2009 ANNUAL MONITORING REPORT

NIAGARA COUNTY REFUSE DISTRICT SITE

Wheatfield, Niagara County, New York

(NYSDEC Site No. 9-32-026)

SUBMITTED TO:

UNITED STATES
ENVIRONMENTAL PROTECTION
AGENCY

NEW YORK STATE
DEPARMENT OF
ENVIRONMENTAL CONSERVATION

SUBMITTED BY:

Niagara County Refuse District and PRP Group

PREPARED BY:

PARSONS

40 La Riviere Drive, Suite 350 Buffalo, New York 14202 (716) 541-0730 Fax (716) 541-0760

2009 ANNUAL MONITORING REPORT

NIAGARA COUNTY REFUSE DISTRICT SITE Wheatfield, Niagara County, New York (NYSDEC Site No. 9-32-026)

Submitted To:

The New York State Department of Environmental Conservation Division of Hazardous Waste Remediation

and

United States Environmental Protection Agency

Submitted By:

Niagara County Refuse District and PRP Group

Prepared By:

PARSONS

40 La Riviere Drive, Suite 350 Buffalo, New York 14202 (716) 541-0730 Fax (716) 541-0760

February 2010

TABLE OF CONTENTS

SECTION 1 INTRODUCTION	1-1
1.1 Introduction	1-1
1.2 Procedures	1-1
1.2.1 Groundwater Sampling	1-1
1.2.2 Effluent Sampling	1-2
1.2.3 Water Levels	
1.2.4 Site Inspections	1-3
SECTION 2 RESULTS	2-1
2.1 Analytical Results	2-1
2.1.1 Effluent Samples	2-1
2.1.2 Groundwater Analytical Results	2-1
2.2 Site inspections	2-3
2.3 Maintenance	2-4
2.4 Water Levels	2-4
SECTION 3 SUMMARY AND CONCLUSIONS	3-1
SECTION 4 REFERENCES	4-1
LIST OF TABLES	
Table 2.1 Detected Analytes in Groundwater Samples	2-5
Table 2.2 Monthly Site Inspection Findings	2-6
Table 2.3 Water Level Measurements	2-7

TABLE OF CONTENTS

LIST OF FIGURES

FIGURE 1.1 SITE PLAN

LIST OF APPENDICES

APPENDIX A CITY OF NORTH TONAWANDA INDUSTRIAL WASTEWATER DISCHARGE PERMIT AND COMPLIANCE SAMPLING RESULTS

APPENDIX B CORRESPONDENCE

APPENDIX C ANALYTICAL DATA

APPENDIX D DATA VALIDATION REPORT

APPENDIX E MONTHLY INSPECTION LOGS

APPENDIX F MAINTENANCE RECORD LOGS

APPENDIX G WATER LEVEL RECORDS

APPENDIX H COMPACT DISC CONTAINING REPORT

SECTION 1 INTRODUCTION

1.1 INTRODUCTION

In accordance with the United States Environmental Protection Agency (USEPA) Record of Decision (USEPA, 1993), the United States District Court Consent Decree (USA, 1995), and the USEPA approved Operation, Maintenance, and Monitoring (OM&M) Manual (CRA, 2000), the Niagara County Refuse Site PRP Group performed a remedial action at the Niagara County Refuse Site (Site), Wheatfield, New York. The PRP Group is currently providing operations, maintenance, and monitoring (OM&M). This Annual Monitoring Report summarizes monitoring activities from January through December 2009.

The Site is a former municipal landfill comprised of approximately 60 acres, located along the eastern border of the Town of Wheatfield, New York, and the western border of the City of North Tonawanda, New York. The southern edge of the Site lies approximately 500 feet north of the Niagara River. A perimeter collection system (PCS) and a perimeter barrier system are used to prevent offsite contaminant migration. These systems began operation in November of 2000.

1.2 PROCEDURES

1.2.1 Groundwater Sampling

In accordance with the OM&M Manual (CRA, 2000), samples were collected from wells NCR-3S, NCR-4S, NCR-5S, and NCR-13S in December 2009. These four wells are screened in the shallow overburden materials. Groundwater sampling on an annual schedule commenced in 2006. Annual groundwater sampling is scheduled to continue for an undetermined time period, assuming that water level conditions permit collection of groundwater samples.

Each groundwater monitoring well was purged prior to sample collection by pumping five volumes of groundwater from the well using a dedicated bladder pump. Physical parameters including pH, temperature, conductivity, and turbidity of the purge water were periodically measured and recorded. In the event that a well could not supply enough water to complete the purging of five well volumes, the well was pumped dry on three consecutive days prior to sampling. All purge water was placed in an onsite wet-well.

Groundwater sampling began immediately at the completion of purging. A dedicated bladder pump was used to collect the groundwater samples. The discharge rate was first adjusted to approximately 100 milliliters per minute. The sample was then collected directly into the sample containers.

Groundwater samples were collected and analyzed for:

• Volatile organics using EPA method 8260;

PARSONS

- Semivolatile organics using EPA method 8270;
- Mercury using EPA method 245.1 and method SW-7470; and
- Inorganics using EPA method 200.7 and method SW-6010.

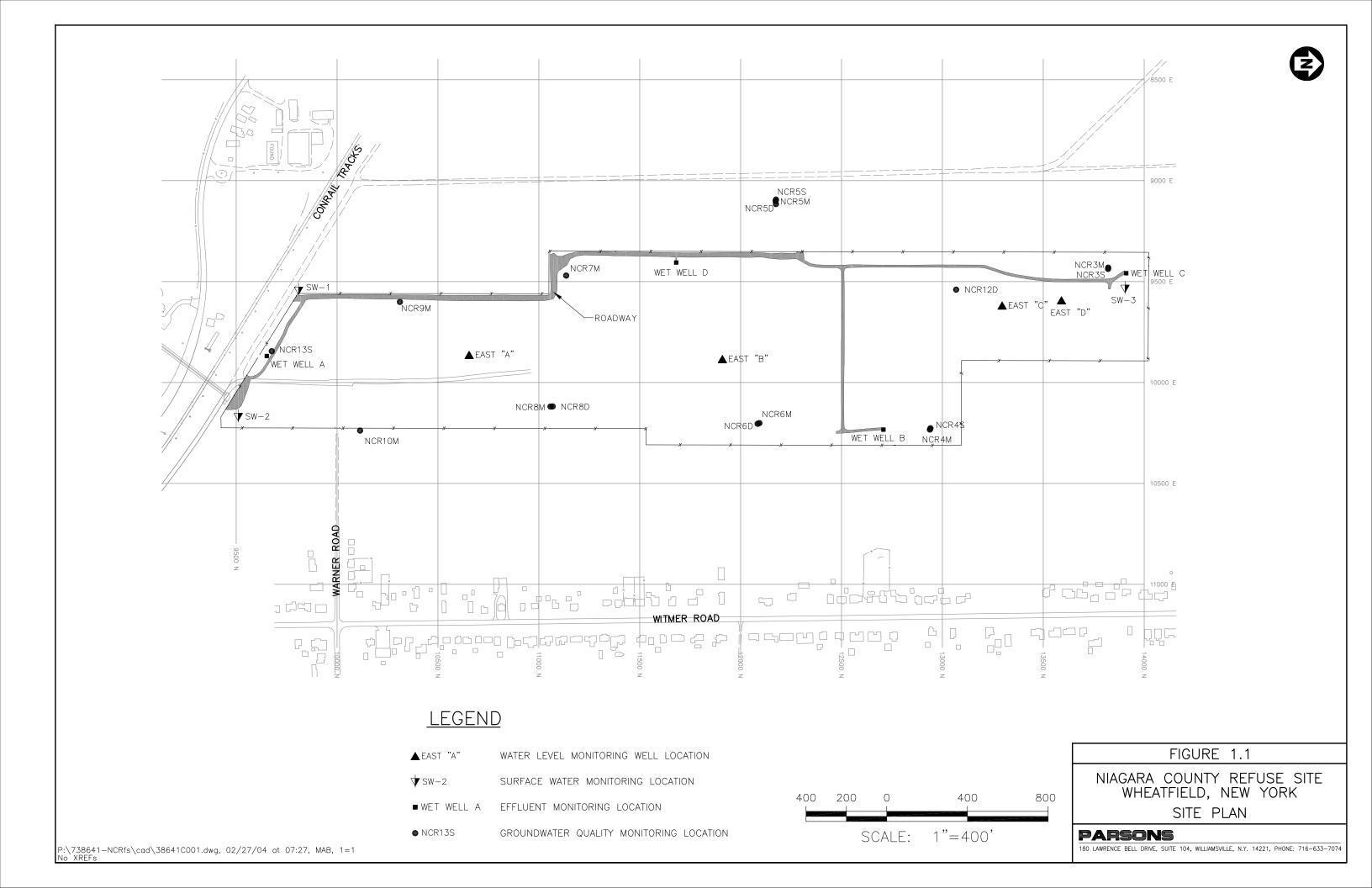
The groundwater samples were analyzed by TestAmerica Laboratories of Amherst, New York. A chain-of-custody (COC) accompanied the sample bottles from the laboratory, to the field, and back to the laboratory.

As noted in previous reports, due to slow recovery times and low water levels in the wells to be sampled after purging, collection of the required groundwater volume for all groundwater and quality assurance samples is often not possible. During the December 2009 sampling event, no issues were encountered due to low groundwater volume, and all samples were able to be collected.

A request was submitted to the USEPA and NYSDEC in 2005 to reduce the analytical parameters in each of the groundwater samples collected. The request proposed reducing groundwater laboratory analysis to five metals that have historically been identified as exceeding NYSDEC and USEPA groundwater standards in the shallow groundwater at the Site. The elimination of analysis for VOCs and SVOCs was also proposed. The USEPA agreed, after discussions with the NYSDEC and input from NYSDOH, to reduce the collection of VOCs and SVOCs to every two years beginning in 2006 (every other groundwater sampling event). The USEPA requested that metals continue to be analyzed for each groundwater sampling round. The basis for this decision was stated to be the significant residential growth around the Site in recent years.

1.2.2 Effluent Sampling

Groundwater from the perimeter collection system is discharged to the City of North Tonawanda treatment system without pre-treatment. A monitoring station in Wet Well A allows both the effluent water quality and the volume of effluent to be verified by the City of North Tonawanda. In compliance with the City of North Tonawanda Industrial Wastewater Discharge Permit, the effluent was sampled monthly through February 2007. A revised Industrial Wastewater Discharge Permit (Appendix A) was issued by the City of North Tonawanda. This permit became effective on February 28, 2007 and expires on April 1, 2010. The revised permit has a reduced analytical parameter list compared to the original permit, and a semi-annual sampling frequency. Semi-annual samples were collected in March and September 2009. The effluent samples are collected in compliance with the OM&M Manual (CRA, 2000) and are analyzed by the City of North Tonawanda. The sole purpose of these analyses is for compliance with the Industrial Wastewater Discharge Permit. A new Industrial Wastewater Discharge Permit covering the discharge of site groundwater after April 1, 2010, is currently in the process of being created and if available, will be included in the first quarter 2010 monitoring report.


1.2.3 Water Levels

Water levels were measured in four monitoring well locations inside the limits of the landfill, and four wet well locations. Water level measurements were collected monthly

during 2009. The water levels were measured with an electronic water level indicator, and reported as an elevation above mean sea level. Figure 1.1 shows the locations of the water level monitoring points.

1.2.4 Site Inspections

The Site was inspected by O&M Enterprises, Inc. on a monthly basis, in accordance with procedures in the OM&M Manual. The perimeter collection system, offsite force main, wetlands, perimeter fence, drainage ditches, swale outlets, culverts, gas vents, wells, and landfill cap were visually inspected.

SECTION 2 RESULTS

2.1 ANALYTICAL RESULTS

2.1.1 Effluent Samples

Effluent samples were collected in March and September 2009 by O&M Enterprises, Inc. and analyzed by the City of North Tonawanda. The analytical results from these samples were used by the City to confirm that the effluent received from the Site met the criteria for acceptance by the City treatment system. All analytical results were found to be compliant with the discharge permit. A revised Industrial Wastewater Discharge Permit was issued by the City of North Tonawanda and is effective from February 28, 2007 through April 1, 2010. As seen in the revised permit, the analytical parameters and the sampling frequency have been reduced from the original permit. Effluent analytical results and the revised permit are presented in Appendix A. A new Industrial Wastewater Discharge Permit covering the discharge of site groundwater after April 1, 2010, is currently in the process of being created and if available, will be included in the first quarter 2010 monitoring report.

2.1.2 Groundwater Analytical Results

Analytical results for the sampling event during this reporting period are summarized in Table 2.1. The results were compared to NYSDEC ambient water quality standards (AWQS), NYSDOH maximum contaminant levels (MCLs), and USEPA MCLs (see Table 2.1). This reporting period includes months 99 to 110, since the start-up of the perimeter collection system in November 2000. The collection of quarterly and semi-annual groundwater samples has been completed as outlined in the OM&M Manual (CRA, 2000). Annual collection of groundwater samples began in 2006. Groundwater sample analytes are currently scheduled to include metals annually, and volatile organic and semivolatile organic parameters every two years, as approved by the USEPA (see Appendix B). The groundwater samples collected during this reporting period were analyzed for volatile organics, semivolatile organics, and metals.

The analytical results received from the laboratory are presented in Appendix C, along with the chain-of-custody (COC). A Sample Collection Data Sheet, which includes required and actual purge volumes, sample date, time, description, required analyses, and the COC number for each well, is included in Appendix C. This sheet also indicates which well was used to collect the matrix spike (MS) and the matrix spike duplicate (MSD). A sheet of well purging information, including pH, conductivity, turbidity, odor, comments, and well volumes, is also provided in Appendix C.

December 2009 Event

Monitoring wells NCR-3S, NCR-4S, NCR-5S, and NCR-13S were sampled on December 4, 2009. The locations of the monitoring wells are provided in Figure 1.1. The data validation report is presented in Appendix D.

PARSONS

Seventeen metals were identified in one or more of the groundwater samples. Typically, an average of approximately thirteen metals are detected. In general the detected values appeared to be consistent with ranges observed in previous sampling events. Seven metals have detections that are greater than historic high at the site. These metals include aluminum, barium, beryllium, calcium, colbalt, lead, and magnesium.

- Aluminum exceeded the NYSDEC AWQS in each of the four samples. In three of the wells sampled the current aluminum results exceed the historic high. Historically these wells have been above the NYSDEC AWQS standard.
- Copper was identified in each of the four samples above the NYSDEC AWQS. Typically, copper exceeds NYSDEC AWQS in two or more of the four groundwater samples.
- Iron was identified in each of the samples exceeding both the AWQS and the NYSDOH MCL. The Record of Decision (ROD) (USEPA, 1993) identifies iron as typically exceeding MCLs in the regional groundwater.
- Lead was found above the analytical detection limits in two of the four samples and exceeded NYSDEC AWQS, NYSDOH MCL, and USEPA MCL in one sample (NCR-4S). The concentration of lead in NCR-4S was 28.3 ug/L, exceeding the NYSDEC AWQS and NYSDOH MCL standards of 25 ug/L.
- Magnesium was identified in each of the four samples and exceeded the AWQS guidance value (not a standard) in each of the samples. One sample result for magnesium exceeded its historic high and has occasionally exceeded the NYSDEC AWQS guidance value in past events.
- Manganese was found in each of the four samples above the detection limits.
 One of the four samples exceeded the NYSDEC AWQS and the NYSDOH MCL, and has occasionally exceeded these values in past events.
- Sodium was found above the NYSDEC AWQS, the NYSDOH MCL, and USEPA MCL in three of the four samples. The Record of Decision (ROD) (USEPA, 1993) identifies sodium as typically exceeding MCLs in the regional groundwater.
- Other results show beryllium, which has not been previously detected at the site, at levels near the detection limit; cobalt, which also had limited past detections, found at levels near the detection limit; and calcium exceeded its historic high in two samples.

Groundwater analytical results were validated and reviewed by Parsons for usability (see Appendix D for the complete report). The laboratory data packages were found to be of good overall quality. Groundwater samples were collected, properly preserved, shipped under a COC record, and received at the laboratory within one day of sampling. Certain metals results were considered estimated, and flagged with a "J", due to noncompliant matrix

spike recoveries. Metals sample results were considered usable following data validation. The metals results were 100% complete. Twelve detected metals results were considered estimated due to noncompliant matrix spike recoveries.

2.2 SITE INSPECTIONS

Monthly Site inspections were conducted between January and December 2009. During the inspections, the perimeter collection system, offsite force main, manholes, wet wells, landfill cap, wetlands, perimeter fence, drainage ditches, swale outlets, culverts, gas vents, and monitoring wells were each visually inspected. A summary of the inspection findings is included in Table 2.2. Copies of the Monthly Inspection Logs have been included in Appendix E.

Each of the inspections found the manholes and wet wells to be in good condition. Water levels in the wet wells were measured during each inspection visit. Examination of the landfill cap vegetative cover included checking for erosion, bare areas, washouts, leachate seeps, length of vegetation, and dead/dying vegetation. Additionally, during the examination of the landfill cap, the access roads were examined for bare areas, dead/dying vegetation, erosion, potholes/puddles, and obstructions. No surface erosion, bare spots, or leachate seeps were noted. The landfill cap was noted to be covered with snow during the January and February site inspections and the cover vegetation was noted to be low, typical for the early part of the year, during the March, April, and May site inspections. Tall vegetation was noted on the cap during the June, July, and September site inspections. The landfill cap was mowed in August.

Post-construction monitoring of the wetland replacement was performed annually between 2001 and 2005. Monitoring results indicated that the wetland creation was successful. Although the formal annual inspections are no longer required, monthly visual inspection of the wetlands will continue, to document general conditions.

The wetlands were visually examined during monthly inspections for growth and propagation of wetland species, dead/dying vegetation, presence of invasive species (i.e., purple loosestrife), change in water budget, and general conditions. No signs of damage to the wetlands due to loss of vegetation, or changes in the water budget, were observed during each of the inspections. Water levels in the wetlands were noted as slightly high in February, March, April, and December and slightly low in September. Typical winter vegetative conditions were observed from January through April, and again in November and December, and conditions were noted as good during the May through October inspections.

Approximately 40 feet of perimeter fence was damaged by a piece of farming equipment operating on an adjacent property. The Niagara County Sheriff's Department was called and responded but no report was completed. The adjacent property owner agreed to repair the damages and damages were repaired by a fencing contractor.

Overall the landfill system, including the perimeter fence, drainage ditches, swale outlets, culverts, gas vents, and monitoring wells were found to be in acceptable condition.

2.3 MAINTENANCE

Scheduled maintenance during this reporting period included:

- Replacement of the discharge hoses on wet well A and C.
- Replacement of the power lead on the pump in wet well A.
- Replacement of the motor starter on the pump in wet well A.
- Repairs to perimeter fence damage.
- Replacement of the pump, motor, and discharge hose in wet well B.
- Periodic pulling, cleaning, and reinstalling the pumps in the wet wells.
- Cutting tall grass, brush, and weeds along the inside of the perimeter fence line.
- Mowing the landfill cap.
- Installed a new hinge on outer well casing at East B.
- Repaired small hole in perimeter fence.

Occasional unscheduled maintenance at the landfill is required. During this reporting period, several items requiring unscheduled maintenance were addressed.

- On February 19, 20, and 21, the breaker was reset for the electrical power to wet well A.
- On June 18, a float control switch on wet well A was repaired.
- On October 9, the discharge pipe at wet well B was replaced.
- On November 6, National Grid gained site access through O&M Enterprises, Inc. in order to replace the electric meter for the site with a new meter that can be read remotely.

Maintenance Record Logs are included in Appendix F.

2.4 WATER LEVELS

Monthly water level measurements were collected to (1) ensure that water levels inside the landfill are lowered by the operation of the perimeter collection system; and (2) allow planning for groundwater sampling dates, when the maximum number of wells could be sampled. Water levels were collected from the wet wells, the piezometers (hydraulic monitoring locations) within the limits of the landfill, and the groundwater monitoring wells (see Figure 1.1). Water levels in the wet wells were collected during the monthly inspections and recorded on water level records (Appendix G). The water level data, including depths to water and elevations, are summarized on Table 2.3. During 2009, water levels were collected from the monitoring wells on a monthly basis. Water levels generally varied between 2.2 and 4.2 feet over the course of the year.

Table 2.1
Detected Analytes in Groundwater Samples
Niagara County Refuse Site
Wheatfield, Niagara County, New York

City of North	Tonawanda WWTP	Sample ID:				NCR-3S	NCR-4S	NCR-5S	NCR-13S
830 River Ro	ad	Lab Id:				RSL0353-01	RSL0353-02	RSL0353-03	RSL0353-06
North Tonaw	anda, NY	Source:				TAL-Buffalo	TAL-Buffalo	TAL-Buffalo	TAL-Buffalo
C/O Niagara	County Refuse Site	SDG:	NYS	NYS	US	RSL0353	RSL0353	RSL0353	RSL0353
Validated Gro	oundwater Sampling	Matrix:	DEC	DOH	EPA	WATER	WATER	WATER	WATER
Results Dece	mber 2009	Sampled:	AWQS*	MCL	MCL	12/4/2009	12/4/2009	12/4/2009	12/4/2009
		Validated:				1/13/2010	1/13/2010	1/13/2010	1/13/2010
CAS NO.	COMPOUND	UNITS:							
	METALS								
7429-90-5	Aluminum	ug/L	100	-	-	2190 J	12300 J	6810 J	3750 J
7440-39-3	Barium	ug/L	1000	2000	2000	57.3	125	140	98
7440-41-7	Beryllium	ug/L	3 ⁺	4	4	0.2 J	0.7 J	0.2 J	0.3 J
7440-43-9	Cadmium	ug/L	5	5	5	0.4 J	0.9 J	ND	0.3 J
7440-70-2	Calcium	ug/L	-	-	-	148000 J	185000 J	90600 J	211000 J
7440-47-3	Chromium	ug/L	50	100	100	14.1	10.6	17.8	21.5
7440-48-4	Cobalt	ug/L	-	-	-	1.2 J	2.6 J	1.6 J	1 J
7440-50-8	Copper	ug/L	5	-	-	11.9	19.3	15.5	9.9 J
7439-89-6	Iron	ug/L	300 ^{>}	300 ^{>}	-	3550	56900	6130	5650
7439-92-1	Lead	ug/L	25	25	15	ND	28.3	6.7	ND
7439-95-4	Magnesium	ug/L	35000 ⁺	-	-	90400	61200	63500	73400
7439-96-5	Manganese	ug/L	300 ^{>}	300 ^{>}	-	48.4 J	310 J	99.7 J	22.5 J
7440-02-0	Nickel	ug/L	100	-	-	25.3	11.8	13.8	11.4
7440-09-7	Potassium	ug/L	-	-	-	3430	11500	2690	3820
7440-23-5	Sodium	ug/L	20000	20000	20000	11500 J	33400 J	26000 J	21800 J
7440-62-2	Vanadium	ug/L	14	-	-	4.6 J	7.1	11	9.1
7440-66-6	Zinc	ug/L	2000+	5000	-	28.2	1340	56.3	30.2

^{* =} NYSDEC Ambient Water Quality Standards.

Boxed values exceed NYSDEC AWQS.

Bold values exceed NYSDOH maximum contaminant levels.

Shaded values exceed USEPA maximum contaminant level.

⁺⁼Guidance value. ND = Not detected.

> = Sum of iron and manganese should not exceed

⁵⁰⁰ ug/L NYDEC or 300 ug/L NYSDOH.

J = Estimated value. -= No standard identified.

