Akzo Nobel Polymer Chemicals

Groundwater Monitoring Report 2016 Annual Report

Groundwater Monitoring Report 2016 Annual Report

Akzo Nobel Polymer Chemicals

Lockport-Olcott Road Burt, New York

NYSDEC Region #9

Prepared for:

Akzo Nobel Polymer Chemicals 2153 Lockport Olcott Road Burt, New York 14028

Prepared by:

Barton & Loguidice, D.P.C. 443 Electronics Parkway Liverpool, New York 13088

2016 Annual Report Project No.: 1398.001.016

Table of Contents

		Page
Sampla (Collection Information	1
_	npled By	
	npling Dates	
	npling Locations	
	ld Determinations	
Sample T	Гesting	1
	poratory Information	
	rameters Tested	
Tes	st Report	1
Site Info	rmation	2
	roduction	
	e History	
Assessmo	ent of Monitoring Results	3
Monitor	ed Natural Attenuation (MNA) Evaluation	5
	dox Conditions	
	gradation Products	
•	EX Constituents	
	etone	
Conclusi	ons	10
Conciusi		
List of Ta	<u>ables</u>	
Table 1	Analytical Results Summary	
Table 2	Groundwater Standard Exceedances	
Table 3	Well Physical Measurements	
Table 4	Summary of MNA Indicator Parameter Data	
	•	

Table of Contents – Continued

List of Figures

Figure 1	Site Location Map
Figure 2	Site Layout
Figure 3	Well Locations
Figure 4	Overburden Groundwater Contours – June 2016
Figure 5	Bedrock Groundwater Contours – June 2016
Figure 6	Overburden Groundwater Contours – November 2016
Figure 7	Bedrock Groundwater Contours – November 2016

List of Appendices

Appendix A	Field Sampling Data Sheets/ Instrument Calibration Records
Appendix B	Analytical Laboratory Summary Report (ALS Environmental)

Appendix C Groundwater Elevation Data

Sample Collection Information

Sampled By: Barton & Loguidice, D.P.C.

Sampling Dates: Second Quarter: June 7 and 8, 2016

Fourth Quarter: November 22 and 23, 2016

Sampling Locations: Overburden Bedrock

MW-1 $MW-1B^{(1)}$

MW-2

MW-3 MW-3B⁽¹⁾ MW-4B

MW-5

MW-9 MW-10 MW-11 MW-11B

Notes: (1) Sampled in Second Quarter only

Field Determinations: (See Field Data Sheets in Appendix A)

pН

Temperature Turbidity

Specific Conductance

Eh (Oxidation Reduction Potential)

Dissolved Oxygen

Ferrous Iron

Static Water Levels

Sample Testing

Laboratory: ALS Environmental

1565 Jefferson Road, Bldg 300, Suite 360

Rochester, NY 14623 NYSDOH I.D. No.10145

Parameters Tested: All monitoring locations were analyzed for Volatile

Organic Compounds (EPA Method 8260), dissolved iron (EPA Method 2007), dissolved manganese (EPA Method 354.1), sulfate and nitrate as nitrogen (EPA Method 300.0),

and methane (Method RSK 175).

Test Report: Second Quarter ALS Report No.: R1605971

Fourth Quarter ALS Report No.: R1612457

Site Information

Introduction

This report presents the results of environmental groundwater monitoring conducted during 2015 monitoring events at Akzo Nobel Polymer Chemicals (Akzo Nobel), Burt, New York. The facility is required to complete groundwater monitoring as defined in 6 New York Code of Rules and Regulations (NYCRR) Part 373 Permit No. 9-2928-00001/00003. The purpose of the monitoring is to evaluate Monitored Natural Attenuation (MNA) of groundwater impacts at the site. The sampling was performed according to the Facility's Groundwater Monitoring Plan dated December 2015, prepared by Barton & Loguidice, D.P.C. (B&L), and the Work Plan approved by the New York State Department of Environmental Conservation (NYSDEC) on March 31, 2006.

The Site's 6 NYCRR Part 373 Permit states that Akzo Nobel must petition NYSDEC for approval to cease the groundwater monitoring program. Petitioning to seek termination of the groundwater monitoring program will be permissible when the following "Termination Criteria" are met: (a) all Groundwater Protection Standards set forth in Table 1 of the permit have been achieved; or (b) the total concentration of all organic compounds found in Table 1 is no greater than 100 parts per billion (ppb), and no single organic compound concentration exceeds 50 ppb.

In 2009 the NYSDEC granted Akzo Nobel approval to remove monitoring wells MW-6, MW-7, and MW-8 from the monitoring program because historic sampling and laboratory data indicated that those wells exhibited little or no contamination. Additionally, wells MW-1B, MW-3B, and MW-10B are now only sampled one time per year, during the first semi-annual monitoring event due to seasonal dryness.

As detailed in the updated Groundwater Monitoring Plan approved by the NYSDEC on December 7, 2015, future groundwater sampling will take place on a semi-annual basis (two times annually), typically during the Second and Fourth Quarters of each year. Groundwater samples will be analyzed for target compound list (TCL) volatile organic compounds (VOCs), select general chemistry and specific field parameters. A Groundwater Monitoring Program Evaluation Report will be submitted annually to the NYSDEC detailing the findings for the year. This report includes presentation of both the Second and Fourth Quarter 2016 data, and the annual groundwater monitoring program evaluation report. The updated Groundwater Monitoring Plan also states that a reduction in the sampling frequency of a monitoring well may be considered if an annual review shows that any well or wells consistently has results of non-detected for all parameters for at least four consecutive sampling events.

Site History

Akzo Nobel is located at 2153 Lockport-Olcott Road in Burt, NY. The facility formerly produced chemical peroxides. Production was discontinued in April 2003; however, the Facility remains in operation as a warehouse and distribution center. The property is 350 acres in size, of which the former production portion of the Site comprises 30 acres. Figures 1 and 2 depict the site and property boundaries.

The Site is subject to the requirements of 6NYCRR Part 373 – Hazardous Waste Management Facilities. Akzo Nobel has a Part 373 Permit, which required them to conduct a Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA) and a RCRA Facility Investigation (RFI) to determine the nature and extent of contamination associated with the Facility. These studies were conducted from 1994 to 2002. Based on the findings of the RFI, groundwater impacts were identified at the Site. A corrective measure study (CMS) was conducted to evaluate remedial alternatives. MNA and institutional controls were selected as the final corrective measures for the Site. Akzo Nobel's Part 373 Permit Number 9-02928-00001/00003 was renewed in December 2005. The Permit authorizes Akzo Nobel to implement corrective action measures to address the groundwater contamination at the Site.

Assessment of Monitoring Results

B&L field personnel performed groundwater monitoring activities on June 6 and 7, 2016, and November 22 and 23, 2016. Per the requirements specified in the Groundwater Monitoring Plan, groundwater samples were collected from the designated site monitoring wells depicted on Figure 3. Field measurements included dissolved oxygen, temperature, pH, conductivity, turbidity, oxidation-reduction potential (Eh), ferrous iron concentration, and static groundwater levels. Groundwater samples were analyzed by ALS Environmental for Target Compound List (TCL) volatile organic compounds (VOCs) by USEPA Method SW-846-8260, dissolved iron by USEPA Method SW-846-200.7, dissolved manganese by USEPA Method SW-846 354.1, sulfate and nitrate as nitrogen by USEPA SW-846 300.0, and methane by Method RSK 175.

Table 1 of this report provides a summary of groundwater monitoring analytical results for 2016 and a comparison to NYSDEC groundwater standards. Table 2 summarizes the exceedance of NYSDEC groundwater standards. Table 3 summarizes the physical measurements for each monitoring well, and provides water level and field parameter data for each of the 2016 sampling events. Table 4 provides a summary of MNA indicator parameters. Figures 1 through 7 provide site maps, well locations, and groundwater contours for the overburden and bedrock units. Copies of field sampling forms, calibration sheets, and chain of custody forms are provided in Appendix A. Laboratory analytical results provided by ALS Environmental are provided in Appendix B.

The Groundwater Monitoring Work Plan specifies that "if the sample results from any of the downgradient boundary wells (MW-3, MW-3B, MW-4, MW-4B, MW-9, MW-9B, MW-10, and MW-10B) indicate contamination for any TCL VOCs above the New York State groundwater standards in NYCRR 703.5, the well(s) will be resampled within 2 weeks of obtaining the results. Also, Akzo Nobel will immediately notify the NYSDEC that there was an exceedance at the boundary well." Boundary well cluster wells MW-11 and MW-11B were installed in February 2007 as a result of VOC detections at MW-9 in 2006. The MW-11 and MW-11B locations now serve as the designated boundary well cluster downgradient of MW-9 and MW-9B. Detections of TCL VOCs above groundwater standards at the MW-9 well cluster no longer require resampling and immediate notification to the NYSDEC. These actions are now required in the event of such exceedances if they occur at the MW-11 well cluster (as well as in any of the other designated boundary wells described in the paragraph above).

Monitoring well locations MW-2, MW-5, and MW-9 have historically exhibited concentrations of several groundwater monitoring constituents above the 6NYCRR Part 703.5 standards (Part 703). In the Second Quarter MW-2 exhibited 1,1-Dichloroethane (6.4 μ g/L) in excess of the action limit of 0.6 μ g/L, benzene (9.7 μ g/L) in excess of the groundwater quality standard of 1 μ g/L, chloroethane (50 μ g/L) in excess of the groundwater quality standard (5 μ g/L), toluene (55 μ g/L) in excess of the groundwater quality standard (5 μ g/L) in excess of the groundwater standard (5 μ g/L). In the Fourth Quarter MW-2 again exhibited chloroethane (7.6 μ g/L) in excess of the groundwater quality standard.

Historically, monitoring well MW-5 has exceeded the 50 μ g/L groundwater quality standard for acetone. The concentration of acetone within MW-5 varies seasonally with the lowest concentration observed in the First and Second Quarters and the highest concentration observed in the Third and Fourth Quarters. Acetone was detected within MW-5 at concentrations below the groundwater standard in both the Second Quarter (34 μ g/L) and Fourth Quarter (13 μ g/L). The concentration of acetone will continue to be closely evaluated to assess any changes or trends within this monitoring location.

Monitoring well MW-9 exhibited 1,1,1-trichloroethane in excess of the Part 703 groundwater quality standard (5 μ g/L) during the Second Quarter (6.4 μ g/L), and below the groundwater standard during the Fourth Quarter (4.5 μ g/L). This former boundary well has historically exhibited detections of several other VOCs including 1,1,2-trichloroethane, tetrachloroethene, and trichloroethene.

The VOC concentrations within MW-2 and MW-9 have continued to show improvement over time. No other exceedances of the 6NYCRR Part 703.5 standards were observed at these three monitoring well locations, and the results are consistent with historical data.

None of the boundary wells exhibited any NYCRR 703.5 New York State groundwater standard exceedances during the 2016 monitoring events, although some VOC detections were

observed. Acetone was detected at MW-4 during the Fourth Quarter, and at an estimated concentration at MW-10B in the Second Quarter. 1,1-Dichlorethane was detected within monitoring wells MW-10B and MW-11 in the Second Quarter, and again at MW-11 in the Fourth Quarter. Concentrations at downgradient boundary wells will continue to be tracked through scheduled monitoring programs.

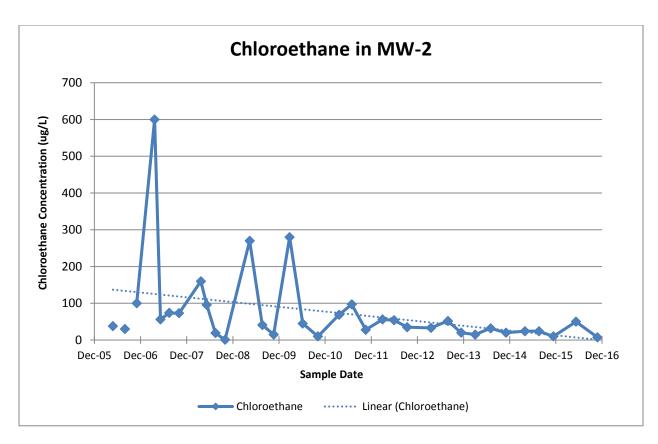
Static water level measurements were used to calculate overburden and bedrock unit groundwater elevations. The direction of overburden groundwater flow varies seasonally, but was generally to the northwest across the former source area, with the gradient becoming steeper and shifting to the west at the western property boundary. Second and Fourth Quarter Overburden Unit contours are shown in Figure 4 and Figure 6 respectively. The Second Quarter Bedrock Unit groundwater flow was generally to the west as shown in Figure 5. Fourth Quarter Bedrock Unit contour maps were not produced due to the limited static water level measurements collected from Bedrock Unit monitoring wells during these events. The overburden and bedrock relative water level ranges are consistent with historical measurements. The static water levels in several overburden wells were lower (deeper) than recent data due to a regional drought in Summer 2016.

Monitored Natural Attenuation Evaluation

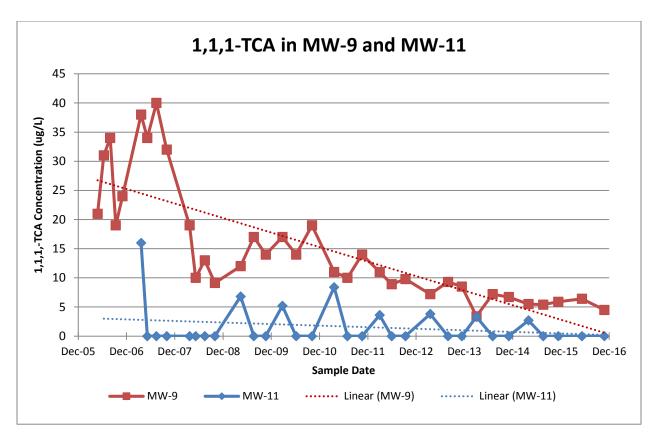
Redox Conditions

Modestly oxidizing (aerobic) conditions were present in all of the bedrock monitoring wells and in the majority of the overburden monitoring wells during the 2016 monitoring year (Table 4). Average ORP values ranged from -124 mV at MW-1B to 39 mV at MW-4, with an overall average of -25.1 mV. DO concentrations ranged from 1.01 mg/L at MW-1B to 8.13 mg/L at MW-4, with an average DO concentration of 3.66 mg/L. DO is relatively depleted in wells MW-1B, MW-2, MW-10B, and MW-11 (average = 1.59 mg/L).

Dissolved iron concentrations ranged from non-detect (multiple locations) to 4650 μ g/L (MW-2 in June), with an average dissolved iron concentration of 1,087 μ g/L in the three wells where dissolved iron was detected. There were no dissolved iron detections in the bedrock monitoring wells. Dissolved manganese ranged from non-detect (multiple locations) to 2,240 μ g/L (MW-2 in November). These data demonstrate that reductive dechlorination conditions are favorable in the vicinity of well MW-2 and MW-11.

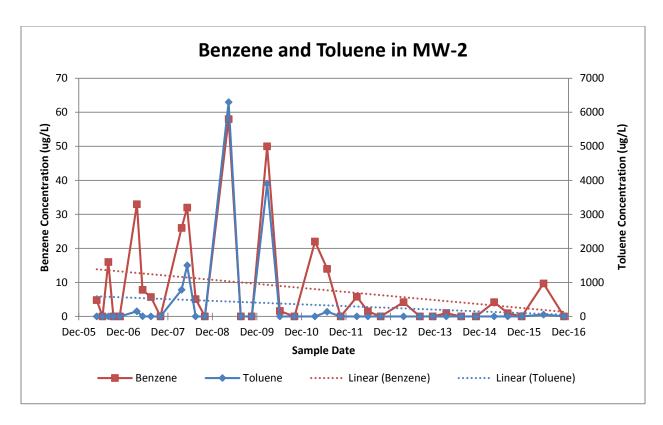

Nitrate was detected at four locations (MW-4B, MW-5, MW-9, and MW-10). In the wells with nitrate detections during 2016, the concentrations ranged from non-detect (multiple locations) to 3.1 mg/L (MW-9). These observations suggest that the denitrification process is incomplete at these locations.

Methane concentrations were greatest at monitoring well MW-2, averaging 4050 μ g/L during the 2016 monitoring year. These methane concentrations confirm that strongly reducing conditions favoring reductive dechlorination are present in the vicinity of this well. Modestly elevated methane concentrations were also noted at monitoring wells MW-10B (June 2016) and MW-11, where methane concentrations averaged 57.5 μ g/L during the 2015 monitoring year.


In general, the MNA indicator data are consistent with the results from prior monitoring years. Strongly reducing conditions favoring reductive dechlorination continue to be present in the vicinity of well MW-2. A zone where oxygen levels have been reduced, but conditions remain moderately aerobic (as evidenced by positive ORP values; significant nitrate detections; and infrequent methane, dissolved iron and dissolved manganese detections) encompasses wells MW-5, MW-9 & MW-10. A third zone encompassing monitoring wells MW-3 and MW-4 has near background DO (> 5 mg/L); positive ORP values; infrequent, low-concentration dissolved iron and manganese; and low or no detectable methane.

Degradation Products

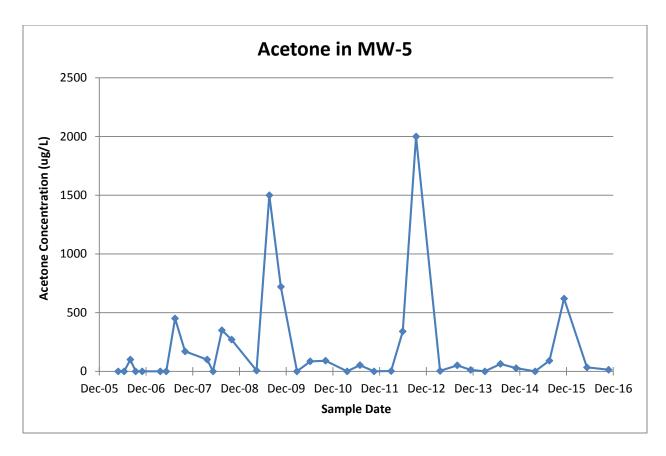
The degradation of 111-TCA via reductive dechlorination yields two principal by-products: 11-DCA and CA. During the 2016 monitoring year, both CA and 11-DCA were again detected in MW-2. Low-level concentrations of 11-DCA were also detected at monitoring wells MW-9, MW-10B, and MW-11. The absence of 111-TCA (or its detection at very low concentrations) together with the presence of only low concentrations of 11-DCA suggest that the majority of the 111-TCA in the source area has been degraded to CA. In addition, CA has been declining in the source area in recent years, consistent with the principles of natural attenuation. In lieu of radial diagrams natural attenuation trends and effectiveness are represented in contaminant concentration vs. time graphs as shown for CA in the graph below:


Similarly, low-level detections of 111-TCA in boundary wells MW-9 and MW-11 in recent years also demonstrate trends of declining concentrations (see graph below). Degradation is occurring at the boundary locations, particularly at MW-11, based on the observed redox conditions. However, the starting concentrations of the parent 111-TCA are sufficiently low to yield by-product concentrations that are very low and often below the method detection limits. MW-11 did not exhibit 111-TCA detections during either the June or November 2016 monitoring events.

As noted in previous reports prepared by Conestoga-Rovers & Associates (CRA), the anaerobic degradation of CA is a relatively slow process; accordingly, by-product CA would be expected to migrate from the source area with the groundwater flow, degrading anaerobically over time. As the flow of groundwater approaches the more aerobic areas to the west, however, it is likely that the CA will be degraded more rapidly via aerobic mechanisms. Since aerobic degradation of CA is a faster process, it is likely that CA will not reach the boundary wells, and the analytical data supports this conclusion.

BTEX Constituents

Benzene, toluene, ethylbenzene, and xylenes (BTEX) have historically been detected in the source area, including in well MW-2. Higher detections of benzene and toluene concentrations in MW-2 typically occur in the spring months (March, April, May, and June; see figure below) and decline through the remainder of the year. This suggests that the BTEX source may be associated with a water table smear zone that becomes seasonally saturated during periods of relatively higher groundwater levels.



During 2016 none of the monitoring wells exhibited BTEX detections with the exception of MW-2 during the June monitoring event. Overall, the results for the 2011 to 2016 monitoring years demonstrate observed consistently low BTEX concentrations in the source area.

Anaerobic degradation of the BTEX constituents continues and BTEX in the source area are no longer at concentrations that can negatively impact downgradient wells. Accordingly, off-site migration of BTEX is not likely to occur.

Acetone

Acetone is frequently detected within Site monitoring wells at low concentrations that may be associated with laboratory artifacts. More significant detections of acetone have been noted in monitoring well MW-5, with historical concentrations as high as 1,500 μ g/L detected in August 2009. During the 2016 monitoring year detections of acetone occurred at the MW-5 location below relevant groundwater quality criteria (50 μ g/L) in the June (34 μ g/L) and November (13 μ g/L) 2016 sampling events. Acetone is readily biodegradable under aerobic conditions and is likely to be fully degraded within a relatively short distance downgradient of monitoring well MW-5.

Conclusions

The groundwater data obtained 2016 for the Akzo Nobel facility is generally consistent with recent and historical water quality data. This data demonstrates the effectiveness of MNA in decreasing the concentrations of organic compounds within the groundwater at the facility. Specific conclusions on groundwater quality are noted below:

- The 111-TCA previously present in the source area appears to have been fully degraded to chloroethane, and the parent compound was not detected in the source area during the 2016 monitoring year. The by-product chloroethane continues to degrade under anaerobic conditions in the source area or degrades aerobically as it migrates towards the Site boundary. The absence of CA in the boundary wells confirms that the source concentrations are no longer high enough to negatively impact boundary wells water quality.
- 111-TCA has not been detected in boundary well MW-11 for the past 4 consecutive monitoring events. 111-TCA is present in MW-9, however demonstrate declining concentrations. Degradation is occurring at the boundary locations, particularly at MW-11, based on the observed redox conditions.

Anaerobic degradation of the BTEX constituents present in the source area is also
occurring. As the flow of groundwater approaches the more aerobic areas to the
west, however, BTEX constituents not degraded in the source area appear to be
fully degraded aerobically. As in prior years, there were no detections of BTEX
constituents in the boundary wells during the 2016 monitoring year.

The groundwater quality will continue to be monitored during upcoming 2017 sampling events. An annual report will also be prepared at the end of 2017 to evaluate the data obtained for the calendar year and assess the continued effectiveness of monitored natural attenuation.

Tables

Table 1
2016 Analytical Summary
Akzo Nobel Groundwater Monitoring
Akzo Nobel Functional Chemicals

			Location ID: Sample Name: Sample Date:	MW-1 R1605971-001 06/07/16	MW-1 DUPE R1605971-002 06/07/16	MW-1 R1612457-001, -012 11/23/16	MW-1 DUPE R1612457-003 11/23/16	MW-1B R1605971-003 06/07/16
	Parameters	Units	6NYCRR Part 703.5 Action Limits					
CAS	Volatile Organic Compounds		Action Limits					
71-55-6	1,1,1-Trichloroethane (TCA)	μg/L	5	1.0U	1.0U	1.0U	-	1.0U
79-34-5	1,1,2,2-Tetrachloroethane	μg/L	5	1.0U	1.0U	1.0U	-	1.0U
79-00-5	1,1,2-Trichloroethane	μg/L	1	1.0U	1.0U	1.0U	-	1.0U
75-34-3	1,1-Dichloroethane (1,1-DCA)	μg/L	5	1.0U	1.0U	1.0U	-	1.0U
75-35-4	1,1-Dichloroethene (1,1-DCE)	μg/L	5	1.0U	1.0U	1.0U	-	1.0U
107-06-2	1,2-Dichloroethane	μg/L	0.6	1.0U	1.0U	1.0U	-	1.0U
540-59-0	1,2-Dichloroethene (total)	μg/L	5	2.0U	2.0U	2.0U	-	2.0U
78-87-5	1,2-Dichloropropane	μg/L	1	1.0U	1.0U	1.0U	-	1.0U
78-93-3	2-Butanone (Methyl Ethyl Ketone)	μg/L	50	5.0U	5.0U	5.0U	-	5.0U
591-78-6	2-Hexanone	μg/L	50	5.0U	5.0U	5.0U	-	5.0U
108-10-1	4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	μg/L	-	5.0U	5.0U	5.0U	-	0.77 J
67-64-1	Acetone	μg/L	50	5.0U	5.0U	5.0U	-	1.7 J
71-43-2	Benzene	μg/L	1	1.0U	1.0U	1.0U	-	1.0U
75-27-4	Bromodichloromethane	μg/L	50	1.0U	1.0U	1.0U	-	1.0U
75-25-2	Bromoform	μg/L	50	1.0U	1.0U	1.0U	-	1.0U
74-83-9	Bromomethane (Methyl Bromide)	μg/L	5	1.0U	1.0U	1.0U	-	1.0U
75-15-0	Carbon disulfide	μg/L	-	1.0U	1.0U	1.0U	-	0.55 J
56-23-5	Carbon tetrachloride	μg/L	5	1.0U	1.0U	1.0U	-	1.0U
108-90-7	Chlorobenzene	μg/L	5	1.0U	1.0U	1.0U	-	1.0U
75-00-3	Chloroethane	μg/L	5 7	1.0U	1.0U	1.0U	-	1.0U
67-66-3	Chloroform (Trichloromethane)	μg/L	-	1.0U	1.0U	1.0U	-	1.0U
74-87-3	Chloromethane (Methyl Chloride)	μg/L		1.0U	1.0U	1.0U	-	1.0U
124-48-1	Dibromochloromethane	μg/L	50	1.0U	1.0U	1.0U	-	1.0U
75-09-2 100-41-4	Dichloromethane (Methylene Chloride)	μg/L	5 5	1.0U 1.0U	1.0U 1.0U	1.0U 1.0U	-	1.0U 1.0U
100-41-4	Ethylbenzene Styrene	μg/L μg/L	5	1.0U 1.0U	1.0U 1.0U	1.0U 1.0U	-	1.0U 1.0U
79-01-4	Tetrachloroethene (PCE)	μg/L μg/L	5	1.0U	1.0U	1.0U	-	1.0U
108-88-3	Toluene	μg/L μg/L	5	1.0U	1.0U	1.0U	-	1.0U
79-01-6	Trichloroethene (TCE)	μg/L μg/L	5	1.0U	1.0U	1.0U		1.0U
75-01-0 75-01-4	Vinyl chloride	μg/L μg/L	2	1.0U	1.0U	1.0U	-	1.0U
	cis-1,3-Dichloropropene	μg/L μg/L	0.4	1.0U	1.0U	1.0U	_	1.0U
	Xylene - m,p	μg/L	5	2.0U	2.0U	2.0U	_	2.0U
95-47-6	Xylene - o	ug/L	5	1.0U	1.0U	1.0U	_	1.0U
	trans-1,3-Dichloropropene	μg/L	0.4	1.0U	1.0U	1.0U	-	1.0U
	, ,	1-0/						
	Dissolved Gas Methane	μg/L	-	81	76	3.9	3.8	3.5
	Metals (Dissolved)							
	Iron (Dissolved)	μg/L	-	190	180	100U	100U	100U
	Manganese (Dissolved)	μg/L	-	234	224	130	131	48
	Wet Chemistry							
	Nitrate (as N)	mg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
	Nitrite (as N)	mg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
	Sulfate	mg/L	-	46.6	48.3	34.2	34.1	1030
		-						

Notes: - Not analyzed

J Estimated concentration

U Not present at or above the associated vaule
Above 6 NYCRR Part 703.5 standards

Table 1
2016 Analytical Summary
Akzo Nobel Groundwater Monitoring
Akzo Nobel Functional Chemicals

			Location ID: Sample Name: Sample Date:	MW-2 R1605971-015 06/07/16	MW-2 R1612457-002, -013 11/23/16	MW-3 R1605971-005 06/07/16	MW-3 R1612457-004, -015 11/23/16	MW-3B R1605971-006 06/07/16
	Parameters	Units	6NYCRR Part 703.5 Action Limits					
CAS	Volatile Organic Compounds							
71-55-6	1,1,1-Trichloroethane (TCA)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
79-34-5	1,1,2,2-Tetrachloroethane	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
79-00-5	1,1,2-Trichloroethane	μg/L	1 _	1.0U	1.0U	1.0U	1.0U	1.0U
75-34-3	1,1-Dichloroethane (1,1-DCA)	μg/L	5	6.4	1.0U	1.0U	1.0U	1.0U
75-35-4	1,1-Dichloroethene (1,1-DCE)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
107-06-2	1,2-Dichloroethane	μg/L	0.6	0.58 J	1.0U	1.0U	1.0U	1.0U
540-59-0	1,2-Dichloroethene (total)	μg/L	5	0.67 J	2.0U	2.0U	2.0U	2.0U
78-87-5	1,2-Dichloropropane	μg/L	1	1.0U	1.0U	1.0U	1.0U	1.0U
78-93-3	2-Butanone (Methyl Ethyl Ketone)	μg/L	50	5.0U	5.0U	5.0U	5.0U	5.0U
591-78-6	2-Hexanone	μg/L	50	5.0U	5.0U	5.0U	5.0U	5.0U
108-10-1	4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	μg/L	-	5.0U	5.0U	5.0U	5.0U	5.0U
67-64-1	Acetone	μg/L	50	1.5 J	5.0U	5.0U	5.0U	5.0U
71-43-2	Benzene	μg/L	1	9.7	1.0U	1.0U	1.0U	1.0U
75-27-4	Bromodichloromethane	μg/L	50	1.0U	1.0U	1.0U	1.0U	1.0U
75-25-2	Bromoform	μg/L	50	1.0U	1.0U	1.0U	1.0U	1.0U
74-83-9	Bromomethane (Methyl Bromide)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
75-15-0	Carbon disulfide	μg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
56-23-5	Carbon tetrachloride	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
108-90-7	Chlorobenzene	μg/L	5	3.7	1.9	1.0U	1.0U	1.0U
75-00-3	Chloroethane	μg/L	5	50	7.6	1.0U	1.0U	1.0U
67-66-3	Chloroform (Trichloromethane)	μg/L	7	1.0U	1.0U	1.0U	1.0U	1.0U
74-87-3	Chloromethane (Methyl Chloride)	μg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
124-48-1	Dibromochloromethane	μg/L	50	1.0U	1.0U	1.0U	1.0U	1.0U
75-09-2	Dichloromethane (Methylene Chloride)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
100-41-4	Ethylbenzene	μg/L	5	3.3	1.0U	1.0U	1.0U	1.0U
100-42-5	Styrene	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
79-01-4	Tetrachloroethene (PCE)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
108-88-3	Toluene	μg/L	5	55	1.0U	1.0U	1.0U	1.0U
79-01-6	Trichloroethene (TCE)	μg/L	5	1.2	1.0U	1.0U	1.0U	1.0U
75-01-4	Vinyl chloride	μg/L	2	0.39 J	1.0U	1.0U	1.0U	1.0U
	cis-1,3-Dichloropropene	μg/L	0.4	1.0U	1.0U	1.0U	1.0U	1.0U
	Xylene - m,p	μg/L	5	6.2	2.0U	2.0U	2.0U	2.0U
95-47-6	Xylene - o	ug/L	5	2.0	1.0U	1.0U	1.0U	1.0U
10061-02-6	trans-1,3-Dichloropropene	μg/L	0.4	1.0U	1.0U	1.0U	1.0U	1.0U
	Dissolved Gas							
	Methane	μg/L	-	5300	2800	1.0U	1.3	38
	Add to the total of the							
	Metals (Dissolved)	. /1		4650	520	40011	40011	40011
	Iron (Dissolved)	μg/L	-	4650	520	100U	100U	100U
	Manganese (Dissolved)	μg/L	-	2080	2240	11	10	58
	Wet Chemistry							
	Nitrate (as N)	mg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
	Nitrite (as N)	mg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
	Sulfate	mg/L	-	26.5	193	128	135	38.0
		Notes:	_	Not analyzed				

Notes: - Not analyzed

J Estimated concentration

U Not present at or above the associated vaule
Above 6 NYCRR Part 703.5 standards

Table 1
2016 Analytical Summary
Akzo Nobel Groundwater Monitoring
Akzo Nobel Functional Chemicals

			Location ID: Sample Name: Sample Date:	R1605971-007	MW-4 R1612457-016 11/23/16	MW-4B R1605971-008 06/07/16	MW-4B R1612457-005, -017 11/23/16
	Parameters	Units	6NYCRR Part 703.5				
CAS	Volatile Organic Compounds		Action Limits				
71-55-6	1,1,1-Trichloroethane (TCA)	μg/L	5	1.0U	1.0U	1.0U	1.0U
79-34-5	1,1,2,2-Tetrachloroethane	μg/L	5	1.0U	1.0U	1.0U	1.0U
79-00-5	1,1,2-Trichloroethane	μg/L	1	1.0U	1.0U	1.0U	1.0U
75-34-3	1,1-Dichloroethane (1,1-DCA)	μg/L	5	1.0U	1.0U	1.0U	1.0U
75-35-4	1,1-Dichloroethene (1,1-DCE)	μg/L	5	1.0U	1.0U	1.0U	1.0U
107-06-2	1,2-Dichloroethane	μg/L	0.6	1.0U	1.0U	1.0U	1.0U
540-59-0	1,2-Dichloroethene (total)	μg/L	5	2.0U	2.0U	2.0U	2.0U
78-87-5	1,2-Dichloropropane	μg/L	1	1.0U	1.0U	1.0U	1.0U
78-93-3	2-Butanone (Methyl Ethyl Ketone)	μg/L	50	5.0U	5.0U	5.0U	5.0U
591-78-6	2-Hexanone	μg/L	50	5.0U	5.0U	5.0U	5.0U
108-10-1	4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	μg/L	-	5.0U	5.0U	5.0U	5.0U
67-64-1	Acetone	μg/L	50	5.0U	5.2	5.0U	5.0U
71-43-2	Benzene	μg/L	1	1.0U	1.0U	1.0U	1.0U
75-27-4	Bromodichloromethane	μg/L	50	1.0U	1.0U	1.0U	1.0U
75-25-2	Bromoform	μg/L	50	1.0U	1.0U	1.0U	1.0U
74-83-9	Bromomethane (Methyl Bromide)	μg/L	5	1.0U	1.0U	1.0U	1.0U
75-15-0	Carbon disulfide	μg/L	-	1.0U	1.0U	1.0U	1.0U
56-23-5	Carbon tetrachloride	μg/L	5	1.0U	1.0U	1.0U	1.0U
108-90-7	Chlorobenzene	μg/L	5	1.0U	1.0U	1.0U	1.0U
75-00-3	Chloroethane	μg/L	5	1.0U	1.0U	1.0U	1.0U
67-66-3	Chloroform (Trichloromethane)	μg/L	7	1.0U	1.0U	1.0U	1.0U
74-87-3	Chloromethane (Methyl Chloride)	μg/L	-	1.0U	1.0U	1.0U	1.0U
124-48-1	Dibromochloromethane	μg/L	50	1.0U	1.0U	1.0U	1.0U
75-09-2	Dichloromethane (Methylene Chloride)	μg/L	5	1.0U	1.0U	1.0U	1.0U
100-41-4	Ethylbenzene	μg/L	5	1.0U	1.0U	1.0U	1.0U
100-42-5	Styrene	μg/L	5	1.0U	1.0U	1.0U	1.0U
79-01-4	Tetrachloroethene (PCE)	μg/L	5	1.0U	1.0U	1.0U	1.0U
108-88-3	Toluene	μg/L	5	1.0U	1.0U	1.0U	1.0U
79-01-6	Trichloroethene (TCE)	μg/L	5	1.0U	1.0U	1.0U	1.0U
75-01-4	Vinyl chloride	μg/L	2	1.0U	1.0U	1.0U	1.0U
10061-01-5	cis-1,3-Dichloropropene	μg/L	0.4	1.0U	1.0U	1.0U	1.0U
	Xylene - m,p	μg/L	5	2.0U	2.0U	2.0U	2.0U
95-47-6	Xylene - o	ug/L	5	1.0U	1.0U	1.0U	1.0U
10061-02-6	trans-1,3-Dichloropropene	μg/L	0.4	1.0U	1.0U	1.0U	1.0U
	Dissolved Gas						
	Methane	μg/L	-	1.0U	-	6.1	4.3
	Metals (Dissolved)						
	Iron (Dissolved)	μg/L	_	100U	_	100U	100U
	Manganese (Dissolved)	μg/L μg/L	-	10U	10	157	47
	,	μ ₈ / L		100	-	137	٦,
	Wet Chemistry						
	Nitrate (as N)	mg/L	-	1.0U	-	1.3	1.0U
	Nitrite (as N)	mg/L	-	1.0U	-	1.0U	1.0U
	Sulfate	mg/L	-	17.8	-	1120	754
		Notes:	-	Not analyzed			

Estimated concentration

Not present at or above the associated vaule Above 6 NYCRR Part 703.5 standards

Table 1
2016 Analytical Summary
Akzo Nobel Groundwater Monitoring
Akzo Nobel Functional Chemicals

			Location ID: Sample Name: Sample Date:	MW-5 R1605971-004 06/07/16	MW-5 R1612457-006, -018 11/23/16	MW-5 DUPE R1612457-014 11/23/16	MW-9 R1605971-011 06/07/16	MW-9 R1612457-007, -019 11/23/16
	Parameters	Units	6NYCRR Part 703.5 Action Limits					
CAS	Volatile Organic Compounds		Action Linits					
71-55-6	1,1,1-Trichloroethane (TCA)	μg/L	5	1.0U	1.0U	1.0U	6.4	4.5
79-34-5	1,1,2,2-Tetrachloroethane	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
79-00-5	1,1,2-Trichloroethane	μg/L	1	1.0U	1.0U	1.0U	1.0U	1.0U
75-34-3	1,1-Dichloroethane (1,1-DCA)	μg/L	5	1.0U	1.0U	1.0U	0.45 J	1.0U
75-35-4	1,1-Dichloroethene (1,1-DCE)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
107-06-2	1,2-Dichloroethane	μg/L	0.6	1.0U	1.0U	1.0U	1.0U	1.0U
540-59-0	1,2-Dichloroethene (total)	μg/L	5	2.0U	2.0U	2.0U	2.0U	2.0U
78-87-5	1,2-Dichloropropane	μg/L	1	1.0U	1.0U	1.0U	1.0U	1.0U
78-93-3	2-Butanone (Methyl Ethyl Ketone)	μg/L	50	5.0U	5.0U	5.0U	5.0U	5.0U
591-78-6	2-Hexanone	μg/L	50	5.0U	5.0U	5.0U	5.0U	5.0U
108-10-1	4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	μg/L	-	5.0U	5.0U	5.0U	5.0U	5.0U
67-64-1	Acetone	μg/L	50	34	13	13	5.0U	5.0U
71-43-2	Benzene	μg/L	1	1.0U	1.0U	1.0U	1.0U	1.0U
75-27-4	Bromodichloromethane	μg/L	50	1.0U	1.0U	1.0U	1.0U	1.0U
75-25-2	Bromoform	μg/L	50	1.0U	1.0U	1.0U	1.0U	1.0U
74-83-9	Bromomethane (Methyl Bromide)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
75-15-0	Carbon disulfide	μg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
56-23-5	Carbon tetrachloride	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
108-90-7	Chlorobenzene	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
75-00-3	Chloroethane	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
67-66-3	Chloroform (Trichloromethane)	μg/L	7	1.0U	1.0U	1.0U	1.0U	1.0U
74-87-3	Chloromethane (Methyl Chloride)	μg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
124-48-1	Dibromochloromethane	μg/L	50	1.0U	1.0U	1.0U	1.0U	1.0U
75-09-2	Dichloromethane (Methylene Chloride)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
100-41-4	Ethylbenzene	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
100-42-5	Styrene	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
79-01-4	Tetrachloroethene (PCE)	μg/L	5	1.0U	1.0U	1.0U	0.71 J	1.0U
108-88-3	Toluene	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
79-01-6	Trichloroethene (TCE)	μg/L	5	1.0U	1.0U	1.0U	0.36 J	1.0U
75-01-4	Vinyl chloride	μg/L	2	1.0U	1.0U	1.0U	1.0U	1.0U
10061-01-5	cis-1,3-Dichloropropene	μg/L	0.4	1.0U	1.0U	1.0U	1.0U	1.0U
179061-23-1	Xylene - m,p	μg/L	5	2.0U	2.0U	2.0U	2.0U	2.0U
95-47-6	Xylene - o	ug/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
10061-02-6	trans-1,3-Dichloropropene	μg/L	0.4	1.0U	1.0U	1.0U	1.0U	1.0U
	Dissolved Gas							
	Methane	μg/L	-	1.0U	1.0U	-	1.0U	1.0U
	Metals (Dissolved)							
	Iron (Dissolved)	μg/L	-	100U	100U	-	100U	100U
	Manganese (Dissolved)	μg/L	-	12	26	-	11	10U
	Wet Chemistry							
	Nitrate (as N)	mg/L	_	2.7	1.4	_	3.1	2.5
	Nitrite (as N)	mg/L	_	1.0U	1.0U	_	1.0U	1.0U
	Sulfate	mg/L	_	58.2	59.7	_	50.5	50.8

