2021 Hazardous Waste Scanning Project

File Form Naming Convention.

(File_Type).(Program).(Site_Number).(YYYY-MM-DD).(File_Name).pdf

Note 1: Each category is separated by a period "."

Note 2: Each word within category is separated by an underscore "_"

Specific File Naming Convention Label:

report. Hw. 932035: 1986-02-14. Wall_ Monitoring - Roche

_.pdf

UNION CARBIDE CORPORATION P.O. BOX 887, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

February 14, 1986

Niagara County Health Dept. 10th & East Falls Streets Niagara Falls, New York 14303

Attn: Mr. Paul Dicky, Asst. Public Health Engr.

Dear Mr. Dicky:

Per your recent request, we attach all information on well monitoring and subsequent test results for the Republic Solid Waste Management Facility located at the Republic Plant of Union Carbide Corporation, Carbon Products Div., 3501 Hyde Park Blvd. The first tests were run as a part of the original Certificate to Operate in 1978.

If you have any further questions, please do not hesitate to call.

Very truly yours,

M.A.Balent, P.E. baf

Chief Plant Engineer

m. Balent,

Enc.

10/16/78

Mr. John Banaszak New York State Dept. of Environmental Conservation Region Nine Office 584 Delaware Avenue Buffalo, New York 14202

Dear Mr. Banaszak:

Please find enclosed the report from Recra Research summarizing the leach testing and soil work performed for us. Also, please find the revised report and drawings reflecting changes in our submission for certification.

I trust this additional information is sufficient for your review of our request for a Certificate to Operate this solid waste facility. If you have any further questions please contact myself or Jim Foreman.

Very truly yours,

/a/ S.C.Dorr

S.C.Dorr

Chief Plant Engineer

CC: Messrs. R.A. Hardison

W.D.Haller/R.H.Geise

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CON	SERVATION	SITE NO.	APPI	ICATION NO.	DATE REC	EIVED
LEACHING POTENTIAL TEST REP	ORT APPENDIX E	DEPARTMENT	ACTION Di	sannroved	DATE	
SEE INSTRUCTIONS ON REVERSE SIDE	I III LINDIN D		ea [] b:	зарріочец	1	<u></u>
1. NAME OF PROJECT/FACILITY	2. COUN	TY	3. 5	ITE NO.	4. APPLI	CATION NO
Solid Waste Management Facility 5. NAME OF OWNER	N:	iagara itate, Zip Code)		32SC	HONE NO.
Union Carbide Corp., Carbon Prod. Div. 8. NAME OF OPERATOR	P.O.Box 887, Nia 9. ADDRESS (Street, City, S			14302	10. TELEP	HONE NO.
W. D. Michaels 11. COMPANY GENERATING WASTE	same as above			ASTE (Street, C	278-	-3252
Union Carbide Corp., Carbon Products Di	ľ					
13. REPRESENTATIVE OF WASTE GENERATOR	14. MAILING ADDRESS OF RE	PRESENTATIVE	, <u> </u>	14 14115	15. TELEP	HONE NO.
S. C. Dorr	P.O.Box 887, Nia	agara Fal	ls, N.Y	14302	278-3	3541
16. DATE SAMPLES TAKEN 17. SAMPLES TAKEN BY (Name and Employ	er)				•	
/22-24,9/21-25/78 Recra Research Inc. 18. ORGANIZATION PERFORMING ANALYSES	19. ADDRESS (Street, City, S	tata Zia Cada				
	1			7 1/150		
Recra Research Inc. 20. REPRESENTATIVE OF ORGANIZATION PERFORMING ANALYSES	111 Wales Ave.	, lonawan	ua, N.	. 14130	22. TELEF	HONE NO.
Mr. C.James Stellrecht	Technical Repr	esentativ	e		692-7	7620
23. ANALYSES OF LIQUID FRACTION:						
COMPONENT	Sample 2 Sample	co	NCENTRATI	ON	UNIT (Ch	eck One)
	NEOWNATION IS	Sample 1	Sample 2		Wt. %	PPM
1) SEE ATTACHED	Sample 2 Sample Sample 2 Sample 2 Sample Sample 2					
2)	SOL CONTROL OF WILL LIVE					
3)	RETT OF UNIENTAL					□.
3)	Miles Derive					_
4)	is the					. 🗆
5)						
6)						· 0
24. ANALYSES OF SOLIDS FRACTION: Percent Solids: Sample 1						
COMPONENT	•		RATION (Dr	y Weight)	UNIT (Ch	eck One)
		Sample 1	Sample 2	Sample 3	Wt. %	PPM
1) SEE ATTACHED		· 				
2)						
3)						
4)						
					_	_
5)						
6)						
25. LEACHING TEST ON SOLIDS FRACTION: pH: Sample 1	Sample 2 S	ample 3				
COMPONENT		со	NCENTRATI	ON	UNIT (Ch	ieck One)
		Sample 1	Sample 2	Sample 3	Wt. %	PPM
1) SEE ATTACHED					0	
2)					П	0
3)						<u>. </u>
					0	_
4)					_	
5)	•					
6)						· 🗆
26. CERTIFICATION I hereby affirm under penalty of perjury that information provide belief. False statements made herein are punishable as a Class A	ded on this form and attached misdemeanor pursuant to Sec	statements an	d exhibits i the Penal L	s true to the be	st of my kn	owledge and
a. SIGNATURE AND TITLE OF REPRESENTATIVE OF WASTE GENERA	TOR				DATE	3/78
b. SIGNATURE AND TITLE OF REPRESENTATIVE OF TREATMENT OR	t Engineer				DATE	<u> </u>
X						
47-15-6 (12/77)						

FOR Same USE ONLY

REVISED

$\underline{\mathtt{T}} \ \underline{\mathtt{A}} \ \underline{\mathtt{B}} \ \underline{\mathtt{L}} \ \underline{\mathtt{E}} \qquad \underline{\mathtt{O}} \ \underline{\mathtt{F}} \qquad \underline{\mathtt{C}} \ \underline{\mathtt{O}} \ \underline{\mathtt{N}} \ \underline{\mathtt{T}} \ \underline{\mathtt{E}} \ \underline{\mathtt{N}} \ \underline{\mathtt{T}} \ \underline{\mathtt{S}}$

Section		Change Required	Page No.
1.0	Introduction	Remains the same	1
2.0	Existing Conditions in Service Area	Remains the same	1
3.0	Projected Waste Generation	Remains the same	2
4.0	Alternative Courses of Action	Remains the same	2
5.0	Site Analysis of Proposed Project		•
	5.1 Waste Facility Location	Remains the same	3
•	5.2 Sub-Surface Conditions	11 11 11	3
	5.3 Transportation System	11 11	3
	5.4 Surface Water	11 11 11	3
	5.5 Monitoring Area	Revised	See Rev.Attach.
6.0	Operation	Remains the same	4-5
7.0	Market Analysis	Remains the same	5
8.0	Cover Material		
	8.1 Daily Cover	Remains the same	5
	8.2 Cover Material	Revised	See Rev.Attach.
	8.3 Final Cover	Remains the same	6
Appendices	<u> </u>		•
A	Waste Disposal (Vol. by Lift)	Remains the same	
B	Application for Septic Tank Cleaner & Ind. Waste Collector Registration	Remains the same	
С	Variance for Section 3.3, Par. a,b,e	Deleted	
C	Variance for Section 3.3, Par. d	Deleted	
	Variance for Section 3.1, Par. c	Remains the same	
D	Solid Waste Disposal Check List	Remains the same	
E	Leaching Potential Test	New	See Rev.Attach.
F	Ground Water Characteristics	New	See Rev.Attach.
G	Soil Characteristics	New	See Rev.Attach.

J.E.Foreman/baf 10/13/78

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION, PROFILED GO SERVING THE IS NOT TO BE CLOSED IN ANY WAY DEFRIMENTAL TO THE INTERESTS OF U. C. C.

SOLID WASTE MANAGEMENT FACILITY

REVISIONS

5.0 SITE ANALYSIS OF PROPOSED PROJECT

5.5 Monitoring Area

The ground water monitoring wells are drilled holes to bedrock lined with perforated PVC pipe and covered with a screw cap. Two wells have been located on the north and south sides of the dump as shown on drawing no. AX-1A-15 (Revised 10/12/78). Usually, a sampling will be conducted semi-annually to assure no water contamination. When samples are taken, we select an independent testing laboratory to meet our requirements. A copy of the original water analysis is included in Appendix F with all future test results included in the Solid Waste Management file at our plant for immediate referral.

8.0 COVER MATERIAL

8.2 Cover Material

The material consists of aged waste deposited no less than 5 years previous. This particular "aged waste" is dust free and can support minimal plant life. Depending upon the amount of waste deposited, the working lift will be covered with this material, approximately 10-12 inches, and no less than once every two weeks. Characteristics of this material are described in Appendix G.

J.E.Foreman/baf 10/13/78

Mr. James E. Foreman, III Plant Engineer Union Carbide Corporation Carbon Products Division P. O. Box 887 Niagara Falls, New York 14302

Re: Final Report - Groundwater and Leaching Potential Analyses Dear Jim,

Please find enclosed the final analytical report of the leaching potential test performed on the carbonaceous waste and the results of groundwater analyses from the wells installed on Union Carbide property.

