2021 ANNUAL MONITORING REPORT

NIAGARA COUNTY REFUSE DISTRICT SITE

Wheatfield, Niagara County, New York

(NYSDEC Site No. 9-32-026)

SUBMITTED TO:

UNITED STATES
ENVIRONMENTAL PROTECTION
AGENCY

NEW YORK STATE
DEPARMENT OF
ENVIRONMENTAL CONSERVATION

SUBMITTED BY:

Niagara County Refuse District and PRP Group

PREPARED BY:

PARSONS

40 La Riviere Drive, Suite 350 Buffalo, New York 14202 (716) 541-0730 Fax (716) 541-0760

2021 ANNUAL MONITORING REPORT

NIAGARA COUNTY REFUSE DISTRICT SITE Wheatfield, Niagara County, New York (NYSDEC Site No. 9-32-026)

Submitted To:

The New York State Department of Environmental Conservation Division of Hazardous Waste Remediation

and

United States Environmental Protection Agency

Submitted By:

Niagara County Refuse District and PRP Group

Prepared By:

PARSONS

40 La Riviere Drive, Suite 350 Buffalo, New York 14202 (716) 541-0730 Fax (716) 541-0760

July 2021

2021 ANNUAL MONITORING REPORT

NIAGARA COUNTY REFUSE DISTRICT SITE Wheatfield, Niagara County, New York (NYSDEC Site No. 9-32-026)

Submitted To: The New York State Department of Environmental Conservation Division of Hazardous Waste Remediation and

United States Environmental Protection Agency

Submitted By: Niagara County Refuse District and PRP Group

Prepared By: PARSONS

Date: July 2021

<u>Eric A. Felter</u> 0<u>7/09/21</u>

Name Date

Signature 07/09/21
Date

Project Manager - Parsons

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

TABLE OF CONTENTS

SECTION 1 INTRODUCTION	0-1
1.1 Introduction	1-1
1.2 Procedures	1-1
1.2.1 Groundwater Sampling	1-1
1.2.2 Effluent Sampling	1-2
1.2.3 Water Levels	1-2
1.2.4 Site Inspections	1-2
1.2.5 Well and Piezometer Inspection	1-2
SECTION 2 RESULTS	2-1
2.1 Analytical Results	2-1
2.1.1 Effluent Samples	
2.1.2 Groundwater Analytical Results	2-1
2.2 Site inspections	2-4
2.3 Maintenance	2-5
2.4 Water Levels	2-6
2.5 Perimeter Collection System (PCS)	2-6
SECTION 3 SUMMARY AND CONCLUSIONS	3-1
SECTION 4 REFERENCES	4-1
LIST OF TABLES	
Table 2.1 Detected Analytes in Groundwater Samples	2-8
Table 2.2 Monthly Site Inspection Summary	2-9
Table 2.3 Water Level Measurements	2-10

TABLE OF CONTENTS

LIST OF FIGURES

- FIGURE 1.1 SITE PLAN
- FIGURE 2.1A PLOT OF BARIUM CONCENTRATION
- FIGURE 2.1B PLOT OF CHROMIUM CONCENTRATION
- FIGURE 2.1C PLOT OF COPPER CONCENTRATION

LIST OF APPENDICES

APPENDIX A CITY OF NORTH TONAWANDA INDUSTRIAL WASTEWATER DISCHARGE PERMIT AND COMPLIANCE SAMPLING RESULTS

- APPENDIX B ANALYTICAL DATA AND FIELD DATA FORMS
- APPENDIX C CORRESPONDENCE
- APPENDIX D DATA VALIDATION REPORT
- APPENDIX E MONTHLY INSPECTION LOGS
- APPENDIX F MAINTENANCE RECORD LOGS
- APPENDIX G WATER LEVEL RECORDS
- APPENDIX H COMPACT DISC CONTAINING REPORT

SECTION 1 INTRODUCTION

1.1 INTRODUCTION

In accordance with the United States Environmental Protection Agency (USEPA) Record of Decision (USEPA, 1993), the United States District Court Consent Decree (USA, 1995), and the USEPA-approved Operation, Maintenance, and Monitoring (OM&M) Manual (CRA, 2000), the Niagara County Refuse Site Potentially Responsible Parties (PRP) Group performed a remedial action at the Niagara County Refuse Site (Site), Wheatfield, New York. The PRP Group currently provides site-related OM&M services. This Annual Monitoring Report summarizes monitoring activities from June 2020 through May 2021.

The Site is a closed municipal landfill, approximately 60 acres in size, located along the eastern border of the Town of Wheatfield, New York, and the western border of the City of North Tonawanda, New York. The southern edge of the Site lies approximately 500 feet north of the Niagara River. A perimeter collection system and a perimeter barrier system are used to provide hydraulic containment of Site-related leachate and groundwater. These systems began operation in November of 2000.

1.2 PROCEDURES

1.2.1 Groundwater Sampling

In accordance with the OM&M Manual (CRA, 2000), samples were collected from wells NCR-3S, NCR-4S, NCR-5S, and NCR-13S in May 2021. These four wells are screened in the shallow overburden materials. As requested by the USEPA, viable piezometers screened within the landfill waste, East-A, East-C, and East-D were also sampled. Groundwater sampling on an annual schedule commenced in 2006. East-A, East-C, and East-D will continue to be sampled for the next two years when the usefulness will be reevaluated.

Each groundwater monitoring well and piezometer was purged prior to sample collection using a dedicated disposable HDPE bailer, except for East-D, where a Wattera brand pump was used. The four wells and piezometer East-A were bailed dry the day prior to sampling. Piezometers East-C and East-D were purged of three well volumes the day before sampling. Physical parameters including pH, temperature, conductivity, and turbidity of the purge water were periodically measured and recorded. All purge water was placed in an onsite wet-well. Wet well water is discharged to the City of North Tonawanda publicly owned treatment works (POTW). The dedicated disposable bailer was also used to collect the groundwater samples.

Since 2006, volatile organic compounds (VOCs) and semi-volatile organic compound (SVOCs) samples have been collected every other year and total metals samples have been collected annually. Beginning in 2019, collection of groundwater samples for VOCs, SVOCs, and mercury analysis were eliminated from the sampling requirements. In May 2021, in accordance with this schedule, groundwater samples were collected and analyzed for inorganics in accordance with EPA Method 200.7 and Method SW-6010. Additionally, as per the request of the USEPA, anions (bicarbonate, sulfate, chloride, and nitrate-nitrite) and cations (sodium, potassium, magnesium, calcium, and ammonium) samples were also collected. Cation and anion samples were filtered in the laboratory. Analysis of cations and anions will

PARSONS

be included for the next two years and then evaluated to determine if continuation would be beneficial. At piezometer East-A, due to a lack of water volume, dissolved metals and nitrogen analyses could not be completed.

The groundwater samples were analyzed by TestAmerica Laboratories of Amherst, New York. A chain-of-custody (COC) accompanied the sample bottles from the laboratory, to the field, and back to the laboratory.

Beginning in 2014, in addition to samples for total metals, samples for dissolved-phase metals were also collected and analyzed. Samples for dissolved-phase metals samples were collected based on comments in the USEPA's Third Five Year Review Report (September 2014) concerning metals concentrations and the potential for sample turbidity to change the total metals concentrations.

1.2.2 Effluent Sampling

Groundwater from the perimeter collection system is discharged to the City of North Tonawanda treatment system without pre-treatment. A monitoring station in Wet Well A allows both the effluent water quality and the volume of effluent to be verified by the City of North Tonawanda. In compliance with the City of North Tonawanda Industrial Wastewater Discharge Permit (the Permit), the effluent was sampled monthly through February 2007. A revised permit was issued covering from February 2007 through March 2010, requiring only semi-annual sampling. A new Industrial Wastewater Discharge Permit (Appendix A) was issued by the City of North Tonawanda in 2019 and is effective from March 31, 2019 through April 1, 2022. The new permit has a reduced analytical parameter list compared to the original permit, but continues to require a semi-annual sampling frequency. During the current reporting period, discharge samples were collected in October 2020 and April 2021. The effluent samples were collected in October 2020 and April 2021. The effluent samples were collected in October 2020 and April 2021. The sole purpose of these analyses is for compliance with the Industrial Wastewater Discharge Permit.

1.2.3 Water Levels

Water levels (depths to water) were measured in four monitoring well locations and at four wet well locations inside the limits of the landfill. Water level measurements were collected monthly during the current reporting period (June 2020 through May 2021). The water levels were measured with an electronic water level indicator, and reported as an elevation above mean sea level. Figure 1.1 shows the locations of the water level monitoring points.

1.2.4 Site Inspections

The Site was inspected by GHD on a monthly basis during the reporting period, in accordance with procedures in the OM&M Manual. The perimeter collection system, offsite force main, wetlands, perimeter fence, drainage ditches, swale outlets, culverts, gas vents, wells, and landfill cap were visually inspected, and the results documented on inspection logs.

1.2.5 Well and Piezometer Inspections

Each of the wells and piezometers was inspected by checking the total depth, checking for buildup of silt in the well bottom, checking for bends or kinks in the risers, and documenting

SECTION 2 RESULTS

2.1 ANALYTICAL RESULTS

2.1.1 Effluent Samples

Effluent samples were collected in October 2020 and April 2021 by GHD and analyzed by the City of North Tonawanda. The analytical results from these samples were used by the City to confirm that the effluent received from the Site met the criteria for acceptance by the City treatment system. All analytical results were found to be compliant with the March 31, 2019 discharge permit. Effluent analytical results and the Permit are presented in Appendix A.

2.1.2 Groundwater Analytical Results

Analytical results for the sampling event during this reporting period are summarized in Table 2.1. The results were compared to NYSDEC ambient water quality standards (AWQS), NYSDOH maximum contaminant levels (MCLs), and USEPA MCLs (see Table 2.1). This reporting period includes months 235 to 247 since the start-up of the perimeter collection system in November 2000. The collection of quarterly and semi-annual groundwater samples has been completed as outlined in the OM&M Manual. Annual collection and analysis of groundwater samples began in 2006. Groundwater sample analytes are currently scheduled to include inorganics annually, as approved by the USEPA (see Appendix C). The groundwater samples collected during this reporting period were analyzed for total and dissolved inorganics (see Appendix B) including anions and cations. Additionally, samples were collected from viable piezometers within the landfill perimeter (East-A, East-C, and East-D). Anions and cations as well as the three piezometers from within the landfill, are scheduled to be sampled for the next two years. An evaluation will be completed at that time to determine if continuing to sample the piezometers and analyze for the anions/cations should continue.

Beginning in 2014, in addition to total mercury and inorganic samples, dissolved-phase mercury and inorganic samples were also collected and analyzed. Sampling for both total and dissolved-phase inorganics is planned to continue in future annual groundwater sampling events.

The analytical results received from the laboratory are presented in Appendix B, along with the COC. A Sample Collection Data Sheet for each well, which includes required and actual purge volumes, sample date, time, description, required analyses, and the COC number, is included in Appendix B. This sheet also indicates which well was used to collect the matrix spike (MS) and the matrix spike duplicate (MSD). Well purging information, including pH, conductivity, turbidity, odor, comments, and well volumes, is also provided in Appendix B.

May 2021 Event

Monitoring wells NCR-3S, NCR-4S, NCR-5S, and NCR-13S and piezometers East-A, East-C, and East-D were sampled on May 4, 2021. The locations of the monitoring wells are provided in Figure 1.1. The data validation report is presented in Appendix D. Inadequate water volume in piezometer East-A did not allow for the collection of dissolved inorganics and nitrogen samples.

PARSONS

Twelve metals were identified in one or more of the groundwater samples from the wells. Three of the detected metals exceeded either the NYSDEC AWQS, NYSDOH MCLs, or USEPA MCLs (screening criteria), which is consistent with previous sampling events. In general, the detected values are consistent with ranges observed in previous sampling events. Plots of selected total metals concentrations over time are presented in Figures 2.1A through Figure 2.1C. General chemistry analytical results were found to be below the screening criteria for each of the samples from the wells. Key results are summarized below.

- Total iron was identified in each of the samples and exceeded the AWQS and the NYSDOH MCL in NCR-4S. Dissolved iron was identified in three of the four samples but only exceeded the AWQS and the NYSDOH MCL in NCR-4S. The Record of Decision (ROD) (USEPA, 1993) identifies iron as typically exceeding MCLs in the regional groundwater indicating that exceedances of iron are likely related to background conditions.
- Total and dissolved magnesium were identified in each of the four samples and exceeded the AWQS guidance value (not a standard) in each of the samples. Historically, total magnesium has exceeded the AWQS guidance value.
- Total and dissolved sodium were identified in each of the four samples. Total and dissolved sodium exceeded the NYSDEC AWQS, NYSDOH MCLs, and USEPA MCLs in the sample from NCR-4S. The Record of Decision (ROD) (USEPA, 1993) identifies sodium as typically exceeding MCLs in the regional groundwater indicating that exceedances of sodium are likely related to background conditions.

Seventeen metals were identified in one or more of the groundwater samples from the piezometers. Ten of the detected metals exceeded either the NYSDEC AWQS, NYSDOH MCLs, or USEPA MCLs (screening criteria). General chemistry results also exceeded criteria for three of the analytes. Key results are summarized below.

- Total arsenic was detected in two of the three piezometers and exceeded the NYSDEC AWQS and NYSDOH MCL and USEPA MCL in the sample from East-C. Dissolved arsenic exceeded only the NYSDEC AWQS in the sample from East-C.
- Total cadmium was detected in the three piezometer samples and exceeded the three criteria in the sample from East-C. Dissolved cadmium exceeded the three criteria in the sample from East-C.
- Total chromium was detected in each of the samples from the piezometers and exceeded the NYSDEC AWQS and NYSDOH MCL and USEPA MCL in the sample from East-C and exceeded the NYSDEC AWQS in the sample from East-D. Dissolved chromium exceeded all three criteria in East-C and only the NYSDEC AWQS in the sample from East-D.
- Both total and dissolved iron samples exceeded NYSDEC AWQS and NYDOH MCLs. The Record of Decision (ROD) (USEPA, 1993) identifies iron as typically exceeding MCLs in the regional groundwater indicating that exceedances of iron are likely related to background conditions.

- Lead exceeded the three criteria in each of the three total and two dissolved samples collected.
- Magnesium exceeded the NYSDEC guidance value (not a standard) in each of the three total and two dissolved samples collected.
- Manganese was detected in each of the samples collected and exceeded the NYSDEC AWQS and NYSDOH MCLs in the total manganese samples from East-A and East-C and the dissolved sample from East-C.
- Nickel was detected in each of the samples collected and exceeded the NYSDEC AWQS for total nickel in the samples from East-C and East-D and the dissolved sample from East-C and East-D.
- Sodium was detected in each of the samples collected and exceeded all three criteria in both the total sodium samples from East-A, East-C, and East-D and the two dissolved sodium samples from East-C and East-D.
- Zinc was identified in each of the samples from the piezometer and exceeded the NYSDEC AWQS and NYSDOH MCLs in the total and dissolved sample from East-C.
- Chloride exceeded the NYSDEC AWQS and NYSDOH MCLs in the samples from East-C and East-D and was detected in the sample from East-A below screening criteria.
- Nitrogen, ammonia (as nitrogen) exceeded NYSDEC AWQS in the sample from East-C.
- Sulfate (as SO4) was detected in each of the three samples and exceeded each of the three screening criteria in the sample from East-C.

Comparison of Total Metals Results Between Wells and Piezometers

The monitoring wells (NCR-3S, NCR-4S, NCR-5S, and NCR-13S) are installed outside the perimeter of the landfill, outside the collection system. The piezometer (East-A, East-C, and East-D) are within the landfill footprint. Comparing the results of the monitoring wells with the piezometers, the analytical results for total metals found several analytes were detected in the piezometers that were not detected in the monitoring wells: arsenic, cadmium, cobalt, lead, and vanadium. Lead was not detected in the well samples but was above the three screening criteria in each of the piezometer samples. Chromium, manganese, nickel, and zinc were below criteria in each of the well samples but were found above criteria in one of more of the samples from the piezometers. Other analytes (aluminum, barium, calcium, copper, iron, magnesium, potassium, and sodium) were typically found at higher concentrations in the samples from the piezometers than the wells.

Comparison of Dissolved Metals Results Between Wells and Piezometers

Comparing the results of the monitoring wells with the piezometers, the analytical results for dissolved metals found several analytes were detected in the piezometers that were not detected in the monitoring wells: arsenic, cadmium, cobalt, lead, and vanadium. Chromium, manganese, nickel, and zinc were below criteria in each of the well samples but were found

above criteria in one of more of the samples from the piezometers. Other analytes (aluminum, barium, calcium, copper, iron, magnesium, potassium, and sodium) were typically found at higher concentrations in the samples from the piezometers than the wells.

The general chemistry parameters are typically one to five orders of magnitude higher in the samples from the piezometers. Most notably bicarbonate alkalinity, chloride (as Cl), nitrogen, ammonia (as N), and sulfate (as SO4). Nitrate-nitrite results were comparable between the wells and the piezometers.

Data Validation

Groundwater analytical results were reviewed and validated by Parsons for usability (see Appendix D for the complete report). The laboratory data packages were found to be of good overall quality. Groundwater samples were collected, properly preserved, shipped under a COC record, and received at the laboratory within one day of sampling. The analytical results are considered compliant and usable. A summary of the data validation report is provided below:

Although all metals sample results were considered usable following data validation, three minor issues were noted:

- Blank contamination The laboratory preparation blank associated with the project samples contained total iron and total zinc below the reporting limits at concentrations of 0.0233 and 0.00159 mg/L, respectively. Therefore, results for these analytes less than validation action concentrations were considered not detected and qualified "U" for the affected samples.
- Continuing Calibration Verifications All continuing calibration verifications were analyzed at the appropriate frequency with recoveries within QC limits. All low reference standard verifications were analyzed at the appropriate frequency with recoveries within the 70-130%R QC limit with the exception of the high verification recoveries for total chromium (142%R), total iron (291%R), total manganese (149%R), and total potassium (147%R) associated with sample EAST D. Therefore, positive results for these analytes were considered estimated, possibly biased high, and qualified "J+" for the affected samples.
- Field duplicate precision All field duplicate precision results were considered acceptable with the exception of the precision for total sodium (49.3%RPD) associated with sample NCR-13S and its field duplicate sample NCR-6S. Therefore, results for these analytes were considered estimated and qualified "J" for the affected parent sample and field duplicate.

Although all general chemistry sample results were considered usable following data validation, two minor issues were noted:

• The laboratory preparation blank associated with samples NCR-3S and NCR-5S contained bicarbonate alkalinity below the reporting limit at a concentration of 5.28 mg/L; the laboratory preparation blanks associated with samples EAST C and EAST D contained ammonia below the reporting limit at concentrations ranging 0.00997-0.0121 mg/L; and the continuing calibration blanks associated with the

- project samples contained ammonia below the reporting limit at concentrations ranging 0.0104-0.0138 mg/L. Validation qualification was not required for the affected samples.
- All MS/MSD recoveries were considered acceptable and within QC limits with the exception of the low MS recovery for ammonia (81%R; QC limit 90-110%R) associated with sample NCR-5S. Therefore, the nondetected ammonia result was considered estimated and qualified "UJ" for the affected sample.

After data validation was completed, the data was electronically submitted to the USEPA Region 2 database.

2.2 SITE INSPECTIONS

Monthly Site inspections were conducted between June 2020 and May 2021. During the inspections, the perimeter collection system, offsite force main, manholes, wet wells, landfill cap, wetlands, perimeter fence, drainage ditches, swale outlets, culverts, gas vents, and monitoring wells were each visually inspected. A summary of the inspection findings is included in Table 2.2. Copies of the Monthly Inspection Logs have been included in Appendix E.

Each of the inspections found the manholes and wet wells to be in good condition. Water levels in the wet wells were measured during each inspection visit (see Table 2.3). Examination of the landfill cap vegetative cover included checking for erosion, bare areas, washouts, leachate seeps, length of vegetation, and dead/dying vegetation. Additionally, during the examination of the landfill cap, the access roads were examined for bare areas, dead/dying vegetation, erosion, potholes/puddles, and obstructions. No surface erosion, bare spots, or leachate seeps were noted. No issues with the condition of the grass covering on the landfill were noted during each of the inspections. The landfill cap was mowed the first week of July 2020.

Post-construction monitoring of the wetland replacement was performed annually between 2001 and 2005. Monitoring results indicated that the wetland creation was successful. Although the formal annual inspections are no longer required, monthly visual inspection of the wetlands has continued, to document general conditions. A drainage project was completed by the City of North Tonawanda in December 2012. This project included excavation of a drainage ditch across the northern end of the landfill property, north of the landfill's northern perimeter collection system and perimeter barrier system in an effort to alleviate seasonal flooding in the yards of homes along Witmer Road. The excavation was oriented through the wetlands in an east-west direction. The drainage project does not appear to have affected the water balance or the established vegetation in the wetland area.

The wetlands were visually examined during monthly inspections for growth and propagation of wetland species, dead/dying vegetation, presence of invasive species (i.e., purple loosestrife), change in water budget, and general conditions. No signs of damage to the wetlands due to loss of vegetation, or changes in the water budget, were observed during each of the inspections. No issues were identified in changes in the water budget of the wetlands during each of the inspections during the reporting period between June 2020 and May 2021. No issues were identified with the wetland vegetation (no dead or dying vegetation) during each of the inspections during the reporting period.

The complete landfill system, including the perimeter fence, drainage ditches, swale outlets, culverts, gas vents, monitoring wells, and wetlands was found to be in acceptable condition.

2.3 MAINTENANCE

Scheduled maintenance during the reporting period included the following:

- On August 27, 2020 annual pump maintenance was completed at Wet Well A.
- On May 11, 2021 the totalizer in Wet Well A was removed and replaced with a new totalizer to confirm proper operation.
- On May 19, 2021 weed and grass trimming was completed around all wet wells, monitoring wells, piezometers, and other areas that have normal foot traffic.
- On June 2, 2021 annual maintenance was completed on the pump in Wet Well B. the pump was pulled, cleaned, and the connections were checked.

Occasional unscheduled maintenance at the landfill is required. During this reporting period, nine unscheduled maintenance items were addressed:

- On July 23, 2020 the discharge hose on Wet Well D came loose. The pump was removed and the hose was reattached.
- On October 7, 2020 faulty float switches at Wet Well A were replaced.
- On November 19, 2020 and again on March 11, 2021 a fallen tree had blocked the access road to the site. The tree was cut into manageable pieces and moved off of the road.
- On December 23, 2020 the 2-inch nipple on the Wet Well D pump broke. The part was removed and replaced with a new 2-inch nipple.
- On January 20, 2021 a tree had fallen on the southwest corner of the property. The pieces were removed and placed in a wooded area.
- On January 27, 2021 several small trees that were starting to block the main gate were cut and removed.
- On March 3, 2021 garbage that had blown onto the site over the winter was picked up and removed from the site.
- On March 24, 2021 the pump in Wet Well C failed. The pump was pulled and replaced with a new pump.
- On May 11, 2021 the pump in Wet Well C failed, was removed, and replaced with a new pump.

Maintenance Record Logs are included in Appendix F.

2.4 WATER LEVELS

Monthly water level measurements were collected to (1) ensure that water levels inside the landfill are lowered by the operation of the perimeter collection system; and (2) allow planning for groundwater sampling dates, when the maximum number of wells could be sampled. Water levels were collected from the wet wells, the piezometers (hydraulic monitoring locations) within the limits of the landfill, and the groundwater monitoring wells (see Figure 1.1). Water levels in the wet wells were collected during the monthly inspections and recorded on water level records (Appendix G). The water level data, including depths to water and elevations, are summarized on Table 2.3. During the reporting period, water levels were collected from the monitoring wells on a monthly basis. Water levels varied (rose or fell) between 1.4 and 4.3 feet over the course of the reporting period.

2.5 PERIMETER COLLECTION SYSTEM (PCS)

The PCS encloses the landfill and capped area of the Site. Leachate is passively collected along the perimeter flowing to Wet Wells B, C, and D and pumped to Wet Well A, which then discharges the leachate to the City of North Tonawanda Waste Water Treatment Plant. The PCS is functioning as designed, based on the following observations:

- The effectiveness of the PCS is directly observed through collection of groundwater samples from the four monitoring wells that are located outside the perimeter of the PCS. Historic analytical results from the groundwater samples have shown that VOCs or SVOCs have not been observed outside the PCS.
- Analytical results for inorganics analyses have not shown sustained concentration increases or increasing trends which could potentially indicate a breach of the PCS.
- Samples were collected from three piezometers within the landfill (East-A, East-C, and East-D) for comparison to analytical results from the monitoring wells outside the perimeter of the PCS. Additional analytes were collected in 2020 and 2021 to enhance this comparison. As discussed in Section 2.1.2, elevated levels of analytes were identified in the piezometers compared to the monitoring wells. In 2021, ten total metals were greater than screening criteria in the samples from the piezometers compared to the three total metals in the monitoring well samples. Ten dissolved metals were greater than screening criteria in the samples from the piezometers compared to the three dissolved metals in the monitoring well samples. Additionally, three of the general chemistry analytes exceeded criteria in the samples from the piezometers and none of the samples from the monitoring wells exceeded.

Table 2.1

Detetcted Analytes in Groundwater Samples
Niagara County Refuse Site
Wheatfield, Niagara County, New York

Duplicate of NCR-13S Location ID: NCR-3S NCR-4S NCR-5S NCR-13S NCR-13S EAST-A EAST-C EAST-D WG-11109668 WG-11096 Sample ID: 050421 050421 050421 050421 050421 050421 050421 050421 WATER WATER WATER WATER WATER WATER WATER WATER Matrix: SDG 4801842481 4801842481 4801842481 4801842481 4801842481 4801842481 4801842481 4801842481 Lab Sample ID: NYS NYS US 480-184248-1 480-184248-2 480-184248-3 480-184248-5 480-184248-4 480-184248-6 480-184248-7 480-184248-8 DEC Sampled: DOH **EPA** 5/4/2021 5/4/2021 5/4/2021 5/4/2021 5/4/2021 5/4/2021 5/4/2021 5/4/2021 CAS. No. Chemical Name Unit AWQS* MCL MCL TOTAL METALS 7429-90-5 Aluminum 0.63 2.2 7.4 1.5 mg/l 0.2 U 0.18 J 0.2 U 0.2 U 7440-38-2 Arsenic mg/l 0.025 0.050 0.050 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.057 0.015 7440-39-3 Barium mg/l 0.048 0.055 0.14 0.063 0.051 0.45 0.19 0.62 2 2 1 0.001 U 7440-43-9 | Cadmium 0.001 U 0.001 U 0.001 U 0.0014 0.01 0.0029 mg/l 0.001 U 0.005 0.005 0.005 7440-70-2 Calcium mg/l 121 116 86 151 151 193 2820 135 J+ 7440-47-3 Chromium, Total 0.004 U 0.0011 J 0.0042 0.004 U 0.004 U 0.013 0.24 0.084 mg/l 0.05 0.10 0.10 7440-48-4 Cobalt 0.004 U 0.004 U 0.0029 J 0.023 mq/l 0.004 U 0.004 U 0.004 U 0.2 7440-50-8 Copper 0.0021 J mg/l 0.2 0.004 J 0.002 J 0.0031 J 0.0025 J 0.048 0.05 U 0.028 7439-89-6 Iron mg/l 0.06 0.15 0.046 0.032 1490 77.6 J+ 64.3 0.3 >0.3 +1.1 7439-92-1 Lead 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.15 0.6 0.28 mg/l 0.025 0.025 0.015 7439-95-4 Magnesium 39.9 58.8 1380 mg/l 35+54.1 35 66.7 122 414 7439-96-5 | Manganese mq/l 0.3 >0.3 +0.0079 0.023 0.0033 0.003 U 0.00062 J 0.41 18.2 0.12 J+ 7440-02-0 Nickel mg/l 0.0029 J 0.01 U 0.0026 J 0.01 U 0.01 U 0.018 1.1 0.22 0.10 7440-09-7 Potassium 9 0.28 J 0.85 889 mg/l 1.4 1 17.7 372 J+ 7440-23-5 Sodium 6.4 21.9 8.4 J 13.9 J 70.3 2370 743 mg/l 8 20 20 20 7440-62-2 Vanadium 0.005 U 0.005 U 0.0049 J mg/l 0.005 U 0.005 U 0.005 U 0.026 0.011 7440-66-6 Zinc 0.0089 J 0.021 0.01 U 0.0021 J 27.9 0.59 mg/l 2.0 +5 0.0024 J 0.16 DISSOLVED METALS 7429-90-5 Aluminum mg/l 0.2 U 1.2 0.07 J 0.2 U 0.2 U 6.8 1.5 - -7440-38-2 Arsenic 0.044 0.017 mg/l 0.025 0.015 U 0.015 U 0.015 U 0.015 U 0.015 U - -0.050 0.050 7440-39-3 Barium mq/l 0.049 0.057 0.14 0.061 0.055 0.18 0.62 1 2 2 - -7440-43-9 Cadmium 0.0083 J 0.0041 mg/l 0.002 U 0.002 U 0.002 U 0.002 U 0.002 U - -0.005 0.005 0.005 7440-70-2 Calcium 77 117 105 142 137 2650 122 mg/l - -7440-47-3 Chromium, Total mg/l 0.05 0.10 0.10 0.004 U 0.0018 J 0.0012 J 0.004 U 0.004 U - -0.23 0.083 7440-48-4 Cobalt mg/l 0.004 U 0.004 U 0.004 U 0.004 U 0.004 U 0.19 0.027

Table 2.1 Detetcted Analytes in Groundwater Samples Niagara County Refuse Site Wheatfield, Niagara County, New York

	Locatio	n ID:				NCR-3S	NCR-4S	NCR-5S	NCR-13S	NCR-13S	EAST-A	EAST-C	EAST-D
						WG-11109668-							
	Samp	le ID:				050421	050421	050421	050421	050421	050421	050421	050421
	M	latrix:				WATER							
		SDG:				4801842481	4801842481	4801842481	4801842481	4801842481	4801842481	4801842481	4801842481
	Lab Samp	le ID:	NYS	NYS	US	480-184248-1	480-184248-2	480-184248-3	480-184248-5	480-184248-4	480-184248-6	480-184248-7	480-184248-8
		ipled:	DEC	DOH	EPA	5/4/2021	5/4/2021	5/4/2021	5/4/2021	5/4/2021	5/4/2021	5/4/2021	5/4/2021
CAS. No.	Chemical Name	Unit	_ `	MCL	MCL								
7440-50-8		mg/l	0.2	-	-	0.0031 J	0.0026 J	0.0024 J	0.002 J	0.0019 J		0.05 U	0.025
7439-89-6	Iron	mg/l	0.3>	0.3+	-	0.05 U	2.1	0.068	0.05	0.031 J		1410	98.5
7439-92-1	Lead	mg/l	0.025	0.025	0.015	0.01 U		0.46	0.23				
7439-95-4	Magnesium	mg/l	35+	-	-	57.4	35.4	41.9	61.4	61.5		1370	446
7439-96-5	Manganese	mg/l	0.3>	0.3+	-	0.0057	0.02	0.0016 J	0.003 U	0.00058 J		17.3	0.14
7440-02-0	Nickel	mg/l	0.10	-	-	0.0034 J	0.0013 J	0.0019 J	0.01 U	0.0021 J		1	0.22
7440-09-7	Potassium	mg/l	-	-	-	1.2	8.4	0.32 J	0.9	0.82		830	379
7440-23-5	Sodium	mg/l	20	20	20	6.4	20.9	9.1	9.6	11.1		2220	1580
7440-62-2	Vanadium	mg/l	-	-	-	0.005 U		0.016 J	0.014				
7440-66-6	Zinc	mg/l	2.0+	5	-	0.0085 J	0.03	0.0015 J	0.0018 J	0.0022 J		26.5	0.73
	OTHER												
ALKB	Alkalinity, Bicarbonate (As CaCC	mg/l	-	-	-	488	425	400	616	687	666	19900	6780
16887-00-6	Chloride (As Cl)	mg/l	250	250	-	2.5 U	1 U	1.1	2.5 U	2.5 U	230	3010	1480
7664-41-7	Nitrogen, Ammonia (As N)	mg/l	2	-	-	0.02 U	0.02 U	0.02 UJ	0.02 U	0.02 U		1360	0.62
		mg/l	10	10	10	0.51	0.043 J	0.033 J	0.049 J	0.045 J		0.05 U	0.22
14808-79-8	Sulfate (As SO4)	mg/l	250	250	250+	86.6	71.8	5.1	93.7	84.5	85.7	1920	17.6 J

^{* =} NYSDEC Ambient Water Quality Standards += Guidance value or secondary standard

Boxed values exceed NYSDEC AWQS.

Bold values exceed NYSDOH maximum contaminant levels (MCL).

Shaded values exceed USEPA maximum contaminant levels.

> = Sum of iron and manganese should not exceed 500 ug/L NYSDEC or 300 ug/L NYSDOH

J = estimated value. J+ = estimated biased high. -= No standard identified. U = Not detected at given value.

Table 2.2 Monthly Site Inspection Summary

Inspection Item	Acceptable	Not Acceptable	Comments
Manholes	X		
Wet Wells	X		Water levels were measured monthly.
Wetlands	X		No issues were observed in the wetlands or their water levels during the monthly inspections.
Perimeter Fence	X		No repairs were required.
Condition of Roads	X		No erosion or other problems other than removal of branches.
Integrity of the Cap	X		No problems were noted.
Drainage Ditches/Swales	X		
Gas Venting System	X		
Wells	X		Water levels were measured monthly.
Culverts	X		
Vegetative Cover	X		No issues were identified with the vegetative cover on the cap.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	12/5	/2000	1/8/	2001	2/1/	2001	3/8/	2001	4/4	/2001	5/8	2001	6/5/	/2001	7/2	/2001	8/1	/2001	9/5	/2001	10/4	/2001	11/5	5/2001	12/1	1/2001
Observation	Top of	Depth to	Elevation	Depth to	o Elevation																						
Point	Casing	Water	(ft. msl)																								
	(ft. msl)	(ft)		(ft)	l																						
East "A"	598.93	22.05	576.88	-		-	-	21.34	577.59	-	-	22.21	576.72	21.98	576.95	-	-	22.51	576.42	22.63	576.30	22.61	576.32	22.74	576.19	22.88	576.05
East "B"	596.23	19.12	577.11	-	-	-	-	19.35	576.88	-	-	19.23	577.00	19.30	576.93	-	-	20.50	575.73	19.44	576.79	19.22	577.01	19.36	576.87	19.44	576.79
East "C"	598.69	17.46	581.23	-	-	-	-	17.86	580.83	-	-	18.37	580.32	18.38	580.31	-	-	18.65	580.04	18.64	580.05	18.20	580.49	18.80	579.89	18.75	579.94
East "D"	593.20	11.10	582.10	-	-	-	-	12.45	580.75	-	-	12.86	580.34	12.79	580.41	-	-	13.00	580.20	12.8	580.40	12.24	580.96	12.74	580.46	12.94	580.26
WW A	-	2.50	-	2.67	-	2.33	-	1.13	-	2.29	-	1.83	-	2.17	-	1.58	-	1.83	-	-	-	1.83	-	2.33	-	2.08	- !
WW B	-	2.20	-	2.42	-	1.96	-	1.09	-	1.79	-	2.17	-	1.92	-	1.50	-	2.00	-	1.92	-	1.58	-	1.50	-	2.08	- !
ww c	-	1.50	-	2.42	-	1.70	-	0.92	-	2.04	-	2.00	-	1.67	-	1.33	-	2.08	-	2.33	-	1.25	-	2.00	-	1.58	- !
WW D	-	1.70	-	-	-	1.50	-	0.99	-	1.08	-	1.50	-	1.33	-	2.0	-	1.25	-	2.25	-	2.00	-	2.08	-	1.33	- !
NCR-3S	579.60	-	-	-	-	-	-	-	-	-	-	-	-	3.71	575.89	-	-	dry	-	dry	-	dry	-	5.10	574.50	4.64	574.96
NCR-4S	577.88	-	-	-	-	-	-	-	-	-	-	-	-	4.28	573.60	-	-	dry	-	dry	-	dry	-	4.51	573.37	3.92	573.96
NCR-5S	579.34	-	-	-	-	-	-	-	-	-	-	-	-	9.10	570.24	-	-	dry	- !								
NCR-13S	577.15	-	-	-	-	-	-	-	-	-	-	-	-	7.05	570.10	-	-	7.85	569.30	7.80	569.35	7.70	569.45	6.65	570.50	6.11	571.04

	Elevation	1/2/	2002	2/4/	2002	3/4/	2002	4/1/	2002	5/3/	2002	6/4	/2002	7/2/	2002	8/7	2002	9/6/	2002	10/3	3/2002	11/7	/2002	12/3	3/2002
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)		(ft)	l																				
East "A"	598.93	22.90	576.03	22.81	576.12	22.03	576.90	22.25	576.68	20.06	578.87	19.84	579.09	22.00	576.93	22.65	576.28	22.78	576.15	28.48	570.45	23.25	575.68	23.36	575.57
East "B"	596.23	19.63	576.60	19.39	576.84	19.46	576.77	19.49	576.74	19.44	576.79	20.59	575.64	19.56	576.67	19.40	576.83	19.40	576.83	19.46	576.77	19.35	576.88	-	- 1
East "C"	598.69	18.70	579.99	18.51	580.18	18.70	579.99	18.63	580.06	18.80	579.89	18.74	579.95	18.78	579.91	18.95	579.74	18.92	579.77	18.99	579.70	19.30	579.39	19.35	579.34
East "D"	593.20	13.16	580.04	12.95	580.25	13.3	579.90	13.35	579.85	13.50	579.70	13.73	579.47	13.74	579.46	13.81	579.39	13.58	579.62	14.01	579.19	13.2	580.00	13.54	579.66
WW A	-	1.17	-	2.17	-	1.67	-	2.00	-	2.00	-	2.17	-	1.50	-	2.50	-	1.83	-	1.50	-	1.42	-	2.00	-
WW B	-	1.00	-	2.00	-	1.25	-	1.33	-	1.67	-	2.00	-	1.58	-	1.67	-	1.42	-	1.33	-	1.17	-	1.25	-
ww c	-	1.50	-	1.42	-	1.58	-	1.50	-	1.83	-	1.25	-	1.67	-	2.17	-	1.50	-	1.33	-	1.25	-	1.50	- 1
WW D	-	1.50	-	1.00	-	1.42	-	1.17	-	1.58	-	1.50	-	1.92	-	2.00	-	1.67	-	2.00	-	1.33	-	1.50	- 1
NCR-3S	579.60	4.54	575.06	4.52	575.08	3.90	575.70	4.10	575.50	4.43	575.17	5.20	574.40	5.71	573.89	5.90	573.70	dry	-	5.91	573.69	dry	-	4.46	575.14
NCR-4S	577.88	3.71	574.17	3.70	574.18	3.80	574.08	3.66	574.22	3.75	574.13	4.02	573.86	4.45	573.43	dry	-	dry	-	dry	-	dry	-	3.95	573.93
NCR-5S	579.34	8.42	570.92	7.69	571.65	7.68	571.66	7.61	571.73	8.28	571.06	9.10	570.24	9.52	569.82	dry	-								
NCR-13S	577.15	5.85	571.30	5.76	571.39	5.74	571.41	5.81	571.34	6.07	571.08	6.27	570.88	7.25	569.90	7.57	569.58	dry	-	7.78	569.37	dry	-	6.40	570.75
																									ľ