Notes: - Not analyzed

J Estimated concentration

U Not present at or above the associated vaule
Above 6 NYCRR Part 703.5 standards

Table 1
2016 Analytical Summary
Akzo Nobel Groundwater Monitoring
Akzo Nobel Functional Chemicals

			Location ID: Sample Name: Sample Date:	MW-9B R1605971-012 06/07/16	MW-9B R1612457-008, -020 11/23/16	MW-10 R1605971-013 06/07/16	MW-10 R1612457-009, -021 11/23/16	MW-10B R1605971-014 06/07/16
	Parameters	Units	6NYCRR Part 703.5 Action Limits					
CAS	Volatile Organic Compounds		Action Linits					
71-55-6	1,1,1-Trichloroethane (TCA)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
79-34-5	1,1,2,2-Tetrachloroethane	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
79-00-5	1,1,2-Trichloroethane	μg/L	1	1.0U	1.0U	1.0U	1.0U	1.0U
75-34-3	1,1-Dichloroethane (1,1-DCA)	μg/L	5	1.0U	1.0U	1.0U	1.0U	2.2
75-35-4	1,1-Dichloroethene (1,1-DCE)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
107-06-2	1,2-Dichloroethane	μg/L	0.6	1.0U	1.0U	1.0U	1.0U	1.0U
540-59-0	1,2-Dichloroethene (total)	μg/L	5	2.0U	2.0U	2.0U	2.0U	2.0U
78-87-5	1,2-Dichloropropane	μg/L	1	1.0U	1.0U	1.0U	1.0U	1.0U
78-93-3	2-Butanone (Methyl Ethyl Ketone)	μg/L	50	5.0U	5.0U	5.0U	5.0U	5.0U
591-78-6	2-Hexanone	μg/L	50	5.0U	5.0U	5.0U	5.0U	5.0U
108-10-1	4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	μg/L	-	5.0U	5.0U	5.0U	5.0U	5.0U
67-64-1	Acetone	μg/L	50	5.0U	5.0U	5.0U	5.0U	1.5 J
71-43-2	Benzene	μg/L	1	1.0U	1.0U	1.0U	1.0U	1.0U
75-27-4	Bromodichloromethane	μg/L	50	1.0U	1.0U	1.0U	1.0U	1.0U
75-25-2	Bromoform	μg/L	50	1.0U	1.0U	1.0U	1.0U	1.0U
74-83-9	Bromomethane (Methyl Bromide)	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
75-15-0	Carbon disulfide	μg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
56-23-5	Carbon tetrachloride	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
108-90-7	Chlorobenzene	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
75-00-3	Chloroethane	μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
67-66-3	Chloroform (Trichloromethane)	μg/L	7	1.0U	1.0U	1.0U	1.0U	1.0U
74-87-3	Chloromethane (Methyl Chloride)	μg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
124-48-1	Dibromochloromethane	μg/L	50	1.0U	1.0U	1.0U	1.0U	1.0U
75-09-2 100-41-4	Dichloromethane (Methylene Chloride)	μg/L	5 5	1.0U	1.0U	1.0U	1.0U	1.0U 1.0U
100-41-4	Ethylbenzene	μg/L	5 5	1.0U 1.0U	1.0U 1.0U	1.0U 1.0U	1.0U 1.0U	1.0U 1.0U
79-01-4	Styrene Tetrachloroethene (PCE)	μg/L μg/L	5 5	1.0U 1.0U	1.0U 1.0U	1.0U	1.0U 1.0U	1.0U
108-88-3	Toluene	μg/L μg/L	5	1.0U 1.0U	1.0U	1.0U	1.0U 1.0U	1.0U
79-01-6	Trichloroethene (TCE)	μg/L μg/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
75-01-0 75-01-4	Vinyl chloride	μg/L μg/L	2	1.0U	1.0U	1.0U	1.0U	1.0U
	cis-1,3-Dichloropropene	μg/L μg/L	0.4	1.0U	1.0U	1.0U	1.0U	1.0U
	Xylene - m,p	μg/L μg/L	5	2.0U	2.0U	2.0U	2.0U	2.0U
95-47-6	Xylene - o	μg/L ug/L	5	1.0U	1.0U	1.0U	1.0U	1.0U
	trans-1,3-Dichloropropene	μg/L	0.4	1.0U	1.0U	1.0U	1.0U	1.0U
10001 02 0	, , ,	P6/ -	0.1	2.00	1100	1.00	1.00	1.00
	Dissolved Gas Methane	μg/L	-	11	3.7	1.0U	1.0U	57
	Metals (Dissolved)							
	Iron (Dissolved)	μg/L	-	100U	100U	100U	100U	100U
	Manganese (Dissolved)	μg/L	-	24	40	141	114	66
	Wet Chemistry							
	Nitrate (as N)	mg/L	-	1.0U	1.0U	1.9	1.0U	1.0U
	Nitrite (as N)	mg/L	-	1.0U	1.0U	1.0U	1.0U	1.0U
	Sulfate	mg/L	-	642	640	53.6	59.0	87.5
		., -		-				

Notes: - Not analyzed

J Estimated concentration

U Not present at or above the associated vaule
Above 6 NYCRR Part 703.5 standards

Table 1
2016 Analytical Summary
Akzo Nobel Groundwater Monitoring
Akzo Nobel Functional Chemicals

			Location ID: Sample Name: Sample Date:	R1605971-009	MW-11 R1612457-010, -022 11/23/16	MW-11B R1605971-010 06/07/16	MW-11B R1612457-011, -023 11/23/16
	Parameters	Units	6NYCRR Part 703.5				
CAS	Volatile Organic Compounds		Action Limits				
71-55-6	1,1,1-Trichloroethane (TCA)	μg/L	5	1.0U	1.0U	1.0U	1.0U
79-34-5	1,1,2,2-Tetrachloroethane	μg/L	5	1.0U	1.0U	1.0U	1.0U
79-00-5	1,1,2-Trichloroethane	μg/L	1	1.0U	1.0U	1.0U	1.0U
75-34-3	1,1-Dichloroethane (1,1-DCA)	μg/L	5	1.8	1.6	1.0U	1.0U
75-35-4	1,1-Dichloroethene (1,1-DCE)	μg/L	5	1.0U	1.0U	1.0U	1.0U
107-06-2	1,2-Dichloroethane	μg/L	0.6	1.0U	1.0U	1.0U	1.0U
540-59-0	1,2-Dichloroethene (total)	μg/L	5	2.0U	2.0U	2.0U	2.0U
78-87-5	1,2-Dichloropropane	μg/L	1	1.0U	1.0U	1.0U	1.0U
78-93-3	2-Butanone (Methyl Ethyl Ketone)	μg/L	50	5.0U	5.0U	5.0U	5.0U
591-78-6	2-Hexanone	μg/L	50	5.0U	5.0U	5.0U	5.0U
108-10-1	4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	μg/L	-	5.0U	5.0U	5.0U	5.0U
67-64-1	Acetone	μg/L	50	5.0U	5.0U	5.0U	5.0U
71-43-2	Benzene	μg/L	1	1.0U	1.0U	1.0U	1.0U
75-27-4	Bromodichloromethane	μg/L	50	1.0U	1.0U	1.0U	1.0U
75-25-2	Bromoform	μg/L	50	1.0U	1.0U	1.0U	1.0U
74-83-9	Bromomethane (Methyl Bromide)	μg/L	5	1.0U	1.0U	1.0U	1.0U
75-15-0	Carbon disulfide	μg/L	-	1.0U	1.0U	1.0U	1.0U
56-23-5	Carbon tetrachloride	μg/L	5	1.0U	1.0U	1.0U	1.0U
108-90-7	Chlorobenzene	μg/L	5	1.0U	1.0U	1.0U	1.0U
75-00-3	Chloroethane	μg/L	5	1.0U	1.0U	1.0U	1.0U
67-66-3	Chloroform (Trichloromethane)	μg/L	7	1.0U	1.0U	1.0U	1.0U
74-87-3	Chloromethane (Methyl Chloride)	μg/L	-	1.0U	1.0U	1.0U	1.0U
124-48-1	Dibromochloromethane	μg/L	50	1.0U	1.0U	1.0U	1.0U
75-09-2	Dichloromethane (Methylene Chloride)	μg/L	5	1.0U	1.0U	1.0U	1.0U
100-41-4	Ethylbenzene	μg/L	5	1.0U	1.0U	1.0U	1.0U
100-42-5	Styrene	μg/L	5	1.0U	1.0U	1.0U	1.0U
79-01-4	Tetrachloroethene (PCE)	μg/L	5	1.0U	1.0U	1.0U	1.0U
108-88-3	Toluene	μg/L	5	1.0U	1.0U	1.0U	1.0U
79-01-6	Trichloroethene (TCE)	μg/L	5	1.0U	1.0U	1.0U	1.0U
75-01-4	Vinyl chloride	μg/L	2	1.0U	1.0U	1.0U	1.0U
	cis-1,3-Dichloropropene Xylene - m,p	μg/L	0.4 5	1.0U 2.0U	1.0U 2.0U	1.0U 2.0U	1.0U 2.0U
95-47-6	Xylene - o	μg/L ug/L	5	1.0U	1.0U	1.0U	2.00 1.0U
10061-02-6	trans-1,3-Dichloropropene	ug/L μg/L	0.4	1.0U	1.0U	1.0U	1.0U
10001 02 0		µ6/ ∟	0.4	1.00	1.00	1.00	1.00
	Dissolved Gas						
	Methane	μg/L	-	92	23	17	11
	Metals (Dissolved)						
	Iron (Dissolved)	μg/L	-	120	100U	100U	100U
	Manganese (Dissolved)	μg/L	-	121	168	16	29
	Wet Chemistry						
	Nitrate (as N)	mg/L	-	1.0U	1.0U	1.0U	1.0U
	Nitrite (as N)	mg/L	-	1.0U	1.0U	1.0U	1.0U
	Sulfate	mg/L	-	77.8	81.6	82.3	351
		<i>3,</i> -					
		Notes:	-	Not analyzed			

Estimated concentration

Not present at or above the associated vaule Above 6 NYCRR Part 703.5 standards

Table 2 2016 Groundwater Standard Exceedances Akzo Nobel Groundwater Monitoring Akzo Nobel Functional Chemicals

	6 NYCRR PART 703	MONITORING WELL LOCATION				
PARAMETER	STANDARD OR		N-2		V-9	
	[GUIDANCE	Second	Fourth	Second	Fourth	
	VALUE]	Quarter	Quarter	Quarter	Quarter	
1,1,1-Trichloroethane (TCA)	5 ug/L	-	-	6.4	-	
1,1-Dichloroethane (1,1-DCA)	0.6 ug/L	6.4	-	-	-	
Acetone	50 ug/L	-	-	1	-	
Benzene	1 ug/L	9.7	-	ı	-	
Chloroethane	5 ug/L	50	7.6	1	-	
Toluene	5 ug/L	55	-	-	-	
Xylene-m,p	5 ug/L	6.2	-	-	-	

Table 3 Well Physical Measurements Akzo Nobel Groundwater Monitoring Akzo Nobel Functional Chemicals

November 2016

Well ID	Well Type	Top of	Depth to	Water				Eh-Redox		Dissolved	Ferrous
		Casing	Water	Elevation	рН	Temp.	Conductivity	Potential	Turbidity	Oxygen	Iron
		(feet)	(feet BTOC)	(feet)	(units)	(°F)	(umhos/cm)	(Millivolts)	(NTU)	(mg/L)	(mg/L)
MW-1	Background - Overburden	328.51	14.19	314.32	7.40	48.4	620	-10.0	1.97	3.17	0.00
MW-2	Source Area - Overburden	327.58	11.68	315.90	7.10	54.8	950	-37.0	23.40	2.04	0.49
MW-3	Downgradient Boundary - Overburden	322.58	10.80	311.78	7.40	50.7	1120	-74.0	3.58	7.88	0.04
MW-4	Downgradient Boundary - Overburden	323.12	15.28	307.84	-	-	-	-	-	-	-
MW-4B	Downgradient Boundary - Bedrock	323.66	17.51	306.15	7.90	50.6	3000	-39.0	7.75	3.75	0.16
MW-5	Source Area - Overburden	324.68	8.92	315.76	7.30	51.4	1100	-29.0	4.74	2.82	0.00
MW-9	Downgradient - Overburden	325.03	9.27	315.76	7.40	53.1	870	-46.0	9.26	5.90	0.02
MW-9B	Downgradient - Bedrock	325.21	19.87	305.34	8.10	52.0	1740	-87.0	5.78	3.77	0.02
MW-10	Downgradient Offset - Overburden	328.39	12.66	315.73	7.10	-	1160	-16.0	8.03	2.81	0.00
MW-11	Downgradient Boundary - Overburden	325.76	15.54	310.22	7.30	49.6	1350	-51.0	6.62	2.24	0.18
MW-11B	Downgradient Boundary - Bedrock	325.32	19.57	305.75	8.20	50.7	1310	-84.0	3.07	4.45	0.00

Notes: BTOC: Below Top of Casing.

mg/L: Milligram/liter.

umohs/cm: Micro-ohms/centimeter.

NTU: Nephelometric Turbidity Unit.

Eh-Redox: Oxygen Release Potential

-: Not Sampled

Table 4
2016 Summary of MNA Indicator Parameter Data
Akzo Nobel Groundwater Monitoring
Akzo Nobel Functional Chemicals

	ORP	ORP	Average ORP	DO	DO	Average DO
Well ID	Millivolts	Millivolts	Millivolts	mg/L	mg/L	mg/L
	06/07/16	11/23/16	2016	06/07/16	11/23/16	2016
MW-1	23.0	-10.0	6.5	2.22	3.17	2.70
MW-1B	-124.0	SNR	-124.0	1.01	SNR	1.01
MW-2	-105.0	-37.0	-71.0	1.37	2.04	1.71
MW-3	37.0	-74.0	-18.5	6.10	7.88	6.99
MW-3B	36.0	SNR	36.0	2.44	SNR	2.44
MW-4	39.0	DRY	39.0	8.13	DRY	8.13
MW-4B	-10.0	-39.0	-24.5	2.93	3.75	3.34
MW-5	6.0	-29.0	-11.5	2.74	2.82	2.78
MW-9	38.0	-46.0	-4.0	6.78	5.90	6.34
MW-9B	13.0	-87.0	-37.0	1.79	3.77	2.78
MW-10	10.0	-16.0	-3.0	3.48	2.81	3.15
MW-10B	-47.0	SNR	-47.0	1.82	SNR	1.82
MW-11	29.0	-51.0	-11.0	1.37	2.24	1.81
MW-11B	14.0	-84.0	-35.0	6.05	4.45	5.25
Average	-2.9	-47.3	-25.1	3.45	3.88	3.66
Min	-124.0	-87.0	-124.0	1.01	2.04	1.01
Max	39.0	-10.0	39.0	8.13	7.88	8.13

Note: Highlighted cells indicate results consistent with reducing conditions in groundwater

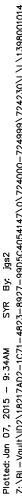
SNR = Sampling Not Required ND = Analyte Not Detected

Table 4
2016 Summary of MNA Indicator Parameter Data
Akzo Nobel Groundwater Monitoring
Akzo Nobel Functional Chemicals

	Dissolved Iron	ed Iron Dissolved Iron Average Dissolved		Dissolved Mn	Dissolved Mn	Average	
Well ID	ug/L	ug/L ug/L		ug/L	ug/L	ug/L	
	06/07/16	11/23/16	2016	06/07/16	11/23/16	2016	
MW-1	190	ND	190	234	130	182	
MW-1B	ND	SNR	NA	48	SNR	48	
MW-2	4650	520	2585	2080	2240	2160	
MW-3	ND	ND	NA	11	10	11	
MW-3B	ND	SNR	NA	58	SNR	58	
MW-4	ND	DRY	NA	ND	DRY	NA	
MW-4B	ND	ND	NA	157	47	102	
MW-5	ND	ND	NA	12	26	19	
MW-9	ND	ND	NA	11	ND	11	
MW-9B	ND	ND	NA	24	40	32	
MW-10	ND	ND	NA	141	114	128	
MW-10B	ND	SNR	NA	66	SNR	66	
MW-11	120	ND	120	121	168	145	
MW-11B	ND	ND	NA	16	29	23	
Average	1653	520	1087	229	312	270	
Min	120	520	120	11	10	10	
Max	4650	520	4650	2080	2240	2240	

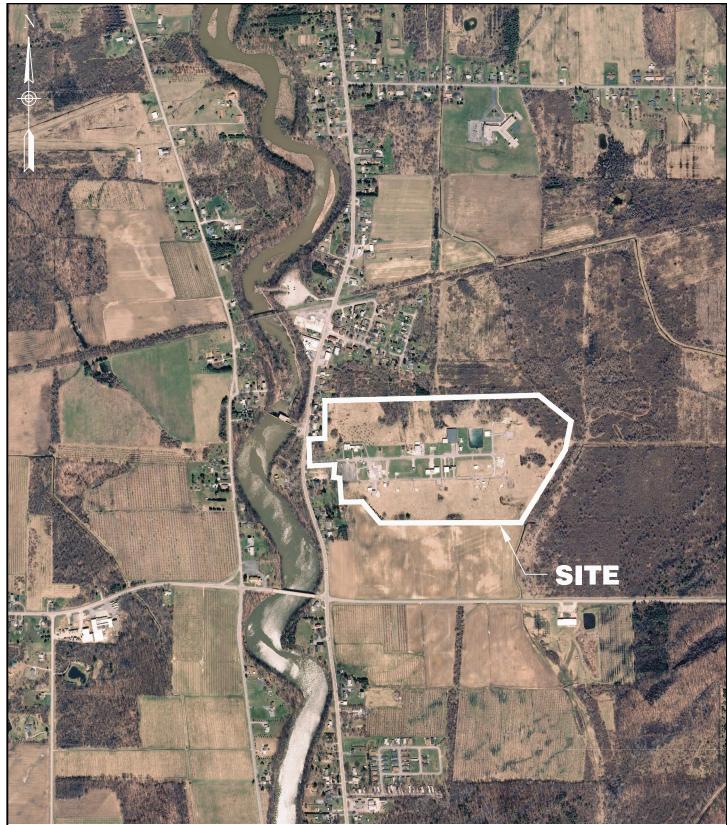
Note: Highlighted cells indicate results consistent with reducing conditions in groundwater

SNR = Sampling Not Required ND = Analyte Not Detected


Table 4
2016 Summary of MNA Indicator Parameter Data
Akzo Nobel Groundwater Monitoring
Akzo Nobel Functional Chemicals

	Sulfate	Sulfate	Average SO ₄	Nitrate	Nitrate	Average NO ₃	Methane	Methane	Average CH ₄
Well ID	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L
	06/07/16	11/23/16	<i>2016</i>	06/07/16	11/23/16	2016	06/07/16	11/23/16	2016
MW-1	46.6	34.2	40.4	ND	ND	NA	81.0	3.9	42.5
MW-1B	1030.0	SNR	1030.0	ND	SNR	NA	3.5	SNR	3.5
MW-2	26.5	193.0	109.8	ND	ND	NA	5300.0	2800.0	4050.0
MW-3	128.0	135.0	131.5	ND	ND	NA	ND	1.3	1.3
MW-3B	38.0	SNR	38.0	ND	SNR	NA	38.0	SNR	38.0
MW-4	17.8	DRY	17.8	ND	DRY	NA	ND	DRY	NA
MW-4B	1120.0	754.0	937.0	1.3	ND	1.3	6.1	4.3	5.2
MW-5	58.2	59.7	59.0	2.7	1.4	1.4	ND	ND	NA
MW-9	50.5	50.8	50.7	3.1	2.5	2.8	ND	ND	NA
MW-9B	642.0	640.0	641.0	ND	ND	NA	11.0	3.7	7.4
MW-10	53.6	59.0	56.3	1.9	ND	1.9	ND	ND	NA
MW-10B	87.5	SNR	87.5	ND	SNR	NA	57.0	SNR	57.0
MW-11	77.8	81.6	79.7	ND	ND	NA	92.0	23.0	57.5
MW-11B	82.3	351.0	216.7	ND	ND	NA	17.0	11.0	14.0
Average	247.1	235.8	241.4	2	2	2	622.8	406.7	514.8
Min	17.8	34.2	17.8	1.3	1.4	1.3	3.5	1.3	1.3
Max	1120.0	754.0	1120.0	3.1	2.5	3.1	5300.0	2800.0	5300.0

Note: Highlighted cells indicate results consistent with reducing conditions in groundwater


SNR = Sampling Not Required ND = Analyte Not Detected

Figures

Date

JANUARY 2015

SOURCE REFERENCE: NEW YORK STATE GIS CLEARINGHOUSE, 2008.

AS SHOWN

1000' 1000 1"=1000'

arton oguidice, D.P.C.

Scale

AKZO NOBEL POLYMER CHEMICALS LLC

Project Number 1398.001

Figure Number

SITE LOCATION MAP

TOWN OF BURT

NIAGARA COUNTY, NEW YORK

. Plotted: Jan 07, 2015 - 9.41AM SYR By. 19s2 Z:\BL-Vault\DZ\\8217AD2-1671-4823-8927-99D5C4054147\Q\\Z4000-724999\\Z4249\L\\\\398001014_0CT_201_FICS 2-3 (ID 724249),dwg

Plotted: Jon 07, 2015 – 9:41AM STR By: Jgs2 Z:\BL-Voult\D2\18217AD2-1671-4823-8927-99D5C4054147\0\724000-724989\724249\L\L\1398001014_0CT_201_FIGS 2-3 (ID 724249).dwg

Appendix A

Field Sampling Data Sheets/ Well Stabilization Sheets/ Instrument Calibration Records

FIELD SAMPLING DATA SHEET oguidice, P.C. Consulting Engineers Akzo Nobel Polymer Chemicals LLC **SAMPLE LOCATION:** SITE: 1398.001.016 Akzo Nobel Polymer Chemicals LLC JOB #: CLIENT: 7500 Temp: Weather Conditions: Groundwater Other (specify): **SAMPLE TYPE:** \square Surface Water Leachate Sediment WATER LEVEL DATA X Static Water Level (feet)*: 10.01 Measuring Point: Top of Riser Measured Well Depth (feet)*: Other (specify): BJM dr Date G/ 6 /16 Measured by: Well Casing Diameter (inches): Time: 11:50 Volume in Well Casing (gallons): *depth from measuring point **PURGING METHOD** Air Lift System Submersible Pump Equipment: Bailer Bladder Pump Foot Valve Peristaltic Pump Dedicated Non-dedicated Calculate Volume of Water to Be Purged (gallons): Volume of Water Purged (gallons): Did well purge dry? Yes No Did well recover? Recovery Time: No Yes SAMPLING METHOD Bailer Submersible Pump Air Lift System Equipment: Bladder Pump Foot Valve Peristaltic Pump Dedicated Non-dedicated Time: (0:45 61 712016 Sampled by: BJM/DMJ Date: **SAMPLING DATA** Sample Appearance Sediment: Color: Odor: Field Measured Parameters Sp. Conductivity (umhos/cm) pH (Standard Units) Eh-Redox Potential (mV) Temperature (F) C2.7 Turbidity (NTUs) 12.54 Dissolved Oxygen (mg/L) Ferrous Iron or Fe II (mg/L) Voc's, Nitrate, Nitrite, Sulfate, Methane, and Dissolved Iron and Magnesium Samples Collected (Number/Type) 17:70 6 17 12016 **ALS Labs** Time: Date: Samples Delivered to:

COMMENTS:

Inge- X

B&L Form No. 127

Rev. 4/14 (BJM)

Ogl Consulting Engi	uidice, P.C.			
SITE:	Akzo Nobel Polymer C		SAMPLE LOCATION:	MW-1B
CLIENT:	Akzo Nobel Polymer C		JOB #:	1398.004.015
Weather Conditions:	1,4		Temp:	75"
SAMPLE TYPE:	Groundwater Sediment	X	Surface Water Leachate	Other (specify):
WATER LEVEL DATA				
Static Water Level (feet)*	` <u> </u>	1	9-46	Measuring Point: Top of Riser
Measured Well Depth (fee	et)*:		47	Other (specify):
Well Casing Diameter (in			2"	Measured by: (BJM) or Time: 1/12 Date 6/6 /16
Volume in Well Casing (g	pallons): n measuring point		(0-10)	•
-				11.94
PURGING METHOD	Railer	[V]	Submoreible Dure	Air Lift System
Equipment:	Bailer	×	Submersible Pump Foot Valve	Peristaltic Pump
	Bladder Pump	片		
	Dedicated	X	Non-dedicated	
Calculate Volume of Water	er to Be Purged (gallons):	[8-30)_	
Volume of Water Purged		1) 60		
	Did well purge dry?	No F	— T	abla
	Did well purge dry r	No [Yes	Recovery Time: Ordenich
	DIE WON TOOUNGE!			
SAMPLING METHOD	D-9		College and the first	Air-1:4 Survivo
Equipment:	Bailer	벌	Submersible Pump	Air Lift System
	Bladder Pump		Foot Valve	Peristaltic Pump
	Dedicated	X	Non-dedicated	
Sampled by: BJM/DMJ		Time: 10:59	Date: <u>Ø 1 7 /2</u>	2016
SAMPLING DATA		·		
Sample Appearance			_	
Color:	Glight Huzz		Sediment:	acc Fing
Odor:	A	L	_	•
Field Measured Paramet	'ers			
pH (Standard Units)	4,/		Sp. Conductivity (umho	
Temperature (F)	12	523	Eh-Redox Potential (m)	
Turbidity (NTUs)	17.35		Dissolved Oxygen (mg/ Ferrous fron or Fe II (m	
Samples Collected (Num	nber/Type)	Voc's, Nitrate,		and Dissolved Iron and Magnesium
l ————		· · · · · · · · · · · · · · · · · · ·	17 a.	1 7
Samples Delivered to:	ALS Labs		Time: 17', 20	Date:
Samples Delivered to:	ALS Labs		Time: 17', 20	Date: b / 7 /2016

A STATE OF THE PARTY OF THE PAR	naice, F.C.					
Consulting Engin	Akzo Nobel Polymer Che	omicals II C	SAMPLE LOCATION:		MW-2 175	mod
SITE: CLIENT:	Akzo Nobel Polymer Che	emicais LLC	JOB #: Temp:	13 -⊋oʻ/	98.004.015	
Weather Conditions: SAMPLE TYPE:	Groundwater Street	X	Surface Water		(specify):	
Grant be ill a.	Sediment		Leachate			
WATER LEVEL DATA		4	45	Measuring Poi	nt: Top of Riser	X
Static Water Level (feet)* Measured Well Depth (feet)	et)*:		16.4	Other (specify)		
Well Casing Diameter (in	nches):	1	2"	Measured by: Time: 15 112		916 116
Volume in Well Casing (g	n measuring point			16:50		
•				13		
PURGING METHOD Equipment:	Bailer	X	Submersible Pump	Air Lif	t System	
_quipmom.	Bladder Pump		Foot Valve	Perist	altic Pump	
	Dedicated	X	Non-dedicated			
Colonial Values of West	tor to Be Burged (gallegs):	3.87				
Volume of Water Purged	ter to Be Purged (gallons):	4.00				
Volume of Water Furgeo	Did well purge dry?	No F		12		
	Did well recover?	No [Yes	Reco	very Time: <u>// V</u>	ernett
SAMPLING METHOD	Bailer	X	Submersible Pump	Air Li	ft System	
Equipment:	Bladder Pump	Ħ	Foot Valve	Peris	taltic Pump	
	Dedicated	$\overline{\mathbb{X}}$	Non-dedicated			
Sampled by: BJM/DMJ	<u> </u>	Гіте: <u>/4:5/</u>	Date: <u>億 / 又 /</u>	2016		
SAMPLING DATA						
Sample Appearance	heddist		Sediment:	Pines Me	senk	
Color:	Fetroleyn					
						
Field Measured Parame pH (Standard Units)	elers	7.4	Sp. Conductivity (umb		7600	
Temperature (F)		1.4	Eh-Redox Potential (n		1.37	7
Turbidity (NTUs)	57.2		Dissolved Oxygen (m Ferrous Iron or Fe II (Dr 73.30	D LINIT-
	29 h.74			-		
Samples Collected (Nu	mber/Type) 22 buts	Voc's, Nitrate	e, Nitrite, Sulfate, Methane	e, and Dissolved	Iron and Magnesiu	<u>m</u> ———
Samples Delivered to:	ALS Labs		Time: 17'.7	Date: 6	1 7 /2016	
COMMENTS:	M5/ M5/1)	· · · · · · · · · · · · · · · · · · ·			
				Rev. 4/14 (BJM)		

arton

artoni		11220 074	ENT ENTO DATA GITEET
Ogt	udice, P.C.		
	MN.		
Consulting Engi	neers		
SITE:	Akzo Nobel Polymer Chemicals LI		MW-3
CLIENT:	Akzo Nobel Polymer Chemicals LI		1398.004.015
Weather Conditions:	Cloudy	Temp:	650/2
SAMPLE TYPE:	Groundwater X	Surface Water	Other (specify):
	Sediment	Leachate	H 1
	Gearment	Pedoriare	
WATER LEVEL DATA			
Static Water Level (feet)*:		C329 5.28	Measuring Point: Top of Riser X
Measured Well Depth (fee		16.8	Other (specify):
Well Casing Diameter (in	ches):	2"	Measured by: BJM or
Volume in Well Casing (g		1.84	Time: 12:46 Date:6/6/16
*depth from	measuring point		12:52
PURGING METHOD			
Equipment:	Bailer	Submersible Pump	Air Lift System
	Bladder Pump	Foot Valve	Peristaltic Pump
	Dedicated X	Non-dedicated	
			_
Calculate Volume of Wate	er to Be Purged (gallons):	53	
Volume of Water Purged		75	
Totalite of Practic Funger			E71
	Did well purge dry? No	Yes	
	Did well recover? No	Yes	Recovery Time: Overnut
SAMPLING METHOD			
Equipment:	Bailer X	Submersible Pump	Air Lift System
=quipmont.		Foot Valve	Peristaltic Pump
	Bladder Pump		T entatable runp
	Dedicated X	Non-dedicated	
Sampled by: BJM/DMJ	Time: //	71 Date: 61212	2016_
	(C. 5.		
SAMPLING DATA			,
Sample Appearance	Clear	Sediment:	Non
Color:	None	Ocument	
Field Measured Paramete			
pH (Standard Units)	7.4	Sp. Conductivity (umho	
Temperature (F)	56.2	Eh-Redox Potential (m	
Turbidity (NTUs)	5.41	Dissolved Oxygen (mg Ferrous Iron or Fe II (n	
		r enous non or re ii (n	(J.U.S.)
Samples Collected (Num	ber/Type) & <u>Voc's, N</u>	itrate Nitrite Sulfate Methane	, and Dissolved Iron and Magnesium
Gamples Collected (Null)	2003, 14	and the families of the control of t	, and a secretor light and magnetism
		_ 11:-	1.0
Samples Delivered to:	ALS Labs	Time: <u>17`lo</u>	Date:6_ / 7 _/2016
COMMENTS:			
- Commercial Co.			
B&L Form No. 127		R	(ev. 4/14 (BJM)

arton

	idice, P.C.			
-	Akzo Nobel Polymer C		SAMPLE LOCATION: JOB #: Temp:	MW-3B 1398.004.015
	Groundwater Sediment	X	Surface Water Leachate	Other (specify):
WATER LEVEL DATA Static Water Level (feet)*: Measured Well Depth (feet) Well Casing Diameter (incl Volume in Well Casing (gal *depth from r	hes):	3	1.47 37.2 2" • 07	Measuring Point: Top of Riser Other (specify): Measured by: Time: (2:30 BJM or Date(0) 6 /16
	Bailer Bladder Pump Dedicated	× × ×	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump
	•	12-25 No (x	Yes	Recovery Time: Overnings
SAMPLING METHOD Equipment:	Bailer Bladder Pump Dedicated	X X X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump
Sampled by: BJM/DMJ		Time: 12:00	Date: 61712	2016
SAMPLING DATA Sample Appearance Color: Odor:	lear to 5 light	14624	Sediment:	ue Fine
Field Measured Parameter pH (Standard Units) Temperature (F) Turbidity (NTUs)	\$ \$29 9.0 15-2	52.5	Sp. Conductivity (umhor Eh-Redox Potential (m Dissolved Oxygen (mg Ferrous Iron or Fe II (m	V) 3,6,0 /L) 2,44 ng/L) 0-00
Samples Collected (Number		Voc's, Nitrate,		and Dissolved Iron and Magnesium Date: 6 / 7 /2016
Samples Delivered to: COMMENTS:	ALS Labs		Time: 17 (0	Date: 0 / C /2016

og og	uidice, P.C.	÷	
Consulting Engi	ineers		
SITE: CLIENT: Weather Conditions:	Akzo Nobel Polymer Chemicals Akzo Nobel Polymer Chemicals		MW-4 1398.004.015 0507
SAMPLE TYPE:	Groundwater X Sediment	Surface Water Leachate	Other (specify):
WATER COLET BATA			
WATER LEVEL DATA Static Water Level (feet)*		4.10	Measuring Point: Top of Riser
Measured Well Depth (fe		16	Other (specify):
Well Casing Diameter (in	nches):	2"	Measured by: BJM or
Volume in Well Casing (g		1.10	Time: 13 /4 Date 6/6 /16
*depth from	n measuring point		13:44
PURGING METHOD			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Equipment:	Bailer	Submersible Pump	Air Lift System
	Bladder Pump	Foot Valve	Peristaltic Pump
	Dedicated X	Non-dedicated	
	2	91 11,1	
Calculate Volume of Wat	er to Be Purged (gallons):	3/2 1/2 buter	
Volume of Water Purged	(gallons): <u>3.</u>	.06	
	Did well purge dry? No	Yes	
	Did well recover? No	Yes	Recovery Time: pressure
SAMPLING METHOD	s.,	Cubananible Duma	Air-Life Contam
Equipment:	Bailer X	Submersible Pump	Air Lift System
:	Bladder Pump	Foot Valve	Peristaltic Pump
	Dedicated X	Non-dedicated	□
Sampled by: BJM/DMJ	Time: <u>t</u> 2	530 Date: 6171	2016_
SAMPLING DATA			
Sample Appearance	(1	Sediment:	Clean Au
Color:	Clear	Sediment.	CIZEMITO
Field Measured Paramet			
pH (Standard Units)	7.4	Sp. Conductivity (umh Eh-Redox Potential (m	
Temperature (F) Turbidity (NTUs)	3.00	Dissolved Oxygen (mg	a/L) Q=(3
Tarbidity (14103)	7.00	Ferrous Iron or Fe II (r	
	7 - 14-		
Samples Collected (Num	nber/Type) 8 htth <u>Voc's,</u>	Nitrate, Nitrite, Sulfate, Methane	and Dissolved Iron and Magnesium
Samples Delivered to:	ALS Labs	Time: 17:10	Date: 6 /7 /2016
COMMENTS:			
B&L Form No. 127			Rev. 4/14 (BJM)

	ndice, P.C.						
Consulting Engin	neers						
SITE:	Akzo Nobel Polymer Ch Akzo Nobel Polymer Ch		SAMPLE LOCATION: JOB #:	MW-4B 1398.004.015			
CLIENT: Weather Conditions:	AKZO NODEI POlymer Ch	emicais LLC	Temp:	(5° /\			
SAMPLE TYPE:	Groundwater	X	Surface Water	Other (specify):			
	Sediment		Leachate				
WATER LEVEL DATA Static Water Level (feet)*:		1	1,61	Measuring Point: Top of Riser X			
Measured Well Depth (fee	et)*:		1Ò.9	Other (specify):			
Well Casing Diameter (in Volume in Well Casing (g.		3,	0 9	Measured by: BJM or Time: 15:15 Date() (116			
	measuring point						
PURGING METHOD Equipment:	Bailer	X	Submersible Pump	Air Lift System			
Equipmonii	Bladder Pump		Foot Valve	Peristaltic Pump			
	Dedicated	X	Non-dedicated				
l .	Calculate Volume of Water to Be Purged (gallons):						
Volume of Water Purged	-	<u> 3.5 </u>	-				
	Did well purge dry? Did well recover?	No L	Yes Yes	Recovery Time: Why with			
SAMPLING METHOD							
Equipment:	Bailer	X	Submersible Pump	Air Lift System			
	Bladder Pump Dedicated	□ X	Foot Valve Non-dedicated	Peristaltic Pump			
Completely BIMDH		ime: 12.98	Date: (1/7/12	L! 016			
Sampled by: BJM/DMJ SAMPLING DATA	<u></u> '	III.6. <u>[[] </u>	Date.	<u> </u>			
Sample Appearance			0-4				
Color:	New		Sediment: <i>\vert_o</i>				
Field Measured Paramete	ers						
pH (Standard Units) Temperature (F)	51	7-8	Sp. Conductivity (umhor Eh-Redox Potential (m)	V) -10.0			
Turbidity (NTUs)	2.34		Dissolved Oxygen (mg. Ferrous Iron or Fe II (m	(L) (293 293_			
	1114		<u> </u>				
Samples Collected (Num.	ber/Type) 4	Voc's, Nitrate,	Nitrite, Sulfate, Methane,	and Dissolved Iron and Magnesium			
Samples Delivered to:	ALS Labs		Time: 17:10-6/7/	Date: 6 / 7 /2016			
COMMENTS:							
	1			ev. 4/14 (BJM)			
B&L Form No. 127			R	er ar ia (Guill)			

arton	l		FIELD SAI	MPLING	G DATA SHEET	
	idice, P.C.					
SITE:	Akzo Nobel Polymer 0	Chemicals LLC	SAMPLE LOCATION:		MW-5	İ
CLIENT:	Akzo Nobel Polymer C		JOB #:		1398.004.015	
Weather Conditions:	p.C.		Temp:		7501	
SAMPLE TYPE:	Groundwater	X	Surface Water		Other (specify):	
***	Sediment	<u> </u>	Leachate	<u> </u>		
WATER LEVEL DATA Static Water Level (feet)*		-	-196 58	Measuri	ing Point: Top of Rise	, X
Measured Well Depth (fe	et)*:		15	Other (s	specify):	<u> </u>
Well Casing Diameter (in Volume in Well Casing (g		(, 5	2"	Measur Time: /		IM or ate(
	n measuring point			'		
PURGING METHOD		_				
Equipment:	Bailer	X	Submersible Pump		Air Lift System	닏ㅣ
	Bladder Pump	닖	Foot Valve	님	Peristaltic Pump	
	Dedicated	X	Non-dedicated			
Calculate Volume of Wat	er to Be Purged (gallons):		_			
Volume of Water Purged	(gallons):	4,75	<u>. </u>			
	Did well purge dry?	No 🔀	Yes	\square	_	
	Did well recover?	No L	Yes	$\overline{\boxtimes}$	Recovery Time: <u>O</u>	veny
SAMPLING METHOD	D-11	<u> </u>	Subsectible Dump		Air Lift System	
Equipment:	Bailer Bladder Pump	씜	Submersible Pump Foot Valve	H	Peristaltic Pump	_ H
	Dedicated	K	Non-dedicated		Torrotation arrip	50 L
Sampled by: BJM/DMJ		Time: 11, 21	Date: 6 1 7 12	2016		*
SAMPLING DATA		- 1			3	
Sample Appearance	<i>(</i> 1 .		7			
Color:	Clear		Sediment:/	MAKE		
			_			
Field Measured Paramet pH (Standard Units)	ers ープシ		Sp. Conductivity (umbo	os/cm)	970.	0
Temperature (F)		56.6	Eh-Redox Potential (m		6.0	
Turbidity (NTUs)	10.11	··	Dissolved Oxygen (mg Ferrous Iron or Fe II (m		0.02	<u> </u>
	nber/Type) $\dot{\beta}$					•
Samples Collected (Nun	nber/Type)	Voc's, Nitrate,	Nitrite, Sulfate, Methane,	and Disso	oived Iron and Magnes	<u>sium</u>
Samples Delivered to:	ALS Labs		Time: 17.10	Date:	6 17 12016	
COMMENTS:						
	<u> </u>			4/0 - ///		
B&L Form No. 12/			R	ev. 4/14 (₩JI	VIJ	

	idice, P.C.						
Consulting Engi	neers						
SITE: CLIENT:	Akzo Nobel Polymer C		SAMPLE LOCATION: JOB #:		MW-9 1398.004.015		-
Weather Conditions:	71120710001101711101		Temp:				_
SAMPLE TYPE:	Groundwater Sediment	X	Surface Water Leachate		Other (specify):		-
WATER LEVEL DATA							
WATER LEVEL DATA Static Water Level (feet)*:		1	6.52	Measur	ing Point: Top of Ri	ser	X
Measured Well Depth (fee	et)*:		17.4	Other (s	specify):	£	_
Well Casing Diameter (in Volume in Well Casing (g			1, 1 4	Measur Time:	ed by: 14:58	Date(i)/(a	/16
	measuring point						
PURGING METHOD	•			1	15:04		
Equipment:	Bailer	X	Submersible Pump		Air Lift System		
	Bladder Pump		Foot Valve		Peristaltic Pump		
	Dedicated	$\overline{\mathbf{x}}$	Non-dedicated				
Only data Malanca of Mak	t- D- Durod (celless):	5:22					
Calculate Volume of Water Volume of Water Purged		5.25	_				
volume of water Purgeu	2.5						
	Did well purge dry?	No [Yes van	닍	Basevon, Timoi	Mrs.	
	Did well recover?	No L	Yes	لعر	Recovery Time:	000 inst	#
SAMPLING METHOD					Al- Life Contain		
Equipment:	Bailer	Ä	Submersible Pump	님	Air Lift System Peristaltic Pump		
	Bladder Pump Dedicated	X	Foot Valve Non-dedicated	H	renstanic rump		ן ט
	Dedicated			L			
Sampled by: BJM/DMJ		Time: 13-38	Date: 61 <u>Z12</u>	2016			
SAMPLING DATA							
Sample Appearance Color:	Clear		Sediment:	Bur			
Odor:	None			V ENE		-	
Field Measured Paramet		55.53					
pH (Standard Units)	7->		Sp. Conductivity (umbo	os/cm)	820.0		
Temperature (F)		59.3	Eh-Redox Potential (m'	V)		580	
Turbidity (NTUs)	1.69		Dissolved Oxygen (mg. Ferrous Iron or Fe II (m		0-02		
	~ .c d+		n enous non or rem (II	·g/도/	U-02		
Samples Collected (Num	nber/Type) 8 H	7 Voc's, Nitrate,	Nitrite, Sulfate, Methane,	and Disse	olved Iron and Mag	<u>nesium</u>	
					. 00%		_
Samples Delivered to:	ALS Labs		Time: 17 (0	Date:	6/7/2016	-	
COMMENTS:		·					
B&L Form No. 12/				ev. 4/14 (BJI	VI)		
							