Recra is pleased we could be of service to you. you have any questions, please feel free to contact me and thank you for giving Recra this opportunity.

Yours very truly,

RECRA RESEARCH, INC.

C. James Stellrecht Technical Representative

> THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION. PROPERTY OF UNION CARBIDE CURPORTION, IT IS NOT TO BE DISCLOSED OF REPROPRICED WHIHOUT THE EXPRESSED WRITTEN PERMISSION OF U. C. C., AND IS NOT TO BE USED IN ANY WAY DETRIMENTAL TO THE

CJS:df

INTERESTS OF U. C. C.

ANALYTICAL RESULTS

UNION CARBIDE CORPORATION - CARBON DIVISION NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION LEACH TEST

> Report Date: 10/12/78 Sample Date: 8/22-24/78

PARAMETER	UNIT OF MEASURE	SAMPLE IDENTIFICATION CARBON COMPOSITE - MEAN OF DUPLICATE TESTS
Carbon - Chloroform		
Extractable	mg/1	42.0
Pheno1	mg/1	0.110
Total Organic Carbon	mg/l	<1.0
pH	Standard U	Units 8.02
Chemical Oxygen Demand	mg/l	16.2
Chloride	mg/l	18.2
Fluoride	mg/l	0.569
Cyanide (Free)	mg/1	لام يا على الام الام الام الام الام الام الام ال
Total Grease & Oils	mg/1	اع الله الله الله الله الله الله الله ال
Hydrocarbon Grease & Oi	1s mg/1	≥1.0
Polar Grease & Oils	mg/1	<1.0
Total Chlorinated	μg/1 as	
Hydrocarbons	Chlorine,	
	Lindane	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	Standard	3.70
Hexavalent Chromium	mg/1	۷0.01 د ا
Soluble Aluminum	mg/1	∠0.03
Soluble Arsenic	μg/1	< 3.5 ₹ ± ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹
Soluble Cadmium	mg/1	40.003 ما يا يا يا تا يا
Soluble Chromium	mg/1	∠0.003
Soluble Copper	mg/1	0.005 🔻 🗏 💆
Soluble Iron	mg/1	∠ 0.01
Soluble Lead	mg/1	~ ~0.02
Soluble Mercury	$\mu g/1$	∠0.5
Soluble Nickel	mg/1	∠0.02
Soluble Selenium	$\mu g/1$	42.5
Soluble Zinc	mg/1	0.007

COMMENTS: Samples of the carbon material were collected by Recra personnel on 8/22, 8/23 and 8/24/1978. These samples were composited and analyzed in duplicate.

For Recra Research, Inc.

Date 10-13-78

APPENDIX F

ANALYTICAL RESULTS

UNION CARBIDE-CARBON DIVISION GROUNDWATER WELL MONITORING

Report Date: 10/12/78 Sample Dates: 9/21-25/78

		SAMPLE IDEN	NTIFICATION
PARAMETER	UNITS OF MEASURE	NORTH WELL	SOUTH WELL
		ωı	ω-2
Carbon Chloroform Extract	mg/l	4 2.5	42.5
Soluble Aluminum	mg/l	1.36	1.60
Soluble Silver	mg/l	<0.003	40.003
Soluble Calcium	mg/1	3.5	32
Soluble Total Chromium	mg/1	0.006	0.012
Soluble			
Hexavalent Chromium	mg/l	<0.01	40.01
Soluble Potassium	mg/1	67	20.2
Soluble Sodium	mg/1	248	197
Soluble Lead	mg/1	0.02	0.02
Soluble Arsenic	ng/1	43. 5	43.5
Soluble Mercury	ug/1	0.82	0.82
Soluble Copper	mg/l	0.014	0.014
Total Iron	mg/1	103	114

COMMENTS:

Samples were collected by Recra personnel. Due to low recharge rates, samples were collected on both 9/21/78 and 9/25/78 from the North Well. Insufficient volume of sample was available for Chemical Oxygen Demand analyses from the both wells and Total Coliforms from the South Well. Due to the formation of a severe emulsion, Methylene Blue Active substances could not be determined for the North Well sample. Values reported as "less than" indicate the working detection limit for those sample analyses. The Biochemical Oxygen Demand being greater than the Total Organic Carbon from the South Well sample is believed to be a function of the suspended solids content of this sample.

FOR RECRA RESEARCH, INC.

DATE 10-13-78

10 mg Continues and of the Continues Act MOL TO BY MALE OF THE WAY DESIGNATIVE TO INTERESTS OF U. C. C.

and the large the state of the properties of the properties of

TOTAL CHEMICAL WASTE MANAGEMENT THROUGH APPLIED RESEARCH

CRA RESEARCH, INC. 111 Wales Avenue/Tonawanda, New York 14150/(716) 692-7620

ANALYTICAL RESULTS

UNION CARBIDE-CARBON DIVISION GROUNDWATER WELL MONITORING

Report Date:

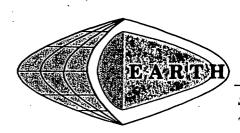
10/12/78

Sample Dates:

9/21/78 - 9/25/78

	SAMPLE IDENTIFICATION							
PARAMETER	UNITS OF MEASURE	NORTH WELL	SOUTH WELL					
		ω-1	<i>ω</i> −2					
Biochemical Oxygen Demand	mg/1	13.5	79.5					
Chemical Oxygen Demand	mg/l	-	· -					
Conductivity	umhos/cm	1,430	2,920					
pH	Standard Units	8.94	7.42					
Alkalinity (pH 4.5)	mg/l as CaCOz	563	529					
Chloride	mg/l	382	391					
Hardness	mg/l as CaCOz	240	295					
Color	Pt-Co Units	68	45					
Total Solids	mg/l	2,720	2,910					
Ammonia	mg N/1	4.42	Ó.23					
Total Kjeldahl Nitrogen	mg N/1	7.38	0.21					
Nitrate	mg N/1	2.7	2.5					
Nitrite	mg N/1	∠0.005	0.041					
Total Phosphorus	mg P/1	40.01	0.024					
Sulfate	mg/1	360	940					
Pheno1	mg/l	0.235	0.238					
Total Organic Carbon	mg/l	108	50					
Methylene Blue	3 .	•						
Active Substances	mg/l	- ,	0.08					
Total Coliforms	MPN/100mls	5,400	- -					

FOR RECRA RESEARCH, INC.


DATE

10-13-78

THIS DOCUMENT CONTAINS PROPRIETYEN PUR PROPERTY OF Unity 15 4 THE MOT TO BE \$1.50 Order of TELENORED CO. AND IS NOT TO BE USED IN ANY WAY DETRIMENTAL TO THE

APPENDIX G

DIMENSIONS, INC.

Soil Investigations and Natural Resource Assessments 797 Center Street • East Aurora, New York 14052 • (7)

SOILS REPORT - WELL INSTALLATION

Union Carbide Corporation - Niagara Falls

Two monitoring wells were installed on the Union Carbide Corporation's landfill site in the City of Niagara Falls. The approximate placement sites were located on site by Mr. James Foreman of Union Carbide.

Soil descriptions were written at the well sites based on the split spoon samples that were taken of every major soil horizon or at every five foot increments in the thicker soil horizons. The split spoon samples were advanced through the hollow stem augers.

The most southerly well was installed September 9 with the northerly well installed September 16, 1978. The continued collapsing of the bore hole for the north end well forced the installation of a 2 inch inside diameter well instead of a 4 inch inside diameter that was installed in the southern site.

Carbonaceous fill material was described as the surficial material at both locations. The original soil consisted of a stone free clayey and silty lake sediment resting on glacial till. Thickness of the lake sediment at the southerly well site was about 10 feet. This lake sediment mantle should be continuous across the total site as indicated in the Niagara County soil survey. No lake sediments were described or observed in any of the five bore sites augered at or near the northern well location. Therefore the original lake sediment and part of the glacial till material was excavated prior to land filling industrial wastes.

Permeability and infiltration of the carbonaceous fill are extremely high as observed by the water intake after an intense thunder storm September 9. This would allow water to move downward in the fill and perch on the glacial lake or till sediments. The glacial till over the dolomite bedrock was removed from the area near the northern well site as noted during the drilling of most easterly bore site. In essence, an internal pond exists within the fill by the north well.

SOILS REPORT-WELL INSTALLATION Union Carbide Corporation - Niagara Falls Page 2

The extent of this excavated area can not be delineated based on the existing surface fill configuration.