- = measurment not collected.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/6	/2003	2/5/	2003	3/6	/2003	4/2/	2003	5/5	/2003	6/5	2003	7/1/	2003	8/11	/2003	9/2/	2003	10/8	/2003	11/12	2/2003	12/6	/2003
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	23.48	575.45	23.51	575.42	23.65	575.28	23.75	575.18	23.81	575.12	23.25	575.68	23.11	575.82	23.25	575.68	23.41	575.52	23.35	575.58	23.71	575.22	23.85	575.08
East "B"	596.23	19.53	576.70	19.40	576.83	19.59	576.64	19.61	576.62	19.70	576.53	19.66	576.57	19.77	576.46	19.58	576.65	19.64	576.59	19.59	576.64	19.65	576.58	NA	-
East "C"	598.69	18.82	579.87	19.11	579.58	18.99	579.70	19.07	579.62	18.98	579.71	19.00	579.69	19.39	579.30	19.19	579.50	19.25	579.44	19.24	579.45	18.81	579.88	19.27	579.42
East "D"	593.20	13.24	579.96	13.52	579.68	13.7	579.50	13.88	579.32	14.15	579.05	14.07	579.13	14.31	578.89	14.04	579.16	14.04	579.16	13.97	579.23	13.64	579.56	14.02	579.18
WW A	-	1.42	-	1.25	-	1.50	-	1.42	-	1.58	-	1.33	-	1.33	-	1.17	-	1.42	-	1.33	-	2.00	-	1.33	-
WW B	-	1.08	-	1.17	-	1.67	-	1.17	-	0.75	-	1.25	-	1.42	-	1.50	-	1.50	-	1.17	-	1.42	-	1.67	-
ww c	-	1.33	-	1.50	-	1.25	-	1.33	-	1.50	-	1.42	-	1.00	-	1.08	-	1.08	-	1.08	-	1.00	-	1.67	-
WW D	-	1.42	-	1.67	-	1.08	-	1.25	-	1.50	-	1.50	-	1.25	-	1.58	-	1.33	-	1.50	-	1.58	-	1.50	-
NCR-3S	579.60	3.84	575.76	4.06	575.54	4.55	575.05	4.39	575.21	4.39	575.21	4.41	575.19	5.80	573.80	5.92	573.68	dry	-	dry	-	4.45	575.15	4.24	575.36
NCR-4S	577.88	2.91	574.97	-	-	-	-	3.65	574.23	3.60	574.28	2.65	575.23	4.05	573.83	3.98	573.90	dry	-	4.37	573.51	2.93	574.95	2.88	575.00
NCR-5S	579.34	7.95	571.39	8.69	570.65	8.11	571.23	7.66	571.68	8.58	570.76	8.08	571.26	9.26	570.08	10.12	569.22	10.95	568.39	dry	-	10.40	568.94	8.11	571.23
NCR-13S	577.15	5.89	571.26	5.54	571.61	6.16	570.99	6.05	571.10	6.13	571.02	6.11	571.04	7.21	569.94	7.48	569.67	7.59	569.56	7.77	569.38	6.35	570.80	6.07	571.08

	Elevation	1/2/	2004	2/5/	2004	3/1/	/2004	4/5/	2004	5/4/	2004	6/11	/2004	7/10	/2004	8/9	/2004	9/8/	2004	10/2	/2004	11/4	/2004	12/3	3/2004
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	23.90	575.03	23.93	575.00	24.00	574.93	23.26	575.67	22.14	576.79	19.44	579.49	19.19	579.74	20.70	578.23	23.31	575.62	23.34	575.59	22.44	576.49	22.48	576.45
East "B"	596.23	19.83	576.40	NA	-	NA	-	19.60	576.63	19.65	576.58	19.81	576.42	19.75	576.48	19.85	576.38	19.68	576.55	19.53	576.70	17.51	578.72	17.49	578.74
East "C"	598.69	19.12	579.57	19.79	578.90	19.22	579.47	19.36	579.33	19.24	579.45	19.42	579.27	19.28	579.41	19.56	579.13	19.48	579.21	19.36	579.33	18.95	579.74	18.94	579.75
East "D"	593.20	13.9	579.30	14.52	578.68	14.11	579.09	14.05	579.15	14.25	578.95	14.5	578.70	14.4	578.80	14.64	578.56	14.3	578.90	14.18	579.02	14.05	579.15	14.01	579.19
WW A	-	1.58	-	1.17	-	2.17	-	0.75	-	1.25	-	1.50	-	1.25	-	1.25	-	1.33	-	1.25	-	1.42	-	1.67	-
WW B	-	1.33	-	NA	-	1.50	-	1.30	-	1.17	-	1.17	-	1.17	-	1.25	-	1.00	-	1.00	-	1.17	-	0.42	-
ww c	-	1.08	-	1.00	-	1.17	-	1.17	-	1.00	-	1.08	-	1.17	-	1.08	-	1.17	-	1.17	-	1.58	-	0.25	-
WW D	-	1.17	-	1.08	-	1.67	-	0.65	-	1.50	-	1.33	-	1.00	-	1.00	-	1.25	-	1.00	-	1.17	-	0.25	-
NCR-3S	579.60	4.11	575.49	4.21	575.39	3.19	576.41	4.09	575.51	3.37	576.23	4.92	574.68	dry	-	4.36	575.24	5.44	574.16	dry	-	2.42	577.18	3.06	576.54
NCR-4S	577.88	2.65	575.23	2.72	575.16	2.42	575.46	2.53	575.35	2.76	575.12	2.99	574.89	3.74	574.14	3.50	574.38	3.32	574.56	3.65	574.23	2.74	575.14	2.75	575.13
NCR-5S	579.34	7.53	571.81	8.34	571.00	7.01	572.33	7.10	572.24	7.99	571.35	8.80	570.54	9.20	570.14	9.40	569.94	9.20	570.14	9.28	570.06	9.90	569.44	7.27	572.07
NCR-13S	577.15	5.72	571.43	5.95	571.20	5.88	571.27	5.49	571.66	6.08	571.07	6.22	570.93	7.08	570.07	7.09	570.06	6.75	570.40	7.16	569.99	5.95	571.20	4.28	572.87
																									ļ

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/5/	2005	2/3/	2005	3/9/	2005	4/2/	2005	6/4/	2005	7/6	3/2005	8/4	/2005	9/3/	2005	10/7	/2005	12/1	0/2005
Observation	Top of	Depth to	Elevation																		
Point	Casing	Water	(ft. msl)																		
	(ft. msl)	(ft)																			
East "A"	598.93	24.20	574.73	21.21	577.72	19.45	579.48	22.21	576.72	22.19	576.74	23.24	575.69	23.49	575.44	23.57	575.36	24.07	574.86	24.47	574.46
East "B"	596.23	19.68	576.55	19.52	576.71	19.79	576.44	19.66	576.57	19.97	576.26	19.89	576.34	19.96	576.27	19.70	576.53	19.51	576.72	19.50	576.73
East "C"	598.69	19.60	579.09	19.42	579.27	19.33	579.36	19.15	579.54	19.71	578.98	19.76	578.93	19.57	579.12	19.51	579.18	19.65	579.04	19.39	579.30
East "D"	593.20	14.2	579.00	14.35	578.85	13.89	579.31	14.29	578.91	14.68	578.52	14.64	578.56	14.62	578.58	14.47	578.73	14.4	578.80	14.24	578.96
WW A	-	0.58	-	1.08	-	0.50	-	1.00	-	1.00	-	1.00	-	1.25	-	1.17	-	1.33	-	1.50	-
WW B	-	1.50	-	1.17	-	0.83	-	1.25	-	1.17	-	1.50	-	1.42	-	0.92	-	1.17	-	1.17	-
ww c	-	0.67	-	1.00	-	1.00	-	1.00	-	1.25	-	0.92	-	1.25	-	1.00	-	1.00	-	0.83	-
WW D	-	1.25	-	1.25	-	1.00	-	1.17	-	1.33	-	0.92	-	1.50	-	1.00	-	1.08	-	1.08	-
NCR-3S	579.60	1.82	577.78	3.39	576.21	3.11	576.49	1.50	578.10	5.93	573.67	dry	-	5.96	573.64	dry	-	5.63	573.97	4.21	575.39
NCR-4S	577.88	2.60	575.28	3.08	574.80	frozen	-	2.51	575.37	3.87	574.01	dry	-	dry	-	dry	-	3.69	574.19	2.99	574.89
NCR-5S	579.34	5.46	573.88	6.57	572.77	6.14	573.20	6.36	572.98	8.10	571.24	10.60	568.74	dry	-	dry	-	dry	-	8.17	571.17
NCR-13S	577.15	3.60	573.55	5.14	572.01	4.34	572.81	3.19	573.96	6.59	570.56	7.52	569.63	7.79	569.36	dry	-	7.21	569.94	6.06	571.09

	Elevation	1/13	/2006	2/10	/2006	3/3/	2006	4/8/	2006	5/1/	2006	6/7/	2006	7/14	/2006	8/8/	2006	9/18	/2006	10/7	/2006	11/3/	2006	12/1	/2006
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	24.55	574.38	24.68	574.25	24.72	574.21	24.22	574.71	24.81	574.12	23.53	575.40	24.77	574.16	24.23	574.70	24.68	574.25	24.78	574.15	24.74	574.19	24.53	574.40
East "B"	596.23	19.45	576.78	19.85	576.38	19.87	576.36	19.86	576.37	21.10	575.13	19.80	576.43	19.79	576.44	19.84	576.39	19.51	576.72	19.80	576.43	19.86	576.37	18.80	577.43
East "C"	598.69	19.28	579.41	19.75	578.94	19.84	578.85	19.77	578.92	20.09	578.60	19.69	579.00	19.71	578.98	19.66	579.03	19.37	579.32	20.78	577.91	20.03	578.66	19.26	579.43
East "D"	593.20	14.15	579.05	14.48	578.72	14.44	578.76	14.46	578.74	14.74	578.46	14.87	578.33	14.83	578.37	14.71	578.49	14.45	578.75	14.95	578.25	14.67	578.53	14.45	578.75
WW A	-	1.17	-	1.17	-	1.17	-	1.00	-	1.25	-	1.25	-	1.00	-	1.17	-	1.17	-	1.17	-	1.08	-	1.33	-
WW B	-	0.83	-	1.17	-	0.92	-	1.08	-	1.08	-	1.08	-	1.25	-	1.00	-	0.83	-	0.92	-	1.00	-	0.83	-
ww c	-	0.92	-	1.00	-	1.00	-	1.08	-	1.08	-	1.00	-	1.25	-	1.00	-	0.83	-	1.00	-	0.92	-	0.67	-
WW D	-	1.08	-	1.00	-	0.92	-	0.92	-	1.00	-	1.17	-	0.92	-	0.92	-	0.92	-	1.00	-	1.00	-	1.00	-
NCR-3S	579.60	2.77	576.83	3.02	576.58	3.48	576.12	2.45	577.15	3.44	576.16	dry	-	dry	-	5.85	573.75	3.67	575.93	3.06	576.54	3.51	576.09	1.35	578.25
NCR-4S	577.88	2.83	575.05	2.91	574.97	3.30	574.58	2.72	575.16	3.26	574.62	4.31	573.57	4.59	573.29	dry	-	3.51	574.37	2.97	574.91	3.15	574.73	2.44	575.44
NCR-5S	579.34	7.43	571.91	7.96	571.38	8.58	570.76	7.91	571.43	8.79	570.55	8.97	570.37	dry	-	dry	-	dry	-	7.37	571.97	6.22	573.12	4.21	575.13
NCR-13S	577.15	5.78	571.37	5.99	571.16	6.08	571.07	5.84	571.31	6.15	571.00	7.33	569.82	7.57	569.58	7.69	569.46	6.36	570.79	5.72	571.43	4.33	572.82	2.77	574.38

- = measurment not collected.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/19	/2007	2/9/	2007	3/10	/2007	4/2/2	2007	5/4/	2007	6/1/	2007	7/2/	2007	8/2/	2007	9/17/	/2007	10/12	2/2007	11/1	/2007	12/1	1/2007
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	24.98	573.95	24.65	574.28	24.84	574.09	24.88	574.05	25.02	573.91	25.50	573.43	24.98	573.95	24.96	573.97	25.03	573.90	24.98	573.95	25.11	573.82	25.13	573.80
East "B"	596.23	19.38	576.85	19.56	576.67	-	-	19.98	576.25	20.07	576.16	19.78	576.45	19.86	576.37	19.85	576.38	19.81	576.42	19.50	576.73	19.52	576.71	19.59	576.64
East "C"	598.69	19.51	579.18	19.81	578.88	19.71	578.98	20.10	578.59	20.17	578.52	19.87	578.82	19.99	578.70	19.97	578.72	20.19	578.50	19.78	578.91	19.93	578.76	19.97	578.72
East "D"	593.20	14.38	578.82	14.68	578.52	14.82	578.38	15.24	577.96	15.09	578.11	15.1	578.10	15.19	578.01	15.11	578.09	15.16	578.04	14.64	578.56	14.8	578.40	14.86	578.34
WW A	-	1.17	-	1.08	-	1.25	-	1.08	-	1.25	-	1.17	-	1.00	-	0.83	-	0.67	-	1.00	-	0.92	-	1.00	-
WW B	-	1.00	-	1.00	-	0.67	-	1.17	-	0.75	-	0.92	-	0.83	-	0.83	-	0.83	-	0.92	-	1.08	-	1.17	-
ww c	-	0.83	-	0.83	-	0.67	-	0.83	-	0.83	-	0.83	-	0.67	-	0.50	-	0.67	-	0.50	-	1.00	-	1.08	-
WW D	-	1.00	-	0.83	-	1.00	-	0.83	-	0.83	-	1.00	-	0.83	-	1.00	-	0.75	-	0.83	-	1.00	-	1.00	-
NCR-3S	579.60	3.04	576.56	3.75	575.85	2.70	576.90	3.26	576.34	3.50	576.10	5.89	573.71	dry	-										
NCR-4S	577.88	2.94	574.94	3.42	574.46	2.80	575.08	2.93	574.95	3.19	574.69	3.90	573.98	dry	-										
NCR-5S	579.34	5.77	573.57	6.83	572.51	6.28	573.06	6.08	573.26	6.75	572.59	8.87	570.47	10.99	568.35	dry	-								
NCR-13S	577.15	3.85	573.30	4.51	572.64	4.39	572.76	4.25	572.90	4.81	572.34	7.01	570.14	7.44	569.71	7.70	569.45	dry	-	7.72	569.43	7.75	569.40	dry	-

	Elevation	1/4/	2008	2/8/	2008	3/7	/2008	4/4/	2008	5/8/	2008	6/5/	2008	7/1/	2008	8/7/	2008	9/11	/2008	10/9	/2008	11/3	/2008	12/5	5/2008
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	25.31	573.62	25.22	573.71	25.27	573.66	25.37	573.56	25.39	573.54	25.46	573.47	25.49	573.44	25.44	573.49	25.50	573.43	25.41	573.52	25.39	573.54	25.41	573.52
East "B"	596.23	19.95	576.28	19.65	576.58	19.90	576.33	19.70	576.53	19.71	576.52	19.96	576.27	19.91	576.32	19.87	576.36	20.04	576.19	19.60	576.63	19.83	576.40	19.99	576.24
East "C"	598.69	20.30	578.39	19.97	578.72	20.26	578.43	19.85	578.84	19.99	578.70	20.18	578.51	20.20	578.49	20.13	578.56	20.44	578.25	20.03	578.66	20.20	578.49	20.20	578.49
East "D"	593.20	15.15	578.05	14.66	578.54	14.89	578.31	15.11	578.09	15.02	578.18	15.2	578.00	15.4	577.80	15.34	577.86	15.51	577.69	15.16	578.04	15.4	577.80	15.13	578.07
WW A	-	1.00	-	0.83	-	1.08	-	0.92	-	1.08	-	1.00	-	0.83	-	0.83	-	0.83	-	0.83	-	1.00	-	1.00	-
WW B	-	0.83	-	0.92	-	1.00	-	1.00	-	0.83	-	0.83	-	0.83	-	0.83	-	0.67	-	0.75	-	0.67	-	0.92	-
ww c	-	1.00	-	0.83	-	0.75	-	0.50	-	0.75	-	0.83	-	0.67	-	0.83	-	0.42	-	0.50	-	0.58	-	0.83	-
WW D	-	1.08	-	1.00	-	0.83	-	0.33	-	0.50	-	0.50	-	0.59	-	0.67	-	0.50	-	0.50	-	0.50	-	0.50	-
NCR-3S	579.60	3.46	576.14	3.29	576.31	3.56	576.04	3.21	576.39	4.17	575.43	dry	-	dry	-	3.81	575.79	dry	-	5.44	574.16	3.81	-	3.22	576.38
NCR-4S	577.88	3.06	574.82	2.82	575.06	2.89	574.99	2.59	575.29	2.91	574.97	3.61	574.27	4.53	573.35	3.43	574.45	4.27	573.61	3.90	573.98	3.17	574.71	3.52	574.36
NCR-5S	579.34	10.80	568.54	6.26	573.08	7.11	572.23	5.84	573.50	7.45	571.89	9.00	570.34	10.24	569.10	dry	-	dry	-	dry	-	7.75	571.59	6.24	573.10
NCR-13S	577.15	4.64	572.51	4.30	572.85	4.74	572.41	4.16	572.99	5.31	571.84	6.92	570.23	7.47	569.68	7.26	569.89	7.54	569.61	7.48	569.67	5.75	571.40	4.53	572.62

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/9/	2009	2/5/	2009	3/5/	2009	4/3/	2009	5/1/	2009	6/4/	2009	7/10	/2009	8/12	/2009	9/5/	2009	10/9	/2009	11/8	/2009	12/4	/2009
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	25.34	573.59	25.54	573.39	25.60	573.33	25.42	573.51	25.64	573.29	25.66	573.27	25.62	573.31	25.51	573.42	25.52	573.41	25.45	573.48	25.63	573.30	25.53	573.40
East "B"	596.23	19.85	576.38	20.05	576.18	19.94	576.29	19.44	576.79	19.99	576.24	20.00	576.23	20.15	576.08	19.77	576.46	19.83	576.40	19.78	576.45	19.85	576.38	19.66	576.57
East "C"	598.69	20.22	578.47	20.56	578.13	20.20	578.49	19.36	579.33	20.35	578.34	20.55	578.14	20.51	578.18	20.33	578.36	20.30	578.39	20.04	578.65	20.45	578.24	20.30	578.39
East "D"	593.20	14.85	578.35	15.25	577.95	15.54	577.66	14.81	578.39	15.65	577.55	15.75	577.45	15.62	577.58	15.51	577.69	15.69	577.51	15.22	577.98	15.45	577.75	18.98	574.22
WW A	-	1.33	-	0.83	-	0.83	-	1.00	-	0.83	-	0.83	-	0.67	-	0.50	-	0.75	-	1.00	-	0.75	-	0.75	-
WW B	-	1.00	-	0.67	-	1.00	-	0.92	-	1.00	-	0.67	-	0.83	-	0.83	-	0.67	-	1.00	-	1.00	-	0.42	-
ww c	-	0.75	-	0.67	-	0.50	-	0.50	-	0.50	-	0.58	-	0.50	-	0.58	-	0.50	-	0.42	-	0.33	-	0.83	-
WW D	-	0.67	-	1.00	-	0.50	-	0.58	-	0.50	-	0.50	-	0.42	-	0.67	-	0.50	-	0.67	-	0.58	-	0.75	-
NCR-3S	579.60	2.97	576.63	4.11	575.49	3.55	576.05	2.20	577.40	3.48	576.12	dry	-	dry	-	3.66	575.94	dry	-	4.52	575.08	3.74	575.86	2.57	577.03
NCR-4S	577.88	2.90	574.98	3.19	574.69	3.36	574.52	2.39	575.49	2.90	574.98	dry	-	4.65	573.23	2.98	574.90	dry	-	3.49	574.39	3.15	574.73	2.78	575.10
NCR-5S	579.34	6.33	573.01	7.42	571.92	6.78	572.56	8.00	571.34	6.46	572.88	6.87	572.47	10.10	569.24	7.47	571.87	9.88	569.46	dry	-	9.78	569.56	5.92	573.42
NCR-13S	577.15	4.40	572.75	5.09	572.06	5.01	572.14	4.04	573.11	4.77	572.38	5.95	571.20	7.47	569.68	5.92	571.23	7.45	569.70	dry	-	6.16	570.99	4.27	572.88

	Elevation	1/7/	2010	2/1/	2010	3/11	/2010	4/1/	2010	5/6	/2010	6/1/	2010	7/2/	2010	8/12	/2010	9/16	/2010	10/8	/2010	11/5	/2010	12/2	2/2010
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	25.62	573.31	25.72	573.21	25.77	573.16	25.81	573.12	25.79	573.14	25.73	573.20	25.78	573.15	25.74	573.19	25.78	573.15	25.77	573.16	25.82	573.11	25.88	573.05
East "B"	596.23	19.78	576.45	19.97	576.26	19.83	576.40	19.83	576.40	19.79	576.44	19.83	576.40	19.99	576.24	19.84	576.39	19.87	576.36	19.70	576.53	19.52	576.71	19.52	576.71
East "C"	598.69	20.24	578.45	20.46	578.23	20.25	578.44	20.31	578.38	20.21	578.48	20.24	578.45	20.65	578.04	20.22	578.47	20.19	578.50	20.32	578.37	19.98	578.71	20.40	578.29
East "D"	593.20	15.25	577.95	15.42	577.78	15.38	577.82	15.48	577.72	15.49	577.71	15.59	577.61	15.7	577.50	15.65	577.55	15.65	577.55	15.43	577.77	15.53	577.67	15.22	577.98
WW A	-	0.83	-	0.83	-	0.83	-	0.67	-	0.58	-	0.83	-	0.67	-	0.75	-	0.67	-	0.67	-	0.83	-	0.67	-
WW B	-	0.58	-	0.58	-	0.75	-	0.50	-	0.50	-	0.50	-	0.42	-	0.50	-	0.50	-	0.50	-	0.42	-	0.42	-
ww c	-	0.33	-	0.50	-	0.50	-	0.50	-	0.50	-	0.58	-	0.67	-	0.58	-	0.58	-	0.42	-	0.58	-	0.67	-
WW D	-	0.67	-	0.58	-	0.92	-	0.58	-	0.67	-	0.50	-	0.50	-	0.50	-	0.50	-	0.58	-	0.50	-	0.50	-
NCR-3S	579.60	3.19	576.41	3.48	576.12	2.06	577.54	3.30	576.30	4.61	574.99	3.98	575.62	dry	-	2.78	576.82								
NCR-4S	577.88	2.85	575.03	frozen	frozen	2.60	575.28	2.94	574.94	2.84	575.04	2.86	575.02	dry	-	2.91	574.97								
NCR-5S	579.34	6.45	572.89	6.33	573.01	5.81	573.53	6.18	573.16	7.93	571.41	7.75	571.59	9.11	570.23	dry	-								
NCR-13S	577.15	4.64	572.51	4.65	572.50	3.68	573.47	4.71	572.44	5.10	572.05	4.97	572.18	7.40	569.75	dry	-	dry	-	dry	-	dry	-	5.82	571.33

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/7/	2011	2/9/	2011	3/3/	2011	4/9/	2011	5/6/	2011	6/3/	2011	7/15	/2011	8/5/	2011	9/5/	2011	10/7/	2011	11/3	2011	12//2	2011
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	25.88	573.05	26.05	572.88	26.12	572.81	26.13	572.80	26.15	572.78	26.22	572.71	25.78	573.15	26.44	573.42	26.54	573.41	26.10	572.83	26.05	572.88	26.04	572.89
East "B"	596.23	19.43	576.80	19.95	576.28	20.17	576.06	20.12	576.11	20.31	575.92	19.98	576.25	20.00	576.23	19.99	576.46	20.05	576.40	19.10	577.13	19.11	577.12	15.70	580.53
East "C"	598.69	19.83	578.86	20.45	578.24	21.01	577.68	20.65	578.04	20.37	578.32	20.82	577.87	20.65	578.04	20.75	578.36	20.95	578.39	20.86	577.83	20.45	578.24	20.74	577.95
East "D"	593.20	14.99	578.21	15.21	577.99	15.8	577.40	15.65	577.55	15.75	577.45	15.92	577.28	15.71	577.49	15.88	577.69	15.96	577.51	15.9	577.30	15.73	577.47	15.44	577.76
WW A	-	0.67	-	0.50	-	0.67	-	1.00	-	0.83	-	0.67	-	0.58	-	0.58	-	0.83	-	0.67	-	0.83	-	0.83	-
WW B	-	0.33	-	0.42	-	0.50	-	0.50	-	0.50	-	0.42	-	0.50	-	0.50	-	0.50	-	0.50	-	0.50	-	0.42	-
ww c	-	0.33	-	0.33	-	167	-	1.00	-	0.67	-	0.75	-	0.83	-	0.83	-	0.92	-	0.83	-	0.83	-	0.75	-
WW D	-	0.83	-	0.58	-	0.58	-	0.58	-	0.50	-	0.50	-	0.50	-	0.50	-	0.83	-	0.58	-	0.50	-	0.42	-
NCR-3S	579.60	3.56	576.04	3.90	575.70	3.39	576.21	3.48	576.12	3.31	576.29	3.61	575.99	dry	-	dry	-	dry	-	5.37	574.23	3.76	575.84	3.20	576.40
NCR-4S	577.88	3.04	574.84	2.90	574.98	2.65	575.23	2.91	574.97	2.90	574.98	3.37	574.51	dry	-	dry	-	dry	-	dry	-	3.47	574.41	2.79	575.09
NCR-5S	579.34	7.68	571.66	7.33	572.01	5.95	573.39	6.23	573.11	6.21	573.13	7.16	572.18	dry	-	9.90	569.44								
NCR-13S	577.15	4.60	572.55	4.77	572.38	4.40	572.75	4.51	572.64	4.52	572.63	5.20	571.95	dry	-	dry	-	dry	-	dry	-	5.67	571.48	4.23	572.92

	Elevation	1/5	/2012	2/6/	2012	3/1/	2012	4/12	/2012	5/1/	/2012	6/4/	2012	7/13	/2012	8/2	/2012	9/4	/2012	10/8/	2012	11/12	2/2012	12/10	0/2012
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	26.12	572.81	26.25	572.68	26.22	572.71	26.31	572.62	26.33	572.60	26.24	572.69	26.40	572.53	26.34	572.59	26.35	572.58	26.41	572.52	26.45	572.48	26.42	572.51
East "B"	596.23	15.56	580.67	15.80	580.43	15.82	580.41	16.01	580.22	15.99	580.24	18.53	577.70	19.90	576.33	16.54	579.69	19.99	576.24	20.11	576.12	19.12	577.11	16.03	580.20
East "C"	598.69	20.45	578.24	20.55	578.14	20.28	578.41	20.85	577.84	20.64	578.05	20.54	578.15	20.82	577.87	20.63	578.06	20.60	578.09	20.85	577.84	20.70	577.99	20.20	578.49
East "D"	593.20	15.51	577.69	16.61	576.59	15.4	577.80	15.71	577.49	17.77	575.43	15.73	577.47	16.15	577.05	15.97	577.23	16	577.20	15.9	577.30	15.94	577.26	15.46	577.74
WW A	-	0.50	-	0.75	-	0.67	-	0.75	-	1.25	-	0.67	-	0.58	-	0.50	-	0.67	-	0.92	-	0.50	-	1.25	-
WW B	-	0.42	-	0.42	-	0.42	-	0.42	-	0.42	-	0.50	-	0.42	-	0.83	-	0.83	-	0.42	-	0.42	-	0.50	-
ww c	-	0.83	-	0.83	-	0.67	-	0.75	-	0.83	-	1.00	-	0.75	-	0.83	-	0.83	-	0.50	-	0.50	-	0.67	-
WW D	-	0.42	-	0.58	-	0.50	-	0.50	-	0.58	-	0.58	-	0.50	-	0.42	-	0.58	-	0.50	-	0.50	-	0.42	-
NCR-3S	579.60	3.50	576.10	3.60	576.00	3.50	576.10	4.48	575.12	3.75	575.85	dry	-	4.27	575.33	2.56	577.04								
NCR-4S	577.88	2.96	574.92	2.85	575.03	2.59	575.29	3.20	574.68	2.58	575.30	3.17	574.71	dry	-	dry	-	dry	-	dry	-	3.40	574.48	3.55	574.33
NCR-5S	579.34	6.51	572.83	6.44	572.90	6.41	572.93	7.41	571.93	6.80	572.54	9.45	569.89	dry	-										
NCR-13S	577.15	4.63	572.52	4.62	572.53	4.63	572.52	5.11	572.04	4.60	572.55	7.42	569.73	dry	-	dry	-	dry	-	dry	-	6.32	570.83	4.36	572.79

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/14	1/2013	2/4/	2013	3/5/	/2013	4/5/	2013	5/7	/2013	6/5	/2013	7/5/	/2013	8/1	/2013	9/3	/2013	10/4	1/2013	11/1	5/2013	12/9	9/2013
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	26.47	572.46	26.51	572.42	26.61	572.32	26.64	572.29	26.65	572.28	26.65	572.28	26.61	572.32	26.42	572.51	26.32	572.61	26.36	572.57	26.37	572.56	26.54	572.39
East "B"	596.23	16.05	580.18	20.05	578.88	15.83	583.10	15.82	583.11	16.06	582.87	18.09	580.84	15.85	583.08	15.85	583.08	18.99	579.94	15.93	583.00	15.88	583.05	16.10	582.83
East "C"	598.69	20.91	577.78	20.69	578.24	20.84	578.09	20.79	578.14	20.84	578.09	20.98	577.95	20.92	578.01	20.51	578.42	20.59	578.34	20.68	578.25	20.65	578.28	21.21	577.72
East "D"	593.20	15.50	577.70	15.66	583.27	15.61	583.32	15.85	583.08	16.09	582.84	16.11	582.82	16.19	582.74	16.10	582.83	15.90	583.03	16.01	582.92	15.98	582.95	16.11	582.82
WW A	-	0.58	-	0.50	-	0.83	-	1.00	-	0.50	-	0.83	-	1.00	-	1.08	-	1.00	-	0.75	-	1.00	-	0.92	-
WW B	-	0.50	-	0.42	-	0.42	-	0.50	-	0.42	-	0.33	-	0.42	-	0.42	-	0.33	-	0.50	-	0.50	-	0.50	-
ww c	-	0.33	-	0.67	-	0.75	-	0.67	-	0.42	-	0.50	-	0.42	-	0.58	-	0.33	-	0.42	-	0.50	-	0.67	-
WW D	-	0.83	-	0.42	-	0.58	-	0.50	-	0.42	-	0.33	-	0.5	-	0.4	-	0.33	-	0.42	-	1.00	-	0.50	-
NCR-3S	579.60	3.06	576.54	3.80	595.13	3.75	595.18	4.25	594.68	5.10	593.83	4.21	594.72	5.18	593.75	dry	-	dry	-	dry	-	3.69	595.24	3.80	595.13
NCR-4S	577.88	2.51	575.37	2.95	595.98	dry	-	3.16	595.77	3.75	595.18	3.14	595.79	3.40	595.53	3.31	595.62	4.20	594.73	dry	-	3.00	595.93	3.05	595.88
NCR-5S	579.34	5.56	573.78	6.65	592.28	6.58	592.35	7.25	591.68	7.65	591.28	7.63	591.30	8.58	590.35	9.42	589.51	10.37	588.56	dry	-	6.46	592.47	6.58	592.35
NCR-13S	577.15	4.01	573.14	4.94	593.99	5.06	593.87	5.81	593.12	6.78	592.15	5.33	593.60	7.34	591.59	7.20	591.73	dry	-	dry	-	4.76	594.17	4.81	594.12

	Elevation	1/7/	2014	2/20	/2014	3/11	/2014	4/10	/2014	5/6/	2014	6/2	/2014	7/2	2014	8/7	/2014	9/8/	/2014	10/4	/2014	11/1:	3/2014	12/1	0/2014
Observation	Top of	Depth to	Elevation																						
Point	Casing	Water	(ft. msl)																						
	(ft. msl)	(ft)																							
East "A"	598.93	26.12	572.81	26.60	572.33	26.20	572.73	26.48	572.45	26.60	572.33	26.66	572.27	26.56	572.37	26.54	572.39	26.52	572.41	26.55	572.38	26.71	572.22	26.77	572.16
East "B"	596.23	15.56	580.67	15.48	580.75	20.05	576.18	15.80	580.43	20.05	576.18	15.80	580.43	15.94	580.29	15.90	580.33	19.21	577.02	20.13	576.10	15.95	580.28	16.13	580.10
East "C"	598.69	20.69	578.00	20.80	577.89	20.40	578.29	20.64	578.05	20.90	577.79	20.81	577.88	20.72	577.97	20.98	577.71	21.05	577.64	20.42	578.27	20.93	577.76	20.87	577.82
East "D"	593.20	15.41	577.79	15.8	577.40	15.7	577.50	15.71	577.49	16.02	577.18	15.83	577.37	15.7	577.50	15.78	577.42	15.95	577.25	15.25	577.95	15.69	577.51	15.42	577.78
WW A	-	0.83	-	0.42	-	0.50	-	1.00	-	1.25	-	1.08	-	0.83	-	1.00	-	0.83	-	0.75	-	0.75	-	1.00	-
WW B	-	0.42	-	0.50	-	0.50	-	0.42	-	0.33	-	0.42	-	0.58	-	0.42	-	0.42	-	0.42	-	0.33	-	0.33	-
ww c	-	0.42	-	0.50	-	0.50	-	0.50	-	0.50	-	0.50	-	0.58	-	0.50	-	0.50	-	0.58	-	0.42	-	0.50	-
WW D	-	0.42	-	0.58	-	0.58	-	0.33	-	0.42	-	0.33	-	0.50	-	0.50	-	0.58	-	0.50	-	0.50	-	0.42	-
NCR-3S	579.60	3.55	576.05	4.40	575.20	3.50	576.10	3.55	576.05	4.14	575.46	4.91	574.69	dry	-	4.80	574.80								
NCR-4S	577.88	2.96	574.92	2.90	574.98	3.10	574.78	2.82	575.06	3.25	574.63	3.30	574.58	3.80	574.08	dry	-	dry	-	dry	-	dry	-	4.70	573.18
NCR-5S	579.34	6.48	572.86	7.70	571.64	7.50	571.84	5.90	573.44	6.94	572.40	7.90	571.44	10.02	569.32	dry	-								
NCR-13S	577.15	4.10	573.05	6.30	570.85	4.20	572.95	4.22	572.93	5.34	571.81	6.78	570.37	7.46	569.69	dry	-								
																-									

= measurment not collected.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/3/	/2015	2/28	/2015	3/22	/2015	4/10	/2015	5/13	3/2015	6/2/2	2015	7/3/	2015	8/13	/2015	9/8/	2015	10/8	/2015	11/14	1/2015	12/1	1/2015
Observation	Top of	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation								
Point	Casing	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)								
	(ft. msl)	(ft)		(ft)		(ft)		(ft)		(ft)		(ft)		(ft)		(ft)									
East "A"	598.93	26.80	572.13	26.12	572.81	26.00	572.93	26.89	572.04	26.97	571.96	23.93	575.00	29.05	569.88	26.85	572.08	26.75	572.18	26.80	572.13	26.79	572.14	26.91	572.02
East "B"	596.23	16.01	580.22	15.56	580.67	20.05	576.18	15.80	580.43	20.05	576.18	Collapsed		Collapse	d	Collapse	d	Collapse	d	Collapse	d	Collapse	d	Collapse	d
East "C"	598.69	21.06	577.63	20.45	578.24	20.50	578.19	20.45	578.24	21.27	577.42	21.16	577.53	21.02	577.67	21.13	577.56	20.98	577.71	21.00	577.69	21.05	577.64	20.81	577.88
East "D"	593.20	15.8	577.40	15.51	577.69	15.65	577.55	15.82	577.38	17.4	575.80	19.51	573.69	Oil-like n	oted	Oil-like n	oted	37.65	555.55	17.32	575.88	16.08	577.12	16.25	576.95
WW A	-	0.92	-	0.50	-	0.58	-	1.08	-	0.67	-	0.50	-	1.00	-	0.83	-	0.83	-	0.83	-	0.83	-	0.67	-
WW B	-	0.33	-	0.42	-	0.50	-	0.50	-	4.50	-	0.58	-	0.42	-	0.33	-	0.42	-	1.00	-	0.42	-	0.33	-
ww c	-	0.50	-	0.83	-	0.50	-	0.42	-	0.42	-	0.42	-	0.50	-	0.50	-	0.42	-	0.33	-	0.50	-	0.50	-
WW D	-	0.33	-	0.42	-	0.58	-	2.08	-	0.42	-	0.33	-	0.42	-	0.42	-	0.33	-	0.50	-	0.42	-	0.33	-
NCR-3S	579.60	4.10	575.50	3.50	576.10	3.90	575.70	2.91	576.69	4.71	574.89	dry	-	dry	-	dry	-	dry	-	dry	-	4.15	575.45	5.09	574.51
NCR-4S	577.88	3.80	574.08	2.96	574.92	2.10	575.78	1.60	576.28	3.40	574.48	3.10	574.78	dry	-	dry	-	dry	-	dry	-	3.48	574.40	3.72	574.16
NCR-5S	579.34	dry	-	6.51	572.83	7.40	571.94	5.46	573.88	8.43	570.91	9.51	569.83	9.52	569.82	dry	-	dry	-	dry	-	dry	-	dry	-
NCR-13S	577.15	6.48	570.67	4.63	572.52	4.10	573.05	3.50	573.65	7.00	570.15	7.54	569.61	dry	-	dry	-	dry	-	dry	-	dry	-	dry	-

	Elevation	1/7/	2016	2/2/2	2016	3/1/	2016	4/5/2	2016	5/4/	2016	6/6/	2016	7/6/	2016	8/9/	2016	9/7/	2016	10/4	/2016	11/2/	2016	12/7	7/2016
Observation	Top of	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation										
Point	Casing	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)										
	(ft. msl)	(ft)		(ft)		(ft)		(ft)		(ft)		(ft)		(ft)											
East "A"	598.93	26.84	572.09	26.71	572.22	26.50	572.43	26.81	572.12	26.40	572.53	26.79	572.14	26.89	572.04	26.92	572.01	26.91	572.02	26.91	572.02	26.77	572.16	27.02	571.91
East "B"	596.23	Collapsed	i	Collapsed	l	Collapsed	d	Collapsed		Collapsed	i	Collapsed	t	Collapse	t	Collapse	d	Collapsed	d	Collapsed	t	Collapsed	l	Collapse	d
East "C"	598.69	21.10	577.59	20.32	578.37	21.31	577.38	12.85	585.84	20.90	577.79	20.52	578.17	20.91	577.78	21.10	577.59	21.03	577.66	22.33	576.36	22.21	576.48	20.96	577.73
East "D"	593.20	16.21	576.99	15.41	577.79	21.22	571.98	16.64	576.56	16.3	576.90	17.22	575.98	15.86	577.34	15.93	577.27	15.96	577.24	16.15	577.05	16.08	577.12	15.61	577.59
WW A	-	3.50	-	2.50	-	3.50	-	2.42	-	2.67	-	2.58	-	3.58	-	308	-	2.67	-	2.75	-	2.92	-	2.58	-
WW B	-	1.67	-	1.40	-	1.50	-	1.42	-	2.17	-	1.67	-	dry	-	1.08	-	1.58	-	1.75	-	2.08	-	3.08	-
WW C	-	1.50	-	1.75	-	1.75	-	1.75	-	1.25	-	1.58	-	1.67	-	2.08	-	2.08	-	2.17	-	2.33	-	2.25	-
WW D	-	1.17	-	1.17	-	1.17	-	1.17	-	1.17	-	1.50	-	1.25	-	1.67	-	2.08	-	1.92	-	2.17	-	2.50	-
NCR-3S	579.60	5.93	573.67	4.51	575.09	4.45	575.15	4.85	574.75	3.61	575.99	5.92	573.68	dry	-	dry	-	dry	-	dry	-	dry	-	dry	-
NCR-4S	577.88	3.45	574.43	3.82	574.06	3.65	574.23	4.10	573.78	2.80	575.08	4.21	573.67	dry	-	dry	-	dry	-	dry	-	dry	-	dry	-
NCR-5S	579.34	dry	-	7.21	572.13	6.33	573.01	4.40	574.94	6.35	572.99	10.14	569.20	dry	-	dry	-	dry	-	dry	-	dry	-	dry	-
NCR-13S	577.15	dry	-	5.21	571.94	4.60	572.55	5.60	571.55	5.40	571.75	7.42	569.73	dry	-	dry	-	dry	-	dry	-	dry	-	dry	-

