2010 ANNUAL MONITORING REPORT

NIAGARA COUNTY REFUSE DISTRICT SITE

Wheatfield, Niagara County, New York

(NYSDEC Site No. 9-32-026)

SUBMITTED TO:

UNITED STATES
ENVIRONMENTAL PROTECTION
AGENCY

NEW YORK STATE
DEPARMENT OF
ENVIRONMENTAL CONSERVATION

SUBMITTED BY:

Niagara County Refuse District and PRP Group

PREPARED BY:

PARSONS

40 La Riviere Drive, Suite 350 Buffalo, New York 14202 (716) 541-0730 Fax (716) 541-0760

2010 ANNUAL MONITORING REPORT

NIAGARA COUNTY REFUSE DISTRICT SITE Wheatfield, Niagara County, New York (NYSDEC Site No. 9-32-026)

Submitted To:

The New York State Department of Environmental Conservation Division of Hazardous Waste Remediation

and

United States Environmental Protection Agency

Submitted By:

Niagara County Refuse District and PRP Group

Prepared By:

PARSONS

40 La Riviere Drive, Suite 350 Buffalo, New York 14202 (716) 541-0730 Fax (716) 541-0760

February 2011

TABLE OF CONTENTS

SECTION 1 INTRODUCTION	1-1
1.1 Introduction	1-1
1.2 Procedures	1-1
1.2.1 Groundwater Sampling	1-1
1.2.2 Effluent Sampling	1-2
1.2.3 Water Levels	1-2
1.2.4 Site Inspections	
SECTION 2 RESULTS	2-1
2.1 Analytical Results	2-1
2.1.1 Effluent Samples	2-1
2.1.2 Groundwater Analytical Results	2-1
2.2 Site inspections	2-2
2.3 Maintenance	2-3
2.4 Water Levels	2-4
SECTION 3 SUMMARY AND CONCLUSIONS	3-1
SECTION 4 REFERENCES	4-1
LIST OF TABLES	
Table 2.1 Detected Analytes in Groundwater Samples	2-5
Table 2.2 Monthly Site Inspection Findings	2-6
Table 2.3 Water Level Measurements	2-7

TABLE OF CONTENTS

LIST OF FIGURES

ı		CI	ID	1	1	SI	TE	DI	Λ	N	ı
	ы	G	UK	Ί.	. 1	21		PL	_A	N	ı

FIGURE 2.1A PLOT OF ALUMINUM CONCENTRATION

FIGURE 2.1B PLOT OF BARIUM CONCENTRATION

FIGURE 2.1C PLOT OF CALCIUM CONCENTRATION

FIGURE 2.1D PLOT OF CHROMIUM CONCENTRATION

FIGURE 2.1E PLOT OF COPPER CONCENTRATION

FIGURE 2.1F PLOT OF IRON CONCENTRATION

FIGURE 2.1G PLOT OF MAGNESIUM CONCENTRATION

FIGURE 2.1H PLOT OF MANGANESE CONCENTRATION

FIGURE 2.11 PLOT OF POTASSIUM CONCENTRATION

FIGURE 2.1J PLOT OF SODIUM CONCENTRATION

LIST OF APPENDICES

APPENDIX A CITY OF NORTH TONAWANDA INDUSTRIAL WASTEWATER DISCHARGE PERMIT AND COMPLIANCE SAMPLING RESULTS

APPENDIX B CORRESPONDENCE

APPENDIX C ANALYTICAL DATA

APPENDIX D DATA VALIDATION REPORT

TABLE OF CONTENTS

APPENDIX E MONTHLY INSPECTION LOGS AND PHOTOGRAPHS

APPENDIX F MAINTENANCE RECORD LOGS

APPENDIX G WATER LEVEL RECORDS

APPENDIX H COMPACT DISC CONTAINING REPORT

SECTION 1 INTRODUCTION

1.1 INTRODUCTION

In accordance with the United States Environmental Protection Agency (USEPA) Record of Decision (USEPA, 1993), the United States District Court Consent Decree (USA, 1995), and the USEPA-approved Operation, Maintenance, and Monitoring (OM&M) Manual (CRA, 2000), the Niagara County Refuse Site Potentially Responsible Parties (PRP) Group performed a remedial action at the Niagara County Refuse Site (Site), Wheatfield, New York. The PRP Group currently provides site-related OM&M services. This Annual Monitoring Report summarizes monitoring activities from January through December 2010.

The Site is a closed municipal landfill approximately 60 acres in size, located along the eastern border of the Town of Wheatfield, New York, and the western border of the City of North Tonawanda, New York. The southern edge of the Site lies approximately 500 feet north of the Niagara River. A perimeter collection system (PCS) and a perimeter barrier system are used to prevent offsite contaminant migration. These systems began operation in November of 2000.

1.2 PROCEDURES

1.2.1 Groundwater Sampling

In accordance with the OM&M Manual (CRA, 2000), samples were collected from wells NCR-3S, NCR-4S, and NCR-13S in December 2010. An attempt was made to sample well NCR-5S however; there was no water in the well. These four wells are screened in the shallow overburden materials. Groundwater sampling on an annual schedule commenced in 2006. Annual groundwater sampling is scheduled to continue for an undetermined time period, assuming that water level conditions permit collection of groundwater samples.

Each groundwater monitoring well was purged prior to sample collection by pumping five well volumes of groundwater from the well using a dedicated bladder pump. Physical parameters including pH, temperature, conductivity, and turbidity of the purge water were periodically measured and recorded. In the event that a well could not supply enough water to complete the purging of five well volumes, the well was pumped dry on three consecutive days prior to sampling. All purge water was placed in an onsite wet-well. Wet well water is discharged to the City of North Tonawanda POTW.

Groundwater sampling began immediately at the completion of purging. A dedicated bladder pump was used to collect the groundwater samples. The discharge rate was first adjusted to approximately 100 milliliters per minute. The sample was then collected directly into the sample containers.

Groundwater samples were collected and analyzed for:

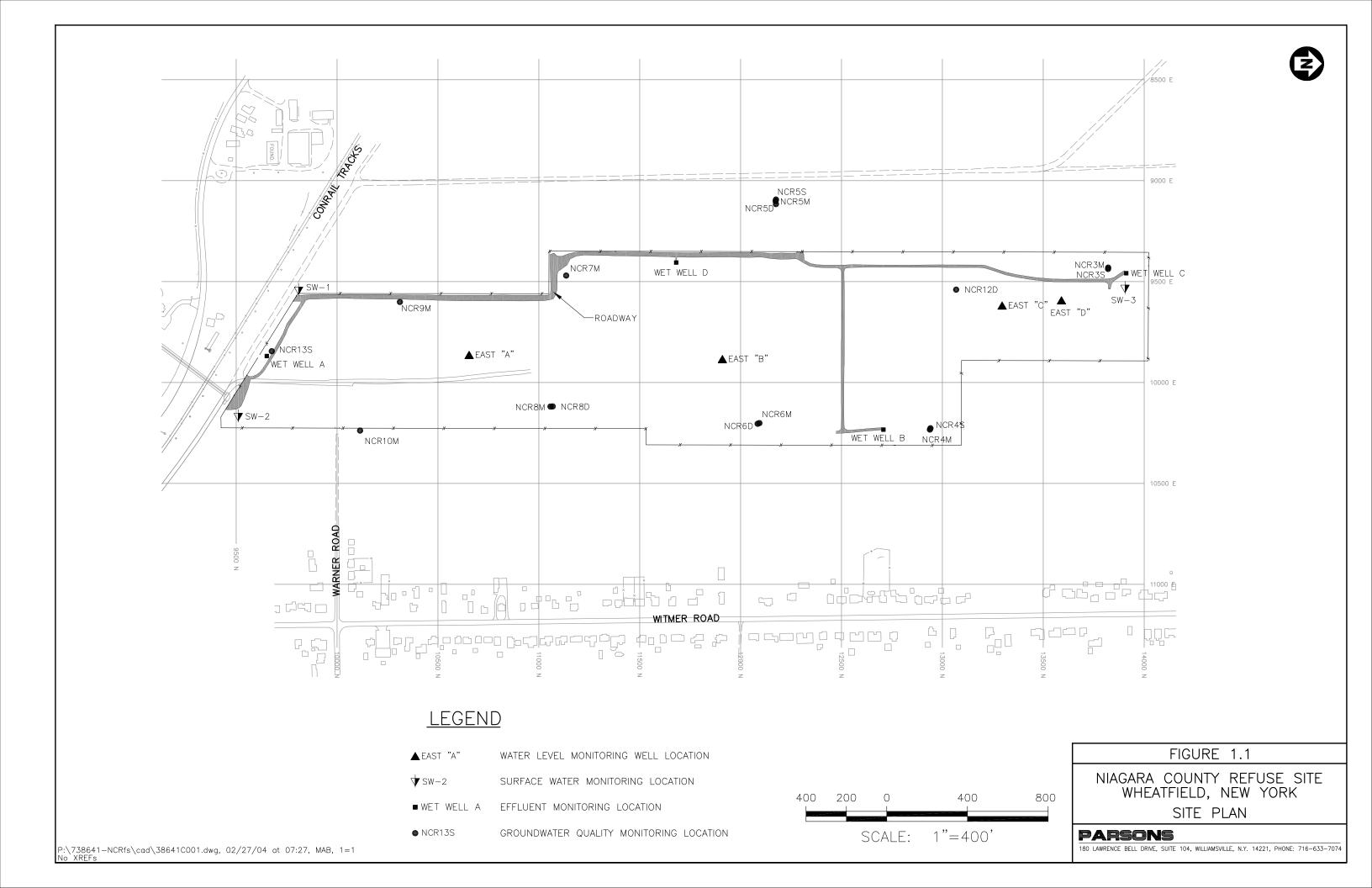
- Mercury using EPA method 245.1 and method SW-7470; and
- Inorganics using EPA method 200.7 and method SW-6010.

The groundwater samples were analyzed by TestAmerica Laboratories of Amherst, New York. A chain-of-custody (COC) accompanied the sample bottles from the laboratory, to the field, and back to the laboratory.

As noted in previous reports, due to slow recovery times and low water levels in the wells to be sampled after purging, collection of the required groundwater volume for all groundwater and quality assurance samples is often not possible. During the December 2010 sampling event, one well (NCR-5S) was not sampled due to a lack of water in the well.

A request was submitted to the USEPA and NYSDEC in 2005 to reduce the analytical parameters in each of the groundwater samples collected. The request proposed reducing groundwater laboratory analysis to five metals that have historically been identified as exceeding NYSDEC and USEPA groundwater standards in the shallow groundwater at the Site. The elimination of analysis for VOCs and SVOCs was also proposed. The USEPA agreed, after discussions with the NYSDEC and input from NYSDOH, to reduce the collection of VOCs and SVOCs to every two years beginning in 2006 (every other groundwater sampling event). The USEPA requested that metals continue to be analyzed for each groundwater sampling round. The basis for this decision was stated to be the significant residential growth around the Site in recent years.

1.2.2 Effluent Sampling


Groundwater from the perimeter collection system is discharged to the City of North Tonawanda treatment system without pre-treatment. A monitoring station in Wet Well A allows both the effluent water quality and the volume of effluent to be verified by the City of North Tonawanda. In compliance with the City of North Tonawanda Industrial Wastewater Discharge Permit, the effluent was sampled monthly through February 2007. A revised permit was issued covering from February 2007 through March 2010. A new Industrial Wastewater Discharge Permit (Appendix A) was issued by the City of North Tonawanda during the reporting period and is effective from March 31, 2010 through April 1, 2013. The new permit has a reduced analytical parameter list compared to the original permit, and continues to require a semi-annual sampling frequency. Semi-annual samples were collected in March and September 2010. The effluent samples are collected in compliance with the permit using the procedures identified in the OM&M Manual (CRA, 2000). Effluent samples are analyzed by the City of North Tonawanda. The sole purpose of these analyses is for compliance with the Industrial Wastewater Discharge Permit.

1.2.3 Water Levels

Water levels were measured in four monitoring well locations inside the limits of the landfill, and four wet well locations. Water level measurements were collected monthly during 2010. The water levels were measured with an electronic water level indicator, and reported as an elevation above mean sea level. Figure 1.1 shows the locations of the water level monitoring points.

1.2.4 Site Inspections

The Site was inspected by O&M Enterprises, Inc. on a monthly basis, in accordance with procedures in the OM&M Manual. The perimeter collection system, offsite force main, wetlands, perimeter fence, drainage ditches, swale outlets, culverts, gas vents, wells, and landfill cap were visually inspected.

SECTION 2 RESULTS

2.1 ANALYTICAL RESULTS

2.1.1 Effluent Samples

Effluent samples were collected in March and September 2010 by O&M Enterprises, Inc. and analyzed by the City of North Tonawanda. The analytical results from these samples were used by the City to confirm that the effluent received from the Site met the criteria for acceptance by the City treatment system. All analytical results were found to be compliant with the discharge permit effective March 31, 2010. Effluent analytical results for 2010 and the new permit are presented in Appendix A.

2.1.2 Groundwater Analytical Results

Analytical results for the sampling event during this reporting period are summarized in Table 2.1. The results were compared to NYSDEC ambient water quality standards (AWQS), NYSDOH maximum contaminant levels (MCLs), and USEPA MCLs (see Table 2.1). This reporting period includes months 111 to 122, since the start-up of the perimeter collection system in November 2000. The collection of quarterly and semi-annual groundwater samples has been completed as outlined in the OM&M Manual (CRA, 2000). Annual collection of groundwater samples began in 2006. Groundwater sample analytes are currently scheduled to include metals annually, and volatile organic and semivolatile organic parameters every two years, as approved by the USEPA (see Appendix B). The groundwater samples collected during this reporting period were analyzed for metals only.

The analytical results received from the laboratory are presented in Appendix C, along with the chain-of-custody (COC). A Sample Collection Data Sheet, which includes required and actual purge volumes, sample date, time, description, required analyses, and the COC number for each well, is included in Appendix C. This sheet also indicates which well was used to collect the matrix spike (MS) and the matrix spike duplicate (MSD). A sheet of well purging information, including pH, conductivity, turbidity, odor, comments, and well volumes, is also provided in Appendix C.

December 2010 Event

Monitoring wells NCR-3S, NCR-4S, and NCR-13S were sampled on December 16, 2010. The locations of the monitoring wells are provided in Figure 1.1. The data validation report is presented in Appendix D.

Seventeen metals were identified in one or more of the groundwater samples. Five of the detected metals exceeded either the NYSDEC AWQS, NYSDOH MCLs, or USEPA MCLs, which is consistent with previous sampling events. In general the detected values appeared to be consistent with ranges observed in previous sampling events. Two metals, lead and zinc, have detections that are greater than historic high at the site.

PARSONS

- Aluminum exceeded the NYSDEC AWQS in each of the three samples. Historically these wells have been above the NYSDEC AWQS standard.
- Copper was identified in each of the three samples above the NYSDEC AWQS.
 Typically, copper exceeds NYSDEC AWQS in two or more of the groundwater samples.
- Iron was identified in each of the samples exceeding both the AWQS and the NYSDOH MCL. The Record of Decision (ROD) (USEPA, 1993) identifies iron as typically exceeding MCLs in the regional groundwater.
- Lead was found above the analytical detection limits but below the water quality standards for lead, in two of the three samples. The concentration of lead in NCR-3S was 3.7 ug/L. Lead had not been identified above detection limits previously at this location.
- Magnesium was identified in each of the three samples and exceeded the AWQS guidance value (not a standard) in each of the samples.
- Sodium was found above the NYSDEC AWQS, the NYSDOH MCL, and USEPA MCL in two of the three samples. The Record of Decision (ROD) (USEPA, 1993) identifies sodium as typically exceeding MCLs in the regional groundwater.
- Zinc was detected below the standards used for comparison in each of the three samples. The detected level in NCR-13S (47.3 ug/L) was higher than had been identified in previous sampling events.

Plots of historic metals concentrations over time are presented in Figure 2.1A through Figure 2.1J.

Groundwater analytical results were reviewed and validated by Parsons for usability (see Appendix D for the complete report). The laboratory data packages were found to be of good overall quality. Groundwater samples were collected, properly preserved, shipped under a COC record, and received at the laboratory within one day of sampling. Certain metals results were considered estimated, and flagged with a "J", due to noncompliant matrix spike recoveries. Metals sample results were considered usable following data validation. The metals results were 100% complete. Detected sodium results were considered estimated due to noncompliant matrix spike recoveries. Iron and nickel results were considered estimated due to noncompliant field duplicate precision results.

2.2 SITE INSPECTIONS

Monthly Site inspections were conducted between January and December 2010. During the inspections, the perimeter collection system, offsite force main, manholes, wet wells, landfill cap, wetlands, perimeter fence, drainage ditches, swale outlets, culverts, gas vents, and monitoring wells were each visually inspected. A summary of the inspection findings is

PARSONS

included in Table 2.2. Copies of the Monthly Inspection Logs have been included in Appendix E.

Each of the inspections found the manholes and wet wells to be in good condition. Water levels in the wet wells were measured during each inspection visit. Examination of the landfill cap vegetative cover included checking for erosion, bare areas, washouts, leachate seeps, length of vegetation, and dead/dying vegetation. Additionally, during the examination of the landfill cap, the access roads were examined for bare areas, dead/dying vegetation, erosion, potholes/puddles, and obstructions. No surface erosion, bare spots, or leachate seeps were noted. The landfill cap was noted to be covered with snow during the January and February site inspections and the cover vegetation was noted to be low, typical for the early part of the year, during the January, March, April, and May site inspections. Tall vegetation was noted on the cap during the June, July, and August site inspections. The landfill cap was mowed in September and the cover vegetation remained short for the remainder of 2010.

Post-construction monitoring of the wetland replacement was performed annually between 2001 and 2005. Monitoring results indicated that the wetland creation was successful. Although the formal annual inspections are no longer required, monthly visual inspection of the wetlands will continue, to document general conditions.

The wetlands were visually examined during monthly inspections for growth and propagation of wetland species, dead/dying vegetation, presence of invasive species (i.e., purple loosestrife), change in water budget, and general conditions. No signs of damage to the wetlands due to loss of vegetation, or changes in the water budget, were observed during each of the inspections. Water levels in the wetlands were noted as slightly high in February, March, and June and slightly low in May, June, July, August, September, and November. Typical winter vegetative conditions were observed from January through March, and again in October through December, and conditions were noted as good during the May through September inspections.

Overall the landfill system, including the perimeter fence, drainage ditches, swale outlets, culverts, gas vents, and monitoring wells were found to be in acceptable condition.

2.3 MAINTENANCE

Scheduled maintenance during this reporting period included:

- Cutting trees and brush inside perimeter fence that could damage fence.
- Cutting tall grass, brush, and weeds along the inside of the perimeter fence line and pathways to monitoring and observation wells.
- Mowing the landfill cap.
- Cutting brush near fence line, control shed, and front gate.
- Repairs to a hole in the perimeter fence.

Occasional unscheduled maintenance at the landfill is required. During this reporting period, only one item requiring unscheduled maintenance was addressed.

• On July 16, a leaking hose was replaced at wet well A and the autodialer was reset.

Maintenance Record Logs are included in Appendix F.

2.4 WATER LEVELS

Monthly water level measurements were collected to (1) ensure that water levels inside the landfill are lowered by the operation of the perimeter collection system; and (2) allow planning for groundwater sampling dates, when the maximum number of wells could be sampled. Water levels were collected from the wet wells, the piezometers (hydraulic monitoring locations) within the limits of the landfill, and the groundwater monitoring wells (see Figure 1.1). Water levels in the wet wells were collected during the monthly inspections and recorded on water level records (Appendix G). The water level data, including depths to water and elevations, are summarized on Table 2.3. During 2010, water levels were collected from the monitoring wells on a monthly basis. Water levels generally varied between 0.4 and 3.8 feet over the course of the year.

