Entered

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES

PHASE I INVESTIGATION

Witmer Road

Site No. 932027

Town of Niagara

Niagara County

Date: January 1986

Prepared for:

New York State Department of Environmental Conservation

50 Wolf Road, Albany, New York 12233 Henry G. Williams, Commissioner

Division of Solid and Hazardous Waste Norman H. Nosenchuck, P.E., Director

By:

ENGINEERING-SCIENCE In Association With

DAMES & MOORE

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES IN THE STATE OF NEW YORK PHASE I INVESTIGATIONS

WITMER ROAD SITE

NYS SITE NUMBER 932027

TOWN OF NIAGARA

NIAGARA COUNTY

NEW YORK STATE

Prepared For

DIVISION OF SOLID AND HAZARDOUS WASTE
NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION
50 WOLF ROAD
ALBANY, NEW YORK 12233-0001

Prepared By

ENGINEERING-SCIENCE 290 ELWOOD DAVIS ROAD LIVERPOOL, NEW YORK 13088

In Association With

DAMES & MOORE 2996 BELGIUM ROAD BALDWINSVILLE, NEW YORK 13027

DATE OF SUBMITTAL: OCTOBER, 1985

WITMER ROAD SITE

TABLE OF CONTENTS

			Page
SECTION	I	EXECUTIVE SUMMARY	I-1
		Site Location Map Site Plan	I-4 I-5
SECTION	II	PURPOSE	II-1
SECTION	III	SCOPE OF WORK	III-1
SECTION	ıv	SITE ASSESSMENT	IV-1
		Site History	IV-1
		Site Topography	IV-2
		Site Hydrology	IV-2
		Site Contamination	IV-4
		Sampling Locations	IV-7
SECTION	v	PRELIMINARY APPLICATION OF HAZARD RANKING SYSTEM	V-1
		Narrative Summary Site Location Map HRS Worksheets HRS Documentation Records and References Potential Hazardous Waste Site - Preliminary Assessment Potential Hazardous Waste Site - Site Inspection Report	
SECTION	VI	ASSESSMENT OF DATA ADEQUACY AND RECOMMENDATIONS	VI-1
		Assessment of Data Adequacy	VI-1
		Phase II Work Plan	VI-1
		Phase II Cost Estimate	VI-3
APPENDI	K A	REFERENCES	
		Sources Contacted Documentation	
APPENDI	кв	PROPOSED UPDATED NYS REGISTRY	

SECTION I

EXECUTIVE SUMMARY WITMER ROAD

This report, prepared for the New York State Department of Environmental Conservation (NYSDEC), presents the results of the Phase I investigation for the Witmer Road Site (New York Site Number 932027, EPA Site Number D980509459) located in the Town of Niagara, Niagara County, New York (see Figure I-1).

SITE BACKGROUND

The present owners of the site include: Mr. Kachinoski of Kach's Scrap Company, Mr. Ryding of Sartorian Company, Mr. Garlock, Mr. Zygmont, and Mr. Burtwell. Mr. Kachinoski's name appeared on an April 1983 agreement with the NYSDEC to conduct on-site hazardous waste monitoring. Starting in the 1940's numerous users including the City of Niagara Falls and private citizens disposed a variety of wastes on-site (see Figure I-2). The City of Niagara Falls operated a refuse burning operation at the site until the late 1960's. Industrial companies reportedly disposed lime cleanout wastes (ISCO), slag (Vanadium Corporation) and material cleaned out of air pollution equipment (SKW). These wastes were disposed directly on the ground and no attempt was made to cover the wastes.

In 1982, the USGS analyzed soil borings collected adjacent to the inactive burning pits. Concentrations of copper and seven organic priority pollutants were found. The contaminated soil could be a source of contamination to groundwater and surface waters. However, the extent of contamination is unknown due to the lack of groundwater and surface water data. There is no evidence of air releases at the site.

ASSESSMENT

In an attempt to quantify the risk associated with this site, the Hazard Ranking Scoring system (HRS) was applied as currently being used by the New York State DEC to evaluate abandoned hazardous waste sites in New York State. This system takes into account the types of wastes at the site, receptors, and transport routes to apply a numerical ranking of the site. As stated in 40 CFR Subpart H Section 300.81, the HRS scoring system was developed to be used in evaluating the relative potential of uncontrolled hazardous substance facilities to cause health or safety problems or ecological or environmental damage. It is assumed by the EPA that a uniform application of the ranking system in each state will permit EPA to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment.

Under the HRS, three numerical scores are computed for each site, to express the relative risk or danger from the site, taking into account the population at risk, the potential for contamination of drinking water supplies, for direct human contact, and for destruction of sensitive ecological systems and other appropriate factors. The three scores are:

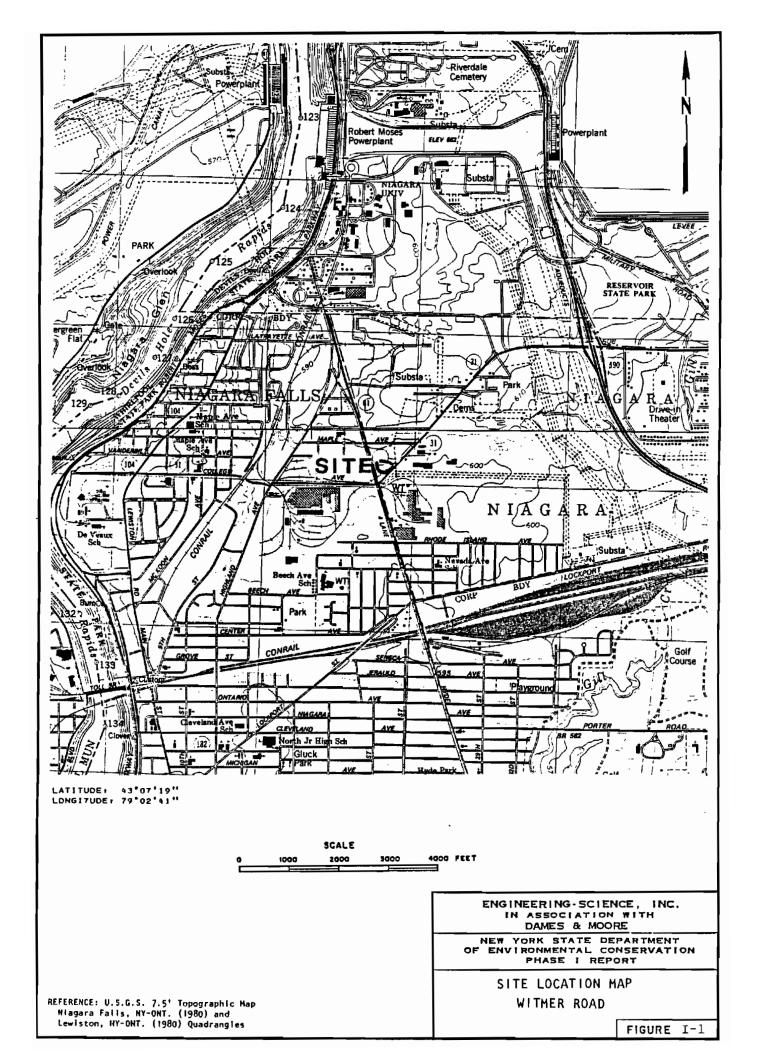
- S_M reflects the potential for harm to humans or the environment from migration of a hazardous substance away from the facility by routes involving groundwater, surface water or air. It is a composite of separate scores for each of the three routes (S_{GW} = groundwater route score, S_{SW} = surface water route score, and S_A = air route score).
- o $S_{\overline{FE}}$ reflects the potential for harm from substances that can explode or cause fires.
- o S_{DC} reflects the potential for harm from direct contact with hazardous substances at the facility (i.e., no migration need be involved).

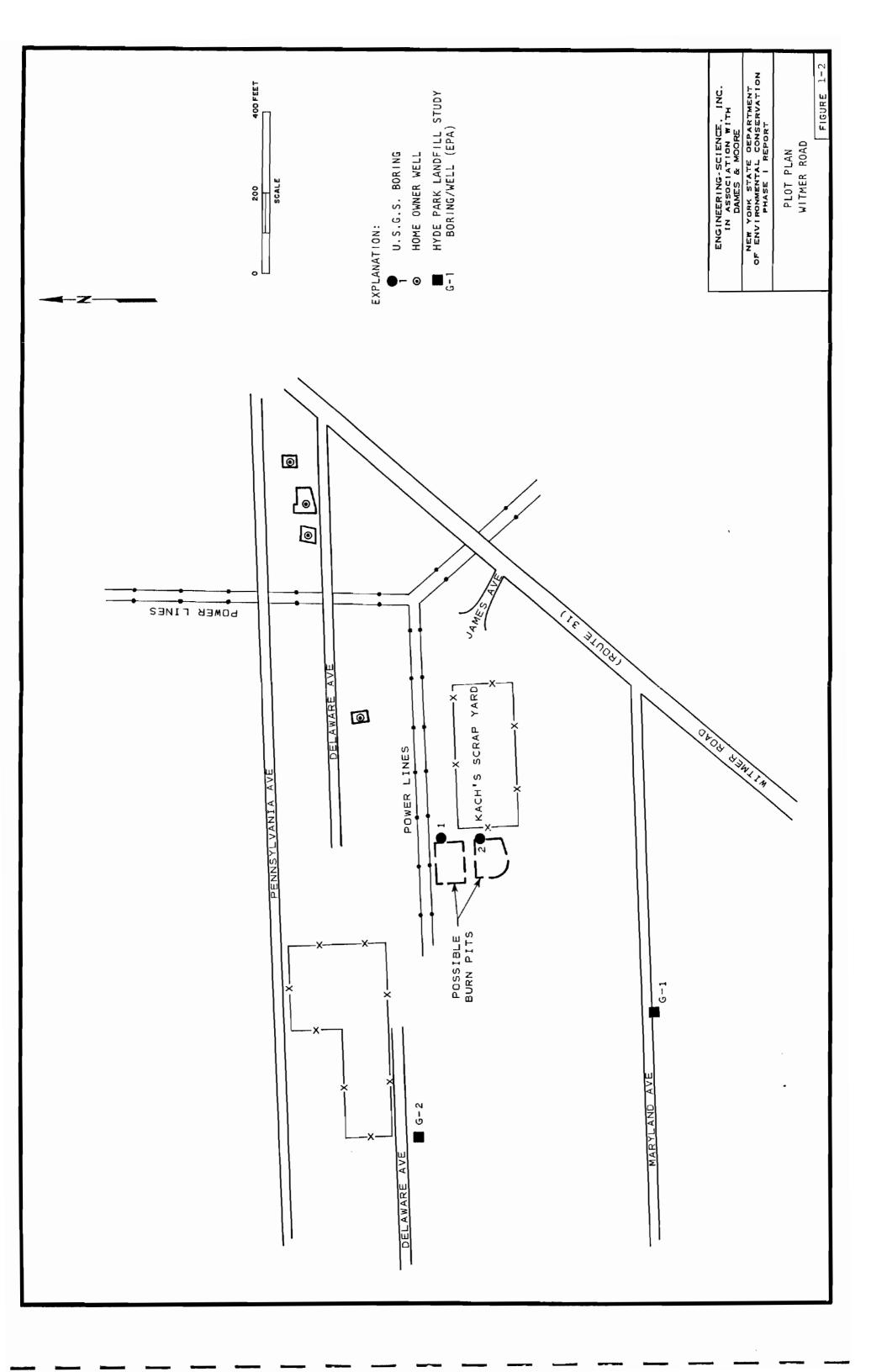
The preliminary HRS score was:

$$S_{M} = 9.32$$
 $S_{A} = 0$

$$S_{GW} = 15.91$$
 $S_{FE} = 0$

$$S_{SW} = 2.66$$
 $S_{DC} = 10$


The direct contact score reflects easy access and uncontained condition of the wastes on-site.


RECOMMENDATIONS

The following recommendations are made for completion of Phase II:

- o Groundwater monitoring consisting of two private residential wells located northeast of the site.
- o Surface soil sampling in the vicinity of the on-site waste piles.
- o Waste sampling consisting of twelve samples from on-site waste piles.
- o Sample analyses to include priority pollutants.

The estimated man-hour requirements to complete Phase II are 477, while the estimated cost is \$20,088.

SECTION II

PURPOSE

The purpose of the Phase I investigation at the Witmer Road site was to assess the hazard to the environment caused by the present condition of the site. This assessment is based on the Hazard Ranking System, which involves the compilation and rating of numerous geological, toxicological, environmental, chemical, and demographic factors and the calculation of an HRS score. Details of the HRS implementation are provided in Section V. During the initial portion of the investigation, available data and records, combined with information collected from a site inspection, were reviewed and evaluated. The investigation at this site focused on the the alleged disposal of lime, refuse, slag and air pollution equipment dust. Based on this initial evaluation of the Witmer Road site, a Phase II Work Plan has been prepared for collecting any additional data needed to complete the HRS score. In addition, a cost estimate for the recommended Phase II work is provided.

SECTION III

SCOPE OF WORK

The scope of work for the New York State Inactive Site Investigation Program (Phase I) was to collect and review all available information necessary for the documentation and preparation of a Hazard Ranking System score and a Phase II work plan and cost estimate if required. The work activities performed included data collection and review, a site inspection, and interviews with knowledgeable individuals of past and present disposal activities at the site.

The sources contacted during this Phase I investigation included government agencies (federal, state and local), present site owners and operators, and any other individuals that may have knowledge of the site, as identified during the performance of the investigation. These sources are listed in Appendix A. The intent of the list is to identify all persons, departments, and/or agencies contacted during the third round of the Phase I investigations even though useful information may not have been collected from each source contacted.

SECTION IV

SITE ASSESSMENT

SITE HISTORY

The ownership history of the Witmer Road Site is unknown, however the present owners of the disposal area were identified as: Mr. Adolph Kachinoski of Kach's Scrap Company, Mr. Ryding of Sartorian Company, Mr. Garlock, Mr. Zygmont, and Mr. Burtwell (Town of Niagara, 1985). The Niagara Mohawk Power Company also owns rights of way on the disposal site.

The site was open to disposal activities during the 1940's. Numerous users, including the City of Niagara Falls and private citizens, have reportedly used the site to dispose of a variety of wastes. The City of Niagara Falls is believed to have operated a refuse burning operation behind Kach's Scrap Company. Furniture, wood and paper were reportedly burned in open pits and the ash was hauled off-site. The burning operation continued until the 1960's when numerous citizen complaints and more restrictive air pollution requirements resulted in the discontinuation of these disposal activities.

Industrial wastes reportedly disposed on-site include lime clean-outs from ISCO (now International Mineral and Chemical), material cleaned out of air pollution equipment from SKW (now Airco Ames), and slag from Vanadium Corporation (NCHD, 1982). The site is presently used for scrap yard operations and as an easement for power transmission towers owned by Niagara Mohawk Power Company. The old burning pits and disposal ovens are covered with obsolete equipment and refuse. Sporadic scavenger dumping of garbage/refuse on-site appears to be continuing to a limited extent. However, the disposal of wastes of industrial origin

appears to have occurred many years in the past (ES and D&M Site Inspection, 1985).

SITE TOPOGRAPHY

The Witmer Road site is located in the Town of Niagara, Niagara County, New York State. The site consisted of burning pits for the city refuse; however, none of the pits presently exist. The site now consists of numerous mounds and piles of debris, both hardfill as well as scrap tires and miscellaneous trash. The original ground surface was relatively flat, and no predominant surface water drainage direction exists.

The 1-acre site is located along James Avenue, which is a mapped, but unconstructed street. Immediately east of the site is Kach's Scrap Yard. Overhead of the site are Niagara Mohawk power lines. West, north and south of the site are other scrap yards. The nearest resident is approximately 100 feet north-east of the location where the burning pits previously existed. This resident and other nearby residents use private wells for drinking water supply.

Local Sensitive Environments

There are no nearby wetlands nor critical habitats for endangered species. There are numerous monitoring wells in the area, which were installed as part of the Hyde Park Landfill Study (Bergeron, 1984).

SITE HYDROLOGY

This summary is based on information from USGS Topographic Maps, NYS Museum and Science Service Bedrock Geology Map & Quaternary Geology Map, Bergeron (1984), Johnston (1964) and USGS boring logs.

Regional Geology and Hydrology

The site is located in the Erie-Ontario lowlands physiographic province. The bedrock of this region is predominantly limestone, dolostone, and shale. Most of the rocks are deep aquifers with regional flow to the south.

In the recent past, most of New York State, including the site, has been repeatedly covered by a series of continental ice sheets. The activity of the glacier widened preexisting valleys and deposited widespread accumulations of till throughout the region, and moraines (generally till) mark former ice margins. The melting of ice, ending approximately 12,000 years ago, produced large volumes of meltwater; this water subsequently shaped channels and deposited thick accumulations of stratified, granular sediments.

As glacial ice retreated from the region, meltwater formed lakes in front of the ice margin. The Niagara County region is covered by lake sediments, the most recent being from Lake Iroquois (a larger predecessor to Lake Ontario). The sediments consist of blanket sands and beach ridges which are occasionally underlain by lacustrine silts and clays (indicating quiet, deeper water deposition).

Granular deposits in this region frequently act as shallow aquifers, whereas lacustrine clays, as well as tills, often inhibit ground-water movement. However, fine-grained, water-lain sediments, such as silts and clays, frequently contain horizontal laminations and sand seams. These internal features facilitate lateral groundwater movement through otherwise low permeability materials.

Site Hydrogeology

Bedrock beneath the site is expected to be Lockport Dolomite occurring at elevations between 595' and 590' above mean sea level (MSL). The top-of-rock surface slopes to the southwest at 1:50 slope. The Lockport Dolomite forms the uppermost bedrock aquifer. The piezometric

surface occurs approximately at the top-of-rock, sloping to the southwest. A contaminant plume has been identified in this aquifer at the Witmer Road site emanating from the Hyde Park Landfill (which is < 2,000 feet northwest of the site). Approximately 1/2 mile south of the site is an abandoned industrial well once operated by American Sales Book Company. This well produced approximately 100 gallons per minute (gpm) when operating and extended to 64 feet in depth. The water was high in H₂S. Numerous other wells exist east and north of the site, as part of PASNY Power Reservoir projects and the Hyde Park Landfill study.

The soil stratigraphy (interpreted from boring/well F-6 of the Hyde Park Landfill study as well as on-site USGS borings) is expected to be:

Unit	Depth Range
Miscellaneous hardfill	0 - 2'
Brown clayey silt	2 - 5'
Layered red-brown silt & grey clay	5 - 10'
Top of bedrock	Approx. 10'

Soils are noted to be moist below 6 feet. Although local zones of perched water occur seasonally, no continuous soil aquifer has been identified. The soils are generally thin and of low permeability. A permeability range of 10^{-5} cm/sec to 10^{-7} cm/sec was assumed for HRS scoring.

SITE CONTAMINATION

Starting in the 1940's the City of Niagara Falls burned refuse in open pits behind Kach's Scrap Yard. The ash was reportedly disposed off-site. There are also reports of on-site industrial waste disposal. Based on visual identification of materials on other disposal sites, the suspected wastes include unknown quantities of lime cleanouts from process vessels at ISCO, slag generated by Vanadium Corporation, and dust (possibly containing chromium) from air pollution devices at Airco Allies. These wastes were dumped directly on the ground and presently

remain uncovered (NCHD, 1982). The quantity and type of wastes disposed on-site is not known, and the size of the disposal area has not been defined.

In 1982, the USGS collected soil samples at the site as part of the Niagara River Toxics Study. Soil samples were collected from borings adjacent to the old burning pits (see Figure IV-1). Analyses of the samples found concentrations of copper, priority pollutant organics and several non-priority pollutant organics including unidentified hydrocarbons, see Table IV-1 (USGS, 1983). However, the accuracy of this data are suspect since the sample holding time and/or surrogate recoveries were not acceptable. Also, background/upgradient soil samples were not collected during the USGS sampling effort.

In 1984 and 1985, the New York State Department of Health analyzed groundwater samples from five (5) private supply wells northeast of the Witmer Road site along Pennsylvania and Delaware Avenues. The analytical data from three of the wells are presented in Table IV-2 (NYSDOH, 1984). Low concentrations of several organic constituents were detected including trans-1,2-dichloroethane (2-6 ug/1), trichloroethylene (2-6 ug/1), benzene (1 ug/1), and dichloromethane (1 ug/1). The results of the other data is not available to date. It should be noted, however, that no background/upgradient wells have been sampled to determine if these results indicate contamination from the Witmer Road site. The analytical results are provided in the Appendix.

HNu meter readings were taken during a recent site inspection (ES and D&M, 1985) and all measurements were less than 1 ppm.

The site is accessible from Kach's Scrap Company and the Niagara Mohawk easements.

TABLE IV-1 SUMMARY OF SOIL SAMPLE ANALYSIS AT THE WITMER ROAD SITE

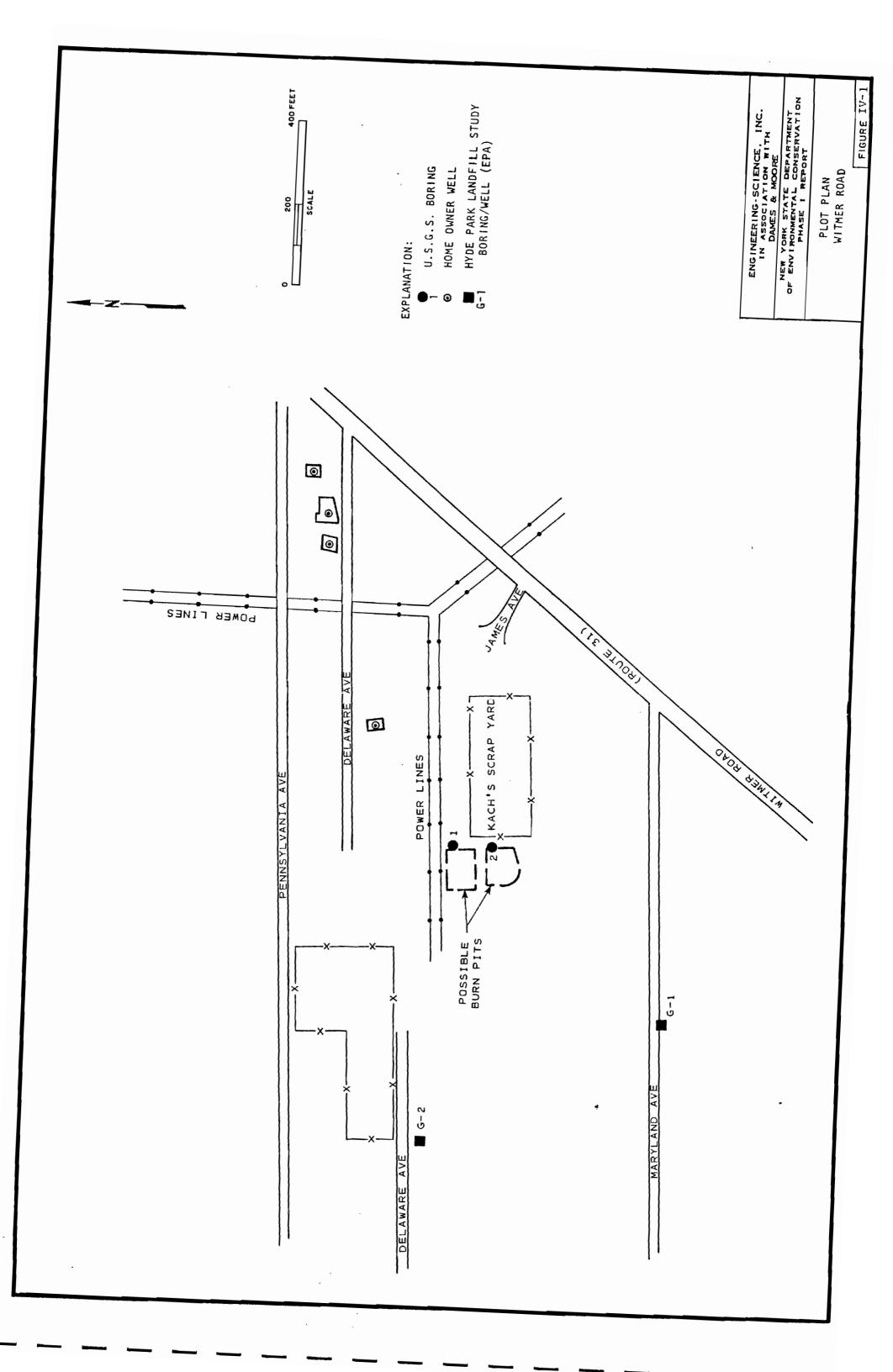
	Sample Col	lection Sites
Parameter (ug/kg)	1	2
norganic Constituents		
Copper	2,000	28,000 ^C
Iron	1,200,000	1,400,000
Mercury		
Molecular Sulphur ^b		450
rganic Compounds		
Priority Pollutants		
Benzene		8.8
1,1,1-Trichloroethane	22.9 ^e	
Trichloroethene	LT _a	
Fluoranthene	LT	
Napthalene	LT ^d 104 ^d ,e	
Bis(2-ethylhexyl)phthalate	1044,6	
Pyrene	LTd	
Nonpriority Pollutants		
Carbon disulfide		38.4
Dibenzofuran	$_{\mathtt{LT}^{\mathbf{d}}}^{\mathtt{LT}^{\mathbf{d}}}$	
2-Methylnaphthalene	LT ^d	
2-Octadecanol		690 ^d
2-Methyl(s)-1-dodecanol		1,300 ^d
Unknown hydrocarbons	16,750 ^d	4,160 ^d

SOURCE: USGS Niagara River Toxics Study Draft, 1983

Holding time exceeded before GC-MS extraction.

a Samples collected 6/29/85.

b Samples collected 5/25/83.

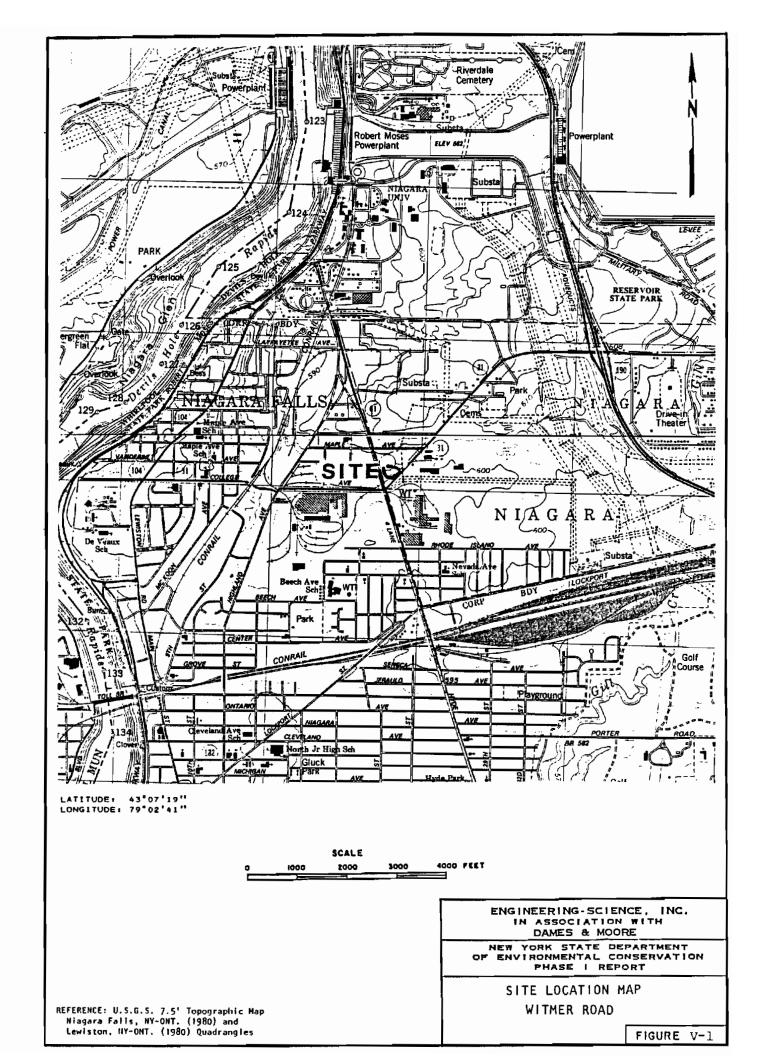

Exceeds concentrations in samples from undisturbed soils in the d Niagara Falls area.