Table 2.2 Monthly Site Inspection Results

Inspection Item	Acceptable	Not Acceptable	Comments
Manholes	X		
Wet Wells	X		Water levels were measured monthly.
Wetlands	X		Continued growth of target vegetation. A slightly higher than normal water level was noted during the February, March, April, and December inspections. A slightly lower water level was noted during the September inspection. Normal winter conditions, expected for the time of year, were observed during the January through April and November and December inspections.
Perimeter Fence	X		Approximately 40 feet of fence was damage by farming equipment and has been repaired.
Condition of Roads	X		No erosion or other problems. Covered in snow during the January and February inspections.
Integrity of the Cap	X		No problems were noted in 2009. Covered in snow in January and February
Drainage Ditches/Swales	X		
Gas Venting System	X		
Wells	X		Water levels were measured monthly.
Culverts	X		
Vegetative Cover	X		The vegetative cover was covered in snow during the January and February inspections. Height of vegetation on the cap was noted as low during the March, April, and May inspections and noted as tall during the June, July, and September inspections. The cap was mowed after the August 2009 inspection.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	12/5	/2000	1/8/	2001	2/1/	/2001	3/8/	2001	4/4	/2001	5/8/	2001	6/5/	2001	7/2	/2001	8/1	/2001	9/5	/2001	10/4	/2001	11/5	/2001	12/1	1/2001
Observation	Top of	Depth to	Elevation	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																								
	(ft. msl)	(ft)																									
East "A"	598.93	22.05	576.88	-	-	-	-	21.34	577.59	-	-	22.21	576.72	21.98	576.95	-	-	22.51	576.42	22.63	576.30	22.61	576.32	22.74	576.19	22.88	576.05
East "B"	596.23	19.12	577.11	-	-	-	-	19.35	576.88	-	-	19.23	577.00	19.30	576.93	-	-	20.50	575.73	19.44	576.79	19.22	577.01	19.36	576.87	19.44	576.79
East "C"	598.69	17.46	581.23	-	-	-	-	17.86	580.83	-	-	18.37	580.32	18.38	580.31	-	-	18.65	580.04	18.64	580.05	18.20	580.49	18.80	579.89	18.75	579.94
East "D"	593.20	11.10	582.10	-	-	-	-	12.45	580.75	-	-	12.86	580.34	12.79	580.41	-	-	13.00	580.20	12.8	580.40	12.24	580.96	12.74	580.46	12.94	580.26
WW A	-	2.50	-	2.67	-	2.33	-	1.13	-	2.29	-	1.83	-	2.17	-	1.58	-	1.83	-	-	-	1.83	-	2.33	-	2.08	-
WW B	-	2.20	-	2.42	-	1.96	-	1.09	-	1.79	-	2.17	-	1.92	-	1.50	-	2.00	-	1.92	-	1.58	-	1.50	-	2.08	-
ww c	-	1.50	-	2.42	-	1.70	-	0.92	-	2.04	-	2.00	-	1.67	-	1.33	-	2.08	-	2.33	-	1.25	-	2.00	-	1.58	-
WW D	-	1.70	-	-	-	1.50	-	0.99	-	1.08	-	1.50	-	1.33	-	2.0	-	1.25	-	2.25	-	2.00	-	2.08	-	1.33	-
NCR-3S	579.60	-	-	-	-	-	-	-	-	-	-	-	-	3.71	575.89	-	-	dry	-	dry	-	dry	-	5.10	574.50	4.64	574.96
NCR-4S	577.88	-	-	-	-	-	-	-	-	-	-	-	-	4.28	573.60	-	-	dry	-	dry	-	dry	-	4.51	573.37	3.92	573.96
NCR-5S	579.34	-	-	-	-	-	-	-	-	-	-	-	-	9.10	570.24	-	-	dry	-								
NCR-13S	577.15	-	-	-	-	-	-	-	-	-	-	-	-	7.05	570.10	-	-	7.85	569.30	7.80	569.35	7.70	569.45	6.65	570.50	6.11	571.04

	Elevation	1/2/	/2002	2/4/	2002	3/4	/2002	4/1/	2002	5/3/	2002	6/4	/2002	7/2/	2002	8/7	/2002	9/6/	2002	10/3	/2002	11/7	/2002	12/3	3/2002
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)		(ft)	l																				
East "A"	598.93	22.90	576.03	22.81	576.12	22.03	576.90	22.25	576.68	20.06	578.87	19.84	579.09	22.00	576.93	22.65	576.28	22.78	576.15	28.48	570.45	23.25	575.68	23.36	575.57
East "B"	596.23	19.63	576.60	19.39	576.84	19.46	576.77	19.49	576.74	19.44	576.79	20.59	575.64	19.56	576.67	19.40	576.83	19.40	576.83	19.46	576.77	19.35	576.88	-	-
East "C"	598.69	18.70	579.99	18.51	580.18	18.70	579.99	18.63	580.06	18.80	579.89	18.74	579.95	18.78	579.91	18.95	579.74	18.92	579.77	18.99	579.70	19.30	579.39	19.35	579.34
East "D"	593.20	13.16	580.04	12.95	580.25	13.3	579.90	13.35	579.85	13.50	579.70	13.73	579.47	13.74	579.46	13.81	579.39	13.58	579.62	14.01	579.19	13.2	580.00	13.54	579.66
WW A	-	1.17	-	2.17	-	1.67	-	2.00	-	2.00	-	2.17	-	1.50	-	2.50	-	1.83	-	1.50	-	1.42	-	2.00	-
WW B	-	1.00	-	2.00	-	1.25	-	1.33	-	1.67	-	2.00	-	1.58	-	1.67	-	1.42	-	1.33	-	1.17	-	1.25	-
ww c	-	1.50	-	1.42	-	1.58	-	1.50	-	1.83	-	1.25	-	1.67	-	2.17	-	1.50	-	1.33	-	1.25	-	1.50	-
WW D	-	1.50	-	1.00	-	1.42	-	1.17	-	1.58	-	1.50	-	1.92	-	2.00	-	1.67	-	2.00	-	1.33	-	1.50	-
NCR-3S	579.60	4.54	575.06	4.52	575.08	3.90	575.70	4.10	575.50	4.43	575.17	5.20	574.40	5.71	573.89	5.90	573.70	dry	-	5.91	573.69	dry	-	4.46	575.14
NCR-4S	577.88	3.71	574.17	3.70	574.18	3.80	574.08	3.66	574.22	3.75	574.13	4.02	573.86	4.45	573.43	dry	-	dry	-	dry	-	dry	-	3.95	573.93
NCR-5S	579.34	8.42	570.92	7.69	571.65	7.68	571.66	7.61	571.73	8.28	571.06	9.10	570.24	9.52	569.82	dry	-								
NCR-13S	577.15	5.85	571.30	5.76	571.39	5.74	571.41	5.81	571.34	6.07	571.08	6.27	570.88	7.25	569.90	7.57	569.58	dry	-	7.78	569.37	dry	-	6.40	570.75
																									ľ

- = measurment not collected.dry = no water in well.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/6/	/2003	2/5/	2003	3/6/	2003	4/2/	2003	5/5	/2003	6/5/	/2003	7/1/	2003	8/11	/2003	9/2/	2003	10/8	/2003	11/12	2/2003	12/6	6/2003
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	23.48	575.45	23.51	575.42	23.65	575.28	23.75	575.18	23.81	575.12	23.25	575.68	23.11	575.82	23.25	575.68	23.41	575.52	23.35	575.58	23.71	575.22	23.85	575.08
East "B"	596.23	19.53	576.70	19.40	576.83	19.59	576.64	19.61	576.62	19.70	576.53	19.66	576.57	19.77	576.46	19.58	576.65	19.64	576.59	19.59	576.64	19.65	576.58	NA	-
East "C"	598.69	18.82	579.87	19.11	579.58	18.99	579.70	19.07	579.62	18.98	579.71	19.00	579.69	19.39	579.30	19.19	579.50	19.25	579.44	19.24	579.45	18.81	579.88	19.27	579.42
East "D"	593.20	13.24	579.96	13.52	579.68	13.7	579.50	13.88	579.32	14.15	579.05	14.07	579.13	14.31	578.89	14.04	579.16	14.04	579.16	13.97	579.23	13.64	579.56	14.02	579.18
WW A	-	1.42	-	1.25	-	1.50	-	1.42	-	1.58	-	1.33	-	1.33	-	1.17	-	1.42	-	1.33	-	2.00	-	1.33	-
WW B	-	1.08	-	1.17	-	1.67	-	1.17	-	0.75	-	1.25	-	1.42	-	1.50	-	1.50	-	1.17	-	1.42	-	1.67	-
ww c	-	1.33	-	1.50	-	1.25	-	1.33	-	1.50	-	1.42	-	1.00	-	1.08	-	1.08	-	1.08	-	1.00	-	1.67	-
WW D	-	1.42	-	1.67	-	1.08	-	1.25	-	1.50	-	1.50	-	1.25	-	1.58	-	1.33	-	1.50	-	1.58	-	1.50	-
NCR-3S	579.60	3.84	575.76	4.06	575.54	4.55	575.05	4.39	575.21	4.39	575.21	4.41	575.19	5.80	573.80	5.92	573.68	dry	-	dry	-	4.45	575.15	4.24	575.36
NCR-4S	577.88	2.91	574.97	-	-	-	-	3.65	574.23	3.60	574.28	2.65	575.23	4.05	573.83	3.98	573.90	dry	-	4.37	573.51	2.93	574.95	2.88	575.00
NCR-5S	579.34	7.95	571.39	8.69	570.65	8.11	571.23	7.66	571.68	8.58	570.76	8.08	571.26	9.26	570.08	10.12	569.22	10.95	568.39	dry	-	10.40	568.94	8.11	571.23
NCR-13S	577.15	5.89	571.26	5.54	571.61	6.16	570.99	6.05	571.10	6.13	571.02	6.11	571.04	7.21	569.94	7.48	569.67	7.59	569.56	7.77	569.38	6.35	570.80	6.07	571.08

	Elevation	1/2/	2004	2/5/	2004	3/1/	/2004	4/5/	2004	5/4/	/2004	6/11	/2004	7/10	/2004	8/9	/2004	9/8/	2004	10/2	/2004	11/4	/2004	12/3	3/2004
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	23.90	575.03	23.93	575.00	24.00	574.93	23.26	575.67	22.14	576.79	19.44	579.49	19.19	579.74	20.70	578.23	23.31	575.62	23.34	575.59	22.44	576.49	22.48	576.45
East "B"	596.23	19.83	576.40	NA	-	NA	-	19.60	576.63	19.65	576.58	19.81	576.42	19.75	576.48	19.85	576.38	19.68	576.55	19.53	576.70	17.51	578.72	17.49	578.74
East "C"	598.69	19.12	579.57	19.79	578.90	19.22	579.47	19.36	579.33	19.24	579.45	19.42	579.27	19.28	579.41	19.56	579.13	19.48	579.21	19.36	579.33	18.95	579.74	18.94	579.75
East "D"	593.20	13.9	579.30	14.52	578.68	14.11	579.09	14.05	579.15	14.25	578.95	14.5	578.70	14.4	578.80	14.64	578.56	14.3	578.90	14.18	579.02	14.05	579.15	14.01	579.19
WW A	-	1.58	-	1.17	-	2.17	-	0.75	-	1.25	-	1.50	-	1.25	-	1.25	-	1.33	-	1.25	-	1.42	-	1.67	-
WW B	-	1.33	-	NA	-	1.50	-	1.30	-	1.17	-	1.17	-	1.17	-	1.25	-	1.00	-	1.00	-	1.17	-	0.42	-
ww c	-	1.08	-	1.00	-	1.17	-	1.17	-	1.00	-	1.08	-	1.17	-	1.08	-	1.17	-	1.17	-	1.58	-	0.25	-
WW D	-	1.17	-	1.08	-	1.67	-	0.65	-	1.50	-	1.33	-	1.00	-	1.00	-	1.25	-	1.00	-	1.17	-	0.25	-
NCR-3S	579.60	4.11	575.49	4.21	575.39	3.19	576.41	4.09	575.51	3.37	576.23	4.92	574.68	dry	-	4.36	575.24	5.44	574.16	dry	-	2.42	577.18	3.06	576.54
NCR-4S	577.88	2.65	575.23	2.72	575.16	2.42	575.46	2.53	575.35	2.76	575.12	2.99	574.89	3.74	574.14	3.50	574.38	3.32	574.56	3.65	574.23	2.74	575.14	2.75	575.13
NCR-5S	579.34	7.53	571.81	8.34	571.00	7.01	572.33	7.10	572.24	7.99	571.35	8.80	570.54	9.20	570.14	9.40	569.94	9.20	570.14	9.28	570.06	9.90	569.44	7.27	572.07
NCR-13S	577.15	5.72	571.43	5.95	571.20	5.88	571.27	5.49	571.66	6.08	571.07	6.22	570.93	7.08	570.07	7.09	570.06	6.75	570.40	7.16	569.99	5.95	571.20	4.28	572.87

- = measurment not collected.

dry = no water in well.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/5/	2005	2/3/	2005	3/9/	2005	4/2/	2005	6/4/	2005	7/6	6/2005	8/4	/2005	9/3/	2005	10/7	/2005	12/10	0/2005
Observation	Top of	Depth to	Elevation	Depth to	o Elevation	Depth to	Elevation														
Point	Casing	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)										
	(ft. msl)	(ft)		(ft)		(ft)		(ft)		(ft)											
East "A"	598.93	24.20	574.73	21.21	577.72	19.45	579.48	22.21	576.72	22.19	576.74	23.24	575.69	23.49	575.44	23.57	575.36	24.07	574.86	24.47	574.46
East "B"	596.23	19.68	576.55	19.52	576.71	19.79	576.44	19.66	576.57	19.97	576.26	19.89	576.34	19.96	576.27	19.70	576.53	19.51	576.72	19.50	576.73
East "C"	598.69	19.60	579.09	19.42	579.27	19.33	579.36	19.15	579.54	19.71	578.98	19.76	578.93	19.57	579.12	19.51	579.18	19.65	579.04	19.39	579.30
East "D"	593.20	14.2	579.00	14.35	578.85	13.89	579.31	14.29	578.91	14.68	578.52	14.64	578.56	14.62	578.58	14.47	578.73	14.4	578.80	14.24	578.96
WW A	-	0.58	-	1.08	-	0.50	-	1.00	-	1.00	-	1.00	-	1.25	-	1.17	-	1.33	-	1.50	-
WW B	-	1.50	-	1.17	-	0.83	-	1.25	-	1.17	-	1.50	-	1.42	-	0.92	-	1.17	-	1.17	-
ww c	-	0.67	-	1.00	-	1.00	-	1.00	-	1.25	-	0.92	-	1.25	-	1.00	-	1.00	-	0.83	-
WW D	-	1.25	-	1.25	-	1.00	-	1.17	-	1.33	-	0.92	-	1.50	-	1.00	-	1.08	-	1.08	-
NCR-3S	579.60	1.82	577.78	3.39	576.21	3.11	576.49	1.50	578.10	5.93	573.67	dry	-	5.96	573.64	dry	-	5.63	573.97	4.21	575.39
NCR-4S	577.88	2.60	575.28	3.08	574.80	frozen	-	2.51	575.37	3.87	574.01	dry	-	dry	-	dry	-	3.69	574.19	2.99	574.89
NCR-5S	579.34	5.46	573.88	6.57	572.77	6.14	573.20	6.36	572.98	8.10	571.24	10.60	568.74	dry	-	dry	-	dry	-	8.17	571.17
NCR-13S	577.15	3.60	573.55	5.14	572.01	4.34	572.81	3.19	573.96	6.59	570.56	7.52	569.63	7.79	569.36	dry	-	7.21	569.94	6.06	571.09

	Elevation	1/13	3/2006	2/10	/2006	3/3/	/2006	4/8/	2006	5/1/	2006	6/7	/2006	7/14	/2006	8/8/	2006	9/18	/2006	10/7	/2006	11/3	/2006	12/1	/2006
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	24.55	574.38	24.68	574.25	24.72	574.21	24.22	574.71	24.81	574.12	23.53	575.40	24.77	574.16	24.23	574.70	24.68	574.25	24.78	574.15	24.74	574.19	24.53	574.40
East "B"	596.23	19.45	576.78	19.85	576.38	19.87	576.36	19.86	576.37	21.10	575.13	19.80	576.43	19.79	576.44	19.84	576.39	19.51	576.72	19.80	576.43	19.86	576.37	18.80	577.43
East "C"	598.69	19.28	579.41	19.75	578.94	19.84	578.85	19.77	578.92	20.09	578.60	19.69	579.00	19.71	578.98	19.66	579.03	19.37	579.32	20.78	577.91	20.03	578.66	19.26	579.43
East "D"	593.20	14.15	579.05	14.48	578.72	14.44	578.76	14.46	578.74	14.74	578.46	14.87	578.33	14.83	578.37	14.71	578.49	14.45	578.75	14.95	578.25	14.67	578.53	14.45	578.75
WW A	-	1.17	-	1.17	-	1.17	-	1.00	-	1.25	-	1.25	-	1.00	-	1.17	-	1.17	-	1.17	-	1.08	-	1.33	-
WW B	-	0.83	-	1.17	-	0.92	-	1.08	-	1.08	-	1.08	-	1.25	-	1.00	-	0.83	-	0.92	-	1.00	-	0.83	-
ww c	-	0.92	-	1.00	-	1.00	-	1.08	-	1.08	-	1.00	-	1.25	-	1.00	-	0.83	-	1.00	-	0.92	-	0.67	-
WW D	-	1.08	-	1.00	-	0.92	-	0.92	-	1.00	-	1.17	-	0.92	-	0.92	-	0.92	-	1.00	-	1.00	-	1.00	-
NCR-3S	579.60	2.77	576.83	3.02	576.58	3.48	576.12	2.45	577.15	3.44	576.16	dry	-	dry	-	5.85	573.75	3.67	575.93	3.06	576.54	3.51	576.09	1.35	578.25
NCR-4S	577.88	2.83	575.05	2.91	574.97	3.30	574.58	2.72	575.16	3.26	574.62	4.31	573.57	4.59	573.29	dry	-	3.51	574.37	2.97	574.91	3.15	574.73	2.44	575.44
NCR-5S	579.34	7.43	571.91	7.96	571.38	8.58	570.76	7.91	571.43	8.79	570.55	8.97	570.37	dry	-	dry	-	dry	-	7.37	571.97	6.22	573.12	4.21	575.13
NCR-13S	577.15	5.78	571.37	5.99	571.16	6.08	571.07	5.84	571.31	6.15	571.00	7.33	569.82	7.57	569.58	7.69	569.46	6.36	570.79	5.72	571.43	4.33	572.82	2.77	574.38

- = measurment not collected.dry = no water in well.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/19	/2007	2/9/	2007	3/10	/2007	4/2/	2007	5/4/	/2007	6/1/	2007	7/2/	2007	8/2/	2007	9/17	/2007	10/1	2/2007	11/1	/2007	12/1	/2007
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	24.98	573.95	24.65	574.28	24.84	574.09	24.88	574.05	25.02	573.91	25.50	573.43	24.98	573.95	24.96	573.97	25.03	573.90	24.98	573.95	25.11	573.82	25.13	573.80
East "B"	596.23	19.38	576.85	19.56	576.67	-	-	19.98	576.25	20.07	576.16	19.78	576.45	19.86	576.37	19.85	576.38	19.81	576.42	19.50	576.73	19.52	576.71	19.59	576.64
East "C"	598.69	19.51	579.18	19.81	578.88	19.71	578.98	20.10	578.59	20.17	578.52	19.87	578.82	19.99	578.70	19.97	578.72	20.19	578.50	19.78	578.91	19.93	578.76	19.97	578.72
East "D"	593.20	14.38	578.82	14.68	578.52	14.82	578.38	15.24	577.96	15.09	578.11	15.1	578.10	15.19	578.01	15.11	578.09	15.16	578.04	14.64	578.56	14.8	578.40	14.86	578.34
WW A	-	1.17	-	1.08	-	1.25	-	1.08	-	1.25	-	1.17	-	1.00	-	0.83	-	0.67	-	1.00	-	0.92	-	1.00	-
WW B	-	1.00	-	1.00	-	0.67	-	1.17	-	0.75	-	0.92	-	0.83	-	0.83	-	0.83	-	0.92	-	1.08	-	1.17	-
ww c	-	0.83	-	0.83	-	0.67	-	0.83	-	0.83	-	0.83	-	0.67	-	0.50	-	0.67	-	0.50	-	1.00	-	1.08	-
WW D	-	1.00	-	0.83	-	1.00	-	0.83	-	0.83	-	1.00	-	0.83	-	1.00	-	0.75	-	0.83	-	1.00	-	1.00	-
NCR-3S	579.60	3.04	576.56	3.75	575.85	2.70	576.90	3.26	576.34	3.50	576.10	5.89	573.71	dry	-										
NCR-4S	577.88	2.94	574.94	3.42	574.46	2.80	575.08	2.93	574.95	3.19	574.69	3.90	573.98	dry	-										
NCR-5S	579.34	5.77	573.57	6.83	572.51	6.28	573.06	6.08	573.26	6.75	572.59	8.87	570.47	10.99	568.35	dry	-								
NCR-13S	577.15	3.85	573.30	4.51	572.64	4.39	572.76	4.25	572.90	4.81	572.34	7.01	570.14	7.44	569.71	7.70	569.45	dry	-	7.72	569.43	7.75	569.40	dry	-

	Elevation	1/4/	2008	2/8/	2008	3/7	/2008	4/4/	2008	5/8	/2008	6/5/	2008	7/1/	2008	8/7/	2008	9/11	/2008	10/9	/2008	11/3	/2008	12/5	5/2008
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	25.31	573.62	25.22	573.71	25.27	573.66	25.37	573.56	25.39	573.54	25.46	573.47	25.49	573.44	25.44	573.49	25.50	573.43	25.41	573.52	25.39	573.54	25.41	573.52
East "B"	596.23	19.95	576.28	19.65	576.58	19.90	576.33	19.70	576.53	19.71	576.52	19.96	576.27	19.91	576.32	19.87	576.36	20.04	576.19	19.60	576.63	19.83	576.40	19.99	576.24
East "C"	598.69	20.30	578.39	19.97	578.72	20.26	578.43	19.85	578.84	19.99	578.70	20.18	578.51	20.20	578.49	20.13	578.56	20.44	578.25	20.03	578.66	20.20	578.49	20.20	578.49
East "D"	593.20	15.15	578.05	14.66	578.54	14.89	578.31	15.11	578.09	15.02	578.18	15.2	578.00	15.4	577.80	15.34	577.86	15.51	577.69	15.16	578.04	15.4	577.80	15.13	578.07
WW A	-	1.00	-	0.83	-	1.08	-	0.92	-	1.08	-	1.00	-	0.83	-	0.83	-	0.83	-	0.83	-	1.00	-	1.00	-
WW B	-	0.83	-	0.92	-	1.00	-	1.00	-	0.83	-	0.83	-	0.83	-	0.83	-	0.67	-	0.75	-	0.67	-	0.92	-
ww c	-	1.00	-	0.83	-	0.75	-	0.50	-	0.75	-	0.83	-	0.67	-	0.83	-	0.42	-	0.50	-	0.58	-	0.83	-
WW D	-	1.08	-	1.00	-	0.83	-	0.33	-	0.50	-	0.50	-	0.59	-	0.67	-	0.50	-	0.50	-	0.50	-	0.50	-
NCR-3S	579.60	3.46	576.14	3.29	576.31	3.56	576.04	3.21	576.39	4.17	575.43	dry	-	dry	-	3.81	575.79	dry	-	5.44	574.16	3.81	-	3.22	576.38
NCR-4S	577.88	3.06	574.82	2.82	575.06	2.89	574.99	2.59	575.29	2.91	574.97	3.61	574.27	4.53	573.35	3.43	574.45	4.27	573.61	3.90	573.98	3.17	574.71	3.52	574.36
NCR-5S	579.34	10.80	568.54	6.26	573.08	7.11	572.23	5.84	573.50	7.45	571.89	9.00	570.34	10.24	569.10	dry	-	dry	-	dry	-	7.75	571.59	6.24	573.10
NCR-13S	577.15	4.64	572.51	4.30	572.85	4.74	572.41	4.16	572.99	5.31	571.84	6.92	570.23	7.47	569.68	7.26	569.89	7.54	569.61	7.48	569.67	5.75	571.40	4.53	572.62

- = measurment not collected.dry = no water in well.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/9	/2009	2/5/	2009	3/5/	2009	4/3/	2009	5/1	/2009	6/4/	2009	7/10	/2009	8/12	/2009	9/5/	/2009	10/9	/2009	11/8	/2009	12/4	/2009
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	25.34	573.59	25.54	573.39	25.60	573.33	25.42	573.51	25.64	573.29	25.66	573.27	25.62	573.31	25.51	573.42	25.52	573.41	25.45	573.48	25.63	573.30	25.53	573.40
East "B"	596.23	19.85	576.38	20.05	576.18	19.94	576.29	19.44	576.79	19.99	576.24	20.00	576.23	20.15	576.08	19.77	576.46	19.83	576.40	19.78	576.45	19.85	576.38	19.66	576.57
East "C"	598.69	20.22	578.47	20.56	578.13	20.20	578.49	19.36	579.33	20.35	578.34	20.55	578.14	20.51	578.18	20.33	578.36	20.30	578.39	20.04	578.65	20.45	578.24	20.30	578.39
East "D"	593.20	14.85	578.35	15.25	577.95	15.54	577.66	14.81	578.39	15.65	577.55	15.75	577.45	15.62	577.58	15.51	577.69	15.69	577.51	15.22	577.98	15.45	577.75	18.98	574.22
WW A	-	1.33	-	0.83	-	0.83	-	1.00	-	0.83	-	0.83	-	0.67	-	0.50	-	0.75	-	1.00	-	0.75	-	0.75	-
WW B	-	1.00	-	0.67	-	1.00	-	0.92	-	1.00	-	0.67	-	0.83	-	0.83	-	0.67	-	1.00	-	1.00	-	0.42	-
ww c	-	0.75	-	0.67	-	0.50	-	0.50	-	0.50	-	0.58	-	0.50	-	0.58	-	0.50	-	0.42	-	0.33	-	0.83	-
WW D	-	0.67	-	1.00	-	0.50	-	0.58	-	0.50	-	0.50	-	0.42	-	0.67	-	0.50	-	0.67	-	0.58	-	0.75	-
NCR-3S	579.60	2.97	576.63	4.11	575.49	3.55	576.05	2.20	577.40	3.48	576.12	dry	-	dry	-	3.66	575.94	dry	-	4.52	575.08	3.74	575.86	2.57	577.03
NCR-4S	577.88	2.90	574.98	3.19	574.69	3.36	574.52	2.39	575.49	2.90	574.98	dry	-	4.65	573.23	2.98	574.90	dry	-	3.49	574.39	3.15	574.73	2.78	575.10
NCR-5S	579.34	6.33	573.01	7.42	571.92	6.78	572.56	8.00	571.34	6.46	572.88	6.87	572.47	10.10	569.24	7.47	571.87	9.88	569.46	dry	-	9.78	569.56	5.92	573.42
NCR-13S	577.15	4.40	572.75	5.09	572.06	5.01	572.14	4.04	573.11	4.77	572.38	5.95	571.20	7.47	569.68	5.92	571.23	7.45	569.70	dry	-	6.16	570.99	4.27	572.88

- = measurment not collected.

dry = no water in well.

SECTION 3 SUMMARY AND CONCLUSIONS

The following summary and conclusions were developed based on the data collected during this reporting period (January through December 2009):

- Volatile organic, semivolatile organic, and metals samples were collected in 2009. The
 analytical results were consistent with historical results. The annual groundwater
 samples scheduled for collection in November 2010 will be analyzed for metals only.
- Seventeen metals were identified in one or more of the groundwater samples. Typically, approximately thirteen metals are detected. Detected values appeared to be consistent with ranges observed in previous sampling events.
- Two effluent samples were collected in 2009. All analytical results were found to be compliant with the discharge permit. During 2009, compliance with the discharge permit was maintained.
- The landfill was inspected monthly and was appropriately maintained. Any needed repairs were addressed in a timely manner. Cover vegetation continues to be in good condition.
- Post-construction monitoring of the wetland replacement was performed annually between 2001 and. 2005. Monitoring results indicated that the wetland creation was successful. Although the formal annual inspections are no longer required, monthly visual inspection of the wetlands will continue, to document general conditions. In 2009, the wetlands were documented to be in good condition.
- Water levels were collected from the wet wells, monitoring wells, and the locations on top of the landfill on a monthly basis in 2009. Water levels generally varied between 2.2 and 4.2 feet over the course of the year.
- The objectives of the groundwater monitoring program (to monitor the effectiveness of the perimeter collection system and the perimeter barrier system) have been met. The groundwater monitoring program provides data for demonstration of the effectiveness of the hydraulic containment, collection, and extraction of Site-related groundwater.

SECTION 4 REFERENCES

USEPA, 1993, Record of Decision, Niagara County Refuse Site, Wheatfield, Niagara County, New York; United States Environmental Protection Agency, September 1993.

USA, 1995, Consent Decree, Docket 946-849; United States Environmental Protection Agency, February 3, 1995.

CRA, 2000, Operations, Maintenance and Monitoring Manual for Niagara County Refuse District Site Remedial Construction, Wheatfield, Niagara County, New York; Conestoga-Rovers & Associates, December 2000.