= measurment not collected.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation		2017	2/6/2	-		2017	_	2017		2017		2017	-	2017		/2017		/2017		/2017	_	/2017		3/2017
Observation	Top of	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation												
Point	Casing	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)												
	(ft. msl)	(ft)		(ft)		(ft)		(ft)		(ft)		(ft)													
East "A"	598.93	27.01	571.92	26.31	572.62	26.49	572.44	27.14	571.79	27.08	571.85	27.11	571.82	27.08	571.85	27.94	570.99	26.91	572.02	27.01	571.92	26.98	571.95	26.92	572.01
East "B"	596.23	Collapsed		Collapsed		Collapsed	i	Collapsed	i	Collapsed	d	Collapsed		Collapsed	i	Collapse	d	Collapse	d	Collapsed	d	Collapse	d	Collapse	d
East "C"	598.69	20.57	578.12	17.55	581.14	17.80	580.89	21.31	577.38	21.41	577.28	21.38	577.31	18.51	580.18	18.36	580.33	21.33	577.36	21.62	577.07	21.49	577.20	21.38	577.31
East "D"	593.20	15.24	577.96	15.78	577.42	16.11	577.09	15.82	577.38	15.98	577.22	16.05	577.15	16.09	577.11	15.98	577.22	15.81	577.39	15.89	577.31	16.11	577.09	15.64	577.56
WW A	-	3.33	-	2.25	-	2.67	-	3.33	-	3.17	-	2.17	-	2.83	-	3.33	-	3.58	-	2.92	-	3.17	-	2.92	-
WW B	-	3.17	-	2.08	-	1.33	-	2.92	-	3.08	-	3.25	-	2.92	-	3.25	-	3.25	-	2.08	-	2.92	-	2.75	-
ww c	-	2.08	-	2.67	-	2.92	-	3.25	-	2.92	-	2.92	-	2.75	-	2.75	-	3.00	-	2.75	-	3.33	-	3.33	-
WW D	-	2.92	-	2.08	-	3.42	-	8.17	-	7.08	-	3.08	-	3.17	-	2.92	-	2.75	-	3.33	-	3.42	-	3.17	-
NCR-3S	579.60	3.93	575.67	4.24	575.36	4.43	575.17	3.98	575.62	4.10	575.50	6.62	572.98	4.86	574.74	5.36	574.24	5.84	573.76	dry	-	4.31	575.29	4.57	575.03
NCR-4S	577.88	3.50	574.38	3.32	574.56	3.43	574.45	3.40	574.48	3.45	574.43	3.47	574.41	3.89	573.99	3.88	574.00	3.79	574.09	4.84	573.04	3.23	574.65	3.43	574.45
NCR-5S	579.34	dry	-	dry	-	6.79	572.55	5.85	573.49	6.19	573.15	dry	-	dry	-	10.21	569.13	10.28	569.06	dry	-	6.15	573.19	6.98	572.36
NCR-13S	577.15	dry	-	5.23	571.92	4.89	572.26	4.16	572.99	4.22	572.93	6.85	570.30	7.95	569.20	dry	-	7.76	569.39	dry	-	4.34	572.81	4.90	572.25
		-																							

	Elevation	1/10/	2018	2/13/	2018	3/6/2	2018	4/16	/2018	5/14	/2018	6/7/	2018	7/17	/2018	8/9/	2018	9/12/	2018	10/9/	2018	11/14	/2018	12/5	5/2018
Observation	Top of	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation										
Point	Casing	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)										
	(ft. msl)	(ft)		(ft)		(ft)		(ft)		(ft)		(ft)		(ft)											
East "A"	598.93	26.45	572.48	26.48	572.45	27.13	571.80	27.24	571.69	28.20	570.73	27.12	571.81	28.18	570.75	27.04	571.89	27.09	571.84	27.09	571.84	27.17	571.76	27.09	571.84
East "B"	596.23	Collapsed		Collapsed		Collapsed	l	Collapsed	i	Collapsed	i	Collapsed		Collapse	d	Collapse	d	Collapsed	I	Collapsed	l	Collapsed	d	Collapse	:d
East "C"	598.69	21.02	577.67	19.87	578.82	21.24	577.45	20.99	577.70	22.26	576.43	21.54	577.15	22.25	576.44	21.14	577.55	21.68	577.01	21.60	577.09	21.90	576.79	21.16	577.53
East "D"	593.20	15.41	577.79	14.41	578.79	15.93	577.27	15.76	577.44	17.01	576.19	16.02	577.18	16.99	576.21	15.77	577.43	16.14	577.06	16.19	577.01	15.99	577.21	16.01	577.19
WW A	-	2.50	-	3.08	-	3.42	-	3.08	-	2.50	-	2.17	-	3.08	-	2.33	-	3.08	-	2.92	-	2.83	-	3.33	-
WW B	-	3.08	-	2.50	-	2.92	-	2.58	-	2.17	-	2.75	-	2.92	-	2.50	-	3.25	-	2.83	-	3.08	-	2.50	-
ww c	-	3.33	-	3.33	-	3.08	-	5.75	-	2.33	-	3.08	-	3.17	-	2.92	-	2.83	-	3.17	-	3.08	-	2.25	-
WW D	-	2.92	-	2.92	-	3.25	-	5.83	-	2.50	-	2.83	-	2.92	-	3.08	-	3.25	-	3.00	-	3.33	-	3.67	-
NCR-3S	579.60	4.69	574.91	4.43	575.17	4.42	575.18	3.06	576.54	4.65	574.95	dry	-	dry	-	dry	-	dry	-	dry	-	4.47	575.13	4.16	575.44
NCR-4S	577.88	3.52	574.36	3.19	574.69	3.13	574.75	3.75	574.13	4.29	573.59	3.70	574.18	dry	-	dry	-	dry	-	dry	-	3.87	574.01	3.34	574.54
NCR-5S	579.34	7.11	572.23	7.18	572.16	6.76	572.58	4.97	574.37	7.49	571.85	9.35	569.99	dry	-	dry	-	dry	-	dry	-	dry	-	dry	-
NCR-13S	577.15	5.27	571.88	5.32	571.83	5.04	572.11	3.04	574.11	5.94	571.21	7.42	569.73	dry	-	dry	-	dry	-	dry	-	dry	-	5.22	571.93
																						·			

- = measurment not collected.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/10	/2019	2/11/	2019	3/7/	2019	4/11	/2019	5/8/	2019	6/19	2019	7/10	/2019	8/21	/2019	9/23	/2019	10/21	1/2019	11/2	1/2019	12/17	7/2019
Observation	Top of	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation						
Point	Casing	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)						
	(ft. msl)	(ft)		(ft)		(ft)		(ft)		(ft)		(ft)		(ft)		(ft)		(ft)		(ft)		(ft)		(ft)	ļ
East "A"	598.93	27.14	571.79	27.14	571.79	27.14	571.79	27.22	571.71	27.25	571.68	27.14	571.79	27.09	571.84	27.04	571.89	27.02	571.91	26.98	571.95	26.88	572.05	27.01	571.92
East "B"	596.23	Collapsed	i	Collapsed		Collapsed	i	Collapsed	I	Collapse	d	Collapsed		Collapsed	d	Collapse	d	Collapse	d	Collapsed	d	Collapse	d	Collapse	d
East "C"	598.69	21.56	577.13	21.38	577.31	21.70	576.99	21.74	576.95	21.91	576.78	21.36	577.33	21.64	577.05	21.44	577.25	21.36	577.33	21.60	577.09	21.66	577.03	21.44	577.25
East "D"	593.20	15.79	577.41	16.03	577.17	16.11	577.09	16.2	577.00	16.39	576.81	16.23	576.97	16.38	576.82	16.20	577.00	15.7	577.50	16.11	577.09	16.11	577.09	16.05	577.15
WW A	-	3.00	-	3.33	-	3.50	-	3.08	-	3.08	-	2.08	-	2.08	-	2.83	-	2.50	-	2.50	-	3.08	-	3.00	-
WW B	-	3.25	-	2.50	-	3.17	-	2.17	-	3.25	-	3.17	-	2.50	-	2.17	-	3.17	-	3.17	-	3.17	-	3.33	-
ww c	-	2.08	-	2.58	-	2.75	-	2.50	-	2.67	-	3.17	-	2.33	-	2.50	-	3.00	-	2.83	-	2.17	-	2.83	-
WW D	-	2.50	-	3.08	-	2.58	-	5.17	-	2.92	-	3.00	-	2.50	-	3.00	-	3.17	-	2.42	-	3.08	-	3.50	-
NCR-3S	579.60	4.13	575.47	3.90	575.70	4.83	574.77	3.82	575.78	4.44	575.16	4.88	574.72	6.33	573.27	6.39	573.21	dry	-	dry	-	4.00	575.60	4.17	575.43
NCR-4S	577.88	3.40	574.48	2.95	574.93	3.13	574.75	2.90	574.98	3.18	574.70	3.89	573.99	4.30	573.58	4.84	573.04	dry	-	4.41	573.47	3.20	574.68	3.19	574.69
NCR-5S	579.34	6.16	573.18	6.38	572.96	7.06	572.28	6.40	572.94	6.76	572.58	7.98	571.36	10.12	569.22	dry	-	dry	-	dry	-	10.83	568.51	6.26	573.08
NCR-13S	577.15	4.52	572.63	4.57	572.58	5.89	571.26	4.88	572.27	5.33	571.82	7.20	569.95	7.69	569.46	7.94	569.21	dry	-	dry	-	5.41	571.74	4.53	572.62

	Elevation	1/21/	2020	2/19/	2020	3/17/	2020	4/22	/2020	5/21	/2020	6/24/	2020	7/23/	/2020	8/19	/2020	9/23/	2020	10/14	/2020	11/19	/2020	12/1	6/2020
Observation	Top of	Depth to	Elevation	Depth to	Elevation	Depth to I	Elevation	Depth to	Elevation	Depth to	Elevation	Depth to	Elevation												
Point	Casing	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)	Water	(ft. msl)												
	(ft. msl)	(ft)		(ft)		(ft)		(ft)		(ft)		(ft)													
East "A"	598.93	26.96	571.97	27.21	571.72	27.27	571.66	27.11	571.82	28.60	570.33	27.63	571.30	27.32	571.61	27.07	571.86	27.08	571.85	27.21	571.72	27.20	571.73	27.30	571.63
East "B"	596.23	Collapsed		Collapsed		Collapsed		Collapsed	t	Collapsed	i	Collapsed		Collapsed	d	Collapse	d	Collapsed		Collapsed	l	Collapsed	i	Collapse	d
East "C"	598.69	21.52	577.17	21.89	576.80	21.35	577.34	21.36	577.33	21.90	576.79	21.50	577.19	21.72	576.97	21.70	576.99	21.58	577.11	21.64	577.05	21.72	576.97	21.80	576.89
East "D"	593.20	16.07	577.13	16.22	576.98	16.11	577.09	16.24	576.96	17.32	575.88	16.74	576.46	17.61	575.59	17.35	575.85	17.4	575.80	17.34	575.86	17.32	575.88	17.36	575.84
WW A	-	3.08	-	2.58	-	3.33	-	2.92	-	2.50	-	2.92	-	3.08	-	3.40	-	3.08	-	3.17	-	3.08	-	3.33	-
WW B	-	2.83	-	3.17	-	2.25	-	2.67	-	2.92	-	3.33	-	2.83	-	2.70	-	3.25	-	3.42	-	3.17	-	3.00	-
ww c	-	3.25	-	3.00	-	2.17	-	3.08	-	2.67	-	2.75	-	3.08	-	1.70	-	3.33	-	2.92	-	2.92	-	2.83	-
WW D	-	3.58	-	2.92	-	3.00	-	3.33	-	2.75	-	3.17	-	3.67	-	2.50	-	3.58	-	3.33	-	3.33	-	3.25	-
NCR-3S	579.60	4.22	575.38	4.03	575.57	4.35	575.25	4.53	575.07	4.73	574.87	dry	-	6.39	573.21	6.38	573.22	dry	-	dry	-	dry	-	4.41	575.19
NCR-4S	577.88	3.17	574.71	3.10	574.78	3.47	574.41	3.35	574.53	3.49	574.39	4.61	573.27	dry	-	dry	-	dry	-	dry	-	dry	-	3.84	574.04
NCR-5S	579.34	7.11	572.23	6.00	573.34	6.55	572.79	6.99	572.35	7.51	571.83	dry	-	dry	-	dry	-	dry	-	dry	-	dry	-	dry	-
NCR-13S	577.15	4.96	572.19	4.33	572.82	4.86	572.29	5.44	571.71	6.16	570.99	7.71	569.44	7.87	569.28	7.92	569.23	dry	-	dry	-	dry	-	dry	-
																						-			

- = measurment not collected.

Table 2.3
Niagara County Refuse Site
Water Level Measurements

	Elevation	1/13/	2021	2/10	/2021	3/11	/2021	4/14/	20221	5/19	/2021
Observation	Top of	Depth to	Elevation								
Point	Casing	Water	(ft. msl)								
	(ft. msl)	(ft)									
East "A"	598.93	27.33	571.60	27.35	571.58	27.39	571.54	27.42	571.51	26.08	572.85
East "B"	596.23	Collapsed	l	Collapsed	l	Collapsed	i	Collapsed	i	Collapsed	i
East "C"	598.69	21.55	577.14	22.08	576.61	21.70	576.99	21.77	576.92	22.07	576.62
East "D"	593.20	16.89	576.31	17.7	575.50	17.2	576.00	17.36	575.84	17.93	575.27
WW A	-	3.08	-	2.58	-	3.25	-	3.33	-	3.25	-
WW B	-	2.83	-	2.92	-	3.08	-	3.00	-	3.25	-
ww c	-	2.83	-	2.83	-	3.33	-	3.17	-	3.42	-
WW D	-	3.25	-	3.08	-	3.25	-	3.08	-	3.08	-
NCR-3S	579.60	4.55	575.05	4.90	574.70	4.12	575.48	4.45	575.15	5.43	574.17
NCR-4S	577.88	3.41	574.47	3.66	574.22	3.22	574.66	3.41	574.47	4.09	573.79
NCR-5S	579.34	dry	-	10.94	568.40	6.62	572.72	6.99	572.35	7.88	571.46
NCR-13S	577.15	5.14	572.01	5.85	571.30	4.03	573.12	5.50	571.65	6.50	570.65

- = measurment not collected.

Figure 2.1A: Plot of Historical Total Barium Concentration

Figure 2.1B: Plot of Historical Total Chromium Concentration

Figure 2.1C: Plot of Historical Total Copper Concentration

SECTION 3 SUMMARY AND CONCLUSIONS

The following summary and conclusions were developed based on the data collected during this reporting period (June 2020 through May 2021):

- Groundwater samples were collected for inorganic analysis in 2021. The analytical results were consistent with historical results. The annual groundwater samples scheduled for collection in April 2022 will continue to be analyzed for inorganics only.
- Twelve metals were identified in one or more of the groundwater samples from the
 monitoring wells. Three of the detected metals exceeded either the NYSDEC AWQS,
 NYSDOH MCLs, or USEPA MCLs, which is consistent with previous sampling events.
 Two of these metals appear to be associated with background conditions. In general,
 detected values appeared to be consistent with ranges observed in previous sampling
 events.
- The three usable piezometers were also sampled in 2020. Piezometer sampling is scheduled to continue for the next two years and will be evaluated to determine if needed past that time. Seventeen metals were identified in one or more of the samples from the three piezometers. Ten of the detected metals exceeded either the NYSDEC AWQS, NYSDOH MCLs, or USEPA MCLs. Concentrations of analytes were generally higher in the piezometer samples compared to the samples collected from the monitoring wells.
- General chemistry (bicarbonate alkalinity, chloride, ammonia nitrogen, nitrate-nitrite, and sulfate) samples were collected from the four wells and two of the three piezometers in 2021. Collection of general chemistry samples is scheduled to continue for the next two years and will be evaluated to determine if needed past that time. None of general chemistry analytes exceeded screening criteria in the wells while three of the five analytes exceeded screening criteria in the piezometers.
- Two effluent samples were collected during the reporting period. The analytical results were found to be compliant with the discharge permit. Compliance with the discharge permit was maintained during the reporting period.
- The landfill was inspected monthly and was appropriately maintained. Needed repairs were addressed in a timely manner. Cover vegetation continues to be in good condition.
- Post-construction monitoring of the wetland replacement was performed annually between 2001 and 2005. Monitoring results indicated that the wetland creation was successful. Although the formal annual inspections are no longer required, monthly visual inspection of the wetlands has continued, to document general conditions. During the reporting period, the wetlands were documented to be in good condition.
- Water levels were collected from the wet wells, monitoring wells, and the locations within the landfill on a monthly basis during the reporting period. Water levels generally varied between 1.4 and 4.3 feet over the course of the reporting period.
- The groundwater monitoring program is intended to provide data for demonstration of the effectiveness of the hydraulic containment, collection, and extraction of Site-related

groundwater. The objectives of the groundwater monitoring program (to monitor the effectiveness of the perimeter collection system and the perimeter barrier system) were met during the reporting period.

SECTION 4 REFERENCES

USEPA, 1993, Record of Decision, Niagara County Refuse Site, Wheatfield, Niagara County, New York; United States Environmental Protection Agency, September 1993.

USA, 1995, Consent Decree, Docket 946-849; United States Environmental Protection Agency, February 3, 1995.

CRA, 2000, Operations, Maintenance and Monitoring Manual for Niagara County Refuse District Site Remedial Construction, Wheatfield, Niagara County, New York; Conestoga-Rovers & Associates, December 2000.

Parsons, 2019 Annual Monitoring Report, Niagara County Refuse District Site; Parsons, June 2019.

APPENDIX A

CITY OF NORTH TONAWANDA INDUSTRIAL WASTEWATER DISCHARGE PERMIT

CITY OF NORTH TONAWANDA INDUSTRIAL WASTEWATER DISCHARGE PERMIT

Permit Number: 2628010

In accordance with the provisions of the Clean Water Act as amended, all terms and conditions set forth in this permit, the City of North Tonawanda Local Sewer Use Ordinance and any applicable Federal, State or local

laws or regulations, authorization is hereby granted to:

Niagara County Department of Public Works

Engineering Department

59 Park Avenue

Lockport, NY 14094

Site:

Niagara County Refuse Site

Witmer Road

Town of Wheatfield, NY 14120

Classified by S.I.C. Number(s): N/A

for the discharge of ground water and other wastes generated during Remedial Action construction and implementation into the City of North Tonawanda Sewerage System.

This permit is granted in accordance with an application filed in the offices of the Water/Wastewater Superintendent located at 830 River Road, and in conformity with specifications and other required data submitted in support of the above named application, all of which are filed with and considered part of this permit. This permit is also granted in accordance with discharge limitations and requirements, monitoring and reporting requirements, and all other conditions set forth in Parts I and II hereof.

Effective the 31st day of March, 2019

To expire the 1st day of April, 2022

William M. Davignon, Water Works Superintendent

Signed this / day of April, 2019

PART I. SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge from the permitted facility outfall(s) shall be limited and monitored by the permittee as specified below (Refer to attached map for sampling and monitoring sites).

Sample Point	Parameter	Discharge Limitations mg/l except pH	Sampling Period	Sampling Type
2 00		Daily Max.		
001	Total Flow		1 Sampling Day Monthly	continuous
-	pН	Monitor Only	1 Sampling Day Monthly	grab
	Aluminum	2.0	1 Sampling Day semi-annual	24 hr comp.
	Lead	4.6	1 Sampling Day semi-annual	24 hr comp.
	Iron	10	1 Sampling Day semi-annual	24 hr comp.
	Magnesium	Monitor Only	1 Sampling Day semi-annual	24 hr comp.
	Sodium	Monitor Only	1 Sampling Day semi-annual	24 hr comp.
	BOD	Monitor Only	1 Sampling Day semi-annual	24 hr comp.
*	Total Suspended Solids	Monitor Only	1 Sampling Day semi-annual	24 hr comp.

PART I. SPECIFIC CONDITIONS

B. DISCHARGE MONITORING AND REPORTING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge monitoring results shall be summarized and reported by the permittee no later than the days specified below.

Sample Point	Parameter	Initial Monitoring Report	Subsequent Monitoring Reports
001	Total Flow	January 31, 2007	Semi-annual
	Lead	January 31, 2007	Semi-annual
4 3	register to the second	January 31, 2007	Semi-annual
ridid.	Magnesium	January 31, 2007	Semi-annual
.w/20/y	Sodium	January 31, 2007	Semi-annual
	рН	January 31, 2007	Semi-annual
	BOD	January 31, 2007	Semi-annual
	Total Suspended Solids	January 31, 2007	Semi-annual

PART I. SPECIFIC CONDITIONS

C. SPECIAL REQUIREMENTS

- 1) This permit is written for a duration of three (3) years. Upon renewal of this permit, all parameters will be re-evaluated to develop a parameter list based on chemical concentrations present in the extracted groundwater.
- 2) Frequency of monitoring is to be re-evaluated yearly.
- 3) All monitoring reports (initial and subsequent), are to be received by the Superintendent, no later than thirty (30) days after receipt of validated data.
- 4) It is required that the Permittee have a Site Operations Manual available at all times. All emergency phone numbers must be listed in an appropriate place for easy access by operations personnel. The Permittee shall not discharge into the City of North Tonawanda sewerage treatment works during WWTP overflow conditions. The Permittee is required to cease all pumping operations upon verbal request of the North Tonawanda Water/Wastewater Superintendent or his designee. Pumping operations shall not recommence until approval by the North Tonawanda Water/Wastewater Superintendent or his designee.

Analytical Results: NIAGARA COUNTY REFUSE SITE 2020

PARAMETER	RESULT mg/l	RESULT mg/l	COMPLIANCE
pH (COMP.)	7.56	7.73	YES
COD	< 50	176	YES
SUSPENDED SOLIDS	10	15	YES
BOD	14.35	9.35	YES
PO4	< 0.10	0.16	YES
METALS			
ALUMINUM	< 0.20	ND	YES
LEAD	< 0.010	< 0.010	YES
IRON	2.10	0.77	YES
MAGNESIUM	90.9	181.0	YES
MANGANESE	0.15	0.19	YES
SODIUM	66.3	629.0	YES
TOTAL FLOW (gallons)	16,000	1,000	
SAMPLE DATE	4/22 & 4/23 2020	10/7 & 10/8 2020	

Report prepared by: Michael W. Gibbons, Lab Director / Chemist

Analytical Results: NIAGARA COUNTY REFUSE SITE 2021

PARAMETER	RESULT mg/l	RESULT mg/l	COMPLIANCE
pH (COMP.)	7.31		YES
COD	62		YES
SUSPENDED SOLIDS	19		YES
BOD	7.85		YES
PO4	0.07		YES
METALS			
ALUMINUM	ND		YES
LEAD	< 0.010		YES
IRON	0.72		YES
MAGNESIUM	78.8		YES
MANGANESE	0.13		YES
SODIUM	50.2		YES
TOTAL FLOW (gallons)	12,000		
SAMPLE DATE	4/14 & 4/15 2021		
Com	pound was found in blank and	CCV Standard failed OC lim	its

Compound was found in blank and CCV Standard failed QC limits

Report prepared by: Michael W. Gibbons, Lab Director / Chemist

APPENDIX B ANALYTICAL DATA AND FIELD DATA FORMS

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-184248-1

Client Project/Site: City of North Tonawanda - NCRS

For:

N Tonawanda Water Works 830 River Road North Tonawanda, New York 14120

Attn: Michael W Gibbons

Judy Stone

Authorized for release by: 5/19/2021 5:49:46 PM

Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	11
QC Sample Results	21
QC Association Summary	30
Lab Chronicle	34
Certification Summary	38
Method Summary	39
Sample Summary	40
Detection Limit Exceptions Summary	41
Chain of Custody	42
Receipt Checklists	43

4

8

10

12

13

14

15

Definitions/Glossary

Client: N Tonawanda Water Works

Job ID: 480-184248-1 Project/Site: City of North Tonawanda - NCRS

Qualifiers

Met	ta	S
Oua	lifi	۵r

Qualifier	Qualifier Description
^+	Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
^2	Calibration Blank (ICB and/or CCB) is outside acceptance limits.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
В	Compound was found in the blank and sample.
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Cioosaiy	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
FDI	Estimated Detection Limit (Dioxin)

EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCI	EPA recommended "Maximum Cont

MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
	Matter A.B. danger at Parti

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit

PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemist

DI D	enarting Limit or Regues	sted Limit (Radiochemistry

	.,
RPD	Relative Percent Difference, a measure of the relative difference between two points

TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TNTC	Too Numerous To Count

5/19/2021

Page 3 of 43

Case Narrative

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

Job ID: 480-184248-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-184248-1

Receipt

The samples were received on 5/5/2021 3:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range:

WG-11109668-050421-SG-NCR3S (480-184248-1), WG-11109668-050421-SG-NCR6S (480-184248-4),

WG-11109668-050421-SG-NCR13S (480-184248-5), WG-11109668-050421-SG-EAST A (480-184248-6),

WG-11109668-050421-SG-EAST C (480-184248-7) and WG-11109668-050421-SG-EAST D (480-184248-8). Elevated reporting limits (RLs) are provided.

Method 300.0: The following samples were reported with elevated reporting limits for all analytes: WG-11109668-050421-SG-NCR4S (480-184248-2) and WG-11109668-050421-SG-NCR5S (480-184248-3). The samples were analyzed at a dilution based on screening

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6010C: The recovery of Post Spike, (480-184248-C-3-A PDS), in batch 480-580970 exhibited results outside the quality control limits for Dissolved Calcium. However, the Serial Dilution of this sample was compliant. Therefore, no corrective action was necessary.

Method 6010C: The continuing calibration blank (CCB 480-580970/56) for analytical batch 480-580970 contained Dissolved Iron above the reporting limit (RL). All reported samples associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCB; therefore, re-analysis of sample WG-11109668-050421-SG-EAST D (480-184248-8) was not performed.

Method 6010C: The Low Level Continuing Calibration Verification (CCVL 480-580970/57) associated with batch 480-580970 contained Dissolved Iron above the upper quality control limit. The associated samples were either ND for the affected analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of sample WG-11109668-050421-SG-EAST D (480-184248-8) was not performed.

Method 6010C: The recovery of Post Spike, (480-184248-B-3-A PDS), in batch 480-580972 exhibited results outside the quality control limits for Total Calcium. However, the Serial Dilution of this sample was compliant. Therefore, no corrective action was necessary.

Method 6010C: The Low Level Continuing Calibration Verification, (CCVL 480-580972/56) associated with batch 480-580972, contained Total Calcium, Iron, Potassium, Magnesium, Manganese above the upper quality control limit. The associated samples were either ND for the affected analytes or contained these analytes at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of sample WG-11109668-050421-SG-EAST D (480-184248-8) was not performed.

Method 6010C: The continuing calibration blank (CCB 480-580972/55) for analytical batch 480-580972 contained Total Iron above the reporting limit (RL). All reported samples associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCB; therefore, re-analysis of sample WG-11109668-050421-SG-EAST D (480-184248-8) was not performed.

Method 6010C: The following sample was diluted due to the presence of Total Iron which interferes with Cadmium, Chromium, Manganese, Nickel, Lead, Antimony, Selenium, and Vanadium: WG-11109668-050421-SG-EAST C (480-184248-7). Elevated reporting limits (RLs) are provided.

Method 6010C: The following sample was diluted due to the presence of Dissolved Iron which interferes with Cadmium, Chromium, Manganese, Nickel, Lead, and Antimony: WG-11109668-050421-SG-EAST C (480-184248-7). Elevated reporting limits (RLs) are provided.

Case Narrative

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

Job ID: 480-184248-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

Method 6010C: The following sample was diluted due to the presence of Dissolved Calcium which interferes with Copper: WG-11109668-050421-SG-EAST C (480-184248-7). Elevated reporting limits (RLs) are provided.

Method 6010C: The following sample was diluted for Dissolved Silver due to the nature of the sample matrix: WG-11109668-050421-SG-EAST C (480-184248-7). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

-

4

5

6

0

10

11

12

14

15

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

Client Sample ID: WG-11109668-050421-SG-NCR3S

Lab Sample ID: 480-184248-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.048		0.0020	0.00070	mg/L	1	_	6010C	Total/NA
Calcium	121		0.50	0.10	mg/L	1		6010C	Total/NA
Copper	0.0040	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Iron	0.060	В	0.050	0.019	mg/L	1		6010C	Total/NA
Magnesium	54.1		0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	0.0079		0.0030	0.00040	mg/L	1		6010C	Total/NA
Nickel	0.0029	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Potassium	1.4		0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	6.4		1.0	0.32	mg/L	1		6010C	Total/NA
Zinc	0.0089	JВ	0.010	0.0015	mg/L	1		6010C	Total/NA
Barium	0.049		0.0020	0.00070	mg/L	1		6010C	Dissolved
Calcium	117		0.50	0.10	mg/L	1		6010C	Dissolved
Copper	0.0031	J	0.010	0.0016	mg/L	1		6010C	Dissolved
Magnesium	57.4		0.20	0.043	mg/L	1		6010C	Dissolved
Manganese	0.0057		0.0030	0.00040	mg/L	1		6010C	Dissolved
Nickel	0.0034	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Potassium	1.2		0.50	0.10	mg/L	1		6010C	Dissolved
Sodium	6.4		1.0	0.32	mg/L	1		6010C	Dissolved
Zinc	0.0085	J	0.010	0.0015	mg/L	1		6010C	Dissolved
Sulfate	86.6		10.0	1.7	mg/L	5		300.0	Dissolved
Alkalinity, Bicarbonate	488	В	50.0	20.0	mg/L	5		310.2	Dissolved
Nitrate Nitrite as N	0.51		0.050	0.020	mg/L	1		353.2	Dissolved

Client Sample ID: WG-11109668-050421-SG-NCR4S

Lab Sample ID: 480-184248-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Aluminum	0.63		0.20	0.060	mg/L	1	6010C	Total/NA
Barium	0.055		0.0020	0.00070	mg/L	1	6010C	Total/NA
Calcium	116	В	0.50	0.10	mg/L	1	6010C	Total/NA
Chromium	0.0011	J	0.0040	0.0010	mg/L	1	6010C	Total/NA
Copper	0.0020	J	0.010	0.0016	mg/L	1	6010C	Total/NA
Iron	1.1	В	0.050	0.019	mg/L	1	6010C	Total/NA
Magnesium	35.0		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	0.023		0.0030	0.00040	mg/L	1	6010C	Total/NA
Potassium	9.0	В	0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	21.9	В	1.0	0.32	mg/L	1	6010C	Total/NA
Zinc	0.021	В	0.010	0.0015	mg/L	1	6010C	Total/NA
Aluminum	1.2		0.20	0.060	mg/L	1	6010C	Dissolved
Barium	0.057		0.0020	0.00070	mg/L	1	6010C	Dissolved
Calcium	105		0.50	0.10	mg/L	1	6010C	Dissolved
Chromium	0.0018	J	0.0040	0.0010	mg/L	1	6010C	Dissolved
Copper	0.0026	J	0.010	0.0016	mg/L	1	6010C	Dissolved
Iron	2.1		0.050	0.019	mg/L	1	6010C	Dissolved
Magnesium	35.4		0.20	0.043	mg/L	1	6010C	Dissolved
Manganese	0.020		0.0030	0.00040	mg/L	1	6010C	Dissolved
Nickel	0.0013	J	0.010	0.0013	mg/L	1	6010C	Dissolved
Potassium	8.4		0.50	0.10	mg/L	1	6010C	Dissolved
Sodium	20.9		1.0	0.32	mg/L	1	6010C	Dissolved
Zinc	0.030		0.010	0.0015	mg/L	1	6010C	Dissolved
Sulfate	71.8		4.0	0.70	mg/L	2	300.0	Dissolved
Alkalinity, Bicarbonate	425		50.0	20.0	mg/L	5	310.2	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 6 of 43

9

3

7

9

11

12

14

4 E

5/19/2021

Project/Site: City of North Tonawanda - NCRS

Client Sample ID: WG-11109668-050421-SG-NCR4S

Lab Sample ID: 480-184248-2

Job ID: 480-184248-1

(Continued)

Analyte	Result Qualifier	RL	MDL Un	it Dil Fac	D	Method	Prep Type
Nitrate Nitrite as N	0.043 J	0.050	0.020 mg			353.2	Dissolved

Client Sample ID: WG-11109668-050421-SG-NCR5S

Lab Sample ID: 480-184248-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.18	J	0.20	0.060	mg/L	1	_	6010C	Total/NA
Barium	0.14		0.0020	0.00070	mg/L	1		6010C	Total/NA
Calcium	86.0		0.50	0.10	mg/L	1		6010C	Total/NA
Chromium	0.0042		0.0040	0.0010	mg/L	1		6010C	Total/NA
Copper	0.0031	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Iron	0.15	В	0.050	0.019	mg/L	1		6010C	Total/NA
Magnesium	39.9		0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	0.0033		0.0030	0.00040	mg/L	1		6010C	Total/NA
Nickel	0.0026	J	0.010	0.0013	mg/L	1		6010C	Total/NA
Potassium	0.28	J	0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	8.0		1.0	0.32	mg/L	1		6010C	Total/NA
Zinc	0.0024	JB	0.010	0.0015	mg/L	1		6010C	Total/NA
Aluminum	0.070	J	0.20	0.060	mg/L	1		6010C	Dissolved
Barium	0.14		0.0020	0.00070	mg/L	1		6010C	Dissolved
Calcium	77.0		0.50	0.10	mg/L	1		6010C	Dissolved
Chromium	0.0012	J	0.0040	0.0010	mg/L	1		6010C	Dissolved
Copper	0.0024	J	0.010	0.0016	mg/L	1		6010C	Dissolved
Iron	0.068		0.050	0.019	mg/L	1		6010C	Dissolved
Magnesium	41.9		0.20	0.043	mg/L	1		6010C	Dissolved
Manganese	0.0016	J	0.0030	0.00040	mg/L	1		6010C	Dissolved
Nickel	0.0019	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Potassium	0.32	J	0.50	0.10	mg/L	1		6010C	Dissolved
Sodium	9.1		1.0	0.32	mg/L	1		6010C	Dissolved
Zinc	0.0015	J	0.010	0.0015	mg/L	1		6010C	Dissolved
Chloride	1.1		1.0	0.56	mg/L	2		300.0	Dissolved
Sulfate	5.1		4.0	0.70	mg/L	2		300.0	Dissolved
Alkalinity, Bicarbonate	400	B F1	50.0	20.0	mg/L	5		310.2	Dissolved
Nitrate Nitrite as N	0.033	J	0.050	0.020	mg/L	1		353.2	Dissolved

Client Sample ID: WG-11109668-050421-SG-NCR6S

Lab Sample ID: 480-184248-4

•									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.051		0.0020	0.00070	mg/L	1	_	6010C	Total/NA
Calcium	151	В	0.50	0.10	mg/L	1		6010C	Total/NA
Copper	0.0025	J	0.010	0.0016	mg/L	1		6010C	Total/NA
Iron	0.032		0.050	0.019	mg/L	1		6010C	Total/NA
Magnesium	66.7		0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	0.00062	JB	0.0030	0.00040	mg/L	1		6010C	Total/NA
Potassium	0.85	В	0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	13.9	В	1.0	0.32	mg/L	1		6010C	Total/NA
Zinc	0.0021	JB	0.010	0.0015	mg/L	1		6010C	Total/NA
Barium	0.055		0.0020	0.00070	mg/L	1		6010C	Dissolved
Calcium	137		0.50	0.10	mg/L	1		6010C	Dissolved
Copper	0.0019	J	0.010	0.0016	mg/L	1		6010C	Dissolved
Iron	0.031	J	0.050	0.019	mg/L	1		6010C	Dissolved
Magnesium	61.5		0.20	0.043	mg/L	1		6010C	Dissolved

This Detection Summary does not include radiochemical test results.