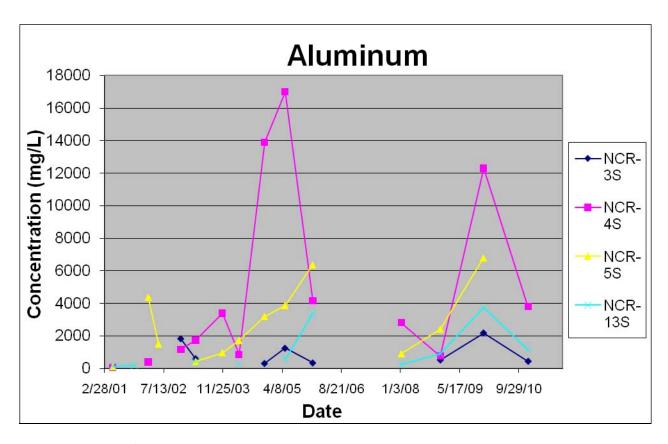


Figure 2.1A: Plot of Historical Aluminum Concentration

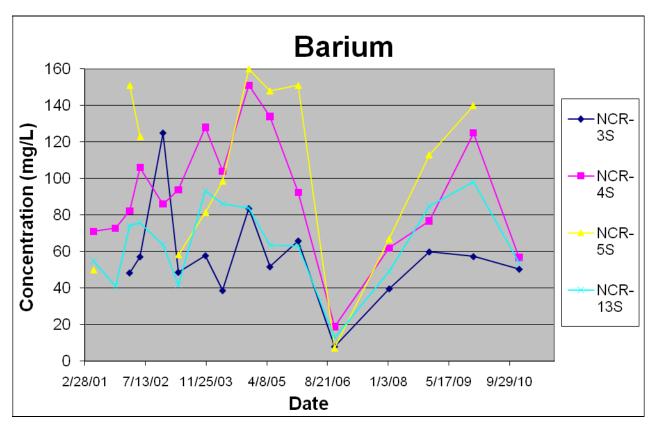


Figure 2.1B: Plot of Historical Barium Concentration

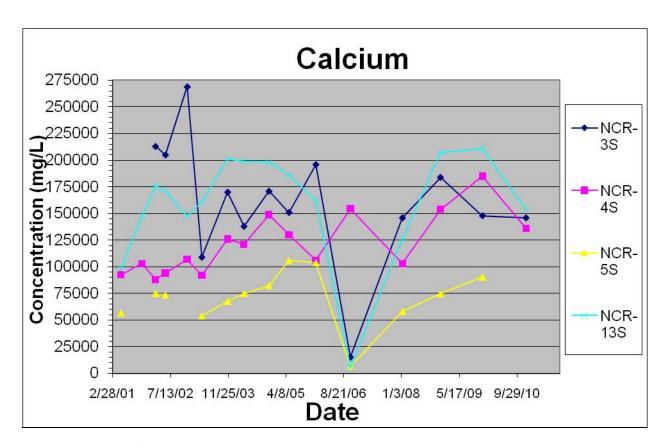


Figure 2.1C: Plot of Historical Calcium Concentration

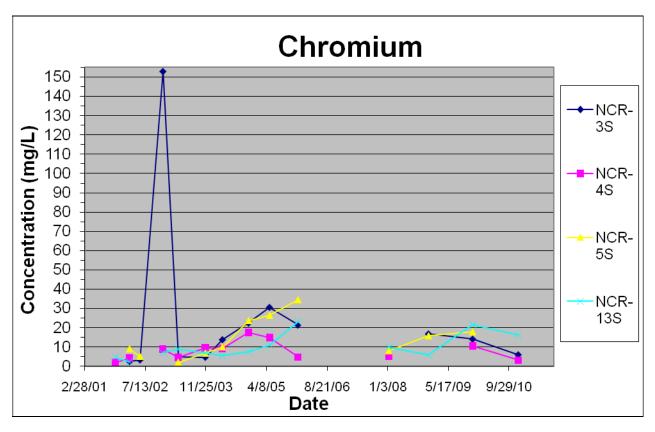


Figure 2.1D: Plot of Historical Chromium Concentration

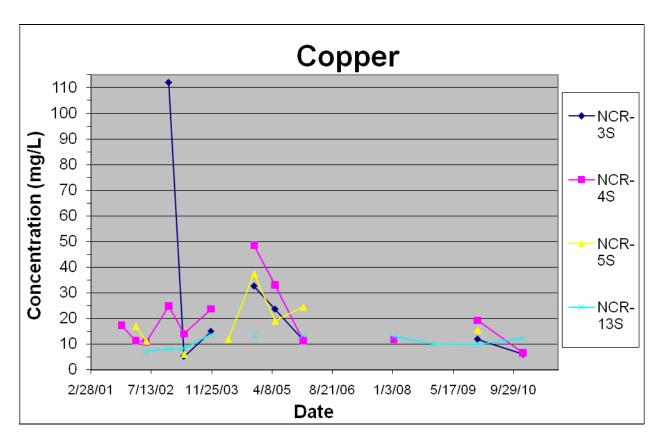


Figure 2.1E: Plot of Historical Copper Concentration

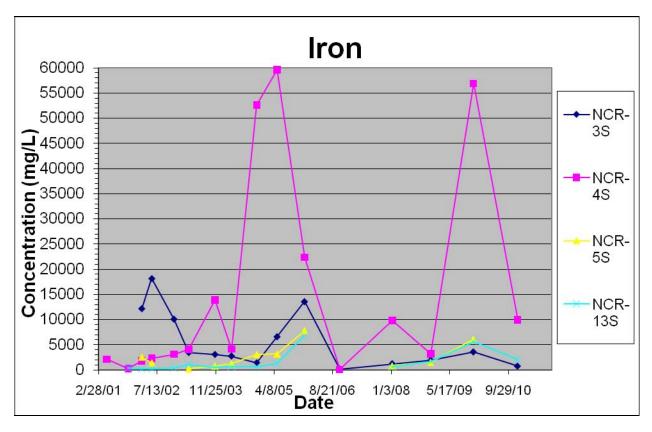


Figure 2.1F: Plot of Historical Iron Concentration

Figure 2.1G: Plot of Historical Magnesium Concentration

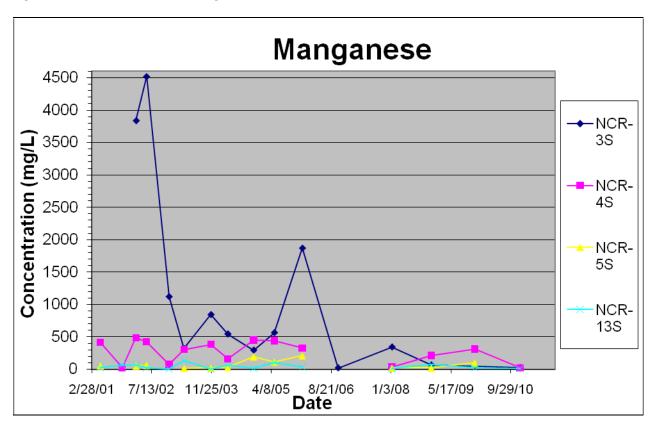


Figure 2.1H: Plot of Historical Manganese Concentration

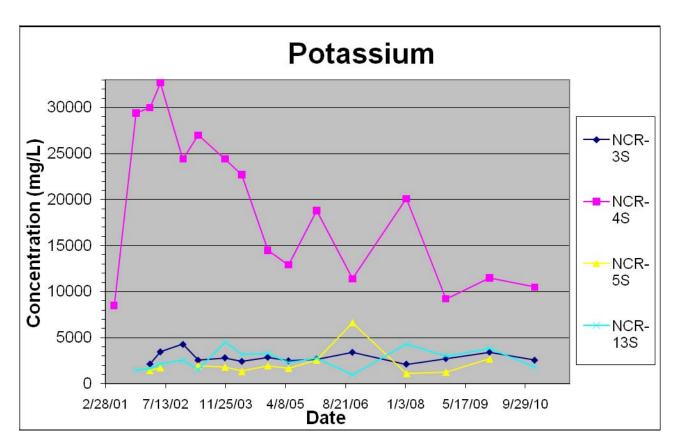


Figure 2.11: Plot of Historical Potassium Concentration

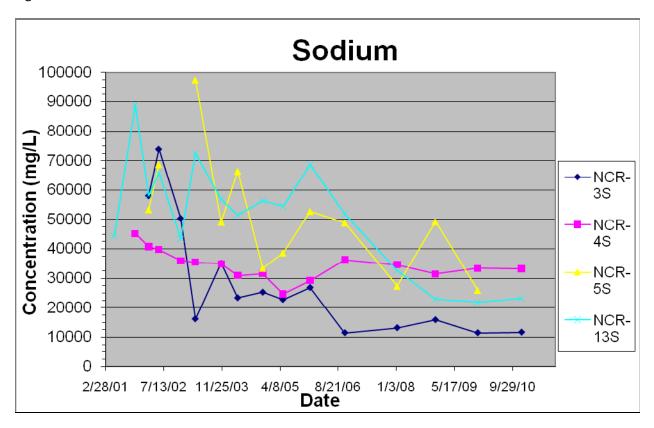


Figure 2.1J: Plot of Historical Potassium Concentration

Table 2.1 Detected Analytes in Groundwater Samples Niagara County Refuse Site Wheatfield, Niagara County, New York

									,
City of North		Sample ID:				NCR-3S	NCR-4S	NCR-5S	NCR-13S
216 Payne A		Lab ID:				RTL1063-04	RTL1063-05		RTL1063-01
North Tonaw		Source:				TAL-Buffalo	TAL-Buffalo	TAL-Buffalo	TAL-Buffalo
C/O Niagara	County Refuse Site	SDG:	NYS	NYS	US	RTL1063	RTL1063		RTL1063
Validated Gr	oundwater Sampling	Matrix:	DEC	DOH	EPA	WATER	WATER	WATER	WATER
December 20	10	Sampled:	AWQS*	MCL	MCL	12/16/2010	12/16/2010		12/16/2010
		Validated:				1/13/2011	1/13/2011		1/13/2011
CAS NO.	COMPOUND	UNITS:							
	METALS								
7429-90-5	Aluminum	ug/L	100	-	-	465	3810	NS	1170
7440-39-3	Barium	ug/L	1000	2000	2000	50.4	56.7	NS	53.9
7440-43-9	Cadmium	ug/L	5	5	5	0.5 J	0.9 J	NS	1.1
7440-70-2	Calcium	ug/L	-	-	-	146000	136000	NS	154000
7440-47-3	Chromium	ug/L	50	100	100	6	3.2 J	NS	16.1
7440-48-4	Cobalt	ug/L	-	-	-	4 U	0.6 J	NS	4 U
7440-50-8	Copper	ug/L	5	-	-	6 J	6.6 J	NS	12.4
7439-89-6	Iron	ug/L	300 ^{>}	300 ^{>}	-	723	9960	NS	2030
7439-92-1	Lead	ug/L	25	25	15	3.7 J	6.7	NS	5 U
7439-95-4	Magnesium	ug/L	35000 ⁺	-	-	89400	47400	NS	59200
7439-96-5	Manganese	ug/L	300 ^{>}	300 ^{>}	-	25.9	22.9	NS	13.1
7440-02-0	Nickel	ug/L	100	-	-	6.8 J	4.4 J	NS	8.2 J
7440-09-7	Potassium	ug/L	-	-	-	2540	10500	NS	1770
7782-49-2	Selenium	ug/L	10	50	50	15 U	9.4 J	NS	15 U
7440-23-5	Sodium	ug/L	20000	20000	20000	11700 J	33300 J	NS	23200 J
7440-62-2	Vanadium	ug/L	14	-	-	2.5 J	2.1 J	NS	3.7 J
7440-66-6	Zinc	ug/L	2000+	5000	-	20.6	268	NS	47.3

^{* =} NYSDEC Ambient Water Quality Standards.

Boxed values exceed NYSDEC AWQS.

Bold values exceed NYSDOH maximum contaminant levels (MCL).

Shaded values exceed USEPA maximum contaminant levels.

Note: A sample was scheduled to be collected from NCR-5S however no water was present in the well on the sampling date.

⁺⁼Guidance value. ND = Not detected.

> = Sum of iron and manganese should not exceed 500 ug/L NYDEC or 300 ug/L NYSDOH.

 $J = Estimated \ value. \ \ \textbf{-} = No \ standard \ identified. \ \ NS = Well \ not \ sampled \ due \ to \ a \ lack \ of \ water.$

Table 2.2 Monthly Site Inspection Results

Inspection Item	Acceptable	Not Acceptable	Comments
Manholes	X		
Wet Wells	X		Water levels were measured monthly.
Wetlands	X		Continued growth of target vegetation. A slightly higher than normal water level was noted during the February, March, and July inspections. A slightly lower water level was noted during the May, July, August, September, and November inspections. Normal winter conditions, expected for the time of year, were observed during the January through March and October through December inspections.
Perimeter Fence	X		Repaired small hole cut in the perimeter fence.
Condition of Roads	X		No erosion or other problems. Covered in snow during the January and February inspections.
Integrity of the Cap	X		No problems were noted in 2010. Covered in snow in January and February.
Drainage Ditches/Swales	X		
Gas Venting System	X		
Wells	X		Water levels were measured monthly.
Culverts	X		
Vegetative Cover	X		The vegetative cover was covered in snow during the January and February inspections. Height of vegetation on the cap was noted as low during the January, March, April, and May inspections and noted as tall during the June, July, and August inspections. The cap was mowed prior to the September 2010 inspection.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	12/5	/2000	1/8/	2001	2/1/	2001	3/8	/2001	4/4	/2001	5/8	/2001	6/5	/2001	7/2	/2001	8/1	/2001	9/5/	/2001	10/4	/2001	11/5	5/2001	12/1	1/2001
Observation	Top of	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation																				
Point	Casing	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)														
	(ft. msl)	(ft)		(ft)		(ft)		(ft)		(ft)		(ft)															
East "A"	598.93	22.05	576.88	-	-	-	-	21.34	577.59	-	-	22.21	576.72	21.98	576.95	-	-	22.51	576.42	22.63	576.30	22.61	576.32	22.74	576.19	22.88	576.05
East "B"	596.23	19.12	577.11	-	-	-	-	19.35	576.88	-	-	19.23	577.00	19.30	576.93	-	-	20.50	575.73	19.44	576.79	19.22	577.01	19.36	576.87	19.44	576.79
East "C"	598.69	17.46	581.23	-	-	-	-	17.86	580.83	-	-	18.37	580.32	18.38	580.31	-	-	18.65	580.04	18.64	580.05	18.20	580.49	18.80	579.89	18.75	579.94
East "D"	593.20	11.10	582.10	-	-	-	-	12.45	580.75	-	-	12.86	580.34	12.79	580.41	-	-	13.00	580.20	12.8	580.40	12.24	580.96	12.74	580.46	12.94	580.26
WW A	-	2.50	-	2.67	-	2.33	-	1.13	-	2.29	-	1.83	-	2.17	-	1.58	-	1.83	-	-	-	1.83	-	2.33	-	2.08	-
WW B	-	2.20	-	2.42	-	1.96	-	1.09	-	1.79	-	2.17	-	1.92	-	1.50	-	2.00	-	1.92	-	1.58	-	1.50	-	2.08	-
ww c	-	1.50	-	2.42	-	1.70	-	0.92	-	2.04	-	2.00	-	1.67	-	1.33	-	2.08	-	2.33	-	1.25	-	2.00	-	1.58	-
WW D	-	1.70	-	-	-	1.50	-	0.99	-	1.08	-	1.50	-	1.33	-	2.0	-	1.25	-	2.25	-	2.00	-	2.08	-	1.33	-
NCR-3S	579.60	-	-	-	-	-	-	-	-	-	-	-	-	3.71	575.89	-	-	dry	-	dry	-	dry	-	5.10	574.50	4.64	574.96
NCR-4S	577.88	-	-	-	-	-	-	-	-	-	-	-	-	4.28	573.60	-	-	dry	-	dry	-	dry	-	4.51	573.37	3.92	573.96
NCR-5S	579.34	-	-	-	-	-	-	-	-	-	-	-	-	9.10	570.24	-	-	dry	-	dry	-	dry	-	dry	-	dry	-
NCR-13S	577.15	-	-	-	-	-	-	-	-	-	-	-	-	7.05	570.10	-	-	7.85	569.30	7.80	569.35	7.70	569.45	6.65	570.50	6.11	571.04

	Elevation	1/2/	/2002	2/4/	2002	3/4/	2002	4/1/	2002	5/3/	/2002	6/4	/2002	7/2/	2002	8/7	/2002	9/6/	2002	10/3	/2002	11/7	/2002	12/3	3/2002
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)		(ft)	l																				
East "A"	598.93	22.90	576.03	22.81	576.12	22.03	576.90	22.25	576.68	20.06	578.87	19.84	579.09	22.00	576.93	22.65	576.28	22.78	576.15	28.48	570.45	23.25	575.68	23.36	575.57
East "B"	596.23	19.63	576.60	19.39	576.84	19.46	576.77	19.49	576.74	19.44	576.79	20.59	575.64	19.56	576.67	19.40	576.83	19.40	576.83	19.46	576.77	19.35	576.88	-	-
East "C"	598.69	18.70	579.99	18.51	580.18	18.70	579.99	18.63	580.06	18.80	579.89	18.74	579.95	18.78	579.91	18.95	579.74	18.92	579.77	18.99	579.70	19.30	579.39	19.35	579.34
East "D"	593.20	13.16	580.04	12.95	580.25	13.3	579.90	13.35	579.85	13.50	579.70	13.73	579.47	13.74	579.46	13.81	579.39	13.58	579.62	14.01	579.19	13.2	580.00	13.54	579.66
WW A	-	1.17	-	2.17	-	1.67	-	2.00	-	2.00	-	2.17	-	1.50	-	2.50	-	1.83	-	1.50	-	1.42	-	2.00	-
WW B	-	1.00	-	2.00	-	1.25	-	1.33	-	1.67	-	2.00	-	1.58	-	1.67	-	1.42	-	1.33	-	1.17	-	1.25	-
ww c	-	1.50	-	1.42	-	1.58	-	1.50	-	1.83	-	1.25	-	1.67	-	2.17	-	1.50	-	1.33	-	1.25	-	1.50	-
WW D	-	1.50	-	1.00	-	1.42	-	1.17	-	1.58	-	1.50	-	1.92	-	2.00	-	1.67	-	2.00	-	1.33	-	1.50	-
NCR-3S	579.60	4.54	575.06	4.52	575.08	3.90	575.70	4.10	575.50	4.43	575.17	5.20	574.40	5.71	573.89	5.90	573.70	dry	-	5.91	573.69	dry	-	4.46	575.14
NCR-4S	577.88	3.71	574.17	3.70	574.18	3.80	574.08	3.66	574.22	3.75	574.13	4.02	573.86	4.45	573.43	dry	-	dry	-	dry	-	dry	-	3.95	573.93
NCR-5S	579.34	8.42	570.92	7.69	571.65	7.68	571.66	7.61	571.73	8.28	571.06	9.10	570.24	9.52	569.82	dry	-								
NCR-13S	577.15	5.85	571.30	5.76	571.39	5.74	571.41	5.81	571.34	6.07	571.08	6.27	570.88	7.25	569.90	7.57	569.58	dry	-	7.78	569.37	dry	-	6.40	570.75
																									ľ

- = measurment not collected.

dry = no water in well.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/6/	2003	2/5/	2003	3/6/	2003	4/2/	2003	5/5	/2003	6/5/	/2003	7/1/	2003	8/11	/2003	9/2/	2003	10/8	/2003	11/12	2/2003	12/6	/2003
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	23.48	575.45	23.51	575.42	23.65	575.28	23.75	575.18	23.81	575.12	23.25	575.68	23.11	575.82	23.25	575.68	23.41	575.52	23.35	575.58	23.71	575.22	23.85	575.08
East "B"	596.23	19.53	576.70	19.40	576.83	19.59	576.64	19.61	576.62	19.70	576.53	19.66	576.57	19.77	576.46	19.58	576.65	19.64	576.59	19.59	576.64	19.65	576.58	NA	-
East "C"	598.69	18.82	579.87	19.11	579.58	18.99	579.70	19.07	579.62	18.98	579.71	19.00	579.69	19.39	579.30	19.19	579.50	19.25	579.44	19.24	579.45	18.81	579.88	19.27	579.42
East "D"	593.20	13.24	579.96	13.52	579.68	13.7	579.50	13.88	579.32	14.15	579.05	14.07	579.13	14.31	578.89	14.04	579.16	14.04	579.16	13.97	579.23	13.64	579.56	14.02	579.18
WW A	-	1.42	-	1.25	-	1.50	-	1.42	-	1.58	-	1.33	-	1.33	-	1.17	-	1.42	-	1.33	-	2.00	-	1.33	-
WW B	-	1.08	-	1.17	-	1.67	-	1.17	-	0.75	-	1.25	-	1.42	-	1.50	-	1.50	-	1.17	-	1.42	-	1.67	-
ww c	-	1.33	-	1.50	-	1.25	-	1.33	-	1.50	-	1.42	-	1.00	-	1.08	-	1.08	-	1.08	-	1.00	-	1.67	-
WW D	-	1.42	-	1.67	-	1.08	-	1.25	-	1.50	-	1.50	-	1.25	-	1.58	-	1.33	-	1.50	-	1.58	-	1.50	-
NCR-3S	579.60	3.84	575.76	4.06	575.54	4.55	575.05	4.39	575.21	4.39	575.21	4.41	575.19	5.80	573.80	5.92	573.68	dry	-	dry	-	4.45	575.15	4.24	575.36
NCR-4S	577.88	2.91	574.97	-	-	-	-	3.65	574.23	3.60	574.28	2.65	575.23	4.05	573.83	3.98	573.90	dry	-	4.37	573.51	2.93	574.95	2.88	575.00
NCR-5S	579.34	7.95	571.39	8.69	570.65	8.11	571.23	7.66	571.68	8.58	570.76	8.08	571.26	9.26	570.08	10.12	569.22	10.95	568.39	dry	-	10.40	568.94	8.11	571.23
NCR-13S	577.15	5.89	571.26	5.54	571.61	6.16	570.99	6.05	571.10	6.13	571.02	6.11	571.04	7.21	569.94	7.48	569.67	7.59	569.56	7.77	569.38	6.35	570.80	6.07	571.08