Parsons, 2009, 2008 Annual Monitoring Report, Niagara County Refuse District Site; Parsons, February 2009.

APPENDIX A

CITY OF NORTH TONAWANDA INDUSTRIAL WASTEWATER DISCHARGE PERMIT AND COMPLIANCE SAMPLING RESULTS

Analytical Results: NIAGARA COUNTY REFUSE SITE 2009

PARAMETER	RESULT mg/l	RESULT mg/l	COMP.
pH (COMP.)	7.32	7.08	YES
COD	77	146	YES
SUSPENDED SOLIDS	14	30	YES
BOD	14	18	YES
PO4	0.19	0.14	YES
PHENOLS	< 0.011	< 0.010	YES
METALS			
ALUMINUM	0.087	0.351	YES
CHROMIUM	< 0.027	< 0.025	YES
LEAD	< 0.027	< 0.027	YES
NICKEL	< 0.026	< 0.025	YES
ZINC	0.046	0.128	YES
IRON	0.986	5.183	YES
MAGNESIUM	128.0	174.0	YES
MANGANESE	0.205	0.371	YES
SODIUM	105.0	386.0	YES
PURGEABLES			
Benzene	< 0.005	< 0.004	YES
Toluene	< 0.007	< 0.006	YES
Chlorobenzene	< 0.005	< 0.006	YES
Ethylbenzene	< 0.005	< 0.006	YES
Total Xylenes	< 0.015	< 0.017	YES
1,3 - Dichlorobenzene	< 0.005	< 0.005	YES
1,4-Dichlorobenzene	< 0.005	< 0.004	YES
1,2 - Dichlorobenzene	< 0.005	< 0.005	YES
Vinyl Chloride	< 0.006	< 0.004	YES
1,1-Dichloroethene	< 0.005	< 0.003	YES
Methylene chloride	< 0.005	< 0.005	YES
ans-1,2 Dichloroethene	< 0.005	< 0.004	YES
1,1-Dichloroethane	< 0.005	< 0.004	YES
Chloroform	< 0.006	< 0.005	YES
1,1,1-Trichloroethane	< 0.006	< 0.005	YES
Trichloroethene	< 0.005	< 0.005	YES
OTAL FLOW (gallons)	9,070	1,850	
SAMPLE DATE	3/5/09 & 3/6/09	9/3/09 & 9/4/09	

CITY OF NORTH TONAWANDA 4/5/95 INDUSTRIAL WASTEWATER DISCHARGE PERMIT

Permit Number: 2628010

In accordance with the provisions of the Clean Water Act as amended, all terms and conditions set forth in this permit, the City of North Tonawanda Local Sewer Use Ordinance and any applicable Federal, State or local laws or regulations, authorization is hereby granted to: Niagara County Department of Public Works

Engineering Department
59 Park Avenue
Lockport, New York 14094

Classified by S.I.C. Number(s): _N/A_

for the discharge of: groundwater and other wastes generated during Remedial Action construction and implementation into the City of North Tonawanda Sewerage System.

This permit is granted in accordance with an application filed in the offices of the Treatment Plant Superintendent located at 830 River Road, and in conformity with specifications and other required data submitted in support of the above named application, all of which are filed with and considered part of this permit. This permit is also granted in accordance with discharge limitations and requirements, monitoring and reporting requirements, and all other conditions set forth in Parts I and II hereof.

Effective this 31st day of February, 2007

To expire the 1st day of April, 2010

Treatment Plant Superintendent

Signed this 31st day of January, 2007

PERMIT NUMBER: 2628010

Part I Page of 4

PART I. SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge from the permitted facility outfall(s) shall be limited and monitored by the permittee as specified below (Refer to attached map for sampling and monitoring sites).

Sample Point	Parameter	Discharge Limitations mg/l except pH Daily Max.	Sampling Period	Sampling
001	Total Flow		1 Sampling Day Monthly	continuous
2/	Aluminum	2.0	1 Sample Day semi-annual	24 hr comp
	Lead	4.6	1 Sampling Day semi-annual	24 hr comp.
0.7	Iron	10	1 Sampling Day semi-annual	24 hr comp.
2/	Magnesium	Monitor Only	1 Sampling Day semi-annual	24 hr comp.
2/	Sodium	Monitor Only	1 Sampling Day semi-annual	24 hr comp.
	pH	Monitor Only	1 Sampling Day semi-annual	grab
./	BOD	Monitor Only	1 Sampling Day semi-annual	24 hr comp.
/	Total Suspended Solids	Monitor Only	1 Sampling Day semi-annual	24 hr comp.

PERMIT NUMBER: 2628010

Part I Page of 4

PART I. SPECIFIC CONDITIONS

B. DISCHARGE REPORTING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge monitoring results shall be summarized and reported by the permittee on the no later than the days specified below.

Sample Point	Parameter	Initial Monitoring Report	Subsequent Monitoring Reports
001	Total Flow	January 31, 2007	semi-annual
6	Lead	January 31, 2007	semi-annual
	Iron	January 31, 2007	semi-annual
	Magnesium	January 31, 2007	semi-annual
		:	
	Sodium	January 31, 2007	semi-annual
- 1	pH	January 31, 2007	semi-annual
	BOD	January 31, 2007	semi-annual
	Total Suspended	January 31, 2007	semi-annual
	let .		
	140		
19			

PERMIT NUMBER: 2628010

Part I Page 4 of 4

PART I. SPECIFIC CONDITIONS

C. SPECIAL REQUIREMENTS

- This permit is written for a duration of three years. Upon renewal of this permit, all parameters will be re-evaluated to develop a parameter list based on chemical concentrations present in the extracted groundwater.
- Frequency of monitoring is to be re-evaluated yearly..
- All monitoring reports (initial and subsequent), are to be received by the Superintendent, no later than thirty (30) days after receipt of validated data.
- 4) It is required that the Permittee have a Site Operations Manual available at all times. All emergency phone numbers must be listed in an appropriate place for easy access by operations personnel. The permittee shall not discharge to the City of North Tonawanda sewerage treatment works during overflow conditions. The permittee is required to cease all pumping operations upon verbal request of the North Tonawanda Wastewater Treatment Plant Superintendent or his assigns. Pumping operations shall not recommence until approved by the North Tonawanda Wastewater Treatment Plant Superintendent or his assigns.
- Analysts are required to use GC/MS method detection limits for most organics (if GC/MS is appropriate); GC/ECD for PCBS/Pesticides and GF method detection limits for metals (where GF is appropriate), as contained in attachment 5 of the NYSDEC TOGs 1.3.8 New Discharges to Publicly Owned Treatment Works dated 10/26/94.

APPENDIX B CORRESPONDENCE

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

MOV 21. 2005

BY FEDEX

Mr. Eric Felter Project Manager Parsons 180 Lawrence Bell Drive, Suite 104 Williamsville, New York 14221

Re: Niagara County Refuse Site, Wheatfield, New York: Request for the Reduction of Analytical Parameters in Groundwater Samples

Dear Mr. Felter:

The U.S. Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) have reviewed your letter dated October 3, 2005 prepared by Parsons on behalf of the Niagara County Refuse (NCR) Site PRP Group requesting a reduction in the analytical parameters in groundwater samples taken at the NCR site as part of the operation and maintenance program. The current analytical parameter list includes 2 volatiles, 4 semi-volatiles, and 16 metals which were determined to be constituents of interest at the site. Your proposal requests reducing the parameters to 5 metals, representing those constituents which have been measured above standards with some regularity in past sampling rounds. The sampling program, involving four monitoring wells, has been in effect since 2001 and your proposal reflects trends evident since the program was initiated. Sampling frequency is currently semi-annual (twice a year).

After discussing this matter with NYSDEC with input from the New York State Department of Health, our preference is that the sampling parameters remain the same for the time being. This is due to the significant residential growth around the site in recent years. After the current sampling round, samples are scheduled to be taken annually. EPA approves changing the current monitoring program only to the extent that the volatiles and semi-volatiles analysis can be conducted every two years while the metals analysis be conducted annually. EPA will, however, consider a further frequency reduction in the future as more data are collected.

Please call me at (212) 637-4278 if you have any questions on this matter.

Sincerely yours,

Michael J. Negrelli

Remedial Project Manager

New York Remediation Branch

cc:

J. Konsella - NYSDEC/Region 9

B. Sadowski - NYSDEC/Region 9

APPENDIX C ANALYTICAL DATA

Analytical Report

Work Order: RSL0353

Project Description
Niagara County Refuse Site

For:

Paul Drof

North Tonawanda, City of City Hall Room 6, 216 Payne Ave North Tonawanda, NY 14120

Lisa Shaffer For Amy Haag

Project Manager
lisa.shaffer@testamericainc.com
Wednesday, December 30, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site Project Number: NO TONAW003

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA, CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWĄRCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Work Order: RSL0353

Project Number:

Received:

12/04/09

Reported:

12/30/09 13:53

CASE NARRATIVE

NO TONAW003

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Project: Niagara County Refuse Site

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

<u>SpecificMethod</u>	<u>Analyte</u>	<u>Units</u>	Client RL	Lab PQL
8260B	Benzene	ug/L	0.70	1.0
8270C	4-Methylphenol	ug/L	5.0	10

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

DATA QUALIFIERS AND DEFINITIONS

B ID7	Analyte was detected in the associated Method Blank. The analytes 3-Methylphenol and 4-Methylphenol coelute and can not be analytically separated. The reported concentration for 4-Methylphenol is a total concentration value rather than individual quantitated values.
J	Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection
	Limit (MDL). Concentrations within this range are estimated.
M1	The MS and/or MSD were outside the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M7	The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
МНА	Due to high levels of analyte in the sample, the MS and /or MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
S14	Insufficient sample volume available. Actual volume used is reflected on the Sample Extraction Data page of report.
NR	Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

		 !	Executive	Summary	- Detect	ions				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSL0353					Samp	oled: 12/	04/09 13:00	Recv	d: 12/04/0	9 15:45
Total Metals by SW	846 Series Metho	ods								
Aluminum	2.19		0.200	0.040	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Barium	0.0573		0.0020	0.0003	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Beryllium	0.0002	J	0.0020	0.0002	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Cadmium	0.0004	J	0.0010	0.0003	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Calcium	148		0.5	0.1	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Chromium	0.0141		0.0040	0.0009	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Cobalt	0.0012	J	0.0040	0.0006	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Copper	0.0119		0.0100	0.0013	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Iron	3.55		0.050	0.019	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Magnesium	90.4		0.200	NR	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Manganese	0.0484		0.0030	NR	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Nickel	0.0253		0.0100	0.0013	mg/L	, 1.00	12/08/09 21:22	DAN	9L07054	6010B
Potassium	3.43		0.500	0.050	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Potassium Sodium	11.5		1.0	NR	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
	0.0046	J	0.0050	0.0011	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Vanadium	0.0282		0.0100	0.0015	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Zinc Sample ID: RSL035		storl	0.0.00			nled: 12	/04/09 13:35	Rec	/d: 12/04/0	9 15:45
•						•				
Total Metals by SW		oas		0.040		1.00	12/08/09 21:27	DAN	9L07054	6010B
Aluminum	12.3		0.200	0.040	mg/L	1.00	12/08/09 21:27	DAN	9L07054	6010B
Barium	0.125	_	0.0020	0.0003	mg/L	1.00	12/08/09 21:27	DAN	9L07054	6010B
Beryllium	0.0007	J	0.0020	0.0002	mg/L	1.00	12/08/09 21:27		9L07054	6010B
Cadmium	0.0009	7	0.0010	0.0003 0.1	mg/L	1.00	12/08/09 21:27		9L07054	6010B
Calcium	185		0.5		mg/L	1.00	12/08/09 21:27		9L07054	6010B
Chromium	0.0106		0.0040	0,0009	mg/L	1.00	12/08/09 21:27		9L07054	6010B
Cobalt	0.0025	J	0.0040	0.0006	mg/L	1.00	12/08/09 21:27		9L07054	6010B
Copper	0,0193		0.0100	0.0013	mg/L	1.00	12/08/09 21:27		9L07054	6010B
Iron	56.9		0.050	0.019	mg/L	1.00	12/08/09 21:27		9L07054	6010B
Lead	0.0283		0.0050	0.0030	mg/L	1.00	12/08/09 21:27		9L07054	6010B
Magnesium	61.2		0.200	NR	mg/L		12/08/09 21:27		9L07054	6010B
Manganese	0.310		0.0030	NR	mg/L	1.00			9L07054	6010B
Nickel	0.0118		0.0100	0.0013	mg/L	1,00	12/08/09 21:27		9L07054 9L07054	6010B
Potassium	11.5		0.500	0.050	mg/L	1.00	12/08/09 21:27			6010B
Sodium	33.4		1.0	NR	mg/L	1.00	12/08/09 21:27		9L07054	
Vanadium	0.0071		0.0050	0.0011	mg/L	1.00	12/08/09 21:27		9L07054 9L07054	6010B 6010B
						1.00	12/08/09 21:27			

Work Order: RSL0353

Received:

12/04/09

Reported:

ted: 12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

			Executive	Summar	y - Detect	ions				
	Sample	Data				Dil	Date	Lab		
Analyte .	Result	Qualifiers	RL	MDL.	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSL0353-	03 (NCR-5S - Wat	ter)			Samı	oled: 12	04/09 14:15	Rec	vd: 12/04/0!	9 15:45
Total Metals by SW 8	346 Series Method	<u>ds</u>								
Aluminum	6.81		0.200	0.040	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Barium	0.140		0.0020	0.0003	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Beryllium	0.0002	J	0.0020	0.0002	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Calcium	90.6		0.5	0.1	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Chromium	9.0178		0.0040	0.0009	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Cobalt	0.0016	j	0.0040	0.0006	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Copper	0.0155		0.0100	0.0013	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Iron	6.13		0.050	0.019	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Lead	0.0067		0.0050	0.0030	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Magnesium	63.5		0.200	NR	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Manganese	0.0997		0.0030	NR	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Nickel	0.0138		0.0100	0.0013	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Potassium	2.69		0.500	0.050	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Sodium	26.0		1.0	NR	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Vanadium	0.0110		0.0050	0.0011	mg/L	1,00	12/08/09 21:32	DAN	9L07054	6010B
Zinc	0.0563		0.0100	0.0015	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Sample ID: RSL03534	06 (NCR-13S - Wa	iter)			Samp	oled: 12/	04/09 15:00	Rec	/d: 12/04/09	9 15:45
Total Metals by SW 8	46 Series Method	<u>ls</u>								
Aluminum	3.75		0.200	0.040	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Barium	0.0987		0.0020	0.0003	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Beryllium	0.0003	J	0.0020	0.0002	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Cadmium	0.0003	J	0.0010	0.0003	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Calcium	211		0.5	0.1	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Chromium	0.0215		0.0040	0.0009	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Cobalt	0.0010	J	0.0040	0.0006	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Copper	0.0099	J	0.0100	0.0013	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Iron	5.65		0.050	0.019	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Magnesium	73.4		0.200	NR	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Manganese	0.0225		0.0030	NR	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Nickel	0.0114		0.0100	0.0013	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Potassium	3.82		0.500	0.050	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
	21.8		1.0	NR	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Sodium								· real V		00100
Sodium Vanadium	0.0091		0.0050	0.0011	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site Project Number: NO TONAW003

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
NCR-3S	RSL0353-01	Water	12/04/09 13:00	12/04/09 15:45	
NCR-4S	RSL0353-02	Water	12/04/09 13:35	12/04/09 15:45	
NCR-5S	RSL0353-03	Water	12/04/09 14:15	12/04/09 15:45	
NCR-13S	RSL0353-06	Water	12/04/09 15:00	12/04/09 15:45	
NCR-6S	RSL0353-07	Water	12/04/09 15:10	12/04/09 15:45	
TRIP BLANK	RSL0353-08	Water	12/04/09	12/04/09 15:45	

2,4,6-Tribromophenol

2-Fluorobiphenyl

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site Project Number: NO TONAW003

Analytical Report Sample Dil Date Lab Data Analyzed RL MDL Batch Analyte Result Qualifiers Units Fac Tech Method Sample ID: RSL0353-01 (NCR-3S - Water) Sampled: 12/04/09 13:00 Recvd: 12/04/09 15:45 Volatile Organic Compounds by EPA 8260B 1,1,1,2-Tetrachloroethane ND 12/15/09 18:14 DHC 91 15024 8260B 1.0 0.35ug/L 1.00 1,1,1-Trichloroethane ND 1.0 0.26 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B 1.1-Dicblomethane ND 8260B 0.38 12/15/09 18:14 DHC 9L15024 1.0 ug/L 1.00 1,1-Dichloroethene ND 1.0 0.29 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B 1,2-Dichloroethane ND 0.21 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B 1.0 1,2-Dichloroethene, Total ND 0.70 12/15/09 18:14 DHC 91 15024 8260B 2.0 ug/L 1.00 1,2-Dichloropropane ND 1.0 0.33 1.00 12/15/09 18:14 DHC 9L15024 8260B ug/L 1,3-Dichloropropane ND 0.21 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B 1.0 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 12/15/09 18:14 DHC 91 15024 8260B 2-Hexanone ND 5.0 1.00 12/15/09 18:14 DHC 9L15024 8260B 12 ug/L 4-Methyl-2-pentanone 12/15/09 18:14 DHC 9L15024 8260B ND 5.0 0.91 ug/L 1.00 (MIBK) Acetone ND 25 1.3 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B Benzene ND 0.70 0.41 1.00 12/15/09 18:14 DHC 9L15024 8260B ug/L Bromodichloromethane 1.00 ND 9L15024 8260B 1.0 0.39 ug/L 12/15/09 18:14 DHC Bromoform ND 1.0 0.26 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B Bromomethane ND 0.28 1.00 12/15/09 18:14 DHC 9L15024 8260B 1.0 ug/L Carbon disulfide ND 12/15/09 18:14 DHC 91 15024 8260B 1.0 0.19 ug/L 1.00 Carbon Tetrachloride ND 0.27 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B 1.0 Chlorobenzene ND 0.32 12/15/09 18:14 DHC 9L15024 8260B 5.0 ug/L 1.00 Dibromochloromethane MD 1.0 0.32 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B Chloroethane ND 0.32 ug/L 1.00 12/15/09 18:14 DHC 8260B 1.0 91 15024 Chloroform ND 10 0.34 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B Chloromethane ND 1.0 0.35 ua/L 1.00 12/15/09 18:14 DHC 9L15024 8260B cis-1,3-Dichloropropene ND 0.36 ug/L 1.00 8260B 1.0 12/15/09 18:14 DHC 9L15024 ug/L Ethylbenzene ND 5.0 0.18 1.00 12/15/09 18:14 DHC 9L15024 8260B Methylene Chloride ND 5.0 0.44 1.00 12/15/09 18:14 DHC 9L15024 8260B ug/L Styrene ND 1.00 8260B 1.0 0.18ug/L 12/15/09 18:14 DHC 9L15024 Tetrachloroethene ND 5.0 0.36 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B Toluene ND 1.00 12/15/09 18:14 DHC 9L15024 8260B 5.0 0.51 ug/L trans-1,3-Dichloropropen ND 1.0 0.37 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B Trichloroethene ND 5.0 0.46 ug/L 1,00 12/15/09 18:14 DHC 9L15024 8260B Vinyl chloride ND 1.00 12/15/09 18:14 DHC 8260B 2.0 0.24 9L15024 ug/L Xylenes, total ND 5.0 0.66 ug/L 1.00 12/15/09 18:14 DHC 9L15024 8260B 1.2-Dichloroethane-d4 101 % Surr Limits: (66-137%) 12/15/09 18:14 DHC 9L15024 8260B 4-Bromofluorobenzene 104 % Surr Limits: (73-120%) 12/15/09 18:14 DHC 91.15024 8260B Toluene-d8 103 % Surr Limits: (71-126%) 12/15/09 18:14 DHC 9L15024 8260B Semivolatile Organics by GC/MS 1,2-Dichlorobenzene ND 9.4 0.38 1.00 12/10/09 07:44 MKP 9L07002 8270C ug/L 1,3-Dichlorobenzene ND 0.45 1.00 12/10/09 07:44 9L07002 8270C 9.4 ug/L MKP 1,4-Dichlorobenzene ND 9.4 0.43 ug/L 1.00 12/10/09 07:44 MKP 9L07002 8270C 2-Methylphenol ND 9.4 0.38 ug/L 1.00 12/10/09 07:44 MKP 91.07002 8270C 3-Methylphenol ND ID7 9.4 0.38 ug/L 1.00 12/10/09 07:44 MKP 9L07002 8270C 4-Methylphenol ND ID7 4.7 0.34 1.00 12/10/09 07:44 MKP 9L07002 8270C ug/L Phenol ND 9.4 0.37 ug/L 1.00 12/10/09 07:44 MKP 9L07002 8270C

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Surr Limits: (52-132%)

Surr Limits: (48-120%)

86 %

82 %

12/10/09 07:44

12/10/09 07:44 MKP

MKP

9L07002

9L07002

8270C

8270C

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

		•	A	nalytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSL0353-0	01 (NCR-3S - Wa	ater) - cont.			Sam	pled: 12/	04/09 13:00	Recv	/d: 12/04/0	9 15:45
Semivolatile Organic	s by GC/MS - co	ont.								
2-Fluorophenol	41 %		Surr Limits:	(20-120%)			12/10/09 07:44	MKP	9L07002	8270C
Nitrobenzene-d5	70 %		Surr Limits:	(46-120%)			12/10/09 07:44	MKP	9L07002	8270C
Phenol-d5	28 %		Surr Limits:	(16-120%)			12/10/09 07:44	MKP	9L07002	8270C
p-Terphenyl-d14	50 %		Surr Limits:	(24-136%)			12/10/09 07:44	MKP	9L07002	8270C
Total Metals by SW 8	46 Series Metho	ods.								
Aluminum	2.19		0.200	0.040	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Antimony	ND		0.0200	0.0068	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Barium	0.0573		0.0020	0.0003	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Beryllium	0.0002	J	0.0020	0.0002	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Cadmium	0.0004	J	0.0010	0.0003	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Calcium	148		0.5	0.1	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Chromium	9.0141		0.0040	0.0009	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Cobalt	0.0012	J	0.0040	0.0006	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Copper	0.0119		0.0100	0.0013	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
iron	3.55		0.050	0.019	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Lead	ND		0.0050	0.0030	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Magnesium	90.4		0.200	NR	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Manganese	0.0484		0.0030	NR	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Nickel	0.0253		0.0100	0.0013	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Potassium	3.43		0.500	0.050	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Selenium	ND		0.0150	0.0087	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Silver	ND		0.0030	0.0012	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Sodium	11.5		1,0	NR	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Thallium	ND		0.0200	0.0102	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Vanadium	0.0046	J	0.0050	0.0011	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Zinc	0.0282	-	0.0100	0.0015	mg/L	1.00	12/08/09 21:22	DAN	9L07054	6010B
Mercury	ND		0.0002	0.0001	mg/L	1.00	12/07/09 20:41	MXM	9L07033	7470A

2,4,6-Tribromophenol

2-Fluorobiphenyl

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site Project Number: NO TONAW003

			· ·	Analytical I	Report						
	Sample	Data				Dil	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RSL0353-02 (i	NCR-4S - Wa	ater)			Sam	pled: 12	04/09 13:35	Rec	vd: 12/04/0	9 15:45	
Volatile Organic Compou	inds by EPA	8260B									
1,1,1,2-Tetrachloroethane	ND		1.0	0.35	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
1.1.2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
1,2-Dichloroethene, Total	ND		2.0	0.70	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
1,2-Dichloropropane	ND		1.0	0.33	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
1,3-Dichloropropane	ND		1.0	0.21	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
2-Butanone (MEK)	ND		10	1.3	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
2-Hexanone	ND		5,0	1.2	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
4-Methyl-2-pentanone	, ND		5.0	0.91	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
4-мешун2-репционе (МІВК)	ND		3.0	0.51	uŷ/r.	1.00	12/13/05 10:35	DITO	31,10024	02000	
Acetone	ND		25	1.3	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
Benzene	ND		0.70	0.41	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
Bromodichloromethane	ND		1.0	0.39	_		12/15/09 18:39		9L15024	8260B	
Sromoform					ug/L	1.00	12/15/09 18:39		9L15024	8260B	
	ND		1.0	0.26	ug/L	1.00			9L15024 9L15024		
Bromomethane	ND		1.0	0.28	ug/L	1.00	12/15/09 18:39			8260B	
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
Carbon Tetrachloride	ND		1.0	0.27	·ug/L	1.00	12/15/09 18:39		9L15024	8260B	
Chlorobenzene	ND		5.0	0.32	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
Dibromochloromethane	ND		1.0	0.32	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
Chloroethane	ND		1.0	0.32	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
Chloroform	ND		1.0	0.34	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
Chloromethane	ND		1.0	0.35	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	12/15/09 18:39		9L15024	8260B	
Ethylbenzene	ND		5.0	0.18	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
Styrene	ND		1.0	0.18	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
Toluene	ND		5.0	0.51	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
rans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
e Trichloroethene	ND		5.0	0.46	ticit	1.00	12/15/09 18:39	DHC	9L15024	8260B	
Vinyl chloride	ND		2.0	0.46	ug/L	1.00	12/15/09 18:39	DHC	9L15024	8260B	
Kylenes, total	ND		5.0	0.24 0.66	ug/L ug/L	1.00	12/15/09 18:39	DHC	9L15024 9L15024	8260B	
,2-Dichloroethane-d4	101 %		Surr Limits:	(66-137%)			12/15/09 18:39	DHC	9L15024	8260B	
f-Bromofluorobenzene	101 %		Surr Limits:				12/15/09 18:39			8260B	
Toluene-d8	100 %		Surr Limits:			•	12/15/09 18:39			8260B	
Semivolatile Organics by	GC/MS										
.2-Dichlorobenzene	ND		9.4	0.38	ug/L	1.00	12/10/09 08:08	MKP	9L07002	8270C	
,3-Dichlorobenzene	ND		9.4	0.45	ug/L	1.00	12/10/09 08:08		9L07002	827DC	
,4-Dichlorobenzene	ND		9.4	0.43	ug/L	1.00	12/10/09 08:08		9L07002	8270C	
2-Methylphenol	ND		9.4	0.43	ug/L	1.00	12/10/09 08:08		9L07002	8270C	
- ····································					_					8270C	
L-Methylpheno!	NID										
3-Methylphenol I-Methylphenol	ND ND	ID7 ID7	9.4 4.7	0.38 0.34	ug/L ug/L	1.00 1.00	12/10/09 08:08 12/10/09 08:08		9L07002 9L07002	8270C	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