B&L Form No. 12/__

arton		FIELD SAI	WIPLING DATA SHEET
Consulting Engin	neers		
SITE:	Akzo Nobel Polymer Chemicals LL	.C SAMPLE LOCATION:	MW-9B
CLIENT:	Akzo Nobel Polymer Chemicals LL		1398.004.015
Weather Conditions:	f-/-	Temp:	7001
SAMPLE TYPE:	Groundwater X	Surface Water	Other (specify):
SAWFEL TIFE.	Sediment	Leachate	- I
	Sediment	Coscilato	
WATER LEVEL DATA			
Static Water Level (feet)*:		23.72	Measuring Point: Top of Riser X
Measured Well Depth (fee		42.2	Other (specify): Measured by: BJM or
Well Casing Diameter (in Volume in Well Casing (ga		2.96	Time: 14:44 Date 6/6, /16
	measuring point	2.3.0	11110. 17.44
•	Thousaning point		
PURGING METHOD	e	Cultura silata Duran	Aird iff Contam
Equipment:	Bailer	Submersible Pump	Air Lift System
	Bladder Pump	Foot Valve	Peristaltic Pump
	Dedicated X	Non-dedicated	
	91	7-	
Calculate Volume of Water			Ì
Volume of Water Purged	(gallons):	00	
	Did well purge dry? No	Yes	\boxtimes
	Did well recover? No	Yes	Recovery Time: Nothing
			-
SAMPLING METHOD	Bailer	Submersible Pump	Air Lift System
Equipment:		•	Peristaltic Pump
	Bladder Pump	Foot Valve	Penstanic Pump
	Dedicated X	Non-dedicated	
Sampled by: BJM/DMJ	Time: 12.4	6 Date: 617 12	2016
SAMPLING DATA			
Sample Appearance		_	
Color:	clear	Sediment:	Truck Form
Odor:	NonL		
Field Measured Paramete			
pH (Standard Units)	8-1	Sp. Conductivity (umbo	os/cm) 9.30.0
Temperature (F)	54.8	Eh-Redox Potential (m	
Turbidity (NTUs)	4. 87	Dissolved Oxygen (mg	
		Ferrous Iron or Fe II (n	
	01-4-		
Samples Collected (Num	ber/Type) & Folks Voc's, Ni	trate, Nitrite, Sulfate, Methane	and Dissolved Iron and Magnesium
Samples Delivered to:	ALS Labs	Time: <u></u>	Date: 6 / 7/2016
COMMENTS:			
JOHNIEN 15.			
B&L Form No. 127		R	ev. 4/14 (BJM)

Consulting Engi	neers			
SITE:	Akzo Nobel Polymer Cher	micals LLC	SAMPLE LOCATION:	MW-10
CLIENT:	Akzo Nobel Polymer Che		JOB #:	1398.004.015
Weather Conditions:	Guny		Temp:	720K
SAMPLE TYPE:	Groundwater	X	Surface Water	Other (specify):
	Sediment		Leachate	
WATER LEVEL DATA				
Static Water Level (feet)*			9.24	Measuring Point: Top of Riser About (angelish):
Measured Well Depth (fe Well Casing Diameter (in			17.6 2"	Other (specify): Measured by: BJM 9r
Volume in Well Casing (c			1.34	Time: 14:18 Date(0/6 /16
	n measuring point			17110
PURGING METHOD				
Equipment:	Bailer	X	Submersible Pump	Air Lift System
-4	Bladder Pump	Ħ	Foot Valve	Peristaltic Pump
	Dedicated	X	Non-dedicated	
Calculate Volume of Wal	er to Be Purged (gallons):	4.01		
Volume of Water Purged		4.25	<u> </u>	
	Did well purge dry?	No 5	Yes	_ \
	Did well recover?	No [Yes	Recovery Time: Olivers
	Did Weil Tecover:			
SAMPLING METHOD	D. 11	[[]	Cube oraible Dume	Air Lift System
Equipment:	Bailer	×	Submersible Pump	
	Bladder Pump		Foot Valve	Peristaltic Pump
	Dedicated	X	Non-dedicated	
Sampled by: BJM/DMJ	Tir	ne: <u>13:59</u>	Date: 8 / 7 /2	2016
SAMPLING DATA			•	
Sample Appearance	- 1		T.	race Finas
Color:	Cleur		Sediment:	ne / 1/1/25
Odor:	1/2-2		_	
Field Measured Parame				(m) (Ma ()
pH (Standard Units)	7.1	1 7	Sp. Conductivity (umhore Eh-Redox Potential (m	
Temperature (F) Turbidity (NTUs)	<i>(i, v</i>)	27	Dissolved Oxygen (mg	
Turbidity (14105)	<u> </u>		Ferrous Iron or Fe II (n	
	A 1 .1.	_		
Samples Collected (Nur	mber/Type) 8 latts	Voc's, Nitrate	e, Nitrite, Sulfate, Methane	, and Dissolved Iron and Magnesium
			10	
Samples Delivered to:	ALS Labs		Time: 17:70	Date: 6 / 7 /2016
COMMENTS:				
JOHIII 21110				
HAL BOOM NO. 37/		7.6		ev. 4/14 (BJM)
B&L Form No. 127				

	idice, P.C.				
Consulting Engineral SITE: CLIENT: Weather Conditions:	Akzo Nobel Polymer C Akzo Nobel Polymer C		SAMPLE LOCATION: JOB #: Temp:	MW-10B 1398.004.015 7.6°F	
SAMPLE TYPE:	Groundwater Sediment		Surface Water Leachate	Other (specify):	
WATER LEVEL DATA Static Water Level (feet)* Measured Well Depth (feet)* Well Casing Diameter (in Volume in Well Casing (get)*	et)*: iches):		2.1.22 46.6 2" 4 116	Measuring Point: Top of Riser Other (specify): Measured by: Time: 14:0 7 BJM/or Bate(1)	/16
PURGING METHOD Equipment:	Bailer Bladder Pump Dedicated	X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump	
Calculate Volume of Wat Volume of Water Purged	er to Be Purged (gallons): (gallons): Did well purge dry? Did well recover?	2.18 <u>(0.5</u> No [No [Yes Yes	Recovery Time: Whorugh	es
SAMPLING METHOD Equipment:	Bailer Bladder Pump Dedicated	X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump	
Sampled by: BJM/DMJ		Time: 14.04	Date: 61712	2016	
SAMPLING DATA Sample Appearance Color: Odor:	Clear		Sediment:	ines forsent	
Field Measured Parameter pH (Standard Units) Temperature (F) Turbidity (NTUs) Samples Collected (Num	7.6 15.6	Voc's, Nitrate	Sp. Conductivity (umhor Eh-Redox Potential (m Dissolved Oxygen (mg Ferrous Iron or Fe II (n Nitrite, Sulfate, Methane	V) -47.0 /L) 1.82	
Samples Delivered to:	ALS Labs		Time: 17:10	Date: 6 / 7 /2016	
COMMENTS:					
B&L Form No. 127			R	ev. 4/14 (BJM)	

Consulting Engin	Akzo Nobel Polymer Chemicals LLC Akzo Nobel Polymer Chemicals LLC	SAMPLE LOCATION: JOB #: Temp:	MW-11 1398.004.015
Weather Conditions: SAMPLE TYPE:	Groundwater X Sediment	Surface Water Leachate	Other (specify):
WATER LEVEL DATA Static Water Level (feet)*: Measured Well Depth (feet) Well Casing Diameter (in Volume in Well Casing (gate) *depth from	et)*: ches):	2. 43 21.1' 2" . 7 9	Measuring Point: Top of Riser Other (specify): Measured by: Time: 13:44 Date(516, 116)
PURGING METHOD Equipment:	Bailer X Bladder Pump Dedicated X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump
Calculate Volume of Wate Volume of Water Purged	# S	Yes Yes	Recovery Time: Overne
SAMPLING METHOD Equipment:	Bailer X Bladder Pump X Dedicated X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump
Sampled by: BJM/DMJ SAMPLING DATA Sample Appearance Color: Odor: Field Measured Paramete	Slight had Haze	Date: <u>() </u>	nes Presax
pH (Standard Units) Temperature (F) Turbidity (NTUs) Samples Collected (Num	7.3 51.9	Sp. Conductivity (umh Eh-Redox Potential (m Dissolved Oxygen (mg Ferrous Iron or Fe II (i	iV) 29.0 g/L) 1.37
Samples Delivered to:	ALS Labs	Time: 17:10	Date: 6 / 7 /2016
COMMENTS:			

Consulting	ton oguidice, P.C.
Constituing	Diffuecta

Ogu Consulting Engi	nidice, P.C.		
SITE: CLIENT:	Akzo Nobel Polymer Chemicals LLC Akzo Nobel Polymer Chemicals LLC	SAMPLE LOCATION: JOB #:	MW-11B 1398.004.015
Weather Conditions: SAMPLE TYPE:	Groundwater X Sediment	Temp: Surface Water Leachate	Other (specify):
WATER LEVEL DATA			
Static Water Level (feet)*: Measured Well Depth (feet Well Casing Diameter (in Volume in Well Casing (g	et)*: ches):	52.38 2" 1.65	Measuring Point: Top of Riser Other (specify): Measured by: Time: 13.33 Date 6/6/16
PURGING METHOD Equipment:	Bailer X Bladder Pump	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump
Calculate Volume of Wate Volume of Water Purged		Yes Yes	Recovery Time: Overnul
SAMPLING METHOD Equipment:	Bailer X Bladder Pump Dedicated X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump
Sampled by: BJM/DMJ	Time: 13 67	Date: 6 / 7 /2	2016
SAMPLING DATA Sample Appearance Color: Odor:	Clue	Sediment: No	<u>// (</u>
Field Measured Paramete pH (Standard Units) Temperature (F) Turbidity (NTUs)	9.1 51.4	Sp. Conductivity (umho Eh-Redox Potential (m) Dissolved Oxygen (mg/ Ferrous Iron or Fe II (m	V) (9.05
Samples Collected (Num	ber/Type) g / W Voc's, Nitrate	Nitrite, Sulfate, Methane,	and Dissolved Iron and Magnesium
Samples Delivered to:	ALS Labs	Time: <u>17'.26</u>	Date: 6 / 7 /2016
COMMENTS:			
B&L Form No. 127		Re	v. 4/14 (BJM)

Engineers • Environmental Scientists • Planners • Landscape Architects

Record of Calibration

Project No:	1348	AKzo	Date:	4/7	1/160
Calibrated By:	ВЈМ		Time:	178:25	- 0830
-					
pH Instrument Mode	el: pH Testr 10		· · · · · · · · · · · · · · · · · · ·		
Standard Solut	Calibration Reading		Acceptable R	ange	
pH 4:	ü		(+/- 1.0 pH, pH 3	3.0 - 5.0)	Passy Fail
pH 7:	7		(+/- 1.5 pH, pH 5		
pH 10:	10		(+/- 1.0 pH, ph 9.	.0 - 11.0)	
Sp.Conductivity					
Instrument Model: E	C Testr 11				
Standard Solu	tion Calibration Reading		Acceptable R	ange	. 0
1413 uS	14/0.0		(+/- 1.0 % Error = 1	1399-1427)	Pass) Fail
			•	·	
ORP Instrument Mo	·	·· <u> </u>			
Standard Solu			Acceptable R	_	
240 mV	253.0		(+/- 20% at 25°C, 22	20 - 260 mV)	Pass/Fail
or YSI Zobell	Solo		10-15°C = 250.5	5-244 Mv	
101200611			,0 ,0 0 100.0		
	li f allama 2000ahii				
	: LaMotte 2020we/wi			.	
Standard Solu	ution Calibration Reading	l	Acceptable F		Pass / Fail
0 NTU	174		Blank with 0.6 (+/- 0.05 % Error, 0		Pass / Fall
1.0 NTU 10 NTU	9.72		(+/- 2.0 % Error, 3		
,01170			() =10 10 =1011	,	
Comments					
Comments:					
			<u> </u>		
	<u> </u>		<u> </u>	<u></u>	
			<u> </u>		

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, LLC.

1057 East Henrietta Rd. Rochester NY 14623 Phone: 585-424-2140

Pine Environmental Services, Inc.

Instrument ID 15660

Description HACH DR890 Colorimeter **Calibrated** 6/2/2016 11:49:51AM

Manufacturer HACH

Model Number DR/890

Serial Number/Lot 100690C78423

Number

Location Rochester, NY

Department

State Certified

Status Pass

Temp °C 52.8

Humidity % 23.00

Calibration Specifications

Group# 1

Group Name DR/Check ABS Standards

Test Performed: Yes

As Found Result: Pass

As Left Result: Pass

Test Instruments Used During the Calibration

(As Of Cal Entry Date)

Test Standard ID Description

Manufacturer

Model Number

Serial Number / Lot Number Next Cal Date /
Last Cal Date / Expiration Date

Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Chris Dekdebrun

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, LLC. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, LLC.

1057 East Henrietta Rd. Rochester NY 14623 Phone: 585-424-2140

Pine Environmental Services, Inc.

Instrument ID 7275

Description YSI 550A

Calibrated 6/2/2016 9:25:23AM

Manufacturer YSI

Model Number 550A

Serial Number/ Lot 05H212AA

Number

Location Rochester, NY

Department

State Certified

Status Pass

Temp °C 23.7

Humidity % 56

Calibration Specifications

Group # 1

Group Name Disolved Oxygen Span

Stated Accy Pct of Reading

Range Acc % 0.0000

Reading Acc % 3.0000

Plus/Minus 0.00

Nom In Val / In Val 100.00 / 100.00

In Type

Out Val 100.00

Manufacturer

Out Type

Model Number

Fnd As 100.00

Lft As 100.00 Dev% 0.00%

(As Of Cal Entry Date)

Pass/Fail Pass

Test Instruments Used During the Calibration

Serial Number / Lot Number

Next Cal Date / Last Cal Date/ Expiration Date

Opened Date

Notes about this calibration

Test Standard ID Description

Calibration Result Calibration Successful Who Calibrated KEVIN BARR

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, LLC. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

			<u> </u>	
arton			FIELD SAM	IPLING DATA SHEET
ogu	idice, P.C.			
Consulting Engi	neers			(partial)
		ieolo I I C	SAMPLE LOCATION:	MW-1 Dupe-X
SITE: CLIENT:	Akzo Nobel Polymer Chem Akzo Nobel Polymer Chem		JOB #:	1398.001.016
Weather Conditions:	Cloudy		Temp:	<u>ure</u>
SAMPLE TYPE:	Groundwater	X	Surface Water	Other (specify):
	Sediment		Leachate	
WATER LEVEL DATA Static Water Level (feet)*		1 1:	1.14	Measuring Point: Top of Riser X
Measured Well Depth (fee	et)*:		18	Other (specify):
Well Casing Diameter (in Volume in Well Casing (g			2"	Measured by: (BJM)or Time: /0:5つ Date:#/ 22 /16
	measuring point	<u>, </u>		70.7 2
PURGING METHOD		_		
Equipment:	Bailer	×	Submersible Pump Foot Valve	Air Lift System Peristaltic Pump
	Bladder Pump Dedicated	K	Non-dedicated	Teristatic Fully
		[.63		
Volume of Water Purged	er to Be Purged (gallons):	1.00	-	
volume of vvaler Furged	Did well purge dry?	No 🔽	- Yes	
	Did well purge dry? Did well recover?	No 1	Yes	Recovery Time: Why
SAMPLING METHOD				
Equipment:	Bailer	X	Submersible Pump	Air Lift System
	Bladder Pump		Foot Valve	Peristaltic Pump
	Dedicated	X : 1 (f	Non-dedicated	
Sampled by: BJM/DMJ	Time	e: 10 - 34	Date: (1 / 25/20	<u>016 </u>
SAMPLING DATA Sample Appearance				44
Color:	Clear		_Sediment:	Nonz
Odor:	No.z.		_	
Field Measured Paramet pH (Standard Units)	ers 7. Y	<u> </u>	Sp. Conductivity (umho	s/cm)
Temperature (F)		49.4	Eh-Redox Potential (m)	10.0
Turbidity (NTUs)	1.97		Dissolved Oxygen (mg/ Ferrous Iron or Fe II (m	
Security Collected (Alice	-h/T:1	/aala Aliteata	Nitrito Culfate Mothano	and Dissolved Iron and Magnesium
Samples Collected (Num	<u>10er/ i ype)</u>	vocs, Nitrate,	Nitrite, Sunate, Methane,	and Dissolved from and Wadnesidin
Samples Delivered to:	ALS Labs		Time: 16100	
	10c's@ 10:57	on 11/2	elis / Pry	e-x for k>K retter
B&L Form No. 12/	Δ			
Part	ink luje-x	mh	1 Fish	our rew,
1 20 1		040 6	7 \ 300.	vehin vietus v - NOz Noz Soy

arton		TILLED SA	WIF EING DATA SHEET
ogu	idice, P.C.		
Consulting Engi	neers		
SITE:	Akzo Nobel Polymer Chemicals LLC	-	MW-2
CLIENT: Weather Conditions:	Akzo Nobel Polymer Chemicals LLC	_ JOB #: _ Temp:	1398.004.015 4 5 A
SAMPLE TYPE:	Groundwater	Surface Water	Other (specify):
	Sediment	Leachate	
WATER LEVEL DATA		.1.10	
Static Water Level (feet)*: Measured Well Depth (feet)		16.4	Measuring Point: Top of Riser Other (specify):
Well Casing Diameter (in Volume in Well Casing (ga		0.76	Measured by: (BJM)or Time: 4! 40 Date: / 22 /16
	measuring point		17-10
PURGING METHOD Equipment:	Bailer	Submersible Pump	Air Lift System
Equipment.	Bladder Pump	Foot Valve	Peristaltic Pump
	Dedicated X	Non-dedicated	
Calculate Volume of Wate	er to Be Purged (gallons): 2,2	<u>.7</u>	
Volume of Water Purged		<u> </u>	- 1/2 bailer Bechange to 25
	Did well purge dry? No Did well recover? No	Yes Yes	Recovery Time: Overnige to 2.5%
SAMPLING METHOD	Did Wolf Toddyof.		The state of the s
Equipment:	Bailer	Submersible Pump	Air Lift System
	Bladder Pump Dedicated X	Foot Valve Non-dedicated	Peristaltic Pump
Secreted by BIMDMI	Dedicated [X] Time: 14: 00		2016
Sampled by: BJM/DMJ SAMPLING DATA		Date. // 123 12	2010
Formula Annonrance	0 1. 1.	E	inis Presents
Odor:	rung Petroleym	Sediment: 4	NG INDIAN'S
Field Measured Paramete	ers		
pH (Standard Units) Temperature (F)	7.1	Sp. Conductivity (umho Eh-Redox Potential (m	
Turbidity (NTUs)	23.4	Dissolved Oxygen (mg Ferrous Iron or Fe II (n	/L) 2:04
	her/Type) & builty Voc's Nitra		•
Samples Collected (Num	ber/Type) Voc's, Nitra	te, Nitrite, Sulfate, Methane,	and Dissolved Iron and Magnesium
Samples Delivered to:	ALS Labs	Time: 10160	Date: 1/123/2016
COMMENTS:		<u> </u>	. /
	3 VUA for Vuis a		11/22/16
B&L Form No. 12/		- R	ev. 4/14 (BJM)

Consulting Engir	idice, P.C.					
SITE: CLIENT: Weather Conditions:	Akzo Nobel Polymer Cher Akzo Nobel Polymer Cher P-2.		SAMPLE LOCATION: JOB #: Temp:		MW-3 1398.004.015 よりらい人	
SAMPLE TYPE:	Groundwater Sediment	X	Surface Water Leachate		Other (specify):	
WATER LEVEL DATA Static Water Level (feet)*: Measured Well Depth (feet)*: Well Casing Diameter (interpretation of the Volume in Well Casing (grant of the Volume in Well Casin	et)*: ches):	1	16.8 2" 0 9 5	Other (s Measure		ser X BJM/or Date:# / ? z /16
PURGING METHOD Equipment:	Bailer Bladder Pump Dedicated		Submersible Pump Foot Valve Non-dedicated		Air Lift System Peristaltic Pump	
Calculate Volume of Water Volume of Water Purged (2.88	- 1/3 bute			
	Did well purge dry? Did well recover?	No D	Yes Yes	N N	Recovery Time:	overnight
SAMPLING METHOD Equipment:	Bailer Bladder Pump Dedicated	X	Submersible Pump Foot Valve Non-dedicated		Air Lift System Peristaltic Pump	
Sampled by: BJM/DMJ	Tin	ne: 11,04	Date: (1/2)/2	016		
SAMPLING DATA Sample Appearance Color: Odor:	gleur Noise		Sediment:			
Field Measured Paramete pH (Standard Units) Temperature (F) Turbidity (NTUs)	3.58	ヌ	Sp. Conductivity (umho Eh-Redox Potential (m\ Dissolved Oxygen (mg/ Ferrous Iron or Fe II (m	/) L) g/L)		7 94.0
Samples Collected (Number 1997)	ber/Type)	Voc's, Nitrate,	Nitrite, Sulfate, Methane,		7	<u>nesium</u>
Samples Delivered to:	ALS Labs		Time: 10 00	Date:	11 12 7/2016	
COMMENTS: My 41 32 32 32 32 32 32 32 3	, was be duc	301	(,L L	v. 4/14 (BJM)	

artor	1	FIELD SA	MPLING DATA SHEET
	uidice, P.C.		
Consulting Eng	ineers		
SITE: CLIENT:	Akzo Nobel Polymer Chemicals LLC Akzo Nobel Polymer Chemicals LLC	SAMPLE LOCATION: JOB #:	MW-4 1398.004.015
Weather Conditions:	Clarky	Temp:	4501
SAMPLE TYPE:	Groundwater	Surface Water	Other (specify):
	Sediment	Leachate	
WATER LEVEL DATA			
Static Water Level (feet) Measured Well Depth (fe		15-28 16	Measuring Point: Top of Riser Other (specify):
Well Casing Diameter (in		2"	Measured by: (BJM) or
Volume in Well Casing (g		9.11	Time: 12:16 Date: 1/ 22/16
1	m measuring point		
PURGING METHOD	Pailes V	Cultura colleta Ducan	Aioliff Symtom
Equipment:	Bailer X X Bladder Pump	Submersible Pump Foot Valve	Air Lift System Peristaltic Pump
	Dedicated X	Non-dedicated	
	—		
	er to Be Purged (gallons):	- // //	
Volume of Water Purged	(gallons): 1/2 6q,	Ter 1/4 gelles	
	Did well purge dry? No	Yes	\square
	Did well recover? No	Yes	Recovery Time:
SAMPLING METHOD			
Equipment:	Bailer	Submersible Pump	Air Lift System
	Bladder Pump	Foot Valve	Peristattic-Pump
	Dedicated	Non-dedicated	
Sampled by: BJM/DMJ	Time: 11-42	Date: / /2	<u>816</u>
SAMPLING DATA			
Sample Appearance			
Color:		Sediment:	
Field Measured Paramet	ioro .	_	
pH (Standard Units)	ers	Sp. Conductivity (umho	s/em)
Temperature (F)		Eh-Redox Potential (m\	/)
Turbidity (NTUs)	<u> </u>	Dissolved Oxygen (mg/ Ferrous Iron or Fe II (m	
		remous mon or rem (m	9/2/
Samples Collected (Num	ber/Type) <u>Voc's, Nitrate,</u>	Nitrite, Sulfate, Methane,	and Dissolved Iron and Magnesium
Samples Delivered to:	ALS Labs	Time: 16:00	
COMMENTS:	2 VOA for VUI'S for	12:24 m	1/22/16 - Replaced Bailer
B&L Form No. 127		Re	v. 4/14 (BJM)

2 - VGC'S Orly well never recovered.

Og Consulting Engi	uidice, P.C.			
SITE: CLIENT: Weather Conditions: SAMPLE TYPE:	Akzo Nobel Polymer Chen Akzo Nobel Polymer Chen Llux d Y Groundwater Sediment		SAMPLE LOCATION: JOB #: Temp: Surface Water Leachate	MW-4B 1398.004.015 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
WATER LEVEL DATA Static Water Level (feet)* Measured Well Depth (fe Well Casing Diameter (in Volume in Well Casing (g	et)*: nches):		7-51 40,9 2"	Measuring Point: Top of Riser Other (specify): Measured by: Time: /1:0} BJN or Date:///2//16
PURGING METHOD Equipment:	Bailer Bladder Pump Dedicated	X X X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump
Calculate Volume of Wat Volume of Water Purged	er to Be Purged (gallons); (gallons); Did well purge dry? Did well recover?	5 - 0 No [No [Yes Yes	Recovery Time: whruld
SAMPLING METHOD Equipment:	Bailer Bladder Pump Dedicated	X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump
Sampled by: BJM/DMJ SAMPLING DATA Sample Appearance Color: Odor:	Cleur None	e: 11:46	Date: (t / 2)(2)	016_ Vo.2
Field Measured Paramete pH (Standard Units) Temperature (F) Turbidity (NTUs)	ers 7.9 7.75	50 U	Sp. Conductivity (umhor Eh-Redox Potential (mV Dissolved Oxygen (mg/ Ferrous Iron or Fe II (m	1) - 34.0 L) 3.75
Samples Collected (Num Samples Delivered to:	ALS Labs	/oc's, Nitrate,		and Dissolved Iron and Magnesium Date: バルケル2016
COMMENTS: B&L Form No. 127	3 Vuf f	her vois	Q 12:15	v. 4/14 (BJM)

The arton	n guidice, P.C.
-----------	--------------------

ogu	idice, P.C.				10	_
Consulting Engi	neers				o 1//	1,306
SITE: CLIENT: Weather Conditions:	Akzo Nobel Polymer Chemic	_	SAMPLE LOCATION: JOB #: Temp:		1398.004.015 4967	163 ab
SAMPLE TYPE:	Groundwater [Sediment [X _	Surface Water Leachate		Other (specify):	_
WATER LEVEL DATA					· · · · · · · · · · · · · · · · · · ·	
Static Water Level (feet)*: Measured Well Depth (feet Well Casing Diameter (in Volume in Well Casing (g	et)*: iches):	1	92 15 2" 2 4 7	Other (Measu		X 12/16
	i measuring point					
PURGING METHOD Equipment:	Bailer [Bladder Pump [Dedicated [X	Submersible Pump Foot Valve Non-dedicated		Air Lift System Peristaltic Pump	
Calculate Volume of Water Volume of Water Purged		3-00	- -			
		No X	Yes Yes	Χ̈́	Recovery Time: WW	nuts
SAMPLING METHOD Equipment:	Bailer Bladder Pump Dedicated	X X	Submersible Pump Foot Valve Non-dedicated		Air Lift System Peristaltic Pump	
Sampled by: BJM/DMJ	Time:	10:54	Date: (1 /24/2	016		-
SAMPLING DATA Sample Appearance Color: Odor:	Clear		_Sediment:	None		
Field Measured Paramete	ers					
pH (Standard Units) Temperature (F) Turbidity (NTUs)	91.4	7-3	Sp. Conductivity (umho Eh-Redox Potential (m\ Dissolved Oxygen (mg/ Ferrous Iron or Fe II (m	/) 'L)	100 0 - 29 (90 8 2 9)
Samples Collected (Num	ber/Type) 3 - lupe Vo	c's, Nitrate, I			olved Iron and Magnesium	
Samples Delivered to:	ALS Labs		Time:	Date:	///27/2016	
COMMENTS:	- X location	6	UDA POR VICE		11:23 0 11/12/	16
B&L Form No. 127				v. 4/14 (BJ	nvi)	

Voc's only

Actor Control of the	idice, P.C.			
Consulting Engineration SITE: CLIENT: Weather Conditions:	Akzo Nobel Polymer Ch Akzo Nobel Polymer Ch		SAMPLE LOCATION: JOB #: Temp:	MW-9 1398.004.015 ニょい
SAMPLE TYPE:	Groundwater Sediment	X	Surface Water Leachate	Other (specify):
WATER LEVEL DATA Static Water Level (feet)*: Measured Well Depth (feet) Well Casing Diameter (involume in Well Casing (gate) *depth from	et)*: ches):		9.27 17.4 2" i - 70	Measuring Point: Top of Riser Other (specify): Measured by: 15 Jm BJM or Time: 13 5 4 Date: 11/22/16
PURGING METHOD Equipment:	Bailer Bladder Pump Dedicated	X X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump
Calculate Volume of Wate Volume of Water Purged (- ·-	3.40 200 No [No [Yes Yes	Recovery Time: overnight
SAMPLING METHOD Equipment:	Bailer Bladder Pump Dedicated	X X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump
Sampled by: BJM/DMJ	т	ime: 12:55	Date: (1 /25 /2	016
SAMPLING DATA Sample Appearance Color: Odor:	Clar		Sediment:	None
Field Measured Paramete pH (Standard Units) Temperature (F) Turbidity (NTUs) Samples Collected (Number	7-4 4-26	53./ Voc's, Nitrate,	Sp. Conductivity (umhore Eh-Redox Potential (m) Dissolved Oxygen (mg/Ferrous Iron or Fe II (m) Nitrite, Sulfate, Methane.	1) — 46 L) 5.40
Samples Delivered to:	ALS Labs		Time: 10 00	Date: 1/ / 25/2016
COMMENTS:	(0x V 0C5)) 14:05	or ulas liv	
B&L Form No. 12/		- 112	Re	v. 4/14 (BJM)

Consulting Engi	idice, P.C.	(1225		
SITE:	Akzo Nobel Polymer Chemicals LLC	SAMPLE LOCATION:	MW-9B	
CLIENT: Weather Conditions:	Akzo Nobel Polymer Chemicals LLC	JOB #: Temp:	1398.004.015 75°/	
		•		
SAMPLE TYPE:	Groundwater X	Surface Water	Other (specify):	
	Sediment	Leachate	<u> </u>	
WATER LEVEL DATA		:h 03	Measuring Point: Top of Riser	
Static Water Level (feet)* Measured Well Depth (feet)		i q.g.₹ 42.2	Other (specify):	
Well Casing Diameter (in	nches):	2"	Measured by: (BJM or	
Volume in Well Casing (g	allons): 3, n measuring point	57	Time: 13:45 Date:// 12/16	
,	i measuring point			
PURGING METHOD Equipment:	Bailer	Submersible Pump	Air Lift System	
Едагріпені.	Bladder Pump	Foot Valve	Peristaltic Pump	
	Dedicated X	Non-dedicated		
	2000 30			
Calculate Volume of Water to Be Purged (gallons): Volume of Water Purged (gallons): 8 00				
	Did well purge dry? No [Yes	1/2 builer	
	Did well recover? No	Yes	Recovery Time: Winight	
SAMPLING METHOD				
Equipment:	Bailer	Submersible Pump	Air Lift System	
	Bladder Pump	Foot Valve	Peristaltic Pump	
	Dedicated X	Non-dedicated		
Sampled by: BJM/DMJ	Time: 13 1/3	Date: 11 / 23/2	2016	
SAMPLING DATA				
Sample Appearance Color:	Clour	Sediment:	Vone	
Odor:	Nigh	Journal 1		
Field Measured Parameters				
pH (Standard Units)	8-1	Sp. Conductivity (umho	os/cm) 17 40 0	
Temperature (F)	51-0	Eh-Redox Potential (m	V) -87.0	
Turbidity (NTUs)	5,7-8	Dissolved Oxygen (mg Ferrous Iron or Fe II (mg		
Samples Collected (Number/Type) Voc's, Nitrate, Nitrite, Sulfate, Methane, and Dissolved Iron and Magnesium				
Samples Delivered to:	ALS Labs	Time: 14 00	Date: 11 / 2 } /2016	
COMMENTS:		Δ	i	
	3 VoA for Vois	5 W 13.58 U	71/22/16	
B&L Form No. 127	, ,,, ,,,		ev. 4/14 (BJM)	

oguidice, P.C.				
Consulting Engi	neers			
SITE: CLIENT: Weather Conditions:	Akzo Nobel Polymer Chemicals L		MW-10 1398.004.015 50 ⁶ ∕\	
SAMPLE TYPE:	Groundwater X Sediment	Surface Water Leachate	Other (specify):	
WATER LEVEL DATA				
Static Water Level (feet)* Measured Well Depth (fe Well Casing Diameter (ir Volume in Well Casing (g	et)*:	12.66 17.6 2" 0' 74	Measuring Point: Top of Riser Other (specify): Measured by: Time: 14:16 Date: 1/2 /16	
PURGING METHOD				
Equipment:	Bailer X Bladder Pump Dedicated X	Submersible Pump Foot Valve Non-dedicated	Air Lift System	
Calculate Volume of Wat		- 57		
Volume of Water Purged	(gallons): <u>2</u>	. 00		
	Did well purge dry? No Did well recover? No	Yes Yes	Recovery Time: Orbunyk	
SAMPLING METHOD Equipment:	Bailer X Bladder Pump Dedicated X	Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump	
Sampled by: BJM/DMJ	Time: 13.	48 Date: /1/27/	2016	
SAMPLING DATA Sample Appearance Color:	Pur Nurl	Sediment: No	· <u> </u>	
Field Measured Parameter		Sp. Conductivity (umh	os/cm) // 60-0	
pH (Standard Units) Temperature (F) Turbidity (NTUs)	8-03	Eh-Redox Potential (n Dissolved Oxygen (m Ferrous Iron or Fe II (1V) — 16.0 g/L) 2.91	
Samples Collected (Number/Type) & Littly Voc's, Nitrate, Nitrite, Sulfate, Methane, and Dissolved Iron and Magnesium				
Samples Delivered to:	ALS Labs	Time:	Date: 1/ / 2 ³ /2016	
COMMENTS:	3 UOA Por Vuc's		1/22/16 Rev. 4/14 (BJM)	
W-00				

arton		FI	ELD SAMPL	ING DATA SHEI	ΞT
	idice, P.C.				
Consulting Engi	neers				
SITE:	Akzo Nobel Polymer Chemicals	LLC SAMPLE LO	OCATION:	MW-11	
CLIENT:	Akzo Nobel Polymer Chemicals		_	1398.004.015	
Weather Conditions:	Cloudy	Temp:		450/	
SAMPLE TYPE:	Groundwater	Surface Wa	iter 🔲	Other (specify):	
1965	Sediment	Leachate			
WATER LEVEL DATA					
Static Water Level (feet)*:		15-54		asuring Point: Top of Ri	ser X
Measured Well Depth (fee Well Casing Diameter (in		21.1		er (specify): asured by:	BJM or
Volume in Well Casing (ga		0.94		e: 12 : (1L)	Date:///77 /16
*depth from	measuring point			1 7	,, ,
PURGING METHOD					
Equipment:	Bailer	Submersible	e Pump 🔲	Air Lift System	
	Bladder Pump	Foot Valve		Peristaltic Pump	
	Dedicated X	Non-dedica	ted		
Calculate Volume of Wate	er to Be Purged (gallons):	. 27			
Volume of Water Purged		50			
	Did well purge dry? No		Yes 🗔		
	Did well recover? No		Yes 🔀	Recovery Time:	overnight
SAMPLING METHOD					
Equipment:	Bailer	Submersible	e Pump	Air Lift System	
	Bladder Pump	Foot Valve		Peristaltic Pump	
	Dedicated X	Non-dedica	ted		
Sampled by: BJM/DMJ	Time: 12	19 Date:	11 123 12016		
SAMPLING DATA					
Sample Appearance			42		
Color:	Clear	Sediment:	None		
Odor:	None				
Field Measured Paramete					
pH (Standard Units) Temperature (F)	7-3		tivity (umhos/cm) Potential (mV)	1350.0	·51.0
Turbidity (NTUs)	W-62		Oxygen (mg/L)	2-24	
		Ferrous Iron	n or Fe II (mg/L)	ASS	0.18
Samples Collected (Number/Type) & Louis, Nitrate, Nitrite, Sulfate, Methane, and Dissolved Iron and Magnesium					
Samples Delivered to:	ALS Labs	Time:	10160 Dat	e: <u>// / ²/2016</u>	·
	13:04 Patiz new	2" Locking	Wall/149		-
B&L Form No. 127			Rev. 4/14	(BJM)	V

	arton oguidice, P.C.
ı	

arton		FIELD SAMPLING DATA SHEET			
oguidice, P.C.					
UBU	1.0.				
Consulting Engi	neers			ż.	
001101111111111111111111111111111111111					
SITE:	Akzo Nobel Polymer C	hemicals LLC	SAMPLE LOCATION:	MW-11B	
CLIENT:	Akzo Nobel Polymer C	hemicals LLC	JOB #:	1398,004.015	
Weather Conditions:	Cloudy		Temp:	4503	
SAMPLE TYPE:	Groundwater	[V]	Surface Water	Other (energia)	
SAWIFLE TIPE.		씀		Other (specify):	
	Sediment		Leachate		
WATER LEVEL DATA					
Static Water Level (feet)*:		14	7.57	Measuring Point: Top of Riser	
Measured Well Depth (fee			2.38	Other (specify):	
Well Casing Diameter (in			2"	Measured by: BJM or	
Volume in Well Casing (ga		ςς	· 14	Time: 12:46 Date1/27 /16	
depth from	measuring point			<i>'</i>	
PURGING METHOD					
Equipment:	Bailer	X	Submersible Pump	Air Lift System	
	Bladder Pump	\Box	Foot Valve	Peristaltic Pump	
	Dedicated	菌	Non-dedicated		
			11011 000100100		
Calculate Volume of Water	er to Be Purged (gallons):	12.42	•		
Volume of Water Purged	(gallons):	15-75	_		
			- 1 v		
	Did well purge dry?	No 🔀	Yes		
	Did well recover?	No	Yes	Recovery Time: Num	
SAMPLING METHOD			.		
Equipment:	Bailer	X	Submersible Pump	Air Lift System	
	Bladder Pump		Foot Valve	Peristaltic Pump	
	Dedicated	X	Non-dedicated		
		Time: 12: 18	n		
Sampled by: BJM/DMJ		Time: 12. \ 0	Date: <u>i1 25 2</u>	016	
SAMPLING DATA					
Sample Appearance					
Color:	Cleur		_Sediment:	Vune	
Odor:	NE-L		_		
Field Measured Parameters					
pH (Standard Units)	8.2		Sp. Conductivity (umho	s/cm)	
Temperature (F)		50.7	Eh-Redox Potential (m\	1) -34.0	
Turbidity (NTUs)	3.07		Dissolved Oxygen (mg/		
Ferrous Iron or Fe II (mg/L) 0.00					
Samples Collected (Number/Type) & Louis, Nitrate, Nitrite, Sulfate, Methane, and Dissolved Iron and Magnesium					
Samples Collected (Number/Type) & Voc's, Nitrate, Nitrite, Sulfate, Methane, and Dissolved Iron and Magnesium					
Samples Delivered to:	ALS Labs		Time: 16\06	Date: 11 /2/ /2016	
COMMENTS:				SP4F	
) della li	Sur for suige 15:03 Put in New 2" locking well Play				
Jule for my	1:01	2 ""			
HXI FOOT NO 127			Re	v. 4/14 (BJM)	

Record of Calibration

Project No:	345.063.001 1348-001.0	16 Date: <u>リ/と</u> / 1/2 /	160	
Calibrated By:	DTm	Time:	- 10:12	
•	31			
pH Instrument Mode	el: pH Testr 10			
Standard Solu	tion Calibration Reading	Acceptable Range	_	
pH 4:	4.2	(+/- 1.0 pH, pH 3.0 - 5.0)	Pass / Fail	
pH 7:	7-0	(+/- 1.5 pH, pH 5.5 - 8.5)		
pH 10:	9.6	(+/- 1.0 pH, ph 9.0 - 11.0)		
C- Cdu-linit.				
Sp.Conductivity Instrument Model: E	EC Testr 11			
Standard Solu	-	Acceptable Range		
1413 uS	14100	(+/- 1.0 % Error = 1399-1427)	Pass (Fail	
1410 00	110-0	(1, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		
	· ·			
ORP Instrument Mo	odel: ORP Testr 10	- 		
Standard Solu	tion Calibration Reading	Acceptable Range		
240 mV	2430 @ 61 F	(+/- 5% at 25oC, 228 - 252 mV)	Pass / Fail	
or				
YSI Zobell	Soln	(Refer to YSI calibration table)		
Turbidimeter Model	: Micro TPI			
Standard Solu	tion Calibration Reading	Acceptable Range		
0 NTU		Blank with 0.0 NTU	Pass / Fail	
1.0 NTU		(0.5-1.5 NTU)		
10 NTU		(8-12 NTU)		
		Ä.		
Methane Meter Mod	del: NA			
Standard G		Acceptable Range		
2.50% Metha		(+/- 5.0% Error, 2.63-2.38% methane)	Pass / Fail	
2.00 /4 (4)0412		(1) 0.070 21701, 2.00 2.0070 7701101107	, 255 , , 5	
Comments:				
		480	1980	
39			- 137 %	
		7077		

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

1057 East Henrietta Rd. Rochester NY 14623 Phone: 585-424-2140

Pine Environmental Services, Inc.