5/19/2021

Page 7 of 43

Eurofins TestAmerica, Buffalo

Project/Site: City of North Tonawanda - NCRS

Lab Sample ID: 480-184248-4

Job ID: 480-184248-1

Client Sample ID: WG-11109668-050421-SG-NCR6S

(Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Manganese	0.00058	J	0.0030	0.00040	mg/L	1	_	6010C	Dissolved
Nickel	0.0021	J	0.010	0.0013	mg/L	1		6010C	Dissolved
Potassium	0.82		0.50	0.10	mg/L	1		6010C	Dissolved
Sodium	11.1		1.0	0.32	mg/L	1		6010C	Dissolved
Zinc	0.0022	J	0.010	0.0015	mg/L	1		6010C	Dissolved
Sulfate	84.5		10.0	1.7	mg/L	5		300.0	Dissolved
Alkalinity, Bicarbonate	687		200	80.0	mg/L	20		310.2	Dissolved
Nitrate Nitrite as N	0.045	J	0.050	0.020	mg/L	1		353.2	Dissolved

Client Sample ID: WG-11109668-050421-SG-NCR13S

Lab Sample ID: 480-184248-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Barium	0.063		0.0020	0.00070	mg/L	1	6010C	Total/NA
Calcium	151	В	0.50	0.10	mg/L	1	6010C	Total/NA
Copper	0.0021	J	0.010	0.0016	mg/L	1	6010C	Total/NA
Iron	0.046		0.050	0.019	mg/L	1	6010C	Total/NA
Magnesium	58.8		0.20	0.043	mg/L	1	6010C	Total/NA
Potassium	1.0	В	0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	8.4	В	1.0	0.32	mg/L	1	6010C	Total/NA
Zinc	0.0016	JB	0.010	0.0015	mg/L	1	6010C	Total/NA
Barium	0.061		0.0020	0.00070	mg/L	1	6010C	Dissolved
Calcium	142		0.50	0.10	mg/L	1	6010C	Dissolved
Copper	0.0020	J	0.010	0.0016	mg/L	1	6010C	Dissolved
Iron	0.050		0.050	0.019	mg/L	1	6010C	Dissolved
Magnesium	61.4		0.20	0.043	mg/L	1	6010C	Dissolved
Potassium	0.90		0.50	0.10	mg/L	1	6010C	Dissolved
Sodium	9.6		1.0	0.32	mg/L	1	6010C	Dissolved
Zinc	0.0018	J	0.010	0.0015	mg/L	1	6010C	Dissolved
Sulfate	93.7		10.0	1.7	mg/L	5	300.0	Dissolved
Alkalinity, Bicarbonate	616		200	80.0	mg/L	20	310.2	Dissolved
Nitrate Nitrite as N	0.049	J	0.050	0.020	mg/L	1	353.2	Dissolved

Client Sample ID: WG-11109668-050421-SG-EAST A

Lab Sample ID: 480-184248-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	2.2		0.20	0.060	mg/L	1	_	6010C	Total/NA
Barium	0.45		0.0020	0.00070	mg/L	1		6010C	Total/NA
Cadmium	0.0014		0.0010	0.00050	mg/L	1		6010C	Total/NA
Calcium	193	В	0.50	0.10	mg/L	1		6010C	Total/NA
Chromium	0.013		0.0040	0.0010	mg/L	1		6010C	Total/NA
Cobalt	0.0029	J	0.0040	0.00063	mg/L	1		6010C	Total/NA
Copper	0.048		0.010	0.0016	mg/L	1		6010C	Total/NA
Iron	64.3	В	0.050	0.019	mg/L	1		6010C	Total/NA
Lead	0.15		0.0050	0.0030	mg/L	1		6010C	Total/NA
Magnesium	122		0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	0.41	В	0.0030	0.00040	mg/L	1		6010C	Total/NA
Nickel	0.018		0.010	0.0013	mg/L	1		6010C	Total/NA
Potassium	17.7	В	0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	70.3	В	1.0	0.32	mg/L	1		6010C	Total/NA
Vanadium	0.0049	J	0.0050	0.0015	mg/L	1		6010C	Total/NA
Zinc	0.16	В	0.010	0.0015	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

5/19/2021

Page 8 of 43

Project/Site: City of North Tonawanda - NCRS

Client Sample ID: WG-11109668-050421-SG-EAST A

Lab Sample ID: 480-184248-6

Job ID: 480-184248-1

(Continued)

	Analyte	Result	Qualifier	RL	MDL	Unit	Dil F	ac D	Method	Prep Type
	Chloride	230		2.5	1.4	mg/L		5	300.0	Dissolved
	Sulfate	85.7		10.0	1.7	mg/L		5	300.0	Dissolved
L	Alkalinity, Bicarbonate	666		200	80.0	mg/L		20	310.2	Dissolved

Client Sample ID: WG-11109668-050421-SG-EAST C

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	7.4		0.20	0.060	mg/L	1	_	6010C	Total/NA
Arsenic	0.057		0.010	0.0056	mg/L	1		6010C	Total/NA
Barium	0.19		0.0020	0.00070	mg/L	1		6010C	Total/NA
Cadmium	0.010		0.0050	0.0025	mg/L	5		6010C	Total/NA
Calcium	2820	В	2.5	0.50	mg/L	5		6010C	Total/NA
Chromium	0.24		0.020	0.0050	mg/L	5		6010C	Total/NA
Cobalt	0.20		0.0040	0.00063	mg/L	1		6010C	Total/NA
Iron	1490	В	0.25	0.097	mg/L	5		6010C	Total/NA
Lead	0.60		0.025	0.015	mg/L	5		6010C	Total/NA
Magnesium	1380		1.0	0.22	mg/L	5		6010C	Total/NA
Manganese	18.2		0.015	0.0020	mg/L	5		6010C	Total/NA
Nickel	1.1		0.050	0.0063	mg/L	5		6010C	Total/NA
Potassium	889	В	1.0	0.20	mg/L	2		6010C	Total/NA
Sodium	2370	В	5.0	1.6	mg/L	5		6010C	Total/NA
Vanadium	0.026		0.025	0.0075	mg/L	5		6010C	Total/NA
Zinc	27.9	В	0.020	0.0030	mg/L	2		6010C	Total/NA
Aluminum	6.8		0.20	0.060	mg/L	1		6010C	Dissolve
Arsenic	0.044		0.015	0.0056	mg/L	1		6010C	Dissolve
Barium	0.18		0.0020	0.00070	mg/L	1		6010C	Dissolved
Cadmium	0.0083	J	0.010	0.0025	mg/L	5		6010C	Dissolved
Calcium	2650		2.5	0.50	mg/L	5		6010C	Dissolve
Chromium	0.23		0.020	0.0050	mg/L	5		6010C	Dissolve
Cobalt	0.19		0.0040	0.00063	mg/L	1		6010C	Dissolved
Iron	1410		0.25	0.097	mg/L	5		6010C	Dissolve
Lead	0.46		0.050	0.015	mg/L	5		6010C	Dissolve
Magnesium	1370		1.0	0.22	mg/L	5		6010C	Dissolved
Manganese	17.3		0.015	0.0020	mg/L	5		6010C	Dissolved
Nickel	1.0		0.050	0.0063	mg/L	5		6010C	Dissolve
Potassium	830		1.0	0.20	mg/L	2		6010C	Dissolve
Sodium	2220		5.0	1.6	mg/L	5		6010C	Dissolve
Vanadium	0.016	J	0.025	0.0075	mg/L	5		6010C	Dissolve
Zinc	26.5		0.020	0.0030	mg/L	2		6010C	Dissolved
Chloride	3010		50.0	28.2	mg/L	100		300.0	Dissolved
Sulfate	1920		200	34.9		100		300.0	Dissolved
Alkalinity, Bicarbonate	19900		2000	800	mg/L	200		310.2	Dissolve
Ammonia	1360	В	20.0	9.0	mg/L	1000		350.1	Dissolve

Client Sample ID: WG-11109668-050421-SG-EAST D

I ab	Cam	mla II	D. 40	O 40	4248-8
1 40	. 54111	сне п	I) 40	าบ- เด	14/40-0

Analyte	Result Qu	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	1.5	0.20	0.060	mg/L	1		6010C	Total/NA
Arsenic	0.015	0.010	0.0056	mg/L	1		6010C	Total/NA
Barium	0.62	0.0020	0.00070	mg/L	1		6010C	Total/NA
Cadmium	0.0029	0.0010	0.00050	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

5/19/2021

Page 9 of 43

Detection Summary

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Lab Sample ID: 480-184248-8

Job ID: 480-184248-1

Client Sample ID: WG-11109668-050421-SG-EAST D (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	135	^+ B	0.50	0.10	mg/L	1	_	6010C	Total/NA
Chromium	0.084		0.0040	0.0010	mg/L	1		6010C	Total/NA
Cobalt	0.023		0.0040	0.00063	mg/L	1		6010C	Total/NA
Copper	0.028		0.010	0.0016	mg/L	1		6010C	Total/NA
Iron	77.6	^+ B ^2	0.050	0.019	mg/L	1		6010C	Total/NA
Lead	0.28		0.0050	0.0030	mg/L	1		6010C	Total/NA
Magnesium	414	^+	0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	0.12	^+	0.0030	0.00040	mg/L	1		6010C	Total/NA
Nickel	0.22		0.010	0.0013	mg/L	1		6010C	Total/NA
Potassium	372	^+ B	0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	743	В	1.0	0.32	mg/L	1		6010C	Total/NA
Vanadium	0.011		0.0050	0.0015	mg/L	1		6010C	Total/NA
Zinc	0.59	В	0.010	0.0015	mg/L	1		6010C	Total/NA
Aluminum	1.5		0.20	0.060	mg/L	1		6010C	Dissolved
Arsenic	0.017		0.015	0.0056	mg/L	1		6010C	Dissolved
Barium	0.62		0.0020	0.00070	mg/L	1		6010C	Dissolved
Cadmium	0.0041		0.0020	0.00050	mg/L	1		6010C	Dissolved
Calcium	122		0.50	0.10	mg/L	1		6010C	Dissolved
Chromium	0.083		0.0040	0.0010	mg/L	1		6010C	Dissolved
Cobalt	0.027		0.0040	0.00063	mg/L	1		6010C	Dissolved
Copper	0.025		0.010	0.0016	mg/L	1		6010C	Dissolved
Iron	98.5	^2	0.050	0.019	mg/L	1		6010C	Dissolved
Lead	0.23		0.010	0.0030	mg/L	1		6010C	Dissolved
Magnesium	446		0.20	0.043	mg/L	1		6010C	Dissolved
Manganese	0.14		0.0030	0.00040	mg/L	1		6010C	Dissolved
Nickel	0.22		0.010	0.0013	mg/L	1		6010C	Dissolved
Potassium	379	^+	0.50	0.10	mg/L	1		6010C	Dissolved
Sodium	1580		2.0	0.65	mg/L	2		6010C	Dissolved
Vanadium	0.014		0.0050	0.0015	mg/L	1		6010C	Dissolved
Zinc	0.73		0.010	0.0015	mg/L	1		6010C	Dissolved
Chloride	1480		25.0	14.1	mg/L	50		300.0	Dissolved
Sulfate	17.6	J	100	17.5	mg/L	50		300.0	Dissolved
Alkalinity, Bicarbonate	6780		800	320	mg/L	80		310.2	Dissolved
Ammonia	0.62	В	0.020	0.0090	mg/L	1		350.1	Dissolved

0.050

0.020 mg/L

This Detection Summary does not include radiochemical test results.

0.22

Nitrate Nitrite as N

Eurofins TestAmerica, Buffalo

353.2

Page 10 of 43

9

3

5

6

8

10

11

12

14

1

5/19/2021

Dissolved

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Client Sample ID: WG-11109668-050421-SG-NCR3S

Lab Sample ID: 480-184248-1 Date Collected: 05/04/21 09:05 **Matrix: Water**

Date Received: 05/05/21 15:30

Method: 6010C - Metals (ICP)								
Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND	0.20	0.060	mg/L		05/13/21 10:48	05/14/21 00:01	
Antimony	ND	0.020	0.0068	mg/L		05/13/21 10:48	05/14/21 00:01	
Arsenic	ND	0.010	0.0056	mg/L		05/13/21 10:48	05/14/21 00:01	
Barium	0.048	0.0020	0.00070	mg/L		05/13/21 10:48	05/14/21 00:01	
Beryllium	ND	0.0020	0.00030	mg/L		05/13/21 10:48	05/14/21 00:01	
Cadmium	ND	0.0010	0.00050	mg/L		05/13/21 10:48	05/14/21 00:01	
Calcium	121	0.50	0.10	mg/L		05/13/21 10:48	05/14/21 00:01	
Chromium	ND	0.0040	0.0010	mg/L		05/13/21 10:48	05/14/21 00:01	
Cobalt	ND	0.0040	0.00063	mg/L		05/13/21 10:48	05/14/21 00:01	
Copper	0.0040	J 0.010	0.0016	mg/L		05/13/21 10:48	05/14/21 00:01	
Iron	0.060	B 0.050	0.019	mg/L		05/13/21 10:48	05/14/21 00:01	
Lead	ND	0.0050	0.0030	mg/L		05/13/21 10:48	05/14/21 00:01	
Magnesium	54.1	0.20	0.043	mg/L		05/13/21 10:48	05/14/21 00:01	
Manganese	0.0079	0.0030	0.00040	mg/L		05/13/21 10:48	05/14/21 00:01	
Nickel	0.0029	J 0.010	0.0013	mg/L		05/13/21 10:48	05/14/21 00:01	
Potassium	1.4	0.50	0.10	mg/L		05/13/21 10:48	05/14/21 00:01	
Selenium	ND	0.015	0.0087	mg/L		05/13/21 10:48	05/14/21 00:01	
Silver	ND	0.0030	0.0017	mg/L		05/13/21 10:48	05/14/21 00:01	
Sodium	6.4	1.0	0.32	mg/L		05/13/21 10:48	05/14/21 00:01	
Thallium	ND	0.020	0.010	mg/L		05/13/21 10:48	05/14/21 00:01	
Vanadium	ND	0.0050	0.0015	mg/L		05/13/21 10:48	05/14/21 00:01	
Zinc	0.0089	J B 0.010	0.0015	mg/L		05/13/21 10:48	05/14/21 00:01	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		05/13/21 10:48	05/13/21 19:38	1
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/13/21 19:38	1
Arsenic	ND		0.015	0.0056	mg/L		05/13/21 10:48	05/13/21 19:38	1
Barium	0.049		0.0020	0.00070	mg/L		05/13/21 10:48	05/13/21 19:38	1
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/13/21 19:38	1
Cadmium	ND		0.0020	0.00050	mg/L		05/13/21 10:48	05/13/21 19:38	1
Calcium	117		0.50	0.10	mg/L		05/13/21 10:48	05/13/21 19:38	1
Chromium	ND		0.0040	0.0010	mg/L		05/13/21 10:48	05/13/21 19:38	1
Cobalt	ND		0.0040	0.00063	mg/L		05/13/21 10:48	05/13/21 19:38	1
Copper	0.0031	J	0.010	0.0016	mg/L		05/13/21 10:48	05/13/21 19:38	1
Iron	ND		0.050	0.019	mg/L		05/13/21 10:48	05/13/21 19:38	1
Lead	ND		0.010	0.0030	mg/L		05/13/21 10:48	05/13/21 19:38	1
Magnesium	57.4		0.20	0.043	mg/L		05/13/21 10:48	05/13/21 19:38	1
Manganese	0.0057		0.0030	0.00040	mg/L		05/13/21 10:48	05/13/21 19:38	1
Nickel	0.0034	J	0.010	0.0013	mg/L		05/13/21 10:48	05/13/21 19:38	1
Potassium	1.2		0.50	0.10	mg/L		05/13/21 10:48	05/13/21 19:38	1
Selenium	ND		0.025	0.0087	mg/L		05/13/21 10:48	05/13/21 19:38	1
Silver	ND		0.0060	0.0017	mg/L		05/13/21 10:48	05/13/21 19:38	1
Sodium	6.4		1.0	0.32	mg/L		05/13/21 10:48	05/13/21 19:38	1
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/13/21 19:38	1
Vanadium	ND		0.0050	0.0015	mg/L		05/13/21 10:48	05/13/21 19:38	1
Zinc	0.0085	J	0.010	0.0015	mg/L		05/13/21 10:48	05/13/21 19:38	1

Eurofins TestAmerica, Buffalo

Job ID: 480-184248-1

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Client Sample ID: WG-11109668-050421-SG-NCR3S Lab Sample ID: 480-184248-1

Date Collected: 05/04/21 09:05 Date Received: 05/05/21 15:30

Matrix: Water

Job ID: 480-184248-1

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		2.5	1.4	mg/L			05/11/21 13:01	5
Sulfate	86.6		10.0	1.7	mg/L			05/11/21 13:01	5
Alkalinity, Bicarbonate	488	В	50.0	20.0	mg/L			05/10/21 18:39	5
Alkalinity, Carbonate	ND		50.0	20.0	mg/L			05/10/21 18:39	5
Ammonia	ND		0.020	0.0090	mg/L			05/07/21 11:43	1
Nitrate Nitrite as N	0.51		0.050	0.020	mg/L			05/14/21 12:50	1

Client Sample ID: WG-11109668-050421-SG-NCR4S

Lab Sample ID: 480-184248-2 Date Collected: 05/04/21 09:20 **Matrix: Water**

Date Received: 05/05/21 15:30

Vanadium

Zinc

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.63		0.20	0.060	mg/L		05/13/21 10:48	05/14/21 00:05	1
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/14/21 00:05	1
Arsenic	ND		0.010	0.0056	mg/L		05/13/21 10:48	05/14/21 00:05	1
Barium	0.055		0.0020	0.00070	mg/L		05/13/21 10:48	05/14/21 00:05	1
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/14/21 00:05	1
Cadmium	ND		0.0010	0.00050	mg/L		05/13/21 10:48	05/14/21 00:05	1
Calcium	116	В	0.50	0.10	mg/L		05/13/21 10:48	05/14/21 00:05	1
Chromium	0.0011	J	0.0040	0.0010	mg/L		05/13/21 10:48	05/14/21 00:05	1
Cobalt	ND		0.0040	0.00063	mg/L		05/13/21 10:48	05/14/21 00:05	1
Copper	0.0020	J	0.010	0.0016	mg/L		05/13/21 10:48	05/14/21 00:05	1
Iron	1.1	В	0.050	0.019	mg/L		05/13/21 10:48	05/14/21 00:05	1
Lead	ND		0.0050	0.0030	mg/L		05/13/21 10:48	05/14/21 00:05	1
Magnesium	35.0		0.20	0.043	mg/L		05/13/21 10:48	05/14/21 00:05	1
Manganese	0.023		0.0030	0.00040	mg/L		05/13/21 10:48	05/14/21 00:05	1
Nickel	ND		0.010	0.0013	mg/L		05/13/21 10:48	05/14/21 00:05	1
Potassium	9.0	В	0.50	0.10	mg/L		05/13/21 10:48	05/14/21 00:05	1
Selenium	ND		0.015	0.0087	mg/L		05/13/21 10:48	05/14/21 00:05	1
Silver	ND		0.0030	0.0017	mg/L		05/13/21 10:48	05/14/21 00:05	1
Sodium	21.9	В	1.0	0.32	mg/L		05/13/21 10:48	05/14/21 00:05	1
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/14/21 00:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1.2		0.20	0.060	mg/L		05/13/21 10:48	05/13/21 19:42	1
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/13/21 19:42	1
Arsenic	ND		0.015	0.0056	mg/L		05/13/21 10:48	05/13/21 19:42	1
Barium	0.057		0.0020	0.00070	mg/L		05/13/21 10:48	05/13/21 19:42	1
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/13/21 19:42	1
Cadmium	ND		0.0020	0.00050	mg/L		05/13/21 10:48	05/13/21 19:42	1
Calcium	105		0.50	0.10	mg/L		05/13/21 10:48	05/13/21 19:42	1
Chromium	0.0018	J	0.0040	0.0010	mg/L		05/13/21 10:48	05/13/21 19:42	1
Cobalt	ND		0.0040	0.00063	mg/L		05/13/21 10:48	05/13/21 19:42	1
Copper	0.0026	J	0.010	0.0016	mg/L		05/13/21 10:48	05/13/21 19:42	1
Iron	2.1		0.050	0.019	mg/L		05/13/21 10:48	05/13/21 19:42	1
Lead	ND		0.010	0.0030	mg/L		05/13/21 10:48	05/13/21 19:42	1

0.0050

0.010

ND

0.021 B

0.0015 mg/L

0.0015 mg/L

05/13/21 10:48

05/13/21 10:48

Eurofins TestAmerica, Buffalo

05/14/21 00:05

05/14/21 00:05

Page 12 of 43

Client: N Tonawanda Water Works

Date Collected: 05/04/21 09:20

Date Received: 05/05/21 15:30

Project/Site: City of North Tonawanda - NCRS

Lab Sample ID: 480-184248-2

Lab Sample ID: 480-184248-3

Matrix: Water

Job ID: 480-184248-1

Client Sample ID: WG-11109668-050421-SG-NCR4S **Matrix: Water**

Method: 6010C - Metals (ICP) - Dissolved (Cont	•							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	35.4		0.20	0.043	mg/L		05/13/21 10:48	05/13/21 19:42	1
Manganese	0.020		0.0030	0.00040	mg/L		05/13/21 10:48	05/13/21 19:42	1
Nickel	0.0013	J	0.010	0.0013	mg/L		05/13/21 10:48	05/13/21 19:42	1
Potassium	8.4		0.50	0.10	mg/L		05/13/21 10:48	05/13/21 19:42	1
Selenium	ND		0.025	0.0087	mg/L		05/13/21 10:48	05/13/21 19:42	1
Silver	ND		0.0060	0.0017	mg/L		05/13/21 10:48	05/13/21 19:42	1
Sodium	20.9		1.0	0.32	mg/L		05/13/21 10:48	05/13/21 19:42	1
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/13/21 19:42	1
Vanadium	ND		0.0050	0.0015	mg/L		05/13/21 10:48	05/13/21 19:42	1
Zinc	0.030		0.010	0.0015	mg/L		05/13/21 10:48	05/13/21 19:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		1.0	0.56	mg/L			05/11/21 13:15	2
Sulfate	71.8		4.0	0.70	mg/L			05/11/21 13:15	2
Alkalinity, Bicarbonate	425		50.0	20.0	mg/L			05/10/21 19:19	5
Alkalinity, Carbonate	ND		50.0	20.0	mg/L			05/10/21 19:19	5
Ammonia	ND		0.020	0.0090	mg/L			05/07/21 11:44	1
Nitrate Nitrite as N	0.043	J	0.050	0.020	mg/L			05/14/21 12:52	1

Client Sample ID: WG-11109668-050421-SG-NCR5S

Date Collected: 05/04/21 09:45

Date Received: 05/05/21 15:30

Thallium

Vanadium

Zinc

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.18	J	0.20	0.060	mg/L		05/13/21 10:48	05/14/21 00:08	1
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/14/21 00:08	1
Arsenic	ND		0.010	0.0056	mg/L		05/13/21 10:48	05/14/21 00:08	1
Barium	0.14		0.0020	0.00070	mg/L		05/13/21 10:48	05/14/21 00:08	1
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/14/21 00:08	1
Cadmium	ND		0.0010	0.00050	mg/L		05/13/21 10:48	05/14/21 00:08	1
Calcium	86.0		0.50	0.10	mg/L		05/13/21 10:48	05/14/21 00:08	1
Chromium	0.0042		0.0040	0.0010	mg/L		05/13/21 10:48	05/14/21 00:08	1
Cobalt	ND		0.0040	0.00063	mg/L		05/13/21 10:48	05/14/21 00:08	1
Copper	0.0031	J	0.010	0.0016	mg/L		05/13/21 10:48	05/14/21 00:08	1
Iron	0.15	В	0.050	0.019	mg/L		05/13/21 10:48	05/14/21 00:08	1
Lead	ND		0.0050	0.0030	mg/L		05/13/21 10:48	05/14/21 00:08	1
Magnesium	39.9		0.20	0.043	mg/L		05/13/21 10:48	05/14/21 00:08	1
Manganese	0.0033		0.0030	0.00040	mg/L		05/13/21 10:48	05/14/21 00:08	1
Nickel	0.0026	J	0.010	0.0013	mg/L		05/13/21 10:48	05/14/21 00:08	1
Potassium	0.28	J	0.50	0.10	mg/L		05/13/21 10:48	05/14/21 00:08	1
Selenium	ND		0.015	0.0087	mg/L		05/13/21 10:48	05/14/21 00:08	1
Silver	ND		0.0030	0.0017	mg/L		05/13/21 10:48	05/14/21 00:08	1
Sodium	8.0		1.0	0.32	mg/L		05/13/21 10:48	05/14/21 00:08	1

Eurofins TestAmerica, Buffalo

05/14/21 00:08

05/14/21 00:08

05/14/21 00:08

05/13/21 10:48

05/13/21 10:48

05/13/21 10:48

0.020

0.0050

0.010

0.010 mg/L

0.0015 mg/L

0.0015 mg/L

ND

ND

0.0024 JB

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Client Sample ID: WG-11109668-050421-SG-NCR5S Lab Sample ID: 480-184248-3

Date Collected: 05/04/21 09:45

Matrix: Water Date Received: 05/05/21 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.070	J	0.20	0.060	mg/L		05/13/21 10:48	05/13/21 19:46	1
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/13/21 19:46	1
Arsenic	ND		0.015	0.0056	mg/L		05/13/21 10:48	05/13/21 19:46	1
Barium	0.14		0.0020	0.00070	mg/L		05/13/21 10:48	05/13/21 19:46	1
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/13/21 19:46	1
Cadmium	ND		0.0020	0.00050	mg/L		05/13/21 10:48	05/13/21 19:46	1
Calcium	77.0		0.50	0.10	mg/L		05/13/21 10:48	05/13/21 19:46	1
Chromium	0.0012	J	0.0040	0.0010	mg/L		05/13/21 10:48	05/13/21 19:46	•
Cobalt	ND		0.0040	0.00063	mg/L		05/13/21 10:48	05/13/21 19:46	•
Copper	0.0024	J	0.010	0.0016	mg/L		05/13/21 10:48	05/13/21 19:46	
Iron	0.068		0.050	0.019	mg/L		05/13/21 10:48	05/15/21 00:51	
Lead	ND		0.010	0.0030	mg/L		05/13/21 10:48	05/13/21 19:46	•
Magnesium	41.9		0.20	0.043	mg/L		05/13/21 10:48	05/13/21 19:46	1
Manganese	0.0016	J	0.0030	0.00040	mg/L		05/13/21 10:48	05/13/21 19:46	•
Nickel	0.0019	J	0.010	0.0013	mg/L		05/13/21 10:48	05/13/21 19:46	•
Potassium	0.32	J	0.50	0.10	mg/L		05/13/21 10:48	05/15/21 00:51	
Selenium	ND		0.025	0.0087	mg/L		05/13/21 10:48	05/13/21 19:46	•
Silver	ND		0.0060	0.0017	mg/L		05/13/21 10:48	05/13/21 19:46	•
Sodium	9.1		1.0	0.32	mg/L		05/13/21 10:48	05/13/21 19:46	
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/13/21 19:46	
Vanadium	ND		0.0050	0.0015	mg/L		05/13/21 10:48	05/13/21 19:46	•
Zinc	0.0015	J	0.010	0.0015	mg/L		05/13/21 10:48	05/13/21 19:46	

•									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.1		1.0	0.56	mg/L			05/11/21 13:44	2
Sulfate	5.1		4.0	0.70	mg/L			05/11/21 13:44	2
Alkalinity, Bicarbonate	400	B F1	50.0	20.0	mg/L			05/10/21 18:37	5
Alkalinity, Carbonate	ND		50.0	20.0	mg/L			05/10/21 18:37	5
Ammonia	ND	F1	0.020	0.0090	mg/L			05/07/21 11:55	1
Nitrate Nitrite as N	0.033	J	0.050	0.020	mg/L			05/14/21 12:47	1

Client Sample ID: WG-11109668-050421-SG-NCR6S

Lab Sample ID: 480-184248-4 Date Collected: 05/04/21 07:55 **Matrix: Water**

Date Received: 05/05/21 15:30

Method: 6010C - Metals (Id	CP)							
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND ND	0.20	0.060	mg/L		05/13/21 10:48	05/14/21 00:38	1
Antimony	ND	0.020	0.0068	mg/L		05/13/21 10:48	05/14/21 00:38	1
Arsenic	ND	0.010	0.0056	mg/L		05/13/21 10:48	05/14/21 00:38	1
Barium	0.051	0.0020	0.00070	mg/L		05/13/21 10:48	05/14/21 00:38	1
Beryllium	ND	0.0020	0.00030	mg/L		05/13/21 10:48	05/14/21 00:38	1
Cadmium	ND	0.0010	0.00050	mg/L		05/13/21 10:48	05/14/21 00:38	1
Calcium	151 B	0.50	0.10	mg/L		05/13/21 10:48	05/18/21 17:20	1
Chromium	ND	0.0040	0.0010	mg/L		05/13/21 10:48	05/14/21 00:38	1
Cobalt	ND	0.0040	0.00063	mg/L		05/13/21 10:48	05/14/21 00:38	1
Copper	0.0025 J	0.010	0.0016	mg/L		05/13/21 10:48	05/14/21 00:38	1
Iron	0.032	0.050	0.019	mg/L		05/13/21 10:48	05/15/21 02:50	1
Lead	ND	0.0050	0.0030	mg/L		05/13/21 10:48	05/14/21 00:38	1

Eurofins TestAmerica, Buffalo

Page 14 of 43

Job ID: 480-184248-1

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Client Sample ID: WG-11109668-050421-SG-NCR6S Lab Sample ID: 480-184248-4

Date Collected: 05/04/21 07:55 Date Received: 05/05/21 15:30

Matrix: Water

Job ID: 480-184248-1

Method: 6010C - Metals (I	CP) (Continued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	66.7		0.20	0.043	mg/L		05/13/21 10:48	05/18/21 17:20	1
Manganese	0.00062	JB	0.0030	0.00040	mg/L		05/13/21 10:48	05/15/21 02:50	1
Nickel	ND		0.010	0.0013	mg/L		05/13/21 10:48	05/14/21 00:38	1
Potassium	0.85	В	0.50	0.10	mg/L		05/13/21 10:48	05/15/21 02:50	1
Selenium	ND		0.015	0.0087	mg/L		05/13/21 10:48	05/14/21 00:38	1
Silver	ND		0.0030	0.0017	mg/L		05/13/21 10:48	05/14/21 00:38	1
Sodium	13.9	В	1.0	0.32	mg/L		05/13/21 10:48	05/14/21 00:38	1
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/14/21 00:38	1
Vanadium	ND		0.0050	0.0015	mg/L		05/13/21 10:48	05/14/21 00:38	1
Zinc	0.0021	JB	0.010	0.0015	mg/L		05/13/21 10:48	05/14/21 00:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		05/13/21 10:48	05/13/21 20:16	1
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/13/21 20:16	1
Arsenic	ND		0.015	0.0056	mg/L		05/13/21 10:48	05/13/21 20:16	1
Barium	0.055		0.0020	0.00070	mg/L		05/13/21 10:48	05/13/21 20:16	1
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/13/21 20:16	1
Cadmium	ND		0.0020	0.00050	mg/L		05/13/21 10:48	05/13/21 20:16	1
Calcium	137		0.50	0.10	mg/L		05/13/21 10:48	05/13/21 20:16	1
Chromium	ND		0.0040	0.0010	mg/L		05/13/21 10:48	05/13/21 20:16	1
Cobalt	ND		0.0040	0.00063	mg/L		05/13/21 10:48	05/13/21 20:16	1
Copper	0.0019	J	0.010	0.0016	mg/L		05/13/21 10:48	05/13/21 20:16	1
Iron	0.031	J	0.050	0.019	mg/L		05/13/21 10:48	05/15/21 01:21	1
Lead	ND		0.010	0.0030	mg/L		05/13/21 10:48	05/13/21 20:16	1
Magnesium	61.5		0.20	0.043	mg/L		05/13/21 10:48	05/13/21 20:16	1
Manganese	0.00058	J	0.0030	0.00040	mg/L		05/13/21 10:48	05/13/21 20:16	1
Nickel	0.0021	J	0.010	0.0013	mg/L		05/13/21 10:48	05/13/21 20:16	1
Potassium	0.82		0.50	0.10	mg/L		05/13/21 10:48	05/15/21 01:21	1
Selenium	ND		0.025	0.0087	mg/L		05/13/21 10:48	05/13/21 20:16	1
Silver	ND		0.0060	0.0017	mg/L		05/13/21 10:48	05/13/21 20:16	1
Sodium	11.1		1.0	0.32	mg/L		05/13/21 10:48	05/13/21 20:16	1
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/13/21 20:16	1
Vanadium	ND		0.0050	0.0015	mg/L		05/13/21 10:48	05/13/21 20:16	1
Zinc	0.0022	J	0.010	0.0015	mg/L		05/13/21 10:48	05/13/21 20:16	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		2.5	1.4	mg/L		-	05/11/21 13:29	5
Sulfate	84.5		10.0	1.7	mg/L			05/11/21 13:29	5
Alkalinity, Bicarbonate	687		200	80.0	mg/L			05/10/21 18:53	20
Alkalinity, Carbonate	ND		200	80.0	mg/L			05/10/21 18:53	20
Ammonia	ND		0.020	0.0090	mg/L			05/07/21 11:58	1
Nitrate Nitrite as N	0.045	J	0.050	0.020	mg/L			05/14/21 12:53	1

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Lab Sample ID: 480-184248-5

Matrix: Water

Job ID: 480-184248-1

Client Sample ID: WG-11109668-050421-SG-NCR13S

Date Collected: 05/04/21 07:55 Date Received: 05/05/21 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND		0.20	0.060	mg/L		05/13/21 10:48	05/14/21 00:42	
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/14/21 00:42	
Arsenic	ND		0.010	0.0056	mg/L		05/13/21 10:48	05/14/21 00:42	
Barium	0.063		0.0020	0.00070	mg/L		05/13/21 10:48	05/14/21 00:42	
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/14/21 00:42	
Cadmium	ND		0.0010	0.00050	mg/L		05/13/21 10:48	05/14/21 00:42	
Calcium	151	В	0.50	0.10	mg/L		05/13/21 10:48	05/18/21 17:24	
Chromium	ND		0.0040	0.0010	mg/L		05/13/21 10:48	05/14/21 00:42	
Cobalt	ND		0.0040	0.00063	mg/L		05/13/21 10:48	05/14/21 00:42	
Copper	0.0021	J	0.010	0.0016	mg/L		05/13/21 10:48	05/14/21 00:42	
Iron	0.046		0.050	0.019	mg/L		05/13/21 10:48	05/15/21 02:53	
Lead	ND		0.0050	0.0030	mg/L		05/13/21 10:48	05/14/21 00:42	
Magnesium	58.8		0.20	0.043	mg/L		05/13/21 10:48	05/18/21 17:24	•
Manganese	ND		0.0030	0.00040	mg/L		05/13/21 10:48	05/15/21 02:53	
Nickel	ND		0.010	0.0013	mg/L		05/13/21 10:48	05/14/21 00:42	
Potassium	1.0	В	0.50	0.10	mg/L		05/13/21 10:48	05/15/21 02:53	
Selenium	ND		0.015	0.0087	mg/L		05/13/21 10:48	05/14/21 00:42	
Silver	ND		0.0030	0.0017	mg/L		05/13/21 10:48	05/14/21 00:42	
Sodium	8.4	В	1.0	0.32	mg/L		05/13/21 10:48	05/14/21 00:42	
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/14/21 00:42	
Vanadium	ND		0.0050	0.0015	mg/L		05/13/21 10:48	05/14/21 00:42	
Zinc	0.0016	JB	0.010	0.0015	mg/L		05/13/21 10:48	05/14/21 00:42	

_Zinc	0.0016	JB	0.010	0.0015	mg/L		05/13/21 10.46	05/14/21 00.42	,
- Method: 6010C - Metals (ICP) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		05/13/21 10:48	05/13/21 20:20	1
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/13/21 20:20	1
Arsenic	ND		0.015	0.0056	mg/L		05/13/21 10:48	05/13/21 20:20	1
Barium	0.061		0.0020	0.00070	mg/L		05/13/21 10:48	05/13/21 20:20	1
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/13/21 20:20	1
Cadmium	ND		0.0020	0.00050	mg/L		05/13/21 10:48	05/13/21 20:20	1
Calcium	142		0.50	0.10	mg/L		05/13/21 10:48	05/13/21 20:20	1
Chromium	ND		0.0040	0.0010	mg/L		05/13/21 10:48	05/13/21 20:20	1
Cobalt	ND		0.0040	0.00063	mg/L		05/13/21 10:48	05/13/21 20:20	1
Copper	0.0020	J	0.010	0.0016	mg/L		05/13/21 10:48	05/13/21 20:20	1
Iron	0.050		0.050	0.019	mg/L		05/13/21 10:48	05/15/21 01:25	1
Lead	ND		0.010	0.0030	mg/L		05/13/21 10:48	05/13/21 20:20	1
Magnesium	61.4		0.20	0.043	mg/L		05/13/21 10:48	05/13/21 20:20	1
Manganese	ND		0.0030	0.00040	mg/L		05/13/21 10:48	05/13/21 20:20	1
Nickel	ND		0.010	0.0013	mg/L		05/13/21 10:48	05/13/21 20:20	1
Potassium	0.90		0.50	0.10	mg/L		05/13/21 10:48	05/15/21 01:25	1
Selenium	ND		0.025	0.0087	mg/L		05/13/21 10:48	05/13/21 20:20	1
Silver	ND		0.0060	0.0017	mg/L		05/13/21 10:48	05/13/21 20:20	1
Sodium	9.6		1.0	0.32	mg/L		05/13/21 10:48	05/13/21 20:20	1
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/13/21 20:20	1
Vanadium	ND		0.0050	0.0015	mg/L		05/13/21 10:48	05/13/21 20:20	1
Zinc	0.0018	J	0.010	0.0015	mg/L		05/13/21 10:48	05/13/21 20:20	1

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Lab Sample ID: 480-184248-5

Date Collected: 05/04/21 07:55

Matrix: Water

Job ID: 480-184248-1

Date Received: 05/05/21 15:30

Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND ND	2.5	1.4	mg/L			05/11/21 14:54	5
Sulfate	93.7	10.0	1.7	mg/L			05/11/21 14:54	5
Alkalinity, Bicarbonate	616	200	80.0	mg/L			05/10/21 18:55	20
Alkalinity, Carbonate	ND	200	80.0	mg/L			05/10/21 18:55	20
Ammonia	ND	0.020	0.0090	mg/L			05/07/21 11:59	1
Nitrate Nitrite as N	0.049 J	0.050	0.020	mg/L			05/14/21 12:54	1

Client Sample ID: WG-11109668-050421-SG-EAST A

Client Sample ID: WG-11109668-050421-SG-NCR13S

Lab Sample ID: 480-184248-6

Matrix: Water

Date Collected: 05/04/21 08:15 Date Received: 05/05/21 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2.2		0.20	0.060	mg/L		05/13/21 10:48	05/14/21 00:46	1
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/14/21 00:46	1
Arsenic	ND		0.010	0.0056	mg/L		05/13/21 10:48	05/14/21 00:46	1
Barium	0.45		0.0020	0.00070	mg/L		05/13/21 10:48	05/14/21 00:46	1
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/14/21 00:46	1
Cadmium	0.0014		0.0010	0.00050	mg/L		05/13/21 10:48	05/14/21 00:46	1
Calcium	193	В	0.50	0.10	mg/L		05/13/21 10:48	05/18/21 17:28	1
Chromium	0.013		0.0040	0.0010	mg/L		05/13/21 10:48	05/14/21 00:46	1
Cobalt	0.0029	J	0.0040	0.00063	mg/L		05/13/21 10:48	05/14/21 00:46	1
Copper	0.048		0.010	0.0016	mg/L		05/13/21 10:48	05/14/21 00:46	1
Iron	64.3	В	0.050	0.019	mg/L		05/13/21 10:48	05/15/21 02:57	1
Lead	0.15		0.0050	0.0030	mg/L		05/13/21 10:48	05/14/21 00:46	1
Magnesium	122		0.20	0.043	mg/L		05/13/21 10:48	05/18/21 17:28	1
Manganese	0.41	В	0.0030	0.00040	mg/L		05/13/21 10:48	05/15/21 02:57	1
Nickel	0.018		0.010	0.0013	mg/L		05/13/21 10:48	05/14/21 00:46	1
Potassium	17.7	В	0.50	0.10	mg/L		05/13/21 10:48	05/15/21 02:57	1
Selenium	ND		0.015	0.0087	mg/L		05/13/21 10:48	05/14/21 00:46	1
Silver	ND		0.0030	0.0017	mg/L		05/13/21 10:48	05/14/21 00:46	1
Sodium	70.3	В	1.0	0.32	mg/L		05/13/21 10:48	05/14/21 00:46	1
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/14/21 00:46	1
Vanadium	0.0049	J	0.0050	0.0015	mg/L		05/13/21 10:48	05/14/21 00:46	1
Zinc	0.16	В	0.010	0.0015	mg/L		05/13/21 10:48	05/14/21 00:46	1

General Chemistry - Dissolved								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	230	2.5	1.4	mg/L			05/11/21 15:08	5
Sulfate	85.7	10.0	1.7	mg/L			05/11/21 15:08	5
Alkalinity, Bicarbonate	666	200	80.0	mg/L			05/10/21 18:56	20
Alkalinity, Carbonate	ND	200	80.0	mg/L			05/10/21 18:56	20

Client Sample ID: WG-11109668-050421-SG-EAST C

Lab Sample ID: 480-184248-7

Date Collected: 05/04/21 08:30

Date Received: 05/05/21 15:30

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	7.4		0.20	0.060	mg/L		05/13/21 10:48	05/14/21 00:50	1
Antimony	ND		0.10	0.034	mg/L		05/13/21 10:48	05/18/21 17:32	5