86 %

76 %

Surr Limits: (52-132%) Surr Limits: (48-120%)

12/10/09 08:08 MKP

12/10/09 08:08 MKP

9L07002

9L07002

8270C

8270C

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

Analyte Data Result Qualifiers RL MDL Units Fac Analyzed Tech Batch Sample ID: RSL0353-02 (NCR-4S - Water) - cont. Semivolatile Organics by GC/MS - cont. 2-Fluorophenol 37 % Surr Limits: (20-120%) 12/10/09 08:08 MKP 9L07002 Nitrobenzene-d5 70 % Surr Limits: (46-120%) 12/10/09 08:08 MKP 9L07002 Phenol-d5 26 % Surr Limits: (16-120%) 12/10/09 08:08 MKP 9L07002 P-Terphenyl-d14 32 % Surr Limits: (24-136%) 12/10/09 08:08 MKP 9L07002 Total Metals by SW 846 Series Methods Aluminum 12.3 0.200 0.040 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Barium 0.125 0.0020 0.0068 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Beryflium 0.0007 J 0.0020 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054	8270C 8270C 8270C 8270C 6010B 6010B
Sample ID: RSL0353-02 (NCR-4S - Water) - cont. Sampled: 12/04/09 13:35 Recvd: 12/04	8270C 8270C 8270C 8270C 8270C 8270C
Semivolatile Organics by GC/MS - cont.	8270C 8270C 8270C 8270C 6010B 6010B
2-Fluorophenol 37 % Surt Limits: (20-120%) 12/10/09 08:08 MKP 9L07002 Nitrobenzene-d5 70 % Surt Limits: (46-120%) 12/10/09 08:08 MKP 9L07002 Phenol-d5 26 % Surt Limits: (16-120%) 12/10/09 08:08 MKP 9L07002 P-Terphenyl-d14 32 % Surt Limits: (24-136%) 12/10/09 08:08 MKP 9L07002 Total Metals by SW 846 Series Methods Aluminum 12.3 0.200 0.040 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Antimony ND 0.0200 0.0068 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Barium 0.125 0.0020 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Beryllium 0.0007 J 0.0020 0.0002 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cadmium 0.0009 J 0.0010 0.0003 mg/L 1.00<	8270C 8270C 8270C 6010B 6010B
Nitrobenzene-d5	8270C 8270C 8270C 6010B 6010B
Nilitoberizene-as 70 % Surt Limits: (16-120%) 12/10/09 08:08 MKP 9L07002	8270C 8270C 6010B 6010B
Prieriol-do 32 % Surr Limits: (24-136%) 12/10/09 08:08 MKP 9L07002 Total Metals by SW 846 Series Methods Aluminum 12.3 0.200 0.040 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Antimony ND 0.0200 0.0068 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Barium 0.125 0.0020 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Beryflium 0.0007 J 0.0020 0.0002 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cadmium 0.0009 J 0.0010 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Calcium 185 0.5 0.1 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Chromium 0.0106 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cobalt 0.0026 J 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Copper 0.0193 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 mg/L 1.00 12/08/09 21:27 DAN 9L07054	8270C 6010B 6010B
Total Metals by SW 846 Series Methods Aluminum 12.3 0.200 0.040 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Antimony ND 0.0200 0.0068 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Barium 0.125 0.0020 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Beryllium 0.0007 J 0.0020 0.0002 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cadmium 0.0009 J 0.0010 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Calcium 185 0.5 0.1 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Chromium 0.0106 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cobalt 0.0026 J 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B 6010B
Aluminum 12.3 0.200 0.040 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Antimony ND 0.0200 0.0068 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Barium 0.125 0.0020 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Beryilium 0.0007 J 0.0020 0.0002 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cadmium 0.0009 J 0.0010 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Calcium 185 0.5 0.1 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Chromium 0.0106 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cobalt 0.0026 J 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Copper 0.0193 0.0100 0.001	6010B
Antimony ND 0.0200 0.0068 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Barium 0.125 0.0020 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Beryllium 0.0007 J 0.0020 0.0002 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cadmium 0.0009 J 0.0010 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Calcium 185 0.5 0.1 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Chromium 0.0106 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cobalt 0.0026 J 0.0040 0.0006 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Copper 0.0193 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Animony ND 0.0200 0.0000 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Barium 0.125 0.0020 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Beryflium 0.0007 J 0.0020 0.0002 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cadrium 185 0.5 0.1 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Chromium 0.0106 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cobalt 0.0026 J 0.0040 0.0006 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Copper 0.0193 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 mg/L <td></td>	
Barium 0.125 0.0020 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Beryllium 0.0007 J 0.0020 0.0002 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cadmium 0.0009 J 0.0010 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Calcium 185 0.5 0.1 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Chromium 0.0106 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cobalt 0.0026 J 0.0040 0.0006 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Copper 0.0193 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 <td></td>	
Beryllium 0.0007 J 0.0020 0.0002 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cadmium 0.0009 J 0.0010 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Calcium 185 0.5 0.1 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Chromium 0.0106 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cobalt 0.0026 J 0.0040 0.0006 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Copper 0.0193 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Cadmium 0.0009 J 0.0010 0.0003 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Calcium 185 0.5 0.1 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Chromium 0.0106 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cobalt 0.0026 J 0.0040 0.0006 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Copper 0.0193 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Calcium 185 0.5 0.1 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Chromium 0.0106 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cobalt 0.0026 J 0.0040 0.0006 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Copper 0.0193 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Chromium 0.0106 0.0040 0.0009 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Cobalt 0.0026 J 0.0040 0.0006 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Copper 0.0193 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Cobalt 0.0026 J 0.0040 0.0006 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Copper 0.0193 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Copper 0.0193 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Iron 56.9 0.050 0.019 mg/L 1.00 12/08/09 21:27 DAN 9L07054 Lead 0.0283 0.0050 0.0030 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Leau 6.025 0.000 0.000 mg.t 1.07 0.0700 0.07 DAN 01.07064	6010B
" 400 400000 04:07 DAN DIGTORA	6010B
Magnesium 61.2 0.200 NR mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Manganese 0.310 0.0030 NR mg/L 1.00 12/08/09 21:27 DAN 9L07054	, 6010B
Nickel 0.0118 0.0100 0.0013 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Potassium 11.5 0.500 0.050 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Selenium ND 0.0150 0.0087 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Silver ND 0.0030 0.0012 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Sodium 33.4 1.0 NR mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Thallium ND 0.0200 0.0102 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Vanadium 0.0071 0.0050 0.0011 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Zinc 1.34 0.0100 0.0015 mg/L 1.00 12/08/09 21:27 DAN 9L07054	6010B
Mercury ND 0.0002 0.0001 mg/L 1.00 12/07/09 20:42 MXM 9L07033	7470A

2,4,6-Tribromophenol

2-Fluorobiphenyl

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site Project Number: NO TONAW003

			Project Nun	iber: NO T	FONAW003					
				Analytical l	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL.	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSL0353-03 (NCR-5S - Wa						/04/09 14:15		vd: 12/04/0	
		,			Jani	pied. 12	104103 14.13	1100	VG. 12.0-70	3 13.43
Volatile Organic Compo	unds by EPA	8260B								
1,1,1,2-Tetrachloroethane	ND		1.0	0.35	ug/L	1.00	12/15/09 19:03	DHC	9L15024	8260B
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	12/15/09 19:03	DHC	9L15024	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	12/15/09 19:03	DHC	9L15024	8260B
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	12/15/09 19:03		9L15024	8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	12/15/09 19:03		9L15024	8260B
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	12/15/09 19:03		9L15024	8260B
1,2-Dichloroethene, Total	ND		2.0	0.70	ug/L	1.00	12/15/09 19:03		9L15024	8260B
1,2-Dichloropropane	ND		1.0	0.33	ug/L	1.00	12/15/09 19:03		9L15024	8260B
1,3-Dichloropropane	ND		1.0	0.21	ug/L	1.00	12/15/09 19:03		9L15024	8260B
2-Butanone (MEK)	ND		10	1.3	ug/L	1.00	12/15/09 19:03		9L15024	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	12/15/09 19:03		9L15024	8260B
4-Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00	12/15/09 19:03	DHC	9L15024	8260B
(MIBK)	NO		85	4.5		4.00	1011-100 10 00	D1.0	0.45004	0000=
Acelone	ND		25	1.3	ug/L	1.00	12/15/09 19:03		9L15024	8260B
Benzene Bromadiahlaran athana	ND		0.70	0.41	ug/L	1.00	12/15/09 19:03		9L15024	8260B
Bromodichloromethane Bromoform	ND ND		1.0	0.39	ug/L.	1.00	12/15/09 19:03		9L15024	8260B
Bromomethane	ND		1.0 1.0	0.26	ug/L	1.00	12/15/09 19:03 12/15/09 19:03		9L15024 9L15024	8260B 8260B
Carbon disulfide	ND			0.28	ug/L	1.00		-,	9L15024 9L15024	8260B
Carbon Tetrachloride	ND		1.0 1.0	0.19 0.27	ug/L	1.00 1.00	12/15/09 19:03 12/15/09 19:03		9L15024 9L15024	8260B
Chlorobenzene	ND		5.0	0.32	ug/L ug/L	1.00	12/15/09 19:03		9L15024	8260B
Dibromochloromethane	ND		1.0	0.32	ug/L ug/L	1.00	12/15/09 19:03		9L15024	8260B
Chloroethane	ND		1.0	0.32	ug/L ug/L	1.00	12/15/09 19:03		9L15024	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	12/15/09 19:03		9L15024	8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	12/15/09 19:03		9L15024	826DB
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	12/15/09 19:03		9L15024	8260B
Ethylbenzene	ND		5.0	0.18	ug/L	1.00	12/15/09 19:03		9L15024	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	12/15/09 19:03		9L15024	8260B
Styrene	ND		1.0	0.18	ug/L	1.00	12/15/09 19:03		9L15024	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	12/15/09 19:03		9L15024	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	12/15/09 19:03		9L15024	8260B
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	12/15/09 19:03		9L15024	8260B
e					_					**
Trichloroethene	ND		5.0	0.46	ug/L	1.00	12/15/09 19:03	DHC	9L15024	8260B
Vinyl chloride	ND		2.0	0.24	ug/L	1.00	12/15/09 19:03	DHC	9L15024	8260B
Xylenes, total	ND		5.0	0.66	ug/L	1.00	12/15/09 19:03	DHC	9L15024	8260B
1,2-Dichloroethane-d4	102 %		Surr Limits:				12/15/09 19:03	DHC	9L15024	8260B
4-Bromofluorobenzene	103 %		Surr Limits:				12/15/09 19:03	DHC		8260B
Toluene-d8	103 %		Surr Limits:	(71-126%)			12/15/09 19:03	DHC	9L15024	8260B
Semivolatile Organics by	GC/MS									
1,2-Dichlorobenzene	ND		9.4	0.38	ug/L	1.00	12/10/09 08:33	MKP	9L07002	8270C
1,3-Dichlorobenzene	ND		9.4	0.45	ug/L	1.00	12/10/09 08:33		9L07002	8270C
1,4-Dichlorobenzene	ND		9.4	0.43	ug/L	1.00	12/10/09 08:33		9L07002	8270C
2-Methylphenol	ND		9.4	0.38	ug/L	1.00	12/10/09 08:33		9L07002	8270C
3-Methylphenol	ND	ID7	9.4	0.38	ug/L	1.00	12/10/09 08:33		9L07002	8270C
4-Methylphenol	ND	ID7	4.7	0.34	ug/L	1.00	12/10/09 08:33		91.07002	8270C
Phenol	ND		9.4	0.37	ug/L	1.00	12/10/09 08:33		9L07002	8270C
					-					

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Surr Limits: (52-132%)

Surr Limits: (48-120%)

83 %

81 %

12/10/09 08:33 MKP

12/10/09 08:33 MKP 9L07002

9L07002

8270C

8270C

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

	-		Δ	nalytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSL0353-0	03 (NCR-5S - W	ater) - cont.			Samı	oled: 12/	04/09 14:15	Recv	/d: 12/04/0	9 15:45
Semivolatile Organic	s by GC/MS - co	ont.								
2-Fluorophenol	39 %		Surr Limits:	(20-120%)			12/10/09 08:33	MKP	9L07002	8270C
Nitrobenzene-d5	68 %		Surr Limits:	(46-120%)			12/10/09 08:33	MKP	9L07002	8270C
Phenol-d5	29 %		Surr Limits:	(16-120%)			12/10/09 08:33		9L07002	8270C
o-Terphenyl-d14	34 %		Surr Limits:	(24-136%)			12/10/09 08:33	MKP	9L07002	8270C
Total Metals by SW 8	46 Series Methe	ods								
Aluminum	6.81		0.200	0.040	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Antimony	ND		0.0200	0.0068	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
3arium -	0.140		0.0020	0.0003	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
3eryllium	0.0002	Ţ	0.0020	0.0002	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Cadmium	ND		0.0010	0.0003	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Calcium	90.6		0.5	0.1	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Chromium	0.0178		0.0040	0.0009	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Cobalt	0.0016	J	0.0040	0.0006	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Copper	0.0155		0.0100	0.0013	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
ron	6.13		0.050	0.019	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
_ead	0.0067		0.0050	0.0030	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Magnesium	63.5		0.200	NR	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Manganese	0.0997		0.0030	NR	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Nickel	0.0138		0.0100	0.0013	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Potassium	2.69		0.500	0.050	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Selenium	ND		0.0150	0.0087	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Silver	ND		0.0030	0.0012	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Sodium	26.0		1.0	NR	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Thallium	ND		0.0200	0.0102	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
/anadium	0.0110		0.0050	0.0011	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Zinc	0.0563		0.0100	0.0015	mg/L	1.00	12/08/09 21:32	DAN	9L07054	6010B
Mercury	ND		0.0002	0.0001	mg/L	1.00	12/07/09 20:44	MXM	9L07033	7470A

2-Fluorobiphenyl

Work Order: RSL0353

Received:

12/10/09 08:57 MKP 9L07002

8270C

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site Project Number: NO TONAW003

Analytical Report										
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSL0353-06 (N							/04/09 15:00		vd: 12/04/0	
•		•			OLITI	pica. 12	.0-400 10.00	1100	14, 12,04,00	
Volatile Organic Compou	nds by EPA	4 8260B								
1,1,1,2-Tetrachloroethane	ND		1.0	0.35	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	12/15/09 20:16		9L15024	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	12/15/09 20:16		9L15024	8260B
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	12/15/09 20:16		9L15024	8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	12/15/09 20:16		9L15024	8260B
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	12/15/09 20:16	-	9L15024	8260B
1,2-Dichloroethene, Total	ND		2.0	0.70	ug/L	1.00	12/15/09 20:16		9L15024	8260B
1,2-Dichloropropane	ND		1.0	0.33	ug/L	1.00	12/15/09 20:16		9L15024	8260B
1,3-Dichloropropane	ND		1.0	0.21	ug/L	1.00	12/15/09 20:16		9L15024	8260B
2-Butanone (MEK)	ND		10	1.3	ug/L	1.00	12/15/09 20:16		9L15024	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	12/15/09 20:16		9L15024	8260B
4-Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
(MIBK)					_					
Acetone	ND		25	1.3	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Benzene	ND		0.70	0.41	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Bromomethane	ND		1.0	0.28	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Carbon disulfide	ND	*	1.0	0.19	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Chlorobenzene	ND		5.D	0.32	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
Dibromochloromethane	ND		1.0	0.32	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
Ethylbenzene	ND		5.0	0.18	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
Styrene	ND		1.0	0.18	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
trans-1,3-Dichloropropen	ND		1.D	0.37	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
e					_					
Trichloroethene	ND		5.0	0.46	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Vinyl chloride	ND		2.0	0.24	ug/L	1.00	12/15/09 20:16		9L15024	8260B
Xylenes, total	ND		5.0	0.66	ug/L	1.00	12/15/09 20:16	DHC	9L15024	8260B
1,2-Dichloroethane-d4	101 %		Surr Limits:				12/15/09 20:16		9L15024	8260B
4-Bromofluorobenzene	102 %		Surr Limits:				12/15/09 20:16		9L15024	8260B
Toluene-d8	101 %		Surr Limits:	(71-126%)			12/15/09 20:16	DHC	9L15024	8260B
Semivolatile Organics by	GC/MS									
1,2-Dichlorobenzene	ND		9.4	0.38	ug/L	1.00	12/10/09 08:57	MKP	9L07002	8270C
1,3-Dichlorobenzene	ND		9.4	0.45	ug/L	1.00	12/10/09 08:57		9L07002	8270C
1,4-Dichlorobenzene	ND		9.4	0.43	ug/L	1.00	12/10/09 08:57		9L07002	8270C
2-Methylphenol	ND		9.4	0.38	ug/L	1.00	12/10/09 08:57		9L07002	8270C
3-Methylphenol	ND	ID7	9.4	0.38	ug/L	1.00	12/10/09 08:57		9L07002	8270C
4-Methylphenol	ND	ID7	4.7	0.34	ug/L	1.00	12/10/09 08:57		9L07002	8270C
Phenol	ND		9.4	0.37	ug/L	1.00	12/10/09 08:57		9L07002	827DC
2,4,6-Tribromophenol	87 %		Surr Limits:	(52-132%)			12/10/09 08:57	МКР	9L07002	8270C

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Surr Limits: (48-120%)

84 %

Work Order: RSL0353

Received:

12/04/09

Reported: 12/30/09 13:53

Project: Niagara County Refuse Site Project Number: NO TONAW003

			A	nalytical R	leport					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
iample ID: RSL0353-06	(NCR-13S - V	Vater) - cont.			Samp	oled: 12/	04/09 15:00	Recvd: 12/04/09 15:45		
Semivolatile Organics	by GC/MS - co	ont.								
2-Fluorophenol	45 %		Surr Limits:	(20-120%)			12/10/09 08:57	MKP	9L07002	8270C
Nitrobenzene-d5	74 %		Surr Limits:	(46-120%)			12/10/09 08:57		9L07002	8270C
?heno -d5	32 %		Surr Limits:	(16-120%)			12/10/09 08:57		9L07002	8270C
o-Terphenyl-d14	69 %		Surr Limits:	(24-136%)			12/10/09 08:57	MKP	9L07002	8270C
otal Metals by SW 846	Series Metho	<u>ods</u>	•							
Aluminum	3.75		0.200	0.040	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Antimony	ND		0.0200	0.0068	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Barium	0.0987		0,0020	0,0003	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Beryllium	0.0003	J	0.0020	0.0002	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Cadmium	0.0003	J	0.0010	0.0003	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Calcium	211		0.5	0.1	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Chromium	0.0215		0.0040	0.0009	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Cobalt	0,0010	J	0.0040	0.0006	mg/L	1.00	12/08/09 22:11	DAN	91.07054	6010B
Copper	0.0099	J	0.0100	0.0013	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
ron	5.65		0.050	0.019	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
_ead	ND		0.0050	0.0030	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Magnesium	73.4		0.200	NR	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Manganese	0.0225		0.0030	NR	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Vickel	0.0114		0.0100	0.0013	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
otassium	3.82		0.500	0.050	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Selenium	ND		0.0150	0.0087	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Silver	ND		0.0030	0.0012	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Sodium	21.8		1.0	NR	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Thallium	ND		0.0200	0.0102	mg/L	1.00	12/09/09 18:50	DAN	9L07054	6010B
/anadium	0.0091		0.0050	0.0011	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Zinc	0.0302		0.0100	0.0015	mg/L	1.00	12/08/09 22:11	DAN	9L07054	6010B
Mercury	ND		0.0002	0.0001	mg/L	1.00	12/07/09 20:50	MXM	9L07033	7470A

4-Bromofluorobenzene

Toluene-d8

100 %

100 %

Work Order: RSL0353

Received:

12/04/09

Reported:

12/15/09 20:40 DHC 9L15024

12/15/09 20:40 DHC 9L15024

8260B

8260B

12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

Analyte Sample Data Result Qualifiers RL MDL Units Fac Analyzed Tech Batch Batch Analyzed Tech Batch Batch Sample ID:RSL0353-07 (NCR-6S - Water) Recvd: 12/04/08 ID:RSL0353-07 (NCR-6S - Water) Sample ID:RSL0353-07 (NCR-6S - Water) ID:RSL0353-07 (N	Method 15:45
Analyte Result Qualifiers RL MDL Units Fac Analyzed Tech Batch	
Sample D: RSL0353-07 (NCR-6S - Water) Sampled: 12/04/09 15:10 Recvd: 12/04/09	
Volatile Organic Compounds by EPA 8260B	15:45
1,1,1,2-Tetrachloroethane	
1,1,1-Trichloroethane	
1,1,2-Trichloroethane	8260B
1,1-Dichloroethane ND 1.0 0.38 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,1-Dichloroethane ND 1.0 0.29 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,2-Dichloroethane ND 1.0 0.21 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,2-Dichloroethane ND 1.0 0.33 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,3-Dichloropropane ND 1.0 0.21 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 1.2 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Methyl-2-pentanone ND 5.0 0.91 ug/L	8260B
1,1-Dichloroethane ND 1.0 0.38 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,1-Dichloroethene ND 1.0 0.29 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,2-Dichloroethene, Total ND 1.0 0.21 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,2-Dichloropropane ND 1.0 0.33 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 1.2 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 1.2 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Mactone ND 2.5 1.3 ug/L 1.	8260B
1,2-Dichloroethane ND 1.0 0.21 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,2-Dichloroethane, Total ND 2.0 0.70 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,2-Dichloropropane ND 1.0 0.33 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,3-Dichloropropane ND 1.0 0.33 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,3-Dichloropropane ND 1.0 0.21 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 1.2 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.39 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone	8260B
1,2-Dichloroethane ND 1.0 0.21 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,2-Dichloroethane, Total ND 2.0 0.70 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,2-Dichloropropane ND 1.0 0.33 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,3-Dichloropropane ND 1.0 0.21 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 1.2 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.39 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 1.	8260B
1,2-Dichloroethene, Total ND 2.0 0.70 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,2-Dichloropropane ND 1.0 0.33 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,3-Dichloropropane ND 1.0 0.21 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Butanone MD 5.0 1.2 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 25 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 McMiBK) ND 25 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.39 ug/L <th< td=""><td>8260B</td></th<>	8260B
1,2-Dichloropropane ND 1.0 0.33 ug/L 1.00 12/15/09 20:40 DHC 9L15024 1,3-Dichloropropane ND 1.0 0.21 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Methyl-2-pentanone ND 5.0 0.70 4.1	8260B
1,3-Dichloropropane ND 1.0 0.21 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Butanone (MEK) ND 10 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone (MEK) ND 5.0 1.2 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Benzene ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.39 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodorm ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodisulfide ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon disulfide ND 1.0 0.19 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chlorobenzene ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20	8260B
2-Butanone (MEK) ND 10 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 2-Hexanone ND 5.0 1.2 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 (MIBK) Acetone ND 25 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Benzene ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.39 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromomethane ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon disulfide ND 1.0 0.19 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chlorobenzene ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chlorobenzene ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC	8260B
2-Hexanone ND 5.0 1.2 ug/L 1.00 12/15/09 20:40 DHC 9L15024 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 (MIBK) Acetone ND 25 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Benzene ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.39 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromomethane ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon disulfide ND 1.0 0.10 0.10 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chlorobenzene ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane N	8260B
4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 12/15/09 20:40 DHC 9L15024 (MIBK) Acetone ND 25 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Benzene ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.39 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodithane ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromomethane ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromomethane ND 1.0 0.19 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon disulfide ND 1.0 0.19 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chlorobenzene ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chlorobenzene ND 5.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36	8260B
(MIBK) Acetone ND 25 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Benzene ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.39 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodethane ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromomethane ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon disulfide ND 1.0 0.19 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Ciblorobenzene ND 5.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Cibloromethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Acetone ND 25 1.3 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Benzene ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromodichloromethane ND 1.0 0.39 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromoform ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromomethane ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Bromomethane ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon disulfide ND 1.0 0.19 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chlorobenzene ND 5.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromochloromethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024	
Benzene ND 0.70 0.41 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Stromodichloromethane ND 1.0 0.39 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Stromoform ND 1.0 0.26 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Stromomethane ND 1.0 0.28 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Carbon disulfide ND 1.0 0.19 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chlorobenzene ND 5.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.36 ug/L 1.00 <td< td=""><td>8260B</td></td<>	8260B
Carbon Tetrachloride ND 1.0 0.27 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chlorobenzene ND 5.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Dibromochloromethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Ethylbenzene ND 5.0 0.18 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Wethylene Chloride ND 5.0 0.44 ug/L 1.0	8260B
Chlorobenzene ND 5.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Dibromochloromethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Ethylbenzene ND 5.0 0.18 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Methylene Chloride ND 5.0 0.44 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Dibromochloromethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Ethylbenzene ND 5.0 0.18 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Methylene Chloride ND 5.0 0.44 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Chloroethane ND 1.0 0.32 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloroform ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Ethylbenzene ND 5.0 0.18 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Methylene Chloride ND 5.0 0.44 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Chloroform ND 1.0 0.34 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Ethylbenzene ND 5.0 0.18 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Methylene Chloride ND 5.0 0.44 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Chloromethane ND 1.0 0.35 ug/L 1.00 12/15/09 20:40 DHC 9L15024 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Ethylbenzene ND 5.0 0.18 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Methylene Chloride ND 5.0 0.44 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
dis-1,3-Dichloropropene ND 1.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Ethylbenzene ND 5.0 0.18 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Methylene Chloride ND 5.0 0.44 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Ethylbenzene ND 5.0 0.18 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Methylene Chloride ND 5.0 0.44 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Methylene Chloride ND 5.0 0.44 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
·	8260B
-NCODO - 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8260B
Styrene ND 1.0 0.18 ug/L 1.00 12/15/09 20:40 DHC 9L15024 Fetrachloroethene ND 5.0 0.36 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
***	8260B
•	
rans-1,3-Dichloropropen ND 1.0 0.37 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
Fightersethans ND 50 0.40	8260B
Frichloroethene ND 5.0 0.46 ug/L 1.00 12/15/09 20:40 DHC 9L15024	スノベリベ
Vinyl chloride ND 2.0 0.24 ug/L 1.00 12/15/09 20:40 DHC 9L15024	
Xylenes, total ND 5.0 0.66 ug/L 1.00 12/15/09 20:40 DHC 9L15024	8260B
1,2-Dichloroethane-d4 100 % Surr Limits: (66-137%) 12/15/09 20:40 DHC 9L15024	