Surrogate recoveries were above or below the acceptance limit.

TABLE IV-2 HYDE PARK WELL DATA

	2075 Pennsyl-	Sampling Sites 2645 Pennsyl-	2633 Pennsyl-
Parameter	vania Ave. (ug/l)	vania Ave. (ug/l)	vania Ave. (ug/l)
Trans-1,2-dichloroethene	6	2	
Trichloroethylene	6	2	2
Benzene	1	1	
Dichloromethane		1	

Source: New York State Department of Health, 1984.



NARRATIVE SUMMARY

The Witmer Road site is located between Delaware and Maryland Avenues adjacent to Witmer Road in the Town of Niagara, Niagara County, New York. Due to the uncertain size of the disposal area (estimated to be 15-acres), the past ownership of the site is not completely known. Present owners of the alleged disposal area include: Mr. Adolph Kachinoski of Kach's Scrap Company, Mr. Ryding of Sartorian Company, Mr. Garlock, Mr. Zygmont, and Mr. Burtwell (NYSDEC, 1983 and Town of Niagara, 1985).

Starting in the 1940's numerous users, including the City of Niagara Falls and private citizens, have used the site to dispose of a wide range of wastes. The City of Niagara Falls is believed to have used an area behind Kach's Scrap Yard to burn refuse. Wood and paper were reportedly burned in open pits and the resulting ash was transported off-site. Based on visual identification of materials on other disposal sites, the industrial wastes that are believed to be dumped on-site include lime cleanouts from ISCO (now International Mineral and Chemical), cleanouts (possibly containing chromium dust) of air pollution equipment from SKW (now Airco Allies), and slag from Vanadium Corporation (NCHD, 1982). There is evidence of continued scavenger disposal activity of non-industrial, residential refuse/garbage (ES and D&M Site Inspection, 1985).

In 1982, the USGS collected soil boring samples adjacent to the old burning pits. Analysis of these samples found concentrations of copper, priority organics and several non-priority organics (USGS, 1983). Groundwater samples were collected (NYSDOH, 1984) from five residential wells located northeast of the Witmer Road site. Several organic constituents were detected in low concentrations. HNu meter readings were taken during a recent site inspection (ES and D&M, 1985) and all measurements were less than 1 ppm. However, no upgradient data is available for the USGS or NCHD data and, therefore, it is not known if the Witmer Road site is the source of the contamination.

HRS COVER SHEET

Facility	Name:	Witmer	Road	Site	

Location: Maryland Ave. and Witmer Road, Niagara, New York

EPA Region: ______

Person(s) in charge of the facility: Owners: Mr. Kachinoski,

Mr. Ryding, Mr. Garlock,
Mr. Burtwell, Mr. Zygmont

Name of Reviewer: S. Robert Steele, II Date: 4/19/85

General Description of the facility:

The site has been used since the 1940's for open dumping and refuse burning. Furniture, wood and paper were reportedly burned by the City of Niagara Falls behind Kach's Scrap Company on James Street. Industrial wastes including cleanouts of air pollution equipment from Airco Allies (formerly SKW), lime cleanouts from International Mineral and Chemical (formerly ISCO) and slag from Vanadium Corp. were reportedly disposed at the site. In addition miscellaneous wastes including construction debris, obsolete equipment, and refuse are disposed in waste piles. In 1982, the USGS collected soil samples at the site and detected copper and priority pollutant organics. In 1984, the New York State Department of Health collected groundwater samples from five residential wells in the vicinity of the site. No upgradient/background data was collected during either of the sampling efforts which could attribute the contamination to the Witmer Road site.

Scores:
$$S_{M} = 9.32$$
 ($S_{gw} = 15.91$ $S_{sw} = 2.66$ $S_{a} = 0$)
 $S_{FE} = 0$

Facility Name: Witn	NER	Road	Date:_		4/1	9/85				
Ground Water Route Work Sheet										
Rating Factor	•	ed Value le One)	Multi- plier	Score	Max. Score	Ref. (Section)				
1 Observed Release	0	45	1	0	45	3.1				
If observed release is given a score of 45, proceed to line 4. If observed release is given a score of 0, proceed to line 2.										
Route Characteristics Depth to Aquifer of Concern		2 ③	ż	6	6	3.2				
Net Precipitation Permeability of the Unsaturated Zone Physical State	0 1		1 1 1	2 1 1	3 3 3					
Total Route				10	15	· · · · · · · · · · · · · · · · · · ·				
3 Containment	0 1	2 ③	1	3	3	3.3				
4 Waste Characteristics						3.4				
Toxicity/Persistence Hazardous Waste Quantity	0 3 6 0 11 2	9 12 15 N 3 4 5 6 7	1 8 1	18	18 8					
Total Waste C	haracter	istics Sco	e	19	26					
Targets Ground Water Use Distance to Nearest Well/Population Served	0 1 0 4 12 16 24 30	2 3 6 8 0 18 20 32 35 40	3	(1 <u>ö</u> -	9 40	3 .5				
Total Targets Score 16 49										
6 If line 1 is 45, mul	_		5 + × 5	9120	57,330					
7 Divide line 6 by 57,	3 3 0 and	multiply by	100	s _{gw} =	15.97-					

GROUND WATER ROUTE WORK SHEET

Facility Name: <u>いけ</u>	mer Road	Date	:	19/83	
	Surface Water Ros	it e W ork S	Sheet		
Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)
1 Observed Release	() 45	1	0	45	4.1
If observed release is					
2 Route Characteristics		;			4.2
Facility Slope and Intervening Terrain	0 1 2 3	1	0	3	
1-yr. 24-hr. Rainfall Distance to Nearest Surface Water	0 1 2 3	1 2	2 2	3	
Physical State	0 ① 2 3	1	l	3	
Total Route (Characteristics \$con	e	5	15	
3 Containment	0 1 2 3	1	3	3	4.3
Waste Characteristics	,				4.4
Toxicity/Persistence	0 3 6 9 12 15: 1	1	18	18	
Hazardous Waste Quantity	0回234567	8 1	1	8	_
Total Waste (Characteristics Scor	e	19	26	
5 Targets					4.5
Surface Water Use Distance to a Sensit	0 1 2 3 ive(0) 1 2 3	' 3 2	6	9 6	
Environment Population Served/	© 4 6 8 10	1	0	40	
Distance to Water Intake Downstream	12 16 18 20 24 30 32 35 40		_		
Total	Targets Score		6	55	
6 If line 1 is 45, mu If line 1 is 0, mul		_	1710	64,350	
7 Divide line 6 by 64	,350 and multiply b	/ 100	S =	2.66	

racifity Name: With	riner K	oac-	vate:		4/14/	<u> </u>
	Air R	loute Work S	heet			
Rating Factor	Assigned (Circle		Multi- plier	Score	Max. Score	Ref. (Section)
Observed Release	(3)	45	1	0	45	5.1
Date and Location:						
Sampling Protocol:	4NU met	ten up	and a	loun us	ind at	site.
If line 1 is 0, the S			5 .			
2 Waste Characteristics						5.2
Reactivity and Incompatibility	0 1 2	: 3	1		3	
Toxicity Hazardous Waste	0 1 2 0 1 2 3	3 4 5 6 7 8	3 1		9 8	
Total Waste	e Characteri	stics Score			20	
3 Targets						5.3
Population Within 4-Mile Radius	0 9 1 21 24 2	2 15 18	1		30	
Distance to Sensitive		2 3	2		6	
Environment Land Use	0 1 2	2 3	1		3	
Total Tar	gets Score				39	
4 Multiply 1 x 2 x 3 0 35,100						
5 Divide line 4 by 35,	100 and mult	iply by 100)	S _a * Ø	•	

AIR ROUTE WORK SHEET

Facility Name: Witner Road Date: 4/19/85

Worksheet for Computing $\mathbf{S}_{\mathbf{M}}$

	S	s ²
Groundwater Route Score (S _{gw})	15.97	253.13
Surface Water Route Score (S _{SW})	2.66	7.08
Air Route Score (S _a)	0,00	0.00
$s_{gw}^2 + s_{sw}^2 + s_a^2$		260.21
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		16.13
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_{a}^2} / 1.73 = s_{M} =$		9.32

WORK SHEET FOR COMPUTING SM

Facility Name: Witner Roat Date: 4/19/85

Fire and Explosion Work Sheet								
Rating Factor		igned ircle			Multi- plier	Score	Max. Score	Ref. (Section)
Containment	1	3	3		1	0	3	7.1
Waste Characteristics								7.2
Direct Evidence Ignitability Reactivity Incompatibility Hazardous Waste Quantity	0 0 1 0 1 0 1	2	3 3 3 5 6	7 1	1 1 1 3 8		3 3 3 8	
Total Wast	e Char	acte	risti	cs :	Score	0	20	
3 Targets								7.3
Distance to Nearest Population	0 1	2	3 4	5	1		5	
Distance to Nearest Building	0 1	2	3		1		3	
Distance to Sensitive Environment	0 1	2	3		1		3	
Land Use Population Within 2-Mile Radius	0 1	2	3 4	5	1		3 5	
Buildings Within 2-Mile Radius	0 1	2	3 4	5	1		5	
Total Targets Score 24								
4 Multiply 1 x 2 x 3							1,440	
5 Divide line 4 by 1,440 and multiply by 100 S _{FE} = Ø								

FIRE AND EXPLOSION WORK SHEET

Facility Name: Witmen Road Date: 4/19/85

Direct Contact Work Sheet									
Rating Factor		ned Value rcle One)	Multi- plier	Score	Max. Score	Ref. (Section)			
1 Observed Incident	(45	1	0	45	8.1			
If line 1 is 45, pro									
2 Accessibility	0 1	2 ③	1	3	3	8.2			
Containment	o (15)	1	15		8.3			
Waste Characteristics Toxicity	0 1	2 ③	5	3	15	8.4			
5 Targets	_	_				8.5			
Population Within 1-Mile Radius	0 1	2 3 4 5	5 4	16	20				
Distance to a Critical Habitat	() 1	2 3	4	0	12				
Total Ta	Total Targets Score /6 32								
6 If line 1 is 45, multiply 1 x 4 x 5 If line 1 is 0, multiply 2 x 3 x 4 x 5 2160 21,600									
7 Divide line 6 by 21	,600 and	multiply by	y 100	s _{DC} =	10.00				

DIRECT CONTACT WORK SHEET

DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

ı	FACILITY	NAME: _	Witmer R	load Site				
	LOCATION	Town o	of Niagara,	Niagara	County,	New York	State	
•								
•								
•								
•								
•								·
•								
•								
•								
•								
•								
1								

GROUNDWATER ROUTE

OBSERVED RELEASE

Contaminants detected (5 maximum):

Groundwater samples collected from five residential wells were analyzed for contamination (priority pollutants) by the New York State Department of Health in 1984 and 1985 (NYSDOH, 1985). Low concentrations (ppb) of organic constituents were detected.

Rationale for attributing the contaminants to the facility:

No observed release. No upgradient/background well data was collected during the sampling effort which could attribute the contamination to the site.

* * *

2. ROUTE CHARACTERISTICS

Depth to Aquifer of Concern

Name/description of aquifer(s) of concern:

Bedrock aquifer in Lockport Dolomite (Estimate based on USGS Draft Report, 1983; Bergeron, 1984)

Depth(s) from the ground surface to the highest seasonal level of the saturated zone [water table(s)] of the aquifer of concern:

Estimated 10 feet to bedrock aquifer water table (USGS, 1983; Bergeron, 1984).

Depth from the ground surface to the lowest point of waste disposal/ storage:

Up to 10 feet, estimate based on observations during site visit (3/26/85).

Net Precipitation

(US Department of Commerce, National Climatic Center, Climatic Atlas of the United States, 1979)

Mean annual or seasonal precipitation (list months for seasonal):

Mean annual precipitation is 36".

Mean annual lake or seasonal evaporation (list months for seasonal):

Mean annual lake evaporation is 27".

Net precipitation (subtract the above figures):

$$9" (36" - 27" = 9").$$

Permeability of Unsaturated Zone

Soil type in unsaturated zone:

Sandy clay (Bergeron, 1984; USGS Draft Report, 1983).

Permeability associated with soil type:

 10^{-5} to 10^{-7} cm/sec (Freeze, R.A. and J.A. Cherry, Groundwater, 1979, pg. 29).

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

Solid (NYSDEC Registry Sheet, 12/83).

* * 1

3. CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

There is no liner and the waste piles are uncovered. (Niagara County Site Profile Report, 1982; and observations during ES and D&M Site Inspection, 3/26/85).

Method with highest score:

Uncovered piles and no liner -3.

4. WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated:

Copper (USGS, 1983).

Compound with highest score:

Copper (toxicity = 3, persistence = 3) - 18.

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

Unknown (NYSDEC Registry Sheet, 12/83).

Basis of estimating and/or computing waste quantity:

Hazardous waste are known to have been disposed on-site; however, no records exist for the site. Therefore, for purposes of rating the site, 1 to 10 cubic yards of hazardous waste are assumed to be disposed on-site because contaminants have been detected.

* * *

TARGETS

Groundwater Use

Use(s) of aquifer(s) of concern within a 3-mile radius of the facility:

Drinking water with alternate source available (Hopkins, 7/19/85; Hopkins, 10/28/85).

Distance to Nearest Well

Location of nearest well drawing from aquifer of concern or occupied building not served by a public water supply:

500 feet to home with well on Delaware Avenue, north of site (USGS Topographic Map: Niagara Falls, NY-ONT, and Lewiston, NY-ONT.

Distance to above well or building:

500 feet.

Population Served by Ground Water Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from aquifer(s) of concern within a 3-mile radius and populations served by each:

No community water supplies. Public water is available. There are five private drinking water wells within a 3 mile radius = 19 people (Hopkins, 1985).

Computation of land area irrigated by supply well(s) drawing from aquifer(s) of concern within a 3-mile radius, and conversion to population (1.5 people per acre):

None.

Total population served by groundwater within a 3-mile radius:

19 people (Hopkins, 1985).

SURFACE WATER ROUTE

1. OBSERVED RELEASE

Contaminants detected in surface water at the facility or downhill from it (5 maximum):

No surface water samples analyzed for contamination (NYSDEC Registry Sheet 12/83).

Rationale for attributing the contaminants to the facility:

Not applicable.

* * *

2. ROUTE CHARACTERISTICS

Facility Slope and Intervening Terrain

Average slope of facility in percent:

Surface undulation - generally flat across site (Observations during ES/D&M Site Inspection, 3/26/85).

Name/description of nearest downslope surface water:

Niagara River, approximately 5,600 feet (USGS Topographic Maps: Niagara Falls NY-ONT, 1980 and Lewiston, NY - 1980 Quadrangles).

Average slope of terrain between facility and above-cited surface water body in percent:

2.7% (USGS Topographic Maps: Niagara Falls NY-ONT, 1980 and Lewiston, NY - 1980 Quadrangles).

Is the facility located either totally or partially in surface water?

No.

Is the facility completely surrounded by areas of higher elevation?

No (USGS Topographic Maps: Niagara Falls NY-ONT, 1980 and Lewiston, NY - 1980 Quadrangles).

1-Year 24-Hour Rainfall in Inches

2.1" (USDOC Technical Paper No. 40).

Distance to Nearest Downslope Surface Water

1.4 mile (USGS Topographic Maps: Niagara Falls NY-ONT, 1980 and Lewiston, NY - 1980 Quadrangles).

Physical State of Waste

Solid (NYSDEC Registry Sheet, 12/83).

* * *

3. CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Wastes disposed directly on the ground. There are no cover or diversion systems. (ES and D&M Site Inspection, 3/26/85).

Method with highest score:

Piles not covered, no surface water diversion system - 3.

4. WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated

Copper (USGS, 1983).

Compound with highest score:

Copper (toxicity = 3, persistence = 3) - 18.

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

Unknown (NYSDEC Registry Sheet, 12/83).

Basis of estimating and/or computing waste quantity:

Hazardous wastes are known to have been disposed on-site; however, no records exist for the site. Therefore, for purposes of rating the site, 1 to 10 cubic yards of hazardous waste are assumed to be disposed on-site because contaminants have been detected.

* * *

5. TARGETS

(USGS Topographic Maps: Niagara Falls, NY-ONT and Lewiston, NY Quadrangles, 1980)

Surface Water Use

Use(s) of surface water within 3 miles downstream of the hazardous substance:

Recreation, scenic value, tourism, and discharge from power plants.

Is there tidal influence?

No.

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

None within 2 miles (Western NYS not a coastal area).

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

None within 1 mile (Sneider and Wilkinson, 1985).

Distance to critical habitat of an endangered species or national wildlife refuge, if 1 mile or less:

None within 1 mile (Sneider and Wilkinson, 1985).

Population Served by Surface Water

(New York State Atlas of Community Water System Sources, 1982)

Location(s) of water-supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static water bodies) downstream of the hazardous substance and population served by each intake:

None within 3 miles of the site.

Computation of land area irrigated by above-cited intake(s) and conversion to population (1.5 people per acre): None within specified distances. Total population served: Not applicable. Name/description of nearest of above water bodies: Not applicable. Distance to above-cited intakes, measured in stream miles. Not applicable.

AIR ROUTE

1. OBSERVED RELEASE

Contaminants detected:

All HNU meter readings were less than 1 ppm.

Date and location of detection of contaminants:

HNU readings taken both upwind and downwind of site. ES and D&M Site Inspection, 3/26/85.

Methods used to detect the contaminants:

HNU meter.

Rationale for attributing the contaminants to the site:

Not applicable.

* * *

2. WASTE CHARACTERISTICS

Reactivity and Incompatibility

Most reactive compound:

No known reactive compounds.

Most incompatible pair of compounds:

No known incompatible compounds.

Toxicity

Most toxic compound:

Low concentrations (ppb) of priority pollutant organics have been detected in groundwater samples collected from nearby residential wells. However, these contaminants can not be attributed to the site. HNU meter readings did not indicate the presence of volatile organics above background levels. Therefore, no compounds are known to exist on-site that potentially impact the air pathway.

Hazardous Waste Quantity

Total quantity of hazardous waste:

Unknown (NYS Registry Sheet, 1983).

Basis of estimating and/or computing waste quantity:

No hazardous waste can be attributed to the site (see above comments).

* * *

TARGETS

Population Within 4-Mile Radius

Circle radius used, give population, and indicate how determined:

(0 to 4 mi) 0 to 1 mi 0 to 1/2 mi 0 to 1/4 mi

66,222 people (Complied from 1980 US Bureau of the Census Data).

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

None within 2 miles (Western NYS not a coastal area).

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

More than 1 mile (Sneider and Wilkinson, 1985).

Distance to critical habitat of an endangered species, if 1 mile or less:

More than mile (Sneider and Wilkinson, 1985).

Land Use

Distance to commercial/industrial area, if 1 mile or less:

Adjacent (ES and D&M Site Inspection, 3/26/85).

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

More than 2 miles (USGS Topographic Maps: Niagara Falls, NY-ONT and Lewiston NY, Quadrangles, 1980).

Distance to residential area, if 2 miles or less:

Adjacent (ES and D&M Site Inspection, 3/26/85).

Distance to agricultural land in production within past 5 years, if 1 mile or less:

More than 1 mile (USGS Topographic Maps: Niagara Falls, NY-ONT and Lewiston NY, Quadrangles, 1980).

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

More than 2 miles (USGS Topographic Maps: Niagara Falls, NY-ONT and Lewiston NY, Quadrangles, 1980).

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?

No.

FIRE AND EXPLOSION

1. CONTAINMENT

Hazardous substances present:

No information was discovered during the Phase I study which indicates that a fire and explosion situation existed or presently exists at the site.

Type of containment, if applicable:

Not applicable, see above comment.

* * *

2. WASTE CHARACTERISTICS

Direct Evidence

Type of instrument and measurements:

No measurements to determine the fire and explosion potential were taken on-site.

Ignitability

Compound used:

No ignitable compounds are known to exist on-site.

Reactivity

Most reactive compound:

No reactive compounds are known to exist on-site.

Incompatibility

Most incompatible pair of compounds:

No incompatible compounds are known to exist on-site.

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility:

No hazardous waste are known to be disposed on-site that create a potential fire and explosion situation.

Basis of estimating and/or computing waste quantity:

No applicable, see above comment

* * *

TARGETS

Distance to Nearest Population

A residential area is located adjacent to the site (ES and D&M Site Inspection, 3/26/85).

Distance to Nearest Building

500 feet to a home on Delaware Avenue (ES and D&M Site Inspection, 3/26/85).

Distance to Sensitive Environment

Distance to wetlands:

None within 1 mile of the site (NYSDEC, Region 9, Department of Fish and Wildlife, 1985).

Distance to critical habitat:

None within 1 mile (NYSDEC, Region 9, Department of Fish and Wildlife, 1985).

Land Use

Distance to commercial/industrial area, if 1 mile or less:

Adjacent to the site (ES and D&M Site Inspection, 3/26/85).

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

More than 2 miles (USGS Topographic Maps: Niagara Falls, NY-ONT and Lewiston NY, Quadrangles, 1980).

Distance to residential area, if 2 miles or less:

Adjacent to site (ES and D&M Site Inspection, 3/26/85).

Distance to agricultural and in production within past 5 years, if 1 mile or less:

More than 1 mile (USGS Topographic Maps: Niagara Falls, NY-ONT and Lewiston NY, Quadrangles, 1980).

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

More than 2 miles (USGS Topographic Maps: Niagara Falls, NY-ONT and Lewiston NY, Quadrangles, 1980).

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?

No.

Population with 2-Mile Radius

28,897 people (US Census Data, 1980).

Buildings Within 2-Mile Radius

DIRECT CONTACT

1. OBSERVED INCIDENT

Date, location, and pertinent details of incident:

There is no confirmed instance in which contact with hazardous substances at this site has caused injury, illness or death to humans or domestic or wild animals.

* * *

2. ACCESSIBILITY

Describe type of barrier(s):

Barriers do not completely surround the site (ES and D&M Site Inspection, 3/26/85).

* * *

CONTAINMENT

Type of containment, if applicable:

Waste piles on-site are uncovered and hazardous substance is accessible to direct contact.

* * *

4. WASTE CHARACTERISTICS

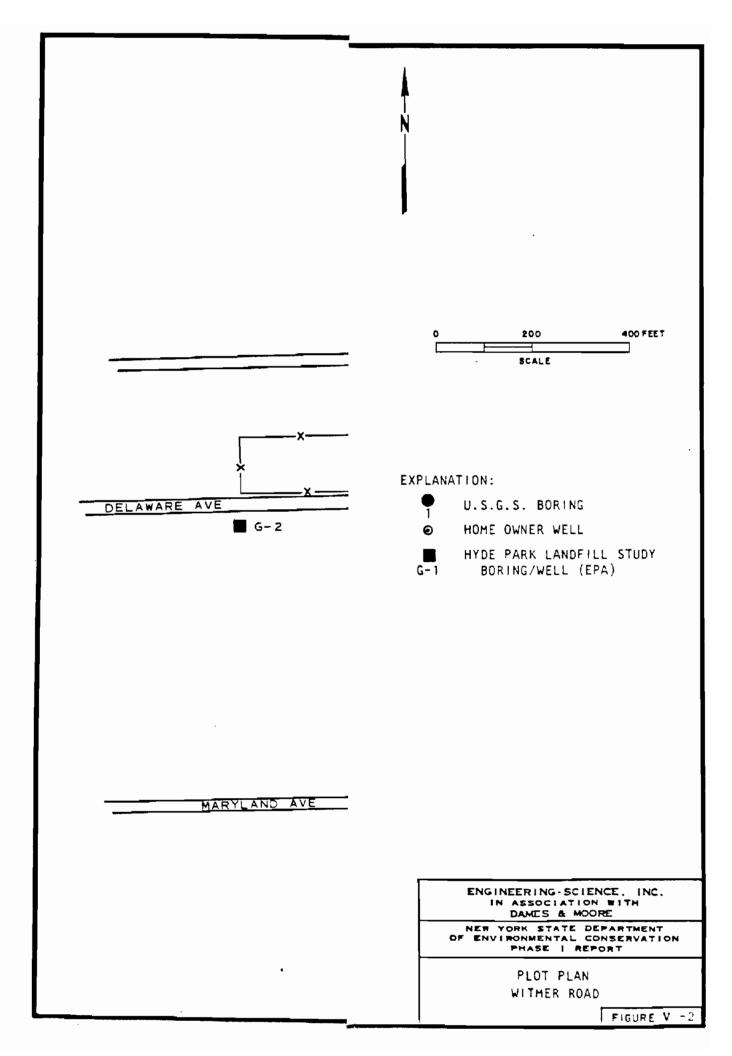
Toxicity

Compounds evaluated:

Copper (USGS, 1983).

Compound with highest score:

Copper (toxicity = 3, persistence = 3) - 18.


5. TARGETS

Population within one-mile radius

8,972 people (US Census Data, 1980).

Distance to critical habitat (of endangered species)

None within 1 mile (NYSDEC Region 9, Division of Fish and Wildlife, 1985).

HRS REFERENCES

- 1. Code of Federal Regulations, Protection of Environment, No. 40, Parts 190 to 399, 1983.
- ES and D&M Site Inspection, March/April, 1985.
- 3. Freeze, R. A., and Cherry, J. A., Groundwater, 1985.
- Hopkins, M., NCHD, Personal Communication, 10/28/85.
- Johnston, Richard H., Groundwater in the Niagara Falls Area of New York, 1964.
- 6. NYS Atlas of Community Water System Sources, NYS Department of Health, 1982.
- 7. NYSDEC, Inactive Hazardous Waste Disposal Sites Registry Sheet, 12/83.
- 8. NYS Museum and Science Service Bedrock Geology Map, Map and Chart Series, No. 15 (compiled by Rickard, L. V., and Fisher, D. W.).
- 9. NYS Museum and Science Service Bedrock Geology Map, Map and Chart Series, No. 28 (compiled by Muller, Ernest, H.), 1977.
- 10. Sneider, Jim and Wilkinson, Mike, NYSDEC Division of Fish and Wildlife, Personal Communication, 1/10/85 through 1/11/85.
- 11. US Census Data, 1980.
- 12. US Department of Commerce. "Climatic Atlas of the United States".
 1979.

- 13. US Department of Commerce Technical Paper No. 40. "Rainfall Frequency Atlas of the United States". 1963.
- 14. USGS Topographic Maps: Niagara Falls, NY-ONT, 1980; Lewiston, NY-ONT, 1980 Quadrangles.
- 15. USGS, Draft Report of Preliminary Evaluation of Chemical Migration to the Niagara River from Hazardous Waste Disposal Sites in Erie and Niagara Counties, 1983.