Eurofins TestAmerica, Buffalo

Page 17 of 43

Matrix: Water

Client: N Tonawanda Water Works

General Chemistry - Dissolved

Analyte

Chloride

Sulfate

Project/Site: City of North Tonawanda - NCRS

Client Sample ID: WG-11109668-050421-SG-EAST C

Lab Sample ID: 480-184248-7

Job ID: 480-184248-1

Date Collected: 05/04/21 08:30 Matrix: Water Date Received: 05/05/21 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.057		0.010	0.0056	mg/L		05/13/21 10:48	05/14/21 00:50	
Barium	0.19		0.0020	0.00070	mg/L		05/13/21 10:48	05/14/21 00:50	
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/14/21 00:50	
Cadmium	0.010		0.0050	0.0025	mg/L		05/13/21 10:48	05/18/21 17:32	
Calcium	2820	В	2.5	0.50	mg/L		05/13/21 10:48	05/18/21 17:32	
Chromium	0.24		0.020	0.0050	mg/L		05/13/21 10:48	05/18/21 17:32	
Cobalt	0.20		0.0040	0.00063	mg/L		05/13/21 10:48	05/14/21 00:50	
Copper	ND		0.050	0.0080	mg/L		05/13/21 10:48	05/15/21 03:36	
ron	1490	В	0.25	0.097	mg/L		05/13/21 10:48	05/18/21 17:32	
_ead	0.60		0.025	0.015	mg/L		05/13/21 10:48	05/18/21 17:32	
Magnesium	1380		1.0	0.22	mg/L		05/13/21 10:48	05/18/21 17:32	
Manganese	18.2		0.015	0.0020	mg/L		05/13/21 10:48	05/18/21 17:32	
Nickel	1.1		0.050	0.0063	mg/L		05/13/21 10:48	05/18/21 17:32	
Potassium	889	В	1.0	0.20	mg/L		05/13/21 10:48	05/15/21 03:01	
Selenium	ND		0.075	0.044	mg/L		05/13/21 10:48	05/18/21 17:32	
Silver	ND		0.015	0.0085	mg/L		05/13/21 10:48	05/18/21 17:32	
Sodium	2370	В	5.0	1.6	mg/L		05/13/21 10:48	05/15/21 03:36	
-hallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/14/21 00:50	
/anadium	0.026		0.025	0.0075	mg/L		05/13/21 10:48	05/15/21 03:36	
linc	27.9	В	0.020	0.0030	mg/L		05/13/21 10:48	05/15/21 03:01	
Analyte	Result	Qualifier	RL		Unit	D	Prepared 05/42/04 40:40	Analyzed	Dil I
•	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Analyte Aluminum	Result 6.8	Qualifier	0.20	0.060	mg/L	<u>D</u>	05/13/21 10:48	05/13/21 20:23	Dil F
Method: 6010C - Metals (IOAnalyte Aluminum Antimony	Result 6.8 ND	Qualifier	0.20 0.10	0.060 0.034	mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic	Result 6.8 ND 0.044	Qualifier	0.20 0.10 0.015	0.060 0.034 0.0056	mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23	Dil F
Analyte Aluminum Antimony Arsenic Barium	Result 6.8 ND 0.044 0.18	Qualifier	0.20 0.10 0.015 0.0020	0.060 0.034 0.0056 0.00070	mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium	Result 6.8 ND 0.044 0.18 ND		0.20 0.10 0.015 0.0020 0.0020	0.060 0.034 0.0056 0.00070 0.00030	mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium	Result 6.8 ND 0.044 0.18 ND 0.0083		0.20 0.10 0.015 0.0020 0.0020 0.010	0.060 0.034 0.0056 0.00070 0.00030 0.0025	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/13/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	Result 6.8 ND 0.044 0.18 ND 0.0083		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5	0.060 0.034 0.0056 0.00070 0.00030 0.0025	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/13/21 16:08 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/19/21 16:08 05/19/21 16:08	Dil F
analyte aluminum antimony arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/13/21 20:23 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.0080	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND 1410 0.46		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25 0.050	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.0080 0.097	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08	Dilf
Analyte Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper ron Lead Magnesium	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND 1410 0.46 1370		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25 0.050 1.0	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.0080 0.097 0.015	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt Copper Fron Lead Magnesium Manganese	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND 1410 0.46 1370 17.3		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25 0.050 1.0	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.0080 0.097 0.015 0.22	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Fron Lead Magnesium Manganese Hickel	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND 1410 0.46 1370 17.3 1.0		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25 0.050 1.0 0.015	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.0080 0.097 0.015 0.22 0.0020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Fron Lead Magnesium Manganese Hickel Potassium	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND 1410 0.46 1370 17.3 1.0 830		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25 0.050 1.0 0.015 0.050	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.097 0.015 0.22 0.0020 0.0063	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/19/21 16:08 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Fron Lead Magnesium Manganese Lickel Potassium Belenium	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND 1410 0.46 1370 17.3 1.0 830 ND		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25 0.050 1.0 0.015 0.050 1.0	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.097 0.015 0.22 0.0020 0.0063 0.20	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/19/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/19/21 16:08 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese Mickel Potassium Belenium Bilver	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND 1410 0.46 1370 17.3 1.0 830 ND ND		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25 0.050 1.0 0.015 0.050 1.0 0.050 0.050	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.0080 0.097 0.015 0.22 0.0020 0.0063 0.20 0.0087 0.0085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/13/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/13/21 16:08 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper ron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND 1410 0.46 1370 17.3 1.0 830 ND ND ND ND		0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25 0.050 1.0 0.015 0.050 1.0 0.050 5.0	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.0080 0.097 0.015 0.22 0.0020 0.0063 0.20 0.0087 0.0085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/13/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/13/21 16:08 05/19/21 16:08	Dil F
Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese Nickel Potassium Belenium Belenium Silver Bodium Thallium	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND 1410 0.46 1370 17.3 1.0 830 ND	J	0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25 0.050 1.0 0.015 0.050 1.0 0.025 0.030 5.0 0.020	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.0080 0.097 0.015 0.22 0.0020 0.0063 0.20 0.0085 1.6	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/13/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/13/21 16:08 05/19/21 16:08 05/15/21 01:29 05/13/21 20:23	Dil F
Analyte Aluminum	Result 6.8 ND 0.044 0.18 ND 0.0083 2650 0.23 0.19 ND 1410 0.46 1370 17.3 1.0 830 ND ND ND ND	J	0.20 0.10 0.015 0.0020 0.0020 0.010 2.5 0.020 0.0040 0.050 0.25 0.050 1.0 0.015 0.050 1.0 0.050 5.0	0.060 0.034 0.0056 0.00070 0.00030 0.0025 0.50 0.0050 0.0063 0.0080 0.097 0.015 0.22 0.0020 0.0063 0.20 0.0087 0.0085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	05/13/21 10:48 05/13/21 10:48	05/13/21 20:23 05/13/21 16:08 05/13/21 20:23 05/13/21 20:23 05/13/21 20:23 05/13/21 16:08 05/19/21 16:08	Dill

Eurofins TestAmerica, Buffalo

Analyzed

05/11/21 15:23

05/11/21 15:23

Prepared

Page 18 of 43

RL

50.0

200

MDL Unit

28.2 mg/L

34.9 mg/L

Result Qualifier

3010

1920

5/19/2021

Dil Fac

100

100

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Lab Sample ID: 480-184248-7

Matrix: Water

Job ID: 480-184248-1

Date Collected: 05/04/21 08:30 Date Received: 05/05/21 15:30

General Chemistry - Dissolved (Continued)
Analysis

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	19900		2000	800	mg/L			05/10/21 19:19	200
Alkalinity, Carbonate	ND		2000	800	mg/L			05/10/21 19:19	200
Ammonia	1360	В	20.0	9.0	mg/L			05/12/21 13:56	1000
Nitrate Nitrite as N	ND		0.050	0.020	mg/L			05/14/21 12:55	1

Client Sample ID: WG-11109668-050421-SG-EAST D

Client Sample ID: WG-11109668-050421-SG-EAST C

Date Collected: 05/04/21 08:50 Date Received: 05/05/21 15:30 Lab Sample ID: 480-184248-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1.5		0.20	0.060	mg/L		05/13/21 10:48	05/14/21 00:54	1
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/14/21 00:54	1
Arsenic	0.015		0.010	0.0056	mg/L		05/13/21 10:48	05/14/21 00:54	1
Barium	0.62		0.0020	0.00070	mg/L		05/13/21 10:48	05/14/21 00:54	1
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/14/21 00:54	1
Cadmium	0.0029		0.0010	0.00050	mg/L		05/13/21 10:48	05/14/21 00:54	1
Calcium	135	^+ B	0.50	0.10	mg/L		05/13/21 10:48	05/14/21 00:54	1
Chromium	0.084		0.0040	0.0010	mg/L		05/13/21 10:48	05/14/21 00:54	1
Cobalt	0.023		0.0040	0.00063	mg/L		05/13/21 10:48	05/14/21 00:54	1
Copper	0.028		0.010	0.0016	mg/L		05/13/21 10:48	05/14/21 00:54	1
Iron	77.6	^+ B ^2	0.050	0.019	mg/L		05/13/21 10:48	05/14/21 00:54	1
Lead	0.28		0.0050	0.0030	mg/L		05/13/21 10:48	05/14/21 00:54	1
Magnesium	414	^+	0.20	0.043	mg/L		05/13/21 10:48	05/14/21 00:54	1
Manganese	0.12	^+	0.0030	0.00040	mg/L		05/13/21 10:48	05/14/21 00:54	1
Nickel	0.22		0.010	0.0013	mg/L		05/13/21 10:48	05/14/21 00:54	1
Potassium	372	^+ B	0.50	0.10	mg/L		05/13/21 10:48	05/14/21 00:54	1
Selenium	ND		0.015	0.0087	mg/L		05/13/21 10:48	05/14/21 00:54	1
Silver	ND		0.0030	0.0017	mg/L		05/13/21 10:48	05/14/21 00:54	1
Sodium	743	В	1.0	0.32	mg/L		05/13/21 10:48	05/15/21 03:48	1
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/14/21 00:54	1
Vanadium	0.011		0.0050	0.0015	mg/L		05/13/21 10:48	05/14/21 00:54	1
Zinc	0.59	В	0.010	0.0015	mg/L		05/13/21 10:48	05/14/21 00:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1.5		0.20	0.060	mg/L		05/13/21 10:48	05/13/21 20:28	1
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/13/21 20:28	1
Arsenic	0.017		0.015	0.0056	mg/L		05/13/21 10:48	05/13/21 20:28	1
Barium	0.62		0.0020	0.00070	mg/L		05/13/21 10:48	05/13/21 20:28	1
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/13/21 20:28	1
Cadmium	0.0041		0.0020	0.00050	mg/L		05/13/21 10:48	05/13/21 20:28	1
Calcium	122		0.50	0.10	mg/L		05/13/21 10:48	05/13/21 20:28	1
Chromium	0.083		0.0040	0.0010	mg/L		05/13/21 10:48	05/13/21 20:28	1
Cobalt	0.027		0.0040	0.00063	mg/L		05/13/21 10:48	05/13/21 20:28	1
Copper	0.025		0.010	0.0016	mg/L		05/13/21 10:48	05/13/21 20:28	1
Iron	98.5	^2	0.050	0.019	mg/L		05/13/21 10:48	05/13/21 20:28	1
Lead	0.23		0.010	0.0030	mg/L		05/13/21 10:48	05/13/21 20:28	1
Magnesium	446		0.20	0.043	mg/L		05/13/21 10:48	05/13/21 20:28	1
Manganese	0.14		0.0030	0.00040	mg/L		05/13/21 10:48	05/13/21 20:28	1

Eurofins TestAmerica, Buffalo

Page 19 of 43

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Client Sample ID: WG-11109668-050421-SG-EAST D

Lab Sample ID: 480-184248-8 Date Collected: 05/04/21 08:50 **Matrix: Water**

Date Received: 05/05/21 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nickel	0.22		0.010	0.0013	mg/L		05/13/21 10:48	05/13/21 20:28	1
Potassium	379	^+	0.50	0.10	mg/L		05/13/21 10:48	05/13/21 20:28	1
Selenium	ND		0.025	0.0087	mg/L		05/13/21 10:48	05/13/21 20:28	1
Silver	ND		0.0060	0.0017	mg/L		05/13/21 10:48	05/13/21 20:28	1
Sodium	1580		2.0	0.65	mg/L		05/13/21 10:48	05/15/21 02:16	2
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/13/21 20:28	1
Vanadium	0.014		0.0050	0.0015	mg/L		05/13/21 10:48	05/13/21 20:28	1
Zinc	0.73		0.010	0.0015	mg/L		05/13/21 10:48	05/13/21 20:28	1

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1480		25.0	14.1	mg/L			05/11/21 15:37	50
Sulfate	17.6	J	100	17.5	mg/L			05/11/21 15:37	50
Alkalinity, Bicarbonate	6780		800	320	mg/L			05/10/21 19:20	80
Alkalinity, Carbonate	ND		800	320	mg/L			05/10/21 19:20	80
Ammonia	0.62	В	0.020	0.0090	mg/L			05/12/21 13:57	1
Nitrate Nitrite as N	0.22		0.050	0.020	mg/L			05/14/21 12:56	1

Job ID: 480-184248-1

QC Sample Results

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-580583/1-A

Analysis Batch: 580972

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 580583

	MB	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND		0.20	0.060	mg/L		05/13/21 10:48	05/13/21 22:48	
Antimony	ND		0.020	0.0068	mg/L		05/13/21 10:48	05/13/21 22:48	
Arsenic	ND		0.010	0.0056	mg/L		05/13/21 10:48	05/13/21 22:48	
Barium	ND		0.0020	0.00070	mg/L		05/13/21 10:48	05/13/21 22:48	
Beryllium	ND		0.0020	0.00030	mg/L		05/13/21 10:48	05/13/21 22:48	
Cadmium	ND		0.0010	0.00050	mg/L		05/13/21 10:48	05/13/21 22:48	
Calcium	ND		0.50	0.10	mg/L		05/13/21 10:48	05/13/21 22:48	
Chromium	ND		0.0040	0.0010	mg/L		05/13/21 10:48	05/13/21 22:48	
Cobalt	ND		0.0040	0.00063	mg/L		05/13/21 10:48	05/13/21 22:48	
Copper	ND		0.010	0.0016	mg/L		05/13/21 10:48	05/13/21 22:48	
Iron	0.0233	J	0.050	0.019	mg/L		05/13/21 10:48	05/13/21 22:48	
Lead	ND		0.0050	0.0030	mg/L		05/13/21 10:48	05/13/21 22:48	
Magnesium	ND		0.20	0.043	mg/L		05/13/21 10:48	05/13/21 22:48	
Manganese	ND		0.0030	0.00040	mg/L		05/13/21 10:48	05/13/21 22:48	
Nickel	ND		0.010	0.0013	mg/L		05/13/21 10:48	05/13/21 22:48	
Potassium	ND		0.50	0.10	mg/L		05/13/21 10:48	05/13/21 22:48	
Selenium	ND		0.015	0.0087	mg/L		05/13/21 10:48	05/13/21 22:48	
Silver	ND		0.0030	0.0017	mg/L		05/13/21 10:48	05/13/21 22:48	
Sodium	ND		1.0	0.32	mg/L		05/13/21 10:48	05/13/21 22:48	
Thallium	ND		0.020	0.010	mg/L		05/13/21 10:48	05/13/21 22:48	
Vanadium	ND		0.0050	0.0015	mg/L		05/13/21 10:48	05/13/21 22:48	
Zinc	0.00159	J	0.010	0.0015	mg/L		05/13/21 10:48	05/13/21 22:48	

Lab Sample ID: LCS 480-580583/2-A

Matrix: Water

Analysis Batch: 580972

Client S	ample ID: Lab Control Sample
	Prep Type: Total/NA
	Pron Ratch: 580583

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	10.0	10.29		mg/L		103	80 - 120	
Antimony	0.200	0.207		mg/L		104	80 _ 120	
Arsenic	0.200	0.209		mg/L		105	80 _ 120	
Barium	0.200	0.227		mg/L		113	80 _ 120	
Beryllium	0.200	0.212		mg/L		106	80 _ 120	
Cadmium	0.200	0.207		mg/L		103	80 - 120	
Calcium	10.0	10.12		mg/L		101	80 _ 120	
Chromium	0.200	0.206		mg/L		103	80 - 120	
Cobalt	0.200	0.198		mg/L		99	80 _ 120	
Copper	0.200	0.206		mg/L		103	80 _ 120	
Iron	10.0	9.98		mg/L		100	80 _ 120	
Lead	0.200	0.203		mg/L		101	80 - 120	
Magnesium	10.0	10.06		mg/L		101	80 - 120	
Manganese	0.200	0.210		mg/L		105	80 - 120	
Nickel	0.200	0.198		mg/L		99	80 - 120	
Potassium	10.0	10.63		mg/L		106	80 _ 120	
Selenium	0.200	0.206		mg/L		103	80 - 120	
Silver	0.0500	0.0527		mg/L		105	80 - 120	
Sodium	10.0	10.66		mg/L		106	80 _ 120	
Thallium	0.200	0.207		mg/L		103	80 _ 120	
Vanadium	0.200	0.208		mg/L		104	80 _ 120	

Eurofins TestAmerica, Buffalo

Page 21 of 43

1

Project/Site: City of North Tonawanda - NCRS

Client: N Tonawanda Water Works

Mothod: CO40C Motole (ICD) (Continue

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-580583/2-A

Matrix: Water

Analysis Batch: 580972

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 580583

 Analyte
 Spike
 LCS LCS
 KRec.

 Zinc
 0.200
 0.207
 mg/L
 104
 80 - 120

Lab Sample ID: 480-184248-3 MS Client Sample ID: WG-11109668-050421-SG-NCR5S

Matrix: Water Prep Type: Total/NA
Analysis Batch: 580972 Prep Batch: 580583

Analysis Batch: 580972									Prep Batc	h: <mark>5805</mark> 8
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	0.18	J	10.0	9.93		mg/L		98	75 - 125	
Antimony	ND		0.200	0.217		mg/L		109	75 ₋ 125	
Arsenic	ND		0.200	0.215		mg/L		108	75 - 125	
Barium	0.14		0.200	0.346		mg/L		103	75 ₋ 125	
Beryllium	ND		0.200	0.213		mg/L		106	75 ₋ 125	
Cadmium	ND		0.200	0.207		mg/L		104	75 - 125	
Calcium	86.0		10.0	96.89	4	mg/L		109	75 ₋ 125	
Chromium	0.0042		0.200	0.207		mg/L		101	75 - 125	
Cobalt	ND		0.200	0.196		mg/L		98	75 ₋ 125	
Copper	0.0031	J	0.200	0.209		mg/L		103	75 ₋ 125	
Iron	0.15	В	10.0	9.86		mg/L		97	75 ₋ 125	
Lead	ND		0.200	0.201		mg/L		101	75 ₋ 125	
Magnesium	39.9		10.0	50.14		mg/L		103	75 - 125	
Manganese	0.0033		0.200	0.206		mg/L		101	75 ₋ 125	
Nickel	0.0026	J	0.200	0.202		mg/L		99	75 ₋ 125	
Potassium	0.28	J	10.0	10.94		mg/L		107	75 ₋ 125	
Selenium	ND		0.200	0.211		mg/L		106	75 ₋ 125	
Silver	ND		0.0500	0.0505		mg/L		101	75 - 125	
Sodium	8.0		10.0	18.41		mg/L		104	75 ₋ 125	
Thallium	ND		0.200	0.207		mg/L		103	75 ₋ 125	
Vanadium	ND		0.200	0.205		mg/L		103	75 ₋ 125	
Zinc	0.0024	JB	0.200	0.196		mg/L		97	75 ₋ 125	

Lab Sample ID: 480-184248-3 MSD

Matrix: Water

Analysis Batch: 580972

Client Sample ID: WG-11109668-050421-SG-NCR5S

Prep Type: Total/NA Prep Batch: 580583

7											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	0.18	J	10.0	9.45		mg/L		93	75 - 125	5	20
Antimony	ND		0.200	0.210		mg/L		105	75 - 125	3	20
Arsenic	ND		0.200	0.207		mg/L		103	75 - 125	4	20
Barium	0.14		0.200	0.328		mg/L		94	75 - 125	5	20
Beryllium	ND		0.200	0.201		mg/L		101	75 - 125	5	20
Cadmium	ND		0.200	0.199		mg/L		99	75 - 125	4	20
Calcium	86.0		10.0	93.40	4	mg/L		74	75 - 125	4	20
Chromium	0.0042		0.200	0.199		mg/L		97	75 - 125	4	20
Cobalt	ND		0.200	0.190		mg/L		95	75 - 125	4	20
Copper	0.0031	J	0.200	0.202		mg/L		99	75 - 125	3	20
Iron	0.15	В	10.0	9.54		mg/L		94	75 - 125	3	20
Lead	ND		0.200	0.195		mg/L		98	75 - 125	3	20
Magnesium	39.9		10.0	47.67		mg/L		78	75 - 125	5	20
Manganese	0.0033		0.200	0.200		mg/L		98	75 - 125	3	20

Eurofins TestAmerica, Buffalo

Page 22 of 43

9

3

<u>+</u>

6

8

1 4

13

14

15

Project/Site: City of North Tonawanda - NCRS

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-184248-3 MSD

Client: N Tonawanda Water Works

Matrix: Water

Analysis Batch: 580972

Client Sample ID: WG-11109668-050421-SG-NCR5S

Prep Type: Total/NA

Prep Batch: 580583

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nickel	0.0026	J	0.200	0.195		mg/L		96	75 - 125	3	20
Potassium	0.28	J	10.0	10.57		mg/L		103	75 - 125	3	20
Selenium	ND		0.200	0.203		mg/L		101	75 - 125	4	20
Silver	ND		0.0500	0.0481		mg/L		96	75 - 125	5	20
Sodium	8.0		10.0	17.12		mg/L		91	75 - 125	7	20
Thallium	ND		0.200	0.200		mg/L		100	75 - 125	3	20
Vanadium	ND		0.200	0.197		mg/L		98	75 - 125	4	20
Zinc	0.0024	JB	0.200	0.190		mg/L		94	75 - 125	3	20

Lab Sample ID: MB 480-580406/1-A

Matrix: Water

Analysis Batch: 580970

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 580406

мв мв MDL Unit Dil Fac Analyte Result Qualifier RL D Prepared Analyzed ND 0.20 05/13/21 10:48 05/13/21 18:17 Aluminum 0.060 mg/L Antimony ND 0.020 0.0068 mg/L 05/13/21 10:48 05/13/21 18:17 Arsenic ND 0.015 0.0056 mg/L 05/13/21 10:48 05/13/21 18:17 ND Barium 0.0020 0.00070 mg/L 05/13/21 10:48 05/13/21 18:17 Beryllium ND 0.0020 0.00030 mg/L 05/13/21 10:48 05/13/21 18:17 Cadmium ND 0.0020 0.00050 mg/L 05/13/21 10:48 05/13/21 18:17 Calcium ND 0.50 0.10 mg/L 05/13/21 10:48 05/13/21 18:17 0.0010 mg/L Chromium ND 0.0040 05/13/21 10:48 05/13/21 18:17 Cobalt 0.00063 mg/L ND 0.0040 05/13/21 10:48 05/13/21 18:17 Copper ND 0.010 0.0016 mg/L 05/13/21 10:48 05/13/21 18:17 Iron ND 0.050 0.019 mg/L 05/13/21 10:48 05/13/21 18:17 Lead ND 0.010 0.0030 mg/L 05/13/21 10:48 05/13/21 18:17 Magnesium ND 0.20 0.043 mg/L 05/13/21 18:17 05/13/21 10:48 ND 0.0030 0.00040 mg/L 05/13/21 18:17 Manganese 05/13/21 10:48 0.010 Nickel ND 0.0013 mg/L 05/13/21 10:48 05/13/21 18:17 ND 0.50 0.10 mg/L 05/13/21 10:48 05/13/21 18:17 Potassium Selenium 0.0087 mg/L ND 0.025 05/13/21 10:48 05/13/21 18:17 Silver ND 0.0060 0.0017 mg/L 05/13/21 10:48 05/13/21 18:17 Sodium ND 1.0 0.32 mg/L 05/13/21 10:48 05/13/21 18:17 Thallium ND 0.020 0.010 mg/L 05/13/21 10:48 05/13/21 18:17 Vanadium ND 0.0050 0.0015 mg/L 05/13/21 10:48 05/13/21 18:17

Lab Sample ID: LCS 480-580406/2-A

Matrix: Water

Zinc

Analysis Batch: 580970

Client Sample ID: Lab Control Sample

05/13/21 18:17

05/13/21 10:48

Prep Type: Total Recoverable

Prep Batch: 580406

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	10.0	9.96		mg/L		100	80 - 120	
Antimony	0.200	0.206		mg/L		103	80 - 120	
Arsenic	0.200	0.208		mg/L		104	80 - 120	
Barium	0.200	0.220		mg/L		110	80 - 120	
Beryllium	0.200	0.204		mg/L		102	80 - 120	
Cadmium	0.200	0.206		mg/L		103	80 - 120	
Calcium	10.0	9.95		mg/L		100	80 - 120	

0.010

0.0015 mg/L

ND

Eurofins TestAmerica, Buffalo

Page 23 of 43

5/19/2021

Project/Site: City of North Tonawanda - NCRS

Lab Sample ID: LCS 480-580406/2-A

Client: N Tonawanda Water Works

Method: 6010C - Metals (ICP) (Continued)

Matrix: Water

Analysis Batch: 580970

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 580406

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	0.200	0.200		mg/L		100	80 - 120	
Cobalt	0.200	0.198		mg/L		99	80 - 120	
Copper	0.200	0.205		mg/L		103	80 - 120	
Iron	10.0	9.93		mg/L		99	80 - 120	
Lead	0.200	0.200		mg/L		100	80 - 120	
Magnesium	10.0	10.02		mg/L		100	80 - 120	
Manganese	0.200	0.208		mg/L		104	80 - 120	
Nickel	0.200	0.197		mg/L		98	80 _ 120	
Potassium	10.0	10.34		mg/L		103	80 - 120	
Selenium	0.200	0.206		mg/L		103	80 - 120	
Silver	0.0500	0.0514		mg/L		103	80 _ 120	
Sodium	10.0	10.42		mg/L		104	80 - 120	
Thallium	0.200	0.206		mg/L		103	80 - 120	
Vanadium	0.200	0.200		mg/L		100	80 _ 120	
Zinc	0.200	0.200		mg/L		100	80 _ 120	

Lab Sample ID: 480-184248-3 MS

Matrix: Water

Client Sample ID: WG-11109668-050421-SG-NCR5S

Prep Type: Dissolved

Analysis Batch: 580970									Prep Batch: 580406
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	0.070	J	10.0	10.37		mg/L		103	75 - 125
Antimony	ND		0.200	0.208		mg/L		104	75 - 125
Arsenic	ND		0.200	0.216		mg/L		108	75 ₋ 125
Barium	0.14		0.200	0.365		mg/L		113	75 - 125
Beryllium	ND		0.200	0.207		mg/L		104	75 ₋ 125
Cadmium	ND		0.200	0.211		mg/L		105	75 ₋ 125
Calcium	77.0		10.0	90.10	4	mg/L		131	75 ₋ 125
Chromium	0.0012	J	0.200	0.203		mg/L		101	75 ₋ 125
Cobalt	ND		0.200	0.203		mg/L		102	75 - 125
Copper	0.0024	J	0.200	0.213		mg/L		105	75 ₋ 125
Lead	ND		0.200	0.206		mg/L		103	75 ₋ 125
Magnesium	41.9		10.0	55.74	4	mg/L		139	75 - 125
Manganese	0.0016	J	0.200	0.213		mg/L		106	75 ₋ 125
Nickel	0.0019	J	0.200	0.204		mg/L		101	75 - 125
Selenium	ND		0.200	0.208		mg/L		104	75 ₋ 125
Silver	ND		0.0500	0.0536		mg/L		107	75 - 125
Sodium	9.1		10.0	20.20		mg/L		111	75 ₋ 125
Thallium	ND		0.200	0.206		mg/L		103	75 ₋ 125
Vanadium	ND		0.200	0.206		mg/L		103	75 - 125
Zinc	0.0015	J	0.200	0.205		mg/L		103	75 ₋ 125

Lab Sample ID: 480-184248-3 MS

Matrix: Water

Analysis Batch: 581103

Client Sample ID: WG-11109668-050421-SG-NCR5S

Prep Type: Dissolved Prep Batch: 580406

7 mary 515 Datom 55 1 155										-	
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Iron	0.068		10.0	10.53		mg/L		105	75 - 125		
Potassium	0.32	J	10.0	11 31		ma/L		110	75 - 125		

Eurofins TestAmerica, Buffalo

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-184248-3 MSD

Analysis Batch: 580970

Matrix: Water

Client Sample ID: WG-11109668-050421-SG-NCR5S **Prep Type: Dissolved Prep Batch: 580406**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	0.070	J	10.0	9.79		mg/L		97	75 - 125	6	20
Antimony	ND		0.200	0.202		mg/L		101	75 - 125	3	20
Arsenic	ND		0.200	0.207		mg/L		104	75 - 125	4	20
Barium	0.14		0.200	0.352		mg/L		106	75 - 125	4	20
Beryllium	ND		0.200	0.199		mg/L		100	75 - 125	4	20
Cadmium	ND		0.200	0.204		mg/L		102	75 - 125	3	20
Calcium	77.0		10.0	88.47	4	mg/L		115	75 - 125	2	20
Chromium	0.0012	J	0.200	0.197		mg/L		98	75 - 125	3	20
Cobalt	ND		0.200	0.197		mg/L		98	75 - 125	3	20
Copper	0.0024	J	0.200	0.204		mg/L		101	75 - 125	4	20
Lead	ND		0.200	0.200		mg/L		100	75 - 125	3	20
Magnesium	41.9		10.0	51.28	4	mg/L		94	75 - 125	8	20
Manganese	0.0016	J	0.200	0.203		mg/L		101	75 - 125	5	20
Nickel	0.0019	J	0.200	0.196		mg/L		97	75 - 125	4	20
Selenium	ND		0.200	0.199		mg/L		99	75 - 125	4	20
Silver	ND		0.0500	0.0522		mg/L		104	75 - 125	3	20
Sodium	9.1		10.0	18.06		mg/L		90	75 - 125	11	20
Thallium	ND		0.200	0.202		mg/L		101	75 - 125	2	20
Vanadium	ND		0.200	0.198		mg/L		99	75 - 125	4	20
Zinc	0.0015	J	0.200	0.201		mg/L		101	75 - 125	2	20

Lab Sample ID: 480-184248-3 MSD

Matrix: Water

Analysis Batch: 581103

Client Sample ID: WG-11109668-050421-SG-NCR5S

Prep Type: Dissolved

Prep Batch: 580406

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Iron	0.068		10.0	10.03		mg/L		100	75 - 125	5	20	
Potassium	0.32	J	10.0	10.69		mg/L		104	75 - 125	6	20	

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-580303/4

Matrix: Water

Matrix: Water

Analysis Batch: 580303

Client Sample	ID: Method Blank
Pr	en Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			05/11/21 12:18	1
Sulfate	ND		2.0	0.35	mg/L			05/11/21 12:18	1

Lab Sample ID: LCS 480-580303/3

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 580303

	Spike LC:	S LCS			%Rec.	
Analyte	Added Resul	t Qualifier Unit	D	%Rec	Limits	
Chloride	50.0 48.5	mg/		97	90 - 110	
Sulfate	50.0 46.4	3 mg/	L	93	90 - 110	

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 480-184248-3 MS

Analysis Batch: 580303

Matrix: Water

Client Sample ID: WG-11109668-050421-SG-NCR5S

Prep Type: Dissolved

Sample Sample Spike MS MS %Rec. Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Chloride 1.1 100 100.3 mg/L 99 81 - 120 Sulfate 5.1 100 99.77 mg/L 95 80 - 120

Lab Sample ID: 480-184248-3 MSD Client Sample ID: WG-11109668-050421-SG-NCR5S **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 580303

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1.1		100	99.69		mg/L		99	81 - 120	1	15
Sulfate	5.1		100	99.38		mg/L		94	80 - 120	0	15

Method: 310.2 - Alkalinity

Lab Sample ID: MB 480-580228/164 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 580228

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	5.28	J	10.0	4.0	mg/L			05/10/21 18:36	1
Alkalinity, Carbonate	ND		10.0	4.0	mg/L			05/10/21 18:36	1

Lab Sample ID: MB 480-580228/196 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 580228

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	ND		10.0	4.0	mg/L			05/10/21 18:49	1
Alkalinity, Carbonate	ND		10.0	4.0	mg/L			05/10/21 18:49	1

Lab Sample ID: MB 480-580228/205 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 580228

мв мв

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	ND —	10.0	4.0 mg/L			05/10/21 19:18	1
Alkalinity, Carbonate	ND	10.0	4.0 mg/L			05/10/21 19:18	1

Lab Sample ID: LCS 480-580228/162 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 580228

Analyte Added Result Qualifier Unit D %Rec Limits
Analyte Added Result Qualifier Offit D 70Rec Liffits

Lab Sample ID: LCS 480-580228/194 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

A	nalysis Batch: 580228									
			Spike	LCS	LCS					%Rec.
Ar	nalyte		Added	Result	Qualifier	Unit	ı	D	%Rec	Limits
All	kalinity, Bicarbonate	 	50.0	48.89		mg/L			98	90 - 110

Eurofins TestAmerica, Buffalo

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

Method: 310.2 - Alkalinity (Continued)

Lab Sample ID: LCS 480-580228/203

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 580228

Matrix: Water

Matrix: Water

Spike LCS LCS %Rec. Result Qualifier Analyte babbA %Rec Limits Unit Alkalinity, Bicarbonate 50.0 52.02 mg/L 104 90 - 110

Client Sample ID: WG-11109668-050421-SG-NCR5S

Prep Type: Dissolved

Analysis Batch: 580228

Lab Sample ID: 480-184248-3 MS

Sample Sample Spike MS MS %Rec. Result Qualifier Analyte Added Result Qualifier Unit D %Rec Limits Alkalinity, Bicarbonate 400 BF1 20.0 420.3 4 mg/L 99 60 - 140

Lab Sample ID: 480-184248-3 MSD Client Sample ID: WG-11109668-050421-SG-NCR5S **Matrix: Water**

Prep Type: Dissolved

Analysis Batch: 580228

MSD MSD RPD Spike %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 400 B F1 20.0 403.5 4 Alkalinity, Bicarbonate mg/L 60 - 140 20

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-579877/27 Client Sample ID: Method Blank

мв мв

Matrix: Water

Analysis Batch: 579877

Prep Type: Total/NA

Analyte Qualifier RL MDL Unit Prepared Dil Fac Result Analyzed Ammonia 0.020 05/07/21 11:26 ND 0.0090 mg/L

Lab Sample ID: LCS 480-579877/28 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 579877

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec 1.00 1.07 107 90 - 110 Ammonia mg/L Ammonia as NH3 1.22 1.30 mg/L 107 90 - 110

Lab Sample ID: MB 480-579881/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 579881

Prep Type: Total/NA

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Ammonia ND 0.020 0.0090 mg/L 05/07/21 11:54

Lab Sample ID: LCS 480-579881/4 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 579881

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Ammonia	1.00	0.997	mg/L	. –	100	90 - 110	
Ammonia as NH3	1.22	1.21	mg/L		100	90 - 110	

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: MB 480-580563/43

Matrix: Water

Analysis Batch: 580563

мв мв

Dil Fac Analyte Result Qualifier RLMDL Unit Prepared Analyzed Ammonia 0.00997 J 0.020 0.0090 mg/L 05/12/21 13:42

Lab Sample ID: LCS 480-580563/44

Matrix: Water

Analysis Batch: 580563

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia	1.00	0.987		mg/L		99	90 - 110	
Ammonia as NH3	1.22	1.20		mg/L		99	90 - 110	

Lab Sample ID: 480-184248-3 MS

Matrix: Water

Analysis Batch: 579881

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia	ND	F1	0.200	0.187		mg/L		94	90 - 110	
Ammonia as NH3	ND	F1	0.243	0.228		mg/L		94	90 - 110	

Lab Sample ID: 480-184248-3 MSD

Matrix: Water

Analysis Batch: 579881

Client Sample ID: WG-111096	668-050421-SG-NCR5S
	Prep Type: Dissolved

Client Sample ID: WG-11109668-050421-SG-NCR5S

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Ammonia ND F1 0.200 0.161 F1 mg/L 81 90 - 110 15 20 ND F1 Ammonia as NH3 0.243 0.196 F1 mg/L 81 90 - 110 15 20

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 480-581029/28

Matrix: Water

Analysis Batch: 581029

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate Nitrite as N	ND		0.050	0.020	mg/L			05/14/21 12:33	1

Lab Sample ID: MB 480-581029/4

Matrix: Water

Analysis Batch: 581029

MD MD

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate Nitrite as N	ND	0.050	0.020 mg/L			05/14/21 12:06	1

Lab Sample ID: LCS 480-581029/29

Matrix: Water

Analysis Batch: 581029

/ maryoro Datom co rezo							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Nitrate Nitrite as N	1.50	1.49	-	mg/L		99	90 - 110

Eurofins TestAmerica, Buffalo

QC Sample Results

Client: N Tonawanda Water Works Job ID: 480-184248-1

Project/Site: City of North Tonawanda - NCRS

Method: 353.2 - Nitrogen, Nitrate-Nitrite (Continued)

Lab Sample ID: LCS 480-581029/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 581029

Spike LCS LCS %Rec. Result Qualifier Analyte Added Unit %Rec Limits Nitrate Nitrite as N 1.50 1.49 mg/L 90 - 110

Lab Sample ID: 480-184248-3 MS Client Sample ID: WG-11109668-050421-SG-NCR5S

Matrix: Water Prep Type: Dissolved

Analysis Batch: 581029

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Nitrate Nitrite as N 0.033 J 1.00 1.02 mg/L 99 90 - 110

Lab Sample ID: 480-184248-3 MSD Client Sample ID: WG-11109668-050421-SG-NCR5S

Matrix: Water Prep Type: Dissolved

Analysis Batch: 581029

Sample Sample MSD MSD %Rec. RPD Spike Result Qualifier Added Result Qualifier Unit Limits **RPD** Limit Nitrate Nitrite as N 0.033 J 1.00 1.03 100 90 - 110 mg/L

QC Association Summary

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

Metals

Prep Batch: 580406

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-1	WG-11109668-050421-SG-NCR3S	Dissolved	Water	3005A	
480-184248-2	WG-11109668-050421-SG-NCR4S	Dissolved	Water	3005A	
480-184248-3	WG-11109668-050421-SG-NCR5S	Dissolved	Water	3005A	
480-184248-4	WG-11109668-050421-SG-NCR6S	Dissolved	Water	3005A	
480-184248-5	WG-11109668-050421-SG-NCR13S	Dissolved	Water	3005A	
480-184248-7	WG-11109668-050421-SG-EAST C	Dissolved	Water	3005A	
480-184248-8	WG-11109668-050421-SG-EAST D	Dissolved	Water	3005A	
MB 480-580406/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 480-580406/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
480-184248-3 MS	WG-11109668-050421-SG-NCR5S	Dissolved	Water	3005A	
480-184248-3 MSD	WG-11109668-050421-SG-NCR5S	Dissolved	Water	3005A	

Prep Batch: 580583

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-1	WG-11109668-050421-SG-NCR3S	Total/NA	Water	3005A	
480-184248-2	WG-11109668-050421-SG-NCR4S	Total/NA	Water	3005A	
480-184248-3	WG-11109668-050421-SG-NCR5S	Total/NA	Water	3005A	
480-184248-4	WG-11109668-050421-SG-NCR6S	Total/NA	Water	3005A	
480-184248-5	WG-11109668-050421-SG-NCR13S	Total/NA	Water	3005A	
480-184248-6	WG-11109668-050421-SG-EAST A	Total/NA	Water	3005A	
480-184248-7	WG-11109668-050421-SG-EAST C	Total/NA	Water	3005A	
480-184248-8	WG-11109668-050421-SG-EAST D	Total/NA	Water	3005A	
MB 480-580583/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-580583/2-A	Lab Control Sample	Total/NA	Water	3005A	
480-184248-3 MS	WG-11109668-050421-SG-NCR5S	Total/NA	Water	3005A	
480-184248-3 MSD	WG-11109668-050421-SG-NCR5S	Total/NA	Water	3005A	

Analysis Batch: 580970

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-1	WG-11109668-050421-SG-NCR3S	Dissolved	Water	6010C	580406
480-184248-2	WG-11109668-050421-SG-NCR4S	Dissolved	Water	6010C	580406
480-184248-3	WG-11109668-050421-SG-NCR5S	Dissolved	Water	6010C	580406
480-184248-4	WG-11109668-050421-SG-NCR6S	Dissolved	Water	6010C	580406
480-184248-5	WG-11109668-050421-SG-NCR13S	Dissolved	Water	6010C	580406
480-184248-7	WG-11109668-050421-SG-EAST C	Dissolved	Water	6010C	580406
480-184248-8	WG-11109668-050421-SG-EAST D	Dissolved	Water	6010C	580406
MB 480-580406/1-A	Method Blank	Total Recoverable	Water	6010C	580406
LCS 480-580406/2-A	Lab Control Sample	Total Recoverable	Water	6010C	580406
480-184248-3 MS	WG-11109668-050421-SG-NCR5S	Dissolved	Water	6010C	580406
480-184248-3 MSD	WG-11109668-050421-SG-NCR5S	Dissolved	Water	6010C	580406