Surr Limits: (73-120%)

Surr Limits: (71-126%)

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site NO TONAW003 Project Number:

			A	nalytical R	Report					
	Sample	Data				Dii	Date	Lab		
Analyte	Result	Qualifiers	· RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSL0353-08 (7	TRIP BLAN	(- Water)	•		Sam	pled: 12/	04/09	Recy	/d: 12/04/0!	9 15:45
Volatile Organic Compou	ınds by EPA	<u> 8260B</u>								
1,1,1,2-Tetrachloroethane	ND		1.0	0.35	ug/L	1.00	12/15/09 21:05		9L15024	8260B
1.1.1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	12/15/09 21:05		9L15024	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	12/15/09 21:05		9L15024	8260B
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	12/15/09 21:05		9L15024	8260B
1.1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
1,2-Dichloroethene, Total	ND		2.0	0.70	ug/L	1.00	12/15/09 21:05		9L15024	8260B
1,2-Dichloropropane	ND		1.0	0.33	ug/L	1.00	12/15/09 21:05		9L15024	8260B
1,3-Dichloropropane	ND		1.0	0.21	ug/L	1.00	12/15/09 21:05		9L15024	8260B
2-Butanone (MEK)	ND		10	1.3	ug/L	1.00	12/15/09 21:05		9L15024	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	12/15/09 21:05		9L15024	8260B
4-Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
(MIBK)										
Acetone	ND		25	1.3	ug/L	1.00	12/15/09 21:05		9L15024	8260B
Benzene	ND		0.70	0.41	ug/L	1.00	12/15/09 21:05		9L15024	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	12/15/09 21:05		9L15024	8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Bromomethane	ND		1.0	0.28	ug/L	1.00	12/15/09 21:05		9L15024	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	12/15/09 21:05		9L15024	8260B
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Chlorobenzene	ND		5.0	0.32	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Dibromochloromethane	ND		1.0	0.32	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	12/15/09 21:05		9L15024	8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Ethylbenzene	ND		5.0	0.18	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Methylene Chloride	ND		5.0	0.44	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Styrene	ND		1.0	0.18	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Tetrachloroethene	ND		5.0	0.36	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Toluene	ND		5.0	0.51	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
trans-1,3-Dichloropropen	ND	•	1.0	0.37	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
e Trichloroethene	ND		5.0	0.46	ug/L	1.00	12/15/09 21:05		9L15024	8260B
Vinyl chloride	ND		2.0	0.24	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
Xylenes, total	ND		5.0	0.66	ug/L	1.00	12/15/09 21:05	DHC	9L15024	8260B
1,2-Dichloroethane-d4	103 %		Surr Limits:	(66-137%)			12/15/09 21:05		9L15024	8260B
4-Bromofluorobenzene	104 %		Surr Limits:	(73-120%)			12/15/09 21:05		9L15024	8260B
Toluene-d8	103 %		Surr Limits:	(71-126%)			<i>12/15/09 21:05</i>	DHC	9L15024	8260B

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
Semivolatile Organics by GC/MS									
8270C	9L07002	RSL0353-01	1,060.00	mL	1.00	mL	12/07/09 16:00	LTT	3510C MB
8270C	9L07002	RSL0353-02	1,060.00	mL	1.00	mL	12/07/09 16:00	LTT	3510C MB
8270C	9L07002	RSL0353-03	1,060.00	mL	1.00	mL	12/07/09 16:00	LTT	3510C MB
8270C	9L07002	RSL0353-06	1,060.00	mL	1.00	mL	12/07/09 16:00	LTT	3510C MB
Total Metals by SW 846 Series M	ethods								
6010B	91.07054	RSL0353-01	50.00	mL	50.00	mL	12/08/09 11:00	KCW	3005A
6010B	9107054	RSL0353-02	50.00	mL	50.00	mL	12/08/09 11:00	KCW	3005A
6010B	9L07054	RSL0353-03	50.00	mL	50.00	mL	12/08/09 11:00	KCW	3005A
6010B	9L07054	RSL0353-06	50.00	mL	50.00	mL	12/08/09 11:00	KCW	3005A
7470A	9L07033	RSL0353-01	30.00	mL	50.00	mL	12/07/09 13:30	MXM	7470A
7470A	9L07033	RSL0353-02	30.00	mL	50.00	mL	12/07/09 13:30	MXM	7470A
7470A	9L07033	RSL0353-03	30.00	mL	50.00	mL	12/07/09 13:30	MXM	7470A
7470A	9L07033	RSL0353-06	30.00	mL	50.00	mL	12/07/09 13:30	MXM	7470A
Volatile Organic Compounds by E	PA 8260B								
8260B	9L15024	RSL0353-01	5.00	mL	5.00	mL	12/15/09 11:02	DHC	5030B MS
8260B	9L15024	RSL0353-02	5.00	mL	5.00	ml.	12/15/09 11:02	DHC	5030B MS
8260B	9L15024	RSL0353-03	5.00	mL	5.00	mL	12/15/09 11:02	DHC	5030B MS
8260B	9L15024	RSL0353-06	5.00	mL	5.00	mL	12/15/09 11:02	DHC	5030B MS
8260B	9L15024	RSL0353-07	5.00	mL.	5.00	mL	12/15/09 11:02	DHC	5030B MS
8260B	9L15024	RSL0353-08	5.00	mL	5.00	mL	12/15/09 11:02	DHC	5030B MS

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Volatile Organic Compour	nds by EP	A 8260B									
Blank Analyzed: 12/15/09	(Lab Num	ber:9L150	24-BLK1, E	3atch: 9L15024)						
1,1,1,2-Tetrachloroethane	•		1.0	0.35	ug/L	ND				•	
1,1,1-Trichloroethane			1.0	0.26	ug/L	ND					
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND					
1,1-Dichloroethane			1.0	0.38	ug/L	ND					
1,1-Dichloroethene			1.0	0.29	ug/L	ND					
1,2-Dichloroethane			1.0	0.21	ug/L	ND					
1,2-Dichloroethene, Total			2.0	0.70	ug/L	ND					
1,2-Dichloropropane			1.0	0.33	ug/L	ND					
1,3-Dichloropropane			1.0	0.21	ug/L	ND					
2-Butanone (MEK)			10	1.3	ug/L	ND					
2-Hexanone			5.0	1.2	ug/L	ND					
4-Methyl-2-pentanone (MIBK)			5.0	0.91	ug/L	ND					
Acetone			25	1.3	ug/L	ND					
Benzene			0.70	0.41	ug/L	ND					
Bromodichloromethane			1.0	0.39	ug/L	ND					
Bromoform			1.0	0.26	ug/L	ND			*		
Bromomethane			1.0	0.28	ug/L	ND					
Carbon disulfide			1.0	0.19	ug/L	ND					
Carbon Tetrachloride		*	1.0	0.27	ug/L	ND					
Chlorobenzene			5.0	0.32	ug/L	ND					
Dibromochloromethane			1.0	0.32	ug/L	ND					
Chloroethane			1.0	0.32	ug/L	ND					
Chloroform			1.0	0.34	ug/L	ND					
Chloromethane			1.0	0.35	ug/L	ND					
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND					
Ethylbenzene			5.0	0.18	ug/L	ND					
Methylene Chloride			5.0	0.44	ug/L	ND					
Styrene			1.0	0.18	ug/L	ND					
Tetrachloroethene			5.0	0.36	ug/L	ND					
Toluene			5.0	0.51	ug/L	ND					
trans-1,3-Dichloropropen e			1.0	0.37	ug/L	ND					
Trichloroethene			5.0	0.46	ug/L	ND					
Vinyl chloride			2.0	0.24	ug/L	ND					
Xylenes, total			5.0	0.66	ug/L	ND					

1,2-Dichloroethane-d4

www.testamericainc.com

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Work Order: RSL0353

Project Number:

Received:

12/04/09

Reported:

12/30/09 13:53

LABORATORY QC DATA

NO TONAW003

Project: Niagara County Refuse Site

	Source	Spike	D)				%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compou	nds by EP	A 8260B								
Blank Analyzed: 12/15/09	(Lab Num	ber:9L150	24-BLK1,	Batch: 9L15024)						
Surrogate:	•			•	ug/L		108	73-120		
4-Bromofluorobenzene Surrogate: Toluene-d8					ug/L		103	71-126		
Carrogate. Totalerie-ub					by/L		103	71-720		
LCS Analyzed: 12/15/09 (Lab Numb	er:9L15024	1-BS1, Bat	ch: 9L15024)						
1,1,1,2-Tetrachloroethane		25.0	5.0	0.35	ug/L	26.1	105	76-122		
1,1,1-Trichloroethane		25.0	5.0	0.26	ug/L	24.3	97	73-126		
1,1,2-Trichloroethane		25.0	5.0	0.23	ug/L	22.6	90	76-122		
1,1-Dichloroethane		25.0	5.0	0.38	ug/L	21.9	88	71-129		
1,1-Dichloroethene		25.0	5.0	0.29	ug/L	21.8	87	65-138		
1,2-Dichloroethane		25.0	5.0	0.21	ug/L	22.4	90	75-127		
1,2-Dichloroethene, Total		50.0	2.0	0.70	ug/L	44.9	90	72-124		
1,2-Dichloropropane		25.0	5.0	0.33	ug/L	22.7	91	76-120		
1,3-Dichloropropane		25.0	5.0	0.21	ug/L	22.2	89	75-120		
2-Butanone (MEK)		125	10	1.3	ug/L	111	89	57-140		
2-Hexanone		125	10	1.2	ug/L	117	94	65-127		
4-Methyl-2-pentanone (MIBK)		125	10	0.91	ug/L	116	92	71-125		
Acetone		125	10	1.3	ug/L	105	84	56-142		
Benzene		25.0	5.0	0.41	ug/L	22.0	88	71-124		
Bromodichloromethane		25.0	5.0	0.39	ug/L	22.8	91	80-122		
Bromoform		25.0	5.0	0.26	ug/L	23.8	95	66-128		
Bromomethane		25.0	5.0	0.28	ug/L	24.4	98	36-150		
Carbon disulfide		25.0	5.0	0.19	ug/L	20.2	81	59-134		
Carbon Tetrachloride		25.0	5.0	0.27	ug/L	25.2	101	72-134		
Chlorobenzene		25.0	5.0	0.32	ug/L	22.2	89	72-120		
Dibromochloromethane		25.0	5.0	0.32	ug/L	22.7	91	75-125		
Chloroethane		25.0	5.0	0.32	ug/L	25.5	102	69-136		
Chloroform		25.0	5.0	0.34	ug/L	22.5	90	73-127		
Chloromethane		25.0	5.0	0.35	ug/L	21.9	88	49-142		
cis-1,3-Dichloropropene		25.0	5.0	0.36	ug/L	23.5	94	74-124		
Ethylbenzene		25.0	5.0	0.18	ug/L	22.4	90	77-123		
Methylene Chloride		25.0	5.0	0.44	ug/L	20.9	84	57-132		
Styrene		25.0	5.0	0.18	ug/L	23.9	96	70-130		
Tetrachloroethene		25.0	5.0	0.36	ug/L	22.2	89	74-122		
Toluene		25.0	5.0	0.51	ug/L	22.0	88	70-122		
trans-1,3-Dichloropropen		25.0	5.0	0.37	ug/L	23.8	95	72-123		
е		~~.~			-g· -		,	· - ·		
Trichloroethene		25.0	5.0	0.46	ug/L	23.5	94	74-123		
Vinyl chloride		25.0	5.0	0.24	ug/L	22.0	88	65-133		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Toluene

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

NO TONAW003 Project Number:

Project: Niagara County Refuse Site

			Project N	umber: NO TO	DNAW003					
			LA	BORATORY	QC DATA					
•	Source	Spike					%	% REC	% RPD) Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits		Qualifiers
Volatile Organic Compou	unds by EP	A 8260B								
LCS Analyzed: 12/15/09 Xylenes, total	(Lab Numb		4-851, Bat 5.0	ch: 9L15024) 0.66	ug/L	67.2	90	76-122		
Ayleries, total		75.0	5.0	0.00		U1.2				
Surrogate: 1,2-Dichloroethane-d4					ug/L		100	66-137		
Surrogate:					ug/L		107	73-120		
4-Bromofluorobenzene							99	71-126		
Surrogate: Toluene-d8					ug/L		99	71-120		
Matrix Spike Analyzed: 1 QC Source Sample: RSL0353-	-	ab Numbe	r:9L15024-N	MS1, Batch: 9L1	5024)					
1,1,1,2-Tetrachloroethane	ND	25.0	5.0	0.35	ug/L	26.8	107	76-122		
1,1,1-Trichloroethane	ND	25.0	5.0	0.26	ug/L	28.0	112	73-126		
1,1,2-Trichloroethane	ND	25.0	5.0	0.23	ug/L	24.6	98	76-122	• •	
1,1-Dichloroethane	ND	25.0	5.0	0.38	ug/L	26.7	107	71-129		
1,1-Dichloroethene	ND	25.0	5.0	0.29	ug/L	28.5	114	65-138		
1,2-Dichloroethane	ND	25.0	5.0	0.21	ug/L	24.3	97	75-127		
1,2-Dichloroethene, Total	ND	50.0	2.0	0.70	ug/L	53.8	108	72-124		
1,2-Dichloropropane	ND	25.0	5.0	0.33	ug/L	26.1	104	76-120		
1,3-Dichloropropane	ND	25.0	5.0	0.21	ug/L	24.5	98	75-120		
2-Butanone (MEK)	ND	125	10	1.3	ug/L	129	103	57-140		
2-Hexanone	ND	125	10	1.2	ug/L	132	106	65-127		
4-Methyl-2-pentanone (MIBK)	ND	125	10	0.91	ug/L	132	105	71-125		•
Acetone	ND	125	10	1.3	ug/L	126	101	56-142		
Benzene	ND	25.0	5.0	0.41	ug/L	26.2	105	71-124		
Bromodichloromethane	ND	25.0	5.0	0.39	ug/L	23.8	95	80-122		
Bromoform	ND	25.0	5.0	0.26	ug/L	22.2	89	66-128		
Bromomethane	ND	25.0	5.0	0.28	ug/L	28.3	113	36-150		
Carbon disulfide	ND	25.0	5.0	0.19	ug/L	26.3	105	59-134		
Carbon Tetrachloride	ND	25.0	5.0	0.27	ug/L	29.0	116	72-134		
Chlorobenzene	ND	25.0	5.0	0.32	ug/L	24.5	98	72-120		
Dibromochloromethane	ND	25.0	5.0	0.32	ug/L	23.1	92	75-125		
Chloroethane	ND	25.0	5.0	0.32	ug/L	41.0	164	69-136		M7
Chloroform	ND	25.0	5.0	0.34	ug/L	25.9	104	73-127		
Chloromethane	ND	25.0	5.0	0.35	ug/L	28.1	112	49-142		
cis-1,3-Dichloropropene	ND	25.0	5.0	0.36	ug/L	23.4	94	74-124		
Ethylbenzene	ND	25.0	5.0	0.18	ug/L	25.3	101	77-123		
Methylene Chloride	ND	25.0	5.0	0.44	ug/L	24.9	100	57-132		
Styrene	ND	25.0	5.0	0.18	ug/L	25.2	101	70-130		
Tetrachioroethene	ND	25.0	5.0	0.36	ug/L	26.1	104	74-122		
				0.54	. 4	~~ /	400	70 400		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

5.0

ND

25.0

ug/L

25.4

102

70-122

0.51

(MIBK) Acetone

Benzene

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Chloromethane

Chloroform

Carbon Tetrachloride

Dibromochloromethane

cis-1,3-Dichloropropene

Bromodichloromethane

ND

125

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site NO TONAW003 Project Number:

LABORATORY QC DATA Source Spike % % % REC RPD Data RLResult Level MDL **RPD** Limit Analyte Units Result REC Limits Qualifiers Volatile Organic Compounds by EPA 8260B Matrix Spike Analyzed: 12/15/09 (Lab Number:9L15024-MS1, Batch: 9L15024) QC Source Sample: RSL0353-03 ND 5.0 0.37 22.8 91 72-123 trans-1,3-Dichloropropen ug/L 25.0 Trichloroethene ND 5.0 0.46 ug/L 26.8 107 74-123 25.0 Vinyl chloride ug/L ND 5.0 0.24 29.3 117 65-133 25.0 Xylenes, total ug/L ND 75.0 5.0 0.66 74.2 99 76-122 Surrogate: ug/L 101 66-137 1,2-Dichloroethane-d4 104 73-120 Surrogate: ug/L 4-Bromofluorobenzene Surrogate: Toluene-d8 ug/L 102 71-126 Matrix Spike Dup Analyzed: 12/15/09 (Lab Number:9L15024-MSD1, Batch: 9L15024) QC Source Sample: RSL0353-03 1,1,1,2-Tetrachloroethane ND 25.D 5.0 0.35 ug/L 27.1 108 76-122 0.9 20 1,1,1-Trichloroethane ND 25.0 5.0 0.26 ug/L 28.4 114 73-126 15 1,1,2-Trichioroethane ND 5.0 0.23 24.3 97 76-122 1 15 25.0 ug/L 1,1-Dichloroethane ND 25.0 5.0 0.38 ug/L 26.7 107 71-129 0.2 20 1,1-Dichloroethene ND 5.0 0.29 ug/L 28.6 115 65-138 0.6 16 25.0 1,2-Dichloroethane ND 25.0 5.0 0.21 ug/L 24.0 96 75-127 1 20 1,2-Dichloroethene, Total ND 2.0 0.70 53.7 107 72-124 0.09 20 50.0 ug/L 1,2-Dichloropropane ND 5.0 0.33 25.9 104 76-120 0.5 20 25.0 ug/L 1,3-Dichloropropane ND 5.0 0.21 24.3 97 75-120 0.6 20 25.0 ug/L 2-Butanone (MEK) ND 10 1.3 125 100 57-140 3 20 125 ug/L 2-Hexanone ND 125 10 1.2 ug/L 128 102 65-127 4 15 4-Methyi-2-pentanone ND 10 0.91 127 102 71-125 3 35 125 ug/L

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

10

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

1.3

0.41

0.39

0.26

0.28

0.19

0.27

0.32

0.32

0.32

0.34

0.35

0.36

121

26.0

24.0

22.1

32.4

26.7

29.7

24.4

23.4

39.8

26.0

28.0

23,7

ug/L

97

104

96

88

130

107

119

98

94

159

104

112

95

56-142

71-124

80-122

66-128

36-150

59-134

72-134

72-120

75-125

69-136

73-127

49-142

74-124

4

0.6

0.9

0.3

14

1

2

0.4

1

3

0.08

0.6

1

15

13

15

15

15

15

15

25

15

15

20

15

15

M7

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compo	unds by EPA	4 8260B									
Matrix Spike Dup Analyz QC Source Sample: RSL0353-		(Lab Nu	ımber:9L15	024-MSD1, Bat	ch: 9L15024)						
Ethylbenzene	ND	25.0	5.0	0.18	ug/L	25.2	101	77-123	0.6	15	
Methylene Chloride	ND	25.0	5.0	0.44	ug/L	24.8	99	57-132	0.3	15	
Styrene	ND	25.0	5.0	0.18	ug/L	24.9	100	70-130	1	20	
Tetrachloroethene	ND	25.0	5.0	0.36	ug/L	25.8	103	74-122	1	20	
Toluene	ND	25.0	5.0	0.51	ug/L	25.1	100	70-122	1	15	
trans-1,3-Dichloropropen e	ND	25.0	5.0	0.37	· ug/L	23.0	92	72-123	1	15	
Trichloroethene	ND	25.0	5.0	0.46	ug/L	26.8	107	74-123	0.07	16	
Vinyl chloride	ND	25.0	5.0	0.24	ug/L	29.0	116	65-133	1	15	
Xylenes, total	ND	75.0	5.0	0.66	ug/L	74.5	99	76-122	0.4	16	
Surrogate:		·····			ug/L		101	66-137			
1,2-Dichloroethane-d4 Surrogate:					ug/L		105	73-120			
4-Bromofluorobenzene Surrogate: Toluene-d8					ug/L		102	71-126			

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site Project Number: NO TONAW003

LABORATORY QC DATA

			1_5	ADOINATOR I	QU DAIA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL_	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Semivolatile Organics by	/ GC/MS						•			
Blank Analyzed: 12/10/09	(Lab Num	ber:9L07	002-BLK1, I	Batch: 9L07002)					
1,2-Dichlorobenzene			10	0.40	ug/L	ND				
1,3-Dichlorobenzene			10	0.48	ug/L	ND				
1,4-Dichlorobenzene			10	0.46	ug/L	ND				
2-Methylphenol			10	0.40	ug/L	ND				
3-Methylphenol			10	0.40	ug/L	ND				ID7
4-Methylphenol			5.0	0.36	ug/L	ND				ID7
Phenol			10	0.39	ug/L	ND ·				
Surrogate: 2,4,6-Tribromophenol			······································		ug/L		97	52-132		· · · <u>· · · · · · · · · · · · · · · · </u>
Surrogate: 2-Fluorobiphenyl					ug/L		94	48-120		
Surrogate: 2-Fluorophenol					ug/L		56	20-120		
Surrogate: Nitrobenzene-d5					ug/L		91	46-120		
Surrogate: Phenol-d5					ug/L		39	16-120		
Surrogate: p-Terphenyl-d14					ug/L		94	24-136		
LCS Analyzed: 12/10/09	(Lab Numb	er:9L0700	2-B\$1, Bat	ch: 9L07002)						
1,2,4-Trichlorobenzene		100	10	0.44	ug/L	73.8	74	40-120		
1,2-Dichlorobenzene			10	0.40	ug/L	ND		33-120		
1,3-Dichlorobenzene			10	0.48	ug/L	ND		28-120		
1,4-Dichlorobenzene		100	10	0.46	ug/L	62.0	62	32-120		
1,4-Dioxane			10	1.1	ug/L	ND		11-120		
2-Methylphenol			10	0.40	ug/L	ND		39-120		
3-Methylphenol			10	0.40	ug/L	ND		39-120		ID7
4-Methylphenol			5.0	0.36	ug/L	ND		36-120		ID7
Hexachlorobutadiene			10	0.68	ug/L	ND		30-120		
Naphthalene			10	0.76	ug/L	ND		48-120		
Pentachloroethane			10	0.47	ug/L	ND		70-130		
Phenol		100	10	0.39	ug/L	32.5	32	17-120		
Surrogate: 2,4,6-Tribromophenol					ug/L		94	52-132	· · · · · · · · · · · · · · · · · · ·	
Surrogate: 2-Fluorobiphenyl					ug/L		82	48-120		
Surrogate: 2-Fluorophenol					ug/L		47	20-120		
Surrogate: Nitrobenzene-d5					ug/L		75	46-120		
Surrogate: Phenol-d5					ug/L		34	16-120		
Surrogate: p-Terphenyl-d14					ug/L		86	2 4 -136		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSL0353

Received:

12/04/09

Project: Niagara County Refuse Site Project Number: NO TONAW003 Reported: 12/30/09 13:53

LABORATORY OC DATA

			L	ABORATORY	QC DATA					
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers
Semivolatile Organics I	y GC/MS		****							
Matrix Spike Analyzed: QC Source Sample: RSL035:	•	ab Numbe	r:9L07002-	MS1, Batch: 9L	07002)					
1,2,4-Trichlorobenzene	ND	94.3	9.4	0.42	ug/L	78.4	83	40-120		
1,2-Dichlorobenzene	ND		9.4	0.38	ug/L	ND		33-120		
1,3-Dichlorobenzene	ND		9.4	0.45	ug/L	ND		28-120		
1,4-Dichlorobenzene	ND	94.3	9.4	0.43	ug/L	67.8	72	32-120		
1,4-Dioxane	ND		9.4	1.0	ug/L	ND		11-120		
2-Methylphenol	ND		9.4	0.38	ug/L	ND		39-120		
3-Methylphenol	ND		9.4	0.38	ug/L	ND		39-120		ID7
4-Methylphenol	ND		4.7	0.34	ug/L	ND		36-120		ID7
Hexachlorobutadiene	ND		9.4	0.64	ug/L	ND		30-120		
Naphthalene	ND		9.4	0.72	ug/L	ND		48-120		
Pentachloroethane	ND		9.4	0.44	ug/L	ND		70-130		
Phenol	ND	94.3	9.4	0.37	ug/L	31.8	34	17-120		
S		0				<u> </u>	101	52-132		
Surrogate: 2,4,6-Tribromophenol Surrogate:					ug/L ug/L		101 91	48-120		
2-Fluorobiphenyl Surrogate:					ug/L		49	20-120		
2-Fluorophenol Surrogate:					ug/L		83	46-120		
Nitrobenzene-d5 Surrogate: Phenol-d5					ug/L		35	16-120		
Surrogate: p-Terphenyl-d14					ug/L		44	24-136		
Matrix Spike Dup Analy QC Source Sample: RSL0353		9 (Lab Nu	mber:9L07	002-MSD1, Bate	:h: 9L07002)					
1,2,4-Trichlorobenzene	ND	94.3	9.4	0.42	ug/L	67.9	72	40-120	14 30	
1,2-Dichlorobenzene	ND		9.4	0.38	ug/L	ND		33-120	29	
1,3-Dichlorobenzene	ND		9.4	0.45	ug/L	ND		28-120	37	
1,4-Dichlorobenzene	ND	94.3	9.4	0.43	ug/L	59.1	63	32-120	14 36	
1,4-Dioxane	ND		9.4	1.0	ug/L	ND		11-120	50	
2-Methylphenol	ND		9.4	0.38	ug/L	ND		39-120	27	
3-Methylphenol	ND		9.4	0.38	ug/L	ND		39-120	30	ID7
4-Methylphenol	ND		4.7	0.34	ug/L	ND		36-120	24	ID7
Hexachlorobutadiene	ND		9.4	0.64	ug/L	ND		30-120	44	
Naphthalene	ND		9.4	0.72	ug/L	ND		48-120	29	
Pentachloroethane	ND		9,4	0.44	ug/L	ND		70-130	20	
Phenol	ND	94.3	9.4	0.37	ug/L	27.7	29	17-120	14 34	
Surrogate:					ug/L		91	52-132		

2,4,6-Tribromophenol

Work Order: RSL0353

Received:

12/04/09

Reported:

ed: 12/30/09 13:53

Project: Niagara County Refuse Site
Project Number: NO TONAW003

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Semivolatile Organics	by GC/MS										
Matrix Spike Dup Analy QC Source Sample; RSL035	-	9 (Lab Nui	mber:9L0	7002-MSD1, Bate	ch: 9L07002)						
Surrogate:					ug/L		81	48-120			
2-Fluorobiphenyl Surrogate:					ug/L		42	20-120			
2-Fluorophenol Surrogale: Nitrobenzene-d5					ug/L		74	46-120			
Surrogate: Phenol-d5					ug/L		31	16-120			
Surrogate: p-Terphenyl-d14	•				ug/L		36	24-136			

Work Order: RSL0353

Project Number:

Received:

12/04/09

Reported:

12/30/09 13:53

LABORATORY QC DATA

NO TONAW003

Project: Niagara County Refuse Site

			L/N	DOIGNI ON I	QU DATA						
	Source	Spike	D1				%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by SW 846 S	eries Meth	10ds									
Blank Analyzed: 12/07/09	(Lab Nun	nber:9L07()33-BLK1, B	atch: 9L07033)							
Mercury	-		0.0002	0.0001	mg/L	ND					
			n nnd n-4-	E - At 07000\						٠	
LCS Analyzed: 12/07/09	(Lab Numi				0	0.00000	99	80-120			
Mercury		0.00667	0.0002	0.0001	mg/L	0.00660	99	DU-12U			
Matrix Spike Analyzed: 1. QC Source Sample: RSL0353-4		ab Numbe	r:9L07033-M	S1, Batch: 9L0	7033)						
Mercury	ND	0.00667	0.0002	0.0001	mg/L	0.00592	89	75-125			
Matrix Spike Dup Analyze QC Source Sample: RSL0353-4		9 (Lab Nu	mber:9L070	33-MSD1, Batcl	h: 9L07033)						
Mercury	ND	0.00667	0.0002	0.0001	mg/L	0,00642	96	75-125	8	20	
Total Metals by SW 846 S	Series Meti	nods									
Blank Analyzed: 12/08/09	(Lab Nun	nber:9L070	054-BLK1, B	atch: 9L07054)							
Aluminum			0.200	0.040	mg/L	ND					
Antimony			0.0200	0.0068	mg/L	ND					
Barium			0.0020	0.0003	mg/L	ND					
Beryllium			0.0020	0.0002	mg/L	ND					
Cadmium			0.0010	0.0003	mg/L	ND					
Calcium			0.5	D.1	mg/L	ND					٠
Chromium			0.0040	0.0009	mg/L	ND					
Cobalt			0.0040	0.0006	mg/L	ND					
Copper			0.0100	0.0013	mg/L	ND					
Iron			0.050	0.019	mg/L	ND					
Lead			0.0050	0.0030	mg/L	ND					
Magnesium			0.200	NR	mg/L	ND					
Manganese			0.0030	NR	mg/L	ND					В
Nickel			0.0100	0.0013	mg/L	ND					
Potassium			0.500	0.050	mg/L	ND					
Selenium			0.0150	0.0087	mg/L	ND					
Silver			0.0030	0.0012	mg/L	ND					
Sodium			1.0	NR	mg/L	ND					
Thallium			0.0200	0.0102	mg/L	ND					
Vanadium			0.0050	0.0011	mg/L	ND					
Zinc			0.0100	0.0015	mg/L	ND					
LCS Analyzed: 12/08/09	(Lab Numi	ber:9L0705	4-BS1, Batc	h: 9L07054)							
Aluminum		10.0	0.200	0.040	mg/L	9.35	94	80-120			
Antimony		0.200	0.0200	0.0068	mg/L	0.195	98	80-120			
							_				

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site NO TONAW003 Project Number:

LABORATORY QC DATA

			J		WO DAIA					
	Source	Spike				•	%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Total Metals by SW 846 S	eries Meth	ods								
LCS Analyzed: 12/08/09	(Lab Numb	er:9L070	54-BS1. Bate	ch: 9L07054)						
Barium		0.200	0.0020	0.0003	mg/L	0.196	98	80-120		
Beryllium		0.200	0.0020	0.0002	mg/L	0.188	94	80-120		
Cadmium		0.200	0.0010	0.0003	mg/L	0.190	95	80-120		
Calcium		10.0	0.5	0.1	mg/L	9.69	97	80-120		
Chromium		0.200	0.0040	0.0009	mg/L	0.191	95	80-120		
Cobalt		0.200	0.0040	0.0006	mg/L	0.193	96	80-120		
Copper		0.200	0.0100	0.0013	mg/L	0.192	96	80-120		
ron		10.0	0.050	0.019	mg/L	9.27	93	80-120		
_ead		0.200	0.0050	0.0030	mg/L	0.196	98	80-120		
Magnesium		10.0	0.200	NR	mg/L	9.70	97	80-120		
Manganese		0.200	0.0030	NR	mg/L	0.189	95	80-120		
Vickel		0.200	0.0100	0.0013	mg/L	0.190	95	80-120		
otassium		10.0	0.500	0.050	mg/L	9.89	99	80-120		
Selenium		0.200	0.0150	0.0087	mg/L	0.194	97	80-120		
Silver		0.0500	0.0030	0.0012	mg/L	0.0476	95	80-120		
Sodium		10.0	1.0	NR	mg/L	9.60	96	80-120		
Thallium		0.200	0.0200	0.0102	mg/L	0.196	98	80-120		
Vanadium		0.200	0.0050	0.0011	mg/L	0.193	96	80-120		
Zinc		0.200	0.0100	0.0015	mg/L	0.193	96	80-120		
Matrix Spike Analyzed: 1	2/08/09 (La	ıb Numbe	er:9L07054-N	IS1, Batch: 9L0	7054)					
QC Source Sample: RSL0353-0	13									
Aluminum	6.81	10.0	0.200	0.040	mg/L	18.6	118	75-125		
Antimony	ND	0.200	0.0200	0.0068	mg/L	0.190	95	75-125		
3arium -	0.140	0.200	0.0020	0.0003	mg/L	0.368	114	75-125		
3eryllium	0.000250	0.200	0.0020	0.0002	mg/L	0.196	98	75-125		
Cadmium	ND	0.200	0.0010	0.0003	mg/L	0.194	97	75-125		
Calcium	90.6	10.0	0.5	0.1	mg/L	111	201	75-125		MHA
Chromium	0.0178	0.200	0.0040	0.0009	mg/L	0.225	104	75-125		
Cobalt	0.00165	0.200	0.0040	0.0006	mg/L	0.199	99	75-125		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

0.0100

0.050

0.0050

0.200

0.0030

0.0100

0.500

0.0150

0.200

10.0

0.200

10.0

0.200

0.200

10.0

0.200

0.0155

6.13

0.00666

63.5

0.0997

0.0138

2.69

ND

Copper

iron

Lead

Nickel

Magnesium

Manganese

Potassium

Selenium

0.0013

0.019

0.0030

NR

NR

0.0013

0.050

0.0087

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

0.220

18.6

0.205

75.3

0.364

0.214

13.1

0.199

102

125

99

118

132

100

104

99

75-125

75-125

75-125

75-125

75-125

75-125

75-125

75-125

MHA

Work Order: RSL0353

Received:

12/04/09

Reported:

12/30/09 13:53

Project: Niagara County Refuse Site Project Number: NO TONAW003

			L/	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by SW 84	6 Series Meti	<u>rods</u>									
Matrix Spike Analyzed QC Source Sample: RSL03		ab Numbe	er:9L07054-I	MS1, Batch: 9L0)7054)						
Silver	ND	0.0500	0.0030	0.0012	mg/L	0.0499	100	75-125		•	
Sodium	26.0	10.0	1.0	NR	mg/L	33.8	78	75-125			
Thallium	ND	0.200	0.0200	0.0102	mg/L	0.208	104	75-125			
Vanadium	0.0110	0.200	0.0050	0.0011	mg/L	0.214	102	75-125			
Zinc	0.0563	0.200	0.0100	0.0015	mg/L	0.266	105	75-125		•	
Matrix Spike Dup Analy QC Source Sample: RSL039	-	9 (Lab Ni	umber:9L07	054-MSD1, Bato	ch: 9L07054)						
Aluminum	6.81	10.0	0.200	0.040	mg/∟	18.7	119	75-125	0.4	20	-
Antimony	ND	0.200	0.0200	0.0068	mg/L	0.193	96	75-125	1	20	
Barium	0.140	0.200	0.0020	0.0003	mg/L	0.365	113	75-125	8.0	20	
Beryllium	0.000250	0.200	0.0020	0.0002	mg/L	0.197	98	75-125	0.5	20	
Cadmium	ND	0.200	0.0010	0.0003	mg/L	0.195	97	75-125	0.6	20	
Calcium	90.6	10.0	0.5	0.1	mg/L	108	175	75-125	2	20	MHA
Chromium	0.0178	0.200	0.0040	0.0009	mg/L	0.224	103	75-125	0.3	20	
Cobalt	0.00165	0.200	0.0040	0.0006	mg/L	0.200	99	75-125	0.4	20	
Copper	0.0155	0.200	0.0100	0.0013	mg/L	0.221	103	75-125	0.4	20	
Iron	6.13	10.0	0.050	0.019	mg/L	18.5	124	75-125	0.6	20	
Lead	0.00666	0.200	0.0050	0.0030	mg/L	0.207	100	75-125	8.0	20	
Magnesium	63.5	10.0	0.200	NR	mg/L	73.7	102	75-125	2	20	
Manganese	0.0997	0.200	0.0030	NR	mg/L	0.360	130	75-125	0.9	20	MHA
Nickel	0.0138	0.200	0.0100	0.0013	mg/L	0.215	- 101	75-125	0.4	20	
Potassium	2.69	10.0	0.500	0.050	mg/L	13.1	104	75-125	0.05	20	
Selenium	ND	0.200	0.0150	0.0087	mg/L	0.204	102	75-125	2 .	20	
Silver	ND	0.0500	0.0030	0.0012	mg/L	0.0501	100	75-125	0.5	20	
Sodium	26.0	10.0	1.0	NR	mg/L	33.1	71	75-125	2	20	M1
Thallium	ND	0.200	0.0200	0.0102	mg/L	0.212	106	75-125	2	20	
Vanadium	0.0110	0.200	0.0050	0.0011	mg/L	0.214	101	75-125	0.2	20	
Zinc	0.0563	0.200	0.0100	0.0015	mg/L	0.265	104	75-125	0.3	20	

Chain of Custody Record

Temperature on Receipt.

Oninking Water? Yes □ No□

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

7811124 (1007)				, ES		7	אורע	2		7	THE PROPERTY BUSINGS AND THE TREETY OF		
North Tonawo de 1 bate Walt	Jahr	Project Manager	ON DONE	WIGNON-					12 Carry	<u> </u>		Cham of Custody Nambon	A Q & D C
Kyer 128.		Takephan (1)(E)	1615-8560	S-8560	Muniter				Truck Mary			Pane	7 70
Hard Sink	Zip Coots (4 (2 ()	\$ G	18 °c.	(A)	LAD Carles			מאנה מאנה	alysis (4 v space	Analysis (Attach list II niora space is needed)	1 6		
Alogan Courty Return Site	- L	のである。	Commentation Number Do W. Frange 11505	1 081	200								County for the ordinary.
			Матк	-₹	Containers & Preservatives	s s ives)च्याव् ए १ ए	rajāj				**************************************	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Dare	Tame &	pos pes	TODAY	12H 803WH 1405ZH	אייסא בייאפ, עדיסא	7 <u>8</u>	1:1					
NCR-35	12/4/09	0051	メ		<u>-</u>		- 10						
NCR-45	~	1335	×	-	~		رن -						
NCR-55		1415	`*		- 3		-	_					
NCQ-135		ως/	<u> </u>		N ~		3 /						
NCR-55 MS		SIHI	^X		-	<u>, </u>	3 /	_	-				
NCR - 55 MSD		1415	×		 		3	_					
NCR-65	華	1510	X		(7)		3						
					 								
The continue of frame of the continue of the c		3.5					·						
nmetrle 🔲 Sako britari	Preson B	I Unknown	Sample Unspose! Hatturn To Chan!		G Despoyed By Leb		[] Anthro Far	żs.	- Months		a may bo a n than 1 m	(A las may be assessed if samples are retained Yonger than 1 month)	s ताक retained
Inn Arrento Finis Required 24 Hours 14 Hours 17 Days 14 10 Days	□ 21 B	,			OC Asomements (Specify)	vits (Specify)							
Medical Stranger of A. L.		The same	Provis	ħ.	1. Receirgd B)	0	1					Davis L.L.	Fans
ا ز		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Terms	1	2. Harring (b)	1	Ì	Ì				011/1/07	でで、 「握」
3. Fedinavaried By		T Daw	Time		S Pacewad By				3			Date	Tane
Comments								\uparrow	7				
DISTRIBUTION: WAITE - CAUSA AND PARON. CANARY - STAYS AND TO AND THE CANARY	ANARY - SIRVE	Service Service	TO PINKY . FIRST					×					
		4	Carried Commercial Com						<i>-</i>				

GROUNDWATER SAMPLING • SAMPLE COLLECTION DATA SHEET

PROJECT NAME:

NIAGARA COUNTY REFUSE SITE

SAMPLING CREW MEMBERS:

Richard C. Becken

Date of sample collection: $|I|\mathcal{Z}|\mathcal{O}|\mathcal{G}|\mathcal{O}|\mathcal{G}|$ (M m D D Y Y)

Shipping	Manifest	Number	NA	Ž	J.A.	F.				
Chain-of-	Custody	Number	008B1							
Analysis	Required		VOC, semiliar T. Metaks	14	74	4				
Sample	Description		Comment mostl	amme-f 1 moutenly well	1415 monitary well	1500 monthology				L. L
Sample	Time)38C	1335	5141	1500	1415	1540		
Volume	Purged	(Gallons)	~7.25	6.~	9'/~	27-				
Well	Volume	(Gallons)	,54	. 36	38,	.57				
Well	Number		NCR 35	NCR 4S	NCR 5S	NCR 13S	(MS/MSD) *	(Duplicate) * んんんっぷ	(Rinse Blank) *	
Sample	I.D.	Number	NCR-35	NCR-45	NCR-55	NCR-13S	NCQ-55	uca-45		

to collect and label these sample	Create a unique sample ID for the blind duplicate using NCR 65 for the well number. Write the name of the well where the MS/MSD and duplicate were actually collected in the	well number boxes under "MS/MSD" and "Duplicate" above.
-----------------------------------	--	---

Additional Comments:	

	THE PROPERTY OF THE PROPERTY O	
Additional Continents:	FP-5A	4 40

SITE/PROJECT NAME:	Niagara County Ref						
DATE:	112041	69 (MM D	D YY)				
CREW MEMBERS:	KC Bel	con				·	
PURGING METHOD:	Dedicated Bladder F	•					
WELL NUMBER:	NCR-43	5	•	•			
ONE WELL VOLUME:	_3G gailons				•		
FIVE WELL VOLUMES:	<u>i.8</u>	gallons			-1-1		
(See Section 4.2.4.1 of the OM&M	Manual and Table F	P-4.1 to calculate w	ell volumes based o	n current Water lev	eis. <i>j</i>		
WELL VOLUME	1	2	3	4	5	TOT/AVG	
VOLUME PURGED (total)	~.4	~ .9					
pH .	6.37	6.31			·		
TEMPERATURE	42.4	46.1					
CONDUCTIVITY	0.97	1.12					
TURBIDITY	1600 ÷	835		,			
COLOR	b.rown	tan					
ODOR	none	10000-					
COMMENTS	well dry after s	well dry	· Qå				
1214/09 RIC	icertify that same	PLING PROCEDURES WE DRIKEN TNAME	RE IN ACCORDANCE WHI	HAPPLICABLE PROTOC	ois Seifen	SIGNATURE	
EP-4C						• •	

SITE/PROJECT NAME:	Niagam County Refuse Site							
DATE:	126409 (MM DD YM)							
CREW MEMBERS:	RCB	ecken						
PURGING METHOD:	Dedicated Bladder I		•					
WELL NUMBER:	NCR-55		•	•				
ONE WELL VOLUME:	0.86	gallons			•			
FIVE WELL VOLUMES:	4.3	gallons						
(See Section 4.2.4.1 of the OM&N	I Manual and Table F	P-4.1 to calculate w	ell volumes based o	on current water lev	eis.)			
WELL VOLUME	1	2	3	4	5	TOT/AVG		
VOLUME PURGED (total)	~.85	~1.b	-			4		
pH	6.43	6.47						
TEMPERATURE	46.5	48.6						
CONDUCTIVITY	0.92	0.74						
TURBIDITY	21.3	856						
COLOR	cleur	tan						
ODOR	hone	none						
COMMENTS		welf						
12/4/0°;	Pichara	FLING PROCEDURES WE L BLL T NAME	RE IN ACCOSIDANCE WIT	TH APPLICABLE PROTOCO	TehlC f	SIGNATURE		

SITE/PROJECT NAME:	Niagara County Refe	use Site		, ÷		·
DATE:	111210141	0 9 amm D	D YY)	•		
CREW MEMBERS:		cken			· · · · · · · · · · · · · · · · · · ·	
PURGING METHOD:	Dedicated Bladder F				. •	
WELL NUMBER:	NCR-13	>	•	•	•	
ONE WELL VOLUME:	57	gallons			•	
FIVE WELL VOLUMES: (See Section 4.2.4.1 of the OM&A	2,85 1 Manual and Table F	gallons P-4.1 to calculate w	ell volumes based o	n current water leve	ls.)	
WELL VOLUME	1	2	3	4	5	TOT/AVG
VOLUME PURGED (total)	~57	~ 1.3				
pH	6.18	6.5				
TEMPERATURE	46.8	47.0				
CONDUCTIVITY	1.33	1.16	·			
TURBIDITY	31.9	12.85				
COLOR	dear	clear				
ODOR	noul	none				
COMMENTS	well dry at ~7 gel	hone well dry				
12/0-1/07 DATE	I CERTIFY THAT SAME	LING PROCEDULES WE	e in accordance with	H AFFLICABLE PROTOCOL		SIGNATURE

	77 G 4-P-1	· · · · · · · · · · · · · · · · · · ·				
SITE/PROJECT NAME: Niagara County Refuse Site						
DATE:	1/2/014	0 1 (MM D	D YY)			,
CREW MEMBERS:	RCZ	secken				·
PURGING METHOD:	Dedicated Bladder I				. •	
WELL NUMBER:	NCR-35		•	•		
ONE WELL VOLUME:	₂ 54	gallons		-		
FIVE WELL VOLUMES:	2.7	gallons				*
(See Section 4.2.4.1 of the OM&)	M Manual and Table F	P-4.1 to calculate w	ell volumes based or	current water leve	els.)	
WELL VOLUME	1	2	3	4	5	TOT/AVG
VOLUME PURGED (total)	.~.54	~1.20				
pH	5.7 <i>5</i>	6.87				
TEMPERATURE	45.9	51.9				
CONDUCTIVITY	1.27	1.22			,	·
TURBIDITY	15.8	13.57				
COLOR	oilmost Cleur	cleur				
ODOR	hone	none	·			
COMMENTS	well dry	well am ~1.25				
12/64/09 DATE		LING PROCEDURES WER	E IN ACCORDANCE WITH	APPLICABLE PROTOCO	es IC bek	SKINATURE

APPENDIX D DATA VALIDATION REPORT

DATA USABILITY SUMMARY REPORT FOR NIAGARA COUNTY REFUSE SITE

Prepared By:

PARSONS

301 Plainfield Road, Suite 350 Syracuse, NY 13212 Phone: (315) 451-9560 Fax: (315) 451-9570

JANUARY 2010

TABLE OF CONTENTS

<u>Page</u>
SECTION 1 DATA USABILITY SUMMARY1-1
1.1 LABORATORY DATA PACKAGES1-1
1.2 SAMPLING AND CHAIN-OF-CUSTODY
1.3 LABORATORY ANALYTICAL METHODS1-11.3.1 Volatile Organic Analysis1-21.3.2 Semivolatile Organic Analysis1-21.3.3 Metals Analysis1-2
SECTION 2 DATA VALIDATION REPORT2-1
2.1 GROUNDWATER DATA 2-1 2.1.1 TCL Volatiles 2-1 2.1.2 Semivolatiles 2-2 2.1.3 Metals 2-3
LIST OF TABLES
Table 2.1-1 Summary of Sample Analyses and Usability
LIST OF ATTACHMENTS
ATTACHMENT A - VALIDATED LABORATORY DATA

PARSONS

SECTION 1

DATA USABILITY SUMMARY

Groundwater samples were collected from the Niagara County Refuse site in North Tonawanda, New York on December 4, 2009. Analytical results from these samples were validated and reviewed by Parsons for usability with respect to the following requirements:

- Work Plan, and
- USEPA Region II Standard Operating Procedures (SOPs) for organic and inorganic data review.

The analytical laboratory for this project was Test America Laboratory (TAL) in Buffalo, New York. This laboratory is certified to conduct project analyses through the National Environmental Laboratory Accreditation Program (NELAP).

1.1 LABORATORY DATA PACKAGES

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was 28 days on average for the groundwater samples.

The data packages received from TAL were paginated, complete, and overall were of good quality. Comments on specific quality control (QC) and other requirements are discussed in detail in the attached data validation report in Section 2.

1.2 SAMPLING AND CHAIN-OF-CUSTODY

Groundwater samples were collected, properly preserved, shipped under a COC record, and received at TAL within one day of sampling. All samples were received intact and in good condition at TAL.

1.3 LABORATORY ANALYTICAL METHODS

Groundwater samples were collected from the site and analyzed for volatile organic compounds (VOCs), certain semivolatile organic compounds (SVOCs), and metals. Summaries of issues concerning these laboratory analyses are presented in Subsections 1.3.1 through 1.3.3. The data qualifications resulting from the data validation review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, and comparability (PARCC) are discussed for each analytical method in Section 2. The laboratory data were reviewed and may be qualified with the following validation flags:

"U" - not detected at the value given,

"UJ" - estimated and not detected at the value given,

"J" - estimated at the value given,

"N" - presumptive evidence at the value given, and

"R" - unusable value.

The validated laboratory data were tabulated and are presented in Attachment A.

1.3.1 Volatile Organic Analysis

Groundwater samples collected from the site were analyzed for target compound list (TCL) VOCs using the USEPA SW-846 8260B analytical method. The reported results for the TCL VOC samples did not require qualification resulting from data validation. The reported TCL VOC analytical results were 100% complete (i.e., usable) for the groundwater data presented by TAL. PARCC requirements were met.

1.3.2 Semivolatile Organic Analysis

Groundwater samples collected from the site were analyzed for certain SVOCs using the USEPA SW-846 8270C analytical method. The SVOC samples did not require qualification resulting from data validation. The reported SVOC analytical results were 100% complete (i.e., usable) for the groundwater data presented by TAL. PARCC requirements were met.

1.3.3 Metals Analysis

Groundwater samples collected from the site were analyzed for target analyte list metals using the USEPA SW-846 6010B/7470A analytical methods. Certain metals results were considered estimated based upon matrix spike recoveries and serial dilutions. All of the metals data were considered usable and 100% complete for the groundwater data presented by TAL. PARCC requirements were met.

SECTION 2

DATA VALIDATION REPORT

2.1 GROUNDWATER DATA

Data review has been completed for data packages generated by TAL containing groundwater samples collected from the Niagara County Refuse site. The specific samples contained in these data packages, the analyses performed, and a usability summary, are presented in Table 2.1-1. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A.

Data validation was performed for all samples in accordance with the most current editions of the USEPA Region II SOPs for organic and inorganic data review. This data validation and usability report is presented by analysis type.

2.1.1 TCL Volatiles

The following items were reviewed for compliancy in the volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Matrix spike blank (MSB) recoveries
- Laboratory method blank contamination and trip blank contamination
- Instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of MS/MSD precision and accuracy.

MS/MSD Precision and Accuracy

All precision (relative percent difference; RPD) and accuracy (percent recovery; %R) measurements were acceptable and within QC limits for all spiked compounds of designated project samples with the exception of the high accuracy results for

chloroethane (164% R/159% R; QC limit 69-136% R) during the spiked analyses of sample NCR-5S. Since this compound was not detected in the parent sample, validation qualification was not required.

Usability

All TCL volatile sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness and comparability. The TCL volatile data presented by TAL were 100% complete (i.e., usable) for groundwater. The validated TCL volatile laboratory data are tabulated and presented in Attachment A.

2.1.2 Semivolatiles

The following items were reviewed for compliance in the semivolatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- MSB recoveries
- Laboratory method blank contamination
- Instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

<u>Usability</u>

All semivolatile sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness and comparability. The semivolatile data presented by TAL were 100% complete (i.e., usable). The validated semivolatile laboratory data are tabulated and presented in Attachment A.

2.1.3 Metals

The following items were reviewed for compliancy in the metals analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration and laboratory preparation blank contamination
- Inductively coupled plasma (ICP) interference check sample (ICS)
- Matrix spike recoveries
- Laboratory duplicate precision
- Laboratory control sample
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of matrix spike recoveries and serial dilutions.

Matrix Spike Recoveries

All matrix spike (MS) recoveries were compliant and within QC acceptance limits with the exception of the low MS recovery for sodium (71%R; QC limit 75-125%R) and the high MS recoveries for calcium (201%R, 175%R; QC limit 75-125%R) and manganese (132%R, 130%R; QC limit 75-125%R) associated with all samples. Therefore, all sodium results were considered estimated, possibly biased low, with the positive results qualified "J" and nondetected results qualified "UJ" for the affected samples. Positive calcium and manganese results were considered estimated, possibly biased high, and qualified "J" for the affected samples.

Serial Dilutions

All serial dilutions results were compliant and within the QC limit with the exception of the serial dilution for aluminum. Therefore, positive aluminum results were considered estimated and qualified "J".

Usability

All metals sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The metals data presented by TAL were 100% complete with all metals data considered valid and usable. The validated metals laboratory data are tabulated and presented in Attachment A.

TABLE 2.1-1
SUMMARY OF SAMPLE ANALYSES AND USABILITY
NIAGARA COUNTY REFUSE SITE

		SAMPLE	TCL			
SAMPLE ID	MATRIX	DATE	VOCs	SVOCs	METALS	
NCR-3S	Water	1/11/08	OK	OK	OK	
NCR-4S	Water	1/11/08	OK	OK	OK	
NCR-5S	Water	1/11/08	OK	OK	OK	
NCR-13S	Water	1/11/08	OK	OK	OK	
FIELD DUP	Water	1/11/08	OK			
TRIP BLANK	Water	1/11/08	OK			
	TOTAL SAM	IPLES	6	4	4	

NOTES: OK - Sample analysis considered valid and usable.

