH TO GROUNDWATER	05 DIRECTION OF GRO	UNDWATER FLOW	06 DEPTH TO AQUI OF CONCERN	IFER (7 POTENTIAL YIEL	D	08 SOLE SOURCE AQUIF	ER
10 (ft) /	south	L	10 10	_(ft)	unknown	. (gpd))
09 DESCRIPTION OF WELLS (Including userge				<u> </u>		- (apor		
No reported wells	within 3-mi	i radius of	f site.			~		
		·					· · · · · · · · · · · · · · · · · · ·	
O RECHARGE AREA			11 DISCHARGE AR			1.		
X YES COMMENTS			XT YES CON ⊡ NO	MENIS	Black Cr	еек		
V. SURFACE WATER			L				· · ·	
D1 SURFACE WATER USE (Check one)							· · · · · · · · · · · · · · · · · · ·	
A RESERVOIR RECREATION		N. ECONOMICALLY T RESOURCES	́ ⊂ с.сомм	AERCIAL.	INDUSTRIAL	□ 0). NOT CURRENTLY US	ED
A. RESERVOIR RECREATION			2 С. СОММ	MERCIAL.	INDUSTRIAL). NOT CURRENTLY US	ED
A. RESERVOIR RECREATION			С. СОММ	AERCIAL.	INDUSTRIAL	⊡ 0). NOT CURRENTLY US	ED
A. RESERVOIR RECREATION DRINKING WATER SOURCE			С. СОММ	AERCIAL.	AFFECTED		DISTANCE TO SITE	
A. RESERVOIR RECREATION DRINKING WATER SOURCE			́ С. СОММ	AERCIAL.			DISTANCE TO SITE	(mi)
A. RESERVOIR RECREATION DRINKING WATER SOURCE			2 С. СОММ	AERCIAL.	AFFECTED	_ c 	DISTANCE TO SITE	
XA. RESERVOIR RECREATION DRINKING WATER SOURCE 02 AFFECTED POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River	IMPORTAN		С. СОММ	MERCIAL.	AFFECTED	_ c	DISTANCE TO SITE	(mi) (mi)
XA. RESERVOIR RECREATION DRINKING WATER SOURCE 02 AFFECTED POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River	IMPORTAN		С. СОММ		AFFECTED		DISTANCE TO SITE Adjacent 0.1	(mi) (mi)
XA. RESERVOIR RECREATION DRINKING WATER SOURCE D2 AFFECTED POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River V. DEMOGRAPHIC AND PROPERT D1 TOTAL POPULATION WITHIN	IMPORTAN DDIES OF WATER Y INFORMATION				AFFECTED	ST POPU	DISTANCE TO SITE Adjacent 0.1	(mi) (mi)
XA. RESERVOIR RECREATION DRINKING WATERSOURCE D2 AFFECTED POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River V. DEMOGRAPHIC AND PROPERT D1 TOTAL POPULATION WITHIN ONE (1) MILE OF SITE	IMPORTAN	T RESOURCES	C. COMM		AFFECTED	ST POPU	DISTANCE TO SITE Adjacent 0.1	(mi) (mi)
XA. RESERVOIR RECREATION DRINKING WATER SOURCE 02 AFFECTED POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River V. DEMOGRAPHIC AND PROPERT DI TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A. 1000 NO OF PERSONS	IMPORTAN DDIES OF WATER Y INFORMATION YO (2) MILES OF SITE 1. 210,000 NO. OF PERSONS	T RESOURCES	3) MILES OF SITE	02 DI	AFFECTED	ST POPU	DISTANCE TO SITE Adjacent 0.1	(mi) (mi)
XA. RESERVOIR RECREATION DRINKING WATER SOURCE 02 AFFECTED POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River V. DEMOGRAPHIC AND PROPERT 01 TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A 1000 NO OF PERSONS 03 NUMBER OF BUILDINGS WITHIN TWO (2)	IMPORTAN DDIES OF WATER Y INFORMATION YO (2) MILES OF SITE 1. 210,000 NO. OF PERSONS	T RESOURCES	3) MILES OF SITE	02 DI		 	DISTANCE TO SITE Adjacent 0.1	(mi) (mi)
A. RESERVOIR RECREATION DRINKING WATER SOURCE 02 AFFECTED POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River V. DEMOGRAPHIC AND PROPERT 01 TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A 1000 NO OF PERSONS 03 NUMBER OF BUILDINGS WITHIN TWO (2)	IMPORTAN DDIES OF WATER Y INFORMATION YO (2) MILES OF SITE 3. 210,000 NO. OF PERSONS MILES OF SITE 2600		3) MILES OF SITE 10 OF PERSONS 04 DISTANCE TO N	02 DI VEAREST (st рори 20	DISTANCE TO SITE Adjacent 0.1	(mi) (mi)
XA. RESERVOIR RECREATION DRINKING WATER SOURCE 02 AFFECTED POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River V. DEMOGRAPHIC AND PROPERT DI TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A 1000 NO OF PERSONS D3 NUMBER OF BUILDINGS WITHIN TWO (2)	IMPORTAN DDIES OF WATER Y INFORMATION Y INFORMATION YO (2) MILES OF SITE 210,000 NO. OF PERSONS MILES OF SITE 2600	TRESOURCES	3) MILES OF SITE 10 OF PERSONS 04 DISTANCE TO N VICINITY OF BRID. D.G., FUTEL	O2 DI		 st рорци 20 t	DISTANCE TO SITE Adjacent 0.1	(mi) (mi)
A. RESERVOIR RECREATION DRINKING WATER SOURCE 02 AFFECTED/POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River V. DEMOGRAPHIC AND PROPERT 01 TOTAL POPULATION WITHIN ONE (1) MILE OF SITE TW A. 1000 NO OF PERSONS 03 NUMBER OF BUILDINGS WITHIN TWO (2)	IMPORTAN DDIES OF WATER Y INFORMATION Y INFORMATION YO (2) MILES OF SITE 210,000 NO. OF PERSONS MILES OF SITE 2600	TRESOURCES	3) MILES OF SITE 10 OF PERSONS 04 DISTANCE TO N VICINITY OF BRID. D.G., FUTEL	O2 DI		 st рорци 20 t	DISTANCE TO SITE Adjacent 0.1	(mi) (mi)
A. RESERVOIR RECREATION DRINKING WATER SOURCE 02 AFFECTED/POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River V. DEMOGRAPHIC AND PROPERT 01 TOTAL POPULATION WITHIN ONE (1) MILE OF SITE TW A. 1000 NO OF PERSONS 03 NUMBER OF BUILDINGS WITHIN TWO (2)	IMPORTAN DDIES OF WATER Y INFORMATION Y INFORMATION YO (2) MILES OF SITE 210,000 NO. OF PERSONS MILES OF SITE 2600	TRESOURCES	3) MILES OF SITE 10 OF PERSONS 04 DISTANCE TO N VICINITY OF BRID. D.G., FUTEL	O2 DI		 st рорци 20 t	DISTANCE TO SITE Adjacent 0.1	(mi) (mi)
A. RESERVOIR RECREATION DRINKING WATER SOURCE 02 AFFECTED POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River V. DEMOGRAPHIC AND PROPERT DI TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A. 1000 NO OF PERSONS	IMPORTAN DDIES OF WATER Y INFORMATION Y INFORMATION YO (2) MILES OF SITE 210,000 NO. OF PERSONS MILES OF SITE 2600	TRESOURCES	3) MILES OF SITE 10 OF PERSONS 04 DISTANCE TO N VICINITY OF BRID. D.G., FUTEL	O2 DI		 st рорци 20 t	DISTANCE TO SITE Adjacent 0.1	(mi) (mi)
A. RESERVOIR RECREATION DRINKING WATER SOURCE 02 AFFECTED POTENTIALLY AFFECTED BO NAME: Black Creek Niagara River V. DEMOGRAPHIC AND PROPERT 01 TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A. 1000 NO OF PERSONS 03 NUMBER OF BUILDINGS WITHIN TWO (2)	IMPORTAN DDIES OF WATER Y INFORMATION Y INFORMATION YO (2) MILES OF SITE 210,000 NO. OF PERSONS MILES OF SITE 2600	TRESOURCES	3) MILES OF SITE 10 OF PERSONS 04 DISTANCE TO N VICINITY OF BRID. D.G., FUTEL	O2 DI		 st рорци 20 t	DISTANCE TO SITE Adjacent 0.1	(mi) (mi)

- ,

.

· •

\$-EPA	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA I. IDENTIFICATION 01 STATE 02 SITE NUMBER NY 932026					
I. ENVIRONMENTAL INFORMA						
DI PERMEABILITY OF UNSATURATED Z	⁸ cm/sec					
2 PERMEABILITY OF BEDROCK (Check of				10 ⁻³ cm/sec		
(Less then 1	IEABLE B. RELATIVELY IMPERME/ 0 ⁻⁶ cm/sec) (10 ⁻⁴ - 10 ⁻⁶ cm/sec)	ABLE C. RELATIVELY PERMEA		PERMEABLE (han 10 ⁻² cm/sec)		
3 DEPTH TO BEDROCK	04 DEPTH OF CONTAMINATED SOIL ZONE	05 SOIL PH				
<u>30-55 (tt)</u>	unknown(ft)	_unknown	-			
6 NET PRECIPITATION	07 ONE YEAR 24 HOUR RAINFALL		N OF SITE SLOPE			
(in)	2 (in)	< 10 %	NOF SHE SLOPE	TERRAIN AVERAGE SLOPE		
9 FLOOD POTENTIAL	10					
SITE IS IN NA YEAR FLOO	ODPLAIN	RIER ISLAND, COASTAL HIGH HAZ	ARD AREA, RIVER	INE FLOODWAY		
DISTANCE TO WETLANDS 15 acre minimu	m)	12 DISTANCE TO CRITICAL HABITA		;		
ESTUARINE	OTHER		<u>N/A</u>	. (mi)		
A (mi)	B. Adjacent (mi)	ENDANGERED SPECIES	·			
3 LAND USE IN VICINITY						
DISTANCE TO:				•		
COMMERCIAL/INDUSTRI	RESIDENTIAL AREAS: NATI AL FORESTS, OR WILDL	ONAL/STATE PARKS IFE RESERVES PR	AGRICULTU ME AG LAND	RAL LANDS AG LAND		
1000 64	200	C .				
A. <u>1000 ft</u> (mi)-	в200	<u>rt (mi)</u> c. <u>ad</u>	<u>jacent</u> (mi)	<u>p</u> <u>adjacent (mi)</u>		
DESCRIPTION OF SITE IN RELATION TO	SURROUNDING TOPOGRAPHY	/				
	•					
. · · · ·						
, · · · ·						
SOURCES OF INFORMATION	(Cite specific references, e.g., state lifes, semple analysis	. (80013)				
A Phase II Investi	gation, Appendix 1.4.3-	-4				
A Phase II Investi YSDOT Topographic 1	gation, Appendix 1.4.3- Map. Tonawanda West Q	-4 uad. 1976 Edition				
A Phase II Investi YSDOT Topographic 1 .S. Department of (gation, Appendix 1.4.3-	-4. uad. 1976 Edition as of the United S	tates 196			

.

.

I

Γ

Sepa

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6 - SAMPLE AND FIELD INFORMATION

I. IDENTIFICATION 01 STATE 02 SITE NUMBER NY 932026

SAMPLE TYPE	OT NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO	03 ESTIMATED DATE RESULTS AVAILABL
GROUNDWATER	0		· · ·
SURFACE WATER	2	EA Engineering, Science & Technology, Inc.	7/3/86
WASTE	1	EA Engineering, Science & Technology, Inc.	7/3/86
AIR			· · · · · · · · · · · · · · · · · · ·
RUNOFF			
SPILL			
SOIL	2	EA Engineering, Science & Technology, Inc.	7/3/86
VEGETATION			
отн _{ЕR} Leachate - wells in fill	4	EA Engineering, Science, and Tech., Inc.	7/3/86
III. FIELD MEASUREMENTS TA	KEN		•
01 TYPE	02 COMMENTS		
OVA	W/WO M	ethane Filter	•
Well Elevation	Survey	ed well elevations	•
Magnetometer	Survey	ed for location wells	
Slope	Suunto	Clinometer	
			·····
IV. PHOTOGRAPHS AND MAPS	s		
01 TYPE TO GROUND TARIAL		02 IN CUSTODY OF <u>EA Science & Technology</u>	· · · · · · · · · · · · · · · · · · ·
C3 MAPS 04 LOCATION YES NO	NOF MAPS	intenio o organization or anormousi:	
V. OTHER FIELD DATA COLLE	CTED (Provide narrative desi	cricion:	
			· · · · · ·
-			
	•		
		······································	
VI. SOURCES OF INFORMATIO	N (Cite specific references	g., state fres, sample analysis, reports)	
EA Science and	Technology,	Phase II Investigation	
			<u>,</u>

EPA FORM 2070-13 (7-81)

SEPA		POI		ZARDOUS WASTE SITE ECTION REPORT	I. IDENTIFICATION 01 STATE 02 SITE NUMBE		
				NER INFORMATION	NY	932026	
II. CURRENT OWNER(S)				PARENT COMPANY (If applicable)			
DINAME Town of Wheatfield		02 D+	BNUMBER	08 NAME	<u> </u>	09 D+B NUMBER	
03 STREET ADDRESS (P.O Box. RFD #. atc.) 2800 Church Road			D4 SIC CODE	10 STREET ADDRESS (P.O. Box. RFD #, etc	;	1 1 SIC CODE	
North Tonawanda	06 STAT NY		120	12 CITY	13 STATE	14 ZIP CODE	
01 NAME			BNUMBER	08 NAME		09 D+B NUMBER	
03 STREET ADDRESS (P O Bos. RFD #, etc.)		l°	4 SIC CODE	10 STREET ADDRESS (P O Box, RFD +, etc.	1	11 SIC CODE	
05 CITY	06 STAT	E O7 ZIF	CODE	12 CITY	13 STATE	14 ZIP CODE	
01 NAME		02 D+		OB NAME	l	09 D+ B NUMBER	
O3 STREET ADDRESS (P O Box AFD +, etc.)			4 SIC CODE	10 STREET ADDRESS IP O Bos. RFD . etc.	1	1 1 SIC CODE	
05 CITY	06 STAT	E O7 ZIP	CODE	12 CITY	13 STATE	14 ZIP CODE	
DI NAME		02 D+	BNUMBER	OB NAME		09D+B NUMBER	
03 STREET ADDRESS (P.O. Bas. RFD +. etc.)		1	4 SIC CODE	10 STREET ADDRESS (P O Box RFD +, +IC.)	<u></u>	1 1 SIC CODE	
05 CITY	06 STAT	E O7 ZIP	CODE	12 CITY	13 STATE	14 ZIP CODE	
III. PREVIOUS OWNER(S) (List most rece	L			IV. REALTY OWNER(S) (IT ADDICADIE: K	si most recent first)		
Niagara County Refuse Disposal Disp	trict	02 D+	8 NUMBER	01 NAME		02 D+8 NUMBER	
423 Bewley Bldg.			4 SIC CODE	03 STREET ADDRESS (P O. Box, RFD #, etc.)	A	04 SIC CODE	
Lockport	OB STATE NY	07 ZIP	CODE 4094	OS CITY	06 STATE	07 ZIP CODE	
DI NAME		02 D+1	BNUMBER	01 NAME		02 D+B NUMBER	
D3 STREET ADDRESS (P.O. Box. RFD #, etc.)		1	4 SIC CODE	03 STREET ADDRESS (P O Bos. RFD #. etc.)		04 SIC CODE	
15 CITY	06 STATE	O7 ZIP	CODE	05 CITY	06 STATE	07 ZIP CODE	
I NAME	<u> </u>	02 D+1	B NUMBER	01 NAME		02 D+8 NUMBER	
STREET ADDRESS (P.O. Box. RFD #, etc.)			SIC CODE	03 STREET ADDRESS (P O. Box, RFD #, etc.)		04 SIC CODE	
SCITY	OGSTATE	07 ZIF	CODE	05 CITY	06 STATE	D7 ZIP CODE	
	1						

	_			_		_
EPA	FORM	207	0-1	3 (7.8	1)

: .

I

•

SITE INSPECTION REPORT PART 8 - OPERATOR INFORMATION OI STATE [02 STE [NY] 01 BLCURRENT OPERATOR (Promote 8 different /rom ourney) OPERATOR INFORMATION 02 D + B NUMBER 10 NAME 11 Dr. 03 STREET ADDRESS (P 0 Box. RFD + etc.) 04 SIC CODE 12 STREET ADDRESS (P 0. Box. RFD + etc.) 1 03 STREET ADDRESS (P 0 Box. RFD + etc.) 04 SIC CODE 14 CITY 15 STATE [16 20] 03 STREET ADDRESS (P 0 Box. RFD + etc.) 09 STATE [07 2IP CODE 14 CITY 15 STATE [16 2I] 04 SIC CODE 12 STREET ADDRESS (P 0 Box. RFD + etc.) 1 1 08 YEARS OF OPERATION 09 NAME OF OWNER 10 NAME 10 NAME 01 NAME 02 D + B NUMBER 10 NAME 10 NAME 11 Dr. 03 STREET ADDRESS (P 0 Box. RFD + etc.) 04 SIC CODE 12 STREET ADDRESS (P 0 Box. RFD + etc.) 1 03 STREET ADDRESS (P 0 Box. RFD + etc.) 04 SIC CODE 12 STREET ADDRESS (P 0 Box. RFD + etc.) 1 04 SIC CODE 12 STREET ADDRESS (P 0 Box. RFD + etc.) 1 1 03 STREET ADDRESS (P 0 Box. RFD + etc.) 04 SIC CODE 12 STREET ADDRESS (P 0. Box. RFD + etc.) 1 03 STREET ADDRESS (P 0 Box. RFD + etc.) 04 SIC CODE 12 STREET AD	SITE INSPECTION REPORT PART 8 - OPERATOR INFORMATION (1 STATE 02 SITE NUMBER NY 932026 OPERATOR'S PARENT COMPANY (# doubled); III DHAME III DHAME </th <th>STEE INSPECTION REPORT NARE 3- OPERATOR INFORMATION OI STATE [02 STEELUMBER NY 932026 II. CURRENT OPERATOR INFORMATION 03 20 + 8 NUMBER OPERATOR INFORMATION 932026 II. CURRENT OPERATOR INFORMATION 02 0 + 8 NUMBER 10 NAME 11 0 + 8 NUMBER II. STREET ADDRESS (# 0 Bk. M/0 + Hc.) 04 SIC CODE 12 STREET ADDRESS (# 0 Bk. M/0 + Hc.) 13 SIC CODE SCITY 06 STATE [07 2/P CODE 14 CITY 15 STATE I 05 DRENTON 13 SIC CODE BYEARS OF OPERATOR (S) (cli mer recent mic context only demonstrate context o</th> <th></th> <th></th> <th>OTENTIAL HAZ</th> <th>ARDOUS WASTE SITE</th> <th></th> <th colspan="2">FICATION</th>	STEE INSPECTION REPORT NARE 3- OPERATOR INFORMATION OI STATE [02 STEELUMBER NY 932026 II. CURRENT OPERATOR INFORMATION 03 20 + 8 NUMBER OPERATOR INFORMATION 932026 II. CURRENT OPERATOR INFORMATION 02 0 + 8 NUMBER 10 NAME 11 0 + 8 NUMBER II. STREET ADDRESS (# 0 Bk. M/0 + Hc.) 04 SIC CODE 12 STREET ADDRESS (# 0 Bk. M/0 + Hc.) 13 SIC CODE SCITY 06 STATE [07 2/P CODE 14 CITY 15 STATE I 05 DRENTON 13 SIC CODE BYEARS OF OPERATOR (S) (cli mer recent mic context only demonstrate context o			OTENTIAL HAZ	ARDOUS WASTE SITE		FICATION	
OT NAME D2 D+B NUMBER TO NAME TO NAME D3 STREET ADDRESS (P.O. Box. RFD+. HE.) D4 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD+. HE.) 11 D+ D5 CITY D6 STATE [07 2IP CODE 14 CITY 15 STATE [16 2II D0 NAME D9 NAME OF OWNER 10 NAME 11 D+ D1 NAME D0 NAME OF OWNER 10 NAME 11 D+ D1 NAME D1 NAME D2 D+B NUMBER 10 NAME 11 D+ D1 NAME D1 NAME D2 D+B NUMBER 10 NAME 11 D+ D1 NAME D1 NAME D2 D+B NUMBER 10 NAME 11 D+ D1 NAME D2 D+B NUMBER 10 NAME 11 D+ 11 D+ D3 STREET ADDRESS (P 0 Box. RFD+.mt) D4 SIC CODE 12 STREET ADDRESS (P 0 Box. RFD+.mt) 11 D+ D3 STREET ADDRESS (P 0 Box. RFD+.mt) D4 SIC CODE 14 CITY 15 STATE 16 ZI 11 D3 STREET ADDRESS (P 0 Box. RFD+.mt) D6 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZI 11 D3 STREET ADDRESS (P 0 Box. RFD+.mt) D6 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP D3 STREET	d. 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER . #FD +. #C.1 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. #C.) 13 SIC CODE 09 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 09 NAME OF OWNER 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 01 STATE 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 02 D + B NUMBER 04 SIC CODE 12 STREET ADDRESS (P O. Box. RFD +. #C.) 13 SIC CODE 04 SIC CODE 12 STREET ADDRESS (P O. Box. RFD +. #C.) 13 SIC CODE 04 SIC CODE 12 STREET ADDRESS (P O. Box. RFD +. #C.) 13 SIC CODE 04 SIC CODE 12 STREET ADDRESS (P O. Box. RFD +. #C.) 13 SIC CODE 19 NAME OF OWNER DURING THIS PERIOD 12 STREET ADDRESS (P.O. Box. RFD +. #C.) 13 SIC CODE 19 NAME OF OWNER DURING THIS PERIOD 12 STREET ADDRESS (P.O. Box. RFD +. #C.) 13 SIC CODE 19 NAME OF OWNER DURING THIS PERIOD 12 STREET ADDRESS (P.O. Box. RFD +. #C.) 13 SIC CODE 19 NAME OF OWNER DURING THIS PERIOD 14 CITY 15 STATE 16 ZIP CODE 19 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D + B N	11 NAME D2 D+B NUMBER 10 NAME 11 D+B NUMBER 10 STREET ADDRESS (# 0 But, MYD+ HE.) 04 SIC CODE 12 STREET ADDRESS (# 0 But, AFD+ HE.) 13 SIC CODE 5 GITY 06 STATE [07 ZIP CODE 14 GITY 15 STATE [16 ZIP CODE 16 ZIP CODE 6 YEARS OF OPERATION 09 NAME OF OWNER 00 STATE [07 ZIP CODE 14 GITY 15 STATE [16 ZIP CODE 8 YEARS OF OPERATOR(S) (Lai neur recent val: poinde on violations own violations recent val: poinde on recent val: poinde on violations recent val: poinde on violations recent val: poinde on recent val: poinde on recent val: poinde on violati	Sepa		SITE INSPECTION REPORT				
OT NAME O2 D + B NUMBER 10 NAME 11 D+ 03 STREET ADDRESS (P.O. Box. RFD +, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +, etc.) 11 05 CITY 06 STATE [07 2IP CODE 14 CITY 15 STATE [16 2II 05 CITY 06 STATE [07 2IP CODE 14 CITY 15 STATE [16 2II 05 CITY 06 STATE [07 2IP CODE 14 CITY 15 STATE [16 2II 05 VEARS OF OPERATION 09 NAME OF OWNER 15 STATE [17 2IP CODE 14 CITY 01 NAME 10 NAME 10 NAME 11 D+ 03 STREET ADDRESS (P.O. Box. RFD +, etc.) 02 D+ B NUMBER 10 NAME 11 D+ 03 STREET ADDRESS (P.O. Box. RFD +, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +, etc.) 1 03 STREET ADDRESS (P.O. Box. RFD +, etc.) 04 SIC CODE 14 CITY 15 STATE [16 2II 03 STREET ADDRESS (P.O. Box. RFD +, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +, etc.) 1 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +, etc.) 1 1 1 03 STREET ADDRESS (P.O. Box. RFD +, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +, etc.) 1	d. 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER . #FD +. #C.1 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD +. #C.) 13 SIC CODE . 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE . 09 NAME OF OWNER 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER DR(S) (Ld. modi recent int: provide only if different (rom owner) PREVIOUS OPERATORS' PARENT COMPANIES // doptesser) 11 D + B NUMBER DR(S) (Ld. modi recent int: provide only if different (rom owner) PREVIOUS OPERATORS' PARENT COMPANIES // doptesser) 11 D + B NUMBER DR(S) (Ld. modi recent int: provide only if different (rom owner) PREVIOUS OPERATORS' PARENT COMPANIES // doptesser) 11 D + B NUMBER DR STATE 02 D + B NUMBER 10 NAME 11 D + B NUMBER 13 SIC CODE IP ON WER DURING THIS PERIOD 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD +. #C.) 13 SIC CODE IP NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D + B NUMBER 11 D + B NUMBER IP O A SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD +. #C.) 13 SIC CODE IP NAME OF OWNER DURING THIS PERIOD 11 O NAME 11 D + B NUMBER IP O A SIC CODE 12 STREET ADDRESS (P.	11 MARE 02 D + B NUMBER 10 NAME 11 D + B NUMBER 12 STREET ADDRESS (P 0 Box, MPD+, etc.) 04 SIC CODE 12 STREET ADDRESS (P 0 Box, MPD+, etc.) 13 SIC CODE 25 GITV 05 STATE [07 2/P CODE 14 GITY 15 STATE [16 2/P CODE 14 GITY 8 YEARS OF OPERATION 09 NAME OF OWNER 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 11 NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 11 NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 13 SIG CODE 12 STREET ADDRESS (P 0 Box, MPD+, HE.) 13 SIG CODE 13 SIG CODE 3 STREET ADDRESS (P 0 Box, MPD+, HE.) 04 SIG CODE 12 STREET ADDRESS (P 0 Box, MPD+, HE.) 13 SIG CODE 3 GITY 06 SIG TOP 04 SIG CODE 12 STREET ADDRESS (P 0 Box, MPD+, HE.) 13 SIG CODE 3 STREET ADDRESS (P 0 PERATION 09 NAME OF OWNER DURING THIS PERIOD 11 D + B NUMBER 10 NAME 11 D + B NUMBER 1 NAME 02 D + B NUMBER 10 NAME 12 STREET ADDRESS (P 0 Box, MPD+, HE.) 13 SIG CODE 3 STREET AD		FOR (Provide il different In	Om Owner;		OPERATOR'S PARENT COMPA	NY (If applicable)	
OS CITY OB STATE O7 ZIP CODE 14 CITY 15 STATE 16 ZI DB YEARS OF OPERATION O9 NAME OF OWNER IS STATE IS STATE<	OB STATE O7 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE D9 NAME OF OWNER D8 (S) (LGL most: recent (rst: provide only d different from owner) PREVIOUS OPERATORS' PARENT COMPANIES (if applicable) DR(S) (LGL most: recent (rst: provide only d different from owner) PREVIOUS OPERATORS' PARENT COMPANIES (if applicable) DR(S) (LGL most: recent (rst: provide only d different from owner) PREVIOUS OPERATORS' PARENT COMPANIES (if applicable) DR STATE 02 D + B NUMBER 10 NAME 11 D + B NUMBER D6 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE D9 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D + B NUMBER 11 D + B NUMBER D6 STATE 07 ZIP CODE 12 STREET ADDRESS (P.O. Box, RFD #, #IC.) 13 SIC CODE D9 NAME OF OWNER DURING THIS PERIOD 12 STREET ADDRESS (P.O. Box, RFD #, #IC.) 13 SIC CODE D9 NAME OF OWNER DURING THIS PERIOD 14 CITY 15 STATE 16 ZIP CODE D9 NAME OF OWNER DURING THIS PERIOD 14 CITY 15 STATE 16 ZIP CODE D9 NAME OF OWNER DURING THIS PERIOD 14 CITY 15 STATE 16 ZIP CODE D9 NAME OF OWNER DURING THIS PERIOD 11 D + B NUMBER <t< td=""><td>S GITY DB STATE OF ZIP CODE 14 GITY 15 STATE 16 ZIP CODE 12 STREET ADDRESS (P.O. Box. RFD #. HC.) 15 STATE 16 ZIP CODE 12 STREET ADDRESS (P.O. Box. RFD #. HC.) 13 SIC CODE 14 GITY 15 STATE 16 ZIP CODE 14 GITY 15 STATE 1</td><td></td><td>ted.</td><td>]</td><td>02 D+B NUMBER</td><td></td><td></td><td>11 D+B NUMBER</td></t<>	S GITY DB STATE OF ZIP CODE 14 GITY 15 STATE 16 ZIP CODE 12 STREET ADDRESS (P.O. Box. RFD #. HC.) 15 STATE 16 ZIP CODE 12 STREET ADDRESS (P.O. Box. RFD #. HC.) 13 SIC CODE 14 GITY 15 STATE 16 ZIP CODE 14 GITY 15 STATE 1		ted.]	02 D+B NUMBER			11 D+B NUMBER
DB YEARS OF OPERATION 09 NAME OF OWNER III. PREVIOUS OPERATOR(S) //.dl moti recent int: provide only d different //om owner/ PREVIOUS OPERATORS' PARENT COMPANIES // dopter DI NAME 02 D + B NUMBER 10 NAME DI NAME 02 D + B NUMBER 10 NAME DI NAME 02 D + B NUMBER 10 NAME DI STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) DI NAME 05 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZII DI NAME 02 D + B NUMBER 10 NAME 11 D DI NAME 02 D + B NUMBER 10 NAME 11 D DI NAME 02 D + B NUMBER 10 NAME 11 D DI NAME 02 D + B NUMBER 10 NAME 11 D DI NAME 02 D + B NUMBER 10 NAME 11 D DI NAME 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 11 DI NAME 04 SIC CODE 14 CITY 15 STATE 16 ZII DI STREET ADDRESS (P.O. Box. RFD #. etc.) 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIE DI NAME 02 D + B NUMBER 10 NAME 11 D + 11 D + 11 D +	D9 NAME OF OWNER URING THIS PERIOD D9 NAME OF OWNER DURING THIS PERIOD D1 DI	a YEARS OF OPERATION OP NAME OF OWNER III. PREVIOUS OPERATOR(S) /Lat matrimation and only of different from owney PREVIOUS OPERATORS' PARENT COMPANIES in appression III. PREVIOUS OPERATOR(S) /Lat matrimation and only of different from owney PREVIOUS OPERATORS' PARENT COMPANIES in appression I NAME 02 0+B NUMBER 10 NAME 3 STREET ADDRESS (# 0 Box, #FD #, #c.) 04 SIC CODE 12 STREET ADDRESS (# 0 Box, #FD #, #c.) 3 STREET ADDRESS (# 0 Box, #FD #, #c.) 04 SIC CODE 14 City 1 NAME 02 D + B NUMBER 10 NAME 1 NAME 02 D + B NUMBER 10 NAME 1 NAME 02 D + B NUMBER 10 NAME 1 NAME 02 D + B NUMBER 10 NAME 3 STREET ADDRESS (# 0. Box, #FD #, #c.) 04 SIC CODE 12 STREET ADDRESS (# 0. Box, #FD #, #c.) 0 A SIC CODE 12 STREET ADDRESS (# 0. Box, #FD #, #c.) 13 SIC CODE 3 STREET ADDRESS (# 0. Box, #FD #, #c.) 04 SIC CODE 14 City 15 STATE 3 STREET ADDRESS (# 0. Box, #FD #, #c.) 04 SIC CODE 14 City 15 STATE 13 SIC CODE 3 VEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 11 D + B NUMBER 13 S	03 STREET ADDRESS (P.O (Box, RFD +, etc.)		04 SIC CODE	12 STREET ADDRESS IP.O. Box. RFD #, etc.;	;	13 SIC CODE
III. PREVIOUS OPERATOR(S) (Lat most recent trat: provide only 4 different from puner). PREVIOUS OPERATORS' PARENT COMPANIES (III docess). DT NAME 02 D+B NUMBER 10 NAME 11 D+ D3 STREET ADDRESS (P.O. Box. RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #, etc.) 1 D3 STREET ADDRESS (P.O. Box. RFD #, etc.) 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP D3 STREET ADDRESS (P.O. Box. RFD #, etc.) 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D+ D3 STREET ADDRESS (P.O. Box. RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #, etc.) 1 D3 STREET ADDRESS (P.O. Box. RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #, etc.) 1 D3 STREET ADDRESS (P.O. Box. RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #, etc.) 1 D3 STREET ADDRESS (P.O. Box. RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #, etc.) 1 D3 STREET ADDRESS (P.O. Box. RFD #, etc.) 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP D3 STREET ADDRESS (P.O. Box. RFD #, etc.) 09 NAME OF OWNER DURING THIS PERIOD 1 1 1 1 1 D3 STREET ADDRESS (P.O. Box. RFD #, etc.)	DR(S) IL31 mat: recent Int: provide only 4 different from owner; PREVIOUS OPERATORS' PARENT COMPANIES (# ADDREDDE) Inty R.D. 02 D + B NUMBER 10 NAME 11 D + B NUMBER Inty R.D. 04 SIC CODE 12 STREET ADDRESS (# C Box. RFD #. etc.) 13 SIC CODE Inty R.D. 04 SIC CODE 12 STREET ADDRESS (# C Box. RFD #. etc.) 13 SIC CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 12 STREET ADDRESS (# C Box. RFD #. etc.) 13 SIC CODE Inty R.D. 04 SIC CODE 12 STREET ADDRESS (# O. Box. RFD #. etc.) 13 SIC CODE Inty R.D. 04 SIC CODE 12 STREET ADDRESS (# O. Box. RFD #. etc.) 13 SIC CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 12 STREET ADDRESS (# O. Box.	III. PREVIOUS OPERATOR(S) (Lat matter recent inst: provide only 4 different (ram ounset) PREVIOUS OPERATORS' PARENT COMPANIES (IT BOOKEDAPH) INAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 3 STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 13 SIC CODE 5 GITY 06 STATE 07 ZIP CODE 14 GITY 15 STATE 16 ZIP CODE 1 NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 1 NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 13 SIC CODE 1 NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 13 SIC CODE 1 NAME 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 13 SIC CODE 1 NAME 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 13 SIC CODE 3 STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 13 SIC CODE 3 STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE 3 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 11 D + B NUMBER 10 NAME 11 D + B NUMBER 10 STREET ADDRESS (P.O. Box.	05 CITY		O6 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
DT NAME D2 D+B NUMBER 10 NAME 11 D+ D3 STREET ADDRESS (P. 0. Box. RFD #. erc.) 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD #. erc.) 1 D3 STREET ADDRESS (P. 0. Box. RFD #. erc.) 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP D3 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D+ 11 D+ D3 STREET ADDRESS (P. 0. Box. RFD #. erc.) 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD #. erc.) 11 D+ D3 STREET ADDRESS (P. 0. Box. RFD #. erc.) 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD #. erc.) 1 D3 STREET ADDRESS (P. 0. Box. RFD #. erc.) 06 STATE 07 ZIP CODE 12 STREET ADDRESS (P. 0. Box. RFD #. erc.) 1 D3 STREET ADDRESS (P. 0. Box. RFD #. erc.) 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP D3 STREET ADDRESS (P. 0. Box. RFD #. erc.) 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP D3 STREET ADDRESS (P. 0. Box. RFD #. erc.) 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP 3 STREET ADDRESS (P. 0. Box. RFD #. erc.) 02 D+ B NUMBER 10 NAME	D2 D+B NUMBER 10 NAME 11 D+B NUMBER Inty R.D. 04 SIC CODE 12 STREET ADDRESS (P G Box. RFD #. g(c.)) 13 SIC CODE Inty R.D. 04 SIC CODE 12 STREET ADDRESS (P G Box. RFD #. g(c.)) 13 SIC CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. g(c.)) 13 SIC CODE Inty R.D. 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. g(c.)) 13 SIC CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE Inty R.D. 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. g(c.) 11 D + B NUMBER Inty R.D. </td <td>1 NAME 02 D+B NUMBER 10 NAME 11 D+B NUMBER 11 D+B NUMBER 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. etc.) 13 SIC CODE 2 STREET ADDRESS (P.O. Box. RFD +. etc.) 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D+B NUMBER 10 DAME 1 NAME 02 D+B NUMBER 10 NAME 10 NAME 11 D+B NUMBER 11 D+B NUMBER 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 09 NAME OF OWNER DURING THIS PERIOD 13 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. etc.) 13 SIC CODE 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. etc.) 13 SIC CODE 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 09 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 3 VEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D+B NUMBER 11 D+B NUMBER 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. etc.) 15 STATE 15 SIC CODE 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. etc.) <td< td=""><td>8 YEARS OF OPERATION</td><td>09 NAME OF OWNER</td><td>_</td><td>L</td><td></td><td></td><td></td></td<></td>	1 NAME 02 D+B NUMBER 10 NAME 11 D+B NUMBER 11 D+B NUMBER 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. etc.) 13 SIC CODE 2 STREET ADDRESS (P.O. Box. RFD +. etc.) 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D+B NUMBER 10 DAME 1 NAME 02 D+B NUMBER 10 NAME 10 NAME 11 D+B NUMBER 11 D+B NUMBER 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 09 NAME OF OWNER DURING THIS PERIOD 13 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. etc.) 13 SIC CODE 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. etc.) 13 SIC CODE 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 09 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 3 VEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D+B NUMBER 11 D+B NUMBER 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. etc.) 15 STATE 15 SIC CODE 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD +. etc.) <td< td=""><td>8 YEARS OF OPERATION</td><td>09 NAME OF OWNER</td><td>_</td><td>L</td><td></td><td></td><td></td></td<>	8 YEARS OF OPERATION	09 NAME OF OWNER	_ 	L			
Niagara County R.D. If Dronolder in the intervention of the	nty R.D. Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street address (P & Box, RFD #, orc.) Image: Street addres	Niagara County R.D. Indext Index Indext Indext Index Indext Indext Indext Indext Index Indext In		TOR(S) (List most recent	lirst: provide on	ily d different (rom owner)	PREVIOUS OPERATORS' PARE	NT COMPANIES #	applicable)
05 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP 08 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D + 11 D + 03 STREET ADDRESS (P. 0. Box. RFD +. etc.) 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD +. etc.) 1 15 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP 15 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP 15 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP 15 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP 16 ZIP 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP 16 ZIP 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP 17 MAME 02 D + B NUMBER 10 NAME 11 D + 11 D + 11 D + 17 NAME 02 D + B NUMBER 10 NAME 11 D + 11 D + 11 D + 3 STREET ADDRESS (P.O. Box. RFD +. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFO +. etc.) 12 STREET ADDRESS (P.O. Box. RFO +. etc.) 12 STREET	06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 19 NAME OF OWNER DURING THIS PERIOD 02 D + B NUMBER 10 NAME 11 D + B NUMBER 02 D + B NUMBER 10 NAME 11 D + B NUMBER 13 SIC CODE 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 13 SIC CODE 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 09 NAME OF OWNER DURING THIS PERIOD 14 CITY 15 STATE 16 ZIP CODE 19 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D + B NUMBER 11 D + B NUMBER 10 Q D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 11 D + B NUMBER 10 NAME 11 D + B NUMBER 13 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 13 SIC CODE 13 SIC CODE	S CITY OB STATE O7 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE B YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D +B NUMBER 10 NAME 3 STREET ADDRESS (P.O. Box, RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box, RFD #. etc.) 13 SIC CODE 3 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 3 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 13 SIC CODE 3 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 3 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 3 VEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D +B NUMBER 11 D +B NUMBER 10 STREET ADDRESS (P.O. Box, RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box, RFD #, etc.) 13 SIC CODE 12 STREET ADDRESS (P.O. Box, RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box, RFD #, etc.) 13 SIC CODE 12 STREET ADDRESS (P.O. Box, RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box, RFD #, etc.) 13 SIC CODE	Niagara Co			02 D+B NUMBER	10 NAME .		11 D+8 NUMBER
DB YEARS OF OPERATION D9 NAME OF OWNER DURING THIS PERIOD D1 NAME 02 D + B NUMBER 10 NAME D3 STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) D5 CITY 06 STATE 07 ZIP CODE 14 CITY D3 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 11 D + D3 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 14 CITY D3 STREET ADDRESS (P.O. Box. RFD #. etc.) 02 D + B NUMBER 10 NAME D3 STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 14 CITY	D9 NAME OF OWNER DURING THIS PERIOD 02 D + B NUMBER 10 NAME 11 D + B NUMBER RFD #, etc.; 04 SIC CODE 12 STREET ADDRESS (P. 0. Box, RFD #, etc.; 13 SIC CODE 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D + B NUMBER 11 D + B NUMBER 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 04 SIC CODE 12 STREET ADDRESS (P. 0. Box, RFD #, etc.; 13 SIC CODE	B YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD I NAME 02 D + B NUMBER 10 NAME 3 STREET ADDRESS (P.O. Box. RFD #. #IC.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. #IC.) 3 STREET ADDRESS (P.O. Box. RFD #. #IC.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. #IC.) 3 STREET ADDRESS (P.O. Box. RFD #. #IC.) 06 STATE 07 ZIP CODE 3 STREET ADDRESS (P.O. Box. RFD #. #IC.) 06 STATE 07 ZIP CODE 3 STREET ADDRESS (P.O. Box. RFD #. #IC.) 09 NAME OF OWNER DURING THIS PERIOD 11 D + B NUMBER 1 NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 1 NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 1 NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 1 STREET ADDRESS (P.O. Box. RFD #. #IC.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. #IC.) 13 SIC CODE 1 STREET ADDRESS (P.O. Box. RFD #. #IC.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. #IC.) 13 SIC CODE 1 STREET ADDRESS (P.O. Box. RFD #. #IC.) 04 SIC CODE 14 CITY 15 STATE 15 ZIP CODE 1 STREET ADDRESS (P.O. Box. RFD #. #IC.) 08 STATE 07 ZIP CODE 14 CITY 15 STATE 15 ZIP	3 STREET ADDRESS (P.O B	3oz, RFD #, erc }		04 SIC CODE	12 STREET ADDRESS (P C Box. RFD #. etc.)	,	13 SIC CODE
D1 NAME D2 D+B NUMBER 10 NAME 11 D+ D3 STREET ADDRESS (P.O. Box, RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box, RFD #, etc.) 1 D5 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP D3 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 1 1 1 1 D1 NAME 02 D+B NUMBER 10 NAME 10 NAME 1 1 1 D3 STREET ADDRESS (P.O. Box, RFD #, etc.) 02 D+B NUMBER 10 NAME 1 1 1 D3 STREET ADDRESS (P.O. Box, RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box, RFD #, etc.) 1 1 1	02 D + B NUMBER 10 NAME 11 D + B NUMBER RFD •. etc.; 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD •. etc.; 13 SIC CODE 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D + B NUMBER 11 D + B NUMBER 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 04 SIC CODE 12 STREET ADDRESS (P. O. Box. RFD •. etc.) 13 SIC CODE	1 NAME 02 D+B NUMBER 10 NAME 11 D+B NUMBER 3 STREET ADDRESS (P.O. Box. RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #, etc.) 13 SIC CODE 5 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 9 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 1 1 1 1 1 NAME 02 D+B NUMBER 10 NAME 11 D+B NUMBER 1 1 1 1 NAME 02 D+B NUMBER 10 NAME 11 D+B NUMBER 1 1 1 1 1 1 NAME 02 D+B NUMBER 10 NAME 11 D+B NUMBER 1)5 CITY		06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
D3 STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 1 D5 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP D8 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 1 D1 NAME 02 O + B NUMBER 10 NAME 11 D + D3 STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 1	RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 13 SIC CODE 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 09 NAME OF OWNER OURING THIS PERIOD 1 11 D + B NUMBER 10 NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 13 SIC CODE	3 STREET ADDRESS (P. 0. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD #. etc.) 13 SIC CODE 5 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 3 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 10 NAME 11 D + B NUMBER 11 D + B NUMBER 9 STREET ADDRESS (P. 0. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD #. etc.) 13 SIC CODE 9 STREET ADDRESS (P. 0. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD #. etc.) 13 SIC CODE 9 STREET ADDRESS (P. 0. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD #. etc.) 13 SIC CODE 9 STREET ADDRESS (P. 0. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD #. etc.) 13 SIC CODE 9 STREET ADDRESS (P. 0. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P. 0. Box. RFD #. etc.) 13 SIC CODE 9 STREET ADDRESS (P. 0. Box. RFD #. etc.) 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE 9 VEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 14 CITY 15 STATE 16 ZIP CODE	DB YEARS OF OPERATION	09 NAME OF OWNER	DURING THIS	5 PERIOD		l	
06 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP 03 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 11 ONAME 11 D 11 D 01 NAME 02 D+B NUMBER 10 NAME 11 D 11 D 03 STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 12	06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 09 NAME OF OWNER DURING THIS PERIOD 11 D + B NUMBER 10 NAME 11 D + B NUMBER 02 D + B NUMBER 10 NAME 11 D + B NUMBER 11 D + B NUMBER 04 SIC CODE 12 STREET ADDRESS (P.O. Boz. RFD #, etc.) 13 SIC CODE	S CITY O6 STATE O7 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE B YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 1	D1 NAME	1		02 D+B NUMBER	10 NAME		11 D+B NUMBER
D3 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 11 D1 D1 NAME 02 D+B NUMBER 10 NAME D3 STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.)	D9 NAME OF OWNER DURING THIS PERIOD 1 1 0 1 1 0 1 0 1 1 0 1 0 1	B YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD INAME 02 D + B NUMBER 03 STREET ADDRESS IP.0. Box. RFD #. etc.) 04 SIC CODE 04 SIC CODE 12 STREET ADDRESS IP.0. Box. RFD #. etc.) 06 STATE 07 ZIP CODE 07 ZIP CODE 14 CITY 09 NAME OF OWNER DURING THIS PERIOD	DI STREET ADDRESS (P.O. B	ox. RFD =. etc.)		04 SIC CODE	12 STREET ADDRESS (P.O. BOX. RFD etc.;		13 SIC CODE
31 NAME 02 D+B NUMBER 10 NAME 11 D+ 33 STREET ADDRESS (P.O. Box. RFD #, etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #, etc.) 12	02 D+B NUMBER 10 NAME 11 D+B NUMBER 04 SIC CODE 12 STREET ADDRESS (P.O. Boz, RFD #, etc.) 13 SIC CODE	NAME 02 D+B NUMBER 10 NAME 11 D+B NUMBER 2 STREET ADDRESS IP.O. Box. RFD #. etc.J 04 SIC CODE 12 STREET ADDRESS IP.O. Box. RFD #. etc.J 13 SIC CODE 2 CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE 1 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 04 SIC CODE 14 CITY 15 STATE 16 ZIP CODE	D5 CITY		06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
D1 NAME 02 D+B NUMBER 10 NAME 11 D+ D3 STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 12	02 D+B NUMBER 10 NAME 11 D+B NUMBER 04 SIC CODE 12 STREET ADDRESS (P.O. Boz. RFD #, etc.) 13 SIC CODE	NAME 02 D + B NUMBER 10 NAME 11 D + B NUMBER D STREET ADDRESS (P. 0. Box. RFD #, etc.) 04 SiC CODE 12 STREET ADDRESS (P. 0. Box. RFD #, etc.) 13 SiC CODE O G STATE 04 SiC CODE 12 STREET ADDRESS (P. 0. Box. RFD #, etc.) 13 SiC CODE O G STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE VEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 14 CITY 15 STATE	3 YEARS OF OPERATION	09 NAME OF OWNER	OURING THI	SPERIOD			
D3 STREET ADDRESS (P.O. Box. RFD #. e(c.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. e(c.) 12	RFD #. elc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. elc.) 13 SIC CODE	O STREET ADDRESS (P.O. Box. RFD #. etc.) 04 SIC CODE 12 STREET ADDRESS (P.O. Box. RFD #. etc.) 13 SIC CODE O CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE O YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD 14 CITY 15 STATE 16 ZIP CODE	N NIALAE						
		CITY 06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE							11 D+B NUMBER
	08 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP CODE	YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD	13 STREET ADDRESS (P.O. Bo.	ix, RFD ₽, €iC.)		04 SIC CODE			13 SIC CODE
06 STATE 07 ZIP CODE 14 CITY 15 STATE 16 ZIP			5 CITY		06 STATE (07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
28 YEARS OF OPERATION 09 NAME OF OWNER DURING THIS PERIOD	9 NAME OF OWNER DURING THIS PERIOD		8 YEARS OF OPERATION	09 NAME OF OWNER (DURING THIS	PERIOD		<u>I</u> 1	
IV. SOURCES OF INFORMATION (Cae apocific references, e.g., state (des, sample analysis, reports)		A SOURCES OF INFURMATION (Cas margin material and a state (day semila sealar)	IV. SOURCES OF INFO	RMATION (Generation		- state (das estimate sastu)			•
	n A TION (Cde specific relerences, e.g., siste lées, sample analysis, reports)								
	n A TTOTA (Cde specific references, e.g., state files, sample analysis, reports)								
TY . SOUNCES OF HYP ONITIAL I DIV (C4e specific relerences, e.g., state ifes, sample analysis, reports)	In A TION (Cle specific relefences, e.g., state lées, sample analysis, reports)								
TY . Sounces of intronum from (Cae specific relerences, e.g., state ides, sample analysis, reports)	INA TION (Cae specific relefences, e.g., state lées, sample analysis, reports)								
TY . Sounces of intronum flow (Cae specific relerences. e.g., state ides, sample analysis, reports)	n A TION (Cae specific relerences, e.g., siate lies, sample analysis, reports)								
TY . SOURCES OF INFORMATION (Cde specific relerences. e.g., state ides, sample analysis, reports)	na mon (Cae spechic nelsrences, e.g., state files, sample analysis, reports)								
TY . SOURCES OF INFORMATION (Cae specific relerences, e.g., state ides, sample analysis, reports)	na mon (Cde specht: nierences, e.g., siste lies, sample anavsis, reports)						•		

EPA FORM 2070-13 (7-81)

.