Analysis Batch: 580972

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-1	WG-11109668-050421-SG-NCR3S	Total/NA	Water	6010C	580583
480-184248-2	WG-11109668-050421-SG-NCR4S	Total/NA	Water	6010C	580583
480-184248-3	WG-11109668-050421-SG-NCR5S	Total/NA	Water	6010C	580583
480-184248-4	WG-11109668-050421-SG-NCR6S	Total/NA	Water	6010C	580583
480-184248-5	WG-11109668-050421-SG-NCR13S	Total/NA	Water	6010C	580583
480-184248-6	WG-11109668-050421-SG-EAST A	Total/NA	Water	6010C	580583
480-184248-7	WG-11109668-050421-SG-EAST C	Total/NA	Water	6010C	580583
480-184248-8	WG-11109668-050421-SG-EAST D	Total/NA	Water	6010C	580583

Eurofins TestAmerica, Buffalo

Page 30 of 43

5

Ω

9

10

12

13

16

Job ID: 480-184248-1

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Metals (Continued)

Analysis Batch: 580972 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-580583/1-A	Method Blank	Total/NA	Water	6010C	580583
LCS 480-580583/2-A	Lab Control Sample	Total/NA	Water	6010C	580583
480-184248-3 MS	WG-11109668-050421-SG-NCR5S	Total/NA	Water	6010C	580583
480-184248-3 MSD	WG-11109668-050421-SG-NCR5S	Total/NA	Water	6010C	580583

Analysis Batch: 581094

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-4	WG-11109668-050421-SG-NCR6S	Total/NA	Water	6010C	580583
480-184248-5	WG-11109668-050421-SG-NCR13S	Total/NA	Water	6010C	580583
480-184248-6	WG-11109668-050421-SG-EAST A	Total/NA	Water	6010C	580583
480-184248-7	WG-11109668-050421-SG-EAST C	Total/NA	Water	6010C	580583
480-184248-7	WG-11109668-050421-SG-EAST C	Total/NA	Water	6010C	580583
480-184248-8	WG-11109668-050421-SG-EAST D	Total/NA	Water	6010C	580583

Analysis Batch: 581103

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-3	WG-11109668-050421-SG-NCR5S	Dissolved	Water	6010C	580406
480-184248-4	WG-11109668-050421-SG-NCR6S	Dissolved	Water	6010C	580406
480-184248-5	WG-11109668-050421-SG-NCR13S	Dissolved	Water	6010C	580406
480-184248-7	WG-11109668-050421-SG-EAST C	Dissolved	Water	6010C	580406
480-184248-7	WG-11109668-050421-SG-EAST C	Dissolved	Water	6010C	580406
480-184248-8	WG-11109668-050421-SG-EAST D	Dissolved	Water	6010C	580406
480-184248-3 MS	WG-11109668-050421-SG-NCR5S	Dissolved	Water	6010C	580406
480-184248-3 MSD	WG-11109668-050421-SG-NCR5S	Dissolved	Water	6010C	580406

Analysis Batch: 581633

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-4	WG-11109668-050421-SG-NCR6S	Total/NA	Water	6010C	580583
480-184248-5	WG-11109668-050421-SG-NCR13S	Total/NA	Water	6010C	580583
480-184248-6	WG-11109668-050421-SG-EAST A	Total/NA	Water	6010C	580583
480-184248-7	WG-11109668-050421-SG-EAST C	Total/NA	Water	6010C	580583

Analysis Batch: 581724

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-7	WG-11109668-050421-SG-EAST C	Dissolved	Water	6010C	580406

General Chemistry

Analysis Batch: 579877

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-1	WG-11109668-050421-SG-NCR3S	Dissolved	Water	350.1	<u> </u>
480-184248-2	WG-11109668-050421-SG-NCR4S	Dissolved	Water	350.1	
MB 480-579877/27	Method Blank	Total/NA	Water	350.1	
LCS 480-579877/28	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 579881

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-3	WG-11109668-050421-SG-NCR5S	Dissolved	Water	350.1	
480-184248-4	WG-11109668-050421-SG-NCR6S	Dissolved	Water	350.1	
480-184248-5	WG-11109668-050421-SG-NCR13S	Dissolved	Water	350.1	
MB 480-579881/3	Method Blank	Total/NA	Water	350.1	

Eurofins TestAmerica, Buffalo

Page 31 of 43

QC Association Summary

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

General Chemistry (Continued)

Analysis Batch: 579881 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep	Batch
LCS 480-579881/4	Lab Control Sample	Total/NA	Water	350.1	
480-184248-3 MS	WG-11109668-050421-SG-NCR5S	Dissolved	Water	350.1	
480-184248-3 MSD	WG-11109668-050421-SG-NCR5S	Dissolved	Water	350.1	

Analysis Batch: 580228

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-184248-1	WG-11109668-050421-SG-NCR3S	Dissolved	Water	310.2	
480-184248-2	WG-11109668-050421-SG-NCR4S	Dissolved	Water	310.2	
480-184248-3	WG-11109668-050421-SG-NCR5S	Dissolved	Water	310.2	
480-184248-4	WG-11109668-050421-SG-NCR6S	Dissolved	Water	310.2	
480-184248-5	WG-11109668-050421-SG-NCR13S	Dissolved	Water	310.2	
480-184248-6	WG-11109668-050421-SG-EAST A	Dissolved	Water	310.2	
480-184248-7	WG-11109668-050421-SG-EAST C	Dissolved	Water	310.2	
480-184248-8	WG-11109668-050421-SG-EAST D	Dissolved	Water	310.2	
MB 480-580228/164	Method Blank	Total/NA	Water	310.2	
MB 480-580228/196	Method Blank	Total/NA	Water	310.2	
MB 480-580228/205	Method Blank	Total/NA	Water	310.2	
LCS 480-580228/162	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-580228/194	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-580228/203	Lab Control Sample	Total/NA	Water	310.2	
480-184248-3 MS	WG-11109668-050421-SG-NCR5S	Dissolved	Water	310.2	
480-184248-3 MSD	WG-11109668-050421-SG-NCR5S	Dissolved	Water	310.2	

Analysis Batch: 580303

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-184248-1	WG-11109668-050421-SG-NCR3S	Dissolved	Water	300.0	
480-184248-2	WG-11109668-050421-SG-NCR4S	Dissolved	Water	300.0	
480-184248-3	WG-11109668-050421-SG-NCR5S	Dissolved	Water	300.0	
480-184248-4	WG-11109668-050421-SG-NCR6S	Dissolved	Water	300.0	
480-184248-5	WG-11109668-050421-SG-NCR13S	Dissolved	Water	300.0	
480-184248-6	WG-11109668-050421-SG-EAST A	Dissolved	Water	300.0	
480-184248-7	WG-11109668-050421-SG-EAST C	Dissolved	Water	300.0	
480-184248-8	WG-11109668-050421-SG-EAST D	Dissolved	Water	300.0	
MB 480-580303/4	Method Blank	Total/NA	Water	300.0	
LCS 480-580303/3	Lab Control Sample	Total/NA	Water	300.0	
480-184248-3 MS	WG-11109668-050421-SG-NCR5S	Dissolved	Water	300.0	
480-184248-3 MSD	WG-11109668-050421-SG-NCR5S	Dissolved	Water	300.0	

Analysis Batch: 580563

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-7	WG-11109668-050421-SG-EAST C	Dissolved	Water	350.1	<u> </u>
480-184248-8	WG-11109668-050421-SG-EAST D	Dissolved	Water	350.1	
MB 480-580563/43	Method Blank	Total/NA	Water	350.1	
LCS 480-580563/44	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 581029

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-1	WG-11109668-050421-SG-NCR3S	Dissolved	Water	353.2	
480-184248-2	WG-11109668-050421-SG-NCR4S	Dissolved	Water	353.2	
480-184248-3	WG-11109668-050421-SG-NCR5S	Dissolved	Water	353.2	
480-184248-4	WG-11109668-050421-SG-NCR6S	Dissolved	Water	353.2	

Eurofins TestAmerica, Buffalo

5/19/2021

Page 32 of 43

QC Association Summary

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

General Chemistry (Continued)

Analysis Batch: 581029 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184248-5	WG-11109668-050421-SG-NCR13S	Dissolved	Water	353.2	
480-184248-7	WG-11109668-050421-SG-EAST C	Dissolved	Water	353.2	
480-184248-8	WG-11109668-050421-SG-EAST D	Dissolved	Water	353.2	
MB 480-581029/28	Method Blank	Total/NA	Water	353.2	
MB 480-581029/4	Method Blank	Total/NA	Water	353.2	
LCS 480-581029/29	Lab Control Sample	Total/NA	Water	353.2	
LCS 480-581029/5	Lab Control Sample	Total/NA	Water	353.2	
480-184248-3 MS	WG-11109668-050421-SG-NCR5S	Dissolved	Water	353.2	
480-184248-3 MSD	WG-11109668-050421-SG-NCR5S	Dissolved	Water	353.2	

3

4

0

10

Lab Sample ID: 480-184248-2

Client Sample ID: WG-11109668-050421-SG-NCR3S

Lab Sample ID: 480-184248-1 Date Collected: 05/04/21 09:05 Matrix: Water Date Received: 05/05/21 15:30

Client: N Tonawanda Water Works

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		1	580970	05/13/21 19:38	AMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	580972	05/14/21 00:01	AMH	TAL BUF
Dissolved	Analysis	300.0		5	580303	05/11/21 13:01	IMZ	TAL BUF
Dissolved	Analysis	310.2		5	580228	05/10/21 18:39	SRW	TAL BUF
Dissolved	Analysis	350.1		1	579877	05/07/21 11:43	CLT	TAL BUF
Dissolved	Analysis	353.2		1	581029	05/14/21 12:50	ALT	TAL BUF

Client Sample ID: WG-11109668-050421-SG-NCR4S

Date Collected: 05/04/21 09:20

Date Received: 05/05/21 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		1	580970	05/13/21 19:42	AMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	580972	05/14/21 00:05	AMH	TAL BUF
Dissolved	Analysis	300.0		2	580303	05/11/21 13:15	IMZ	TAL BUF
Dissolved	Analysis	310.2		5	580228	05/10/21 19:19	SRW	TAL BUF
Dissolved	Analysis	350.1		1	579877	05/07/21 11:44	CLT	TAL BUF
Dissolved	Analysis	353.2		1	581029	05/14/21 12:52	ALT	TAL BUF

Client Sample ID: WG-11109668-050421-SG-NCR5S

Date Collected: 05/04/21 09:45

Date Received: 05/05/21 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		1	580970	05/13/21 19:46	AMH	TAL BUF
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		1	581103	05/15/21 00:51	LMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	580972	05/14/21 00:08	AMH	TAL BUF
Dissolved	Analysis	300.0		2	580303	05/11/21 13:44	IMZ	TAL BUF
Dissolved	Analysis	310.2		5	580228	05/10/21 18:37	SRW	TAL BUF
Dissolved	Analysis	350.1		1	579881	05/07/21 11:55	CLT	TAL BUF
Dissolved	Analysis	353.2		1	581029	05/14/21 12:47	ALT	TAL BUF

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-184248-3

Matrix: Water

Matrix: Water

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Client Sample ID: WG-11109668-050421-SG-NCR6S

Lab Sample ID: 480-184248-4 Date Collected: 05/04/21 07:55 Matrix: Water

Date Received: 05/05/21 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		1	580970	05/13/21 20:16	AMH	TAL BUF
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		1	581103	05/15/21 01:21	LMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	580972	05/14/21 00:38	AMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	581094	05/15/21 02:50	LMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	581633	05/18/21 17:20	LMH	TAL BUF
Dissolved	Analysis	300.0		5	580303	05/11/21 13:29	IMZ	TAL BUF
Dissolved	Analysis	310.2		20	580228	05/10/21 18:53	SRW	TAL BUF
Dissolved	Analysis	350.1		1	579881	05/07/21 11:58	CLT	TAL BUF
Dissolved	Analysis	353.2		1	581029	05/14/21 12:53	ALT	TAL BUF

Client Sample ID: WG-11109668-050421-SG-NCR13S

Date Collected: 05/04/21 07:55

Date Received: 05/05/21 15:30

Lab Sample ID: 480-184248-5

Matrix: Water

Ratch Dilution

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		1	580970	05/13/21 20:20	AMH	TAL BUF
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		1	581103	05/15/21 01:25	LMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	580972	05/14/21 00:42	AMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	581094	05/15/21 02:53	LMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	581633	05/18/21 17:24	LMH	TAL BUF
Dissolved	Analysis	300.0		5	580303	05/11/21 14:54	IMZ	TAL BUF
Dissolved	Analysis	310.2		20	580228	05/10/21 18:55	SRW	TAL BUF
Dissolved	Analysis	350.1		1	579881	05/07/21 11:59	CLT	TAL BUF
Dissolved	Analysis	353.2		1	581029	05/14/21 12:54	ALT	TAL BUF

Client Sample ID: WG-11109668-050421-SG-EAST A

Date Collected: 05/04/21 08:15

Date Received: 05/05/21 15:30

	Matrix: Water
	Lab Sample ID: 480-184248-6
LT	TAL BUF

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	580972	05/14/21 00:46	AMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	581094	05/15/21 02:57	LMH	TAL BUF

Page 35 of 43

Matrix: Water

Matrix: Water

Lab Sample ID: 480-184248-6

Lab Sample ID: 480-184248-7

Client Sample ID: WG-11109668-050421-SG-EAST A

Date Collected: 05/04/21 08:15

Date Received: 05/05/21 15:30

Client: N Tonawanda Water Works

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	581633	05/18/21 17:28	LMH	TAL BUF
Dissolved	Analysis	300.0		5	580303	05/11/21 15:08	IMZ	TAL BUF
Dissolved	Analysis	310.2		20	580228	05/10/21 18:56	SRW	TAL BUF

Client Sample ID: WG-11109668-050421-SG-EAST C

Date Collected: 05/04/21 08:30

Date Received: 05/05/21 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		1	580970	05/13/21 20:23	AMH	TAL BUF
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		2	581103	05/15/21 01:29	LMH	TAL BUF
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		5	581103	05/15/21 02:04	LMH	TAL BUF
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF

Dissolved	Prep	3005A		580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C	5	581724	05/19/21 16:08	LMH	TAL BUF
Total/NA	Prep	3005A		580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C	1	580972	05/14/21 00:50	AMH	TAL BUF
Total/NA	Prep	3005A		580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C	2	581094	05/15/21 03:01	LMH	TAL BUF
Total/NA	Prep	3005A		580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C	5	581094	05/15/21 03:36	LMH	TAL BUF
Total/NA	Prep	3005A		580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C	5	581633	05/18/21 17:32	LMH	TAL BUF
Dissolved	Analysis	300.0	100	580303	05/11/21 15:23	IMZ	TAL BUF
Dissolved	Analysis	310.2	200	580228	05/10/21 19:19	SRW	TAL BUF
Dissolved	Analysis	350.1	1000	580563	05/12/21 13:56	CLT	TAL BUF

Client Sample ID: WG-11109668-050421-SG-EAST D

353.2

Analysis

Dissolved

	: 05/04/21 08:5 : 05/05/21 15:3	-						
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		1	580970	05/13/21 20:28	AMH	TAL BUF
Dissolved	Prep	3005A			580406	05/13/21 10:48	ADM	TAL BUF
Dissolved	Analysis	6010C		2	581103	05/15/21 02:16	LMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	580972	05/14/21 00:54	AMH	TAL BUF
Total/NA	Prep	3005A			580583	05/13/21 10:48	KMP	TAL BUF
Total/NA	Analysis	6010C		1	581094	05/15/21 03:48	LMH	TAL BUF

Eurofins TestAmerica, Buffalo

Page 36 of 43 5/19/2021

TAL BUF

Lab Sample ID: 480-184248-8

Matrix: Water

581029 05/14/21 12:55 ALT

Lab Chronicle

Client: N Tonawanda Water Works Job ID: 480-184248-1

Project/Site: City of North Tonawanda - NCRS

Date Received: 05/05/21 15:30

Client Sample ID: WG-11109668-050421-SG-EAST D

Lab Sample ID: 480-184248-8 Date Collected: 05/04/21 08:50

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 300.0 580303 Dissolved Analysis 50 05/11/21 15:37 IMZ TAL BUF Dissolved Analysis 310.2 80 580228 05/10/21 19:20 SRW TAL BUF Dissolved Analysis 350.1 580563 05/12/21 13:57 CLT TAL BUF 1 TAL BUF Dissolved Analysis 353.2 1 581029 05/14/21 12:56 ALT

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: N Tonawanda Water Works

Job ID: 480-184248-1

Project/Site: City of North Tonawanda - NCRS

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		Identification Number	Expiration Date	
New York	N	ELAP	10026	04-01-22	
The following analytes	are included in this report by	it the laboratory is not cortifi	ad by the governing outbority. This list me	vinaluda analutaa far	
the agency does not of	•	at the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for	
• •	•	Matrix	Analyte	ay include analytes for	
the agency does not of	fer certification.	•		modude analytes for	

3

9

44

16

14

Method Summary

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Method **Method Description** Protocol Laboratory 6010C Metals (ICP) SW846 TAL BUF TAL BUF 300.0 Anions, Ion Chromatography **MCAWW** 310.2 Alkalinity **MCAWW** TAL BUF 350.1 Nitrogen, Ammonia **MCAWW** TAL BUF 353.2 Nitrogen, Nitrate-Nitrite MCAWW TAL BUF 3005A Preparation, Total Metals SW846 TAL BUF 3005A Preparation, Total Recoverable or Dissolved Metals SW846 TAL BUF

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-184248-1

3

4

5

6

8

9

12

4 /

Sample Summary

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
80-184248-1	WG-11109668-050421-SG-NCR3S	Water	05/04/21 09:05	05/05/21 15:30	
180-184248-2	WG-11109668-050421-SG-NCR4S	Water	05/04/21 09:20	05/05/21 15:30	
180-184248-3	WG-11109668-050421-SG-NCR5S	Water	05/04/21 09:45	05/05/21 15:30	
180-184248-4	WG-11109668-050421-SG-NCR6S	Water	05/04/21 07:55	05/05/21 15:30	
180-184248-5	WG-11109668-050421-SG-NCR13S	Water	05/04/21 07:55	05/05/21 15:30	
180-184248-6	WG-11109668-050421-SG-EAST A	Water	05/04/21 08:15	05/05/21 15:30	
180-184248-7	WG-11109668-050421-SG-EAST C	Water	05/04/21 08:30	05/05/21 15:30	
180-184248-8	WG-11109668-050421-SG-EAST D	Water	05/04/21 08:50	05/05/21 15:30	

3

4

5

8

9

10

13

14

Quantitation Limit Exceptions Summary

Client: N Tonawanda Water Works

Project/Site: City of North Tonawanda - NCRS

Job ID: 480-184248-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Analyte	Matrix	Prep Type	Unit	Client RL	Lab PQL
6010C	Arsenic	Water	Total/NA	mg/L	0.010	0.015
6010C	Cadmium	Water	Total/NA	mg/L	0.0010	0.002
6010C	Lead	Water	Total/NA	mg/L	0.0050	0.01
6010C	Selenium	Water	Total/NA	mg/L	0.015	0.025
6010C	Silver	Water	Total/NA	mg/L	0.0030	0.006

-3

၁ —

7

8

3

10

12

14

CHAIN OF CUSTODY RECORD

coc No.: 60260

PAGE ____

Fax: Phone: _ _ _ Address:____

SPECIAL INSTRUCTIONS: COMMENTS/ Davan 17 Simpl Cooler No: SSOW ID Total # of Containers: Carrier: Hand Part 10 Airbill No: ンフ MS/MSD Request 5 5 Total Containers/sample Amherst Lab Location: AWALYSIS REQUESTED
(See, Back of COC for Definitions) Test America Lab Contactical Stone ZH × HH Laboratory Name: EU CO-Fins × SAMPLE TYPE Filtered (Y/N) PRESERVATION - (SEE BACK OF COC FOR ABBREVIATIONS) 1 MG-11109668-050421-56-NCR35 5-4-210905 WG/G/Y B WE HIGHER CSCHZI-SG-NCK 4S 5-4-21 BJZO WG G

WE HIGHER CSCHZI-SG-NCK 5-5 5-4-21 BJZO WG G

WE HIGHER CSCHZI-SG-NCK 6-5 5-4-21 BJZO WG G Grab (G) or Comp (C) 19/19 ŽŽ (see pack of COC) 28.30 WG CASO WG Matrix Code 2755 OBIS TIME Anna GW Sampling DATE 5.4-21 54.21 17-4.5 North Tenchanda 5.4.2 8 MG-11109CG -050421-5G-EAST D MS-11109608-000121-56- NCK 135 MG-1110916B USONZI-SG-EASTA MS -17109668 050421-56- EAST S. Gardner SAMPLE IDENTIFICATION Project No/ Phase/Task Code Land kill roject Location: GHD Chemistry Contact: Sampler(s): Project Name: 9

						480-184248 Chain as C			
TAT Required in busin	ness days (use sepa	TAT Required in business days (use separate COCs for different TATs):	TATs):	Notes/ Speci.	Notes/ Special Requirements:	or see that the se	Custody	,	
	1 Day 2 Days 3 Days	Tweek Dweek			•		Temp 3.5#/ ICE	# IRT	
RELINOUS	INGUISHED BY	COMPANY	DATE	TIME	RECEIVED BY	ED BW	COMPANY	DATE	TIME
- A Bac	year	GHD	5/5/21	1504	1.	dley) / his	47	5551 1250	1536
5/1	0				2.				
19/20					છ				
Destribution: WH	WHITE - Fully Executed Copy (CRA)		HAIN OF CUSTODY IS A LEGAL DOCUMENT YELLOW – Receiving Laboratory Copy	Laboratory Copy	THE CHAIN OF CUSTODY IS A LEGAL DOCUMENT – ALL FIELDS MUST BE COMPLETED ACCURATELY YELLOW – Receiving Laboratory Copy ONNE – Shipper GOLDENRO	IPLETED ACCURATELY GOLDENROD	ACCURATELY GOLDENROD – Sampling Crew	A80	CBA Form: COC-10R (20110R0A)

GOLDENROD - Sampling Crew PINK - Shipper

CRA Form: COC-10B (20110804)

Login Sample Receipt Checklist

Client: N Tonawanda Water Works

Job Number: 480-184248-1

Login Number: 184248 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Answer	Comment
True	
True	3.3 #1 ICE
True	
	True True True True True True True True

4

6

46

111

13

15

NCR ANNUAL GW SAMPLING

DAILY LOG

5/3/2021 YSI PRO SERIES # GSHO6212 CALABRATION
USING PH 4.00 AUTO CAL LOT# 20250092 EXP. 8/28/21
(WHITE OAK)
BH 4.00 BEFORE 4.22 AFTER 4.00
COND 4.49 BEFORE 4.46 AFTER 4.49
0749 ONSITE SG DIT WEATHER-SIN/CLOUDS 52-
60°F WINDS E S-10MPH, CHANGE OF RAIN
SET LIP ON WELL FAST A DRY WELL OUT
0814 WELL EAST B OBSTRUCTED CAN'T GET
PURBEOR SAMPLE FROM WELL
0819 SET UP ON EAST C PURGE WELL, WELL PURGE
WATER VERY TURBID, LET SIT TO NEXT DAY THEN SAMPLE
0849 SET UP ON EAST D PURGE WELL, PURGE WATER
VERY TURBID, LET SIT TO NEXT DAY THEN SAMPLE.
1005 SET UP ON NCR-3S PURGE WELL DRY
1018 SET UP ON NCR-48 PURGE WELL DRY
1078 OFT LID ON NICE OF PROFE WELL DRY
1028 SET LIPON NCR-55 PURGE WELL DRY
1041 SETUPON NCR-13S PURGE WELL DRY
1057 OFFSITE.

1109668-01

Darl Fran

NCR

DAILY LOG

5/4/2021 0738 ONSITE SG/DJT WEATHER-CLOUDY,	
ENGRY CHANCE OF RAIN AB-100°F WINRS WALW O-SMPH	
FOGGY, CHANCE OF RAIN 48-66°F WINRS WNW O-SMPH SET UP ON NCR-138 SAMPLE WELL AFTER DRIED	
OLIT DAY BEFORE, BLIND DUPLICATE - NCR-65	
08019 SET UP ON EAST A SAMPLE WELL AFTER	
DRIED OUT DAY BEFORE, SAMPLED TOTAL METALS	
BEFORE WENT DRY NEED ALL OTHER PERAMETERS	
0824 SET UP ON EAST C SAMPLE WELL	
0840 SET LIP ON EAST D SAMPLE WELL	
0859 SET UP ON NCR-3S SAMPLE WELL	
0914 SET UP ON NCR-48 SAMPLE WELL,	
0933 SET LIP ON NCR-SS SAMPLE WELL (MS/MSD)	E)
IOIO OFFSITE	

11109668-01

Dave Zyran

Field Data Record Form Meter, Turbidity (Portable) Hach 2100P and 2100Q (QSF-421D)

Page 1 of 1

Control numb Date (mm/dd. Jser (print na	yyyy): 05/03/2021	Project number: Project name: Location:	NCR Lar Annual Gh Withour Re Tonawando	rdfill & Sampling xd North
Additional ed 10 NT 100 NT 200 NT	U LOT# ADIG3 es	scriptions: 5 9/2021 5 9/2021		
Field proced	lure before use:			
Do not calib	rate in the field.			
				Check when completed
• Low 0-10	AL standards (2100Q) , medium 0-100, high standards (2 batteries	100P)		
Test and red	ord standards: Gelex (2100P)/STABLCAL (2100Q) Standard	Meter Reading	•	

Filing: Field file

GROUNDWATER SAMPLING • SAMPLE COLLECTION DATA SHEET

PROJECT NAME:

NIAGARA COUNTY REFUSE SITE

SAMPLING CREW MEMBERS:

Dinyan B. Gard

DATE OF SAMPLE COLLECTION: | | | | | | | |

ION: |C|S|C|C||Z|| (| (M M D D Y Y)

		·		- 1				
Shipping Manifest Number				omoutuu valituudaa saataa				Metal State Control
Chain-of- Custody Number	(20)2(60)	60260	09209					
Analysis Required	()	PZ	9					
Sample Description	GLOUDY BROWN	TO SON						
Sample Time	で で の の の の の の の の の の の の の	0830	0830					
Volume Purged (Gallons)	0.64 0815	9.21	10.2					
Well Volume (Gallons)	0,32	7.5	3.4					
Well Number	EST A NCR36	East C NGR-45	FCS+ D NGR55	NCD 13S	*(MS/MSD) *	(Duplicate) *	(Rinse Blank) *	
Sample I.D.	**************************************	*	*					- and all of the control of the cont

* QA/QC sample (see QAPP for explanation of how to collect and label these samples). Collect MS/MSD and duplicate from one of the four monitoring wells listed above. Create a unique sample ID for the blind duplicate using NCR 65 for the well number. Write the name of the well where the MS/MSD and duplicate were actually collected in the well number boxes under "MS/MSD" and "Duplicate" above. Note:

Additional Comments:

95-124020-82250111-5W **

といろいい DISS TAL MEDIS

FP-5A

GROUNDWATER SAMPLING · SAMPLE COLLECTION DATA SHEET

PROJECT NAME:

NIAGARA COUNTY REFUSE SITE

SAMPLING CREW MEMBERS:

MMDDYYY DATE OF SAMPLE COLLECTION:

Shipping Manifest Number 00200 60260 8778 09709 60260 60260 Chaln-of-Custody Number Required Analysis Sample Description 9 2000 2 名 で Sample 1770 Time 750 9 00% 000 (Gailons) Purged Volume 30 970 Well Volume (Gallons) 3 NCR65 (Rinse Blank) * (MS/MSD) (Duplicate) NCR 4S NCR 135 NCR 55 Number NCR 35 X × Number X ¥ Sample LD. X X X

* QA/QC sample (see QAPP for explanation of how to collect and label these samples). Collect MS/MSD and duplicate from one of the four monitoring wells listed above. Create a unique sample ID for the blind duplicate using NCR 65 for the well number. Write the name of the well where the MS/MSD and duplicate were actually collected in the well number boxes under "MS/MSD" and "Duplicate" above. Note:

Additional Comments:

7 75 CO 15 E 198 TAC Metals

		WELL P	URGING INF	ORMATIO	N		
SITE/PROJECT NAME:	ROJECT NAME: Niagara County Refuge Site						
DATE:	050	321	(MM DD YY)	·			
CREW MEMBERS:	S GARD	NER D	TYRAN				
PURGING METHOD:	DEDICA	TED BAILE	ER		SOUNDE	D DEPT	7-1-29.35
WELL NUMBER:	EAST	T A					- 27.32
ONE WELL VOLUME:		32	gallons				
FIVE WELL VOLUMES:			gallons				
(See Sction 4.2.4.1 of the C	OM&M Manua	l and Table FP-4.:	1 to calculate we	ll volumes base	d on current w	ater levels).	
			WELL	DRY	(B) O.	124	
WELL	_ VOLUME	1	2	3	4	5	TOT/AVG
VOLUME PURG	GED (total)	0.32	0.64				0.64
	рH	6.72	7.26				6.99
TEMI	PERATURE	11.4	10.7				11.0
CONI	DUCTIVITY	2.08	2.02				2.05
	TURBIDITY	9.65	525				267
	CÓLOR	CLEAR	CLOUDY 32 BROW				
	ODOR	NONE	NONE				NOVE
CC	OMMENTS						
	I CERTIFY TH	AT SAMPLING PR	ROCEDURES WER	E IN ACCORDA	NCE WITH APP	LICABLE PROT	OCOLS
S 3 202 David Tyran David Tyran PRINT NAME SIGNATURE						SIGNATURE	
FP-4C 29-35-2	7.32 <i>:</i>	2.03×	16:00	32 GA			

				ation. Table 20. 40. 51. process of which the			
		WELL PU	RGING INF	ORMATION			
SITE/PROJECT NAME:	Niagara Coun	ty Refuge Site					
DATE:	050	321	(MM DD YY)				
CREW MEMBERS:	SGARD	NER, DI	YRAN_	A THE STATE OF THE	· · · · · · · · · · · · · · · · · · ·		
PURGING METHOD:	DEDICA	TED BALL	ERL				1-47.4
WELL NUMBER:	EAST	<u>C</u>			ΙΝΙΠΔΙ	-W/L-	20,86
ONE WELL VOLUME:	4.2		gallons				
FIVE WELL VOLUMES:	21	.0	gallons				
(See Sction 4.2.4.1 of the O	M&M Manual a	ind Table FP-4.1	to calculate we	ll volumes based	d on current wa	ter levels).	
WELL	VOLUME	1	2	3	4	5	TOT/AVG
volume purg	iED (total)	4.2	8.4	12.6			12.6/4.2
	рН	6.69	6.63	6.60			19,92/6.64
TEMP	PERATURE	11.8	11.5	11.8	White services and the services of the service		35.1/11.7
CONE	DUCTIVITY	26.79	27.39	2696	······································		81.14/27.05
7	TURBIDITY	244	212	128			584/194.7
	COLOR	DARK BROWN	SAME	SAME			/
	ODOR	LEACHATE LIKE ODS	e sate	SAME			
CC	OMMENTS						
	I CERTIFY THA	T SAMPLING PR	ocedures wei	RE IN ACCORDAI	NCE WITH APPL	ICABLE PROT	OCOLS
S 3 2021		D _G PRI	NT NAME	<u> </u>		\sum	SIGNATURE:
FP-4C A7-4-20:	86 = 26	544,16	1 = 4,2	SAL_			

WELL PURGING INFORMATION							
SITE/PROJECT NAME:							
DATE:	050	321	(MM DD YY)			• .	
CREW MEMBERS:	S GAR	-40Ph	TYRAN				
PURGING METHOD:	WATERR DEDICA	A FOOT VA	ER GO	SOL	NDED O	EPTH - 3	37.85
WELL NUMBER:	EAST	<u> </u>		Tim	VAL W	L-16	.49
ONE WELL VOLUME:	3	4	gallons				
FIVE WELL VOLUMES:	7	7	gallons				
(See Sction 4.2.4.1 of the O	M&M Manual	and Table FP-4.1	to calculate we	ll volumes based	d on current w	ater levels).	
WELL	VOLUME	1	2	3	4	5	TOT/AVG
VOLUME PURG	ED (total)	3,4	6.8	10.2			10-2/3.4
	рН	6.70	6.88	6.92			20.5/6.83
TEMP	ERATURE	15.9	13,9	13.6	- Introductive Topics		43.4/14.5
COND	UCTIVITY	15.01	14.72	14.63			44.36/14.79
Т	URBIDITY	>1000	>1000	>1065			>1000
	COLOR	BLACK	SAME	SAME		·	
	ODOR	PETROLEU LIKE ODA		SAME			
CC)MMENTS						
	I CERTIFY THA	AT SAMPLING PR	OCEDURES WEF	RE IN ACCORDAN	NCE WITH APP	'LICABLE PROT	ocols
5 3 2021		De	old Tyra	<u>an</u>			D 7/10
PRINT NAME SIGNATURE SIGNATURE SIGNATURE							

WELL PURGING INFORMATION							
SITE/PROJECT NAME: Niagara County Refuge Site							
DATE:	0321	(MM DD YY)					
CREW MEMBERS: S G	ARDNER, D-	TYRAN					
PURGING METHOD: DFD	ICATED BA	LER	Sol	UNDED (DEPTH- (D.08	
WELL NUMBER: NCI	2-35			MALN	(L-A.	. 1	
ONE WELL VOLUME:	5.31	gallons					
FIVE WELL VOLUMES:		gallons					
(See Sction 4.2.4.1 of the OM&M Ma	anual and Table FP-4.1	to calculate wel	l volumes base		ater levels).		
		WEL	DRY	(°, 0, 2	25 GA	L	
WELL VOLUM	E 1	2	3 ″	4	5	TOT/AVG	
VOLUME PURGED (tota	0.31					0-31	
, P	7.87					7.87	
TEMPERATUR	e 9.7					9.7	
conductivit	y 1.18					1.18	
TURBIDIT	y 20.4					20.4	
COLC	R COLORU	28					
ODC	R NONE	700					
COMMEN ⁻	rs						
I CERTIFY THAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE PROTOCOLS							
S 3 2021 David Tyran Dave Signature							
FP-4C 6.08 - 4.11= 1.97 x.16= 0.31 GAL							

WELL PURGING INFORMATION							
SITE/PROJECT NAME:	Niagara Cour	nty Refuge Site					
DATE:	050	321	(MM DD YY)				
CREW MEMBERS:	S GAR	DNER D	TYRAN			•	
PURGING METHOD:	DEDICA	TED BAIL	ER	Soci	SUDED OF	PTH-5	.18
WELL NUMBER:	NCR-	48		111	ITIAL V	N/L - 2	1.93
ONE WELL VOLUME:	0.	36	gallons				
FIVE WELL VOLUMES:		8.1	gallons				
(See Sction 4.2.4.1 of the	OM&M Manual	and Table FP-4.1			ed on current w	ater levels).	
			WEL		<u>e 0.3</u>	0 641	Section of the sectio
WEL	L VOLUME	Í.	2	3	4	5	TOT/AVG
VOLUME PUR	GED (total)	0.36		·			0.36
	рН	7.90					7-90
TEM	PERATURE	11.0					11.6
CON	DUCTIVITY	0.88					0-88
	TURBIDITY	40.0		·			40.0
	COLOR	COLORLE	SE				
	ODOR	NONE					
C	OMMENTS						
I CERTIFY THAT SAMPLING PROCEDURES WERE IN ACCORDANCE WITH APPLICABLE PROTOCOLS							
5/3/2021 David Tyran Dave Tyran DATEL PRINT NAME SIGNATURE							
FP-4C 5.18-2.93= 2.25 x.1L2-0,36 GAL							

WELL PURGING INFORMATION							
SITE/PROJECT NAME:	Niagara Cou	nty Refuge Site					•
DATE:	050	321	 (MM DD YY)				
CREW MEMBERS:	S GAR	DNER D	TYRAN				
PURGING METHOD:	DEDICATED BAILER			SOUN	UDED DEI	77H-11.	30
WELL NUMBER:	NCR	2-53		(N)	MLWIL	b.8	9
ONE WELL VOLUME:		.70	gallons				
FIVE WELL VOLUMES:		3:5	gallons			er Er	
(See Sction 4.2.4.1 of the C)M&M Manual	and Table FP-4.1	to calculate wel	l volumes base	i		
			WELL	_DRY(7 16	AL	
WELL	VOLUME	1	2	3	4	5	TOT/AVG
volume purg	GED (total)	0.70					0.70
	рН	8,05					8.05
TEMF	PERATURE	9.8					9-8
CONE	DUCTIVITY	0.73					0.73
1	TURBIDITY	32.l					32./
	COLOR	COXORIG	SC				
	ODOR	NONE	5				
CC	OMMENTS						
	I CERTIFY THA	AT SAMPLING PRO	ocedures Weri	E IN ACCORDA	NCE WITH APP	LICABLE PROT	0C0LS
S/3/2021 DATE		PRI	NT NAME	<u> </u>		-Day	SIGNATURE
FP-4C 11.30-6.8	39=4,	41 x,16:	-0.70	GAL			

		WELL PU	RGING INF	ORMATIO	N		
SITE/PROJECT NAME:	SITE/PROJECT NAME: Niagara County Refuge Site					· . ·	•
DATE:	050	321	(MM DD YY)			٠	
CREW MEMBERS:	S GARD	ONER, D	TYRAN	_,			
PURGING METHOD:	DEDIC	ATED BAI	LER_	SOU	NDED DE	FTU - 7.	98
WELL NUMBER:	NCR	-13S			A V	- J.	4-/
ONE WELL VOLUME:	0,4	10	gallons				
FIVE WELL VOLUMES:		2	gallons				
(See Sction 4.2.4.1 of the ON	∆&M Manual	and Table FP-4.1			ed on current w	ater levels).	
			WELL	_DRYE	0.60	6AL	
WELL \	volume	1	2	3	4	5	TOT/AVG
volume purge	ED (total)	0.40					0.40
	рН	7.67					7.67
TEMPE	ERATURE	9.5					9.5
COND	JCTIVITY	1.10					1.10
TU	JRBIDITY	11.0					11.0
	COLOR	COLORLE	SS				
	ODOR	NONE					
COI	MMENTS						
	I CERTIFY THA	AT SAMPLING PRO	OCEDURES WER	E IN ACCORDA	NCE WITH APP	LICABLE PROT	OCOLS
5/3/2021 DATE	<u> </u>	Dei PRI	old Tyra NT NAME	<u> </u>		hk.	SIGNATURE SIGNATURE
FP-4C 7.98 - 5.4	47= 2.	512,16	-0.40	GAL			

CHAIN OF CUSTODY RECORD

Address:___

Phone: _ _

coc No.: 60260

PAGE ___ OF

Tax:

IME COMMENTS/ SPECIAL INSTRUCTIONS: Cooler No: DATE SSOW ID: Total # of Containers: Airbill No: Carrier: COMPANY NS/MSD Request Total Containers/sample Lab Location: See Back of COC for Definitions) ANALYSIS REQUESTED RECEIVED BY Notes/ Special Requirements: ٠.; oi ne è Laboratory Name: TIME Filtered (Y/N) SAMPLE TYPE Lab Contact; PRESERVATION - (SEE BACK OF COC FOR ABBREVIATIONS) Grab (G) or Comp (C) DATE (see back of COC) Matrix Code TAT Required in business days (use separate COCs for different TATs): IME **2**Week DATE /mm/dd//yy COMPANY Week (Containers for each sample may be combined on one line) Z A ☐ Days SAMPLE IDENTIFICATION 174050 2 Days RELINQUISHED BY Project No/ Phase/Task Code: GHD Chemistry Confact: П1 Day Project Location: Project Name: Sampler(s): 0 ~ шәу

WHITE - Fully Executed Copy (CRA)

Distribution:

THE CHAIN OF CUSTODY IS A LEGAL DOCUMENT – ALL FIELDS MUST BE COMPLETED ACCURATELY
VELLOW – Receiving Laboratory Coby YELLOW - Receiving Laboratory Copy

PINK - Shipper

CRA Form: COC-10B (20110804)

APPENDIX C CORRESPONDENCE

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

MOV 21 2005

BY FEDEX

Mr. Eric Felter Project Manager Parsons 180 Lawrence Bell Drive, Suite 104 Williamsville, New York 14221

Re: Niagara County Refuse Site, Wheatfield, New York: Request for the Reduction of Analytical Parameters in Groundwater Samples

Dear Mr. Felter:

The U.S. Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) have reviewed your letter dated October 3, 2005 prepared by Parsons on behalf of the Niagara County Refuse (NCR) Site PRP Group requesting a reduction in the analytical parameters in groundwater samples taken at the NCR site as part of the operation and maintenance program. The current analytical parameter list includes 2 volatiles, 4 semi-volatiles, and 16 metals which were determined to be constituents of interest at the site. Your proposal requests reducing the parameters to 5 metals, representing those constituents which have been measured above standards with some regularity in past sampling rounds. The sampling program, involving four monitoring wells, has been in effect since 2001 and your proposal reflects trends evident since the program was initiated. Sampling frequency is currently semi-annual (twice a year).