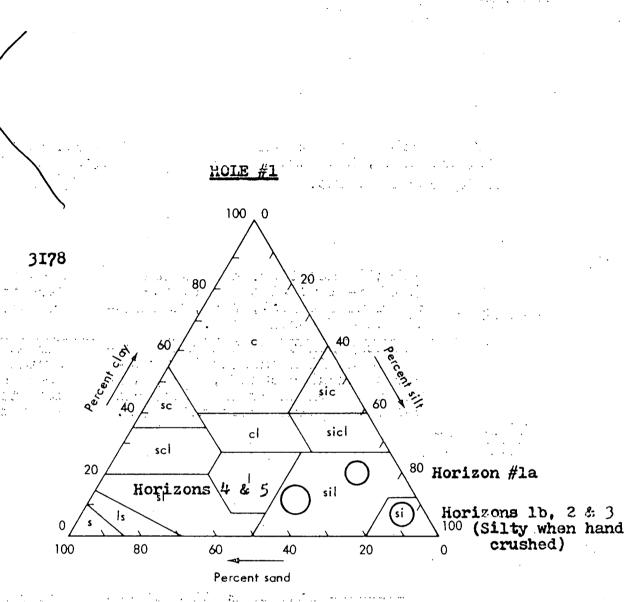
No perched water table was noted at the southerly site, but based on the original soil drainage characteristics, a natural perched water table would be present at the fill-soil contact from October through April most years. Water was detected in the glacial till in the till above bedrock, yet soil coloration would not suggest this moisture regime in this zone.

Prepared by,

Donald W. Owens Soil Scientist

3178 DWO/dew

9/16/78


THIS DOCUMENT OF THE PROPERTY OF THE TRANSPORT OF THE PROPERTY OF THE TRANSPORT OF THE THE TRANSPORT OF THE THE TRANSPORT OF THE TRANSPORT OF

DIMENSIONS, INC.

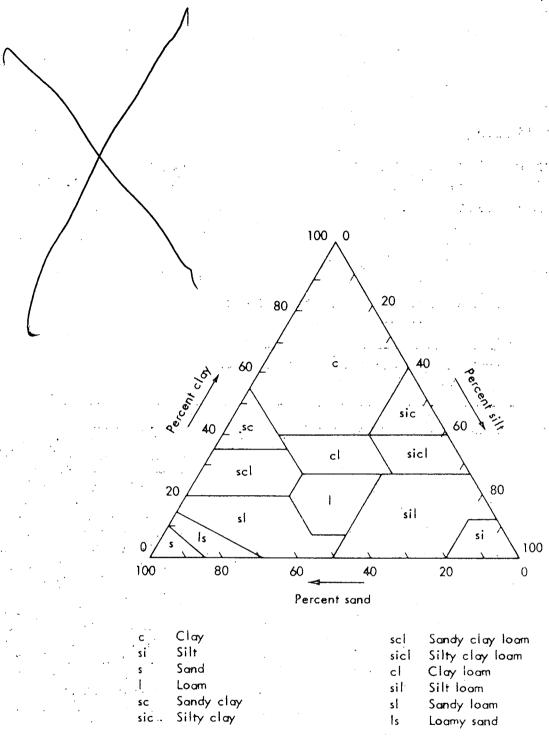
Test Borings and Logs
797 Center Street • East Aurora, New York 14052 • (716) 655-1717

3178	НО	LE N	0		1				SURF. ELEV.
	PRO)JEC	Τ_				arbide Corporation Falls, New York		North side of property Hyde Park Boulevard
	CLII	ENT	_				esearch, Inc.	DATE STARTED	9/8/78 COMPLETED 9/8/78
DEPTH	SAMPLE	0/6		DWS AMPL	ER 1 ₁₈ /	N	DESCRIPTION & CLASSIFICAT	ION :	WATER TABLE & REMARKS
		25	29			53	Slightly moist brown so (CLAYEY-SILT) width 10 subaugular gravel, first tic with fiberous wood	to 15% m, nonplas-	
							Slightly moist grayish bonaceous fill ranging der to augular chunks, plastic with intermixed wood, yellowish brick a	from pow- firm, non- d fiberous	terial to 12.5 feet
5	2	5	15	17		32		PROPERTY OF U MOT TO BE DISC Physical Main	CONTAINS PROPRIETARY INFORMATION. NICH CARBIDE CORPORATION, IT IS 1000 ON MARTO LIFEOUR TOUT THE TEN PERMISSION OF U. C. AND IS OF IN ANY WAY DETRIMENTAL TO THE C. C.
10	3	5	5	7		12	Wet blackish fill mater intermixed carbonaceous brick chunks, loose	rial with	Water seeped rapidly into hole at 9.7 feet
15		_	21			41	Moist light reddish brocoarse silt loam (SAND) width 15% subaugular dogravel, very firm, non	Y-SILT) plometic	
	5_						•		Water at 9.5 feet be- low surface at comple- tion.
	N =						o DRIVE 2 "SPOON 12		Ib. WT. FALLING 30 " PER BLOW.

· c	Clay				Sandy clay loam
si	Silt			sicl	Silty clay loam
S	Sand				Clay loam:
1	Loam	•		sil	Silt loam
SC	Sandy clay		•		Sandy loam
sic	Silty clay			ls	Loamy sand

Textural triangle showing the percentages of clay (less than 0.002 mm), silt (0.002-0.05 mm), and sand (0.05-2.0 mm) in the basic soil textural classes (adapted from Soil Survey Staff, 1951).

DIMENSIONS, INC.

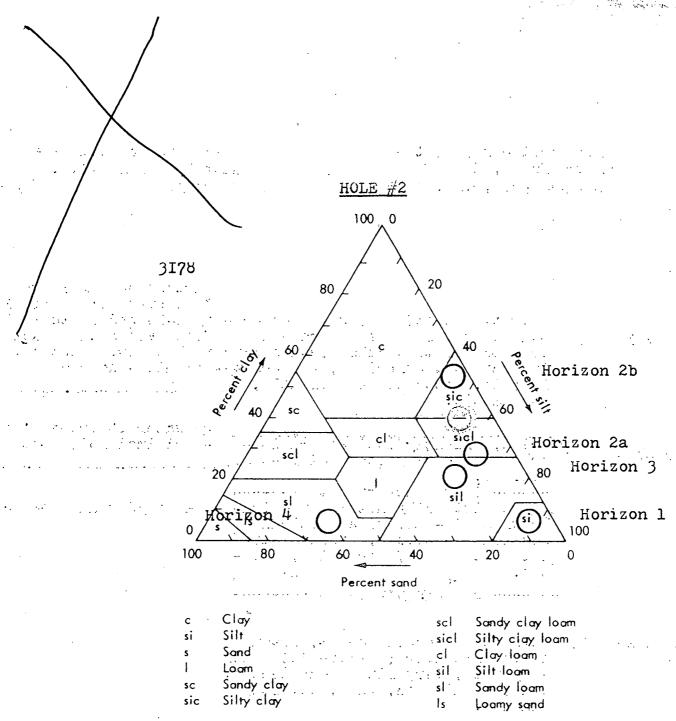

Test Borings and Logs
797 Center Street • East Aurora, New York 14052 • (716) 655-1717

	PROJECT CLIENT			Nı	aga	ara	arbide Corporation Falls, New York esearch Inc.	<u></u>	North side of property Hyde Fark Boulevard 9/9/78 COMPLETED 9/9/78		
DEPTH feet)	SAMPLE NO.	0/6				N	DESCRIPTION & CLASSIFICA	WATER TABLE & REMARKS			
				-			(Same horizon as descr previous page)	ibed on			
20							Gray microcrystalline bedrock	dolomite			
·	•	. *	,				Sampling discontinued	at 20.5 feet	PIPE NOTES Used two 10.5 foot sections of carbon steel pipe with one-4 inch		
									coupling sealed with pipe dope. Well end packed with \$1\frac{1}{2}\$ feet of greater than 1.5 mm well graded coarse sand and gravel below pipe and \$1\frac{1}{2}\$ feet above pipe end.		
							THIS DOCUMENT CONTINUE TRUTERIETAN THIS DOCUMENT CONTINUE CONTINUE THOREATY OF THE DAY OF THE TRUTERIES OF THE TROPERTY OF THE TRUTERIES WAY WAY	TINOKWATION OF TIME TO THE OF U. SO TO THE TRIMENTAL TO THE	Ind of pipe double screened with 0.5 mm stainless steel screening. Bentonite used between 6 and lot foot depths to seal vertical		
							THIS DOCUMENT CONTINUE INVERTED AND CORNERS OF U. C. C. AND WITH INVERTED AND CORNERS OF U. C. C. C. AND CORNERS OF U. C. C. C. AND CORNERS OF U. C. C. C. AND CORNERS OF U. C	· ·	water movement along outside of pipe. The top 6 feet was back filled with SILT-CLAY lake sediment consider- ing the porous nature of the carbonaceous fill		
									at this depth. Bottom of pipe 10.3 feet below surface. Fipe protruding 2.0 feet a-		
. •							·	•	bove surface.		