Instrument ID 34701

Description DR900

Calibrated 11/21/2016 5:49:07PM

Manufacturer HACH

Model Number DR900

Serial Number/Lot 34701

Number

Location Rochester, NY

Department

State Certified

Status Pass

Temp °C 23.4

Humidity % 20

Calibration Specifications

Group # 1

Group Name FUNCTION TEST

Test Performed: N/A

As Found Result:

As Left Result:

Test Instruments Used During the Calibration

(As Of Cal Entry Date)

Test Standard ID Description

Manufacturer

Model Number

Serial Number / Lot Number

Next Cal Date / Last Cal Date/ Expiration Date

Opened Date

Notes about this calibration

Calibration Result Calibration Successful

Who Calibrated Kevin Barr

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

1057 East Henrietta Rd. Rochester NY 14623 Phone: 585-424-2140

Pine Environmental Services, Inc.

Instrument ID 2670

Description YSI 55

Calibrated 11/21/2016 5:02:21PM

Manufacturer YSI

Model Number 55

Serial Number/Lot 02A0181AQ

Number

Location Rochester, NY

Department

State Certified

Status Pass

Temp °C 23.4

Humidity % 21

Range Acc % 0.0000

Plus/Minus 0.00

Reading Acc % 3.0000

Calibration Specifications

Group# 1

Group Name Disolved Oxygen Span

Stated Accy Pct of Reading

In Type %

Out Val 100.00 Out Type %

Fnd As 98.80

Lft As 100.00

Dev% 0.00% Pass/Fail Pass

Test Instruments Used During the Calibration

Test Standard ID Description

Manufacturer

Model Number

Serial Number / Lot Number

(As Of Cal Entry Date) Next Cal Date / Last Cal Date/ Expiration Date

Opened Date

Notes about this calibration

Nom In Val / In Val

100.00 / 100.00

Calibration Result Calibration Successful

Who Calibrated Kevin Barr

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Appendix B

Analytical Laboratory Summary Report (ALS Environmental)

Mr. Brian McGrath Barton & Loguidice, PC 11 Centre Park Suite 203 Rochester, NY 14614

Laboratory Results for: Akzo

Dear Mr.McGrath,

Enclosed are the results of the sample(s) submitted to our laboratory June 07, 2016 For your reference, these analyses have been assigned our service request number **R1605971**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7478. You may also contact me via email at Vanessa.Badman@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Tanassa 7. Badman

Vanessa Badman Customer Service

Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

CASE NARRATIVE

This report contains analytical results for the following samples:

Service Request Number: R1605971

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R1605971-001	MW-1	6/7/2016	1045
R1605971-002	Dupe-X	6/7/2016	
R1605971-003	MW-1B	6/7/2016	1059
R1605971-004	MW-5	6/7/2016	1121
R1605971-005	MW-3	6/7/2016	1151
R1605971-006	MW-3B	6/7/2016	1200
R1605971-007	MW-4	6/7/2016	1230
R1605971-008	MW-4B	6/7/2016	1238
R1605971-009	MW-11	6/7/2016	1258
R1605971-010	MW-11B	6/7/2016	1307
R1605971-011	MW-9	6/7/2016	1338
R1605971-012	MW-9B	6/7/2016	1346
R1605971-013	MW-10	6/7/2016	1359
R1605971-014	MW-10B	6/7/2016	1404
R1605971-015	MW-2	6/7/2016	1431

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

8260C: The CCV was out of range for the following compounds: Chloroethane, Acetone, 1,1-Dichloroethane, 1,1,1-

Trichloroethane, and Carbon Tetrachloride.

Any other QC issues are flagged/commented in the report.

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-1	Lab ID: R1	Lab ID: R1605971-001						
Analyte	Results	Flag	MDL	PQL	Units	Method		
Sulfate	46.6		0.2	2.0	mg/L	300.0		
Iron, Dissolved	190		20	100	ug/L	200.7		
Manganese, Dissolved	234		0.5	10	ug/L	200.7		
Methane	81		0.21	1.0	ug/L	RSK 175		
CLIENT ID: Dupe-X	Lab ID: R1	605971-	002					
Analyte	Results	Flag	MDL	PQL	Units	Method		
Sulfate	48.3		0.2	2.0	mg/L	300.0		
Iron, Dissolved	180		20	100	ug/L	200.7		
Manganese, Dissolved	224		0.5	10	ug/L	200.7		
Methane	76		0.21	1.0	ug/L	RSK 175		
CLIENT ID: MW-1B	Lab ID: R1	605971-	003					
Analyte	Results	Flag	MDL	PQL	Units	Method		
Sulfate	1030		4	40	mg/L	300.0		
Manganese, Dissolved	48		0.5	10	ug/L	200.7		
4-Methyl-2-pentanone	0.77	J	0.67	5.0	ug/L	8260C		
Acetone	1.7	J	1.3	5.0	ug/L	8260C		
Carbon Disulfide	0.55	J	0.22	1.0	ug/L	8260C		
Methane	3.5		0.21	1.0	ug/L	RSK 175		
CLIENT ID: MW-5	Lab ID: R1	605971-	004					
Analyte	Results	Flag	MDL	PQL	Units	Method		
Nitrate as Nitrogen	2.7		0.5	1.0	mg/L	300.0		
Sulfate	58.2		0.2	2.0	mg/L	300.0		
Manganese, Dissolved	12		0.5	10	ug/L	200.7		
Acetone	34		1.3	5.0	ug/L	8260C		
CLIENT ID: MW-3	Lab ID: R1	605971-	005					
Analyte	Results	Flag	MDL	PQL	Units	Method		
Sulfate	128		0.4	4.0	mg/L	300.0		
Manganese, Dissolved	11		0.5	10	ug/L	200.7		
CLIENT ID: MW-3B	Lab ID: R1	605971-	006					
Analyte	Results	Flag	MDL	PQL	Units	Method		
Sulfate	38.0		0.2	2.0	mg/L	300.0		
Manganese, Dissolved	58		0.5	10	ug/L	200.7		
Methane	38		0.21	1.0	ug/L	RSK 175		
CLIENT ID: MW-4	Lab ID: R1	605971-	007					
Analyte	Results	Flag	MDL	PQL	Units	Method		
Sulfate	17.8		0.2	2.0	mg/L	300.0		

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-4B	Lab ID: R1605971-008						
Analyte	Results	Flag	MDL	PQL	Units	Method	
Nitrate as Nitrogen	1.3		0.5	1.0	mg/L	300.0	
Sulfate	1120		4	40	mg/L	300.0	
Manganese, Dissolved	157		0.5	10	ug/L	200.7	
Methane	6.1		0.21	1.0	ug/L	RSK 175	
CLIENT ID: MW-11	Lab ID: R	1605971-	009				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Sulfate	77.8		0.2	2.0	mg/L	300.0	
Iron, Dissolved	120		20	100	ug/L	200.7	
Manganese, Dissolved	121		0.5	10	ug/L	200.7	
1,1-Dichloroethane (1,1-DCA)	1.8		0.20	1.0	ug/L	8260C	
Methane	92		0.21	1.0	ug/L	RSK 175	
CLIENT ID: MW-11B	Lab ID: R	1605971-	·010				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Sulfate	82.3		0.2	2.0	mg/L	300.0	
Manganese, Dissolved	16		0.5	10	ug/L	200.7	
Methane	17		0.21	1.0	ug/L	RSK 175	
CLIENT ID: MW-9	Lab ID: R	1605971-	011				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Nitrate as Nitrogen	3.1		0.5	1.0	mg/L	300.0	
Sulfate	50.5		0.2	2.0	mg/L	300.0	
Manganese, Dissolved	11		0.5	10	ug/L	200.7	
1,1,1-Trichloroethane (TCA)	6.4		0.36	1.0	ug/L	8260C	
1,1-Dichloroethane (1,1-DCA)	0.45	J	0.20	1.0	ug/L	8260C	
Tetrachloroethene (PCE)	0.71	J	0.30	1.0	ug/L	8260C	
Trichloroethene (TCE)	0.36	J	0.22	1.0	ug/L	8260C	
CLIENT ID: MW-9B	Lab ID: R	1605971-	012				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Sulfate	642		2	20	mg/L	300.0	
Manganese, Dissolved	24		0.5	10	ug/L	200.7	
Methane	11		0.21	1.0	ug/L	RSK 175	
CLIENT ID: MW-10	Lab ID: R	1605971-	013				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Nitrate as Nitrogen	1.9		0.5	1.0	mg/L	300.0	
Sulfate	53.6		0.2	2.0	mg/L	300.0	
Manganese, Dissolved	141		0.5	10	ug/L	200.7	
CLIENT ID: MW-10B	Lab ID: R	1605971-	014				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Sulfate	87.5		0.2	2.0	mg/L	300.0	

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-10B	Lab ID: R1605971-014					
Analyte	Results	Flag	MDL	PQL	Units	Method
Manganese, Dissolved	66		0.5	10	ug/L	200.7
1,1-Dichloroethane (1,1-DCA)	2.2		0.20	1.0	ug/L	8260C
Acetone	1.5	J	1.3	5.0	ug/L	8260C
Methane	57		0.21	1.0	ug/L	RSK 175

CLIENT ID: MW-2	Lab ID: R1					
Analyte	Results	Flag	MDL	PQL	Units	Method
Sulfate	26.5		0.2	2.0	mg/L	300.0
Iron, Dissolved	4650		20	100	ug/L	200.7
Manganese, Dissolved	2080		0.5	10	ug/L	200.7
1,1-Dichloroethane (1,1-DCA)	6.4		0.20	1.0	ug/L	8260C
1,2-Dichloroethane	0.58	J	0.36	1.0	ug/L	8260C
1,2-Dichloroethene, Total	0.67	J	0.63	2.0	ug/L	8260C
Acetone	1.5	J	1.3	5.0	ug/L	8260C
Benzene	9.7		0.20	1.0	ug/L	8260C
Chlorobenzene	3.7		0.29	1.0	ug/L	8260C
Chloroethane	50		0.24	1.0	ug/L	8260C
Ethylbenzene	3.3		0.20	1.0	ug/L	8260C
Toluene	55		0.20	1.0	ug/L	8260C
Trichloroethene (TCE)	1.2		0.22	1.0	ug/L	8260C
Vinyl Chloride	0.39	J	0.32	1.0	ug/L	8260C
m,p-Xylenes	6.2		0.33	2.0	ug/L	8260C
o-Xylene	2.0		0.20	1.0	ug/L	8260C
Methane	5300		21	100	ug/L	RSK 175

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R1605971-001	MW-1	6/7/2016	1045
R1605971-002	Dupe-X	6/7/2016	
R1605971-003	MW-1B	6/7/2016	1059
R1605971-004	MW-5	6/7/2016	1121
R1605971-005	MW-3	6/7/2016	1151
R1605971-006	MW-3B	6/7/2016	1200
R1605971-007	MW-4	6/7/2016	1230
R1605971-008	MW-4B	6/7/2016	1238
R1605971-009	MW-11	6/7/2016	1258
R1605971-010	MW-11B	6/7/2016	1307
R1605971-011	MW-9	6/7/2016	1338
R1605971-012	MW-9B	6/7/2016	1346
R1605971-013	MW-10	6/7/2016	1359
R1605971-014	MW-10B	6/7/2016	1404
R1605971-015	MW-2	6/7/2016	1431

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

38648

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE Project Number & 201.016 Project Name
AKZO Nobel 1 ANALYSIS REQUESTED (Include Method Number and Container Preservative) PRESERVATIVE 1 Preservative Key 0. NONE NUMBER OF CONTAINERS HCL | PESTICION | PEST 2. HNO₃ 3. H₂SO₄ 4. NaOH 5. Zn. Acetate MeOH 7. NaHSO₄ Phone # Email 8. Other Sapraler's Printed Name Sampler's Signature REMARKS/ ALTERNATE DESCRIPTION FOR OFFICE USE SAMPLING ONLY LAB ID MATRIX CLIENT SAMPLE ID DATE TIME MW-6/7/7016 1720 MW-IR MU-5 ML1-3 MW-32 MW-4 MU-11 MW -1/13 MW-9 Sam Perenter list as historically completed

PRESE reference correct job number on riport SPECIAL INSTRUCTIONS/COMMENTS REPORT REQUIREMENTS **TURNAROUND REQUIREMENTS** INVOICE INFORMATION **RUSH (SURCHARGES APPLY)** I. Results Only PQ# II. Results + QC Summaries (LCS. DUP, MS/MSD as required) X III. Results + QC and Calibration 1348.001.016 Summaries REQUESTED REPORT DATE IV. Data Validation Report with Raw Data See QAPP Edata STATE WHERE SAMPLES WERE COLLECTED RELINQUISHED BY RECEIVED BY **RELINQUISHED BY** RELINQUISHED BY RECEIVED BY R1605971 Signature Signature Signature Signature Darle M- Jordan Printed Name Printeci Name Printed Name Printed Name 212016 (1720 Firm(0/7/16) Firm Firm 1720 9 of 106 Time Date/Time Date/Time

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

38649

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 1358.001.016 ANALYSIS REQUESTED (Include Method Number and Container Preservative) Note **PRESERVATIVE** Preservative Key 0. NONE 1. HCL 2. HNO₃ NUMBER OF CONTAINERS B+L 3. H₂SO₄ 4. NaOH 5. Zn. Acetate 6. MeOH 7. NaHSO₄ Phone # Email 8. Other Sampler's Printed Name

Ocal KM-50-51-REMARKS/ ALTERNATE DESCRIPTION FOR OFFICE USE SAMPLING ONLY LAB ID **MATRIX CLIENT SAMPLE ID** DATE TIME SPECIAL INSTRUCTIONS/COMMENTS INVOICE INFORMATION REPORT REQUIREMENTS TURNAROUND REQUIREMENTS Metals **RUSH (SURCHARGES APPLY)** I. Results Only PO# II. Results + QC Summaries __ 1 day _____2 day _____3 day (LCS, DUP, MS/MSD as required) _ 4 day ...__5 day III. Results + QC and Calibration Summaries REQUESTED REPORT DATE _ IV. Data Validation Report with Raw Data See QAPP STATE WHERE SAMPLES WERE COLLECTED RELINQUISHED BY RECEIVED BY **RELINQUISHED BY** RECEIVED BY RELINQUISHED BY Signature Signature Signature Signature Signature Printed Name Printed Name Printed Name R1605971 Firm 6/7/14/170 Date/Time 10 of Pate Time Date/Time

Cooler Receipt and Preservation Check For

R1605971 Barton & Loguidice, PC Akzo 5

Project/Clier	it_BrL				F	older	Nui		RIG-				
Cooler received	l on 6/7	116		by:	du		cou	RIER:	AS	UPS	FEDEX VI	ELUCITY CLIE	
1 Were Cus	tody seals on	outside	of co	oler?	Y	0	5a	1			have required		Y N MA
2 Custody p	apers proper	ly com	pleted	(ink, s	igned)?	N	5b	Did V	OA via	ls, Alk,	r Sulfide have	sig* bubbles?	Y OL NA
3 Did all bot	tles arrive in	good co	onditi	on (unt	oroken)? 🛇	N	6	Wher	e did th	e bottles	originate?	ALSCROC	CLIENT
4 Circle: V	etace Dry	Ice G	el pac	ks p	oresent?	N	7	Soil V	OA rec	ceived as	: Bulk	Encore 5035	set MA
8. Temperature	Readings	Dat	e:_ 6	17116	Time: 1	1 57		ID:	R#3	IR#5	Fron	n: Temp Blank	Sample Bottle
Observed Ter			3,8	U	2.16								
Correction Fa			-01		-011								ļ
Corrected Ter			31		210'						** **	37 31	V N
Within 0-6°C			0		Ø N	_	Y	N	Y	N	Y N	Y N	Y N Y N
If <0°C, were				N	Y N		Y	N	Y	N	Y N	Y N	
If out of To	emperature,	note p	acking	g/ice co	ondition:			Ice mel			ly Packed	Same Day	
&Client A	pproval to R	un San	nples:		Standing	Appr	oval	Clien	t aware	at drop-		otified by:	
All samples l	neld in storag	e locat	ion:		R-007	by	O?h	J	on	6/7/	⊘ at	1757	
5035 sample				n:		by _			on _		at		
PC Second	ary Review: _						· · · · ·			-			
madalese obtesti liste tra i	akdown: Dat	-months open	7	1 Co	Time:	2215	LEHEL DATE (PAIL)	isata en estador. La	y: Oh	ining of teachers who is	ATAINITAINE BANGANALANA OLT	e en la company destination de la participation de la company de la comp	
1. W	akdown: Dat 'ere all bottle l	labels o	comple	ete (i.e.	analysis, pres			.c.)?	y. <u> </u>	У	ES NO)	
					with custody p			,-		Ý	ES NO		
					e tests indicate			_		_	ES NO		MTA
	ir Samples: C		s / Tul	es Inta	ıct	Ca	nister	s Pressu	rized		Γedlar® Bags	Innated	MA.
pH	y discrepanci Reagent	Yes	No	Lot F	Received	Ext	S	ample I	D T	Vol.	Lot Added	Final	Yes=All
										Added		pН	samples OK
≥12	NaOH			202-	71-1/07-0	104	_						No=Samples
≤2	HNO ₃	V		1000	26123E	5)14	F						were
<u>≤2</u> <4	H ₂ SO ₄ NaHSO ₄		1	l		 							preserved at
Residual	For CN			If+, 0	contact PM to	·	\top						The lab as
Chlorine	Phenol			add N	$Va_2S_2O_3$ (CN),				İ				listed
(-)	and 522		ļ <u>.</u>	ascor	bic (phenol).	ļ							PM OK to
	Na ₂ S ₂ O ₃	-	-			-	\dashv $_*$	*Not to	he test	ed hefor	e analysis – pl	H tested and	Adjust:
	ZnAcetate HCl	**	**	UNE	220	5717					separate work		
			.l			.l			•		•		
Bottle lot i	numbers: 6	060	-001	1 115	05-ZAAW,	૦૫ાા	6-	LAAC					
Other Con	ments:			•									

PC Secondary Review: _____

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Accredited	Nebraska Accredited	294100 A/B
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158
Illinois ID #200047	North Carolina #676	Virginia #460167

¹ Analyses were performed according to our laboratory¢s NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to http://www.alsglobal.com/en/Our-Services/Environmental/Downloads/North-America-Downloads

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Service Request: R1605971

Sample Name: MW-1

Lab Code: R1605971-001

Sample Matrix: Water

Date Collected: 06/7/16 **Date Received:** 06/7/16

Analysis Method Extracted/Digested By Analyzed By

200.7 300.0 8260C RSK 175 CGILDAY DBOND
CWOODS
FNAEGLER
AMOSES

 Sample Name:
 Dupe-X
 Date Collected: 06/7/16

 Lab Code:
 R1605971-002
 Date Received: 06/7/16

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

200.7 CGILDAY DBOND
300.0 CWOODS
8260C FNAEGLER
RSK 175 AMOSES

 Sample Name:
 MW-1B
 Date Collected:
 06/7/16

 Lab Code:
 R1605971-003
 Date Received:
 06/7/16

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

200.7 CGILDAY DBOND
300.0 CWOODS
8260C FNAEGLER
RSK 175 AMOSES

 Sample Name:
 MW-5
 Date Collected:
 06/7/16

 Lab Code:
 R1605971-004
 Date Received:
 06/7/16

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By
200.7 CGILDAY DBOND

Printed 7/29/2016 6:57:51 PM Superset Reference:16-0000379996 rev 00

Analyst Summary report

Client: Barton & Loguidice, PC

Akzo/1398.001.016 **Project:**

Service Request: R1605971

Date Collected: 06/7/16

Date Received: 06/7/16

Sample Name: MW-5

Lab Code: R1605971-004

Sample Matrix: Water

Analysis Method

300.0 8260C **RSK 175**

Lab Code:

Extracted/Digested By

Analyzed By CWOODS FNAEGLER AMOSES

Sample Name: MW-3

R1605971-005

Water Sample Matrix:

Date Collected: 06/7/16 **Date Received:** 06/7/16

Analysis Method

200.7 300.0 8260C **RSK 175** **Extracted/Digested By**

CGILDAY

Analyzed By

DBOND CWOODS FNAEGLER AMOSES

Sample Name: MW-3B

Lab Code: R1605971-006

Sample Matrix: Water **Date Collected:** 06/7/16

Date Received: 06/7/16

Analysis Method

200.7 300.0 8260C **RSK 175** **Extracted/Digested By**

CGILDAY

Analyzed By

DBOND CWOODS FNAEGLER

AMOSES

Sample Name: MW-4

Lab Code: R1605971-007

Sample Matrix: Water **Date Collected:** 06/7/16 **Date Received:** 06/7/16

Analysis Method

200.7 300.0 **CGILDAY**

Extracted/Digested By

Analyzed By

DBOND CWOODS

Printed 7/29/2016 6:57:51 PM

Superset Reference:16-0000379996 rev 00

Analyst Summary report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Name: MW-4

Lab Code: R1605971-007

Sample Matrix: Water

Date Collected: 06/7/16 **Date Received:** 06/7/16

Service Request: R1605971

Analysis Method

8260C RSK 175 Extracted/Digested By Analyzed By

FNAEGLER AMOSES

Sample Name: MW-4B

Lab Code: R1605971-008

Sample Matrix: Water

Date Collected: 06/7/16

Date Received: 06/7/16

Analysis Method

200.7 300.0 8260C RSK 175 Extracted/Digested By

CGILDAY

Analyzed By

DBOND CWOODS FNAEGLER AMOSES

Sample Name: MW-11

Lab Code: R1605971-009

Sample Matrix: Water

Date Collected: 06/7/16

Date Received: 06/7/16

Analysis Method

200.7 300.0 8260C RSK 175 **Extracted/Digested By**

CGILDAY

Analyzed By

DBOND CWOODS FNAEGLER AMOSES

Sample Name: MW-11B

Lab Code: R1605971-010

Sample Matrix: Water

Date Collected: 06/7/16 **Date Received:** 06/7/16

200.7 300.0 8260C

Analysis Method

CGILDAY

Extracted/Digested By

Analyzed By

DBOND

CWOODS FNAEGLER

Printed 7/29/2016 6:57:51 PM

Superset Reference:16-0000379996 rev 00

Analyst Summary report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Service Request: R1605971

Sample Name: MW-11B

Lab Code: R1605971-010

Sample Matrix: Water

Date Collected: 06/7/16 **Date Received:** 06/7/16

Analysis Method

RSK 175

Extracted/Digested By

Analyzed By

AMOSES

Sample Name: MW-9

Lab Code:

R1605971-011

Sample Matrix: Water

Date Collected: 06/7/16 **Date Received:** 06/7/16

Analysis Method

200.7 300.0 8260C RSK 175 **Extracted/Digested By** CGILDAY

Analyzed By

DBOND

CWOODS FNAEGLER

AMOSES

Sample Name: MW-9B

Lab Code: R1605971-012

Sample Matrix: Water

Date Collected: 06/7/16 **Date Received:** 06/7/16

Analysis Method

200.7 300.0 8260C RSK 175 **Extracted/Digested By**

CGILDAY

Analyzed By

DBOND

CWOODS FNAEGLER

AMOSES

Sample Name: MW-10

Lab Code: R1605971-013

Sample Matrix: Water

Date Collected: 06/7/16 **Date Received:** 06/7/16

Analysis Method

200.7 300.0

8260C RSK 175 Extracted/Digested By

CGILDAY

Analyzed By

DBOND

CWOODS FNAEGLER

AMOSES

Printed 7/29/2016 6:57:51 PM

Superset Reference:16-0000379996 rev 00

Analyst Summary report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Service Request: R1605971

 Sample Name:
 MW-10B
 Date Collected: 06/7/16

 Lab Code:
 R1605971-014
 Date Received: 06/7/16

Sample Matrix: Water

Analysis Method

300.0

8260C

300.0

8260C

RSK 175

Extracted/Digested By Analyzed By

200.7 CGILDAY DBOND

CWOODS FNAEGLER AMOSES

Sample Name: MW-2 Date Collected: 06/7/16

Lab Code: R1605971-015 **Date Received:** 06/7/16

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

200.7 CGILDAY DBOND

CWOODS FNAEGLER

RSK 175 AMOSES

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1605971

 Project:
 Akzo/1398.001.016
 Date Collected:
 06/07/16 10:45

Sample Matrix: Water Date Received: 06/07/16 17:20

 Sample Name:
 MW-1
 Units: ug/L

 Lab Code:
 R1605971-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 00:01	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 00:01	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 00:01	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/10/16 00:01	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 00:01	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 00:01	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 00:01	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 00:01	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 00:01	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 00:01	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 00:01	
Acetone	5.0 U	5.0	1.3	1	06/10/16 00:01	
Benzene	1.0 U	1.0	0.20	1	06/10/16 00:01	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 00:01	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 00:01	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 00:01	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 00:01	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 00:01	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 00:01	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 00:01	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 00:01	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 00:01	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 00:01	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 00:01	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 00:01	
Styrene	1.0 U	1.0	0.20	1	06/10/16 00:01	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 00:01	
Toluene	1.0 U	1.0	0.20	1	06/10/16 00:01	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 00:01	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 00:01	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 00:01	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 00:01	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 00:01	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 00:01	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobenzene	101	85 - 122	06/10/16 00:01		
Dibromofluoromethane	100	89 - 119	06/10/16 00:01		
Toluene-d8	102	87 - 121	06/10/16 00:01		

Analytical Report

Client: Barton & Loguidice, PC **Project:**

Water

Akzo/1398.001.016

Service Request: R1605971 **Date Collected:** 06/07/16

Date Received: 06/07/16 17:20

Sample Name: Dupe-X

Sample Matrix:

Lab Code: R1605971-002 Units: ug/L Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 00:26	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 00:26	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 00:26	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/10/16 00:26	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 00:26	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 00:26	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 00:26	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 00:26	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 00:26	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 00:26	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 00:26	
Acetone	5.0 U	5.0	1.3	1	06/10/16 00:26	
Benzene	1.0 U	1.0	0.20	1	06/10/16 00:26	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 00:26	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 00:26	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 00:26	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 00:26	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 00:26	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 00:26	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 00:26	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 00:26	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 00:26	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 00:26	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 00:26	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 00:26	
Styrene	1.0 U	1.0	0.20	1	06/10/16 00:26	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 00:26	
Toluene	1.0 U	1.0	0.20	1	06/10/16 00:26	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 00:26	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 00:26	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 00:26	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 00:26	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 00:26	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 00:26	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	06/10/16 00:26	
Dibromofluoromethane	103	89 - 119	06/10/16 00:26	
Toluene-d8	103	87 - 121	06/10/16 00:26	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971 **Date Collected:** 06/07/16 10:59 **Project:** Akzo/1398.001.016 **Date Received:** 06/07/16 17:20

Sample Matrix: Water

Units: ug/L

Basis: NA

Sample Name: MW-1B Lab Code: R1605971-003

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 00:50	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 00:50	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 00:50	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/10/16 00:50	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 00:50	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 00:50	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 00:50	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 00:50	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 00:50	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 00:50	
4-Methyl-2-pentanone	0.77 Ј	5.0	0.67	1	06/10/16 00:50	
Acetone	1.7 ј	5.0	1.3	1	06/10/16 00:50	
Benzene	1.0 U	1.0	0.20	1	06/10/16 00:50	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 00:50	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 00:50	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 00:50	
Carbon Disulfide	0.55 J	1.0	0.22	1	06/10/16 00:50	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 00:50	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 00:50	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 00:50	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 00:50	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 00:50	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 00:50	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 00:50	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 00:50	
Styrene	1.0 U	1.0	0.20	1	06/10/16 00:50	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 00:50	
Toluene	1.0 U	1.0	0.20	1	06/10/16 00:50	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 00:50	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 00:50	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 00:50	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 00:50	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 00:50	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 00:50	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	85 - 122	06/10/16 00:50	
Dibromofluoromethane	102	89 - 119	06/10/16 00:50	
Toluene-d8	101	87 - 121	06/10/16 00:50	

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1605971

 Project:
 Akzo/1398.001.016
 Date Collected:
 06/07/16 11:21

 Sample Matrix:
 Water
 Date Received:
 06/07/16 17:20

Sample Name: MW-5 Units: ug/L

Lab Code: R1605971-004 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 18:40	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 18:40	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 18:40	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/10/16 18:40	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 18:40	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 18:40	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 18:40	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 18:40	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 18:40	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 18:40	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 18:40	
Acetone	34	5.0	1.3	1	06/10/16 18:40	
Benzene	1.0 U	1.0	0.20	1	06/10/16 18:40	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 18:40	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 18:40	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 18:40	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 18:40	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 18:40	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 18:40	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 18:40	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 18:40	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 18:40	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 18:40	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 18:40	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 18:40	
Styrene	1.0 U	1.0	0.20	1	06/10/16 18:40	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 18:40	
Toluene	1.0 U	1.0	0.20	1	06/10/16 18:40	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 18:40	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 18:40	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 18:40	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 18:40	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 18:40	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 18:40	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	06/10/16 18:40	
Dibromofluoromethane	102	89 - 119	06/10/16 18:40	
Toluene-d8	103	87 - 121	06/10/16 18:40	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971 **Date Collected:** 06/07/16 11:51 **Project:** Akzo/1398.001.016 **Date Received:** 06/07/16 17:20

Sample Matrix: Water

Sample Name:

Lab Code:

MW-3 Units: ug/L R1605971-005 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 01:39	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 01:39	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 01:39	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/10/16 01:39	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 01:39	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 01:39	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 01:39	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 01:39	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 01:39	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 01:39	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 01:39	
Acetone	5.0 U	5.0	1.3	1	06/10/16 01:39	
Benzene	1.0 U	1.0	0.20	1	06/10/16 01:39	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 01:39	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 01:39	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 01:39	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 01:39	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 01:39	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 01:39	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 01:39	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 01:39	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 01:39	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 01:39	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 01:39	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 01:39	
Styrene	1.0 U	1.0	0.20	1	06/10/16 01:39	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 01:39	
Toluene	1.0 U	1.0	0.20	1	06/10/16 01:39	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 01:39	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 01:39	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 01:39	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 01:39	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 01:39	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 01:39	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	06/10/16 01:39	
Dibromofluoromethane	102	89 - 119	06/10/16 01:39	
Toluene-d8	102	87 - 121	06/10/16 01:39	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1605971Project:Akzo/1398.001.016Date Collected:06/07/16 12:00

Sample Matrix: Water Date Received: 06/07/16 17:20

 Sample Name:
 MW-3B
 Units: ug/L

 Lab Code:
 R1605971-006
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 02:03	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 02:03	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 02:03	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/10/16 02:03	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 02:03	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 02:03	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 02:03	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 02:03	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 02:03	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 02:03	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 02:03	
Acetone	5.0 U	5.0	1.3	1	06/10/16 02:03	
Benzene	1.0 U	1.0	0.20	1	06/10/16 02:03	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 02:03	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 02:03	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 02:03	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 02:03	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 02:03	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 02:03	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 02:03	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 02:03	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 02:03	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 02:03	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 02:03	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 02:03	
Styrene	1.0 U	1.0	0.20	1	06/10/16 02:03	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 02:03	
Toluene	1.0 U	1.0	0.20	1	06/10/16 02:03	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 02:03	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 02:03	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 02:03	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 02:03	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 02:03	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 02:03	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	06/10/16 02:03	
Dibromofluoromethane	103	89 - 119	06/10/16 02:03	
Toluene-d8	105	87 - 121	06/10/16 02:03	

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1605971

 Project:
 Akzo/1398.001.016
 Date Collected:
 06/07/16 12:30

 Sample Matrix:
 Water
 Date Received:
 06/07/16 17:20

Sample Name: MW-4

Lab Code: R1605971-007 **Basis:** NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

1,1,1-Trichloroethane (TCA) 1.0 U 1.0 U 0.36 1 06/10/16 02:28 1,1,2,2-Tetrachloroethane 1.0 U 1.0 U 0.25 1 06/10/16 02:28 1,1,2-Trichloroethane 1.0 U 1.0 U 0.34 1 06/10/16 02:28 1,1-Dichloroethane (1,1-DCA) 1.0 U 1.0 U 0.20 1 06/10/16 02:28 1,1-Dichloroethene (1,1-DCE) 1.0 U 1.0 U 0.57 1 06/10/16 02:28 1,2-Dichloroethane 1.0 U 1.0 U 0.36 1 06/10/16 02:28 1,2-Dichloroethene, Total 2.0 U 2.0 U 0.63 1 06/10/16 02:28 1,2-Dichloropropane 1.0 U 1.0 U 0.20 1 06/10/16 02:28 2-Butanone (MEK) 5.0 U 5.0 U 5.0 U 0.81 1 06/10/16 02:28 2-Hexanone 5.0 U 5.0 U 5.0 U 1.7 I 06/10/16 02:28 4-Methyl-2-pentanone 5.0 U 5.0 U 1.3 I 06/10/16 02:28 Renzene 5.0 U 5.0 U 1.3 I 06/10/16 02:28 Benzene 1.0 U 1.0 U 0.020 I 06/10/16 02:28 Bromodichloromethane 1.0 U
1,1,2,2-Tetrachloroethane 1.0 U 1.0 U 0.25 1 06/10/16 02:28 1,1,2-Trichloroethane 1.0 U 1.0 U 0.34 1 06/10/16 02:28 1,1-Dichloroethane (1,1-DCA) 1.0 U 1.0 U 0.20 1 06/10/16 02:28 1,1-Dichloroethane (1,1-DCE) 1.0 U 1.0 U 0.57 1 06/10/16 02:28 1,2-Dichloroethane 1.0 U 1.0 U 0.36 1 06/10/16 02:28 1,2-Dichloroethane, Total 2.0 U 2.0 U 0.63 1 06/10/16 02:28 1,2-Dichloropropane 1.0 U 1.0 U 0.20 1 06/10/16 02:28 2-Butanone (MEK) 5.0 U 5.0 U 0.81 1 06/10/16 02:28 2-Hexanone 5.0 U 5.0 U 1.7 I 06/10/16 02:28 4-Methyl-2-pentanone 5.0 U 5.0 U 1.3 I 06/10/16 02:28 Acetone 5.0 U 5.0 U 1.3 I 06/10/16 02:28 Benzene 1.0 U 1.0 U 0.020 I 06/10/16 02:28 Bromodichloromethane 1.0 U 1.0 U 0.42 I 06/10/16 02:28 Bromomethane 1.0 U 1.0 U 0.029 I 06/
1,1-Dichloroethane (1,1-DCA) 1.0 U <
1,1-Dichloroethane (1,1-DCA) 1.0 U 1.0 U 1.0 U 0.20 1 06/10/16 02:28 1,1-Dichloroethene (1,1-DCE) 1.0 U 1.0 U 1.0 U 0.57 1 06/10/16 02:28 1,2-Dichloroethane 1.0 U 1.0 U 0.36 1 06/10/16 02:28 1,2-Dichloropropane 1.0 U 1.0 U 0.20 1 06/10/16 02:28 1,2-Dichloropropane 1.0 U 1.0 U 0.20 1 06/10/16 02:28 2-Butanone (MEK) 5.0 U 5.0 U 0.81 1 06/10/16 02:28 2-Hexanone 5.0 U 5.0 U 1.7 I 06/10/16 02:28 4-Methyl-2-pentanone 5.0 U 5.0 U 0.67 I 0.6710/16 02:28 Acetone 5.0 U 5.0 U 1.3 I 06/10/16 02:28 Benzene 1.0 U 1.0 U 0.20 I 0.6710/16 02:28 Bromodichloromethane 1.0 U 1.0 U 0.42 I 06/10/16 02:28 Bromomethane 1.0 U 1.0 U 0.29 I 06/10/16 02:28
1,2-Dichloroethane 1.0 U 1.0 U 2.0 U 0.36 U 1 06/10/16 02:28 1,2-Dichloroethene, Total 2.0 U 2.0 U 2.0 U 0.63 U 1 06/10/16 02:28 1,2-Dichloropropane 1.0 U 1.0 U 0.20 U 1 06/10/16 02:28 2-Butanone (MEK) 5.0 U 5.0 U 0.81 U 1 06/10/16 02:28 2-Hexanone 5.0 U 5.0 U 1.7 U 1 06/10/16 02:28 4-Methyl-2-pentanone 5.0 U 5.0 U 0.67 U 1 06/10/16 02:28 Acetone 5.0 U 5.0 U 1.3 U 1 06/10/16 02:28 Benzene 1.0 U 1.0 U 0.20 U 1 06/10/16 02:28 Bromodichloromethane 1.0 U 1.0 U 0.32 U 1 06/10/16 02:28 Bromoform 1.0 U 1.0 U 0.42 U 1 06/10/16 02:28 Bromomethane 1.0 U 1.0 U 0.29 U 1 06/10/16 02:28
1,2-Dichloroethene, Total 2.0 U 2.0 U 0.63 1 06/10/16 02:28 1,2-Dichloropropane 1.0 U 1.0 U 0.20 1 06/10/16 02:28 2-Butanone (MEK) 5.0 U 5.0 U 0.81 1 06/10/16 02:28 2-Hexanone 5.0 U 5.0 U 1.7 I 06/10/16 02:28 4-Methyl-2-pentanone 5.0 U 5.0 U 0.67 I 06/10/16 02:28 Acetone 5.0 U 5.0 U 1.3 I 06/10/16 02:28 Benzene 1.0 U 1.0 U 0.20 I 06/10/16 02:28 Bromodichloromethane 1.0 U 1.0 U 0.32 I 06/10/16 02:28 Bromoform 1.0 U 1.0 U 0.42 I 06/10/16 02:28 Bromomethane 1.0 U 1.0 U 0.29 I 06/10/16 02:28
1,2-Dichloropropane 1.0 U 1.0 U 0.20 1 06/10/16 02:28 2-Butanone (MEK) 5.0 U 5.0 U 0.81 1 06/10/16 02:28 2-Hexanone 5.0 U 5.0 U 1.7 I 06/10/16 02:28 4-Methyl-2-pentanone 5.0 U 5.0 U 0.67 I 06/10/16 02:28 Acetone 5.0 U 5.0 U 1.3 I 06/10/16 02:28 Benzene 1.0 U 1.0 U 0.20 I 06/10/16 02:28 Bromodichloromethane 1.0 U 1.0 U 0.32 I 06/10/16 02:28 Bromoform 1.0 U 1.0 U 0.42 I 06/10/16 02:28 Bromomethane 1.0 U 1.0 U 0.29 I 06/10/16 02:28
2-Butanone (MEK) 5.0 U 5.0 U 5.0 U 0.81 1 06/10/16 02:28 2-Hexanone 5.0 U 5.0 U 1.7 1 06/10/16 02:28 4-Methyl-2-pentanone 5.0 U 5.0 U 0.67 1 06/10/16 02:28 Acetone 5.0 U 5.0 U 1.3 1 06/10/16 02:28 Benzene 1.0 U 1.0 U 0.20 1 06/10/16 02:28 Bromodichloromethane 1.0 U 1.0 U 0.32 1 06/10/16 02:28 Bromoform 1.0 U 1.0 U 0.42 1 06/10/16 02:28 Bromomethane 1.0 U 1.0 U 0.29 1 06/10/16 02:28
2-Hexanone 5.0 U 5.0 U 5.0 U 1.7 I 06/10/16 02:28 4-Methyl-2-pentanone 5.0 U 5.0 U 5.0 U 0.67 I 06/10/16 02:28 Acetone 5.0 U 5.0 U 1.3 I 06/10/16 02:28 Benzene 1.0 U 1.0 U 0.20 I 06/10/16 02:28 Bromodichloromethane 1.0 U 1.0 U 0.32 I 06/10/16 02:28 Bromoform 1.0 U 1.0 U 0.42 I 06/10/16 02:28 Bromomethane 1.0 U 1.0 U 0.29 I 06/10/16 02:28
2-Hexanone 5.0 U 5.0 U 5.0 U 1.7 I 06/10/16 02:28 4-Methyl-2-pentanone 5.0 U 5.0 U 5.0 U 0.67 I 06/10/16 02:28 Acetone 5.0 U 5.0 U 1.3 I 06/10/16 02:28 Benzene 1.0 U 1.0 U 0.20 I 06/10/16 02:28 Bromodichloromethane 1.0 U 1.0 U 0.32 I 06/10/16 02:28 Bromoform 1.0 U 1.0 U 0.42 I 06/10/16 02:28 Bromomethane 1.0 U 1.0 U 0.29 I 06/10/16 02:28
Acetone 5.0 U 5.0 U 5.0 U 1.3 I 06/10/16 02:28 Benzene 1.0 U 1.0 U 1.0 U 0.20 I 06/10/16 02:28 Bromodichloromethane 1.0 U 1.0 U 0.32 I 06/10/16 02:28 Bromoform 1.0 U 1.0 U 0.42 I 06/10/16 02:28 Bromomethane 1.0 U 1.0 U 0.29 I 06/10/16 02:28
Acetone 5.0 U 5.0 U 5.0 I.3 1 06/10/16 02:28 Benzene 1.0 U 1.0 U 0.20 I 06/10/16 02:28 Bromodichloromethane 1.0 U 1.0 U 0.32 I 06/10/16 02:28 Bromoform 1.0 U 1.0 U 0.42 I 06/10/16 02:28 Bromomethane 1.0 U 1.0 0.29 I 06/10/16 02:28
Bromodichloromethane 1.0 U 1.0 U 0.32 I 06/10/16 02:28 Bromoform 1.0 U 1.0 U 0.42 I 06/10/16 02:28 Bromomethane 1.0 U 1.0 U 0.29 I 06/10/16 02:28
Bromoform 1.0 U 1.0 U 0.42 I 06/10/16 02:28 Bromomethane 1.0 U 1.0 0.29 I 06/10/16 02:28
Bromomethane 1.0 U 1.0 0.29 1 06/10/16 02:28
Carour Distinct 1.0 U 1.0 U.22 1 U0/10/10/2.20
Carbon Tetrachloride 1.0 U 1.0 0.45 1 06/10/16 02:28
Chlorobenzene 1.0 U 1.0 0.29 1 06/10/16 02:28
Chloroethane 1.0 U 1.0 0.24 1 06/10/16 02:28
Chloroform 1.0 U 1.0 0.25 1 06/10/16 02:28
Chloromethane (Methyl Chloride) 1.0 U 1.0 0.21 1 06/10/16 02:28
Dibromochloromethane 1.0 U 1.0 0.31 1 06/10/16 02:28
Dichloromethane (Methylene Chloride) 1.0 U 1.0 0.60 1 06/10/16 02:28
Ethylbenzene 1.0 U 1.0 0.20 1 06/10/16 02:28
Styrene 1.0 U 1.0 0.20 1 06/10/16 02:28
Tetrachloroethene (PCE) 1.0 U 1.0 0.30 1 06/10/16 02:28
Toluene 1.0 U 1.0 0.20 1 06/10/16 02:28
Trichloroethene (TCE) 1.0 U 1.0 0.22 1 06/10/16 02:28
Vinyl Chloride 1.0 U 1.0 0.32 1 06/10/16 02:28
cis-1,3-Dichloropropene 1.0 U 1.0 0.24 1 06/10/16 02:28
m,p-Xylenes 2.0 U 2.0 0.33 1 06/10/16 02:28
o-Xylene 1.0 U 1.0 0.20 1 06/10/16 02:28
trans-1,3-Dichloropropene 1.0 U 1.0 0.20 1 06/10/16 02:28