Environment

40

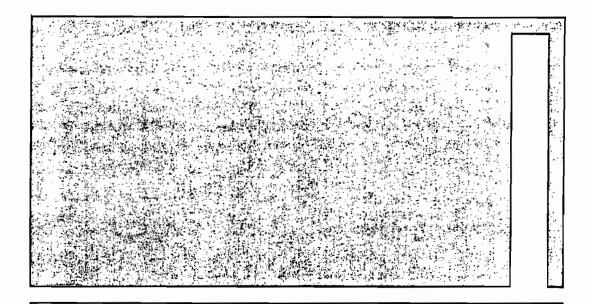
PARTS 190 to 399
Revised as of July 1, 1983

CONTAINING
A CODIFICATION OF DOCUMENTS
OF GENERAL APPLICABILITY
AND FUTURE EFFECT

AS OF JULY 1, 1983

With Ancillaries

Published by the Office of the Federal Register National Archives and Records Service General Services Administration


as a Special Edition of the Federal Register

ES AND DEM SITE INSPECTION

Observations made during the ES and D&M Site Inspections are provided on US EPA Forms 2070-12 and 2070-13. Field notes were used to complete these EPA Forms, and are not included herein.

R. Allan Freeze

Department of Geological Sciences University of British Columbia Vancouver, British Columbia

John A. Cherry

Department of Earth Sciences University of Waterloo Waterloo, Ontario

GROUNDWATER

Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632

Table 2.2 Range of Values of Hydraulic Conductivity and Permeability

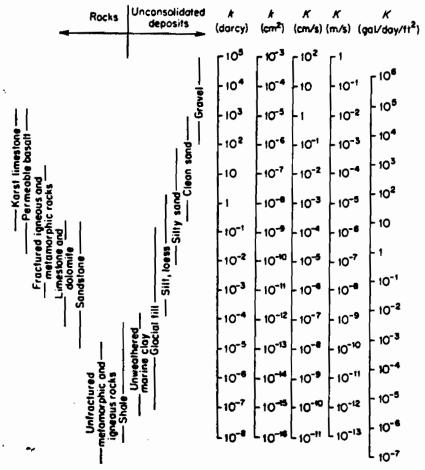


Table 2.3 Conversion Factors for Permeebility and Hydraulic Conductivity Units

		Permeability, A*		Hydraulic conductivity, #				
	cm ₂	Ħ²	dercy	m/s	ft/s	U.S. gal/day/ft²		
CID ²	1	1.08 × 10 ⁻³	1.01 × 10 ^a	9,80 × 10 ²	. 3.22 × 10 ³	1.85 × 10*		
ft ²	9.29 × 10 ²	1	9.42 × 1016	9.11 × 103	2.99 × 104	1.71×10^{12}		
darcy	9.87 × 10 ⁻⁹	1.06×10^{-11}	1	9.66×10^{-6}	3.17×10^{-3}	1.82×10^{1}		
m/s	1.02 × 10 ⁻³	1.10 × 10 ⁻⁴	1.04×10^{3}	1	3,28	2.12×10^{4}		
ft/s	3.11 × 10 ⁻⁴	3.35×10^{-7}	3.15 × 104	3.05 × 10 ⁻¹	1	6.46 × 10 ³		
U.S. gal/de	$y/\Omega^2 5.42 \times 10^{-10}$	5.83 × 10-13	5.49×10^{-2}	4.72 × 10 ⁻⁷	1.55 × 10-6	1		

To obtain k in f(2), multiply k in cm² by 1.08 × 10⁻³.

The state of the s

iductance petroleum substituted

les / Ch. 2

•

(2.29)

Will lead to a hydraulic s approxi-

or hydraulic 1 ms of Eq.

egard to this
r However,
d his formal
e of measurecan influence
he effect is
makes good
been carried
n nt are very
r_ent on the

her than con-

y ind permecal materials.

) review. The

conductivity

sunat take on

y implies that

e ery useful.

mobably has

e onverted to

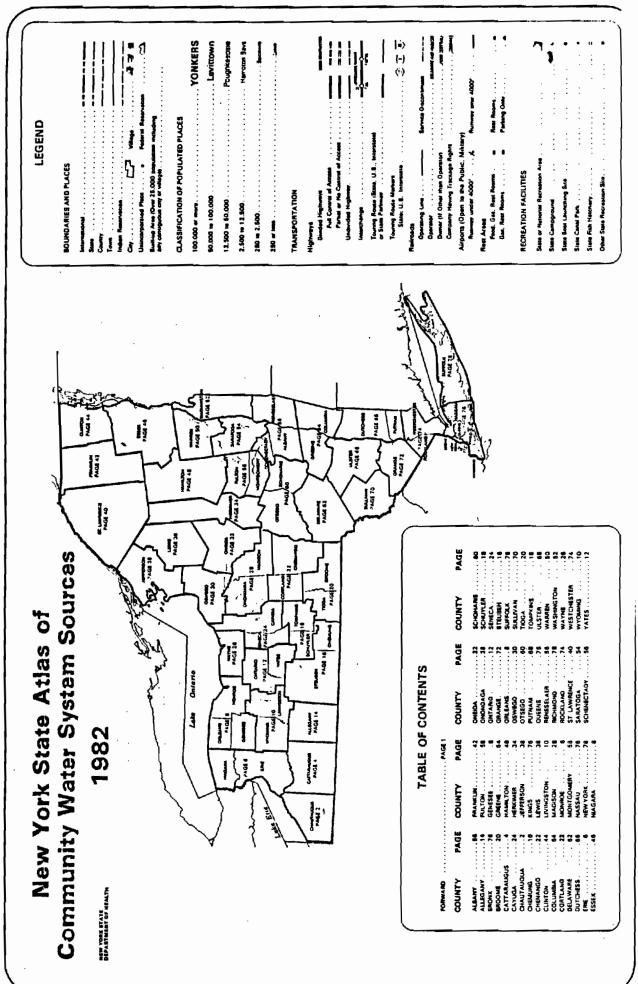
INTERVIEW FORM

_	10th St	000	STATE	OU	ZIP
	20 Na (a)	•		NCE PERIOD	
		mireliantico			A.Ryan
	N/28/85 (d
		1 retor when	n Niegos	Court	<u> </u>
		habrong on			
•	_	me industr			
1,7		that tran			
NO COVEY	<u>, (>1/0</u> 2/2/2/2	on Buffe	uo Cur ano	Me in	es is used
		a. Oben Chim			
		Marces with			
		e within 1/2			
		the wells us			
		لاقمانهيم مد	SO TO THIS	No Suctour	16 16 XX
	O WGONS	up to it.			
	_				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
I AGREE WI	TH THE ABOV	VE SUMMARY OF	THE INTERVIEW	:	
		SIGNATU	JRE	· · · · · · · · · · · · · · · · · · ·	
		·			

GROUND WATER IN THE NIAGARA FALLS AREA, NEW YORK

With Emphasis on the
 Water-Bearing Characteristics of the Bedrock

BY
RICHARD H. JOHNSTON
GEOLOGIST
U.S. GEOLOGICAL SURVEY


STATE OF NEW YORK

CONSERVATION DEPARTMENT

WATER RESOURCES COMMISSION

BULLETIN GW - 53

7
8
ERE

2005		Mingers River - Lot Branch Mingers River - Matt Pranch Mingers River - Matt Pranch Mingers River - Matt Pranch Mingers River - Matt Branch Mingers River - Lot Branch Mingers River - Lot Branch Mingers River - Lot Branch Libra Eric
- AVELLIBE	20. 1840 1940 1940 1940 1940 1940 1940 1940 19	1882 8 8 55155 8 8 55155 8 8 55155
CAMMINGTY MATER BYSTER	Anders Village (Bee Be & Westing Control of	L'em Danier ingle] Cred talend user Observer Horizon des Company Lockort City (Hispers Observer Rispers County weer Biscrett Rispers Fairs Village Borry Horizon City (Hispers Observer Borry Horizon City (Hispers Obs
: 1		* * POINTERSTRANCE

					3											
	3.5	•	:	: :		:	•	•	•		3	• • • • • • • • • • • • • • • • • • • •		•	•	
		2	Į.	23	1	3	2	4			ş	:	132.	•	?	
	:		:	•		:	:	:	:	:			:	:	:	
							į	:	:	:			•	į	:	
	ť	3		į		•	₹::		3			t	• • •		3	
ſ	1	2	2			::::	•						1 don b	-	1	
ļ	2007	2	2		Overde.		Tiest C	100	900			Pri marit		ylors C	> >	
ļ	21		š	ەن دە	. 3	•	É	i .	Ē.	•	ó	3	. ≃	-	<u> </u>	

				2				
	ij	ij	H			Ħ	Ħ	
	33	3.3	3.3	Ų.,			3.3	3,3
						• • •	• • •	
	25	32	Š	13	8:	~ §	۶ ۽	
	٠:	٠.	• •	• •	٠.	: :	•	: : :
	: •	• : :	• •				٠: ٠	
	٠	٠.			÷	: :	•	
	į	: :			ž	• •	٠:	• • •
	٠,	•	į		1	֓֞֞֞֞֞֞֝֓֓֓֡֞֞֩	•	
		Ė	ì	<u>.</u>	1	. Į	,	•
	į.	3	ļ	•	•			
	11	: 3		?	Ì.	=:		
ŧ	•		ě	•	į	- 3		
ı	Aurors Hobite Park,			3	Š	3		- 1
	ž					ů,		110000
Ì	Ž Ş	2 2	9	Cosen			•	\$0
1	4 4	تت	ပ်င်	3 :	2 2		2.0	2.2

NIAGARA COUNTY

		Esst Branch
100		agera Alver -
300	Riggers County later District (Wee No 13, Fre Co)	77364 84
12. Erie (8).	District .	9. 00
City (bes to	County Mater	nevende City
Lockport Ci		Borth 1

De Martin Commy

Country Estates Mobile Villege.

9-431

PAGE

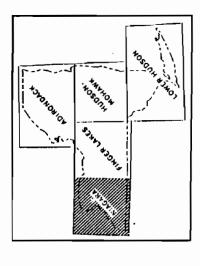
10/83) NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID AND HAZARDOUS WASTE REF-7

TMACTIVE MATADONIC MASTE DISPOSAL SITE DEPORT

INACTIVE MAZARDOUS WASTE	DISPUSAL SITE REPURT
PRIORITY CODE:2a	SITE CODE: 932027
NAME OF SITE: Witmer Road Site	REGION: 9
STREET ADDRESS: Witmer Road at Maryland	·
TOWN/CITY: Niagara	
NAME OF CURRENT OWNER OF SITE: Adolph Ka	ich i noski
ADDRESS OF CURRENT OWNER OF SITE: 4800 W	litmer Road, Niagara Falls, NY 14305
TYPE OF SITE: OPEN DUMP X	STRUCTURE LAGOON LAGOON TREATMENT FOND
ESTIMATED SIZE: ACRES	·
SITE DESCRIPTION:	
Site was used as a dump for incombustit	oles and large refuse items.
City of Niagara Falls used the site for	r open burning.
Also lime cleanouts from process vesse Mineral and Chemical) were reportedly (is at 1500 (now international dumped here. Currently the site
is used for a scrap year and as an east	ement for high voltage towers of
Niagara Mohawk. Two subsurface soil s site by U.S.G.S. in August of 1982 and	amples were collected from the
for Ni, Fe, Cu and organics.	May 1905. Samples were analyzed
HAZARDOUS WASTE DISPOSED: CONFIRMED	SUSPECTED X
TYPE AND QUANTITY OF HAZARDOUS WASTES DIS	SPOSED:
TYPE	QUANTITY TONS, GALLONS
Incinerator residue	Unknown
Lime form Process vessels	
General refuse	
General retuse	· · · · · · · · · · · · · · · · · · ·

(NYS DEC	(, <i>19</i> 83)
TIME PERIOD SITE WAS USED FOR HAZARDOUS WASTE DISPOSAL:	
	(
SITE OPERATOR DURING PERIOD OF USE: City of Niagara Falls	
- ADDRESS OF SITE OPERATOR: City Hall, Main Street, Niagara Falls, NY 14305	
ANALYTICAL DATA AVAILABLE: AIR SURFACE WATER GROUNDWATER	
SOIL SEDIMENT NONE	
CONTRAVENTION OF STANDARDS: GROUNDWATER	
SURFACE WATER AIR	
SOIL TYPE: Sandy clay	
DEPTH TO GROUNDWATER TABLE: Unknown	
LEGAL ACTION: TYPE: None STATE FEDERAL	
STATUS: IN PROGRESS COMPLETED	
REMEDIAL ACTION: PROPOSED UNDER DESIGN	
IN PROGRESS COMPLETED	
NATURE OF ACTION: None	
ASSESSMENT OF ENVIRONMENTAL PROBLEMS:	(
Results of the organic analysis are not yet available. Existing	,
information does not indicate the presence of Environmental problems at the site.	
one stile.	
ASSESSMENT OF HEALTH PROBLEMS:	
PERSON(S) COMPLETING THIS FORM:	
NEW YORK STATE DEPARTMENT OF NEW YORK STATE DEPARTMENT OF HEALTH	
ENVIRONMENTAL CONSERVATION	
MADE TO STATE TO STAT	
A Tamaki	
NAME A. Tayyer NAMENAMENAME	,
DATE: November 21, 1983 DATE: 12/83	
9-432	

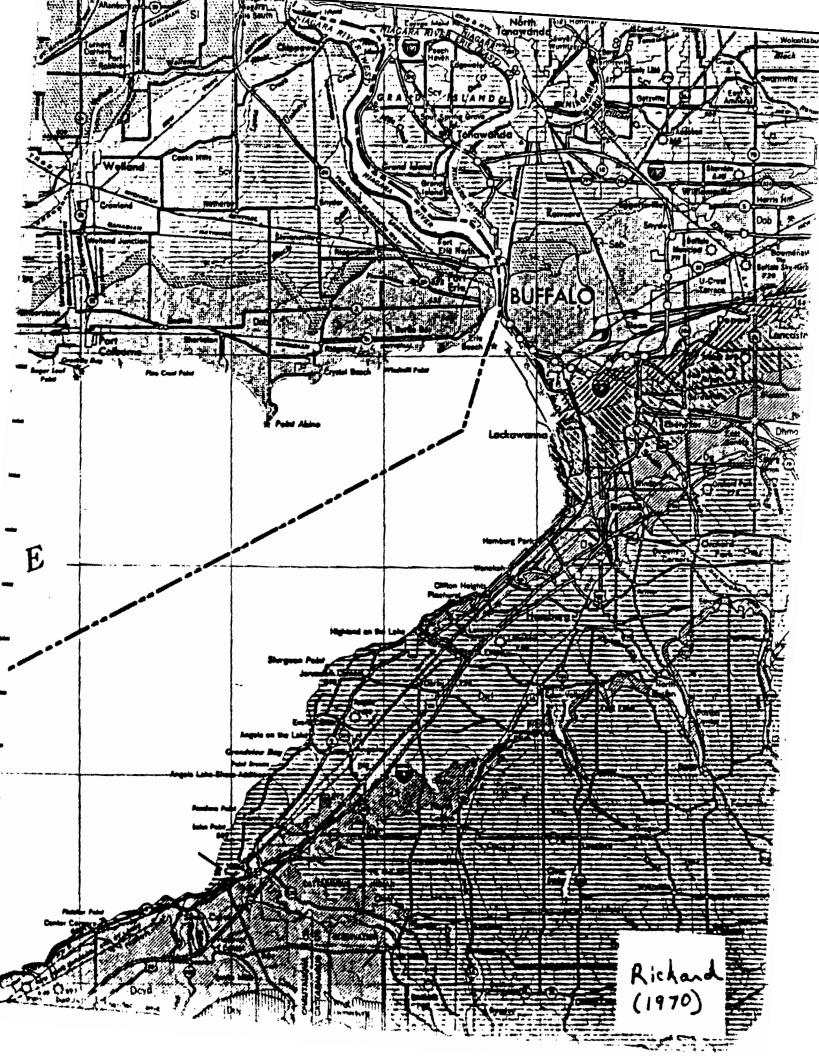
REF-


GEOLOGIC MAP OF NEW YORK

1970

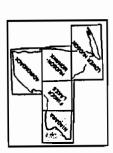
Niagara Sheet

15 Statute Miles 20	2 534 3350	25 Kilometers 30
		20
1:250,000		15
Scale 1:2		10
		ς,
c		0
ru		S.


CONTOUR INTERVAL 100 FEET

COMPILED AND EDITED BY Lawrence V. Rickard Donald W. Fisher

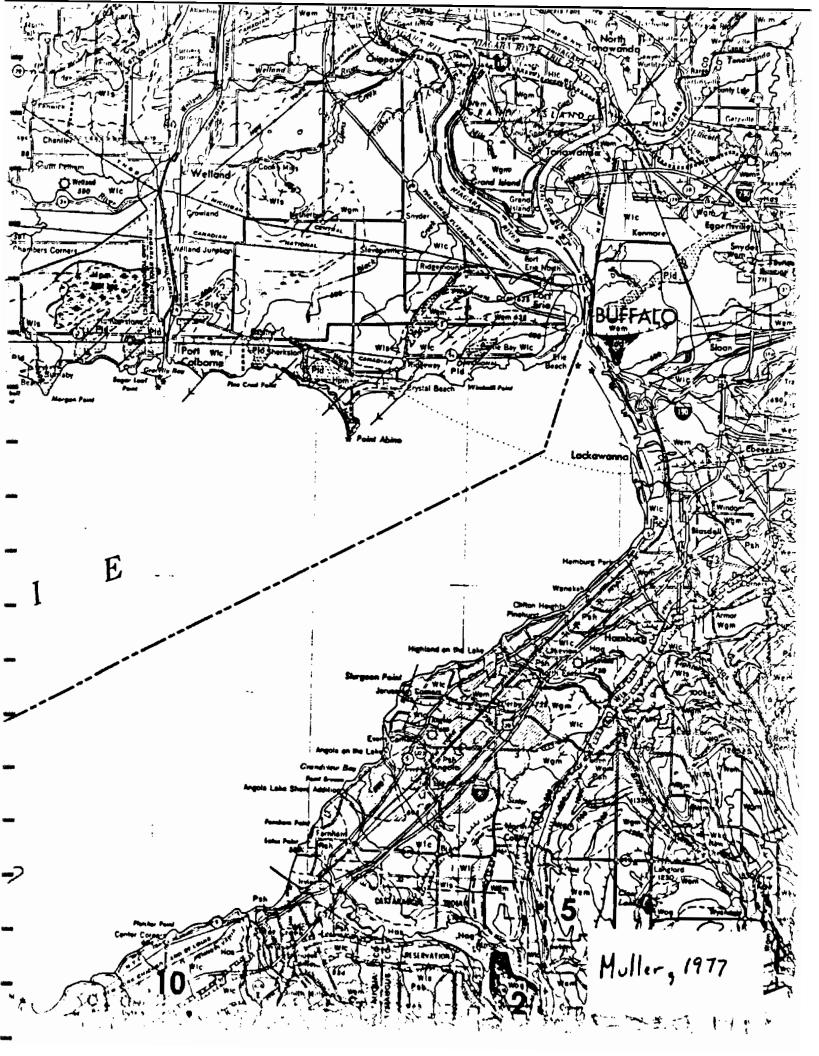
March, 1970


NEW YORK STATE MUSEUM AND SCIENCE SERVICE Topographic Base from AMS Quadrangles 1:250,000 scale. MAP AND CHART SERIES NO. 15

QUATERNARY GEOLOGY OF NEW YORK, NIAGARA SHEET

by Ernest H. Muller

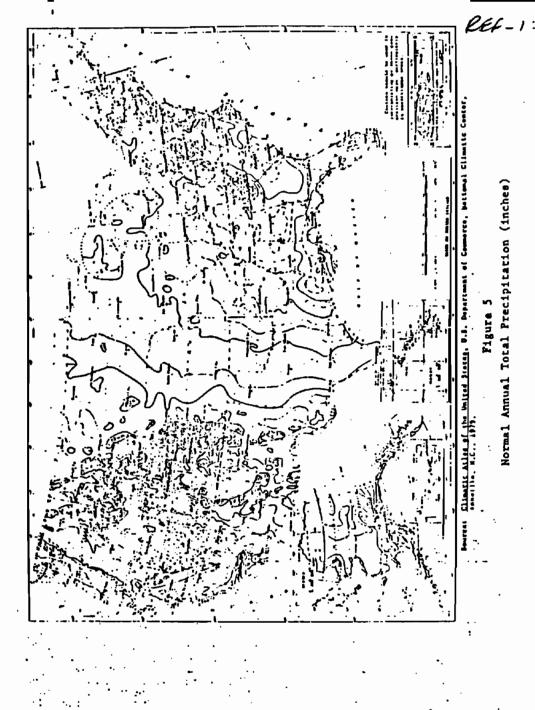
Muller, Ernest H. (1977) New York State Museum and Science Service Map and Charl Series Number 28


MAP DATA SOURCES

- Bantolomucci, Henry A., 1968. A sedimentological study of the Niagera Fells Moraine. S.U.N.Y. Buffalo, M.A. thesis, 76p.
- Blackmon, Paul, 1956, Glacial geology of the East Aurora, New York Quadrangle. Univ. of Buffalo, M.S. thesis.
- Bryant, Jay C., 1955, A refinement of the upland glacial drift border in southern Cattaraugus County, N.Y. Cornell Univ. M.S. thesis, 127p.
- Calkin, Parker, 1970, Strandlines and chronology of the Glacial Great Lakes in northwestern New York: Ohio Jour. Sci. 70:78-96.
 Chapman, L.F. and D.F. Putnam, 1966, The physiography of southern Ontario. Univ. of
- i oronto Fress, Saop.

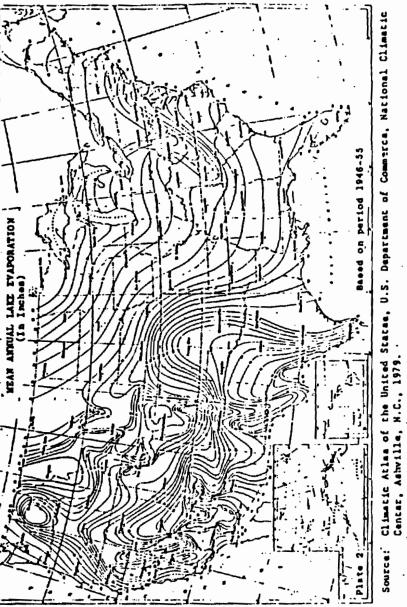
 6. D'Agostino, John, 1957, Glacial Lake Tonawanda history and development. Unpub. M.S. thesis, S.U.N.Y. Buffalo.
- Denny, Charles S., 1956, Surficial geology and geomorphology of Potter County, Pennsylvania. U.S.G.S. Prof. Paper 288, 72p.
- Feenstra, B.H., 1972, Quaternary geology of the Niegara area, southern Ontario; Ontario Div. Mines, Prelim. Map P.764, 1:50.000.
- 9. Feenstra, B.H., 1972. Quaternary geology of the Welland area, southern Ontario; Ontario Div. Mines, Prelim. Map P.796, 1:50,000.

- Karrow, P.F., 1963, Pleistocana geology of the Hamilton-Galt area, Ontario; Ontario Div. Mines, Geol. Rep. 16, 68p. and Map 2033.
- Kindle, E.M. and F.B. Taylor, 1913, Description of the Niagara quadrangle. U.S.G.S. Geol. Atlas Folio 190, 25p.
- Leverett, Frank, 1902, Glacial formations and drainage features of the Erie and Ohio Basins. U.S.G.S. Monograph 41, 802p.
- 13. Muller, E.H., 1963, Geology of Chautauqua County, N.Y. Part II: Plaistocana Geology. N.Y.S.M. Bull. 392, 60p.
- 14. Muller, E.H., Unpub. field mapping. New York State Museum.
- 15. Shepps, V.C., G.W. White, J.B. Drosta and R.F. Sitler, 1959, Glacial geology of northwestern Pannsylvania. Panna. Geol. Survey Bull. G-32, 4th ser.
- 16. Sweeney, J.F., 1969, Glacial geology of the Springville, New York and northern part of the Ashford Hollow, New York quadrangles. S.U.N.Y. Burtalo, M.S. thesis, 51p.
- Symetko, R.E., 1967, Giscial geology of the Orchard Park, New York, quadrangle. S.U.N.Y. Buffalo, M.A. thesis, 64p.
- 18. Wilson, Michael, 1973, Gravity studies in the vicinity of Walnut Greek, southwestern New York. Unpub. M.S. thesis, S.U.N.Y. College at Fredonia.


REF-10 L

INTERVIEW FORM

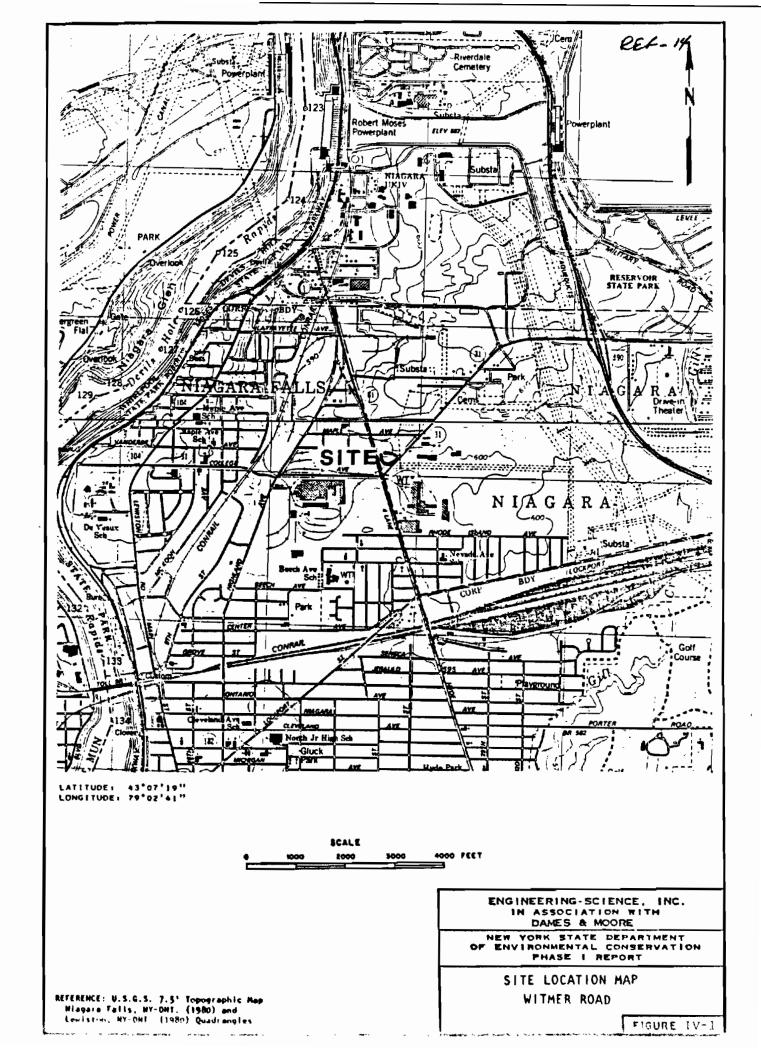
TITLE - POSITION NVSDEC Div of Fish Wildlife
TITLE - POSITION NVSDEC Div of Fish wildlife,
ADDRESS We la Warre Hive.
CITY Ruffalo STATE My ZIP
PHONE (') . RESIDENCE PERIOD TO
LOCATION IN DEC office INTERVIEWER Elean Million
DATE/TIME 1/10/857 1/11/851 SUBJECT: Phase I site information
SUBJECT: Phase I site information
_
HENARKS: The above-ramed intervieweex provided LIM with the following information regarding our Phase T site (see attached lint)
Phones The Land Hacked live
Our Travel Set Will Alfacula (182)
1) We Hande in Wiagana, Co & moximute, to sites
2) Types of typh wildlife in Frie Minogra area 3) Use by ship wildlife of Niagana Piver 4 tr. hutanen
a) live by shik wildlife of Niagana River
V tr. hutanen
Wetlands in the Ene Niapara area
wetlands in the Ene Niapara area
- No critical habitats or wetlands are located
within one nite of the Witner Road Site.
I AGREE WITH THE ABOVE SUMMARY OF THE INTERVIEW:
SIGNATURE: James R. Snicky - In Willie Buckering
WYTHINGER C. Willburg - Conservation B.C. (agricult)
COMMENTS: no descussion of welling. findlif's regarding
mine Landfell set - referred to Oliver Ciffine


US CENSUS DATA, 1980

US Census Data used in the HRS scoring was obtained from various County Planning Offices. This data was not obtained from a report. The raw census data combined with County Planning Maps was used to estimate the population within 1, 2, 3, and 4 miles of the Phase I site being investigated. Because of the voluminous amount of data used, the data is not provided in this Appendix.