Owens & Lenhardt

LOGGED BY

SHEET ______ OF ____

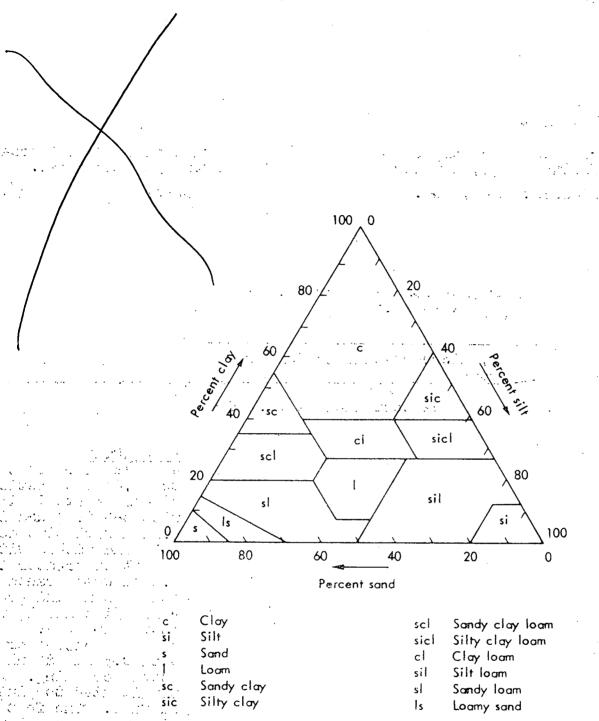

Textural triangle showing the percentages of clay (less than 0.002 mm), silt (0.002-0.05 mm), and sand (0.05-2.0 mm) in the basic soil textural classes (adapted from Soil Survey Staff, 1951).

DIMENSIONS, INC.

Test Borings and Logs 797 Center Street • East Aurora, New York 14052 • (716) 655-1717

3178	HO	LE NO). <u>.</u>	2				SURF. ELEV.
	PRC)JEC	Γ_					outh side of fill area
•	· · · · · · · · · · · · · · · · · · ·						desearch, Inc. DATE STARTED	9/9/78 COMPLETED 9/9/78
DEPTH Feet	SAMPLE NO.	0/6	S /	DWS AMPL	ER 18	N	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
	1			10		17	Slightly moist, grayish-black carbonaceous fill material ranging from powder to angular chunks with intermixed wood, bricks, and gravely soil, loose to very friable, nonplastic.	feet over sandy glacial till to 19.8 feet over
5	2	9	17	2]		38	Moist, highly mottled grayish- brown silty clay loam (SILTY-CLAY)	No water observed at fil - original soil contact
							friableClear transition to Moist distinctly mottled reddish- brown SILTY-CLAY with vertical dessication cracks, finely lami- nated structure, very firm, plas- tic.	Sample #2 spans contact.
10	3.	13	15	18		33	Moist to extremely moist, brown heavy silt loam (CLAYEY-SILT) with	
N.) 						very thin, very fine sandy lenses, finely laminated, firm, slightly plastic.	THE THREE TARY INFORMATION.
16			20				THIS DOCUMENT PROPERTY OF MOT TO DE DE SYFTESSED VE NOT TO BE SE INTERESTO O	THITEH FEET WAY DETRIMENT ALL
15	4	12	20	22		42	Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic	water at 13.5 feet below surface at completion.
							o DRIVE2_" SPOON12_" WITH140_	1b. WT. FALLING30" PER BLOW. HEET1

Textural triangle showing the percentages of clay (less than 0.002 mm), silt (0.002-0.05 mm), and sand (0.05-2.0 mm) in the basic soil textural classes (adapted from Soil Survey Staff, 1951).



3178

DIMENSIONS, INC.

Test Borings and Logs 797 Center Street • East Aurora, New York 14052 • (716) 655-1717

3178	HO	LE NO	D	2	Co	nti	<u>.n</u> ued	SURF. ELEV.		
	PRC	JEC.	r _	Ur Ni	nio:	n (outh side of fill area ear Hyde Park Blvd.		
	CLIE	NT	_					9/9/78 COMPLETED 9/9/78		
DEPTH (feet)	SAMPLE NO.	0/6	SA	OWS MPLI 12 18		N	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS		
							(Same horizon as described on previous page)			
20	5	120					Gray, microcrystalline dolomite bedrock			
							Sampling discontinued at 20.1 fee			
								Used one 10.0 feet and two 5.0 feet sections of carbon steel pipe with 2-4 inch coupling sealed with pipe dope. Well end packed with 1 foot of greater than 1.5 mm well graded coarse sand and gravel below pipe and 1½ feet above pipe end. End of pipe double screene with 0.5 mm stainless steel screening. Bentonite used to plug th surface. One foot of pipe protruded above surface.		
							THIS BUCUMENT CONTAINS PROPRIE COME PROPRIES OF THE PROPRIES OF THE PERMISSION OF TH	PO 1 M IT IS PER PRINCIPLE THE		

Textural triangle showing the percentages of clay (less than 0.002 mm), silt (0.002-0.05 mm), and sand (0.05-2.0 mm) in the basic soil textural classes (adapted from Soil Survey Staff, 1951).

4736779

•

.

A STATE OF THE STA

Mr. John C. McMahon, P.E. New York State Dept. of Environmental Conservation Region Nine Office 584 Dalaware Avenue Buffalo, New York 14202

Dear Mr. McMahon:

Please find enclosed a copy of the analytical results of our monitoring wells and surface runoff sampling performed on March 29, 1979. This information was requested in Special Conditions #4, #5, and #6 of our Operations Permit #2020 dated November 21, 1978.

During our review of the results, we noticed that the north well (W1) showed considerably higher readings of total lead, mercury, and iron. Since our process and waste deposited in our facility does not contain any appreciable amounts of these minerals, we are in question as to their source. There are a number of possibilities that could cause these high results at the well, including a bad test, so we are performing another test of the same parameters on well W1. The information should be available by July 1, 1979 and we will inform you of the test results as soon as they are available.

We trust this additional information and extra sampling will aid in your review of our monitoring requirements. If there are any questions please contact either Mr. Foreman or myself.

Very truly yours,

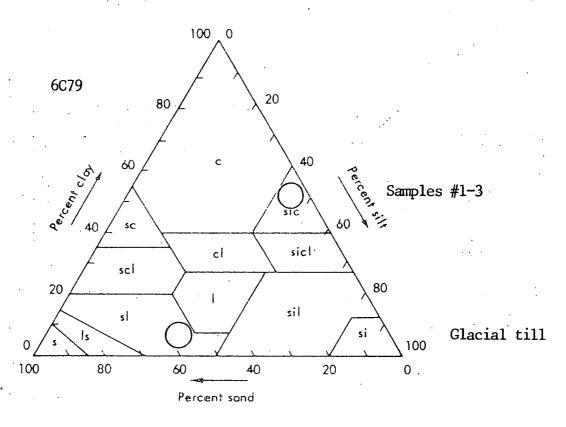
/s/ S. C. Dorr

S.C.Dorr baf

Chief Plant Engineer

Enc.

CC: Messrs. R.A.Hardison/E.B.Fawkes W.D.Haller/V.L.Gustavson


DIMENSIONS, INC.

Test Borings and Logs 797 Center Street • East Aurora, New York 14052 • (716) 655-1717

SHEET 1 OF 1


	нон	LE NO	D	_3_	1		<u> </u>		SURF. ELEV.
6C79	PRC CLIE)JECT	r	Ni_	agai	ra_	rbide Corporation LOCATION Sout Falls, New York proximately 12 esearch, Inc. DATE STARTED	tern portion of site, ap- north of south fence, 20/79 COMPLETED 3/20/79	
DEPTH feet)	SAMPLE NO.	0/6		DWS AMPLI		N	DESCRIPTION & CLASSIFICATION	ell	WATER TABLE & REMARKS
	1	14	12	18		30	Moist dark grayish brown heavy silt loam (CLAYEY-SILT) topsoil, friable, slightly sticky 0.5	screened	Clayey lake sediments to 13.4 ft. over very dense loamy glacial till to 14.0 ft. over dolomitic rock.
5	2	13	19	26.		45.	Moist distinctly mottled reddish brown SILTY-CLAY with vertical gray desiccation cracks and very thin coarse silt and very fine sand len-	######################################	of 2 in. ID carbon steel pipe installed
_10	_3	10	11	15		26	For the second s		depuns.
		120					Extremely moist reddish brown gravelly sandy loam (SILTY-SAND) with 15-20% subrounded dark gray dolomitic gravel, very firm in place, massive soil structure, nonplastic	[oxen]	0 0 0
<u> </u>							Gray microcrystalline dolomite 14.1 Description discontinued at 14.1 ft.		Water table was 13.5
dew								WT. F.	at completion. ALLING <u>-30 " PER BLOW.</u> 1 OF <u>1</u>

Well #3:

С	Clay	scl	Sandy clay loam
si	Silt		Silty clay loam
	Sand ·		Clay loam
١.	Loam		Silt loam
sc	Sandy clay	sl.	Sandy loam
sic	Silty clay		Loamy sand

Textural triangle showing the percentages of clay (less than 0.002 mm), silt (0.002-0.05 mm), and sand (0.05-2.0 mm) in the basic soil textural classes (adapted from Soil Survey Staft, 1951).

DIMENSIONS, INC.

Soil Investigations and Natural Resource Assessments
797 Center Street • East Aurora, New York 14052 • (716) 655-1717

SOILS REPORT - WELL #3 INSTALLATION

Union Carbide Corporation - Niagara Falls

One additional monitoring well was installed on the Union Carbide Corporation's property southeast of the present landfill site in Niagara Falls. Last September, two monitoring wells were placed in the landfill.