	Elevation	1/2/	2004	2/5/	2004	3/1/	/2004	4/5/	2004	5/4/	/2004	6/11	/2004	7/10	/2004	8/9	/2004	9/8/	2004	10/2	/2004	11/4	/2004	12/3	3/2004
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	23.90	575.03	23.93	575.00	24.00	574.93	23.26	575.67	22.14	576.79	19.44	579.49	19.19	579.74	20.70	578.23	23.31	575.62	23.34	575.59	22.44	576.49	22.48	576.45
East "B"	596.23	19.83	576.40	NA	-	NA	-	19.60	576.63	19.65	576.58	19.81	576.42	19.75	576.48	19.85	576.38	19.68	576.55	19.53	576.70	17.51	578.72	17.49	578.74
East "C"	598.69	19.12	579.57	19.79	578.90	19.22	579.47	19.36	579.33	19.24	579.45	19.42	579.27	19.28	579.41	19.56	579.13	19.48	579.21	19.36	579.33	18.95	579.74	18.94	579.75
East "D"	593.20	13.9	579.30	14.52	578.68	14.11	579.09	14.05	579.15	14.25	578.95	14.5	578.70	14.4	578.80	14.64	578.56	14.3	578.90	14.18	579.02	14.05	579.15	14.01	579.19
WW A	-	1.58	-	1.17	-	2.17	-	0.75	-	1.25	-	1.50	-	1.25	-	1.25	-	1.33	-	1.25	-	1.42	-	1.67	-
WW B	-	1.33	-	NA	-	1.50	-	1.30	-	1.17	-	1.17	-	1.17	-	1.25	-	1.00	-	1.00	-	1.17	-	0.42	-
ww c	-	1.08	-	1.00	-	1.17	-	1.17	-	1.00	-	1.08	-	1.17	-	1.08	-	1.17	-	1.17	-	1.58	-	0.25	-
WW D	-	1.17	-	1.08	-	1.67	-	0.65	-	1.50	-	1.33	-	1.00	-	1.00	-	1.25	-	1.00	-	1.17	-	0.25	-
NCR-3S	579.60	4.11	575.49	4.21	575.39	3.19	576.41	4.09	575.51	3.37	576.23	4.92	574.68	dry	-	4.36	575.24	5.44	574.16	dry	-	2.42	577.18	3.06	576.54
NCR-4S	577.88	2.65	575.23	2.72	575.16	2.42	575.46	2.53	575.35	2.76	575.12	2.99	574.89	3.74	574.14	3.50	574.38	3.32	574.56	3.65	574.23	2.74	575.14	2.75	575.13
NCR-5S	579.34	7.53	571.81	8.34	571.00	7.01	572.33	7.10	572.24	7.99	571.35	8.80	570.54	9.20	570.14	9.40	569.94	9.20	570.14	9.28	570.06	9.90	569.44	7.27	572.07
NCR-13S	577.15	5.72	571.43	5.95	571.20	5.88	571.27	5.49	571.66	6.08	571.07	6.22	570.93	7.08	570.07	7.09	570.06	6.75	570.40	7.16	569.99	5.95	571.20	4.28	572.87

- = measurment not collected.

dry = no water in well.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/5/	2005	2/3/	2005	3/9/	2005	4/2/	2005	6/4/	2005	7/6	6/2005	8/4	/2005	9/3/	2005	10/7	/2005	12/10	0/2005
Observation	Top of	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation								
Point	Casing	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)										
	(ft. msl)	(ft)		(ft)		(ft)		(ft)		(ft)											
East "A"	598.93	24.20	574.73	21.21	577.72	19.45	579.48	22.21	576.72	22.19	576.74	23.24	575.69	23.49	575.44	23.57	575.36	24.07	574.86	24.47	574.46
East "B"	596.23	19.68	576.55	19.52	576.71	19.79	576.44	19.66	576.57	19.97	576.26	19.89	576.34	19.96	576.27	19.70	576.53	19.51	576.72	19.50	576.73
East "C"	598.69	19.60	579.09	19.42	579.27	19.33	579.36	19.15	579.54	19.71	578.98	19.76	578.93	19.57	579.12	19.51	579.18	19.65	579.04	19.39	579.30
East "D"	593.20	14.2	579.00	14.35	578.85	13.89	579.31	14.29	578.91	14.68	578.52	14.64	578.56	14.62	578.58	14.47	578.73	14.4	578.80	14.24	578.96
WW A	-	0.58	-	1.08	-	0.50	-	1.00	-	1.00	-	1.00	-	1.25	-	1.17	-	1.33	-	1.50	-
WW B	-	1.50	-	1.17	-	0.83	-	1.25	-	1.17	-	1.50	-	1.42	-	0.92	-	1.17	-	1.17	-
ww c	-	0.67	-	1.00	-	1.00	-	1.00	-	1.25	-	0.92	-	1.25	-	1.00	-	1.00	-	0.83	-
WW D	-	1.25	-	1.25	-	1.00	-	1.17	-	1.33	-	0.92	-	1.50	-	1.00	-	1.08	-	1.08	-
NCR-3S	579.60	1.82	577.78	3.39	576.21	3.11	576.49	1.50	578.10	5.93	573.67	dry	-	5.96	573.64	dry	-	5.63	573.97	4.21	575.39
NCR-4S	577.88	2.60	575.28	3.08	574.80	frozen	-	2.51	575.37	3.87	574.01	dry	-	dry	-	dry	-	3.69	574.19	2.99	574.89
NCR-5S	579.34	5.46	573.88	6.57	572.77	6.14	573.20	6.36	572.98	8.10	571.24	10.60	568.74	dry	-	dry	-	dry	-	8.17	571.17
NCR-13S	577.15	3.60	573.55	5.14	572.01	4.34	572.81	3.19	573.96	6.59	570.56	7.52	569.63	7.79	569.36	dry	-	7.21	569.94	6.06	571.09

	Elevation	1/13	/2006	2/10	/2006	3/3	/2006	4/8/	2006	5/1/	2006	6/7/	/2006	7/14	/2006	8/8/	2006	9/18/	/2006	10/7	/2006	11/3	/2006	12/1	/2006
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	24.55	574.38	24.68	574.25	24.72	574.21	24.22	574.71	24.81	574.12	23.53	575.40	24.77	574.16	24.23	574.70	24.68	574.25	24.78	574.15	24.74	574.19	24.53	574.40
East "B"	596.23	19.45	576.78	19.85	576.38	19.87	576.36	19.86	576.37	21.10	575.13	19.80	576.43	19.79	576.44	19.84	576.39	19.51	576.72	19.80	576.43	19.86	576.37	18.80	577.43
East "C"	598.69	19.28	579.41	19.75	578.94	19.84	578.85	19.77	578.92	20.09	578.60	19.69	579.00	19.71	578.98	19.66	579.03	19.37	579.32	20.78	577.91	20.03	578.66	19.26	579.43
East "D"	593.20	14.15	579.05	14.48	578.72	14.44	578.76	14.46	578.74	14.74	578.46	14.87	578.33	14.83	578.37	14.71	578.49	14.45	578.75	14.95	578.25	14.67	578.53	14.45	578.75
WW A	-	1.17	-	1.17	-	1.17	-	1.00	-	1.25	-	1.25	-	1.00	-	1.17	-	1.17	-	1.17	-	1.08	-	1.33	- 1
WW B	-	0.83	-	1.17	-	0.92	-	1.08	-	1.08	-	1.08	-	1.25	-	1.00	-	0.83	-	0.92	-	1.00	-	0.83	- 1
ww c	-	0.92	-	1.00	-	1.00	-	1.08	-	1.08	-	1.00	-	1.25	-	1.00	-	0.83	-	1.00	-	0.92	-	0.67	- 1
WW D	-	1.08	-	1.00	-	0.92	-	0.92	-	1.00	-	1.17	-	0.92	-	0.92	-	0.92	-	1.00	-	1.00	-	1.00	- 1
NCR-3S	579.60	2.77	576.83	3.02	576.58	3.48	576.12	2.45	577.15	3.44	576.16	dry	-	dry	-	5.85	573.75	3.67	575.93	3.06	576.54	3.51	576.09	1.35	578.25
NCR-4S	577.88	2.83	575.05	2.91	574.97	3.30	574.58	2.72	575.16	3.26	574.62	4.31	573.57	4.59	573.29	dry	-	3.51	574.37	2.97	574.91	3.15	574.73	2.44	575.44
NCR-5S	579.34	7.43	571.91	7.96	571.38	8.58	570.76	7.91	571.43	8.79	570.55	8.97	570.37	dry	-	dry	-	dry	-	7.37	571.97	6.22	573.12	4.21	575.13
NCR-13S	577.15	5.78	571.37	5.99	571.16	6.08	571.07	5.84	571.31	6.15	571.00	7.33	569.82	7.57	569.58	7.69	569.46	6.36	570.79	5.72	571.43	4.33	572.82	2.77	574.38
																									,

- = measurment not collected.dry = no water in well.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/19/	/2007	2/9/	2007	3/10	/2007	4/2/2	2007	5/4/	2007	6/1/	2007	7/2/	2007	8/2/	2007	9/17	/2007	10/12	2/2007	11/1	/2007	12/1	/2007
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	24.98	573.95	24.65	574.28	24.84	574.09	24.88	574.05	25.02	573.91	25.50	573.43	24.98	573.95	24.96	573.97	25.03	573.90	24.98	573.95	25.11	573.82	25.13	573.80
East "B"	596.23	19.38	576.85	19.56	576.67	-	-	19.98	576.25	20.07	576.16	19.78	576.45	19.86	576.37	19.85	576.38	19.81	576.42	19.50	576.73	19.52	576.71	19.59	576.64
East "C"	598.69	19.51	579.18	19.81	578.88	19.71	578.98	20.10	578.59	20.17	578.52	19.87	578.82	19.99	578.70	19.97	578.72	20.19	578.50	19.78	578.91	19.93	578.76	19.97	578.72
East "D"	593.20	14.38	578.82	14.68	578.52	14.82	578.38	15.24	577.96	15.09	578.11	15.1	578.10	15.19	578.01	15.11	578.09	15.16	578.04	14.64	578.56	14.8	578.40	14.86	578.34
WW A	-	1.17	-	1.08	-	1.25	-	1.08	-	1.25	-	1.17	-	1.00	-	0.83	-	0.67	-	1.00	-	0.92	-	1.00	-
WW B	-	1.00	-	1.00	-	0.67	-	1.17	-	0.75	-	0.92	-	0.83	-	0.83	-	0.83	-	0.92	-	1.08	-	1.17	-
ww c	-	0.83	-	0.83	-	0.67	-	0.83	-	0.83	-	0.83	-	0.67	-	0.50	-	0.67	-	0.50	-	1.00	-	1.08	-
WW D	-	1.00	-	0.83	-	1.00	-	0.83	-	0.83	-	1.00	-	0.83	-	1.00	-	0.75	-	0.83	-	1.00	-	1.00	-
NCR-3S	579.60	3.04	576.56	3.75	575.85	2.70	576.90	3.26	576.34	3.50	576.10	5.89	573.71	dry	-										
NCR-4S	577.88	2.94	574.94	3.42	574.46	2.80	575.08	2.93	574.95	3.19	574.69	3.90	573.98	dry	-										
NCR-5S	579.34	5.77	573.57	6.83	572.51	6.28	573.06	6.08	573.26	6.75	572.59	8.87	570.47	10.99	568.35	dry	-								
NCR-13S	577.15	3.85	573.30	4.51	572.64	4.39	572.76	4.25	572.90	4.81	572.34	7.01	570.14	7.44	569.71	7.70	569.45	dry	-	7.72	569.43	7.75	569.40	dry	-

	Elevation	1/4/	2008	2/8/	2008	3/7	/2008	4/4/	2008	5/8/	/2008	6/5/	2008	7/1/	2008	8/7/	2008	9/11	/2008	10/9	/2008	11/3	/2008	12/5	5/2008
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	25.31	573.62	25.22	573.71	25.27	573.66	25.37	573.56	25.39	573.54	25.46	573.47	25.49	573.44	25.44	573.49	25.50	573.43	25.41	573.52	25.39	573.54	25.41	573.52
East "B"	596.23	19.95	576.28	19.65	576.58	19.90	576.33	19.70	576.53	19.71	576.52	19.96	576.27	19.91	576.32	19.87	576.36	20.04	576.19	19.60	576.63	19.83	576.40	19.99	576.24
East "C"	598.69	20.30	578.39	19.97	578.72	20.26	578.43	19.85	578.84	19.99	578.70	20.18	578.51	20.20	578.49	20.13	578.56	20.44	578.25	20.03	578.66	20.20	578.49	20.20	578.49
East "D"	593.20	15.15	578.05	14.66	578.54	14.89	578.31	15.11	578.09	15.02	578.18	15.2	578.00	15.4	577.80	15.34	577.86	15.51	577.69	15.16	578.04	15.4	577.80	15.13	578.07
WW A	-	1.00	-	0.83	-	1.08	-	0.92	-	1.08	-	1.00	-	0.83	-	0.83	-	0.83	-	0.83	-	1.00	-	1.00	-
WW B	-	0.83	-	0.92	-	1.00	-	1.00	-	0.83	-	0.83	-	0.83	-	0.83	-	0.67	-	0.75	-	0.67	-	0.92	-
ww c	-	1.00	-	0.83	-	0.75	-	0.50	-	0.75	-	0.83	-	0.67	-	0.83	-	0.42	-	0.50	-	0.58	-	0.83	-
WW D	-	1.08	-	1.00	-	0.83	-	0.33	-	0.50	-	0.50	-	0.59	-	0.67	-	0.50	-	0.50	-	0.50	-	0.50	-
NCR-3S	579.60	3.46	576.14	3.29	576.31	3.56	576.04	3.21	576.39	4.17	575.43	dry	-	dry	-	3.81	575.79	dry	-	5.44	574.16	3.81	-	3.22	576.38
NCR-4S	577.88	3.06	574.82	2.82	575.06	2.89	574.99	2.59	575.29	2.91	574.97	3.61	574.27	4.53	573.35	3.43	574.45	4.27	573.61	3.90	573.98	3.17	574.71	3.52	574.36
NCR-5S	579.34	10.80	568.54	6.26	573.08	7.11	572.23	5.84	573.50	7.45	571.89	9.00	570.34	10.24	569.10	dry	-	dry	-	dry	-	7.75	571.59	6.24	573.10
NCR-13S	577.15	4.64	572.51	4.30	572.85	4.74	572.41	4.16	572.99	5.31	571.84	6.92	570.23	7.47	569.68	7.26	569.89	7.54	569.61	7.48	569.67	5.75	571.40	4.53	572.62

- = measurment not collected.dry = no water in well.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/9/	/2009	2/5/	2009	3/5/	2009	4/3/2	2009	5/1/	/2009	6/4	/2009	7/10	/2009	8/12	/2009	9/5/	2009	10/9	/2009	11/8	/2009	12/4	/2009
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	25.34	573.59	25.54	573.39	25.60	573.33	25.42	573.51	25.64	573.29	25.66	573.27	25.62	573.31	25.51	573.42	25.52	573.41	25.45	573.48	25.63	573.30	25.53	573.40
East "B"	596.23	19.85	576.38	20.05	576.18	19.94	576.29	19.44	576.79	19.99	576.24	20.00	576.23	20.15	576.08	19.77	576.46	19.83	576.40	19.78	576.45	19.85	576.38	19.66	576.57
East "C"	598.69	20.22	578.47	20.56	578.13	20.20	578.49	19.36	579.33	20.35	578.34	20.55	578.14	20.51	578.18	20.33	578.36	20.30	578.39	20.04	578.65	20.45	578.24	20.30	578.39
East "D"	593.20	14.85	578.35	15.25	577.95	15.54	577.66	14.81	578.39	15.65	577.55	15.75	577.45	15.62	577.58	15.51	577.69	15.69	577.51	15.22	577.98	15.45	577.75	18.98	574.22
WW A	-	1.33	-	0.83	-	0.83	-	1.00	-	0.83	-	0.83	-	0.67	-	0.50	-	0.75	-	1.00	-	0.75	-	0.75	-
WW B	-	1.00	-	0.67	-	1.00	-	0.92	-	1.00	-	0.67	-	0.83	-	0.83	-	0.67	-	1.00	-	1.00	-	0.42	-
ww c	-	0.75	-	0.67	-	0.50	-	0.50	-	0.50	-	0.58	-	0.50	-	0.58	-	0.50	-	0.42	-	0.33	-	0.83	-
WW D	-	0.67	-	1.00	-	0.50	-	0.58	-	0.50	-	0.50	-	0.42	-	0.67	-	0.50	-	0.67	-	0.58	-	0.75	-
NCR-3S	579.60	2.97	576.63	4.11	575.49	3.55	576.05	2.20	577.40	3.48	576.12	dry	-	dry	-	3.66	575.94	dry	-	4.52	575.08	3.74	575.86	2.57	577.03
NCR-4S	577.88	2.90	574.98	3.19	574.69	3.36	574.52	2.39	575.49	2.90	574.98	dry	-	4.65	573.23	2.98	574.90	dry	-	3.49	574.39	3.15	574.73	2.78	575.10
NCR-5S	579.34	6.33	573.01	7.42	571.92	6.78	572.56	8.00	571.34	6.46	572.88	6.87	572.47	10.10	569.24	7.47	571.87	9.88	569.46	dry	-	9.78	569.56	5.92	573.42
NCR-13S	577.15	4.40	572.75	5.09	572.06	5.01	572.14	4.04	573.11	4.77	572.38	5.95	571.20	7.47	569.68	5.92	571.23	7.45	569.70	dry	-	6.16	570.99	4.27	572.88

	Elevation	1/7	/2010	2/1/	2010	3/11	1/2010	4/1/	2010	5/6/	/2010	6/1/	2010	7/2/	2010	8/12	/2010	9/16	6/2010	10/8	/2010	11/5	/2010	12/2	2/2010
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	25.62	573.31	25.72	573.21	25.77	573.16	25.81	573.12	25.79	573.14	25.73	573.20	25.78	573.15	25.74	573.19	25.78	573.15	25.77	573.16	25.82	573.11	25.88	573.05
East "B"	596.23	19.78	576.45	19.97	576.26	19.83	576.40	19.83	576.40	19.79	576.44	19.83	576.40	19.99	576.24	19.84	576.39	19.87	576.36	19.70	576.53	19.52	576.71	19.52	576.71
East "C"	598.69	20.24	578.45	20.46	578.23	20.25	578.44	20.31	578.38	20.21	578.48	20.24	578.45	20.65	578.04	20.22	578.47	20.19	578.50	20.32	578.37	19.98	578.71	20.40	578.29
East "D"	593.20	15.25	577.95	15.42	577.78	15.38	577.82	15.48	577.72	15.49	577.71	15.59	577.61	15.7	577.50	15.65	577.55	15.65	577.55	15.43	577.77	15.53	577.67	15.22	577.98
WW A	-	0.83	-	0.83	-	0.83	-	0.67	-	0.58	-	0.83	-	0.67	-	0.75	-	0.67	-	0.67	-	0.83	-	0.67	-
WW B	-	0.58	-	0.58	-	0.75	-	0.50	-	0.50	-	0.50	-	0.42	-	0.50	-	0.50	-	0.50	-	0.42	-	0.42	-
ww c	-	0.33	-	0.50	-	0.50	-	0.50	-	0.50	-	0.58	-	0.67	-	0.58	-	0.58	-	0.42	-	0.58	-	0.67	-
WW D	-	0.67	-	0.58	-	0.92	-	0.58	-	0.67	-	0.50	-	0.50	-	0.50	-	0.50	-	0.58	-	0.50	-	0.50	-
NCR-3S	579.60	3.19	576.41	3.48	576.12	2.06	577.54	3.30	576.30	4.61	574.99	3.98	575.62	dry	-	2.78	576.82								
NCR-4S	577.88	2.85	575.03	frozen	frozen	2.60	575.28	2.94	574.94	2.84	575.04	2.86	575.02	dry	-	2.91	574.97								
NCR-5S	579.34	6.45	572.89	6.33	573.01	5.81	573.53	6.18	573.16	7.93	571.41	7.75	571.59	9.11	570.23	dry	-								
NCR-13S	577.15	4.64	572.51	4.65	572.50	3.68	573.47	4.71	572.44	5.10	572.05	4.97	572.18	7.40	569.75	dry	-	dry	-	dry	-	dry	-	5.82	571.33
																									ļ

dry = no water in well.