USDOC, "Climatic Atlas of the United States," 1979

677


676

USDOC, "Climatic Atlas of the United States", 1979

686

USDOC, "Rainfall Frequency Atlas of the United States," 1963

(USGS Study dreft, 1983)

90. WITMER ROAD SITE

#932027

REF-15

General information and chemical-migration potential

The Witmer Road site is located in the town of Misgara and is shown on plate 3.

The site contains an unknown quantity of incinerator residue from open burning. The site is presently occupied by a scrapyard.

The potential for contaminant migration is probably minimal, but additional field work and sampling would be needed to confirm this.

Geologic Information

The U.S. Geological Survey drilled two test borings on the site in 1992; the locations are shown in fig. ____. The geologic logs are as follows:

Porebule No.	Depth (f:)	Description
1	9 - 6.5	Black topsell, reddish, sand clay at buttom.
•	·	NOTE: Tried split spoon with
		hydraulic, got in at at 1 it.
	4.5 - 7.1	Clay, sandy, ceddish.
	7.0 - 8.7	Split spoon - sand, red, some yellow particles, usites.
	8.7 - 9.0	Split spoonSand, red, some vellow particles, askes bit ex at 9.0 ft.
		SAMPLE: 7.0 ft.
2	n - 4.0	Topsoil.
<u>.</u>	4.0 - 7.5	Limestone (dolomite), light gray, mealy ash
	7.5 - 10.0	Sand, reddish, clayey. SAMPLE: 6.5 ft.

Hydrologic information

No ground water was encountered: It is nuchably confined to the fractored bedrock.

(USGS, 1983)

SITE 40 cm : 18

Chemical information

Two soil samples were collected and analyzed for copper, iron, mercury, and organic compound. The results are given in table____. The concentration of copper in sample 2 exceeded concentrations from undisturbed sites not effected by waste-disposal practices. There were seven organic priority pollutants found, most at concentrations below 25 mg/Kg. There were five organic nonpriority pollutants and some unknown bydrogerbons found.

Table .--Analyses of substrate simples from Vitner Pond, site 90, Niagaru Falls, N.Y. (Locations shown in fig. . Concentrations are in 1g/Kz; dashes indicate that constituent or compound was not found, LT indicates it was found but below the quantifiable detection limit.)

	Sample number and depth below land surface (ft)	
First sampling (05-29-82)	i i	6.5
Inorganic constituents		
Copper	2,000	28,000
Iron	1,200,000	1,400,000
Mercury		
	Sample dumber	
Second sampling (05-25-83)	TA	2A
Inorganic constituent	•	
Molecular sulfur ¹		450
Organic compounds	•	
Priority pallutants	•	
Benzene		9.8
<pre>1,1,1-Trichloroethane</pre>	· ?1.9**	 .
Trichlornethene	i.	
Fluoranthene	. 7,₹*	 '
Naphthalene	LT*	`
Bis(2-ethylhex1)phthalate	*104**	
Pyrene	LT*	
Nonpriority pollutents		
Carbondisulfide		38.4
Di benzofuran	L7*	
2-Methylnaphthalene	LT*	
2-Octadecanol ¹ 2-Methyl(s)-1-dodecanol ¹		* 690* 1,200*
Unknown by transarbons 1	16,750*	1, 4160* 4,160*
enknown ny trocarnons.	10,730ª	4,1000

Tentative identification based on comparison with the National Bureau of Standards (NBS) library. No external standard was available. Concentration reported is semiplentiturive and is based only on an internal standard. GC/MS spectra were examined and interpreted by GC/MS analysts.

[†] Exceeds concentrations in samples taken from undistrubed soils in the Niagara Falls area.

^{*} Holding time exceeded before GC/MC acid+ and base-neutral extractable compounds were extracted.

^{**} Fartigate recoveries were above or below the achestance limit .

SEPA

POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT PART 1 - SITE INFORMATION AND ASSESSMENT

I. IDENTIFICATION	
OT STATE OZ SITE HUMBER	7

VOLI A	PART 1 - SITE INFORMA	TION AND ASSESSMEN	T LNP	1746 250 1451
IL SITE NAME AND LOCATION				
D1 SITE NAME (Logal, common, or descriptive name of sale)	_	02 STREET, ROUTE NO., OR SPI	ECIFIC LOCATION IDENTIFIER	
Witner Road	£ite	WitmerRow	ad Maryla	nd Are
Witner Road Oscar Ni aganz Falls		04 STATE OS ZIP CODE 060	Niag.sra	OF 3 G
<u>43° 07′19′</u> 7	9° 02' 41"			
The Site is I scated		ware and Man	yland Avenue	an
Writman Road, N	liagarafalls.			
III. RESPONSIBLE PARTIES				
01 OWNER # Moore		02 STREET (Business, making, reside	integ .	
Kach Scrap Yard		4737 Ones-		_
Kach Scrap Yard O3 CITY Ni agara Falls O7 OPERATOR (# Anoun and options lines among)		04 STATE 05 ZIP CODE NT 14305	06 TELEPHONE NUMBER	
O7 OPERATOR (if known and different from a week)		OS STREET (Business, meding, reside	interior .	'
· ·				
09 CITY		10 STATE 11 ZIP CODE	12 TELEPHONE NUMBER	T
			(c)	
13 TYPE OF OWNERSHIP (Check emp)		<u> </u>		1
DE PRIVATE D B. FEDERAL:	(Agency name)	C. STATE	D.COUNTY DE.MI	INICIPAL
☐ F. OTHER:	(Specify)	G. UNKNOV	YN	
14 OWNER/OPERATOR NOTIFICATION ON FILE (Creek				
☐ A. RCRA 3001 DATE RECEIVED:	JAY YEAR B. UNCONTROLE	ED WASTE SITE CERCIA 103 d	DATE RECEIVED: 1	AY YEAR E C. NONE
IV. CHARACTERIZATION OF POTENTIAL		<u>_</u> _	-	
OT ON SITE INSPECTION OYES DATE // 13,80	BY (Chord of their apply) A EPA B B. EP/ E E LOCAL HEALTH OFF		STATE D. OTHER	CONTRACTOR
	CONTRACTOR NAME(S):			
02 SITE STATUS (Chock and) DA. ACTIVE B. INACTIVE C. UN	03 YEARS OF OPER	19403 yrese		N
04 DESCRIPTION OF SUBSTANCES POSSIBLY PRESE	TE MANUEL OF ALL FORD	SEGINNING YEAR 'ENDING YEA		
Unknown quantité				
cleanouts from a Also miscellana	ear welter in	holine concerns	tion debut and	automobiter
LOS DESCRIPTION OF POTENTIAL HAZARD TO ENVIRO	NMENT AND/OR POPULATION	-		_ 1
Potential hazard	to groundwater	-, surface un	ders and soil	s from
providy organiz	s found in bon	ng soil sample	s Cusgs, 198	(5)
V. PRIORITY ASSESSMENT				
01 PRIORITY FOR INSPECTION (Check one. If high or media	,	maion and Part 3 - Description of Hazard	ters Candisions and Incidential	
(Procession required prompting (Inspection		D. NONE (Ha hursher)	action needed, complete current dispo	sation forms
VL INFORMATION AVAILABLE FROM				
01 CONTACT	02 OF (Agency: Organic		(1	03 TELEPHONE NUMBER
Robert Steele		nearing Scien		1783'591-7575
04 PERSON RESPONSIBLE FOR ASSESSMENT	05 AGENCY	DE ORGANIZATION	07 TELEPHONE NUMBER	08 DATE 4,19,85

	7	Δ
	-	74
\		

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

	I. IDENT	IFICATION
İ	01 STATE	02 SITE NUMBER 10980509459
	727	1986509459

PSO PESTICIDES OCC OTHER ORGANIC CHEMICALS Unterdum	Y)LI			PART 2 - WAST	E INFORMATION	l	177 1 178	1501457
SY SOLD SY S	IL WASTES	TATES, QUANTITIES, AN	O CHARACTER	ISTICS		_		-
RESTANCE SAME OLARGONY SUBSTANCE NAME OLARGONY SUU SLUDGE OLARGONY SUU SLUDGE OLARGONY SUU SLUDGE OLARGONY OLARGONY SUL SLUDGE OLARGONY OLARGONY OLARGONY OCC OTHER ORGANIC CHEMICALS OCC OTHER ORGANIC CHEMICALS ACD ACIOS BAS BASES MES MES MES MENOVINETALS SUSPECIAL OLARGONY OLA	SY A. SOLID BY 8. POWDE C. SLUDGE	ER, FINES C: F. LIQUID E C: GAS	(Meesures of must be TONS	i weste quentilias independentij	A. TOXIC B. CORRO C. RADIOA	CIVE CIG. FLAN	JBLE I I. HIGHLY \ CTIOUS I J. EXPLOS AMABLE I K. REACTY TABLE I L. INCOMP	IVE VE PATIBLE
CATEGORY SUU SLUGGE OLW OLY WASTE SOL SOLVENTS DEFICICLES OCC OTHER ORGANIC CHEMICALS OCC OTHER ORGANIC CHEMICALS OCC INORGANIC CHEMICALS WINDERS BAS BASES MES HEAVY METALS SUSSPACED OC ACIDS BAS BASES MES HEAVY METALS SUSSPACED OC ACTUAL TO A ADDRESS MES HEAVY METALS SUSSPACED OC ACTUAL TO A ADDRESS OCC STREET ORGANIC ROMAN AND ADDRESS AND ADD	D. OTHER	(Specify)	NO. OF DRUMS .		0^	JKnowN_		
SLU SLUGGE OLW OLYWASTE SOL SOLVENTS SCIEG CAN TIME (PERMS PRO PESTICIDES OCC OTHER ORGANIC CHEMICALS NORGANIC CHEMICALS ACD ADDS BAS BASES MES HEAVYMETALS SUSPECTED OI CATEGORY O2 SUBSTANCES (FOR ADDRESS IN PROPERTY FOR PROPERTY OF PARTY IN SOIL) OI CATEGORY O2 SUBSTANCE NAME O3 CAS NUMBER O4 STORAGEDISPOSAL METHOD O5 CONCENTRATION O5 CONCENTRATION O5 METHOD OCC PITCH OF PHARME O7 - 01 - 5 OCC North Halve OCC North Halve OCC North Halve OCC SIS(2-ethylhox) phythalate 117-81-7 OCC Carbon disulfide T5-15-0 OCC Carbon disulfide T5-15-0 OCC Carbon disulfide T5-15-0 OCC Carbon disulfide T5-15-0 OCC Decreption WES Chromium (SUSPECTE) THE OFFICE OCC PROPER THE OCC PARTY OF THE OCC PROPERTY OF THE OCC PROP	IIL WASTET	TYPE						
OLW OLYWASTE SOL SOLVENTS SOL SOLVENTS PED PESTCIDES OCC OTHER ORGANIC CHEMICALS OCC INORGANIC CHEMICALS ACD ACIDS BAS BASES MES HEAVY METALS SUSPECTED OI CATEGORY OI FEEDSTOCK NAME OI CAS NUMBER OI CATEGORY OI FEEDSTOCK NAME OI CAS NUMBER OI CATEGORY OI FEEDSTOCK NAME OI CAS NUMBER OI FEEDSTOCK NAME OI CATEGORY OI CATEGORY OI FEEDSTOCK NAME OI CATEGORY OI FEEDSTOCK NAME	CATEGORY	SUBSTANCE	IAME	01 GROSS AMOUNT	02 UNIT OF MEASURE	03 COMMENTS		
SOL SOLVENTS PSD PESTICIDES OCC OTHER ORGANIC CHEMICALS OCC OTHER ORGANIC CHEMICALS OCC OTHER ORGANIC CHEMICALS OCC INORGANIC CHEMICALS OCC INORGANIC CHEMICALS ACD ACIDS BAS BASES MES HEAVY METALS SUSPECTED OF CAMPES IN SOI! VI. HAZARDOUS SUBSTANCES FRANCE ADDRESS FOR MADERNO OI CATEGORY OI SUBSTANCES FRANCE ADDRESS FOR ADDRESS FOR SOINMENDER OI CATEGORY OI SUBSTANCES FRANCE ADDRESS FOR ADDRESS FOR ADDRESS OF ASTORAGEDISPOSAL METHOD OS CONCENTRATION ON A STORAGEDISPOSAL METHOD OS CONCENTRATION OS MES OCC SIN A STORAGEDISPOSAL METHOD OS CONCENTRATION OS MES OCC SIN A STORAGEDISPOSAL METHOD OS CONCENTRATION OS MES OCC SIN A STORAGEDISPOSAL METHOD OS CONCENTRATION OS MES OCC SIN A STORAGEDISPOSAL METHOD OS CONCENTRATION OS MES OCC SIN A STORAGEDISPOSAL METHOD OS CONCENTRATION OS MES OCC SIN A STORAGEDISPOSAL METHOD OS CONCENTRATION OS MES OCC SIN A STORAGED OS CONCENTRATION OR MES OCC SIN A STORAGED OS CONCENTRATION OCC SIN A STORAGED OCC SIN A STORAGED OCC SIN A STORAGED OCC SIN A STORAGED	SLU	SLUDGE			*	· Unknow	n granities	of-
PSO PESTICIDES OCC OTHER ORGANIC CHEMICALS OCC INORGANIC CHEMICALS ACD ACIDS BAS BASES MES HEAVY METALS SUSPECTED OI CATEGORY OI SUBSTANCES (See Appendix for root frequently case CAS favorent) OI CATEGORY OI FEEDSTOCK NAME OI CAS NUMBER OI CATEGORY OI FEEDSTOCK NAME OI CAS NUMBER OI FEEDSTOCK NAME OI CATEGORY OI CATEGORY OI CATEGORY OI	OLW	OILY WASTE		<u></u>		burned 1	refuse ash.	suspended
OCC OTHER ORGANIC CHEMICALS NORGANIC CHEMICALS ACD ACIDS BAS BASES MES HEAVY METALS SUSPECTED OI CATEGORY O2 SUBSTANCES (500 ADDITION OF PRODUCTION O	SOL	SOLVENTS				Slag a	h) lime cle	zamoute
OC INORGANIC CHEMICALS ACD ACIDS BAS BASES MES HEAVY METALS SUSPECTED IV. HAZARDOUS SUBSTANCES (SEA ADDROVAL DE POSAMERON) OI CATEGORY O2 SUBSTANCE NAME O3 CAS NUMBER O4 STORAGE DISPOSAL METHOD O5 CONCENTRATION COME OCC (Renzere 71-43-2 Vintry 8.8 MES OCC 1,1,1 Trichloroethane 71-55-6 11 22,9 ** TOCC Trichloroethane 71-55-6 11 Detectable OCC Nachthater 206-44-0 11 Detectable OCC Nachthater 71-20-3 11 Detectable 10 OCC SIS(2-ethyllical) phithalate 117-81-7 OCC (Runzere 129-0-00 129-0-00 129-0-00 129-0-00 129-0-00 129-0-00 129-0-00 129-0-00 129-0-00 129-0-00 129-0-00 129-0-00 120-00 120-00 120-00 120-00 120-00 120-00 120-00 120-00 120-0	PSD	PESTICIDES				Possibly		homiun
OC INORGANIC CHEMICALS ACD ACIDS BAS BASES MESS HEAVY METALS SUSPECLED IV. HAZARDOUS SUBSTANCES (SEA ADDRONAL DE POST PROGRAPHO CORP CAS PANDON) OI CATEGORY O2 SUBSTANCE NAME O3 CAS NUMBER O4 STORAGE DISPOSAL METHOD O5 CONCENTRATION COMPE OCC (1) Trichloroethane 71-43-2 Vintry OCC (1) Trichloroethane 71-55-6 Vintry OCC Trichloroethane 71-55-6 Vintry OCC (1) Trichloroethane 71-20-3 Vintry OCC (1) Aghthalate 71-20-3 Vintry OCC (1) Sis(2-ethyllical) phthalate 117-81-7 OCC (1) Furbine OCC (2-Methyl naphthalane 91-57-6 VINTRY OCC (2-Methyl naphthalane OCC (occ	OTHER ORGANIC CI	HEMICALS	Untenous	h	· 7 pnn	ite and 5,	non priest
BAS BASES MES HEAVY METALS IV. HAZARDOUS SUBSTANCES (SEO ADDONNER TO TOWN FORM CAS NUMBER) OI CATEGORY OZ SUBSTANCES (SEO ADDONNER TO TOWN FORM CAS NUMBER) OI CATEGORY OZ SUBSTANCE NAME OJ CAS NUMBER OA STORAGEDISPOSAL METHOD OS CONCENTRATION OB METHOD OS CONCENTRATION OG METHOD OJ CAS NUMBER OA STORAGEDISPOSAL METHOD OS CONCENTRATION OG METHOD OJ CAS NUMBER OA STORAGEDISPOSAL METHOD OS CONCENTRATION OS METHOD OJ CAS NUMBER OA STORAGEDISPOSAL METHOD OJ CAS CONCENTRATION OJ OJ CAS CONCENTRATI	ЮС	INORGANIC CHEMIC	ALS			огами	•	
MES HEAVY METALS SUSPECTED CHYONIUM IN CLEANAY IV. HAZARDOUS SUBSTANCES (See Appendix for nout Prophenty case CAS Number) OT CATEGORY O2 SUBSTANCE NAME O3 CAS NUMBER O4 STORAGEDISPOSAL METHOD O5 CONCENTRATION O6 MEA OCC 11.1 Trichloroethame 71-43-2 Vn km wn 8.8 mg CC 11.1 Trichloroethame 71-55-6 OCC 17.1 Trichloroetha	ACD	ACIOS						
IV. HAZARDOUS SUBSTANCES (See Appendix Nor Model Processing Color CAS Numbers) OI CATEGORY OI SUBSTANCE NAME OI CATEGORY OI FEEDSTOCK NAME OI CATEGORY	BAS	BASES						
OICATEGORY O2 SUBSTANCE NAME O3 CAS NUMBER O4 STORAGE/DISPOSAL METHOD O5 CONCENTRATION CONCE OCC (Renzene 71-43-2 Vn known 8.8 Vng C2.9** 1. 22.9** 22.9** 1. 22.9** 22.9** 1. 22.9** 22.9** 1. 22.9**	MES	HEAVY METALS		suspecte	<u> </u>	· chroni	um in clean	nd wage
OCC Renzene 71-43-2 Vnknown 8.8 mg GCC 11.1 Trichloroethame 71-55-6 " 22.9** " OCC Trichlomethene 79-01-6 " 1 detectable OCC Aphthalme 206-44-0 " detectable OCC Naghthalene 91-20-3 " detectable " OCC Bis(z-ethylical) phthalate 117-81-7 " #104 ** " OCC Bis(z-ethylical) phthalate 117-81-7 " #104 ** " OCC Bis(z-ethylical) phthalate 117-81-7 " #104 ** " OCC Carbon disulfide 75-15-0 " detectable " OCC Carbon disulfide 75-15-0 " detectable " OCC 2-Methyl maghthalene 91-57-6 " detectable " OCC 1-Methyl maghthalene 91-57-6 " detectable " OCC Dibaratum (suspectal) 7440-47-3 " detectable " MES (homium (suspectal) 7440-47-3 " detectable " Verene or 1440-50-8 " 2.0-28.0 mg * holding time exceeded before analysic " * * Surroade resoveres were above or below acceptate theorem of the company of the compa	IV. HAZARD	OUS SUBSTANCES (See A	ppendix for most frequent	tly cited CAS Numbers)				
CCC 1,1,1 Trichloroethane 71-55-6 CC 1richloroethane 79-01-6 CC 1richloroethane 79-01-6 CC Alubrathere 206-44-0 CC Mathhatene 91-20-3 CCC Mathhatene 91-20-3 CCC Bis(2-ethylliexi) phthalate 117-81-7 CCC Bis(2-ethylliexi) phthalate 117-81-7 CCC Carbon disulfide 129-0-00 CCC Carbon disulfide 75-15-0 CCC 2-Methyl maphthalane 91-57-6 CCC 2-Methyl maphthalane 91-57-6 CCC Dibarzaturan 43047-97-0 MES Chronium (Suspected) 7440-47-3 MES Chronium (Suspected) 7440-47-3 MES Copper 7440-50-8 THE Surrogate resoveres were abore or below accepts ** holding time excepted before analysis ** ** Surrogate resoveres were abore or below accepts V. FEEDSTOCKS (Sura Appendix NO CAS Mumbers) CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS	01 CATEGORY	02 SUBSTANCE N	IAME	03 CAS NUMBER	04 STORAGE/DIS	POSAL METHOD		06 MEASURE OF CONCENTRATION
OCC Trichlomethere 79-01-6 OCC Procanthere 206-44-0 OCC Maphthetere 91-20-3 OCC Bis(z-ethylical) phthalate 117-81-7 OCC Bis(z-ethylical) phthalate 117-81-7 OCC Carbon disulfide 129-0-00 OCC Carbon disulfide 75-15-0 OCC Z-Methyl maphthalane 91-57-6 OCC Dibaraturan 43047-99-0 MES Chromium (Suspected) 7440-47-3 MES Chromium (Suspected) 7440-47-3 MES Copper 7440-50-8 Tholding time exceeded before analysis ** holding time exceeded before analysis ** Surrogate recoveres were above of below accepts V. FEEDSTOCKS (see Apparation for CAS Marmooris) V. FEEDSTOCKS (see Apparation for CAS Marmooris) CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS	OCC	Benzene		71-43-2	vnkn	awn		wyka
OCC Naphthetene 91-20-3 " detertable " OCC Naphthetene 91-20-3 " detertable " OCC BIS(Z-ethylliax) phthalate 117-81-7 " *104*# " OCC Purene 129-0-00 " detertable " OCC Carbon disulfide 75-15-0 " 38.4 " OCC Z-Methyl naphthalane 91-57-6 " detertable " OCC Dibarzafuran "URNY-99-0 " detertable " OCC Dibarzafuran "URNY-99-0 " detertable " MES Chomium (Suspectel) 7440-47-3 " MES Copper "7440-50-8 " 2.0-28.0 mg ** holding time excepted before analysic ** Surrogate reporties were above of below accepta 1. mits V. FEEDSTOCKS (See Appendix to CAS Membera) CATEGORY OI FEEDSTOCK NAME 02 CAS NUMBER CATEGORY OI FEEDSTOCK NAME 02 CASI	OCC	11.1 Triculoro	ethane	71-55-6		<u>. </u>	22.9**	77
OCC Bis(z-ethylhext) phthalate 117-81-7 OCC Bis(z-ethylhext) phthalate 117-81-7 OCC Phrene 129-0-00 OCC Carbon disulfide 75-15-0 OCC Carbon disulfide 75-15-0 OCC 2-Methyl naphthalene 91-57-6 OCC Pibenzafuran 43047-99-0 MES (bromium (suspected) 7440-47-3 MES (chromium (suspected) 7440-47-3 MES copper 7440-50-8 The first surroacte resoveries were above of below acceptants V. FEEDSTOCKS (son Apparatus for CAS Mambaria) CATEGORY OI FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS	000	Trichlompt	hane	79-01-6	1	·	detectable	
OCC Bis(z-ethylinex) phthalate 117-81-7 OCC Purene 129-0-00 OCC Carbon disulfide 75-15-0 OCC 2-Methyl naphthalene 91-57-6 OCC Dibenzaturan 43047-99-0 MES (browium (suspected) 7440-47-3 MES (browium (suspected) 7440-47-3 MES copper 7440-50-8 ** holding time excepted before analysis ** ** ** ** ** ** ** ** ** ** ** ** **	\cap (\cap	fluorantho	me	206-44-0	1		detertable	1.1
OCC Carbon disulfide 75-15-0 OCC Carbon disulfide 75-15-0 OCC 2-Methy naphthalene 91-57-6 OCC Diberzifuran 43047-97-0 MES (browium (suspected) 7440-47-3 MES (copper 7440-50-8 ** holding time exceed before analysis ** holding time exceed before analysis ** Surrogate recoveres were above of below acceptants V. FEEDSTOCKS (see Apparelle NO CAS Mumbers) CATEGORY OI FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS	000		Lene	91-20-3				4.5
OCC Carbon disulfide 75-15-0 OCC Carbon disulfide 75-15-0 OCC 2-Methy maphthalene 91-57-6 OCC Diberzafuran 43047-99-0 MES chronium (Suspected) 7440-47-3 MES copper 7440-50-8 ** holding time exceed before analysis ** holding time exceed before analysis ** Surrogate resoveres were above of below accepta 1. inits V. FEEDSTOCKS (See Apparelli TO CAS Mumbers) CATEGORY OI FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS	OCC	Bis/z-ethylhexl	phthalate	117-81-7			*104 **	\
CCC 2-Methy naphthalene 91-57-6 CCC Dibenza furan 43047-99-0 MES (brownium (suspected) 7440-47-3 MES copper 7440-50-8 ** holding time exceeded before analysic ** ** ** ** ** ** ** ** ** ** ** ** **	000			129-0-00	1		de sectable	1.1
MES (homium (suspected) 7440-47-3 MES (homium (suspected) 7440-47-3 MES copper 7440-50-8 ** holding time exceeded before analysis ** ** ** Surrogate resoveres were above or below accepted 1. mits V. FEEDSTOCKS (see Apparell for CAS Mumbers) CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS	OCC	Carbondisu	1fide	75-15-0			38.4	V i
MES (brownium (Suspected) 7440-47-3 MES copper 7440-50-8 * holding time exceed before anglysic * * Surrogate resoveres were above of below accepts 1. mits V. FEEDSTOCKS (See Appendix for CAS Mambers) CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS	000	2-Methy nay	phthalene	91-57-6			describble	1,
MES copper 7440-50-8 1, 2.0-28.0 mg * holding time exceeded before analysis * * Surrogate resoveres were above or below accepts 1. mits V. FEEDSTOCKS (See Appendix for CAS Mumbers) CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS	OCC	Di bazziti	ran.	43547-99-0			descesable	11
# holding time exceed before analysis # 500000000000000000000000000000000000	MES	chronium	(suspected)	7440-47-3				
* * SURROGATE REOVERES WERE above of below accepts 1.inits V. FEEDSTOCKS (500 Appoints for CAS Mumbers) CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS FDS FDS FDS	MES	cooper			'1		2.0-28.0	mg/K
* * SURROGATE REOVERES WERE above of below accepts 1.inits V. FEEDSTOCKS (500 Appoints for CAS Mumbers) CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS FDS FDS FDS		<u>ak</u>	\l	1. ^ 0 000	10101 607		-	
V. FEEDSTOCKS (See Appendix for CAS Mumbers) CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS FDS FDS								2.44
V. FEEDSTOCKS (See Appendix for CAS Mumbers) CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS FDS FDS		* * *		7 0000	hes were	expert of	Decretar acc	examp.
CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER CATEGORY 01 FEEDSTOCK NAME 02 CAS FDS FDS	V. FEEDSTO	OCKS (See Appendix for CAS Munic		<u> </u>	<u> </u>			
				02 CAS NUMBER	CATEGORY	01 FEEDST	TOCK NAME	02 CAS NUMBER
FDS FDS	FDS				FDS			
	FDS				FOS			
FDS FDS	FDS				FOS			
FDS FDS	FDS				FDS			
VL SOURCES OF INFORMATION (Cite appendix references, e.g., state (idea, semple analysis, reports)	VI. SOURCE	S OF INFORMATION (CM	specific references, e.a.	, state files, semple analysis.	/epo/ta)	_		