Harge boulders were encountered at the original placement site for well #3. This site was selected by Mr. James Foreman of Union Carbide. Six borings were augered in an attempt to reach bedrock. The extremely hard cherty dolomitic and granitic boulders were encountered at the following depths:

Bore number	Depth to hard boulders *
1	11.2
2	9.0
3	5.2
4	5.1
5	5.8
6	5.1

* Feet below surface.

Based on the difficulties encountered at the original placement site, permission was given to move the location further to the southeast to avoid the bouldery glacial till. This did not compromise the intended purpose of this well, to monitor the internal water table some distance from the land-fill.

A stone-free clayey and silty lake sediment mantles glacial till at the original and relocated bored sites. This is similar to the glacial sediment sequence indicated in the Niagara County soil survey. The lake sediment was thinner and containing less clay at the original placement site than at the relocated site. A natural perched water table exists near the surface during wetter seasons. Water was detected in the thin glacial till yet soil coloration would not suggest this moisture regime in this zone. Two borings about 10 feet apart at the relocated well site revealed that the soil sequence was within inches at both sites.

Prepared by

Donald W. Owens, Soil Scientist

DWO/dew 6C79

ANALYTICAL RESULTS

UNION CARBIDE-CARBON DIVISION

Report Date: 4/23/79 Sample Date: 3/29/79

SURFACE AND GROUNDWATER

		SAMPLE IDENTIFICATION			
PARAMETER	UNITS OF MEASURE	Wl	W2	W3	SP1
Ammonia	mg/l	0.63	1.8	0.47	0.52
Nitrite	mg/l	< 0.01	< 0.01	< 0.01	<0.01
Nitrate	mg/l	2.0	4.5	1.0	0.20
Biochemical Oxygen Demand (5 Day)	mg/l	37.5	< 50	< 50	5
Chemical Oxygen Demand	mg/l	344	38.4	< 10	68.7
Total Kjeldahl Nitrogen	mg/l	1.1	-	0.56	_
Total Phosphorus	mg/l	1.1	0.25	0.04	0.25
Sulfate	mg/l	7.8	700	650	150
Methylene Blue Active Substances	mg/l	< 0.4	< 0.4	<0.4	< 0.4
Alkalinity (pH 4.5)	mg/l as CaCO3	· 330	820	275	240
Total Solids (103°C)	mg/l	1,870	_	1,360	_
Color	Pt-Co Color Units	_	-	70	75
Total Hardness	mg/l as CaCO3	1,260	1,630	940	400
Chloride	mg/l	260	180	22	20
Total Coliform	MPN/100m1s	430	< 30	≥24,000	40
Total Organic Carbon	mg/1	93	16.7	9.0	23.1
Phenols	mg/1	0.09	0.01	< 0.01	0.01
рН	Standard Units	7.84	6.83	7.38	7.19
Conductance	μmhos/cm	1,540	1,370	2,100	692
Carbon Chloroform Extraction	mg/l	10.8	_	_	3.3
	μg/l as Chlorine;				
Total Chlorinated Hydrocarbons	Lindane Standard	2.1	0.7	1.0	0.8
btal Aluminum	mg/l	52	5.0	1.2	0.1
Total Arsenic	μ g /1	11.4	<1.7	< 1.7	<1.7
Total Chromium	mg/l	0.088	0.008	< 0.003	< 0.003
Total Copper	mg/l	0.635	0.028	0.008	0.014
Total Lead	mg/l	0.60	<0.02	<0.02	<0.02
Total Mercury	μ g/l	36.6	< 0.7	< 0.7	< 0.7
Total Iron	mg/l	170	33	8.8	1.0
Total Potassium	mg/l	70	6.5	5.5	8.3
Total Sodium	mg/l	200	68	30	8.3
Total Calcium	mg/l	66	17	55	28
Total Silver	mg/1	0.011	< 0.003	<0.003	0.005

COMMENTS: Samples were collected by Recra personnel on 3/29/79. All analyses were performed according to U.S. Environmental Protection Agency methodologies except where noted. Due to an overestimation of BOD content, Samples W2 and W3 were inappropriately diluted. therefore yielding the reported detection limits. Sample W1 and W2 could not be quantified

for color since their colors were not comparible to the platinumcobalt standards. Carbon Chloroform Extraction could not be analyzed on Samples W2 and W3 due to breakage of sample containers. Chromatograms used to quantify TCH show the possible presence of Polychlorinated Biphenyls. Values reported as "less than" indicate the working detection limits for the particular sample/parameter. Samples SPI and W2 did not have all analyses performed due to lack of sufficient volume.

FOR RECRA RESEARCH, INC.

DATE

RECRA RESEARCH, INC. 111 Wales Avenue/Tonawanda, New York 14150/(716) 692-7620

TOTAL CHEMICAL WASTE MANAGEMENT THROUGH APPLIED RESEARCH

ANALYTICAL RESULTS

UNION CARBIDE-CARBON DIVISION

Report Date: 5/29/79 Sample Date: 4/30/79

GROUND WATER

		SAMPLE IDENTIFICATION
PARAMETER	UNITS OF MEASURE	WELL #1
Ammonia	mg/l	10.0
Nitrite	mg/l	< 0.01
Nitrate	mg/l	4.8
Biochemical Oxygen Demand (5 Day)	mg/1	13
Chemical Oxygen Demand	mg/l	71.8
Total Kjeldahl Nitrogen	mg/l	7.7
Total Phosphorus	mg/l	5.0
Sulfate	mg/1	<1
Methylene Blue Active Substances	mg/l	_
Alkalinity (pH 4.5)	$mg/1$ as $CaCO_3$	780
Total Solids (103°C)	mg/l	1,570
Color	Pt-Co Color Units	100
Total Hardness	mg/l as CaCO3	920
Chloride	mg/l	190
Total Coliform	MPN/100m1s	750
Total Organic Carbon	mg/l	26.1
Phenols	mg/l	< 0.01
pН	Standard Units	8.13
Conductance	µmhos/cm	1,480
Carbon Chloroform Extraction	mg/1	26.9
	μ g/l as Chlorine;	
Total Chlorinated Hydrocarbons	Lindane Standard	6.5
Total Aluminum	mg/l	7.4
Total Arsenic	μ g/1	6.4
Total Chromium	mg/l	0.026
Total Copper	mg/l	0.103
Total Lead	mg/l	0.07
Total Mercury	μ g/1	17
Total Iron	mg/l	6.5
Total Potassium	mg/l	110
Total Sodium	mg/l	160
Total Calcium	mg/l	46
Total Silver	mg/l	< 0.003

COMMENTS: Samples were collected by Recra personnel on 4/30/79. All analyses were performed according to U. S. Environmental Protection Agency methodologies. Values reported as "less than" indicate the working

detection limits for a particular sample/parameter. Methylene Blue Active Substances could not be quantified due to the formation of a severe emulsion during extract-The discrepancy between TKN and Ammonia is believed to be the result of an electrode interference, caused by coating of the membrane. The TKN value is probably more reliable since the interference may be removed during distillation.

FOR RECRA RESEARCH, INC.

DATE RECRA RESEARCH, INC. 111 Wales Avenue/Tonawanda, New York 14150/(716) 692-7620

· 中/第/80 **=**

·

.

.

Mr. John C. McMahon, P.E. New York State Department of Environmental Conservation Region Nine Office 584 Delaware Ave. Buffalo, New York 14202

Dear Mr. McMahon:

As requested under "Special Condition" of NYSDEC Permit #2020 for our Republic Solid Waste Facility, please find enclosed a copy of Recra Research's semi-annual well monitoring report (2 pages) dated 12/27/79 showing the analytical results of samples taken on 11/21/79.

Recra Research, Tonawanda, New York took the samples and prepared said report for us.

Very truly yours,

/s/ R.H.Meuser

R.H.Meuser baf Engineering Department

Enc.

December 27, 1979

Mr. R. Meuser Union Carbide Corporation Republic Plant 3501 Hyde Park Boulevard Niagara Falls, New York

Semi-Annual Well Monitoring Re:

Dear Mr. Meuser:

Please find enclosed Recra Research, Inc.'s results of the analyses of well samples received at our laboratories on November 21, 1979.

If you have any questions concerning these data, do not hesitate to contact the undersigned.

Sincerely,

RECRA RESEARCH, INC.

Robert K. Wysth/Jap

Robert K. Wyeth Laboratory Director

JAP/RKW/jah Enclosure

Job #: 989

RECRA RESEARCH, INC. P.O. Box 448 / Tonawanda, New York 14150 / (716) 838-6200

Pall-Sveid waste

July 6, 1979

Mr. John C. McMahon, P.E. New York State Department of Environmental Conservation Region Nine Offica 584 Delaware Avenue Buffalo, New York 14202

Dear Mr. McMahon:

Please find enclosed a copy of the analytical results of the resampling of our well W1, performed on April 30, 1979. The resampling of this well, as explained in our letter dated April 30, 1979, was a result of high mineral readings found in the earlier sample taken on March 29, 1979. The accompanying results are considerably lower than the previous tests and hope will be acceptable.

If any complications arise, please contact us as soon as possible.