After discussing this matter with NYSDEC with input from the New York State Department of Health, our preference is that the sampling parameters remain the same for the time being. This is due to the significant residential growth around the site in recent years. After the current sampling round, samples are scheduled to be taken annually. EPA approves changing the current monitoring program only to the extent that the volatiles and semi-volatiles analysis can be conducted every two years while the metals analysis be conducted annually. EPA will, however, consider a further frequency reduction in the future as more data are collected.

Please call me at (212) 637-4278 if you have any questions on this matter.

Sincerely yours,

Michael J. Negrelli

Remedial Project Manager

New York Remediation Branch

cc:

J. Konsella - NYSDEC/Region 9

B. Sadowski - NYSDEC/Region 9

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

DEC 1 1 2018

Mr. Eric Felter Project Coordinator Parsons Engineering Science, Inc. 40 LaRiviere Drive, Suite 350 Buffalo, New York 14202

Re: Request for OM&M Plan Modifications; Niagara County Refuse Site, Wheatfield, New York.

Dear Mr. Felter:

This letter is in response to your letter dated August 20, 2018 to the U.S. Environmental Protection Agency (EPA) requesting modifications to the Operations, Maintenance, and Monitoring (OM& M) Plan, dated December 2000, for the Niagara County Refuse Superfund site in Wheatfield, New York. The request is made on behalf of the potentially responsible parties for the site, and seeks EPA approval for the following changes:

- Reduce the analytical suite associated with the OM&M responsibilities;
- Remove the data validation requirement; and
- Change monitoring report requirement from quarterly to annually.

Specifically, your letter presents documentation to support the elimination of sampling for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and mercury from groundwater sample analysis based on these compounds and element being consistently below New York State Department of Environmental Conservation (NYSDEC) ambient water quality standards and New York State Department of Health (NYSDOH) and EPA maximum contaminant levels, and generally below detection limits, since 2005. Additionally, your letter cites that data validation has been completed on groundwater analytical results since the initiation of OM&M sampling in 2001, initially performed quarterly, currently collected annually, and that the substantial volume of validated data collected supports the elimination of the data validation requirement. Finally, you note that reporting has been performed quarterly since the OM&M Plan became effective in 2001 and since groundwater monitoring is performed annually, it would be more economical to provide annual reports, which in addition to providing the groundwater analytical results, would summarize the monthly inspections as well and any other relevant information collected throughout the year.

EPA has consulted with NYSDEC and agrees with all these proposals save for the data validation requirement. Reporting should be done annually within two to three months of groundwater sampling in order to provide current results and VOCs, SVOCs, and mercury can be eliminated from

analysis. Following an evaluation by EPA's Division of Environmental Science and Assessment, Monitoring and Assessment Branch, it has been determined that continued validated groundwater monitoring data is required only for metals in order to support the data summaries in EPA's five-year reviews.

Additionally, based on comments provided by NYSDEC, EPA and NYSDEC provide the following observations on the OM&M reports:

- Concentration versus time graphs for the naturally occurring metals (i.e., aluminum, calcium, iron, magnesium, manganese, potassium, and sodium) can be omitted.
 Concentration versus time graphs should only be completed for consistently occurring toxic metals.
- Tables only showing water level elevations do not demonstrate the effectiveness of the perimeter collection system (PCS). Future reports should clarify how water level data can be utilized with other data to demonstrate the effectiveness of the PCS. Additionally, past reports have indicated that water level monitoring point East "B" has collapsed. If water level monitoring is to be continued to be used to demonstrate PCS effectiveness, this point should be repaired or replaced.
- The PCS is not shown on any of the figures in the OM&M reports. Figure 1.1 should be modified to include the PCS as well as the location of site access roads.
- There is no NYSDEC groundwater standard for aluminum. The standard of 100 ug/L included in the OM&M reports is for surface water and should be removed from the appropriate table.
- The NYSDEC groundwater standard for copper is 200 ug/L, not 5 ug/L as shown in the OM&M reports. The table should be corrected accordingly.
- There is no NYSDEC groundwater standard for vanadium. The standard of 14 ug/L included in the OM&M reports is for surface water and should be removed from the appropriate table.

If you have any questions regarding this matter, please contact me at (212) 637-4278 or email me at negrelli.mike@epa.gov.

Sincerely yours,

cc:

Michael Negrelli, Remedial Project Manager

New York Remediation Branch

John Frankenthal – BP/Atlantic Richfield Company

B. Sadowski - NYSDEC

Michael Mintzer - EPA/ORC

APPENDIX D DATA VALIDATION REPORT

DATA USABILITY SUMMARY REPORT

2021 ANNUAL GROUNDWATER SAMPLING

NIAGARA COUNTY REFUSE SITE

Prepared By:

301 Plainfield Road, Suite 350 Syracuse, New York 13212

JUNE 2021

TABLE OF CONTENTS

SECTION 1 DATA USABILITY SUMMARY	1-1
1.1 Laboratory Data Packages	1-1
1.2 Sampling and Chain-of-Custody	1-1
1.3 Laboratory Analytical Methods	1-1
1.3.1 Metals Analysis	1-2
1.3.2 General Chemistry Analysis	1-2
SECTION 2 DATA VALIDATION REPORT	2-1
2.1 Groundwater Data	2-1
2.1.1 Total and Dissolved Metals	2-1
2.1.2 General Chemistry	2-2

LIST OF ATTACHMENTS

ATTACHMENT A - VALIDATED LABORATORY DATA

SECTION 1 DATA USABILITY SUMMARY

Groundwater samples were collected from the Niagara County Refuse site in North Tonawanda, New York on May 4, 2021. Analytical results from these samples were validated and reviewed by Parsons for usability with respect to the following requirements:

- Work Plan.
- USEPA SW-846 analytical methodologies,
- USEPA Region II Standard Operating Procedures (SOPs) for inorganic data review.

The analytical laboratory for this project was Eurofins – Environment Testing America in Amherst, New York. This laboratory is certified to conduct project analyses through New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) and the National Environmental Laboratory Accreditation Program (NELAP).

1.1 Laboratory Data Packages

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was 15 days for the groundwater samples.

The data packages received from Eurofins were paginated, complete, and overall were of good quality. Comments on specific quality control (QC) and other requirements are discussed in detail in the attached data validation report in Section 2.

1.2 Sampling and Chain-of-Custody

Groundwater samples were collected, properly preserved, shipped under a COC record, and received at Eurofins within one day of sampling. All samples were received intact and in good condition at Eurofins.

1.3 Laboratory Analytical Methods

Groundwater samples were collected from the site and analyzed for total and dissolved metals, dissolved chloride, dissolved sulfate, dissolved carbonate and bicarbonate alkalinity, dissolved nitrate-nitrite, and dissolved ammonia. Summaries of issues concerning this laboratory analysis are presented in Subsections 1.3.1 and 1.3.2. The data qualifications resulting from the data validation review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, comparability, and sensitivity (PARCCS) are discussed in Section 2. The laboratory data were reviewed and may be qualified with the following validation flags:

- "U" not detected at the value given,
- "UJ" estimated and not detected at the value given,
- "J" estimated at the value given,
- "J+" estimated biased high at the value given,
- "J-" estimated biased low at the value given,
- "N" presumptive evidence at the value given, and
- "R" unusable value.

The validated laboratory data were tabulated and are presented in Attachment A.

1.3.1 Metals Analysis

Groundwater samples collected from the site were analyzed for total and dissolved metals using the USEPA SW-846 6010C analytical method. Certain metals results were qualified as estimated based upon instrument calibrations and field duplicate precision; and qualified as not detected based upon blank contamination. All of the metals data were considered usable and 100% complete for the groundwater data presented by Eurofins. PARCCS requirements were met.

1.3.2 General Chemistry Analysis

Groundwater samples collected from the site were analyzed for dissolved chloride and sulfate using the USEPA 300.0 analytical method; dissolved carbonate and bicarbonate alkalinity using the USEPA 310.2 analytical method; dissolved nitrate-nitrite using the USEPA 353.2 analytical method; and dissolved ammonia using the USEPA 350.1 analytical method. Certain metals results were qualified as estimated based upon matrix spike recoveries. All of the general chemistry data were considered usable and 100% complete for the groundwater data presented by Eurofins. PARCCS requirements were met.

SECTION 2 DATA VALIDATION REPORT

2.1 Groundwater Data

Data review has been completed for data packages generated by Eurofins containing groundwater samples collected from the Niagara County Refuse site. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The samples were contained within sample delivery group (SDG) 480-184248-1. The validated laboratory data are presented in Attachment A.

Data validation was performed for all samples in accordance with the most current editions of the USEPA Region II SOPs for inorganic data review and analytical methodologies. This data validation and usability report is presented by analysis type.

2.1.1 Total and Dissolved Metals

The following items were reviewed for compliancy in the metals analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration blank, and laboratory preparation blank contamination
- Inductively coupled plasma (ICP) interference check sample (ICS)
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries
- Laboratory duplicate precision
- Laboratory control sample (LCS) recoveries
- ICP serial dilution
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of blank contamination, continuing calibration verifications, and field duplicate precision as discussed below.

Blank Contamination

The laboratory preparation blank associated with the project samples contained total iron and total zinc below the reporting limits at concentrations of 0.0233 and 0.00159 mg/L, respectively. Therefore, results for these analytes less than validation action concentrations were considered not detected and qualified "U" for the affected samples.

Continuing Calibration Verifications

All continuing calibration verifications were analyzed at the appropriate frequency with recoveries within QC limits. All low reference standard verifications were analyzed at the appropriate frequency with recoveries within the 70-130%R QC limit with the exception of the high verification recoveries for total calcium (142%R), total iron (291%R), total manganese (149%R), and total potassium (147%R) associated with sample EAST D. Therefore, positive results for these analytes were considered estimated, possibly biased high, and qualified "J+" for the affected sample.

Field Duplicate Precision

All field duplicate precision results were considered acceptable with the exception of the precision for total sodium (49.3%RPD) associated with sample NCR-13S and its field duplicate sample NCR-6S. Therefore, results for these analytes were considered estimated and qualified "J" for the affected parent sample and field duplicate.

Usability

All metals sample results were considered usable following data validation.

<u>Summary</u>

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, comparability, and sensitivity. The metals data presented by Eurofins were 100% complete with all metals data considered valid and usable. The validated metals laboratory data are tabulated and presented in Attachment A.

2.1.2 General Chemistry

The following items were reviewed for compliancy in the general chemistry analysis:

- Custody documentation
- Holding times
- Initial and continuing calibration verifications
- Initial and continuing calibration blank, and laboratory preparation blank contamination
- MS/MSD recoveries
- Laboratory duplicate precision
- Laboratory control sample (LCS) recoveries
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of blank contamination and MS/MSD recoveries as discussed below.

Blank Contamination

The laboratory preparation blank associated with samples NCR-3S and NCR-5S contained bicarbonate alkalinity below the reporting limit at a concentration of 5.28 mg/L; the laboratory preparation blanks associated with samples EAST C and EAST D contained ammonia below the reporting limit at concentrations ranging 0.00997-0.0121 mg/L; and the continuing calibration blanks associated with the project samples contained ammonia below the reporting limit at concentrations ranging 0.0104-0.0138 mg/L. Validation qualification was not required for the affected samples.

MS/MSD Recoveries

All MS/MSD recoveries were considered acceptable and within QC limits with the exception of the low MSD recovery for ammonia (81%R; QC limit 90-110%R) associated with sample NCR-5S. Therefore, the nondetected ammonia result was considered estimated and qualified "UJ" for the affected sample.

Usability

All general chemistry sample results were considered usable following data validation.

<u>Summary</u>

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, comparability, and sensitivity. The general chemistry data presented by Eurofins were 100% complete with all data considered valid and usable. The validated general chemistry laboratory data are tabulated and presented in Attachment A.

ATTACHMENT A - VALIDATED LABORATORY DATA

		Locatio	n ID:	ΕΛC	ST-A	EAS	T-C	ΕΛC	ST-D	NC	R-3S
		Locatio	лт ID.		109668-	WG-111			109668-	WG-111	
		Samn	le ID:	_	G-EAST A	050421-S		_	G-EAST D	050421-S	
		Sample Sample			V LAST A	030121 3			V		V NCRSS
			latrix:		'IG	w			'IG	W	
			SDG:		42481	48018			42481		42481
		Lab Samp			4248-6	480-18			34248-8		4248-1
			npled:		2021	5/4/2			2021		2021
Method	CAS_RN	Chemical Name	Unit	-, ,		-, ,		-, ,		-, ,	_
E300.0		Chloride (As Cl)	mg/l	230		3010		1480		2.5	U
E300.0	14808-79-8	Sulfate (As SO4)	mg/l	85.7		1920		17.6	J	86.6	
E310.2	ALKB	Alkalinity, Bicarbonate (As CaCO3)	mg/l	666		19900		6780		488	
	ALKC	Alkalinity, Carbonate (As CaCO3)	mg/l	200	U	2000	U	800	U	50	
E350.1		Nitrogen, Ammonia (As N)	mg/l			1360		0.62		0.02	U
E353.2	NO3NO2N	Nitrogen, Nitrate-Nitrite	mg/l			0.05	U	0.22		0.51	
011100100	7420 00 5	TOTAL METALS	,,	2.2				4.5		0.0	
		Aluminum	mg/l	2.2		7.4		1.5		0.2	
		Antimony	mg/l	0.02		0.1	U	0.02	U	0.02 0.01	
	7440-38-2 7440-39-3	Arsenic Barium	mg/l ma/l	0.01	U	0.057 0.19		0.015 0.62		0.01	U
	7 44 0-39-3	Beryllium	mg/I	0.45	11	0.19	11	0.02	11	0.048	11
		Cadmium	mg/l	0.002	J	0.002	J	0.002	<u> </u>	0.002	
	7440-70-2	Calcium	mg/l	193		2820		135]+	121	·
		Chromium, Total	mg/l	0.013		0.24		0.084	J.	0.004	U
	7440-48-4	Cobalt	mg/l	0.0029	J	0.2		0.023		0.004	
	7440-50-8	Copper	mg/l	0.048		0.05	U	0.028		0.004	J
SW6010C	7439-89-6	Iron	mg/l	64.3		1490		77.6	J+	0.06	
SW6010C	7439-92-1	Lead	mg/l	0.15		0.6		0.28		0.005	U
SW6010C	7439-95-4	Magnesium	mg/l	122		1380		414		54.1	
SW6010C	7439-96-5	Manganese	mg/l	0.41		18.2		0.12	J+	0.0079	
		Nickel	mg/l	0.018		1.1		0.22		0.0029	J
SW6010C		Potassium	mg/l	17.7		889		372		1.4	
		Selenium	mg/l	0.015		0.075		0.015		0.015	
		Silver	mg/l	0.003	U	0.015	U	0.003	U	0.003	U
		Sodium	mg/l	70.3		2370	-	743		6.4	
	7440-28-0 7440-62-2	Thallium Vanadium	mg/l mg/l	0.02 0.0049		0.02 0.026	U	0.02	U	0.02 0.005	
	7440-62-2	Zinc	mg/l	0.0049		27.9		0.011		0.003	
3000100		DISSOLVED METALS	IIIg/I	0.10		27.3		0.39		0.0003	J
SW6010C		Aluminum	mg/l			6.8		1.5		0.2	П
		Antimony	mg/l			0.1	U	0.02		0.02	
	7440-38-2	Arsenic	mg/l			0.044	-	0.017		0.015	_
		Barium	mg/l			0.18		0.62		0.049	
		Beryllium	mg/l			0.002	U	0.002	U	0.002	
		Cadmium	mg/l			0.0083	J	0.0041		0.002	U
	7440-70-2		mg/l			2650		122		117	
		Chromium, Total	mg/l			0.23		0.083		0.004	
			mg/l			0.19		0.027		0.004	
	7440-50-8		mg/l			0.05	U	0.025		0.0031	
	7439-89-6	Iron	mg/l			1410		98.5		0.05	
	7439-92-1	Lead	mg/l			0.46		0.23		0.01	U
		i	mg/l			1370		446		57.4	
	7439-96-5 7440-02-0	Manganese Nickel	mg/l			17.3 1		0.14 0.22		0.0057 0.0034	1
	7440-02-0		mg/l mg/l			830		379		1.2	J
	7782-49-2		mg/l			0.025		0.025		0.025	П
	7440-22-4		mg/l			0.023		0.023		0.023	
	7440-23-5		mg/l			2220		1580		6.4	
	7440-28-0		mg/l			0.02		0.02		0.02	U
	7440-62-2		mg/l			0.016		0.014		0.005	
	7440-66-6		mg/l			26.5		0.73		0.0085	
		•									

		Locatio	n ID:	NCI	R-4S	NCE	R-5S	NCR	R-13S	NCR	-13S
		Locatio	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		109668-	WG-111			109668-	WG-111	
		Samn	le ID:		G-NCR4S	050421-S		_	G-NCR13S		
		Sample			N NCK 15		V NCRSS		N NCK133		D NCKOS
		•	latrix:		/G	W			VG		IG
		·	SDG:		342481	48018			342481		42481
		Lab Samp			34248-2		4248-3		34248-5		4248-4
			ipled:		2021	5/4/			2021		2021
Method	CAS RN	Chemical Name	Unit	-, .,		, -,		,			
E300.0	16887-00-6	Chloride (As Cl)	mg/l	1	U	1.1		2.5	U	2.5	U
E300.0		Sulfate (As SO4)	mg/l	71.8		5.1		93.7		84.5	
	ALKB	Alkalinity, Bicarbonate (As CaCO3)	mg/l	425		400		616		687	
E310.2	ALKC	Alkalinity, Carbonate (As CaCO3)	mg/l	50	U	50	U	200	U	200	
E350.1	7664-41-7	Nitrogen, Ammonia (As N)	mg/l	0.02	U	0.02	UJ	0.02	U	0.02	U
E353.2	NO3NO2N	Nitrogen, Nitrate-Nitrite	mg/l	0.043	J	0.033	J	0.049	J	0.045	J
		TOTAL METALS									
		Aluminum	mg/l	0.63		0.18		0.2		0.2	
		Antimony	mg/l	0.02		0.02	U	0.02		0.02	
	7440-38-2	Arsenic	mg/l	0.01		0.01	U	0.01		0.01	U
	7440-39-3	Barium	mg/l	0.055		0.14		0.063		0.051	
	7440-41-7	Beryllium	mg/l	0.002		0.002		0.002		0.002	
	7440-43-9	Cadmium	mg/l	0.001		0.001	U	0.001		0.001	U
	7440-70-2	Calcium	mg/l	116		86		151		151	
	7440-47-3	Chromium, Total	mg/l	0.0011		0.0042		0.004	-	0.004	
	7440-48-4	Cobalt	mg/l	0.004		0.004		0.004	-	0.004	_
	7440-50-8	Copper	mg/l	0.002	J	0.0031	J	0.0021	_	0.0025	J
	7439-89-6	Iron	mg/l	1.1		0.15	11	0.046		0.032	
	7439-92-1	Lead	mg/l	0.005	U	0.005	U	0.005	_	0.005	U
		Magnesium	mg/l	35		39.9		58.8 0.003		66.7	1
		Manganese Nickel	mg/l	0.023	11	0.0033 0.0026	1	0.003		0.00062 0.01	
		Potassium	mg/l mg/l	9		0.0028		1		0.01	U
		Selenium	mg/l	0.015		0.25		0.015		0.015	П
		Silver	mg/l	0.003		0.003		0.003		0.003	
	7440-23-5	Sodium	mg/l	21.9		8	0	8.4		13.9	
	7440-28-0	Thallium	mg/l	0.02		0.02	U	0.02		0.02	
	7440-62-2	Vanadium	mg/l	0.005		0.005		0.005		0.005	
	7440-66-6	Zinc	mg/l	0.021	_	0.0024		0.01		0.0021	
		DISSOLVED METALS									
SW6010C	7429-90-5	Aluminum	mg/l	1.2		0.07	J	0.2	U	0.2	U
		Antimony	mg/l	0.02		0.02		0.02	U	0.02	_
	7440-38-2	Arsenic	mg/l	0.015	U	0.015	U	0.015		0.015	U
	7440-39-3	Barium	mg/l	0.057		0.14		0.061		0.055	
	7440-41-7	Beryllium	mg/l	0.002		0.002		0.002		0.002	
		Cadmium	mg/l	0.002		0.002	U	0.002		0.002	U
		Calcium	mg/l			77		142		137	
		Chromium, Total	mg/l	0.0018		0.0012		0.004		0.004	_
	7440-48-4	Cobalt	mg/l	0.004		0.004		0.004		0.004	
		Copper	mg/l	0.0026		0.0024	J	0.002		0.0019	
SW6010C	7439-89-6	Iron	mg/l	2.1		0.068		0.05		0.031	
	7439-92-1	Lead	mg/l	0.01	_	0.01	U	0.01		0.01	U
	7439-95-4	Magnesium	mg/l	35.4		41.9	1	61.4		61.5	7
	7439-96-5 7440-02-0	Manganese Nickel	mg/l	0.02		0.0016		0.003	_	0.00058	
			mg/l	0.0013 8.4		0.0019		0.01	1-	0.0021 0.82	J
		Potassium Selenium	mg/l	0.025		0.32 0.025		0.025		0.82	11
		Silver	mg/l mg/l	0.025		0.025		0.025		0.025	
		Sodium	mg/I mg/I	20.9		9.1	U	9.6		11.1	U
		Thallium	mg/l	0.02		0.02	11	0.02		0.02	П
		Vanadium	mg/l	0.005		0.005		0.02		0.02	
		Zinc	mg/l	0.003		0.0015		0.003		0.0022	
330100	. 1 10 00 0	<u> </u>	9/1	0.05	1	0.0013		0.0010	1-	0.0022	

APPENDIX E MONTHLY INSPECTION LOGS

	MONT	HLY INSPECTION LOG	-	
PROJECT NAME: Nia	gara County Refuse Site		LOCATIO	N: Wheatfield, NY
			DATE:	06/24/20 (MM DD YY)
INSPECTOR(S):	Tony Manns			=
item	Inspect For	Action Required		Comments
1 Perimeter collection	System/Off-Site Forcemain			
Manholes	- cover on securely	None		None
Than moles	- condition of cover	None		None
	- condition of inside of manhole	None		None
	- flow conditions	None		None
Wet Wells	- cover on securely	None		None
	- condition of cover	None	•	None
M	- condition of inside of wet well	None		None
\$2 <u></u>				
2 Landfill Cap				
Vegetated Soil Cover	r - erosion	None		None
Y /	- bare areas	None		None
	- washouts	None		none
	- leachate seeps	None		None
M/	- length of vegetation	None		None
L	 dead/dying vegetation 	None		None
ORM 1	ŧĒ.			

	MOI	NTHLY INSPECTION LOG		
PROJECT	NAME: Niagara County Refuse Site		LOCATIO	N: Wheatfield, NY
			DATE:	06/24/20 (MM DD YY)
INSPECT	OR(S): Tony Manns			_
Item	Inspect For	Action Required		Comments
2 Landfill	Cap (continued)			
Access F	coads - bare areas, dead/dying veg.	None		None
	- erosion	None		None
V	- potholes or puddles	None		None
V	- obstruction	None	- T	None
3 Wetland	ls (Area "F")			
/				
M	- dead/dying vegetation	None		None
V	- change in water budget	None		None
	- general conditions of wetlands	None		None
4 Other Si	te Systems			
Perimet	er Fence - integrity of fence	None		None
W	- integrity of gates	None		None
1	- integrity of locks	None		None
		ns None		None

MONTHLY INSPECTION LOG LOCATION: Wheatfield, NY **PROJECT NAME: Niagara County Refuse Site** DATE: 06/24/20 INSPECTOR(S): **Tony Manns** Action Required Inspect For **Comments** item Other Site Systems (continued) - sediment buildup Drainage Ditches/ None None Swale Outlets None - erosion None - condition of erosion protection None None - flow obstructions None None - dead/dying vegetation None None - cable concrete/gabion mats None None and riprap - sediment build-up None None - erosion None None - condition of erosion protection None None - flow obstructions None None - intact/damage Gas Vents None None - locks secure None None FORM 1

MONTHLY INSPECTION LOG LOCATION: Wheatfield, NY PROJECT NAME: Niagara County Refuse Site DATE: 07/23/20 (MM DD YY) INSPECTOR(S): **Tony Manns** Action Required **Comments** Item Inspect For Perimeter collection System/Off-Site Forcemain Manholes - cover on securely None None - condition of cover None None - condition of inside of manhole None None - flow conditions None None Wet Wells - cover on securely None None - condition of cover None None - condition of inside of wet well None None 2 Landfill Cap Vegetated Soil Cover - erosion None None None - bare areas None - washouts None none - leachate seeps None None - length of vegetation None None - dead/dying vegetation None None

FORM 1

			×	Page 2 of 3
	MONTH	ILY INSPECTION LOG		
PROJECT NAME: Nia	agara County Refuse Site		LOCATION: Wheatfield, NY	
			DATE: 07/23/20 (MM DD YY)	
INSPECTOR(S):	Tony Manns			
Item	Inspect For	Action Required	Comments	
2 Landfill Cap (continu	ued)			
Access Roads	- bare areas, dead/dying veg.	None	None	
₩ N	- erosion	None	None	
T	- potholes or puddles	None	None	
V	- obstruction	None None	None	
3 Wetlands (Area "F")				
[]	- dead/dying vegetation	None	None	
U	- change in water budget	None	None	
	- general conditions of wetlands	None	None	
4 Other Site Systems				
Perimeter Fence	- integrity of fence	None	None	
V	- integrity of gates	None	None	
14	- integrity of locks	None	None	
	- placement and condition of signs	None	None	

FORM 1

	MONT	HLY INSPECTION LO	G		
PROJECT NAME: 1	Niagara County Refuse Site		LOCATIO	N: Wheatfield, NY	
			DATE:	07/23/20 (MM DD YY)	
INSPECTOR(S):	Tony Manns		-0		
Item	Inspect For	Action Required		Comments	
4 Other Site System	s (continued)				
Drainage Ditches/	- sediment buildup	None		None	
Swale Outlets	- erosion	None	1	None	
To the second	- condition of erosion protection	None	200	None	
V	- flow obstructions	None		None	
U	- dead/dying vegetation	None		None	
1	- cable concrete/gabion mats	None		None	
	and riprap		<u>-</u>		
Culverts	- sediment build-up	None		None	
4	- erosion	None	-	None	<u> </u>
4	- condition of erosion protection	None		None	
U	- flow obstructions	None	· · ·	None	
Gas Vents	- intact/damage	None		None	
Wells	- locks secure	None		None	
FORM 1				Au n	

	MONT	HLY INSPECTION LOG	
PROJECT NAME: Nic	agara County Refuse Site	LC	OCATION: Wheatfield, NY
		ים ים	ATE: 08/19/20 (MM DD YY)
INSPECTOR(S):	Britt Gebhardt		
ltem	Inspect For	Action Required	Comments
Perimeter collection	n System/Off-Site Forcemain		
Manholes	- cover on securely	None	None
}	- condition of cover	None	None
	- condition of inside of manhole	None =	None
]	- flow conditions	None	None
Wet Wells	- cover on securely	None	None
7	- condition of cover	None	None
	- condition of inside of wet well	None	None
Landfill Cap			
Vegetated Soil Cove	er - erosion	None	None
- Cogottated Jon Gove	- bare areas	None	None
	- washouts	None	none
	- leachate seeps	None	None
	- length of vegetation	None	None
rd .	- dead/dying vegetation	None	None

		MONTI	HLY INSPECTION LOG		
	PROJECT NAME: Nia	agara County Refuse Site		LOCATIO	N: Wheatfield, NY
				DATE:	08/19/20 (MM DD YY)
	INSPECTOR(S):	Britt Gebhardt			_
	Item	Inspect For	Action Required		Comments
2	Landfill Cap (continu	ed)			
K	Access Roads	- bare areas, dead/dying veg.	None		None
X	_	- erosion	None	1	None
X		- potholes or puddles	None	1 8	None
∇		- obstruction	None		None
3	Wetlands (Area "F")				
<i>(</i>)	>	- dead/dying vegetation	None	· · · · · · · · · · · · · · · · · · ·	None
1	-<	 change in water budget general conditions of wetlands 	None None		None
<u> </u>	_	- general conditions of wetlands	None		None
4	Other Site Systems				
\times	Perimeter Fence	- integrity of fence	None		None
X		- integrity of gates	None		None
		- integrity of locks	None		None
Y	}				

MONTHLY INSPECTION LOG

PROJECT NAME: Nia	gara County Refuse Site		LOCATIO	N: Wheatfield, NY
			DATE:	08/19/20 (MM DD YY)
INSPECTOR(S):	Britt Gebhardt			
Item	Inspect For	Action Required		Comments
Other Site Systems (continued)			
Drainage Ditches/	- sediment buildup	None		None
Swale Outlets	- erosion	None		None
<u></u>	- condition of erosion protection	None		None
2	- flow obstructions	None		None
4	 dead/dying vegetation 	None		None
	 cable concrete/gabion mats 	None		None
	and riprap			
Culverts	- sediment build-up	None		None
<u> </u>	- erosion	None	10	None
	- condition of erosion protection	None	71	None
7	- flow obstructions	None		None
Gas Vents	- intact/damage	None		None
Wells	- locks secure	None		None
M 1				

	MONT	HLY INSPECTION LO	G		
PROJECT NAME: Nia	gara County Refuse Site		LOCATIO	N: Wheatfield, NY	
			DATE:	09/23/20 (MM DD YY)	
INSPECTOR(S):	Tony Manns				
Item	Inspect For	Action Required	Se .	Comments	21
1 Perimeter collection	System/Off-Site Forcemain				
Manholes	- cover on securely	None		None	
₹.	- condition of cover	None		None	
7	- condition of inside of manhole	None		None	
4	- flow conditions	None		None	
Wet Wells	- cover on securely	None		None	
7	- condition of cover	None		None	
	- condition of inside of wet well	None		None	
2 Landfill Cap					
Vegetated Soil Cover	r - erosion	None		None	
Vegetaled 3011 cover	- bare areas	None		None	
-	- washouts	None		none	
	- leachate seeps	None		None	
7	- length of vegetation	None		None	
	- dead/dying vegetation	None	 	None	

	MONTH	ILY INSPECTION LOG			
PROJECT NAME: Ni	agara County Refuse Site		LOCATION:	Wheatfield, NY	
			DATE:	09/23/20 (MM DD YY)	
INSPECTOR(S):	Tony Manns				
Item	Inspect For	Action Required		Comments	
2 Landfill Cap (contin	ued)				
Access Roads	- bare areas, dead/dying veg.	None		None	
	- erosion	None		None	
₩ .	- potholes or puddles	None		None	
	- obstruction	None		None	
3 Wetlands (Area "F"))				
	- dead/dying vegetation	None		None	
W.	- change in water budget	None		None	
	- general conditions of wetlands	None		None	
4 Other Site Systems					
Perimeter Fence	- integrity of fence	None		None	
	- integrity of gates	None		None	
W.	- integrity of locks	None		None	
V	- placement and condition of signs	None		None	
FORM 1				20%	

DOIECT NAME: NE	agara County Refuse Site		LOCATION	N: Wheatfield, NY
MOJECT MAINE: IN	agaia County Neiuse Site		20071101	ii viileatheraj 147
			DATE:	09/23/20
				(MM DD YY)
INSPECTOR(S):	Tony Manns			_
Item	Inspect For	Action Required		Comments
Other Site Systems ((continued)			
Drainage Ditches/	- sediment buildup	None		None
Swale Outlets	- erosion	None		None
1	- condition of erosion protection	None		None
1.	- flow obstructions	None	_	None
1	- dead/dying vegetation	None		None
才	- cable concrete/gabion mats	None		None
	and riprap			
Culverts	- sediment build-up	None	<u> </u>	None
7	- erosion	None		None
K	- condition of erosion protection	None		None
1	- flow obstructions	None		None
Gas Vents	- intact/damage	None		None
Wells	- locks secure	None		None

MONTHLY INSPECTION LOG					
PROJECT NAME: Niag	gara County Refuse Site	ι	LOCATION	l: Wheatfield, NY	
		ן	DATE:	10/21/20 (MM DD YY)	
INSPECTOR(S):	Tony Manns			_	
Item	Inspect For	Action Required		Comments	
1 Perimeter collection S	System/Off-Site Forcemain				
Manholes	- cover on securely	None		None	
	- condition of cover	None		None	
	- condition of inside of manhole	None		None	_
	- flow conditions	None		None	
Wet Wells	- cover on securely	None		None	
	- condition of cover	None		None	
	- condition of inside of wet well	None		None	_
2 Landfill Cap					
Vegetated Soil Cover	- erosion	None		None	
	- bare areas	None		None	_
	- washouts	None		none	
	- leachate seeps	None	1.00	None	
	- length of vegetation	None		None	_
V	- dead/dying vegetation	None		None	
FORM 1					

	MONTI	HLY INSPECTION LOG		
PROJECT NAME: Nia	agara County Refuse Site		LOCATION	N: Wheatfield, NY
			DATE:	10/21/20 (MM DD YY)
INSPECTOR(S):	Tony Manns			_
Item	Inspect For	Action Required		Comments
2 Landfill Cap (continu	ued)			
Access Roads	 bare areas, dead/dying veg. 	None		None
	- erosion	None		None
	- potholes or puddles	None		None
	- obstruction	None		None
3 Wetlands (Area "F")				
M	 dead/dying vegetation 	None		None
	- change in water budget	None		None
	- general conditions of wetlands	None		None
4 Other Site Systems				
Perimeter Fence	- integrity of fence	None		None
	- integrity of gates	None		None
	- integrity of locks	None		None
	- placement and condition of signs	None		None
FORM 1				

·	MONT	HLY INSPECTION LOG		
PROJECT NAME: Nia	agara County Refuse Site		LOCATIO	N: Wheatfield, NY
			DATE:	10/21/20_
				(MM DD YY)
INSPECTOR(S):	Tony Manns			_
Item	Inspect For	Action Required		Comments
Other Site Systems (continued)			
Drainage Ditches/	- sediment buildup	None		None
Swale Outlets	- erosion	None		None
	- condition of erosion protection	None		None
	- flow obstructions	None		None
	 dead/dying vegetation 	None	1001	None
	 cable concrete/gabion mats 	None	***************************************	None
	and riprap			
Culverts	- sediment build-up	None		None
T	- erosion	None		None
7	- condition of erosion protection	None		None
	- flow obstructions	None		None
Gas Vents	- intact/damage	None		None
Wells	- locks secure	None		None

				1.114.		Page 1 of 3
		MONT	HLY INSPECTION LOG			
	PROJECT NAME: Niag	gara County Refuse Site		LOCATION	: Wheatfield, NY	
				DATE:	11/19/20 (MM DD YY)	
	INSPECTOR(S):	Tony Manns			-	
	Item	Inspect For	Action Required		Comments	
1	Perimeter collection S	System/Off-Site Forcemain				-
Г	Manholes	- cover on securely	None		None	
	7,	- condition of cover	None		None	
	7,	- condition of inside of manhole	None		None	
	7	- flow conditions	None		None	
Г	Wet Wells	- cover on securely	None		None	
		- condition of cover	None		None	
and the same of th	7	- condition of inside of wet well	None		None	
2	Landfill Cap					
Г	7					-
F	Vegetated Soil Cover		None		None	
-		- bare areas	None		None	
		- washouts	None		none	
-		- leachate seeps	None		None	
1		- length of vegetation	None	<u> </u>	None	
V		 dead/dying vegetation 	None		None	

FORM 1

	MONTI	HLY INSPECTION LOG		
PROJECT NAME: Ni	agara County Refuse Site	LO	CATION: W	/heatfield, NY
		DA	ATE: (M	11/19/20 IM DD YY)
INSPECTOR(S):	Tony Manns			
Item	Inspect For	Action Required	(Comments
2 Landfill Cap (contin	ued)			
Access Roads	- bare areas, dead/dying veg.	None		None
	- erosion	None		None
	- potholes or puddles	None		None
	- obstruction	None	<u> </u>	None
3 Wetlands (Area "F")			
	- dead/dying vegetation	None		None
	- change in water budget	None	<u> </u>	None
	- general conditions of wetlands	None		None
4 Other Site Systems				
Perimeter Fence	- integrity of fence	None		None
4	- integrity of gates	None		None
TY_	- integrity of locks	None		None
	- placement and condition of signs	None		None

MONTHLY INSPECTION LOG					
PROJECT NAME: Nia	agara County Refuse Site		LOCATIO	N: Wheatfield, NY	
			DATE:	11/19/20 (MM DD YY)	
INSPECTOR(S):	Tony Manns			·	
Item	Inspect For	Action Required		Comments	
Other Site Systems (continued)				
Drainage Ditches/	- sediment buildup	None		None	
Swale Outlets	- erosion	None		None	
7	- condition of erosion protection	None		None	
	- flow obstructions	None		None	
	- dead/dying vegetation	None		None	
T	- cable concrete/gabion mats	None		None	
	and riprap				
Culverts	- sediment build-up	None		None	
	- erosion	None		None	
	- condition of erosion protection	None		None	
	- flow obstructions	None		None	
Gas Vents	- intact/damage	None		None	
Wells	- locks secure	None		None	

	MONT	HLY INSPECTION LOG	
PROJECT NAME: N	liagara County Refuse Site	L	OCATION: Wheatfield, NY
		D	MATE: 12/22/20 (MM DD YY)
INSPECTOR(S):	Britt Gebhardt		
Item	Inspect For	Action Required	Comments
1 Perimeter collection	on System/Off-Site Forcemain		
Manholes	- cover on securely	None	None
	- condition of cover	None	None
₹	- condition of inside of manhole	None	None
	- flow conditions	None	None
_/			
Wet Wells	- cover on securely	None	None
4	- condition of cover	None	None
4	- condition of inside of wet well	None	None
2 Landfill Cap			
Vegetated Soil Cov	er - erosion	None	None
J -	- bare areas	None	None
4	- washouts	None	none
1	- leachate seeps	None	None
V /	- length of vegetation	None	None
/	- dead/dying vegetation	None	None

		MONTI	HLY INSPECTION LOG			
	PROJECT NAME: Nia	agara County Refuse Site		LOCATION	: Wheatfield, NY	
				DATE:	12/22/20 (MM DD YY)	
	INSPECTOR(S):	Britt Gebhardt				
	Item	Inspect For	Action Required		Comments	
2	Landfill Cap (continu	ed)				
٤	Access Roads	- bare areas, dead/dying veg.	None		None	
ī	7	- erosion	None		None	
T	/	- potholes or puddles	None	•	None	-
ì		- obstruction	None		None	
3	Wetlands (Area "F")					
U	Y.	- dead/dying vegetation	None		None	
L		- change in water budget	None		None	
<u>~</u>	1	- general conditions of wetlands	None		None	
4	Other Site Systems					
Ū	Perimeter Fence	- integrity of fence	None		None	
\ \	<u> </u>	- integrity of gates	None		None	
C	/	- integrity of locks	None		None	
ن	Y	- placement and condition of signs	None		None	
ORN	11					