- 1. Niagona County Health Dept. Site Profi 2. Es and D&M site inspection, 3/26/85 3. USGS Proft Report, 1983

\$EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

ART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS

I. IDENTIFICATION

01 STATE 02 SITE MIMBER

NY 0780509459

	TEARDONS CONDITIONS AND INCIDENT		
IL HAZARDOUS CONDITIONS AND INCIDENTS	·	Av norm	· ,
VV/ VI	02 D OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	POTENTIAL	D ALLEGED
Unlined pit ma to misrate to groundwar		unants	· 11.
01 PB. SURFACE WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: Potential runoff from C		E POTENTIAL	C ALLEGED
01 D.C. CONTAMINATION OF AIR 03 POPULATION POTENTIALLY AFFECTED:	02 D OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	□ POTENTIAL	ALLEGED
01 0. FIRE/EXPLOSIVE CONDITIONS 03 POPULATION POTENTIALLY AFFECTED:	02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	D POTENTIAL	□ ALLEGED
01 D E. DIRECT CONTACT 03 POPULATION POTENTIALLY AFFECTED:	02 O OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	□ POTENTIAL	C ALLEGED
01 Dr. CONTAMINATION OF SOIL 03 AREA POTENTIALLY AFFECTED: Due 40 myration US FS Praft Refort, 1983	02 0 OBSERVED (DATE: 1983) 04 NARRATIVE DESCRIPTION of Containing	POTENTIAL	ALLEGED
01 G. DRINKING WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: UN Known	02 ☐ OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	□ POTENTIAL	C) ALLEGED
01 DH. WORKER EXPOSURE/INJURY 03 WORKERS POTENTIALLY AFFECTED: UNKNOWN	02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	POTENTIAL	□ ALLEGED
01 🗆 I. POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY AFFECTED:	02 □ OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	☐ POTENTIAL	□ ALLEGED
Unknown			

SFPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

	TIFICATION
O1 STATE	02 SITE NUMBER 10980589459
N/	12780501757

VLIA	PART 3 - DESCRIPTION OF HA	ZARDOUS CONDITIONS AND INCIDE	NT 10980589459
II. HAZARDOUS CONDITIO	ONS AND INCIDENTS (Continued)	• 1. • • .	•
01 [] J. DAMAGE TO FLORA 04 NARRATIVE DESCRIPTION	٠.	02 OBSERVED (DATE:)	D POTENTIAL D ALLEGED
UN	IKnowi		
01 TK. DAMAGE TO FAUN. 04 NARRATIVE DESCRIPTION		02 OBSERVED (DATE:)	☐ POTENTIAL ☐ ALLEGED
UN	Knoun		
01 🗆 L. CONTAMINATION O 04 NARRATIVE DESCRIPTION		02 G OBSERVED (DATE:)	☐ POTENTIAL ☐ ALLEGED
UNK	Cnoun		•
01 M. UNSTABLE CONTA (Sorty Puriot)/Standing lie	uds, Leaking drums)	02 OBSERVED (DATE:)	☐ POTENTIAL ☐ ALLEGED
O3 POPULATION POTENTIAL CESI dents Surp	adjacent to the	of narrative description Sife who use wells	for portable water
01 () N. DAMAGE TO OFFS 04 NARRATIVE DESCRIPTION	ITE PROPERTY	02 OBSERVED (DATE:)	☐ POTENTIAL ☐ ALLEGED
MON	Æ		
01 C O. CONTAMINATION C 04 NARRATIVE DESCRIPTION		02 OBSERVED (DATE:)	□ POTENTIAL □ ALLEGED
. ~~	ÄE	•	
01 P. ILLEGAL/UNAUTHO	N _	02 D OBSERVED (DATE:)	☐ POTENTIAL ☐ ALLEGED
site is	used for scave	150 dumping	
05 DESCRIPTION OF ANY O	THER KNOWN, POTENTIAL, OR ALLE	GED HAZARDS	disposed on-site
Industr Surface	e upter and gr	pected to have seen unduster may be a	onterminated by
uas the	5 02-5, 0	,	
III. TOTAL POPULATION	POTENTIALLY AFFECTED:	n the order	
IV. COMMENTS		 	
~ ′			
V. SOURCES OF INFORM	ATION (Cae apecific references, e. g., siete files,	sample analysis, reports;	
ES on	DEM SITE !	nspection, 3/26/85	

	•
10	Ĺ

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

	IFICATION
O1 STATE	02 SITE NUMBER 0 9805 694 59

PART 1 - SITE LOCATION AND INSPECTION INFORMATION IL SITE NAME AND LOCATION 02 STREET, ROUTE NO., OR SPECIFIC LOCATION IDENTIFIER O1 SITE NAME (Legal, corretor, or dear WITMER ROOD at Maryland AVE 04 STATE 05 ZIP CODE OF COUNTY 107CO WITMER ROAD SITE WIA GIANA NIAGAIA 10 TYPE OF OWNERSHIP (Chock one) 43 JATTUDE 79 02 41. C. STATE C D. COUNTY C E. MUNICIPAL TO 19" F. OTHER . G. UNKNOWN III. INSPECTION INFORMATION OI DATE OF INSPECTION 03 YEARS OF OPERATION 1940'5 Dresent 3 26 , 85 C INACTIVE CO INACTIVE CO INACTIVE CO AGENCY PERFORMING INSPECTION (Check all their acousts) DACTIVE UNKNOWN O INACTIVE ENDING YEAR □ A. EPA □ B. EPA CONTRACTOR Engineering - Science □ C. MUNICIPAL □ D. MUNICIPAL CONTRACTOR

□ E. STATE □ F. STATE CONTRACTOR Month of firms

[Name of firms]

[Name of firms] 06 TITLE O7 ORGANIZATION OS TELEPHONE NO. S. Robert STEELE, 4 123 621-7575 ENVIRONMENTAL SCENIST 11 ORGANIZATION 12 TELEPHONE NO. 13151638.2572 Geologist EILEEN GIllingan 18 TELEPHONE NO 13 SITE REPRESENTATIVES INTERVIEWED 76/284312 inter (..... 17 ACCESS GAINED BY 19 WEATHER CONDITIONS 18 TIME OF INSPECTION E PERMISSION ☐ WARRANT IV. INFORMATION AVAILABLE FROM 03 TELEPHONE NO. S KISSAL STEELE, II ENGINERING - SCIENCE (ES)
05 AGENCY | 05 ORGANIZATION | 07 TELEPHONE NO 7031591.7575 OS DATE 3 26,85 WONTH DAY YEAR ROSENT STERLE. I SAME ES

9	FF	Δ
V	Li	Γ

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 2- WASTE INFORMATION

	TEICATION
O1 STATE	02 SITE NUMBER 1) 98050 9459

PART 2 - WASTE INFORMATION							
IL WASTES	IL WASTE STATES, QUANTITIES, AND CHARACTERISTICS						
		ITY AT SITE I waste quantities independent United Type	O3 WASTE CHARACTERISTICS (Chock as PM 1009) 10 A. TOXIC		BLE I I HIGHLY VITTOUS II J. EXPLOSI MABLE II K. REACTIN	EVE VE PATIBLE	
IIL WASTET	YDR	,					
CATEGORY	SUBSTANCE N	1414	C1 CBCCS ANOUNT	02 UNIT OF MEASURE	03 COMMENTS		
SLU	SLUDGE		01 GNOSS AMOUNT	UZ UMI OF MEASURE		- 121.01	
OLW	OILY WASTE			-			5 5 5 5 6 1
SOL	SOLVENTS						Suspended_
PSD	PESTICIDES		 		Slag av		eamoutr
occ		15340A4 B	1.		-		homiun
100	OTHER ORGANIC CH INORGANIC CHEMIC		Unknow	۴	· Tenon		non productiv
ACD	ACIDS	ALS			- ocamo	es in soil	
BAS	BASES		ļ				
MES	HEAVY METALS		suspecte	1	المحاصدة	in in clean	. 4
	OUS SUBSTANCES (See Ag	and the same beginning		<u>p</u>	Or with Orman	in in cream	AUI WASTE
01 CATEGORY	02 SUBSTANCE N		03 CAS NUMBER	04 STORAGE/DIS	POSAL METHOD	05 CONCENTRATION	06 MEASURE OF CONCENTRATION
OCC.	Benzene		71-43-2	vnkn	- 1111M	8.8	U9/K9
13 CC	1.1.1 Trolloros	ethane	71-55-6		,	22.9**	1,
000	Trichlompt		79-01-6			detectable	
OCC	Gluorantha		206-44-0	•		desestable	1 (
acc	Maghthal	Lene	91-20-3	1	ı	desestable	
OCC	Bis(z-ethylbex)	phthalate		,	,	*104 **	۱٫۱
000	Purene		129-0-00	,		detectable	
OCC	4 5	ifide	75-15-0	,,		38.4	14
BCC	2-Methy map	onthatene	91-57-6			desertable	
OCC	V, 1	ran .	43047-99-0		1	detestable	41
MES	Chronium !	(suspeciel)	7440-47-3				
MES	copper	- 1	7440-50-8		1	2.0-28.0	mg/Kg
				<u> </u>			
	*	holding	time exce	eved best	one analys	1	
	**	SUrrog c	teregove	hies were	above or	below acc	eptance
	•	limits					
V. FEEDSTO	OCKS (See Appendix for CAS Munici						
CATEGORY	01 FEEDSTOC	X NAME	02 CAS NUMBER	CATEGORY	01 FEEDSTO	OCK NAME	02 CAS NUMBER
FDS				FDS			
FDS				FDS			
FDS				FDS			
FDS				FOS			
	S OF INFORMATION (CIA)						
1. N.	ragara County	Health C	2ept. Site	Profile Rep	cort, 3/82	,	
1. Niagora County Health Dept. Site Profile Report, 3/82. 2. Es and I f.M. site inspection, 3/26/85							

USGS Proft Report, 1983

©FP∆

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION 01 STATE 02 SITE NUMBER

HAZARDOUS CONDITIONS AND INCIDENTS	* V. F. *,		
1 (X) A. GROUNDWATER CONTAMINATION 3. POPULATION POTENTIALLY AFFECTED:	02 OBSERVED (DATE: 04 NARRATIVE DESCRIPTION) AT POTENTIAL	☐ ALLEGED
to migrate to ground	without liner system	may alter	2 Coutamin
Potential runoff from	02 - OBSERVED (DATE:) SPOTENTIAL	□ ALLEGED
D1 C. CONTAMINATION OF AIR D3 POPULATION POTENTIALLY AFFECTED:	02 OBSERVED (DATE: O4 NARRATIVE DESCRIPTION	} □ POTENTIAL	□ ALLEGED
DI D. FIRE/EXPLOSIVE CONDITIONS S POPULATION POTENTIALLY AFFECTED:	02 □ OBSERVED (DATE:)	C ALLEGED
DI DE DIRECT CONTACT S POPULATION POTENTIALLY AFFECTED:	02 OBSERVED (DATE:)	☐ ALLEGED
MO	02 D OBSERVED (DATE: 983) SO POTENTIAL	□ ALLEGED
Due to migration of USFS Oraft Refort, 1	if contaminants		
OI O G. DRINKING WATER CONTAMINATION US POPULATION POTENTIALLY AFFECTED: UNKnown	02 □ OBSERVED (DATE:) POTENTIAL	À ALLEGED
D1 H. WORKER EXPOSURE/INJURY D3 WORKERS POTENTIALLY AFFECTED:	02 OBSERVED (DATE:) DOTENTIAL	ALLEGED
01 [] I. POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY AFFECTED:	02 □ OBSERVED (DATE: 04 NARRATIVE DESCRIPTION) DOTENTIAL.	□ ALLEGED

POTENTIAL HAZARDOUS WASTE SITE

I. IDENT	IFICATION	
01 STATE	02 SITE NUMBER 050	9459

PART 3 - DI		NSPECTION REPOR HAZARDOUS CONDIT		rs. NY 10	98050 9459
II. HAZARDOUS CONDITIONS AND INC	CIDENTS (Continued)	-hone-	* * * * .		• .
01 [] J. DAMAGE TO FLORA 04 NARRATIVE DESCRIPTION		02 C OBSERVED (DA	TE:)	☐ POTENTIAL	□ ALLÈGED
UNKroun			·		
01 C. DAMAGE TO FAUNA 04 NARRATIVE DESCRIPTION (Include name(s)	of species)	02 🗆 OBSERVED (DA	TE:)	□ POTENTIAL	C ALLEGED
inknown					
01 L CONTAMINATION OF FOOD CHAIR 04 NARRATIVE DESCRIPTION	N	02 OBSERVED (DA	NTE:)	☐ POTENTIAL	☐ ALLEGED
UN KNOWN					•
01 M. UNSTABLE CONTAINMENT OF W (Spiller/RumoW/Standing Aquids, Leaking drums) 03 POPULATION POTENTIALLY AFFECTED	1)	•	TE:)		□ ALLEGED
residents adjacent	to the s	its who use	wells for	portable	Alem
01 N. DAMAGE TO OFFSITE PROPERTO 04 NARRATIVE DESCRIPTION	Υ	02 C OBSERVED (DA	ATE:)	□ POTENTIAL	☐ ALLEGED
HONE					
01 O. CONTAMINATION OF SEWERS. S 04 NARRATIVE DESCRIPTION	STORM DRAINS, WW	TP3 02 □ OBSERVED (D/	ATE:)	POTENTIAL	□ ALLEGED
01 P. ILLEGAL/UNAUTHORIZED DUMP	ING	02 OBSERVED (DA	ATE:1	□ POTENTIAL	□ ALLEGED
Site is use	D For	Scaringe	dumping		
OS DESCRIPTION OF ANY OTHER KNOWN INCLUSTING ON - SITE. SUM FA LENTAM, NATED 59 III. TOTAL POPULATION POTENTIALL	157ES DU	spected to		nsy be	sed
III. TOTAL POPULATION POTENTIALL	Y AFFECTED:	inknow	Charles Charles		
IV. COMMENTS					
V. SOURCES OF INFORMATION (Cite 20)			D # - 1 400		
ES and DE	M Site	inspection,	3/26/85		

POTENTIAL HAZARDOUS WASTE SITE

L IDENTIFICATION						
01 STATE	02 SITE NUMBER D980539459					
1//7	D780589454					

SEPA		SITE INS I AND DE		TON TIVE INFORMAT		01 STATE 02 SITE NUMBER 117 D980509459
IL PERMIT INFORMATION	•					
01 TYPE OF PERMIT ISSUED (Check of that apply)	02 PERMIT NUMBER	03 DATE K	SSUED	04 EXPIRATION DATE	05 COMMENTS	
A. NPDES						
O B. UIC				_		
C. AIR						
D. RCRA						
DE. RCRA INTERIM STATUS			•			
☐ F. SPCC PLAN						
G. STATE (Specify)						
H. LOCAL Society						
OL OTHER (Specific						
DA NONE		 				
III. SITE DESCRIPTION				L		
	2 AMOUNT 03 UNIT 0	F MEASURE	04 TF	EATMENT (Check of their a	pohili	05 OTHER
A. SLIRFACE IMPOUNDMENT				•	•	
O 8. PILES				INCENERATION UNDERGROUND INJ	SCTION	YE'A, BUILDINGS ON SITE
C. DRUMS, ABOVE GROUND				CHEMICAL/PHYSICA		
D. TANK, ABOVE GROUND			_	BIOLOGICAL	~	
□ E. TANK, BELOW GROUND				WASTE OIL PROCES	SING.	08 AREA OF SITE
O F. LANDFILL				SOLVENT RECOVER	-	1
□ G. LANDFARM			□ G.	OTHER RECYCLING	RECOVERY	approx 5 mon
D. A. OPEN DUMP			О Н.	OTHER		excet size is
O LOTHER			Ì	(Spe		inknown
The dump site 411: melicing relies, con items, slag, dist & presently used	struction declinion	inis, poll	nc 6	cleanouls, neconfist c	large r	on-consistion
IV. CONTAINMENT						
01 CONTARMENT OF WASTES (Chack and)	☐ 8. MODERATE	0 C.#	LADEQ	JATE, POOR	C O. INSECT	JRE, UNSOUND, DANGEROUS
OZ DESCRIPTION OF DRUMS, DIGNA, LINERS, BU Unicontrolled dum	oing of mot	Trals	ے.	auto the g	procast p	has occured
at this disposal site since the 1940's.						
• •	• •					
V. ACCESSIBILITY			_			
01 WASTE EASLY ACCESSIBLE BYES 02 COMMENTS THE SITE IS	iot enclose	ید ل	, ¢	cruing to	ושטיין	of unrulkonized
VL SOURCES OF INFORMATION (Cite assecte references, e.g. asset flor, sempre program, reported						
			5 4	al PEm	3/26/	125
1. Ste inspection conducted by ES and PEM, 3/26/85						

O EDA	POTE		DOUS WASTE	SITE	I. IDENTIFICATION
SEPA	PART 5 - WATER	NY 1098050945			
IL DRINKING WATER SUPPLY					
D1 TYPE OF DRINKING SUPPLY		02 STATUS		· ·	03 DISTANCE TO SITE
(Choca as applicable) SURFAÇE	WELL	ENDANGERE	D AFFECTED	MONITORED	
COMMUNITY	B. C)	A.D.	B. C	c. 🗆	A > 3.0 (mg)
NON-COMMUNITY C. [<u>D. Ö</u>	0.0	E O	F. 0	9(mi)
IIL GROUNDWATER					
O1 GROUNDWATER USE IN VICINITY (Check	B. DRINKING (Other sources avels	IDUSTRIAL IRRIGATIO	[Limited other	CIAL, INDUSTRIAL, IRRIGA FEDERCES SYSTEMS	TION D. NOT USED, UNUSEABLE
02 POPULATION SERVED BY GROUND WA	TER ~ 1,00	2	03 DISTANCE TO NE	AREST DRINKING WATER	WELL N/A (mil)
04 DEPTH TO GROUNDWATER	05 DIRECTION OF GRO	OUNDWATER FLOW	06 DEPTH TO AQUIFE OF CONCERN	ER 07 POTENTIAL YIE	OB SOLE SOURCE AQUIFER
N 15 10	<u> </u>	W	~ 15'	10 luknow	M □ YES □ NO
09 DESCRIPTION OF WELLS (Including weeps	, depth, and location relative to	population and buildings)			
No include	ial we	Us; 5	offsul	· ,	010411
1) 44 700 4 4 074 9	2644	ustes	- ruse	la for	PASNY
	Y Powe	- 2120	eta + 1	tyde Par	K Candle !!
ratiovar		The state of			Struggia
10 RECHARGE AREA	,		11 DISCHARGE AREA	-	
DNO · M	nknow		D NO	unknow	
IV. SURFACE WATER			<u></u>	4.0	
01 SURFACE WATER USE (Chectons)					
A RESERVOIR RECREATION DRINKING WATER SOURCE	D B. IRRIGATIO	ON, ECONOMICALLY NT RESOURCES	G. COMME	rcial, industrial	() D. NOT CURRENTLY USED
02 AFFECTED/POTENTIALLY AFFECTED B	ODIES OF WATER				
NAME	•			AFFECTE	DISTANCE TO SITE
	N	and P	inar	_	
		agara k	-11-67	0	
		·			
V. DEMOGRAPHIC AND PROPERT	VINEODMATION				
01 TOTAL POPULATION WITHIN	T HEF OFMIX TION			02 DISTANCE TO NEAF	REST POPULATION
	WO (2) MILES OF SITE	THREE!	3) MILES OF SITE		
A. 6972 NO. OF PERSONS	B. 26, 897	c5	1.745 no. # PERSONS		<u>Ø, 6</u>
03 NUMBER OF BUILDINGS WITHIN TWO () MILES OF SITE		04 DISTANCE TO NE	AREST OFF-SITE BUILDIN	······································
····	-	•		0,0	(mil)
05 POPULATION WITHIN VICINITY OF SITE	(Provide namely description o	of makers of population within	withing of the, a.g., and, vi	Tage, densely populated when	ered .
Area is commercial/industrial section of Unaqua Fully with with started clusters of of older unban suban homes					
of older	'···	Man	i ho	nes	

EPA FORM 2070-13 (7-81)

9	F	РΔ
		\neg

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

LIDENTIFICATION

OT STATE OF SUITE NUMBER

NY 0780509459

SEPA PAR		IC, AND ENVIRONMENTAL DATA	17 0980509459			
VI. ENVIRONMENTAL INFORMATION		<u> </u>	·			
O1 PERMEABILITY OF UNSATURATED ZONE (CARCE)	<u> </u>	-				
		C. 10 ⁻⁴ - 10 ⁻³ cm/sec D D. GREATER THAI	N 10 ⁻³ cm/sec			
02 PERMEABILITY OF BEDROCK (Check ener)		Comele				
□ A IMPERMEABLE (Loss then 10 ⁻⁶ convince)	B. RELATIVELY IMPERMEABL	LE C, RELATIVELY PERMEABLE D. VER	Y PERMEABLE or then 16 ⁻² conversel			
03 DEPTH TO BEDROCK 04 DEPTH	OF CONTAMINATED SOIL ZONE	05 SOIL pH				
<u>~15_10</u>	unknow	Unterown .				
06 NET PRECIPITATION 07 ONE YE	AR 24 HOUR RAINFALL		TERRAIN AVERAGE SLOPE			
. — — (In) —	<u>مح , ا</u> رام	2.4 × SW	_ <u>ಎ.7</u> *_			
09 FLOOD POTENTIAL	10		TRINE EL CORUMAN			
SITE IS IN > 500 YEAR FLOODPLAIN	SITE IS ON BARRI	ER ISLAND, COASTAL HIGH HAZARD AREA, RIVE	<u> </u>			
11 DISTANCE TO WETLANDS (5 acre minimal)	OTHER	MIGEATORY > 1.0				
ESTUARINE	OTHER >	BIRDS AQUILA	CHRYSA GTOS			
A 2.0 mg 8.		ENDANGERED SPECIES: HALIAE E				
13 LAND USE IN VICINITY		FALCO PE	regrenes .			
DISTANCE TO:	RESIDENTIAL AREAS; NATIO	NALISTATE PARKS AGRICULT	TURAL LANDS			
COMMERCIAL/INDUSTRIAL	FORESTS, OR WILDLIF	E RESERVES PRIME AG LAND	AG LAND			
A _ O . O _ (mil)	a 1.3	(mi) c. <u>72 (</u> mi) D. <u>>2</u> (m4)			
14 DESCRIPTION OF SITE IN RELATION TO SURROU	NDING TOPOGRAPHY					
Klisposal x	with conx	to you full	ously-			
existing "	burn pe	to for mun	upal			
garbage.	Xits a	, now felle				
* xurou	nded by	y x crap yard	ر د صلح			
Ground &	inface	is flat + P	corly			
drawned	The Control of		·			
	•	•				
VIL SOURCES OF INFORMATION (Cite special	Ot references a a state flow amonto rest-on	- months				
Ste vixet						
(1565 tam)	shute		•			
Hyde Park	Candfell 3	hudy (1984)	•			

50	计记入	
A &		ı

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6 - SAMPLE AND FIELD INFORMATION

	1FICATION	
OI STATE	09 87E NUMBER 09 80 50	9459

		ART 6-SAMPLE AND FIELD INFORMATION	
IL SAMPLES TAKEN			
SAMPLE TYPE .	01 NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO	O3 ESTIMATED DATE RESULTS AVAILABLE
GROUNDWATER			
SURFACE WATER			
WASTE			
AIR			
RUNOFF			
SPILL			
SOL			
VEGETATION			
OTHER			
IIL FIELD MEASUREME	NTS TAKEN		
01 TYPE	02 COMMENTS		
HNU	HNU me	eter reading were taken a	loning the
	site 11	us pection and all readi-	ist were
	less H	ign 1 ppins	
IV. PHOTOGRAPHS AN	ID MAPS		
OI TYPE D.GROUND []	AERIAL &	02 M CUSTODY OF Engineering Sunce	
© YES	LOCATION OF MAPS		
V. OTHER FIELD DATA	COLLECTED Provide nerredve dec	ecription)	
VI VIII.	OULLES I CO	A COUNTY OF THE PROPERTY OF TH	
ins			
1401		a state	•
		·	•
	·		
	••		
•	• .		•
	•	•	
AL SOURCES OF INFOL	RMATION (Cite apacific references, e	JP	
site inspe	ection condu	cted by Es and O&M, 3/2	6/85
-			7.
			•

	-	POTENTIAL	LHAZAI	RDOUS WASTE SITE	L IDENTIF	ICATION
I & EPA	,	SITE	INSPEC	TION REPORT	O1 STATE	D980509459
		PART 7	- OWNE	R INFORMATION	(/ - / 	100000110 J
IL CURRENT OWNER(S)				PARENT-COMPANY (Luorense CU	RRENT	OWNERS
OI NAME		02 D+8 NUMBE	A	OS NAME		09 0+8 NUMBER
CONTREET ADDRESS (P. O. BOX. AFD A. MAN)	<u>o, </u>	<u> </u>		Mr. Zygmort		
U227 Clastic	1.10	04 SIC CO	Œ	Maryland Ave		11 SIC CODE
4737 Chester A	OB STATE	O7 ZIP CODE		12 CTY	13 STATE	14 ZIP CODE
NIAGGIA FAILS	25	14305	5	Nicgara Falls	NY	
OI NAME		02 D+8 NUMBE	R	OB NAME	1	09 0+8 NUMBER
Mr. Ryding		04 SIC CO		Niagova Mohau	<u> </u>	11100000
03 STREET ADDRESS (P.O. BOLL AFD P. HO.)	مانين		DE	10 STREET ADDRESS (P. O. Box, RFD #, eqs.)		11 SIC CODE
Junes Ave and	LOG STATE	OZ ZIR COOS		12 CITY	112 STATE	14 ZIP CODE
Niagarafalls	WY	07 ZIP CODE		12011	ISSIAIE	1424 0002
GT NAME		02 D+8 NUMB	ER	OS NAME		09 0+8 NUMBER
Mr. Burtwell		<u> </u>				
Delaware and Will		04 SIC CO	Œ	10 STREET ADDRESS (P.O. Box, AFD #, mit.)		11SIC CODE
osary	DA STATE	07 ZIP CODE	 -	112 CITY	I 13 STATE	14 ZIP CODE
Niagara Falls	NY	Of II COOK	•		1301712	
O1 NAME		02 D+8 NUMBE	EA	OB NAME		09D+8 NUMBER
Mr. Garlock						
03 STREET ADDRESS (P.O. BOIL APD P. MAL)		04 SIC CO	CE	10 STREET ADDRESS (P.O. Box, AFD F. ans.)		11 SIC CODE
Maryland Ave OSCITY Wragara Falls		07 ZIP COOE		12 CITY	13 STATE	14 ZIP CODE
Magara Falls	NT				-	
IIL PREVIOUS OWNER(S): (List most recont free)				IV. REALTY OWNER(S) (# applicable; and most re	card first	
OI NAME		02 D+6 NUMBE		OI NAME		02 D+B NUMBER
OS STREET ADDRESS (P.O. Sm., APD F, one)	فيت	04 SIC CC	YO E	03 STREET ADDRESS (P.O. Box, AFD F. onl)		04 SIC CODE
US STREET ACCRESSIVE SEL APPRICE		10000	~~	US STREET AUCHESSIF O. ME. MOV. MIJ		UN SIL CODE
OS CITY	OSSTATE	07 ZIP COOE		05 CITY	06 STATE	07 ZIP CODE
	. `		~ \			•
01 NAME		02 D+8 NUMBE	R	O1 NAME		020+8 NUMBER
03 STREET ADDRESS (P.Q. Box, MPD P. ole.)		04 SIC CO	OE	03 STREET ADDRESS (P.Q. Box, AFD #, etc.)		04 SIC CODE
			•	· · ·		
05 City	06 STATE	07 ZIP COOE		OS CITY	08 STATE	07 ZIP COOE
O1 NAME		02 D+8 NUMBE	· ·	IO1 NAME		02 D+8 NUMBER
	·		. ,			
03 STREET ADDRESS (P.O. Box. AFD F. and		04 SIC CO	OE	03 STREET ADDRESS (P.O. Box, AFD F, HEL)	٠.	04 SIC CODE
oscity	OSSTATE	07 ZIP COOE		os city	IOS STATE	07 ZIP CODE
	- AGIAIE	U, 25-000		77411		
V. SOURCES OF INFORMATION (CZ) MACE	le references,	A.g., state free, pure	pie analyses, re			
Town of Niagan	~ 1	A ASS	S-essar	of Office		
(Jun of 14 again	` '			2 0		