Very truly yours,

/s/ J. E. Foreman

J.E.Foreman

Engineering Department

CC: Messrs. R.Hardison/E.Fawkes W.Haller/V.Gustavson

May 29, 1979

Mr. James Foreman III Plant Engineer Union Carbide Corp. Carbon Products Division P. O. Box 887 Niagara Falls, New York 14302 RECEIVED ENGINEERING DEPT.

JUN 1 1979

U.C.C.-C.P.D. NIAGARA PLANT

Re: Analytical Results

Dear Jim:

Enclosed are the analytical results from your North Well (Well No. 1) which was resampled on 4/30/79.

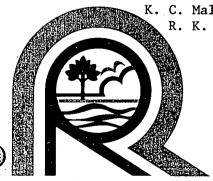
If you have any questions concerning these data, do not hesitate to contact the undersigned.

Very truly yours,

RECRA RESEARCH, INC.

John E. Banaszak, P.E. Environmental Engineer

JEB/JAP/df Enclosure


R. A. Stadelmaier

K. C. Malinowski

R. K. Wyeth

Jin,
How does this
compare with prior
lest?

There is the prior

RECRA RESEARCH, INC. 111 Wales Avenue/Tonawanda, New York 14150/(716) 692-7620

•

•

.

•

•

ANALYTICAL RESULTS

UNION CARBIDE CORPORATION - REPUBLIC PLANT SEMI-ANNUAL WELL MONITORING

Report Date: 12/27/79 Sample Date: 11/21/79.

		SAMPLE IDENTIFICATION		
PARAMETER	UNITS OF MEASURE	W-I	W-II	W-III
pH	Standard Units	. 8.52	7.91	7.93
Conductance	umhos/cm	1,310	3,120	1,340
Total Coliform	MPN/100 mls	2	< 2	2
Biochemical				
Oxygen Demand (5day)	mg/i	22	8	5
Chemical		-		
Oxygen Demand	mg/l	160	174	.30
Total				
Organic Carbon	mg/l	70	130	35
Ammonia	mgN/l	14.4	< 0.5	0.5
Total				
Kjeldahl Nitrogen	mgN/1	24.0	2.8	2.0
Total Phosphorus	mgP/l	0.62	0.56	0.06
Nitrate	mgN/l	< 0.2	0.3	< 0.2
Nitrite	mgN/l	< 0.01	< 0.01	< 0.01
Chloride	mg/l	145	121_	. 14
Total Residue (103°C)	mg/l	1,500	2,480	952
Total			· ·	
Recoverable Phenolics	mg/l	0.080	0.040	< 0.010
Sulfate	mg/l	6.0	750	400
Alkalinity (pH 4.5)	mg/l as CaCO3	898	804	260
Total Hardness	mg/l as CaCO3	775	1,750	540
Color	Pt-Co Color Units	·		

COMMENTS: Samples were collected by Recra personnel on 11/21/79. Comments pertain to data on one or both pages of this report. Values reported as "less than" indicate the working detection limit for the particular sample or parameter. The above samples could not be quantified for color since their colors were not comparible to the platinum-cobalt standards. All analyses were performed according to U. S. Environmental Protection Agency methodology with the exception of Carbon Chloroform Extraction (CCE).

FOR RECRA RESEARCH, INC.

DATE

ANALYTICAL RESULTS

UNION CARBIDE CORPORATION - REPUBLIC PLANT SEMI-ANNUAL WELL MONITORING

Report Date: 12/27/79 Sample Date: 11/21/79

		SAMPLE IDENTIFICATION		
PARAMETER	UNITS OF MEASURE	W-I	W-II	W-III
Carbon				
Chloroform Extract	mg/1	2.0	1.6	< 1.0
Methylene Blue				
Active Substances	mg LAS/1	< 0.4	< 0.4	< 0.4
Total Aluminum	mg/l	56	0.6	< 0.1
Total Arsenic	μg/1	5.3	< 1.4	< 1.4
Total Chromium	mg/1	0.090	< 0.002	< 0.002
Hexavalent Chromium	mg/l	0.090	< 0.002	< 0.002
Total Copper	mg/l	0.783	< 0.003	< 0.003
Total Calcium	mg/l	99.	275	14
Total Iron	mg/1	280	11.7	0.27
Total Lead	mg/l	0.72	0.03	< 0.02
Total Mercury	μ g /1	13	< 0.4	< 1.0
Total Potassium	mg/l	66	6.4	4.2
Total Silver	mg/1	0.052	< 0.005	< 0.005
Total Sodium	mg/l	180	85	75
Halogenated	ug/l as Chlorine;		·	
Organic Scan	Lindane Standard	1.80	1.47	1.54

COMMENTS: The CCE procedure employed, is a modification of the procedure found in Standard Methods for the Examination of Water and Wastewater, 14th Edition. Specific modifications to the procedure were submitted previously with the original proposal. Differences in detectability for a given parameter are a function of varying sample volumes taken for analysis. Halogenated organic scan results are used for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the response factor of Lindane but do not imply either the presence or absence of Lindane itself. Halogenated organic scan results do not include volatile organic constituents.

FOR RECRA RESEARCH, INC.

DATE

12/28/29

6 67/31/80 C

•

.

•

•

July 31, 1980

Mr. James Foreman Union Carbide Corporation Republic Plant 3501 Hyde Park Boulevard Niagara Falls, NY

ENGINEERING DEPT.

Semi-Annual Well Monitoring

Dear Mr. Foreman:

Please find enclosed Recra Research, Inc.'s results of the analyses of well samples received at our laboratories on May 28, 1980 and June 9, 1980.

If you have any questions concerning these data, do not hesitate to contact the undersigned.

Sincerely,

RECRA RESEARCH, INC.

James A. Ploscyca

Laboratory Manager

KDM/JAP/skb Enclosure

> I.D.#517 578

UNION CARBIDE CORPORATION - REPUBLIC PLANT SEMI-ANNUAL WELL MONITORING

Report Date: 7/31/80

Dates Received: 5/28/80 and 6/9/80

		SAMPLE	IDENTIFIC	ATION
PARAMETER	UNITS OF MEASURE	W-I ·	W-II	W-III
рН	Standard Units	8.10	7.61	7.94
Conductance	µmhos/cm	1,520	2,200	890
Total Coliform	MPN/100 mls	<2	<2	<2
Biochemical Oxygen				
Demand (5-day)	mg/1	110	140	<2
Chemical Oxygen Demand	mg/l	67.	180	<10
Total Organic Carbon	mg/1	19	72	24
Ammonia	mg N/l	9.1	<1	<0.5
Total Kjeldahl Nitrogen	mg N/1		<1	<0.50
Total Phosphorus	mg P/1	<0.02	<0.02	0.03
Nitrate	mg N/1	0.45	4.1	0.17
Nitrite	mg N/1	<0.01	<0.01	<0.01
Chloride	mg/l	103	109	9.3
Total Residue (103 ^o C)	mg/l	1,400	4,600	700
Total Recoverable Phenolics	mg/l	0.025	0.26	0.053
Sulfate	mg/l	11	830	260
Alkalinity (pH 4.5)	mg/l as CaCO ₃	770	560	280

COMMENTS: Sample W-III was collected by Recra personnel on 5/28/80. W-I and W-II were not collected until 6/9/80 due to their slow recharging rate. Comments pertain to data on one or both pages of this report. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Differences in detectability for a specific parameter are due to varying sample volumes taken for analysis.

FOR	${\tt RECRA}$	RESEARCH,	INC.	Karen	0.	Marchese	
				4/31/80		<u>,</u>	

UNION CARBIDE CORPORATION - REPUBLIC PLANT SEMI-ANNUAL WELL MONITORING

Report Date: 7/31/80

Dates Received: 5/28/80 and 6/9/80

		SAMPLE	IDENTIFIC	CATION
PARAMETER	UNITS OF MEASURE	W-I	W-II	W-III
Total Hardness	mg/l as CaCO ₃	560	1,680	480
True Color	Pt-Co Color Units	27	50	0
Carbon Chloroform Extract	mg/l	3.1	8.0	5.2
Methylene Blue Active				
Substances	mg LAS/1	<0.1	<0.2	<0.1
Total Aluminum	mg/l	4.6	3.1	1.4
Total Arsenic	μ g/ 1	. 10	<2	<1
Total Chromium	mg/1	0.008	<0.003	<0.003
Hexavalent Chromium	mg/l	·	-	
Total Copper	mg/l	0.043	0.008	0.007
Total Calcium	mg/l	28	100	39
Total Iron	mg/l	27	80	6.4
Total Lead	mg/l	0.07	<0.02	<0.02
Total Mercury	μg/1	3.0	2.9	<1
Total Potassium	mg/l	64	7.9	4.1
Total Silver	mg/l	<0.005	<0.005	<0.005
Total Sodium	mg/1	200	100	66
Halogenated Organic Scan	μg/l as Chlorine;			
	Lindane Standard	4.6	8.8	0.81

COMMENTS: All analyses were performed according to U.S. Environmental Protection Agency methodology with the exception of Carbon Chloroform Extraction (CCE). The CCE procedure employed is a modification of the procedure found in Standard Methods for the Examination of Water and Wastewater, 14th Edition. Total Kjeldahl Nitrogen could not be determined on Sample W-I due to interfering substances. Hexavalent chromium analysis was not determined on these samples due to their low total chromium concentration.