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobenzene	97	85 - 122	06/10/16 02:28		_
Dibromofluoromethane	99	89 - 119	06/10/16 02:28		
Toluene-d8	101	87 - 121	06/10/16 02:28		

Units: ug/L

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1605971

 Project:
 Akzo/1398.001.016
 Date Collected:
 06/07/16 12:38

 Sample Matrix:
 Water
 Date Received:
 06/07/16 17:20

 Sample Name:
 MW-4B
 Units: ug/L

 Lab Code:
 R1605971-008
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 02:52	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 02:52	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 02:52	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/10/16 02:52	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 02:52	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 02:52	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 02:52	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 02:52	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 02:52	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 02:52	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 02:52	
Acetone	5.0 U	5.0	1.3	1	06/10/16 02:52	
Benzene	1.0 U	1.0	0.20	1	06/10/16 02:52	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 02:52	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 02:52	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 02:52	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 02:52	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 02:52	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 02:52	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 02:52	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 02:52	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 02:52	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 02:52	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 02:52	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 02:52	
Styrene	1.0 U	1.0	0.20	1	06/10/16 02:52	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 02:52	
Toluene	1.0 U	1.0	0.20	1	06/10/16 02:52	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 02:52	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 02:52	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 02:52	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 02:52	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 02:52	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 02:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/10/16 02:52	
Dibromofluoromethane	100	89 - 119	06/10/16 02:52	
Toluene-d8	102	87 - 121	06/10/16 02:52	

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1605971

 Project:
 Akzo/1398.001.016
 Date Collected:
 06/07/16 12:58

 Sample Matrix:
 Water
 Date Received:
 06/07/16 17:20

 Sample Name:
 MW-11
 Units: ug/L

 Lab Code:
 R1605971-009
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 19:04	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 19:04	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 19:04	
1,1-Dichloroethane (1,1-DCA)	1.8	1.0	0.20	1	06/10/16 19:04	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 19:04	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 19:04	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 19:04	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 19:04	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 19:04	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 19:04	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 19:04	
Acetone	5.0 U	5.0	1.3	1	06/10/16 19:04	
Benzene	1.0 U	1.0	0.20	1	06/10/16 19:04	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 19:04	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 19:04	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 19:04	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 19:04	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 19:04	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 19:04	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 19:04	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 19:04	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 19:04	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 19:04	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 19:04	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 19:04	
Styrene	1.0 U	1.0	0.20	1	06/10/16 19:04	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 19:04	
Toluene	1.0 U	1.0	0.20	1	06/10/16 19:04	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 19:04	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 19:04	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 19:04	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 19:04	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 19:04	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 19:04	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	06/10/16 19:04	
Dibromofluoromethane	105	89 - 119	06/10/16 19:04	
Toluene-d8	105	87 - 121	06/10/16 19:04	

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1605971

 Project:
 Akzo/1398.001.016
 Date Collected:
 06/07/16 13:07

Sample Matrix: Water Date Received: 06/07/16 17:20

 Sample Name:
 MW-11B
 Units: ug/L

 Lab Code:
 R1605971-010
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

1,1,1-Trichloroethane (TCA) 1.0 U 1.0 U 0.36 1 06/10/16 03:41 1,1,2,2-Tetrachloroethane 1.0 U 1.0 U 0.25 1 06/10/16 03:41 1,1,2-Trichloroethane 1.0 U 1.0 U 0.34 1 06/10/16 03:41 1,1-Dichloroethane (1,1-DCA) 1.0 U 1.0 U 0.20 1 06/10/16 03:41	
1,1,2,2-Tetrachloroethane 1.0 U 1.0 U 0.25 1 06/10/16 03:41 1,1,2-Trichloroethane 1.0 U 1.0 U 0.34 1 06/10/16 03:41	
-,-,	
1,1-Dichloroethane (1,1-DCA) 1.0 U 1.0 0.20 1 06/10/16 03:41	
1,1-Dichloroethene (1,1-DCE) 1.0 U 1.0 0.57 1 06/10/16 03:41	
1,2-Dichloroethane 1.0 U 1.0 0.36 1 06/10/16 03:41	
1,2-Dichloroethene, Total 2.0 U 2.0 0.63 1 06/10/16 03:41	
1,2-Dichloropropane 1.0 U 1.0 0.20 1 06/10/16 03:41	
2-Butanone (MEK) 5.0 U 5.0 0.81 1 06/10/16 03:41	
2-Hexanone 5.0 U 5.0 1.7 1 06/10/16 03:41	
4-Methyl-2-pentanone 5.0 U 5.0 0.67 1 06/10/16 03:41	
Acetone 5.0 U 5.0 1.3 1 06/10/16 03:41	
Benzene 1.0 U 1.0 0.20 1 06/10/16 03:41	
Bromodichloromethane 1.0 U 1.0 0.32 1 06/10/16 03:41	
Bromoform 1.0 U 1.0 0.42 1 06/10/16 03:41	
Bromomethane 1.0 U 1.0 0.29 1 06/10/16 03:41	
Carbon Disulfide 1.0 U 1.0 0.22 1 06/10/16 03:41	
Carbon Tetrachloride 1.0 U 1.0 0.45 1 06/10/16 03:41	
Chlorobenzene 1.0 U 1.0 0.29 1 06/10/16 03:41	
Chloroethane 1.0 U 1.0 0.24 1 06/10/16 03:41	
Chloroform 1.0 U 1.0 0.25 1 06/10/16 03:41	
Chloromethane (Methyl Chloride) 1.0 U 1.0 0.21 1 06/10/16 03:41	
Dibromochloromethane 1.0 U 1.0 0.31 1 06/10/16 03:41	
Dichloromethane (Methylene Chloride) 1.0 U 1.0 0.60 1 06/10/16 03:41	
Ethylbenzene 1.0 U 1.0 0.20 1 06/10/16 03:41	
Styrene 1.0 U 1.0 0.20 1 06/10/16 03:41	
Tetrachloroethene (PCE) 1.0 U 1.0 0.30 1 06/10/16 03:41	
Toluene 1.0 U 1.0 0.20 1 06/10/16 03:41	
Trichloroethene (TCE) 1.0 U 1.0 0.22 1 06/10/16 03:41	
Vinyl Chloride 1.0 U 1.0 0.32 1 06/10/16 03:41	
cis-1,3-Dichloropropene 1.0 U 1.0 0.24 1 06/10/16 03:41	
m,p-Xylenes 2.0 U 2.0 0.33 1 06/10/16 03:41	
o-Xylene 1.0 U 1.0 0.20 1 06/10/16 03:41	
trans-1,3-Dichloropropene 1.0 U 1.0 0.20 1 06/10/16 03:41	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobenzene	98	85 - 122	06/10/16 03:41		
Dibromofluoromethane	100	89 - 119	06/10/16 03:41		
Toluene-d8	102	87 - 121	06/10/16 03:41		

Analytical Report

Client:Barton & Loguidice, PCService Request:R1605971Project:Akzo/1398.001.016Date Collected:06/07/16 13:38Sample Matrix:WaterDate Received:06/07/16 17:20

 Sample Name:
 MW-9
 Units: ug/L

 Lab Code:
 R1605971-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	6.4	1.0	0.36	1	06/10/16 19:28	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 19:28	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 19:28	
1,1-Dichloroethane (1,1-DCA)	0.45 ј	1.0	0.20	1	06/10/16 19:28	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 19:28	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 19:28	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 19:28	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 19:28	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 19:28	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 19:28	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 19:28	
Acetone	5.0 U	5.0	1.3	1	06/10/16 19:28	
Benzene	1.0 U	1.0	0.20	1	06/10/16 19:28	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 19:28	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 19:28	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 19:28	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 19:28	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 19:28	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 19:28	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 19:28	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 19:28	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 19:28	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 19:28	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 19:28	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 19:28	
Styrene	1.0 U	1.0	0.20	1	06/10/16 19:28	
Tetrachloroethene (PCE)	0.71 ј	1.0	0.30	1	06/10/16 19:28	
Toluene	1.0 U	1.0	0.20	1	06/10/16 19:28	
Trichloroethene (TCE)	0.36 Ј	1.0	0.22	1	06/10/16 19:28	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 19:28	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 19:28	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 19:28	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 19:28	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 19:28	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	06/10/16 19:28	
Dibromofluoromethane	104	89 - 119	06/10/16 19:28	
Toluene-d8	105	87 - 121	06/10/16 19:28	

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1605971

 Project:
 Akzo/1398.001.016
 Date Collected:
 06/07/16 13:46

Sample Matrix: Water Date Received: 06/07/16 17:20

 Sample Name:
 MW-9B
 Units: ug/L

 Lab Code:
 R1605971-012
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

1,1,1-Trichloroethane (TCA)	Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,2,2-Tetrachloroethane	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 04:29	·
1,1-Dichloroethane (1,1-DCA)		1.0 U	1.0	0.25	1	06/10/16 04:29	
1.1-Dichloroethene (1,1-DCE)	1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 04:29	
1.1-Dichloroethene (1,1-DCE) 1.0 U 1.0 0.57 1 06/10/16 04:29 1,2-Dichloroethene	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/10/16 04:29	
1,2-Dichloroethane		1.0 U	1.0	0.57	1	06/10/16 04:29	
1.0 U		1.0 U	1.0	0.36	1	06/10/16 04:29	
2-Butanone (MEK) 5.0 U 5.0 U.5.0 U.5	1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 04:29	
2-Hexanone 5.0 U 5.0 1.7 1 06/10/16 04:29		1.0 U	1.0	0.20	1	06/10/16 04:29	
2-Hexanone 5.0 U 5.0 1.7 1 06/10/16 04:29		5.0 U	5.0	0.81	1	06/10/16 04:29	
A-Methyl-2-pentanone S.0 U S.0 0.67 1 06/10/16 04:29	, ,	5.0 U	5.0	1.7	1	06/10/16 04:29	
Acetone S.O. U S.O. 1.3 1 06/10/16 04:29		5.0 U	5.0	0.67	1	06/10/16 04:29	-
Bromodichloromethane 1.0 U 1.0 U 0.32 1 06/10/16 04:29 Bromoform 1.0 U 1.0 U 1.0 0.42 1 06/10/16 04:29 Bromomethane 1.0 U 1.0 U 1.0 0.29 1 06/10/16 04:29 Carbon Disulfide 1.0 U 1.0 U 0.022 1 06/10/16 04:29 Carbon Tetrachloride 1.0 U 1.0 U 0.45 1 06/10/16 04:29 Chlorothane 1.0 U 1.0 U 0.029 1 06/10/16 04:29 Chlorothane 1.0 U 1.0 U 0.024 1 06/10/16 04:29 Chloromethane (Methyl Chloride) 1.0 U 1.0 U 0.025 1 06/10/16 04:29 Dibromochloromethane (Methylene Chloride) 1.0 U 1.0 U 0.0 0.21 1 06/10/16 04:29 Dibromothane (Methylene Chloride) 1.0 U 1.0 U 0.0 0.31 1 06/10/16 04:29 Ethylbenzene 1.0 U 1.0 U 0.0 0.60 1 06/10/16 04:29 Styrene 1.0 U 1.0 U 0.0 0.20 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 0.0 0.20	• •	5.0 U	5.0	1.3	1	06/10/16 04:29	
Bromoform 1.0 U 1.0 U 1.0 U 0.42 1 06/10/16 04:29 Bromomethane 1.0 U 1.0 U 0.29 1 06/10/16 04:29 Carbon Disulfide 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Carbon Tetrachloride 1.0 U 1.0 U 0.45 1 06/10/16 04:29 Chlorobenzene 1.0 U 1.0 U 0.29 1 06/10/16 04:29 Chlorotethane 1.0 U 1.0 U 0.24 1 06/10/16 04:29 Chloroform 1.0 U 1.0 U 0.25 1 06/10/16 04:29 Chloromethane (Methyl Chloride) 1.0 U 1.0 U 0.21 1 06/10/16 04:29 Dibromochloromethane (Methylene Chloride) 1.0 U 1.0 U 0.31 1 06/10/16 04:29 Dichloromethane (Methylene Chloride) 1.0 U 1.0 0.00 1 06/10/16 04:29 Styrene 1.0 U 1.0 0.20 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 0.22 1 06/10/16 04:29 Vinyl Chloride <td>Benzene</td> <td>1.0 U</td> <td>1.0</td> <td>0.20</td> <td>1</td> <td>06/10/16 04:29</td> <td></td>	Benzene	1.0 U	1.0	0.20	1	06/10/16 04:29	
Bromomethane	Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 04:29	
Carbon Disulfide 1.0 U 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Carbon Tetrachloride 1.0 U 1.0 U 1.0 U 0.45 1 06/10/16 04:29 Chlorobenzene 1.0 U 1.0 U 0.29 1 06/10/16 04:29 Chloroethane 1.0 U 1.0 U 0.24 1 06/10/16 04:29 Chloroform 1.0 U 1.0 U 0.25 1 06/10/16 04:29 Chloromethane (Methyl Chloride) 1.0 U 1.0 U 0.21 1 06/10/16 04:29 Dibromochloromethane (Methylene Chloride) 1.0 U 1.0 U 0.31 1 06/10/16 04:29 Ethylbenzene 1.0 U 1.0 U 0.60 1 06/10/16 04:29 Styrene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 0.30 1 06/10/16 04:29 Toluene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Tichloroethene (TCE) 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 <	Bromoform	1.0 U	1.0	0.42	1	06/10/16 04:29	
Carbon Disulfide 1.0 U 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Carbon Tetrachloride 1.0 U 1.0 U 1.0 0.45 1 06/10/16 04:29 Chlorobenzene 1.0 U 1.0 U 0.29 1 06/10/16 04:29 Chloroethane 1.0 U 1.0 U 1.0 0.24 1 06/10/16 04:29 Chloroform 1.0 U 1.0 U 1.0 0.25 1 06/10/16 04:29 Chloromethane (Methyl Chloride) 1.0 U 1.0 U 1.0 0.31 1 06/10/16 04:29 Dibromochloromethane (Methylene Chloride) 1.0 U 1.0 U 0.31 1 06/10/16 04:29 Ethylbenzene 1.0 U 1.0 U 0.60 1 06/10/16 04:29 Styrene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 0.30 1 06/10/16 04:29 Toluene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Tinyl Chloride 1.0 U 1.0 U 0.32 1 0	Bromomethane	1.0 U	1.0	0.29	1	06/10/16 04:29	-
Chlorobenzene 1.0 U 1.0 U 1.0 U 0.29 1 06/10/16 04:29 Chloroform 1.0 U 1.0 U 1.0 U 0.24 1 06/10/16 04:29 Chloromethane (Methyl Chloride) 1.0 U 1.0 U 1.0 U 0.25 1 06/10/16 04:29 Chloromethane (Methyl Chloride) 1.0 U 1.0 U 0.21 1 06/10/16 04:29 Dibromochloromethane (Methylene Chloride) 1.0 U 1.0 U 0.31 1 06/10/16 04:29 Ethylbenzene 1.0 U 1.0 U 0.60 1 06/10/16 04:29 Styrene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 0.30 1 06/10/16 04:29 Toluene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 1 06/10/16 04:29 o-Xylene 1.0 U		1.0 U	1.0	0.22	1	06/10/16 04:29	
Chloroethane 1.0 U 1.0 U 1.0 U 0.24 1 06/10/16 04:29 Chloroform 1.0 U 1.0 U 1.0 U 0.25 1 06/10/16 04:29 Chloromethane (Methyl Chloride) 1.0 U 1.0 U 1.0 U 1.0 U 0.31 1 06/10/16 04:29 Dibromochloromethane (Methylene Chloride) 1.0 U 1.0 U 0.60 1 06/10/16 04:29 Ethylbenzene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Styrene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 0.30 1 06/10/16 04:29 Toluene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 vinyl Chloropropene 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 1 06/10/16 04:29 o-Xylene 1.0 U 1.0 U<	Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 04:29	
Chloroform 1.0 U 1.0 U 1.0 U 0.25 1 06/10/16 04:29 Chloromethane (Methyl Chloride) 1.0 U 1.0 U 1.0 U 0.21 1 06/10/16 04:29 Dibromochloromethane 1.0 U 1.0 U 0.31 1 06/10/16 04:29 Dichloromethane (Methylene Chloride) 1.0 U 1.0 U 0.60 1 06/10/16 04:29 Ethylbenzene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Styrene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 0.30 1 06/10/16 04:29 Toluene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U		1.0 U	1.0	0.29	1	06/10/16 04:29	
Chloroform 1.0 U 1.0 U 1.0 U 0.25 1 06/10/16 04:29 Chloromethane (Methyl Chloride) 1.0 U 1.0 U 1.0 U 0.21 1 06/10/16 04:29 Dibromochloromethane 1.0 U 1.0 U 0.31 1 06/10/16 04:29 Dichloromethane (Methylene Chloride) 1.0 U 1.0 U 0.60 1 06/10/16 04:29 Ethylbenzene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Styrene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 0.30 1 06/10/16 04:29 Toluene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 1 06/10/16 04:29 o-Xylene 1.0 U 1.0 U 0.20	Chloroethane	1.0 U	1.0	0.24	1	06/10/16 04:29	
Dibromochloromethane 1.0 U 1.0 U 1.0 U 0.31 D 1 06/10/16 04:29 Dichloromethane (Methylene Chloride) 1.0 U 1.0 U 1.0 U 0.60 D 1 06/10/16 04:29 Ethylbenzene 1.0 U 1.0 U 0.20 D 1 06/10/16 04:29 Styrene 1.0 U 1.0 U 0.30 D 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 0.20 D 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 0.22 D 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 D 1 06/10/16 04:29 vinyl Chloropropene 1.0 U 1.0 U 0.24 D 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 D 1 06/10/16 04:29 o-Xylene 1.0 U 1.0 U 0.24 D 1 06/10/16 04:29		1.0 U	1.0	0.25	1	06/10/16 04:29	-
Dibromochloromethane 1.0 U 1.0 U 1.0 U 0.31 1 06/10/16 04:29 Dichloromethane (Methylene Chloride) 1.0 U 1.0 U 0.60 1 06/10/16 04:29 Ethylbenzene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Styrene 1.0 U 1.0 U 0.30 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Toluene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 1 06/10/16 04:29 o-Xylene 1.0 U 1.0 U 0.20 1 06/10/16 04:29	Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 04:29	
Ethylbenzene 1.0 U 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Styrene 1.0 U 1.0 U </td <td></td> <td>1.0 U</td> <td>1.0</td> <td>0.31</td> <td>1</td> <td>06/10/16 04:29</td> <td></td>		1.0 U	1.0	0.31	1	06/10/16 04:29	
Ethylbenzene 1.0 U 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Styrene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 0.30 1 06/10/16 04:29 Toluene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 1 06/10/16 04:29 o-Xylene 1.0 U 1.0 U 0.20 1 06/10/16 04:29	Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 04:29	
Styrene 1.0 U 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Tetrachloroethene (PCE) 1.0 U 1.0 U 1.0 U 0.30 1 06/10/16 04:29 Toluene 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 1 06/10/16 04:29 o-Xylene 1.0 U 1.0 U 0.20 1 06/10/16 04:29	•	1.0 U	1.0	0.20	1	06/10/16 04:29	
Tetrachloroethene (PCE) 1.0 U 1.0 U 0.30 1 06/10/16 04:29 Toluene 1.0 U 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 1 06/10/16 04:29 o-Xylene 1.0 U 1.0 U 0.20 1 06/10/16 04:29		1.0 U	1.0	0.20	1	06/10/16 04:29	
Toluene 1.0 U 1.0 U 1.0 U 0.20 1 06/10/16 04:29 Trichloroethene (TCE) 1.0 U 1.0 U 1.0 U 0.22 1 06/10/16 04:29 Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 1 06/10/16 04:29 o-Xylene 1.0 U 1.0 U 0.20 1 06/10/16 04:29		1.0 U	1.0	0.30	1	06/10/16 04:29	
Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 I 06/10/16 04:29 o-Xylene 1.0 U 1.0 U 0.20 I 0.6/10/16 04:29		1.0 U	1.0	0.20	1	06/10/16 04:29	
Vinyl Chloride 1.0 U 1.0 U 0.32 1 06/10/16 04:29 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 1 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 1 06/10/16 04:29 o-Xylene 1.0 U 1.0 U 0.20 1 06/10/16 04:29	Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 04:29	
cis-1,3-Dichloropropene 1.0 U 1.0 U 1.0 U 0.24 I 06/10/16 04:29 m,p-Xylenes 2.0 U 2.0 U 0.33 I 06/10/16 04:29 o-Xylene 1.0 U 1.0 U 0.20 I 06/10/16 04:29	· · · · · · · · · · · · · · · · · · ·	1.0 U	1.0	0.32	1	06/10/16 04:29	
m,p-Xylenes 2.0 U 2.0 0.33 1 06/10/16 04:29 o-Xylene 1.0 U 1.0 0.20 1 06/10/16 04:29		1.0 U	1.0	0.24	1	06/10/16 04:29	-
o-Xylene 1.0 U 1.0 0.20 1 06/10/16 04:29		2.0 U	2.0	0.33	1	06/10/16 04:29	
		1.0 U	1.0	0.20	1	06/10/16 04:29	
	· · · · · · · · · · · · · · · · · · ·	1.0 U	1.0	0.20	1	06/10/16 04:29	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	06/10/16 04:29	
Dibromofluoromethane	103	89 - 119	06/10/16 04:29	
Toluene-d8	102	87 - 121	06/10/16 04:29	

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1605971

 Project:
 Akzo/1398.001.016
 Date Collected:
 06/07/16 13:59

Sample Matrix: Water

Date Received: 06/07/16 17:20

 Sample Name:
 MW-10
 Units: ug/L

 Lab Code:
 R1605971-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 04:53	·
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 04:53	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 04:53	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/10/16 04:53	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 04:53	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 04:53	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 04:53	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 04:53	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 04:53	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 04:53	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 04:53	
Acetone	5.0 U	5.0	1.3	1	06/10/16 04:53	
Benzene	1.0 U	1.0	0.20	1	06/10/16 04:53	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 04:53	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 04:53	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 04:53	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 04:53	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 04:53	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 04:53	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 04:53	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 04:53	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 04:53	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 04:53	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 04:53	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 04:53	
Styrene	1.0 U	1.0	0.20	1	06/10/16 04:53	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 04:53	
Toluene	1.0 U	1.0	0.20	1	06/10/16 04:53	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 04:53	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 04:53	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 04:53	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 04:53	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 04:53	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 04:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobenzene	97	85 - 122	06/10/16 04:53		
Dibromofluoromethane	99	89 - 119	06/10/16 04:53		
Toluene-d8	102	87 - 121	06/10/16 04:53		

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1605971

 Project:
 Akzo/1398.001.016
 Date Collected:
 06/07/16 14:04

Sample Matrix: Water Date Received: 06/07/16 17:20

 Sample Name:
 MW-10B
 Units: ug/L

 Lab Code:
 R1605971-014
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 19:53	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 19:53	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 19:53	
1,1-Dichloroethane (1,1-DCA)	2.2	1.0	0.20	1	06/10/16 19:53	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 19:53	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 19:53	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 19:53	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 19:53	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 19:53	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 19:53	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 19:53	
Acetone	1.5 ј	5.0	1.3	1	06/10/16 19:53	
Benzene	1.0 U	1.0	0.20	1	06/10/16 19:53	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 19:53	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 19:53	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 19:53	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 19:53	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 19:53	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 19:53	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 19:53	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 19:53	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 19:53	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 19:53	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 19:53	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 19:53	
Styrene	1.0 U	1.0	0.20	1	06/10/16 19:53	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 19:53	
Toluene	1.0 U	1.0	0.20	1	06/10/16 19:53	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 19:53	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 19:53	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 19:53	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 19:53	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 19:53	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 19:53	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	06/10/16 19:53	
Dibromofluoromethane	102	89 - 119	06/10/16 19:53	
Toluene-d8	104	87 - 121	06/10/16 19:53	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971 **Date Collected:** 06/07/16 14:31 **Project:** Akzo/1398.001.016 **Date Received:** 06/07/16 17:20

Sample Matrix: Water

Sample Name: MW-2 Units: ug/L Lab Code: R1605971-015 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 20:17	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 20:17	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 20:17	
1,1-Dichloroethane (1,1-DCA)	6.4	1.0	0.20	1	06/10/16 20:17	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 20:17	
1,2-Dichloroethane	0.58 Ј	1.0	0.36	1	06/10/16 20:17	
1,2-Dichloroethene, Total	0.67 J	2.0	0.63	1	06/10/16 20:17	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 20:17	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 20:17	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 20:17	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 20:17	
Acetone	1.5 Ј	5.0	1.3	1	06/10/16 20:17	
Benzene	9.7	1.0	0.20	1	06/10/16 20:17	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 20:17	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 20:17	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 20:17	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 20:17	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 20:17	
Chlorobenzene	3.7	1.0	0.29	1	06/10/16 20:17	
Chloroethane	50	1.0	0.24	1	06/10/16 20:17	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 20:17	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 20:17	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 20:17	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 20:17	
Ethylbenzene	3.3	1.0	0.20	1	06/10/16 20:17	
Styrene	1.0 U	1.0	0.20	1	06/10/16 20:17	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 20:17	
Toluene	55	1.0	0.20	1	06/10/16 20:17	
Trichloroethene (TCE)	1.2	1.0	0.22	1	06/10/16 20:17	
Vinyl Chloride	0.39 Ј	1.0	0.32	1	06/10/16 20:17	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 20:17	
m,p-Xylenes	6.2	2.0	0.33	1	06/10/16 20:17	
o-Xylene	2.0	1.0	0.20	1	06/10/16 20:17	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 20:17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	06/10/16 20:17	
Dibromofluoromethane	103	89 - 119	06/10/16 20:17	
Toluene-d8	102	87 - 121	06/10/16 20:17	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 10:45

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-1 Units: ug/L

Lab Code: R1605971-001 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	81	1.0	1	06/13/16 13:33	_

Analytical Report

Client: Barton & Loguidice, PC

Service Request: R1605971

Date Collected: 06/07/16

Project: Akzo/1398.001.016

Date Collected: 00/07/10

Sample Matrix: Water

Date Received: 06/07/16 17:20

Sample Name: Dupe-X

Units: ug/L

Lab Code: R1605971-002

Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	76	1.0	1	06/13/16 13:44	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 10:59

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-1B Units: ug/L

Lab Code: R1605971-003 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	3.5	1.0	1	06/13/16 13:53	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 11:21

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-5 Units: ug/L

Lab Code: R1605971-004 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	1.0 U	1.0	1	06/13/16 14:03	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 11:51

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-3 Units: ug/L

Lab Code: R1605971-005 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	1.0 U	1.0	1	06/13/16 14:12	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 12:00

Sample Matrix: Water Date Received: 06/07/16 17:20

 Sample Name:
 MW-3B
 Units: ug/L

 Lab Code:
 R1605971-006
 Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	38	1.0	1	06/13/16 14:22	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 12:30

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-4 Units: ug/L

Lab Code: R1605971-007 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	1.0 U	1.0	1	06/13/16 14:33	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 12:38

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-4B Units: ug/L

Lab Code: R1605971-008 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	6.1	1.0	1	06/13/16 14:55	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 12:58

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-11 Units: ug/L

Lab Code: R1605971-009 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	92	1.0	1	06/13/16 15:03	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 13:07

Sample Matrix: Water Date Received: 06/07/16 17:20

 Sample Name:
 MW-11B
 Units: ug/L

 Lab Code:
 R1605971-010
 Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	17	1.0	1	06/13/16 15:12	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 13:38

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-9 Units: ug/L

Lab Code: R1605971-011 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	1.0 U	1.0	1	06/13/16 15:21	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Date Collected: 06/07/16 13:46 **Project:** Akzo/1398.001.016

Sample Matrix: Water **Date Received:** 06/07/16 17:20

Sample Name: MW-9B Units: ug/L Lab Code: R1605971-012

Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	11	1.0	1	06/13/16 15:29	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 13:59

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-10 Units: ug/L

Lab Code: R1605971-013 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	1.0 U	1.0	1	06/13/16 15:37	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 14:04

Sample Matrix: Water Date Received: 06/07/16 17:20

 Sample Name:
 MW-10B
 Units: ug/L

 Lab Code:
 R1605971-014
 Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	57	1.0	1	06/13/16 15:46	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 14:31

Sample Matrix: Water Date Received: 06/07/16 17:20

 Sample Name:
 MW-2
 Units: ug/L

 Lab Code:
 R1605971-015
 Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	5300	100	100	06/14/16 15:02	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Sample Name:

Water

Service Request: R1605971

Date Collected: 06/07/16 10:45

Date Received: 06/07/16 17:20

MW-1 Basis: NA

Lab Code: R1605971-001

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	190	ug/L	100	1	06/17/16 08:59	06/16/16	
Manganese, Dissolved	200.7	234	ug/L	10	1	06/17/16 08:59	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Sample Name:

Water

Service Request: R1605971

Date Collected: 06/07/16

Date Received: 06/07/16 17:20

Dupe-X Basis: NA

Lab Code: R1605971-002

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	180	ug/L	100	1	06/17/16 09:03	06/16/16	
Manganese, Dissolved	200.7	224	ug/L	10	1	06/17/16 09:03	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Water

Service Request: R1605971

Date Collected: 06/07/16 10:59

Date Received: 06/07/16 17:20

Sample Name: MW-1B Basis: NA

Lab Code: R1605971-003

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	100 U	ug/L	100	1	06/17/16 09:07	06/16/16	
Manganese, Dissolved	200.7	48	ug/L	10	1	06/17/16 09:07	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Sample Name:

Water

Service Request: R1605971

Date Collected: 06/07/16 11:21

Date Received: 06/07/16 17:20

MW-5 Basis: NA

Lab Code: R1605971-004

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	100 U	ug/L	100	1	06/17/16 09:11	06/16/16	
Manganese, Dissolved	200.7	12	ug/L	10	1	06/17/16 09:11	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 11:51

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-3 Basis: NA

Lab Code: R1605971-005

Inorganic Parameters

Analysis Analyte Name Method Result Units **MRL** Dil. **Date Analyzed Date Extracted** 200.7 100 U Iron, Dissolved ug/L 100 06/17/16 09:15 06/16/16 Manganese, Dissolved 200.7 11 ug/L 10 1 06/17/16 09:15 06/16/16

Service Request: R1605971

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Water

Service Request: R1605971

Date Collected: 06/07/16 12:00

Date Received: 06/07/16 17:20

MW-3B **Sample Name:** Basis: NA

Lab Code: R1605971-006

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	100 U	ug/L	100	1	06/17/16 09:18	06/16/16	
Manganese, Dissolved	200.7	58	ug/L	10	1	06/17/16 09:18	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Sample Name:

Water

Service Request: R1605971

Date Collected: 06/07/16 12:30

Date Received: 06/07/16 17:20

MW-4 Basis: NA

Lab Code: R1605971-007

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	100 U	ug/L	100	1	06/17/16 09:30	06/16/16	
Manganese, Dissolved	200.7	10 U	ug/L	10	1	06/17/16 09:30	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 12:38

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-4B Basis: NA

Lab Code: R1605971-008

Inorganic Parameters

Analysis

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	100 U	ug/L	100	1	06/17/16 09:34	06/16/16	
Manganese, Dissolved	200.7	157	ug/L	10	1	06/17/16 09:34	06/16/16	

Service Request: R1605971

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 12:58

Sample Matrix: Water

Date Received: 06/07/16 17:20

Service Request: R1605971

Sample Name: MW-11 Basis: NA

Lab Code: R1605971-009

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	120	ug/L	100	1	06/17/16 09:38	06/16/16	
Manganese, Dissolved	200.7	121	ug/L	10	1	06/17/16 09:38	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request: R1605971

Date Collected: 06/07/16 13:07

Date Received: 06/07/16 17:20

Sample Name: MW-11B Basis: NA

Lab Code: R1605971-010

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	100 U	ug/L	100	1	06/17/16 09:42	06/16/16	
Manganese, Dissolved	200.7	16	ug/L	10	1	06/17/16 09:42	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

200.7

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 13:38

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-9 Basis: NA

11

Lab Code: R1605971-011

Manganese, Dissolved

Inorganic Parameters

ug/L

10

1

Analysis Analyte Name Method Result Units **MRL** Dil. **Date Analyzed Date Extracted** 200.7 100 U Iron, Dissolved ug/L 100 06/17/16 09:45 06/16/16

Service Request: R1605971

06/17/16 09:45

06/16/16

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016 **Date Collected:** 06/07/16 13:46

Sample Matrix: Water Date Received: 06/07/16 17:20

Sample Name: MW-9B Basis: NA

Lab Code: R1605971-012

Inorganic Parameters

Analysis

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	100 U	ug/L	100	1	06/17/16 09:49	06/16/16	
Manganese, Dissolved	200.7	24	ug/L	10	1	06/17/16 09:49	06/16/16	

Service Request: R1605971

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Water

Service Request: R1605971

Date Collected: 06/07/16 13:59

Date Received: 06/07/16 17:20

Sample Name: MW-10 Basis: NA

Lab Code: R1605971-013

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	100 U	ug/L	100	1	06/17/16 09:53	06/16/16	
Manganese, Dissolved	200.7	141	ug/L	10	1	06/17/16 09:53	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: V

Water

Service Request: R1605971

Date Collected: 06/07/16 14:04

Date Received: 06/07/16 17:20

Sample Name: MW-10B Basis: NA

Lab Code: R1605971-014

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	100 U	ug/L	100	1	06/17/16 09:57	06/16/16	
Manganese, Dissolved	200.7	66	ug/L	10	1	06/17/16 09:57	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Water

Service Request: R1605971

Date Collected: 06/07/16 14:31

Date Received: 06/07/16 17:20

Sample Name: MW-2 Basis: NA

Lab Code: R1605971-015

Inorganic Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	4650	ug/L	100	1	06/17/16 10:01	06/16/16	
Manganese, Dissolved	200.7	2080	ug/L	10	1	06/17/16 10:01	06/16/16	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Sample Name:

Water

Service Request: R1605971

Date Collected: 06/07/16 10:45

Date Received: 06/07/16 17:20

MW-1 Basis: NA

Lab Code: R1605971-001

General Chemistry Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 20:17	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 20:17	
Sulfate	300.0	46.6	mg/L	2.0	10	06/08/16 20:17	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: W

Sample Name:

Water

Service Request: R1605971 **Date Collected:** 06/07/16

Date Received: 06/07/16 17:20

Date Received: 00/07/10 17.20

Dupe-X Basis: NA

Lab Code: R1605971-002

General Chemistry Parameters

	1						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 19:40	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 19:40	
Sulfate	300.0	48.3	mg/L	2.0	10	06/08/16 19:40	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Water

Service Request: R1605971

Date Collected: 06/07/16 10:59

Date Received: 06/07/16 17:20

Sample Name: MW-1B Basis: NA

Lab Code: R1605971-003

General Chemistry Parameters

	1						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 19:52	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 19:52	
Sulfate	300.0	1030	mg/L	40	200	06/09/16 15:32	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: V

Water

Service Request: R1605971

Date Collected: 06/07/16 11:21

Date Received: 06/07/16 17:20

Sample Name: MW-5 Basis: NA

Lab Code: R1605971-004

General Chemistry Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	2.7	mg/L	1.0	10	06/08/16 21:14	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 21:14	
Sulfate	300.0	58.2	mg/L	2.0	10	06/08/16 21:14	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: \

Water

Service Request: R1605971

Date Collected: 06/07/16 11:51

Date Received: 06/07/16 17:20

Sample Name: MW-3 Basis: NA

Lab Code: R1605971-005

General Chemistry Parameters

	1						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 21:26	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 21:26	
Sulfate	300.0	128	mg/L	4.0	20	06/09/16 15:44	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request: R1605971

Date Collected: 06/07/16 12:00

Date Received: 06/07/16 17:20

Sample Name: MW-3B Basis: NA

Lab Code: R1605971-006

General Chemistry Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 21:38	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 21:38	
Sulfate	300.0	38.0	mg/L	2.0	10	06/08/16 21:38	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request: R1605971