EPA FORM 2070-13 (7-81)

"

Ω.	
	7~

POTENTIAL HAZARDOUS WASTE SITE

I. IDENT	TRICATION	
01 STATE	02 SITE NUMBER	_
M	D98050945	7

SHA	ľ		ECTION REPORT ATOR INFORMATION	NPD	980509459
IL CURRENT OPERATOR (Provide # date	erent from owner;		OPERATOR'S PARENT COMP	ANY (# soptcable)	
01 NAME Kach Scrap	Car	22 0+6 NUMBER	10 NAME	1	1 D+8 NUMBER
OS STREET ADDRESS (P.O. Som, RFD P. sec.)		04 SIC CODE	.12 STREET ADDRESS (P.O. Son, RFD 4, a	to.)	13 SIC CODE
05 CITY	06 STATE O)7 ZIP COOE	14 GITY	15 STATE 1	6 ZIP CODE
08 YEARS OF OPERATION 09 NAME OF ON	WNER :				
IIL PREVIOUS OPERATOR(S)	recent first; provide only	if different from convert	PREVIOUS OPERATORS' PAR	ENT COMPANIES # 4	ppilce(rie)
O1 NAME	0	22 D+8 NUMBER	10 NAME	1	1 0+8 NUMBER
OS STREET ADDRESS (P.O. Box, RFD #. eqc.)		04 SIC COOE	12 STREET ADORESS (P.O. Box, RFD P. e.	rtc.)	13 SIC CODE
06 CITY	O6 STATE O	17 ZIP CODE	14 GTY	15 STATE	6 ZIP CODE
OS YEARS OF OPERATION OF NAME OF O	WHER DURING THIS F	PERIOD			
O1 NAME	0	2 D+8 NUMBER	10 NAME	Î	1 D+8 NUMBER
03 STREET ADDRESS (P.O. Box, APO P., etc.)		04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, or	ea.j	13 SIC CODE
05 CITY	06 STATE 0	17 ZIP CODE	14 CITY	15 STATE 1	6 ZIP CODE
OS YEARS OF OPERATION 09 NAME OF O	OWNER OURING THIS	PERIOD			
O1 NAME	0	R38MUM 8+Q SC	10 NAME		I 1 D+8 NUMBER
G3 STREET ADDRESS (P.O. Box, AFD 4, sec.)		04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, or	(4.)	13 SIC CODE
06 CITY	OS STATE O)7 ZIP CODE	14 CITY	15 STATE 1	6 ZIP CODE
OS YEARS OF OPERATION OS NAME OF O	WHER DURING THIS	PERIOD	_		
IV. SOURCES OF INFORMATION (CA					
ES and V?	M ScHe	inspecti	ron, 3/26/85		
		•			
			,		

•	

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 9 - GENERATOR/TRANSPORTER INFORMATION

	IFICATION
01 STATE	02 SITE NUMBER 0 9 80 50 7457

IL ON-SITE GENERATOR					
O1 NAME		02 D+8 NUMBER	NO hAzardos un	astu ar	<u> </u>
O3 STREET ADDRESS (P.O. Box, RFD P. etc.)		04 SIC CODE	generated on-site.	- Site (uping
овсту	06 STATE	07 ZP CODE	querated on-site. - we used for scare of wastes	,,,	~)
III. OFF-SITE GENERATOR(S)					
01 NAME		02 D+8 NUMBER	01 NAME		02 D+8 NUMBER
03 STREET ADDRESS (P.O. Box, AFO P. etc.)		04 SIC COD€	03 STREET ADDRESS (P.O. Box, AFD P, etc.)		04 SIC CODE
05 CITY	08 STATE	O7 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE
O1 NAME		02 D+B NUMBER	01 NAME		02 D+8 NUMBER
03 STREET ADDRESS (P.O. Box. AFD P. etc.)		04 SIC CODE	03 STREET ADDRESS (P. O. Box. AFD P. etc.)		04 SIC CODE
OS CITY	Od STATE	07 ZIP GODE	05 CITY	06 STATE	07 ZIP CODE
IV. TRANSPORTER(S)					
O1 NAME		02 D+6 NUMBER	01 NAME		02 D+8 NUMBER
O3 STREET ADDRESS (P.O. BOL. RFD #, etc.)		04 SIC CODE	03 STREET ADDRESS (P. O. Sox, RFD #, arc.)		04 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	05 CTY	06 STATE	07 ZIP CODE
O1 NAME		02 D+8 NUMBER	O1 NAME	,	02 D+8 NUMBER
OS STREET ADDRÉSS (P.O. Box, RFD #, wie.)		04 SIC CODE	O3 STREET ADDRESS (P.O. Bax, AFD P. ecc.)		04 SIC CODE
05 CITY	OS STATE	07 ZIP CODE	05 CITY	Od STATE	07 ZIP CODE
V. SOURCES OF INFORMATION (Cite special	c references 4	P.C., State fling, somale service	1. /900/tu/		
Es and D&m				_	
Es and room	277	2 maper	3/20/85		

L IDENTIFICATION POTENTIAL HAZARDOUS WASTE SITE **SEPA** 01 STATE 02 SITE NUMBER SITE INSPECTION REPORT *1)98*0509459 PART 10 - PAST RESPONSE ACTIVITIES IL PAST RESPONSE ACTIVITIES 01 C A. WATER SUPPLY CLOSED 04 DESCRIPTION 03 AGENCY 02 DATE NO 01 D B. TEMPORARY WATER SUPPLY PROVIDED 02 DATE 03 AGENCY 20 01 C. PERMANENT WATER SUPPLY PROVIDED 02 DATE 03 AGENCY 04 DESCRIPTION NO 01 D. SPILLED MATERIAL REMOVED 02 DATE 03 AGENCY 04 DESCRIPTION NO 01 DE. CONTAMINATED SOIL REMOVED 02 DATE 03 AGENCY 04 DESCRIPTION 20 03 AGENCY 02 DATE 01 | F. WASTE REPACKAGED 04 DESCRIPTION NO 03 AGENCY 01 CL WASTE DISPOSED ELSEWHERE 02 DATE 04 DESCRIPTION NO 01 | H. ON SITE BURIAL 04 DESCRIPTION 02 DATE W0 01 D L IN SITU CHEMICAL TREATMENT 02 DATE 03 AGENCY 04 DESCRIPTION NO 01 D J. IN SITU BIOLOGICAL TREATMENT 02 DATE 03 AGENCY 04 DESCRIPTION 20 01 | K. IN SITU PHYSICAL TREATMENT 02 DATE 03 AGENCY 04 DESCRIPTION W0 03 AGENCY 02 DATE 01 L. ENCAPSULATION 04 DESCRIPTION NO 03 AGENCY . 01 I M. EMERGENCY WASTE TREATMENT 02 DATE 04 DESCRIPTION 01 IN. CUTOFF WALLS 03 AGENCY 02 DATE _ 04 DESCRIPTION NO 01 O. EMERGENCY DIKING/SURFACE WATER DIVERSION 02 DATE 03 AGENCY 04 DESCRIPTION NO 01 ☐ P. CUTOFF TRENCHES/SUMP 04 DESCRIPTION 02 DATE 03 AGENCY NO 01 Q. SUBSURFACE CUTOFF WALL Q2 DATE . 03 AGENCY

04 DESCRIPTION

NO

≎EPA	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES	L IDENTIFICATION 01 STATE 02 SITE NUMBER N V 980 509459
II PAST RESPONSE ACTIVITIES (Continued)		• •
. 01 G R. BARRIER WALLS CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY
MO		
01 □ S. CAPPING/COVERING 04 DESCRIPTION	02 DATE	03 AGENCY
01 T. BULK TANKAGE REPAIRED 04 DESCRIPTION	02 DATE	03 AGENCY
01 U. GROUT CURTAIN CONSTRUCTE 04 DESCRIPTION		03 AGENCY
01 D V. BOTTOM SEALED 04 DESCRIPTION		03 AGENCY
01 DW. GAS CONTROL 04 DESCRIPTION		03 AGENCY
01 © X. FIRE CONTROL 04 DESCRIPTION)	03 AGENCY
01 Y. LEACHATE TREATMENT 04 DESCRIPTION	0	O3 AGENCY
01 IZ. AREA EVACUATED 04 DESCRIPTION	02 DATE	O3 AGENCY
01 1. ACCESS TO SITE RESTRICTED 04 DESCRIPTION	02 DATE	03 AGENCY
01 2. POPULATION RELOCATED 04 DESCRIPTION	02 DATE	03 AGENCY
01 3. OTHER REMEDIAL ACTIVITIES 04 DESCRIPTION	Burning No Coaye PLE Clas	of sanbace of sanbace of proched of fill and scrap
III. SOURCES OF INFORMATION (Cite special		1-th ye " and scrap
Es and D&m	Site inspection, 3/2	6/85

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

I	I. IDENT	TFICATION
[OI STATE	02 SITE NUMBER 09454

HL EP	UF OF	CEMENT	INFORM	ATION

01 PAST REGULATORY/ENFORCEMENT ACTION - YES - IZ NO

02 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

III. SOURCES OF INFORMATION (Cite appearing references, e.g., state files, sample analyses, reports)

NYSDEC Environmental Enforcement DIVISION

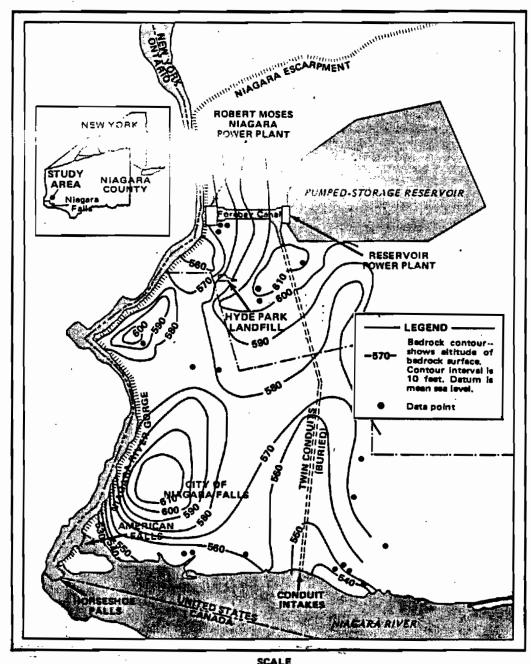
MYS Attorney Genesis OFFICE

EPA FORM 2070-13 (7-81)

SOURCES CONTACTED FOR WITHER ROAD INVESTIGATION

CONTACT	DATE	PERSON	TELEPHONE NUMBER	LOCATION	INFORMATION
USEPA Headquarters, Superfund Office	4/2/85	Bamid Saebfed	(202) 382-4839	401 M Street, NW Washington, D.C. 20460	Reviewed list of sites to determine if additional information was available.
SEPA - Region II, SER	3/22/85	Mel Hauptman	(212) 264-7681	Room 402 26 Federal Plaza NY, NY 10278	General information from site files.
MYSDEC - Division of Solid and Hazardous	12/19/84	Maraden Chen	(518) 457–0639	50 Wolf Road Albany, NY 12233	General information from site files.
SYSDEC - Division of Water	12/19/84	Sal Pagano	(518) 457-6675	50 Wolf Road Albany, NY 12233	Mr. Pagano set up meet- ings with three bureaus within Division of Water.
TYSDEC - Division of Water SPDES Files	12/20/84	Bob Mannaford	(518) 457–6716	50 Wolf Road Albany, NY 12233	Reviewed SPDES Files for permit numbers and conditions.
NYSDEC - Division of Water DMR Files	12/21/84	George Hansen	(518) 457-2010	50 Wolf Road Albany, NY 12233	Reviewed DMR files for discharge violations.
SYSDBC - Division of Air Toxics	12/21/84	Art Fossa	(518) 457-7454	50 Wolf Road Albany, NY 12233	Reviewed site list to identify sites with potential air emissions.
MYSDEC - Division of Monitoring and Assessment	12/21/84	Bill Berner Frank Estabrook Fred Van Alstyne	(518) 457–7363	50 Wolf Road Albany, NY 12233	Reviewed geology and monitoring information for specific sites.

SOURCES CONTACTED FOR WITHER ROAD INVESTIGATION


CONTACT	DATE	PERSON	TELEPHONE NUMBER	LOCATION	INPORMATION COLLECTED
NYSDEC - Division of Environmental Enforcement	12/20/84	Kevin Walter	(518) 457-4346	50 Wolf Road Albany, NY 12233	Reviewed list of sites to determine if legal action has occurred in the past, is in progress, and/or is scheduled in the near future.
NYS - Dept. of Law Attorney General's Office	1/7/85	Val Washington	(518) 473-3105	Empire State Plaza Justice Building Albany, NY 12233	Reviewed list of sites to determine if legal action has occurred in the past, is in progress, and/or is scheduled in the near future.
NYS - Dept. of Law Attorney General's Office	1/3/85	Albert Bronson	(716) 847–7196	Buffalo State Office Bldg. Buffalo, NY 14202	Reviewed list of sites to determine if legal action has occurred in the past, is in progress, and/or is scheduled in the near future.
NYSDEC - Division of Solid and Hazardous Waste	1/7/85	Peter Bucchi Ahmad Tayyebi Jack Tygert Larry Clare	(716) 847-4585	600 Delaware Ave. Buffalo, NY 14202	Collected general information from site files.
NYSDEC - Region 9 Division of Air	1/8/85	Henry Sandonato Robert Armbrust	(716) 847-4565	600 Delaware Ave. Buffalo, NY 14202	Collected information concerning previous air emissions from inactive disposal sites.

SOURCES CONTACTED FOR WITMER ROAD INVESTIGATION

CONTACT	DATE	PERSON CONTACTED	TELEPHONE NUMBER	LOCATION	INFORMATION COLLECTED
NYSDBC - Regional Attorney	1/10/85	Peter J. Burke	847-4551	600 Delaware Ave. Buffalo, NY 14202	Reviewed list of sites to determine if legal action has occurred in the past, is in progress, and/or is scheduled in the near future.
NYS Dept. of Health, Buffalo Region, Public Health Engineering	1/8/85	Lou Violanti	(716) 847-4500	584 Delaware Ave. Buffalo, NY 14202	Collected information from site files.
NYSDEC - Region 9 Division of Fish and Wildlife	1/10/85 & 1/11/85	Mike Wilkinson Jim Sneider	(716) 847-4600	600 Delaware Ave. Buffalo, NY 14202	Collected information from site files
Magara County Dept. of Health	1/9/85	Mike Hopkins	(716) 284-3124	Tenth & East Falls Street Niagara Falls, NY 14302	Collected information from Niagara County site files. Obtained additional information through interview.
Niagara County Dept. of Planning and Industrial Development	2/22/85	Dave Urso	(716) 439-6033	59 Park Ave. Lockport, NY 14094	Obtained 1980 U.S. Census Data.
Town of Niagara Tax Assessor's Office	4/19/85	1	(716) 297–2150	7105 Lockport Rd. Niagara Falls, NY 14304	Interviewed regarding ownerhsip.

REFERENCES

- 16. Bergeron, M.P., "Analysis of Three Groundwater Flows in the Vicinity of Hyde Park Landfill, Niagara Falls, NY", 1984.
- 17. Hopkins, M., NCHD, Memo to Beuchi, 7/29/85.
- 18. NCHD, Site Profile Report, 1982.
- 19. NYSDOH, Analytical Results of Private Drinking Water Wells, 1984.

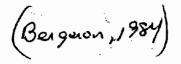
0 1000 4000 SCALE 8000 12000 16000 FEET 0 500 1000 2000 3000 4000 METERS

Figure 4 BEDROCK SURFACE ALTITUDE IN NIAGARA FALLS

Table 1.--Hydrogeologic characteristics and hydraulic properties of unconsolidated deposits and bedrock in the Hyde Park area.

Water-bearing unit	Thickness (feet)	Lithologic description	Thickness {feet) Lithologic description Aydrogeologic characteristics Hydraulic properties	Hydraulic properties
Undifferentiated lake deposits	0-20	Laminated clay and silt and thin beds of fine sand.	Clay and silts have low permeability and yield little water.	Hydraulic conductivity range: 0.0014 to 0.27 ft/d.²
T111 ("Hardpan")	0-10	Mixture of boulders and pebbles in a matrix of sand, silt, and clay.	Water occurs principally in thin sand lenses in till and a "wave-washed zone" at the top of the bedrock.	
Lockport Dolomite		Dark-gray to grayish-brown massive to thin bedded dolomite, locally containing algal reefs, small masses of gypsum, limestone, and shaly beds at base.	Ground water occurs principally in water-bearing zones parallel to bedding which are much more permeable than the surrounding rock. The upper 10 to 15 feet is the most permeble interval and contains vertical joints and small cavities formed by solution of gypsum. Wells yield 10 to 100 gal/min mostly.	Transmissivity from pump test is highly variable (90-9,000 ft \(^1/d\). Average transmissivity is 300 ft^2/d probable hydraulic conductivity range: 5-15 ft/d (upper 15 feet); i-2 ft/d (lower part)
Rochester Shale	hale 60 Dark-gray	Dark-gray calcareous shale.	calcareous shale. Very low permeability shale. Yields no significant water to wells.	Unknown. Hydraulic conductivity assumed to be 2 to 3 orders of magnitude less than that of Lockport Dolomite.

Table modified from Maslia and Johnston (1982, p. 5).


Mased on well-recovery test data from Conestoga-Rovers Associates.

Based on steady-state analysis of 18,000-ft section of dewatered conduit penetrating the Lockport Dolomite; average gradient (0.017 ft/ft) and average pumping rate (1,400,000 gal/d) (Johnston, 1964)

F-7A April 27, 1983

Crew Members: S. Dyer, W. Dausch

Ground Elevation: 578.3

SAMPLE	DEPTH	BLOWCOUNTS	RECOVERY	DESCRIPTION	MOISTURE
	0-0.4'			Augered through - black asphalt	
	0.4-0.8			Augered through - grey bedding stone	
	0.8-1.0'			Brown silt - some fine gravel	
1	1.0-1.2'	6-4	8"	Brown silt - some fine gravel	Dry
	1.2-2.0			Black fine cinders	Moist
2	2.0-4.0'	5-5-4-3	3"	Black fine cinders	Moist
3	4.0-6.0	7-3-2-2	12"	Black fine cinders - trace flyash - trace silt - trace rock fragments	Moist
4	6.0-8.0'	2-1-1-1	10"	Black fine cinders	Moist
5	8.0-10.0'	14-5-5-3	0"	Auger cuttings show black cinders	
6	10.0-10.2'	18-36-42-26	19"	Black fine cinders - some rock fragments	
	10.2-10.4		: :	Red sandstone	
	10.4-12.0'			Grey fine sand - some fine gravel	Moist
7	12.0-13.4	18-26-41-45	19"	Grey fine sand (Fill) - some fine gravel	Moist-wet
	13.4-14.0'	,		Grey rock fragments (till). (NATIVE) - some fine sand	Moist-wet
8	14.0-15.0'	21- <u>75</u> ,	4"	Grey rock fragments (till) - some silt - some fine sand	Wet
	15.0-15.5'			Augered through	
. •	15.5'			Auger refusal	

F-6

farch 2, 1983

wrew Members: M. Fuhrmann, L. Bradley

Ground Elevation: 588.2

SAMPLE	DEPTH	BLOWCOUNTS	RECOVERY	DESCRIPTION	MOISTURE
1	0-1.0'	20-14-11-14	16"	Black cinders - some rock fragments	Dry
•	1.0-2.0'			Light brown silt - trace clay	Dry
- 2	2.0-4.0'	16-16-15-16	15"	Mottled brown & dark brown silt - trace clay - trace small pebbles	Dry
3	4.0-6.0'	8-6-7-9	0"	Auger cuttings show brown to red-brown silt	
4	6.0-8.0'	9-11-7-9	8"	Red-brown silt with alter- nating beds of grey clay (NAT - trace fine sand	Moist IVE)
5	8.0-10.0'	1-2-3-2	0"	Auger cuttings show moist red-brown silt	
6	10.0-10.3'	2-50/0'	4"	Red-brown silt - trace fine sand	Moist-wet
•	10.3-10.5			Grey rock fragments	Moist
	10.5-10.9'			Augered through	
	10.9'		:	Auger refusal	

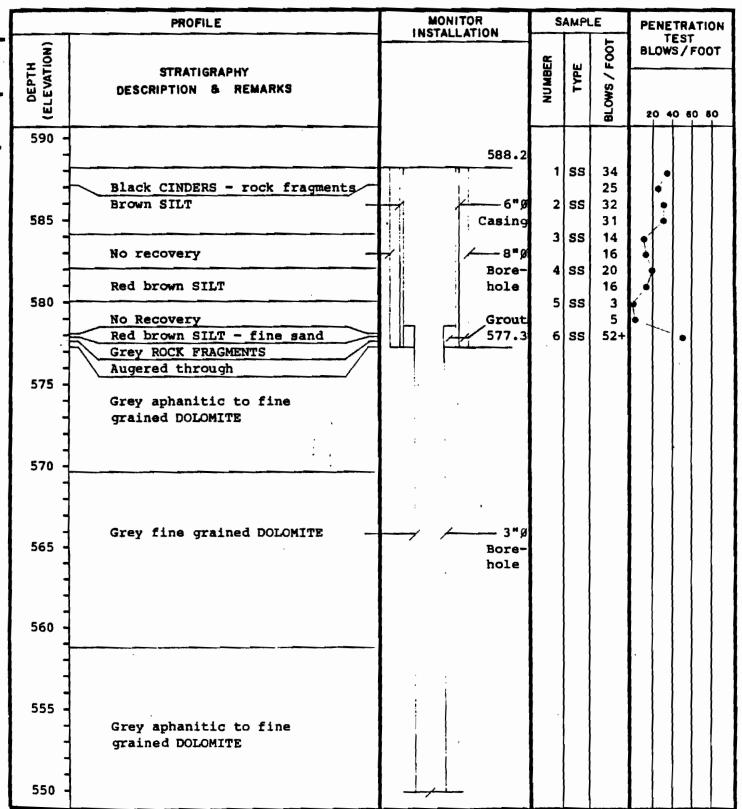
(Borgaon, 1984)

STRATIGRAPHIC AND INSTRUMENTATION LOG (Bergeron, 1984) PROJECT NAME : HYDE PARK AQUIFER SURVEY F-6 Page 1 of 4 HOLE Nº:_

9-1069 JOB Nº : ___

OCCIDENTAL CHEMICAL CORPORATION

HOLE TYPE : 8" AUGER/NX CORE


LOCATION : MAPLE STREET - E. OF HIGHLAND AVENUE

DATE COMPLETED: MARCH 18, 1983

GEOLOGIST/ENGINEER: W. CLARKE/J. KAY

GROUND ELEVATION: _____ 588.2

TOP OF PIPE ELEVATION: __

SECTION VI

ASSESSMENT OF DATA ADEQUACY AND RECOMMENDATIONS

ASSESSMENT OF DATA ADEQUACY

A summary assessment of the adequacy of existing data for completion of the HRS score is presented in Table VI-1. Based on this assessment, the following Phase II work plan and cost estimate has been prepared.

PHASE II WORK PLAN

Objectives

The objectives of the proposed Phase II activities are:

- o To collect additional field data necessary to identify the occurrence and extent of contamination.
- o To perform a conceptual evaluation of remedial alternatives and estimate budgetary costs for the most likely alternative.
- o To prepare a site investigation report including final HRS score.

The additional field data required to complete this investigation are described as follows:

Surface Soil Sampling - Five surface soil samples in the vicinity of the on-site waste piles.

Groundwater - Two private residential wells will be sampled northeast of the site and analyzed for priority pollutants.

Air - An air monitoring survey with an HNU meter is recommended to test the air quality during site activities.

Waste Samples - Sampling consisting of twelve samples from on-site waste piles.

TASK DESCRIPTION

The proposed Phase II tasks are described in Table VI-2 as required under the site specific health and safety plan and quality assurance plan which must be submitted prior to initiation of field activities. The proposed monitoring well and sampling location are presented in Figure VI-1.

COST ESTIMATE

The estimated man-hours required for the Phase II project are presented in Table VI-3 and the estimated project costs by tasks are presented in Table VI-4. The estimate total cost for this project is \$ 20,088.

TABLE VI-1

ASSESSMENT OF DATA ADEQUACY

HRS Data Requirement	Comments on Data
Observed Release	
Groundwater	Insufficient data to score an observed release
Surface Water	Insufficient data to score an observed release
Air	Adequate data for HRS score
Route Characteristics	
Groundwater	Adequate data for HRS score
Surface Water	Adequate data for HRS score
Air	Adequate data for HRS score
Containment	Adequate data for HRS score
Waste Characteristics	Insufficient data for HRS score
Targets	Adequate data for HRS score
Observed Incident	Adequate data for HRS score
Accessibility	Adequate data for HRS score

TABLE VI-2 · PHASE II WORK PLAN - TASK DESCRIPTION

	Tasks	Description of Task
II-A	Update Work Plan	Review the information in the Phase I report, conduct a site visit, and revise the Phase II work plan.
II-B	Conduct Geophysical Studies	No further studies necessary.
II - C	Conduct Boring/Install Monitoring Wells	No further studies necessary.
II-D	Construct Test Pits/Auger Holes	No further studies necessary.
II-E	Perform Sampling & Analysis	
	Soil samples from borings	No further studies necessary.
	Soil samples from surface soils	Five surface soil samples from on- site waste piles are to be collected and analyzed for priority pollu- tants.
	Soil samples from auger holes/test pits	No further studies necessary.
	Sediment samples from surface water	No further studies necessary.
	Groundwater samples	Two groundwater samples are to be collected and analyzed for priority pollutants.
	Surface water samples	No further studies necessary.

TABLE VI-2 (Continued)

PHASE II WORK PLAN - TASK DESCRIPTION

	Tasks	Description of Task
	Air samples	Using the HNu determine the presence of organics during site activities.
	Waste samples	Twelve waste pile samples will be collected.
II-F	Calculate Final HRS	Based on the field data collected in Tasks II-B - II-E, complete the HRS form.
II-G	Conduct Site Assessment	Prepare final report containing significant Phase I information, additional field data, final HRS and HRS documentation records, and site assessments. The site assessment will consist of a conceptual evaluation of alternatives and a preliminary cost estimate of the most probable alternative.
II-H	Project Management	Project coordination, administration and reporting.