	· I		ZARDOUS WASTE SITE		FICATION
SEPA	DADT		PECTION REPORT	NY NY	932026
II. ON-SITE GENERATOR	PARI	- GENERATOR	TRANSPORTER INFORMATION		
01 NAME		02 D+8 NUMBER			
Not Applicable					
03 STREET ADDRESS (P.O. Box. RFD +, etc.;		04 SIC CODE			
05 CITY	LOG STATE	OT ZIP CODE			
	00 31412	OV ZIP CODE			
III. OFF-SITE GENERATOR(S)		<u> </u>		· ····································	
01 NAME		02 D+B NUMBER	01 NAME		02 D+8 NUMBER
Carborundum Company			Bell Aerospace Compan	y	
03 STREET ADDRESS (P O. BOX. RFD + OIC.) General Administrative	e Office	04 SIC CODE	03 STREET ADDRESS (P 0. Box. RFD . elc) Executive office		04 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	Niagara Falls Blvd.	106 STATE	
Niagara Falls	NY	14303	Niagara Falls	NY	14304
01 NAME		02 D+B NUMBER	01 NAME		02 D+B NUMBER
EI Dupont deNemours &	• •		Hooker Chemicals & Pl	astics	
osstreet address (P.O. Box. AFD . etc.) Industrial Chemical De Buffalo Ave. & 26th St	reet	04 SIC CODE	O3 STREET ADDRESS (P.G. BOX. RFD +. etc.) Durez Div. Walack Road		04 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
Niagara Falls	NY	14304	North Tonawanda	NY	14150
IV. TRANSPORTER(S)			· · · · · · · · · · · · · · · · · · ·		·
		02 D+B NUMBER	01 NAME		02 D+B NUMBER
Booth Oil Co., Inc.			Hasky Trucking Co., I	nc.	
33 STREET ADDRESS (P.O. BOX, RFD *, MC.) 76 Robinson Street		04 SIC CODE	03 STREET ADDRESS (P.O. Box. AFD . elc.; 10315 Lockport Road	<u></u>	04 SIC CODE
DS CITY		07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
North Tonawanda	NY	14150	Lockport	NY	14094
1 NAME		02 D+B NUMBER	01 NAME		02 D+B NUMBER
Ray F. Morningstar			Niagara Sanitation Co	Inc.	D D D D D D D D D D D D D D D D D D D
3 STREET ADDRESS (P.O. Box RED #. etc.)	. <u></u>	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, e(C.)		04 SIC CODE
528 Young Street			262 Woodward Avenue		
5 CITY	06 STATE	07 ZIP CODE	05 CITY	OS STATE	07.719.0005
Tonawanda	NY	14150	Kenmore	NY	07 ZIP CODE 14217
					1421/
V. SOURCES OF INFORMATION (Cressoe	the references, e	.g., state fileš, sample analysi	s, reports;		
Remedial Action Master	Plan,	Sept. 9, 19	82		
1		1			
			·		
			-		

EPA FORM 2070-13 (7-81)

\$epa	POTENTIAL HAZARDOUS WASTE SI SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES		I. IDENTIFICATION 01 STATE 02 SITE NUMBER NY 932026
PAST RESPONSE ACTIVITIES		-	
01 C A. WATER SUPPLY CLOSED 04 DESCRIPTION	02 DATE	03 AGENCY	
01 D B. TEMPORARY WATER SUPPLY PF 04 DESCRIPTION	2001DED 02 DATE	O3 AGENCY	
01 C. PERMANENT WATER SUPPLY PR 04 DESCRIPTION	OVIDED 02 DATE	03 AGENCY _	
01 C D. SPILLED MATERIAL REMOVED 04 DESCRIPTION	02 DATE	O3 AGENCY .	· · · · · · · · · · · · · · · · · · ·
01 C E. CONTAMINATED SOIL REMOVED 04 DESCRIPTION	02 DATE	03 AGENCY	
01	02 DATE	O3 AGENCY _	
01 C G. WASTE DISPOSED ELSEWHERE 04 DESCRIPTION	02 DATE	_ 03 AGENCY _	
01	02 DATE	03 AGENCY	
01 2 I. IN SITU CHEMICAL TREATMENT 04 DESCRIPTION	02 DATE	_ 03 AGENCY _	
01 Z J. IN SITU BIOLOGICAL TREATMENT 94 DESCRIPTION	02 DATE	_ 03 AGENCY _	
01 TK. IN SITU PHYSICAL TREATMENT 04 DESCRIPTION	02 DATE	_ 03 AGENCY _	
01 C L ENCAPSULATION 04 DESCRIPTION	02 DATE	_ 03 AGENCY _	
01 C M. EMERGENCY WASTE TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY	
01 C N. CUTOFF WALLS 04 DESCRIPTION	02 DATE	03 AGENCY	
01 C O. EMERGENCY DIKING/SURFACE W. 04 DESCRIPTION	ATER DIVERSION 02 DATE	03 AGENCY	
01 C P. CUTOFF TRENCHES/SUMP 04 DESCRIPTION	02 DATE	03 AGENCY _	
01 C O. SUBSURFACE CUTOFF WALL 04 DESCRIPTION	02 DATE	03 AGENCY	

•

SEPA	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES	I. IDENTIFICATION 01 STATE 02 SITE NUMBER NY 932026
I PAST RESPONSE ACTIVITIES (Continued)		
	02 DATE	03 AGENCY
01 D S. CAPPING/COVERING 04 DESCRIPTION	02 DATE	03 AGENCY
01 D T. BULK TANKAGE REPAIRED 04 DESCRIPTION	02 DATE	03 AGENCY
01 C U GROUT CURTAIN CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY
01 TV. BOTTOM SEALED 04 DESCRIPTION	02 DATE	03 AGENCY
01 🖸 W. GAS CONTROL 04 DESCRIPTION	02 DATE	03 AGENCY
01 T X. FIRE CONTROL 04 DESCRIPTION	02 DATE	03 AGENCY
01 Y. LEACHATE TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY
01 C Z. AREA EVACUATED 04 DESCRIPTION	02 DATE	03 AGENCY
	02 DATE	
	02 DATE	03 AGENCY
01 3. OTHER REMEDIAL ACTIVITIES 04 DESCRIPTION	02 DATE	03 AGENCY
÷ .•		-
· .	· · · ·	
· ·		
SOURCES OF INFORMATION (Cite specific referen	nces. e.g., state files, sample enalysis, reports!	
· .	- -	

ļ

•

.

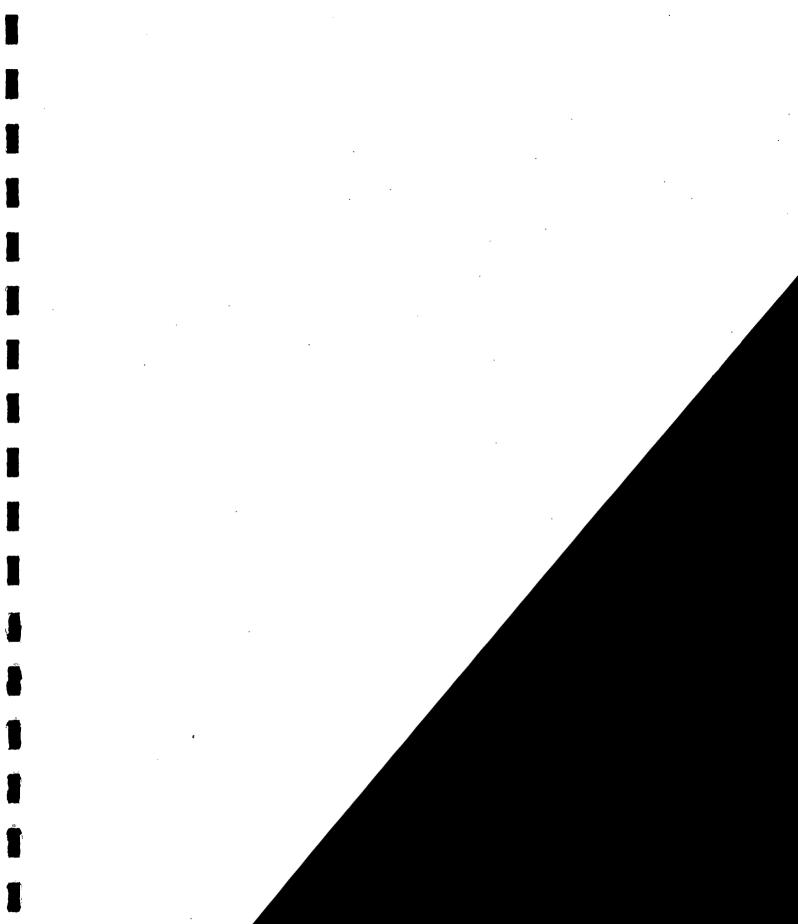
•

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

I. IDENTIFICATION 01 STATE 02 SITE NUMBER NY 932026

II. ENFORCEMENT INFORMATION

01 PAST REGULATORY/ENFORCEMENT ACTION C YES C NO


02 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

10/29/76 Wheatfield Site Officially Closed.

III. SOURCES OF INFORMATION (Cite specific references. e.g., state files, sample enalysis, reports;

Remedial Action Master Plan, Sept. 9, 1982 NCHD Files

EPA FORM 2070-13 (7-81)

......

_

_

6

4 1

.

6. REMEDIAL COST ESTIMATE

Based on the results of the Phase II investigation, four remedial options are considered suitable to the Niagara Wheatfield site. Conduct a more extensive hydrogeologic investigation, cap the site with clay, pump leachate and treat with activated carbon, and provide for periodic monitoring and site maintenance.

6.1 HYDROGEOLOGIC INVESTIGATION

To assess ground-water contamination, it is suggested that additional monitoring wells be installed around the landfill site to identify ground-water levels, any ground-water contaminant, and confirm aquifer flow direction. The cost of this phase is estimated to be \$25,000-\$50,000. This includes installation of six wells to a depth of 20-50 ft⁽¹⁾.

6.2 SITE CAPPING

This control option includes capping the site with clay over approximately 242,000 yds² (assumes 50-acre site) and a leachate collection system⁽³⁾. The installation of this system is expected to reduce leachate generation and reduce offsite erosive transport of cover material, and to control/reduce leachate flow towards the Niagara River. Moisture retention above the cap will be accomplished via a loam cover and vegetation. A detailed engineering plan would be the initial step in this effort and would include obtaining accurate

6-1

site topography prior to designing the cap. It also would include information for site grading, drainage controls, surface stabilization, gas venting, and leachate collection.

Clay Cap

The unit cost for a clay cap which includes hauling, spreading, and compaction to 24-in. depth is estimated at $\frac{515-\frac{25}}{yd^3}$ depending on the proximity of available capping material. The estimated costs for the approximate 50-acres vary between \$2,420,000 and \$4,100,000.

Surface Cover - Loam and Vegetation

The surface cover recommended for the clay cap is loam soil seeded with appropriate grasses. The unit cost for surface cover of the site is estimated at $10-15/yd^3$ and includes 6 in. of loam soil hauled to the site (within 20 mi of the site), spread on the site, and graded. The estimated costs for the surface cover vary between \$400,000 and \$610,000.

Unit costs for placement of vegetation as grasses, is estimated at \$1,405-\$9,263/acre. Costs for seeding are estimated to be between \$70,000 and \$460,000.

Surface Runon/Runoff Control

Surface runoff controls to limit infiltration and leachate production at the site should be installed at the site. Unit costs for drainage controls are estimated to be \$1.17-\$2.94/linear ft. Two drainage ditches which would discharge to the Niagara River with an estimated length of approximately 15,000 ft (1-ft depth) is estimated to cost \$20,000-\$44,000.

A leachate collection system at the landfill is expected to include installation of three wells within the landfill proper. Three wells would be placed at a cost of \$20,000-\$35,000⁽¹⁾ and would induce a cone of depression for leachate removal.⁽⁴⁾ These wells would pump to a leachate treatment system.

The leachate generation at the site is estimated to be 21,800,000 gal/year. This estimate is conservative and assumes that 30 percent of rainfall volume enters the site and produces about 0.05 mgd. This is based on an area of $2,200,000 \text{ ft}^2$, and a 40-in./year rainfall.

The capital costs for activated carbon range from \$165,000 to \$350,000/ mgd and annual 0&M costs from \$357,000 to \$413,000/mgd.

In the case where the leachate pumping system delivers about 100 gpm, the capital more closely approaches 165,000/mgd, and annual 0&M costs total from 50,000 to $60,000^{(4)}$.

Supporting the remedial options is the need to continue monitoring the ground water. In this case, it is assumed that the 5-6 perimeter wells are sampled

6-3

and analyzed for HSL volatiles, BNA organics, and heavy metals 2-4 times each year. This sampling and analyses phase ranges from \$50,000 to \$100,000/year⁽²⁾. A summary of the options cost estimates are given in Table 6-1.

REFERENCES FOR SECTION 6

Compendium of Costs of Remedial Technologies at Hazardous Waste Sites, Final Report, Hazardous Waste Engineering Research Laboratory, Office of R & D, U.S. EPA, Cinn., Ohio, Sept. 1985. (Appendix 1.6-1.)

Leachate from Hazardous Waste Site, Cheremisinoff, Paul N. and Kenneth A. Giagliello, Technomic Publishing, Lancaster, PA. 1983. (Appendix 1.6-2.)

Handbook: Remedial Action at Waste Disposal Sites, U.S. EPA Technology Transfer, Cincinnati, Ohio. (Appendix 1.6-3.)

	Capital (\$)	0&M (\$/yr)
Hydrogeologic Investigation	25,000-50,000	
Clay cap, loam cover, and revegetate	3,000,000-5,200,000	100,000
Surface runon/runoff control	20,000-44,000	2,000
Leachate Collection (3 wells)	20,000-35,000	5,000
Leachate Treatment	20,000-35,000	50,000-60,000
Fence	120,000-180,000	5,000-10,000

TABLE 6-1 REMEDIAL COST SUMMARY^{*} FOR NIAGARA WHEATFIELD

Monitoring

50,000-100,000

* Assumes a 50-acre site.

• APPENDIX 1

. •

0

.

• ۰

۲

a

APPENDIX 1.3.1-1

CONTACTS

APPENDIX 1.3.1-1

The Phase II investigation of the Niagara Wheatfield site involved a site inspection by EA, geophysical studies, boring and monitoring well placement, and installation and sampling (soil, surface water, and air) as well as record searches and interviews. The following agencies or individuals were contacted.

Contact

Information Received

No file

No file

Mrs. Marshall Niagara County Refuse Disposal District Bewley Building Lockport, New York 14094 (716) 434-6568

Mr. Edward Greinert Town Supervisor Town of Wheatfield Wheatfield, New York (716) 694-6440

Mr. Marsden Chen, P.E./ Mr. James Tofflemire, P.E. New York State Department of Environmental Conservation Bureau of Site Control 50 Wolf Road Albany, New York 12233-0001 (518) 457-0639

Mr. Kevin Walter, P.E. New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-0001 (518) 457-5637

Mr. Earl Barcomb, P.E. New York State Department of Environmental Conservation Landfill Operations Vatrano Road Albany, New York 12205

Mr. John Iannotti, P.E. New York State Department of Environmental Conservation Bureau of Remedial Action 50 Wolf Road Albany, New York 12233-0001 (518) 457-2051 Site file

No file

No file

No file

Contact

Mr. Jeffrey Dietz Senior Environmental Analyst New York State Department of Environmental Conservation Region 9 Office 600 Delaware Avenue Buffalo, New York 14202 (716) 847-4600

Mr. Charles Hudson Bureau of Toxic Substance Assessment New York State Department of Health Nelson A. Rockefeller Empire State Plaza Corning, Tower Building, Room 342 84 Holland Avenue (518) 473-8427

Mr. Perry Katz U.S. Environmental Protection Agency Region II Room 757, 26 Federal Plaza New York, New York 10278 (212) 264-4595

Ms. Diana Messina/ Mr. Douglas Stout, P.E. U.S. Environmental Protection Agency Region II Surveillance and Monitoring Branch Woodbridge Avenue Edison, New Jersey 08837 (201) 321-6776

Mr. Edward Oliver District Conservationist United States Department of Agriculture Lockport Field Office 4487 Lake Avenue Lockport, New York 14094

Mr. John Ozard Senior Wildlife Biologist New York State Department of Environmental Conservation Wildlife Resources Center Delmar, New York 12054

Ms. Peggy Harris EPA - Great Lakes Program Chicago, Illinois (312) 353-3576

Information Received

Regulated Wetland Classification

No file

No file

Site file

Irrigation use

Critical Habitat Information

"Preliminary Evaluation of Chemical Migration to Ground Water and the Niagara River from Selected Waste Disposal Sites." Report #EPA 905/4-85-001

Contact

Information Received

Site file

Mr. Vince Petruzzello Chief New York Compliance U.S. Environmental Protection Agency 26 Federal Plaza New York, New York 10278 (212) 264-3984 APPENDIX 1.3.2-1

.

,

.

•

APPENDIX 1.3.2-1

GEOPHYSICAL FIELD EQUIPMENT AND GENERAL METHODOLOGY

The following geophysical instrument was used at the site to evaluate general subsurface conditions (buried ferrous materials).

Protom Magnetometer

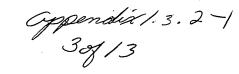
A Geometrics G-856 proton magnetometer was used to evaluate subsurface conditons for large concentrations of buried ferrous material. This equipment measures the total intensity of the earth's magnetic field (gammas).

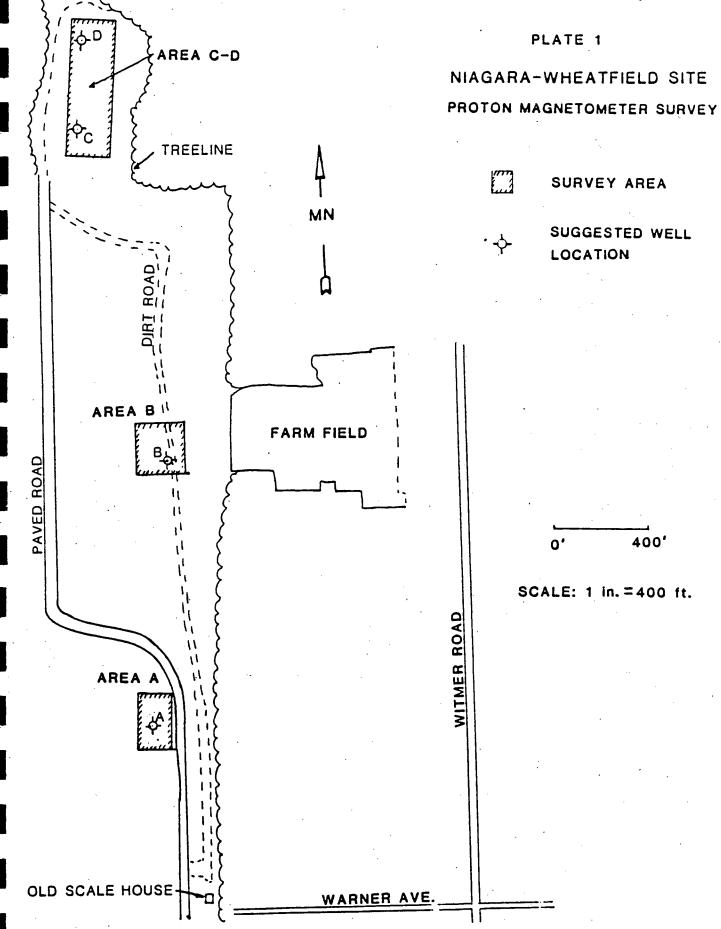
The proton magnetometer utilizes the precession of spinning protons or nuclei of the hydrogen atom to measure the intensity of the earth's magnetic field. The spinning of the protons act as small magnetic dipoles. When an electrical current is generated by the coil, the protons temporarily align themselves with respect to the coil. When the current is removed, the protons spin in the direction of the earth's magnetic field (which is influenced by external interference such as ferrous material). As the protons spin, they generate a small electrical signal. This signal produces a frequency which is proportional to the field intensity, and is converted into the gammas by the G-856.

The following twelve pages provide the Niagara-Wheatfield site geophysical report prepared by Delta Geophysical Services.

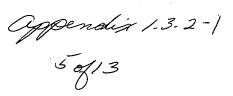
NIAGARA - WHEATFIELD SITE

MAGNETOMETER GRID SURVEY


Three areas (Areas A, B, and C-D) were surveyed at the landfill site. Plate 1 is a general site map with the locations of each area. The survey was performed in order to determine zones relatively free of buried ferrous material so that four monitoring well locations could be established. The approximate suggested well locations are also shown on Plate 1.


appendix 1.3-2-1 2 9/13

Proton magnetometer data were collected over each area using a 30-foot grid. Survey lines were run 30 feet apart in a general magnetic north/south direction, with data collected at 30-foot intervals along each line. A baseline along the southern edge of each area was staked out, and a metal spike was emplaced at the eastern end of each baseline. The raw magnetometer data for each area are presented in the Appendix. In addition, sections of each area which seemed relatively free of buried ferrous material were surveyed using a 15-foot grid to better determine a possible well location.


Interpretation and analysis of the data pointed up zones beneath each area where subsurface ferrous material may be present. These zones are shown on the map for each area (Plates 2-4) as high and moderate anomalous zones. The high anomalous zones indicate larger amounts of ferrous material relative to the moderate anomalous zones. In addition, the magnetometer data indicate that the remaining areas surveyed (including the suggested well locations) may contain small amounts of scattered ferrous material.

Initial suggested well locations were staked out at each area based on field analysis of the data. Upon further analysis and final interpretation of the data, suggested well locations B, C, and D have been relocated. These revised locations are shown on each site map.

DELTA GEOPHYSICAL SERVICES

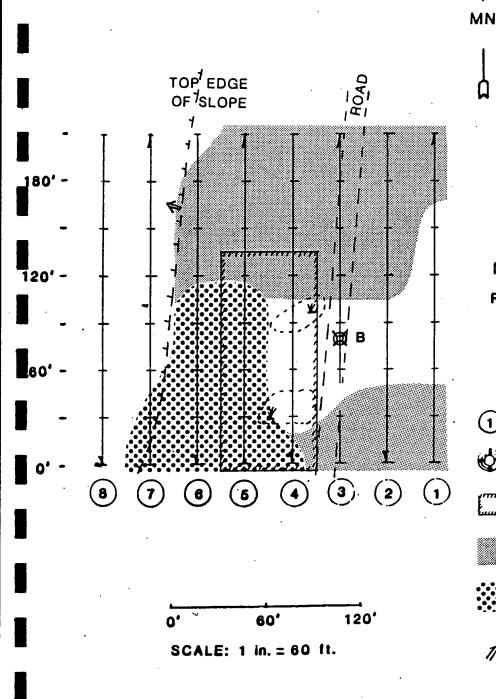
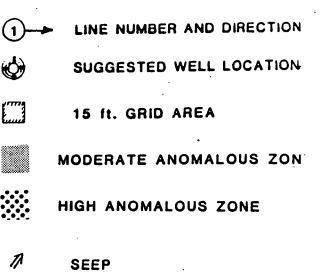
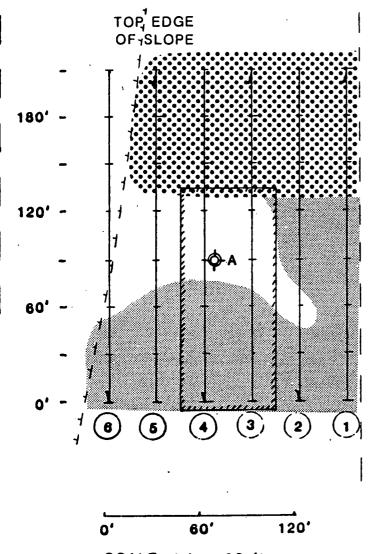




PLATE 3

NIAGARA-WHEATFIELD SITE PROTON MAGNETOMETER SURVEY

> AREA B 30 ft. INTERVAL

SCALE: 1 in. = 60 ft.

appendix 1.3.2-1 4 of 13

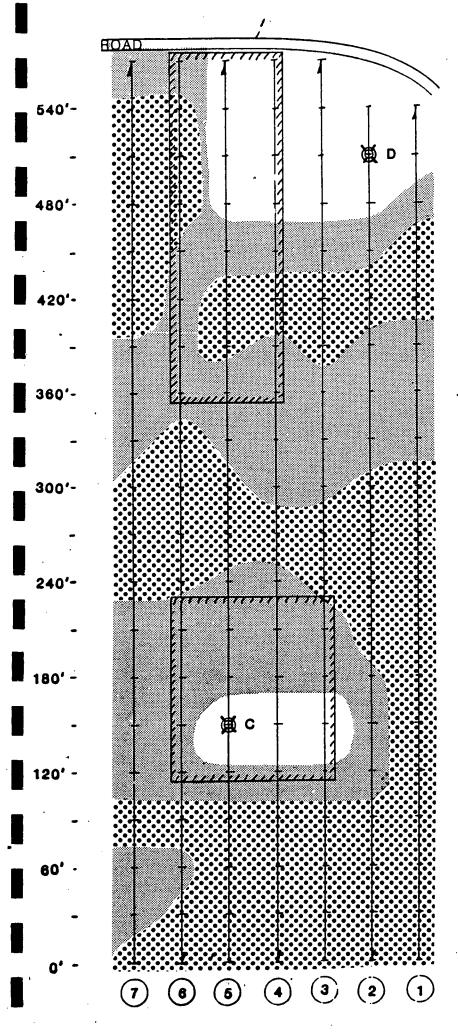
PLATE 2

-10-1

MN

NIAGARA-WHEATFIELD SITE PROTON MAGNETOMETER SURVEY

> AREA A 30 ft. INTERVAL

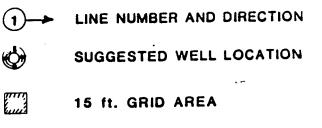

SUGGESTED WELL LOCATION

15 ft. GRID AREA

MODERATE ANOMALOUS ZONF

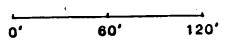
HIGH ANOMALOUS ZONE

DELTA GEOPHYSICAL SERVICES


appendix . 1. 3. 2; 6 of 13

-15° MN

PLATE 4


NIAGARA-WHEATFIELD SITE PROTON MAGNETOMETER SURVEY

> AREA C-D 30 ft. INTERVAL

MODERATE ANOMALOUS ZONE

HIGH ANOMALOUS ZONE

SCALE: 1 in. = 60 ft.

DELTA GEOPHYSICAL SERVICES

appendix 1.3.2-1 200 13

APPENDIX

NIAGARA-WHEATFIELD, Area A

8 og 13

**	G-856	MAGNETOMETER I RAW FIELD CO				
ine	Date	Time	Site	Field		
1	176	11:43:17	107	57495.6	LINE	#1
	176	11:44:04	108	?57486.0		
1	176	11:44:27	109	?56392.0	S	
	176	11:44:50	110	756136.2	↓ N	
	176	11:45:16	111	757115.4		
	176	11:45:33	112	?58768.6		
	176	11:46:14	113	?58590.2		
	176	11:46:39	114	?56695.4		
2	176	11:49:09	115	56772.6	LINE	#2
	176	11:49:36	116	?56531.6 ?56509.2	N	
	176 .	11:49:55	117	57685.0	S	
	176	11:50:17	118 119	57876.8	S	
2	176	11:50:37	117	3/8/0.0		
	176	11:51:30	120	56417.6 ?55653.6		
	176	11:51:49	121	955653.6 56783.0		•
	176	11:52:14	<u>122</u> 123	?57539.8		<u> </u>
	176	11:53:25	123	56261.8	LINE	#3
	176 176	11:54:43	125	56148.0		
	176	11:58:05	126	57100.8	s I	
	176	11:58:27	127	57472.8		
	176	11:58:50	128	?58241.4	N	
	176	11:59:11	129	?58887.2		
.3	176	11:59:43	130	?57074.4		
	176	12:01:43	131	56420.4	LINE	#A
	176	12:02:09	132	57644.8	111.11	1. 4
	176	12:02:31	133	57985.6	Ņ	
	176	12:03:00	134	56570.4	Î	
4	176	12:03:24	135	55994.8	S	
4	176	12:03:48	136	56420.6	_	
4	176	12:04:05	137	56844.0		
	176	12:04:23	138	56877.6		
5	176	12:05:36	139	?56724.4	LINE	#5
	175	12:05:57	140	56765.4	ş	
	176	12:06:16	141	?57522.4	s I	
	176	12:06:37	142	56140.6	Ň	
	176	12:07:03	143	57125.2		
	176	12:07:23	144	58116.6		
	176	12:07:39	145	?58827.2 ?57023.0		
	176	12:08:01	146	55591.6		
	176	12:09:04	147 148	55832.4	LINE	# 6
	176	12:09:23	148	756239.0		
6	176	12:09:42	177		N 1	
6	176	12:10:05	150	56091.4	s	·
	176	12:10:27	151	56299.2		
	176	12:10:48	152	56451.2		
6	176	12:11:09	153	?57085.4		
6	176	12:11:27	154	?55899.4		

NIAGARA-WHEATFIELD, Area B

* G-856 MAGNETOMETER DATA ** RAW FIELD Code: EAVI

						•
eine	Date	Time	Site	Field		
1	176	12:56:03	199	57458.2	LINE	# 7
					LINC	π⊥ `.
1	176	12:56:27	200	758526.2	c	
1	176	12:56:46	201	57131.6	s I	
1	176	12:57:03	202	57303.8	N	
1	176	12:57:21	203	56864.0		
• 1	176	12:57:45	204	57371.6		
1	176	12:58:12	205	?56957.0		
1	176	12:58:37	206	757991.6		
2	176	13:03:34	207	756826.2	LINE	#2
2	176	13:04:16	208	57960.0		" -
2	176	13:04:39	209	57219.2	N	
					Ī	
- 2	175	13:04:58	210	758119.8	s	
_ 2	176	13:05:19	211	56830.8		
2	176	13:05:42	212	57232.4		
2	176	13:06:04	213	57891.0		
_2	176	13:06:22	214	758250.2		
	176	13:12:44	215	56646.0	LINE	#3
3	175	13:13:50	216	257359.4		ч.
	176	13:14:09	217	56891.8	S	
	176	13:14:30	218	57008.4	↓ _	
3	176	13:14:48	219	257781.0	Ň	
-					· .	
	176	13:15:08	220	756107.2		
3	176	13:15:27	221	57712.2		·
	176	13:15:46	222	57484.4	· ·	•
4	176	13:18:20	223	56845.2	LINE	#4
	176	13:18:40	224 225	57287.6		
4	176	13:18:58	226	?54521.4	N I	
	175	13:19:17	228	57150.2	•	
	176	13:19:38	228	56673.8	Ś	
	176	13:19:55	229	57007.6		
.4	176	13:20:40	447			
^	176	13:21:45	230	758330.4		
4	710	L L . M J	200			

9 g 13

rendiz 1.3.2-

l					NIAGARA-WHEATFIELD, Area B
•					100/13
					0
**	G-856	MAGNETOMETER			· · · · · ·
•		RAW FIELD	Code: EAVI		, ,
Line	Date	Time	Site	Field	
5	176	13:44:45	231	758825.2	LINE #5
. 5	175	13:45:10	232	758330.2	LINE #J
5	176	13:45:36	233	56794.8	ĉ
5	176	13:45:58	234	?58325.6	
5	176	13:46:18	235	257538.4	S N
5	176	13:46:39	236	57779.6	IN .
	176	13:47:01	237	57499.6	
	176	13:47:21	238	?58230.8 __	
	176	13:50:14	239	56556.2	LINE #6
	176	13:50:39	240	756491.6	
	176	13:51:01	241	56872.2	N
	176	13:51:21	242	?57217.0	S S
	176	13:51:44	243	?58421.8	S
		13:51:44	243	56747.0	
	176	13:52:04	245	57208.4	
	176	•		758441.6	
	176	13:52:46	<u>246</u> 247	57467.4	
	176	13:56:27		753902.8	LINE #7
	175	13:55:47	248	55499.8	
	176	13:57:12	249	JJ477.0	Ş
- 7	176	13:57:31	250	56646.2	+
	176	13:57:53	251	255537.4	Ν
	176	13:58:12	252	55788.2	
	176	14:00:05	253	55756.6	
	176	14:00:30	253	56065.8	
	176	14:01:35	255	56370.0	
	176	14:03:32	256	56370.2	
	176	14:04:03	257	56207.4	
	176	14:04:47	258	56026.2	N
	176	14:06:30	259	56018.0	
_ 9	175	14:07:00	260	55937.0	
	176	14:07:28	261	55698.4	
	176	14:07:59	262	755511.0	
9	110	1410/137	202	:	

Oppendig 1.3_2-1 NIAGARA-WHEATFIELD, Area C-D 1107 13

** G-856 MAGNETOMETER DATA ** RAW FIELD Code: EAVI

16:01:32 270 ?60199.6 16:01:56 271 ?58047.2 16:02:43 272 ?59294.0 16:03:01 273 ?58661.8 16:03:24 274 ?57509.0 16:03:42 275 ?57981.2 16:04:07 276 ?57983.2 16:04:25 277 ?59330.4 16:04:50 278 ?58014.8 16:05:15 279 ?57272.6 16:05:51 281 ?55083.0 16:11:28 282 56916.4 LINE #2 16:11:56 283 56978.8 16:12:29 284 ?57007.8 N 16:12:53 285 ?57657.2 16:13:16 286 59028.2 S 16:13:16 286 59028.2 S S 16:14:54 S 16:15:50 289 58083.6 16:15:50 289 58083.6 16:16:44 290 58411.8 16:17:12 16:17:12 291 58590.8	Time 15:59:04 15:59:37 15:59:57 16:00:15 16:00:33 16:00:51 16:01:14	59:04 263 59:37 264 59:57 265 00:15 266 00:33 265 00:51 266	3 ?58846.6 4 ?58528.6 5 ?57974.2 6 ?58614.6 7 ?59577.4 3 ?59386.6	
16:05:33 280 57317.2 16:05:51 281 755083.0 16:11:28 282 56916.4 LINE #2 16:11:56 283 56978.8 16:12:29 284 757007.8 N 16:12:53 285 757657.2 16:13:16 286 59028.2 S 16:14:54 287 58528.6 16:15:30 288 57784.6 16:15:50 289 58083.6 16:16:44 290 58411.8 16:16:44 290 58411.8 16:17:12 291 58590.8	16:01:56 16:02:43 16:03:01 16:03:24 16:03:42 16:04:07 16:04:25 16:04:50	01:56 27: 02:43 27: 03:01 27: 03:24 27: 03:42 27: 04:07 27: 04:50 27:	?58047.2 ?59294.0 ?58661.8 ?57509.0 ?57981.2 ?57983.2 ?59330.4 ?58014.8	2
16:15:5028958083.616:16:4429058411.816:17:1229158590.8	16:05:33 16:05:51 16:11:28 16:11:56 16:12:29 16:12:53 16:13:16 16:14:54	05:33 28 05:51 28 11:28 28 11:56 28 12:29 28 12:53 28 13:16 28 14:54 28	57317.2 ?55083.0 2 56916.4 3 56978.6 4 ?57007.6 5 ?57657.2 5 59028.2 7 58528.6	2 LINE #2 3 8 8 9 2 2 5
16:17:34 292 ?57871.2 16:17:55 293 ?59311.2 16:18:12 294 ?57622.4 16:18:35 295 57716.2	16:15:50 16:16:44 16:17:12 16:17:34 16:17:55 16:18:12 16:18:35	15:50 28' 16:44 29' 17:12 29 17:34 29' 17:55 29' 18:12 29' 18:35 29'	7 58083.4 0 58411.6 1 58590.6 2 ?57871.2 3 ?59311.2 4 ?57622.4 5 57716.2	3 3 2 2 3 2 3 2 3
16:18:55 296 57654.2 16:19:14 297 58673.2 16:19:40 298 ?58993.6 16:19:59 299 58466.0 16:20:18 300 58862.0 16:22:01 301 59351.6 LINE #3 16:22:23 302 58863.6 S 16:22:40 303 57875.8 16:23:06 16:23:06 304 ?59264.2 N	16:19:14 16:19:40 16:19:59 <u>16:20:18</u> 16:22:01 16:22:23 16:22:40	19:14 29 19:40 29 19:59 29 20:18 30 22:01 30 22:23 30 22:40 30	7 58673.2 3 ?58993.6 7 58466.6 0 58862.6 1 59351.6 2 58863.6 3 57875.6	2 5 5 6 5 7 8 8 8 8 8 8 8

			NIAGARA-
16:23:40	306	?56498.0	
16:23:58	307	57656.8	
16:24:19	308	757096.4	
		?59899 . 8	•
16:24:43	309	27877.8	
16:25:01	310	?58706.8	
16:25:25	311	?57646.6	
16:25:46	312	?57707.B	
16:26:03	313	58626.8	
16:26:30	314	759230.0	
16:28:41	315	?58373.2	
16:28:59	316	757419.2	
16:28:87	317	57380.4	
		257101.8	
16:29:39			
16:29:58	319	56203.2	
16:30:19	320	?56530.8	
46:33:09	321	56046.0	Т ТЫТ #A
16:33:32	322	56915.8	LINE #4
16:33:54	323	56393,2	
16:37:04	324	57418.8	Ņ
16:37:25		57643.4	S .
16:37:51		58400.4	Ś
		58966.8	
16:38:16			
16:39:20	328	?57766.2	
16:39:41	329	57341.8	
16:40:12	330	57627.6	
16:40:33	331	?58534.2	
16:40:54	332	?57309.0	
16:41:14	333	57610.6	
16:41:31	334	57373.6	•
16:50:22	335	56866.2	
16:50:44	336	?57973.8	
16:51:04	337	58368.0	
16:51:23	338	756348.0	
		? 5 9150.2	
16:51:43	339	239130.2	
16:52:02	340	?57994.6	
16:53:02	341	757838.2	LINE #5
16:59:51	342	?58514.8	
17:00:09	343	58345.4	c
17:00:25	344	758685.2	S I
17:00:44	345	57469.6	1
17:01:27	346	?56435.8	Ń
17:01:53	347	57867.4	
17:02:22	348	57286.6	
17:02:40	- 349	?57383.0	
17:02:40	347	27000.0	
17:02:59	350	?59332.2	
17:03:23	351	58715.4	
17:03:46	352	57596.8	
17:04:03	353	58112.6	*
17:04:20	354	58250.8	
17:05:54	355	?58462.4	
17:06:24	356	?57087.4	
1/.00.24			

NIAGARA-WHEATFIELD, Area C-D 12 of 13

				appendix 1.3.2.1
				NIAGARA-WHEATFIELD, Area C-D
				130/13
	17:06:43	357	57651.4	
	17:07:01	358	57589.4	
	17:07:21	359	57647.2	
	17:07:40	360	56902.4	
	17:08:43	361	756996.4	
	17:09:05	362	58391.8	LINE #6
	17:09:25	363	57826.4	
	17:09:43	364	758805.2	Ņ
	17:10:07	365	57758.2	S S
	17:10:27	366	?57938.2	S
	17:10:51	367	757338.6	
•+	17:11:25	368	757653.8	
	17:11:45	369	?58766.2	
	17:12:06	370	58819.0	
	17:12:41	371	?58096.6	
	17:12:59	372	?58953.4	
	17:13:18	373	?56774.2	
	17:13:36	374	756459.6	
	17:14:04	375	756407.6	
	17:14:22	376	757894.4	, •
	17:14:43	377	?57092.2	· · · · · · · · · · · · · · · · · · ·
	17:15:01	378	57900.2	
	17:15:19	379	- 758216.8	
	17:15:35	380	58134.4	
	11:37:40	381	758340.4	
	11:38:24	382	56625.2	LINE #7
	11:38:59	383	756685.0	·
	11:39:16	384	?59225.8	S
	11:39:41	385	57641.8	j ∯ur se se la
	11:39:56	386	56750.4	N
	11:40:13	387	758040.0	
	11:40:52	388	?57791.4	
	11:41:10	389	758832.2	
	11:41:27	390	?56060.6	
	11:41:47	391	?58277.0	
	11:42:24	392	57750.8	
	11:42:42	393	56052,0	
	11:44:24	394	?57795.2	
	11:44:56	395	58512.0	
	11:45:12	396	59145.6	
	11:45:27	397	?58621.0	
	11:45:43	398	58327.4	
	11:46:00	399	57604.2	
` •	11:46:16	400	57413.8	

APPENDIX 1.3.2-2

MONITORING WELL INSTALLATION AND TESTING PROCEDURES

Observation Well Drilling and Sediment Sampling

A truck-mounted CME-75 drill rig used hollow-stem auger drilling method with 3-3/4-in. I.D. auger to drill in the fill material.

Prior to the drilling of each boring/well, and at the completion of the last boring/well, the drilling equipment which came in contact with subsurface materials was pressure washed with hot potable water. Sampling of the fill material was performed using a split-spoon sampler, at approximately 5-ft intervals. The split-spoon sampler was pressure washed with hot potable water before and after each sample. A flame ionization detector (with filter cartridge) was used to monitor the potential organic vapors emitted during drilling operations and from each soil sample. Unless otherwise instructed, all drill cuttings, fluids, and development/purging water were collected and drummed for future appropriate disposal by NYSDEC.

Well Construction

Immediately prior to installation, the well pipe and screen were cleaned with a hot potable water pressure washer. Standard well construction consisted of an approximately 1-ft layer of sand placed at the bottom of the borehole below 10 ft of 2-in. diameter threaded-joint PVC well screen and an appropriate length of 2-in. diameter PVC riser with a bottom plug/cap. A sand pack was placed around the well screen up to 2 feet above the top of the screen, followed by a bentonite seal approximately 2 feet in thickness. A grout-bentonite mixture was then added to fill the annular space from the top of the bentonite seal up to grade. For the four PVC wells installed, the filter sand and bentonite pellets were carefully placed by hand down the annular space between the hollow-stem auger and the PVC well pipe as the augers were slowly withdrawn. The depth to the top of the filter sand or bentonite pellets was constantly monitored with a clean, weighted-tape and compared to the depth of the base of the hollow-stem auger. Because the PVC wells are shallow, the bentonite seal was generally close to ground surface and allowed for careful placement of the grout from ground surface.

Well Development

The monitoring wells were not developed because they were installed within the fill and the leachate.

Pump Tests of Monitoring Wells

A short-term, low-yield pumping test was attempted at the site. The test was comprised of: (1) a continuous discharge, pumped (drawdown) phase, and (2) a recovery phase. For such a test, pumping and water level measurement occurred in the same well.

In performing the short-term pumping test, first the static water level was measured and recorded prior to setting the centrifugal pump. The pump was then started at a discharge rate set compatible to the estimated amount of ground water yielded by the well, simultaneously a stop-watch was started. Accurate depth to water measurements during the drawdown phase were obtained and recorded at regular intervals. The discharge rate was also measured (using a calibrated bucket and a stop watch) at different times during the pumping phase. When little or no further drawdown occurred, the pump was stopped. Time and water level measurements of the recovery phase instantly began. Accurate depth to water measurements could not be recorded at regular intervals. Therefore, insufficient data was obtained to estimate the hydraulic characteristics of the fill material.

APPENDIX 1.3.2-3

SAMPLING PROCEDURES

A variety of sample types were collected. These included leachate from monitoring wells, surface water and sediment from the drainage ditches, and a drum sample. All sampling was conducted by EA personnel under supervision of the project manager. All sampling was accomplished under a rigorous chain-ofcustody protocol. All samples were placed in containers of appropriate composition containing appropriate preservatives as presented in Table 7-1 of the Work/QA Project Plan for the current Amendment to Perform Phase II Work dated 16 January 1985. Refer also to Section 13, Sample Custody Procedures, of the Work QA/Project Plan.

Monitoring Well Sampling

One set of grab-type leachate samples were obtained for chemical analysis from PVC monitoring wells installed for this project.

The purging and sampling of each well was performed at least one week after completion of well installation. Each well was purged by a centrifugal pump or hand bailed to remove potentially stagnant fluid in the well and allow for the recharge of the fresh leachate to the well for sampling. Each sampled well was purged to dryness, or up to approximately four times the volume of the water column in the borehole, depending upon the well yield.

The volume of water to be purged was determined as follows: for wells completed in unconsolidated material, a sand-packed 2-in. diameter PVC well was installed in a 7-in. diameter borehole; assuming 25 percent porosity of the sand pack, there is approximately a 0.50-gallon/linear foot of water in the borehole.

Between wells, where a centrifugal pump was used, a new, clean length of polyethylene flexible pipe was used in each well as the suction line. A clean teflon bailer or a clean polyethylene flexible pipe with a clean foot valve was used for each well hand bailed.

Upon completion of the purging operation at each well, a sample of the leachate was obtained by using individual bottom-fill teflon bailers lowered into each well with new polypropylene rope for each well. For each well sampled, the bailer was handled with a new pair of disposable plastic surgical gloves. The bailer was lowered into each well slowly to minimize the potential for aeration of the water sample. Water samples were carefully transferred from the bailer to the sample containers to further minimize the potential for aeration of water samples, especially those for VOA. No "head space" was allowed in filled VOA water sample containers. Prior to arrival at the site, individual bottom-fill Teflon bailers were prepared in the laboratory for each well to be sampled. The preparation procedures were comprised of washing with hot water and Alkanox soap followed by a hot water rinse, acetone and hexane rinses, and air dried.

Surficial Soil Sampling

Surficial soil samples were collected from the ditch at each surface water sample location using new, individual, disposable polyethylene scoops. Prior to mobilization in the field, each scoop was cleaned in the laboratory, in the same manner as the teflon bailers. Each sample was handled with a new pair of disposable plastic surgical gloves and placed in appropriate containers (Section 7 of the Work/QA Project Plan).

Surface Water/Leachate Samples

Grab-type surface water samples were collected in containers of appropriate composition containing appropriate preservative for the parameters to be determined. Each sample was handled with a new pair of disposable plastic surgical gloves and placed in appopriate containers (Section 7 of the Work/QA Project Plan).

NCHD File Supp.

Appendix 1.4.1-1

II AIÆ

NCSWD - WHEATFIELD SITE (DEC #932026)

LOCATION

This site is a 50 acre inactive landfill, which stradles the Wheatfield - North Tonawanda city line north of the Town of Wheatfield Right-of-Way, which parallels River Road. The filled area extends to 100 yards west of Witmer Road.

A site sketch is attached.

OWN ERSHIP

The property is currently ouned by the Town of Wheatfield. At the time the site was active, the owner of record was the County of Niagara. Ownership was transferred from the County to a private firm prior to transfer to Wheatfield.

HISTORY

The Niagara County Solid Waste Agency opened the Wheatfield landfill in 1968. Wastes accepted included municipal wastes, sewage sludge and industrial wastes. The site was closed in October, 1976, after a history of operational problems.

From the time of opening, operating problems and violations of Part 19 of the NYS Sanitary Code (and later Part 360 of the 6 NYCRR) were common. The files of the Niagara County Health Department show that fires, inadequate cover, pooling of water and chemicals, odors, unrestricted access and leachate leaving the site were recorded while the facility was active. In 1972 and 1973 several reports show that leachate from this site entered the Niagara River in large quantity via drainage ditches. On at least one occasion, this leachate formed a large brown plume in the river and odors have been detectable along the shoreline. Oil was found in the ditchs on numerous occasions and water in these ditchs was often strongly septic.

Over 100 users are believed to have used this site (75 are recorded as using the site in December, 1971, alone). The City of Niagara Falls, North Tonawanda and Niagara Sanitation used this site for disposal of municipal refuse. Bell Aerospace, Carborundum, Hooker - Durez, DuPont, International Paper, Roblin Steel, NL Industries, Olin-Mathesion and Hooker Chemical (Niagara Falls) are recorded as industrial users of this site. Sewage sludges from Niagara Falls, North Tonawanda and possibly Lockport were received until closure.

The site was never properly closed and its condition appears to be detereorating with time. Recent inspections made by the Niagara County Health Department have revealed problems with scavenger dumping, protruding refuse, unrestricted access, erosion, lack of vegatation, pooling of water, clogged ditchs and flowing leachate streams. Grading is rough and uneven and general site drainage

</ /

HISTORY (continued)

is poor in many areas. Leachate was found to collect in low interior areas, but none was found leaving the site. The ditchs showed no sign of oil or leachate.

Area residents have been vocal in expressing concern for the impacts of this site. In 1976, several complaints were received by the Health Department alledging that burns and illness in people having entered the site were caused by exposed chemicals. These claims were not substantiated by evidence obtained in the subsequent investigation.

The financial burden for clean up and closure of this site may be beyond the resources of the current owner, the Town of Wheatfield. This site is presently under consideration for a possible superfund grant to fund clean up efforts.

Additional investigation has been conducted by the DEC Region 9

REVIEW OF AERIAL PHOTOGRAPHS

office.

Aerial photographs taken while the site was active are not available. Photographs taken by the US Department of Agriculture in 1966 show this area as farmland at that time.

PREVIOUS SAMPLING RESULTS

Samples have been taken from this site on numerous occasions. The Niagara County Health Department has sampled leachate and surface water near the site. A summary of these results is given below:

Samples obtained - April 30, 1973

"1) Leachate at outfall to river

COD - 100BODy - over 15pH7.9Suspended residual13 mg/l (9 volatile, 4 fixed)Dissolved Residual572 mg/l (147 volatile, 423 fixed)

#2) Niagara River - 50 ft. domstream from outfall

COD - 5 Suspended residual Dissolved residual

BOD5 - over 7 pH 6.2 13 mg/l (8 volatile, 111 fixed) 393 mg/l (5 volatile, 282 fixed)

3) Niagara River - 50 ft. upstream of outfall

COD - 40 Suspended residual Dissolved residual

BOD5 - 2.2 pH 6.8 5 mg/l (O volatile, 5 fixed) 204 mg/l (73 volatile, 131 fixed)

#4) Leachate at outfall

Barium

LT 0.1 mg/1

13.