ATTACHMENT A VALIDATED LABORATORY DATA

				Dup of NCR-3S				
	n Tonawanda WWTP	Sample ID:	NCR-3S	NCR-6S	NCR-4S	NCR-5S	NCR-13S	TRIP BLANK
830 River Ro		Lab Sample Id:	RSL0353-01	RSL0353-07	RSL0353-02	RSL0353-03	RSL0353-06	RSL0353-08
North Tonaw		Source:	TAL-Buffalo	TAL-Buffalo	TAL-Buffalo	TAL-Buffalo	TAL-Buffalo	TAL-Buffalo
_	County Refuse Site	SDG: Matrix:	RSL0353 WATER	RSL0353 WATER	RSL0353 WATER	RSL0353 WATER	RSL0353 WATER	RSL0353 WATER
December 20	r Sampling Event	Sampled:	12/4/2009	12/4/2009	12/4/2009	12/4/2009	12/4/2009	12/4/2009
December 20	009	Validated:	1/13/2010	1/13/2010	1/13/2010	1/13/2010	1/13/2010	1/13/2010
CAS NO.	COMPOUND	UNITS:	1/13/2010	1/15/2010	1/13/2010	1/13/2010	1/15/2010	1/13/2010
	VOLATILES							
71-55-6	1,1,1-Trichloroethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
79-34-5	1,1,2,2-Tetrachloroethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
79-00-5	1,1,2-Trichloroethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
75-34-3	1,1-Dichloroethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
75-35-4	1,1-Dichloroethene	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
107-06-2	1,2-Dichloroethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
540-59-0	1,2-Dichloroethene (total)	ug/L	2 U	2 U	2 U	2 U	2 U	2 U
78-87-5	1,2-Dichloropropane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
142-28-9 78-93-3	1,3-Dichloropropane 2-Butanone	ug/L	1 U 10 U					
591-78-6	2-Hexanone	ug/L	5 U	5 U	5 U	5 U	5 U	10 U
108-10-1	4-Methyl-2-pentanone	ug/L ug/L	5 U	5 U	5 U	5 U	5 U	5 U
67-64-1	Acetone	ug/L ug/L	25 U					
71-43-2	Benzene	ug/L ug/L	0.7 U					
75-27-4	Bromodichloromethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
75-25-2	Bromoform	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
74-83-9	Bromomethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
75-15-0	Carbon Disulfide	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
56-23-5	Carbon tetrachloride	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
108-90-7	Chlorobenzene	ug/L	5 U	5 U	5 U	5 U	5 U	5 U
75-00-3	Chloroethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
67-66-3	Chloroform	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
74-87-3	Chloromethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
10061-01-5	cis-1,3-Dichloropropene	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
124-48-1	Dibromochloromethane	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
100-41-4	Ethylbenzene	ug/L	5 U	5 U	5 U	5 U	5 U	5 U
75-09-2	Methylene chloride	ug/L	5 U	5 U	5 U	5 U	5 U	5 U
100-42-5 127-18-4	Styrene	ug/L	1 U	1 U	1 U	1 U	1 U	1 U
127-18-4	Tetrachloroethene Toluene	ug/L	5 U 5 U					
10061-02-6	trans-1,3-Dichloropropene	ug/L ug/L	1 U	1 U	1 U	1 U	1 U	1 U
79-01-6	Trichloroethene	ug/L ug/L	5 U	5 U	5 U	5 U	5 U	5 U
75-01-4	Vinyl chloride	ug/L	2 U	2 U	2 U	2 U	2 U	2 U
1330-20-7	Total Xylenes	ug/L	5 U	5 U	5 U	5 U	5 U	5 U
	SEMIVOLATILES							
95-50-1	1,2-Dichlorobenzene	ug/L	9.4 U		9.4 U	9.4 U	9.4 U	
541-73-1	1,3-Dichlorobenzene	ug/L	9.4 U		9.4 U	9.4 U	9.4 U	
106-46-7	1,4-Diclorobenzene	ug/L	9.4 U		9.4 U	9.4 U	9.4 U	
95-48-7	2-Methylphenol	ug/L	9.4 U		9.4 U	9.4 U	9.4 U	
108-39-4	3-Methylphenol	ug/L	9.4 U		9.4 U	9.4 U	9.4 U	
106-44-5	4-Methylphenol	ug/L	4.7 U		4.7 U	4.7 U	4.7 U	
108-95-2	Phenol	ug/L	9.4 U		9.4 U	9.4 U	9.4 U	
7400 00 7	METALS	_	2100 -		12200 -	-010 -	2550 5	
7429-90-5	Aluminum	ug/L	2190 J		12300 J	6810 J	3750 J	
7440-36-0 7440-39-3	Antimony Barium	ug/L	20 U 57.3		20 U 125	20 U 140	20 U 98.7	
7440-39-3	Beryllium	ug/L ug/L	57.3 0.2 J		0.7 J	0.2 J	98.7 0.3 J	
7440-41-7	Cadmium	ug/L ug/L	0.2 J 0.4 J		0.7 J 0.9 J	0.2 J 1 U	0.3 J 0.3 J	
7440-43-9	Calcium	ug/L ug/L	148000 J		185000 J	90600 J	211000 J	
7440-70-2	Chromium	ug/L ug/L	14.000 3		10.6	17.8	21.5	
7440-48-4	Cobalt	ug/L ug/L	1.2 J		2.6 J	1.6 J	1 J	
7440-50-8	Copper	ug/L	11.9		19.3	15.5	9.9 J	
7439-89-6	Iron	ug/L	3550		56900	6130	5650	
7439-92-1	Lead	ug/L	5 U		28.3	6.7	5 U	
7439-95-4	Magnesium	ug/L	90400		61200	63500	73400	
7439-96-5	Manganese	ug/L	48.4 J		310 J	99.7 J	22.5 J	
7440-02-0	Nickel	ug/L	25.3		11.8	13.8	11.4	
7440-09-7	Potassium	ug/L	3430		11500	2690	3820	
7782-49-2	Selenium	ug/L	15 U		15 U	15 U	15 U	
7440-22-4	Silver	ug/L	3 U		3 U	3 U	3 U	
7440-23-5	Sodium	ug/L	11500 J		33400 J	26000 J	21800 J	
7440-28-0	Thallium	ug/L	20 U		20 U	20 U	20 U	
7440-62-2	Vanadium	ug/L	4.6 J		7.1	11	9.1	
7440-66-6 7439-97-6	Zinc Mercury	ug/L ug/L	28.2 0.2 U		1340 0.2 U	56.3 0.2 U	30.2 0.2 U	
1437-97-0	ivicicuiy	ug/L	U.2 U		U.2 U	U.2 U	U.2 U	

APPENDIX E MONTHLY INSPECTION LOGS

		MONTHLY INSPECTION LOG			
PROJECT NAME: Niagara	Niagara County Refuse Site	L	LOCATION:	Wheatfield, New York	
INSPECTOR(S): RC	Rc Becker	Q .	DATE:		
Item	Inspect For	Action Required		Comments	***************************************
1. Perimeter Collection	Perimeter Collection System/Off-Site Forcemain				
Manholes	- cover on securely - condition of cover	yes Cop]
	- condition of inside of manhole - flow conditions	good very low flow			
Wet Wells	 cover on securely condition of cover condition of inside of wet well 	yes good good			1
2. Landfill Cap					
Vegetated Soil Cover	- erosion - hare areas	MONRS. H EDIO			
	- washouts	Nove			
	- leachate seeps	None			1
	 length or vegetation dead/dying vegetation 	Shew comments			
FORM 1					

PROJECT NAME: Niagara C	Niagara County Refuse Site	MONTHLY INSPECTION LOG LOCATION: DATE:	Wheatfield, New York
INSPECTOR(S): RC Bucker	Buken		(MM DD YY)
Item	Inspect For	Action Required	Comments
2. Landfill Cap (continued)	(p:		
Access Roads	 bare areas, dead/dying veg. erosion potholes or puddles obstruction 	Show covered Moone	
3. Wetlands (Area "F")	 dead/dying vegetation change in water budget general condition of wetlands 	normal	
4. Other Site Systems			
Perimeter Fence	integrity of fenceintegrity of gatesintegrity of locksplacement and condition of signs	dood good	
FORM 1			

PROJECT NAME: Niagara (Niagara County Refuse Site	MONTHLY INSPECTION LOG	JON:	Wheatfield, New York	
INSPECTOR(S):	RC Becken	. DA	DATE	ON DD YY)	
Item	Inspect For	Action Required		Comments	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/ Swale Outlets	 sediment build-up erosion condition of erosion protection flow obstructions dead/dying vegetation cable concrete/gabion mats and riprap 	hone good good swill good good			
Culverts	 sediment build-up erosion condition of erosion protection flow obstructions 	mones Good			
Gas Vents	- intact /damage	intoet			
Wells	- locks secure	425			
FORM 1					

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagara	: Niagara County Refuse Site	LOCATION:	Wheatfield, New York
. (DATE	[6 2 0 5 0 3] (MM DD YY)
INSPECTOR(S): (C/ \frac{1}{2})	P(Kindist Inspect For	Action Required	Comments
2. Landfill Cap (continued)	ed)	,	
Access Roads	 bare areas, dead/dying veg. erosion potholes or puddles obstruction 	Mont Covered	
3. Wetlands (Area "F")	- dead/dying vegetation - change in water budget - general condition of wetlands	oritai box normal	
4. Other Site Systems			
Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 	9 60-20 9 60-20 9 60-20 9 60-20	
FORM 1	•		

Wells - locks secure

- bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation - dead/dying vegetation	Wet Wells - cover on securely - condition of cover - condition of inside of wet well - condition of inside of well - condition of well - condition of well - conditi	Inspect For Action Required Collection System/Off-Site Forcemain	PROJECT NAME: Niagara Co INSPECTOR(S): Item Manholes Wet Wells Vegetated Soil Cover	Inspect For cover on securely cover on securely cover on securely flow conditions cover on securely washouts washouts leachate seeps leachate seeps leachate seeps leachate seeps dead/dying vegetation	LOCATION: DATE: LOCATION: LOCAT	Wheatfield, New York O 3 C 5 C 7 (MM DD YY) Comments
- cover on securely - condition of cover - condition of inside of wet well - ap Soil Cover - erosion			Manholes	 cover on securely condition of cover condition of inside of manhole flow conditions 	1 '1	
Inspect For Action Required - cover on securely - condition of inside of manhole - flow condition of cover - condition of inside of wet well	PECTOR(5): Received Item Inspect For Action Required Perimeter Collection System/Off-Site Forcemain Manholes - cover on securely - condition of cover - condition of inside of manhole - flow conditions - flow conditions			ounty Refuse Site	OCATION:	Wheatfield, New York
Niagara County Refuse Site DATE: Inspect For Action Required - cover on securely - condition of inside of wanhole - cover on securely - condition of inside of wet well	Ningara County Refuse Site Ningara County Refuse Site DATE: DATE:	Niagara County Refuse Site DATE:			MONTHLY INSPECTION LOG	

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagara County Refuse Site	: County Refuse Site	LOCATION:	Wheatfield, New York
		DATE	0 3 0 5 0 9 (MM DD YY)
INSPECTOR(S):	Inspect For	Action Required	Comments
2. Landfill Cap (continued)	{p:		
Access Roads	 bare areas, dead/dying veg. erosion potholes or puddles obstruction 	Mon-2. Mon-2. Mon-2.	
3. Wetlands (Area "F")	- dead/dying vegetation - change in water budget - general condition of wetlands	winter had them would	
4. Other Site Systems			
Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 	Gross Come	
FORM 1			

		MONTHLY INSPECTION LOG	g		
PROJECT NAME: Niagara	Niagara County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	140 04 140 04		DATE:	(MM DD YY)	
Item	Inspect For	Action Required		Comments	
4. Other Site Systems (continued)	ontinued)				•
Drainage Ditches/ Swale Outlets	- sediment build-up	N.O.2			
	 erosion condition of erosion protection 	100m			
	- flow obstructions	4000			
	- ceal, cynig vegennon - cable concrete/gabion mats and riprap	cont condition			
Culverts	- sediment build-up	باسمي			
	- erosion - condition of erosion protection	Janes Janes			
;	- flow obstructions	more .			
Gas Vents Wells	· · · intact / damage · · locks secure	(162)			
FORM 1					

		MONTHLY INSPECTION LOG	
PROJECT NAME: Ni	PROJECT NAME: Niagara County Refuse Site	LOCATION: DATE:	Wheatfield, New York 0 4 0 5 0 7
'	1	Action Required	Comments
1. Perimeter Collec	Perimeter Collection System/Off-Site Forcemain		
Manholes	- cover on securely - condition of cover	0 K.	
	 condition of inside of manhole flow conditions 	900.0	
Wet Wells	cover on securelycondition of covercondition of inside of wet well	0 /2000 () () () () () () () () ()	
2. Landfill Cap		•	
Vegetated Soil Cover	over - erosion	. Sharaki.	
	- bare areas - washouts	12000 - 2	
	- leachate seeps	work	
	- dead/dying vegetation	wester hill	
FORM 1			

				9	4 age 4 or 0
		MONTHLY INSPECTION LOG	Ö		
PROJECT NAME: Niagara County Refuse Site	: ra County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	J-C Becker		DATE:	(XX ad MM)	
Item	Inspect For	Action Required	1	Соттепт	
2. Landfill Cap (continued)	ued)	×			
Access Roads	- bare areas, dead/dying veg.	SANT. 17			
	- erosion	- Frankout			1
	- potholes or puddles	وسيح الماق مراز			1 1
	- obstruction	W. C.			
3. Wetlands (Area '17")	- dead/dying vegetation - change in water budget	wanter pull			l 1
	- general condition of wetlands	Jusop /			1 1
4. Other Site Systems					· · · · · · · · · · · · · · · · · · ·
Perimeter Fence	- integrity of fence	(100mg)			
	· integrity of gates	Jean J.			1 1
	negury or tocks placement and condition of signs	(Jeans			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
FORM 1					·

PROJECT NAME: Niagara County Refuse Site INSPECTOR(S):	up sion protection setation gabion mats and up sion protection sion protection	MONTHLY INSPECTION LOG Action Required Action Required	JG LOCATION: DATE:	Wheatfield, New York	
Gas Vents Wells FORM 1	- intact /damage - locks secure	where			1

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagara	Niagara County Refuse Site	LOCATION: Wheat DATE: 0 5 (MIM	Wheatfield, New York
Item	Inspect For	Action Required Comments	nents
1. Perimeter Collection (Perimeter Collection System/Off-Site Forcemain		
Manholes	 cover on securely condition of cover)-45 (100-5)	
	- condition of inside of manhole - flow conditions	no regerent from	
Wet Wells	 cover on securely condition of cover condition of inside of wet well 	Love of Company	
2. Landfill Cap		-	
Vegetated Soil Cover	- erosion - haro areac	nerte	
	- washouts	were .	
	- leachate seeps - length of vegetation - dead/dying vegetation	ners-	
ORM 1			

PECTOR(S): F-C (S. 1 1/2.2.				100.	Г
DECTINAME: Ningara County Refuse Site PECTOR(S):			MONTHLY INSPECTION LOG		
PECTOR(S):	PROJECT NAME: Niag	gara County Refuse Site	LOCATION:	Wheatfield, New York	
Landfill Cap (continued) Access Roads - bare areas, dead/dying veg. CAC-2. - erosion - potholes or puddless CAC-2. - obstruction - change in water budget CAC-2. - change in water budget CAC-2.	INSPECTOR(S):	PC Parks	DATE	(MM DD YY)	
Access Roads - bare areas, dead/dying veg. 1475 - erosion - potholes or puddles - obstruction - dead/dying vegetation - change in water budget - general condition of wetlands Other Site Systems - integrity of fence - integrity of locks - placement and condition of signs		Inspect For	Action Required	Соттептѕ	
Access Roads - bare areas, dead/dying veg. - erosion - potholes or puddles - obstruction - dead/dying vegetation - change in water budget - general condition of wetlands Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs	 Landfill Cap (conti 	inued)	,		
- dead/dying vegetation - change in water budget - general condition of wetlands Other Site Systems - integrity of fence - integrity of locks - integrity of locks - placement and condition of signs	Access Roads	 bare areas, dead/dying veg. erosion potholes or puddles obstruction 	ifi'S vare		
Other Site Systems - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs	3. Wetlands (Area "F")	- dead/dying vegetation - change in water budget - general condition of wetlands	yer s		
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs	Other Site Systems				
signs	Perimeter Fence	integrity of fenceintegrity of gatesintegrity of locksplacement and condition of	good good		
	FORM 1	signs	Cont		

		MONTHLY INSPECTION LOG	Ů		
PROJECT NAME: Niagara (Niagara County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	P. Baken		DATE:	(MM DD YY)	
Item	Inspect For	Action Required		Comments	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/	- sediment build-up	inone			
Swale Outlets	- erosion	100m2			
	- condition of erosion protection	Good]
	- flow obstructions	None			
	- dead/dying vegetation	425			
	 cable concrete/gabion mats and riprap 	gloss Demlition			
Culverts	- sediment build-up	, nord	***************************************		
<u> </u>	- erosion				
	- condition of erosion protection	Jan Brown			
	- flow obstructions	الماس.			1
Gas Vents	intact /damage	treet			1
Wells	- locks secure	S.C.F.		The state of the s	
		_			•
FORM 1					

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagara County Refuse Site	County Refuse Site	LOCATION	Wheatfield, New York
INSPECTOR(S): FC Broken	Broken	DATE	(MM DD YY)
Item	Inspect For	Action Required	Соттепть
1. Perimeter Collection S	Perimeter Collection System/Off-Site Forcemain		
Manholes	 cover on securely condition of cover 	()2000)	
	- condition of inside of manhole - flow conditions	gozel	
Wet Wells	 cover on securely condition of cover condition of inside of wet well 	Coscop Coscop	
2. Landfill Cap		-	
Vegetated Soil Cover	- erosion - bare areas	New 2	
	- washouts - leachate seeps	7. C.	
	- length of vegetation - dead/dying vegetation	522	
FORM 1			

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagara County Refuse Site	: ra County Refuse Site	LOCATION:	Wheatfield, New York
INSPECTOR(S):	Fc Buken	DATE	\(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{
Item	Inspect For	Action Required	Comments
2. Landfill Cap (continued)	ned)		
Access Roads	 bare areas, dead/dying veg. erosion potholes or puddies obstruction 	Mens.	
3. Wetlands (Area 'F')	- dead/dying vegetation - change in water budget - general condition of wetlands	weign	
4. Other Site Systems			
Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 	acoup to reper	
FORM 1			

		MONTHLY INSPECTION LOG			****
PROJECT NAME: Niagara County Refuse Site	County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	Rc bedien		DATE:	[<u>원하라이라]</u> (MM DD YY)	
Item	Inspect For	Action Required		Comments	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/ Swale Outlets	 sediment build-up erosion condition of erosion protection flow obstructions 	more			
	- dead/dying vegetation - cable concrete/gabion mats and riprap	Jaraf			
Culverts	- sediment build-up - erosion	none			
	- condition of erosion protection - flow obstructions	general			
Gas Vents	- intact /damage	intect			
FORM 1					

	ON: Wheatfield, New York O D O O O O O O O	Comments				
MONTHLY INSPECTION LOG	LOCATION: DATE:	Action Required		acost gos d	yes girrel	none mone
	PROJECT NAME: Niagara County Refuse Site INSPECTOR(5): (C.	Inspect For	Perimeter Collection System/Off-Site Forcemain	cover on securelycondition of covercondition of inside of manholeflow conditions	- cover on securely - condition of cover - condition of inside of wet well	oil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation
	PROJECT NAME: INSPECTOR(S):	Item	1. Perimeter C	Manholes	Wet Wells Landfill Cap	Vegetated Soil Cover

County Refuse Sile LOCATION: Wheatfield, New York Action Required - bate areas, dead/dying veg. - comments - bate areas, dead/dying vegration - change in water budget - general condition of wetlands - thinggity of fence - integrity of fence - integrity of fence - integrity of cocks - integrity of cocks - placement and condition of - placement and condition of - signs	
dying veg. Action Required Action Reduired Action Required Action Required Action Reduired Action Redu	
veg. Action Required Action	: Niagara County Refuse Site
veg. nas none no	C Below
James girant answer	or
of iands	
of the state of th	dead/dying veg.
lands of	
lands of	.puddles
ilands of	vegetation ater budget
9	ition of wetlands
5	
5	lence salae
id condition of	ocks .
	nd condition of
·	

.

		MONTHLY INSPECTION LOG	ቦካ		
PROJECT NAME: Niagara	Niagara County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	C Edkar		DATE:	1910117119 (min da min)	
Item	Inspect For	Action Required		Сонинентѕ	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/ Swale Outlets	- sediment build-up - erosion	Justil.			
	 condition of erosion protection flow obstructions 	14, win 3			
	- dead/dying vegetation	1100m2			
	- cable concrete/gabion mats and riprap	Ca Constact			
Culverts	- sediment build-up	Pont.		-	
	- erosion	nove (
	- flow obstructions	gas			
Gas Vents	- intact /damage	intert			
. Weils	- locks secure	(rev)			
FORM 1				·	
					1

	LOCATION: Wheatfield, New York	DATE: <u> Ó Қ </u>	Comments								borg		
MONTHLY INSPECTION LOG			Action Required		ok . Ok		Jasob Jasob II	·	Mark	none	machin to	MONE	
	Niagara County Refuse Site	D. Belev.	Inspect For	Perimeter Collection System/Off-Site Forcemain	- cover on securely - condition of cover	- flow conditions	 cover on securely condition of cover condition of inside of wel well 	de:	Vegetated Soil Cover - erosion - bare areas	- washouts	- leachate seeps - length of vegetation	- dead/dying vegetation	
age of the state o	PROJECT NAME:	INSPECTOR(S):	ridi;	4. Perimeter C	Manholes		Wet wells	2. Landfill Cap	Vegetated			FORM 1	

PROJECT NAME: Niagara Couling Inspector(S): Landfill Cap (continued) Access Roads Access Roads Access Roads Access Roads Perimeter Fence	Integrity of fence - integrity of fence - integrity of locks - integrity of locks - placement and condition of signs	MONTHLY INSPECTION LOG Monde Monde Monde Agreed Agreed Agreed Agreed Agreed Agreed	OCATION:	Wheatfield, New York O A 2 O O (MM DD YY) Comments	
FORM 1					

					Page 3 of
		MONTHLY INSPECTION LOG	ڻ		
PROJECT NAME: Niag	Niagara County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	X Chelen		DATE	<u> </u>	
	Inspect For	Action Required	ı	Comments	
4. Other Site Systems (continued) Drainage Ditches/ - sedim	(continued) - sediment build-up				
Swale Outlets	- erosion	Money .			
	- condition of erosion protection	Josep			
	- flow abstructions	- Provided in the second			
	- dead/dying vegetation	- Juan			
	 cable concrete/gabion mats and riprap 	Gast			
,					
Culverts	- sediment build-up	Mond			
	- erosion	2000			
<u>I.</u>	- condition of erosion protection	Jean			
] [- flow obstructions	none			
Gas Vents	- intact /damage	good wolter			
Wells	· locks secure	পত্নস			
- Maca		-			
TOWN I					

	Wheatfield, New York		nts										The state of the s						
		(MM	Comments		***************************************														
ō	LOCATION:	DATE:																	
MONTHLY INSPECTION LOG			Action Required		Con	9055	no flow	0	goth 1	Jacob		New 2-	many	MOND	Mone	tell	CW		
	gara County Refuse Site	R. Buban	Inspect For	Perimeter Collection System/Off-Site Forcemain	- cover on securely	 condition of inside of manhole 	- flow conditions	- cover on securely	- condition of cover	- condition of inside of wet well		/er - erosion	- bare areas	- washouts	- leachate seeps	- length of vegetation	- dead/dying vegetation	•	
	PROJECT NAME: Niagara County Refuse Site	INSPECTOR(S):	Item	1. Perimeter Collect	Manholes			Wet Wells			2. Landfill Cap	Vegetated Soil Cover							FORM 1

		MONTHE INSPECTION FOR	h		
PROJECT NAME: Niagara County Refuse Site	County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	2 Briller		DATE:	[한참] 다음[이름] (MM DD YY)	
Item	Inspect For	Action Required		Comments	
2. Landfill Cap (continued)	(pa)	,			
Access Roads	- bare areas, dead/dying veg.	Monk			
	- erosion	ANONE			1 1
	- potholes or puddles	Just of the second			1
	- obstruction	worl	- TANKAL .		
3. Wetlands (Area "F")	- dead/dying vegetation	March			
	- change in water budget	laver			
-	- general condition of wetlands	grand			1.
4. Other Site Systems					*
Perimeter Fence	- integrity of fence	900			
	- integrity of gates	J200 0			:
	- integrity of locks	(pead)			1 .
	 placement and condition of signs 				
		_			
FORM 1					
					1

		MONTHLY INSPECTION LOG	9		
PROJECT NAME: Niagara County Refuse Site	County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	P. Beles		DATE:	O \(\sigma \) O \(
Item	Inspect For	Action Required		Соттепть	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/ Swale Outlets	- sediment build-up	می احتراب			
	 erosion condition of erosion protection 	Mont			
	- flow obstructions	No. C			1
	- dead/dying vegetation	More		The state of the s	
	- cable concrete/gabion mats and riprap	good condition			
Culverts	- sediment build-up	Mone			
	- erosion	ALBICK			
	- condition of erosion protection	gran (
	- flow obstructions	1000C			1
Gas Vents	intact /damage	good condition			
Wells	- locks secure	202			
FORM 1					

	Wheatfield, New York / O O O O O O O O O	Comments				
ON LOG	LOCATION: DATE:					
MONTHLY INSPECTION LOG		Action Required	none , april ,	about wond then	ad a d	wheel govern
	County Refuse Site	Inspect For intinued)	 sediment build-up erosion condition of erosion protection flow obstructions 	- dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up	 erosion condition of erosion protection flow obstructions 	- intact /damage - locks secure
	PROJECT NAME: Niagara County Refuse Site INSPECTOR(S):	Item Inspe. 4. Other Site Systems (continued)	Drainage Ditches/ Swale Outlets	Culverts		Gas Vents Wells FORM 1