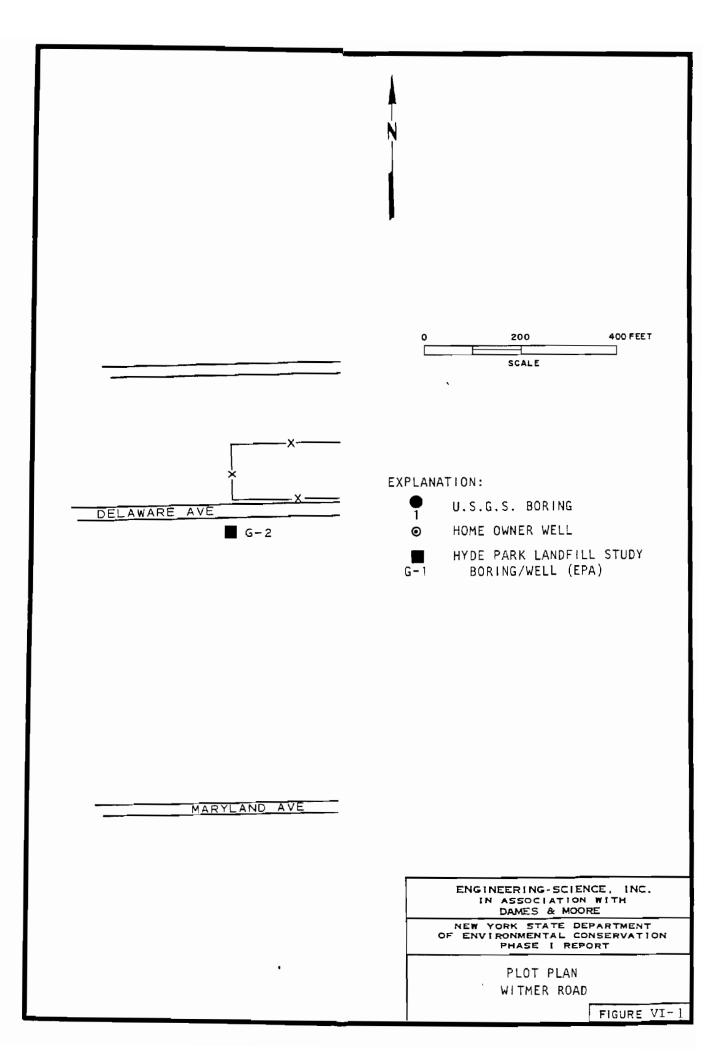
TABLE VI-3 PERSONNEL RESOUNCES BY TASK PNASE II WAS BITE INVESTIGATION (SITE: BITHER ROAD)

IASK BESCHIPTION

TEAR RESIDENS, IMMIDUS

	Ę	2	E	Ē	Ē	3	3	É	E	3	3	2	TOTAL	10 4
II-A UPDATE NOR PLAN	*: :	<u>.</u>		\$.		*	*	#.#				3.	7.	74.00 1141.10
11-9 COMBACT GEOPHYSICAL STRBEES														:
11-C CONDUCT BORING/INSTALL MONTIORING WELLS														:
11-0 CONSTRUCT TEST PITS/AMBER Noves			\$	± .	\$	÷	\$: :	*			27.10	# #	1943.88
11-E PEGEORY SAMPLING AND								•						
SOIL SAMPLES FROM DORINGS													:	:
SOLL SAMPLES FROM SURFACE BOILS			2.0	2.0		<u>.</u>	<u>.</u>	8 .	=			2	2.	277.0
SOIL SAMPLES FROM TEST PITS AND AUGEN HOLES			=	:			:	\$	=			:	*	=
SCOTHENT SAMPLES FROM SURFACE								,					•	2
GROUND-BATER SAMPLES													:	:
SIRFACE WATER SAMPLES														
AID SAPLES			*:	<u>:</u>			<u>:</u>	<u>.</u>	÷			*	12.00	3.8
MASTE SAPPLES			\$.	\$		2.0	5.6	:	. .			=	3	Ë
11-F CALCILATE FINA HES			*	\$:		2.8		3	27.8	3.5
11-4 COMBACT STITE ASSESSMENT	2.00	2.00	8	2.00				21.00	32,00	12.00	3	\$ \$	12.8	2142.02
11-4 PROJECT MANAGENERI	3.00		8.	2.8	3.8	3	3					12.8	::	527.8
TOTALS	8.8	8:	6.14	3.8	3.00	15.00	9.9	91.00	112.00	22.00	3	124.00	477.00 4795.04	19.04

TANE VI-4
COST ESTINATE DRENKDOM 31 TASK
PHASE 11 MRS SITE INVESTIBATION 181TE: WITHER ROAD


TASK DESCRIPTION					DINER DIN	OTHER DIRECT COSTS (OSC), 4	• 'a			
,	allect Aduas	DURS COST	LAS MALTSIS S	TRAVEL AND SUBSISTANCE	Surries	CANGES	RUBCOM- TANCTOMS	EISC.	SUBTOTAL GRC	1014 (6)
11-4 UPDATE WORE PLAN	*	74 11,146.10		1210.10	826.00	20.8		\$3.8	£136.8	81, 41 1.16
II-D CONNCT GEOPHISICA, STUBIES	-	8							3.	3.3
11-C COMBUCT BORTHS/INSTALL NON1TORING WELLS	•	8.3							3.	*
11-3 CONSTRUCT TEST PITS/AMER Wales										
II-E PERFORM SAMPLING AND AMANYSIS										
SOIL SAPLES FROM BORINGS	•	3.							3.	¥.
SOIL SAPLES FROM SUFFACE SOILS	•	3							2	3
SULL SAMPLES FRON TEST PITS AND AUGER HELES										
SCOTICHT SAMPLES FIGH SURFACE MATER	-	90.00							# #	3
BROUND-WATER SAMPLES	-	80.88	63, 200.00						63, 286.00	63,780.00
SUFACE UNTER SAPILES	•	3.							*	3.3
AIR SAPLES	2	1155.45				1280.00	.		\$5 80.8	133.40
MSTE SAPLES	\$	1235,14		\$329.00	124.8	#36.8		-	81,828.#	11,575.14
II + CALCULATE FINAL HOS	Ħ	1370.36				#150.B			#120.8	84.3
11-6 CONNET NITE ASSESSEDT	791	12,142.02			€7.0°.	9306.00		€75. (el, 125.	13,247.82
II-N PROJECT MANAGENENT	=	6329.80	9400.DB	9309.00	150.00	#30.#		15. 3	#3.8	11,479.10
IOTALS	¥	343 84,722.19 93,660.00	13,640.00	1329.00	8824.80 81,200.00 81,200.00	11,280.00	3.3	9175.00		64,975.00 611,917.18

97,028.87 618,946.05 81,142.21 629,086.24

BVERNEAD-Subtotal» FEE: Total Project cost:

€ verb		
No. of the second secon		
A		
Formula challenge		
(constitution)		
*Burnels of the state of the st		

APPENDIX A REFERENCES Sources Contacted Documentation

STRATIGRAPHIC AND INSTRUMENTATION LOG (Beigeron, 1984)

PROJECT	NAME: HYDE PARK AQUIFER SURVEY	HOLE Nº:	_	F-(<u> </u>	<u>Page</u>	2 of 4	
JOB Mg	;	DATE COMPLET	ED: _	M	ARCH	18, 1	983	_
CLIENT :	OCCIDENTAL CHEMICAL CORPORATION						_	
HOLE TY	PE: 8" % AUGER/NX CORE	GROUND ELEVATION: 588.2					_	
LOCATION	: MAPLE STREET - E. OF HIGHLAND AVENU	E TOP OF PIPE	ELEVA	TION	:			_
	PROFILE	MONITOR	s	AMPL	.E	PEN	ETRATION	
2		INSTALLATION			100	1 '	TEST WS/FOOT	
DEPTH (ELEVATION)	STRATIGRAPHY		NUMBER	TYPE	BLOWS / FOOT			
	DESCRIPTION & REMARKS		2	-	S/NO			
_						50	40 60 80	4
550	<u> </u>	丁 /丁					+++	
	-						1	
	<u> </u>							
545	Grey aphanitic to fine			1				
	grained DOLOMITE						111	
	-							
540]						1	ı
•	-							ı
	j					1		ı
	-	3"#						ı
535	_ 	Bore-					1.11	ı
' ·	- I							ı
	1							ı
530 -	·							ı
	·							
525]							
	Grey fine grained DOLOMITE							
	Grey Time grained bolomits							
520	<u> </u>							
	-{							
	1							
515	1							Ì
	-							
	<u> </u>							
510	-	1/1						

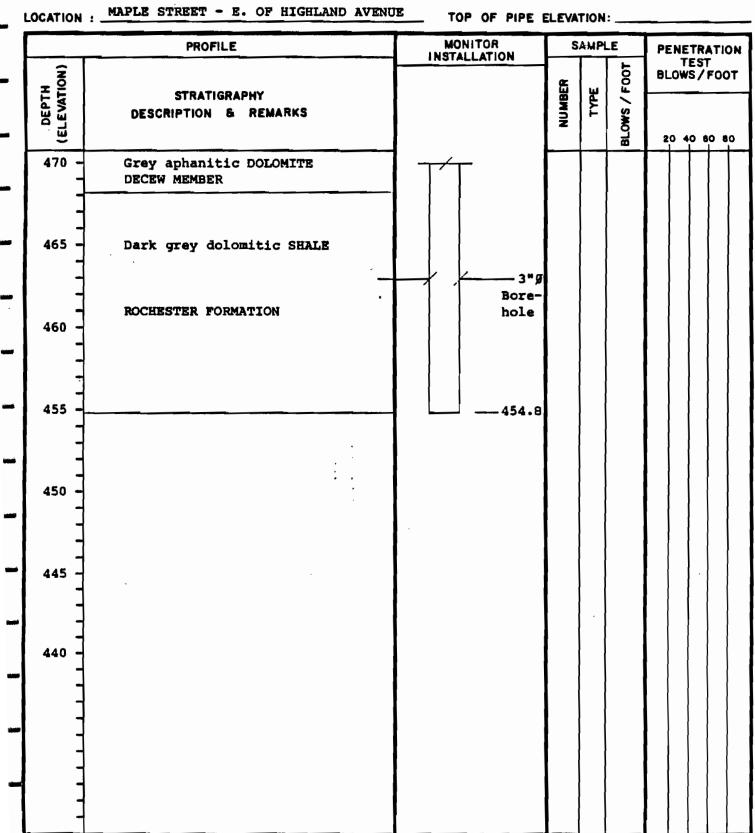
STRATIGRAPHIC AND INSTRUMENTATION LOG (Bergeron, 1984)

PROJECT NAME: HYDE PARK AQUIFER SURVEY

JOB Nº: 9-1069

CLIENT: OCCIDENTAL CHEMICAL CORPORATION

HOLE TYPE: 8" AUGER/NX CORE


LOCATION: MAPLE STREET - E. OF HIGHLAND AVENUE

HOLE TYPE : TOP OF PIPE ELEVATION: TOP OF PIPE ELEVATION:

	PROFILE	MONITOR Installation	SAMPLE PEN		PENETRATION			
DEPTH (ELEVATION)	STRATIGRAPHY Description & Remarks	, NOTACE ATTOM	NUMBER	TYPE	BLOWS / FOOT			FOOT
510 -	Grey fine grained DOLOMITE							
500	_	3** Bore	-					
495		note						
490	Dark grey fine to medium grained DOLOMITE							
485	GASPORT MEMBER							
480	Grey aphanitic DOLOMITE			-				
475	DECEW MEMBER							
470								

STRATIGRAPHIC AND INSTRUMENTATION LOG (Borgeran, 1984)

PROJECT NAME: HYDE PARK AQUIFER SURVEY	HOLE Nº: F-6 Page 4 of 4
JOB Nº :	DATE COMPLETED: MARCH 18, 1983
	GEOLOGIST/ENGINEER: W. CLARKE/J. KAY
HOLE TYPE: 8" # AUGER/NX CORE	GROUND ELEVATION: 588.2
MAPLE STREET - E. OF HIGHLAND AVENUE	TAR AF RIPE ELEVATION.

STRATIGRAPHIC AND INSTRUMENTATION LOG (Bargeron, 1984)

PROJECT NAME : HYDE PARK AQUIFER SURVEY

HOLE Nº: ____ F-7D

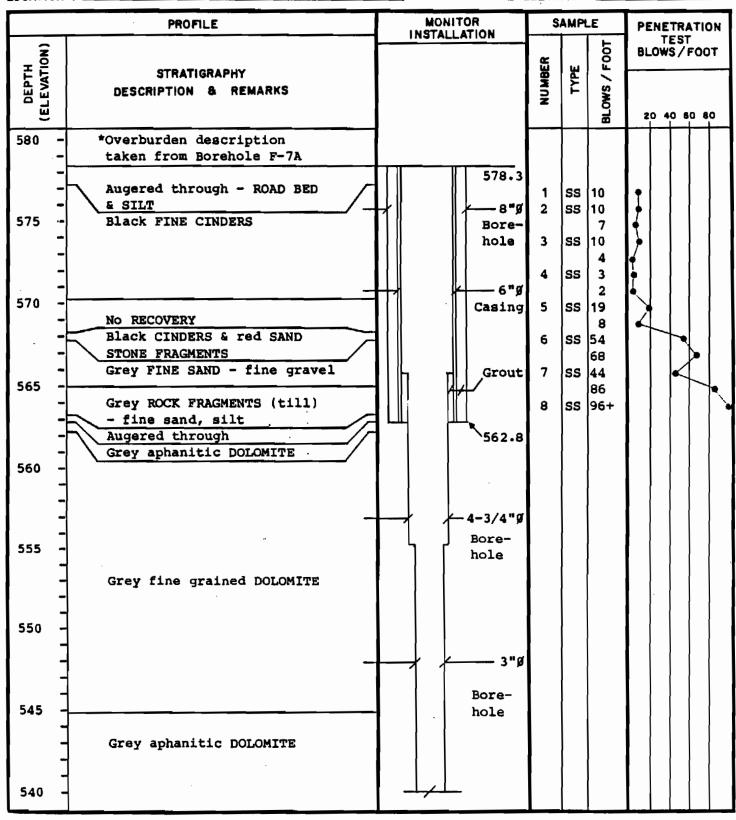
Page 1 of 3

9-1069 JOB Nº : ____

DATE COMPLETED: May 11, 1983

OCCIDENTAL CHEMICAL CORPORATION CLIENT :

GEOLOGIST/ENGINEER: W. CLARKE/J. KAY


578.3

8"# AUGER/NX CORE HOLE TYPE : _

GROUND ELEVATION: __

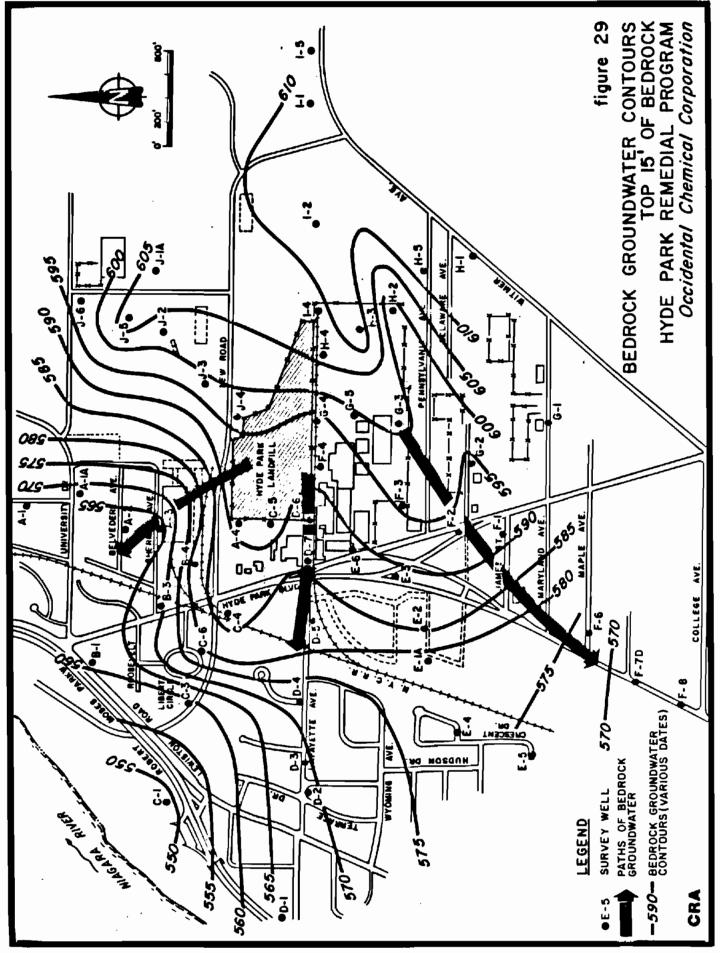
HIGHLAND AVENUE @ MASSACHUSETTS AVE. LOCATION : _

TOP OF PIPE ELEVATION: ___

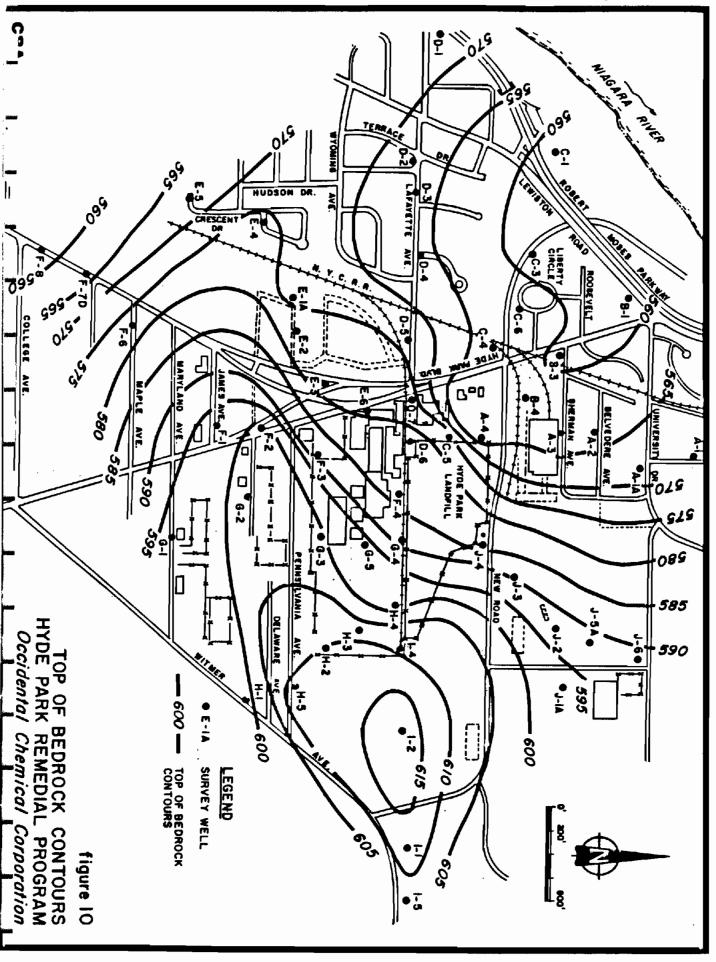
STRATIGRAPHIC AND INSTRUMENTATION LOG (Benjeron, 1984)

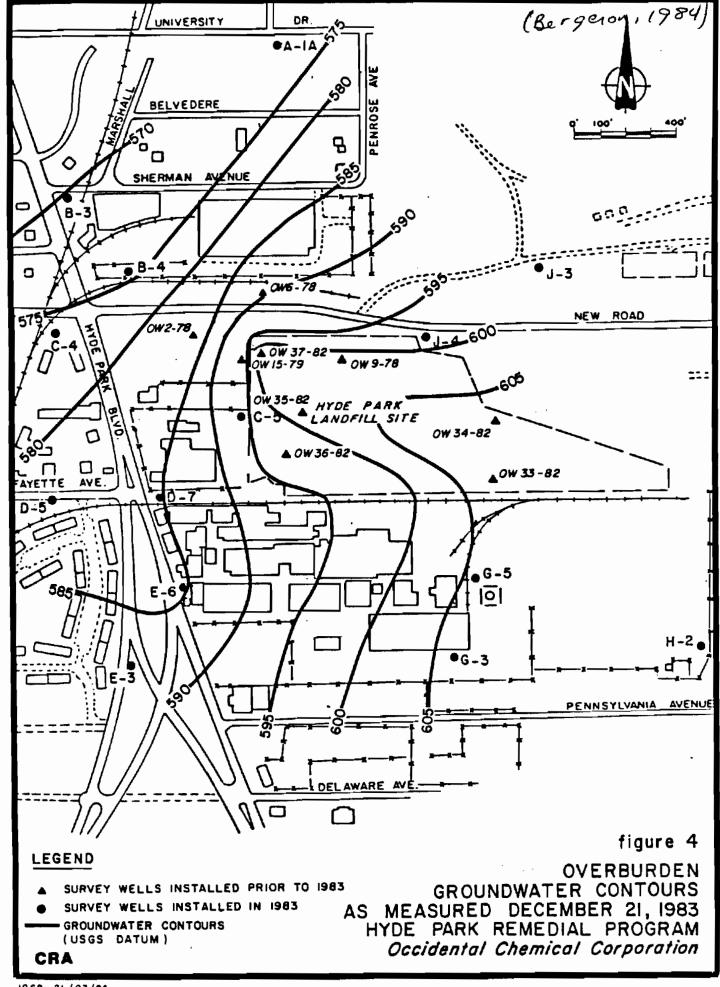
PROJECT NAME : HYDE PARK AQUIFER SURVEY	HOLE Nº: F-7D Page 2 of 3
JOB Nº : 9-1069	DATE COMPLETED: May 11, 1983
CLIENT : OCCIDENTAL CHEMICAL CORPORATION	
HOLE TYPE: 8"% AUGER/NX CORE	GROUND ELEVATION:578.3

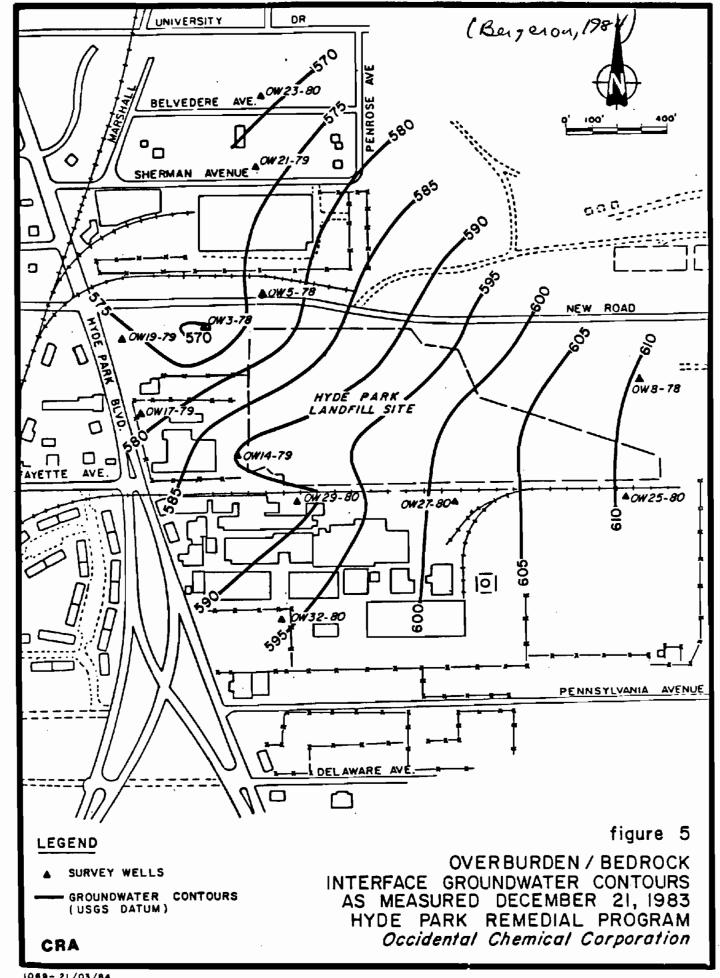
١	OCATION	: HIGHLAND AVENUE @ MASSACHUSETTS		ELEVA	TION	:			
		PROFILE	ROTINOM NOITALLATION	SAMPLE			PI	ENE	TRATION
	H.	STRATIGRAPHY		E E	سِ	/ F00T	В	_ow	TRATION EST S/FOOT
	DEPTH (ELEVATION)	DESCRIPTION & REMARKS		NUMBER	TYPE	BLOWS /	2	0 4	0 60 80
,	540 - - - - 535 - -	Gray aphanitic DOLOMITE							
	530 - - - - - 525 -		3"Ø Bore- hole						
•	520 -	Gray fine grained DOLOMITE							
-	515 -	*							
-	510 -								
	505 -	Gray aphanitic DOLOMITE							
_	500 -								


STRATIGRAPHIC AND INSTRUMENTATION LOG (Bergeron, 1984)

PROJEC	T NAME : HYDE PARK AQUIFER SURVEY	HOLE Nº:	F-7	7D F	age 3 of 3
JOB N	9-1069	DATE COMPLET	ED:	May	11, 1983
CLIENT	OCCIDENTAL CHEMICAL CORPORATION	GEOLOGIST/ENG	INEER:	W. C	LARKE/J. KAY
HOLE '	TYPE : 8 % AUGER/NX CORE	GROUND ELEVAT	ION: _	578	3
LOCATI	ON : HIGHLAND AVENUE @ MASSACHUSETTS	AVE. TOP OF PIPE	ELEVAT	ION:	
	PROFILE	MONITOR INSTALLATION	SA	MPLE	PENETRATION
DEPTH (ELEVATION)	STRATIGRAPHY Description & Remarks		NUMBER	TYPE BLOWS / FOOT	TEST BLOWS/FOOT 20 40 60 80
500 495	- Gray aphanitic DOLOMITE				
490	Gray to medium gray fine grained DOLOMITE Medium gray fine to medium grained DOLOMITE	3"g Bore- hole			
485	- GASPORT MEMBER				
480	- Gray aphanitic DOLOMITE				
475	DECEW MEMBER				
470	- Dark gray dolomitic SHALE				
465	- ROCHESTER FORMATION				
403	- Unrecovered core	463.3			


460


FR/ PO/ R-6701


(Bargeron, 1984)

*** *** ****

Hopkins, 1985 REF-17

NIAGARA COUNTY HEALTH DEPARTMENT MEMORANDUM

TO: Peter Buechi

DATE: July 29, 1985

Attn.: Larry Clare

FROM: Mike Hopkins The Lapli-

SUBJECT: DRAFT PHASE I REPORT - WITMER ROAD SITE

I have reviewed the Witmer Road Site Draft Phase I report. There are numerous errors in the report. I have noted these and many other comments in the page margins in blue ink as requested. Several comments are repeated and elaborated on below for emphasis.

- 1. It is pointed out that the area used for disposal is now believed to be a much smaller area than indicated in this department's 1982 profile report. Based on more extensive field inspections in 1982 (in conjunction with USGS study) and in 1985 (with Engineering Science/Dames and Moore) it is now our opinion that disposal occurred primarily in the area within 100 to 200 feet of the former burning pits (see fig. I-2). Scavenger dumping of rubble and debris may have occurred on other adjacent areas.
- 2. Also since the writing of the 1982 profile report, NCHD has become aware of the existence of five private water supply wells northeast of the site along Pennsylvania and Delaware Avenues. These wells were sampled by NCHD in 1984 and 1985. Results of the analysis of three of these wells show low levels of trans -1, 2 dichloroethene (2 to 6 mcg/l), trichloroethylene (2 to 6 mcg/l), benzine (1 mcg/l) and dichloromethane (1 mcg/l in one sample only). These levels were considered to be below levels of concern by the NYSDOH (2/22/85). The results of samples from the other two wells are pending. The consultant did not use any of this information in his HRS scoring.
- 3. The report refers to an industrial well one-half mile south of the site used by the American Sales Book Company. The information was apparently taken from the 1964 Johnston report. We do not believe that there is an American Sales Book Company operating in Niagara Falls. There is no listing in the phone book for this Company. In addition, we are unaware of any company using a production well in this area. We have checked SPDES and sewer discharge records and can find no firm discharging water from a well said to be pumping 100 gpm in the Highland Ave./College Ave./Hyde Park area.