C, , 39

PREVIOUS SAMPLING RESULTS (continued)

#4) Leachate at outfall (continued)

Cadmium	. LT 0.5 mg/1
Total Chromium	0.1 mg/1
Copper	.06 mg/1
Iron	1.6 mg/1
Lead	
Manganese	LT 0.1 mg/1
Mercury	2.6 mg/1
	LT 0.0004 mg/1
Selenium	LT 0.01 mg/1
Silver	LT 0.1 mg/1
Zinc	0.9 mg/1
Cobalt	LT 0.1 mg/1
Nickle	
	LT .05 mg/1

Samples obtained - May 21, 1973

#1 Leachate

Barium Cadmium Total Chromium Copper Iron Lead Manganese Mercury Selenium Silver Zinc Cobalt Nickle

1.3 mg/l LT 0.05 mg/l LT 0.1 mg/l LT 0.1 mg/l 4.4 mg/l 0.65 mg/l 0.0006 mg/l LT 0.01 mg/l 0.025 mg/l 0.1 mg/l 0.1 mg/l LT 0.05 mg/l River 50' DownStream

LT 1.0 mg/l LT 0.05 mg/l LT 0.1 mg/l 0.23 mg/l LT 0.1 mg/l 0.02 mg/l 0.0008 mg/l LT 0.1 mg/l

Samples obtained - September 22, 1978 - Ditch sediment from near center of site

PCB, AROCLOR	1016/1242	LT 0.01 mcg/g
PCB, AROCLOR	1254	LT 0.01 mcg/g
PCB, AROCLOR	1221	LT 0.01 mcg/g
PCB, AROCLOR	1260	.25 mcg/g

The following samples were taken by Mr. John Tygert of DEC from a pond 50 feet from the northeast corner on July 2, 1978:

Phenol Cadmium Copper Arsenic Barium

LT 0.005 mg/l LT 0.02 mg/l LT 0.05 mg/l LT 0.01 mg/l LT 0.50 mg/l

LT .005 mg/l LT 0.02 mg/l LT 0.05 mg/l 0.01 mg/l LT 0.50 mg/l 14.

.. 497

PREVIOUS SAMPLING RESULTS (continued) taken by Mr. John Tygert of DEC

•	Chromium Lead Zinc Total Organic	LT 0.10 mg/l LT 0.10 mg/l LT 0.05 mg/l Halogen (as Cl)	390 mcg/1	LT 0.10 mg/l LT 0.10 mg/l LT 0.05 mg/l 470 mcg/l
	Hercury	0.0011 mg/1	J/ 0	0.0013 mg/1

In the summer of 1979 the City of North Tonawanda obtained samples from two test wells behind Witmer Road homes. The results of the sample analysis are on file with the City Attorney and the DEC Region 9 Office.

Other sampling is believed to have been undertaken by the DEC and the EPA. These results were not available at this time.

SOILS/GEOLOGY

According to the USDA Soil Conservation Service <u>Soil Survey</u> for Niagara County, five soil types were found in this area prior to landfilling (1966). These included Canandaigua silt-loam, ovid silt loam, Hilton silt-loam, Raynham silt-loam and Lakemont silt clay loam. All of the above soil types exhibit slow permeability and a high seasonal water table to within two feet or less of the surface. Sand lenses are common in the substratum of several of these soil types.

In the landfilling operation, much of the waste material was placed below the original grade. The depth of waste material below grade is not known and the effect of landfilling on the native soils is not known.

Two wells were drilled by RECRA Research, Inc. under contract to the City of North Tonawanda, behind Witmer Road homes. Boring records for these wells show a profile of 18" of miscellaneous material over silt and sand to 4', over clay with some gravel to 10', over silt with some clay and sand in lenses to 35 feet.

Bedrock is likely to be Lockport Dolomite by extrapolation from nearby areas. Bedrock is expected at a depth of 35 feet below grade and the shallowest bedrock aquifer at least 10 feet below the surface of the Dolomite.

GROUN DWATER

According to the report written by RECRA (1979) for the City of North Tonawanda, a perched laterally flowing aquifer is present above the clay substratum. However, this aquifer is likely to disappear entirely in the summer and during dry periods. Similiar information is found in the Soil Conservation Service Soil Survey.

The Lockport Dolomite is likely to contain several water bearing zones. These zones are found in bedding joints at depths of 40 or more feet below the surface. Although the Dolomite allows horizontal passage of water, vertical movement is minimal (Johnston 1964).

16.

GROUN DUATER (continued)

The direction of flow of the perched water table is not known, but it is possible that the groundwater may become influent to drainage ditchs at various points. The bedrock aquifers flow generally west or southwest, that is to say that they flow toward the Niagara River.

There are no known drinking water wells within 3 miles of this site. The two monitoring wells placed by RECRA were sampled in 1979 and showed detectible levels of THO and phenols. There is possibility that leachate from this site is partially responsible for the high phenol levels in well #13 in Gratwick Park (700 feet southeast).

SURFACE WATER

The nearest surface water body is Black Creek, which is adjacent to the northern limit of the landfill. Black Creek becomes a tributary to Cayuga Creek 3 miles downstream from the site. Cayuga Creek flows into the Niagara River 1 mile from the junction of Black Creek.

Apparently all drainage ditchs drain away from Black Creek, although some runoff may enter directly. The marshy area east of the site drains into Black Creek.

The Niagara River is 900 feet south of the site. Drainage ditchs serving the landfill enter the River via a 600 foot swale, which enters the river 200 feet north of Gratwick Park. This route has been confirmed to have been a source of contamination to the River as indicated in the "History" section of this report.

Analysis of samples of surface water obtained from ditchs shows negligible concentrations of heavy metals and THO concentrations of 390 to 470 ppb. These samples were taken in 1973 and 1979.

The Niagara River is used for industrial water and drinking water. The intakes for the City of Niagara Falls Mater Plant are 3.5 miles downstream. Industrial intakes are found 3.5 to 5.0 miles downstream.

A wetland area is adjacent to the north and northeast portion of the site.

<u>AIR</u>

Odor problems were common while the site was active. Occasionally, odors are still detected on-site.

The site is located 200 feet from a residential area (Mitmer Road), adjacent to an agricultural area and 1,000 feet from an industrial area (St. Mary's Manufacturing).

It is estimated that 1,000 people live within one mile of the site and that over 10,000 people live within two miles.

.

17.

FIRE/EXPLOSICI

The potential of a fire within the site spreading to offsite areas is unknown. The nearest off-site building is 200 feet away (home on Witmer Road). Roughly 1,000 buildings are located within two miles.

DIRECT CONTACT

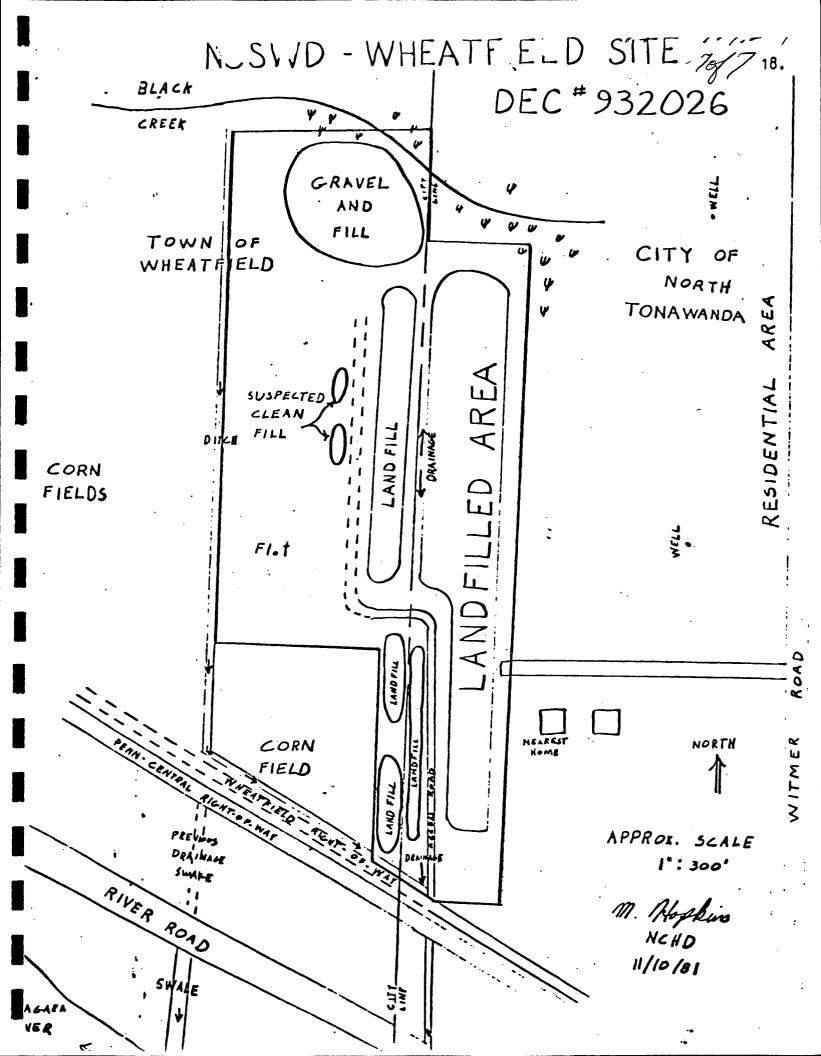
Access is not restricted. Vehicles are driven into the site routinely. The site is used for hunting and target shooting by area residents. Tracks left by trail bikes were seen throughout the site.

Although the wastes are apparently covered, leachate has been found on the surface. Red-brown and bright blue leachate streams were noted in several locations during a recent inspection.

Area residents have complained of exposed chemicals after closure of the site, although none have been found. Pooling of sludges and other wastes were recorded while the site was active.

CONCLUSIONS/RECONDENDATIONS

Acres 6


This is a large landfill containing a wide variety of wastes including significant quantities of industrial and hazardous wastes. The proximity of the site to residential areas and the Niagara River justifies further investigation to determine potential impacts.

Sampling wells are needed to facilitate groundwater monitoring. The wells behind homes on Litmer Road are servicable, however, additional wells along the west and south sides would allow more accurate predictions of groundwater movements.

Additional samples could be taken nearly anywhere within the site from hand bored holes. Surface water samples from ditchs or leachate samples could be obtained easily. Sediment samples from the swale leading to the Niagara River could reveal whether hazardous materials are being transmitted to the river via this route.

Proper closure including capping, drainage control, grading and seeding is needed. Leachate collection facilities may be necessary.

Periodic inspections should be continued.

'Appendix 1.4.1-2

ACCOUNT

POUNDS CUBIC YARDS

 Balling Bros. Const Benman and Company Bell Aerospace Booth Oil Co. Boyko Const. Co. Cannon Distributors Carborundum Co. (N.F.) Carborundum Co. (Wheat.) Carborundum Co. (Hyde P.) Carborundum Co. (Cory R.) Çaswell, John Clasen Supply Inc. Century Salvage DeGraff Memorial Hosp. Durez Plastics DelGatto, Anthony Downing Container DuPont Fairl Landscaping Frontier Railway Maint. Foster - Bodie Hooker Chem. Co. Hurtibise Tire Holler Brothers International Filler International Paper Kinberley Clark Kunhs Storage Laur & Mack Const. Lawless Container L. & L. Builders Montileone & Marchetti Modern Disposal Maroon, James, Inc. McMahon, J. M. Monroe Tree Service N. F. Board of Educ. N. Tona. Board of Educ. M. F. Mission National Biscuit Co. National Biscuit Co. National Grinding Wheel Niag. Co. Parks Niag. Sanitation Service N. F. City 	4,770 49,140 92,570 31,900 672,730 3,860 84,600 99,280 2,580 23,660 1,900 346,620 45,550 28,580 31,470 556,480 12,780 1,610 189,200 7,380 3,440 7,020 434,820 1,930 1,800 14,920 37,280 16,090 9,220 28,510 57,750 970 3,016,580 2,715,160
N. F. City N. Y. S. Transportation <u>N</u> . Tona Parks Dept.	

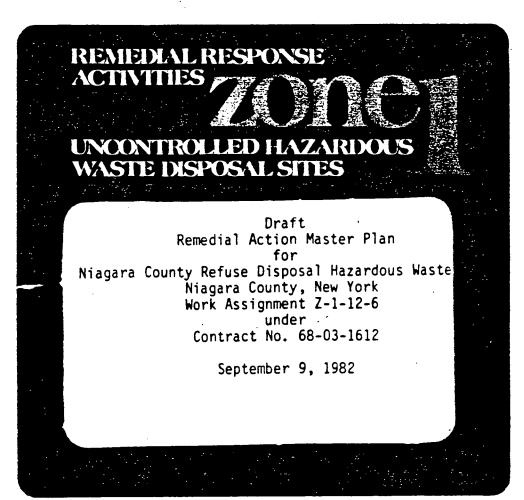
15 -

3,055

Wheatfield Dec. 71, Customer Quantities Cont.

N. Tona.Sewar N. Tona. City Niag. Co. Water Dist. N. F. Housing Auth. Niagara University Olin Mathieson Corp. Paramount Drywall Co. Rapid Disposal Reback Scrap Metal Co. River Road Lumber Co. Stan's Tire and Battery		10,230 627,100 890 5,680 56,390 848,040 5,240 134,750 11,890 2,830 7,470
Sicoli & Massaro Inc.		48,960
Tiger Supply Thompson Roofing Tuscorora Roofing		7,160 80,600 2,820
Twin City Glass Corp Tonawanda Roofing Co.	• • .	1,210 9,830
Virtuoso Building Co. Wind Heating		8,040 2,530
Wright Associates Bldg. Wright & Kremers	Corp.	48,830 290,700
Wagner, Carl West Roofing Co. Wurlitizer	•	112,840 23,690 37,110

Total (CHARGED) Total (CASH)


Eight Four (84) Lumber

Total (CHARGED)

14,687,090 637,530 15,324,620 2,350 15,326,970

3,070 32 3,102

Appendix 1.4.1-3

REMEDIAL ACTION MASTER PLAN

CAMP DRESSER & MCKEE INC. CH2M HILL CONESTOGA-ROVERS & ASSOCIATES LIMITED C. C. JOHNSON AND ASSOCIATES

Cippendix 1. 4.1-3 20/4

Table 1 GENERATORS FOR NIAGARA COUNTY REFUSE

Generators

Carborundum Co. General Administrative Office Niagara Falls, NY 14304 716-278-2000

Bell Aerospace Co. Div. of Textron Inc. Executive Office Niagara Falls Blvd. Niagara Falls, NY 14304 716-297-1000

The Goodyear Tire & Rubber Co. 5408 Baker Ave. Niagara Falls, NY 14304 716-283-7682

E.I. DuPont de Nemours & Co. Industrial Chemical Dept. Buffalo Ave. & 26th Street Niagara Falls, NY 14304 716-278-5100

Hooker Chemicals & Plastics Corp. Durez Div. Walack Road N. Tonawanda, NY 14150 716-696-6000

Olin Corp. Industrial Chemicals 2400 Buffalo Ave. Niagara Fall, NY 14303 716-278-6411

Hooker Chemicals & Plastics Corp. Speciality Chemicals Div. Buffalo Ave. Niagara Falls, NY 14302 716-278-7777

Wastes

Empty Containers Abrasive Grain Scrap Sandpaper Scrap Resins Rags Paper Wood

Heat Treatment Salts Plating Tank Sludge Scrap Wood Clay Fly Ash

Thiazole Polymer Blends Iron Catalyst Salts Accelerator Sewer Pumps Misc. PVC Wastes

Off-Grade Polyvinyl Alcohol

Oil and Grease Drippings Phenolic Molding Compound Phenolic Resin Rubbish

Graphite Lime Sludge Brine Sludge (with mercury)

Hypo Mud Soil & Misc. Chemical Wastes From Southern Section of Love Canal

appendix [.4.]-3 32 4

Table 1 GENERATORS FOR NIAGARA COUNTY REFUSE (Continued)

National Lead Co. 4511 Hyde Park Blvd. Niagara Falls, NY 14305 716-694-0636 Fumed Silica Zircon-Zirconia Sludge Paper Bags (which may contain traces of heavy metals dusts) Wood Pallets Flint Pebbles Fiber Drums Steel Drums Brick

Miscellaneous Trash

Roblin Steel Co. 101 East Ave. N. Tonawanda, NY 14150 716-696-9700

RW12/42

Uppendis 1.4.1-3 4 07 4

Table 2 TRANSPORTERS FOR NIAGARA COUNLY REFUSE SITE

Booth Oil Co., Inc. 76 Robinson Street N. Tonawanda, New York 14150 716-693-0861

Hasley Trucking Co., Inc. 10315 Lockport Road Lockport, New York 14094 716-297-1550

Modern Disposal Unknown

Ray F. Morningstar 528 Yong Street Tonawanda, New York 14150 716-693-4020

Niagara Sanitation Co., Inc. 262 Woodward Ave. Kenmore, New York 14217 716-693-5185

Rapid Disposal Service, Inc. 22 Metcalf Street Buffalo, New York 14206 716-852-6662

J. Vitullo Trucking Co. 3640 Packard Road Grand Island, New York 14072 716-285-3744

RW12/43

"COMMUNITY RIGHT-TO-KNOW"

VOLUME III

PAST HAZARDOUS WASTE DISPOSAL PRACTICES

January 1952 - December 1981

Appendices I - P

APRIL 1, 1985

New York State/Department of Environmental Conservation

TRANSPORTERS - RESPONDING WITH QUESTIONNAIRE ____

HARRISON RADIATOR, 200 UPPER MTN RD, LOCKPO FMC CORPORATION, 100 NIAGARA ST, MIDDLEFORT

_ _

ID NUMBER ···· --- · --- · ---T0901662 T0901668

FLAHMABLE WASTE LIQUID (PAINT PIGHENT GOLVENTS) :	FLAMMABLE WASTE LIQUID (PAINT PIGHENT GOLVENTS) I I I I I I I I I I I I I I I I I I I	WASTE DESCRIPTION	*****	***************************************	***	***	***	***		****
BITE DESCRIPTIONI NIADARA CO REFUSE DIGT \$1 (WHEATFIELD) TOWN OF WHEATFIELD SITE CODE 19 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME BRINE MUD ////////////////////////////////////	SITE DESCRIPTION MASTE DESCRIPTION SITE CODE1 9				u 		L '	s n 	GENERATOR NAME	
BITE DESCRIPTIONI NIADARA CO REFUSE DIGT \$1 (WHEATFIELD) TOWN OF WHEATFIELD SITE CODE 19 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME BRINE MUD CAUSTIC SODA 12,093.00 T I - X - I OLIN CORP, CHEMICALS GROUP (NIAGA CAUSTIC SODA I 12,093.00 T I - X - I OLIN CORP, CHEMICALS GROUP (NIAGA GRAPHITE I 12,093.00 T I - X - I OLIN CORP, CHEMICALS GROUP (NIAGA METHVLATE FILTER RESIDUE I 143.00 T I - X - I OLIN CORP, CHEMICALS GROUP (NIAGA SECONDARY TREATMENT SLUDGE I 143.00 T I - X - I OLIN CORP, CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE I 0.00 T I - X X I DLIN CORP, CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE I 0.00 T I - X X I DLIN CORP, CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE I 0.00 T I - X X I DLIN CORP, CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE I 0.00 T I - X X I DLIN CORP, CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE I 0.00 T I - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLORDETHYLENE IN STILL RESIDUE I 0.00 T I - X - I WALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE I 0.00 T I X I WALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE I 0.00 T I X I WALKER LAUNDRY SITE DESCRIPTION GENERATOR NAME	BITE DESCRIPTIONI NIAGARA CD REFUSE DIGT \$1 (WHEATFIELD) SITE CODE1 9 MASTE DESCRIPTION QUANIITY U L S D GENERATOR NAME PRINE MUD 12.093.00 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC SODA 12.093.00 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC SODA RETHYLATE FILTER REGIDUE 5.80 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH 5.80 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH BECONTAINING PERDULORGE 5.80 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH 143.00 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH BECONTAINING PERDULORGETHYLENE 143.00 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH 143.00 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH BELUDGE CONTAINING PERDULORGETHYLENE 10.00 CONTAINING PERDULORGETHYLENE 0.50 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH FETRACHLORGETHYLENE IN STILL RESIDUE 0.50 T - X I DLIN CORP. CHENICAL BROUP (NIAGA CAUSTIC TAH SITE CORE TORN TETRACHLORGETHYLENE IN STILL RESIDUE 20.00 T - X I COBHORT GENERATIS SITE CORE TORN TETRACHLORGETHYLENE IN STILL RESIDUE 10.00 T - X I COBHORT GENERATS SITE CORE TORN SITE DESCRIPTIONI N. INDUSTRIES INC.4511 HYPE PARK BLUD,N.F. T AM CERA	GELLED PHENOLIC RESINS	:			:	x	- x	GREIF BROS. CORPORATION	 G
BITE DESCRIPTIONI NIADARA CO REFUSE DIGT \$1 (WHEATFIELD) TOWN OF WHEATFIELD SITE CODE 19 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME BRINE MUD CAUSTIC SODA 12,093.00 T I - X - I OLIN CORP, CHEMICALS GROUP (NIAGA CAUSTIC SODA I 12,093.00 T I - X - I OLIN CORP, CHEMICALS GROUP (NIAGA GRAPHITE I 12,093.00 T I - X - I OLIN CORP, CHEMICALS GROUP (NIAGA METHVLATE FILTER RESIDUE I 143.00 T I - X - I OLIN CORP, CHEMICALS GROUP (NIAGA SECONDARY TREATMENT SLUDGE I 143.00 T I - X - I OLIN CORP, CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE I 0.00 T I - X X I DLIN CORP, CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE I 0.00 T I - X X I DLIN CORP, CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE I 0.00 T I - X X I DLIN CORP, CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE I 0.00 T I - X X I DLIN CORP, CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE I 0.00 T I - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLORDETHYLENE IN STILL RESIDUE I 0.00 T I - X - I WALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE I 0.00 T I X I WALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE I 0.00 T I X I WALKER LAUNDRY SITE DESCRIPTION GENERATOR NAME	BITE DESCRIPTIONI NIAGARA CD REFUSE DIGT \$1 (WHEATFIELD) SITE CODE1 9 MASTE DESCRIPTION QUANIITY U L S D GENERATOR NAME PRINE MUD 12.093.00 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC SODA 12.093.00 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC SODA RETHYLATE FILTER REGIDUE 5.80 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH 5.80 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH BECONTAINING PERDULORGE 5.80 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH 143.00 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH BECONTAINING PERDULORGETHYLENE 143.00 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH 143.00 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH BELUDGE CONTAINING PERDULORGETHYLENE 10.00 CONTAINING PERDULORGETHYLENE 0.50 T - X I DLIN CORP. CHENICALS GROUP (NIAGA CAUSTIC TAH FETRACHLORGETHYLENE IN STILL RESIDUE 0.50 T - X I DLIN CORP. CHENICAL BROUP (NIAGA CAUSTIC TAH SITE CORE TORN TETRACHLORGETHYLENE IN STILL RESIDUE 20.00 T - X I COBHORT GENERATIS SITE CORE TORN TETRACHLORGETHYLENE IN STILL RESIDUE 10.00 T - X I COBHORT GENERATS SITE CORE TORN SITE DESCRIPTIONI N. INDUSTRIES INC.4511 HYPE PARK BLUD,N.F. T AM CERA	WASTE ACETONE	:	105.00	э т	1	X	хх	REICHHOLD CHEMICALS INC.	G
BITE DESCRIPTIONI NIADARA CO REFUSE DIGT \$1 (WHEATFIELD) TOWN OF WHEATFIELD SITE CODE 19 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME BRINE MUD ////////////////////////////////////	SITE DESCRIPTION MASTE DESCRIPTION SITE CODE1 9		ł			:	X		: AN-COR INDUSTRIAL FLASTICS INC.	G
WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME PRIME MUD 12,093.00 T - X : DLIN CORP. CHEMTCALS GROUP (NIAGA CAUSTIC FOLTER RESIDUE 127,093.00 T - X : DLIN CORP. CHEMTCALS GROUP (NIAGA GRAPHITE CAUSTIC FILTER RESIDUE 157.00 T - X : DLIN CORP. CHEMTCALS GROUP (NIAGA GRAPHITE - X : DLIN CORP. CHEMICALS GROUP (NIAGA GRAPHITE METHYLATE FILTER RESIDUE 5.80 T - X : DLIN CORP. CHEMICALS GROUP (NIAGA GRAPHITE - X : DLIN CORP. CHEMICALS GROUP (NIAGA GRAPHITE GUART ASH SLUDGE CONTAINING PERCHLORGETHYLENE 143.00 T - X : DLIN CORP. CHEMICALS GROUP (NIAGA GROUP (NIAGA GRAPHITE)) SLUDGE CONTAINING PERCHLORGETHYLENE 143.00 T - X : DLIN CORP. CHEMICALS GROUP (NIAGA GROUP (NIAGA GRAPHITE)) SLUDGE CONTAINING PERCHLORGETHYLENE 143.00 T - X : DLIN CORP. CHEMICALS GROUP (NIAGA GROUP (NIAGA GRAPHITE)) SLUDGE CONTAINING PERCHLORGETHYLENE 143.00 T - X : DLIN CORP. CHEMICALS GROUP (NIAGA GROUP (NIAGA GRAPHITE)) SUDGE CONTAINING PERCHLORGETHYLENE 10.50 T - X : DLIN CORP. CHEMICALS GROUP (NIAGA GROUP (NIAGA GRAPHITE)) SUDGE CONTAINING PERCHLORGETHYLENE 120.00 T - X : DLIN CORP. CHEMICALS GROUP (NIAGA GROUP (NIAGA GRAPHITE)) SUDGE CONTAINING PERCHLORGETHYLENE 10.10 CORP. CHEMICALS GROUP (NIAGA GROUP (NIAGA GRAPHITE)) 0.50 T - X : DLIN CORP. CHEMICALS GROUP (NI	MASTE DESCRIPTION GUANTITY U STE CODE: 9 MASTE DESCRIPTION GUANTITY U S D GENERATOR NAME BRINE MUD GUANTITY U S D GENERATOR NAME CAUSTIC FILTER BACKWASH FILTER TUBES 1 12.093.00 T X ICLIN CORP. CHEMICALS GROUP (NIAGA GRAPHITE CAUSTIC GODA METHLATE FILTER RESIDUE 5.80 T X ICLIN CORP. CHEMICALS GROUP (NIAGA GRAPHITE SECONDARY TREATMENT SLUDGE 134:00 T X ICLIN CORP. CHEMICALS GROUP (NIAGA SCONDARY TREATMENT SLUDGE SECONDARY TREATMENT SLUDGE 134:00 T X ICLIN CORP. CHEMICALS GROUP (NIAGA SCONDARY TREATMENT GES W/ FAITY ACIDS, PERCHLOROETHYLENE 100 T CONTAINS PERCHLOROETHYLENE SUDGE CONTAINING PERCHLOROETHYLENE CONTAINS PERCHLOROETHYLENE 100 T X CLEANERS TETRACHLOROETHYLENE IN STILL RESITUE 200 TX CLEANE	的时间, PFCPCPC	*****	********						
BRINE MUD IUDANITIY U L S GENERATOR NAME CAUSTIC FILTER BACKWASH FILTER TUBES 12,093.00 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA CAUSTIC SODA I 12,093.00 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA GRAPHITE I - X X I BELL AEROSPACE COMPANY METHYLATE FILTER RESIDUE 5.80 T - X X I OLIN CORP. CHEMICALS GROUP (NIAGA SECONDARY TREATMENT SLUDGE 143.00 T - X X I OLIN CORP. CHEMICALS GROUP (NIAGA SUDDE CONTATININO PERCHLOROETHYLENE 20.00 T - X X I OLIN CORP. CHEMICALS GROUP (NIAGA SUDDE CONTATININO PERCHLOROETHYLENE 0.50 T - X X I OLIN CORP. CHEMICALS GROUP (NIAGA SUDDE CONTATININO PERCHLOROETHYLENE 0.50 T - X X I OLIN CORP. CHEMICALS GROUP (NIAGA SUDDE CONTATININO PERCHLOROETHYLENE 0.50 T - X X I OLIN CORP. CHEMICALS GROUP (NIAGA SUDDE CONTATININO PERCHLOROETHYLENE 0.50 T - X X I OLIN CORP. CHEMICALS GROUP (NIAGA TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T - X I CONO'S ONE-HOUR CLEANERS SITE CODEI 9 SITE DESCRIPTION NLINDUSTRIES INC, 4511 HYDE PARK BLUD,N.F. ** TAM CERAMICS SITE CODEI 9 <	BRINE HUD CAUSTIC FILTER BACKWASH FILTER TURES 12,093.00 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA CAUSTIC FILTER BACKWASH FILTER TURES CAUSTIC FILTER BACKWASH FILTER TURES 157.00 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA GRAPHITE METHYLATE FILTER RESIDUE 5.80 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA L - X I BELL ARKOSPACE COMPANY METHYLATE FILTER RESIDUE 5.80 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA SECONDARY TREATMENT SLUDGE SLUDGE CONTAINING PERCHLORGETHYLENE 143.00 T I - X - X I OLIN CORP. CHEMICALS GROUP (NIAGA 94.00 T I - X - X I OLIN CORP. CHEMICALS GROUP (NIAGA 95.00 T I - X - I COSNO'S ONE-HOUR CLEANERS 124.00 T I - X - I COSNO'S ONE-HOUR CLEANERS 125.00 T I - X - I COSNO'S ONE-HOUR CLEANERS 125.00 T I - X - I COSNO'S ONE-HOUR CLEANERS 125.00 T I X I WALKER LAUNDRY SITE RESCRIPTION NL INDUSTRIES INC, 4511 HYDE PARK BLVD, N.F. * TAM CERAMICS SITE CORE 19-3 SITE CORERTY IN LAUNDRY SITE DESCRIPTION NL INDUSTRIES INC, 4511 HYDE PARK BLVD, N.F. * TAM CERAMICS SITE CORE 19-3 SITE CORERTY IN NL INDUSTRIES INC, 4511 HYDE PARK BLVD, N.F. * TAM CERAMICS SITE DESCRIPTION NL INDUSTRIES INC, 4511 HYDE PARK BLVD, N.F. * TAM CERAMICS SITE CORE 19-3 SITE CORE 19-3 MASTE DESCRIPTION NL INDUSTRIES INC, 4511 HYDE PARK BLVD, N.F. * TAM CERAMICS SITE CORE 19-30 MASTE DESCRIPTION NL Y CHEMICAL CORP.2153 LOCKFORT-OLCOTT RD, BURT, MY SITE CORE 19-3 SITE CORE 19-3 MASTE DESCRIPTION MASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	HANNANANANANANANANANANANANANANANANANANA	TOWN C	OF WHEATP	IEL	.D			SITE CODE:	**** 9-32
BRINE MUD II2,093.00 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA CAUSTIC FILTER BACKWASH FILTER TUBES II2,093.00 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA GRAPHITE S.80 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA BETRY LATE FILTER RESIDUE S.80 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA RETTYLATE FILTER RESIDUE S.80 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA SECONDARY TREATMENT SLUDGE II43.00 T I - X X I DLIN CORP. CHEMICALS GROUP (NIAGA SUBGE CONTAINING PERCHLOROETHYLENE II43.00 T I - X X I OLIN CORP. CHEMICALS GROUP (NIAGA SUBGE CONTAINING PERCHLOROETHYLENE IIII OLIN CORP. CHEMICALS GROUP (NIAGA SUBGE CONTAINING PERCHLOROETHYLENE IIII OLIN CORP. CHEMICALS GROUP (NIAGA SPENT FILTER CARTRIDGES W/ FATTY ACIDS, FERCHLOROETHYLENE 0.50 T I - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T I - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T I X I WALKER LAUNDRY SITE DESCRIPTION: NL INFUSTRIES INC, 4511 HYDE PARK BLVD,N.F. THAC CERAMICS SITE CODE : 9 WASTE DESCRIPTION: NOURY CHEMICAL CORP. 2153 LOCKPORT-OLCOTT RD, BURT,NY GENERATOR NAME SITE CODE : 9 WASTE DESCRIPTION WUANTITY U L S D GENERATOR NAME SITE CODE : 9 WASTE DESCRIPTION <td>BRINE MUD 12,093.00 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA CAUSTIC SODA GRAPHITE 157.00 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA GRAPHITE METHYLATE FILTER RESIDUE 5.80 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA CAUSTIC SODA METHYLATE FILTER RESIDUE 5.80 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA GRAPHITE METHYLATE FILTER RESIDUE 5.80 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA CAUSTIC SODA SECONDARY TREATHENT SLUDGE SLUDGE CONTAINING PERCHLOROETHYLENE 143.00 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA GROUP (MIAGA SCONMARY TREATHENT SLUDGE SLUDGE CONTAINING PERCHLOROETHYLENE SFERT FILTER CARTRIDGES W/ FATTY ACIDS, PERCHLOROETHYLENE 0.50 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA GROUP (MIAGA GROUP (MIAGA GROUP (MIAGA SPENT FILTER CARTRIDGES W/ FATTY ACIDS, PERCHLOROETHYLENE TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T 1 - X - 1 COSMO'S DNE-HOUR CLEANERS CONT 1 - X - 1 COALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T 1 X 1 WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, ASI'N MYDE PARK BLUD, N.F. * TAM CERAMICS SITE CORE 1 9-3 GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES 1 2.00 T 1 - X X 1 TAM CERAMICS INC. WASTE DESCRIPTION ULANTITY U L S D GENERATOR NAME MASTE DESCRIPTION OUGAPTITY U L S D GENERATOR NAME MASTE DESCRIPTION OUGAPTITY U L S D GENERATOR NAME</td> <td></td> <td></td> <td>UANTITY</td> <td>•### U</td> <td>* # # 1</td> <td>•##4</td> <td>4### 7 Fi</td> <td>·并有关的关关并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并</td> <td></td>	BRINE MUD 12,093.00 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA CAUSTIC SODA GRAPHITE 157.00 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA GRAPHITE METHYLATE FILTER RESIDUE 5.80 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA CAUSTIC SODA METHYLATE FILTER RESIDUE 5.80 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA GRAPHITE METHYLATE FILTER RESIDUE 5.80 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA CAUSTIC SODA SECONDARY TREATHENT SLUDGE SLUDGE CONTAINING PERCHLOROETHYLENE 143.00 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA GROUP (MIAGA SCONMARY TREATHENT SLUDGE SLUDGE CONTAINING PERCHLOROETHYLENE SFERT FILTER CARTRIDGES W/ FATTY ACIDS, PERCHLOROETHYLENE 0.50 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (MIAGA GROUP (MIAGA GROUP (MIAGA GROUP (MIAGA SPENT FILTER CARTRIDGES W/ FATTY ACIDS, PERCHLOROETHYLENE TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T 1 - X - 1 COSMO'S DNE-HOUR CLEANERS CONT 1 - X - 1 COALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T 1 X 1 WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, ASI'N MYDE PARK BLUD, N.F. * TAM CERAMICS SITE CORE 1 9-3 GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES 1 2.00 T 1 - X X 1 TAM CERAMICS INC. WASTE DESCRIPTION ULANTITY U L S D GENERATOR NAME MASTE DESCRIPTION OUGAPTITY U L S D GENERATOR NAME MASTE DESCRIPTION OUGAPTITY U L S D GENERATOR NAME			UANTITY	•### U	* # # 1	•##4	4### 7 Fi	·并有关的关关并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并	
CAUSTIC FILTER BACKWASH FILTER TUBES 12,003,00 T 1 - X - 1 OLIN CORP. CHEMICALS GROUP (NIAGA GRAPHITE CAUSTIC GODA 137.00 T 1 - X X 1 DLIN CORP. CHEMICALS GROUP (NIAGA I - X X 1 BELL AEROSPACE COMPANY METHYLATE FILTER RESIDUE METHYLATE FILTER RESIDUE 5.80 T 1 - X 1 DLIN CORP. CHEMICALS GROUP (NIAGA SECONDARY TREATMENT SLUDGE SLUDGE CONTAINING PERCHLORGETHYLENE 143.00 T 1 - X X 1 DLIN CORP. CHEMICALS GROUP (NIAGA SLUDGE CONTAINING PERCHLORGETHYLENE SLUDGE CONTAINING PERCHLORGETHYLENE 143.00 T 1 - X X 1 DLIN CORP. CHEMICALS GROUP (NIAGA SLUDGE CONTAINING PERCHLORGETHYLENE SHUDGE CONTAINING PERCHLORGETHYLENE 0.50 T 1 - X X 1 DLIN CORP. CHEMICALS GROUP (NIAGA SLUDGE CONTAINING PERCHLORGETHYLENE SPENT FILTER CRATRIDGES W/ FATTY ACIDS, PERCHLORGETHYLENE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLORGETHYLENE IN STILL RESIDUE TETRACHLORGETHYLENE IN STILL RESIDUE 0.50 T 1 - X - 1 WALKER LAUNDRY TETRACHLORGETHYLENE IN STILL RESIDUE 20.00 T 1 X 1 WALKER LAUNDRY SITE CODE1 Y SITE CODE1 Y WASTE DESCRIPTION CUANTITY U L S D GENERATOR NAME 3 CON T 1 - X X 1 TAM CERAMICS INC. WASTE DESCRIPTION CUANTITY U L S D GENERATOR NAME SITE CODE1 Y WASTE DESCRIPTION CUANTITY U L S D GENERATOR NAME SITE CODE1 Y	CAUSTIC FILTER BACKWASH FILTER TUBES 1157.003.00 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA CAUSTIC SODA CAUSTIC SODA 157.00 T I - X I OLIN CORP. CHEMICALS GROUP (NIAGA I X I OLIN CORP. CHEMICALS GROUP (NIAGA C X I OLIN CORP. CHEMICALS GROUP (NIAGA SLUDGE CONTAINING PERCHLOROETHYLENE RETHVLATE FILTER RESIDUE 143.00 T I - X I OLIN CORP. CHEMICALS GROUP (NIAGA SLUDGE CONTAINING PERCHLOROETHYLENE SECONDARY TREATHENT SLUDGE 20.00 T I - X I OLIN CORP. CHEMICALS GROUP (NIAGA SLUDGE CONTAINING PERCHLOROETHYLENE SFENT FILTER CARTRIDGES W FATTY ACIDS, PERCHLOROETHYLENE 0.50 T I - X - I COSMO'S ONE-HOUR CLEANERS 0.50 T I - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T I - X - I WALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T I - X - I WALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T I X I WALKER LAUNDRY SITE CODEI I WALKER LAUNDRY SITE CODEI I WALKER LAUNDRY SITE CODEI I WALKER LAUNDRY SITE CODEI	DOTNE MUD								
GRAPHITE :<	BRAPHITE : : : X : BELL AEROSPACE COMPANY METHYLATE FILTER RESIDUE : SB0 T : - X : BELL AEROSPACE COMPANY METHYLATE FILTER RESIDUE : SB0 T : - X : BELL AEROSPACE COMPANY METHYLATE FILTER RESIDUE : SB0 T : - X : BELL AEROSPACE COMPANY METHYLATE FILTER RESIDUE : 0.00 T : - X : BLIN CORP. CHEMICALS GROUP (NIAGA BECONNARY TREATHENT BLUDGE : 20:00 T : - X : BLIN CORP. CHEMICALS GROUP (NIAGA BUDDE CONTAINING PERCHLOROETHYLENE : : : X : BLIN CORP. CHEMICALS GROUP (NIAGA SPENT FILTER CARTRIDUES W/ FATTY ACIDS, PERCHLOROETHYLENE : : X : BONO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE : <td>CAUSTIC FILTER BACKWASH FILTER TURES</td> <td>: 1</td> <td>2,093.00</td> <td>Т</td> <td>:</td> <td>- ></td> <td>(-</td> <td>+ OLIN CORP. CHEMICALS GROUP (NITAGA</td> <td></td>	CAUSTIC FILTER BACKWASH FILTER TURES	: 1	2,093.00	Т	:	- >	(-	+ OLIN CORP. CHEMICALS GROUP (NITAGA	
GRAPHITE I - X X I BELL AEROSPACE COMPANY METHYLATE FILTER REGIDUE 5.80 T I - X - I OLIN CORP. CHEMICALS GROUP (NIAGA RETORT ASH 143.00 T I - X X I DLIN CORP. CHEMICALS GROUP (NIAGA SECONDARY TREATMENT SLUDGE 20.00 T I - X X I DLIN CORP. CHEMICALS GROUP (NIAGA SUDGE CONTAINNO PERCHLOROETHYLENE 49.00 T I - X X I DLIN CORP. CHEMICALS GROUP (NIAGA SPENT FILTER CARTRIDGES W/ FATTY ACIDS, FERCHLOROETHYLENE 0.50 T I - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T I - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T I X I WALKER LAUNDRY SITE DESCRIPTIONI NL INDUSTRIES INC, 4511 HYDE PARK BLUDN, F. ** TAM CERAMICS SITE DESCRIPTIONI NL INDUSTRIES INC, 4511 HYDE PARK BLUDN, F. ** TAM CERAMICS WASTE DESCRIPTION GUANTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X I TAM CERAMICS INC. WASTE DESCRIPTIONI NOURY CHEMICAL CORP.2133 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 WASTE DESCRIPTIONI NOURY CHEMICAL CORP.2135 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 WASTE DESCRIPTIONI QUANTITY U L S D GENERATOR NAME	GRAPHITE 1 - X X I BELL AEROSPACE COMPANY METHYLATE FILTER REBIDUE 5.80 T : - X I DLIN CORP. CHEMICALS GROUP (NIAGA RETHYLATE FILTER REBIDUE 143.00 T : - X X I DLIN CORP. CHEMICALS GROUP (NIAGA SECONDARY TREATMENT SLUDGE 20.00 T : - X X I DLIN CORP. CHEMICALS GROUP (NIAGA SLUDGE CONTAINING PERCHLOROETHYLENE 0.50 T : - X X I DLIN CORP. CHEMICALS GROUP (NIAGA SPENT FILTER CARTRIDGES W/ FATTY ACIDS, PERCHLOROETHYLENE 0.50 T : - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLORETHYLENE 0.50 T : - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLORETHYLENE IN STILL RESIDUE 2.00 T : X I WALKER LAUNDRY SITE DEBCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE CODEI 9-3 WASTE DESCRIPTION: MADUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE CODEI 9-3 WASTE DESCRIPTION: UEST DESCRIPTION: US S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES 2.00 T : - X X I TAM CERAMICS INC. SITE CODEI 9-3 SITE DESCRIPTION NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9-3 WASTE DESCRIPTION CONF, 2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9-3 WASTE DESCRIPTION CONF, 2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9-3 WASTE DESCRIPTION CONF,	CAUSTIC SODA		157.00	Т	- i	-)	(X)	I OLIN CORP. CHEMICALS BROUP (NIAGA	G
RETORT ASH 143.00 1 1 - X X 1 DLIN CORP. CHEMICALS GROUP (NIAGA SECONDARY TREATMENT SLUDGE 20.00 T 1 - X X 1 DLIN CORP. CHEMICALS GROUP (NIAGA SLUDGE CONTAINING PERCHLOROETHYLENE 0.50 T 1 - X X 1 DLIN CORP. CHEMICALS GROUP (NIAGA SPENT FILTER CARTRIDGES W/ FATTY ACIDS, PERCHLOROETHYLENE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE CODE: 9 WASTE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE CODE: 9 CIRCONIUM TETRACHLORIDE RESIDUES 2.00 T 1 - X X 1 TAM CERAMICS INC. WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME SITE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	RETORT ASH 143.00 T 1 - X X 1 ULIN CORP. CHEMICALS GROUP (NIAGA SECONDARY TREATMENT SLUDGE 120.00 T 1 - X X 1 ULIN CORP. CHEMICALS GROUP (NIAGA SUDDE CONTAINING PERCHLOROETHYLENE 49.00 T 1 - X X 1 ULIN CORP. CHEMICALS GROUP (NIAGA SPENT FILTER CARTRIDGES W/ FATTY ACIDS, PERCHLOROETHYLENE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T 1 X - 1 WALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T 1 X - 1 WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE CODE: 9-3 WASTE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE CODE: 9-3 WASTE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE CODE: 9-3 SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE CODE: 9-3 WASTE DESCRIPTION: MUM TETRACHLORIDE RESIDUES 2.00 T : - X X 1 TAM CERAMICS INC. SITE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9-3 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME MASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME		•			- i	-)	(X	I HELL AEROSPACE COMPANY	0
SECONDARY TREATMENT SLUDGE - 20.00 1 1 - X X 1 OLIN CORP. CHEMICALS GROUP (NIAGA SLUDGE CONTAINING PERCHLOROETHYLENE SHUDGE CONTAINING PERCHLOROETHYLENE - 49.00 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS 0.50 T 1 - X - 1 WALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T 1 X 1 WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC,4511 HYDE FARK BLUD,N.F. ** TAM CERAMICS SITE CODE: 9 WASTE DESCRIPTION CUANTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X 1 TAM CERAMICS INC. SITE CODE: 9 WASTE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 SITE CODE: 9 WASTE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 SITE CODE: 9 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	SECONDARY TREATMENT SLUDGE 1 20:00 1 1 - X X 1 OLIN CORP. CHEMICALS GROUP (NIAGA SLUDGE CONTAINING PERCHLOROETHYLENE 1 49:00 1 1 - X X 1 OLIN CORP. CHEMICALS GROUP (NIAGA SPENT FILTER CARTRIDGES W/ FATTY ACIDS, PERCHLOROETHYLENE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T 1 - X - 1 CAPITOL CLEANERS SITE DESCRIPTIONI NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ************************************	METHYLATE FILTER RESIDUE		147.00	· 1		- ?		I OLIN CORP. CHEMICALS GROUP (NIAGA	G
SLUDGE CONTAINING PERCHLOROETHYLENE : 0,00 T : - X + 1 ULIN UURP. CHEMICALS GROUP (NIAGA SPENT FILTER CARTRIDGES W/ FATTY ACIDS, PERCHLOROETHYLENE : 0,00 T : - X + 1 ULIN UURP. CHEMICALS GROUP (NIAGA SPENT FILTER CARTRIDGES W/ FATTY ACIDS, PERCHLOROETHYLENE TETRACHLOROETHYLENE : 0,50 T : - X - 1 COSMO'S ONE-HOUR CLEANERS : 0,50 T : - X - 1 COSMO'S ONE-HOUR CLEANERS : 0,50 T : - X - 1 CAPITOL CLEANERS : 0,50 T : - X - 1 WALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE : 0,50 T : X 1 WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE FARK BLUD, N.F. ** TAM CERAMICS SITE CODE: 9 WASTE DESCRIPTION : 0.00 T : X 1 WALKER LAUNDRY ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X : TAM CERAMICS INC. SITE DESCRIPTION: NOURY CHEMICAL CORP., 2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 WASTE DESCRIPTION : 0.00 T : - X X : TAM CERAMICS INC. WASTE DESCRIPTION : 0.00 T : - X X : TAM CERAMICS INC.	SLUDGE CONTAINING PERCHLOROETHYLENE 0.50 T i - X + 1 CLIN CLORP, CHEMICALS GROUP (NIAGA SFENT FILTER CARTIFICES W/ FATTY ACIDS, PERCHLOROETHYLENE BFENT FILTER CARTIFICES W/ FATTY ACIDS, PERCHLOROETHYLENE 0.50 T i - X - 1 COSHO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T i - X - 1 CARTOL CLEANERS SITE DESCRIPTIONI NL INFUSTRIES INC, 4511 HYDE PARK BLUD,N.F. ** TAM CERAMICS SITE COPIE 9-3 WASTE DESCRIPTIONI NL INFUSTRIES INC, 4511 HYDE PARK BLUD,N.F. ** TAM CERAMICS SITE COPIE 9-3 WASTE DESCRIPTIONI NL INFUSTRIES INC, 4511 HYDE PARK BLUD,N.F. ** TAM CERAMICS SITE COPIE 9-3 WASTE DESCRIPTIONI NL INFUSTRIES INC, 4511 HYDE PARK BLUD,N.F. ** TAM CERAMICS SITE COPIE 9-3 WASTE DESCRIPTION CUANTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X : TAM CERAMICS INC. SITE COFE: 9-3 SITE DESCRIPTIONI NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT, NY SITE COFE: 9-3 SITE COFE: 9-3 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME			20.00		•	- 2	(.X.	I DLIN CORP. CHEMICALS GROUP (NIAGA	G
SPENT FILTER CARTRINGES W/ FATTY ACIDS, PERCHLORDETHYLENE 0.50 T I - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLORDETHYLENE 0.50 T I - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLORDETHYLENE IN STILL RESIDUE 0.50 T I - X - I COSMO'S ONE-HOUR CLEANERS TETRACHLORDETHYLENE IN STILL RESIDUE 0.50 T I - X - I COSMO'S ONE-HOUR CLEANERS SITE TETRACHLORDETHYLENE IN STILL RESIDUE 20.00 T I X I WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLVD, N.F. ** TAM CERAMICS SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLVD, N.F. SITE CORE: 9 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X I TAM CERAMICS INC. WASTE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 WASTE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 WASTE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	SPENT FILTER CARTRINGES W/ FATTY ACIDS, FERCHLOROETHYLENE 0.50 T i - X - i COSMO'S ONE-HOUR CLEANERS TETRACHLORETHYLENE 0.50 T i - X - i COSMO'S ONE-HOUR CLEANERS TETRACHLORETHYLENE 0.50 T i - X - i COSMO'S ONE-HOUR CLEANERS TETRACHLORETHYLENE 10.50 T i - X - i COSMO'S ONE-HOUR CLEANERS TETRACHLORETHYLENE 10.50 T i - X - i CAPITOL CLEANERS TETRACHLORETHYLENE 10.50 T i - X - i CAPITOL CLEANERS TETRACHLORETHYLENE 10.50 T i - X - i CAPITOL CLEANERS TETRACHLORETHYLENE 10.50 T i - X - i CAPITOL CLEANERS TETRACHLORETHYLENE 10.50 T i - X - i CAPITOL CLEANERS SITE DESCRIPTION: 10.1005TRIES INC, 4511 HYDE FARK BUVD, N.F. ** TAM CERAMICS SITE CUCE: 9-3 MASTE DESCRIPTION 0.00 T i - X X i TAM CERAMICS SITE CUCE: 9-3 ZIRCONIUM TETRACHLORIDE RESIDUES 2.00 T i - X X i TAM CERAMICS INC. ************************************	SECONDARY TREATMENT SLUDGE		49.00	T	•	= (ULIN CURP. CHEMICALS GROUP (NIAGA	. G (
TETRACHLORETHYLENE 1 0.50 T 1 - X - 1 COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T 1 X - 1 WALKER LAUNDRY TETRACHLOROETHYLENE IN STILL RESIDUE 20.00 T 1 X 1 WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE CODE: 9 WASTE DESCRIPTION 0.40NTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X I TAM CERAMICS INC. SITE DESCRIPTIONI NOURY CHEMICAL CORP, 2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	TETRACHLORETHYLENE 0.50 T : - X - : COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE 0.50 T : X - : COSMO'S ONE-HOUR CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE : 20.00 T : X : WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE COTE: 9-3 WASTE DESCRIPTION CUANTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X : TAM CERAMICS INC. ************************************	SLUDGE CONTAINING PERCHLOROETHYLENE	:	0.50	Ť	;	- 1	2	1 COSMOLS ONE HOUR ON SAME	
TETRACHLORE THILENE i 0.50 T : - X - : CAPITOL CLEANERS TETRACHLOROETHYLENE IN STILL RESIDUE : 0.50 T : X : WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC,4511 HYDE FARK BLVD,N.F. ** TAM CERAMICS SITE CODE: 9 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X : TAM CERAMICS INC. WASTE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT,NY SITE CODE: 9 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME SITE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT,NY SITE CODE: 9 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	TETRACHLORDETHYLENE IN STILL RESIDUE : 0.50 T : - X - : CAPITOL CLEANERS TETRACHLORDETHYLENE IN STILL RESIDUE : 20.00 T : X : WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAN CERAMICS SITE CODE: 9-3 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X : TAM CERAMICS INC. ************************************	TETRACHI DESTUM SHE	1	0.50	Ť	i	- 2	-	1 COSHD'S UNE-HUUR CLEANERS	G
TETRACHLOROETHYLENE IN STILL RESIDUE : 20.00 T : X : WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUDD, N.F. ** TAM CERAMICS SITE CODE: 9 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X : TAM CERAMICS INC. SITE DESCRIPTION: NOURY CHEMICAL CORP, 2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 WASTE DESCRIPTION : 2.00 T : - X X : TAM CERAMICS INC. WASTE DESCRIPTION : 2.00 T : - X X : TAM CERAMICS INC. WASTE DESCRIPTION : 2.00 T : - X X : TAM CERAMICS INC. SITE CODE: 9 : 2.00 T : - X X : TAM CERAMICS INC. WASTE DESCRIPTION: NOURY CHEMICAL CORP, 2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9 WASTE DESCRIPTION : 2.00 T : - X X : TAM CERAMICS INC.	TETRACHLOROETHYLENE IN STILL RESIDUE : 20.00 T : X : WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLUD, N.F. ** TAM CERAMICS SITE CODE: 9-3 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X : TAM CERAMICS INC. SITE DESCRIPTION: NURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT RD, BURT, NY SITE CODE: 9-3 WASTE DESCRIPTION : 2.00 T : - X X : TAM CERAMICS INC. WHENNEL WASHEN WASHE		:	0.50	Т	:	– ×	-	LAPITOL CLEANERS	G
· S.00 I : X : WALKER LAUNDRY · SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE FARK BLUD, N.F. ** TAM CERAMICS SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE FARK BLUD, N.F. ** TAM CERAMICS SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE FARK BLUD, N.F. ** TAM CERAMICS SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE FARK BLUD, N.F. ** TAM CERAMICS SITE DESCRIPTION QUANTITY U L S D GENERATOR NAME ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X : TAM CERAMICS INC. ************************************	S.00 1 : X : WALKER LAUNDRY SITE DESCRIPTION: NL INDUSTRIES INC, 4511 HYDE PARK BLVD,N.F. ** TAM CERAMICS MASTE DESCRIPTION QUANTITY U LSCOPTION: NURVE SITE DESCRIPTION: NURVE WASTE DESCRIPTION QUANTITY U LSCOPTION: NOURY CHEMICAL CORP.2153 LOCAPORT-OLCOPT WASTE DESCRIPTION QUANTITY U LSD GENERATOR NAME SITE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCAPORT-OLCOPT WASTE DESCRIPTION QUANTITY U LSD GENERATOR NAME SITE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCAPORT-OLCOPT QUANTITY U LSD GENERATOR NAME SITE DESCRIPTION: NOURY CHEMICAL CORP.2153 LOCAPORT-OLCOPT QUANTITY LSD GENERATOR NAME SITE DESCRIPTION QUANTITY LSD GENERATOR NAME SITE DESCRIPTION QUANTITY	TETRACHLOROFTHYLENE IN STILL RESIDUE	:	20.00	Т	1	X -	-	# WALKER LAUNTRY	G
SITE DESCRIPTION: NL INDUSTRIES INC,4511 HYDE PARK BLUD,N.F. ************************************	with ####################################									C (
ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X : TAM CERAMICS INC.	ZIRCONIUM TETRACHLORIDE RESIDUES : 2.00 T : - X X : TAM CERAMICS INC.	零金塔冰岛水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水	:	5.00	1	Ŧ	х -			G
• 2.00 I I - X X I TAM CERAMICS INC. ************************************	<pre> 2.00 T : - X X : TAM CERAMICS INC. WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW</pre>		*******	5.00 ******** * TAM CE	1 *** RAM	; *** ICS	× -	***	SITE CORE: 5	G(**** ?-32-
MARKANNANANANANANANANANANANANANANANANANAN	MANAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWA	WHEN HEN HEN HEN HEN HEN HEN HEN HEN HEN		5.00	1 *** RAM ***	; *** ICS ***	× -	***		G(****
WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	WHEN HEN HEN HEN HEN HEN HEN HEN HEN HEN		5.00	1 *** RAM ***	; *** ICS ***	× -	***		G(-32-
WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	WHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	: : : : : :	5.00 ******** * TAM CE ******** UANTITY 2.00	1 RAM 8 + + U - T	; *** ICS ***	X - *** - - - X	*** *** D X	SITE CODE: S SITE CODE: S GENERATOR NAME I TAM CERAMICS INC.	G(-32-
GUDALITY U. L. S. U. GENERATOR NAME	GENERATOR NAME	WHEN WERE WERE WERE WERE WERE WERE WERE WE		5.00 ******** * TAM CE ******** UANTITY 2.00	1 RAM RAM H++ U T	; *** ICS ***	x - *** L. S X	*** *** D X	SITE CODE: S SITE CODE: S GENERATOR NAME CENAMICS INC.	9-32- **** G0
		WARRAW WA	(***** () 	5.00 ********* * TAM CE ******** UANTITY 2.00 ********	1 RAM 844 U T T	• • • • • • •	X - **** L. S X ***	*** D X ***	SITE CODE: 9	G(
		WARRAW WA		5.00 ******** UANTITY 2.00 *********	I RAM KAM U T T	• • • • • • •	X - **** L. S X ***	**** D X ****	SITE CODE: 9	G(
		WARRAW WA		5.00 ******** UANTITY 2.00 *********	I RAM KAM U T T	• • • • • • •	X - **** L. S X ***	**** D X ****	SITE CODE: 9	G(
		WARRAW WA		5.00 ******** UANTITY 2.00 *********	I RAM KAM U T T	• • • • • • •	X - **** L. S X ***	**** D X ****	SITE CODE: 9	G(
·		WARRAW WA		5.00 ******** UANTITY 2.00 *********	I RAM KAM U T T	• • • • • • •	X - **** L. S X ***	**** D X ****	SITE CODE: 9	G(
		WARRAW WA		5.00 ******** UANTITY 2.00 *********	I RAM KAM U T T	• • • • • • •	X - **** L. S X ***	**** D X ****	SITE CODE: 9	G(

COLORIDATION OF TAXABLE

(Append. x 1.4.1-5

May 1, 1970

Mr. Kenneth Moss Niagara County Solid Waste Agency Bewley Building Lockport, New York 14094

> Re: Niagara County Solid Waste Agency Site Town of Wheatfield

Dear Mr. Moss:

1999 - 1998 1997 - 1998 1997 - 1999 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1

1 11

Due to problems which have occurred with incinerator waste being transported from the Niagara Falls incinerator site and disposed of at the Town of Wheatfield solid waste site, it is requested that your agency become involved in the corrections of these problems.