- = measurment not collected.

SECTION 3 SUMMARY AND CONCLUSIONS

The following summary and conclusions were developed based on the data collected during this reporting period (January through December 2010):

- Metals groundwater samples were collected in 2010. The analytical results were consistent with historical results. The annual groundwater samples scheduled for collection in November 2011 will be analyzed for volatile organics, semi-volatile organics, and metals.
- Seventeen metals were identified in one or more of the groundwater samples. Five of
 the detected metals exceeded either the NYSDEC AWQS, NYSDOH MCLs, or USEPA
 MCLs, which is consistent with previous sampling events. In general, detected values
 appeared to be consistent with ranges observed in previous sampling events.
- Two effluent samples were collected in 2010. All analytical results were found to be compliant with the discharge permit. During 2010, compliance with the discharge permit was maintained.
- The landfill was inspected monthly and was appropriately maintained. Any needed repairs were addressed in a timely manner. Cover vegetation continues to be in good condition.
- Post-construction monitoring of the wetland replacement was performed annually between 2001 and. 2005. Monitoring results indicated that the wetland creation was successful. Although the formal annual inspections are no longer required, monthly visual inspection of the wetlands will continue, to document general conditions. In 2010, the wetlands were documented to be in good condition.
- Water levels were collected from the wet wells, monitoring wells, and the locations on top of the landfill on a monthly basis in 2010. Water levels generally varied between 0.4 and 3.8 feet over the course of the year.
- The objectives of the groundwater monitoring program (to monitor the effectiveness of the perimeter collection system and the perimeter barrier system) have been met. The groundwater monitoring program provides data for demonstration of the effectiveness of the hydraulic containment, collection, and extraction of Site-related groundwater.

SECTION 4 REFERENCES

USEPA, 1993, Record of Decision, Niagara County Refuse Site, Wheatfield, Niagara County, New York; United States Environmental Protection Agency, September 1993.

USA, 1995, Consent Decree, Docket 946-849; United States Environmental Protection Agency, February 3, 1995.

CRA, 2000, Operations, Maintenance and Monitoring Manual for Niagara County Refuse District Site Remedial Construction, Wheatfield, Niagara County, New York; Conestoga-Rovers & Associates, December 2000.

Parsons, 2010, 2009 Annual Monitoring Report, Niagara County Refuse District Site; Parsons, February 2010.

APPENDIX A

CITY OF NORTH TONAWANDA INDUSTRIAL WASTEWATER DISCHARGE PERMIT AND COMPLIANCE SAMPLING RESULTS

CITY OF NORTH TONAWANDA 6/27/00 INDUSTRIAL WASTEWATER DISCHARGE PERMIT

Permit Number: 2628010

In accordance with the provisions of the Clean Water Act as amended, all terms and conditions set forth in this permit, the City of North Tonawanda Local Sewer Use Ordinance and any applicable Federal, State or local laws or regulations, authorization is hereby granted to:

Niagara County Department of Public Works

Engineering Department
59 Park Avenue
Lockport, New York 14094

Classified by S.I.C. Number(s): _N/A_

for the discharge of: groundwater and other wastes generated during Remedial Action construction and implementation into the City of North Tonawanda Sewerage System.

This permit is granted in accordance with an application filed in the offices of the Wastewater Treatment Plant Superintendent located at 830 River Road, and in conformity with specifications and other required data submitted in support of the above named application, all of which are filed with and considered part of this permit. This permit is also granted in accordance with discharge limitations and requirements, monitoring and reporting requirements, and all other conditions set forth in Parts I and II hereof.

Effective this 31st day of March, 2010

To expire the 1st day of April, 2013

Water Works Superintendent

Signed this /Ce day of Jone 2010

PART I. SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge from the permitted facility outfall(s) shall be limited and monitored by the permittee as specified below (Refer to attached map for sampling and monitoring sites).

Sample Point	Parameter	Discharge Limitations mg/l except pH Daily Max.	Sampling Period	Sampling Type
001	Total Flow		1 Sampling Day Monthly	continuous
2/	Aluminum	2.0	1 Sample Day semi-annual	24 hr comp.
	Lead	4.6	1 Sampling Day semi-annual	24 hr comp.
	Iron	10	1 Sampling Day semi-annual	24 hr comp.
2/	Magnesium	Monitor Only	1 Sampling Day semi-annual	24 hr comp.
2/	Sodium	Monitor Only	1 Sampling Day semi-annual	24 hr comp.
	pН	Monitor Only	1 Sampling Day semi-annual	grab
2/	BOD	Monitor Only	1 Sampling Day semi-annual	24 hr comp.
2/	Total Suspended Solids	Monitor Only	1 Sampling Day semi-annual	24 hr comp.

PART I. SPECIFIC CONDITIONS

B. DISCHARGE REPORTING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge monitoring results shall be summarized and reported by the permittee on the no later than the days specified below.

Sample Point	Parameter	Initial Monitoring Report	Subsequent Monitoring Reports
001	Total Flow	January 31, 2007	semi-annual
	Lead	January 31, 2007	semi-annual
	Iron	January 31, 2007	semi-annual
	Magnesium	January 31, 2007	semi-annual
	Sodium	January 31, 2007	semi-annual
	pН	January 31, 2007	semi-annual
	BOD	January 31, 2007	semi-annual
	Total Suspended	January 31, 2007	semi-annual

PART I. SPECIFIC CONDITIONS

C. SPECIAL REQUIREMENTS

- 1) This permit is written for a duration of three years. Upon renewal of this permit, all parameters will be re-evaluated to develop a parameter list based on chemical concentrations present in the extracted groundwater.
- 2) Frequency of monitoring is to be re-evaluated yearly..
- 3) All monitoring reports (initial and subsequent), are to be received by the Superintendent, no later than thirty (30) days after receipt of validated data.
- 4) It is required that the Permittee have a Site Operations Manual available at all times. All emergency phone numbers must be listed in an appropriate place for easy access by operations personnel. The permittee shall not discharge to the City of North Tonawanda sewerage treatment works during overflow conditions. The permittee is required to cease all pumping operations upon verbal request of the North Tonawanda Wastewater Treatment Plant Superintendent or his assigns. Pumping operations shall not recommence until approved by the North Tonawanda Wastewater Treatment Plant Superintendent or his assigns.
- Analysts are required to use GC/MS method detection limits for most organics (if GC/MS is appropriate); GC/ECD for PCBS/Pesticides and GF method detection limits for metals (where GF is appropriate), as contained in attachment 5 of the NYSDEC TOGs 1.3.8 New Discharges to Publicly Owned Treatment Works dated 10/26/94.

CITY OF NORTH TONAWANDA WATER WORKS

WASTEWATER DEPARTMENT 830 RIVER ROAD

NORTH TONAWANDA, NEW YORK 14120

PHONE: (716) 695 - 8560 FAX: (716) 695 - 8563

Paul J. Drof Superintendent

John C. Maurer Maintenance Supervisor

David A. Scott Chief Operator

William M. Davignon Lab Director/Chemist

CHAIN OF CUSTODY

Sampling Record
NIAGARA COUNTY REFUSE SITE

SPL#	SAMPLE NAME	DATE	TIME	SAMPLE LOCATION	SAMPLE TYPE	#OF BTLS
0(30510 RCB EFF	3/8/10	0780	Wet Well A	volitiles	2
02	30510 RLB EFF	3/4/10	1530	wet well A	volitiles	2
03	30510 RCB Eff	3/5/10	0730	Wet Wall B	volitiles	2
04	305/0 RLB EFF	3/4/10-	0780	wet wall to	west champtry	1

CITY OF NORTH TONAWANDA WATER WORKS

WASTEWATER DEPARTMENT 830 RIVER ROAD

NORTH TONAWANDA, NEW YORK 14120

PHONE: (716) 695 - 8560 FAX: (716) 695 - 8563

Gary Franklin Acting Superintendent

John C. Maurer Maintenance Supervisor

DATE: September 9 & 10, 2010

David A. Scott Chief Operator

William M. Davignon Lab Director/Chemist

CHAIN OF CUSTODY

Sampling Record
NIAGARA COUNTY REFUSE SITE

SAMPI	LES SIGNATURE Cha	LC 4	xel	SITE NA	ME: NIAGARA COL	JNTY REFUS	E SITE
SPL#	SAMPLE NAME DATE	TIME S	AMPLE I	OCATION	SAMPLE TYPE	#OF BTLS	
01	ADTORIBETE 9/9/10	0730	Wet W	ellA	volibles	2	
02	91010 RIB EFF 9/9/10	1700	W	u h	n	2	
83	910 10 ECSEFC 9/10/10	0730	h	11 1	ы	2	
04	9/010 RES EFF 9/0/10	0730 - 0730	h	k n	wet chemistry	1	
FLOWS	INITIAL METER READ	ING 51200	7510				
RECEIV	MONTHLY FLOW OUISHED BY: Flow	Bed	1161				

Analytical Results: NIAGARA COUNTY REFUSE SITE 2010

PARAMETER	RESULT mg/l	RESULT mg/l	COMP.
pH (COMP.)	7.61	7.38	YES
COD	64	235	YES
SUSPENDED SOLIDS	5	34	YES
BOD	11	****	YES
PO4	0.04	0.24	YES
PHENOLS	< 0.012	< 0.010	YES
METALS			
ALUMINUM	0.033	0.178	YES
CHROMIUM	< 0.025	< 0.026	YES
LEAD	< 0.028	< 0.028	YES
NICKEL	< 0.024	< 0.026	YES
ZINC	0.036	0.135	YES
IRON	0.570	5.368	YES
MAGNESIUM	152	209	YES
MANGANESE	0.108	0.549	YES
SODIUM	149	745	YES
PURGEABLES			
Benzene	< 0.005	< 0.005	YES
Toluene	< 0.004	< 0.005	YES
Chlorobenzene	< 0.005	< 0.005	YES
Ethylbenzene	< 0.005	< 0.005	YES
Total Xylenes	< 0.014		YES
1,3 - Dichlorobenzene	< 0.005	< 0.005	YES
1,4-Dichlorobenzene	< 0.005	< 0.005	YES
1,2 - Dichlorobenzene	< 0.005	< 0.005	YES
Vinyl Chloride	< 0.005	< 0.002	YES
1,1-Dichloroethene	< 0.005	< 0.004	YES
Methylene chloride	< 0.005	< 0.005	YES
trans-1,2 Dichloroethene	< 0.005	< 0.005	YES
1,1-Dichloroethane	< 0.005	< 0.004	YES
Chloroform	< 0.005	< 0.005	YES
1,1,1-Trichloroethane	< 0.005	< 0.004	YES
Trichloroethene	< 0.005	< 0.005	YES
TOTAL FLOW (gallons)	10,122	1161	
SAMPLE DATE	3/4/10 & 3/5/10	9/9/10 & 9/10/10	
***** No BOD reported. DO	depletion was too high.	Final result was "0".	

APPENDIX B CORRESPONDENCE

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

MOV 21 2005

BY FEDEX

Mr. Eric Felter Project Manager Parsons 180 Lawrence Bell Drive, Suite 104 Williamsville, New York 14221

Re: Niagara County Refuse Site, Wheatfield, New York: Request for the Reduction of Analytical Parameters in Groundwater Samples

Dear Mr. Felter:

The U.S. Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) have reviewed your letter dated October 3, 2005 prepared by Parsons on behalf of the Niagara County Refuse (NCR) Site PRP Group requesting a reduction in the analytical parameters in groundwater samples taken at the NCR site as part of the operation and maintenance program. The current analytical parameter list includes 2 volatiles, 4 semi-volatiles, and 16 metals which were determined to be constituents of interest at the site. Your proposal requests reducing the parameters to 5 metals, representing those constituents which have been measured above standards with some regularity in past sampling rounds. The sampling program, involving four monitoring wells, has been in effect since 2001 and your proposal reflects trends evident since the program was initiated. Sampling frequency is currently semi-annual (twice a year).

After discussing this matter with NYSDEC with input from the New York State Department of Health, our preference is that the sampling parameters remain the same for the time being. This is due to the significant residential growth around the site in recent years. After the current sampling round, samples are scheduled to be taken annually. EPA approves changing the current monitoring program only to the extent that the volatiles and semi-volatiles analysis can be conducted every two years while the metals analysis be conducted annually. EPA will, however, consider a further frequency reduction in the future as more data are collected.

Please call me at (212) 637-4278 if you have any questions on this matter.

Sincerely yours,

Michael J. Negrelli

Remedial Project Manager

New York Remediation Branch

cc:

J. Konsella - NYSDEC/Region 9

B. Sadowski - NYSDEC/Region 9

APPENDIX C ANALYTICAL DATA

Analytical Report

Work Order: RTL1063

Project Description
NIAGARA COUNTY REFUSE SITE

For:

William Davignon

North Tonawanda, City of City Hall Room 6, 216 Payne Ave North Tonawanda, NY 14120

Melissa Deyo For Sally Hoffman

Melisa

Project Manager
melissa.deyo@testamericainc.com
Monday, January 3, 2011

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Work Order: RTL1063

Received: 12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE
Project Number: NO TONAW004

TestAmerica Buffalo Current Certifications

As of 08/16/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CW A, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	NY200003
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412 -08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Work Order: RTL1063

Received: 12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE Project Number: NO TONAW004

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

There are pertinent documents appended to this report, 2 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

М1

MHA

Work Order: RTL1063

Project Number:

Received:

12/16/10

01/03/11 15:55 Reported:

Project: NIAGARA COUNTY REFUSE SITE NO TONAW004

DATA QUALIFIERS AND DEFINITIONS

J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

The MS and/or MSD were outside the acceptance limits due to sample matrix interference. See Blank Spike (LCS). Due to high levels of analyte in the sample, the MS and /or MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below NR

the laboratory reporting limit.

Work Order: RTL1063

Received: 12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE
Project Number: NO TONAW004

		F	Project Number	er: NO TO	DNAW004					
			Executive	Summar	y - Detect	tions				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTL1063-	01 (NCR 13S - Wa	iter)			Sam	pled: 12	16/10 13:15	Rec	vd: 12/16/1	0 14:55
Total Metals by SW 8	346 Series Method	<u>ls</u>								
Aluminum	1.17		0.200	0.045	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Barium	0.0539		0.0020	0.0005	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Cadmium	0.0011		0.0010	0.0003	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Calcium	154		0.5	0.1	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Chromium	0.0161		0.0040	0.0009	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Copper	0.0124		0.0100	0.0015	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Iron	2.03		0.050	0.019	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Magnesium	59.2		0.200	NR	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Manganese	0.0131		0.0030	NR	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Nickel	0.0082	J	0.0100	0.0013	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Potassium	1.77		0.500	0.200	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Sodium	23.2		1.0	NR	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Vanadium	0.0037	J	0.0050	0.0011	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Zinc	0.0473		0.0100	0.0017	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Sample ID: RTL1063-	04 (NCR 3S - Wat	er)			Sam	pled: 12/	16/10 13:50	Rec	vd: 12/16/1	0 14:55
Total Metals by SW 8	846 Series Method	le .			•	-				
		<u> 13</u>	0.000	0.045	,,	4.00	40/47/40 45:04	1 8 41 1	101 1115	CO10D
Aluminum	0.465		0.200	0.045	mg/L	1.00	12/17/10 15:21		10L1445	6010B
Barium	0.0504		0.0020	0.0005	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Cadmium	0.0005 146	J	0.0010	0.0003	mg/L	1.00	12/17/10 15:21		10L1445	6010B
Calcium	0.0060		0.5	0.1	mg/L	1.00	12/17/10 15:21		10L1445	6010B
Chromium	0.0060		0.0040 0.0100	0.0009 0.0015	mg/L	1.00 1.00	12/17/10 15:21 12/17/10 15:21		10L1445 10L1445	6010B 6010B
Copper	0.723	J			mg/L					
Iron	0.723		0.050	0.019	mg/L	1.00	12/17/10 15:21		10L1445	6010B
Lead	89.4	J	0.0050	0.0030	mg/L	1.00	12/17/10 15:21		10L1445	6010B
Magnesium			0.200	NR	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Manganese	0.0259		0.0030	NR	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Nickel	0.0068	J	0.0100	0.0013	mg/L	1.00	12/17/10 15:21		10L1445	6010B
Potassium	2.54		0.500	0.200	mg/L	1.00	12/17/10 15:21		10L1445	6010B
Sodium	11.7		1.0	NR	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Vanadium	0.0025	J	0.0050	0.0011	mg/L	1.00	12/17/10 15:21		10L1445	6010B
Zinc	0.0206		0.0100	0.0017	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Sample ID: RTL1063-	05 (NCR 4S - Wat	er)			Sam	pled: 12/	16/10 14:35	Rec	vd: 12/16/1	0 14:55
Total Metals by SW 8	346 Series Method	<u>ds</u>								
Aluminum	3.81		0.200	0.045	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Barium	0.0567		0.0020	0.0005	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Cadmium	0.0009	J	0.0010	0.0003	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Calcium	136		0.5	0.1	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Chromium	0.0032	J	0.0040	0.0009	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Cobalt	0.0006	J	0.0040	0.0006	mg/L	1.00	12/17/10 15:23		10L1445	6010B
Copper	0.0066	J	0.0100	0.0015	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Iron	9.96		0.050	0.019	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Lond	0.0067		0.0050	0.0000	· .	4.00	10/17/10 15:00	1 8 41 1	101 1115	CO40D

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

0.0050

0.200

0.0030

0.0030

NR

NR

1.00

1.00

1.00

mg/L

mg/L

mg/L

12/17/10 15:23 LMH 10L1445

12/17/10 15:23 LMH 10L1445

12/17/10 15:23 LMH 10L1445

0.0067

47.4

0.0229

Lead

Magnesium

Manganese

6010B

6010B

6010B

Work Order: RTL1063

Received: 1

12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE Project Number: NO TONAW004

				J						
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTL1063-0	5 (NCR 4S - Wa	nter) - cont.			Sam	pled: 12/	16/10 14:35	Recv	/d: 12/16/1	0 14:55
Total Metals by SW 84	46 Series Metho	ods - cont.								
Nickel	0.0044	J	0.0100	0.0013	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Potassium	10.5		0.500	0.200	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Selenium	0.0094	J	0.0150	0.0087	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Sodium	33.3		1.0	NR	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Vanadium	0.0021	J	0.0050	0.0011	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Zinc	0.268		0.0100	0.0017	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Sample ID: RTL1063-06 (Field Dup 1 - Water)					Sam	pled: 12/	16/10	Recv	/d: 12/16/1	0 14:55
Total Metals by SW 84	46 Series Metho	ods								
Aluminum	0.763		0.200	0.045	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Barium	0.0519		0.0020	0.0005	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Cadmium	0.0006	J	0.0010	0.0003	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Calcium	147		0.5	0.1	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Chromium	0.0088		0.0040	0.0009	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Copper	0.0071	J	0.0100	0.0015	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Iron	1.26		0.050	0.019	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Lead	0.0033	J	0.0050	0.0030	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Magnesium	90.4		0.200	NR	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Manganese	0.0297		0.0030	NR	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Nickel	0.0115		0.0100	0.0013	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Potassium	2.67		0.500	0.200	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Sodium	11.9		1.0	NR	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Vanadium	0.0026	J	0.0050	0.0011	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Zinc	0.0382		0.0100	0.0017	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B

Work Order: RTL1063

Received:

12/16/10

Reported:

01/03/11 15:55

NO TONAW004 Project Number:

Sample Summary

Project: NIAGARA COUNTY REFUSE SITE

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
NCR 13S	RTL1063-01	Water	12/16/10 13:15	12/16/10 14:55	
NCR 3S	RTL1063-04	Water	12/16/10 13:50	12/16/10 14:55	
NCR 4S	RTL1063-05	Water	12/16/10 14:35	12/16/10 14:55	
Field Dup 1	RTL1063-06	Water	12/16/10	12/16/10 14:55	

Work Order: RTL1063

Received: 12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE Project Number: NO TONAW004

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTL1063	-01 (NCR 13S - W				Sam	pled: 12/	16/10 13:15	Recv	/d: 12/16/1	0 14:55
Total Metals by SW	846 Series Metho	ods .								
Aluminum	1.17		0.200	0.045	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Antimony	ND		0.0200	0.0068	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Barium	0.0539		0.0020	0.0005	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Beryllium	ND		0.0020	0.0003	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Cadmium	0.0011		0.0010	0.0003	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Calcium	154		0.5	0.1	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Chromium	0.0161		0.0040	0.0009	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Cobalt	ND		0.0040	0.0006	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Copper	0.0124		0.0100	0.0015	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Iron	2.03		0.050	0.019	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Lead	ND		0.0050	0.0030	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Magnesium	59.2		0.200	NR	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Manganese	0.0131		0.0030	NR	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Nickel	0.0082	J	0.0100	0.0013	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Potassium	1.77		0.500	0.200	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Selenium	ND		0.0150	0.0087	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Silver	ND		0.0030	0.0017	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Sodium	23.2		1.0	NR	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Thallium	ND		0.0200	0.0102	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Vanadium	0.0037	J	0.0050	0.0011	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Zinc	0.0473		0.0100	0.0017	mg/L	1.00	12/17/10 15:07	LMH	10L1445	6010B
Mercury	ND		0.0002	0.0001	mg/L	1.00	12/20/10 13:11	JRK	10L1616	7470A

Work Order: RTL1063

Received: 12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE Project Number: NO TONAW004

				a., c.oa						
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTL106	3-04 (NCR 3S - Wa	ater)			Sam	pled: 12/	/16/10 13:50	Recv	vd: 12/16/1	0 14:55
Total Metals by SW	/ 846 Series Metho	ods								
Aluminum	0.465		0.200	0.045	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Antimony	ND		0.0200	0.0068	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Barium	0.0504		0.0020	0.0005	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Beryllium	ND		0.0020	0.0003	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Cadmium	0.0005	J	0.0010	0.0003	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Calcium	146		0.5	0.1	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Chromium	0.0060		0.0040	0.0009	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Cobalt	ND		0.0040	0.0006	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Copper	0.0060	J	0.0100	0.0015	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Iron	0.723		0.050	0.019	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Lead	0.0037	J	0.0050	0.0030	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Magnesium	89.4		0.200	NR	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Manganese	0.0259		0.0030	NR	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Nickel	0.0068	J	0.0100	0.0013	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Potassium	2.54		0.500	0.200	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Selenium	ND		0.0150	0.0087	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Silver	ND		0.0030	0.0017	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Sodium	11.7		1.0	NR	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Thallium	ND		0.0200	0.0102	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Vanadium	0.0025	J	0.0050	0.0011	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Zinc	0.0206		0.0100	0.0017	mg/L	1.00	12/17/10 15:21	LMH	10L1445	6010B
Mercury	ND		0.0002	0.0001	mg/L	1.00	12/20/10 13:17	JRK	10L1616	7470A

Work Order: RTL1063

Received: 1

12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE Project Number: NO TONAW004

	Sample	Data	D.	MDI		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTL1063	3-05 (NCR 4S - Wa	iter)			Sam	pled: 12/	16/10 14:35	Rec	vd: 12/16/1	0 14:55
Total Metals by SW	/ 846 Series Metho	ods								
Aluminum	3.81		0.200	0.045	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Antimony	ND		0.0200	0.0068	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Barium	0.0567		0.0020	0.0005	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Beryllium	ND		0.0020	0.0003	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Cadmium	0.0009	J	0.0010	0.0003	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Calcium	136		0.5	0.1	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Chromium	0.0032	J	0.0040	0.0009	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Cobalt	0.0006	J	0.0040	0.0006	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Copper	0.0066	J	0.0100	0.0015	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Iron	9.96		0.050	0.019	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Lead	0.0067		0.0050	0.0030	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Magnesium	47.4		0.200	NR	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Manganese	0.0229		0.0030	NR	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Nickel	0.0044	J	0.0100	0.0013	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Potassium	10.5		0.500	0.200	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Selenium	0.0094	J	0.0150	0.0087	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Silver	ND		0.0030	0.0017	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Sodium	33.3		1.0	NR	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Thallium	ND		0.0200	0.0102	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Vanadium	0.0021	J	0.0050	0.0011	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Zinc	0.268		0.0100	0.0017	mg/L	1.00	12/17/10 15:23	LMH	10L1445	6010B
Mercury	ND		0.0002	0.0001	mg/L	1.00	12/20/10 13:19	JRK	10L1616	7470A

Work Order: RTL1063

Received: 12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE Project Number: NO TONAW004

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
	Sample ID: RTL1063-06 (Field Dup 1 - Water)						16/10		/d: 12/16/1	
Total Metals by SW 846 S	Series Metho	ods								
Aluminum	0.763		0.200	0.045	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Antimony	ND		0.0200	0.0068	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Barium	0.0519		0.0020	0.0005	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Beryllium	ND		0.0020	0.0003	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Cadmium	0.0006	J	0.0010	0.0003	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Calcium	147		0.5	0.1	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Chromium	0.0088		0.0040	0.0009	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Cobalt	ND		0.0040	0.0006	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Copper	0.0071	J	0.0100	0.0015	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Iron	1.26		0.050	0.019	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Lead	0.0033	J	0.0050	0.0030	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Magnesium	90.4		0.200	NR	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Manganese	0.0297		0.0030	NR	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Nickel	0.0115		0.0100	0.0013	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Potassium	2.67		0.500	0.200	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Selenium	ND		0.0150	0.0087	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Silver	ND		0.0030	0.0017	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Sodium	11.9		1.0	NR	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Thallium	ND		0.0200	0.0102	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Vanadium	0.0026	J	0.0050	0.0011	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Zinc	0.0382		0.0100	0.0017	mg/L	1.00	12/17/10 15:26	LMH	10L1445	6010B
Mercury	ND		0.0002	0.0001	mg/L	1.00	12/20/10 13:21	JRK	10L1616	7470A

Work Order: RTL1063

12/16/10 Received:

01/03/11 15:55

Reported:

Project: NIAGARA COUNTY REFUSE SITE Project Number: NO TONAW004

SAMPLE EXTRACTION DATA

			Wt/Vol		Extract			Lab	
Parameter	Batch	Lab Number	Extracte	Units	Volume	Units	Date Prepared	Tech	Extraction Method
Total Metals by SW 846 Series M	ethods								
6010B	10L1445	RTL1063-01	50.00	mL	50.00	mL	12/17/10 07:30	DAN	3005A
6010B	10L1445	RTL1063-04	50.00	mL	50.00	mL	12/17/10 07:30	DAN	3005A
6010B	10L1445	RTL1063-05	50.00	mL	50.00	mL	12/17/10 07:30	DAN	3005A
6010B	10L1445	RTL1063-06	50.00	mL	50.00	mL	12/17/10 07:30	DAN	3005A
7470A	10L1616	RTL1063-01	30.00	mL	50.00	mL	12/20/10 10:30	JRK	7470A
7470A	10L1616	RTL1063-04	30.00	mL	50.00	mL	12/20/10 10:30	JRK	7470A
7470A	10L1616	RTL1063-05	30.00	mL	50.00	mL	12/20/10 10:30	JRK	7470A
7470A	10L1616	RTL1063-06	30.00	mL	50.00	mL	12/20/10 10:30	JRK	7470A

Work Order: RTL1063

Received: 12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE Project Number: NO TONAW004

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Total Metals by SW 846 S	eries Meth	ods									
Blank Analyzed: 12/17/10	(Lab Num	ber:10L1	445-BLK1. E	Batch: 10L1445)							
Aluminum	(====		0.200	0.045	mg/L	ND					
Antimony			0.0200	0.0068	mg/L	ND					
Barium			0.0020	0.0005	mg/L	ND					
Beryllium			0.0020	0.0003	mg/L	ND					
Cadmium			0.0010	0.0003	mg/L	ND					
Calcium			0.5	0.1	mg/L	ND					
Chromium			0.0040	0.0009	mg/L	ND					
Cobalt			0.0040	0.0006	mg/L	ND					
Copper			0.0100	0.0015	mg/L	ND					
Iron			0.050	0.019	mg/L	ND					
Lead			0.0050	0.0030	mg/L	ND					
Magnesium			0.200	NR	mg/L	ND					
Manganese			0.0030	NR	mg/L	ND					
Nickel			0.0100	0.0013	mg/L	ND					
Potassium			0.500	0.200	mg/L	ND					
Selenium			0.0150	0.0087	mg/L	ND					
Silver			0.0030	0.0017	mg/L	ND					
Sodium			1.0	NR	mg/L	ND					
Thallium			0.0200	0.0102	mg/L	ND					
Vanadium			0.0050	0.0011	mg/L	ND					
Zinc			0.0100	0.0017	mg/L	ND					
LCS Analyzed: 12/17/10 ((Lab Numb	er:10L14	45-BS1, Bate	ch: 10L1445)							
Aluminum		10.0	0.200	0.045	mg/L	9.61	96	80-120			
Antimony		0.200	0.0200	0.0068	mg/L	0.198	99	80-120			
Barium		0.200	0.0020	0.0005	mg/L	0.205	103	80-120			
Beryllium		0.200	0.0020	0.0003	mg/L	0.200	100	80-120			
Cadmium		0.200	0.0010	0.0003	mg/L	0.202	101	80-120			
Calcium		10.0	0.5	0.1	mg/L	10.2	102	80-120			
Chromium		0.200	0.0040	0.0009	mg/L	0.203	101	80-120			
Cobalt		0.200	0.0040	0.0006	mg/L	0.198	99	80-120			
Copper		0.200	0.0100	0.0015	mg/L	0.210	105	80-120			
Iron		10.0	0.050	0.019	mg/L	9.70	97	80-120			
Lead		0.200	0.0050	0.0030	mg/L	0.199	99	80-120			
Magnesium		10.0	0.200	NR	mg/L	10.0	100	80-120			
Manganese		0.200	0.0030	NR	mg/L	0.206	103	80-120			
Nickel		0.200	0.0100	0.0013	mg/L	0.198	99	80-120			

Work Order: RTL1063

Received: 1

12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE Project Number: NO TONAW004

			Project N	umber: NO T	ONAW004						
			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits			Qualifiers
Total Metals by SW 846	Series Meth	<u>nods</u>									
LCS Analyzed: 12/17/10	l (I ah Numh	ner:101 14	45-RS1 Rate	ch: 10l 1445)							
Potassium	(Lub Huille	10.0	0.500	0.200	mg/L	10.1	101	80-120			
Selenium		0.200	0.0150	0.0087	mg/L	0.203	101	80-120			
Silver		0.0500	0.0030	0.0017	mg/L	0.0542	108	80-120			
Sodium		10.0	1.0	NR	mg/L	10.2	102	80-120			
Thallium		0.200	0.0200	0.0102	mg/L	0.198	99	80-120			
Vanadium		0.200	0.0050	0.0011	mg/L	0.200	100	80-120			
Zinc		0.200	0.0100	0.0017	mg/L	0.198	99	80-120			
Matrix Online Amelymedy	40/47/40 (1		401 4445 B	404 Databa 401	4445)						
Matrix Spike Analyzed: QC Source Sample: RTL1063	-	ab Numbe	er:10L1445-N	451, Batch: 10L	_1445)						
Aluminum	1.17	10.0	0.200	0.045	mg/L	10.7	95	75-125			
Antimony	ND	0.200	0.0200	0.0068	mg/L	0.206	103	75-125			
Barium	0.0539	0.200	0.0020	0.0005	mg/L	0.256	101	75-125			
Beryllium	ND	0.200	0.0020	0.0003	mg/L	0.206	103	75-125			
Cadmium	0.00108	0.200	0.0010	0.0003	mg/L	0.207	103	75-125			
Calcium	154	10.0	0.5	0.1	mg/L	164	103	75-125			
Chromium	0.0161	0.200	0.0040	0.0009	mg/L	0.213	98	75-125			
Cobalt	ND	0.200	0.0040	0.0006	mg/L	0.202	101	75-125			
Copper	0.0124	0.200	0.0100	0.0015	mg/L	0.214	101	75-125			
Iron	2.03	10.0	0.050	0.019	mg/L	10.7	87	75-125			
Lead	ND	0.200	0.0050	0.0030	mg/L	0.204	102	75-125			
Magnesium	59.2	10.0	0.200	NR	mg/L	71.5	123	75-125			
Manganese	0.0131	0.200	0.0030	NR	mg/L	0.204	95	75-125			
Nickel	0.00819	0.200	0.0100	0.0013	mg/L	0.204	98	75-125			
Potassium	1.77	10.0	0.500	0.200	mg/L	12.1	103	75-125			
Selenium	ND	0.200	0.0150	0.0087	mg/L	0.205	103	75-125			
Silver	ND	0.0500	0.0030	0.0017	mg/L	0.0557	111	75-125			
Sodium	23.2	10.0	1.0	NR	mg/L	35.7	126	75-125			M1
Thallium	ND	0.200	0.0200	0.0102	mg/L	0.203	102	75-125			
Vanadium	0.00371	0.200	0.0050	0.0011	mg/L	0.206	101	75-125			
Zinc	0.0473	0.200	0.0100	0.0017	mg/L	0.205	79	75-125			
Matrix Spike Dup Analy QC Source Sample: RTL1063		0 (Lab Nı	umber:10L1	445-MSD1, Bato	ch: 10L1445)						
Aluminum	1.17	10.0	0.200	0.045	mg/L	10.6	94	75-125	0.9	20	
Antimony	ND	0.200	0.0200	0.0068	mg/L	0.208	104	75-125	1	20	
Barium	0.0539	0.200	0.0020	0.0005	mg/L	0.258	102	75-125		20	
		0.200			·3· –					_	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

0.0020

0.0003

mg/L

0.207

104

ND

0.200

Beryllium

20

75-125 0.4

Mercury

Work Order: RTL1063

Received:

12/16/10

Reported: 01/03/11 15:55

Project: NIAGARA COUNTY REFUSE SITE Project Number: NO TONAW004

	LABORATORY QC DATA										
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by SW 846	Series Meth	<u>iods</u>									
Matrix Spike Dup Analyz QC Source Sample: RTL1063-		0 (Lab Nเ	umber:10L1	445-MSD1, Bato	ch: 10L1445)						
Cadmium	0.00108	0.200	0.0010	0.0003	mg/L	0.209	104	75-125	0.9	20	
Calcium	154	10.0	0.5	0.1	mg/L	167	132	75-125	2	20	MHA
Chromium	0.0161	0.200	0.0040	0.0009	mg/L	0.216	100	75-125	2	20	
Cobalt	ND	0.200	0.0040	0.0006	mg/L	0.203	101	75-125	0.5	20	
Copper	0.0124	0.200	0.0100	0.0015	mg/L	0.219	103	75-125	2	20	
Iron	2.03	10.0	0.050	0.019	mg/L	10.9	89	75-125	2	20	
Lead	ND	0.200	0.0050	0.0030	mg/L	0.204	102	75-125	0.02	20	
Magnesium	59.2	10.0	0.200	NR	mg/L	67.3	81	75-125	6	20	
Manganese	0.0131	0.200	0.0030	NR	mg/L	0.207	97	75-125	2	20	
Nickel	0.00819	0.200	0.0100	0.0013	mg/L	0.206	99	75-125	8.0	20	
Potassium	1.77	10.0	0.500	0.200	mg/L	12.4	106	75-125	2	20	
Selenium	ND	0.200	0.0150	0.0087	mg/L	0.207	104	75-125	1	20	
Silver	ND	0.0500	0.0030	0.0017	mg/L	0.0548	110	75-125	2	20	
Sodium	23.2	10.0	1.0	NR	mg/L	33.3	102	75-125	7	20	
Thallium	ND	0.200	0.0200	0.0102	mg/L	0.204	102	75-125	0.5	20	
Vanadium	0.00371	0.200	0.0050	0.0011	mg/L	0.206	101	75-125	0.3	20	
Zinc	0.0473	0.200	0.0100	0.0017	mg/L	0.214	83	75-125	4	20	
Total Metals by SW 846	Series Meth	<u>iods</u>									
Blank Analyzed: 12/20/10	0 (Lab Num	nber:10L1	616-BLK1, E	Batch: 10L1616))						
Mercury			0.0002	0.0001	mg/L	ND					
LCS Analyzed: 12/20/10	(Lab Numb	er:10L16	16-BS1, Bat	ch: 10L1616)							
Mercury		0.00667	0.0002	0.0001	mg/L	0.00657	98	80-120			
Matrix Spike Analyzed: 1 QC Source Sample: RTL1063-	•	ab Numbe	er:10L1616-N	MS2, Batch: 10L	.1616)						
Mercury	ND	0.00667	0.0002	0.0001	mg/L	0.00645	97	75-125			
Matrix Spike Dup Analyz QC Source Sample: RTL1063-		0 (Lab Nเ	umber:10L1	616-MSD2, Bato	ch: 10L1616)						

0.0002

0.0001

mg/L

0.00670

100

75-125 4

ND

0.00667

20

Chain of Custody Record

<u>TestAmerica</u>

Special instructions/Note: I TEL Company Sample Disposal (A fee may be assessed if samples are relained longer than 1 month)

Return To Clien

Special Instructions/OC Requirements:

Mont 12062010 18:09_1 Preservation Codes. Contamer Codes: G=Otesa P=PolyoPlastic B-NaOH C-Zn Acatate Demonstrate Aced Newson Sereson VewchA Charles Con 1457 ě 5,2,6 repair Number of contains later DATE TOTAL Method of Shapment Center Tracking Notick Parameter(s) Requested Cooks Temperature(s) "Cand Other Revents: Luo Pue Sally Hoffman E-Aur Sally Hoffman@lestamericanc.com إفحمتهم والأ S V pH-T::alstaM-T Time (6N 50 39%) (elemed beteil) bleis **"""艾姆黎** -Z ٦ 3 3 Ħ 3 š ¢ E Company éumouro) Radiological Sample Type (Croomp, Gegrab) School C Bridge Project #: NIAGARA COUNTY REFUSE SITE SSOW# b Φ ø φ ø g ø 716) 435-8500 TAT Requested (Business Days) 10 Sample 13. 1550 1435 15. 15. 175 Date. Linknown Due Date Requested: 12/16/10 Sample Date 01/71/2 01/91/21 12/10/10 2/1/2 12/16/10 wо*е* RTL0685 SAR/TIMe Polson B 8 Custody Seals Infact. Custody Seaf No. 34 C 90 (Skin Imitani Deliverable Requested 1, II, III, IV, Other (specify) City of North Tonewands - NY1A8791 School By By By Land NIAGARA COUNTY REFUSE SITE City Hall Room 6, 216 Payns Ave Empty Kit Relinquished by: Morth Tonawanda, City of wmd_ntwwtp@live.com Client Information Sample Identification North Tonewanda Wilkem Davignon Reinquiched by: Sub. 2p: NY, 14120 Field Dup 1 NCR 125 NCR 3S NCR 43 NCR 5S S 8

Chain of Custody Record

TestAmerica or research resources

Special Instructions/Note: A CALCAS Suppure S Continent Preservation Codes:
A-HG. 2s2
B=NsOH
C=Zn Aceists
D=Ntinc Acid 000 No: 12082010 18:09_1 Pege: Containe Codes Astron Geoles PalolyPlatic Sept2804 V=MCAA Archive For total tiuper of contains 10 2.2 Sportine. Method of Shipmani: Comby Tracking Notes Parameter(s) Requested Cooley Temperature(s) To and Other Remains Special Instructions/OC Requirements Sally. Holfman@testamericainc.com (ecoved by: Secrement by Cab PM. Selly Hoffman E-Mail BH-I::8)#36W-J 'n I me CF 25 CW ON TO SAY SIGNAB DOTAIN WAR 7 Z (Caccame, parameter) Preserv Cord Code Сопрыту Company ń Сомрану 3 3 3 3 3 3 Rediological (NO #: RTL0625 Project #: NIAGARA COUNTY REFUSE SITE SSOWE: **Запры** Тура KIChard C Bricken 헭 C ø Φ U ø Ø (716) 435-8500 TAT Requested (Business Days) Sample 1350 1435 Ě 1315 135 12/16/10 1315 Date. Chaknown Due Dete Requestred: Sample Date 12/11/10 01/21/21 ושאודו 0//9//2 12/16/10 Date Tenu. Jake Care SANTING. Poison B 295901 Shan Arritant Possible Hazard Identification