Halogenated Organic Scan (ECD) analyses were performed using an electron capture detector. Results of these scans are for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the chlorine content and response factor of Lindane, but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan (ECD) results generally do not include volatile organic constituents.

FOR	RECRA	RESEARCH,	INC.	Karen O. Maschuse	
				7/31/80 .	

.

UNION CARBIDE CORPORATION

CARBON PRODUCTS DIVISION

P.O. BOX 887, NIAGARA FALLS, NEW YORK 14302

January 23, 1981

Mr. John C. McMahon, P.E. New York State Department of Environmental Conservation Region Nine Office 584 Delaware Avenue Buffalo, New York 14202

Dear Mr. McMahon:

As requested under "Special Condition #5" of New York State Department of Environmental Conservation permit #2020 for our Republic Solid Waste Facility, please find enclosed a copy of Recra Research's semi-annual well monitoring report (2 pages) dated 1/2/81, showing the analytical results of samples taken on 11/17/80.

The analytical results were reported for only well #1. The remaining wells (#2 and #3) were dry on three separate attempts to obtain samples. The results of the sampling seems to be constant with previous reports, but if any complications with the results arise, please contact us as soon as possible.

Very truly yours,

/s/ M. G. Steffan

M.G.Steffan baf Engineering Department

Attach.

January 2, 1981

Mr. Michael Steffan Union Carbide Corporation 3625 Highland Avenue Niagara Falls, NY 14305

Re: Analytical Results (Semi-Annual Monitoring)

Dear Mr. Steffan:

Please find enclosed Recra Research, Inc.'s results of the analyses of a monitoring sample (W-I) collected by Recra personnel on November 17, 1980. The two remaining wells (W-2 and W-3) were visited on three separate occasions but were dry during each sampling attempt.

If you have any questions concerning these data, do not hesitate to contact the undersigned.

Sincerely,

RECRA RESEARCH, INC.

James A. Ploscyca Laboratory Manager

I.D. #1083

RVF/JAP/pcb Enclosure

TOTAL CHEMICAL WASTE MANAGEMENT THROUGH APPLIED RESEARCH

RECRA RESEARCH, INC. P.O. Box 448 / Tonawanda, New York 14150 / (716) 838-6200

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Réport Date: 1/2/81 Sample Date: 11/17/80

		SAMPLE IDENTIFICATION
PARAMETER	UNITS OF MEASURE	W-I
Groundwater	Feet Below	
Elevation	Top of Casing	12'7"
рН	Standard Units	8.33
Conductance (25°C)	μmhos/cm	2,150
Total Coliform	Colonies/100 mls	0
Biochemical Oxygen		
Demand (5 day)	mg/l	6
Chemical Oxygen		
Demand	mg/l	48
Total Organic		
Carbon	mg/l	210
Ammonia	mg N/l	28
Total Kjeldahl		
Nitrogen	mg N/1	<u> </u>
Total Phosphorus	mg P/l	0.45
Nitrate	mg N/l	0.32
Nitrite	mg N/l	<0,01
Chloride	mg/l	85
Total Residue (103°C)	mg/l	1,200
Total Recoverable		
Phenolics	mg/l	0.03
Sulfate	mg/1	: 3.0
Alkalinity (pH 4.5)	mg/l as CaCO ₃	⁴ 850
Total Hardness	mg/l as CaCO ₃	540
Color	Pt-Co Color Units	35

COMMENTS: Sample was collected by Recra personnel on 11/17/80. Comments pertain to data on one or both pages of this report. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable. Total Kjeldahl Nitrogen could not be determined due to the suspected presence of interfering substances. Wells W-2 and W-3 were 20'2" and 15'2", respectively, to the bottom of each well from the top of casing.

FOR RECRA RESEARCH, INC. Q. U. Frances

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Report Date: 12/31/80 Sample Date: 11/17/80

		SAMPLE IDENTIFICATION
PARAMETER	UNITS OF MEASURE	W-I
Carbon		
Chloroform Extract	mg/l	<1
Methylene Blue		
Active Substances	mg/l	<0.1
Total Aluminum	mg/l	0.3
Total Arsenic	μg/l	8.0
Total Chromium	mg/l	<0.005
Hexavalent Chromium	mg/l	-
Total Copper	mg/l	0.006
Total Calcium	mg/1	110
Total Iron	mg/1	1.9
Total Lead	mg/l	0.03
Total Mercury	μg/l	<2
Total Potassium	mg/l	330
Total Silver	mg/l	<0.005
Total Sodium	mg/l	3,500
Halogenated	μg/l as Chlorine;	
Organic Scan (ECD)	Lindane Standard	0.91

COMMENTS:

Halogenated Organic Scan (ECD) analyses were performed using an electron capture detector. Results of these scans are for screening purposes only and are not designed for quantification or qualification of any specific organic compound. Results are calculated based upon the chlorine content and response factor of Lindane, but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan (ECD) results generally do not include volatile organic constituents.

FOR RECRA RESEARCH, INC.

DATE

.

.

1'

. -

•

-

•

•

UNION CARBIDE CORPORATION CARBON PRODUCTS DIVISION

P. O. BOX 887, NIAGARA FALLS, N. Y. 14302

July 23, 1981

Mr. John C. McMahon, P.E. New York State Dept. of Environmental Conservation Region 9 Office 600 Delaware Avenue Buffalo, New York 14202

Dear Mr. McMahon:

As requested under "Special Condition #5" of New York State Department of Environmental Conservation Permit #2020 for our Republic Solid Waste Facility, please find enclosed a copy of Recra Research's semi-annual well monitoring report (2 pages) dated 7/6/81, showing the analytical results of samples taken on 6/9/81.

The results of the sampling seem to be consistant with previous reports, but if there are any complications with the results, please contact me as soon as possible.

Very truly yours,

/s/ M. G. Steffan

M.G.Steffan baf Engineering Department

Attach.

July 6, 1981

Mr. Michael Steffan Union Carbide Corporation Carbon Products Division P.O. Box 887 Niagara Falls, NY

Semi-Annual Well Monitoring

Dear Mr. Steffan:

Please find enclosed Recra Research, Inc.'s results of the analyses of well samples received at our laboratories on June 9, 1981.

If you have any questions concerning these data, do not hesitate to contact the undersigned.

Sincerely,

RECRA RESEARCH, INC.

James A. Ploscyca Laboratory Manager

KDM/JAP/skb Enclosure

I.D. #81-452

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Report Date: 7/6/81 Sample Date: 6/9/81

		SAMPLE	IDENTIFIC	ATION
PARAMETER	UNITS OF MEASURE	W-I	W-II	W-III
Groundwater Elevation	Feet Below Top of Casing	9'4''	18'10"	9'7"
рН	Standard Units	7.77	7.13	7.90
Specific				
Conductance (25°C)	umhos/cm	1,730	1,050	540
Total Coliform	Colonies/100 ml	<3	9	15
Biochemical Oxygen				,
Demand (5 day)	mg/1	<5	<5	<5
Chemical Oxygen				
Demand	mg/l	41	32	6.8
Total Organic			,	
Carbon	mg/1	16	13	3.1
Ammonia	mg N/1	_	<0.5	<0.5
Total Kjeldahl Nitrogen	mg N/1	2.4	<0.5	<0.5
Total Phosphorus	mg P/1	<0.02	<0.02	<0.02
Nitrate	mg N/1	<0.1	<0.1	<0.1
Nitrite	mg N/l	0.016	<0.01	<0.01
Chloride	mg/l	87	83	5.8
Total Residue (103°C)	mg/l	1,100	960	440
Total Recoverable				
Phenolics	mg/1	<0.01	<0.01	<0.01
Sulfate	mg/1	35	330	120
Alkalinity (pH 4.5)	mg/l as CaCO ₃	890	170	240
Total Hardness	mg/l as CaCO ₃	630	550	270
Color .	Pt-Co Color Units	40	17.5	30
Carbon Chloroform				
Extraction	mg/l	14	<2	<1
Methylene Blue Active Substances	mg/l	<0.03	0.058	<0.2

(Continued)

ANALYTICAL RESULTS (cont'd.)

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Report Date: 7/6/81 Sample Date: 6/9/81

		SAMPLE	IDENTIFIC	CATION
PARAMETER	UNITS OF MEASURE	W-I	W-II	W-III
Total Aluminum	mg/l	<0.2	<0.2	<0.2
Total Arsenic	μg/1	6.1	<5	<5
Total Chromium	mg/l	<0.005	<0.005	<0.005
Hexavalent Chromium	mg/l	<0.005	<0.005	<0.005
Total Copper	mg/l	0.054	0.050	0.042
Total Calcium	mg/l	32	70	42
Total Iron	mg/l	16	9.3	70
Total Lead	mg/l	<0.03	<0.03	<0.03
Total Mercury	μ g /l	<3	<3	<3
Total Potassium	mg/l	2.2	54	6.0
Total Silver	mg/l	0.015	0.016	<0.005
Total Sodium	mg/l	47	51	14
Halogenated Organic	μg/l as Chlorine;			
Scan (ECD)	Lindane Standard	21	1	22

COMMENTS:

Samples were collected by Recra personnel on 6/9/81. pertain to data on one or both pages of this report. reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable. Halogenated Organic Scan (ECD) analysis for Sample W-II could not be performed due to insufficient sample volume. Halogenated Organic Scan (ECD) analyses were performed using an electron capture detector. Results of these scans are for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the chlorine content and response factor of Lindane, but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan (ECD) results generally do not include volatile organic constituents. Results of the Halogenated Organic Scan (ECD) analyses indicated that the major contribution to the high values was from peaks (compounds) with gas chromatographic retention times of less than two minutes. The ammonia value for W-I could not be determined due to suspected interferences.