It has come to our attention that the Niagara County waste site is unmanned after 5:00 P.M. and left open to allow the vehicles from the City of Niagara Falls to dispose of incinerator residue waste. It has been noted that the residue waste on its arrival at this site is still smoldering and if not properly disposed of will cause continuous burning if not attended to.

The Niagara County Health Department has had several complaints from concerned citizens from the City of North Tonawanda living near this site as to the burning and acridsmoke odors which continue to emanate throughout the night. I myself have seen these vehicles dispose this waste at this site through the night. I have seen these trucks coming down River Road with burning particles flying through the air.

Since we cannot allow this to continue, some means of action will have to be taken. If this site is to be operating or to remain open 24 hours per day, it will have to operate in such a manner as to comply with Part 19 of the New York State Sanitary Code and Chapter IV of the Niagara County Sanitary Code. Mr. Kenneth Moss Page 2 May 1, 1970

2 LE X

The agency, as you are well aware, is fully responsible for all infractions or violations which occur at this site. You are advised, therefore, that some means must be taken to properly control this residue during the periods after 5:00 P.M.

If there are any questions, please call or write this office. • . •

Yours very truly,

Michael Popovici Acting Chief of Air Pollution Control

د .

1.15

.

. *

. · ·

. .

MP:ms

· : .

. . ..

1. 253.2.3 at as a d *n*

···

> • • and a series of a ta a ta a ta a . Carta . . .

÷.

. .

7. .

•

1

11

Appendia 1.4.1-6 file.

May 18, 1973

Mr. Kenneth Moss, Director 1. the second of the second of Mr. Kenneth Moss, Director Niagara County Refuse Disposal Agency Bewley Building Lockport, New York 14094 Re: Site Inspection - May 10, 1973

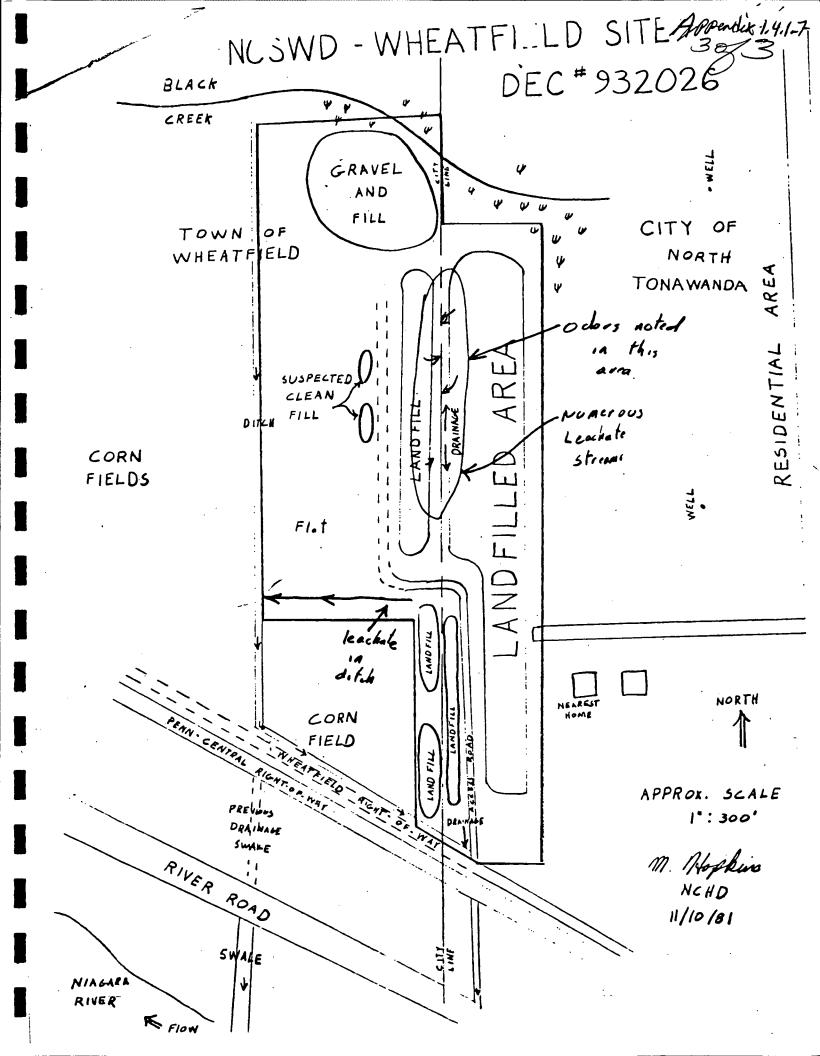
Dear Mr. Moss:

On May 10, 1973, you conducted a tour of the Niagara County Refuse Disposal Town of Wheatfield site accompanied by Mr. J. Tygert, Engineer with the New York State Department of Environmental Conservation, Mr. Malinchock and myself. The following violations were noted:

- Various areas of exposed and protruding refuse noted 1. throughout the site.
- Pooling water was noted in various areas on the site 2. as well as leachate.
- 3. Drainage ditches along the north and west boundary contained leachate.
- The leachate drainage from the site is still entering 4. the Niagara River in front of Demler's Cider Mill, River Road, Town of Wheatfield.
- Two feet of final cover was not placed on exhausted 5. landfill areas.
- Leachate discharges are occurring from the completed 6. refuse landfill lift areas.

Work must begin immediately with the assistance of your engineering advisors to correct and bring into compliance (Title 6, Part 360, New York State Department of Environmental Conservation Rules and Regulations) all of the aforementioned violations.

Please submit a scheduled program showing the plan, work scheduled, and expected completion dates on all corrections.

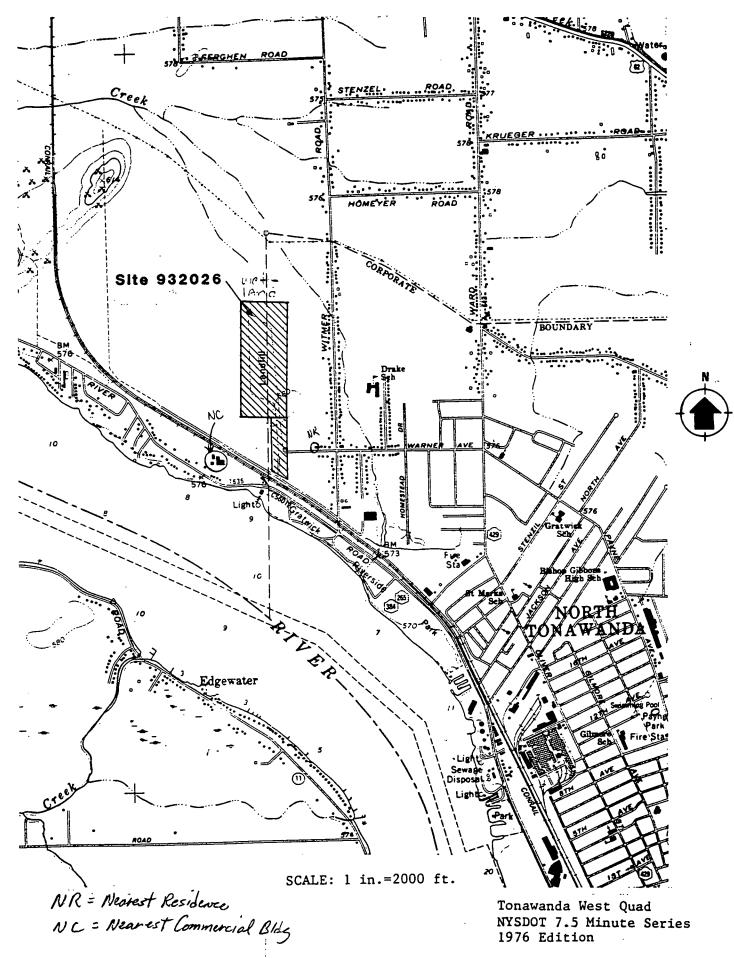

Yours very truly.

Michael Popovici Acting Chief of Air T1 - 7 1 - + + + -

MP:ms.

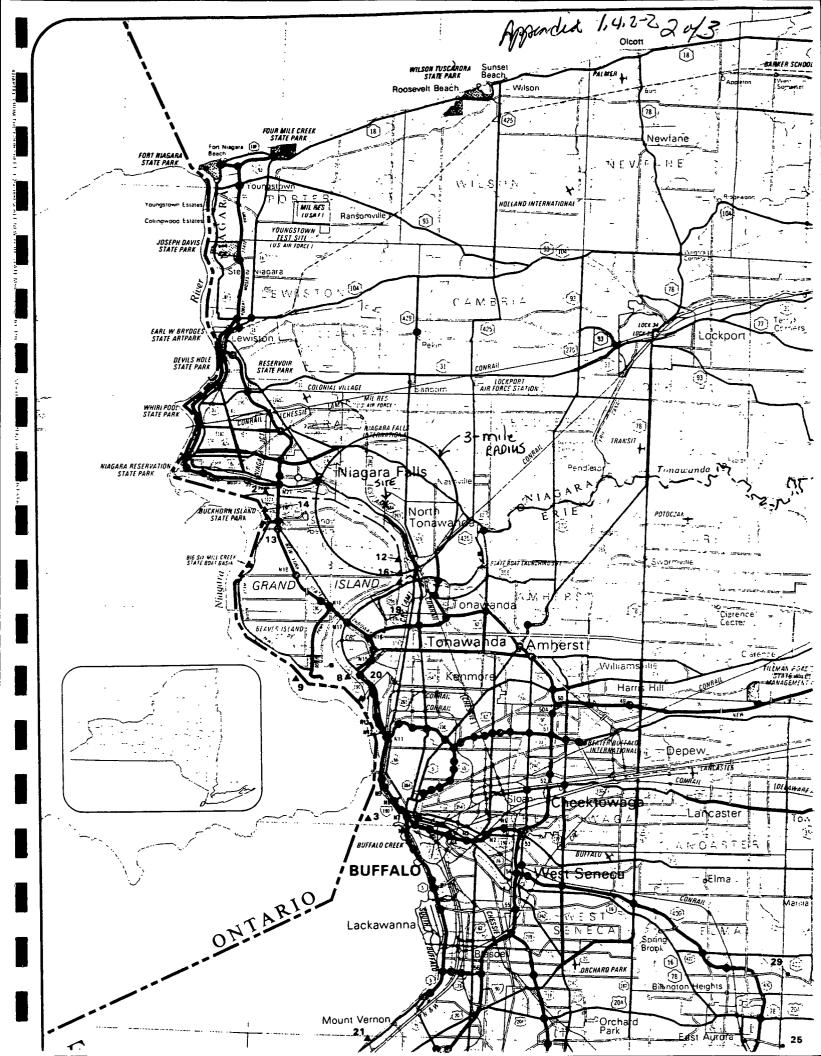
Popendix 1.4.1-7 Hilo - wheathered NIAGARA COUNTY Code Location DEPARTMENT OF HEALTH Service Request No. Date Received Complaint service Requese Inspection of Inactive Lundfill - NKSWD - Whatfield Driginator of Complaint NCHD - Schedule C Address -Juner Toma of wheatfield Address -Joccupant Miship - wheatfield landfill Address off within Road, Naith Tom Hours REPORT OF INVESTIGATION An inspection of the NCSUD site was made by the writer. The following problems were noted: /82 1) Leachate is flowing off site via an east-ment desinge ditch near the centre of the property. The leachate is deep red brown, really opagie and often with Y2" of redbrown "scum" on its surface 2) peachate is collecting in a north south sure in the northern section of the lundfill beachate varied frig blacking water to water with oil film to a ved broug leachate similiar to that noted in #1. This leachate appears confined to sate As noted in previews inspections, scaninger dumping is severe and in several locations scorriger material is clogging drainage ditchs. Odors were found in the surple noted in # 2. The odors varied from a "sour milt" odor to a chuncheristic "guibage" ador 4) "gurbage" oder 5) Erosion is a problem in some areas Refuse has been exposed by crossion in one area some areas have no vegatative cover Date Abated By

		Appendix 1.4.1-7
and the second s		Code Activity
A STATE OF THE STA	NIAGARA COUNTY	Code Location
1	DEPARTMENT OF HEALTH	Service Request No.
		-
	NICCE AND IN IC I	Date Received Complaint
Service Request	NCSUD - Whatfield	
Driginator of Complaint	Address	
	Address	
Occupant	Address	······
te Hours	REPORT OF INVESTIGA	TION .
		· · · · · · · · · · · · · · · · · · ·
	6) Access is unrestricted	
	7) In general the sate we	s dry at this time.
	T) In general the sole was	e problems man occurs
	in wet weather	The second and second
	· · · · · · · · · · · · · · · · · · ·	•
	· · · · · · · · · · · · · · · · · · ·	
		MANI
		M. affler
		······
	•	· · ·
		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· ·
	· 	
	· · · · · · · · · · · · · · · · · · ·	·


pondix 1.4.1-8 P.J. Code Activity . Service Request Nog NIAGARA COUNTY DEPARTMENT OF HEALTH Date Received Complaint Service Request Fossible Chen, Burns from Hay. Mat. Originator of Complaint Jean Krotsch Address 504 Wittenes Rol. N. Ton. Owner Magara County Refuse Comm. Address Wittenes Rol-Wheatfield Site. Occupant REPORT OF INVESTIGATION Hours Jare 9/17 78 Spoke to Mrs. Acan Kractesh at City Hall. She related that her son land, was out at the Co. Dump along watmes RA several weeks ago and after about Three days of being out at the dump he developed a burn no rach along his face and neck which they treated with Colimin totion and disappears in about 3 dons. They felt The war coused by topic materials at the dump. She told the writer Park was at home and that he could show writer the arca in question. Mit Paul Knoetsch, 14, at his home and intersience him with regards to the rash, activities, area involved etc. foul and his friends run field cars in the area of the dump. The day after being in the dump the developed a rash (red and the publick by the nest morning spread & cover the left side of his face and neck the could not recall un possability of contacting soison in or oak and hid hot know of any alloge Decitions which may cause the symptom -For Brigg prior to the rach Paul and been weather was dry and duty and fail had not sat or langed on the ground. He Thought that any toxic chemical muluer month have been carried in the dust and only affected half his face because that Date Abated

pendax 1.4.1-8 Code Activity Code Location NIAGARA COUNTY DEPARTMENT OF HEALTH Service Request No. Date Received Complaint Service Requese Joss Chem Burns from Hay Mat Originator of Complainty lean Knottsch Address 584 Witnes Bd. M.T. Owner Meagara County Befuse Comm. Address Witmes Rd. - Wheatfield Si Occupant Address Hours Date REPORT OF INVESTIGATION and related That as far as he knew monself his branch had had any adverse reactions. He has been back to the dump on numerous oleastons since the cleared but has not had any further reactions. Paul accompanies the writer on an impettion of the area he uses for field cars. Writer could not find any sign of any chemicals or sludges on the sit. Their no standing water. Vaul related that he never sam anything unusal at the dump however, he said that whether the drainage ditch along the south (with of the strong has a sheen as if it contains oil Writer suggests that this water course be analys weather Writer noted that the land fill site i quickly ereding and deep rute cat into the topand sides atthand fill. the rear sortion (east half) of the landfill were ever second it never toop. Site is barren clay, Site show be finished and second followed up to see that said takes and presents erosion. At one site the strain tile the perimeter of the cells have been underminet aroun and have collegased. Write also notes that Aumping, Apparently by printe interiduals, continues along reading, Mr. Those of I should be initiated such as a roadway gate, T. Frank Date Abated By

Appendix 1.4.2-1 (site Inspection)


COORDINATES: Latitude: 43 03'55' Longitude:78 54'22'

NIAGARA COUNTY R.D.-WHEATFIELD SITE

New York State Atlas of Community Water System Sources 1982

NEW YORK STATE DEPARTMENT OF HEALTH DIVISION OF ENVIRONMENTAL PROTECTION BUREAU OF PUBLIC WATER SUPPLY PROTECTION つゆでいい

ERIE COUNTY

ID NO COMMUNITY WATER SYSTEM

POPULATION SOURCE

appendix 1.4.2-2 3.73

Municipal Community

	Akron Village (See No 1 Wyoming Co,
	Page 10)
1	Alden Village
2	Angola Village
3	Buffalo City Division of Water357870Lake Erie
4	Caffee Water Company
5	Caffee Water Company
	Collins Water District #3
6	Collins Water Districts #1 and #2 1384Wells
1	Erie County Water Authority
	(Sturgeon Point Intake) 375000Lake Erie
8	Erie County Water Authority
	(Van DeWater Intake) NA Niagara River - East Branch
9	Grand Island Water District #2 9390 Niagara River
10	Holland Water District
11	Lawtons Water Company
12	Lockport City (Niagara Co) Niagara River - East Branch
13	Niagara County Water District (Niagara Co) Niagara River - West Branch
14	Niagara Falls City (Niagara Co), . Niagara River - West Branch
15	Niagara Falls City (Niagara Co) Niagara River - West Branch
16	North Collins Village 1500 Wells
17	North Tonawanda City (Niagara Co) Niagara River - West Branch
	orchard Fark Village,
18	Springville village
19	Tonawanda City Niagara River - Fast Branch
20	Ionawanda water District #1
21	Wanakah Water Company

Non-Municipal Community

22	Aurora Mobile Park
23	Bush Gardens Mobile Home Park
24	Circle B Trailer Court
25	Circle Court Mobile Park
26	Creekside Mobile Home Park
27	Donnelly's Mobile Home Court
28	Gowanda State Hospital
29	Hillside Estates.
30	Hunters Creek Mobile Home Park 150 Wells
31	Knox Apartments.
32	Maple Grove Trailer Court
33	Miligrove Mobile Park
34	Perkins Trailer Park
35	Quarry Hill Estates
36	Springville Mobile Park
37	Springwood Mobile Village
38	laylors Grove Trailer Park,
39	valley view Mobile Court
40	Villager Apartments NA Well's

"Ny State Department of Health, 1992. New York State alla of Community rees

Appendix 1.4.3-1 GROUND-WATER RESOURCES OF THE

Prepared for the Erie-Niagara Basin Regional Water Resources Planning Board

by

A. M. La Sala, Jr.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

in cooperation with

THE NEW YORK STATE CONSERVATION DEPARTMENT DIVISION OF WATER RESOURCES

STATE OF NEW YORK CONSERVATION DEPARTMENT WATER RESOURCES COMMISSION

Basin Planning Report ENB-3 1968

Appendix 1.4.3-) 20/2


CONTENTS

Ρ	а	a	e

Ľ

.

Acknowledgments	iv
	1-2
Abstract	y'e
Introduction	3
Purpose and scope	5
Well-numbering and location system	(-0)
Geology and topography	6-9
Occurrence of ground water	9
Occurrence of water in bedrock	10
Lockport Dolomite	12
Bedding and lithology	12
Water-bearing openings	12
Hydrologic characteristics	14
Hydraulic properties	15
Yields of wells	15
Camillus Shale	16
Bedding and lithology	16
Water-bearing openings	18
Hydrologic and hydraulic characteristics	20
Yields of wells	21
Limestone unit	21
Bedding and lithology	21
Water-bearing openings	22
Hydrologic and hydraulic characteristics	23
Yields of wells	24
Shale	25
Bedding and lithology	25
Water-bearing openings	25
Hydrologic characteristics	25
	26
Yields of wellsOccurrence of water in unconsolidated deposits	27-30)
	29
Till	30
Lake deposits	-
Glacial sand and gravel deposits	30
Lithology and thickness	30
Hydraulic properties	31
Yields of wells	31
Alluvium and swamp deposits	33
Ground-water hydrology	34
Movement of ground water	34
Changes in storage	36
Ground-water discharge	40
Ground-water recharge	53
Induced infiltration	55
Chemical quality of ground water	57
Sources of dissolved solids	57
Water reaching the water table	58
Effect of circulation in the saturated zone	59
Effect of wells on ground-water quality	63

CONTENTS (Continued)

	Page
ound-water pollution	65
Existing pollution	65
Potential pollution	67
Areas of high pollution potential	67
Direct disposal of wastes into the saturated zone	68
ound-water development	70
Construction of wells	70
Dug wells	70
Driven wells	71
Drilled wells	72
Evaluation of present development	72
Potential development	77
Design and spacing of wells	77
Methods of increasing recharge and controlling storage	79
nclusions	81
commendations	82
terature cited	83
pssary of ground-water terms and abbreviations used in the text	U
of this report	86

(Appendix 1.4.3-19/2

GROUND-WATER RESOURCES OF THE ERIE-NIAGARA BASIN, NEW YORK

By A. M. La Sala, Jr.

ABSTRACT

The Erie-Niagara basin, New York, borders Lake Erie and the Niagara River and includes the principal part of their drainage basin in New York. The area extends from the Cattaraugus Creek basin on the south to the Tonawanda Creek basin on the north. The northern part of the area and a narrow belt along Lake Erie are in the Erie-Ontario Lowlands, a region of low relief. The remainder of the area lies in the Appalachian Uplands, an area of considerable relief.

The principal water-bearing formations in the area are glacial sand and gravel deposits; the Camillus Shale, which contains interbedded gypsum; a limestone aquifer unit consisting of the Onondaga Limestone, Akron Dolomite, and Bertie Limestone; and the Lockport Dolomite. A number of thick and permeable sand and gravel deposits lie in valleys of the upland region and will yield supplies of 500 to 1,400 gpm (gallons per minute) to individual wells that are properly constructed. Several communities now obtain public water supplies from such deposits. The Camillus Shale, limestone unit, and Lockport Dolomite vary widely in water-bearing characteristics. Generally, only small to moderate supplies (less than 50 gpm) are available from these formations. However, where the waterbearing openings have been widened by solution of gypsum and carbonate minerals, the rocks provided large supplies. In and near Buffalo and Tonawanda, the Camillus Shale yields 400 to 1,200 gpm to individual wells, and the limestone unit yields as much as 300 gpm but more usually 100 gpm. The Lockport Dolomite does not yield more than 90 gpm to individual wells in the area. Data from nearby areas indicate the Lockport only occasionally yields as much as 100 gpm. Only small yields from wells, about enough for individual domestic supplies, can be obtained from shale, lake deposits, and till.

Average annual recharge to the sand and gravel deposits in the upland region ranges from about half a million to 4 million gallons per day per square mile. As the larger deposits are each several square miles in extent, the potential for development is large. To this potential should be added infiltration from streams that could be induced by pumping large quantities of ground water.

- 1 -

Approver 1.4.3-1 #

The quality of ground water in the Appalachian Uplands is marked by a high hardness but generally not by other unfavorable characteristics. The ground water in the Erie-Ontario Lowland generally is harder and otherwise poorer in quality, being high in dissolved solids. The water in the Camillus Shale is objectionably high in sulfate and, in some areas, chloride. The chloride may be dissolved out of deeply buried salt beds by water circulating through a regional flow system from a recharge area in the Appalachian Uplands to a discharge area along Tonawanda Creek. Shallow ground water in carbonate rocks and sand and gravel deposits locally has been polluted by septic tank effluent.

Appendix 1.4.3-1 3/2

GEOLOGY AND TOPOGRAPHY

The Erie-Niagara basin is underlain by layers of sedimentary bedrock which are largely covered with unconsolidated deposits. Descriptions of the various bedrock units are given in figure 2. The bedrock consists mainly of shale, limestone, and dolomite; the Camillus Shale contains a large amount of interbedded gypsum. All the bedrock units were built up by fine-grained sediments deposited in ancient seas during the Silurian and Devonian Periods and, therefore, are bedded or layered. The dip of the rocks (inclination of the bedding planes) is gently southward at from 20 to 60 feet per mile, but the average dip is between 30 and 40 feet per mile. The dip is so gentle that it is hardly perceptible in outcrops.

The unconsolidated deposits are mostly glacial deposits formed during Pleistocene time about 10,000-15,000 years ago when an ice sheet covered the area. The glacial deposits consist of: (1) till, which is a nonsorted mixture of clay, silt, sand, and stones deposited directly from the ice sheet; (2) lake deposits, which are bedded clay, silt, and sand that settled out in lakes fed by the melting ice; and (3) sand and gravel deposits, which were laid down in glacial streams. The glacial sand and gravel deposits are of both the ice-contact and outwash types, as will be explained later in the report. The glacial deposits generally are less than 50 feet thick in the northern part of the basin. They are considerably thicker in some valleys in the southern part and reach a maximum known thickness of 600 feet near Chaffee. Other unconsolidated deposits are alluvium formed by streams in Recent times and swamp deposits formed by accumulation of decayed plant matter in poorly drained areas.

Relief of the present land surface is due to preglacial erosion of the bedrock and subsequent topographic modification by glaciation. In contrast to the southward dip of the rocks, the land surface rises to the south largely because preglacial erosion was more vigorous in the northern part of the basin. The shale in the southern part of the basin is somewhat more resistant to erosion than the rocks in the northern part of the basin but not significantly so. Figure 3 shows the relationship of the topography and rock structure and delineates the two topographic provinces of the basin: the Erie-Ontario Lowlands and the Appalachian Uplands. The rocks crop out in belts which trend generally east-west. The bedrock geologic map, plate 2, shows that the outcrop belts bend around to the southwest near Lake Erie. They assume this direction mainly because relatively intense erosion in the Erie-Ontario Lowland near Lake Erie has exposed the rock at lower elevations than farther east. The Lockport Dolomite and the Onondaga Limestone, because they are relatively resistant to erosion, form low ridges in the northern part of the basin. Tonawanda, Murder, and Ellicott Creeks descend the escarpment of the Onondaga at falls and cataracts.

In the hilly southern half of the basin (the Appalachian Uplands), preglacial valleys, deepened by glacial erosion, are cut into the shale. The valleys are partly filled with glacial deposits so that some of the present streams flow 200 to 600 feet above the bedrock floors of the valleys as shown in figure 3.

Appendik 1.4.3-1, 2/2

System	Series	Group	Formation	Thicknes	s Section]	C	
	Jenes		Formation	in feet	Section			
	1	Conneaut Group of Chadwick (1934)		500		Shale, siltstone, and fine-grained sandstone. Top is missing in area.		
			Undivided	600		Grav shale and siltstone, interbedded. Isaction broken to save space)		
	Upper	Canadaway Group of Chadwick (1933)	Perrysburg	400- 450		Gray to black shale and gray siltstone containing many zones of salcareous concretions. Lower 100 feet of formation is olive-gray to black shale and interbedded gray shale containing shaly concretions and pyrite.		
Devonian	5		Java	90- 115		Greenish-gray to black shale and some interbedded limestone and zones of calcareous nodules, Small masses of pyrite occur in the lower part.		
Õ			West Falls	400- 520		Black and gray shale and light-gray siltstone and sandstone. The lower part is petroliferous. Throughout the formation are numerous zones of calcizreous concretions, some of which contain pyrite and marcasite.		
			Scryea	45.35		Olive-gray to black shale.		
ſ			'.'oscow	10-20		Dark-gray in plack shale and dark-gray limestone. Beds of nodular pyrite are at base.		
			Ludlowville Shale	ô5-130		Gray, soft shale. Gray, soft, fissule shale and limestone beds at top and bottom.		
	Muddle	Hamilton	Skaneateles Shale	ö0∙90		Olivergray, gray and black, fissile shale and some calcareous beets and partie. Gray limestone, about 10 feet thick is at the base.		
		•	Marcellus Shale	30.55		Black, dense fissile shale.		
		Unconformity	Oncridaga Limestone	108		Gray limestone and cherty limestone.		
			Akron Dolomite	8		Greenish-gray and bull fine-grained dolomite.		
	ŀ		Bertie Limestone	50.60		Gray and brown dolomite and some interbedded shale.		
Silurian	Cayuya	Salina	Camillus Shale	400		Gray, red, and green thin-bedded shale and massive mudstone. Gypsim occurs in beds and lenses as much as 5 feet thick. Subsurface information indicates dolomite for perhaps, more correctly, magnesian-lime mudrock) is interbedded with the shale ishown schematically in section. South of the success area, at depth, the formation contains thick salt beds.		
	Niagara		Lockport Dolomite	150		Dark-gray to brown, massive to thin-bedded dolomite, locally containing sigal reef and gypsum nodules. At the base are light-gray limestone (Gasport Limestone Member) and gray shaly itolomite (DeCew Limestone Member).		
	ž	2 -	Clinton	Rochester Shale	60		Dark-gray calcareous shale.	

Figure 2.--Bedrock units of the Erie-Niagara basin.

- 7 -

Unconsolidated deposits Bertie Limestone and SÞ (shown only in major valleys) Akron Dolomite C Connegut Group of Chadwick (1934) Dct Sc **Comillus** Shale krie-Ontorio Canadaway Group of Chadwick (1933) Dc Lockport Dolomite SI Uplands Lowlands Java and West Falls **Rochester** Shale and Sr Djw Formations older rocks Appolachion Genesee and Sonyea Formations Dg Dh Hamilton Group Do Onondaga Limestone Dc Tonawanda Creek Dj Cattoraugue Cr. B Sketch map showing the location of sections $A-A'_1$, $B-B'_2$, and C-C' in C 0h the Erie-Niagara basin. Sc Dct Sr 06 0 Dc Ton**owo**nda 0_{jw} Creek B Dh Sc 014 Sr 06 N.Y. State Dct barge canaly 5 Feet Cattaraugus 1,000 Creek Tonawanaa Lote 0c Creek Erio 500 0_{jw} 5 1es Dh Sc S, 10 5 Miles Note: Vertical exaggeration about 40 times

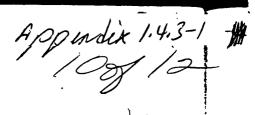
EXPLANATION

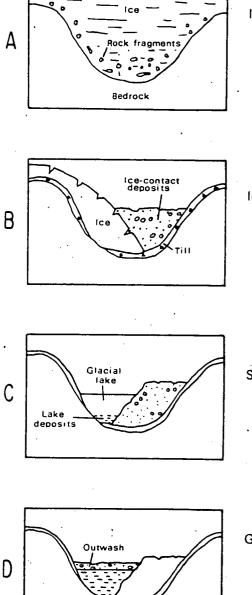
Figure 3.--Fence diagram of part of the Erie-Niagara basin.

Appendix 1.4.3-1 9-12

OCCURRENCE OF WATER IN UNCONSOLIDATED DEPOSITS

The unconsolidated deposits overlie the bedrock units previously discussed and consist of a variety of granular material. The bulk of the unconsolidated deposits are glacial in origin and include till, lake deposits, and sand and gravel deposits. The materials laid down since glaciation are thin and consist of alluvium and swamp deposits.

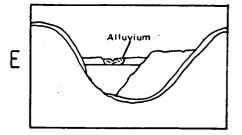

The deposits vary in their hydrologic characteristics because of differences in their lithology and thickness and because of their distribution and spatial relationships to one another. Plate 3 is a geologic map showing the division of the unconsolidated deposits into several groups on the basis of their origin. The distribution of these groups at the surface is readily apparent from the map. An understanding of the geologic processes that formed the deposits allows their subsurface distribution to be inferred. The map, therefore, can be read in three dimensions through proper interpretation.


An explanation of the origin and general features of the several types of deposits is given in figure 8. When the ice sheet advanced over the area, the ice tore and abraded the bedrock surface. The hills were somewhat reduced and rounded and the valleys were deepened. Some of the rock material eroded from the bedrock was redeposited by the ice and forms the poorly sorted mantle material that is called till (fig. 8A). Eventually, the ice began to wane with a change in climate. As the amount of snow nourishing it decreased, the ice sheet thinned. It had difficulty maintaining flow over rough topography along its marginal zone. The margin became scalloped, and some marginal zones grew so thin that they stagnated. These zones separated from the ice sheet and wasted away in place.

÷

The sequence of deposition in an upland valley during retreat generally followed a particular order. A temporary valley was formed between the wasting ice and the rock wall of the valley. Melt water from the ice sheet, which at times of rapid melting was released in enormous quantities, flowed through the valley away from the retreating ice sheet. The melt water carried a heavy load of sediment washed out of the ice. It deposited sediment, mainly sand and gravel, and began to fill up the valley. This type of sand and gravel deposit is an ice-contact deposit (fig. 8B). In southward drained valleys, ice-contact deposits could form at low levels, even in the valley bottoms. In northward drained valleys, because of the divide to the south, the ice-contact deposits could form only high on the sides of the valley above the level of melt-water lakes impounded to the level of the spillway over the divides.

As the ice sheet melted back, a lower outlet for the melt water was uncovered. The melt-water stream was diverted from the ice-contact deposit. As the stagnant ice mass bordering the ice-contact deposits continued to melt away, the sand and gravel held up by the ice mass subsided toward the center of the valley. A lake formed in the open area left by the ice as it melted (fig. 8C). In a southward drained valley, the lake would be caused by a dam of earlier glacial deposits across the valley, perhaps part of the ice-contact deposits. In a northward drained valley, the lake would be formed between the divide to the south and the ice sheet to the north. Fine-grained sediments (clay, silt, and fine sand) settled out



Ice advances over area and gathers load by eroding bedrock. Later, at the base of the ice, rock fragments are deposited to form till. (See 8)

Ice begins to melt. Sand and gravel (ice-contact) deposits are laid down in a temporary valley between ice and valley wall.

Stagnant ice melts. Ice-contact deposits slope toward center of valley. A glacial lake forms in which clay and silt accumulate.

Glacial lake is filled with sediment or is drained. Glacial streams flow over surface of lake deposits and lay down sand and gravel deposits.

Recent stream cuts into glacial deposits and lays down alluvium consisting of silt, sand and gravel.

Figure 8.--Origin of unconsolidated deposits.

(Appendix 1.4.3-1.

in the lake and gradually filled it (fig. 8D).

Eventually the lake deposits built up to the threshold of the dam, or the dam was cut away by the water spilling over it, or the ice sheet retreated northward opening up the valley. Streams could then flow over the surface of the lake deposits and lay down a second sand and gravel deposit, an outwash deposit (fig. 8D). The sources of the stream waters were the wasting ice sheet (particularly so in southward drained valleys), small masses of wasting ice remaining in tributary valleys, and precipitation. The thickest and most extensive outwash deposits were formed in southward drained valleys and in zones peripheral to the ice sheet. With time, the ice sheet retreated still farther northward, the glacial streams ceased to flow, and glacial deposition came to an end.

As the ice sheet retreated farther north, the climate more nearly approached that of the present. A drainage system developed in response to precipitation. Streams began to incise channels into the deposits. Vegetation took hold as the weather warmed and helped stabilize the slopes. In time, with a change in regimen, the streams began to lay down alluvium (fig. 8E).

The sequence of events discussed above and shown in figure 8 is generalized. Nevertheless, it is useful in understanding the occurrence of the unconsolidated deposits, particularly in valley areas where they constitute an important source of ground water. In the following sections the lithology and water-bearing characteristics of each of the major types of deposits in the Erie-Niagara basin will be discussed.

TILL

As shown in plate 3, till is the most widespread of all the unconsolidated deposits in the Erie-Niagara basin. Till is essentially a nonsorted material whose character depends principally upon the types of rocks over which the ice passed and the vigor with which the ice crushed and abraded the rock. Till overlying the shale is dark gray and clayey or silty. In some areas, mainly on hillsides and terraces south of Cattaraugus Creek, part of the till is stony material. Till on the soluble rocks is light red and silty; in some morainic ridges it is mostly fine sand.

Thickness of the till varies considerably from a thin cover of 2 or 3 feet to more than 200 feet along the divides between Cattaraugus Creek and the northwestward flowing streams, such as Tonawanda, Buffalo, and Eighteenmile Creeks. On flat terraces mapped as till in Buttermilk Creek valley, the stony till is as much as 30 feet thick.

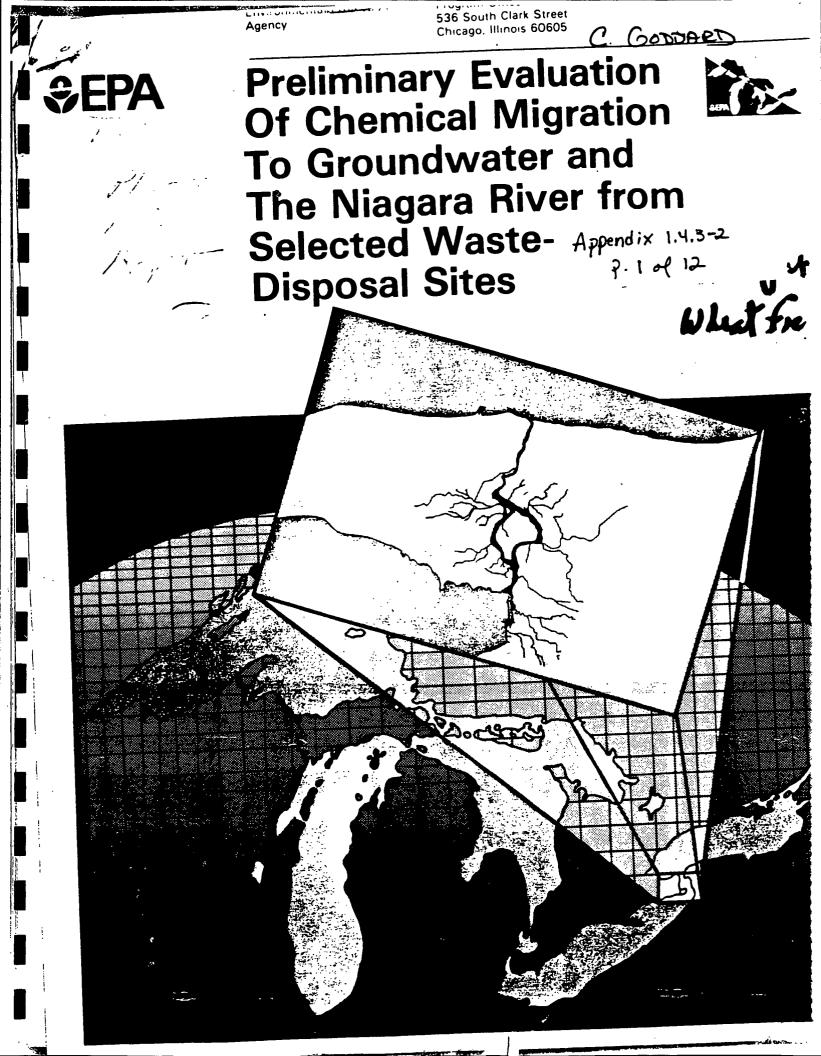
Only small supplies of water are available from till. The permeability of till is so small that wells with large wall areas are required to obtain even small supplies. This requirement for a large wall area is met by digging large-diameter wells.

LAKE DEPOSITS

A. A main

Appendix 1.4.3-1 120/2

Lake deposits consist of horizontally bedded clay, silt, and sand. They form a thin skin over till and bedrock in the Erie-Ontario Lowlands, but reach thicknesses of 300 feet or more in some valleys in the uplands. Thick sequences of clay (such as penetrated by well 229-842-1 near Springville) are so impermeable as to yield no water to wells. The lake deposits also contain thick sections of water-bearing fine sand in the major valleys of the Appalachian Uplands. This fine sand is called quicksand because it moves into wells. Small supplies can be developed from the fine sand by careful well construction, but usually these deposits are not utilized as sources of water.


GLACIAL SAND AND GRAVEL DEPOSITS

Glacial sand and gravel deposits include the ice-contact and outwash deposits shown in plate 3. In addition, deltaic deposits are present within the area. A prominent delta (lat 42°30', long 78°56') west of Collins. composed of sand and gravel, was built out from Clear Creek into a lake that occupied the Erie-Ontario Lowlands. Another delta (lat 42°50', long 78°34') was formed by Little Buffalo Creek, northeast of Marilla. These deltas are shown arbitrarily in plate 3 as ice-contact deposits. Deltaic deposits, presently concealed, probably interfinger with glacial lake deposits in the major valleys of the Appalachian Uplands where tributary streams deposited coarse-grained sediments in lakes. Subsurface data indicate deltaic deposits interfinger with lake deposits near the junction of Crow and Tonawanda Creeks south of the Attica State Prison. The sand and gravel deposits occur principally in the valleys of the Appalachian Uplands with only scattered, minor occurrences elsewhere. The relationship of the sand and gravel to the other unconsolidated deposits and to the bedrock is shown in figure 8. Where the deposits are thick and water bearing, they constitute the best aquifers found in the Erie-Niagara basin.

Lithology and thickness

The glacial sand and gravel deposits exhibit a variety of textures and sedimentary structures but they all are marked by stratification and a high degree of sorting. Characteristic of the deposits are horizontal beds of well-sorted sand, lenticular beds of cobble and boulder gravel, and scattered beds and lenses of open-work gravel. These various materials are interbedded in varying proportions, though boulder gravel is not present in most outwash deposits.

The deposits form thick fills in valleys of the upland section. In the valley bottoms the saturated thickness of the deposits exceeds 100 feet at many places. Thick deposits underlying terraces along the valley walls are to a large extent above the saturated zone. Buried sand and gravel deposits 10 to 40 feet thick underlie lake deposits in some valleys.

Appendit 1.4.3-2 20/2

"Preliminary Evaluation of Chemical Migration to Groundwater and the Niagara River from Selected Waste-Disposal Sites"

Вy

Edward J. Koszalka, James E. Paschal, Jr.,

Todd S. Miller and Philip B. Duran

Prepared by the U.S. Geological Survey

in cooperation with the

New York State Department of Environmental Conservation

for the

U.S. ENVIRONMENTAL PROTECTION AGENCY

.....

RECEIVED

AUG 12 1985

DIRECTOR'S OFFICE DIVISION OF SOLID AND HAZARDOUS WASTE

PENDIX 1, 4, 3-7 80/2 NYSDEC 952091

79. POWER AUTHORITY ROAD SITE (L1

General information and chemical-mi Site, north of the Power Authority was a landfill for mostly general m chemical information is available; is indeterminable.

view)

ential.--The Power Authority Road ervoir in the town of Lewiston, fuse. No geologic, hydrologic, or otential for contaminant migration

Alicearce Wheatfield

NYSDEC 932026

81. NIAGARA COUNTY REFUSE DISPOSAL SITE (USGS field reconnaissance)

General information and chemical-migration potential.--The Niagara County Refuse Disposal site, in the town of Wheatfield, received thousands of tons of heattreatment salts, plating-tank sludge, PVC skins and emulsion, thiazole polymer blends, polyvinyl alcohol, phenolic resins, and brine sludge with mercury during 1968-76. The site has been declared one of the U.S. Environmental Protection Agency "superfund" sites.

Although contaminant migration seems possible, preliminary sampling does not indicate that it has occurred. Most samples taken within the refuse area had elevated concentrations of organic compounds, but most samples taken along the perimeter did not. Additional drilling and monitoring would be needed to assess the effect of this site on the local or regional ground-water regime. The potential for contaminant migration is indeterminable.

<u>Geologic information</u>.--The site consists of lacustrine clay deposits with thin sand stringers overlying bedrock of Camillus Shale. The U.S. Geological Survey drilled 10 test holes on the site in 1982; locations are shown in fig. C-40 (p. 373). The geologic logs are on page 368.