Mon-Hazard DiFlammable Dain Intil
Deliverable Requested: I, II, IV, Other (specify) Custody Seals Intact: Custody Seal No. State O Buke City of North Tonewanda - NY1A8791 NIAGARA COUNTY REFUSE SITE City Hall Room 6, 216 Payne Ave Emply Kit Relinquished by Worth Tanawanda, City of Client Information wind_nhwwtp@five.com Sample Identification North Tonawanda VWWaπ Davignon elinquished by: Field Dup 1 NY, 14120 ACR 133 NCR 335 NCR 4S 54816. 2 5

GROUNDWATER SAMPLING • SAMPLE COLLECTION DATA SHEET

PROJECT NAME:

NIAGARA COUNTY REFUSE SITE

SAMPLING CREW MEMBERS:

Richard C. Becken

DATE OF SAMPLE COLLECTION:

(M M D D Y Y)

Sample I.D. Number	Well	Well Volume (Gallons)	Volume Purged (Gallons)	Sample Time	Sample Description	Analysis Required	Chain-of- Custody Number	Shipping Manifest Number
ACP 35	NCR 3S	4.0	9.7	1350	annual ment	T. Melels	1203201018:47	AN
NCE 45	NCR 4S	0.34	6.45	1435	annual medl	T. Metals	-	NR
SS SON	N.C. 55) Jam	المجراه	1	Markorny Wetl	I Makets		AN
NCR 135	NCR 13S	6,5	1.5	1315	annual I	T. Metals		MA
NCR 135	(MS/MSD)*	100	1.5	1315	unniforing well	T. Metals		NA
Field Due 1	(Duplicate)*	4.0	7.6	/350	maniforing well	T. Metals	_	A.A.
	(Rinse Blank) *							

t and label these samples). Collect MS/MSD and duplicate from one of the four monitoring wells listed above. 6S for the well number. Write the name of the well where the MS/MSD and duplicate were actually collected in

	ī
Ą	
í	
٦	3
1	
ì	
ė	÷
3	
1	*
i	

4	ļ
L	
_'	

WELL PURGING INFORMATION

SITE/PROJECT NAME:	Niagara Count	y Refuse Site				
DATE:	121	0 10 (M	M DD YY)			
CREW MEMBERS:	RC Bec	ken				
PURGING METHOD:	Dedicated Blad	der Pump				
WELL NUMBER:	NCR 3	5				
ONE WELL VOLUME:	0.4	galle	ons			
FIVE WELL VOLUMES:	2.0i	galle				
(See Section 4.2.4.1 of the OM&	M Manual and Tal	ole FP-4.1 to calcula	te well volumes ba	sed on current water	r levels.)	
WELL VOLUME	1	2	3	4	5	TOT/AVG
VOLUME PURGED (total)	P.0~	~.3	-/.2	~1.6		
pН	7.28	7.0	6.92	7.08		
TEMPERATURE	42.9	44.9	44.7	41.2		
CONDUCTIVITY	1.27	1.26	1.23	1.19		
TURBIDITY	41.6	33.39	35.7	28.1		
COLOR	slightly	Slightly	Slightly Justy	Slightly		
ODOR	rong	itone	ione	me		
COMMENTS			dig	well		
	I CERTIFY THAT SA	MPLING PROCEDURES	WERE IN ACCORDANCE	WITH APPLICABLE PROT		
12/16/10 DATE	Richar	d C Becker	^	die	hal &	uben
	PKI	14 HOME				SIGNATURE

WELL PURGING INFORMATION SITE/PROJECT NAME: Niagara County Refuse Site [1 2 1 6 1 6 (MM DD YY) DATE: RC Becken CREW MEMBERS: PURGING METHOD: Dedicated Bladder Pump WELL NUMBER: NCR 45 . 34 ONE WELL VOLUME: FIVE WELL VOLUMES: gallons (See Section 4.2.4.1 of the OM&M Manual and Table FP-4.1 to calculate well volumes based on current water levels.) WELL VOLUME 2 3 TOT/AVG VOLUME PURGED (total) pH 7.60 7.64 TEMPERATURE 37.1 53.4 CONDUCTIVITY 0.76 TURBIDITY 585. 427 light light COLOR ODOR none work well COMMENTS day I CERTIFY THAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE PROTOCOLS 12/16/10

FP-4C

	WI	ELL PURGIN	G INFORM	ATION		
SITE/PROJECT NAME:	Niagara County Re	efuse Site				
DATE:	112116	I O (MM	DD YY)			
CREW MEMBERS:	Rc Bed	cen				
PURGING METHOD:	Dedicated Bladder	Pump				
WELL NUMBER:	NCR 55					
ONE WELL VOLUME:		gallons	3			
FIVE WELL VOLUMES:		gallons				
(See Section 4.2.4.1 of the OM&	M Manual and Table I	FP-4.1 to calculate	well volumes based	on current water l	evels.)	
WELL VOLUME	1	2	3	4	5	TOT/AVG
VOLUME PURGED (total)						
рН		1	/			
TEMPERATURE			1/			
CONDUCTIVITY		1		\		
TURBIDITY		1/6				
COLOR						
ODOR						
COMMENTS						
	I CERTIFY THAT SAMPL	ING PROCEDURES WER	RE IN ACCORDANCE WIT	TH APPLICABLE PROTOC	OLS	
12/16/10	Richard C	Becken			Rhalo	Buke
FP-4C	PRINT N	AME				SIGNATURE

WELL PURGING INFORMATION

SITE/FROJECT NAME: DATE:							
CREW MEMBERS: PURGING METHOD: Dedicated Bladder Pump WELL NUMBER: NC & 13 S ONE WELL VOLUME: Q Y GL gallons FIVE WELL VOLUME: 2 . 43 gallons SCOR Section 4 2 4.1 of the OM/AM Manual and Table FP-4.1 to calculate well volumes based on current water levels.) WELL VOLUME 1 2 3 4 5 TOT/AVG VOLUME PURGED (total) VOLUME PURGED (total) PH U.S. 7 7.20 7.44 TEMPERATURE 4(3 44.3 40.5 CONDUCTIVITY 1.07 1.078 1.04 TURBIDITY 3D 9.65 7.85 COLOR ODOR ACTUAL ORGAN ORGAN CHAPTUCABLE PROTOCOLS ICERTIFY THAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE PROTOCOLS 12/16/10 Reduced Backer FRIENT WARE SCNATURE SCNATURE SCNATURE SCNATURE	SITE/PROJECT NAME:	Niagara Count	ty Refuse Site				
PURGING METHOD: WELL NUMBER: NCE 13 5 ONE WELL VOLUME: Q 49 L gallons FIVE WELL VOLUMES: 2 4 8 gallons (See Section 4 2.4.1 of the OM&M Manual and Table FP-4.1 to calculate well volumes based on current water levels.) WELL VOLUME 1 2 3 4 5 TOT/AVG VOLUME FURGED (total) ~ 5 // 2 // 5 // 7.9° 7.44 TEMPERATURE U. 9 7 7.9° 7.44 TEMPERATURE U. 9 7 7.9° 7.44 TURBIDITY 3 9 9 5 CONDUCTIVITY 1.09 1.08 1.09 TURBIDITY 30 9 65 7.85 COLOR COLO	DATE:	121	E 10 (MA	DD YY)			
WELL NUMBER: NCE 13 5 ONE WELL VOLUME: 2 - 48 gallons [See Section 4.2.4.1 of the OM/AM Manual and Table FP-4.1 to calculate well volumes based on current water levels.) WELL VOLUME 1 2 3 4 5 TOT/AVG VOLUME PURGED (total) ~ . 5 / . 2 1.5 PH	CREW MEMBERS:	RIBE	cke_				
ONE WELL VOLUME: FIVE WELL VOLUMES: 2.43 gallons (See Section 4.2.4.1 of the OM&M Manual and Table FP-4.1 to calculate well volumes based on current water levels.) WELL VOLUME 1 2 3 4 5 TOT/AVG VOLUME PURGED (total) PH 6.9.7 7.00 7.44 TEMPERATURE 40.3 44.3 90.5 CONDUCTIVITY 1.09 1.09 1.09 1.09 TURBIDITY 3.0 9.65 7.85 COLOR QUAL OLUM OLUM OLUM OLUM OLUM OLUM OLUM OLU	PURGING METHOD:	Dedicated Blad	lder Pump				
FIVE WELL VOLUMES: (See Section 4.2.4.1 of the OM&M Manual and Table FP-4.1 to calculate well volumes based on current water levels.) WELL VOLUME 1 2 3 4 5 TOT/AVG VOLUME PURGED (total) WELL VOLUME 1 2 3 4 5 TOT/AVG VOLUME PURGED (total) WELL VOLUME 1 2 3 4 5 TOT/AVG VOLUME PURGED (total) WELL VOLUME 1 2 3 4 5 TOT/AVG VOLUME PURGED (total) WELL VOLUME 1 2 3 4 5 TOT/AVG TEMPERATURE 4 3 4 9 5 TOT/AVG TEMPERATURE 4 3 4 9 5 TOT/AVG TURBIDITY 7 7 9 7 7 9 7 7 9 7 9 7 9 9 7 9 9 7 9	WELL NUMBER:	NCR 13	S				
(See Section 4.2.4.1 of the OM&M Manual and Table FF-4.1 to calculate well volumes based on current water levels.) WELL VOLUME 1 2 3 4 5 TOT/AVG VOLUME PURGED (total) ~ 5 /.0 1.5 pH 6.97 7.90 7.44 TEMPERATURE 40.3 44.3 40.5 CONDUCTIVITY 1.09 1.08 1.04 TURBIDITY 3.0 9.65 7.85 COLOR 40.47 40.47 60.47 ODOR ACRE LATE COMMENTS ICERTIFY THAT SAMPLING FROCEDURES WERE IN ACCORDANCE WITH APPLICABLE PROTOCOLS ICERTIFY THAT SAMPLING FROCEDURES WERE IN ACCORDANCE WITH APPLICABLE PROTOCOLS 12/16/10 Refer to Accordance With APPLICABLE PROTOCOLS 12/16/10 Refer to Accordance With APPLICABLE PROTOCOLS FRINT NAME SCANATURE	ONE WELL VOLUME:	0.496	gallo	ns			
(See Section 4.2.4.1 of the OM&M Manual and Table FP-4.1 to calculate well volumes based on current water levels.) WELL VOLUME 1 2 3 4 5 TOT/AVG VOLUME PURGED (total) PH C. 9.7 7-90 7/4 TEMPERATURE 40.3 44.3 40.5 CONDUCTIVITY 1.09 1.08 1.04 TURBIDITY COLOR	FIVE WELL VOLUMES:	2.48					
VOLUME PURGED (total) PH L.9.7 7.00 7.14 TEMPERATURE 40.3 44.3 40.5 CONDUCTIVITY 1.09 1.07 1.07 1.04 TURBIDITY 3.0 9.65 7.85 COLOR QUAL OLEAN ODOR LOW LOW LOW LOW LOW LOW LOW L	(See Section 4.2.4.1 of the OM&	Manual and Tal			d on current water le	vels.)	
VOLUME PURGED (total) PH C. 9.7 7.90 7.44 TEMPERATURE 40.3 44.3 40.5 CONDUCTIVITY 1.09 1.08 1.04 TURBIDITY 3D 9.65 7.85 COLOR CLUI ODOR ADDR ADDR LORI LORI LORI COMMENTS ICERTIFY THAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE PROTOCOLS IZERIAL CREEKER FRINT NAME SIGNATURE							
TEMPERATURE 40.3 44.3 40.5 CONDUCTIVITY 1.07 1.08 1.04 TURBIDITY 3.0 Q. U.S. 7.85 COLOR Q. U.S. TORAL COMMENTS	WELL VOLUME	1	2	3	4	5	TOT/AVG
TEMPERATURE 40.3 44.3 40.5 CONDUCTIVITY 1.09 1.08 1.04 TURBIDITY 3.0 9.65 7.85 COLOR QUALT ADAR LIGHT COMMENTS ICERTIFY THAT SAMPLING FROCEDURES WERE IN ACCORDANCE WITH APPLICABLE PROTOCOLS 12/16/10 Rehad Crecken FRINT NAME SCNATURE	VOLUME PURGED (total)	~ .5	1.0	1.5			
CONDUCTIVITY 1.09 1.08 1.09	рН	6.97	7-20	744			
TURBIDITY 3.D 9.65 7.85 COLOR COLO	TEMPERATURE	46.3	44.3	10.5			
COLOR ODOR NOW NOW NOW NOW NOW NOW NOW N	CONDUCTIVITY	1.09	1.08	1.04			
ODOR 1600 AGLE 1500 COMMENTS ICERTIFY THAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE PROTOCOLS 12/16/10 Reday Creeker Recker Recker SIGNATURE	TURBIDITY	30	9-65	7.85			
COMMENTS LIZE LIZE LIZE LIZE LIZE LIZE LIZE LIZE	COLOR	deur	deur	clear		K	
I CERTIFY THAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE PROTOCOLS 12/16/10 Richard C Backer Related Botton SIGNATURE	ODOR	home	None				
12/16/10 Richard C Becken Rule O Bocken SIGNATURE	COMMENTS		waliday				
DATE PRINT NAME SIGNATURE		I CERTIFY THAT SA	LMPLING PROCEDURES W	ERE IN ACCORDANCE WI	TH APPLICABLE PROTOCO	LS	
DATE PRINT NAME SIGNATURE	12/16/10	Richard	C Becken		Kile O	Boiler	
P-4C	FP-4C	PRIM	NI NAME				SIGNATURE

APPENDIX D DATA VALIDATION REPORT

DATA USABILITY SUMMARY REPORT FOR NIAGARA COUNTY REFUSE SITE

Prepared By:

PARSONS

301 Plainfield Road, Suite 350 Syracuse, NY 13212 Phone: (315) 451-9560 Fax: (315) 451-9570

JANUARY 2011

TABLE OF CONTENTS

Page	<u>)</u>
SECTION 1 DATA USABILITY SUMMARY1-1	
1.1 LABORATORY DATA PACKAGES1-1	
1.2 SAMPLING AND CHAIN-OF-CUSTODY1-1	
1.3 LABORATORY ANALYTICAL METHODS 1-1 1.3.1 Metals Analysis 1-2	
SECTION 2 DATA VALIDATION REPORT2-1	
2.1 GROUNDWATER DATA 2-1 2.1.1 Metals 2-1	
LIST OF TABLES	
Table 2.1-1 Summary of Sample Analyses and Usability	
LIST OF ATTACHMENTS	
ATTACHMENT A - VALIDATED LABORATORY DATA	

SECTION 1

DATA USABILITY SUMMARY

Groundwater samples were collected from the Niagara County Refuse site in North Tonawanda, New York on December 16, 2010. Analytical results from these samples were validated and reviewed by Parsons for usability with respect to the following requirements:

- Work Plan, and
- USEPA Region II Standard Operating Procedures (SOPs) for organic and inorganic data review.

The analytical laboratory for this project was Test America Laboratory (TAL) in Buffalo, New York. This laboratory is certified to conduct project analyses through the National Environmental Laboratory Accreditation Program (NELAP).

1.1 LABORATORY DATA PACKAGES

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was 25 days on average for the groundwater samples.

The data packages received from TAL were paginated, complete, and overall were of good quality. Comments on specific quality control (QC) and other requirements are discussed in detail in the attached data validation report in Section 2.

1.2 SAMPLING AND CHAIN-OF-CUSTODY

Groundwater samples were collected, properly preserved, shipped under a COC record, and received at TAL within one day of sampling. All samples were received intact and in good condition at TAL.

1.3 LABORATORY ANALYTICAL METHODS

Groundwater samples were collected from the site and analyzed for metals. Summaries of issues concerning these laboratory analyses are presented in Subsection 1.3.1. The data qualifications resulting from the data validation review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, and comparability (PARCC) are discussed for each analytical method in Section 2. The laboratory data were reviewed and may be qualified with the following validation flags:

"U" - not detected at the value given,

"UJ" - estimated and not detected at the value given,

"J" - estimated at the value given,

"N" - presumptive evidence at the value given, and

"R" - unusable value.

The validated laboratory data were tabulated and are presented in Attachment A.

1.3.1 Metals Analysis

Groundwater samples collected from the site were analyzed for target analyte list metals using the USEPA SW-846 6010B/7470A analytical methods. Certain metals results were considered estimated based upon matrix spike recoveries and field duplicate precision. All of the metals data were considered usable and 100% complete for the groundwater data presented by TAL. PARCC requirements were met.

SECTION 2

DATA VALIDATION REPORT

2.1 GROUNDWATER DATA

Data review has been completed for data packages generated by TAL containing groundwater samples collected from the Niagara County Refuse site. The specific samples contained in these data packages, the analyses performed, and a usability summary, are presented in Table 2.1-1. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A.

Data validation was performed for all samples in accordance with the most current editions of the USEPA Region II SOPs for organic and inorganic data review. This data validation and usability report is presented by analysis type.

2.1.1 Metals

The following items were reviewed for compliancy in the metals analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration and laboratory preparation blank contamination
- Inductively coupled plasma (ICP) interference check sample (ICS)
- Matrix spike recoveries
- Laboratory duplicate precision
- Laboratory control sample
- ICP serial dilution
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of matrix spike recoveries and field duplicate precision.

Matrix Spike Recoveries

All matrix spike (MS) recoveries were compliant and within QC acceptance limits with the exception of the high MS recovery for sodium (126%R; QC limit 75-125%R) associated with all samples. Therefore, positive sodium results were considered estimated, possibly biased high, and qualified "J" for the affected samples.

Field Duplicate Precision

All field duplicate precision results were considered acceptable for all analytes with the exception of the field duplicate precision for iron (54%RPD) and nickel (51%RPD) associated with the field duplicate samples NCR-3S and FIELD DUP 1. Therefore, the iron and nickel results for these samples were considered estimated and qualified "J".

Usability

All metals sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, and comparability. The metals data presented by TAL were 100% complete with all metals data considered valid and usable. The validated metals laboratory data are tabulated and presented in Attachment A.

TABLE 2.1-1 SUMMARY OF SAMPLE ANALYSES AND USABILITY

NIAGARA COUNTY REFUSE SITE

		SAMPLE	
SAMPLE ID	MATRIX	DATE	METALS
NCR-3S	Water	12/16/10	OK
NCR-4S	Water	12/16/10	OK
NCR-5S	Water	12/16/10	OK
NCR-13S	Water	12/16/10	OK
FIELD DUP 1	Water	12/16/10	OK

5

NOTES: OK - Sample analysis considered valid and usable.