Date Collected: 06/07/16 12:30

Date Received: 06/07/16 17:20

Sample Name: MW-4 Basis: NA

Lab Code: R1605971-007

General Chemistry Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 21:49	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 21:49	
Sulfate	300.0	17.8	mg/L	2.0	10	06/08/16 21:49	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Sample Name:

Water

Service Request: R1605971

Date Collected: 06/07/16 12:38

Date Received: 06/07/16 17:20

MW-4B Basis: NA

Lab Code: R1605971-008

General Chemistry Parameters

	1 illuly 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.3	mg/L	1.0	10	06/08/16 22:01	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 22:01	
Sulfate	300.0	1120	mg/L	40	200	06/09/16 15:56	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request: R1605971

Date Collected: 06/07/16 12:58

Date Received: 06/07/16 17:20

Sample Name: MW-11 Basis: NA

Lab Code: R1605971-009

General Chemistry Parameters

	rinarysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 22:14	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 22:14	
Sulfate	300.0	77.8	mg/L	2.0	10	06/08/16 22:14	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Water

Service Request: R1605971

Date Collected: 06/07/16 13:07

Date Received: 06/07/16 17:20

Sample Name: MW-11B Basis: NA

Lab Code: R1605971-010

General Chemistry Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 22:26	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 22:26	
Sulfate	300.0	82.3	mg/L	2.0	10	06/08/16 22:26	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Sample Name:

Water

Service Request: R1605971

Date Collected: 06/07/16 13:38

Date Received: 06/07/16 17:20

MW-9 Basis: NA

Lab Code: R1605971-011

General Chemistry Parameters

	1						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	3.1	mg/L	1.0	10	06/08/16 22:38	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 22:38	
Sulfate	300.0	50.5	mg/L	2.0	10	06/08/16 22:38	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Water

Service Request: R1605971

Date Collected: 06/07/16 13:46

Date Received: 06/07/16 17:20

Sample Name: MW-9B Basis: NA

Lab Code: R1605971-012

General Chemistry Parameters

	1 11101) 515						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 23:12	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 23:12	
Sulfate	300.0	642	mg/L	20	100	06/09/16 16:08	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Sample Name:

Water

Service Request: R1605971

Date Collected: 06/07/16 13:59

Date Received: 06/07/16 17:20

MW-10 Basis: NA

Lab Code: R1605971-013

General Chemistry Parameters

	1						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.9	mg/L	1.0	10	06/08/16 23:24	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 23:24	
Sulfate	300.0	53.6	mg/L	2.0	10	06/08/16 23:24	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Sample Name:

Water

Service Request: R1605971

Date Collected: 06/07/16 14:04

Date Received: 06/07/16 17:20

MW-10B Basis: NA

Lab Code: R1605971-014

General Chemistry Parameters

	Allalysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 23:35	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 23:35	
Sulfate	300.0	87.5	mg/L	2.0	10	06/08/16 23:35	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix:

Water

Service Request: R1605971

Date Collected: 06/07/16 14:31

Date Received: 06/07/16 17:20

Sample Name: MW-2 Basis: NA

Lab Code: R1605971-015

General Chemistry Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 23:47	
Nitrite as Nitrogen	300.0	1.0 U	mg/L	1.0	10	06/08/16 23:47	
Sulfate	300.0	26.5	mg/L	2.0	10	06/08/16 23:47	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Service Request: R1605971

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 8260C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	85 - 122	89 - 119	87 - 121
MW-1	R1605971-001	101	100	102
Dupe-X	R1605971-002	101	103	103
MW-1B	R1605971-003	99	102	101
MW-5	R1605971-004	101	102	103
MW-3	R1605971-005	97	102	102
MW-3B	R1605971-006	101	103	105
MW-4	R1605971-007	97	99	101
MW-4B	R1605971-008	98	100	102
MW-11	R1605971-009	102	105	105
MW-11B	R1605971-010	98	100	102
MW-9	R1605971-011	101	104	105
MW-9B	R1605971-012	100	103	102
MW-10	R1605971-013	97	99	102
MW-10B	R1605971-014	100	102	104
MW-2	R1605971-015	101	103	102
Method Blank	RQ1606851-01	100	104	103
Lab Control Sample	RQ1606851-02	105	102	103
Method Blank	RQ1606895-01	98	101	101
Lab Control Sample	RQ1606895-02	102	106	103
MW-2 MS	RQ1606895-05	101	105	103
MW-2 DMS	RQ1606895-06	102	105	104

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

7 1370.001.010

Sample Matrix: Water

Service Request: R1605971 **Date Collected:** 06/07/16

Date Received: 06/07/16 **Date Analyzed:** 06/10/16

Date Extracted: NA

Units:

Basis:

ug/L

NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: MW-2

Lab Code: R1605971-015

Analysis Method: 8260C **Prep Method:** EPA 5030C

Matrix Spike
RQ1606895-05
Duplicate Matrix Spike
RQ1606895-06

	Sample	- ·	Spike	0/ 70	.	Spike	0/ 5	% Rec	D.D.D.	RPD
Analyte Name	Result	Result	Amount	% Rec		Amount		Limits	RPD	Limit
1,1,1-Trichloroethane (TCA)	1.0 U	57.8	50.0	116	63.3	50.0	127	74-127	9	30
1,1,2,2-Tetrachloroethane	1.0 U	53.7	50.0	107	59.3	50.0	119	72-122	10	30
1,1,2-Trichloroethane	1.0 U	51.5	50.0	103	54.8	50.0	110	79-119	6	30
1,1-Dichloroethane (1,1-DCA)	6.4	66.3	50.0	120	69.4	50.0	126	74-132	5	30
1,1-Dichloroethene (1,1-DCE)	1.0 U	55.1	50.0	110	58.7	50.0	117	74-139	6	30
1,2-Dichloroethane	0.58 J	55.0	50.0	109	59.8	50.0	118	68-130	8	30
1,2-Dichloropropane	1.0 U	55.7	50.0	111	58.1	50.0	116	79-124	4	30
2-Butanone (MEK)	5.0 U	49.6	50.0	99	51.8	50.0	104	46-141	4	30
2-Hexanone	5.0 U	53.1	50.0	106	56.7	50.0	113	56-132	7	30
4-Methyl-2-pentanone	5.0 U	55.3	50.0	111	58.6	50.0	117	60-141	6	30
Acetone	1.5 J	50.1	50.0	97	53.1	50.0	103	29-151	6	30
Benzene	9.7	62.4	50.0	105	65.9	50.0	112	76-129	5	30
Bromodichloromethane	1.0 U	53.1	50.0	106	56.9	50.0	114	76-127	7	30
Bromoform	1.0 U	58.6	50.0	117	61.6	50.0	123	58-133	5	30
Bromomethane	1.0 U	31.6	50.0	63	37.2	50.0	74	10-162	16	30
Carbon Disulfide	1.0 U	46.9	50.0	94	51.0	50.0	102	34-162	8	30
Carbon Tetrachloride	1.0 U	62.1	50.0	124	66.5	50.0	133	65-135	7	30
Chlorobenzene	3.7	54.4	50.0	101	57.6	50.0	108	76-125	6	30
Chloroethane	50	105	50.0	110	108	50.0	117	70-140	4	30
Chloroform	1.0 U	52.4	50.0	105	55.8	50.0	112	75-130	6	30
Chloromethane (Methyl Chloride)	1.0 U	53.2	50.0	106	57.2	50.0	114	55-160	7	30
cis-1,3-Dichloropropene	1.0 U	49.5	50.0	99	53.5	50.0	107	52-134	8	30
Dibromochloromethane	1.0 U	52.5	50.0	105	56.4	50.0	113	72-128	7	30
Dichloromethane (Methylene Chloride)	1.0 U	50.1	50.0	100	52.1	50.0	104	75-121	4	30
Ethylbenzene	3.3	57.4	50.0	108	60.9	50.0	115	72-134	6	30
m,p-Xylenes	6.2	115	100	108	121	100	115	68-138	5	30
o-Xylene	2.0	56.3	50.0	109	58.7	50.0	113	68-134	4	30
Styrene	1.0 U	51.5	50.0	103	54.8	50.0	110	34-156	6	30
Tetrachloroethene (PCE)	1.0 U	49.2	50.0	98	53.2	50.0	106	67-137	8	30
Toluene	55	107	50.0	102	109	50.0	107	79-125	2	30
trans-1,3-Dichloropropene	1.0 U	53.1	50.0	106	56.8	50.0	114	50-142	$\frac{2}{7}$	30
Trichloroethene (TCE)	1.2	53.7	50.0	105	56.6	50.0	111	62-142	5	30
Vinyl Chloride	0.39 J	53.9	50.0	107	58.2	50.0	116	60-157	8	30
ingi cinoriac	0.57 3	33.7	50.0	107	30.2	50.0	110	00 137	U	50

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ1606851-01
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/09/16 23:37	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/09/16 23:37	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/09/16 23:37	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/09/16 23:37	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/09/16 23:37	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/09/16 23:37	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/09/16 23:37	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/09/16 23:37	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/09/16 23:37	
2-Hexanone	5.0 U	5.0	1.7	1	06/09/16 23:37	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/09/16 23:37	
Acetone	5.0 U	5.0	1.3	1	06/09/16 23:37	
Benzene	1.0 U	1.0	0.20	1	06/09/16 23:37	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/09/16 23:37	
Bromoform	1.0 U	1.0	0.42	1	06/09/16 23:37	
Bromomethane	1.0 U	1.0	0.29	1	06/09/16 23:37	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/09/16 23:37	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/09/16 23:37	
Chlorobenzene	1.0 U	1.0	0.29	1	06/09/16 23:37	
Chloroethane	1.0 U	1.0	0.24	1	06/09/16 23:37	
Chloroform	1.0 U	1.0	0.25	1	06/09/16 23:37	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/09/16 23:37	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/09/16 23:37	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/09/16 23:37	
Ethylbenzene	1.0 U	1.0	0.20	1	06/09/16 23:37	
Styrene	1.0 U	1.0	0.20	1	06/09/16 23:37	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/09/16 23:37	
Toluene	1.0 U	1.0	0.20	1	06/09/16 23:37	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/09/16 23:37	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/09/16 23:37	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/09/16 23:37	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/09/16 23:37	
o-Xylene	1.0 U	1.0	0.20	1	06/09/16 23:37	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/09/16 23:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	85 - 122	06/09/16 23:37	
Dibromofluoromethane	104	89 - 119	06/09/16 23:37	
Toluene-d8	103	87 - 121	06/09/16 23:37	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project:Akzo/1398.001.016Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1606895-01Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	1	06/10/16 12:28	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/10/16 12:28	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/10/16 12:28	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/10/16 12:28	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	1	06/10/16 12:28	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/10/16 12:28	
1,2-Dichloroethene, Total	2.0 U	2.0	0.63	1	06/10/16 12:28	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/10/16 12:28	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/10/16 12:28	
2-Hexanone	5.0 U	5.0	1.7	1	06/10/16 12:28	
4-Methyl-2-pentanone	5.0 U	5.0	0.67	1	06/10/16 12:28	
Acetone	5.0 U	5.0	1.3	1	06/10/16 12:28	
Benzene	1.0 U	1.0	0.20	1	06/10/16 12:28	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/10/16 12:28	
Bromoform	1.0 U	1.0	0.42	1	06/10/16 12:28	
Bromomethane	1.0 U	1.0	0.29	1	06/10/16 12:28	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/10/16 12:28	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/10/16 12:28	
Chlorobenzene	1.0 U	1.0	0.29	1	06/10/16 12:28	
Chloroethane	1.0 U	1.0	0.24	1	06/10/16 12:28	
Chloroform	1.0 U	1.0	0.25	1	06/10/16 12:28	
Chloromethane (Methyl Chloride)	1.0 U	1.0	0.21	1	06/10/16 12:28	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/10/16 12:28	
Dichloromethane (Methylene Chloride)	1.0 U	1.0	0.60	1	06/10/16 12:28	
Ethylbenzene	1.0 U	1.0	0.20	1	06/10/16 12:28	
Styrene	1.0 U	1.0	0.20	1	06/10/16 12:28	
Tetrachloroethene (PCE)	1.0 U	1.0	0.30	1	06/10/16 12:28	
Toluene	1.0 U	1.0	0.20	1	06/10/16 12:28	
Trichloroethene (TCE)	1.0 U	1.0	0.22	1	06/10/16 12:28	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/10/16 12:28	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/10/16 12:28	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/10/16 12:28	
o-Xylene	1.0 U	1.0	0.20	1	06/10/16 12:28	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/10/16 12:28	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/10/16 12:28	
Dibromofluoromethane	101	89 - 119	06/10/16 12:28	
Toluene-d8	101	87 - 121	06/10/16 12:28	

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

Sample Matrix: Water

Printed 7/29/2016 6:57:56 PM

Service Request: R1605971 Date Analyzed: 06/09/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ1606851-02

Analytical

	Anaiyucai				
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	20.1	20.0	101	74-120
1,1,2,2-Tetrachloroethane	8260C	20.7	20.0	103	78-122
1,1,2-Trichloroethane	8260C	21.5	20.0	108	82-118
1,1-Dichloroethane (1,1-DCA)	8260C	21.6	20.0	108	78-117
1,1-Dichloroethene (1,1-DCE)	8260C	19.5	20.0	98	74-135
1,2-Dichloroethane	8260C	22.6	20.0	113	71-127
1,2-Dichloropropane	8260C	21.6	20.0	108	80-119
2-Butanone (MEK)	8260C	20.5	20.0	102	61-137
2-Hexanone	8260C	20.5	20.0	102	63-124
4-Methyl-2-pentanone	8260C	21.3	20.0	107	66-124
Acetone	8260C	21.9	20.0	109	40-161
Benzene	8260C	19.4	20.0	97	76-118
Bromodichloromethane	8260C	20.9	20.0	105	78-126
Bromoform	8260C	24.9	20.0	124	71-136
Bromomethane	8260C	23.8	20.0	119	42-166
Carbon Disulfide	8260C	14.8	20.0	74	65-127
Carbon Tetrachloride	8260C	24.6	20.0	123	68-125
Chlorobenzene	8260C	19.3	20.0	97	80-121
Chloroethane	8260C	21.2	20.0	106	70-127
Chloroform	8260C	19.8	20.0	99	76-120
Chloromethane (Methyl Chloride)	8260C	21.0	20.0	105	69-145
Dibromochloromethane	8260C	20.9	20.0	105	77-128
Dichloromethane (Methylene Chloride)	8260C	20.3	20.0	101	73-122
Ethylbenzene	8260C	20.0	20.0	100	76-120
Styrene	8260C	20.0	20.0	100	80-124
Tetrachloroethene (PCE)	8260C	17.9	20.0	89	78-124
Toluene	8260C	18.9	20.0	94	77-120
Trichloroethene (TCE)	8260C	21.5	20.0	108	78-123
Vinyl Chloride	8260C	19.1	20.0	95	69-133
cis-1,3-Dichloropropene	8260C	19.7	20.0	98	74-126
m,p-Xylenes	8260C	39.3	40.0	98	78-123
o-Xylene	8260C	20.1	20.0	100	80-120
trans-1,3-Dichloropropene	8260C	23.2	20.0	116	67-135
D' + 1.7/20/2016 6.57.56 DM			g	16,0000	270006 00

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

Sample Matrix: Water

Printed 7/29/2016 6:57:57 PM

Service Request: R1605971 Date Analyzed: 06/10/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ1606895-02

Analytical

Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	21.6	20.0	108	74-120
1,1,2,2-Tetrachloroethane	8260C	19.4	20.0	97	78-122
1,1,2-Trichloroethane	8260C	20.5	20.0	102	82-118
1,1-Dichloroethane (1,1-DCA)	8260C	22.2	20.0	111	78-117
1,1-Dichloroethene (1,1-DCE)	8260C	20.8	20.0	104	74-135
1,2-Dichloroethane	8260C	22.2	20.0	111	71-127
1,2-Dichloropropane	8260C	21.4	20.0	107	80-119
2-Butanone (MEK)	8260C	18.5	20.0	92	61-137
2-Hexanone	8260C	19.3	20.0	96	63-124
4-Methyl-2-pentanone	8260C	19.6	20.0	98	66-124
Acetone	8260C	18.6	20.0	93	40-161
Benzene	8260C	20.2	20.0	101	76-118
Bromodichloromethane	8260C	20.0	20.0	100	78-126
Bromoform	8260C	23.7	20.0	118	71-136
Bromomethane	8260C	26.1	20.0	130	42-166
Carbon Disulfide	8260C	19.2	20.0	96	65-127
Carbon Tetrachloride	8260C	25.5	20.0	128 *	68-125
Chlorobenzene	8260C	19.5	20.0	98	80-121
Chloroethane	8260C	21.9	20.0	109	70-127
Chloroform	8260C	19.8	20.0	99	76-120
Chloromethane (Methyl Chloride)	8260C	21.8	20.0	109	69-145
Dibromochloromethane	8260C	19.3	20.0	97	77-128
Dichloromethane (Methylene Chloride)	8260C	19.4	20.0	97	73-122
Ethylbenzene	8260C	20.6	20.0	103	76-120
Styrene	8260C	19.9	20.0	100	80-124
Tetrachloroethene (PCE)	8260C	19.7	20.0	99	78-124
Toluene	8260C	19.2	20.0	96	77-120
Trichloroethene (TCE)	8260C	21.3	20.0	106	78-123
Vinyl Chloride	8260C	19.6	20.0	98	69-133
cis-1,3-Dichloropropene	8260C	19.5	20.0	97	74-126
m,p-Xylenes	8260C	41.0	40.0	103	78-123
o-Xylene	8260C	20.0	20.0	100	80-120
trans-1,3-Dichloropropene	8260C	23.4	20.0	117	67-135

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

Service Request: Date Collected: R1605971

Project: Akzo/139 **Sample Matrix:** Water

Date Received:

06/07/16

Date Received: Date Analyzed: 06/07/16 06/14/16

Duplicate Matrix Spike Summary

Dissolved Gases by GC/FID

Sample Name: MW-2

ug/L

Lab Code:

R1605971-015

Units: Basis:

NA

Analysis Method:

RSK 175

Matrix Spike

Duplicate Matrix Spike

RQ1607045-07

RQ1607045-08

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Methane	5300	5480	262	75 #	5450	262	63 #	54-120	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/29/2016 6:58:19 PM

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1607045-01Basis: NA

Dissolved Gases by GC/FID

Analysis Method: RSK 175

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	1.0 U	1.0	1	06/13/16 13:07	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1607045-04Basis: NA

Dissolved Gases by GC/FID

Analysis Method: RSK 175

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	1.0 U	1.0	1	06/14/16 13:12	_

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request: R1605971 Date Analyzed: 06/13/16

Duplicate Lab Control Sample Summary
Dissolved Gases by GC/FID

Units:ug/L Basis:NA

Lab Control Sample

Duplicate Lab Control Sample

RQ1607045-02

RQ1607045-03

	Analytical		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Methane	RSK 175	23.3	26.2	89	23.3	26.2	89	65-126	<1	20

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request: R1605971 Date Analyzed: 06/14/16

Duplicate Lab Control Sample Summary
Dissolved Gases by GC/FID

Units:ug/L Basis:NA

Lab Control Sample

Duplicate Lab Control Sample

RQ1607045-05

RQ1607045-06

	Analytical		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Methane	RSK 175	24.3	26.2	93	24.0	26.2	92	65-126	1	20

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1605971

Project: Akzo/1398.001.016 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: R1605971-MB

Inorganic Parameters

Analysis

Veta Nama Mathad

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	100 U	ug/L	100	1	06/17/16 08:44	06/16/16	
Manganese, Dissolved	200.7	10 U	ug/L	10	1	06/17/16 08:44	06/16/16	

QA/QC Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request:R1605971

Date Collected:06/07/16

Date Received:06/07/16 **Date Analyzed:**6/17/16

Matrix Spike Summary Inorganic Parameters

Sample Name: MW-2

Lab Code:

R1605971-015

Units:ug/L

Basis:NA

Matrix Spike R1605971-015MS

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Iron, Dissolved	200.7	4650	4840	1000	19#	70-130
Manganese, Dissolved	200.7	2080	2190	500	20 #	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Barton & Loguidice, PC

Project Akzo/1398.001.016 **Date Collected:** 06/07/16

Service Request: R1605971

Sample Matrix: **Date Received:** 06/07/16 Water

Date Analyzed: 06/17/16

Replicate Sample Summary Inorganic Parameters

Sample Name: Units: ug/L MW-2 Lab Code: R1605971-015

Basis: NA

Duplicate Sample **R1605971**

				K10059/1-			
	Analysis		Sample	015DUP			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Iron, Dissolved	200.7	100	4650	4530	4590	3	20
Manganese, Dissolved	200.7	10	2080	2030	2060	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request: R1605971 Date Analyzed: 06/17/16

Lab Control Sample Summary Inorganic Parameters

> Units:ug/L Basis:NA

Lab Control Sample

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Iron, Dissolved	200.7	1060	1000	106	85-115
Manganese, Dissolved	200.7	528	500	106	85-115

Analytical Report

Client: Barton & Loguidice, PC

Akzo/1398.001.016

Sample Matrix: Water

Project:

Date Collected: NA Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: R1605971-MB1

General Chemistry Parameters

Analysis

	randiyolo						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	0.10 U	mg/L	0.10	1	06/08/16 13:29	
Nitrite as Nitrogen	300.0	0.10 U	mg/L	0.10	1	06/08/16 13:29	
Sulfate	300.0	0.20 U	mg/L	0.20	1	06/08/16 13:29	

Service Request: R1605971

Analytical Report

Client: Barton & Loguidice, PC

arton & Loguidice, PC Service Request: R1605971

Project:Akzo/1398.001.016Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Method Blank Basis: NA

Lab Code: R1605971-MB2

General Chemistry Parameters

	randiyolo						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	0.10 U	mg/L	0.10	1	06/08/16 18:17	
Nitrite as Nitrogen	300.0	0.10 U	mg/L	0.10	1	06/08/16 18:17	
Sulfate	300.0	0.20 U	mg/L	0.20	1	06/08/16 18:17	

Analytical Report

Client: Barton & Loguidice, PC

Service Request: R1605971

Project:

Akzo/1398.001.016

Date Collected: NA

Sample Matrix:

Water

Date Received: NA

Sample Name:

Lab Code:

Method Blank

Basis: NA

R1605971-MB3

General Chemistry Parameters

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Sulfate	300.0	0.20 U	mg/L	0.20	1	06/09/16 12:41	

QA/QC Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request:R1605971 Date Collected:06/07/16

Date Received:06/07/16

Date Analyzed:6/8/16

Duplicate Matrix Spike Summary General Chemistry Parameters

Sample Name: MW-1

Lab Code:

R1605971-001

Units: mg/L

Basis:NA

Matrix Spike

Duplicate Matrix Spike

R1605971-001MS

R1605971-001DMS

		Sample		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Nitrate as Nitrogen	300.0	1.0	9.3	10.0	93	9.3	10.0	93	90-110	<1	20
Nitrite as Nitrogen	300.0	1.0	9.1	10.0	91	9.3	10.0	93	90-110	3	20
Sulfate	300.0	46.6	64.9	20.0	91	64.2	20.0	88 *	90-110	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/29/2016 6:58:24 PM

QA/QC Report

Client: Barton & Loguidice, PC **Project:**

Akzo/1398.001.016

Water

Service Request:

R1605971

Date Collected:

06/07/16

Date Received: Date Analyzed: 06/07/16 06/9/16

Duplicate Matrix Spike Summary

Sulfate

Sample Name:

MW-9B

Units:

mg/L

Lab Code: **Analysis Method:**

Sample Matrix:

R1605971-012

Basis:

NA

300.0

Matrix Spike

Duplicate Matrix Spike

R1605971-012MS

R1605971-012DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sulfate	642	827	200	92	824	200	91	90-110	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/29/2016 6:58:29 PM

QA/QC Report

Client: Barton & Loguidice, PC

Project: Akzo/1398.001.016

Sample Matrix: Water Service Request:R1605971 Date Collected: 06/07/16 Date Received: 06/07/16 **Date Analyzed:**6/8/16

Duplicate Matrix Spike Summary General Chemistry Parameters

Sample Name: MW-2

Lab Code: R1605971-015 Units:mg/L Basis:NA

Matrix Spike

Duplicate Matrix Spike

R1605971-015MS

R1605971-015DMS

		Sample		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Nitrate as Nitrogen	300.0	1.0	9.2	10.0	92	9.3	10.0	93	90-110	<1	20
Nitrite as Nitrogen	300.0	1.0	9.3	10.0	93	9.0	10.0	90	90-110	4	20
Sulfate	300.0	26.5	47.0	20.0	103	45.9	20.0	97	90-110	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/29/2016 6:58:26 PM

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request: R1605971 Date Analyzed: 06/08/16

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Nitrate as Nitrogen	300.0	0.985	1.00	98	90-110
Nitrite as Nitrogen	300.0	0.986	1.00	99	90-110
Sulfate	300.0	1.97	2.00	98	90-110

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request: R1605971 Date Analyzed: 06/08/16

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Nitrate as Nitrogen	300.0	0.984	1.00	98	90-110
Nitrite as Nitrogen	300.0	0.957	1.00	96	90-110
Sulfate	300.0	1.99	2.00	99	90-110

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo/1398.001.016

Sample Matrix: Water

Service Request: R1605971 Date Analyzed: 06/09/16

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Sulfate	300.0	1.91	2.00	95	90-110

Service Request No:R1612457

Mr. Brian McGrath Barton & Loquidice, PC 11 Centre Park Suite 203 Rochester, NY 14614

Laboratory Results for: Akzo Nobel

Dear Mr.McGrath,

Enclosed are the results of the sample(s) submitted to our laboratory November 23, 2016 For your reference, these analyses have been assigned our service request number R1612457.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Respectfully submitted,

Freder Kullen

ALS Group USA, Corp. dba ALS Environmental

Brady Kalkman

Project Manager

dba ALS Environmental

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Received:11/23/16

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt

Twenty four water samples were received for analysis at ALS Environmental on 11/23/2016. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at ≤ 6 °C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatile Organic Analyses:

Method 8260, 11/29/16, 12/1/16: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Method 8260, 12/1/16: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

R1612457-016 pH > 2; ran 9 days after sampling.

Metals Analyses:

No significant anomalies were noted with this analysis.

General Chemistry Analyses:

No significant anomalies were noted with this analysis.

Approved by Freder Knuffen

Date 12/7/2016

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-1	Lab ID: R1	Lab ID: R1612457-001					
Analyte	Results	Flag	MDL	PQL	Units	Method	
Sulfate	34.2		0.2	2.0	mg/L	300.0	
Manganese, Dissolved	130		0.5	10	ug/L	200.7	
Methane	3.9		0.12	1.0	ug/L	RSK 175	
CLIENT ID: MW-2	Lab ID: R1	612457-	002				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Sulfate	193		0.8	8.0	mg/L	300.0	
Iron, Dissolved	520		20	100	ug/L	200.7	
Manganese, Dissolved	2240		0.5	10	ug/L	200.7	
Methane	2800		12	100	ug/L	RSK 175	
CLIENT ID: DUPE-X	Lab ID: R1	612457-	003				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Sulfate	34.1		0.2	2.0	mg/L	300.0	
Manganese, Dissolved	131		0.5	10	ug/L	200.7	
Methane	3.8		0.12	1.0	ug/L	RSK 175	
CLIENT ID: MW-3	Lab ID: R1	Lab ID: R1612457-004					
Analyte	Results	Flag	MDL	PQL	Units	Method	
Sulfate	135		8.0	8.0	mg/L	300.0	
Manganese, Dissolved	10		0.5	10	ug/L	200.7	
Methane	1.3		0.12	1.0	ug/L	RSK 175	
CLIENT ID: MW-4B	Lab ID: R1	612457-	005				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Sulfate	754		2	20	mg/L	300.0	
Manganese, Dissolved	47		0.5	10	ug/L	200.7	
Methane	4.3		0.12	1.0	ug/L	RSK 175	
CLIENT ID: MW-5	Lab ID: R1	612457-	006				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Nitrate as Nitrogen	1.4		0.5	1.0	mg/L	300.0	
Sulfate	59.7		0.2	2.0	mg/L	300.0	
Manganese, Dissolved	26		0.5	10	ug/L	200.7	
CLIENT ID: MW-9	Lab ID: R1	Lab ID: R1612457-007					
Analyte	Results	Flag	MDL	PQL	Units	Method	
Nitrate as Nitrogen	2.5		0.5	1.0	mg/L	300.0	
Sulfate	50.8		0.2	2.0	mg/L	300.0	
CLIENT ID: MW-9B	Lab ID: R1	612457-	800				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Sulfate	640		2	20	mg/L	300.0	
Manganese, Dissolved	40		0.5	10	ug/L	200.7	
Methane	3.7		0.12	1.0	ug/L	RSK 175	

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-9B	Lab ID: R1612457-00	Lab ID: R1612457-008							
Analyte	Results Flag	MDL	PQL	Units	Method				
CLIENT ID: MW-10	Lab ID: R1612457-009								
Analyte	Results Flag	MDL	PQL	Units	Method				
Sulfate	59.0	0.2	2.0	mg/L	300.0				
Manganese, Dissolved	114	0.5	10	ug/L	200.7				
CLIENT ID: MW-11	Lab ID: R1612457-01	10							
Analyte	Results Flag	MDL	PQL	Units	Method				
Sulfate	81.6	0.2	2.0	mg/L	300.0				
Manganese, Dissolved	168	0.5	10	ug/L	200.7				
Methane	23	0.12	1.0	ug/L	RSK 175				
CLIENT ID: MW-11B	Lab ID: R1612457-01	11							
Analyte	Results Flag	MDL	PQL	Units	Method				
Sulfate	351	2	20	mg/L	300.0				
Manganese, Dissolved	29	0.5	10	ug/L	200.7				
Methane	11	0.12	1.0	ug/L	RSK 175				
CLIENT ID: MW-2 VOA	Lab ID: R1612457-01	13							
Analyte	Results Flag	MDL	PQL	Units	Method				
Chlorobenzene	1.9	0.29	1.0	ug/L	8260C				
Chloroethane	7.6	0.24	1.0	ug/L	8260C				
CLIENT ID: DUPE-X VOA	Lab ID: R1612457-01	14							
Analyte	Results Flag	MDL	PQL	Units	Method				
Acetone	13	1.3	5.0	ug/L	8260C				
CLIENT ID: MW-4 VOA	Lab ID: R1612457-01	16							
Analyte	Results Flag	MDL	PQL	Units	Method				
Acetone	5.2	1.3	5.0	ug/L	8260C				
CLIENT ID: MW-5 VOA	Lab ID: R1612457-01	18							
Analyte	Results Flag	MDL	PQL	Units	Method				
Acetone	13	1.3	5.0	ug/L	8260C				
CLIENT ID: MW-9 VOA	Lab ID: R1612457-01	19							
Analyte	Results Flag	MDL	PQL	Units	Method				
1,1,1-Trichloroethane (TCA)	4.5	0.36	1.0	ug/L	8260C				
CLIENT ID: MW-11 VOA	Lab ID: R1612457-02	22							
Analyte	Results Flag	MDL	PQL	Units	Method				
1,1-Dichloroethane (1,1-DCA)	1.6	0.20	1.0	ug/L	8260C				

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Client: Barton & Loguidice, PC
Project: Akzo Nobel/1398.003.001

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R1612457-001	MW-1	11/23/2016	1034
R1612457-002	MW-2	11/23/2016	1400
R1612457-003	DUPE-X	11/23/2016	
R1612457-004	MW-3	11/23/2016	1109
R1612457-005	MW-4B	11/23/2016	1146
R1612457-006	MW-5	11/23/2016	1054
R1612457-007	MW-9	11/23/2016	1255
R1612457-008	MW-9B	11/23/2016	1303
R1612457-009	MW-10	11/23/2016	1348
R1612457-010	MW-11	11/23/2016	1219
R1612457-011	MW-11B	11/23/2016	1228
R1612457-012	MW-1 VOA	11/22/2016	1057
R1612457-013	MW-2 VOA	11/22/2016	1450
R1612457-014	DUPE-X VOA	11/22/2016	
R1612457-015	MW-3 VOA	11/22/2016	1144
R1612457-016	MW-4 VOA	11/22/2016	1224
R1612457-017	MW-4B VOA	11/22/2016	1215
R1612457-018	MW-5 VOA	11/22/2016	1123
R1612457-019	MW-9 VOA	11/22/2016	1405
R1612457-020	MW-9B VOA	11/22/2016	1358
R1612457-021	MW-10 VOA	11/22/2016	1426
R1612457-022	MW-11 VOA	11/22/2016	1309
R1612457-023	MW-11B VOA	11/22/2016	1303
R1612457-024	TRIP BLANK	11/22/2016	

ALS

1565 Jefferson Rd Bldg 300, Suite 360 Rochester, NY 14623

585-288-5380	FAX 585-288-8475
202 200 2200	11111 303-200-0413

SR# _			
PAGE	_1	OF	_ 2

					—	de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la	and the same of the same					
Project Name: Akzo NobelProject Number: 1398.003.001									Analysi	s Requester		
Project Manager: William Doebler	•	Com	pany: _Barton & Loguidice	_	iners		0.0)					
Company/Address: 1/ Land	n, lav	K Jin	L& Phone: (585) 515 - 710	<i>3</i> (2)	Containers	_	SO4 (300.0)					
			FAX:		٥	fe, Mn						
Sampler's Signature:		-/m) ince		Number	Dissolved Fe,	2, NO3,)C	X 175	,		
Sample I.D.	Date	Time	LAB ID	Matrix	Z	Diss	NO2,	8260C	RSK		REMARKS	
MW-1	11/23/16	10-34		w	Q	X	\sim	Χ	X		VOA'S 10.57-11/22/16	
MW-2	V/23/16	14:66		w	3	X	X	×	×		VOA'S 14:50-11122116	
MANA Dupe X	11/23/16)		w	8	×	×	X	X		VOA'S - 11/22/16	
MW-3 (MS/N5P)	11723/16	11:09		w	16	×	X	X	×		VOA's - 11:44 -4/22/16	
MW-4	1//22/16	12:24		w	3			×				
MW-4B	11/23/16	11:46		w	8	\propto	×	X	X		UON'S-12:15-11/22/16	
MW-5	1//23//6	10:54		w	Q	λ	> <	X	X		110A's 11:23-11/22/16	
MW-9	11)23/16	12:55		w	8	\sim	X	X.	\times		VOA'S 14:05-11/22/16	
MW-9B	11/23/16	13:03		w	8	Ķ	ス	×	∀		101's 13:58 - 11/22/16	
MW-10	11/23/16	13:48	-	w	8	X	Q	×	X		VOA's 14.26-11/22/16	
TURNAROUND REQUIREMENT	s	R	EPORT REQUIREMENTS		Com	ments/Spec	ial Instruct	ions:		1		
24 hr 48 hr	5 BD		I. Routine Report: Results and Me	thod Blank								
_X Standard (15 BD)			(Surrogate, as required)			RSK Methane Only						
Provide FAX Preliminary Re Requested Report Date:	esults		II. Results w/ QC (Dup., MS, MSD			Dissolved metals are field filtered UOA's - 8260 - Script On 11/22/16. All officer Scripts collected 11/23/16.						
			III. Results (with QC and Calibrat	ion	111 0010 - Scrol OA 11/22/10.							
•			Summaries) IV. ASP-B		00	VOAS - 8200 - 11/23/16.						
Bill to: bt V. CLP			•		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	capis	CORVER					
EDD?:												
RELINQUISHED BY: RECEIVED BY: // , //			REL	INQUISHI	ED BY:		· -	RECEIVE	ED BY:			
Signature: A Signature: And Must				Signa	iture:				Signature:			
Printed Name: Stank Work				l						me:		
· · · · · · · · · · · · · · · · · · ·		Firm:	ALS		Firm:		,			Firm:		
Date/Time: 11/23/16 16:00 Date/Time: 11/23/14/1600			Date/Time:					£				

ALS 1565 Jefferson Rd Bldg 300, Suite 360 Rochester, NY 14623					·5380	5380 FAX 585-288-8475					SR# PAGE _2 OF _2
Project Name: Akzo Nobel_		Pr	oject Number: 1398.003.001						Analys	s Requesto	ed
			pany: _Barton & Loguidice		Containers		(300.0)			4444444444	
Company/Address: City, State, Zip: Sampler's Signature: Phone: FAX: Sampler's Signature:					umber of	Dissolved Fe, Mn	NO3, SO4)C	K 175		
Sample I.D.	Date	Time	LAB ID	Matrix	Z	Disc	NO2,	8260C	RSK		REMARKS
MW-11	11/23//6	12:14		W	8	\sim	∞	\times	乂		VOA's -13:09 11/22/16
MW-11B	1//22/16	12:28		W	8	\succ	×	Y	\times		10A's -13:03 11/27/16
Field Blank		$\overline{}$		W	abla						
Trip Blank			NI I I	w				X			
				w		.,					
				w							
				w							
											'
TURNAROUND REQUIREM24 hr48 hrX Standard (15 BD) Provide FAX Prelimina Requested Report Date: Invoice Information	5 BD	x	EPORT REQUIREMENTS I. Routine Report: Results and M (Surrogate, as required) II. Results w/ QC (Dup., MS, MS) III. Results (with QC and Calibra	D as req)		K Methane	cial Instruc Only etals are field		•	•	
P.O. #			Summaries) IV. ASP-B								

RELINQUISHED BY:

Date/Time: _____

Signature:

Firm: _____

Printed Name: ______

RECEIVED BY:

Signature: _____

Date/Time: _____

Printed Name:

Firm:

V. CLP EDD?:

RECEIVED BY:
Signature:

Printed Name: Same Wird

Date/Time: 11/73/14/1400

BiL

RELINQUISHED BY:

Printed Name: $\int \mathcal{D}_{\Lambda IJ}$

Date/Time: 11/27/16

Bill to:

Firm:

Cooler Receipt and Preservation Check Form

Pro	ject/Clier	it BH	4	Kzc)	Fc	older 1	Vuml	ber			·•			
Coo	oler received	l on	23//6		by:_	Q_	C	OUR	JER:	ALS	UPS	FEDEX VE	LOCITY	CLIENT)
1	Were Cus	tody seals on	outside	of co	oler?	Y	3) [5a	Perch	lorate	samples	have required l	neadspace	? Y	N (NA)
2 Custody papers properly completed (ink, signed)? N 5b Did VOA vials, Alk, or Sulfide have sig* bubbles?											N NA				
3 Did all bottles arrive in good condition (unbroken)? YN 6 Where did the bottles originate? ALS/RO											CLIENT				
4 Circle: Wet Ice Dry Ice Gel packs present? Y N 7 Soil VOA received as: Bulk Encore 5035set NA										(NA)					
8. 7	emperature	Readings	Dat	e:_ <i>///</i>	23/16	Time:/(05	_	ID:	(R#7) IR#8	From	i: Temp	Blank S	Sample Bottle
0	bserved Ter	np (°C)		6.0)	35									
C	orrection Fa	ctor (°C)		10.9	7	+0.9							ļ		
С	orrected Ter	np (°C)		6.9	70	4,40									
W	ithin 0-6°C	?		Y (N (Y)	1	Y N	1	Y	N	Y N	Y	N	Y N
If	<0°C, were	samples froze	en?		N	YN	,	Y N	1	Y	N	Y N	Y	N	Y N
L	If out of To	emnerature.	note n	ackins	/ice co	ndition:		Ic	e mel	ted	Poor	ly Packed	8an	ne Day Rı	119
	&Client A	pproval to R	un San	nples:	,	Standing	Appro				e at drop-	off Client no	otified by:		
,—										on	1/22				
		neld in storag s placed in sto			n:	N. WL	by by			on _	11/03	at	606		
L	Arran Children Char	and the same and the	of the control of the control	e estat region d	and the said	ered to the second	(-202-H-18-)		nenië er e	Delta de mario de	e i i iglasija (nešiški) diš	and the second second	in Application of the Contraction	ST CONTRACTOR	Adaptorie (1907)
	Cooler Bre	akdown: Dat	e: 11	-23-	16	Time:/	415		b	y: †_ `	5				
	1. W	ere all bottle	abels o	omple	ete (i.e.	analysis, prese	rvation	ı, etc.))?	•	X	B) NO			
		id all bottle la	bels an	d tags	agree v	with custody pa	pers?				X	ES NO			
						tests indicated		2			Y	ES NO		M	A
		ir Samples: C				a labels, not le			Pressu	rized		Tedlar® Bags I		M	7 X
		y discrepanci		s / Tuc	ics IIIIa	Ci	Cum	15(015)	1 10334	1200					
	рН	Reagent	Yes	No	Lot R	Received	Exp	San	nple II	D	Vol. Added	Lot Added	Fi pl		es=All amples OK
-	≥12	NaOH						-		<u>-</u>					
ŀ	<u>≤2</u>	HNO ₃	X	<u> </u>	BDI	326156H	10/1	7							lo=Samples
r	<u></u> ≤2	H ₂ SO ₄			<u> </u>										ere
Ī	<4	NaHSO ₄										ļ. <u>.</u>		•	reserved at
	Residual	For CN				ontact PM to		Ī							he lab as
	Chlorine	Phenol				$a_2S_2O_3$ (CN),	ļ	İ						11	sted
	(-)	and 522			ascort	oic (phenol).	ļ				<u> </u>	<u> </u>			M OV to
-		Na ₂ S ₂ O ₃	-	-			ļ				11 0	1	I tootod a		M OK to djust:
		ZnAcetate	-				ļ	**N	Not to	be test	ed befor	e analysis – pF separate works	i lesteu a sheet	iiu A	lajust.
		HCl	**	**			<u> </u>	reco	oraea	by v C	AS OII a	separate works	Silect	_	
	D 441 1 4	, <i>L</i>	0(11	1-21	1/2										
	Bottle lot r Other Com			W LA	<i>PHO</i>										
	Ouici Con	iments.												CLRES	BULK
														DO	FLDT
														HPROD	HGFB
														HTR	LL3541
															+
														PH	SUB
														SO3	MARRS
														ATC	REV