Hydrologic information.--A seasonal water table perched upon the clay unit discharges into the bordering drainage ditches and into the swampy area to the east (fig. C-40). The saturated sand stringers within the clay unit are easily dewatered. A saturated zone near the base of the clay unit may represent a regional water table in which the direction of ground-water flow movement is probably southward toward the Niagara River.

<u>Chemical information</u>.--The U.S. Geological Survey collected two water samples and 10 soil samples for organic-compound analyses; results are given in table C-19. Only three priority pollutants were found, all below the quantifiable detection limit. The samples contained 18 organic nonpriority pollutants and 14 possibly naturally occurring compounds. In September 1980, the U.S. Environmental Protection Agency collected two water samples and five sediment samples from the ditches; in June 1981, New York State Department of Environmental Conservtion collected four sediment samples and four water samples from the ditches; results are given in table C-20.

Appendix 1, 4, 3-2 4 og / 2

	• •	
Boring no.	Depth (ft)	Description
1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Topsoil. Fill. Clay, pink, tight, dry Clay, pink, wet SOIL SAMPLE: 11.7 ft.
2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Topsoil. Clay, tan, tight. Clay, tan, wet. SOIL SAMPLE: 10.9 ft.
3	0 - 1.5 1.5 - 9.5	Topsoil. Clay, pink, dry. SOIL SAMPLE: 1.5 ft.
4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Clay, pink. Organic material, black, wet. Clay, green. Clay, pink. SOIL SAMPLF: 3.5 ft.
6A	0 - 3.5 3.5 - 16.5	Clay, buff. Clay, pink. SOIL SAMPLE: 3.5 ft.
7	0 - 1.5 1.5 - 7.0	Topsoil. Clay, pink. SOIL SAMPLE: l.5 ft.
8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Topsoil. Clay, pink, dry. Clay, pink, wet. SOIL SAMPLE: 11.5 ft.
9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Road fill. Clay, pink, dry. Clay, pink, wet. SOIL SAMPLE: 11.5 ft.
10	0 - 1.5 1.5 - 3.0	Clay, sandy, gray. Clay, pink. SOIL SAMPLF: 1.5 ft.
11	0 - 1.5 1.5 - 3.0	Clay, sandy, gray. Clay, pink. SOIL SAMPLE: 1.5 ft.

368

Table C-19.--Analyses of ground-water and substrate samples from Niagara younty Refuse Disposal, site 81, Wheatfield, N.Y., June-August 1982. [Locations shown in fig. C-40. Concentrations are in $\mu g/L$ and μ g/kg, respectively; dashes indicate that constituent or compound was not found, LT indicates it was found but below the quantifiable detection limit. Blanks indicate not analyzed.)

Appendet 1,4.3-2 Ø

				balow la	nd surrac	:e (11)
	Substrate	number a	and der	pth below la 3	4	
		1	2	(1.5)	(2.2)	
	(12	2.5) (11.2)			
				~		
ganic compounds		a	-			
Priority pollutants	• •	LT	·			
Naphthalene		ر ب	LT			
Dibutyl phthalate			1.1			
Nonpriority pollutants	11		LT			
2,4-dimethyl-4-heptano	L .					
2-(1,1-dimethy1-4-		<u></u> ,	LT	·		
methyl furan ¹	•	4	,350		-	
Bromocyclohexane ¹			•		nd curfa	re(ft)
	Sample	e number	and de	pth below la	Substr	ate
		Ground	water		6A	7
· .	5	6	(Duplicate)	0A	
	(12.4)	(15.7)				
	9.2	8.4				
pH Specific conductance	:					
Specific conductance	475	620		•		
$(\mu \text{ mho/cm})$	10.0	10.0				
Temperature (°C)	-					
Organic compounds						
Organic composition					•	•
Priority pollutants		т.т		(LT)		
Diethyl phthalate				(LT)		
Di-n-butyl phthalate		LT				
·						
Nonpriority pollutants		7.2	2	(LT)		
n-butylbenzene sulfona	amide	. • •				
buty1-2-methy1-propy1	•	LT		()		
nhthalate						
3,5-Dimethoxy-a-(2-me propyl)-benzenement	tnyl-	· 9.	2	()		

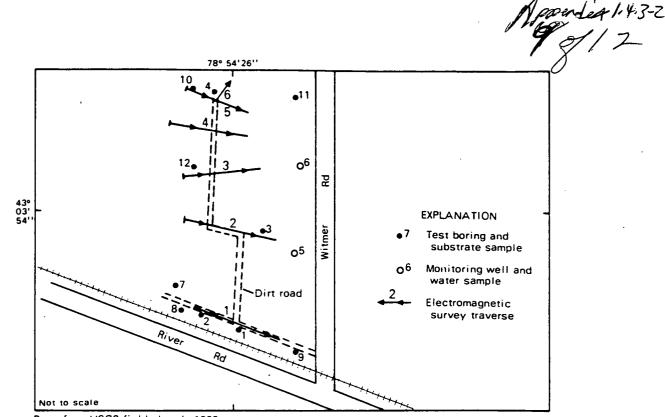
- ¹ Tentative identification based on comparison with the National Bureau of Standards (NBS) library. No external standard was available. Concentration reported is semiguantitative and is based only on an internal standard. GC/MS spectra were examined and interpreted by t Exceeds USEPA criterion for maximum permissible concentration in drinking wate

Approdix 1.4,3-2 60/12

Table C-19.--Analyses of ground-water and substrate samples from Niagara County Refuse Disposal, site 81, Wheatfield, N.Y., June-August 1982 (continued)

			Sample num		
		Ground wat		Substr	ate
	5	6	(Duplicate	e) 6A	
anic compounds (continued)					
mpriority pollutants (contin	nued)				•
Hexadecanoic acid, bis-					
(2-ethyhex1)-ester ¹		LT	()		
Benzaldehyde ¹		LT	(LT)		
3-methoxybenzoic acid,	. *				
methylester ¹			(LT)		
1-Heptyne ¹	LT		()		
[1,1'-Bipheny1]-2-01	7		()		
2-(1,1-Dimethylethyl)-4-			\mathbf{X}_{i} .		
methylfuran ¹			()	104,000 -	
l-(4-fluorophenyl)-					
ethanone			()	55,900	
(Z,Z)-3,4-Dimethyl-2,4-					
hexadiene ¹			()	LT	
6-methyl-3,5-heptadien-					-
2-one ¹			()	11,800	
3-methyl-2-cyclohexen-					
1-one ¹			()	LT	
3,5,5-Trimethyl-2-					
cyclohexen-1-one ¹			()	65,800	
2-Bromoethylcyclohexane ¹			()	16,700	
$2-(2-Butoxyethoxy)ethano1^1$			()		430
$1-(2-butoxyethoxy)ethano1^1$	LT	43	(84)		
2-methylnapthalene ¹		LT	()		
l-methylnapthalene ¹		LT ·	()		
Butyl-cyclooctane ¹		LT	(LT)		
2-methyl-propanoic acid,					•
butyl ester ¹		LT	()		
2-methoxy-benzoic acid,					
butyl ester ¹		LT	()		
3-methoxy-benzoic acid,					
methyl ester ¹		LT	()		
5-buty1-5-nonanol ¹		LT	(LT)		·
Cyclohexanone ¹			()		LT
mpounds potentially of natu	ral or	igin			
l,7,7-Trimethyl-					
bicyclo[2.2.1]-heptan-					
2-one ¹		LT	()		
l,2-octanediol ¹		LT	(LT)		
		1			()
<u>Su</u>	ostrat	e number and 8	d depth below 9 10	v land surfa 11	ce (f
	(° 11.5)	(1.5)		
		1103/	(1•)		
anic compounds					

Appendix 1.4.3-2 1


Table C-20.--Analyses of surface water and bottom samples from drainage ditches at Niagara County Refuse Disposal, site 81, Wheatfield, N.Y. [Blanks indicate not analyzed.]

	Surface wate	$r (\mu g/L)$	Bottom mate	TIAL (HE/NE
	Maximum	Mean	Maximum	Mean
Inorganic constituents				
Antimony			4,000 7,800	2,600 6,300
Arsenic	30	25	16,000	10,600
Beryllium			3,800	800
Cadmium			23,000	14,100
Chromium			61,000	34,000
Copper	52	20		47,000
Lead	160†	32	84,000	3,200
Mercury	1.58	0.4	14,200	
Nickel	100	20	45,000	16,400 60
Selenium			200	
Silver			400	240
Zinc	174	61	1,500,000	390,000
	· · ·			
Organic compounds	•			•
Priority pollutants			0.5	0.
Benzene			. 5	1
Chlorobenzene	·	•	. 5	2
Chloroform			4	1
1.2-Dichloroethane			12	2
Trans-1,2-dichloroethy1	.ene 37†	7†		1
1,2-Dichloropropane		_	· 1	1
Ethylbenzene	8	2	31	15
Methylene chloride	2	1		4
Tetrachloroethylene	56	11	19	1
Toluene	31	6	4	σ.
1,1,1-Trichloroethane			0.5	
Trichloroethylene	8	2	5	2
Vinyl chloride	2	0.4		,
			58	6
β-BHC			90	10
δ-BHC			11	3
4,4'-DDE	•		320	53
PCB-1248			180	37
PCB-1254	.34,000†	5,666†	1,900	333
Phenol		•	17	4
Acenaphthene	, ,		130	14
Acenaphthylene			2,000	273
Anthracene			2,300	299
Benzo(a)pyrene			2,200	282
Benzo(b)fluoranthene			7,605	845
Benzo(ghi)perylene	alate 330	57	6,900	2,444
Bis(2-ethylhexyl) phth		0.1	330	64
Butylbenzyl phthalate		~	3,200	356
Chrysene			39	r⊳ 8
1,2-Dichlorobenzene			59	17
1,3-Dichlorobenzene				

Table C-20.--Analyses of ground-water and substrate samples from Niagara County Refuse Disposal, site 81, Wheatfield, N.Y., June-August 1982 (continued)

	Surface water (µg/L)		Bottom mater:	ial (µg/kg)
	Maximum	Mean	Maximum	Mean
organic compounds (continued	i) ·			
Priority pollutants (contin	ued)	-		
1,4-Dichlorobenzene			59	17
Di-n-butyl phthalate	9	2	470	217
Di-n-octyl phthalate	10	2	170	19
Fluoranthene			2,500	319
Fluorene			93	15
Hexachlorobenzene			39	4
Naphthalene			160	34
Phenanthrene		•	2,000	273
Pyrene			2,000	254
1,2,4-Trichlorobenzene			47	6
Benzo(a)anthracene			3,200	356
Indeno(1,2,3-cd)pyrene			820	91
2,4-Dimethyl phenol			990	110
Heptachlor	0.13†	0.041		
•	,			,
Nonpriority pollutants				
Trichlorofluoromethane			1	0.2
Diethyl phthalate	40	7	180	67

372

Base from USGS field sketch, 1982

Figure C-40. Location of monitoring wells, sampling holes, and electromagnetic-conductivity survey at Niagara County Refuse Disposal, site 81, Niagara Falls.

Electromagnetic survey.--The U.S. Geological Survey ran five electromagnetic traverses over the site. Locations are shown in fig C-40; results are plotted in fig. C-41.

Of all the sites investigated by electromagnetic traverses in this study, this landfill produced some of the most easily interpretable data. This can be attributed largely to the relatively undisturbed ground on three sides adjacent to the site. Only to the south of the landfill did cultural interference (railroad tracks, roads, powerlines) affect the reading.

Line 1.--The line most indicative of interferences was line 1, which ran partly along a paved road. Conductivity values (fig. C-41) show a steady increase from below background at the western end to above background between 450 and 700 ft. After 700 ft, the values hover near the upper ranges of background conductivity.

Line 2.--This site is unusual in having two zones of differing background conductivity. The western end of each line terminated within a cornfield showing background conductivity within the range indicated on each graph (fig. C-42), but the eastern part of lines 1 and 2 were in a wetland, which has a considerably lower background conductivity. This is probably because the wetlands are underlain by silt and organic material, whereas the cornfield is on clay.

Appondix 1.4.3-2 100/2

The lower conductivity of the wetlands shows up well in line 2 but is masked on the eastern end of line 1 by the roadbed upon which the traverse was conducted. Otherwise line 2 shows a classic pattern of low background conductivities on either side with much higher and more erratic values in between. This is the type of pattern most often associated with a conductivity traverse beginning and ending in an uncontaminated zone but crossing a landfill in between. The erratic pattern among the high conductivity values corresponds to the heterogeneity of buried materials.

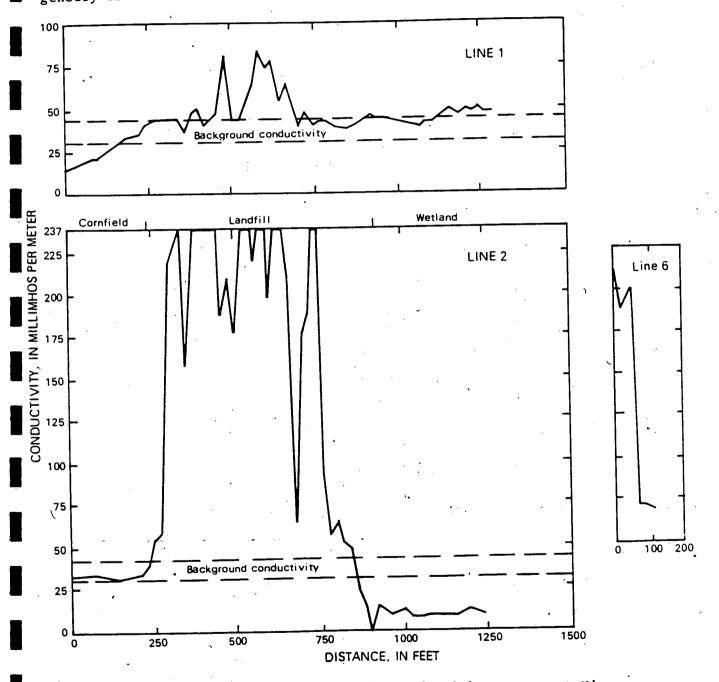


Figure C-41. Results of electromagnetic-conductivity survey at Niagara County Refuse Disposal, site 81, Wheatfield, lines 1, 2, and 6.

Appndix 1.4.3-2

Line 3.--The relatively low values at the western end of line 3 probably reflect the wetland and drainage ditch, which seem to act much as the wetland area in line 2. The high, erratic values of line 3 begin at 340 ft and continue to the dense woods around the 1,100-ft mark. The density of vegetation prevented the collection of additional data points within the wooded area.

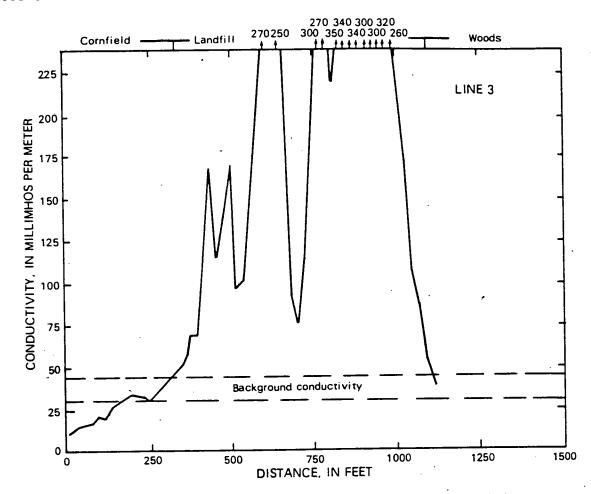


Figure C-41 (continued). Results of electromagnetic-conductivity survey at Niagara County Refuse Disposal, site 81, Wheatfield, line 3.

Line 4.--This traverse, which ran primarily along a dirt track paralleling a drainage ditch, shows conductivity values beginning to rise 40 ft before reaching the landfill area (at 460 ft) but not remaining extremely high along much of the traverse. This is probably due to the relatively nonconductive nature of the waste material in this area (indicated on the Niagara County Board of Health sketch map as a pile of gravel and fill). As before, when the traverse reached the wooded area at 800 ft, the conductivity values dropped to or below background values.

Line 5.--This line shows a pattern similar to line 2--the background values on the western end of the line begin to increase 40 ft before the boundaries of the landfill. This rise may correspond to contaminated ground water emanating from the site.

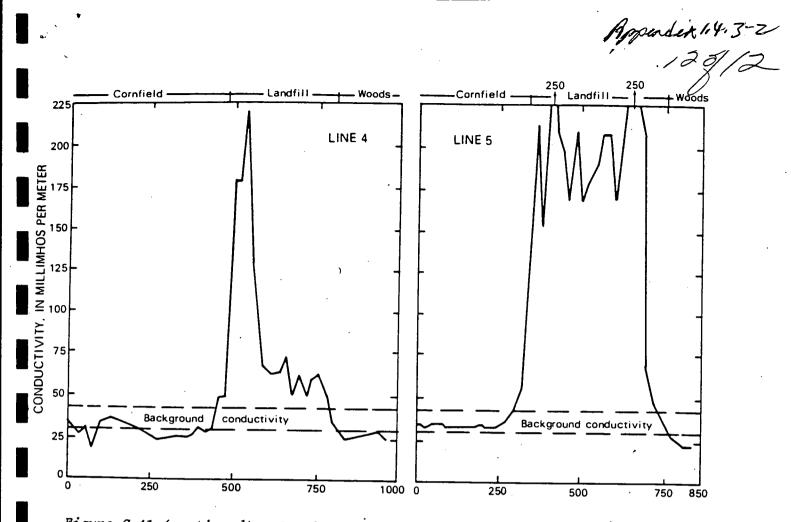
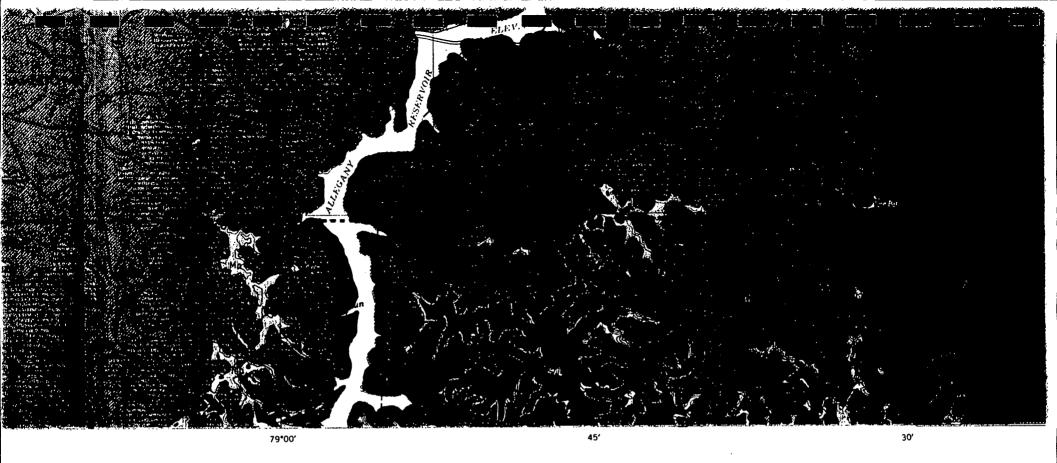


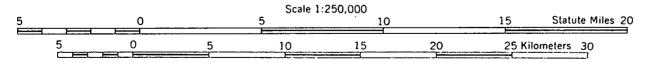
Figure C-41 (continued). Results of electromagnetic-conductivity survey at Niagara County Refuse Disposal, site 81, Wheatfield, lines 4 and 5.


Line 6.--This line (see p. 371) was run at right angles to the 420-ft mark of line 5 in an attempt to delineate the northern boundary of the landfill. Conductivity values drop precipitously at the 120 ft mark, but no futher data could be collected owing to the impassability of the terrain in this direction.

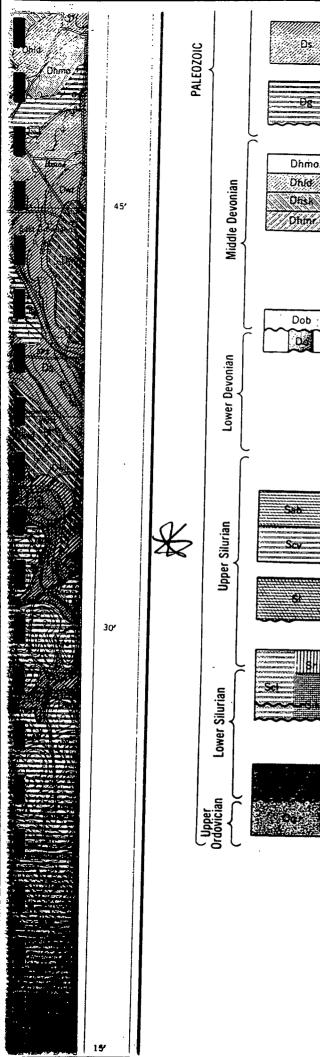
82. ADAMS GENERATING PLANT (USGS field reconnaissance)

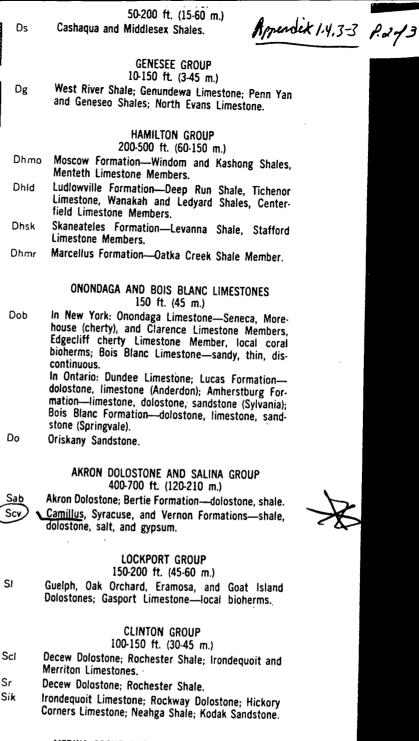
NYSDEC 932079

<u>General information and contaminant-migration potential</u>.--The Adams Generating Plant, in the city of Niagara Falls, is an inactive generating plant adjacent to the Niagara River. The City filled a forebay and two penstocks (444 yd³ each) with incinerator residue and clean stone and rock in the early 1960's.


The potential for contaminant migration is indeterminable. Additional work would be needed to confirm contaminant migration.

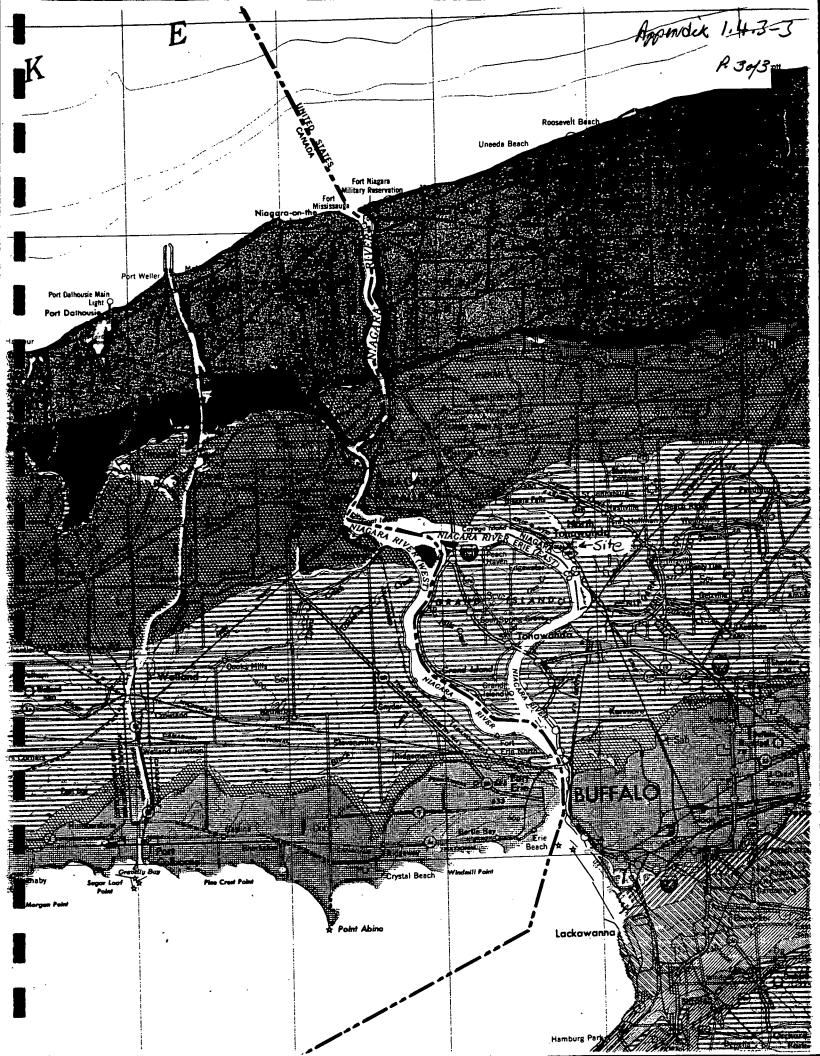
GEOLOGIC MAP OF NEW YORK


1970


Niagara Sheet

CONTOUR INTERVAL 100 FEET

4pp endix (1) ω


MEDINA GROUP AND QUEENSTON FORMATION 800 ft. (250 m.)

Thorold Sandstone; Grimsby Formation—sandstone, shale; Power Glen and Cabot Head Shales; Whirlpool Sandstone.

Queenston Shale.

Sm

Oa

Appendix 1.4.3-4 p. 1096_____

NIAGARA COUNTY HEALTH DEPARTMENT

DATE: May 13, 1983

TO: Peter Buechi

Michael Hopkins 11. Hopkins

FROM:

SUGJECT: NCSWD-WHEATFIELD SITE: SAMPLING AND BEDROCK WELL PLACEMENT

Attached is a copy of my field notes taken during observation of the NVS crew at NCSWD/Wheatfield from April 11 to May 6, 1983.

The project included placement of five monitoring wells to ten feet into competent bedrock. Wells were cased with 4" steel pipe to 2' into competent bedrock. The remainder of the hole was left open.

Surface water/sediment samples were taken at 10 locations including drainage ditches (6), the swamp north of the landfill (1), Black Creek (1) and the Niagara River (2). Wherever surface water samples were taken, sediment samples were also taken.

Attempts to dye test drainage ditches to determine the point of discharge to the River were inconclusive. The dye was not detected in the River.

The surface elevations of the well casings was determined by surveying. The water table elevations were obtained by NVS but this data was not obtained by this writer.

No odors, discoloration or visible organic/chemical material was found in any well or sample. There was leachate at the landfill surface. Apparently, this material was not sampled.

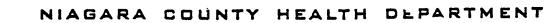
The condition of the landfill has deteriorated from previous inspections. Steel drums are floating to the surface particularly at the southwest corner. Leachate was noted in several locations. Scavenger dumping is worsening. About 100 empty 5 gallon solvent containers were found dumped here. Erosion problems are increasing.

Please contact me with any questions.

۰.,

MH:CS

cc: M. Vaughan


2 46 NIAGARA COUNTY HEALTH DEPARTMENT INSPECTION REPORT DATE ______/11/83 >> ME Observe well boring operation (Field Notes) DRESS NCSWD - Wheatfield site, within Rd, wheatfield TIME START_____ COMPLETED _____ - I met with the NUS crew at the entrance to the NCSWD :30 AM 4/11 whent field site. They advised me that they had all the equipment and could begin work a after cleaning these equipment many 12:30 4/11 I i chected the status of the drillers. At this time The comparent was unloaded and they ries ready to begin. I was informed at this time that the field personnel would not redrose any maps on information unless first cleared by EPA 8:30 Am 4/12 NUS crea apparently not yet on site MEH fould the cren at well location #1 puts de of the 3:30 pm 4/12 the of the not the west corner of the site. They were wearing hard hat, bouts, glows and disposable coverally. From 3:30 to 5:00 pm they progressed to about B'. They hoped to reach bedrak Dy 7:30 pm and growt the casing tonight HEH -----No ocloss were fand. Waterne encountered at two levels (2 2' and 5.5') although no recharge occurred. The seil was almost entirely dense clay to this point MEH -----4:00 pa 4/13 Attempted to local deillers. Rig was still at hele = (but drillers were not on-site MEN I contacted the drillers near the site entrance. They were preparing to set up at site # 2 in the south 4/15 8:30AM nest corner I was informed that hole # 1 mgs Temporarily abondanced until further instructions from EPA -----The boung has not contacted bedrock at 41'. Glaudel Till was found at 15' to 41'. M. H. 'age / of 5 Pages

INSPECTION REPORT

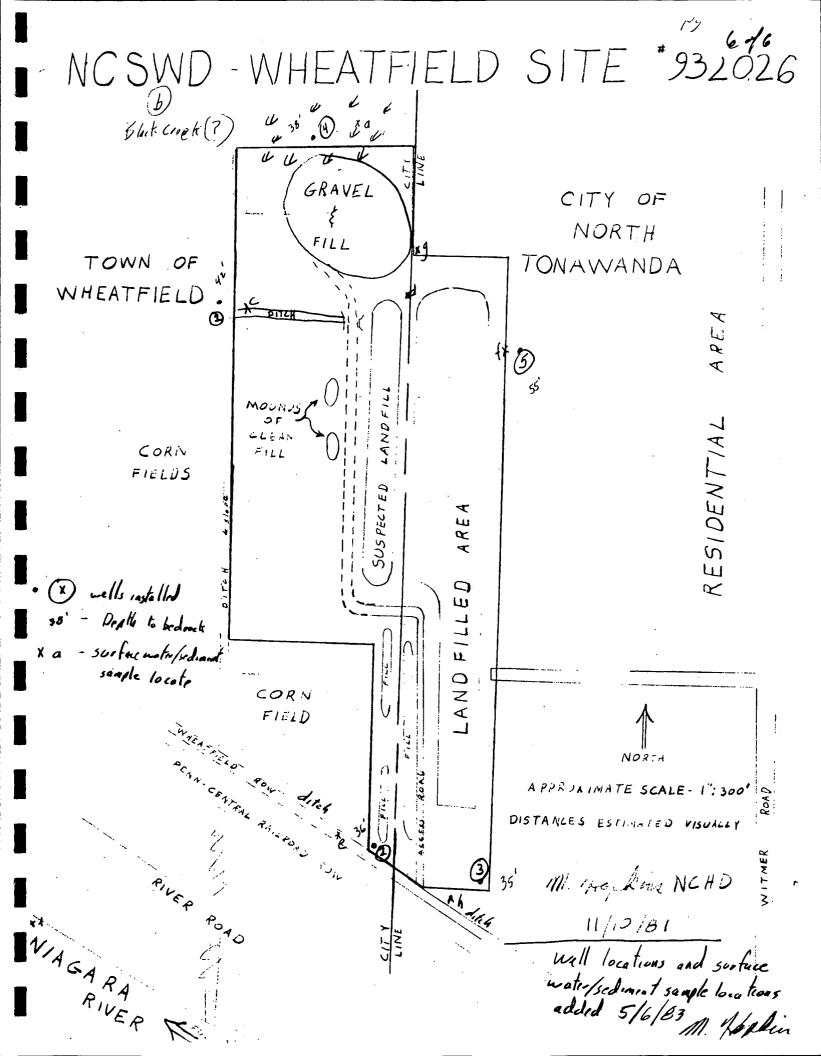
ME			ØATE
DDRESS	SNCSUD-0	when Hield.	TIME START
			COMPLETED
PE			
	5 - 10:30 AM	I call tel Poter	Buchi and informed him of the
	5 - 10:30 AM		rad by the drilling. He felt that bedroe
		May be derver	than expected (20 40 to 60 Ft ?). He
		soul that he me	sold tay to obtain information on previous
		borings and that	I would do the same
 		τ / / /	
			hour files. The USGS well along.
I			1 by RECRA Rescorch as along wither
		Road were 23	5' Do dees although it is not known
		if bedrack was	5' Dep deep although it is not known confected
			MEH
1/15	4:15pm	I contacted the	NUS Cree I was informed that
	<u></u>		ie to obtain heavier equipment and
		expect to be be	ick on site by Madage afternoon
		······································	MEH
4/18	8:30 Am \$ 4:00 ph	- uarkle to fine	dullos on site MEH
•			
1/19	10 8:30 AM -	I met with the N	US areas while sptanning water along between
I		Road. They obtained	more auger flights over the weekend and are
		same preparente	continue on the previous holes men
I			
8	12:30	Bedrick contracted	at 36 in the c men
1/21	12:15pm	A waa minu 15 Adin C	amplete to bedrock at hale #3. No
	·····	problems found at	emplete to bedrock at hole #3. No this location. Sails were nearly all
		clay to 35' Bed.	ock at 35' . Very little till found
	<u></u>	at the location	
I			
aqe	2 of 5 p	ades	

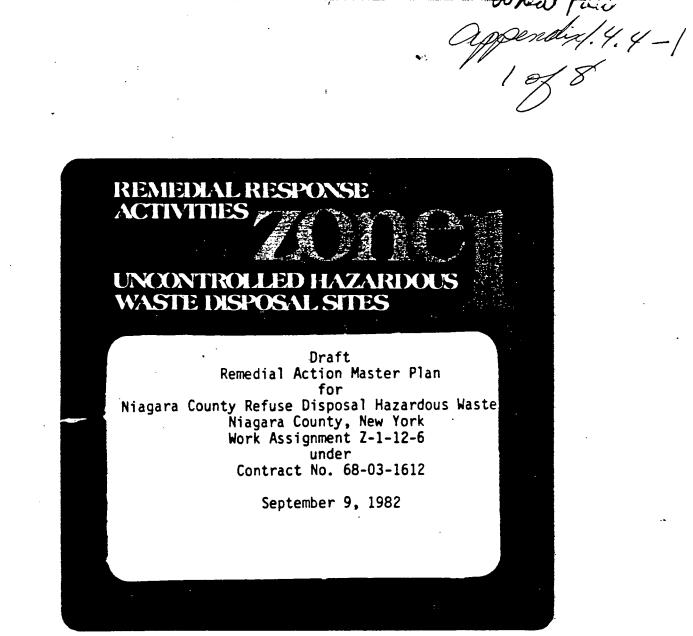
30/6

INSPECTION REPORT

-	INSPECTION REPORT	
ME		ØATE
	$i \neq c \downarrow j$	
DRESS	NCSWD - wheatfield	TIME START
		COMPLETED
PE		
4/22	3pm - Bedrack was contacted at 45	in well #1, #1 mas cored
	a tru teel pror la stapping t a casing. Soils une primarily	the day to facilitate setting
	in complete well is covered a	the an invested drum at this
	time	
		
	Well # 3 is now cased to	bedrock and ready for coving
4/26		+/ + R 1 //.
- 1/26		his line by rad of day wells
	innung af hedrerk No con	bedrock and are ready for ing done yet except 2' sockets MEN
	for casinus	MEH
	·	
_		ted at 42.5 feet not 45 us
		report that death was 48' a
	for feel away. This discore	auncy is un accounted to
•	Still ne oddes have been t	ound in any somple
4/29	2pm Unable to locate NUS cre	a believed to have left
•	the site	
	· · · · · · · · · · · · · · · · · · ·	Michopan
5/4	1:30pm I located The NUS corres a	t well #3. They were
	perparing to purge this well At	this time all wells are complete
e	well, # 4 and # 5 encountered bedrac	k at 38' and 55' respectively
	All five webs mere cord Defeet	into bedrock and left opin
	hold from 2 to 10' into the bedrock.	The bedrock was tractured in
	all wells. Migh rates of recharge were	elseven in all Gills . MUDUIL
	sample wells and surface water bday, be	M. Horais
age 3	of S Pages	the part of the second se
aye	cayes	Signature of Inspector

yte




NIAGARA COUNTY HEALTH DEPARTMENT

INSPECTION REPORT

ME	Nesuo - wheatfield	ØATE
DRESS		TIME START
	· ·	
PE		
5/6/83	- 3:00 in - I wit M. F.	t NCSED. He informed me that
	NOS has completed there was	that the site In the last two
	days they have sampled The	5 wells, sampled both water and
	sedimentat 10 locations (shown a	a stetch) including drawage ditche
	2 from the Niegona River and on	e from Black Creek, In addition
	the surface devotions at the mole	s was determined by surveying.

		m, Kaptan
<u> </u>		
	-	
je4	ofPages	

546

REMEDIAL ACTION MASTER PLAN

CAMP DRESSER & MCKEE INC. CH2M HILL CONESTOGA-ROVERS & ASSOCIATES LIMITED C. C. JOHNSON AND ASSOCIATES

Table 1 GENERATORS FOR NIAGARA COUNTY REFUSE

Generators

Carborundum Co. General Administrative Office Niagara Falls, NY 14304 716-278-2000

Bell Aerospace Co. Div. of Textron Inc. **Executive Office** Niagara Falls Blvd. Niagara Falls, NY 14304 716-297-1000

The Goodyear Tire & Rubber Co. 5408 Baker Ave. Niagara Falls, NY 14304 716-283-7682

E.I. DuPont de Nemours & Co. Industrial Chemical Dept. Buffalo Ave. & 26th Street Niagara Falls, NY 14304 716-278-5100

Hooker Chemicals & Plastics Corp. Durez Div. Walack Road N. Tonawanda, NY 14150 716-696-6000

Olin Corp. Industrial Chemicals 2400 Buffalo Ave. Niagara Fall, NY 14303 716-278-6411

Hooker Chemicals & Plastics Corp. Hypo Mud Speciality Chemicals Div. Soil & Misc. Chemical Wastes Buffalo Ave. Niagara Falls, NY 14302 716-278-7777

Wastes

Empty Containers Abrasive Grain Scrap Sandpaper Scrap Resins Rags Paper Wood

Heat Treatment Salts Plating Tank Sludge Scrap Wood Clay Fly Ash

Thiazole Polymer Blends Iron Catalyst Salts Accelerator Sewer Pumps Misc. PVC Wastes

Off-Grade Polyvinyl Alcohol

Oil and Grease Drippings Phenolic Molding Compound Phenolic Resin Rubbish

Graphite Lime Sludge Brine Sludge (with mercury)

From Southern Section of Love Canal

Appended. 4.4-1 3. g 8

Table 1 GENERATORS FOR NIAGARA COUNTY REFUSE (Continued)

National Lead Co. 4511 Hyde Park Blvd. Niagara Falls, NY 14305 716-694-0636 Fumed Silica Zircon-Zirconia Sludge Paper Bags (which may contain traces of heavy metals dusts) Wood Pallets Flint Pebbles Fiber Drums Steel Drums Brick

Miscellaneous Trash

Roblin Steel Co. 101 East Ave. N. Tonawanda, NY 14150 716-696-9700

RW12/42

Table 3 CHEMICAL ANALYSES RESULTS AT AND IN VICINITY OF THE SITE

		-)	New York State Department of Health (NYSDOH)					
<u>Chemical</u>	Gro Federal MCL	undwater) NYS MCL	5/21/73 Landfill Discharge Into River	6/5/73 Leachate Discharge 50 Feet Upstream (Control)	6/5/73 Leachate Discharge Into Niagara River	6/5/73 50 Feet Downstream of Discharge Point		
Ba (mg/1)			0.1	1.0	1.3	1.0		
Cd (mg/1)	0.01	0.01	0.05	0.05	0.05	0.05		
TCr (mg/1)	0.05	0.05	0.1	0.1	0.1	0.1		
Cu (mg/1)		_ 1.0	0.06	0.1	0.1	0.1		
Fe (mg/1)	0.3	0.3	1.6	0.26	4.4	0.23		
Pb (mg/1)	0.05	0.05	0.1	0.20	0.10	0.1		
Mn (mg/1)	0.05	0.3	2.6	0.02	0.65	0.02		
Hg (mg/1)	0.002	0.002	0.004	0.004	0.0006	0.008		
Se (mg/1)		0.01	0.01	0.01	0.01	0.01		
Ag (mg/1)		•	0.1	. 0.025	0.025	0.025		
Zn (mg/1)	• · · ·	5.0	0.09	0.1	0.1	0.1		
Co (mg/1)			0.1	0.1	0.1	0.1		
Ni (mg/l)			0.05	0.05	0.05	0.05 ×		
			•		• • • • • • • •	8		
RW12/44			e e e e e e e e e e e e e e e e e e e					

Table 3 CHEMICAL ANALYSIS RESULTS AT AND IN VICINITY OF THE SITE (Continued)

· · · · · · · · · · · · · · · · · · ·	Groundwater Federal NYS		Recra Research Gratewick Riverside Park Groundwater Well Samples 7/6/79			
<u>Chemical</u>	MCL	MCL	10			
Phenol (mg/l)	3.5	•	9.10	14.60	11.08	118.5
THO as Chlorine (ppb)			11.5	2.78	0.12	22.8

ndet 1.4. 5-08 8

CO (ppb) as Chlorine (ppb)

RW12/44/2

Table 3 CHEMICAL ANALYSIS RESULTS AT AND IN VICINITY OF THE SITE (Continued)

Chemica 1	Federal MCL	Groundwater NYS MCL		Results 9/6/79 North End of Site
Ba (mg/1)			0.05	0.05
Cd (mg/1)	0.01	0.01	0.02	0.02
TCr (mg/l)	. 0.05	0.05	0.01	0.1
Cu (mg/1)		1.0	0.05	0.05
Fe (mg/1)	0.3	0.3	. .	
Pb (mg/1)	0.05	0.05	0.1	. 0.1
Mn (mg/l)	0.05	0.3	· · ·	
Hg (mg/1)	0.002	0.002	0.0011	0.0013
Se (mg/1)		0.01	•	
Zn (mg/1)		5.0	0.05	0.05
Phenol (mg/l)	3.5	· ·	0.005	0.005
THO (ppb) as Chlori	ne		390	470

RW12/44/3

Rounder

opendeit 1,4,4-) 6 of 8

Table 3 CHEMICAL ANALYSIS RESULTS AT AND IN VICINITY OF THE SITE (Continued)

••• •				Recra Research Groundwater Well Samples				
	Chemical	Federal MCL	Groundwater NYS MCL	11/29/73 Well # 10	11/29/79 Well # 13	12/3/79 Well # 14	11/29/79 Well # 15	12/4/79 Well # 16
	Phenol (mg/l)	3.5		1.26	63.1	0.003	0.007	
	THO (ppb) As Chlorine	: ··		2.7	1,100	2.5	2.7	0.05
	As (mg/1)		0.05					
	Chloride (mg/l)	250	250	390	47.5	18.1	47.0	
•	TOC (mg/1)			32.2	378.	19	24	
	CO (ppb) As Chlorine			. 340	-	-	0.01	
	GC/MS Scan (See report)		· · ·	Yes	Yes	Yes	Yes	Yes

RW12/44/4

De

è

10 pendix 1 ÷

Novendia 1.4.4 5018

Table 4 RESULTS OF PRIORITY POLLUTANT ANALYSIS OF STANDING WATER AT THE NCR SITE TAKEN BY EPA

Parameter	81-169-01	81-169-02	81-169-03	81-165-04
Cu (mg/1)	0.020	0.024	0.052	
Ni (mg/l)	0.10		•	
Zn (mg/l)	0.174	0.086	0.014	
Phenol (mg/l)				34,000
Ethylbenzene (mg/l)	8.0		· .	
Toluene (mg/l)	31.0	,		
Diethylphthalate (mg/l)				40

See Figure 5 for sampling locations Samples taken 6/81

RW12/45/1

15 (12/75)		with as represe disposing Mi Aucun 196	4.4- ,
	* I	New York State Department of Environmental Conservation	tim
		MENORANDUN 11/1 TA W	المك عمل
TO:		bert J. Mitpey	hr,
FROM: BUBJECT:	Yavı EPA	A Testing Results for the Niagara County Refuse Disposal Site, WWW W Town of Wheatfield, Niagara County cember 29, 1980.	
DATE:	Dec	Town of Wheatfield, Niagara County	منا يمهم
	/	July work of the second s	till 1
-	The	e summary of the EPA findings on the dumpsite is as follows:	Hr.
l	1.	Liquid sample (EPA #56029) collected from the 24" drainage line under \int^{4} River Road shows contamination with heavy metals but the levels are well within the NYS effluent standards.	K
	2.	Liquid sample (EPA #56033) collected from pond at the north end of the landfill also shows contamination with heavy metals but the levels are well within the NYS effluent standards.	
	3.	Sediment samples show various degrees of contamination with heavy metals. The highest concentration of Zn (1500 pp m) was found in a major swale crossing the landfill (EPA #56032).	
	4.	Phenol was not detected in the liquid sample #56029.	,
	5.	Phenol was found in all sediment samples. Values vary from 89 ppb to 1,900 ppb found in sample #56032.	
	6.	No PCB's were found in the liquid sample #56029. No value reported for sample #56033.	
	7.	PCB's were found for sediment samples #56031, 56032, 56034 and 56030. The highest value for PCB-1248 was 320 ppb in sample #56032.	
	8.	Several chlorinated organic compounds were found in both liquid and sediment samples:	
		List of chlorinated organics found in liquid samples (ppb):	
	:	1,2 trans dichloroethylene $\frac{\#56029}{37}$, $\frac{\#56030}{}$	
		Methylene chloride 2 1	
# .		Tetrachloroethylene 56	
		Trichloroethylene 8	,
		Vinyl chloride 2	
-)	•
_			

•

		- 2 -	. ,	Appendix 1	4,4-2
List or chlorinated or	ganics f	ound in sediment	samples (ppb.	<u>):</u> 296	
·. <u>/</u>	56030	<u>#56031</u>	<i>#56032</i>	#56034	#56035
Chlorobenzene	0.5	4.8			
1,2 dichloroethane				3.8	
1,1,1 trichloroethane				0.5	
Chloroform	0.15	0.7		3.8	2.7
1,2 trans dichloroethy	lene 12				
1,2 dichloropropene		0.8			- <u>-</u> -
Methylene chloride	1.5	24	16	4.1	31 -
. Trichlorofluoromethane	:		1.2	·	
Tetrachloroethylene	19				
Trichloroethylene	5.2	0.4	0.7	1.4	0.3
4,4'-DDE=	11	3.3	5.3	9.1	
<mark>₿</mark> -внс*			58	15K?	
l,2,4-Trichlorobenzene			73	47	
Hexachlorobenzene	 .		39		
1,2 Dichlorobenzene			39	30	
1,3 Dichlorobenzene		54	59	41	
1,4 Dichlorobenzene		54	59	41	

(* pesticides)

-3-<u>Appendix 1:4.4-2</u> <u>306</u> <u>306</u> <u>306</u>

28

38:

--

100

470

180

330

350

110

350

Uther organize compe							
	Liquid		0	ediment			
<u>#5(</u>	6029 #	56033	<u>#56030</u>	<u>#56031</u>	<u>#56032</u>	#56034	<u>#56035</u>
Acenaphthene			11		8.2	17	
Acenaphthene derive	d from c	oal tar, irrita	ating to e	eyes and s	kin.		
Fluoranthene		 .	2500	34	130	190	19
Fluoranthene derive	d from c	oal tar, modera	ately toxi	ic.			
Naphthalene			76	17	50	160	 `
Naphthalene is a na	rcotic a	gent.					
Anthracene			2000	40	140	260	21
Anthracene is a car	cinogeni	c agent, deriv	ed from a	nthracene	oil.		
Fluorene			93		12	33	
Fluorene is derived dye stuff.	from co	al tar, used a	s resinou	s product:	s, insect	icides ar	nd
Phenaathrene		.	2000	40	140	260	21
Phena n threne is der	ived fro	om coal tar, cá	rcinogeni	c agent.		, ,	
Pyrene			2000	26	110	140	14
Pyrene is derived f	rom coal	l tar, carcinog	jenic agen	t.			
P-Dioxic (TCDD)							 .
Benzo (a) pyrene			2300	`	180	210	
Benzo (a) pyrene is found in coal tar, carcinogenic agent.							
• . •			• ·				
The following comported resing:	ounds ar	e used as plas	cicizer fo	or polyvir	yl and ce	llulosic	
Bis (2-ethyhexyl)	phthalat 330	e . 14	6900	2500	4100	2300	440

220

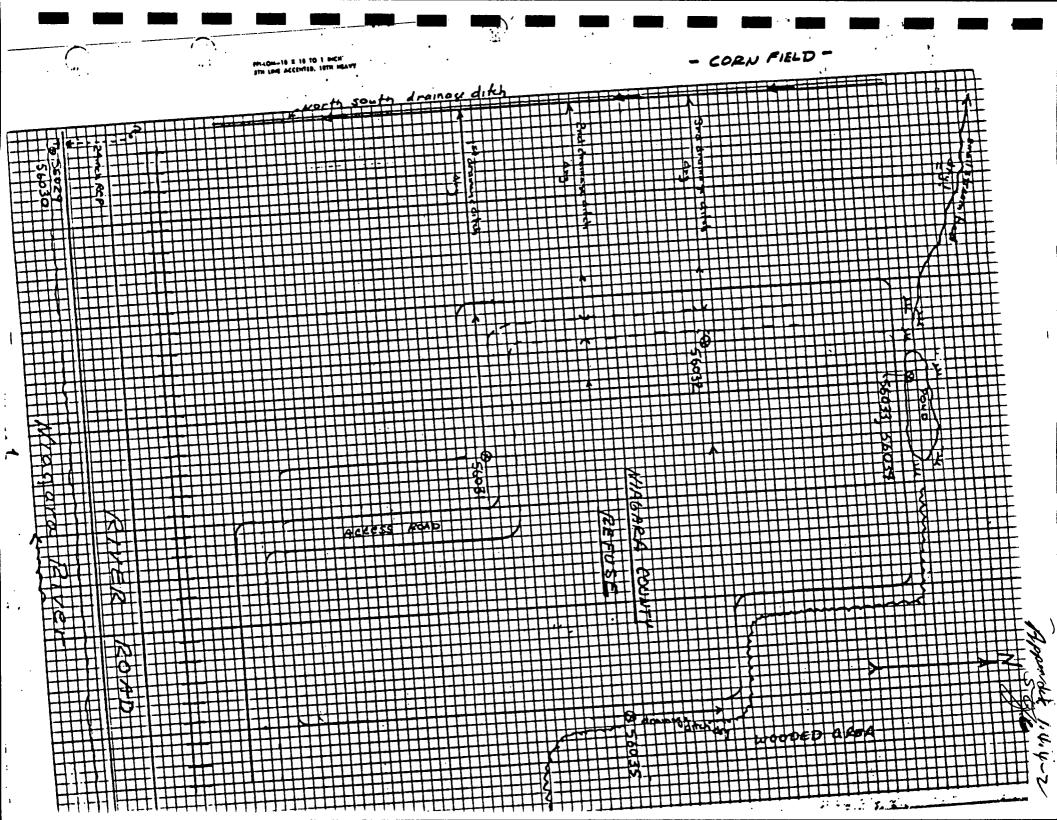
400

170 10 8**9** 120 Diethyl phthalate 1.7

5.2

Butyl benzyl phthalate

Di-n-butyl phthalate


Di-n-octyl phthalate

0.76

9.0

YE:las

Town of Wheatfield and/or the Niagara Refuse Disposal District.