ATTACHMENT A VALIDATED LABORATORY DATA

				Dup of NCR-3		
City of North	Tonawanda NY1A8791	Sample ID:	NCR-3S	FIELD DUP #1	NCR-4S	NCR-13S
216 Payne A	ve	Lab Sample Id:	RTL1063-04	RTL1063-06	RTL1063-05	RTL1063-01
North Tonaw	anda, NY	Source:	TAL-Buffalo	TAL-Buffalo	TAL-Buffalo	TAL-Buffalo
C/O Niagara	County Refuse Site	SDG:	RTL1063	RTL1063	RTL1063	RTL1063
Validated Gro	oundwater Sampling Event	Matrix:	WATER	WATER	WATER	WATER
December 20	10	Sampled:	12/16/2010	12/16/2010	12/16/2010	12/16/2010
		Validated:	1/13/2011	1/13/2011	1/13/2011	1/13/2011
CAS NO.	COMPOUND	UNITS:				
	METALS					
7429-90-5	Aluminum	ug/L	465	763	3810	1170
7440-36-0	Antimony	ug/L	20 U	20 U	20 U	20 U
7440-39-3	Barium	ug/L	50.4	51.9	56.7	53.9
7440-41-7	Beryllium	ug/L	2 U	2 U	2 U	2 U
7440-43-9	Cadmium	ug/L	0.5 J	0.6 J	0.9 J	1.1
7440-70-2	Calcium	ug/L	146000	147000	136000	154000
7440-47-3	Chromium	ug/L	6	8.8	3.2 J	16.1
7440-48-4	Cobalt	ug/L	4 U	4 U	0.6 J	4 U
7440-50-8	Copper	ug/L	6 J	7.1 J	6.6 J	12.4
7439-89-6	Iron	ug/L	723	1260	9960	2030
7439-92-1	Lead	ug/L	3.7 J	3.3 J	6.7	5 U
7439-95-4	Magnesium	ug/L	89400	90400	47400	59200
7439-96-5	Manganese	ug/L	25.9	29.7	22.9	13.1
7440-02-0	Nickel	ug/L	6.8 J	11.5 J	4.4 J	8.2 J
7440-09-7	Potassium	ug/L	2540	2670	10500	1770
7782-49-2	Selenium	ug/L	15 U	15 U	9.4 J	15 U
7440-22-4	Silver	ug/L	3 U	3 U	3 U	3 U
7439-97-6	Mercury	ug/L	0.2 U	0.2 U	0.2 U	0.2 U
7440-23-5	Sodium	ug/L	11700 J	11900 J	33300 J	23200 J
7440-28-0	Thallium	ug/L	20 U	20 U	20 U	20 U
7440-62-2	Vanadium	ug/L	2.5 J	2.6 J	2.1 J	3.7 J
7440-66-6	Zinc	ug/L	20.6	38.2	268	47.3

APPENDIX E MONTHLY INSPECTION LOGS AND PHOTOGRAPHS

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagara C	Niagara County Refuse Site	LOCATION: Wheatfield, New York	. New York
INSPECTOR(S):	RC Baken	DATE:	(XX) (V)
Item	Inspect For	Action Required Comments	
1. Perimeter Collection Sy	Perimeter Collection System/Off-Site Forcemain		
Manholes	- cover on securely - condition of cover	ues gra-d	
	 condition of inside of manhole flow conditions 	good from and	
Wet Weils	 cover on securely condition of cover 		
	- condition of inside of wet well	Joseph	
2. Landfill Cap			
Vegetated Soil Cover	- erosion	More	
	- bare areas	Mone	
	- washouts	non	
	- leachate seeps		
	- length of vegetation	U-1	
	- dead/dying vegetation	winter bell	
1 Maon			
A CANA A			

1.46 . 100

		MONTHLY INSPECTION LOG			
PROJECT NAME: Niagara	: Niagara County Refuse Site	ä	LOCATION:	Wheatfield, New York	····
INSPECTOR(S):	RC Back	Q	DATE:	(VY DD VY)	
Item	Inspect For	Action Required		Comments	
2. Landfill Cap (continued)	(par				
Access Roads	- bare areas, dead/dying veg.	anons conera			
	- erosion	J. J.			
	- potholes or puddles	Survey.			
	- obstruction	Lucur			
3. Wetlands (Area "F")	- dead/dying vegetation	winter kiel			
	- change in water budget	notinel			l
	- general condition of wetlands	Grown J.	-		
4. Other Site Systems					
Perimeter Fence	- integrity of fence	J-asky			
	- integrity of gates	Juste J			ı
	- integrity of locks	gottel			l :
	 placement and condition of signs 	Loop			<u> </u>
FORM 1				-	

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagara INSPECTOR(5):	Niagara County Refuse Site RC Becket	LOCATION: DATE:	: Wheatfield, New York O 1 6 7 7 5 (MM DD YY)
Item	Inspect For	Action Required	Comments
4. Other Site Systems (continued) Drainage Ditches/ - sedim Swale Outlets - erosic - condi - flow c - dead - cable ripraf Culverts - sedim - erosic - cable	- sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up - erosion - condition of erosion protection - flow obstructions	mone coversed grows and some covered and covered and covered grows	
Gas Vents	· - intact / damage	intert	•
FORM 1			

		MONTHLY INSPECTION LOG	
PROJECT NAME: N	Niagara County Refuse Site	LOCATION: V DATE:	Wheatfield, New York O 2 O
	Inspect For	Action Required	Comments
1. Perimeter Col	Perimeter Collection System/Off-Site Forcemain		
Manholes	 caver on securely candition of cover condition of inside of manhole flow conditions 	good governt flow	
Wet Wells . Landfill Cap	- cover on securely - condition of cover - condition of inside of wet well	Jacob Jacob	
Vegetated Soil Cover	 i) Cover bare areas washouts leachate seeps length of vegetation dead/dying vegetation 	none corered	
FORM 1			

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagara C	: Niagara County Refuse Site	LOCATION: DATE:	: Wheatfield, New York
INSPECTOR(S):	RC Becken Inspect For	Action Required	Comments
2. Landfill Cap (continued) Access Roads	ed) - bare areas, dead/dying veg erosion - potholes or puddles - obstruction	Mond Coresa	
3. Wellands (Area "F")	 dead/dying vegetation change in water budget general condition of wetlands 	heeles then remost	
4. Other Site Systems Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 	good good	

		MONTHLY INSPECTION LOG		
PROJECT NAME: Niagara	Niagara County Refuse Site		LOCATION: DATE:	Wheatfield, New York
INSPECTOR(S):	Inspect For	Action Required		Соттепіз
4. Other Site Systems (continued) Drainage Ditches/ - sedim Swale Outlets - erosic - condi - flow c - table - cable	- sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap	work inch in and inch winter lead		
Culverts	 sediment build-up erosion condition of erosion protection flow obstructions 	anson good		
Gas Vents Wells	- intact /damage - locks secure	intent		
FORM 1				

PROJECT NAME: Niagara County Refuse Site INSPECTOR(S):	rcemain ely side of manhole side of wet well side of wet well	LOCATION: W LOCATION: W DATE: [0] Action Required Good Good Good Good Good Action Required Action	Wheatfield, New York O 3 1 1 1 O (MIM DD YY) Comments Comments
	- length of vegetation - dead/dying vegetation	s. hart	
FORM I			

1 1/14,15

		MONTHLY INSPECTION LOG	₍)		
rii	Niagara County Refuse Site		LOCATION: DATE:	Wheatfield, New York	
INSPECTOR(5):	Inspect For	Action Required	1	Comments	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/ Swale Outlets	- sediment build-up	NOVE			
	 erosion condition of erosion protection 	good			
	- flow obstructions	nove			
	 dead/dying vegetation cable concrete/gabion mats and riprap 	good condition			
Culverts	- sediment build-up	none			
	- erosion - condition of erosion protection	now			
	- flow obstructions	none		Amelions	
Gas Vents	- intact /damage	infact	***************************************		
Wells	- locks secure	YPs			
FORM 1					

	·	MONTHLY INSPECTION LOG			
PROJECT NAME: Niagara	Niagara County Refuse Site	01	LOCATION:	Wheatfield, New York	
INSPECTOR(S):	Rc Berken	7G	DATE:	O 1 0 1 1 O (MM DD YY)	
Item	Inspect For	Action Required		Comments	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/	- sediment build-up	22		,	
Swafe Outlets	- erosion	. W			
	- condition of erosion protection	good			
	- flow obstructions	work			
	- dead/dying vegetation	242			
	- cable concrete/gabion mats and riprap	9000			
Culverts	- sediment build-up	N.O.			ı
	- erosion	7,448	,		[
	- condition of erosion protection	Joseph			
	- flow obstructions	nose]
Gas Vents	intact /damage	wtart			
Wells	- locks secure	yes			<u> </u>
FORM 1					

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagara C	Niagara County Refuse Site	Ö Ö	Wheatfield, New York
INSPECTORGE	C Berker	DATE: (A	(MM DD YY)
	Inspect For	Action Required	Comments
1. Perimeter Collection Sy	Perimeter Collection System/Off-Site Forcemain		
Manholes	- cover on securely - condition of cover	your	
	- Conation of itistue of maintain. - flow conditions	ms from	
Wet Wells	- cover on securely - condition of cover - condition of inside of wet well	yes good	
2. Landfill Cap			
Vegetaled Soil Cover	- erosion - bare areas	mont	
	- washouts - leachate seeps	mone.	
	- length of vegetation - dead/dying vegetation	obert none	
ORM I			

		MONTHLY INSPECTION LOG	G		
PROJECT NAME: Niagara County Refuse Site	County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):		-	DATE:	OSO 619 (MM DD YY)	
Item	Inspect For	Action Required		Comments	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/ Swale Outlets	- sediment build-up]
	- erosion	more:			
	- flow obstructions	7-40/h.			
	- dead/dying vegetation	mons			
	- cable concrete/gabion mats and riprap	good			
Culverts	- sediment build-up	man			.
	- erasion	none		THE REAL PROPERTY OF THE PROPE	1
	- condition of erosion protection	Con			1
	- flow obstructions				
Gas Vents	- intact / damage	Entert your Condition	lec		
Wells	- locks secure	200			1
		· · ·			
FOKM 1					

MONTHLY INSPECTION LOG	AME: Niagara County Refuse Site DATE:	Colle	- cover on securely - condition of cover - condition of inside of manhole - flow conditions	Wells - cover on securely UP d - condition of cover Core Core Core Core Core Core Core Co	- bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation - dead/dying vegetation
	Ž	INSPECTOR(5): Item 1. Perimeter Collection	Manholes	Wet Wells . Landfill Cap	Vegetated Soil Cover

		MONTHLY INSPECTION LOG	r h		
PROJECT NAME: Niagara County Refuse Site	a County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	RC Beck		DATE:	O 6 Jo VY)	
Item	Inspect For	Action Required		Comments	
4. Other Site Syslems (continued)	ontinued)				
Drainage Ditches/	- sediment build-up	MANG			1
Owale Outleb	- erosion	MANG.			
	- condition of erosion protection	good			
	- flow obstructions	MARIE			
	- dead/dying vegetation	Mone			
	 cable concrete/gabion mats and riprap 	Good condition			1 1
Culverts	- sediment build-up	Dush			
	- erosion	2005			1
	- condition of erosion protection	J-0-8			1
	- flow obstructions	NOR			1 1
Gas Vents	- intact /damage	what			
Wells	- łocks secure	425			, ,
FORM 1					

			MONTHLY INSPECTION LOG	90	
PRO	PROJECT NAME: Niagara County Refuse Site	ounty Refuse Site		LOCATION:	Wheatfield, New York
ISNI	INSPECTOR(S):	ne de Contra		DATE:	(MM DD YY)
•	Item	Inspect For	Action Required		Comments
1;	Perimeter Collection Sy	Perimeter Collection System/Off-Site Forcemain			
	Manholes	- cover on securely	ves		
		- condition of cover	Guard		
		condition of inside of manholeflow conditions	Jacob		
	Wet Wells	- cover on secure v	7.50		
		- condition of cover	2,032		
		- condition of inside of wet well	0000		
. 7	Landfill Cap			•	
	Vegetated Soil Cover	- erosion	NOA		
		- bare areas	800		The second secon
		- washouts	none		
		- leachate seeps	Sugar.		
		- length of vegetation	told		
		- dead/dying vegetation	word		
FORM 1					

|--|

		MONTHLY INSPECTION LOG	Ŋ		
PROJECT NAME: Niagara County Refuse Site INSPECTOR(S):	County Refuse Site		LOCATION: DATE:	Wheatfield, New York S 7 D 2 / S (MM DD YY)	
Item Inspec	Inspect For ontinued)	Action Required		Comments	
	 sediment build-up erosion condition of erosion protection flow obstructions dead/dying vegetation cable concrete/gabion mats and riprap 	Mone good			
Culverts	 sediment build-up erosion condition of erosion protection flow obstructions 	none good			
Gas Vents Wells	- intact /damage - locks secure	intect			
FORM 1					

		MONTHLY INSPECTION LOG	
PROJECT NAME:	Niagara County Refuse Site	LOCATION: Wheatfi	Wheatfield, New York
INSPECTOR(S):	RC Becker	DATE: 08	(MM DD YY)
Item	Inspect For	Action Required	ents
1. Perimeter C	Perimeter Collection System/Off-Site Forcemain		
Manholes	- cover on securely	\s\ \s\ \	
	 condition of cover condition of inside of manhole 	90000 Joseph	
	- Now conditions	me flows	
Wet Wells	- cover on securely	465	
	- condition of cover	Good	
	- condition of inside of wet well	9000	
2. Landfill Cap	£.		
Vegetated Soil Cover	oil Cover - erosion	mone	
	- bare areas	nove	
	- washouts	work	
	- leachate seeps	none	
	- length of vegetation	till	
	- dead/dying vegetation	76	
OKM 1			

		MONTHLY INSPECTION LOG)G	
PROJECT NAME: Niagara	: Niagara County Refuse Site		LOCATION:	Wheatfield, New York
INSPECTOR(S):	Rc Carlan		DATE:	
Item	Inspect For	Action Required		Comments
2. Landfill Cap (continued)	ed) .			
Access Roads	- bare areas, dead/dying veg.	N.S		
	- erosion	none		
	- potholes or puddles	mont		
	- obstruction	mone		
3. Wetlands (Area "F")	- dead/dying vegetation	37		
**************************************	- change in water budget	Las		
	- general condition of wetlands	2000		
4. Other Site Systems				
Perimeter Fence	- integrity of fence	0000		
	- integrity of gates	Jack -		
	- integrity of locks	Jacob		
	 placement and condition of signs 	Good		
FORM 1				

PROJ	PROJECT NAME: Niagara County Refuse Site INSPECTOR(S):	up sion protection ns	(INSPEC	OCATION:	Wheatfield, New York	
FORM 1	Culverts Gas Vents Wells	- cable concrete/gabion mats and riprap - sediment build-up - erosion - condition of erosion protection - flow obstructions - intact /damage - locks secure	more condition			

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagar	Niagara County Refuse Site	LOCATION:	Wheatfield, New York
INSPECTOR(S):	RC Baken	DATE:	[O] / [O] / [O] / [O] (NIM DD YY)
. Івен	Inspect For	Action Required	Comments
1. Perimeter Collection	Perimeter Collection System/Off-Site Forcemain		
Manholes	- cover on securely	Sah	
	- condition of inside of manhole	(Peoko	
	- flow conditions	no flow	
Wet Wells	- cover on securely	ر چې	
	- condition of cover	good	
	- condition of inside of wet well	dose	
2. Landfill Cap			
Vegelated Soil Cover	- erosion	none	
	- bare areas	mone	
	- washouts	none	
	- leachate seeps	mone	
	- length of vegetation	togo	
	- dead/dying vegetation	more	
FORM 1			

₩	MONTHLY INSPECTION LC Mond Mond Mond Mond Mond Action Required Mond Lon Good Goo	OCATION:	Wheatfield, New York O 9 1 6 1 O (MM DD YY) Comments	
ון מוני כסויקוויטי סי	Goose			1
a will a the transfer of the	/dying veg. /dying veg. dles budget n of wetlands ondition of	/dying veg. /dying veg. dles budget n of wetlands ondition of	Adving veg. Adving veg. Action Required Action Reduined Action Required Action Reduined Action Reduine	Action Required Action Reduited Action

Gas Vents - intact / damage - locks secure - locks
Wells - locks secure

907	LOCATION: Wheatfield, New York	DATE: (1 O O O O O O O O O	Comments								
MONTHLY INSPECTION LOG	PROJECT NAME: Niagara County Refuse Site	INSPECTOR(S):	Item Inspect For Action Required	2. Landfill Cap (continued)	ing veg.	- potholes or puddles	3. Wetlands (Area "F") - dead/dying vegetation - change in water budget אינייי - change in water budget האיניים - general condition of wetlands	4. Other Site Systems	Perimeter Fence - integrity of fence	ndition of	, ,

		MONTHLY INSPECTION LOG	رم رم		
PROJECT NAME: Niagara	Niagara County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	RC Becken		DATE	(MM DD YY)	
Item	Inspect For	Action Required		Comments	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/ Swale Outlets Culverts	- sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up - erosion - condition of erosion protection - flow obstructions	more inore i			
Gas Vents Wells	- intact /damage - locks secure	utant			1 1
FORM 1					

		MONTHLY INSPECTION LOG	
rii	Jiagara County Refuse Site	LOCATION: DATE:	Wheatfield, New York
INSPECTOR(S):	Inspect For	Action Required	Comments
1. Perimeter Collection	Perimeter Collection System/Off-Site Forcemain		
Manholes	- cover on securely	465	
	 condition of cover condition of inside of manhole 	gord Jerop	
	- flow conditions	no expansel fles	
Wet Wells	- cover on securely	tion .	
	- condition of cover		
	- condition of inside of wet well	ر معن ا	
2. Landfill Cap			
Vegetated Soil Cover	- erosion	work.	
	- bare areas	Mone	
	- washouts	Juan	
	- leachate seeps	none	
	- length of vegetation	short	
	- dead/dying vegetation	you winter toll	
FORM 1			

		MONTHLY INSPECTION LOG	50		
PROJECT NAME: Niagara C	Niagara County Refuse Site		LOCATION:	Wheatfield, New York	
INSPECTOR(S):	RC Bully		DATE:	(MM DD YY)	
Item	Inspect For	Action Required		Comments	
2. Landfill Cap (confinued)	(p)				
Access Roads	- bare areas, dead/dying veg.	Mone]
	- potholes or puddles	none			
	- obstruction	none			
3. Wellands (Area "F")	- dead/dying vegetation - change in water budget	425 venter faill			
	- general condition of wetlands	4.00 b			1
4. Other Site Systems					
Perimeter Fence	integrity of fenceintegrity of gatesintegrity of locks	Good Goods]
	- placement and condition of signs	C. co.			1
FORM 1					

		MONTHLY INSPECTION LOG	<u></u>		
PROJECT NAME: Niagara	Niagara County Refuse Site		LOCATION: DATE:	Wheatfield, New York	
	Inspect For	Action Required	I	Comments	
4. Other Site Systems (continued) Drainage Ditches/ - sedim Swale Outlets - erosic - condi - flow of the condinued.	- sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap	nose good good good			
Culverts	 sediment build-up erosion condition of erosion protection flow obstructions 	Mone dust			
Gas Vents Wells	- intact /damage - locks secure	intent yes.			
FORM 1					

		MONTHLY INSPECTION LOG	
PROJECT NAME: Niagara (: Niagara County Refuse Site	LOCATION:	Wheatfield, New York
INSPECTOR(S):	DCBak	DATE:	(MIM DD YY)
Item	Inspect For	Action Required	Comments
2. Landfill Cap (continued)	ed)		
Access Roads	 bare areas, dead/dying veg. erosion potholes or puddles obstruction 	winter hill	
3. Wetlands (Area "F")	 dead/dying vegetation change in water budget general condition of wetlands 	hornten hield but worth	
4. Other Site Systems			
Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 	good good	
FORM 1			

					-
		MONTHLY INSPECTION LOG	ריז		
PROJECT NAME: Niagara	Niagara County Refuse Site		LOCATION:	Wheatfield, New York	
			DATE:	1121612111d	
INSPECTOR(S):	RC Racken		,		
Item	Inspect For	Action Required		Comments	
4. Other Site Systems (continued)	ontinued)				
Drainage Ditches/	- sediment build-up	Jan. 1.			
Swale Outlets	- erosion	100 g			
	- condition of erosion protection	X-0-407	- Language of the state of the		
	. dead/dving vegetation	gain times			
	cable concrete/gabion mats and	Com]
	riprap				
Cuiverts	- sediment build-up	S. C. N.			
	- erosion	1250			
	- condition of erosion protection	Decro A			
	- flow obstructions	nor			
Gas Vents	- intact /damage	intect			
Wells	- locks secure	7.6%			
FORM 1					7

Photo 1: Entrance of landfill facing northwest.

Photo 2: Taken from west side of landfill facing northeast near wet well D.

Photo 3: Top of landfill facing south.

Photo 4: Wet well D and wetlands facing northwest from landfill.