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Accredited	Nebraska Accredited	294100 A/B
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158
Illinois ID #200047	North Carolina #676	Virginia #460167

¹ Analyses were performed according to our laboratory¢s NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to http://www.alsglobal.com/en/Our-Services/Environmental/Downloads/North-America-Downloads

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Water

Service Request: R1612457

Date Collected: 11/23/16

Date Received: 11/23/16

Sample Name: MW-1

Lab Code: R1612457-001

Sample Matrix: Water

Sample Matrix:

Analysis Method Extracted/Digested By Analyzed By

200.7 CBURLESON NMANSEN
300.0 CWOODS
RSK 175 AMOSES

Sample Name: MW-2 Date Collected: 11/23/16

Lab Code: R1612457-002 **Date Received:** 11/23/16

Analysis Method Extracted/Digested By Analyzed By

200.7 CBURLESON NMANSEN
300.0 CWOODS
RSK 175 AMOSES

Sample Name: DUPE-X Date Collected: 11/23/16

Lab Code: R1612457-003 Date Received: 11/23/16
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

200.7 CBURLESON NMANSEN
300.0 CWOODS
RSK 175 AMOSES

Sample Name: MW-3 Date Collected: 11/23/16

Lab Code: R1612457-004 Date Received: 11/23/16
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

200.7CBURLESONNMANSEN300.0CWOODSRSK 175AMOSES

Analyst Summary report

Service Request: R1612457

Date Collected: 11/23/16

Date Received: 11/23/16

Client: Barton & Loguidice, PC

Akzo Nobel/1398.003.001 **Project:**

Sample Name: MW-4B

Lab Code: R1612457-005

Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

CBURLESON 200.7 **NMANSEN** 300.0 **CWOODS RSK 175 AMOSES**

Sample Name: MW-5 **Date Collected:** 11/23/16

Lab Code: R1612457-006 **Date Received:** 11/23/16 Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

CBURLESON 200.7 **NMANSEN** 300.0 **CWOODS RSK 175 AMOSES**

Sample Name: MW-9 **Date Collected:** 11/23/16

Lab Code: R1612457-007 **Date Received:** 11/23/16

Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

CBURLESON 200.7 **NMANSEN** 300.0 **CWOODS RSK 175 AMOSES**

Date Collected: 11/23/16 Sample Name: MW-9B

Lab Code: R1612457-008 **Date Received:** 11/23/16 Sample Matrix: Water

Analyzed By Analysis Method Extracted/Digested By

CBURLESON 200.7 **NMANSEN** 300.0 **CWOODS AMOSES RSK 175**

Analyst Summary report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Sample Name: MW-10

Lab Code: R1612457-009

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

200.7 CBURLESON NMANSEN
300.0 CWOODS
RSK 175 AMOSES

Sample Name: MW-11 Date Collected: 11/23/16

Lab Code: R1612457-010 **Date Received:** 11/23/16

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

200.7 CBURLESON NMANSEN
300.0 CWOODS
RSK 175 AMOSES

Sample Name: MW-11B Date Collected: 11/23/16

Lab Code: R1612457-011 Date Received: 11/23/16
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

200.7CBURLESONNMANSEN300.0CWOODSRSK 175AMOSES

 Sample Name:
 MW-1 VOA
 Date Collected:
 11/22/16

 Lab Code:
 R1612457-012
 Date Received:
 11/23/16

Lab Code: R1612457-012 Date Received: 11/23/16
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Service Request: R1612457

Date Collected: 11/23/16

Date Received: 11/23/16

Analyst Summary report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Service Request: R1612457

 Sample Name:
 MW-2 VOA
 Date Collected: 11/22/16

 Lab Code:
 R1612457-013
 Date Received: 11/23/16

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Sample Name: DUPE-X VOA Date Collected: 11/22/16

Lab Code: R1612457-014 Date Received: 11/23/16
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

 Sample Name:
 MW-3 VOA
 Date Collected: 11/22/16

 Lab Code:
 R1612457-015
 Date Received: 11/23/16

Lab Code: R1612457-015 Date Received: 11/23/16
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

 Sample Name:
 MW-4 VOA
 Date Collected: 11/22/16

 Lab Code:
 R1612457-016
 Date Received: 11/23/16

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

 Sample Name:
 MW-4B VOA
 Date Collected:
 11/22/16

 Lab Code:
 R1612457-017
 Date Received:
 11/23/16

Sample Matrix: Water

Date Received: 11/23/16

Analysis Method Extracted/Digested By Analyzed By
8260C KRUEST

Printed 12/7/2016 11:52:42 AM Superset Reference:16-0000402018 rev 00

Analyst Summary report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001

 Sample Name:
 MW-5 VOA
 Date Collected: 11/22/16

 Lab Code:
 R1612457-018
 Date Received: 11/23/16

Lab Code: R1612457-018 Date Received: 11/23/16
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By
8260C KRUEST

Sample Name: MW-9 VOA Date Collected: 11/22/16

Lab Code: R1612457-019 **Date Received:** 11/23/16 **Sample Matrix:** Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

 Sample Name:
 MW-9B VOA
 Date Collected: 11/22/16

 Lab Code:
 R1612457-020
 Date Received: 11/23/16

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By
8260C KRUEST

Sample Name: MW-10 VOA Date Collected: 11/22/16

Lab Code: R1612457-021 Date Received: 11/23/16
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C

Sample Name: MW-11 VOA Date Collected: 11/22/16

KRUEST

Sample Name: MW-11 VOA Date Collected: 11/22/16
Lab Code: R1612457-022 Date Received: 11/23/16
Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

Analyst Summary report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Service Request: R1612457

Sample Name: MW-11B VOA Date Collected: 11/22/16

Lab Code:R1612457-023Date Received:11/23/16Sample Matrix:Water

Analysis Method Extracted/Digested By Analyzed By 8260C KRUEST

Sample Name: TRIP BLANK Date Collected: 11/22/16

Lab Code: R1612457-024 **Date Received:** 11/23/16

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C KRUEST

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
,	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
-	
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16 10:57

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-1 VOA
 Units: ug/L

 Lab Code:
 R1612457-012
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	11/30/16 00:43	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	11/30/16 00:43	
1,1,2-Trichloroethane	ND U	1.0	1	11/30/16 00:43	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	11/30/16 00:43	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	11/30/16 00:43	
1,2-Dichloroethane	ND U	1.0	1	11/30/16 00:43	
1,2-Dichloroethene, Total	ND U	2.0	1	11/30/16 00:43	
1,2-Dichloropropane	ND U	1.0	1	11/30/16 00:43	
2-Butanone (MEK)	ND U	5.0	1	11/30/16 00:43	
2-Hexanone	ND U	5.0	1	11/30/16 00:43	
4-Methyl-2-pentanone	ND U	5.0	1	11/30/16 00:43	
Acetone	ND U	5.0	1	11/30/16 00:43	
Benzene	ND U	1.0	1	11/30/16 00:43	
Bromodichloromethane	ND U	1.0	1	11/30/16 00:43	
Bromoform	ND U	1.0	1	11/30/16 00:43	
Bromomethane	ND U	1.0	1	11/30/16 00:43	
Carbon Disulfide	ND U	1.0	1	11/30/16 00:43	
Carbon Tetrachloride	ND U	1.0	1	11/30/16 00:43	
Chlorobenzene	ND U	1.0	1	11/30/16 00:43	
Chloroethane	ND U	1.0	1	11/30/16 00:43	
Chloroform	ND U	1.0	1	11/30/16 00:43	
Chloromethane (Methyl Chloride)	ND U	1.0	1	11/30/16 00:43	
Dibromochloromethane	ND U	1.0	1	11/30/16 00:43	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	11/30/16 00:43	
Ethylbenzene	ND U	1.0	1	11/30/16 00:43	
Styrene	ND U	1.0	1	11/30/16 00:43	
Tetrachloroethene (PCE)	ND U	1.0	1	11/30/16 00:43	
Toluene	ND U	1.0	1	11/30/16 00:43	
Trichloroethene (TCE)	ND U	1.0	1	11/30/16 00:43	
Vinyl Chloride	ND U	1.0	1	11/30/16 00:43	
cis-1,3-Dichloropropene	ND U	1.0	1	11/30/16 00:43	
m,p-Xylenes	ND U	2.0	1	11/30/16 00:43	
o-Xylene	ND U	1.0	1	11/30/16 00:43	
trans-1,3-Dichloropropene	ND U	1.0	1	11/30/16 00:43	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/22/16 10:57

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-1 VOA
 Units: ug/L

 Lab Code:
 R1612457-012
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	101	85 - 122	11/30/16 00:43	
Dibromofluoromethane	106	89 - 119	11/30/16 00:43	
Toluene-d8	108	87 - 121	11/30/16 00:43	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16 14:50Sample Matrix:WaterDate Received:11/23/16 16:00

 Sample Name:
 MW-2 VOA
 Units: ug/L

 Lab Code:
 R1612457-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	11/30/16 07:49	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	11/30/16 07:49	
1,1,2-Trichloroethane	ND U	1.0	1	11/30/16 07:49	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	11/30/16 07:49	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	11/30/16 07:49	
1,2-Dichloroethane	ND U	1.0	1	11/30/16 07:49	
1,2-Dichloroethene, Total	ND U	2.0	1	11/30/16 07:49	
1,2-Dichloropropane	ND U	1.0	1	11/30/16 07:49	
2-Butanone (MEK)	ND U	5.0	1	11/30/16 07:49	
2-Hexanone	ND U	5.0	1	11/30/16 07:49	
4-Methyl-2-pentanone	ND U	5.0	1	11/30/16 07:49	
Acetone	ND U	5.0	1	11/30/16 07:49	
Benzene	ND U	1.0	1	11/30/16 07:49	
Bromodichloromethane	ND U	1.0	1	11/30/16 07:49	
Bromoform	ND U	1.0	1	11/30/16 07:49	
Bromomethane	ND U	1.0	1	11/30/16 07:49	
Carbon Disulfide	ND U	1.0	1	11/30/16 07:49	
Carbon Tetrachloride	ND U	1.0	1	11/30/16 07:49	
Chlorobenzene	1.9	1.0	1	11/30/16 07:49	
Chloroethane	7.6	1.0	1	11/30/16 07:49	
Chloroform	ND U	1.0	1	11/30/16 07:49	
Chloromethane (Methyl Chloride)	ND U	1.0	1	11/30/16 07:49	
Dibromochloromethane	ND U	1.0	1	11/30/16 07:49	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	11/30/16 07:49	
Ethylbenzene	ND U	1.0	1	11/30/16 07:49	
Styrene	ND U	1.0	1	11/30/16 07:49	
Tetrachloroethene (PCE)	ND U	1.0	1	11/30/16 07:49	
Toluene	ND U	1.0	1	11/30/16 07:49	
Trichloroethene (TCE)	ND U	1.0	1	11/30/16 07:49	
Vinyl Chloride	ND U	1.0	1	11/30/16 07:49	
cis-1,3-Dichloropropene	ND U	1.0	1	11/30/16 07:49	
m,p-Xylenes	ND U	2.0	1	11/30/16 07:49	
o-Xylene	ND U	1.0	1	11/30/16 07:49	
trans-1,3-Dichloropropene	ND U	1.0	1	11/30/16 07:49	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/22/16 14:50

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-2 VOA
 Units: ug/L

 Lab Code:
 R1612457-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	11/30/16 07:49	
Dibromofluoromethane	108	89 - 119	11/30/16 07:49	
Toluene-d8	105	87 - 121	11/30/16 07:49	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 DUPE-X VOA
 Units: ug/L

 Lab Code:
 R1612457-014
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	11/30/16 08:19	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	11/30/16 08:19	
1,1,2-Trichloroethane	ND U	1.0	1	11/30/16 08:19	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	11/30/16 08:19	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	11/30/16 08:19	
1,2-Dichloroethane	ND U	1.0	1	11/30/16 08:19	
1,2-Dichloroethene, Total	ND U	2.0	1	11/30/16 08:19	
1,2-Dichloropropane	ND U	1.0	1	11/30/16 08:19	
2-Butanone (MEK)	ND U	5.0	1	11/30/16 08:19	
2-Hexanone	ND U	5.0	1	11/30/16 08:19	
4-Methyl-2-pentanone	ND U	5.0	1	11/30/16 08:19	
Acetone	13	5.0	1	11/30/16 08:19	
Benzene	ND U	1.0	1	11/30/16 08:19	
Bromodichloromethane	ND U	1.0	1	11/30/16 08:19	
Bromoform	ND U	1.0	1	11/30/16 08:19	
Bromomethane	ND U	1.0	1	11/30/16 08:19	
Carbon Disulfide	ND U	1.0	1	11/30/16 08:19	
Carbon Tetrachloride	ND U	1.0	1	11/30/16 08:19	
Chlorobenzene	ND U	1.0	1	11/30/16 08:19	
Chloroethane	ND U	1.0	1	11/30/16 08:19	
Chloroform	ND U	1.0	1	11/30/16 08:19	
Chloromethane (Methyl Chloride)	ND U	1.0	1	11/30/16 08:19	
Dibromochloromethane	ND U	1.0	1	11/30/16 08:19	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	11/30/16 08:19	
Ethylbenzene	ND U	1.0	1	11/30/16 08:19	
Styrene	ND U	1.0	1	11/30/16 08:19	
Tetrachloroethene (PCE)	ND U	1.0	1	11/30/16 08:19	
Toluene	ND U	1.0	1	11/30/16 08:19	
Trichloroethene (TCE)	ND U	1.0	1	11/30/16 08:19	
Vinyl Chloride	ND U	1.0	1	11/30/16 08:19	
cis-1,3-Dichloropropene	ND U	1.0	1	11/30/16 08:19	
m,p-Xylenes	ND U	2.0	1	11/30/16 08:19	
o-Xylene	ND U	1.0	1	11/30/16 08:19	
trans-1,3-Dichloropropene	ND U	1.0	1	11/30/16 08:19	

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1612457

 Project:
 Akzo Nobel/1398.003.001
 Date Collected:
 11/22/16

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name:DUPE-X VOAUnits: ug/LLab Code:R1612457-014Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	11/30/16 08:19	
Dibromofluoromethane	106	89 - 119	11/30/16 08:19	
Toluene-d8	109	87 - 121	11/30/16 08:19	

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1612457

 Project:
 Akzo Nobel/1398.003.001
 Date Collected:
 11/22/16 11:44

Sample Matrix: Water

Date Received: 11/23/16 16:00

 Sample Name:
 MW-3 VOA
 Units: ug/L

 Lab Code:
 R1612457-015
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	12/01/16 12:47	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	12/01/16 12:47	
1,1,2-Trichloroethane	ND U	1.0	1	12/01/16 12:47	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	12/01/16 12:47	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	12/01/16 12:47	
1,2-Dichloroethane	ND U	1.0	1	12/01/16 12:47	
1,2-Dichloroethene, Total	ND U	2.0	1	12/01/16 12:47	
1,2-Dichloropropane	ND U	1.0	1	12/01/16 12:47	
2-Butanone (MEK)	ND U	5.0	1	12/01/16 12:47	
2-Hexanone	ND U	5.0	1	12/01/16 12:47	
4-Methyl-2-pentanone	ND U	5.0	1	12/01/16 12:47	
Acetone	ND U	5.0	1	12/01/16 12:47	
Benzene	ND U	1.0	1	12/01/16 12:47	
Bromodichloromethane	ND U	1.0	1	12/01/16 12:47	
Bromoform	ND U	1.0	1	12/01/16 12:47	
Bromomethane	ND U	1.0	1	12/01/16 12:47	
Carbon Disulfide	ND U	1.0	1	12/01/16 12:47	
Carbon Tetrachloride	ND U	1.0	1	12/01/16 12:47	
Chlorobenzene	ND U	1.0	1	12/01/16 12:47	
Chloroethane	ND U	1.0	1	12/01/16 12:47	
Chloroform	ND U	1.0	1	12/01/16 12:47	
Chloromethane (Methyl Chloride)	ND U	1.0	1	12/01/16 12:47	
Dibromochloromethane	ND U	1.0	1	12/01/16 12:47	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	12/01/16 12:47	
Ethylbenzene	ND U	1.0	1	12/01/16 12:47	
Styrene	ND U	1.0	1	12/01/16 12:47	
Tetrachloroethene (PCE)	ND U	1.0	1	12/01/16 12:47	
Toluene	ND U	1.0	1	12/01/16 12:47	
Trichloroethene (TCE)	ND U	1.0	1	12/01/16 12:47	
Vinyl Chloride	ND U	1.0	1	12/01/16 12:47	
cis-1,3-Dichloropropene	ND U	1.0	1	12/01/16 12:47	
m,p-Xylenes	ND U	2.0	1	12/01/16 12:47	
o-Xylene	ND U	1.0	1	12/01/16 12:47	
trans-1,3-Dichloropropene	ND U	1.0	1	12/01/16 12:47	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/22/16 11:44

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-3 VOA
 Units: ug/L

 Lab Code:
 R1612457-015
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	12/01/16 12:47	
Dibromofluoromethane	107	89 - 119	12/01/16 12:47	
Toluene-d8	102	87 - 121	12/01/16 12:47	

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1612457

 Project:
 Akzo Nobel/1398.003.001
 Date Collected:
 11/22/16 12:24

Sample Matrix: Water

Date Received: 11/23/16 16:00

 Sample Name:
 MW-4 VOA
 Units: ug/L

 Lab Code:
 R1612457-016
 Basis: NA

Volatile Organic Compounds by GC/MS

1,1,1-Trichloroethane (TCA) ND U 1.0 1 12/01/16 13:17 1,1,2,2-Tetrachloroethane ND U 1.0 1 12/01/16 13:17 1,1,2-Trichloroethane ND U 1.0 1 12/01/16 13:17 1,1-Dichloroethane (1,1-DCA) ND U 1.0 1 12/01/16 13:17 1,1-Dichloroethane (1,1-DCE) ND U 1.0 1 12/01/16 13:17 1,2-Dichloroethane ND U 1.0 1 12/01/16 13:17	
1,1,2-Trichloroethane ND U 1.0 1 12/01/16 13:17 1,1-Dichloroethane (1,1-DCA) ND U 1.0 1 12/01/16 13:17 1,1-Dichloroethene (1,1-DCE) ND U 1.0 1 12/01/16 13:17	
1,1-Dichloroethane (1,1-DCA) ND U 1.0 1 12/01/16 13:17 1,1-Dichloroethene (1,1-DCE) ND U 1.0 1 12/01/16 13:17	
1,1-Dichloroethene (1,1-DCE) ND U 1.0 1 12/01/16 13:17	
<u> </u>	
1.2 Diablargathana ND II 10 1 12/01/16 12:17	
1,2-Dichiorochiane 10 U 1.0 1 12/01/10 13.17	
1,2-Dichloroethene, Total ND U 2.0 1 12/01/16 13:17	
1,2-Dichloropropane ND U 1.0 1 12/01/16 13:17	
2-Butanone (MEK) ND U 5.0 1 12/01/16 13:17	
2-Hexanone ND U 5.0 1 12/01/16 13:17	
4-Methyl-2-pentanone ND U 5.0 1 12/01/16 13:17	
Acetone 5.2 5.0 1 12/01/16 13:17	
Benzene ND U 1.0 1 12/01/16 13:17	
Bromodichloromethane ND U 1.0 1 12/01/16 13:17	
Bromoform ND U 1.0 1 12/01/16 13:17	
Bromomethane ND U 1.0 1 12/01/16 13:17	
Carbon Disulfide ND U 1.0 1 12/01/16 13:17	
Carbon Tetrachloride ND U 1.0 1 12/01/16 13:17	
Chlorobenzene ND U 1.0 1 12/01/16 13:17	
Chloroethane ND U 1.0 1 12/01/16 13:17	
Chloroform ND U 1.0 1 12/01/16 13:17	
Chloromethane (Methyl Chloride) ND U 1.0 1 12/01/16 13:17	
Dibromochloromethane ND U 1.0 1 12/01/16 13:17	
Dichloromethane (Methylene Chloride) ND U 1.0 1 12/01/16 13:17	
Ethylbenzene ND U 1.0 1 12/01/16 13:17	
Styrene ND U 1.0 1 12/01/16 13:17	
Tetrachloroethene (PCE) ND U 1.0 1 12/01/16 13:17	
Toluene ND U 1.0 1 12/01/16 13:17	
Trichloroethene (TCE) ND U 1.0 1 12/01/16 13:17	
Vinyl Chloride ND U 1.0 1 12/01/16 13:17	
cis-1,3-Dichloropropene ND U 1.0 1 12/01/16 13:17	
m,p-Xylenes ND U 2.0 1 12/01/16 13:17	
o-Xylene ND U 1.0 1 12/01/16 13:17	
trans-1,3-Dichloropropene ND U 1.0 1 12/01/16 13:17	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/22/16 12:24

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-4 VOA
 Units: ug/L

 Lab Code:
 R1612457-016
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	12/01/16 13:17	
Dibromofluoromethane	107	89 - 119	12/01/16 13:17	
Toluene-d8	110	87 - 121	12/01/16 13:17	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457 **Date Collected:** 11/22/16 12:15 **Project:** Akzo Nobel/1398.003.001 **Date Received:** 11/23/16 16:00

Sample Matrix: Water

Sample Name: MW-4B VOA Units: ug/L Lab Code: R1612457-017 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	11/30/16 08:49	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	11/30/16 08:49	
1,1,2-Trichloroethane	ND U	1.0	1	11/30/16 08:49	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	11/30/16 08:49	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	11/30/16 08:49	
1,2-Dichloroethane	ND U	1.0	1	11/30/16 08:49	
1,2-Dichloroethene, Total	ND U	2.0	1	11/30/16 08:49	
1,2-Dichloropropane	ND U	1.0	1	11/30/16 08:49	
2-Butanone (MEK)	ND U	5.0	1	11/30/16 08:49	
2-Hexanone	ND U	5.0	1	11/30/16 08:49	
4-Methyl-2-pentanone	ND U	5.0	1	11/30/16 08:49	
Acetone	ND U	5.0	1	11/30/16 08:49	
Benzene	ND U	1.0	1	11/30/16 08:49	
Bromodichloromethane	ND U	1.0	1	11/30/16 08:49	
Bromoform	ND U	1.0	1	11/30/16 08:49	
Bromomethane	ND U	1.0	1	11/30/16 08:49	
Carbon Disulfide	ND U	1.0	1	11/30/16 08:49	
Carbon Tetrachloride	ND U	1.0	1	11/30/16 08:49	
Chlorobenzene	ND U	1.0	1	11/30/16 08:49	
Chloroethane	ND U	1.0	1	11/30/16 08:49	
Chloroform	ND U	1.0	1	11/30/16 08:49	
Chloromethane (Methyl Chloride)	ND U	1.0	1	11/30/16 08:49	
Dibromochloromethane	ND U	1.0	1	11/30/16 08:49	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	11/30/16 08:49	
Ethylbenzene	ND U	1.0	1	11/30/16 08:49	
Styrene	ND U	1.0	1	11/30/16 08:49	
Tetrachloroethene (PCE)	ND U	1.0	1	11/30/16 08:49	
Toluene	ND U	1.0	1	11/30/16 08:49	
Trichloroethene (TCE)	ND U	1.0	1	11/30/16 08:49	
Vinyl Chloride	ND U	1.0	1	11/30/16 08:49	
cis-1,3-Dichloropropene	ND U	1.0	1	11/30/16 08:49	
m,p-Xylenes	ND U	2.0	1	11/30/16 08:49	
o-Xylene	ND U	1.0	1	11/30/16 08:49	
trans-1,3-Dichloropropene	ND U	1.0	1	11/30/16 08:49	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16 12:15

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-4B VOA
 Units: ug/L

 Lab Code:
 R1612457-017
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	11/30/16 08:49	
Dibromofluoromethane	109	89 - 119	11/30/16 08:49	
Toluene-d8	111	87 - 121	11/30/16 08:49	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16 11:23Sample Matrix:WaterDate Received:11/23/16 16:00

 Sample Name:
 MW-5 VOA
 Units: ug/L

 Lab Code:
 R1612457-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	11/30/16 09:19	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	11/30/16 09:19	
1,1,2-Trichloroethane	ND U	1.0	1	11/30/16 09:19	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	11/30/16 09:19	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	11/30/16 09:19	
1,2-Dichloroethane	ND U	1.0	1	11/30/16 09:19	
1,2-Dichloroethene, Total	ND U	2.0	1	11/30/16 09:19	
1,2-Dichloropropane	ND U	1.0	1	11/30/16 09:19	
2-Butanone (MEK)	ND U	5.0	1	11/30/16 09:19	
2-Hexanone	ND U	5.0	1	11/30/16 09:19	
4-Methyl-2-pentanone	ND U	5.0	1	11/30/16 09:19	
Acetone	13	5.0	1	11/30/16 09:19	
Benzene	ND U	1.0	1	11/30/16 09:19	
Bromodichloromethane	ND U	1.0	1	11/30/16 09:19	
Bromoform	ND U	1.0	1	11/30/16 09:19	
Bromomethane	ND U	1.0	1	11/30/16 09:19	
Carbon Disulfide	ND U	1.0	1	11/30/16 09:19	
Carbon Tetrachloride	ND U	1.0	1	11/30/16 09:19	
Chlorobenzene	ND U	1.0	1	11/30/16 09:19	
Chloroethane	ND U	1.0	1	11/30/16 09:19	
Chloroform	ND U	1.0	1	11/30/16 09:19	
Chloromethane (Methyl Chloride)	ND U	1.0	1	11/30/16 09:19	
Dibromochloromethane	ND U	1.0	1	11/30/16 09:19	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	11/30/16 09:19	
Ethylbenzene	ND U	1.0	1	11/30/16 09:19	
Styrene	ND U	1.0	1	11/30/16 09:19	
Tetrachloroethene (PCE)	ND U	1.0	1	11/30/16 09:19	
Toluene	ND U	1.0	1	11/30/16 09:19	
Trichloroethene (TCE)	ND U	1.0	1	11/30/16 09:19	
Vinyl Chloride	ND U	1.0	1	11/30/16 09:19	
cis-1,3-Dichloropropene	ND U	1.0	1	11/30/16 09:19	
m,p-Xylenes	ND U	2.0	1	11/30/16 09:19	
o-Xylene	ND U	1.0	1	11/30/16 09:19	
trans-1,3-Dichloropropene	ND U	1.0	1	11/30/16 09:19	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/22/16 11:23

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-5 VOA
 Units: ug/L

 Lab Code:
 R1612457-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	11/30/16 09:19	
Dibromofluoromethane	107	89 - 119	11/30/16 09:19	
Toluene-d8	110	87 - 121	11/30/16 09:19	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16 14:05

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-9 VOA
 Units: ug/L

 Lab Code:
 R1612457-019
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	4.5	1.0	1	11/30/16 09:49	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	11/30/16 09:49	
1,1,2-Trichloroethane	ND U	1.0	1	11/30/16 09:49	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	11/30/16 09:49	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	11/30/16 09:49	
1,2-Dichloroethane	ND U	1.0	1	11/30/16 09:49	
1,2-Dichloroethene, Total	ND U	2.0	1	11/30/16 09:49	
1,2-Dichloropropane	ND U	1.0	1	11/30/16 09:49	
2-Butanone (MEK)	ND U	5.0	1	11/30/16 09:49	
2-Hexanone	ND U	5.0	1	11/30/16 09:49	
4-Methyl-2-pentanone	ND U	5.0	1	11/30/16 09:49	
Acetone	ND U	5.0	1	11/30/16 09:49	
Benzene	ND U	1.0	1	11/30/16 09:49	
Bromodichloromethane	ND U	1.0	1	11/30/16 09:49	
Bromoform	ND U	1.0	1	11/30/16 09:49	
Bromomethane	ND U	1.0	1	11/30/16 09:49	
Carbon Disulfide	ND U	1.0	1	11/30/16 09:49	
Carbon Tetrachloride	ND U	1.0	1	11/30/16 09:49	
Chlorobenzene	ND U	1.0	1	11/30/16 09:49	
Chloroethane	ND U	1.0	1	11/30/16 09:49	
Chloroform	ND U	1.0	1	11/30/16 09:49	
Chloromethane (Methyl Chloride)	ND U	1.0	1	11/30/16 09:49	
Dibromochloromethane	ND U	1.0	1	11/30/16 09:49	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	11/30/16 09:49	
Ethylbenzene	ND U	1.0	1	11/30/16 09:49	
Styrene	ND U	1.0	1	11/30/16 09:49	
Tetrachloroethene (PCE)	ND U	1.0	1	11/30/16 09:49	
Toluene	ND U	1.0	1	11/30/16 09:49	
Trichloroethene (TCE)	ND U	1.0	1	11/30/16 09:49	
Vinyl Chloride	ND U	1.0	1	11/30/16 09:49	
cis-1,3-Dichloropropene	ND U	1.0	1	11/30/16 09:49	
m,p-Xylenes	ND U	2.0	1	11/30/16 09:49	
o-Xylene	ND U	1.0	1	11/30/16 09:49	
trans-1,3-Dichloropropene	ND U	1.0	1	11/30/16 09:49	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/22/16 14:05

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-9 VOA
 Units: ug/L

 Lab Code:
 R1612457-019
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	11/30/16 09:49	
Dibromofluoromethane	109	89 - 119	11/30/16 09:49	
Toluene-d8	104	87 - 121	11/30/16 09:49	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16 13:58

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-9B VOA
 Units: ug/L

 Lab Code:
 R1612457-020
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	12/01/16 13:48	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	12/01/16 13:48	
1,1,2-Trichloroethane	ND U	1.0	1	12/01/16 13:48	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	12/01/16 13:48	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	12/01/16 13:48	
1,2-Dichloroethane	ND U	1.0	1	12/01/16 13:48	
1,2-Dichloroethene, Total	ND U	2.0	1	12/01/16 13:48	
1,2-Dichloropropane	ND U	1.0	1	12/01/16 13:48	
2-Butanone (MEK)	ND U	5.0	1	12/01/16 13:48	
2-Hexanone	ND U	5.0	1	12/01/16 13:48	
4-Methyl-2-pentanone	ND U	5.0	1	12/01/16 13:48	
Acetone	ND U	5.0	1	12/01/16 13:48	
Benzene	ND U	1.0	1	12/01/16 13:48	
Bromodichloromethane	ND U	1.0	1	12/01/16 13:48	
Bromoform	ND U	1.0	1	12/01/16 13:48	
Bromomethane	ND U	1.0	1	12/01/16 13:48	
Carbon Disulfide	ND U	1.0	1	12/01/16 13:48	
Carbon Tetrachloride	ND U	1.0	1	12/01/16 13:48	
Chlorobenzene	ND U	1.0	1	12/01/16 13:48	
Chloroethane	ND U	1.0	1	12/01/16 13:48	
Chloroform	ND U	1.0	1	12/01/16 13:48	
Chloromethane (Methyl Chloride)	ND U	1.0	1	12/01/16 13:48	
Dibromochloromethane	ND U	1.0	1	12/01/16 13:48	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	12/01/16 13:48	
Ethylbenzene	ND U	1.0	1	12/01/16 13:48	
Styrene	ND U	1.0	1	12/01/16 13:48	
Tetrachloroethene (PCE)	ND U	1.0	1	12/01/16 13:48	
Toluene	ND U	1.0	1	12/01/16 13:48	
Trichloroethene (TCE)	ND U	1.0	1	12/01/16 13:48	
Vinyl Chloride	ND U	1.0	1	12/01/16 13:48	
cis-1,3-Dichloropropene	ND U	1.0	1	12/01/16 13:48	
m,p-Xylenes	ND U	2.0	1	12/01/16 13:48	
o-Xylene	ND U	1.0	1	12/01/16 13:48	
trans-1,3-Dichloropropene	ND U	1.0	1	12/01/16 13:48	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16 13:58

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-9B VOA
 Units: ug/L

 Lab Code:
 R1612457-020
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	12/01/16 13:48	
Dibromofluoromethane	105	89 - 119	12/01/16 13:48	
Toluene-d8	109	87 - 121	12/01/16 13:48	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16 14:26

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-10 VOA
 Units: ug/L

 Lab Code:
 R1612457-021
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	12/01/16 14:18	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	12/01/16 14:18	
1,1,2-Trichloroethane	ND U	1.0	1	12/01/16 14:18	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	12/01/16 14:18	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	12/01/16 14:18	
1,2-Dichloroethane	ND U	1.0	1	12/01/16 14:18	
1,2-Dichloroethene, Total	ND U	2.0	1	12/01/16 14:18	
1,2-Dichloropropane	ND U	1.0	1	12/01/16 14:18	
2-Butanone (MEK)	ND U	5.0	1	12/01/16 14:18	
2-Hexanone	ND U	5.0	1	12/01/16 14:18	
4-Methyl-2-pentanone	ND U	5.0	1	12/01/16 14:18	
Acetone	ND U	5.0	1	12/01/16 14:18	
Benzene	ND U	1.0	1	12/01/16 14:18	
Bromodichloromethane	ND U	1.0	1	12/01/16 14:18	
Bromoform	ND U	1.0	1	12/01/16 14:18	
Bromomethane	ND U	1.0	1	12/01/16 14:18	
Carbon Disulfide	ND U	1.0	1	12/01/16 14:18	
Carbon Tetrachloride	ND U	1.0	1	12/01/16 14:18	
Chlorobenzene	ND U	1.0	1	12/01/16 14:18	
Chloroethane	ND U	1.0	1	12/01/16 14:18	
Chloroform	ND U	1.0	1	12/01/16 14:18	
Chloromethane (Methyl Chloride)	ND U	1.0	1	12/01/16 14:18	
Dibromochloromethane	ND U	1.0	1	12/01/16 14:18	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	12/01/16 14:18	
Ethylbenzene	ND U	1.0	1	12/01/16 14:18	
Styrene	ND U	1.0	1	12/01/16 14:18	
Tetrachloroethene (PCE)	ND U	1.0	1	12/01/16 14:18	
Toluene	ND U	1.0	1	12/01/16 14:18	
Trichloroethene (TCE)	ND U	1.0	1	12/01/16 14:18	
Vinyl Chloride	ND U	1.0	1	12/01/16 14:18	
cis-1,3-Dichloropropene	ND U	1.0	1	12/01/16 14:18	
m,p-Xylenes	ND U	2.0	1	12/01/16 14:18	
o-Xylene	ND U	1.0	1	12/01/16 14:18	
trans-1,3-Dichloropropene	ND U	1.0	1	12/01/16 14:18	

Analytical Report

 Client:
 Barton & Loguidice, PC
 Service Request:
 R1612457

 Project:
 Akzo Nobel/1398.003.001
 Date Collected:
 11/22/16 14:26

 Project:
 Akzo Nobel/1398.003.001
 Date Collected:
 11/22/16 14:26

 Sample Matrix:
 Water
 Date Received:
 11/23/16 16:00

Sample Name: MW-10 VOA Units: ug/L

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

R1612457-021

Lab Code:

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	12/01/16 14:18	
Dibromofluoromethane	108	89 - 119	12/01/16 14:18	
Toluene-d8	102	87 - 121	12/01/16 14:18	

Basis: NA

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16 13:09

Sample Matrix: Water

Date Received: 11/23/16 16:00

 Sample Name:
 MW-11 VOA
 Units: ug/L

 Lab Code:
 R1612457-022
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	12/01/16 14:48	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	12/01/16 14:48	
1,1,2-Trichloroethane	ND U	1.0	1	12/01/16 14:48	
1,1-Dichloroethane (1,1-DCA)	1.6	1.0	1	12/01/16 14:48	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	12/01/16 14:48	
1,2-Dichloroethane	ND U	1.0	1	12/01/16 14:48	
1,2-Dichloroethene, Total	ND U	2.0	1	12/01/16 14:48	
1,2-Dichloropropane	ND U	1.0	1	12/01/16 14:48	
2-Butanone (MEK)	ND U	5.0	1	12/01/16 14:48	
2-Hexanone	ND U	5.0	1	12/01/16 14:48	
4-Methyl-2-pentanone	ND U	5.0	1	12/01/16 14:48	
Acetone	ND U	5.0	1	12/01/16 14:48	
Benzene	ND U	1.0	1	12/01/16 14:48	
Bromodichloromethane	ND U	1.0	1	12/01/16 14:48	
Bromoform	ND U	1.0	1	12/01/16 14:48	
Bromomethane	ND U	1.0	1	12/01/16 14:48	
Carbon Disulfide	ND U	1.0	1	12/01/16 14:48	
Carbon Tetrachloride	ND U	1.0	1	12/01/16 14:48	
Chlorobenzene	ND U	1.0	1	12/01/16 14:48	
Chloroethane	ND U	1.0	1	12/01/16 14:48	
Chloroform	ND U	1.0	1	12/01/16 14:48	
Chloromethane (Methyl Chloride)	ND U	1.0	1	12/01/16 14:48	
Dibromochloromethane	ND U	1.0	1	12/01/16 14:48	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	12/01/16 14:48	
Ethylbenzene	ND U	1.0	1	12/01/16 14:48	
Styrene	ND U	1.0	1	12/01/16 14:48	
Tetrachloroethene (PCE)	ND U	1.0	1	12/01/16 14:48	
Toluene	ND U	1.0	1	12/01/16 14:48	
Trichloroethene (TCE)	ND U	1.0	1	12/01/16 14:48	
Vinyl Chloride	ND U	1.0	1	12/01/16 14:48	
cis-1,3-Dichloropropene	ND U	1.0	1	12/01/16 14:48	
m,p-Xylenes	ND U	2.0	1	12/01/16 14:48	
o-Xylene	ND U	1.0	1	12/01/16 14:48	
trans-1,3-Dichloropropene	ND U	1.0	1	12/01/16 14:48	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/22/16 13:09

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-11 VOA
 Units: ug/L

 Lab Code:
 R1612457-022
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	12/01/16 14:48	
Dibromofluoromethane	110	89 - 119	12/01/16 14:48	
Toluene-d8	104	87 - 121	12/01/16 14:48	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16 13:03Sample Matrix:WaterDate Received:11/23/16 16:00

 Sample Name:
 MW-11B VOA
 Units: ug/L

 Lab Code:
 R1612457-023
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	12/01/16 15:18	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	12/01/16 15:18	
1,1,2-Trichloroethane	ND U	1.0	1	12/01/16 15:18	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	12/01/16 15:18	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	12/01/16 15:18	
1,2-Dichloroethane	ND U	1.0	1	12/01/16 15:18	
1,2-Dichloroethene, Total	ND U	2.0	1	12/01/16 15:18	
1,2-Dichloropropane	ND U	1.0	1	12/01/16 15:18	
2-Butanone (MEK)	ND U	5.0	1	12/01/16 15:18	
2-Hexanone	ND U	5.0	1	12/01/16 15:18	
4-Methyl-2-pentanone	ND U	5.0	1	12/01/16 15:18	
Acetone	ND U	5.0	1	12/01/16 15:18	
Benzene	ND U	1.0	1	12/01/16 15:18	
Bromodichloromethane	ND U	1.0	1	12/01/16 15:18	
Bromoform	ND U	1.0	1	12/01/16 15:18	
Bromomethane	ND U	1.0	1	12/01/16 15:18	
Carbon Disulfide	ND U	1.0	1	12/01/16 15:18	
Carbon Tetrachloride	ND U	1.0	1	12/01/16 15:18	
Chlorobenzene	ND U	1.0	1	12/01/16 15:18	
Chloroethane	ND U	1.0	1	12/01/16 15:18	
Chloroform	ND U	1.0	1	12/01/16 15:18	
Chloromethane (Methyl Chloride)	ND U	1.0	1	12/01/16 15:18	
Dibromochloromethane	ND U	1.0	1	12/01/16 15:18	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	12/01/16 15:18	
Ethylbenzene	ND U	1.0	1	12/01/16 15:18	
Styrene	ND U	1.0	1	12/01/16 15:18	
Tetrachloroethene (PCE)	ND U	1.0	1	12/01/16 15:18	
Toluene	ND U	1.0	1	12/01/16 15:18	
Trichloroethene (TCE)	ND U	1.0	1	12/01/16 15:18	
Vinyl Chloride	ND U	1.0	1	12/01/16 15:18	
cis-1,3-Dichloropropene	ND U	1.0	1	12/01/16 15:18	
m,p-Xylenes	ND U	2.0	1	12/01/16 15:18	
o-Xylene	ND U	1.0	1	12/01/16 15:18	
trans-1,3-Dichloropropene	ND U	1.0	1	12/01/16 15:18	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/22/16 13:03