EPA Sample

\$56029

#56030

\$56031

#56032

₽56033

\$56034

\$56035

Sample Type and Location

FIGURE 1

Water samples taken from a 24inch pipe running under River Road and into the Niagara River. This drainage line located south and east of the site is suspected to carry some of the surface runoff from the site. Flow rate is 2.25 gpm.

Sediment samples taken at the same location as sample #56029.

Sediment samples taken from the first east - west drainage ditch draining in a westerly direction . from the site. No standing water present.

Sediment samples taken from the third east - west drainage ditch at a point just to the east of the access road, just before drainage enters conduit passing under roadway. No standing water present.

Water samples taken from pond in marshy area along the northern edge of fill.

.....

Sediment samples taken at same location as sample \$56033.

Sediment samples taken from drainage ditch running along the northeast edge of the fill. No standing water present.

1 genetix 1. 4. 4-3

R-584-11-83-9

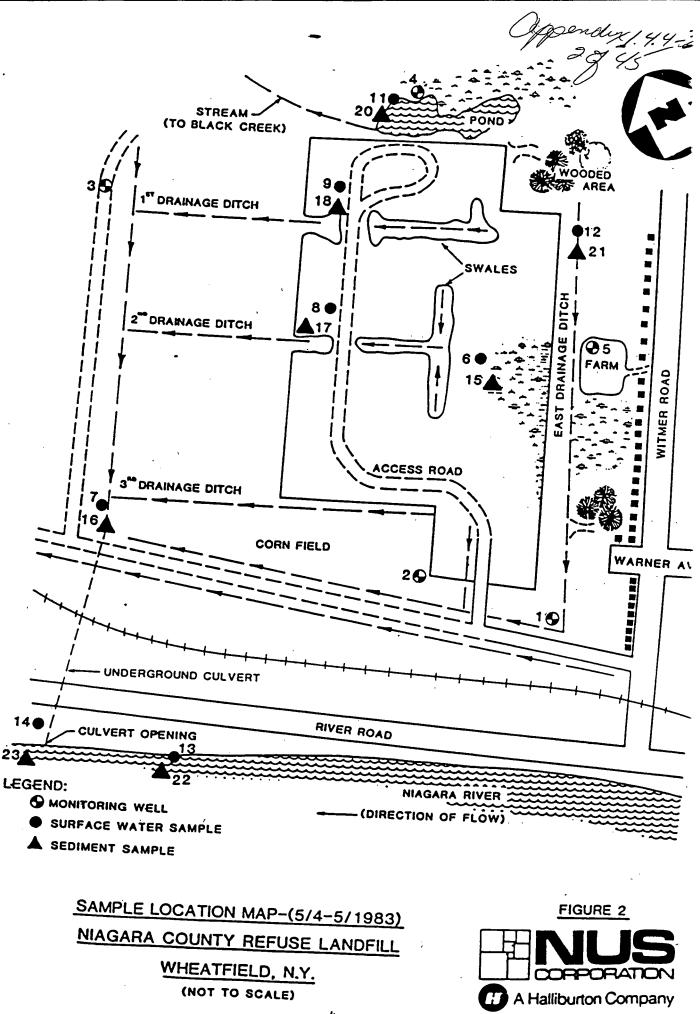
EVALUATION OF ANALYTICAL CHEMICAL DATA FROM NIAGARA COUNTY REFUSE WHEATFIELD, NEW YORK

PREPARED UNDER

TECHNICAL DIRECTIVE DOCUMENT NO. 02-8212-02C CONTRACT NO. 69-01-6699

FOR THE

ENVIRONMENTAL SERVICES DIVISION U.S. ENVIRONMENTAL PROTECTION AGENCY


DECEMBER 2, 1983

NUS CORPORATION SUPERFUND DIVISION

SUBMITTED BY

PATRICK SORENSEN, Ph.D PROJECT MANAGER **REVIEWED/APPROVED BY**

PETER FRANCONERI, P.E. REGIONAL PROJECT MANAGER

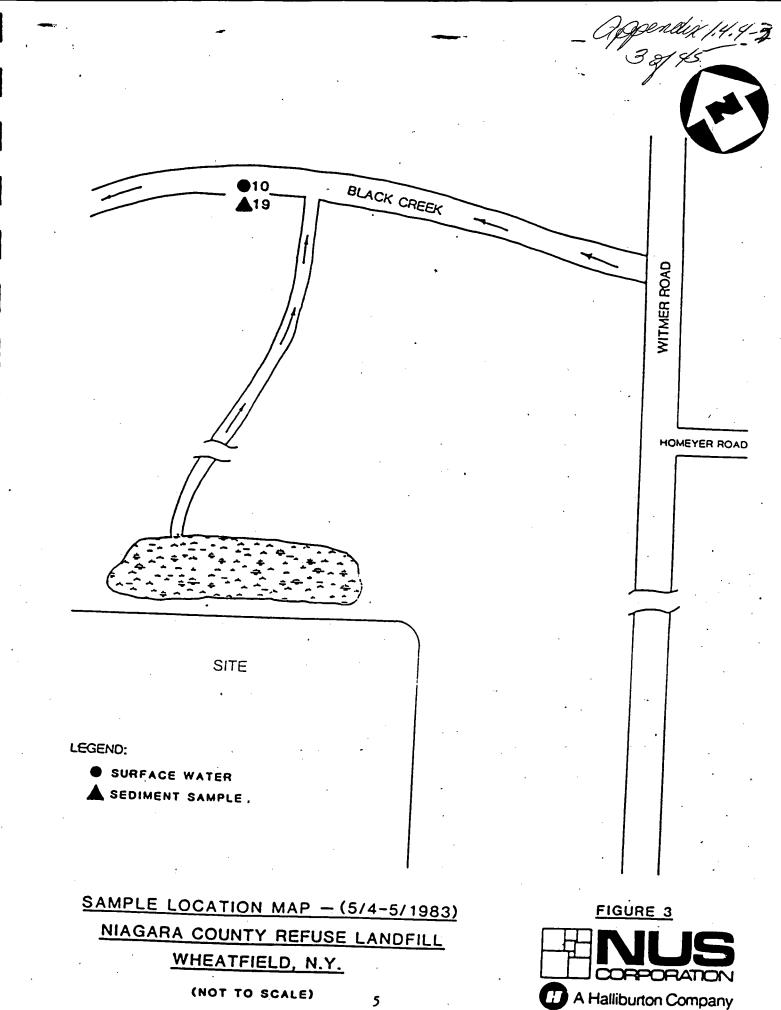


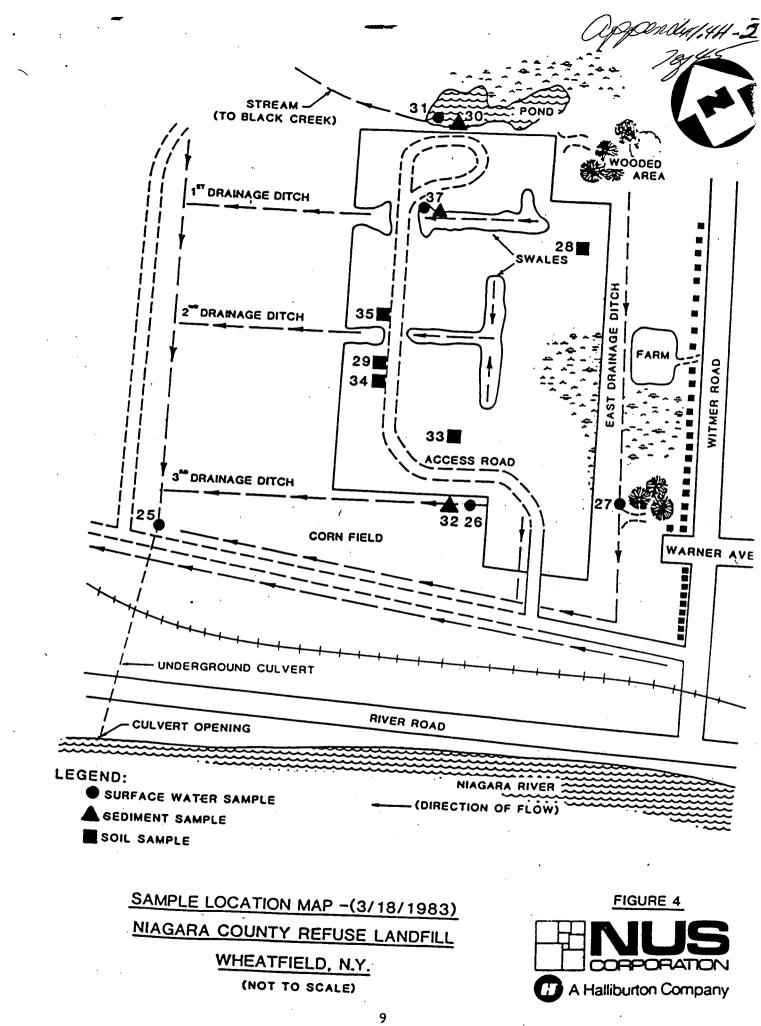
TABLE ILOCATIONS SAMPLED - NIAGARA COUNTY REFUSE, WHEATFIELD, NEW YORKMAY 4-5, 1983

SAMPLE NUMBER	SAMPLE TYPE	SMO TRAFFIC REPORT NO. (CASE #1655)	LOCATION	ANALYSIS
1.5	Groundwater	B2742 MB9734	Monitoring Well #1	Priority Pollutants
2	Groundwater	B2743 MB9735	Monitoring Well #2	Priority Pollutants
3	Groundwater	B2744 MB9736	Monitoring Well #3	Priority Pollutants
4	Groundwater	B2746 MB9738	Monitoring Well #4	Priority Pollutants
5	Groundwater	B2745 MB9737	Monitoring Well #5	Priority Pollutants
6	Surface Water	B2747 MB9739	Ponded water on fill	Priority Pollutants
7	Surface Water	B2748 MB9740	Drainage ditch near culvert entrance	Priority Pollutants
8	Surface Water	B2749 MB9741	Southern swale	Priority Pollutants

Ν.,

5

TABLE I (cont'd)LOCATIONS SAMPLED - NIAGARA COUNTY REFUSE, WHEATFIELD, NEW YORKMAY 4-5, 1983


SAMPLE NUMBER	SAMPLE TYPE	SMO TRAFFIC REPORT NO. (CASE #1655)	LOCATION	ANALYSIS
9	Surface Water	B2750 MB9742	Northern swale	Priority Pollutants
10	Surface Water	B2751 MB9743	Black Creek	Priority Pollutants
11	Surface Water	B2752 MB9744	Pond adjacent to fill	Priority Pollutants
12	Surface Water	B2753 MB9745	East drainage ditch	Priority Pollutants
13	Surface Water	B2755 MB9747	Niagara River, upstream from culvert opening	Priority Pollutants
14	Surface Water	B2754 MB9746	Niagara River, downstream from culvert opening	Priority Pollutants
Water Field Blank	Double Distilled Water	B2741 MB9733	Chemical Supply House	Priority Pollutants
15	Sediment	B2757 MB9748	Ponded water on fill	Priority Pollutants

. .

	• •		.,	•
SAMPLE NUMBER	SAMPLE TYPE	SMO TRAFFIC REPORT NO. (CASE #1655)	LOCATION	ANALYSIS
16	Sediment	B2758 MB9749	Drainage ditch near culvert entrance	Priority Pollutants
17	Sediment	B2759 MB9750	Southern swale	Priority Pollutants
18	Sediment	B2760 MB9751	Northern swale	Priority Pollutants
19	Sediment	B2761 MB9752	Black Creek	Priority Pollutants
20	Sediment	B2762 MB9753	Pond adjacent to fill	Priority Pollutants
21	Sediment	B2763 MB9755	East drainage ditch	Priority Pollutants
22	Sediment	B2765 MB9757	Niagara River, upstream	Priority Pollutants
23	Sediment	B2764 MB9756	from culvert opening Niagara River, downstream from culvert opening	Priority Pollutants
Sediment Field Blank	Double Distilled Water	B2756 MB9754	Chemical Supply House	Priority Pollutants
,				, in the second s

TABLE I (cont'd)LOCATIONS SAMPLED - NIAGARA COUNTY REFUSE, WHEATFIELD, NEW YORKMAY 4-5, 1983

00

		·		
SAMPLE NUMBER	SAMPLE TYPE	EPA LAB SAMPLE NO.	LOCATION	ANALYSIS
Blank	Distilled Water	60451	EPA Lab, Edison, N.J.	Priority Pollutants
25	Surface Water	60230	Water entering culvert from western north-south drainage ditch	Priority Pollutants
26	Surface Water	60229	Water sample from Third River drainage ditch	Priority Pollutants
27	Surface Water	60228	Water sample collected from east drainage ditch	Priority Pollutants
28	Soil	60227	Soil sample from northwest area. 2 foot core sample with brown silty appearance	Priority Pollutants
29	Soil	60226	Soil sample from northeast area. 2 foot core sample of grey-brown clay	Priority Pollutants
30	Sediment	53400	Sediment from pond at north end of landfill	Priority Pollutants
31	Surface Water	53399	Water sample from pond at north end of landfill	Priority Pollutants

TABLE 2LOCATIONS SAMPLED - NIAGARA COUNTY REFUSE, WHEATFIELD, NEW YORKMARCH 18, 1981

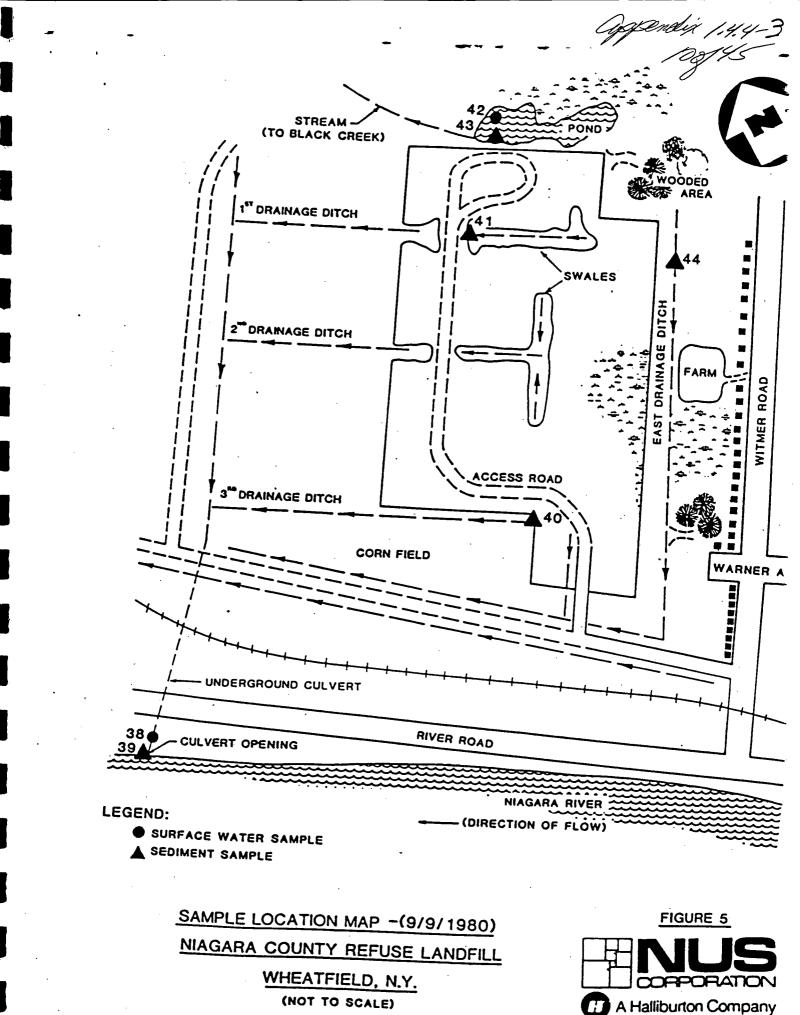

No

TABLE 2 (cont'd)LOCATIONS SAMPLED - NIAGARA COUNTY REFUSE, WHEATFIELD, NEW YORKMARCH 18, 1981

sender

1942

SAMPLE NUMBER	SAMPLE TYPE	EPA LAB SAMPLE NO.	LOCATION	ANALYSIS
32	Sediment	52374	Sediment sample from Third drainage ditch	Priority Pollutants
33	Soil	52373	Soil sample from pile of soil and construction debris in center of landfill	Priority Pollutants
34	Soil	52372	Soil sample from northeast end of landfill	Priority Pollutants
35	Soil	52371	Soil sample from northeast end of landfill	Prioirty Pollutants
36	Sediment	52370	Sediment from first drainage ditch	Priority Pollutants
37	Surface Water	52369	Water from first drainage ditch	Priority Pollutants

TABLE 3	
LOCATIONS SAMPLED - NIAGARA COUNTY REFUSE, WHEATFIELD, NEW YOR	Κ
SEPTEMBER 9, 1980	

.

SAMPLE NUMBER	SAMPLE TYPE	EPA LAB SAMPLE NO.	LOCATION	ANALYSIS
38	Surface Water	56029	Drainage line under River Road	Priority Pollutants
39	Sediment	56030	Drainage line under River Road	Priority Pollutants
40	Sediment	56031	Third drainage ditch along west side of landfill	Priority Pollutants
41	Sediment	56032	First drainage ditch along west side of landfill	Priority Pollutants
42	Surface Water	56033	Pond at north end of landfill	Priority Pollutants
43	Sediment	56034	Pond at north end of landfill	Priority Pollutants
44	Sediment	56035	Drainage ditch along north- east side of landfill	Priority Pollutants
Blank	Blank	56036	Two blank VOA vials	Priority Pollutants

FINDINGS

Appendix 1. 4.4-

Complete analytical results for priority pollutants and other toxic compounds identified are provided in Table 4. Significant findings are discussed below.

Surface Water

Phthalates were found in a number of widely scattered surface water locations in the 1980 and 1981 sampling trips. Bis(2-ethylhexyl)phthalate concentrations ranged from not detected to 450 ug/l. Di-n-octyl phthalate was found at 10 ug/l in sample 38. Diethyl phthalate was found at 3.2 ug/l in sample 26 and 1.7 ug/l in sample 38. No phthalates were found in surface waters sampled during the 1983 trip.

Phthalates are among the most important industrial chemicals. They are commonly used as plasticizers. Physiologically, the phthalates represent one of the lowest toxicity classes used in industry. Generally, they have not presented dermal problems, are not absorbed through the skin, and are not appreciably hazardous by inhalation. The levels detected do not appear to present a public health hazard.

Trace levels of chlorobenzene, 1,1,2,2-tetrachloroethane, ethylbenzene, and trichloroethylene were detected in sample 13.

Sample 26, located at the southern edge of the site, contained 26 ug/l 1,3dichlorobenzene, 1.4 ug/l isophorone, 7.0 ug/l naphthalene, 2.1 ug/l 2,4dimethylphenol, 4.6 ug/l phenol, 27 ug/l chlorobenzene, 24 ug/l ethylbenzene. Sample 31 contained a trace chloroform.

Sample 38 contained 37 ug/l 1,2-trans-dichloroethylene, 56 ug/l tetrachloroethylene, 8 ug/l trichloroethylene and 2 ug/l vinyl chloride.

Methylene chloride was detected at 480 ug/l in sample 11, 7 ug/l in sample 13, 27 ug/l in sample 31. The blank for sample 31 contained 3.9 ug/l methylene chloride. Sample 38 contained 2 ug/l, sample 42 contained 1 ug/l and sample 44 contained 31 ug/l methylene chloride.

Methylene chloride is the least toxic of the four chlorinated methanes, and there is no evidence to suggest that this compound is carcinogenic to humans. Methylene chloride is moderately toxic via ingestion, but is very dangerous to the eyes upon contact. Methylene chloride may have been used during sample bottle preparation and the levels found may be artifacts.

38943

Inorganic concentrations found in surface water samples were not significant.

Groundwater

Bis (2-ethylhexyl) phthalate was detected in groundwater sample 2 at 35 ug/l.

Methylene chloride was detected in three groundwater samples. Well sample 1 contained 79 ug/l, sample 4 contained 5200 ug/l, and sample 5 contained 5.4 ug/l. Since methylene chloride is used for sample bottle preparation, this may be a sampling artifact. However, the lack of methylene chloride in the field blank and the high levels detected in some samples suggest that methylene chloride is a groundwater contaminant at Niagara County Refuse.

Well sample 4 contained 1900 ug/l of acetone. The field blank contained 420 ug/l acetone and well samples 1, 2, 3, and 5 contained trace levels of acetone, but failed EPA Region II quality assurance requirements. Acetone was used for decontamination of field equipment and is probably a sampling artifact in this case.

No other organics were detected in the groundwater.

Inorganic concentrations detected in the groundwater samples were not significant.

<u>Soil</u>

With the exception of endosulfan sulfate, no organic priority pollutants were detected in soil samples collected during the 1983 trip. Endosulfan sulfate was detected in sediment sample 16 at 288 ug/kg. However, this pesticide's presence could not be confirmed by GC/MS, and this finding could be erroneous.

A number of organics were detected in soil and sediment samples collected during sampling trips in 1980 and 1981. However, much of this data could be in error,

Phthalates were found in a number of widely separated location. Phthalate concentrations ranged from not detected to 6900 ug/kg.

since no soil field blanks were included with the samples for analysis.

A number of the soil samples collected during 1980 and 1981 also contained polynuclear aromatic hydrocarbons (PAHs) including: anthracene, benzo(a)anthracene, benzo(a)pyrene, 3,4 benzofluoranthene, benzo(k)fluoranthene, chrysene, fluoranthene, naphthalene, acenaphthylene, phenanthrene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, pyrene.

Since several of these PAHs are potential carcinogens, their presence in soil is a source of public health concern. The highest PAH concentrations were detected in sample 39, a culvert opening to the Niagara River. PAH concentrations at this location included: 3,200 ug/kg benzo(a)anthracene, 2,300 ug/kg benzo(a)pyrene, 2,200 ug/kg benzo(k)fluoranthene, 3,4 benzo fluoranthene, 3,200 ug/kg chrysene, 2,000 ug/kg anthracene, 2,000 ug/kg phenanthrene, and 2,000 ug/kg pyrene.

Other organics detected in soil include: hexachloroethane, 1,2,4-trichlorobenzene, ocenaphthene, dichlorobenzene, benzo(ghi)perylene, phenol, 2,4-dimethylphenol. A number of volatile organics were detected in trace concentrations. Pesticides detected included PCB-1254, PCB-1248, B-BHC and trace levels of 4,4'-DDE.

No unusual inorganics concentrations were detected in the soil and sediments samples.

ORGANICS			SA		ABLI LE N			>						14	58	s/4
BASE NEUTRAL EXTRACTABLES	yete Fel Blar		10		30							·				
Acenaphthene	614	-	-		+	44	s	-	6 ⁴	/ 7 ⁴	84	94	10*	11	' `	128
Benzidine					╉╼╾-	┼──	4_			<u> </u>	L					
1,2,4 - Trichlorobenzene		┿			┼──	┼──		+-		L						
Hexachlorobenzene		-+-			+	╂───	+									
Hexachloroethane		-{-				┼──	+					ļ				
Bis(2-chloroethyl)ether		-{-			┼	┼───	+									
2-Chioronaphthalene		-+-			┼──-		+									
1,2 - Dichlorobenzene		+-	+		┼──-	┝										
1,3 - Dichlorobenzene		+-	-+		┼───	┼──	┽					L				
1,4 - Dichlorobenzene		╈	-+		┼───	┟───	┼	+-								
3,3 - Dichlorobenzidine		+-	-+				┥									
2.4 - Dinitrotoluene		+-	-+					+								-
2,6 - Dinitrotoluene		+	\rightarrow				┢──	+-			_					
1.2 - Diphenylhydrazine		+	-+-				┝	+	-+							
Fluoranthene		+	-+-				┝──	+-	-+							1
• - Chlorophenyl phenyl ether		+	-+-					+								
* - Bromophenyl phenyl ether		+				·		+	-+						Τ	
Bis(2-chioroisopropyl)ether	┽╌╧	┿	+					4	-+							
Bis(2-chloroethoxy)methane		+	+					+								
Hexachlorobutadiene	+	╉──	-+-					+	$- \downarrow$							
Hexachlorocyclopentadiene	+	╂						<u> </u>	$ \bot$							-
Isophorone	+	+	+-					_	-+						T	7
Naphthalene	+	┼──	+						-+							-
Nitrobenzene	+							 					_			
N-nitrosodimethylamine	+	┼──	+					L							ŀ	-1
N-nitrosodiphenylamine	+		+-													-1
N-nitrosodi-n-propylamine	+		+	-+												- ·
Bis(Z-ethylhexyl) phthalate	+														1-	
Butyl benzyl phthalate	+		+	-+					\perp						\uparrow	1
Di-n-butyl phthalate			┼╌	-+												7
Di-n-octyl phthalate			+	-+-											†	1
Diethyl phthalate			+	-+-											1	7
Dimethyl phthalate			┼		-+-	-+									1	1
Benzo(a)anthracene			┼				$ \rightarrow $									1 ·
(1,2-benzanthracene)											Т				1.	1
Senzo(a) pyrene							-	_	┿	-+-	-+	-+-				-
,# Benzo fluoranthene						-+-			┽╌	-+-		-+				-
enzo(k) fluoranthene			-	+		-+-		_	+							1
hrysene							-+		+	-+-		-+				4
cenaphthylene					-+-	-+-	+		+-	- +		+	<u> </u>			1
NOTES: Blank spaces indicate that the chem a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg + Analysis did not pass QA/Q (-) - Analysis was not performed	Y. com			cted	. <u></u>		1		<u> </u>				1		<u> </u>	J

۰.

.

!

ORGANICS		SAN	PLE	NUI	MBE	R					-		N #
BASE NEUTRAL EXTRACTABLES (cont'd.)	Water ⁴ Fleid Blank	1.4	24	34	44	5ª	64	7*	84	9*	10*	11.4	124
Asthracene			+								┼	<u> </u>	
Behzo(ghi) perylene (l,12-Benzoperylene)			<u> </u>									┼──-	
Fluorene	†		┼──							<u> </u>	┼──		<u> </u>
Phenanthrene		1	1					 		┼──			
Dibenzo(a,h) anthracene (1,2,3,6-dibenzanthracene)													
Indeno (1,2,3-cd) pyrene		+	<u> </u>								 -		
2,3,7,8-Tetrachlorodibenzo- p-diozin (TCDD)		•			•		•	•	1		.	•	
Pyrene		†	 								┼──		
NON-PRIORITY POLLUTART HAZARDOUS SUBSTANCES											├		
Aniline											<u> </u>		
Benzyl Alcanol										<u> </u>	┝		
I-Chloroaniline													
libenzofursn													
-Nethylnaphthalene													
-Nitroaniline											·		
-Nitroaniline													{
-fitroantline								{					
			+		-+	+		+					
							+	+					
				+	+	+	\rightarrow					+	
						-+	-+					+	
				+									
•		T							+				
]		
					-+-					-+			
								_					
								T					
	-+-	-+				-+-	-+-						
				Γ	T				-†-				
		-+-				-+-							
]	
	Γ	T					-+-				-+-		
										Γ	Τ		
		\neg		-+-						-+-			
NOTES: Blank spaces indicate that the cher a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • Analysis did not pass QA// (-) - Analysis was not performed	00			(:d	4				!		<u> </u>]

ORGANICS	ę	SAN	LE 4								/	172	Ð J	5
ACID COMPOUNDS	Water Field Alank	14	z*	3 ⁴		54	64	, 4	84	9.	10*	11 ⁴	12*]
2,4,6-Trichlorophenol		1		•			+	†		 	10	<u> .</u>		4
p-Chloro-m-cresol			1	•	<u> </u>	1	1		<u> </u>	<u> </u>		+	+	1
2-Chlorophenoi		1		•		1	+	<u> </u>		<u> </u>	+	1.	+	i
2,4-Dichlorophenol	1			•	1	1				<u> </u>	+		+	-
2,4-Dimethylphenol				•	1				<u> </u>		+	1.	+	{
2-Nitrophenol			1	•	<u> </u>	<u> </u>	\uparrow	<u> </u>	<u>†</u>		+	<u> </u>	+	1
4-Nitropheñol	1	†	+	•		†	+		<u> </u>		╉──	·	+	{
2,4-Dinitrophenol	1	†		† •				+		<u> </u>			+	{
*,6-Dinitro-o-cresol	+	†	+	<u> .</u>	<u>† </u>		+	†		\vdash		•	+	{
Pentachlorophenol	+		+	1.	 		+					<u> ·</u>		ł
Phenol	1	<u> </u>	+	•		+	+		┢──		+	·	+	-
(NON-PRIORITY POLLUTANT HAZARDOUS SUBSTANCES)		<u> </u>	$\uparrow \neg$		<u> </u>		1				+	<u> </u>	┼	
Benzoic Acid	1		<u>† </u>	•			-		<u> </u>	<u> </u>	┼──	+	<u> </u>	}
Hethylphenol	1		<u> </u>	•	<u> </u>			 				+		{
Methylphenol	1		†	† •	<u> </u>		+				┼	<u>.</u>		
Trichlorophenol				•			+				+			{
	+		╆						— -	<u> </u>		·		ł
	<u> </u>						┼							Į
			<u> </u>			<u> </u>		<u> </u>			 			
			┼───			<u> </u>				·	 	Ļ		ĺ
						 	<u> </u>			ļ	ļ	ļ		
			╂───			ļ	<u> </u>	ļ	 	ļ		<u> </u>		
	┟───┤						<u> </u>							
	-		 				<u> </u>		ļ					
							ļ							
					_									
										1				
									1					
									†				<u> </u>	
									1					
									t					
	f-	•		-+					+					
				+			— <u> </u>		+	 				
				+					┼───					
	+-						<u> </u>		╂				 -	
		. [1	1				

ж.

.

٠

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • Analysis did not pass QA/QC requirements (-) - Analysis was not performent

TABLE 4 (cont'd) SAMPLE NUMBER PESTICIDES Mitting 1 1 2 4	
Interior	80/45
Aldrin Ind	
Chordane I	11 124
4,4-DDT I<	
•,*-DDE ·<	
4,4-DDD 2<	
< -Endosultan	
β -Endosultan 1	
Endosultan sultate Image: Constraint of the subscript of the	
Endrin Image: Constraint of the second	
Endrin aldehyde Image: Constraint of the second	
Heptachlor Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Meptachlor epoxide Image: Constraint of the system X-BHC Image: Constraint of the system X-BHC Image: Constraint of the system Image: Constrait of the system Image: Constraint of th	
Heptachlor epoxide Image: Constraint of the system Image: Constraint of the system <bhc< td=""> Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system J BHC Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system J BHC Image: Constraint of the system J BHC Image: Constraint of the system Image: Consthe system Image: Constraint of the system</bhc<>	
-<-DHC	
β -BHC β </td <td></td>	
7 -8HC 1 1 1 1 0 -0HC 1 1 1 1 PCB-1202 1 1 1 1 PCB-1236 1 1 1 1 PCB-1232 1 1 1 1 PCB-1232 1 1 1 1 PCB-1232 1 1 1 1 PCB-1248 1 1 1 1 PCB-1260 1 1 1 1	
A -BHC A -BHC <td></td>	
PCB-1282 Image: CB-1282	
PCB-1236 Image: CB-1236 Image: CB-1237 Image: CB-1237 Image: CB-1248 Image: CB-1248 Image: CB-1260	
PCB-1221 Image: CB-1232 Image: CB-1232 Image: CB-1248 Image: CB-1260	╺━╂╾╾┥╷
CB-1232 CB-1248 CB-1260	
PCB-1232 Image: CB-1268 Image: CB-1260	-+
PCB-1260 Image: CB-1260 Image: CB-12600 Image: CB-12600 <td></td>	
CB-1016 Image: CB-1016	-+
oxaphene Image: Constraint of the second s	
oxaphene	
	-+
	-+
	· · ·

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • Analysis did not pass QA/QC requirements (-) - Analysis was not performed

ORGANICS					Con JMB								901	14
VOLATILES			2						-		- <u></u>	· ·	Ž_	-
Acrolein	fisig	<u> </u>	2	,		<u></u>	6	, *	84	9°	10*	<u> 11[•] (</u>	12*	
Acrylonitrile	+	+	+	+-				_	<u> </u>			<u> </u>	<u> </u>	4
Benzene	+	╂─-									<u> </u>	ļ	<u> </u>	
Carbon tetrachloride	+	+	+	+-			<u> </u>	+			+	+	<u> </u>	4
Chlorobenzene	+	+				+			+	- <u> </u>	+	∔	<u> </u>	4
1,2-Dichloroethane	+	+	+					╂──				<u> </u>	<u> </u>	
1,1,1-Trichloroethane		┼──				┥	∔	<u> </u>				<u> </u>	<u> </u>	
1,1-Dichloroethane	<5			+					+	4		<u> </u>	<u> </u>	
1,1,2-Trichloroethane	┿	╆		+				<u> </u>		<u> </u>		<u> </u>		
1,1,2,2-Tetrachloroethane		╂──		+				<u> </u>		<u> </u>				
Chloroethane	+							<u> </u>		<u> </u>		<u> </u>		
2-Chloroethyl vinyl ether (mixed)	┼──	<u></u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>		
Chloroform						<u> </u>		 	_			<u> </u>	ļ	
I,I-Dichloroethylene				+		<u> </u>		 	 	<u> </u>	<u> </u>	<u> </u>	ļ	ſ
1,2-trans-Dichloroethylene								 		<u> </u>		ļ		
1,2-Dichloropropane			+		+	<u> </u>	 		 	<u> </u>		<u> </u>		
1,3-Dichloropropylene (1,3-Dichloropropene)				<u> </u>	<u> </u>	<u> </u>	<u> </u>] ·
Ethylbenzene	╂──┥	<u> </u>			<u> </u>	ļ	<u> </u>	<u> </u>	L				1]
Aethylene chloride (Dichloromethane)			┿──			<u> </u>	<u> </u>	ļ	<u> </u>	ļ				
Aethyl chloride (Chloromethane)		79		╄	5200	5.4	L	<u> </u>	L	<u> </u>	ļ	480	<u> </u>] .
Aethyl bromide (Bromomethane)			┨───		┿━-	 	I			L	l	<u> </u>].
Sromoform (Tribromomethane)	┼──┤		<u> </u>	<u> </u>		ļ	<u> </u>		<u> </u>	·	1			
Bromodichloromethane	┼──┤		<u> </u>	 	+	 	<u> </u>		<u> </u>		<u> </u>]
richlorofluoromethane	┝─┤			<u> </u>		<u> </u>	<u> .</u>							
Dichlorodifluoromethane			<u> </u>		<u> </u>	<u> </u>								
Chlorodibromomethane		•	·	·	· ·	• 	·	•	-	·	Ŀ	ŀ	·	
etrachloroethene (Tetrachloroethylene)	┠━━━┦			ļ										
oluene	┞───┤	<u> </u>	ļ		ļ								_	
					<u> </u>									
richloroethene (Trichloroethylene)			<u> </u>		<u> </u>									
NON-PP:OPITY POLLUTANT HAZARDOUS SUBSTANCES)	- +		┣──		<u> </u>									
					<u></u>					ļ				
lectone	420	•	•	•	1900	·								
Jutanone					Ļ								_	
larbondisulfide														
z sąnonę					<u> </u>									
et=yl-2-Pentanone														1
t /rene														
inv: Acetate											4			
• € , ¹ μαμ	1													

· 20 8/45

TABLE 4

INORGANICS

SAMPLE NUMBER

	Vater ^C Field Blank	16	26	^ک د	4 ^C	s	6	،	ac	96	10'	п	::
Aluminum		0.8	0.8	3.6	1.8	0.8	2.0	2.2	11.6	2.6	1.0	0.8	
Chromium	0.01	0.01		0.02	0.01	†	0.01	0.01	0.02	0.01			
Barium		†	<u> </u>			1			╂───		<u> </u>	╂──-	
Beryllium			1	<u> </u>		<u> </u>		<u> </u>	0.1			┼──	┣_
Cadmium		<u> </u>				┼───			┼──-			╂	
Cobalt				0.001		†			{·		 	<u> </u>	┣
Copper			<u> </u>				<u> -</u>				<u> </u>		_
Iron	0.05	1.05	0.90	3.65					0.05	├			
Lead	0.03	1.03	0.90		1.80	0.80	2.40	2.45	18.10	3.45	1.60	1.60	2.4
Nickel			<u> </u>			0.010			0.015	0.005		<u> </u>	
Manganese		0.075							├			<u> </u>	
Zinc	0.070		0.060		0.045		0.045	0.045	<u> </u>		0.030	0.17%	1.3
Boron	0.070			7.420	3.060	5.440		•	•	•	•	·	•
Vanadium		0.6	0.5	0.5	0.5	0.6	0.3	1.7	2.7	2.9		6.1	3.3
Arsenic													
Antimony													
Selenium		—		_									
Thailium													
Mercury										- · · ·			
Tin									0.0004	0.0002			
							_			_			
Silver													
Silver													_
Silver													
Silver													

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • - Analysis did not pass QA/QC requirements (-) - Analysis was not performed

ŧ

ORGANICS				4 (1 .E NI		-					0	//	9/
BASE NEUTRAL EXTRACTABLES	Ffafa.	13*		Field Blantb		16 ^b	17 ^b	18 ^b	19 ^b	20 ⁵	21 ^h	22	230
Acenaphthene				010HL									
Benzidine													
1,2,4 - Trichlorobenzene			1										
Hexactulorobenzene													
Hexachloroethane			<u> </u>	+					•				<u>†</u>
Bis(2-chloroethyl)ether			1									<u> </u>	
2-Chloronaphthalene			<u> </u>	<u> </u>									
1,2 - Dichlorobenzene				 									
1,3 - Dichlorobenzene			<u> </u>	1			<u> </u>			<u> </u>	1	<u> </u>	
1,4 - Dichlorobenzene			<u>† – – – – – – – – – – – – – – – – – – –</u>	1								<u> </u>	
3,3 - Dichlorobenzidine			1	1				<u> </u>		<u> </u>	<u> </u>	+	
2,4 - Dinitrotoluene			<u> </u>	1	 	<u> </u>							
2,6 - Dinitrotoluene			†	<u>†</u>			<u> </u>			<u> </u>			
1,2 - Diphenylhydrazine			† <u> </u>	\uparrow		<u> </u>				<u> </u>		 	
Fluoranthene			1	1.							<u> </u>	<u> </u>	
4 - Chlorophenyl phenyl ether			<u> </u>	<u>† – –</u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	†	<u> </u>
4 - Bromophenyl phenyl ether			+	1-						 	┼──-		
Bis(2-chloroisopropyl)ether			<u> </u>	 									
Bis(2-chloroethoxy)methane			<u> </u>	 		<u> </u>				 			
Hexachlorobutadiene		<u> </u>	<u> </u>			 							
Hexachlorocyclopentadiene			1	†—	<u> </u>		<u> </u>	<u> </u>		<u> </u>			
Isophorone			<u>† </u>	<u> </u>						<u> </u>			
Naphthalene			1	1			<u> </u>			<u> </u>			┼──-
Nitrobenzene	_		1			<u> </u>				+			
N-nitrosodimethylamine			 	<u> </u>									
N-nitrosodiphenylamine		<u> </u>	<u>├</u> ──	 		<u> </u>	 						
N-nitrosodi-n-propylamine		-	<u> </u>				<u> </u>			+	<u>├</u>	+	
Bis(2-ethylhexyl) phthalate			+	<u> </u>				<u> </u>				+-	\vdash
Butyl benzyl phthalate		 	1	†			<u> </u>			<u> </u>			
Di-n-butyl phthalate			†	1		<u> </u>	<u> </u>	 	<u> </u>	 	┼───	+	<u> </u>
Di-n-octyl phthalate		 	1	†			<u> </u>	<u> </u>		+	+		
Diethyl phthalate		<u> </u>	 	1			1	<u> </u>			+	+	
Dimethyl phthalate		-		†			{						
Benzo(a)anthracene (1,2-benzanthracene)							†				†		†
Benzo(a) pyrene				1			1	†	<u> </u>	+	1		
3,4 Benzo fluoranthene		 	1	1			<u> </u>	†	<u> </u>	\mathbf{I}	+	+	┼──-
Benzo(k) fluoranthene		<u> </u>	1	1	├		<u> </u>	<u>+</u>			+	+	╂
Chrysene	_	<u> </u>	1	1			†	+	<u> </u>	<u> </u>	 	+-	┼──
Acenaphthylene		<u> </u>	1	1		<u> </u>	+	┿─	 	╂	╂	+	+

ı

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • - Analysis did not pass QA/QC requirements (-) - Analysis was not performed

ORGANICS				4 (c)						-	C	28	^{2}a
				E NU		:H		_					Λ
BASE NEUTRAL EXTRACTABLES (cont'd.)	Water Field Blank ^d	134	14	Field Blank	15 ^b	16 ^b	176	180	190	20 ⁶	21 ^b	22 ^b	230
Asthracene	 	-	+		+	+	- ·	+	╂──		+	+	
Behzo(ghi) perylene (l,12-Benzoperylene)			1				1	†	+		+		
Fluorene			+	-	+	1		+	┼──	+	┼─	+	
Phenanthrene	1				+	†	+	+	+	╆──	+		+
Dibenzo(a,h) anthracene (1,2,3,6-dibenzanthracene)	<u> </u>				†		+	+	†			+	
Indeno (1,2,3-cd) pyrene			\uparrow	+-		<u> </u>	+	+		+	+		┼───
2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD)				1.	+	•	+		•	-	1.		.
Pyrene	†	<u> </u>			1	+		+			+	+	
HON-PRIORITY POLLUTANT HAZARDOUS SESTANCES		<u> </u>		1	1	1	1	+	†—–	+	+	+	┼──
Aniline			1	1	1	 	1	<u>† </u>	†	†	+	+	┼──
Benzyl alchohol				1	1	1	1	+	 	<u> </u>	+	+	
4-Chloroaniline				1	1	1	†	†	<u> </u>		┼──	+	
Dibenzofuran				1	1		†	†	<u> </u>			╋───	
2-Methyliiaphthalene		·			<u> </u>	<u> </u>	<u> </u>					╂───	
2-Nitroaniline			1		<u>├</u> ──		<u> </u>			┟───			
3-Nitroaniline			1	-			f				<u> </u>	<u> </u>	
4-Nitroaniline											<u> </u>		
•											-		
				<u> </u>									
									-+				
												Ī	
		,					-+	\rightarrow	+				
								T	T		Τ		
				+	+	+					-+		
						ſ							
		+											
			ſ	T	T	T				-+			
										1			

,

NOTES: Blank spaces indicate that the chemical was not detected

 Concentrations in ug/l
 Concentrations in ug/kg
 Concentrations in mg/kg
 Concentrations in mg/kg
 Analysis did not pass QA/QC requirements
 Analysis was not performed

.....

.

ORGANICS			PLE	(co NUN	1BEF					~	C	Ľ	38	19
	Water Field Blank ^a	134	148	Sediment Field Blank ^b	15 ^b	16 ^b	178	18 ^b	19 ^b	20 ⁵	21 ^b	22 ^b	230	
2,4,6-Trichlarophenol	Brank*			Blank ³										
p-Chloro-m-cresoi	<u> </u>													
2-Chlorophenol														
2,4-Dichlorophenol	1			1										
2,4-Dimethylphenol										1				
2-Nitrophenol	1		[
-Nitropheñol										-				
2,4-Dinitrophenol		1		1										
4,6-Dinitro-o-cresol		1	1	<u>†</u>					1	1	1			
Pentachiorophenol			1	1			†		<u> </u>	1		1		
Phenol				<u> </u>	1			 	†	<u>†</u>	1	 		
NON-PRIORITY POLLUTANT HAZARDOUS SUBSTANCES							Ī							
Benzoic acid		1	1	1			Ì		1			<u> </u>		
2-Methylphenol				1	-				1					
4-Nethylphenol		1		1	1		1			1	1	1		
2.4.5-Trichlorophenol			1	1	1		1	İ	-		1			
			1	\uparrow	1		1		1		1			
				1	1	1	1	1	1	1	1			
	1	1			1		<u> </u>	1						
······································		<u> </u>	†	†	+	1	+	1	+	1	1	1	+	
·····	+	<u> </u>	+	+	{	1	<u>†</u>		+	+				
	+	+		+					+			+		
		 -	<u> </u>		<u> </u>				+	+	-		╀╌╴┨	
	+				<u> </u>	+		+		+	-		┼──┤	
	+			+	+		-		+		+		+	
<u> </u>	+	-					+	+			+	+	╀──│	
· · · · · · · · · · · · · · · · · · ·			<u> </u>		╂───			+					+	
	+	┼	<u> </u>	+						+-		+	╂──┨	
· · · · · · · · · · · · · · · · · · ·					<u> </u>	+		+	-	+	╂		┼──┤	
		 					+					+	┽╼╼-	
		<u> </u>	 		 			╂					╂	
			 	<u> </u>	 	\vdash					+	┥──	$\left \right $	
			 	 			 	<u> </u>		_	_	4	┨[
·····	<u> </u>	 		- <u> </u>	ļ	_	ļ				ļ	1	\square	
	<u> </u>		 	_	 	<u> </u>	 		_			<u> </u>	┟┈┥	
		<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	1	<u> </u>			1	<u> </u>	\downarrow	
				<u> </u>			\bot			_				
				<u> </u>										
							1							

-

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • - Analysis did not pass QA/QC requirements (-) - Analysis was not performed

e .--

.

.

26

لمرسعين المسريدية ويتمرز والمماري والارار

TABLE 4 (cont'd)

ORGANICS				(co NUM		-				-		Ì	4 E	445
	THALAP 1				15 ^b	16 ^b	176	18 ^b	19 ^b	20 ⁶	21 ^b	22 ^b	230	-
PESTICIDES	Field Blank ⁴	139	14-	Field Blank ^b			<u>".</u>					<u> </u>		
Aldrin ·					-							_	$\left - \right $	
Dieldrin										ļ	<u> </u>	↓		
Chlordane														l
4,4'-DDT							l							
4,4'-DDE									<u> </u>	ļ	<u> </u>		<u> </u>	
*,4'-DDD										1				
≺-Endosulfan														
β -Endosulfan									1					
Endosulfan sulfate		1	1			288 ^e]
Endrin]
Endrin aldehyde														
Heptachlor														
Heptachlor epoxide												ŀ		
≺-внс											_	_	<u>.</u>	
β -внс														
<i>б</i> -внс										h				
Δ -внс														
PCB-1242														
PCB-1254														
PCB-1221						•								
PCB-1232					•								•	_! .
PCB-1248					•									
PCB-1260														_ · ·
PCB-1016														
Toxaphene			.											
	_				1-									
	1													
` `				·										
														<u> </u>
Q.														

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in mg/l d - Concentrations in mg/l d - Concentrations in mg/kg • Analysis did not pass QA/QC requirements (-) - Analysis was not performed e - Endosulfan Sulfate presence could not be confirmed by

.

- - er/HS.

Ű

ORGANICS				l (ca NUN		•						C	75		' 4	5
•	Water Fleid	134		Fedinere Fleid Blankb		16 ^b	17 ^b	18 ^b	19 ^b	20 ^b	51p	22 ^b	23 ⁰	\mathcal{D}	1	/
Agolein	Blank ^a	15-	14-	Blankb				10	- ''							
Acrylonitrile														{		
														1		
Benzene					<u> </u>		<u> </u>							ł		
Carbon tetrachloride			 											4		
Chlorobenzene		<5	<u> </u>	ļ										Į		
1,2-Dichloroethane	<u> </u>		<u> </u>													
1,1,1-Trichloroethane	<5		ļ	<5								 	<u> </u>	ļ		
1,1-Dichloroethane	<u> </u>			<u> </u>]		
1,1,2-Trichloroethane																
1,1,2,2-Tetrachloroethane	<u> </u>	<5												1		
Chloroethane	L			<u> </u>				ļ						Į.		
2-Chloroethyl vinyl ether (mixed)			<u> </u>	<u> </u>				<u> </u>]		
Chloroform															•	
1,1-Dichloroethylene														ľ	•	
1,2-trans-Dichloroethylene															•	
1,2-Dichloropropane											1				•	
1,3-Dichloropropylene (1,3-Dichloropropene)													• •	1		
Ethylbenzene		<5							İ		-	1	T	1		
Methylene chloride (Dichloromethane)		7		•	·	·	•	•	•	•	•	•	•	1		•
Methyl chloride (Chloromethane)									1				1	1		
Methyl bromide (Bromomethane)			1			<u> </u>				1		1		1		
Bromoform (Tribromomethane)		r		1	ŀ								1.	1		
Bromodichloromethane		1						1		1	İ –		1	1		
Trichlorofluoromethane							<u> </u>	· .		 	<u> </u>	<u> </u>	1	1		•
Dichlorodifluoromethane		· ·	<u> </u>	1.	-	-			1.		1.	-	-	1		
Chlorodibromomethane *				1			1					\uparrow	1	1		
Tetrachloroethene (Tetrachloroethylene)		<u> </u>	1	1			1	<u> </u>	1	1		1	<u>†</u>	1		
Toluene	1			1		t	<u> </u>	†	<u> </u>	<u> </u>		+	<u>† </u>	1		
Trichloroethene (Trichloroethylene)	1	. <5		ŀ		†	<u> </u>	1	1		1	+		1		
Vinyl chloride	1		1	1				1	1	1	1	1		1 ·		
NON-PRIORITY POLLUTANT HAZARDOUS SUBSTANCES	1	 		1		1		1	<u> </u>	1	1	1		1 · ·		
Acetone	420			210	<u> </u>		†	1	1	1	1	1		1		· •
2-Butanone	†		<u>† – – – – – – – – – – – – – – – – – – –</u>	†				1	<u>†</u>	†——	<u> </u>	1	+	-		
Carbondisulfide	<u> </u>	t	1	<u> </u>		<u> </u>		<u> </u>	+	†	 	+	1	1 .		
2-He zanone	†	1	1	1		1	†	1	1	1	t	1	+	-		•
4-Methyl-2-pentanone	1	1	1	1	†	1	1	<u> </u>	1	1	1		1	1		
Styrene	†	<u>†</u>	1	1			1	1	1	1	1		1	1		
	1			1		1	1	<u>† </u>		1	1	1.	+	1		
Vinyl acetate	+	1	1	<u>† – – – – – – – – – – – – – – – – – – –</u>	<u> </u>		<u>†</u>	<u>†</u>	+	<u> </u>	<u> </u>	+	·†	· .		