APPENDIX F MAINTENANCE RECORD LOGS

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York Richard C. Becken CREW MEMBERS: (MM DD YY) (HH mm) Scheduled/Unscheduled: Type of Maintenance Performed: repair 2. Company Performing Maintenance O&M Enterprises, Inc. Name: 7134 Marigold Drive Address. North Tonawanda, NY 14120 Contact Name: Richard C. Becken 3. Methods Used: work in new section of fence to repair small cut Description of Material Removed: none Problems/Comments: none Richard C. Becken INSPECTOR INSPECTOR'S SIGNATURE FORM 2

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York Richard C. Becken CREW MEMBERS: (MM DD YY) (HH mm) Scheduled/Unscheduled: Type of Maintenance Performed: Mowe 2. Company Performing Maintenance O&M Enterprises, Inc. Name: 7134 Marigold Drive Address. North Tonawanda, NY 14120 Contact Name: Richard C. Becken 3. Methods Used: Description of Material Removed: none Problems/Comments: Richard C. Becken INSPECTOR FORM 2

	MAINTENANCE RE	CORD LO	3	
PROJECT NAME:	Niagara County Refuse Site	LOCATION:	Wheatfield, New York	
CREW MEMBERS:	Richard C. Becken			
1. Date: 0	7/16/10 (MM DD YY)			
Time: 0 9	scheduled: unschadular			
	enance Performed: Cut lock, grep	our Waterral	20 A sergio sutada la	
	orming Maintenance O&M Enterprises, Inc.	ar war (the	1 1 para constant	
Address.	7134 Marigold Drive			
	North Tonawanda, NY 14	120		
Contact Name:	Richard C. Becken			
3. Methods Used selmore unkingelmore auto	nown lock from front gate, sep adailer which had locked	in Wet Wel	PA Love which was cornel	Q
Description of	Material Removed:			
	`			
Problems/Con	nments:			
None				
7/16/10	Richard C. Becken	J.O.	O(Be, b	
DATE ORM 2	INSPECTOR	<u> </u>	INSPECTOR'S SIGNATURE	

	MAINTENANCE REC	CORD LO	G
PROJECT NAME:	Niagara County Refuse Site	LOCATION:	Wheatfield, New York
CREW MEMBERS:	R (Beden	er man fer en	
1. Date: 08	1210 (MM DD YY)		
Scheduled/Uns	cheduled: Scheduled		
Type of Mainter	mance Performed: weld whacker and control shed	of around	monetoring wells pump well
2. Company Perfo	rming Maintenance	/	} •
Name:	1+M Enterprises INC	Additional and the second seco	
Address: 7	134 Marigold Dr. Vorth Tonaumde HY 14124		
_ <u> </u>	Jorth Tonomanda HY 14/20		
Contact Name:	Rick Becken		
3. Methods Used:			
weed wh	racked around wells + cont	rol shed	
•			
Description of N	Material Removed:	**********	
pool			

Problems/Com	ments:		
none			
- · · · · · · · · · · · · · · · · · · ·			
8/12/10	Richard C Becker	to	QQC Bed_
DATE FORM 2	INSPECTOR		INSPECTOR'S SIGNATURE

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York CREW MEMBERS: RC Becken (MM DD YY) (HH mm) scheduled Scheduled/Unscheduled: Type of Maintenance Performed: moved grass 2. Company Performing Maintenance ONM ENERPRISES Name: Address: Contact Name: 3. Methods Used: Description of Material Removed: none Problems/Comments: 9/3/18 INSPECTOR'S SIGNATURE FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: (MM DD YY) (HH mm) Scheduled Scheduled/Unscheduled: Type of Maintenance Performed: Mourie 2. Company Performing Maintenance +M Enterprises /NC. Name: Address: Tonomanda, NY 14120 Contact Name: 3. Methods Used: tractor + mover Description of Material Removed: Problems/Comments: none FORM 2

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York CREW MEMBERS: (MM DD YY) Time: 08 (HH mm) Schalled Scheduled/Unscheduled: Type of Maintenance Performed: morel grass 2. Company Performing Maintenance O+M Name: Address: Contact Name: 3. Methods Used: Description of Material Removed: Problems/Comments: 9 (18/10 FORM 2

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York CREW MEMBERS: PC Bollin (MM DD YY) Time: 0 9 (HH mm) Scheduled/Unscheduled: Type of Maintenance Performed: Out brush near front gate, control shed + fence line 2. Company Performing Maintenance Ofm Enterprises luc Name: 7134 Manigold Dr. Address: North Tonamanda, NY 14120 Contact Name: Richard C Rock 3. Methods Used: hand operated brush cutters . Description of Material Removed: mone Problems/Comments: mone Richard C Backen FORM 2

MAINTENANCE RECORD LOG LOCATION: Wheatfield, New York PROJECT NAME: Niagara County Refuse Site CREW MEMBERS: (MM DD YY) (HH mm) schedulent Scheduled/Unscheduled: Type of Maintenance Performed: cut trees in fence (per: meter) 2. Company Performing Maintenance Name: Address: Contact Name: 3. Methods Used: Description of Material Removed: Problems/Comments: FORM 2

PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York CREW MEMBERS: C. Becken 1. Date: 123010 (MM DD YY) Time: 0915 (HH mm) Scheduled/Unscheduled: Scheduled Type of Maintenance Performed: Cut trees + brush near permeter fence. 2. Company Performing Maintenance Name: Orth Entroprises lar. Address: 134 Mensold Dr Warth Tonormels with 1120 Contact Name: Rick Getter 3. Methods Used: Chain sen
1. Date: 123016 (MM DD YY) Time: 0915 (HH mm) Scheduled/Unscheduled: Scheduled) Type of Maintenance Performed: Cut trees + brush near periodic feace. 2. Company Performing Maintenance Name: OHM Enterprises lar. Address: 7134 Mangold Dr North Tonormala M 1120 Contact Name: Rick Section. 3. Methods Used:
1. Date: 123016 (MM DD YY) Time: 0915 (HH mm) Scheduled/Unscheduled: Scheduled) Type of Maintenance Performed: Cut trees + brush near permeter feace. 2. Company Performing Maintenance Name: OHM Enterprises lar. Address: 7134 Mangold Dr North Tonormala M 1120 Contact Name: Rick Setter. 3. Methods Used:
Time: 0915 (HH mm) Scheduled/Unscheduled: ScheduleD Type of Maintenance Performed: Cut trees + brush near penneter fence 2. Company Performing Maintenance Name: OHM Enterprises Nr. Address: 7134 Mangold Dr. North Tonorande, NH 120 Contact Name: Rick Gerter. 3. Methods Used:
Scheduled/Unscheduled: Scheduled Type of Maintenance Performed: Cut trees at brush near perioder feace. 2. Company Performing Maintenance Name: Oth Enterprises for. Address: 7134 Manageld D. North Tonormole, M. 1120 Contact Name: Rick Geler. 3. Methods Used:
Type of Maintenance Performed:
2. Company Performing Maintenance Name: OHM Enterprises for. Address: 7134 Manageld Dr. North Tonancola, N. 1 1120 Contact Name: Rick Gelen. 3. Methods Used:
Name: OHM Enterprises Wr. Address: 7134 Mangold Dr North Tonormola M 1120 Contact Name: Rick Gelen 3. Methods Used:
Address: 7134 Mangold Dr. North Tonamola N/ 11/20 Contact Name: Rick Getter. 3. Methods Used:
Contact Name: Rick Cecker. 3. Methods Used:
Contact Name: Rick Cores. 3. Methods Used:
3. Methods Used:
Chain saw
Description of Material Removed:
nene
Problems/Comments:
AL EVE
12/30/10 Rick Berken Gill Berken
DATE INSPECTOR INSPECTOR'S SIGNATURE FORM 2

APPENDIX G WATER LEVEL RECORDS

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

0 1 0 7 1 0 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wε	ter Le	vel	
Observation	Time of	Elevation	Water		E	levatio	on	
Well	Measurement	Α	В			A-B		
		feet	feet	<u> </u>		feet		
EAST "A"	13:15	598.93	25.62	5	7	3.	3	
EAST "B"	12:45	596.23	19.78	5	7	6.	4	
EAST "C"	12:20	598.69	20.24	5	7	8.	4	
EAST "D"	11:45	593.20	15.25	5	7	7.	9	
NCR-3S	10:25	579.60	3.19	5	7	6.	4	_
NCR-4S	11:30	591.88	2.85	5	8	9.	0	
NCR-5S	10:55	597.34	6,45		9	0.	8	
NCR-13S	9:45	593.13	4.64	- 5	8	8.	4	
				_				

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:30		~10"
WW B	11:20		~7"
WW C	10:30		~4"
WW D	10:00	0:00 ~8"	

Total System	Time of
Flow	Measurement
48200282	9:30

PROJECT NAME: NIAGARA COUNTY

LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

[0 2 0 1 1 0 (M M D D Y Y)

CREW MEMBERS: RC Becken

· · · · · · · · · · · · · · · · · · ·		Top of Casing	Depth to		Wa	ter Le	evel	
Observation	Time of	Elevation	Water		E	levatio	on	
Well	Measurement	A	В			A-B		
		feet	feet			feet		
EAST "A"	12:45	598.93	25.72	5	7	3.	2	
EAST "B"	12:25	596.23	19.97	5	7	6.	2	
EAST "C"	12:00	598.69	20.46	5	7	8.	2	
EAST "D"	11:45	593.20	15.42	5	7	7.	7	
NCR-3S	10:35	579.60	3.48	5	7	6.	1	
NCR-4S	11:00	591.88	Frozen	0	0	0.	0	
NCR-5S	11:25	597.34	6.33	5	9	1.	0	
NCR-13S	9:45	593.13	4.65	5	8	8.	4	
					····			

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:45		~10"
WW B	11:20	11:20 ~7"	
WW C	11:05		~6"
WW D	10:00		~7"

Total System	Time of
Flow	Measurement
48964480	9:45

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

0 3 1 1 1 0 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	ter Le	vel	
Observation	Time of	Elevation	Water		El	evatio	on	
Well	Measurement	A	В			A-B		
		feet	feet			feet		
EAST "A"	12:35	598.93	25.77	5	7	3.	1	6
EAST "B"	12:25	596.23	19.83	5	7	6.	4	(
EAST "C"	11:55	598.69	20.25	5	7	8.	4	4
EAST "D"	11:45	593.20	15.38	5	7	7.	8	2
NCR-3S	11:15	579.60	2.06	5	7	7.	5	4
NCR-4S	10:30	591.88	2.6	5	8	9.	2	8
NCR-5S	11:35	597.34	5.81	5	9	1.	5	2
NCR-13S	9:25	593.13	3.68	5	8	9.	4	Ę

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:15		~10"
WW B	10:15		~9"
WW C	10:55		~6"
WW D	9:40		~11"

Total System	Time of
Flow	Measurement
49348489	9:15

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

0 4 1 1 1 0 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	iter L	evel	
Observation	Time of	Elevation	Water	ļ	E	levati	on	
Well	Measurement	Α	В			A-B		
		feet	feet			feet		
EAST "A"	12:45	598.93	25.81	5	7	3.	1	2
EAST "B"	12:25	596.23	19.83	5	7	6.	4	(
EAST "C"	12:05	598.69	20.31	5	7	8.	3	3
EAST "D"	11:45	593.20	15.48	5	7	7.	7	2
NCR-3S	10:55	579.60	3.3	5	7	6.	3	(
NCR-4S	10:30	591.88	2.94	5	8	8.	9	4
NCR-5S	11:35	597.34	6.18	5	9	1.	1	6
NCR-13S	9:15	593.13	4.71	5	8	8.	4	2

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:05		~8"
WW B	10:15		~6"
WW C	10:05		~6"
WW D	9:45		~7"

Total System	Time of	
Flow	Measurement	
50236140	9:05	

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

0 5 0 6 1 0 (M M D D Y Y)

CREW MEMBERS: RC Becken

ļ	Top of Casing	Depth to		Wa	iter Le	vel	
Time of	Elevation	Water		E	levatio	on	
Measurement	Α	В	}		A-B		
	feet	feet			feet		
12:35	598.93	25.79	5	7	3.	1	_
12:25	596.23	19.76	5	7	6.	4	
12:05	598.69	20.21	5	7	8.	4	_
12:15	593.20	15.49	5	7	7.	7	_
10:00	579.60	4.61	5	7	4.	9	_
10:25	591.88	2.84	5	8	9.	0	
11:55	597.34	7.93	5	8	9.	4	_
9:20	593.13	5.1	5	8	8.	0	•
		**************************************					_
	Measurement 12:35 12:25 12:05 12:15 10:00 10:25 11:55	Time of Measurement A feet 12:35 598.93 12:25 596.23 12:05 598.69 12:15 593.20 10:00 579.60 10:25 591.88 11:55 597.34	Time of Measurement Elevation A B feet Water feet 12:35 598.93 25.79 12:25 596.23 19.76 12:05 598.69 20.21 12:15 593.20 15.49 10:00 579.60 4.61 10:25 591.88 2.84 11:55 597.34 7.93	Time of Measurement Elevation A B feet Water feet 12:35 598.93 25.79 5 12:25 596.23 19.76 5 12:05 598.69 20.21 5 12:15 593.20 15.49 5 10:00 579.60 4.61 5 10:25 591.88 2.84 5 11:55 597.34 7.93 5	Time of Measurement Elevation A B feet Water feet Elevation feet 12:35 598.93 25.79 5 7 12:25 596.23 19.76 5 7 12:05 598.69 20.21 5 7 12:15 593.20 15.49 5 7 10:00 579.60 4.61 5 7 10:25 591.88 2.84 5 8 11:55 597.34 7.93 5 8	Time of Measurement Elevation A B feet Water feet Elevation feet 12:35 598.93 25.79 5 7 3. 12:25 596.23 19.76 5 7 6. 12:05 598.69 20.21 5 7 8. 12:15 593.20 15.49 5 7 7. 10:00 579.60 4.61 5 7 4. 10:25 591.88 2.84 5 8 9. 11:55 597.34 7.93 5 8 9.	Time of Measurement Elevation A Water feet Elevation A-B feet 12:35 598.93 25.79 5 7 3 . 1 12:25 596.23 19.76 5 7 6 . 4 12:05 598.69 20.21 5 7 8 . 4 12:15 593.20 15.49 5 7 7 . 7 10:00 579.60 4.61 5 7 4 . 9 10:25 591.88 2.84 5 8 9 . 0 11:55 597.34 7.93 5 8 9 . 4

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water		
WW A	9:25		~7"		
WW B	10:15	10:15			
WW C	9:55	9:55		9:55 ~6"	
WW D	9:45	9:45 ~8"			

Total System	Time of	
Flow	Measurement	
50820974	9:25	

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

0 6 1 0 1 0 (M M D D Y Y)

CREW MEMBERS: _____ RC Becken

		Top of Casing	Depth to		Wa	ter L	evel	
Observation	Time of	Elevation	Water		E	levati	on	
Well	Measurement	A	В			A-B		
		feet	feet			feet		
EAST "A"	12:45	598.93	25.73	5	7	3.	2	0
EAST "B"	12:25	596.23	19.83	5	7	6.	4	0
EAST "C"	12:05	598.69	20.24	5	7	8.	4	5
EAST "D"	11:45	593.20	15.59	5	7	7.	6	1
NCR-3S	10:55	579.60	3.98	5	7	5.	6	2
NCR-4S	10:30	591.88	2.86	5	8	9.	0	2
NCR-5S	11:35	597.34	7.75	5	8	9.	5	9
NCR-13S	9:15	593.13	4.97	5	8	8.	1	6

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:10		~10"
WW B	10:15		~6"
WW C	10:05		~7"
WW D	9:55		~6"

12

Total System	Time of
Flow	Measurement
51067571	9:10

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

0 7 0 2 1 0 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to	T	Wa	ter L	evel	
Observation	Time of	Elevation	Water		E	levati	on	
Well	Measurement	Α	В			A-B		
		feet	feet			feet		
EAST "A"	12:55	598.93	25.78	5	7	3.	1	Į
EAST "B"	12:15	596.23	19.99	5	7	6.	2	4
EAST "C"	12:00	598.69	20.65	5	7	8.	0	4
EAST "D"	11:40	593.20	15.7	5	7	7.	5	(
NCR-3S	10:35	579.60	dry	0	0	0.	0	(
NCR-4S	10:55	591.88	dry	0	0	0.	0	(
NCR-5S	11:15	597.34	9.11	5	8	8.	2	3
NCR-13S	9:35	593.13	7.4	5	8	5.	7	3

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:20		~8"
WW B	10:25		~5"
WWC	10:15		~8"
WW D	10:05		~6"

Total System	Time of	
Flow	Measurement	
51132030	9:20	

PROJECT NAME: NIAGARA COUNTY LOCATION:

Wheatfield, New York

REFUSE SITE

DATE:

0 8 1 2 1 0 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	iter L	evel	
Observation	Time of	Elevation	Water		E	levati	on	
Well	Measurement	Α	В			A-B		
		feet	feet			feet		
EAST "A"	12:55	598.93	25.74	5	7	3.	1	9
EAST "B"	12:15	596.23	19.84	5	7	6.	3	9
EAST "C"	12:00	598.69	20.22	5	7	8.	4	7
EAST "D"	11:40	593.20	15.65	5	7	7.	5	5
NCR-3S	10:40	579.60	dry	0	0	0.	0	C
NCR-4S	11:00	591.88	dry	0	0	0.	0	0
NCR-5S	9:25	597.34	dry	0	0	0.	0	0
NCR-13S	9:35	593.13	dry	0	0	0.	0	0

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:30		~9"
WW B	10:55	0:55 ~6"	
WW C	10:35		~7"
WW D	10:15		~6"

Total System	Time of
Flow	Measurement
51184891	9:30

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

0 9 1 6 1 0 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to	T	Wa	ter Le	vel	
Observation	Time of	Elevation	Water		E	levatio	n	
Well	Measurement	Α	В			A-B		
		feet	feet			feet		
EAST "A"	12:55	598.93	25.78	5	7	3.	1	5
EAST "B"	12:15	596.23	19.87	5	7	6.	3	6
EAST "C"	12:00	598.69	20.19	5	7	8.	5	0
EAST "D"	11:40	593.20	15.65	5	7	7.	5	5
NCR-3S	10:40	579.60	dry	0	0	0.	0	0
NCR-4S	11:00	591.88	dry	0	0	0.	0	0
NCR-5S	12:05	597.34	dry	0	0	0.	0	0
NCR-13S	9:35	593.13	đry	0	0	0.	0	0
				_				
		ŧ						

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	10:30		~8"
WW B	10:55		~6"
WWC	10:35		~7"
WW D	10:15):15 ~6"	

Total System	Time of	
Flow	Measurement	
51215670	10:30	

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

1 0 0 8 1 0 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	ter Le	vel	
Observation	Time of	Elevation	Water		El	evatio	n	
Well	Measurement	Α	В			A-B		
		feet	feet	<u> </u>		feet		
EAST "A"	11:55	598.93	25.77	5	7	3.	1	
EAST "B"	12:15	596.23	19.7	5	7	6.	5	
EAST "C"	12:35	598.69	20.32	5	7	8.	3	
EAST "D"	12:50	593.20	15.43	5	7	7.	7	
NCR-3S	10:00	579.60	dry					
NCR-45	10:55	591.88	dry					
NCR-5S	11:20	597.34	dry					
NCR-13S	11:35	593.13	dry					
-								

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:00		~8"
WW B	10:25		~6"
WW C	9:45		~5"
WW D	9:25		~7"

Total System	Time of
Flow	Measurement
51232070	9:00

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

1 1 0 5 1 0 (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	ter Le	vel	
Observation	Time of	Elevation	Water		El	evatio	n	
Well	Measurement	A	В	<u> </u>		A-B		_
		feet	feet	<u> </u>		feet		
EAST "A"	12:45	598.93	25.82	5	7	3.	1	,
EAST "B"	12:25	596.23	19.52	5	7	6.	7	_
EAST "C"	12:05	598.69	19.98	5	7	8.	7	
EAST "D"	11:45	593.20	15.53	5	7	7.	6	
NCR-3S	10:55	579.60	dry(5.76)	5	7	3.	8	_
NCR-45	10:30	591.88	dry(4.85)	5	8	7.	0	
NCR-5S	11:35	597.34	dry(10.99)	5	8	6.	3	
NCR-13S	9:15	593.13	dry(7.66)	5	8	5.	4	

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	9:10		~10"
WW B	10:15		~5"
WWC	10:05		~7"
WW D	9:55		~6"

Total System	Time of
Flow	Measurement
51251660	9:10

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

[1 2 0 2 1 0] (M M D D Y Y)

CREW MEMBERS: RC Becken

		Top of Casing	Depth to		Wa	ıter Le	evel	
Observation	Time of	Elevation	Water		E	levatio	on	
Well	Measurement	A	В			A-B		
		feet	feet			feet		
EAST "A"	11:35	598.93	25.88	5	7	3.	0	5
EAST "B"	11:15	596.23	19.52	5	7	6.	7	1
EAST "C"	10:55	598.69	20.4	5	7	8.	2	9
EAST "D"	10:35	593.20	15.22	5	7	7.	9	8
NCR-3S	9:25	579.60	2.78	5	7	6.	8	2
NCR-4S	9:45	591.88	2.91	5	8	8.	9	7
NCR-5S	10:20	597.34	dry					
NCR-13S	8:25	593.13	5.82	5	8	7.	3	1

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water	
WW A	8:15		~8"	
WW B	9:55		~5"	
WWC	9:15		~8"	
WW D	8:55		~6"	

Total System	Time of		
Flow	Measurement		
51585665	8:15		