		MONTHLY INSPECTION LOG	ניז	
PROJECT NAME: Niagara County Refuse Site	County Refuse Site		LOCATION:	Wheatfield, New York
INSPECTOR(S):	land Backen		DATE:	$\frac{ P P P P }{ P } $
. Ifem	Inspect For	Action Required		Comments
1. Perimeter Collection S	Perimeter Collection System/Off-Site Forcemain			
Manholes	- cover on securely	\$2h.		
	- condition of inside of manhole	Corect		
	- flow conditions	diash		
Wet Wells	- cover on securely	sah		
-	- condition of cover	Cool Cool		
	- condition of inside of wet well	cord		
2. Landfill Cap				
Vegetated Soil Cover	- erosion	OLDAN.		
	- bare areas	Mone		
	- washouts	JACONE-		
	- leachate seeps	Mare		
	- length of vegetation	150		
	- dead/dying vegetation	12.		
FORM 1				
T CALLY E				

MONTHLY INSPECTION LOG	Niagara County Refuse Site	MAN DD YY)	1 Inspect For Action Required	Landfill Cap (continued)	ess Roads - bare areas, dead/dying veg. אינאער / אינאער - erosion - erosion	- potholes or puddles בארבאים - obstruction	ds (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands	er Site Systems	meter Fence - integrity of fence	ndition of	
	PROJECT NAME: Niagar	INSPECTOR(5):	Item	2. Landfill Cap (contin	Access Roads		3. Wetlands (Area "F")	4. Other Site Systems	Perimeter Fence		

					Γ
		MONTHLY INSPECTION LOG			
PROJECT NAME: Niagara	Niagara County Refuse Site	1	LOCATION:	Wheatfield, New York	
INSPECTOR(S):	Kichand Becken		DATE:	(MM DD YY)	
Item	Inspect For	Action Required		Comments	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/ Swale Outlets	 sediment build-up erosion condition of erosion protection 	none.			
	- flow obstructions	7			1
	 dead/dying vegetation cable concrete/gabion mats and 	905			j l
]	riprap				
Cuiverts	- sediment build-up	-5-00N			ı
	- erosion	S. N.			ı
	- condition of erosion protection	0,000			1
	- flow obstructions	mont			1
Gas Vents	intact /damage	tari.			l
Wells	- locks secure	المرادية المرادية			1
, , ,					
FORM 1				The state of the s	\neg

		MONTHLY INSPECTION LOG		
PROJECT NAME: Niagara C	Niagara County Refuse Site	LOCATION:	ION: Wheatfield, New York	
INSPECTOR(S):	Seckan	DATE	(MM DD YY)	
Івет	Inspect For	Action Required	Comments	:
1. Perimeter Collection Sy	Perimeter Collection System/Off-Site Forcemain			
Manholes	- cover on securely	OK		
	- condition of cover	OK		
	- condition of inside of manhole	04		.
	- flow conditions	no flow		
Wet Wells	- cover on securely	0%		
	- condition of cover	OK		
	- condition of inside of wet well	06		
2. Landfill Cap				
Vegetated Soil Cover	- erosion	NONE		
	- bare areas	Apre		
	- washouts	None		
1	- leachate seeps	Love		
	- length of vegetation			
	- dead/dying vegetation	winter Kill		
FORM 1				

MONTHLY INSPECTION LOG	nty Refuse Site LOCATION: Wheatfield, New York	DATE: 11 21 01 44 9 9 12 12 12 12 12 12 12	nspect For Action Required		- bare areas, dead/dying veg. ACNQ	rosion Mande	, salppnd	bstruction	ead/dving vegetation	i			tegrity of fence G_{DOG}		1	_	
	gara County Refuse Site	RC Fackan	Inspect For	tinued)	- bare areas, dead/dying ve	- erosion	- potholes or puddles	- obstruction	- dead/dving vecetation	- change in water budget	- general condition of wetlan		- integrity of fence	- integrity of gates	- integrity of locks	 placement and condition of signs 	
	PROJECT NAME: Niagara County Refuse Site	INSPECTOR(S):	Item	2. Landfill Cap (continued)	Access Roads			<u></u>	3. Wetlands (Area "F")			4. Other Site Systems	Perimeter Fence				

CRA 5723 (17)

					-
		MONTHLY INSPECTION LOG	ڻ		
PROJECT NAME: Niagara County Refuse Site	County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	Rc Baken		DATE:	(MM DD YY)	*
Item	Inspect For	Action Required		Comments	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/ Swale Outlets		more .			
	- condition of erosion protection - flow obstructions	closed			
	- dead/dying vegetation	winter Kill			
	- cable concrete/gabion mats and riprap	good condition			
Culverts	- sediment build-up	Mond			
	- erosion	hime			
	 condition of erosion protection flow obstructions 	Jane Janes			
Gas Vents	intact /damage	intart			
Wells	- locks secure	Jes.			
FORM 1		·			
	Westerlands				

APPENDIX F MAINTENANCE RECORD LOGS

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: RC Bellen (MM DD YY) (HH mm) Scheduled/Unscheduled: Type of Maintenance Performed: replace discharge hose on WWA quipe 2. Company Performing Maintenance Dim Enterprises Name: 7134 Mariable Dr. Address: Contact Name: Richard C Bocken 3. Methods Used: pulled gamp replaced home, returned pump to well Description of Material Removed: Losse Problems/Comments: Richard C Beken FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: (MM DD YY) Time: 1 5 20 (HH mm) unschedules Scheduled/Unscheduled: Type of Maintenance Performed: electric to perfor www fi pump 2. Company Performing Maintenance OHM Enterprises lu-Name: Address: Contact Name: 3. Methods Used: reset breaker Description of Material Removed: Problems/Comments: Chad Becken INSPECTOR'S SIGNATURE FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: (MM DD YY) (HH mm) Time: Scheduled/Unscheduled: Type of Maintenance Performed: <u>alectric</u> 2. Company Performing Maintenance Address: La, WY 14120 Contact Name: 3. Methods Used: Description of Material Removed: Problems/Comments: FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site **CREW MEMBERS:** (MM DD YY) (HH mm) unschellad Scheduled/Unscheduled: Type of Maintenance Performed: electric breaker tripped on well 2. Company Performing Maintenance titervises We Name: Address: 14/20 Contact Name: 3. Methods Used: Description of Material Removed: Problems/Comments: INSPECTOR'S SIGNATURE FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: RC Bollen (MM DD YY) Time: | 1 | 2 | 4 (HH mm) Scheduled/Unscheduled: Type of Maintenance Performed: replace power lead on pump for WWA 2. Company Performing Maintenance O-EM Enterprises luc. Address: 7/34 Manigold Dr. North Tonowards, NY 14120 Contact Name: Rick Becking 3. Methods Used: pulled proop, replaced power lead and pump regulardo Description of Material Removed: power lead and stainless steel jump cylinde Problems/Comments: Rehard C Beller INSPECTOR FORM 2

MAINTENANCE RECORD LOG
PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York
CREW MEMBERS: PC Becken
1. Date: 031609 (MM DD YY)
Time: 1430 (IIII mm) Scheduled/Unscheduled: Scheduled Type of Maintenance Performed: Switch justor starters on Wat Wall A
2. Company Performing Maintenance
Name: DAM Enterprises lwc.
Address: 7134 Mangold Dr.
North Tonovande, NY 14120
Contact Name: Kichard (Becken
3. Methods Used:
disconnected motor power lead from well power box # and reconnected to well power box A
Teconied of to soil for
Description of Material Removed.
NOUL
Problems/Comments:
Mone
3/16/09 Rulard Bucken Sull Recharge INSPECTOR INSPECTOR'S SIGNATURE
FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: (MM DD YY) (HH mm) inscheduli Scheduled/Unscheduled: Type of Maintenance Performed: repair discharge from 2. Company Performing Maintenance Address: Tonawanda NY 14/20 Contact Name: Rick 3. Methods Used: Description of Material Removed: Problems/Comments: Richard C FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: (MM DD YY) (HH mm) Scheduled/Unscheduled: Type of Maintenance Performed: tempor: repair of fence 2. Company Performing Maintenance OIM Enterprises, INC Name: 7134 Margold Dr. North Tonomanda, NY 14120 Contact Name: Rick Becker 3. Methods Used: Found Former had pulled fonce from a D. Milleville (310-4004) tolal me he won Description of Material Removed: I to wie I the fewer back up the best I could to serve to fewer good Problems/Comments: I will visit site more frequently until FORM 2

MAINTENANCE RECORD LOG
PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York
CREW MEMBERS: [] () [) () () () () () () () ()
1. Date: O I I I O O (MM DD YY)
Time: OGO (HH mm) Scheduled/Unscheduled: Scheduled/
Type of Maintenance Performed: now for melor of landfill
2. Company Performing Maintenance
Name: DIM Enterprise INC. Address: 1134 Mangeld Dr.
Address: 7134 17/2 vige let Dr.
North Tones would 1-4 14120
Contact Name: Kichard (Trocken
3 Methods Used:
paths between well.
paths Interes well.
Description of Material Removed:
New S.
7
Problems/Comments:
nal
blulog Ruhard (Breken Stell D) Foil-
DATE INSPECTOR INSPECTOR'S SIGNATURE FORM 2

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York (MM DD YY) (HH mm) Scheduled/Unscheduled: Type of Maintenance Performed: well pump float with stuck 2. Company Performing Maintenance CHAM Exterprises /riv Name: Address: Contact Name: Fichard 3. Methods Used: Description of Material Removed: Problems/Comments: FORM 2

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York **CREW MEMBERS:** (MM DD YY) (HH mm) Time: Scheduled/Unscheduled: Type of Maintenance Performed: pulled, deaned + checked well pump Wet will A 2. Company Performing Maintenance Name: Address: Contact Name: Kick Becken 3. Methods Used: Description of Material Removed: Problems/Comments: INSPECTOR'S SIGNATURE FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: PC Kucken (MM DD YY) (HH mm) Scheduled/Unscheduled: Schedula Type of Maintenance Performed: pulled cleaned - checked well pring Wet Well B 2. Company Performing Maintenance Name: Address: 7134 Contact Name: Kick Becke Methods Used: Description of Material Removed: Problems/Comments: INSPECTOR'S SIGNATURE FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: (MM DD YY) (HH mm) schedulent Scheduled/Unscheduled: Type of Maintenance Performed: 2. Company Performing Maintenance Name: Address: Contact Name: Methods Used: cut out damaged fence, removed damaged posts Description of Material Removed: Problems/Comments: FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: 1511 + John (MM DD YY) (HH mm) schedule Scheduled/Unscheduled: Type of Maintenance Performed: TPPair tence 2. Company Performing Maintenance Name: Address: 5679 Tonowanda Greek Contact Name: 3// 3. Methods Used: Description of Material Removed: Problems/Comments: now Richard CiBe FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: (MM DD YY) (HH mm) Scheduled/Unscheduled: mowed grass Type of Maintenance Performed: 2. Company Performing Maintenance Address: Contact Name: 3. Methods Used: Description of Material Removed: more Problems/Comments: Richard C Bicken FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: RC Becken (MM DD YY) (HH mm) schedule-P Scheduled/Unscheduled: Type of Maintenance Performed: Changel from motor + discharged hase ordered float switches (4) 2. Company Performing Maintenance Enterprises INC. Name: 7134 Monigolal Dr. Address: North Tonawanda, M 14120 Contact Name: Rick Bo 3. Methods Used: pulled pump installed new pump + motor Description of Material Removed: more Problems/Comments: Rick Beck FORM 2

MAINTENANCE RECORD LOG
PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York
CREW MEMBERS: Richard C. Becken
1. Date: 100907 (MM DD YY)
Time: 1300 (HH mm) Scheduled/Unscheduled: W15cheduled
Type of Maintenance Performed: regain wet well B pump
2. Company Performing Maintenance
Name: O&M Enterprises, Inc.
Address 7134 Marigold Drive
North Tonawanda, NY 14120
Contact Name Richard C. Becken
3. Methods Used:
pulled pump, cleaned pump change diocharge pipe which had correde and had a hole in it
which had corrade and had a hole in it
Description of Material Removed:
2" pipe upple
Problems/Comments.
wone
16/09/09 Richard C. Becken
DATE INSPECTOR INSPECTOR'S SIGNATURE FORM 2

	MAINTENANCE RE	CORD LO	3
PROJECT NAME:	Niagara County Refuse Site	LOCATION:	Wheatfield, New York
CREW MEMBERS:	Richard C. Becken		
1. Date: 1 0	1209 (MM DD YY)		
Time: 1 1 Scheduled/Un	Scheduled: Scheduled:		
	nance Performed: reinstall well	21.1. 7.	an F. L.R
	orming Maintenance	s carent con	> 8x Cast D
Name:	O&M Enterprises, Inc.		
Address.	7134 Marigold Drive		
	North Tonawanda, NY 14	120	
Contact Name.	Richard C. Becken		
3. Methods Used:	_		
us to los) new stainless steel b	inga on l	of of well
cassing			2 U
-			#
	and the same and t		
		The same of the sa	
Description of I	Material Removed:		
none			
	·		
			•
			
Problems/Com	iments.		
- mone			
+			
L .			7
Whiloa	Richard C. Becken	Kil	IC Becler
DATE FORM 2	INSPECTOR		INSPECTOR'S SIGNATURE

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York Richard C. Becken CREW MEMBERS: (MM_DD_YY) Time: (mm HH) Scheduled/Unscheduled: Type of Maintenance Performed: Separ small hole in perimeter Company Performing Maintenance O&M Enterprises, Inc. Name: 7134 Marigold Drive Address North Tonawanda, NY 14120 Contact Name Richard C. Becken 3. Methods Used: Description of Material Removed: some Problems/Comments. more Richard C. Becken INSPECTOR INSPECTOR'S SIGNATURE FORM 2

		MAINTENANCE R	ECORD LO	2
PRO	JECT NAME:	Niagara County Refuse Site	LOCATION:	Wheatfield, New York
CRE	W MEMBERS:	Richard C. Becken	Priv Villation - chips	
1,	Date: ///	6609 (MM DD YY)		
-	Time: 16	3 0 (HH mm)		
;	Scheduled/Un.	scheduled: unscheduled		
•	Type of Mainte	mance Performed net National on	ud te replace	ekdac meter
2.	Company Perfo	orming Maintenance	,	
į	Name:	O&M Enterprises, Inc.		
	Address	7134 Marigold Drive		
	Mary decay	North Tonawanda, NY 1	4120	
(Contact Name:	Richard C. Becken	the contract of the contract o	
	Methods Used:			
_	national g.	nid employee changed els	etric meter:	the new nater is a
	aemote rea	of meter so they no longe	in nevel to	enter the site to get
_	a read in	1		
Į	Description of I	Material Removed:		
	old mete	~		
_				
-				
-				
-	Problems/Con	iments.		10, 10 and 10 an
	stone			
_				
_	ula la	Richard C. Becken		POIRI
	DATE	INSPECTOR	· <u> </u>	INSPECTOR'S SIGNATURE
ORN	vI 2			

APPENDIX G WATER LEVEL RECORDS

PROJECT NAME:

Niagara County Refuse Site

LOCATION:

Wheatfield, New York

DATE:

O110969 (MM DD YY)

CREW MEMBERS:

Richard C. Becken

Observation	Time of	Top of Casing	Depth to	Water Level
Well	Measurement	Elevation	Water	Elevation
		A	В	A-B
		feet	feet	feet
East "A"	11:45	598-93	25.34	573.59
East "B"	11:25	596.23	19.85	576.38
East "C"	10:55	598.69	20:22	378.47
East "D"	10:35	593-20	14.85	378.35
NCR-3S	9,45	579.60	2.97	576.63
NCR-4S	/61SU	591.88	2.9	588.98
NCR-5S	9:15	597.34	6.33	591.01
NCR-13S	12:15	593-13	4.4	588.73

Wet Wells

Total System

Time of

Flow	Measurement
43712850	12:30

FORM 16

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

0 2 0 5 0 9 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	ter Le	vel	
Observation	Time of	Elevation	Water		E	evatio	n	
Well	Measurement	A	В			A-B		
		feet	feet			feet		
EAST "A"	12.00	598.93	25.54	5	7	3.	3	9
EAST "B"	12:15	596.23	20.05	5	7	6.	1	8
EAST "C"	12:35	598.69	20.56	5	7	8.	1	3
EAST "D"	12:40	593.20	15.25	5	7	7.	9	5
NCR-3S	10:45	579.60	4.11	5	7	5.	4	9
NCR-4S	11:00	591.88	3.19	5	8	8.	6	9
NCR-5S	9:00	597.34	7.42	5	8	9.	9	2
NCR-13S	9:20	593.13	5.09	5	8	8.	0	4

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	11:50		~10"
WW B	11:30		~8"
WW C	10:25		~8"
WW D	10:05		~12"

Total System	Time of	
Flow	Measurement	
44029190	11:50	

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

3/5/2009

MMDDYY

CREW MEMBERS: RC Becken

		Top of Casing	Depth to	Water Level
Observation	Time of	Elevation	Water	Elevation
Well	Measurement	A	В	A-B
		feet	feet	feet
EAST "A"	11:55	598.93	25.6	573.33
EAST "B"	12:15	596.23	19.94	576.29
EAST "C"	12:25	598.69	20.2	578.49
EAST "D"	12:40	593.20	15.54	577.66
NCR-3S	9:50	579.60	3.55	576.05
NCR-4S	9:15	591.88	3.36	588.52
NCR-5S	11:30	597.34	6.78	590.56
NCR-13S	10:35	593.13	5.01	588.12
	ļ			

WET WELLS

Wet Well	Time of Measurement	Depth of Water
WW A	10:45	~10"
WW B	9:55	~12"
WWC	9:25	~6"
WW D	10:15	~6"

Total System	Time of	
Flow	Measurement	
44684020	10:45	

FORM 16

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

4/3/2009

MMDDYY

CREW MEMBERS: RC Becken

		Top of Casing	Depth to	Water Level
Observation	Time of	Elevation	Water	Elevation
Well	Measurement	A	В	А-В
		feet	feet	feet
EAST "A"	12:55	598.93	25.42	573.33
EAST "B"	12:15	596.23	19.44	576.29
EAST "C"	12:25	598.69	19.36	578.49
EAST "D"	12:40	593.20	14.81	577.66
NCR-3S	11:00	579.60	2.2	576.05
NCR-4S	11:45	591.88	2.39	588.52
NCR-5S	12:00	597.34	8	590.56
NCR-13S	10:35	593.13	4.04	588.12

WET WELLS

Wet Well	Time of Measurement	Depth of Water
WW A	10:00	~12"
WW B	11:25	~11"
WW C	10:45	~6"
WWD	10:15	~7"

Total System	Time of	
Flow	Measurement	
45203230	10:00	

FORM 16

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

[0 5 0 1 0 9 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	ter L	evel	
Observation	Time of	Elevation	Water		E	evati	on	
Well	Measurement	A	В			A-B		
		feet	feet	<u></u>		feet		
EAST "A"	10:55	598.93	25. 64	5	7	3.	2	9
EAST "B"	11:25	596.23	19.99	5	7	6.	2	4
EAST "C"	11:55	598.69	20.35	5	7	8.	3	4
EAST "D"	12:20	593.20	15.65	5	7	7.	5	5
NCR-3S	10:00	579.60	3.48	5	7	6.	1	2
NCR-4S	10:30	591.88	2.9	5	8	8.	9	8
NCR-5S	9:15	597.34	6.46	5	9	0.	8	8
NCR-13S	9:35	593.13	4.77	5	8	8.	3	6

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:15		~10"
WW B	10:45		~12"
WW C	10:10		~6"
WW D	9:40		~6"

Total System	Time of
Flow	Measurement
459770200	9:15

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

[0 6 0 4 0 9 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	ter Le	vel	
Observation	Time of	Elevation	Water		El	evatio	on	
Well	Measurement	Α	В			A-B		
		feet	feet			feet		_
EAST "A"	10:40	598.93	25.66	5	7	3.	2	
EAST "B"	11:25	596.23	20	5	7	6.	2	
EAST "C"	12:00	598.69	20.55	5	7	8.	1	
EAST "D"	12:20	593.20	15. <i>7</i> 5	5	7	7.	4	_
NCR-3S	9:50	579.60	dry					
NCR-4S	10:15	591.88	dry					
NCR-5S	9:05	597.34	6.87	5	9	0.	4	
NCR-135	9:25	593.13	5.95	5	8	7.	1	
				<u> </u>				

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:15		~10"
WW B	10:45		~8"
WW C	10:10		~7"
WW D	9:40		~6"

Total System	Time of
Flow	Measurement
46272300	9:20

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFLISE SITE

DATE: 0 7 1 0 0 9 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	ter Le	vel	
Observation	Time of	Elevation	Water		E	levatio	n	
Well	Measurement	Α	В			A-B		
		feet	feet			feet		
EAST "A"	11:50	598.93	25.62	5	7	3.	2	
EAST "B"	12:15	596.23	20.15	5	7	6.	2	2
EAST "C"	12:35	598.69	20.51	5	7	8.	1	4
EAST "D"	12:55	593.20	15.62	5	7	7.	4	
NCR-3S	10:45	579.60	dry					
NCR-4S	11:10	591.88	4.65				.,	
NCR-5S	11:30	597.34	10.1	5	9	0.	4	7
NCR-13S	10:10	593.13	7.47	5	8	7.	1	

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	10:00		~8"
WW B	11:00		~10"
WWC	10:30		~6"
WW D	10:20		~5"

Total System	Time of	
Flow	Measurement	
463354	10:00	

PROJECT NAME:

Niagara County Refuse Site

LOCATION:

Wheatfield, New York

DATE:

(MM DD YX)

CREW MEMBERS:

Richard C. Becken

Observation	Time of	Top of Casing	Depth to	Water Level
Well	Measurement	Elevation	Water	Elevation
		A	В	A-B
		feet	feet	feet
East "A"	1255	<98.98	25.51	573.47
East "B"	1230	516,23	19.77	376,46
East "C"	1155	378.69	20.33	578.36
East "D"	1140	593.20	15.51	577.69
NCR-3S	1005	579.60	3.66	375.74
NCR-4S	1050	591.88	2.78	588.90
NCR-5S	1120	597.34	7.47	589.87
NCR-13S	1445	593.13	5.92	587.21

Wet Wells

depth of vater

WWA	1500	ξ"	
WWB	1055	IO ^{‡1}	
WWC	1000	7"	
WWD	0900	8"	

Total System

Time of

Flow	Measurement
46489700	1500

FORM 16

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

0 9 0 5 0 9 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	ter L	evel	
Observation	Time of	Elevation	Water		E	levati	on	
Well	Measurement	Α	В			A-B		
		feet	feet			feet		
EAST "A"	11:25	598.93	25.52	5	7	3.	4	1
EAST "B"	11:50	596.23	19.83	5	7	6.	4	0
EAST "C"	12:15	598.69	20.3	5	7	8.	3	9
EAST "D"	12:40	593.20	15.69	5	7	7.	5	1
NCR-3S	10:00	579.60	dry					
NCR-45	10:30	591.88	dry					
NCR-5S	9:30	597.34	9.88	5	8	7.	4	6
NCR-13S	11:00	593.13	7.45	5	8	5.	6	8

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:00		~9"
WW B	10:45		~8"
WW C	9:45		~6"
WW D	9:15		~6"

Total System	Time of
Flow	Measurement
46566675	10:00

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE: 1 0 0 9 0 9 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	iter Le	vel	
Observation	Time of	Elevation	Water		E	levatio	on	
Well	Measurement	Α	В			A-B		
		feet	feet			feet		
EAST "A"	11:55	598.93	25.45	5	7	3.	4	į
EAST "B"	12:15	596.23	19.78	5	7	6.	4	
EAST "C"	12:35	598.69	20.04	5	7	8.	6	
EAST "D"	12:50	593.20	15,22	5	7	7.	9	
NCR-35	10:00	579.60	4.52	5	7	6.	1	
NCR-4S	10:55	591.88	3,49	5	8	8.	3	
NCR-5S	11:20	597.34	dry					
NCR-13S	11:35	593.13	đry					
								

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:00		~12"
WW B	10:25		~12"
WW C	9:45		~5"
WW D	9:25		~8 ⁿ

Total System	Time of
Flow	Measurement
46605320	9:00

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE: 1 1 0 8 0 9 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	ter Le	vel	
Observation	Time of	Elevation	Water		E	levatio	on	
Well	Measurement	Α	В			A-B		
		feet	feet	1		feet		
EAST "A"	12:55	598.93	25.63	5	7	3.	3	
EAST "B"	13:15	596.23	19.85	5	7	6.	3	
EAST "C"	13:35	598.69	20.45	5	7	8.	2	
EAST "D"	13:50	593.20	15.45	5	7	7.	7	
NCR-3S	11:00	579.60	3.74	5	7	5.	8	
NCR-4S	11:55	591.88	3.15	5	8	8.	7	
NCR-5S	12:20	597.34	9.78	5	8	7.	5	
NCR-13S	12:35	593.13	6.16	5	8	6.	9	
								_

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	10:00		~9"
WW B	11:25		~12"
WW C	10:45		~4"
WW D	10:25		~7"

Total System	Time of
Flow	Measurement
46730745	10:00

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE: 1 2 0 4 0 9 (M M D D Y Y)

CREW MEMBERS: RC Becken

Time of Measurement 11:45 12:00 12:10	Elevation A feet 598.93 596.23 598.69	Water B feet 25.53 19.66	5	E) 7 7	A-B feet 3.	on 4 5
11:45 12:00	feet 598.93 596.23	feet 25.53 19.66	5		feet 3.	
12:00	598.93 596.23	25.53 19.66	5		3.	
12:00	596.23	19.66	5			
				7	6	5
12:10	598.69	00.0	- 1		0.	
		20.3	5	7	8.	3
12:25	593.20	18.98	5	7	4.	2
7:15	579.60	2.57	5	7	7.	0
7:45	591.88	2.78	5	8	9.	1
8:25	597.34	5.92	5	9	1.	4
9:20	593.13	4.27	5	8	8.	8
	7:15 7:45 8:25	7:15 579.60 7:45 591.88 8:25 597.34	7:15 579.60 2.57 7:45 591.88 2.78 8:25 597.34 5.92	7:15 579.60 2.57 5 7:45 591.88 2.78 5 8:25 597.34 5.92 5	7:15 579.60 2.57 5 7 7:45 591.88 2.78 5 8 8:25 597.34 5.92 5 9	7:15 579.60 2.57 5 7 7 . 7:45 591.88 2.78 5 8 9 . 8:25 597.34 5.92 5 9 1 .

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	11:00		~9"
WW B	11:15		~5"
WWC	8:35		~10"
WW D	10:25		~9"

Total System	Time of
Flow	Measurement
47308225	11:00