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg C - Concentrations in mg/l d - Concentrations in mg/kg • - Analysis did not pass QA/QC requirements (-) - Analysis was not performed

TABLE 4 (cont'd)

•	IN	OF	RGA	١NI	CS	

SAMPLE NUMBER

INORGANICS SAMPLE NUMBER Normalization Noter of friend f	Mater of Field 11 <th></th> <th></th> <th>TA</th> <th>BLE</th> <th>4 (</th> <th>con</th> <th>ťd)</th> <th></th> <th></th> <th></th> <th>~</th> <th></th> <th></th> <th>\mathcal{Q}_{L}</th> <th>8 9 9</th>			TA	BLE	4 (con	ťd)				~			\mathcal{Q}_{L}	8 9 9
Matter of Field Blant Sediment Field of 15 Idf Inf Inf <thinf< th=""></thinf<>	Material Bilant 135 145 155 145 146 19 18 196 20 sinum 1.6 22 12,600 11,000 8.330 10,800 9,700 5.830 6.1 mium 9,01 0.01 0.01 17 8.6 10 15 9.4 5.7 8 am 9,01 0.01 0.01 17 8.6 10 15 9.4 5.7 8 am 9,01 0.01 0.01 17 8.6 10 15 9.4 5.7 8 mium 9,01 0.01 0.01 11 5.9 6.7 10 6.0 4.0 7 nium 1 1 1 5.9 6.7 10 6.0 4.0 7 nium 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	INORGANICS		SA	MPL	E N	UMB	ER						4	70	0/ 7
Chromium 0.01 0.01 0.01 0.01 17 8.4 10 15 9.4 5.7 Barium 0.01 0.01 0.01 67 98 37 84 64 42 Beryllium 0 0.6 0.9 0.6 0.9 0.6 0.4 0.4 0.21 Cadmium 0 0 0.6 0.9 0.17 0.12 0.25 0.21 0.21 Cobalt 1 5.9 6.7 10 6.0 4.0 4.0 Copper 1 1.9 15 15 27 12 6.1 Iron 0.05 1.95 3.20 19.100 13.500 13.00 26.900 6310 5950 Lead 0.057 0.90 270 340 240 330 12 10 Nickel 0.07 - - 0.012 66 96 87 120 51 15 Boron 0.07 - - 0.012 66 96 87 120	mium 0.01 0.01 0.01 17 8.6 10 15 9.4 5.7 8 am	ì	Water d Field Blank	IJ¢		Field d		16 ^d	17 ^d	18 ^d	19 ^d	20 ⁴	21 ^d	22 ^d	23d	
Barium 0.01 <	am 0.01 0.01 0.01 0.01 0.0 <t< td=""><td>Aluminum</td><td></td><td>1.6</td><td>¥</td><td></td><td>12.600</td><td>11,000</td><td>8,330</td><td>10,800</td><td>9,790</td><td>5.830</td><td>6,580</td><td>278,000</td><td>2470</td><td></td></t<>	Aluminum		1.6	¥		12.600	11,000	8,330	10,800	9,790	5.830	6,580	278,000	2470	
Beryllium Image: Second S	Ilium 0 <td>Chromium</td> <td>0.01</td> <td>0.01</td> <td>0.01</td> <td></td> <td>17</td> <td>8.6</td> <td>10</td> <td>15</td> <td>9.4</td> <td>5.7</td> <td>8.3</td> <td>4.7</td> <td>9.0</td> <td></td>	Chromium	0.01	0.01	0.01		17	8.6	10	15	9.4	5.7	8.3	4.7	9.0	
Cadmium 1.0 0.1 <th0.1<< td=""><td>nium 0.000 0.17 0.12 0.22 0.23 0.21 0 alt 11 5.9 6.7 10 6.0 4.0 7 per 19 15 15 27 12 6.1 1 0.05 1.95 3.30 19.100 13.500 13.000 65.900 6310 5950 10 4 0.055 1.4 22 11 13 20 11 69 10 15 10 1</td><td>Barium</td><td></td><td></td><td></td><td></td><td>67</td><td>98</td><td>37</td><td>84</td><td>64</td><td>42</td><td>43</td><td>32</td><td>α</td><td></td></th0.1<<>	nium 0.000 0.17 0.12 0.22 0.23 0.21 0 alt 11 5.9 6.7 10 6.0 4.0 7 per 19 15 15 27 12 6.1 1 0.05 1.95 3.30 19.100 13.500 13.000 65.900 6310 5950 10 4 0.055 1.4 22 11 13 20 11 69 10 15 10 1	Barium					67	98	37	84	64	42	43	32	α	
Cobalt Image: Cobalt	alt 11 5.9 6.7 10 6.0 4.0 7 per 19 15 15 27 12 6.1 0.05 1.95 3.30 19.100 13.500 13.000 6.900 6310 5950 10 4 0.055 1.4 33 14 30 12 10 6.6 4.0 7 4 0.055 1.95 3.30 19.100 13.500 13.000 6.900 6310 5950 10 4 0.055 14 33 14 30 12 10 66 96 11 69 53 52 15 51 15 51 15 51 15 51 16 16 96 87 120 51 16 16 96 87 120 51 16 16 16 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10 <td< td=""><td>Beryilium</td><td></td><td></td><td></td><td></td><td>0.6</td><td>0.9</td><td>0.6</td><td>0.6</td><td>0.4</td><td></td><td>0.3</td><td>0.2</td><td>0.3</td><td></td></td<>	Beryilium					0.6	0.9	0.6	0.6	0.4		0.3	0.2	0.3	
Copper I I II III IIII IIIII IIIII IIIIII IIIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	per 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.00	Cadmium					0.099	0.17	0.12	0.25	0.23	0.21	0,061	0.14	0.16	
Iron 0.05 1.95 3.30 19.100 13.500 13.000 6.900 6310 5950 Lead 0.005 14 33 14 30 12 10 Nickel 0.005 0.005 14 33 14 30 12 10 Manganese 0.075 0.090 270 340 240 330 53 52 Zinc 0.07 - - 0.012 68 96 87 120 51 15 Boron 0.07 - - 0.012 68 96 87 120 51 15 Boron 0.07 - - 0.012 68 96 87 120 51 16 Maradium 0.07 - - 0.012 68 96 87 120 51 16 Maradium 0.07 - - 0.012 68 96 87 120 51 16 Maradium 0.07 - - 0.012 28	0.05 1.95 3.30 19,100 13.500 13.000 16,900 6310 5950 10 1 0.005 14 33 14 30 12 10 1 1 1 13 20 11 69 22 11 13 20 11 69 16 1 0.075 0.090 270 340 240 330 53 52 15 1 0.07 • • 0.012 68 96 87 120 51 16 16 1 0.07 • • 0.012 68 96 87 120 51 16 16 1 0.07 • • 0.012 68 96 87 120 51 16 </td <td>Cobalt</td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td>5.9</td> <td>6.7</td> <td>10</td> <td>6.0</td> <td>4.0</td> <td>7.8</td> <td>5.A</td> <td>1.1</td> <td></td>	Cobalt					11	5.9	6.7	10	6.0	4.0	7.8	5.A	1.1	
Lead 0.005 1.14 33 14 30 12 10 Nickel 0.005 14 33 14 30 12 10 Manganese 0.075 0.090 222 11 13 20 11 69 Manganese 0.075 0.090 270 340 240 330 53 52 Zinc 0.07 • • 0.012 68 96 87 120 51 36 Boron 0.07 • • 0.012 68 96 87 120 51 36 Wanadium 0.2 - 10 11 1.1 - - - - - - 11 1.1 - </td <td>4 0.005 14 30 12 10 sel 0.005 14 30 12 10 ganese 0.075 0.090 270 340 240 330 53 52 0.07 • 0.012 56 96 87 120 51 36 90 0.27 • 0.012 56 96 87 120 51 36 90 0.2 -</td> <td>Copper</td> <td></td> <td></td> <td></td> <td></td> <td>19</td> <td>15</td> <td>15</td> <td>27</td> <td>12</td> <td>6.1</td> <td>11</td> <td>10</td> <td>200</td> <td></td>	4 0.005 14 30 12 10 sel 0.005 14 30 12 10 ganese 0.075 0.090 270 340 240 330 53 52 0.07 • 0.012 56 96 87 120 51 36 90 0.27 • 0.012 56 96 87 120 51 36 90 0.2 -	Copper					19	15	15	27	12	6.1	11	10	200	
Nickel Image: Second Control on Second	tel 100 22 11 13 20 11 69 ganese 0.075 0.090 270 340 240 330 53 52 0.07 • 0.012 68 96 87 120 51 36 adium 0.07 • 0.012 68 96 87 120 51 36 adium 0.02 - - 0.012 54 96 87 120 51 36 adium 0.2 - - 24 12 24 18 19 14 enic - - 20 15 26 12 11 imony - - - 2.8 2.5 1.8 4.0 3.1 1.2 imum - - - - - - - - - - cury - - - - - - - - - - - - - - -<	Iron	0.05	1.95	3.30		19,100	13,500	13,000	16,900	6310	5950	10,300	5360	7800	
Manganese 0.075 0.090 270 340 240 330 53 52 Zinc 0.07 • • 0.012 68 96 87 120 51 36 Boron 0.2 • • 0.012 68 96 87 120 51 36 Vanadium 0.2 0.02 0.012 68 96 87 120 51 36 Vanadium 0.2 0.2 12 24 18 19 14 Arsenic 1 1 1 10 20 15 26 12 11 Antimony 1 <t< td=""><td>ganese 0.075 0.090 270 340 240 330 53 52 0.07 0.07 0.012 64 96 87 120 51 36 adium 0.27 0.2 1 1 1 1 1 1 adium 0.2 24 12 24 18 19 14 1 adium 1 1 2 12 24 18 19 14 1 adium 1 1 2 12 24 18 19 14 1 adium 1 1 2 12 24 18 19 14 1 adium 1 1 2 11 1</td></t<> <td>Lead</td> <td></td> <td></td> <td>0.005</td> <td></td> <td>14</td> <td>33</td> <td>14</td> <td>30</td> <td>12</td> <td>10</td> <td>7.0</td> <td>35</td> <td>148</td> <td></td>	ganese 0.075 0.090 270 340 240 330 53 52 0.07 0.07 0.012 64 96 87 120 51 36 adium 0.27 0.2 1 1 1 1 1 1 adium 0.2 24 12 24 18 19 14 1 adium 1 1 2 12 24 18 19 14 1 adium 1 1 2 12 24 18 19 14 1 adium 1 1 2 12 24 18 19 14 1 adium 1 1 2 11 1	Lead			0.005		14	33	14	30	12	10	7.0	35	148	
Zinc 0.07 • 0.012 68 96 87 120 51 16 Boron 0.2 0.2 1 <td< td=""><td>0.07 • 0.012 68 96 87 120 51 16 xn 0.2 12 24 12 24 18 19 14 adium </td><td>Nickel</td><td></td><td></td><td></td><td></td><td>22</td><td>n</td><td>13</td><td>20</td><td>u</td><td>69</td><td>12</td><td>8.0</td><td>9.5</td><td></td></td<>	0.07 • 0.012 68 96 87 120 51 16 xn 0.2 12 24 12 24 18 19 14 adium	Nickel					22	n	13	20	u	69	12	8.0	9.5	
Linc 0.07 • 0.012 68 96 87 120 51 16 Boron 0.2 0.2 12 24 12 24 18 19 14 Vanadium 2 24 12 24 18 19 14 Arsenic 30 20 15 26 12 11 Antimony 2.8 2.5 1.8 4.0 3.1 1.2 Selenium 2 2 2 1.8 4.0 3.1 1.2 Mercury 1 1 1 1 1 1 1 1 1 Silves 1	0.07 • • 0.012 68 96 87 120 51 16 adium 0.2 12 12 18 19 14 1 adium 24 12 24 18 19 14 1 adium 20 20 15 26 12 11 imony 2.8 2.5 1.8 4.0 3.1 1.2 inium 2 2.8 2.5 1.8 4.0 3.1 1.2 inium 2 2 2 1 1 1 1 1 1 cury 2 2 2 2 1.7 2 1	Manganese		0.075	0.090		270	340	240	330	53	52	280	300	440	ļ
Boron 0.2 I I I I Vanadium 24 12 24 18 19 14 Arsenic 30 20 15 26 12 11 Antimony 2.8 2.5 1.8 4.0 3.1 1.2 Selenium I I I I I I Mercury I I I I I I Silves I I I I I I	on 0.2 1 24 12 24 18 19 14 adium 24 12 24 18 19 14 1 enic 30 20 15 26 12 11 imony 2.8 2.5 1.8 4.0 3.1 1.2 inium 2 2 2 1.2 1.1 1.2 inium 2 2 2 1.2 1.1 1.2 inium 2 2 2 1.2 1.2 1.2 inium 2 2 2 1.2 1.2 1.2 inium 2 2 2 1.2 1.2 1.2 1.2 1.2 1.2 inium 2 2 2 2 2 2 2 1.2	Zinc	0.07	•		0.012	68	96	87	120	51	36	48	64	75	
Vanadium z4 12 z4 18 19 14 Arsenic 30 20 15 26 12 11 Antimony 2.8 2.5 1.8 4.0 3.1 1.2 Selenium 2.8 2.5 1.8 4.0 3.1 1.2 Mercury 2.8 2.5 1.8 4.0 3.1 1.2 Silves 2.8 2.5 1.8 4.0 3.1 1.2	adium 24 12 24 18 19 14 19 14 1 enic 30 20 15 26 12 11 1 1 11	Boron			0.2											
Arsenic 30 20 15 26 12 11 Antimony 2.8 2.5 1.8 4.0 3.1 1.2 Selenium 2.8 2.5 1.8 4.0 3.1 1.2 Thallium 2.8 2.5 1.8 4.0 3.1 1.2 Mercury 2.8 2.5 1.8 4.0 3.1 1.2 Tin 2.8 2.5 1.8 4.0 3.1 1.2	enic 30 20 15 26 12 11 imony 2.8 2.5 1.8 4.0 3.1 1.2 inium 1 1 1 1 1 1 illium 1 1 1 1 1 1 cury 1 1 1 1 1 1 er 1 1 1 1 1 1 1 inium 1	Vanadium					24	12	24	18	19	14	23	16	19]
Antimony 2.8 2.5 1.8 4.0 3.1 1.2 Selenium 2.8 2.5 1.8 4.0 3.1 1.2 Thallium 2.8 2.5 1.8 4.0 3.1 1.2 Mercury 2.8 2.8 2.5 1.7 2.8 2	imony 2.8 2.5 1.8 4.0 1.1 1.2 inium 1 1 1 1 1 1 Illium 1 1 1 1 1 1 cury 1 1 1.7 1 1 1 er 1 1.2 1.1 1.1 1 1 er 1 1.2 1.1 1.1 1 1 1 er 1 </td <td>Arsenic</td> <td></td> <td></td> <td></td> <td></td> <td>30</td> <td>1</td> <td>15</td> <td>26</td> <td>12</td> <td>11</td> <td>13</td> <td>6.6</td> <td>6.3</td> <td>]</td>	Arsenic					30	1	15	26	12	11	13	6.6	6.3]
Selenium Image: Selenium Thallium Image: Selenium Mercury Image: Selenium Tin Image: Selenium Silver Image: Selenium	Inium Image: Second second	Antimony	1	1	1								1.6	0.7	1.6]
Mercury 1.7 Tin	cury 1.7 1.7 er 1.2 1.1 1.2 1.1 1.1 1.2 1.1 1.1 1.2 1.1 1.1	Selenium	1	1	Ť	Ť				1						1
Tin Silver	er	Thallium	1		1-	1	1.		1			1				1
Tin Silver	cr 1.2 1.1 1.1	Mercury	<u> </u>	1		+		1		1.7	1	+	1		0.2	1
Silver 1.2 1.1 1.1		Tin		+	1	1	1	1								1
	· ·	Silver	1	1	1	1	+	1		1	1		0.6	1.2	2.0	1
		······································	1	1			1.2	1	+		1		1			7
			+	+	1	+			+	1	+	+			-	1
		· · · · · · · · · · · · · · · · · · ·		+		+	+		+		+	+		- 	-	-
				+				+	+		+ .	+		+		1
			+	+			+	+	+-		+	+		+-	+	1
		· · · · · · · · · · · · · · · · · · ·		.L				. I				1				-
													•			
							•									

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • - Analysis did not pass QA/QC requirements (-) - Analysis was not performed

TABLE 4 (cont'd)

						•				•			5	1721
ORGANICS		SA	MPL	EN	UMB	ER							0	78 9
BASE NEUTRAL EXTRACTABLES	Blank	25a	264	27.0	286	296	305	31a	326	336	34b	356	366	\mathcal{O}
Acenaphthene				1			1	1						_
Benzidine						1		1		ļ —				
1,2,4 - Trichlorobenzene				1	1			†	1			40	40	
Hexachlorobenzene					1		1							
Hexachioroethane						260								•
Bis(2-chloroethyl)ether		1.			†	1	†	1						
2-Chioronaphthalene			1	†	<u> </u>			†		 	<u> </u>	<u>}</u>	{·	
1,2 - Dichlorobenzene		1		1	+-		<u> </u>				<u> </u>			
1,3 - Dichlorobenzene			26	1	<u>† – – – – – – – – – – – – – – – – – – –</u>	 	<u>† — </u>		<u> </u>	 			┼──	
1,4 - Dichlorobenzene		†	1	1	1	<u>† </u>	<u> </u>	+	 	<u> </u>	<u> </u>	<u> </u>	 	
3,3 - Dichlorobenzidine		1	1	<u>†</u>	+	 		+	+		<u> </u>			
2,4 - Dinitrotoluene			1	<u> </u>	 		+	-	<u> </u>			<u> </u>		{
2,6 - Dinitrotoluene		<u> </u>	<u>├</u> ──	+	<u>† </u>	┼──	+		+	 	<u> .</u>		┼───	· ·
1,2 - Diphenylhydrazine		\uparrow	†	<u> </u>	+		†	†	+		<u> </u>			
Fluoranthene		†	†	<u>+</u>	18	180	290	+-	110	220	43	16	390	1 ·. ·
+ - Chlorophenyl phenyl ether		1	†	†—		180		+		+				· .
4 - Bromophenyl phenyl ether		1	+	+	┼──				<u>+</u>	┼──				. ·
Bis(2-chloroisopropyl)ether			╆╼╍	┼	+	+		+		+				·
Bis(2-chloroethoxy)methane				 	┼──		┼──					<u> </u>		ł
Hexachlorobutadiene			<u>+</u>		+		+		┣──	<u> </u>		<u> </u>	┼	{
Hexachlorocyclopentadiene		<u> </u>	<u> </u>				+	+	<u> </u>			<u> </u>		ł
Isopharane		 	1.4	╂	+		┼──							ł
Naphthalene		†	<u> </u>	┼──	╂───			+		╂	<u> </u>		 	.
Nitrobenzene			7.0	+	+	100	290	+	+			25	<u> .</u>	
N-nitrosodimethylamine		<u> </u>		+	╂───	<u> </u>					<u> </u>		<u> </u>	. ·
N-nitrosodiphenylamine		+						+	 	 	<u> : </u>	<u> </u>		l ·
N-nitrosodi-n-propylamine			<u> </u>		┼──							<u> </u>		4 .
Bis(2-ethylhexyl) phthalate		450	62	56	2600			4	9000					Į
Butyl benzyl phthalate		+		<u> </u>		290	+	<u> -</u>	42	2700	3800	2500	5400	-
Di-n-butyl phthalate				├	+		┼──		 "	<u> </u>			74	- ·
Di-n-octyl phthalate		1.3	1.3		510	510	<u> ·</u>		<u> </u>	230	370	1100	1200	
Diethyl phthaiate		<u> </u>	<u> </u>		470	<u> </u>			81	<u> </u>	<u> . :</u>		<u> </u>	{
Dimethyl phthalate			3.2	┼──	470		<u> </u>	+		170	170	170	160 .	↓ ·
Benzo(a)anthracene			 		<u> </u>		╂	+		<u> </u>	 	 	 	4 ·
(1,2-benzanthracene)			<u> </u>		6.9					88	36		250	
Benzo(a) pyrene						110		T T		91	42	1	250	1
3,4 Benzo fluoranthene								1		1		1	1	1

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg C - Concentrations in mg/l d - Concentrations in mg/kg • Analysis did not pass QA/QC requirements (-) - Analysis was not performed

Benzo(k) fluoranthene

Chrysene

Acenaphthylene

ORGANICS			.E 4 PLE							·•		C	I 8	g 45
ſ <u></u>				1	1		<u> </u>							
BASE NEUTRAL EXTRACTABLES (cont'd.) Authracene	Blank	250	260	27.	286	296	305	314	320	336	346	356	36b 75	
Behzo(ghi) perylene (1,12-Benzoperylene)						1.7				74	11		210	
Fluorene						+	+			<u> </u>		<u> </u>	<u> </u>	
Phenanthrene				Î		160	150	1	5.8	140	47		320	
Dibenzo(a,h) anthracene (1,2,3,6-dibenzanthracene)			Ì							19			64	
Indeno (1,2,3-cd) pyrene										82	35		220	1
2,3,7,3-Tetrachlorodibenzo- p-dioxin (TCDD)														
Pyrene					15	190	220		85	180	46	18	330	
		ļ	ļ	 	<u> </u>	<u> </u>	<u> </u>							·
			 	 	<u> </u>	<u> </u>	 	 	 	<u> </u>		<u> </u>		
				<u> </u>		 	 	 		ļ			<u> </u>	
	·	<u> </u>		<u> </u>				 	ļ	 	ļ	<u> </u>	ļ	ļ
				<u> </u>	┣──								ļ	
				┨────	<u> </u>		<u> </u>	<u> </u>					┣	
			╂───	 			 			 	<u> </u>	<u> </u>	<u> </u>	
· · · · · · · · · · · · · · · · · · ·														· .
						 		┼──		<u> </u>	<u> </u>			
				<u> </u>	<u> </u>									· ·
				<u> </u>		<u> </u>	<u> </u>			<u> </u>				
			<u> </u>					<u> </u>					<u> </u>	
-								 		<u> </u>			<u> </u>	· ·
•														
														f.
														1 .
														1
							÷					<u> </u>		· · ·
								-						

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/kg • - Analysis did not pass QA/QC requirements (-) - Analysis was not performed 31

-

TABLE 4 (cont'd)

ORGANICS

~

SAMPLE NUMBER

	T	ABL	E 4	(co	nt'd)				-			20	2.1.1
ORGANICS	S	AM	PLE	NUN	1BEF	2						, 	/	0145
ACID COMPOUNDS	Blank	254	264	278	28b	296	305	31a	326	335	34b	356	365	V
2,4,6-Trichlorophenol														
p-Chloro-m-cresol									<u> </u>	ļ				
2-Chlorophenol									<u> </u>					
2,4-Dichloraphenol														
2,8-Dimethylphenol			2.1						ļ		<u> </u>	ļ		
2-Nitrophenol														
4-Nitrophéñol														
2,4-Dinitrophenol														
4,6-Dinitro-o-cresol *			1	1				1		T				
Pentachlorophenoi	1		1		1		1				Ţ.	· ·]
Phenol		1	4.6		1100	2200	36		210	27	550	110	1800	J
							Ţ							
	1	1	1				T]
		1	T	1.	1									
			1			1	1		-]
	1		1	1	1			1	-	1	1			1
	1	1	+	1			1	+	1					1
			+			1	1	1	1.		-	1		
	+	+		1	+	1	1	+		- · · ·				1 · ·
	+	+		+	+	+	+		-	+	+		+	1
	+	+		+	+		+	+	+	+			+	f .
	+	+-	+				+					+		-
					1	+-					+	+		-
						+-					+			4
	<u> </u>				4						+		+	-
								_						-
		4		<u> </u>										-
			_			<u> </u>		_	_					_
		1	_				_						+	4
					_									_
														4
													1	
•					T									}
	1		1].
	+	-	+		1								1-	1
		-	+	+	1			+	- -		\top			· ·
	+		+-	+			+	+			-		\uparrow	
	+ ·	+	+	+	+					-+	+			-
		<u> </u>					<u> </u>							_ _

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg * - Analysis did not pass QA/QC requirements (-) - Analysis was not performed 32

ORGANICS		ABL SAM										1	?Oz	Z 4
PESTICIDES	Blant	250	264	27.0	28b	296	306	31a	320	336	346		366	\mathcal{D}^{*}
Aldrin														
Dieldrin		1												
Chlordane		+												
9,4'-DDT		1	[
•,4'-DDE		1												
4,4'-DDD													{	
≺-Endosulfan		-							<u> </u>					
β-Endosulfan								-						
Endosulfan sulfate		+	<u> </u>		+									
Endrin		+	1	<u> </u>	1				<u> </u>					
Endrin aldehyde			-									·		
Heptachlor		-	†		1							·		
Heptachlor epoxide		1	1	<u> </u>				<u> </u>		†				
≺-внс			1	†	1			1	<u> </u>		<u> </u>		16	
β-внс			1	1	1						<u> </u>			
σ-BHC									<u> </u>		<u> </u>		27	
4 -внс			+		┼──	<u> </u>	<u> </u>		+	┼──		 		
PCB-1242		+	+	1	+		<u> </u>	+	┼──		·			
PCB-1259		-		<u> </u>	+		†	+	+	 			┼──	
PCB-1221		+	+	+	1		1	┼──-		1			+	1
PCB-1232					1		<u> </u>	<u>† </u>	╂───				<u>├</u>	{
PCB-1248			+	+		{			+-	+			┼──	{
PCB-1260		+	+					+	+	┼───	<u> </u>			
PC3-1016		+	1	+	+	+				+-	╂━━			1
Toxaphene				+		<u> </u>		1		+	+		+	
			<u> </u>	+	+			+		╂──	┽			-
			+-		+		+		+	+				-
			<u> </u>	·	+	+			+	+		+	-	1
			+		+	-	+	+	+		+	+	+	1
	1													

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • - Analysis did not pass QA/QC requirements (-) - Analysis was not performed

.×

	1	ABL	. 드 4		onto)							
ORGANICS	S	SAM	PLE	NUN	ИВЕ	R							
VOLATILES	Blank	25a	264	27.	285	295	30b	314	32.5	335	346	35b	36b
Acrolein													
Acrylonitrile										1			'
enzene													
Carbon tetrachloride			1	1					1				
Chlorobenzene			27										
I,2-Dichloroethane												1	1
1,1,1-Trichloroethane			1	<u> </u>									
1,1-Dichloroethane				[1						<u> </u>		1
1,1,2-Trichloroethane							<u> </u>					[1
1,1,2,2-Tetrachloroethane			1	<u> </u>	-			<u> </u>	<u> </u>	1	<u> </u>		†
Chioroethane				<u> </u>		<u> </u>	1		1	<u> </u>	1		†
2-Chloroethyl vinyl ether (mixed)										1	1	1	<u> </u>
Chloroform			1			<u> </u>		0.48				-	<u> </u>
1,1-Dichloroethylene			1					0.40			1		<u> </u>
1,2-trans-Dichloroethylene				1						1	<u>†</u>	1	
1,2-Dichloropropane				1	1	1	1			1			<u> </u>
1,3-Dichloropropylene (1,3-Dichloropropene)				†	+	†							· · ·
Ethylbenzene			24					<u> </u>				<u> </u>	
Methylene chloride (Dichloromethane)	3.9				†		1	27	1				
Methyl chloride (Chloromethane)								1	1				
Methyl bromide (Bromomethane)					<u> </u>	<u> </u>	1		<u> </u>			1 -	
Bromoform (Tribromomethane)			1		<u> </u>		1	<u> </u>	1	1		1	1
Bromodichloromethane				1		†	†		1		1		
Trichlorofluoromethane			1	<u> </u>			1		†—	1		\uparrow	
Dichlorodifluoromethane					†	†	1		\uparrow	+	1	1	1
Chlorodibromomethane		<u> </u>					1	<u> </u>		1	1	1	+
Tetrachloroethene (Tetrachloroethylene)			1	1			1	1		1			
Toluene			1	1		1	1			+	1		
Trichloroethene (Trichloroethylene)		1	†—–	·	1	1	1				1		
Vinyl chloride				1			1				1	1	
									1	1	1		
					 	1	1		1	1			1
										1			
				1	1		1	1		1		1	

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg C - Concentrations in mg/l d - Concentrations in mg/kg • - Analysis did not pass QA/QC requirements (-) - Analysis was not performed

TABLE 4 (cont'd)

· INORGANICS

SAMPLE NUMBER

		TAE	BLE	4 (соп	ťd)				·••		<u> </u>	3:
NORGANICS		SA	MPL	E N	UME	BER						- 	3:
	81ank	254	264	27a	28b	296	305	31a	32.5	336	346	355	36D
Aluminum					-	-	-		•			<u> </u> .	·
Chromium		7.0	7.0	7.0		•	•	9.0	•].	•
Barium					•	1.	-						-
Beryllium		0.5	3.9	0.5		-	-	1.0	•				<u> </u>
Cadmium	1	4.0	5.0	3.0		1.	-	4.0	1.	-	· -	.	-
Cobalt				1	-	1.	1.		•	1.			
Copper		0.2.	0.8	3.0	1.	1.	1.	6.5	1.	1.	1.	1.	1.
Iron	1			1	•	1.	1.	1	-		1.	.	
Lead		30	50	30	1_	1.	-	32	-	1.	1.	1.	
Nickel	1	20	20	20	1.	1.	-	20	•	1.		Τ.	•
Manganese		1						1	1.	1.			
Zinc		9.0	94	10	1.	1.	-	10	1.	1.	Τ.		-
Boron	1	1		1	1.	1.	1.		•	1.		Γ.	
Vanadium	-	1	1	1	1.	•			1.	1.		1.	1.
Arsenic		0.4	0.9	1.0	1.	1.	1.	1.0	1.			1	
Antimony		20	20		1.	•	•	20	1.	1.		1.	- ·
Selenium	+	0.4	6	1.2	1.	1.	1.	2.5	1.		1.	- <u> </u>	
Thallium	1	0.4	0.4	0.4	1.	1.	1.	2			1.		
Mercury	\uparrow	0.2	0.2	0.2	-		1.	0.2	1.	1.	1.		. ·
Tin	-	<u> </u>		-	1.	1.	1.		- .		1.		
Silver		3.0	3.0	3.0	1.	1.	1.	3.0	1.	1.	1.		
	+	3.0	1.0	1.0		-1			1-	1			
· · · · · · · · · · · · · · · · · · ·	-	+	+	+	-								
	+		+	+			+-	-	+				
		+		+	+-		+		+				
			+	+			-	+-				-+-	

NOTES: Blank spaces indicate that the chemical was not detected
 a - Concentrations in ug/l
 b - Concentrations in ug/kg
 c - Concentrations in mg/l
 d - Concentrations in mg/kg
 analysis did not pass QA/QC requirements
 (-) - Analysis was not performed

							•		ر معر	لار				·
			BLE										Ľ	- 3 g 4
ORGANICS		SA	MPL	E N	UME	IER								D^{\leftarrow}
BASE NEUTRAL EXTRACTABLES	37.4		Τ	T	1		[1	T	<u> </u>	1	T	1	Ĭ
Acenaphthene			1		1	<u> </u>	<u> </u>	<u>†</u>	†	 		 		{
Benzidine			1	1	-	<u> </u>		<u> </u>	†	1	 	+	╉╾╼╸	ł
1,2,4 - Trichlorobenzene			1	1		<u> </u>		<u> </u>	†		[+	ł
Hexachlorobenzene			1	1	1		[1	<u> </u>	<u> </u>		+		{
Hexachioroethane					1		t		ť—	<u> </u>	<u> </u>	+	+	-
Bis(2-chloroethy()ether			1	1	<u> </u>	 	†	<u>+</u>	 	+	┼───	+		ł ·
2-Chloronaphthalene			1	†	+	+		+	┼──		<u> </u>	+		
1,2 - Dichlorobenzene		 	<u>†</u>	†	† 			 .	<u> </u>					4
1.3 - Dichlorobenzene		<u> </u>	<u> </u>	1	<u>┼──</u>	<u> </u>	†——	+	┼──		┣─	┼	┼──-	4
1,4 - Dichlorobenzene		 	1		1	 			 				┼┷─	ł
3,3 - Dichlorobenzidine			†	1		 	┼──	<u>+</u>	 	<u> </u>	<u>├</u> ──	<u></u>		}
2,4 - Dinitrotoluene			<u>├</u> ─-	†	+	┼──		+-	┼──	┼──	┨───		╉╧╼	ł
2,6 - Dinitrotoluene	1		†	+	 	+		<u> </u>			┼──			.
1,2 - Diphenylhydrazine			<u> </u>		 		<u> </u>		┼──-			<u> </u>		ł
Fluoranthene	<u>†</u>		<u> </u>	+				┼──	·	<u> </u>	<u> </u>		<u> </u>	4
4 - Chlorophenyl phenyl ether	+		†	╂──			┼──	┼──	╂	<u> </u>	<u> </u>			.
4 - Bromophenyi phenyi ether	+		┼┈──	╂──	┣		<u> </u>		<u> </u>	┝──			 	1
Bis(2-chlorolsopropyi)ether	+			╂───	┨───	┨───-			<u> </u>	┣──	 	ļ	<u> </u>	. .
Bis(2-chloroethoxy)methane	+		╂───	┼──		┨────	┣───	<u> </u>	<u> </u>	<u> </u>		 	<u> </u>	
Hexachlorobutadiene	┼───		╂──-						<u> </u>	<u> </u>	ļ		<u> </u>	ļ
Hexachlorocyclopentadiene	+		╆			┼───	<u> </u>	–	<u> </u>	<u> </u>	ļ	ļ	<u> </u>]
Isophorane	+		┨────	<u> </u>	<u> </u>		· ·	┣		<u> </u>	<u> </u>	<u> </u>	ļ	<u>.</u>
Naphthalene	+		<u> </u>	┼──-	┼──		<u> </u>	 	 			ļ	<u> </u> .	ļ
Nitrobenzene	+				╂──	<u> </u>		┣—–	 		<u> </u>	<u> </u>	<u> </u>	
N-nitrosodimethylamine			 	<u> </u>	 	<u> </u>		┞	ļ			<u> </u>]
N-nitrosodiphenylamine				<u> </u>	 	<u> </u>	· · ·	 	ļ					
N-nitrosodi-n-propylamine				<u> </u>				<u> </u>	 			<u> </u>		
Bis(2-ethylhexyl) phthalate				<u> </u>										
Butyl benzyl phthalate	95			<u> </u>	<u> </u>				<u> </u>			L	<u> </u>	
Di-n-butyl phthalate			<u> </u>	 			<u> </u>		L			<u> </u>		
Di-n-octyl phthalate												<u> </u>	<u> </u>	
Diethyl phthalate								ļ				<u> </u>		}
Dimethyl phthalate	╂							\vdash						ļ
Benzo(a)anthracene								<u> </u>	L					
(1,2-benzanthracene)														
Benzo(a) pyrene								<u> </u>					┼──	ł ·
3,4 Benzo fluoranthene								<u> </u>						1
Benzo(k) fluoranthene													<u> </u>	ł ·
Chrysene											<u> </u>			· ·
Acenaphthylene														4
NOTES: Blank spaces indicate that the chein a - Concentrations in ug/i b - Concentrations in ug/kg c - Concentrations in mg/kg d - Concentrations in mg/kg * - Analysis did not pass QA/ (-) - Analysis was not perform	QC rea			:d				•			L	<u>.</u>	L	I

. •

36)

:

												<i>₹4</i>
· · · · ·												
		<u> </u>						1				
		<u> </u>			1	\vdash						
+		1	1	┼───		<u> </u>		┨───				
1		+										
			 	┨───	+	<u> </u>	 					
	1		\vdash		<u> </u>		 	<u> </u>	<u> </u>			
	<u> </u>	<u> </u>		<u> </u>						_		
<u> </u>	+		<u> </u>	\vdash	<u> </u>	┼──		<u> </u>	+			ł
					<u> </u>							
	1				ł	ł		ĺ				
1		+		┼──								ł .
	1											
\vdash	╂───	<u> </u>	┢──					<u> </u>				{
									1]
		1]]]]
<u> </u>		+		 	+ -		┼		┼			{
									1			
<u> </u>	1	<u> </u>										J

•

							T	Т	T	T				ð 9
ACID COMPOUNDS	37a	┼─┤			-+		-+	-+					+	
		┼───┤											11	
p-Chloro-m-cresol						\rightarrow		+					 i	
2-Chlorophenol				-+	-+	-+	-+		-+					
2,4-Dichlorophenoi			┝──┤		-+	+	+							
2,4-Dimethylphenol			╏──┨										+	
Z-Nitrophenol			┼──┨		 							┼──		
-Nitropheñol		<u> </u>			+									
2,4-Dinitrophenol			\downarrow		. 		+						+	
1,6-Dinitro-o-cresoi										·				
Pentachiorophenol			ļ								<u> </u>		-	
Phenol								_						
									<u> </u>			+		
			<u> </u>							- <u>.</u>		+		
		<u> </u>										+		4
			<u> </u>						 					4
									ļ				-	
									ļ	ļ	<u> </u>			4
									L			\perp	_	4
]					
				1										·
· · · · · · · · · · · · · · · · · · ·		1-	1	1										
		1-	1			<u> </u>		1						
			1		1			\uparrow]
·			1-		1	<u> </u>			1		1	-		
		+	+	┼──				1	1		+			1
				+		+			+	+-	+-			1
				+		+	+	+	+	-	+		_	-
					+	+		+			+-			1
						+		+			+			-
				╉───			╂			+-		-+	-+	-
		+-	+		<u> </u>	+			+	+-	+-	-+-		4
					_		<u> </u>	+				-+		-
				_			_							-
				_	<u> </u>	<u> </u>	 	_				_+-		_
					<u> </u>		_				4_			4
												_		_

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg: c - Concentrations in mg/l d - Concentrations in mg/kg * - Analysis did not pass QA/QC requirements (-) - Analysis was not performed

												3	4	
PESTICIDES	37.6													
Aldrin ·														
Dieldrin		L												
Chlordane		L												
4,4'-DDT														
4,4'-DDE														
\$,\$'-DDD														
-Endosulfan														
β -Endosulfan													┝──-	
Endosulfan sulfate			<u> </u>					<u> </u>		<u></u>				
Endrin							├ ──							
Endrin aldehyde							<u> </u>							
Heptachlor		1	 			t							<u> </u>	
Heptachlor epoxide		1	† —	<u> </u>		<u> </u>	<u> </u>							
<-внс		1	1	<u> </u>		<u> </u>								ł
β-внс		1	<u> </u>	t	†	<u> </u>	<u> </u>	†				<u>.</u>		{
б -внс		┼──		<u> </u>		 		<u> </u>					<u> </u>	4
Δ -внс		+										 	<u> </u>	· ·
PCB-1242		╂──			┼──		<u> </u>	┼──				╞───	<u> </u>	
PCB-1254		┫───-			<u> </u>	<u> </u>	 	╂───					 	.
PCB-1221		┼──				├──	┨────	┨────	<u> </u>			<u> </u>	<u> </u>	
PCB-1232		╉───		╂	<u> </u>					<u> </u>		<u> </u>		
PCB-1248		┨──-	<u> </u>			{	┼───	<u> </u>	 				 	
PCB-1260			<u> </u>			<u> </u>		<u> </u>	<u> </u>		———	<u> </u>		
PCB-1016			┣─	<u> </u>		 	<u> </u>	┨────				<u> </u>	ļ	
Toxaphene		<u> </u>			├								 	
		╂			 	L	<u> </u>	<u> </u>						
		 	<u> </u>		<u> </u>	L						<u> </u>		
		<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>		<u> </u>					
		<u> </u>	<u> </u>	<u> </u>	I	<u> </u>								
							1 C	1	1			1	1	1
			┿───-	<u> </u>	 	 	L	\bot			<u> </u>	<u> </u>]

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • Analysis did not pass QA/QC requirements (-) - Analysis was not performed

.

VOLATILES 37a Image: Constraint of the second seco	ORGANICS		1			1BEF	T						<u> </u>	<u>-</u> 1) A 4:
Arryionitrile I <		37.0												-r	/
Benzene I </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-<u>.</u> -</td> <td>-+</td> <td></td> <td></td> <td></td> <td></td> <td></td>									- <u>.</u> -	-+					
Carbon tetrachloide I												<u> </u>			
Chlorobenzene I <															
1.2-Olchkoroethane 1	Carbon tetrachloside											<u> </u>			
1.1.1-Trichloroethane 1	Chlorobenzene													{	
1.1-Dickloroethane 1	1,2-Dichloroethane														
1,1,2-Trichloroethane Image: Section of the sectin of the section of the section of the section	1,1,1-Trichloroethane														
1,1,2,2-Tetrachloroethane 1<	1,1-Dichloroethane														
Chloroethane I <t< td=""><td>1,1,2-Trichloroethane</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1,1,2-Trichloroethane														
2-Chloroethyl vinyl ether (mixed) 1	1,1,2,2-Tetrachloroethane	_													
Chloroform I <tdi< td=""><td>Chloroethane</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tdi<>	Chloroethane														
1,1-Dichloroethylene 1	2-Chloroethyl vinyl ether (mixed)														
1,2-trans-Dichloroethylene 1	Chloroform .														
1,2-Dichloropropane I	1,1-Dichloroethylene										·				
I,J-Dichloropropylene (1,J-Dichloropropene)II <t< td=""><td>1,2-trans-Dichloroethylene</td><td></td><td></td><td></td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1,2-trans-Dichloroethylene				·										
EthylbenzeneImage: Constraint of the state of	1,2-Dichloropropane														
Methylene chloride (Dichloromethane)IIIIIIIIIMethyl chloride (Chloromethane)III	1,3-Dichloropropylene (1,3-Dichloropropene)					1		-						•	
Methyl chloride (Chloromethane)III	Ethylbenzene		<u> </u>	1	1	1				1					
Methyl chloride (Chloromethane)III	Methylene chloride (Dichloromethane)			1											
Bromoform (Tribromomethane) Image: Constraint of the state of t	Methyl chloride (Chloromethane)		1	1											
Bromodichloromethane Image: Chlorodifluoromethane Image: Chlorodifluoromethane <td< td=""><td>Methyl bromide (Bromomethane)</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Methyl bromide (Bromomethane)			1					1						
Bromodichloromethane Image: Chlorodifluoromethane Image: Chlorodifluoromethane <td< td=""><td>Bromoform (Tribromomethane)</td><td></td><td>1</td><td></td><td>1</td><td></td><td> </td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td>· .</td></td<>	Bromoform (Tribromomethane)		1		1				1	1					· .
Trichlorofluoromethane Image: Chlorodifluoromethane <			1		1			†	1	1	1		Ī	<u> </u>	
Chlorodibromomethane Image: Chlorodibromomethane I	- · · · · · · · · · · · · · · · · · · ·		1		<u>† – </u>	1		<u> </u>	1	1	1			1	ŀ
Chlorodibromomethane Image: Chlorodibromomethane I	Dichlorodifluoromethane		1	1	1	1	<u> </u>		1	1	1		1		
Tetrachloroethene (Tetrachloroethylene) Image: Constraint of the second sec			1	1	1	<u> </u>	<u> </u>			1	1				
Toluene Image: Constraint of the second se				1	1	1	1	1	1	1					1
Trichloroethene (Trichloroethylene)				<u> </u>		<u> </u>		1	+		+		1		1
		 	1	+	+	†		1	+			<u>† – –</u>	1		1
		†	1	†	1	+	<u> </u>		1	1	1	1		<u> </u>	1
		†	+	+	+	1	1	<u> </u>	+	1	+	1	1	1]
		\mathbf{t}	1	+	+	1	<u>†</u>		+		1			1	1
		$\frac{1}{1}$	+	+	+	+	+	1	+	+	+	+	+	+	1
		┼──	+	+		+	+	+	+	+	+-	1	+	\uparrow	1
		+	+	+	+		+	+	+	+-	+	+	1-	1	1

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • Analysis did not pass QA/QC requirements (-) - Analysis was not performed

INORGANICS					E N	con UMB							3	(ช)	142
	,	1		<u> </u>							[]			$\overline{\mathcal{T}}$	145
Aluminum		- 17.	<u> </u>												
Chromium	·		<u> </u>												
Barlum	· · · · · · · · · · · · · · · · · · ·	8.0		╂───		<u>`</u>				┨───					
Beryllium				 											
Cadmium		0.9					<u> </u>								
Cobalt		- 30		1.			<u> </u>								
Copper			<u> </u>					╂───		<u> </u>	<u> </u>				
Iron		0.8		+					<u> </u>				<u> </u>	 	
Lead			┼──	┼──						┼──				<u> </u>	· ·
Nickel			+	+	<u>† </u>										
Manganese	· · · · · · · · · · · · · · · · · · ·		+				 -	 	 					<u> </u>	
Zinc	· · ·		+	 		<u> </u>	-		<u> </u>		<u> </u>				
Boron		- <u> a-o</u>	+	†—		<u> </u>	-	 		┼──	<u> </u>			<u> </u>	1
Yanadium			+						┼───			<u> </u>			
Arsenic			+	1	{			<u> </u>	<u> </u>	<u> </u>	 		<u> </u>		
Antimony	<u> </u>	10	+	÷		<u> </u>	+	<u> </u>	<u> </u>		<u> </u>	<u> </u>	┼───		· · ·
Selenium		- 20	-	<u>+</u>	 				$\frac{1}{1}$				 		} .
Thallium		0.7	†	+								<u> </u>			ł .
Mercury		2.3	+	+			<u> </u>	 				<u> </u>	╂		
Tin			+		<u> </u>		\vdash	+				<u> </u>			- · ·
Silver	<u> </u>	+	+		┼──		+			+		-	•		
<u> </u>			+		+	<u> </u>		╉──		╉╌╌╼	<u> </u>				1
								<u> </u>		┼───		╂───	├──		-
	<u> </u>							╂──		+-					
				<u> </u>		<u> </u>		 	<u> </u>	+			<u> </u>		
			┼───							·		-		<u> </u>	· ·
· · · · · · · · · · · · · · · · · · ·			<u> </u>	1	1	1		<u> </u>	<u> </u>	1	I	<u> </u>	I	<u> </u>	-
	X														
						•									
															· ·
	· .							•							

b -c -d -(-) -

٠

Concentrations in ug/l Concentrations in ug/kg Concentrations in mg/l Concentrations in mg/kg Analysis did not pass QA/QC requirements Analysis was not performed

ORGANICS	-	TAB SAN	LE 4 NPLE										39	A40
BASE NEUTRAL EXTRACTABLES	384	dec	40 ^b	418	424	43 ^b	44 ^b						Z	//
Acenaphthene		11		8.2	-+	17							-9	
Benzidine													-	
1,2,4 - Trichlorobenzene				7.3		47								
Hexachlorobenzene									.					
Hexachloroethane									·					•
Bis(2-chloroethyi)ether														
2-Chloronaphthalene														
1,2 - Dichlorobenzene				39		30	-							•
1,3 - Dichiorobenzene			54	59		41								
I,4 - Dichlorobenzene			54	59		41								
3,3 - Dichlorobenzidine														
2,4 - Dinitrotoluene														
2,6 - Dinitrotoluene														
1,2 - Diphenylhydrazine														
Fluoranthene		2500	34	130		190	19				1			
* - Chlorophenyl phenyl ether														
• - Bramophenyl phenyl ether						1			1					
Bis(2-chlorolsopropyl)ether														
Bis(2-chloroethoxy)methane] .	1			1		
Hexachlorobutadiene									Ī					
Hexachlorocyclopentadlene														
Isophorone														
Naphthalene		76	17	50		160								
Nitrobenzene														
N-nitrosodimethylamine .												ļ]
N-nitrosodiphenylamine]
N-nitrosodi-n-propylamine		1]
Bis(2-ethylhexyl) phthalate	330	6900	2500	4100	14	2300	4400							4
Butyl benzyl phthalate	0.76	Z20		330		28								ļ
Di-n-butyl phthalate	9.0	400	350	350	5.2	470	380							1
Di-n-octyl phthalate	10	170	ļ	 	ļ		<u> </u>		1	<u> </u>	<u> </u>	<u> </u>		1
Dicthyl phthalate	1.7	120	89	110	ļ	160	100		1		<u> </u>	<u> </u>	<u> </u>	1
Dimethyl phthalate			<u> </u>	 	<u> </u>	<u> </u>		\perp	\downarrow	1	<u> </u>	<u> </u>	_	4
Benzo(a)anthracene (1,2-benzanthracene)		3200			<u> </u>	_	Į					<u> </u>		
Benzo(a) pyrene		2300	 	160		210		<u> </u>	<u> </u>		<u> </u>			4.
3,8 Benzo fluoranthene		2200	<u> </u>	160	<u> </u>	180	_			1	· <u> </u>			
Benzo(k) fluoranthene	<u> </u>	2200	 	160	↓	190	<u> </u>	<u> </u>			<u> </u>	_	ļ	4
Chrysene		3200			1			1			1			1

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/1 b - Concentrations in ug/kg c - Concentrations in mg/1 d - Concentrations in mg/kg • - Analysis did not pass QA/QC requirements (-) - Analysis was not performed

:

					ont'o					•••		4	D	s] 45
ORGANICS	S				ABEF			·	r				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	γ
BASE NEUTRAL EXTRACTABLES (conrd.)	- 38 ⁴	39 ^b	40 ⁶	41 ^b	428	43 ^b	44 ^b						Ø	
Anthracene		2000	40	140		260	21					•		
Behzo(ghi) perylene (l,12-Benzoperylene)		7605												
Fluorene		93		12	ľ.	ນ								
Phenanthrene		2000	40	140		260	21							
Dibenzo(a,h) anthracene (1,2,5,6-dibenzanthracene)														
Indeno (1,2,3-cd) pyrene		820												
2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD)														
Pyrene		2000	26	110		140	14							· ·
· · · · · · · · · · · · · · · · · · ·	L	· ·												
			ļ		ļ									
		<u> </u>	 	ļ	 			<u> </u>	ļ	 	<u> </u>	<u> </u>		
		<u> </u>	<u> </u>	 	<u> </u>		ļ	ļ	ļ	ļ		L		
		 		ļ	 		<u> </u>		<u> </u>	ļ				
	ļ	<u> </u>	<u> </u>		 			<u> </u>		 				
			<u> </u>		<u> </u>		 			ļ				
		<u> </u>	<u> </u>		<u> </u>			<u> </u>					 	ł
<u> </u>					╂───		┟		<u></u>	<u> </u>				
				<u> </u>	<u> </u>		{					<u> </u>		l · .
······································					┼──			<u> </u>	+					· .
				<u> </u>	1			<u> </u>	+		\vdash	·		1
		1	<u> </u>		1	<u> </u>						<u> </u>		
•					1	<u> </u>	İ —							
									+	<u> </u>				ł
			<u> </u>											
					+	<u> </u>		<u> </u>	<u> </u>	 				∮ ≁ .
		 		ļ	<u> </u>		 							
					ł									
					1				1					1 .
						<u> </u>			 					-d
			<u>-</u>					<u> </u>					\vdash	∮ ·
				<u> </u>						<u> </u>			<u> </u>	4
			<u> </u>	<u> </u>	 	 	ļ	<u> </u>		 	 	ļ	<u> </u>	4
				1	1			1			1	1	1	1

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • Analysis did not pass QA/QC requirements (-) - Analysis was not performed

DRGANICS								<u>-</u>			- T	9	<u> </u>	/
	38*	39 ^b	40 ^b	41 ^b	424	43 ^b	44 ^b	• •				$ \rightarrow $		
2,1,6-Tiichlorophenol														
p-Chloro-m-cresol														
2-Chiorophenol														
2,4-Dichlorophenol					_									
2,4-Dimethylphenol		<u> </u>		99		Ļ								
2-Nitrophenol							L							
4-Nitropheñol														
2,4-Dinitrophenol									_		l			
+,6-Dinitro-o-cresol										- ·				
Pentachiorophenol												·		
Phenol		89	390	1900		420	200							I
<u>.</u>														
		T			1								·	
	-											·		
			1	1			1		1					
		+	1		1	1		1				1		
			1			1			1			1		•
		1		1		+	1	1	1	1-	1	+	1	İ
······································		+	+			+	1			+	+	1	\uparrow	ĺ
·····			+	+-	+		+-		+-	+		+	+	ł
		+	+	+-			+		+	+		+	+	1
		+	+				+			+	+	+	+	1
				+	╉──		+					+	+	1
•		+		+	+			+	+	+	+	+	+	
				÷	+		+					+—	+	
								+				+	+	$\frac{1}{2}$
									—		+	+-	+	-
				<u> </u>						_		<u> </u>	- <u>+</u>	$\frac{1}{2}$
······································			- 					_		_			+	-
		ļ		_						_			+	ł
<u> </u>			_											-
· · · · · · · · · · · · · · · · · · ·												_	┥—	ļ
													<u> </u>	
													<u> </u>	
· · · · · · · · · · · · · · · · · · ·			Τ											
										- -				
	- ·	-		1							1		T	1

•

....

NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • Analysis did not pass QA/QC requirements (-) - Analysis was not performed

·

ORGANICS		ABL SAM		(coi NUM									47	2845
PESTICIDES	388	39 ^b	40 ^b	41 ^b	42*	43 ^b	44 ^b							
Aldrin													1	
Dieldrin														7
Chlordane		1											1	1
4,4'-DDT		+												-
4,4'-DDE		11	3.3	5.3		9.1							1	
4,4°-DDD					,							T		
≪-Endosulfan			1	1										
β -Endosulfan												1		7
Endosulfan sulfate			+	<u>†</u>	1			<u> </u>	1			\uparrow		-
Endrin														
Endrin aldehyde														
Heptachlor						1								
Heptachlor epoxide			1			1			T			Τ		
<-внс			1											
В -внс	_			58			T				1			
σ-BHC		+		1	1					1				
∆ -внс						1		1						
PCB-1242			1						1	1				
PCB-1254		160		180										
PCB-1221							T							
PC8-1232														
PCB-1248			80	320		78							\neg	
PCB-1260					1.									
PCB-1016														
Toxaphene														
					1	1	1		1					
	- -			-								Τ		
				·										
	.	-		_1			<u> </u>			_1 _		1		

• NOTES: Blank spaces indicate that the chemical was not detected a - Concentrations in ug/l b - Concentrations in ug/kg c - Concentrations in mg/l d - Concentrations in mg/kg • - Analysis did not pass QA/QC requirements (-) - Analysis was not performed

45

TABLE 4 (cont'd) SAMPLE NUMBER

	T	ABL	E 4	(co	ont	'd))										1 /
ORGANICS	Ş	SAMI	PLE	NUI	MB	ER									L	13	843
VOLATILES	384	39 ^b	40 ^b	41 ^D	42	•	430	44 ^b	Blank	T	T				ľ		\mathcal{D}^{ℓ}
Agolein					┢╴	+				T						- I	·
Acrylonitrile				······	†	-+				\top				Γ	-1		
Benzene		0.32			+	-†	0.5	0.08	0.3	1				T			
Carbon tetrachloride		0.32			\uparrow	+				ŀ				Γ			
Chlorobenzene		0.5	4.8		1-	-				T	-			Τ			•
1.2-Dichloroethane					+	-†	3.8							T			
1,1,1-Trichloroethane		┨────			┼─	-+	0.5		<u> </u>	╧	+			T	_		
1,1-Dichloroethane		+			+				1-	╧				1			
		╂───	<u> </u>		+-	-+				╈			<u>†</u>	╈			
1,1,2-Trichloroethane	┼	+			+	-+			+-	+			+	+			•
1,1,2,2-Tetrachloroethane	+		+		╉				+	╉			1	+			
Chloroethane	+				┼╴	-			+	+			+	+			
2-Chloroethyl vinyl ether (mixed)		+	+		+-			<u> </u>	+-	┽			┼─	+			
Chloroform		0.19	0.7		╋		J.8	2.7	+	+			+	-+-			1
1,1-Dichloroethylene	<u> </u>				+				+	+			+	╉			
1,2-trans-Dichloroethylene	37	12			+-				+	+			+	╉			ļ
1,2-Dichloropropane			0.8						+	+			+	╉			
1,3-Dichloropropylene (1,3-Dichloropropene)	<u> </u>		1		+				+-	+			+	+			
Ethylbenzene	<u> </u>	0.4	3.0	0.	<u>-</u>		0.7	0.4		-			+-	-+			4
Methylene chloride (Dichloromethane)	2	1.5	24	1	<u> </u>	1	4.1	31	+	-+			+-	\dashv			ł
Methyl chloride (Chloromethane)			<u> </u>					_		4		–	+	-+		<u> </u>	{ · ·
Methyl bromide (Bromomethane)							ļ	1		\rightarrow			+-	_			4
Bromoform (Tribromomethane)				1			ļ		·	_		<u> </u>	+-	·		┨	↓ ∶
Bromodichloromethane									<u> </u>	$ \dashv$		<u> </u>	+				- ·
Trichlorofluoromethane				· <u>1</u>	2					2		ļ				<u> </u>	-
Dichlorodifluoromethane									1_			<u> </u>					4
Chlorodibromomethane																<u> </u>	4
Tetrachioroethene (Tetrachioroethylene)	56	19										1	4				4
Toluene		0.	5	0	.4		3.7	0	. 1			<u> </u>					4
Trichloroethene (Trichloroethylene)	R	5.	z 0.	4 0	.7		1.4	0	. 3			_					4
Vinyl chloride	2				\bot										 	+	-
							\bot				<u> </u>			_			-
															 		4
																	4
													\perp		1	+	4
								[4

NOTES: Blank spaces indicate that the chemical was not detected

- Acces indicate that the chemical was not been Concentrations in ug/l Concentrations in ug/kg Concentrations in mg/l Concentrations in mg/kg Analysis did not pass QA/QC requirements Analysis was not performed
- a -b -c -d -(-) -

INORGANICS			TAE SA			UMB						•	- 4	48	<i>{ </i>
		384	34	4đ ⁴	٩đ	42*	43 ^d	44 ^d					(14) (-
Aluminum		+				-					<u> :</u>				
Chromium		+		5.7	13	19	23	10	<u> </u>	<u> </u>				$\left - \right $	
Barium										<u> </u>					r I
Beryllium	•.			6.9		12	11	7.2						$\left - \right $	
Cadmium		+		0.9	16	3.8		1.6							
Cobalt										 					
Copper		3.6		45	18	61	34	12			+				l
Iron										<u> </u>	<u> </u>	<u> </u>	†		
Lead		1		38	46	84	63	4		<u> </u>		+	<u> </u>	†	
Nickel		1		6		20	45	11		<u> </u>	1			 	
Manganese										-	+	+	+		
Zinc		30		120	78	1500	190	62		†	1	<u> </u>	<u> </u>		ļ
Boron							·			+		1.			
Vanadium			<u> </u>	<u> </u>						+	1	+	 	<u> </u>	1
Arsenic		20	30	6.5	7.8	5.9	7.4	3.7							1
Antimony					4	3	•	. 2		+		+	+		1
Selenium				0.06	0.2			0.02		$\left\{ - \right\}$		+	+	+	1
Thallium	<u></u>				1					+	+	+ .			┥
Mercury	- ··· ··	0.63	1.58	-		14.2	1.64	0.33	1		+	-{	1		ſ
Tin						1					+	+		1	1
Silver				0.3	0.3	† –	0.4	0.2		+	+		\uparrow		1
		1		1	1	<u> </u>	<u> </u>	1	1	1-		1	+	1	1
		+		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	+		+	+	+	1
······································		-				<u> </u>	<u> </u>			+	1	+	+	+	1 , '
			<u> </u>		<u> </u>					+	+	1	+	 	1
					1	<u> </u>	<u> </u>			+	1	1	+		1
			L	A	I	I	J	•	<u> </u>	-4		_1	_1	- -	
							·			•.					

(-) -(-) aces indicate that the chemical was not dete Concentrations in ug/l Concentrations in ug/kg Concentrations in mg/l Concentrations in mg/kg Analysis did not pass QA/QC requirements Analysis was not performed

CONCLUSION 1

-450/45

Methylene chloride, acetone, and bis (2-ethylhexyl) phthalate were detected in groundwater samples. Methylene chloride could be an artifact resulting from sample bottle preparation. Acetone could also be an artifact from field decontamination of equipment. Phthalates are common plasticizers and could be artifacts present from drilling. The lack of other contaminants in the groundwater suggests that there is little downward migration of contaminants at the site.

Examination of drilling cores from Niagara County Refuse shows dense and relatively impermeable subsurface materials beneath the site. These materials include till and clay/silt. The potential for groundwater contamination at this site from downward migration of surface contaminants is very slight to non-existent.

We recommend that the groundwater be monitored on a semi-annual basis (Fall/Spring) for one year, and yearly for two years to determine if there is groundwater contamination at this site.

Results of samples collected during 1983 showed few organic priority pollutants on site. However, sample results from 1980 and 1981 showed a number of surface contaminants including: PAHs, phthalates and pesticides. Since many of the PAH's are potential carcinogens, we recommend that additional surface water, sediment and soil samples be taken to resolve this discrepancy in contaminants and detail surface contamination at the site.

RECEIVED JUN 2 6 1986

United States Department of Agriculture

Soil Conservation Service

Appendix 1.5-1 P. 10/2 14094 , 4487 Lake Avenue, Lockport, NY

June 24, 1986

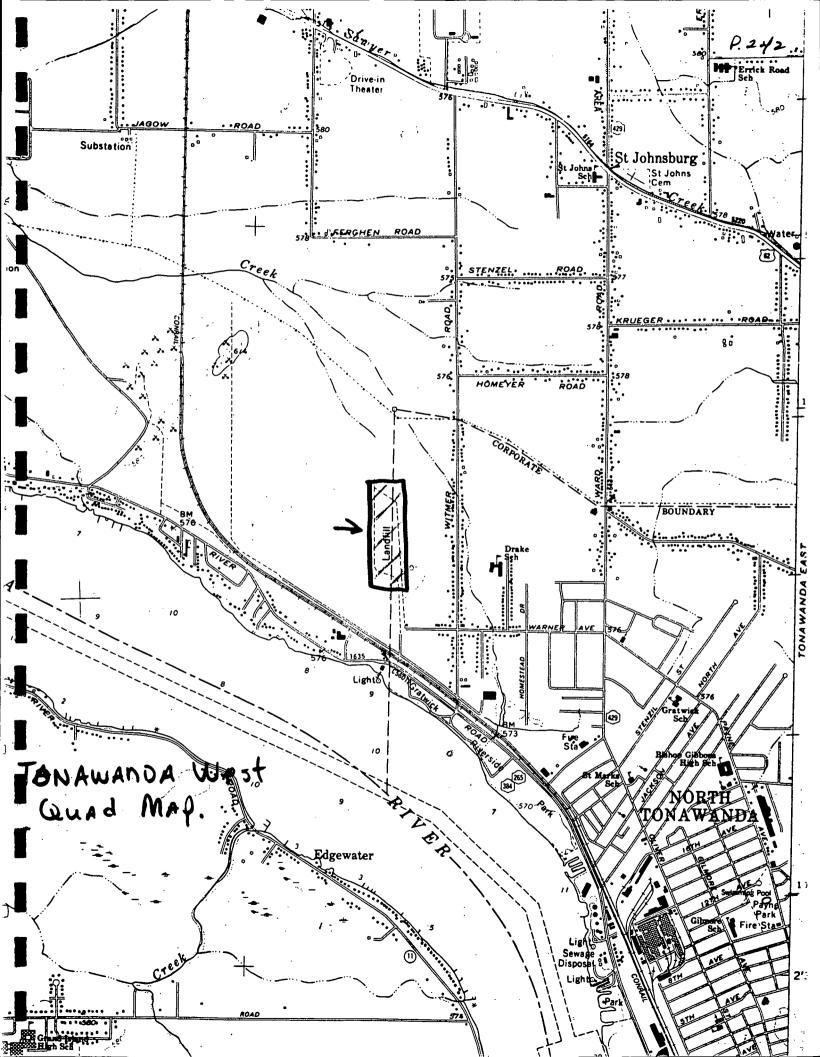
EA Science and Technology Mr. Thomas Porter Box 91, RD #2 Goshen Turnpike Middletown, NY 10940

Dear Mr. Porter:

As follow up to our telephone conversation regarding irrigation from ground and/or surface water resources within three (3) miles of the landfill site identified on the occumpanying map. I have shown the map to the County Executive Directors of the Agricultrual Stabilization and Conservation Service of both Niagara and Erie Counties and we have determined that there is no agricultural irrigation from ground or surface water sources within a three (3) mile radius of the site in question.

If we can be of additional assistance please contact me at the above address. I apologize for the delay in providing you with the information.

Sincerely,


Ed Oliver, District Conservationist Lockport Field Office

EO:sb

The Soil Conservation Service is an agency of the Department of Agriculture

SCS-AS-1 10-79

New York State Department of Environmental Conservation Wildlife Resources Center Delmar, NY 12054

Henry G. Williams Commissioner

RECEIVED APR 1 5 1986

April 10, 1986

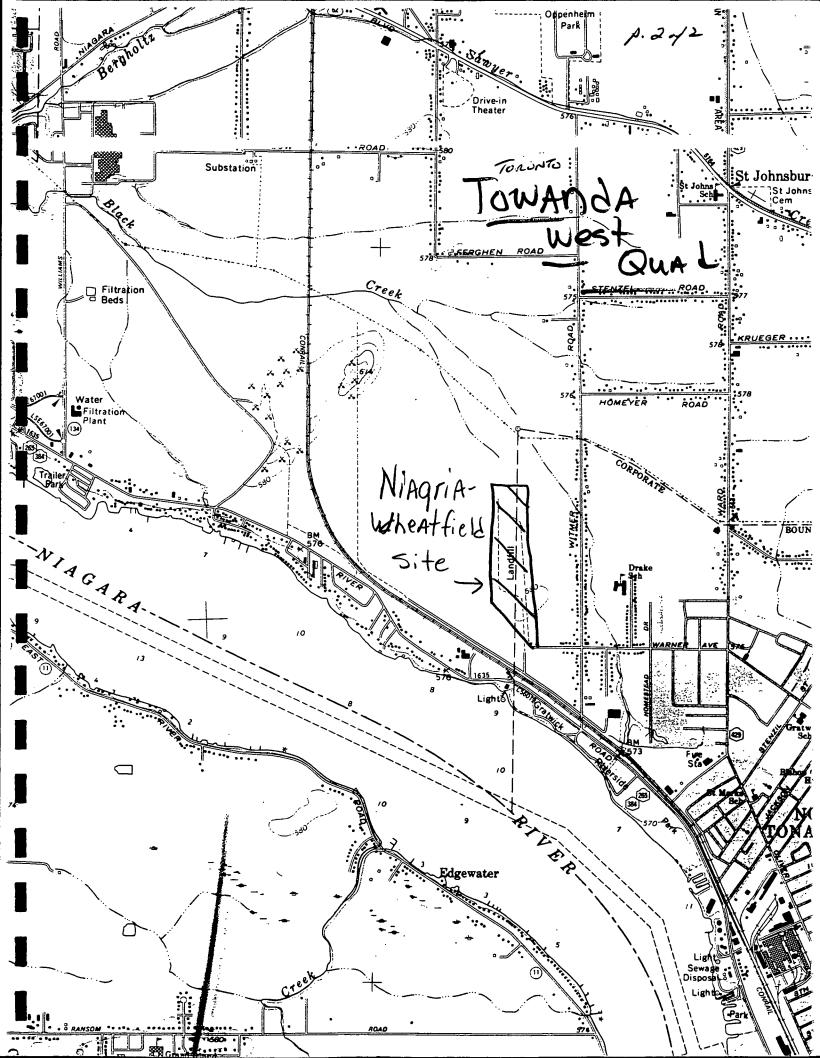
Mr. Thomas Porter EA Science and Technology RD2 Box 91 Goshen Turnpike Middletown, NY 10940

Dear Tom:

We have reviewed the hazardous waste sites enclosed with your letter of 21 March 1986 for potential affects on "Federally listed endangered species" and "critical habitats". There were not any Federally listed species identified in the vicinity of the sites; however, several sites are in close proximity to significant habitats, including State listed endangered and threatened species. We have drawn the approximate locations of these habitats on the enclosed maps and described them on the back of each map.

In addition, these sites were reviewed by the New York Natural Heritage Program for proximity to rare plants. Information from their files is also included on the back of each map. Please treat the rare plant information as "confidential" and review the enclosed disclaimer statement. If you have any questions concerning the rare plants please contact Dr. Steve Clemants, Botanist, New York Natural Heritage Program, at this address or (518) 439-7488.

If we can be of further assistance please do not hesitate to contact us.


Sincerely,

Øohn W. Ozard . *U* Senior Wildlife Biologist Significant Habitat Unit

Enclosures

cc: NYNHP - S. Clemants

JWO:sjs

pondix 1.5.1-3

COMMUNICATIONS RECORD FORM

Distribution: () _____, ()____ () _____, () Author Person Contacted: Jeffrey Diekz. Date: 25 April 1988 Phone Number: (716) 147-4600 Title: Senice Environmental Analyst Affiliation: Region 9 NUSDEC. Type of Contact: Phone Address: 600 Delaware Ave Person Making Contact: Ellen Metzgel Buffalo, NY 14202 Communications Summary: Jeffrey soid that the wetland adjacent to the worth end of the land a regulated wetland: Code No. Tw4 Class 2 (see over for additional space) Signature: Tun B. Mehyger

Appendix 1.6-1 19/10 E-163/250

September 1985

COMPENDIUM OF COSTS OF REMEDIAL TECHNOLOGIES AT HAZARDOUS WASTE SITES

FINAL REPORT

HAZARDOUS WASTE ENGINEERING RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRON MENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268

OFFICE OF SOLLD WASTE AND EMERGENCY RESPONSE OFFICE OF EMERGENCY AND REMEDIAL RESPONSE U.S. ENVIRON MENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

63940

TABLE 4 SURFACE SEAL EXPENDITURES

dia i

(1982 Dollars)

All states

DATA SOURCE	MATERIAL	THICKNESS	COVERAGE	UNIT COST
US EPA ELI/JRB 1981 Haryland	clay	6 inches	data not available	\$15.84
US EPA ELI/JRB 1981	gravel over bentonite-soil	6 inches 4-6 inches	17,333 вq.yd.	\$10.98
California	asphalt	data not available	15,000 aq.yd.	-\$11.18
US EPA ELI/JRB 1980	clay	1 foot	11,111 sq.yd.	\$10.09
Arkansas				

12-

Appendix 1.6-1. 32/0

Surface-Water Control Surface Sealing

The Radian estimates given Table 6 are based on using the following list of cost components to construct a surficial seal, the same specifications were established in the JRB-RAM scenario.

TABLE 6. SURFACE SEAL COSTS: MATERIAL VARIATIONS

Direct Capital Cost Items: Topsoil (sandy loam), hauling,	Cost
spreading, and grading (within 20 miles)	\$15/yd. ³
Clay hauling, spreading, and compaction	\$10/yd. ³
Sand hauling, spreading, and compaction	\$18/yd. ³ (\$9-12,000/acre)
Portland concrete (4 - 6" layer), mixed, spread, compacted on-site	\$9 - 15/yd. ²
Bituminous concrete (4 - 6" layer), including base layer	\$4.50- 7.25/yd. ²
Lime or cement, mixed into 5" cover soil	\$2.15 - 3.00/yd. ²
Bentonite, material only; 2" layer, spread and compacted	\$1.90 ya. ²
Sprayed asphalt membrane (1/4" layer and soil cover), installed	\$2.00 - 3.40/yd. ²
PVC membrane (20 mil), installed	\$1.75 - 2.70/yd. ²
Chlorinated PE membrans (20-30 mil), installed	\$3.25 - 4.30/yd. ²
Elasticized polyolefin membrane, installed\$3.1	0 – 4.15/yd. ²
Hypalon membrane, (30 mil), installed	\$7.40/yd. ²
Neoprene membrane, installed	\$7.25/yd. ²
Ethylene propylene rubber membrane, installed	\$3.60 - 4.70/yd. ²
Butyl rubber membrane, installed	$3.60 - 5.10/yd^2$
Teflon-coated fiberglass (TFE) membrane (10 mil), installed	\$23/yd. ²
Fly ash and/or sludge, spreading, grading, and rolling	\$1.50 - 2.50/yd2

TABLE 8 DIVERSION DITCH COST ESTIMATES

(1982 Dollars)

LINING	DEPTH	TOTAL COST	UNIT COST
none	6 feet	\$9,060	\$6.04/LF
none	6.5 feet	\$13,393 - \$15,741	\$4.39-5.16/LF
gravel and stone filled	1 foot	\$8,763	\$1.27-2.54/LF !
_		·	
	none none gravel and	none 6 feet none 6.5 feet	none 6 feet \$9,060 none 6.5 feet \$13,393 - \$15,741 gravel and 1 foot \$8,763

ppender 1.6-1

(1) Includes overhead (25%) and contingency allowance (15%).

-25-

Appendix 1.6-1 58/0

Surface-Water Control Revegetation

2.4 REVEGETATION

2.4.1 Definition

Re-establishing a vegetative cover may stabilize the surface of hazardous waste disposal sites, especially when preceded by surface sealing and grading. Revegetation decreases wind and water erosion, and contributes to the development of a naturally fertile and stable surface, and reduces infiltration by enhancing evapotranspiration (i.e., increased loss of soil moisture). It also can be used to aesthetically upgrade the appearance of disposal sites that are being considered for re-use. Short-term vegetative stabilization (i.e., on a semiannual or seasonal basis) also can be used during ongoing remedial actions.

2.4.2 Units of Measurement

Costs are given in dollars per acre because revegetation is usually given in terms of acres.

2.4.3 Summary Statistics

2.4.3.1 Expenditures

No actual expenditure data are available at this time.

2.4.3.2 Estimates

The revegetation cost estimates ranged from:

Capital:	\$1,214/acre	(1.76 acre site)
	to	
	\$8,000/acre	(20 acre site)

SUBSURFACE DRAIN COST ESTIMATES

(1982 Dollars)

Data Source	Length x trench (filter) depth	Width	Sump depth, etc.	Operation and maintenance	Unit Cost
US EPA SCS	197 feet		sump depth not given	\$10,337- \$11,293/year	\$113 - 218/LF (2)
"Impoundment" 1980 '	x 16(4) feet (1)	3.3 feet	cement pipe in drain	50 gpm •	
US EPA SCS	835 feet x	3.3 feet	depth not given 4 inch cement	\$10,337- \$11,293/year	\$26 - 38/LF
"Landf111" 1980	20(13) feet (1)		pipe in drain	50 gpm.	
ÚS EPA Radian 1982	1,000 feet x	4 feet	sump depth not given	\$70.88/ Mgd	*\$28/LF
	20(10) feet (1)		perforated pvc in drain	50 gpm	
US EPA JRB-RAM	3,300 feet (3) x	4 feet	4 manholes; 2 wet wells;	not given	\$15/LF
1980	20(2) feet (1)		15 lateral drains (20' each		ncludes laterals
(1) Trench (f volume vs	llter) depth shows e of gravel installed		Includes geotechni investigation (50%		

-28-

2

:

gender 1,6-

SUBSURFACE DRAIN COST ESTIMATES

(1982 Dollars)

÷

Data Source	Length x trench (filter) depth	Width	Sump depth, etc.	Operation and maintenance	Unit Cost
US EPA SCS "Impoundment" 1980	197 feet x 16(4) feet (1)	3.3 feet	sump depth not given cement pipe in drain	\$10,337- \$11,293/year 50 gpm .	\$113 - 218/LF (2)
	10(4) Teet (1)				
US EPA SCS	835 feet x	3.3 feet	depth not given 4 inch cement	\$10,337- \$11,293/year	\$26 - 38/LF
"Landf111" 1980	20(13) feet (1)		pipe in drain	50 gpm.	
US EPA Radjan	1,000 feet	4 feet	sump depth not	\$70.88/ Mgd	\$28/LF
1982	20(10) feet (1)		perforated pvc in drain	50 gpm	
US EPA JRB-RAM	3,300 feet (3)		4 manholes; 2 wet wells;	not given	\$15/LF
1980	x 20(2) feet (1)	4 feet	15 lateral drains (20' each	2 x 25 gpm	

kt /

-85-

12.

CARBON TRBATMENT COST ESTIMATES

(1982 Dollars)

Data Source	Design	Capacity	Operation & Maintenance	Capital
US EPA Radian	30 min. contact time;	0.14 Mgd (100 gpm)	\$357,000/Mgd	\$143,000/Mgd
1983	l lb per 5,000 gal; off-site regeneration	1.4 Mgd (1,000 gpm)	\$250,000/Mgđ	\$643,000/Ngd
US EPA/HJDEP CDM Feasibility Study (F.S)	SO2 for Fe ppt. air stripping neutralization (3)	2 Mgd (1,389 gpm)	\$1.5 million/ Mgd	\$473,500/Mgd
1983 New Jersey	l 1b per 1,000 gall.	7 Mgd (4861 gpm)	\$1.3 million/ Mgd	\$471,429/Mgd (4) \$138,000/Mgd (5)
US EPA CH ₂ M H111 (vendor quote for F.S.)	sand filters carbon tanks	0.28 Mgd (200 gpm)	\$11,786/Mgd (2)	\$346,429/Mgd (1)
1983 Illinois	rented system	2.16 Mgd (1,500 gpm)	\$222,000/Mgd	\$476,852/Mgd
US EPA SCS 1981	pressurized pretreated	7.2 Mgd	\$883,200	\$234,600
(mid 1978 dollars)	in situ regeneration	(5,000 gpm)		

(1) Includes set-up and breakdown of all major equipment, piping, controls, utility, erection, transportation, carbon and sand. No purchase.

(4) First 5 years

(5) After 5 years.

TABLE 41 EXCAVATION EXPENDITURES (continued)

(1982 Dollars)

Data Source	Material	Quantity	Contaminant	Excavation Depth	Excavation Removal	Trans. (Distance)	Disposal Treatment(1	Total
US EPA OERR 1982 Florida	liquid; 5 gal. pails	18.7 cuyd; 757 pails	Ca oxide chlorinated lime	surface	\$460/cuyd	\$0.17/cuyd/ m1. (2 trucks) \$68/cuyd (4)	\$356/cuyd	\$18,155 (2,4) \$884/cuyd
US EPA ELI/JRB 1981 Culif.	bóttles, pellets	430 cuyd	pesticides (DBCP, etc.)	15 feet	\$158/cuyd	\$119/ (140 m		\$276/cuyd
US EPA ELI/JRB 1981 Mase.	soil sludge	1,052 cuyd and 151 drums (3)	chlorinated solvents	3-15 feet	\$ 51/cuyd	\$145/ton (513 m1.)	\$90/ton	\$285/ton
US EPA ELI/JKB 1981 Idaho	soil sludge	817 cuyd	pesticides solvents	13 feet		\$207/cuyd (254 mi.)		\$207/cuya

(1) Landfilled unless other wise noted

i.

(3) 615 cuyd disposed; cuyd:ton ratio (4) If 400 miles assumed

EXCAVATION BXPENDITURES (continued)

(1982 Dollars)

Data Source	Material	Quantity		Excavation Depth	Excavation /Removal	Trans. (Distance)	Disposal/ Treatment(1	Total
US EPA ELI/JRB	drums	481 cuyd	solvents	surface	Not Available	\$77/cuyd (480 miles)	\$91/ton	
Mass. 1981	soil	•						
US EPA ELI/JRB 1979	soil	2,635cuyd	pentachloro phenol	surface	\$39-87/ cuyd	\$29/cuyd ·(170 miles)	\$61/ton	\$110- 159/cuya
Missouri								
US EPA ELI/JRB 1978	drums	4,770 cuyd	solvents	3-13 feet	\$15/cuyd	\$92/ton	\$55/ton	\$164/ton
Conn.	soil		metals			(497 m1.)		_
US EPA ELI/JRB 1982	011	229 cuyd	solvents	surface	Not Available	\$89/ton (818 m1.)	\$17/cuyd (2)	
NYC								

(1) Landfilled unless otherwise noted

(2) Incineration

LEACHATE FROM HAZARDOUS WASTES SITES

Appendix 1.6-2 10/3

PAUL N. CHEREMISINOFF K

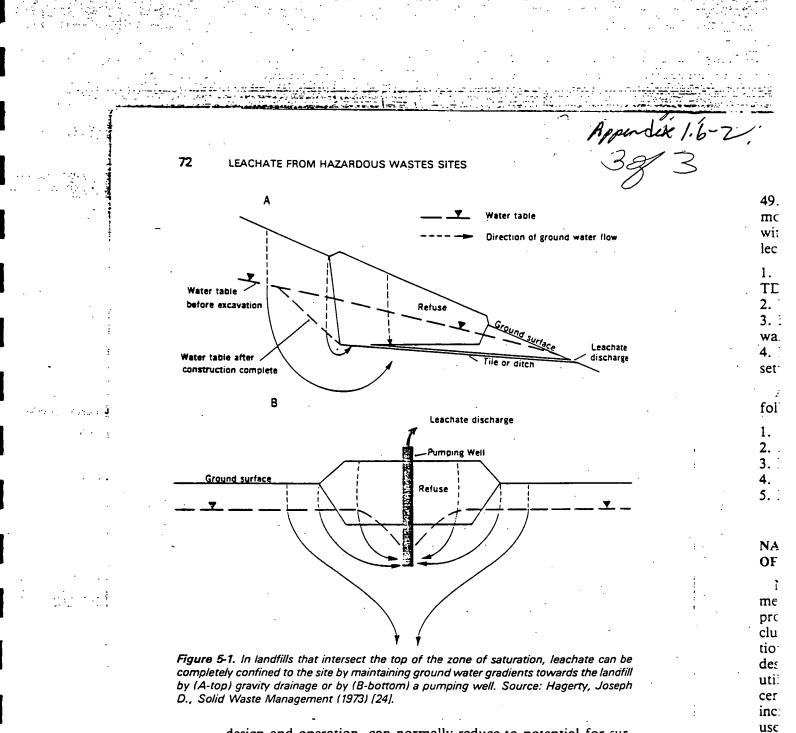
PAUL N. CHEREMISINOFF KENNETH A. GIGLIELLO

Leachate Controvand Treatment

71

gases must be considered in any landfill environmental impact, because methane can explode and inhibit vegetation growth, and carbon dioxide dissolves in water to form carbonic acid, becoming part of the leachate problem.

Oxygen (air) could be pumped into the deposited solid waste to create aerobic conditions as opposed to natural anaerobic decomposition processes. The end products formed during decomposition would be less harmful than by anaerobic means, but they would still be detrimental to a degree that their exit from the landfill should be prevented. Also, this method would be costly from the initial capital cost and operating costs would be prohibitive.


LINERS AND COLLECTION OF LEACHATE

Collection of leachate requires that a barrier exists between the solid wastes which produces leachate and the water that would become polluted. The barrier can be made from existing impervious soil or by installing some other construction materials. The most common barrier is made by constructing the land disposal site so that a "bathtub" is formed. The sides and bottom of the fill must be impermeable in order to contain the leachate. Also, provisions must be made to collect the leachate for subsequent treatment. The most common methods include sloping the bottom to a sump pump or installing a French drain system, an example of which is shown in Figure 5-1 [24].

The base of a landfill can be a hostile environment for liner materials. Anaerobic reducing conditions can be encountered so the durability and integrity of the liner can be questioned, especially over the long term. Even materials which are usually considered inert (i.e., clay), may react with leachate and result in a leak in the liner. Geswein [22], and Moore [49], and Cheremisinoff [48] discuss various liners, construction methods, costs and evaluate surface impoundments with regard to land disposal.

To date, clay liners have been the favored method of reducing or eliminating percolation of leachate [18]. Membrane liners also have been used, but they are expensive and require extreme precautions during installation to prevent physical damage [48].

By appropriately regulating the type of waste entering a land site, operating the site to minimize infiltration and installing an appropriate leachate liner and collection system, the production and control of leachate can be lessened to a great extent. Proper planning and site selection, combined with good engineering

design and operation, can normally reduce to potential for surface and groundwater contamination [51]. The final step in the process involves treatment of the collected leachate to form an innocuous material which can be safely discharged to the environment.

LEACHATE TREATMENT

There is a large volume of information regarding leachate treatment methodologies in the literature [2,6,7,13,14,16,17,19,

pot aw:

the

alle

ma

of

lea

wa.

1

and the second second second second second

United States Environmental Protection Agency

Office of Emergency and Remedial Response Washington DC 20460

Office of Research and Development Municipal Environmental Researc: Laboratory Cincinnati OH 45268

Technology Transfer

EPA

Handbook

Appendix 1.6-3 3

Remedial Action at Waste Disposal Sites

Appendix 1,6-3 -2013

APPENDIX C

COST INDICES (Average Per Year)

	Marshall & Stevens Installed Equipment Indices	Engineering News-Record Construction Index	Engineering News-Record Building Cost Index	Chemical Engineering Plant Construction Index	EPA Sewage Treatment Plant Construction Index
Year	1926=100 All Industry	1913=100	1913=100	1957-1959=100	1957-1959=100
1950 1951 1952 1953 1954 1955 1955 1955 1955 1953 1960 1961 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975	168 180 181 183 185 191 209 224 229 235 238 237 239 242 245 252 263 273 285 303 321 332 344 398 444	510 543 569 600 628 660 690 724 759 797 824 847 872 901 936 971 1,021 1,070 1,155 1,269 1,395 1,581 1,753 1,895 2,020 2,212	375 400 416 431 446 465 491 509 525 548 559 568 580 594 612 627 650 672 721 790 836 948 1,048 1,138 1,204 1,306	74 80 81 85 86 88 94 - 99 100 101 102 101 102 102 103 104 107 110 114 119 126 132 137 144 165 182	102 104 105 106 107 109 110 112 116 119 123 132 143 160 172 182 217 250

--continued--

494

Appendix 1.6-3. 303 3

\`.	Marshall & Stevens Installed Equipment Indices	Engineering News-Record Construction Index	Engineering News-Record Building Cost Index	Chemical Engineering Plant Construction Index	ÉPA Sewage Treatment Plant Construction Index
Year	1926=100 All Industry	1913=100	1913=100	1957-1959=100	1957-1959=100
1976 1977 1978 1979 1980 1981	472 505 545 599 660 721	2,401 2,577 2,776 3,003 3,159 ¹ 3,705 ¹	1,425 1,545 1,674 1,819 1,918 ¹ 1,184 ¹	192 204 219 239 261 273 ¹	262 .278 305 335 358 ²

COST INDICES (Average Per Year) (continued)

¹Based on December of year. ²Based on March of year.

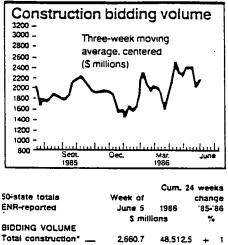
ċ

.

•

, .

.


.

a

ENR Market Trends

Latest Week

COST INDEXES	June S	Change In	om last
ENA 20-cities	index	month	year
1913 = 100	value	*•	· %
Construction Cost	4290.51	+0.7	+21
Building Cost	2492.67	+0.6	÷26
Common labor (CC)	8594.74	÷0.9	+21
Skilled labor (BC)	3863.06	+0.9	+2.7
Materials	1655.42	+0.1	+2.5

BIDDING VOLUME			
Total construction*	2,660.7	48,512.5	+ 1
Heavy & highway	935.5	19,075.4	÷ 6
Nonresidential bldg	1,345.3	21,948.4	- 1
Housing, multiunit	379.9	7,588.7	- 3
NEW PLANS			
Total construction*	3,151.3	90,161.2	+ 4
Heavy & Hignway, total	609.9	21,469.5	+ 14
Water use & control	335.2	10.035.3	+ 40
Waterworks	78.1	2,060.1	÷ 15
Sewerage	187.4	4.939.2	+ 37
Treatment plants	36.3	2,495.1	+ 31
Earthwork, waterways	69.8	3.036.4	÷ 72
Transportation	139.8	7,591.8	÷Ο
Hignways	84.0	3,814.1	+ 10
Sridges	18,9	945.2	+ 18
Airports	43.2	2.293.7	- 27
Terminals, hangars	. 15.8	1,580.6	- 12
Elec. ças. comm	10.2	1,351.5	+ 15
Other heavy const	114.8	1.994.7	+ 8
Nonresidential bidg	1,760.6	-8.499.1	÷ 5
Manufacturing	84.8	2,998.0	- 19 ·
Commercial	959.3	23,518.1	÷ 3
Offices	568.3	11,876.7	- 11
Stores, shopping ctrs	308.8	7,857.9	+ 21
Educational	234.7 37.8 209 1	5,898.0	÷ 32
College, university	37.8	2,295.3	+ 28
Medical	209.1	4,238.6	_ 0
Hospital	96.6	2,460.9	- 9
Cther	272.7	10.846.3	÷ 9
Housing, multiunit*	780.8	20.192.7	- 6
Apartments	418.0	13.756.0	- 1

Excudes 1-2 farminy houses, New num stas included and inclu plants, heavy and highway construction, \$100,000; building, \$500,000

NEW CONSTRUCTION CAPITAL

.36

	Curr. 24 we			
	Week of		change	
	June 5	1986	185-186	
•	s millions		* •	
Total new capital	1,081 9	44 635.8	- :81	
Corporate securities	21.5	1,473.3	45	
State and municipal	1,060.2	43.162.5	- 227	
-cusing	45.0	8.221.0	- 611	
Citter cidg and neavy.	1,015.2	34 941 5	- 191	

ENR/June 12, 1986

Latest i

City Atlanta. Baltimore..... Birmingnam Boston

Chicago

Cincinnati

Kansas City

Los Angeles

New Crieans

Pittsourgn.....

San Francisco......

U.S.--- 20-city avg. ..

Montreal.....

Toronto.....

Minneapolis ...

New York

Philagelonia ...

St. Louis...

Seattle

Cleveland

Oallas ..

Denver.

Oetroit.

ENR COST IND Based on 1913 U.

			()	Dend	1.1.	5-1	4
Мо	nth		71		3/1	<u> </u>	
DEXES	IN 22 CITIES			(-	
U.S. av	erage = 100			<u> </u>			
	CONS		:OST change	BU	LDING COS		
	June '86	from	last	June '86	fram	last	
	Index	month	year	index	month	year	
	2345.08	0	÷1.5	2016.55	0	+2.1	
	3372.26	0	+29	2304.54	0	÷2.9	
	3078.18	- 0.8	- 0.1	2059.03	- 0.9	- 0.1	
	4719.52	+1.3	÷4.2	2698.49	٥	+0.6	
	4395.81	÷0.5	+2.1	2531.94	-0.9	+3.1	
	4312.24	÷0.2	- 3.8	2425.85t	÷0.3†	÷4,1	
	5028.93	+0.8	- 4.3	2725.02	÷ 1.5	+3.4	
*****	3152.85	+0.5	÷4.3	2108.78	÷0.7	- 0.9	
	3454.85	+1.8	÷6.7	2349.29	÷ 2.1	÷5.9	
	4360.49	· <u> </u>	÷0.3	2596.98	- 0.3	- 2.5	
	4485.49	÷1.2	÷2.5	2453.96	0	-1.1	
	5452.15	0	÷3.6	2688.05	0	- 1.6	
	4431.38	÷ 1.8	-3.2	2483.33	÷1.4	+ 3.8	
	3463.97	+0.4	÷1.0	2227.39	÷0.7	÷ 2.3	
	5409.08	÷0.2	÷4.7	3176.40	+1.4	÷5.5	
	4690.94	÷2.7	+3.2	2647.68	÷1.8	+4.1	
	4264.08	- 0.3	- 0.9	2571.03	- 0.6	÷0.1	

+5.1

÷7.6

+0.9

+2.1

+1.6

+0.8

+2.2

+0.7

٥

0

0

0

2467.44

2924.21

2396.99

2492.67†

2660.77

2607.16

+4.0

+5.6

+2.7

+2.7

+1.4

+2.61

+1.8

a

0

0

+0.7†

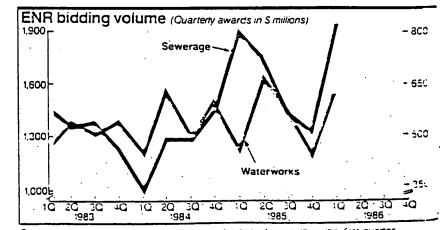
÷0.1

4849.53 ENR WAGE, MATERIALS AND COST INDEXES 20 Cities

4873.81

5309.31

4609.89


4290.51

4358.31

Based on each city's 1967 average = 100

		•							
	COMMON	LABOR	SKILLED	LABOR	MATERIAL	S PRICES	Const	Bidg	
	June 86	% chg fr	June 86	% chg fr	June 86	% cng fr	Cast	Cost	
City	Index	June 85	Index	June 85	Index	June 85	Index	Index	
Atlanta	360.52	0	311.78	0	365.60	÷4.4	361.99	336.03	
Baltimore	411.11	+4.8	350.25	+6.7	372.53	- 1.0	382.29	360.46	
Birmingham	382.72	0	343.12	+0.1	.344.51	- 0.4	368.94	342.98	
Soston	466.33	+7.2	422.44	÷4.6	353.41	- 5.0	435.14	392.37	
Chicago	387.13	÷1.8	369.69	+3.2	306.69	-2.9	364.52	341.26	
Cincinnati	415.51	- 7.3	378.05t	÷0.8	365.61	+8.5	405.32	379.21	
Cleveland	426.22	- 5.1	419.15	÷6.1	335.24	- 1.1	401.34	383.34	
Oallas	428.29	+4.9	349.32	- 4.1	328.38	÷3.1	398.98	349.09	
Deriver	366.36	., ô.6	373.41	±4.9	349.69	÷7.1	353.54	359.20	
Oetroit	358,17	- 0.5	377.03	+2.1	316.35	÷3.0	348.11	351.31	
Kansas City	471.33	÷3.3	410.16	- 1.5	345.69	÷0.5	433.68	378.94	
Los Angeles	506.23	÷4.0	437.95	- 3.1	339.17	+1.3	462,41	390.47	
Minneapolis	416.67	+2.4	408.95	+2.5	338.75	- 5.6	386.45	360.53	
New Crieans	448.00	0	381.10	+1.3	351.68	+3.5	414.18	367.29	
New York	381.79	+ 5.3	396.24	+7.1	402.51	÷ 2.5	388.96	399.39	
Philadelonia	488.00	+3.5	407.64	+5.3	373.37	+ 2.2	457.89	393.71	
Pittsburgh	408.87	- 1.3	370.07	· 0	365.84	÷0.4	383.13	349.09	
St. Louis	420.13	+ 5.5	370.79	+4.3	349.65	÷3.5	4C3.48	361.47	
San Francisco	444.75	+6.2	433.33	+5.5	332.55	+ 5.8	419.46	393.02	
Seattle	424.60	0	397.43	+1.6	353.77	+4.5	408.38	379.20	
t=rawsad		-	-	-					

Trends to Watch

Sewerage and waterwork awards showed signs of strength in the first quarter.

(47-15-11 (10/83)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID AND HAZARDOUS WASTE INACTIVE HAZARDOUS WASTE DISPOSAL SITE REPORT

PRIORITY CODE:				SITE	CODE:	932026	5	
NAME OF SITE:	Niagara	Wheatfiel	d					9
STREET ADDRESS:	off of	Witmer Ro	ad and	l River Roa	d			
TOWN/CITY: Town	of Wheat	field		_ COUNTY:	Niagar	a		
NAME OF CURRENT	OWNER OF	SITE:	Тоъ	n of Wheat	field			
ADDRESS OF CURRE	NT OWNER	OF SITE:	2800	Church Roa	ld in To	nawanda	<u>N.Y.</u>	14120
TYPE OF SITE:	OPEN DU			STRUCTURE TRE			LAGOON	
ESTIMATED SIZE:	50	ACRES	•				• .	

SITE DESCRIPTION:

The Niagara Wheatfield is an inactive landfill which was operational from 1968 to 1976. The site was used by a number of industries and has received over one million tons of wastes containing phenolic resins, PVC skins and emulsions, sludge, and other various trash.

HAZARDOUS WASTE DISPOSED: CONFIRMED	
TYPE AND QUANTITY OF HAZARDOUS WASTES DISPOSED: TYPE	QUANTITY (POUNDS, DRUMS, QUANTITY TONS, GALLONS
Phenolic resins	Unkildure Burn.
Beine aludgesludges	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

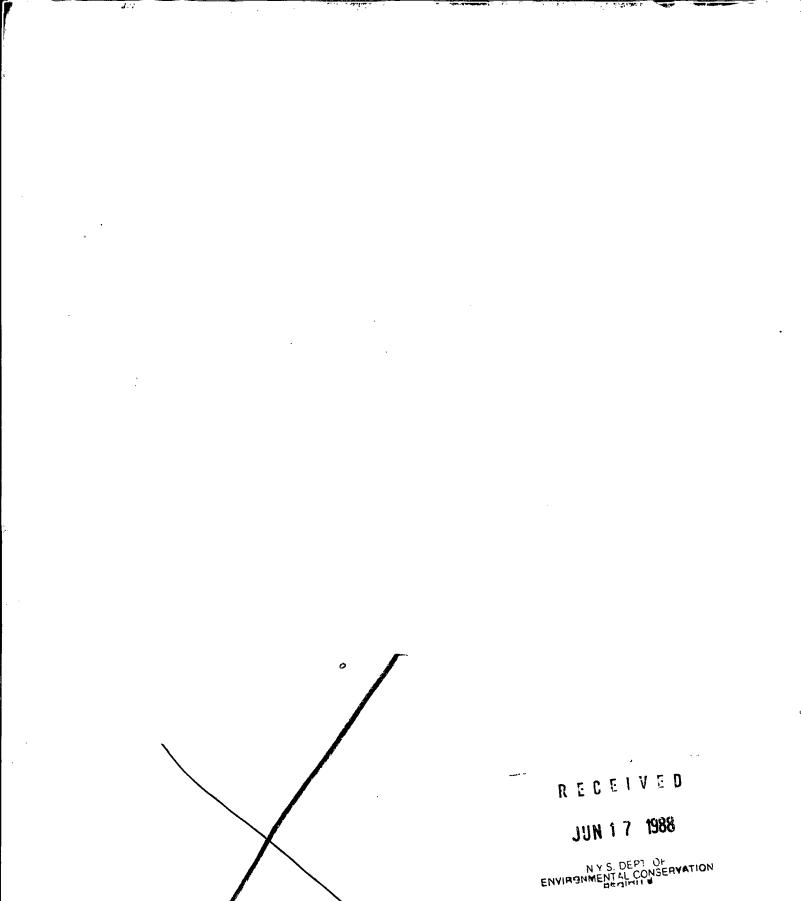
PAGE

)

Appendix II Page 2 of 2

·

•


TIME PERIOD SITE WAS USED FOR HAZARDO	US WASTE DISPOSAL:
	T0 October 29 , 19 76
OWNER(S) DURING PERIOD OF USE:Nia	
SITE OPERATOR DURING PERIOD OF USE: _	
ADDRESS OF SITE OPERATOR:unknown	
ANALYTICAL DATA AVAILABLE: AIR	SURFACE WATER XX GROUNDWATER X SEDIMENT NONE X Leachate
CONTRAVENTION OF STANDARDS: GROUND	WATER DRINKING WATER DRINKING WATER
SOIL TYPE:	
DEPTH TO GROUNDWATER TABLE:	· · · · · · · · · · · · · · · · · · ·
LEGAL ACTION: TYPE:Closure	
STATUS: IN PROGRESS	
REMEDIAL ACTION: PROPOSED	
IN PROGRESS	
NATURE OF ACTION:	
ASSESSMENT OF ENVIRONMENTAL PROBLEMS:	
Exposed waste and leachate discharges	s to adjacent wetlands.
	· · · · · · · · · · · · · · · · · · ·
ASSESSMENT OF HEALTH PROBLEMS:	
Exposed wastes and leachate accessibl	le by direct contact.
•	
• •	
PERSON(S) COMPLETING THIS FORM:	
	NEW YORK STATE DEPARTMENT OF HEALTH
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION	
NAME EA Science & Technology, Inc.	
TITLE	
DATE: <u>3 July 1986</u>	DATE:

1

.

,

PAGE

). (