Witner Rc

NCHD, 198Z

REF-18

RECEIVED

MAR 1 7 1982

N.Y.S. DEPT. OF

ENVIRONMENTAL CONSERVATION

REGION & HEADQUARTERS

PRESENTATION ENVESTIGATION AND PROPERT REPORTS FOR TWENTY-SET SUSPECTED LINESTRAL DISPOSAL SETES IN HIAGAPA COUNTY, NEW YORK.

PRINCIPED BY

NIAGARA COUNTY HEALTH DEPARTMENT 10TH & E. FALLS STREETS NIAGRA FALLS, HEL YORK 14502

IMROE, 1932

nae.

INTER ROAD (DEC #932027)

LOCATION

The exact limits of the previous disposal area have not been precisely determined. The general location of the area is west of Witner Road and north of Warpland Avenue in the Coun of Niagara. The area may extend as far north as Delaware Avenue.

A sketch is attached.

<u>0.1.35515</u>

The ownership of the property cannot be determined until the location is verified. This area is generally under block ownership and therefore, only a few parties are expected to can this property.

TELESTORY.

Disposel activities are reported to have begun at this site in the 1940's. The area was used as a dump for incombustibles and large refuse items. The City of Niagara Falls is believed to have dumped here as did other users, including private citizens. Hime cleanouts from process vessels at ISCO (now International Mineral and Chemical) were reportedly dumped here. Slag from the Vanadium Corporation may have been dumped here. A long time area resident stated that a "crusher" was operated on the present site of Kach's Ecrap Tand to crush this slag. The resident indicated that household garbage was not dumped or burned here.

The City of Hisgare Falls operated a burning pit behind Each's Scrap Fard. Furniture, wood, crates and cardboard were reportedly burned. The ash was hauted off-site for disposal according to a PM employee. This pit was used until the late 1960's. The site was closed after numerous complaints of since and violations of air quality.

Currently the site is used for sorap yards and as an easement for high voltage towers belonging to Miagara Mohauk. Much of this area was graded prior to construction of these towers in the 1950's. Recent inspections revealed no evidence of previous disposal. A sparce grass cover is established over most of the site, although several bare spots were found. Scavenger dumping of rubbish and several abandoned cars are present.

FRECIOUS SAMPLEIG

There is no record of any previous sampling at this site.

ECILS/GEOLOGY

A detailed soil survey for this area is unavailable. No boring data was found from on or off-site projects.

SOTIS/GEOLOGY (continued)

Bedrock is Lockport Dolomite to unknown depths. The depth to bedrock is not known.

CROSH DUATER

The depth to the water table and the direction of groundwater flow have not been determined. There are no known boring or well records available from areas near this site.

The nearest known drinking water well is located 3,500 feet to the north. Other old and/or abandoned wells are suspected to be present in this area, but specific wells have not been located. Public water is available throughout a three mile radius.

SURFACE MATER

The nearest surface water is the Wiagara River, 5,500 feet west of the site. There are no drinking water intakes within three miles.

This erea is not within a 199 year flood plain. Some areas appear to be susceptible to surface ponding during wet weather.

There are no wetlands within one mile of this site.

<u>AIR</u>

If it is assumed that the wastes present are of the types described in the "History" section, the potential for air emissions is likely to be small. However, confirmation of the waste types disposed of is needed for an accurate assessment.

There are several residences within 200 feet of the suspected filled area. It is estimated that 1,500 people live within one mile of the site.

Land use in this area includes residential and commercial properties adjacent to the site and industrial property within 600 feet.

FIRE/EXPLOSIC:

The potential for fire or emplosion is unknown. The nearest buildings are located at Mach's Scrap Mard, along Mitner Road and along Maryland Avenue. Over 3,000 people and several hundred buildings are located within a two mile radius.

DIRECT CONTACT

All wastes appear to be covered except for some suspected scavenger dumping. Access is partially restricted by fences, but access is possibly the Niagara Ibhauk corridors.

CI:CLUSICIS

There is no reported dumping of touic substances at this site. Sampling will be necessary to confirm this. Samples could be obtained on the Niegara ibhawk property or on the adjacent private properties. Access for well drilling equipment is generally available.

3001

NEW YORK STATE DEPARTMENT OF HEALTH HADSHORTH CENTER FOR LABORATORIES AND RESEARCH

	DONOR IN CENTER	OK , 2 12 5 1 1 1 5 1 1 1 5 1 1 1 1 5			
AGE 1	RESUL	TS OF EXAMINATION		PENDING AP	PROVAL
MPLE ID:	45223 SAM	PLE RECEIVED: 84/11/19 BLOODY RUN REMEDIAL	5/	CHARGE:	46.90
SOURCE ID:	DRAIN	AGE BASIN:03	GAZETTEE	R CODE:3155	
ILITICAL SUB	DIVISION:NIAGARA		COUNTY:N	IAGARA	
ATITUDE:43 0	7 30. LONGI	TUDE:79 04 41.	Z DIRECT	1014:	
OCATION: T	DWN OF NIAGARA. P	RIVATE WELL			
SCRIPTION:U	NTULIS RESIDENCE.	2645 PENNSYLVANIA A	JE.		•
PORTING LAB	: TOX:LAB F	OR ORGANIC ANALYTICAL	CHEMIST	RY	
EST PATTERN:	NFBR:NIAGA	RA FALLS-BLOODY RUN			
'AMPLE TYPE:	012:FINIS	RIVATE WELL 2645 PENNSYLVANIA AMON OR ORGANIC ANALYTICAN RA FALLS-BLOODY RUN HED WATER, UNCHLORING	ATED - MO	NITORING	
IME OF SAMPL	ING: 84/11/14 10:		LAST ACT	ION DATE:85.	/01/30
		ENE ENE (C-46) BENZENE ADIENE (C-56) BENZENE ORIDE IFLUORIDE DRIDE			
PA	RAMETER		RESULT		
T43809 1,	3,5-TRICHLOROBENZ	ene E	< 1.0	MCG/L	
- T44009 1,	2,4-TRICHLOROBENZ	ENE	< 1.0	MCG/L	
T43909 1,	2,3-TRICHLOROBENZ	ENE	< 1.0	MCG/L	
T52509 HE	XACHLOROBUTADIENE	(C-46)	< 1.0	MCG/L	
- T50309 1,	2,4,5-TETRACHLORD	BENZENE	< 1.0	MCG/L	
T49209 HE	XACHLOROCYCLOPENT	ADIENE (C-56)	< 1.0	MCG/L	
T50109 1,	2',3,4-TETRACHLORO	BENZENE	< 1.0	MCG/L	
_ T48809 HE	XACHLOROBENZENE		< 1.0	MCG/L	
T15709 HC	H,ALPHA		< 1.0	MCG/L	
T15809 HC	H,BETA		< 1.0	MCG/L	
T35609 HC	H,GAMMA (LINDANE)		< 1.0	MCG/L	
T16009 HC	H,DELTA		< 1.0	MCG/L	
T44309 2-0	CHLOROBENZOTRIFLU	ORIDE	< 1.0	MCG/L	
T85109 M-	MONOCHLOROBENZOTR	FLUORIDE	(1.0	MCG/L	
- T44409 4-1	CHLOROBENZOTRIFLU	JRIDE	(1.0	MCG/L	
T69309 DC	TACHLOROCYCLOPENT	INE.	(1.0	MCG/L	
169709 PE	NTACHLORUBENZENE		(1.0	MCG/L	
. 139909 MII	KEX 4 E TRIGULORORUEN	. ,	(1.0	MCC /I	
792009 D-	9,5-1K1CHLUKUPHENI CULOPOPENZOIC ACII) L	(1.0	MCG/L	
TE2119 M-1	CHLOROBENZOIC ACI		₹ 1.0	MCG/L	
" TS2209 P-0	CHLOROBENZOIC ACI		₹ 1.0	MCG/L	
		NOT PART OF TEST PATT		1160/6	
	LOROMETHANE			MCG/L	
T61809 BR				MCG/L	
	YL CHLORIDE		(1.		
	CHLORODI FLUOROMETI	IANE		MCG/L	
	LOROETHANE		(1.		
T61709 TRI	CHLOROFLUOROMETHA	NE .		MCG/L	
T50909 1.1	L-DICHLOROETHENE		(1.	MCG/L	
T51909 1.1	L-DICHLOROETHANE		< 1.	MCG/L	
T61209_TR	ANS-1.2-DICHLOROET	HENE	2.	MCG/L	
	*** CONTINUE	D ON NEXT PAGE ***			- · ·

COPIES SENT TO: CO(1), RO(1), LPHE(1), FED(0), INFO-P(0), INFO-L(1)

< 0.05 MCG/L < 0.05 MCG/L

ረ በ.በ5 ₩00 4

002

NEW YORK STATE DEPARTMENT OF HEALTH HADSHORTH CENTER FOR LABORATORIES AND RESEARCH

AGE 2

RESULTS OF EXAMINATION

PENDING APPROVAL

AMPLE ID: 45223 SAMPLE RECEIVED:84/ DLITICAL SUBDIVISION:NIAGARA DCATION: TOWN OF NIAGARA, PRIVATE WELL TME OF SAMPLING: 84/11/14 10:	AALA TIV. 117 AAAAA
DCATION: TOWN OF NIAGARA, PRIVATE WELL ME OF SAMPLING: 84/11/14 10: PARAMETER T39009 CHLOROFORM T50809 1,2-DICHLOROETHANE T36609 CARBON TETRACHLORIDE T38909 BROMODICHLOROMETHANE T61309 1,2-DICHLOROPROPANE T61309 1,2-DICHLOROPROPANE T61509 TRANS-1,3-DICHLOROPROPENE T41109 TRICHLOROETHYLENE T44909 DIBROMOCHLOROMETHANE T61409 CIS-1,3-DICHLOROPROPENE T51709 1,1,2-TRICHLOROETHANE T61109 2-CHLOROETHYLVINYL ETHER T42109 BROMOFORM T51809 1,1,2,2-TETRACHLOROETHANE T41209 TETRACHLOROETHENE T40909 CHLOROBENZENE T49709 1,3-DICHLOROBENZENE T44109 1,2-DICHLOROBENZENE T44109 1,2-DICHLOROBENZENE	LAST ACTION DATE: 05/01/30
BARAMETER	PECILI T
TARACA CHI CACCAM	RESULT
T39009 CHLURUFURM	(1. MCG/L
T50809 1,2-DICHLORUEIHANE	(1. MUG/L
T23609 1,1,1-TRICHLORDETHANE	(1. MCG/L
T36609 CARBON TETRACHLURIDE	(1. MCG/L
T38909 BROMODICHLOROMETHANE	< 1. MCG/L
T61309 1,2-DICHLOROPROPANE	< 1. MCG/L
T61509 TRANS-1,3-DICHLOROPROPENE	< 1. MCG/L
T41109 TRICHLOROETHYLENE	2. MCG/L
- T44909 DIBROMOCHLOROMETHANE	< 1. MCG/L
T61409 CIS-1,3-DICHLOROPROPENE	< 1. MCG/L
T51709 1,1,2-TRICHLORGETHANE	< 1. MCG/L
_ T61109 2-CHLOROETHYLVINYL ETHER	< 1. MCG/L
T42109 BROMOFORM	< 1. MCG/L
T51809 1,1,2,2-TETRACHLOROETHANE	< 1. MCG/L
T41209 TETRACHLOROETHENE	< 1. MCG/L
T40909 CHLOROBENZENE	< 1. MCG/L
T40909 CHLOROBENZENE T49709 1,3-DICHLOROBENZENE T44109 1,2-DICHLOROBENZENE T44209 1,4-DICHLOROBENZENE T34409 BENZENE T39209 TOLUENE	< 1. MCG/L
T44109 1.2-DICHLOROGENZENE	< 1. MCG/L
- T44209 1,4-DICHLOROBENZENE	< 1. MCG/L
T34409 BENZENE	1. MCG/L
T39209 TOLUENE	< 1. MCG/L
	< 1. MCG/L
T85209 1-CHLOROCYCLOHEXENE-1	< 1. MCG/L
T70409 PARA-XYLENE T70309 META-XYLENE T51409 ORTHO-XYLENE T85309 CUMENE	< 1. MCG/L
_T70309 META-XYLENE	< 1. MCG/L
T51409 ORTHO-YYI FNF	< 1. MCG/L
TRESOS CIMENE	< 1. MCG/L
T85409 STYRENE	< 1. MCG/L
T85509 P-BROMOFLUOROBENZENE	< 1. MCG/L
T51109 N-PROPYLBENZENE	< 1. MCG/L
T85609 TERT-BUTYLBENZENE	< 1. MCG/L
-T85709 O/P-CHLOROTOLUENE	< 1. MCG/L
T51209 BROMOBENZENE	(1. MCG/L
F50509 META-CHLOROTOLUENE	< 1. MCG/L
#85809 1,3,5-TRIMETHYLBENZENE	< 1. MCG/L
T85909 1,2,4-TRIMETHYLBENZENE	< 1. MCG/L
-86009 P-CYMENE	< 1. MCG/L
	< 1. MCG/L
186209 SEC-BUTYLBENZENE	< 1. MCG/L
186309 N-BUTYLBENZENE	< 1. MCG/L
86409 2,3-BENZOFURAN	< 1. MCG/L
"65609 NAPHTHALENE	< 5. MCG/L
Sacra and vaccing 1331	/ D. MCG/L

39809 PCB, AROCLOR 1221

-38109 PCB, AROCLOR 1254

38009 PCB, AROCLOR 1016/1242

2000

NEW YORK STATE DEPARTMENT OF HEALTH WADSWORTH CENTER FOR LABORATORIES AND RESEARCH

RESULTS OF EXAMINATION PAGE 1 PENDING APPROVAL 45224 SAMPLE RECEIVED:84/11/15/ SAMPLE ID: PROGRAM; SOURCE ID: 107: HYDE FARK - BLOODY RUN REMEDIAL PROGRAM DRAINAGE BASIN:03 GAZETTEER CODE:3155 POLITICAL SUBDIVISION:NIAGARA COUNTY:NIAGARA . LONGITUDE: Z DIRECTION: LATITUDE: LOCATION: TOWN OF NIAGARA PRIVATE WELL DESCRIPTION: LACHANCE RESIDENCE, 26 33 PENNSYLVANIA_AVE.___ REPORTING LAB: TOX: LAB FOR ORGANIC ANALYTICAL CHEMISTRY JEST PATTERN: NFBR:NIAGARA FALLS-BLOODY RUN
SAMPLE TYPE: 012:FINISHED WATER, UNCHLORINATED - MONITORING TIME OF SAMPLING: 84/11/14 10:30 LAST ACTION DATE:85/01/20 PARAMETER RESULT T43809 1,3,5-TRICHLOROBENZENE
T44009 1,2,4-TRICHLOROBENZENE
T43909 1,2,3-TRICHLOROBENZENE < 1.0 MCG/L < 1.0 MCG/L T43909 1,2,3-TRICHLOROBENZENE < 1.0 MCG/L T52509 HEXACHLOROBUTADIENE (C-46) < 1.0 MCG/L T50309 1,2,4,5-TETRACHLORDEENZENE < 1.0 MCG/L T49209 HEXACHLOROCYCLOPENTADIENE (C-56) < 1.0 MCG/L T50109 1,2,3,4-TETRACHLOROBENZENE < 1.0 MCG/L < 1.0 MCG/L T48509 HEXACHLOROBENZENE T15709 HCH,ALPHA < 1.0 MCG/L T15809 HCH, BETA < 1.0 MCG/L T35609 HCH, GAMMA (LINDANE) < 1.0 MCG/L T16009 HCH.DELTA < 1.0 MCG/L T44309 2-CHLOROBENZOTRIFLUORIDE < 1.0 MCG/L T85109 M-MONOCHLOROBENZOTRIFLUORIDE < 1.0 MCG/L T44409 4-CHLOROBENZOTRIFLUORIDE < 1.0 MCG/L T69309 OCTACHLOROCYCLOPENTENE < 1.0 MCG/L TE9709 PENTACHLOROBENZENE < 1.0 MCG/L T39909 MIREX < 1.0 MCG/L < 1.0 MCG/L - T49609 2,4,5-TRICHLOROPHENOL T82009 O-CHLOROBENZOIC ACID < 1.0 MCG/L T82109 M-CHLOROBENZOIC ACID < 1.0 MCG/L < 1.0 MCG/L .T82209 P-CHLOROBENZOIC ACID FOLLOWING PARAMETERS NOT PART OF TEST PATTERN T62009 CHLOROMETHANE < 1. MCG/L T61809 BROMOMETHANE < 1. MCG/L T41009 VINYL CHLORIDE < 1. MCG/L T70209 DICHLORODIFLUOROMETHANE < 1. MCG/L T61909 CHLORDETHANE < 1. MCG/L T61709 TRICHLOROFLUOROMETHANE < 1. MCG/L T23809 DICHLOROMETHANE < 1. MCG/L T50909 1,1-DICHLOROETHENE < 1. MCG/L = 51909 1,1-DICHLORDETHANE < 1. MCG/L T61209 TRANS-1,2-DICHLOROETHENE

OPIES SENT TO: CO(1), RO(1), LPHE(1), FED(0), INFO-P(0), INFO-L(1)

**** CONTINUED ON NEXT PAGE ****

6. MCG/L

b05

NEW YORK STATE DEPARTMENT OF HEALTH HADSHORTH CENTER FOR LABORATORIES AND RESEARCH

The magnification was required by the first of the second

RESULTS OF EXAMINATION PENDING APPROVAL AGE 1 MPLE ID: 45225 SAMPLE RECEIVED:84/11/15/ CHARGE: 46.90 107: HYDE PARK - BLOODY RUN REMEDIAL PROGRAM _OGRAM: DURCE ID: DRAINAGE BASIN:03 GAZETTEER CODE:3155 LITICAL SUEDIVISION:NIAGARA COUNTY: NIAGARA TITUDE:43 07 30. LONGITUDE:79 04 41. Z DIRECTION: TOWN OF NIAGARA PRIVATE WELL CATION: SCRIPTION: WEBER RESIDENCE 2705 PENNSYLVANIA AVE. PORTING LAB: TOX: LAB FOR ORGANIC ANALYTICAL CHEMISTRY PORTING LAB: ST PATTERN: NFBR:NIAGARA FALLS-BLOODY RUN
MPLE TYPE: 012:FINISHED WATER, UNCHLORINATED - MONITORING ME OF SAMPLING: 84/11/14 10:50 LAST ACTION DATE:85/01/30 RESULT PARAMETER < 1.0 MCG/L T43809 1,3,5-TRICHLORDBENZENE T44009 1,2,4-TRICHLOROBENZENE < 1.0 MCG/L < 1.0 MCG/L T43909 1,2,3-TRICHLOROPENZENE < 1.0 MCG/L T52509 HEXACHLOROBUTADIENE (C-46) < 1.0 MCG/L T50309 1,2,4,5-TETRACHLOROBENZENE T49209 HEXACHLOROCYCLOPENTADIENE (C-56) < 1.0 MCG/L < 1.0 MCG/L T50109 1,2,3,4-TETRACHLOROBENZENE < 1.0 MCG/L T48809 HEXACHLOROBENZENE T15709 HCH,ALPHA < 1.0 MCG/L < 1.0 MCG/L T15809 HCH, BETA - < 1.0 MCG/L T35609 HCH, GAMMA (LINDANE) < 1.0 MCG/L -T16009 HCH, DELTA < 1.0 MCG/L T44309 2-CHLOROBENZOTRIFLUORIDE T85109 M-MONOCHLOROBENZOTRIFLUORIDE < 1.0 MCG/L < 1.0 MCG/L _T44409 4-CHLOROBENZOTRIFLUORIDE < 1.0 MCG/L T69309 OCTACHLOROCYCLOPENTENE T69709 PENTACHLOROBENZENE < 1.0 MCG/L < 1.0 MCG/L T39909 MIREX T49609 2,4,5-TRICHLOROPHENOL < 1.0 MCG/L T82009 D-CHLOROBENZOIC ACID < 1.0 MCG/L < 1.0 MCG/L TR2109 M-CHLOROBENZOIC ACID < 1.0 MCG/L #182209 P-CHLOROBENZOIC ACID FOLLOWING PARAMETERS NOT PART OF TEST PATTERN < 1. MCG/L 162009 CHLOROMETHANE < 1. MCG/L -61809 BROMOMETHANE T41009 VINYL CHLORIDE < 1. MCG/L 70209 DICHLORODIFLUOROMETHANE < 1. MCG/L 61909 CHLORDETHANE < 1. MCG/L T61709 TRICHLOROFLUDROMETHANE < 1. MCG/L "23809 DICHLOROMETHANE < 1. MCG/L < 1. MCG/L 50909 1,1-DICHLOROETHENE 151909 1,1-DICHLORDETHANE < 1. MCG/L

61209 TRANS-1,2-DICHLOROETHENE

┎╄╒╄╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬

**** CONTINUED ON NEXT PAGE ****

PIES SENT TO: CO(1), RO(1), LPHE(1), FED(0), INFO-P(0), INFO-L(1)

(NYS DOH, 1984)

< 0.05 MCG/L

4€.90

NEW YORK STATE DEPARTMENT OF HEALTH WADSWORTH CENTER FOR LABORATORIES AND RESEARCH

RESULTS OF EXAMINATION PENDING APPROVAL MPLE 1D: 45225 SAMPLE RECEIVED:84/11/15/ CHARGE: OLITICAL SUBDIVISION:NIAGARA COUNTY:NIAGARA OCATION: TOWN OF NIAGARA PRIVATE WELL LAST ACTION DATE: 85/01/30 IME OF SAMPLING: 84/11/14 10:50 RESULT PARAMETER T39009 CHLOROFORM < 1. MCG/L T50809 1,2-DICHLOROETHANE < 1. MCG/L < 1. MCG/L T23609 1,1,1-TRICHLOROETHANE < 1. MCG/L T36609 CARBON TETRACHLORIDE T36909 BROMODICHLOROMETHANE < 1. MCG/L < 1. MCG/L T61309 1,2-DICHLOROPROPANE < 1. MCG/L T61509 TRANS-1,3-DICHLOROPROPENE T41109 TRICHLOROETHYLENE 6. MCG/L < 1. MCG/L T44909 DIBROMOCHLOROMETHANE < 1. MCG/L T61409 CIS-1,3-DICHLOROPROPENE < 1. MCG/L T51709 1,1,2-TRICHLOROETHANE TE1109 2-CHLOROETHYLVINYL ETHER < 1. MCG/L < 1. MCG/L T42109 BROMOFORM < 1. MCG/L T51809 1,1,2,2-TETRACHLOROETHANE < 1. MCG/L T41209 TETRACHLORDETHENE < 1. MCG/L T40909 CHLOROBENZENE T49709 1.3-DICHLOROSENZENE < 1. MCG/L < 1. MCG/L T44109 1,2-DICHLOROBENZENE < 1. MCG/L T44209 1,4-DICHLOROBENZENE T34409 BENZENE 1. MCG/L < 1. MCG/L T39209 TOLUENE T51009 ETHYLBENZENE < 1. MCG/L < 1. MCG/L T85209 1-CHLDROCYCLOHEXENE-1 < 1. MCG/L T70409 PARA-XYLENE T70309 META-XYLENE < 1. MCG/L < 1. MCG/L T51409 ORTHO-XYLENE < 1. MCG/L TB5309 CUMENE TE5409 STYRENE < 1. MCG/L < 1. MCG/L TESSUS P-BROMOFLUOROBENZENE < 1. MCG/L T51109 N-PROFYLBENZENE < 1. MCG/L TESEOS TERT-BUTYLBENZENE < 1. MCG/L T85709 O/P-CHLOROTOLUENE < 1. MCG/L T51209 BROMOBENZENE < 1. MCG/L T50509 META-CHLOROTOLUENE < 1. MCG/L TB5809 1,3,5-TRIMETHYLBENZENE < 1. MCG/L T85909 1,2,4-TRIMETHYLBENZENE < 1. MCG/L T86009 P-CYMENE < 1. MCG/L T86109 CYCLOPROPYLBENZENE < 1. MCG/L TB6209 SEC-BUTYLBENZENE < 1. MCG/L T86309 N-BUTYLBENZENE < 1. MCG/L T86409 2,3-BENZOFURAN < 5. MCG/L T65609 NAPHTHALENE < 0.05 MCG/L T39809 PCB, AROCLOR 1221 < 0.05 MCG/L T38009 PCB, AROCLOR 1016/1242 < 0.05 MCG/L T38109 PCB, AROCLOR 1254

T41609 PCB, AROCLOR 1260

diversion.				
Name of the last o				
Section Sectio				
Anudistrución				
				,
May Change Control				
de constant de la con				
Service Street				
il distinct				
William Willia				
_				
The second secon				
A Company of the Comp				
M. and particular state of the				

APPENDIX B
PROPOSED UPDATED NYS REGISTRY SHEET

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID AND HAZARDOUS WASTE INACTIVE HAZARDOUS WASTE DISPOSAL SITE REPORT

CLASSIFICATION CODE: 2a

REGION: 9

SITE CODE: 932027

NAME OF SITE : Witner Road Site

STREET ADDRESS: Witner Road at Maryland Ave.

TOWN/CITY:

ZIP:

Niagara

Niagara

SITE TYPE: Open Dump-X Structure- Lagoon- Landfill- Treatment Pond-ESTIMATED SIZE: ACTES

SITE OWNER/OPERATOR INFORMATION:

CURRENT OWNER NAME.... Adolph Kachinoski

CURRENT OWNER ADDRESS.: 4800 Witner Rd., Niagara Falls, NY 14305

OWNER(S) DURING USE ... : unknown

OPERATOR DURING USE...: City of Niagara Falls

OPERATOR ADDRESS.....: City Hall, Main St., Niagara Falls, NY

PERIOD ASSOCIATED WITH HAZARDOUS WASTE: From 1940 To 1960

SITE DESCRIPTION:

Site was used as a dump for incombustibles and large refuse items. City of Niagara Falls used the site for open burning. Also lime cleanouts from process vessels at ISCO (now International Mineral and Chemical) were reportedly dumped here. Currently the site is used for scrap yard and as an easement for high voltage towers of Niagara Mohawk Two subsurface soil samples were collected from the site by U.S.C.S. in August of 1982 and May of 1983. Samples were analyzed for Ni, Fe, Cu and organics. The concentration of Cu exceeded background levels, seven organic priority pollutants were detected at low levels.

HAZARDOUS WASTE DISPOSED: Confirmed- Suspected QUANTITY_(units)_ IYPE_

incinerator residue

unknowne

lime from process vessels, general refuse

SITE CODE: 932027

- ANALYTICAL DATA AVAILABLE:

Air- Surface Water- Groundwater- Soil-X Sediment- None-

CONTRAVENTION OF STANDARDS:

Groundwater- Brinking Water- Surface Water- Air-

LEGAL ACTION:

TYPE..: none X State- Federal-

STATUS: In Progress- Completed-

__ REMEDIAL ACTION:

Proposed- Under Design- In Progress- Completed-

NATURE OF ACTION: none x

GEOTECHNICAL INFORMATION:

SOIL TYPE: sandy clay

GROUNDWATER DEPTH: unknown

ASSESSMENT OF ENVIRONMENTAL PROBLEMS:

Insufficient information.

ASSESSMENT OF HEALTH PROBLEMS:

Insufficient Information

PERSON(8) COMPLETING THIS FORM:

NEW YORK STATE DEPARTMENT OF

ENVIRONMENTAL CONSERVATION

NAME .: Peter Buechi

TITLE: Assoc. Sanitary Engr.

NAME .: A. Tayyebit

TITLE: Asst. San. Engr.

- DATE:: 01/24/85

NEW YORK STATE DEPARTMENT OF HEALTH

NAME.: R. Tramontano

TITLE: Bur. Tox. Subst. Assess.

NAME .:

TITLE:

DATE .: 01/24/85