MONTHLY INSPECTION LOG						
PROJECT NAME: N	iagara County Refuse Site	ro	OCATION: Wheatfield, NY			
		Da	ATE: 12/22/20 (MM DD YY)			
INSPECTOR(S):	Britt Gebhardt					
ltem	Inspect For	Action Required	Comments			
4 Other Site Systems	(continued)					
Drainage Ditches/	- sediment buildup	None	None			
Swale Outlets	- erosion	None	None			
	- condition of erosion protection	None	None			
	- flow obstructions	None	None			
	- dead/dying vegetation	None	None			
	- cable concrete/gabion mats	None	None			
	and riprap					
Culverts	- sediment build-up	None	None			
	- erosion	None	None			
	- condition of erosion protection	None	None			
	- flow obstructions	None	None			
Gas Vents	- intact/damage	None	None			
Wells	- locks secure	None	None			
ORM 1		_				

MONTHLY INSPECTION LOG				
PROJECT NAME: Nia	gara County Refuse Site		LOCATION:	Wheatfield, NY
			DATE:	01/20/21 (MM DD YY)
INSPECTOR(S):	Tony Manns			
Item	Inspect For	Action Required		Comments
1 Perimeter collection	System/Off-Site Forcemain			
Manholes	- cover on securely	None		None
	- condition of cover	None		None
	- condition of inside of manhole	None		None
	- flow conditions	None		None
Wet Wells	- cover on securely	None		None
	- condition of cover	None		None
	- condition of inside of wet well	None		None
2 Landfill Cap				
Vegetated Soil Cover	- erosion	None		None
	- bare areas	None		None
	- washouts	None		none
	- leachate seeps	None		None
	- length of vegetation	None		None
	- dead/dying vegetation	None		None
ORM 1				

MONTHLY INSPECTION LOG					
	PROJECT NAME: Niag	gara County Refuse Site		LOCATION	: Wheatfield, NY
				DATE:	01/20/21 (MM DD YY)
	INSPECTOR(S):	Tony Manns		0.00	
	Item	Inspect For	Action Required		Comments
2	Landfill Cap (continue	ed)			
V	Access Roads	- bare areas, dead/dying veg.	None		None
\vdash	7	- erosion	None	<u>.</u>	None
		- potholes or puddles	None		None
		- obstruction	None		None
3	Wetlands (Area "F")				
[L		- dead/dying vegetation	None		None
		- change in water budget	None		None
l		- general conditions of wetlands	None		None
4	Other Site Systems				
[\	Perimeter Fence	- integrity of fence	None		None
ı		- integrity of gates	None		None
,		- integrity of locks	None		None
l		- placement and condition of signs	None		None
ORM	Л 1				

MONTHLY INSPECTION LOG					
PROJECT NAME: Nia	gara County Refuse Site		LOCATION	: Wheatfield, NY	
			DATE:	01/20/21 (MM DD YY)	
INSPECTOR(S):	Tony Manns			-	
ltem	Inspect For	Action Required		Comments	
2 Landfill Cap (continu	ed)				
Access Roads	 bare areas, dead/dying veg. 	None		None	
	- erosion	None		None	
	- potholes or puddles	None		None	
	- obstruction	None		None	
3 Wetlands (Area "F")	- dead/dying vegetation	None		None	
	- change in water budget	None		None	
	- general conditions of wetlands	None		None	
4 Other Site Systems	- general conditions of wettands	None		None	
Perimeter Fence	- integrity of fence	None		None	
	- integrity of gates	None		None	
	- integrity of locks	None		None	
	- placement and condition of signs	None		None	
FORM 1					

					Page 1 of 3
	MONT	THLY INSPECTION LOG			
PROJECT NAME: Niagara County Refuse Site			LOCATION: Wheatfield, NY		
			DATE:	02/16/21 (MM DD YY)	
INSPECTOR(S):	Tony Manns			_	
Item	Inspect For	Action Required		Comments	
1 Perimeter collection S	system/Off-Site Forcemain				
Manholes	- cover on securely	None		None	
	- condition of cover	None	•	None	
	- condition of inside of manhole	None		None	
	- flow conditions	None	71	None	
Wet Wells	- cover on securely	None		None	
	- condition of cover	None		None	
	- condition of inside of wet well	None		None	
2 Landfill Cap					
Vegetated Soil Cover	- erosion	None		None	
V vegetated 3011 cover	- bare areas	None		None	
	- washouts	None		none	
	- leachate seeps	None		None	
	- length of vegetation	None		None	
<u>⊢</u>	- dead/dying vegetation	None		None	

					rage 2 01 3
	MONT	HLY INSPECTION LOG			
PROJECT NAME: Niagara County Refuse Site			LOCATIO	LOCATION: Wheatfield, NY	
			DATE:	02/16/21 (MM DD YY)	
INSPECTOR(S):	Tony Manns			<u> </u>	
Item	Inspect For	Action Required		Comments	
2 Landfill Cap (continu	ued)				
Access Roads	 bare areas, dead/dying veg. 	None		None	
	- erosion	None		None	
	- potholes or puddles	None		None	
	- obstruction	None		None	,
3 Wetlands (Area "F")					
	 dead/dying vegetation 	None		None	
	- change in water budget	None		None	
\checkmark	- general conditions of wetlands	None		None	
4 Other Site Systems					
Perimeter Fence	- integrity of fence	None		None	
	- integrity of gates	None		None	
	- integrity of locks	None		None	
	- placement and condition of signs	None		None	· .
FORM 1				•	

	MONT	HLY INSPECTION LOG		
PROJECT NAME: Niagara County Refuse Site			LOCATIO	N: Wheatfield, NY
			DATE:	02/16/21
				(MM DD YY)
INSPECTOR(S):	Tony Manns			<u>.</u>
Item	Inspect For	Action Required		Comments
1 Other Site Systems (continued)			
Drainage Ditches/	- sediment buildup	None		None
Swale Outlets	- erosion	None		None
	- condition of erosion protection	None		None
	- flow obstructions	None		None
	 dead/dying vegetation 	None		None
	 cable concrete/gabion mats 	None		None
_	and riprap			
Culverts	- sediment build-up	None		None
7/	- erosion	None		None
7 /	- condition of erosion protection	None		None
	- flow obstructions	None		None
Ges Vents	- intact/damage	None		None
Wells	- locks secure	None		None

	MONT	THLY INSPECTION LOG			•
PROJECT NAME: Niagara County Refuse Site		LC	LOCATION: Wheatfield, NY		
		D	ATE:	03/18/21 (MM DD YY)	
INSPECTOR(S):	Tony Manns			_	
Item	Inspect For	Action Required		Comments	·
1 Perimeter collection S	System/Off-Site Forcemain				
Manholes	- cover on securely	None		None	
V	- condition of cover	None		None	
	- condition of inside of manhole	None		None	
	- flow conditions	None		None	_
Wet Wells	- cover on securely	None		None	
	- condition of cover	None		None	
	- condition of inside of wet well	None		None	
2 Landfill Cap		•			
Vegetated Soil Cover	- erosion	None		None	<u> </u>
	- bare areas	None		None	
	- washouts	None		none	
1 marine	- leachate seeps	None		None	
The state of the s		None		None	
	 dead/dying vegetation 	None		None	
FORM 1	length of vegetationdead/dying vegetation			_	-

MONTHLY INSPECTION LOG					
PROJECT NAME: Nia	agara County Refuse Site		LOCATION	l: Wheatfield, NY	
			DATE:	03/18/21 (MM DD YY)	
INSPECTOR(S):	Tony Manns			_	
Item	Inspect For	Action Required		Comments	
2 Landfill Cap (continu	ued)				
Access Roads	bare areas, dead/dying veg.erosionpotholes or puddlesobstruction	None None None		None None None	
3 Wetlands (Area "F")					
	dead/dying vegetationchange in water budgetgeneral conditions of wetlands	None None		None None	
4 Other Site Systems					
Perimeter Fence	- integrity of fence- integrity of gates- integrity of locks- placement and condition of signs	None None None		None None None	
FORM 1					

	MONT	HLY INSPECTION LOG		
PROJECT NAME: Nia	agara County Refuse Site		LOCATIO	N: Wheatfield, NY
			DATE:	03/18/21 (MM DD YY)
INSPECTOR(S):	Tony Manns			_
Item	Inspect For	Action Required		Comments
Other Site Systems (continued)			
Drainage Ditches/	- sediment buildup	None		None
Swale Outlets	- erosion	None		None
	- condition of erosion protection	None		None
	- flow obstructions	None		None
	- dead/dying vegetation	None		None
	- cable concrete/gabion mats	None		None
	and riprap			
Culverts	- sediment build-up	None		None ·
4	- erosion	None		None
	- condition of erosion protection	None		None
	- flow obstructions	None		None
Gas Vents	- intact/damage	None		None
Wells	- locks secure	None		None

				1 4gc 1013	
MONTHLY INSPECTION LOG					
PROJECT NAME: Niag	gara County Refuse Site		LOCATION	: Wheatfield, NY	
			DATE:	04/22/21 (MM DD YY)	
INSPECTOR(S):	Tony Manns			-	
ltem	Inspect For	Action Required		Comments	
1 Perimeter collection S	System/Off-Site Forcemain				
Manholes	- cover on securely	None		None	
	- condition of cover	None		None	
	- condition of inside of manhole	None		None	
	- flow conditions	None		None	
Wet Wells	- cover on securely	None		None	
	- condition of cover	None		None	
	- condition of inside of wet well	None		None	
2 Landfill Cap					
Vegetated Soil Cover	- erosion	None		None	
	- bare areas	None		None	
No.	- washouts	None		none	
	- leachate seeps	None		None	
	- length of vegetation	None		None	
	 dead/dying vegetation 	None		None	
FORM 1					

					1 ugc 2 01 3
MONTHLY INSPECTION LOG					
PROJECT NAME: Nia	agara County Refuse Site		LOCATION	I: Wheatfield, NY	
			DATE:	04/22/21 (MM DD YY)	
INSPECTOR(S):	Tony Manns			_	
Item	Inspect For	Action Required		Comments	
2 Landfill Cap (continu	ued)				
Access Roads	 bare areas, dead/dying veg. 	None		None	
	- erosion	None		None	
	- potholes or puddles	None		None	
l l	- obstruction	None		None	
3 Wetlands (Area "F")					
	- dead/dying vegetation	None		None	
	- change in water budget	None		None	
	- general conditions of wetlands	None		None	
4 Other Site Systems					
Perimeter Fence	- integrity of fence	None		None	
	- integrity of gates	None		None	
	- integrity of locks	None		None	
i.	- placement and condition of signs	None		None	
FORM 1					

	MONT	THLY INSPECTION LOG	
PROJECT NAME: Nia	agara County Refuse Site	LOC	CATION: Wheatfield, NY
		DA ⁻	TE: 04/22/21 (MM DD YY)
INSPECTOR(S):	Tony Manns		
Item	Inspect For	Action Required	Comments
4 Other Site Systems (continued)		
Drainage Ditches/	- sediment buildup	None	None
Swale Outlets	- erosion	None	None
1	- condition of erosion protection	None	None
6	- flow obstructions	None	None
	- dead/dying vegetation	None	None
	- cable concrete/gabion mats	None	None
L	and riprap		
Culverts	- sediment build-up	None	None
	- erosion	None	None
lu lu	- condition of erosion protection	None	None
	- flow obstructions	None	None
Gas Vents	- intact/damage	None	None
Wells	- locks secure	None	None
FORM 1			

					rage 1013	
	MONTHLY INSPECTION LOG					
PROJECT NAME: Niagara County Refuse Site		I	LOCATION	N: Wheatfield, NY		
		!	DATE:	05/19/21		
				(MM DD YY)		
INSPECTOR(S):	Tony Manns					
Item	Inspect For	Action Required		Comments		
1 Perimeter collection S	System/Off-Site Forcemain					
Manholes	- cover on securely	None		None		
- Iviainoics	- condition of cover	None		None		
	- condition of inside of manhole	None		None	***************************************	
	- flow conditions	None		None		
	,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Wet Wells	- cover on securely	None		None		
	- condition of cover	None		None		
	- condition of inside of wet well	None		None		
2 Landfill Cap						
Vegetated Soil Cover	- erosion	None		None		
vegetated 3011 Cover	- bare areas	None		None		
	- washouts	None		none		
	- leachate seeps	None		None	_	
	- length of vegetation	None		None	_	
	- dead/dying vegetation	None		None		
	. , & &					
FORM 1						
I CINITI I						

	MONT	HLY INSPECTION LOG		
PROJECT NAME: Nia	agara County Refuse Site		LOCATION	: Wheatfield, NY
			DATE:	05/19/21 (MM DD YY)
INSPECTOR(S):	Tony Manns			-
ltem	Inspect For	Action Required		Comments
2 Landfill Cap (continu	ued)			
Access Roads	 bare areas, dead/dying veg. 	None		None
	- erosion	None		None
	- potholes or puddles	None		None
	- obstruction	None	,	None
3 Wetlands (Area "F")				
	 dead/dying vegetation 	None		None
	- change in water budget	None		None
	- general conditions of wetlands	None		None
4 Other Site Systems				
Perimeter Fence	- integrity of fence	None		None
	- integrity of gates	None		None
	- integrity of locks	None		None
	- placement and condition of signs	None		None
FORM 1				

MONTHLY INSPECTION LOG				
PROJECT NAME: Ni	agara County Refuse Site	ATION: Wheatfield, NY		
		DAT	TE: 05/19/21 (MM DD YY)	
INSPECTOR(S):	Tony Manns			
Item	Inspect For	Action Required	Comments	
4 Other Site Systems ((continued)			
Drainage Ditches/	- sediment buildup	None	None	
Swale Outlets	- erosion	None	None	
	- condition of erosion protection	None	None	
	- flow obstructions	None	None	
	- dead/dying vegetation	None	None	
	- cable concrete/gabion mats	None	None	
	and riprap			
Culverts	- sediment build-up	None	None	
	- erosion	None	None	
	- condition of erosion protection	None	None	
	- flow obstructions	None	None	
Ges Vents	- intact/damage	None	None	
Wells	- locks secure	None	None	
FORM 1				

APPENDIX F MAINTENANCE RECORD LOGS

	MAINTENANO	LICOND	LOG	
PROJECT NAME:	Niagara County Refuse S	ite	LOCATION:	Wheatfield, New York
CREW MEMBERS:	Tony Manns			3)
1. Date	07/23/20			
Time	1115			
Scheduled/Unschedu	led: Unscheduled			
Type of Maintenance	Performed: Pulled WWD pu	ımp.		
2. Company Performing	Maintenance <u>G</u>	HD		
Name:	Tony Manns			
Address:	2055 Niagara Falls blvd			
	Niagara Falls, NY 14304			
Contact Name:	(716) 818-6241			
3. Methods Used: Pulled	pump up out of well and re	attached dischar	rge hose.	
rats			************	
T	92.92		0.0000000000	
Description of Materia	al Removed: N/A			·
·				
				*
		24 27		
Problems/Comments	: Hose came lose, pump wa	s discharging ba	ick into well.	
Everything is back up an	d running well.			
				×
			TI.	
DATE 07/23/2020	INSPECTOR	·	INSPECTOR	'S SIGNATURE
FORM 2	Tony Manns		1	-

	WAIN I LINANCE INCOIND EOG					
PROJECT NAME:	Niagara County Refus	e Site	LOCATION:	Wheatfield, New York		
CREW MEMBERS:	Tony Manns	Webser				
		-				
1. Date	08/27/20	_				
Time	0930	_				
Scheduled/Unsched	uled: Scheduled			•		
Type of Maintenance	e Performed: PM on Wet	Well A	SPIN-AG			
2. Company Performin	g Maintenance	GHD	· · · · · · · · · · · · · · · · · · ·			
Name:	Tony Manns			***************************************		
Address:	2055 Niagara Falls blv	⁄d				
•	Niagara Falls, NY 143	04				
Contact Name:	(716) 818-6241					
3. Methods Used: Rem	noved submersible pump,	and performe	ed PM.			
		, , , , , , , , , , , , , , , , , , , ,				
***		1000		_		
Description of Mater	rial Removed: N/A					
'						
	77.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					
* *************************************						
MACAGEMENT CONTRACTOR						
Problems/Comment	s: WWA is functioning no	rmally				
Froblems/Comment	s. VVVVA is functioning no	imany.				
				-		
<u> </u>	The second secon					
08/27/20	Tony Manns		WODE OF STATE OF STAT			
DATE	INSPECTOR		INSPECTOR'S SIGN	WAIURE		
FORM 2						

MAINTENANCE RECORD ECO					
PROJECT NAME:	Niagara County Refuse	e Site	LOCATION:	Wheatfield, New York	
CREW MEMBERS:	Tony Manns				
1. Date	10/07/20	_			
Time	0900	_			
Scheduled/Unschedul	ed: Unscheduled				
Type of Maintenance	Performed: Replaced flo	at switch on We	et Well A		
2. Company Performing	Maintenance	GHD			
Name:	Tony Manns				
Address:	2055 Niagara Falls blv	d			
	Niagara Falls, NY 1430)4			
Contact Name:	(716) 818-6241				
3. Methods Used: Remo	ved faulty unit. Replaced	d with new.			
Description of Materia	l Removed: Faulty float	switch			
·	•				
	<u></u>				
Problems/Comments:	: Mice chewed through w	viring on existing	unit. WWA function	oning normal after	
replacement.	<u> </u>				
			1		
10/07/20	Tony Monne				
DATE	Tony Manns INSPECTOR	IN	ISPECTOR'S SIGN	ATURE	
<u>-</u>					
FORM 2					

MAINTENANCE RECORD LOG					
PROJECT NAME:	Niagara County Refuse	e Site	LOCATION:	Wheatfield, New York	
CREW MEMBERS:	Tony Manns				
1. Date	11/19/20	_			
Time	0930	_			
Scheduled/Unschedu	led: Unscheduled				
Type of Maintenance	Performed: Remove dov	vned trees on main	road coming or	nto site.	
2. Company Performing	Maintenance	GHD			
Name:	Tony Manns			- William Angula Tra-	
Address:	2055 Niagara Falls blv	d			
	Niagara Falls, NY 1430)4			
Contact Name:	(716) 818-6241				
3. Methods Used: Cut tr	ees into manageable pie	ces. Move them off	to the side of the	he road.	
Description of Materia	al Removed: N/A				
Problems/Comments	: Trees must have topple	ed over during the la	ast wind storm.		
	· · · · · · · · · · · · · · · · · · ·			······	
-					
·					
DATE 11/19/2020	INSPECTOR	<u> </u>	INSPECTOR	'S SIGNATURE	
		-	1		
FORM 2	Tony Manns		your		
			' 0		

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York **CREW MEMBERS: Tony Manns** 1. Date 12/23/20 Time 0730 Scheduled/Unscheduled: Unscheduled Type of Maintenance Performed: Replaced 2" nipple on pump in WWD 2. Company Performing Maintenance GHD Name: Tony Manns Address: 2055 Niagara Falls blvd Niagara Falls, NY 14304 **Contact Name:** (716) 818-6241 3. Methods Used: Removed busted nipple. Replaced with new. Description of Material Removed: Bad 2" nipple on pump. Problems/Comments: Unit was leaking through galvanized 2" nipple.

12/23/20	Tony Manns	
DATE	INSPECTOR	INSPECTOR'S SIGNATURE

FORM 2

	,	MAINTENAN	ICE RECORI	DLOG	
PROJ	ECT NAME:	Niagara County Refus	e Site	LOCATION:	Wheatfield, New York
CREV	V MEMBERS:	Tony Manns			
1. Da	te	01/20/21	_		
Tim	пе	1030	_		·
Sch	neduled/Unsched	uled: Unscheduled			
Тур	oe of Maintenance	e Performed: Removed fa	ıll <u>en tree from Sou</u>	th West corner o	f property.
2. Co	mpany Performing	g Maintenance	GHD		
Na	me:	Tony Manns			
Add	dress:	2055 Niagara Falls blv	ď		
9		Niagara Falls, NY 143	04		
Co	ntact Name:	(716) 818-6241			
3. Me	thods Used: Thre	w the broken pieces back	cover the fence in	to the woods.	
					
De	scription of Materi	ial Removed: N/A			
	-				
Pro	blems/Comments	s: Dead tree toppled over	. No damage to th	e fence, tree was	rotted.
	01/20/21	Tony Manns	**Esteral ***	1	
	DATE	INSPECTOR	INŞ	PECTOR'S SIGN	ATURE
E05:					
FORM	12				

PROJECT NAME:	Niagara County Refuse	e Site	LOCATION:	Wheatfield, New York
CREW MEMBERS:	Tony Manns			
1. Date	01/27/21	-		
Time	1030	-		
Scheduled/Unschedu	uled: Unscheduled			
Type of Maintenance	e Performed: Cut down sn	nall trees that wer	e starting to bloc	k the main gate
2. Company Performing	g Maintenance	GHD		
Name:	Tony Manns	w		
Address:	2055 Niagara Falls blv	d		
	Niagara Falls, NY 1430)4		10.
Contact Name:	(716) 818-6241		Wanning to the control of the contro	W
3. Methods Used: Recr	iprocating saw.			
Description of Materi	ial Removed: N/A			
Problems/Comments	s: Main gate to enter prop	erty was starting t	to get overrun wit	h branches.
01/27/21	Tony Manns		11.	
DATE	INSPECTOR	INS	PECTOR'S SIGN	√ATURE
		7		
FORM 2				

		MAINTENA	NCE RE	CORD	LOG	
P	ROJECT NAME:	Niagara County Refu	ıse Site		LOCATION:	Wheatfield, New York
С	REW MEMBERS:	Tony Manns				
<u>1.</u>	Date	03/11/21				
	Time	1000				
	Scheduled/Unsched	luled: Unscheduled				6
	Type of Maintenanc	e Performed: Removed	downed tre	e from ami	n driveway.	
2.	Company Performin		GHD			
	Name:	Tony Manns	<u></u>		· · · · · ·	
	Address:	2055 Niagara Falls b	lvd			
		Niagara Falls, NY 14	304		·	
	Contact Name:	(716) 818-6241				
3.	Methods Used: Rec	riprocating saw.				
	Description of Mater	ial Removed: N/A				
	Problems/Comment	s: Back to normal				
	03/11/21	Tony Manns	W/36	/	Jones	
_	DATE	INSPECTOR		INSPE	CTOR'S SIGN	ATURE
F	ORM 2					

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York **CREW MEMBERS:** Tony Manns 1. Date 3/18/202021 Time 0945 Scheduled/Unscheduled: Unscheduled Type of Maintenance Performed: Removed garbage that blew on to the site over the winter... 2. Company Performing Maintenance GHD Name: **Tony Manns** Address: 2055 Niagara Falls blvd Niagara Falls, NY 14304 Contact Name: (716) 818-6241 3. Methods Used: Walked around with a garbage bag and picked up garbage. Description of Material Removed: Garbage that blew on to site. Problems/Comments: Site looks much cleaner.

INSPECTOR'S SIGNATURE

03/18/21

DATE

FORM 2

Tony Manns

INSPECTOR

			<i>-</i> L O O	
PROJECT NAME:	Niagara County Refus	e Site	LOCATION:	Wheatfield, New York
CREW MEMBERS:	Tony Manns		,	
1. Date	03/24/21	_		
Time	1030	_		
Scheduled/Unsched	duled: Unscheduled			
Type of Maintenand	ce Performed: Replaced bi	oken pump in WW	/C.	•
2. Company Performin	ng Maintenance	GHD		
Name:	Tony Manns			
Address:	2055 Niagara Falls blv	d		
	Niagara Falls, NY 143			· · · · · · · · · · · · · · · · · · ·
Contact Name:	(716) 818-6241			
	noved broken pump, rewir			
	novou pronon pump, rom	od now pamp		
	<u> </u>			
~				
Description of Mate	rial Removed: Broken pun	np.		
Problems/Commen	ts: Back to normal			
			/	
02/04/04	T		10-	
03/24/21 DATE	Tony Manns INSPECTOR	INIÉE	PECTOR'S 81GN	JATIBE
DATE	INOI LOTOIN	IIVOF	LOTOROGIGI	MATOILE
FORM 2				

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York **CREW MEMBERS:** Tony Manns 1. Date 5/11/2021 Time 0915 Scheduled/Unscheduled: Unscheduled Type of Maintenance Performed: Replaced broken pump in WWC. 2. Company Performing Maintenance GHD Name: Tony Manns Address: 2055 Niagara Falls blvd Niagara Falls, NY 14304 Contact Name: (716) 818-6241 3. Methods Used: Removed broken pump, rewired new pump.. Description of Material Removed: Broken pump. Problems/Comments: Looked over pump, can't find anything wrong. Going to send unit to manufacturer for possible warranty work, or replacement. 05/11/21 Tony Manns DATE **INSPECTOR** INSPECTOR'S SIGNATURE

FORM 2

MAINTENIANCE DECODD LO

	MAINIENAN	ICE REC	CORD LOG	
PROJECT NAME:	Niagara County Refus	se Site	LOCATION:	Wheatfield, New York
CREW MEMBERS:	Tony Manns			
1. Date	5/11/2021	_		
Time	0915	_		
Scheduled/Unsched	duled: scheduled			. •
Type of Maintenand	ce Performed: Replaced to	ot <u>alizer.</u>		
2. Company Performing	ng Maintenance	GHD		
Name:	Tony Manns			
Address:	2055 Niagara Falls blv	/d		
	Niagara Falls, NY 143	04		
Contact Name:	(716) 818-6241			
3. Methods Used: Rep	placed the totailzer in WW	A.		
Description of Mate	rial Removed: Original tot	alizer		•
Problems/Commen	ts: Want to make sure the	unit is read	ling correctly.	
	,			
5/11/2021	Tony Manns		Mon.	
DATE	INSPECTOR		INSPECTOR'S SIGI	NATURE
FORM 2				
FORM 2			/	

MAINTENANCE RECORD LOG PROJECT NAME: Niagara County Refuse Site LOCATION: Wheatfield, New York **CREW MEMBERS: Tony Manns** 1. Date 5/19/2021 Time 1000 Scheduled/Unscheduled: Scheduled Type of Maintenance Performed: Trim around all wet wells, monitoring wells, pizometers, etc. 2. Company Performing Maintenance GHD Name: Tony Manns Address: 2055 Niagara Falls blvd Niagara Falls, NY 14304 Contact Name: (716) 818-6241 3. Methods Used: Gas powered weed wacker. Description of Material Removed: N/A Problems/Comments: Trying to keep the grass very short around all wells, and building. Hoping it helps with the ticks. 05/19/21 Tony Manns DATE **INSPECTOR** INSPECTOR'S SIGNATURE

FORM 2

	MAINIENANG	JE KECURD	LUG	
PROJECT NAME:	Niagara County Refuse	Site	LOCATION:	Wheatfield, New York
CREW MEMBERS:	Tony Manns			
1. Date	06/02/21			
Time	1000			
Scheduled/Unsched	luled: Scheduled			
Type of Maintenanc	e Performed: Yearly mainte	naance on Wet W	ell B.	
2. Company Performin	g Maintenance	GHD	- H-H-	
Name:	Tony Manns			
Address:	2055 Niagara Falls blvd			
	Niagara Falls, NY 1430-	4		
Contact Name:	(716) 818-6241			
3. Methods Used: Pull-	ed pump, cleaned pump, cl	necked connections	S.	
Description of Mate	rial Removed: N/A			
				_
Problems/Commen	ts: Unit running well.			
		"		
			A.	
06/02/21	Tony Manns		10000	
DATE	INSPECTOR	INSPE	ECTOR'S SIGN	NATURE
FORM 2				

APPENDIX G WATER LEVEL RECORDS

PROJECT NAME: NIAGARA COUNTY

REFUSE SITE

LOCATION: Wheatfield, New York

DATE:

06/24/20

(MM DD YY)

CREW MEMBERS: Tony Manns

Observation Well	Time of	Top of Casing Elevation	Depth to Water	Water Level Elevation
	Measurement	A feet	В	A-B feet
	6 "	 		
EAST "A"	1252	598.93	27.63	571.30
EAST "B"	1305	596.23	Dry	596.23
= EAST "C"	1226	598.69	21.50	577.19
EAST "D"	1218	593.20	16.74	576.46
NCR-3S	1153	579.60	Dry	579.60
NCR-4S	1235	577.80	4.61	573.19
NCR-5S	1325	579.34	Dry	579.34
NCR-13S	1117	577.15	7.71	569.44

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	1041		2' 11"
ww 8	1242		3' 4"
ww c	1157		2' 9"
WW D	1121		3' 2"

Total System Flow	Time of Measurement
21674	1043

Water Level Meter:

x 1000 Gallons NF07181

PROJECT NAME: NIAGARA COUNTY

REFUSE SITE

LOCATION: Wheatfield, New York

DATE:

07/23/20 (MM DD YY)

CREW MEMBERS: ____Tony Manns

Observation Well	Time of Measurement	Top of Casing Elevation A	Depth to Water B	Water Level Elevation A-B
		feet		feet
EAST "A"	1201	598.93	27.32	571.61
EAST "B"	1152	596.23	Dry	596.23
EAST "C"	1113	598.69	21.72	576.97
EAST "D"	1100	593.20	17.61	575.59
NCR-3S	1033	579.60	6.39	573.21
NCR-4S	1144	577.80	Dry	577.80
NCR-5S	0953	579.34	Dry	579.34
NCR-13S	1016	577.15	7.87	569.28

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	1011		3' 1"
WW B	1127		2' 10"
ww c	1039		3' 1"
WW D	1027		3' 8"

Total System Flow	Time of Measurement	
021704	1012	

Water Level Meter:

x 1000 Gallons NF07181

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE: 8/19/20

(MM DD YY)

CREW MEMBERS: Britt Gebhardt

		Top of Casing	Depth to	Water Level
0	Time of	Elevation	Water	Elevation
Observation Well	Measurement	Α	В	A-B
		feet		feet
EAST "A"	1216	598.93	27.07	571.86
EAST "B"	1223	596.23	Dry	596.23
EAST "C"	1312	598.69	21.70	576.99
EAST "D"	1258	593.20	17.35	575.85
NCR-3S	1253	579.60	6.38	573.22
NCR-4S	1243	577.80	Dry	577.80
NCR-5S	1105	579.34	dry	579.34
NCR-13S	1209	577.15	7.92	569.23

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	1202		3.4
WW B	1230		2.7
WW C	1250		1.7
WW D	1238		2.5

Total System Flow	Time of Measurement		Water Level Meter: NF08276
021721	1200	x 1000 Gallons	

PROJECT NAME: NIAGARA COUNTY

REFUSE SITE

LOCATION: Wheatfield, New York

DATE:

09/23/20

(MM DD YY)

CREW MEMBERS: _____Tony Manns

Observation Well	Time of	Top of Casing Elevation	Depth to Water	Water Level Elevation
	Measurement	A feet	<u> </u>	A-B feet
EAST "A"	1126	598.93	27.08	571.85
EAST "B"	1122	596.23	Dry	596.23
EAST_"C"	1055	598.69	21.58	577.11
EAST "D"	1050	593.20	17.40	575.80
NCR-3S	1045	579.60	Dry	573.21
NCR-4S	1104	577.80	Dry	577.80
NCR-5S	1016	579.34	Dry	579.34
NCR-13S	1031	577.15	Dry	577.15

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	1027		3' 1"
WW B	1111		3' 3"
ww c	1047		3' 4"
WW D	1037		3' 7"

Total System Flow	Time of Measurement	
021738	1022	

Water Level Meter:

x 1000 Gallons NF07181

PROJECT NAME: NIAGARA COUNTY

REFUSE SITE

LOCATION: Wheatfield, New York

DATE:

10/14/20

(MM DD YY)

CREW MEMBERS: Tony Manns

		Ton of Coning	Davida 4a	Makan Lawal
	T:	Top of Casing	Depth to	Water Level
Observation Well	Time of	Elevation	Water	Elevation
	Measurement	Α	В	A-B
		feet		feet
EAST "A"	1022	598.93	27.21	571.72
EAST "B"	1012	596.23	Dry	596.23
EAST "C"	0955	598.69	21.64	577.05
EAST "D"	0950	593.20	17.34	575.86
NCR-3S	0944	579.60	Dry	579.60
NCR-4S	1001	577.80	Dry	577.80
NCR-5S	0912	579.34	Dry	579.34
NCR-13S	0927	577.15	Dry	577.15

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	0921		3' 2"
WW B	1007		3' 5"
ww c	0946		2' 11"
WW D	0933		3' 4"

Total System Flow	Time of
Total Gystem Flow	Measurement
021747	0922

Water Level Meter:

x 1000 Gallons NF07181

PROJECT NAME: NIAGARA COUNTY

LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

11/19/20 (MM DD YY)

CREW MEMBERS: Tony Manns

Observation Well	Time of Measurement	Top of Casing Elevation A feet	Depth to Water B	Water Level Elevation A-B feet
EAST "A"	1206	598.93	27.20	571.73
EAST "B"	1155	596.23	Dry	596.23
EAST "C"	1133	598.69	21.72	576.97
EAST "D"	1122	593.20	17.32	575.88
NCR-3S	1112	579.60	Dry	579.60
NCR-4S	1139	577.80	Dry	577.80
NCR-5S	1047	579.34	Dry	579.34
NCR-13S	1101	577.15	Dry	577.15

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	1056		3' 1"
WW B	1148		3' 2"
WW C	1114		2' 11"
WW D	1107		3' 4"

Total System Flow	Time of	
Total oyotom now	Measurement	
021760	1057	

Water Level Meter:

x 1000 Gallons NF07181

PROJECT NAME: NIAGARA COUNTY LOCATION: Wheatfield, New York

REFUSE SITE

DATE: 12/16/2020

(MM DD YY)

CREW MEMBERS: Britt Gebhardt

		Top of Casing	Depth to	Water Level
Observation Wall	Time of	Elevation	Water	Elevation
Observation Well	Measurement	Α	В	A-B
		feet	feet	feet
EAST "A"	1052	598.93	27.3	571.63
EAST "B"	1058	596.23	Dry	596.23
EAST "C"	1142	598.69	21.8	576.89
EAST "D"	1131	593.20	17.36	575.84
NCR-3S	1123	579.60	4.41	575.19
NCR-4S	1110	577.88	3.84	574.04
NCR-5S	1028	579.34	Dry	579.34
NCR-13S	1044	577.15	Dry	577.15

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	1040		3' 4"
WW B	1106		3' 0"
WW C	1121		2' 10"
WW D	1115		3' 2"

Total System Flow	Time of		
	Measurement		Water Level Meter:
22066	1039	x 1000 Gallons	NF07181

PROJECT NAME: NIAGARA COUNTY

REFUSE SITE

LOCATION: Wheatfield, New York

DATE:

01/13/21 (MM DD YY)

CREW MEMBERS: Tony Manns

Observation Well	Time of Measurement	Top of Casing Elevation A	Depth to Water B	Water Level Elevation A-B
		feet		feet
EAST "A"	1136	598.93	27.33	571.60
EAST "B"	1120	596.23	Dry	596.23
EAST "C"	1058	598.69	21.55	577.14
EAST "D"	1054	593.20	16.89	576.31
NCR-3S	1040	579.60	4.55	575.05
NCR-4S	1104	577.80	3.41	574.39
NCR-5S	1149	579.34	Dry	579.34
NCR-13S	1024	577.15	5.14	572.01

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	1012		3' 1"
WW B	1112		2' 10"
wwc	1046		2' 10"
WW D	1028		3' 3"

Total System Flow	Time of Measurement
022829	1015

Water Level Meter:

x 1000 Gallons NF07181

PROJECT NAME: NIAGARA COUNTY

REFUSE SITE

LOCATION: Wheatfield, New York

DATE:

02/10/21

(MM DD YY)

CREW MEMBERS: _____Tony Manns

	r	Top of Casing		
			Depth to	Water Level
Observation Well	Time of	Elevation	Water	Elevation
Observation vveil	Measurement	A	В	A-B
		feet		feet
EAST "A"	1056	598.93	27.35	571.58
EAST "B"	1048	596.23	Dry	596.23
EAST "C"	1029	598.69	22.08	576.61
EAST "D"	1023	593.20	17.70	575.50
NCR-3S	1000	579.60	4.90	574.70
NCR-4S	1039	577.80	3.66	574.14
NCR-5S	0920	579.34	10.94	568.40
NCR-13S	0948	577.15	5.85	571.30

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	0935		2' 7"
WW B	10955		2' 11"
ww c	1017		2' 10"
WW D	1044		3' 1"

Total System Flow	Time of		
Total System Flow	Measurement		Water Lev
23044	0937	x 1000 Gallons	NF07181

Water Level Meter:

PROJECT NAME: NIAGARA COUNTY

REFUSE SITE

LOCATION: Wheatfield, New York

DATE:

03/11/21 (MM DD YY)

CREW MEMBERS: _____Tony Manns

Observation Well	Time of Measurement	Top of Casing Elevation A feet	Depth to Water B	Water Level Elevation A-B feet
EAST "A"	1129	598.93	27.39	571.54
EAST "B"	1113	596.23	Dry	596.23
EAST "C"	1053	598.69	21.70	576.99
EAST "D"	1045	593.20	17.20	576.00
NCR-3S	1036	579.60	4.12	575.48
NCR-4S	1101	577.80	3.22	574.58
NCR-5S	1006	579.34	6.62	572.72
NCR-13S	1024	577.15	4.03	573.12

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	1020		3' 3"
WWB	1108		3' 1"
ww c	1039		3' 4"
WW D	1030		3' 3"

Total System Flow	Time of Measurement	
23539	1019	

Water Level Meter:

x 1000 Gallons NF07181

PROJECT NAME: NIAGARA COUNTY

REFUSE SITE

LOCATION: Wheatfield, New York

DATE:

04/14/21 (MM DD YY)

CREW MEMBERS: ____Tony Manns

			•	
		Top of Casing	Depth to	Water Level
Observation Well	Time of	Elevation	Water	Elevation
Observation vveil	Measurement	A	В	A-B
		feet		feet
EAST "A"	1029	598.93	27.42	571.51
EAST "B"	1021	596.23	Dry	596.23
EAST "C"	0954	598.69	21.77	576.92
EAST "D"	0948	593.20	17.36	575.84
NCR-3S	0940	579.60	4.45	575.15
NCR-4S	1007	577.80	3.41	574.39
NCR-5S	1017	579.34	6.99	572.35
NCR-13S	0931	577.15	5.50	571.65

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	0914		3' 4"
WW B	1011		3'
WW C	0943		3' 2"
WW D	0936		3' 1"

Total System Flow	Time of	
Total System Flow	Measurement	
024033	0916	

Water Level Meter:

x 1000 Gallons NF07181

PROJECT NAME: NIAGARA COUNTY

LOCATION: Wheatfield, New York

REFUSE SITE

DATE:

05/19/21

(MM DD YY)

CREW MEMBERS: Tony Manns

Observation Wall Time of		Top of Casing Elevation	Depth to Water	Water Level Elevation
Observation Well	Measurement	Α	В	A-B
		feet		feet
EAST "A"	1228	598.93	26.08	572.85
EAST "B"	1212	596.23	Dry	596.23
EAST "C"	1139	598.69	22.07	576.62
EAST "D"	1126	593.20	17.93	575.27
NCR-3S	1111	579.60	5.43	574.17
NCR-4S	1148	577.80	4.09	573.71
NCR-5S	1018	579.34	7.88	571.46
NCR-13S	1055	577.15	6.50	570.65

WET WELLS

Wet Well	Time of Measurement	Total Flow	Depth of Water
WW A	1048		3' 3"
WW B	1159		3' 3"
WW C	1116		3' 5"
WW D	1105		3' 1"

Total System Flow	Time of Measurement	
003575	1050	

Water Level Meter:

x 1000 Gallons NF07181

APPENDIX H COMPACT DISC CONTAINING REPORT