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-11B VOA
 Units: ug/L

 Lab Code:
 R1612457-023
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	12/01/16 15:18	
Dibromofluoromethane	108	89 - 119	12/01/16 15:18	
Toluene-d8	111	87 - 121	12/01/16 15:18	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name:TRIP BLANKUnits: ug/LLab Code:R1612457-024Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	12/01/16 12:17	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	12/01/16 12:17	
1,1,2-Trichloroethane	ND U	1.0	1	12/01/16 12:17	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	12/01/16 12:17	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	12/01/16 12:17	
1,2-Dichloroethane	ND U	1.0	1	12/01/16 12:17	
1,2-Dichloroethene, Total	ND U	2.0	1	12/01/16 12:17	
1,2-Dichloropropane	ND U	1.0	1	12/01/16 12:17	
2-Butanone (MEK)	ND U	5.0	1	12/01/16 12:17	
2-Hexanone	ND U	5.0	1	12/01/16 12:17	
4-Methyl-2-pentanone	ND U	5.0	1	12/01/16 12:17	
Acetone	ND U	5.0	1	12/01/16 12:17	
Benzene	ND U	1.0	1	12/01/16 12:17	
Bromodichloromethane	ND U	1.0	1	12/01/16 12:17	
Bromoform	ND U	1.0	1	12/01/16 12:17	
Bromomethane	ND U	1.0	1	12/01/16 12:17	
Carbon Disulfide	ND U	1.0	1	12/01/16 12:17	
Carbon Tetrachloride	ND U	1.0	1	12/01/16 12:17	
Chlorobenzene	ND U	1.0	1	12/01/16 12:17	
Chloroethane	ND U	1.0	1	12/01/16 12:17	
Chloroform	ND U	1.0	1	12/01/16 12:17	
Chloromethane (Methyl Chloride)	ND U	1.0	1	12/01/16 12:17	
Dibromochloromethane	ND U	1.0	1	12/01/16 12:17	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	12/01/16 12:17	
Ethylbenzene	ND U	1.0	1	12/01/16 12:17	
Styrene	ND U	1.0	1	12/01/16 12:17	
Tetrachloroethene (PCE)	ND U	1.0	1	12/01/16 12:17	
Toluene	ND U	1.0	1	12/01/16 12:17	
Trichloroethene (TCE)	ND U	1.0	1	12/01/16 12:17	
Vinyl Chloride	ND U	1.0	1	12/01/16 12:17	
cis-1,3-Dichloropropene	ND U	1.0	1	12/01/16 12:17	
m,p-Xylenes	ND U	2.0	1	12/01/16 12:17	
o-Xylene	ND U	1.0	1	12/01/16 12:17	
trans-1,3-Dichloropropene	ND U	1.0	1	12/01/16 12:17	

Analytical Report

Client:Barton & Loguidice, PCService Request:R1612457Project:Akzo Nobel/1398.003.001Date Collected:11/22/16

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name:TRIP BLANKUnits: ug/LLab Code:R1612457-024Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	12/01/16 12:17	
Dibromofluoromethane	110	89 - 119	12/01/16 12:17	
Toluene-d8	105	87 - 121	12/01/16 12:17	

Volatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 10:34

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-1 Units: ug/L

Lab Code: R1612457-001 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	3.9	1.0	1	12/06/16 11:37	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 14:00

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-2
 Units: ug/L

 Lab Code:
 R1612457-002
 Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	2800	100	100	12/06/16 11:47	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457 **Date Collected:** 11/23/16 **Project:** Akzo Nobel/1398.003.001

Water **Date Received:** 11/23/16 16:00

Sample Matrix:

DUPE-X **Sample Name:** Units: ug/L Basis: NA Lab Code: R1612457-003

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	3.8	1.0	1	12/06/16 11:58	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 11:09

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-3
 Units: ug/L

 Lab Code:
 R1612457-004
 Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	1.3	1.0	1	12/06/16 12:22	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 11:46

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-4B
 Units: ug/L

 Lab Code:
 R1612457-005
 Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	4.3	1.0	1	12/06/16 12:51	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Date Collected: 11/23/16 10:54 **Project:** Akzo Nobel/1398.003.001

Sample Matrix: Water **Date Received:** 11/23/16 16:00

MW-5 **Sample Name:** Units: ug/L Lab Code: R1612457-006

Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	ND U	1.0	1	12/06/16 13:02	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 12:55

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-9 Units: ug/L

Lab Code: R1612457-007 **Basis:** NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	ND U	1.0	1	12/06/16 13:26	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 13:03

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-9B
 Units: ug/L

 Lab Code:
 R1612457-008
 Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	3.7	1.0	1	12/06/16 13:36	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 13:48

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-10
 Units: ug/L

 Lab Code:
 R1612457-009
 Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	ND U	1.0	1	12/06/16 13:46	_

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Date Collected: 11/23/16 12:19 **Project:** Akzo Nobel/1398.003.001

Sample Matrix: Water **Date Received:** 11/23/16 16:00

Sample Name: MW-11 Units: ug/L Lab Code: R1612457-010

Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	23	1.0	1	12/06/16 13:56	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 12:28

Sample Matrix: Water Date Received: 11/23/16 16:00

 Sample Name:
 MW-11B
 Units: ug/L

 Lab Code:
 R1612457-011
 Basis: NA

Dissolved Gases by GC/FID

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	11	1.0	1	12/06/16 14:06	

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 10:34

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-1 Basis: NA

130

Lab Code: R1612457-001

200.7

Manganese, Dissolved

Inorganic Parameters

ug/L

10

1

11/30/16 12:59

11/28/16

Analysis **Analyte Name** Method Result Units **MRL** Dil. **Date Analyzed Date Extracted** 200.7 Iron, Dissolved ND U ug/L 100 11/30/16 12:59 11/28/16

Analytical Report

Client: Barton & Loguidice, PC

Service Request: R1612457 **Date Collected:** 11/23/16 14:00 **Project:** Akzo Nobel/1398.003.001

Date Received: 11/23/16 16:00 **Sample Matrix:** Water

MW-2 **Sample Name:** Basis: NA

Lab Code: R1612457-002

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	520	ug/L	100	1	11/30/16 13:29	11/28/16	
Manganese, Dissolved	200.7	2240	ug/L	10	1	11/30/16 13:29	11/28/16	

Analytical Report

Client: Barton & Loguidice, PC

Service Request: R1612457 **Date Collected:** 11/23/16 **Project:** Akzo Nobel/1398.003.001

Sample Matrix: Water **Date Received:** 11/23/16 16:00

Sample Name: DUPE-X Basis: NA

Lab Code: R1612457-003

Inorganic Parameters

Analysis **Analyte Name** Method Result Units **MRL** Dil. **Date Analyzed Date Extracted** 200.7 Iron, Dissolved ND U ug/L 100 11/30/16 13:35 11/28/16 Manganese, Dissolved 200.7 131 ug/L 10 1 11/30/16 13:35 11/28/16

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 11:09

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-3 Basis: NA

Inorganic Parameters

Analysis

R1612457-004

Lab Code:

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	ND U	ug/L	100	1	11/30/16 13:41	11/28/16	
Manganese, Dissolved	200.7	10	ug/L	10	1	11/30/16 13:41	11/28/16	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 11:46

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-4B Basis: NA

Lab Code: R1612457-005

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	ND U	ug/L	100	1	11/30/16 14:23	11/28/16	
Manganese, Dissolved	200.7	47	ug/L	10	1	11/30/16 14:23	11/28/16	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 10:54

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-5 Basis: NA

Lab Code: R1612457-006

Inorganic Parameters

Analysis **Analyte Name** Method Result Units **MRL** Dil. **Date Analyzed Date Extracted** 200.7 Iron, Dissolved ND U ug/L 100 11/30/16 14:30 11/28/16 Manganese, Dissolved 200.7 **26** ug/L 10 1 11/30/16 14:30 11/28/16

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 12:55

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-9 Basis: NA

Lab Code: R1612457-007

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	ND U	ug/L	100	1	11/30/16 14:36	11/28/16	
Manganese, Dissolved	200.7	ND U	ug/L	10	1	11/30/16 14:36	11/28/16	

Service Request: R1612457

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Date Collected: 11/23/16 13:03 **Project:** Akzo Nobel/1398.003.001

Date Received: 11/23/16 16:00 **Sample Matrix:** Water

MW-9B **Sample Name:** Basis: NA Lab Code:

Inorganic Parameters

Analysis

R1612457-008

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	ND U	ug/L	100	1	11/30/16 14:42	11/28/16	
Manganese, Dissolved	200.7	40	ug/L	10	1	11/30/16 14:42	11/28/16	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 13:48

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-10 Basis: NA

Lab Code: R1612457-009

200.7

Manganese, Dissolved

Inorganic Parameters

ug/L

10

1

11/30/16 14:48

11/28/16

Analysis **Analyte Name** Method Result Units **MRL** Dil. **Date Analyzed Date Extracted** 200.7 Iron, Dissolved ND U ug/L 100 11/30/16 14:48 11/28/16

114

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 12:19

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-11 Basis: NA

Inorganic Parameters

Analysis

R1612457-010

Lab Code:

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	ND U	ug/L	100	1	11/30/16 14:54	11/28/16	
Manganese, Dissolved	200.7	168	ug/L	10	1	11/30/16 14:54	11/28/16	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 12:28

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-11B Basis: NA

Inorganic Parameters

Analysis

R1612457-011

Lab Code:

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Iron, Dissolved	200.7	ND U	ug/L	100	1	11/30/16 15:12	11/28/16	
Manganese, Dissolved	200.7	29	ug/L	10	1	11/30/16 15:12	11/28/16	

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Sample Matrix:

Water

Service Request: R1612457

Date Collected: 11/23/16 10:34

Date Received: 11/23/16 16:00

Sample Name: MW-1 Basis: NA

Lab Code: R1612457-001

Inorganic Parameters

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 17:10	
Nitrite as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 17:10	
Sulfate	300.0	34.2	mg/L	2.0	10	11/23/16 17:10	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 14:00

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-2 Basis: NA

Lab Code: R1612457-002

Inorganic Parameters

Analysis **Analyte Name** Method Result Units MRL Dil. **Date Analyzed** Q 300.0 ND U Nitrate as Nitrogen mg/L 1.0 10 11/23/16 17:23 Nitrite as Nitrogen 300.0 ND U mg/L 1.0 10 11/23/16 17:23 Sulfate 300.0 193 mg/L 8.0 40 11/26/16 03:29

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Sample Matrix: Water

Service Request: R1612457

Date Collected: 11/23/16

Date Received: 11/23/16 16:00

Sample Name: DUPE-X Basis: NA

Lab Code: R1612457-003

Inorganic Parameters

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 17:35	
Nitrite as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 17:35	
Sulfate	300.0	34.1	mg/L	2.0	10	11/23/16 17:35	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 11:09

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-3 Basis: NA

Lab Code: R1612457-004

Inorganic Parameters

Analysis **Analyte Name** Method Result Units MRL Dil. **Date Analyzed** Q 300.0 ND U Nitrate as Nitrogen mg/L 1.0 10 11/23/16 17:48 Nitrite as Nitrogen 300.0 ND U mg/L 1.0 10 11/23/16 17:48 Sulfate 300.0 135 mg/L 8.0 40 11/26/16 04:08

Analytical Report

Client: Barton & Loguidice, PC

Service Request: R1612457 **Date Collected:** 11/23/16 11:46 **Project:** Akzo Nobel/1398.003.001

Date Received: 11/23/16 16:00 **Sample Matrix:** Water

Sample Name: MW-4B Basis: NA

Lab Code: R1612457-005

Inorganic Parameters

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 18:27	
Nitrite as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 18:27	
Sulfate	300.0	754	mg/L	20	100	11/26/16 03:42	

Analytical Report

Client: Barton & Loguidice, PC

Service Request: R1612457 **Date Collected:** 11/23/16 10:54 **Project:** Akzo Nobel/1398.003.001

Date Received: 11/23/16 16:00 **Sample Matrix:** Water

MW-5 **Sample Name:** Basis: NA

Lab Code: R1612457-006

Inorganic Parameters

Analysis

	ranarysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	1.4	mg/L	1.0	10	11/23/16 19:06	
Nitrite as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 19:06	
Sulfate	300.0	59.7	mg/L	2.0	10	11/23/16 19:06	

Analytical Report

Client: Barton & Loguidice, PC

Service Request: R1612457 **Date Collected:** 11/23/16 12:55 **Project:** Akzo Nobel/1398.003.001

Date Received: 11/23/16 16:00 **Sample Matrix:** Water

MW-9 **Sample Name:** Basis: NA

Lab Code: R1612457-007

Inorganic Parameters

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	2.5	mg/L	1.0	10	11/23/16 19:19	
Nitrite as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 19:19	
Sulfate	300.0	50.8	mg/L	2.0	10	11/23/16 19:19	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Sample Matrix:

Water

Service Request: R1612457

Date Collected: 11/23/16 13:03

Date Received: 11/23/16 16:00

MW-9B **Sample Name:**

Lab Code: R1612457-008 Basis: NA

Inorganic Parameters

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 19:32	
Nitrite as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 19:32	
Sulfate	300.0	640	mg/L	20	100	11/26/16 04:47	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 13:48

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-10 Basis: NA

Lab Code: R1612457-009

Inorganic Parameters

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 19:45	
Nitrite as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 19:45	
Sulfate	300.0	59.0	mg/L	2.0	10	11/23/16 19:45	

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 12:19

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-11 Basis: NA

81.6

Lab Code: R1612457-010

300.0

Sulfate

Inorganic Parameters

Analysis **Analyte Name** Method Result Units MRL Dil. **Date Analyzed** Q 300.0 ND U Nitrate as Nitrogen mg/L 1.0 10 11/23/16 19:58 Nitrite as Nitrogen 300.0 ND U mg/L 1.0 10 11/23/16 19:58

mg/L

2.0

10

11/23/16 19:58

Analytical Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16 12:28

Sample Matrix: Water Date Received: 11/23/16 16:00

Sample Name: MW-11B Basis: NA

Lab Code: R1612457-011

Inorganic Parameters

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Nitrate as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 20:11	
Nitrite as Nitrogen	300.0	ND U	mg/L	1.0	10	11/23/16 20:11	
Sulfate	300.0	351	mg/L	20	100	11/26/16 05:26	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8	
Sample Name	Lab Code	85 - 122	89 - 119	87 - 121	
MW-1 VOA	R1612457-012	101	106	108	
MW-2 VOA	R1612457-013	102	108	105	
DUPE-X VOA	R1612457-014	102	106	109	
MW-3 VOA	R1612457-015	103	107	102	
MW-4 VOA	R1612457-016	103	107	110	
MW-4B VOA	R1612457-017	104	109	111	
MW-5 VOA	R1612457-018	103	107	110	
MW-9 VOA	R1612457-019	103	109	104	
MW-9B VOA	R1612457-020	105	105	109	
MW-10 VOA	R1612457-021	103	108	102	
MW-11 VOA	R1612457-022	105	110	104	
MW-11B VOA	R1612457-023	102	108	111	
TRIP BLANK	R1612457-024	102	110	105	
Lab Control Sample	RQ1614555-03	103	109	111	
Method Blank	RQ1614555-04	102	108	111	
Lab Control Sample	RQ1614685-03	106	109	112	
Method Blank	RQ1614685-04	104	109	111	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ1614555-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	11/30/16 00:13	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	11/30/16 00:13	
1,1,2-Trichloroethane	ND U	1.0	1	11/30/16 00:13	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	11/30/16 00:13	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	11/30/16 00:13	
1,2-Dichloroethane	ND U	1.0	1	11/30/16 00:13	
1,2-Dichloroethene, Total	ND U	2.0	1	11/30/16 00:13	
1,2-Dichloropropane	ND U	1.0	1	11/30/16 00:13	
2-Butanone (MEK)	ND U	5.0	1	11/30/16 00:13	
2-Hexanone	ND U	5.0	1	11/30/16 00:13	
4-Methyl-2-pentanone	ND U	5.0	1	11/30/16 00:13	
Acetone	ND U	5.0	1	11/30/16 00:13	
Benzene	ND U	1.0	1	11/30/16 00:13	
Bromodichloromethane	ND U	1.0	1	11/30/16 00:13	
Bromoform	ND U	1.0	1	11/30/16 00:13	
Bromomethane	ND U	1.0	1	11/30/16 00:13	
Carbon Disulfide	ND U	1.0	1	11/30/16 00:13	
Carbon Tetrachloride	ND U	1.0	1	11/30/16 00:13	
Chlorobenzene	ND U	1.0	1	11/30/16 00:13	
Chloroethane	ND U	1.0	1	11/30/16 00:13	
Chloroform	ND U	1.0	1	11/30/16 00:13	
Chloromethane (Methyl Chloride)	ND U	1.0	1	11/30/16 00:13	
Dibromochloromethane	ND U	1.0	1	11/30/16 00:13	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	11/30/16 00:13	
Ethylbenzene	ND U	1.0	1	11/30/16 00:13	
Styrene	ND U	1.0	1	11/30/16 00:13	
Tetrachloroethene (PCE)	ND U	1.0	1	11/30/16 00:13	
Toluene	ND U	1.0	1	11/30/16 00:13	
Trichloroethene (TCE)	ND U	1.0	1	11/30/16 00:13	
Vinyl Chloride	ND U	1.0	1	11/30/16 00:13	
cis-1,3-Dichloropropene	ND U	1.0	1	11/30/16 00:13	
m,p-Xylenes	ND U	2.0	1	11/30/16 00:13	
o-Xylene	ND U	1.0	1	11/30/16 00:13	
trans-1,3-Dichloropropene	ND U	1.0	1	11/30/16 00:13	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1614555-04Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	11/30/16 00:13	
Dibromofluoromethane	108	89 - 119	11/30/16 00:13	
Toluene-d8	111	87 - 121	11/30/16 00:13	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ1614685-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.0	1	12/01/16 11:47	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	12/01/16 11:47	
1,1,2-Trichloroethane	ND U	1.0	1	12/01/16 11:47	
1,1-Dichloroethane (1,1-DCA)	ND U	1.0	1	12/01/16 11:47	
1,1-Dichloroethene (1,1-DCE)	ND U	1.0	1	12/01/16 11:47	
1,2-Dichloroethane	ND U	1.0	1	12/01/16 11:47	
1,2-Dichloroethene, Total	ND U	2.0	1	12/01/16 11:47	
1,2-Dichloropropane	ND U	1.0	1	12/01/16 11:47	
2-Butanone (MEK)	ND U	5.0	1	12/01/16 11:47	
2-Hexanone	ND U	5.0	1	12/01/16 11:47	
4-Methyl-2-pentanone	ND U	5.0	1	12/01/16 11:47	
Acetone	ND U	5.0	1	12/01/16 11:47	
Benzene	ND U	1.0	1	12/01/16 11:47	
Bromodichloromethane	ND U	1.0	1	12/01/16 11:47	
Bromoform	ND U	1.0	1	12/01/16 11:47	
Bromomethane	ND U	1.0	1	12/01/16 11:47	
Carbon Disulfide	ND U	1.0	1	12/01/16 11:47	
Carbon Tetrachloride	ND U	1.0	1	12/01/16 11:47	
Chlorobenzene	ND U	1.0	1	12/01/16 11:47	
Chloroethane	ND U	1.0	1	12/01/16 11:47	
Chloroform	ND U	1.0	1	12/01/16 11:47	
Chloromethane (Methyl Chloride)	ND U	1.0	1	12/01/16 11:47	
Dibromochloromethane	ND U	1.0	1	12/01/16 11:47	
Dichloromethane (Methylene Chloride)	ND U	1.0	1	12/01/16 11:47	
Ethylbenzene	ND U	1.0	1	12/01/16 11:47	
Styrene	ND U	1.0	1	12/01/16 11:47	
Tetrachloroethene (PCE)	ND U	1.0	1	12/01/16 11:47	
Toluene	ND U	1.0	1	12/01/16 11:47	
Trichloroethene (TCE)	ND U	1.0	1	12/01/16 11:47	
Vinyl Chloride	ND U	1.0	1	12/01/16 11:47	
cis-1,3-Dichloropropene	ND U	1.0	1	12/01/16 11:47	
m,p-Xylenes	ND U	2.0	1	12/01/16 11:47	
o-Xylene	ND U	1.0	1	12/01/16 11:47	
trans-1,3-Dichloropropene	ND U	1.0	1	12/01/16 11:47	

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1614685-04Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	12/01/16 11:47	
Dibromofluoromethane	109	89 - 119	12/01/16 11:47	
Toluene-d8	111	87 - 121	12/01/16 11:47	

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo Nobel/1398.003.001

Sample Matrix: Water

Printed 12/7/2016 11:52:47 AM

Date Analyzed: 11/29/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Service Request: R1612457

Lab Control Sample

RQ1614555-03

Analytical

	Anaiyucai				
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	19.5	20.0	97	74-120
1,1,2,2-Tetrachloroethane	8260C	21.0	20.0	105	78-122
1,1,2-Trichloroethane	8260C	19.5	20.0	97	82-118
1,1-Dichloroethane (1,1-DCA)	8260C	21.1	20.0	105	78-117
1,1-Dichloroethene (1,1-DCE)	8260C	21.2	20.0	106	74-135
1,2-Dichloroethane	8260C	20.1	20.0	101	71-127
1,2-Dichloropropane	8260C	20.4	20.0	102	80-119
2-Butanone (MEK)	8260C	20.6	20.0	103	61-137
2-Hexanone	8260C	20.0	20.0	100	63-124
4-Methyl-2-pentanone	8260C	19.2	20.0	96	66-124
Acetone	8260C	18.9	20.0	95	40-161
Benzene	8260C	21.0	20.0	105	76-118
Bromodichloromethane	8260C	18.9	20.0	95	78-126
Bromoform	8260C	17.5	20.0	87	71-136
Bromomethane	8260C	13.3	20.0	67	42-166
Carbon Disulfide	8260C	19.7	20.0	98	65-127
Carbon Tetrachloride	8260C	17.1	20.0	86	68-125
Chlorobenzene	8260C	21.1	20.0	105	80-121
Chloroethane	8260C	22.2	20.0	111	70-127
Chloroform	8260C	20.4	20.0	102	76-120
Chloromethane (Methyl Chloride)	8260C	19.0	20.0	95	69-145
Dibromochloromethane	8260C	17.7	20.0	88	77-128
Dichloromethane (Methylene Chloride)	8260C	20.1	20.0	101	73-122
Ethylbenzene	8260C	21.5	20.0	107	76-120
Styrene	8260C	20.7	20.0	104	80-124
Tetrachloroethene (PCE)	8260C	18.8	20.0	94	78-124
Toluene	8260C	21.6	20.0	108	77-120
Trichloroethene (TCE)	8260C	21.1	20.0	105	78-123
Vinyl Chloride	8260C	20.6	20.0	103	69-133
cis-1,3-Dichloropropene	8260C	19.1	20.0	96	74-126
m,p-Xylenes	8260C	43.2	40.0	108	78-123
o-Xylene	8260C	20.9	20.0	104	80-120
trans-1,3-Dichloropropene	8260C	17.2	20.0	86	67-135
D' + 1 10/7/0016 11 50 47 AM			g	16,0000	102010 00

Superset Reference: 16-0000402018 rev 00

QA/QC Report

Client: Barton & Loguidice, PC **Project:** Akzo Nobel/1398.003.001

Sample Matrix: Water Service Request: R1612457 **Date Analyzed:** 12/01/16

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ1614685-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	19.9	20.0	100	74-120
1,1,2,2-Tetrachloroethane	8260C	23.9	20.0	119	78-122
1,1,2-Trichloroethane	8260C	22.5	20.0	112	82-118
1,1-Dichloroethane (1,1-DCA)	8260C	21.7	20.0	108	78-117
1,1-Dichloroethene (1,1-DCE)	8260C	21.1	20.0	105	74-135
1,2-Dichloroethane	8260C	21.0	20.0	105	71-127
1,2-Dichloropropane	8260C	20.3	20.0	102	80-119
2-Butanone (MEK)	8260C	24.3	20.0	121	61-137
2-Hexanone	8260C	23.4	20.0	117	63-124
4-Methyl-2-pentanone	8260C	21.7	20.0	108	66-124
Acetone	8260C	24.4	20.0	122	40-161
Benzene	8260C	21.5	20.0	107	76-118
Bromodichloromethane	8260C	19.5	20.0	98	78-126
Bromoform	8260C	20.8	20.0	104	71-136
Bromomethane	8260C	14.6	20.0	73	42-166
Carbon Disulfide	8260C	21.1	20.0	106	65-127
Carbon Tetrachloride	8260C	17.4	20.0	87	68-125
Chlorobenzene	8260C	21.0	20.0	105	80-121
Chloroethane	8260C	24.0	20.0	120	70-127
Chloroform	8260C	21.4	20.0	107	76-120
Chloromethane (Methyl Chloride)	8260C	20.4	20.0	102	69-145
Dibromochloromethane	8260C	19.2	20.0	96	77-128
Dichloromethane (Methylene Chloride)	8260C	21.0	20.0	105	73-122
Ethylbenzene	8260C	20.7	20.0	103	76-120
Styrene	8260C	20.7	20.0	104	80-124
Tetrachloroethene (PCE)	8260C	20.3	20.0	101	78-124
Toluene	8260C	21.9	20.0	109	77-120
Trichloroethene (TCE)	8260C	20.8	20.0	104	78-123
Vinyl Chloride	8260C	22.5	20.0	112	69-133
cis-1,3-Dichloropropene	8260C	19.9	20.0	99	74-126
m,p-Xylenes	8260C	43.3	40.0	108	78-123
o-Xylene	8260C	20.5	20.0	103	80-120
trans-1,3-Dichloropropene	8260C	18.8	20.0	94	67-135
Printed 12/7/2016 11:52:48 AM			Superset R	eference:16-0000	402018 rev 00

Volatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Barton & Loguidice, PC **Project:**

Water

Akzo Nobel/1398.003.001

Service Request: Date Collected:

R1612457

Date Received:

11/23/16 11/23/16

Date Analyzed:

12/6/16

Duplicate Matrix Spike Summary

Sample Name:

Sample Matrix:

MW-3

Dissolved Gases by GC/FID

Units:

ug/L

Lab Code:

R1612457-004

Basis:

NA

Analysis Method:

RSK 175

Matrix Spike

Duplicate Matrix Spike

RQ1614843-05

RQ1614843-04

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Methane	1 3	25.4	26.2	92	27.4	26.2	100	54-120	8	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ1614843-01Basis: NA

Dissolved Gases by GC/FID

Analysis Method: RSK 175

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Methane	ND U	1.0	1	12/06/16 10:53	_

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo Nobel/1398.003.001

Sample Matrix: Water

Service Request: R1612457

Date Analyzed: 12/06/16

Duplicate Lab Control Sample Summary
Dissolved Gases by GC/FID

Units:ug/L Basis:NA

Lab Control Sample

Duplicate Lab Control Sample

RQ1614843-02

RQ1614843-03

	Analytical		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Methane	RSK 175	26.9	26.2	102	25.8	26.2	98	65-126	4	20

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: R1612457-MB

Inorganic Parameters

Analysis Analyte Name Method Result Units **MRL** Dil. **Date Analyzed Date Extracted** 200.7 Iron, Dissolved ND U ug/L 100 11/30/16 12:47 11/28/16 Manganese, Dissolved 200.7 ND U ug/L 10 1 11/30/16 12:47 11/28/16

QA/QC Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Sample Matrix: Water

Service Request:R1612457

Date Collected:11/23/16

Date Received:11/23/16

Date Analyzed:11/30/16

Matrix Spike Summary Inorganic Parameters

Sample Name: MW-1

Lab Code: R1612457-001

Units:ug/L Basis:NA

Matrix Spike R1612457-001MS

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Iron, Dissolved	200.7	ND U	940	1000	94	70-130
Manganese, Dissolved	200.7	130	633	500	101	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 12/7/2016 11:52:59 AM

QA/QC Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Sample Matrix: Water

Service Request:R1612457

Date Collected: 11/23/16
Date Received: 11/23/16

Date Analyzed:11/30/16

Matrix Spike Summary Inorganic Parameters

Sample Name: MW-3

Lab Code:

R1612457-004

Units:ug/L

Basis:NA

Matrix Spike R1612457-004MS

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Iron, Dissolved	200.7	ND U	900	1000	90	70-130
Manganese, Dissolved	200.7	10	518	500	102	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 12/7/2016 11:53:00 AM

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Barton & Loguidice, PC Service Request: R1612457 **Project**

Akzo Nobel/1398.003.001 **Date Collected:** 11/23/16

Sample Matrix: Water **Date Received:** 11/23/16

Date Analyzed: 11/30/16

Replicate Sample Summary

Inorganic Parameters

Sample Name: MW-1 Units: ug/L

Lab Code: R1612457-001 Basis: NA

> **Duplicate** Sample

R1612457-

Sample 001DUP **Analysis** Result Method RPD **RPD Limit Analyte Name MRL** Result Average Iron, Dissolved 200.7 100 ND U ND U NC NC 20 Manganese, Dissolved 200.7 10 130 128 129 1 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Barton & Loguidice, PC

Akzo Nobel/1398.003.001

Service Request: R1612457

Date Collected: 11/23/16

Sample Matrix:

Project

Water

Date Received: 11/23/16 **Date Analyzed:** 11/30/16

Replicate Sample Summary

Inorganic Parameters

Sample Name: MW-3 Units: ug/L

Lab Code:

R1612457-004

Basis: NA

Duplicate

Sample R1612457-

	Analysis		Sample	004DUP			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Iron, Dissolved	200.7	100	ND U	ND U	NC	NC	20
Manganese, Dissolved	200.7	10	10	10	10.2	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo Nobel/1398.003.001

Sample Matrix: Water

Service Request: R1612457

Date Analyzed: 11/30/16

Lab Control Sample Summary Inorganic Parameters

> Units:ug/L Basis:NA

Lab Control Sample

R1612457-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Iron, Dissolved	200.7	1010	1000	101	85-115
Manganese, Dissolved	200.7	518	500	104	85-115

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: Barton & Loguidice, PC

Service Request: R1612457

Date Collected: NA **Project:** Akzo Nobel/1398.003.001 **Sample Matrix:** Water

Date Received: NA

Sample Name: Method Blank Basis: NA

R1612457-MB1 Lab Code:

Inorganic Parameters

Analysis **Analyte Name** Method Result Units MRL Dil. **Date Analyzed** Q 300.0 ND U Nitrate as Nitrogen mg/L 0.10 11/23/16 13:41 Nitrite as Nitrogen 300.0 ND U mg/L 0.10 1 11/23/16 13:41 Sulfate 300.0 11/23/16 13:41 ND U mg/L 0.20 1

Analytical Report

Client: Barton & Loguidice, PC Service Request: R1612457

Project: Akzo Nobel/1398.003.001 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: R1612457-MB2

Inorganic Parameters

Analyte Name Method Result Units MRL Dil. Date Analyzed Q
Sulfate 300.0 ND U mg/L 0.20 1 11/25/16 21:27

Analytical Report

Client: Barton & Loguidice, PC

Service Request: R1612457

Date Collected: NA **Project:** Akzo Nobel/1398.003.001 Date Received: NA **Sample Matrix:** Water

Sample Name: Method Blank Basis: NA

Lab Code: R1612457-MB3

Inorganic Parameters

Analysis **Analyte Name** Method Result Units MRL Dil. **Date Analyzed** Q Sulfate 300.0 11/26/16 02:37 ND U mg/L 0.20

QA/QC Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Sample Matrix: Water

Service Request:R1612457

Date Collected:11/23/16 **Date Received:**11/23/16

Date Analyzed:11/23/16 - 11/26/16

Duplicate Matrix Spike Summary General Chemistry Parameters

Sample Name: MW-3

Lab Code:

R1612457-004

Units:mg/L

Basis:NA

Matrix Spike

Duplicate Matrix Spike

R1612457-004MS R1612457-004DMS

		Sample		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Nitrate as Nitrogen	300.0	ND U	8.4	10.0	84 *	8.6	10.0	86 *	90-110	2	20
Sulfate	300.0	135	220	80.0	106	221	80.0	107	90-110	<1	20
Nitrite as Nitrogen	300.0	ND U	8.5	10.0	85 *	8.6	10.0	86 *	90-110	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 12/7/2016 11:53:02 AM

QA/QC Report

Client: Barton & Loguidice, PC

Project: Akzo Nobel/1398.003.001

Sample Matrix: Water

Service Request:R1612457

Date Collected:11/23/16

Date Received:11/23/16 **Date Analyzed:**11/23/16

Duplicate Matrix Spike Summary General Chemistry Parameters

 Sample Name:
 MW-11B
 Units:mg/L

 Lab Code:
 R1612457-011
 Basis:NA

Matrix Spike

Duplicate Matrix Spike

R1612457-011MS

R1612457-011DMS

		Sample		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Nitrate as Nitrogen	300.0	ND U	9.7	10.0	97	9.8	10.0	98	90-110	<1	20
Nitrite as Nitrogen	300.0	ND U	9.8	10.0	98	9.9	10.0	99	90-110	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 12/7/2016 11:53:02 AM

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo Nobel/1398.003.001

Sample Matrix:

Water

Service Request: R1612457 Date Analyzed: 11/23/16

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L
Basis:NA

Lab Control Sample

R1612457-LCS1

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Nitrate as Nitrogen	300.0	1.00	1.00	100	90-110
Nitrite as Nitrogen	300.0	0.99	1.00	99	90-110
Sulfate	300.0	1.94	2.00	97	90-110

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo Nobel/1398.003.001

Sample Matrix:

Water

Service Request: R1612457

Date Analyzed: 11/25/16

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample R1612457-LCS2

Analyte NameAnalytical MethodResultSpike Amount% Rec% Rec LimitsSulfate300.01.972.009990-110

QA/QC Report

Client: Barton & Loguidice, PC
Project: Akzo Nobel/1398.003.001

Sample Matrix: Water

Service Request: R1612457

Date Analyzed: 11/26/16

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample R1612457-LCS3

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Sulfate	300.0	1.97	2.00	99	90-110

Appendix C

Water Level Elevation Data

Akzo Nobel Polymer Chemicals LLC Water Level Elevation Data 2011-2016

	MW-1		MW-1 MW-1B		MW-2		MW-3		MW-3B		MW-4	
TOP OF CASING		328.51		328.29	1010	327.58		322.58		321.85		323.12
ELEVATION												
DATE	water level	elevation	water level	elevation	water level	elevation	water level	elevation	water level	elevation	water level	elevation
4/19/2011	6.41	322.10	7.21	321.08	5.73	321.85	3.14	319.44	10.81	315.42	6.79	316.33
7/28/2011	11.54	316.97	-	-	9.87	317.71	6.80	315.78	-	-	9.58	313.54
11/17/2011	13.09	315.42	7.21	321.08	10.59	316.99	7.13	315.45	10.81	311.04	9.65	313.47
3/28/2012	7.63	320.88	7.09	321.20	6.76	320.82	3.33	319.25	10.98	310.87	7.65	315.47
6/27/2012	10.94	317.57	-	-	9.13	318.45	6.31	316.27	-	-	9.48	313.64
10/9/2012	13.89	314.62	-	-	11.07	316.51	9.35	313.23	-	-	11.46	311.66
4/15/2013	6.02	322.49	6.76	321.53	5.68	321.90	2.66	319.92	10.65	311.20	6.45	316.67
8/27/2013	11.41	317.10	-	-	9.42	318.16	6.23	316.35	-	-	9.61	313.51
12/10/2013	9.78	318.73	-	-	8.29	319.29	3.78	318.80	-	-	7.90	315.22
4/28/2014	6.82	321.69	6.50	321.79	6.10	321.48	2.36	320.22	10.98	310.87	7.28	315.84
8/28/2014	10.73	317.78	-	-	9.01	318.57	5.39	317.19	-	-	9.09	314.03
10/30/2014	11.45	317.06	-	-	10.27	317.31	6.88	315.70	-	-	9.67	313.45
4/29/2015	7.65	320.86	6.83	321.46	6.64	320.94	3.52	319.06	11.20	310.65	7.51	315.61
8/18/2015	11.67	316.84	-	-	9.92	317.66	6.91	315.67	-	-	10.12	313.00
12/10/2015	11.52	316.99	-	-	10.31	317.27	5.92	316.66	-	-	9.73	313.39
6/6/2016	10.01	318.50	8.86	319.43	8.45	319.13	5.28	317.30	11.97	309.88	9.10	314.02
11/22/2016	14.14	314.37	-	-	11.68	315.90	10.80	311.78	-	-	15.28	307.84

Akzo Nobel Polymer Chemicals LLC Water Level Elevation Data 2011-2016

	MW-4B				MV	MW-6		MW-7		V-8	MW-9	
TOP OF PVC PIPE 323.66 ELEVATION		324.68		325.31		324.10		326.23		325.03		
DATE	water level	elevation	water level	elevation	water level	elevation	water level	elevation	water level	elevation	water level	elevation
4/19/2011 7/28/2011 11/17/2011 3/28/2012 6/27/2012 10/9/2012 4/15/2013 8/27/2013 12/10/2013 4/28/2014 8/28/2014 10/30/2014 4/29/2015 8/18/2015	20.18 21.73 16.81 18.52 21.46 18.54 19.21 20.34 16.29 21.00 20.76 18.02 21.10 21.60	303.48 301.93 306.85 305.14 302.20 305.12 304.45 303.32 307.37 302.66 302.90 305.64 302.56 302.06	8.05 6.71 7.76 3.88 6.33 8.28 3.01 6.58 5.44 3.50 6.21 7.44 3.82 7.20	316.63 317.97 316.92 320.80 318.35 316.40 321.67 318.10 319.24 321.18 318.47 317.24 320.86 317.48	- 7.79 - - - - - - - -	-	6.53 	-		317.42	4.60 7.84 8.60 5.07 7.22 8.88 4.13 7.66 6.64 3.32 7.47 8.43 5.22 8.16	320.43 317.19 316.43 319.96 317.81 316.15 320.90 317.37 318.39 321.71 317.56 316.60 319.81 316.87
12/10/2015 6/6/2016	21.61	306.79 302.05				-	-	-	-	-	8.38 6.52	318.51
11/22/2016	17.51	306.15	8.92	315.76	-	-	-	-	-	-	9.27	315.76

Akzo Nobel Polymer Chemicals LLC Water Level Elevation Data 2011-2016

	MW-9B		MW-9B MW-10		MW-10B		MW-11		MW-11B		-	
TOP OF PVC PIPE ELEVATION			328.39		328.12		325.76		325.32			
DATE	water level	elevation	water level	elevation	water level	elevation	water level	elevation	water level	elevation		
4/19/2011 7/28/2011		302.05 300.74				304.61	10.62 13.85	315.14 311.91	22.22 23.66			
11/17/2011	19.66	305.55	11.38	317.01	23.51	304.61	14.31	311.45	19.12	306.20		
3/28/2012				320.92		306.42						
6/27/2012						-	13.35					
10/9/2012	21.26	303.95				-	15.12	310.64	20.53	304.79		
4/15/2013	22.36	302.85	6.30			305.72	10.11	315.65	21.75	303.57		
8/27/2013	22.93	302.28	10.21	318.18	-	-	13.62	312.14	22.29	303.03		
12/10/2013	18.52	306.69	9.02	319.37	-	-	12.64	313.12	18.40	306.92		
4/28/2014	22.82	302.39	7.41	320.98	23.73	304.39	10.96	314.80	22.82	302.50		
8/28/2014	23.20	302.01	9.81	318.58	-	-	13.24	312.52	22.58	302.74		
10/30/2014	20.22	304.99	11.07	317.32	-	-	14.31	311.45	18.96	306.36		
4/29/2015	23.60	301.61	7.32	321.07	22.99	305.13	11.29	314.47	22.85	302.47		
8/18/2015	23.85	301.36	10.70	317.69	-	-	14.18	311.58	23.49	301.83		
12/10/2015	19.15	306.06	11.10	317.29	-	-	13.91	311.85	19.02	306.30		
6/6/2016	23.77	301.44	9.24	319.15	21.22	306.90	12.93	312.83	23.31	302.01		
11/22/2016	19.87	305.34	12.66	315.73	-	-	15.54	310.22	19.57	305.75		