FOR RECRA RESEARCH, INC. Diff. Final DATE 5/6/8/

● 17/14/82**68**€

₫

•

.

P

ā

· -

•

UNION CARBIDE CORPORATION CARBON PRODUCTS DIVISION

P. O. BOX 887, NIAGARA FALLS, N. Y. 14302

January 14, 1982

New York State
Department of Environmental Conservation
Region 9 Office
600 Delaware Avenue
Buffalo, New York 14202

Attn: Mr. Robert J. Mitrey, P.E.

Re: Republic Solid Waste Management

Facility

Dear Mr. Mitrey:

Transmitted as stipulated under "Special Conditions #3 and #4" of our approved Permit #2586, for the Republic Solid Waste Management Facility, are the Operation Reports requested. These reports will bring you up-to-date with the types of wastes deposited, areas of active operation, intermediate cover and final cover. In addition, are the results of the semi-annual ground water monitoring program.

Enclosed in this package you will find the 1981 Operations Report with the following attachments:

- 1. One copy of the revised topographical map entitled "Operations and Topographical Report Union Carbide Corporation, Carbon Products Division, Republic Solid Waste Management Facility, for the year 1981". The Plan includes updated topography by Mr. Ivan R. Klettke, L.L.S., a licensed land surveyor, location of active operations and notes on intermediate and final cover.
- 2. One copy of the results of the semi-annual Ground Water Monitoring, certified sampling and analytical results performed by Recra Research Inc.
- 3. One copy of the 1981 report of the Types and Quantities of Wastes Deposited at the Facility. (Note future reports will be submitted quarterly).

Future operations reports regarding types and quantities of wastes deposited at the Facility will be submitted on a quarterly basis in the months of April, July and October of 1982. If you have any further questions regarding this report, please call me at 278-3718.

Very truly yours,

Michael & Staffer

Engineering Department - Niagara

M.G.Steffan/baf Attach.

RECRA RESEARCH, INC.

Hazardous Waste And Toxic Substance Control

January 7, 1982

ELCONVED ENGINEERING DEPT.

JAN 8 1982

U.C.C.-C.P.D.

Mr. Michael Steffan Union Carbide Corporation Carbon Products Division P.O. Box 887 Niagara Falls, NY

Re: Semi-Annual Well Monitoring

4445 F. Medick (Floor) And Submedia (ACC) (Floor) (Floor) (Floor)

Dear Mr. Steffan:

Please find enclosed Recra Research, Inc.'s results of the analyses of well samples received at our laboratories on December 9, 1981.

If you have any questions concerning these data, do not hesitate to contact the undersigned.

Sincerely,

RECRA RESEARCH, INC.

James A. Ploscyca Laboratory Manager

RVF/JAP/skb Enclosure

I.D; #81-1130

81-1130A

81-1130B

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Report Date: 1/7/82 Sample Date: 12/9/81

1	1 .	I CAMD	LE IDENTIFICA	ATTON
		SAMP	LE IDENTIFICA	HILON
PARAMETER	UNITS OF MEASURE	W-1	W-2	W-3
Groundwater	Feet Below			
Elevation	Top of Casing	9'7"	18'10"	5'6"
рН	Standard Units	8.63	7.32	8.23
Specific Conductance				
(25°C)	μmhos/cm	1,250	580	560
Total Coliform	Organisms/100 ml	3.6	43	9.1
Biochemical Oxygen				
Demand (5 day)	mg/l	<2	-	<2
Chemical Oxygen				
Demand	mg/l	33		-8
Total Organic				
Carbon	mg/l	11	-	<1
Ammonia	mg N/1	10	-	<0.1
Total Kjeldahl Nitrogen	mg N/1	9	-	0.2
Total Phosphorus	mg P/1	0.16	-	<0.02
Nitrate	mg N/l	0.47	2.7	2.7
Nitrite	mg N/1	0.19	0.19	<0.01
Chloride	mg/1	75	45	7.5
Total Residue (103°C)	mg/l	1,100		600
Total Recoverable	·			
Phenolics	mg/l	0.012	<0.01	<0.01
Sulfate	mg/l	3.9	130	110
Alkalinity (pH 4.5)	mg/l as CaCO ₃	660	190	240
Total Hardness	mg/l as CaCO ₃	410		270
True Color	Pt-Co Color Units	20	30	50
Carbon Chloroform				1
Extraction	mg/l	<u> </u>	-	
Methylene Blue				
Active Substances	mg/l	<0.1		<0.1

(Continued)

ANALYTICAL RESULTS (cont'd.)

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

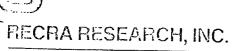
Report Date: 1/7/82 Sample Date: 12/9/81

		SAMP	LE IDENTIFIC	ATION
PARAMETER	UNITS OF MEASURE	W-1	W-2	W-3
Total Aluminum	mg/l	0.4	0.4	0.4
Total Arsenic	μg/1	<5	<5	<5
Total Chromium	mg/l	<0.005	<0.005	<0.005
Hexavalent Chromium	mg/l	<0.005	<0.005	<0.005
Total Copper	mg/l	0.010	<0.01	<0.01
Total Calcium	mg/1	10	50	28
Total Iron	mg/l	3.0	29	3.0
Total Lead	mg/l	0.05	<0.04	<0.04
Total Mercury	μg/l	<1	2.6	<1
Total Potassium	mg/l	59	4.5	3.8
Total Silver	mg/l	<0.005	<0.005	<0.005
Total Sodium	mg/1 ,	170	17	61
Halogenated Organic	μg/l as Chlorine;			
Scan (ECD)	Lindane Standard	1.3	_	1.1

COMMENTS:

Samples were collected by Recra personnel on 12/9/81. Comments pertain to data on one or both pages of this report. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable. Many analyses for Sample W-2 could not be performed due to insufficient sample volume. Halogenated Organic Scan (ECD) analyses were performed using an electron capture detector. Results of these scans are for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the chlorine content and response factor of Lindane, but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan (ECD) results generally do not include volatile organic constituents. Carbon Chloroform Extraction results will follow shortly.

FOR RECRA RESEARCH, INC.


R.V. Frinn / Jan

DATE

1/8/82

FECRA RESEARCH, MC. I.D. #81-1130

Hazardous Waste And Toxic Substance Control

January 13, 1982

RICLIVED ENGINEERING DEPT.

JAN 1 4 1982

Mr. Michael Steffan Union Carbide Corporation Carbon Products Division P.O. Box 887 Niagara Falls, NY

Semi-Annual Well Monitoring

Dear Mr. Steffan:

Please find enclosed the completion of the results for the December semi-annual well monitoring. The samples were collected by Recra personnel on December 9, 1981.

If you have any questions concerning these data, do not hesitate to contact the undersigned.

Sincerely,

RECRA RESEARCH, INC.

James A. Ploscyca Laboratory Manager

RVF/JAP/skb Enclosure

4048 Ridge Cele Politico o neres fue a resultable e

I.D. #81-1130 - Additional 81-1130A

81-1130B

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Report Date: 1/13/82 Sample Date: 12/9/81

SAMPLE IDENTIFICATION

PARAMETER	UNITS OF MEASURE	<u>W-1</u>	$\overline{W-2}$	<u>W-3</u>
Carbon Chloroform	4-			
Extraction	mg/l	7.2	· <u>-</u>	<2

COMMENTS: The Carbon Chloroform Extraction analysis for Sample W-2 could not be performed due to insufficient sample volume. The value reported as "less than" (<) indicates the working detection limit for the particular sample and/or parameter.

FOR RECRA RESEARCH, INC.

DATE

(CES)

RECRARESEARCH, INC. I.D. #81-1130

TYPES AND QUANTITIES OF WASTES DEPOSITED

Union Carbide Corporation Carbon Products Division

REPUBLIC SOLID WASTE FACILITY

From: January 1, 1981 thru January 1, 1982*

* Thenceforth to be reported on a quarterly basis.

MATERIAL DEPOSITED		AM	OUNT DEPOSITED	(in	lbs.)
Carbonaceous Material			5,644,000		
Wood Scrap			903,000	•	
Firebrick			1,162,000		
	Total	=	7,709,000		

M.G.Steffan/baf 1/14/82 **∂** €7/9/82 €

UNION CARBIDE CORPORATION P.O. BOX 887, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

July 9, 1982

Mr. Robert J. Mitrey, P.E. New York State Dept. of Environmental Conservation Region 9 Office 600 Delaware Avenue Buffalo, New York 14202

Re: Republic Solid Waste Management

Facility

Dear Mr. Mitrey:

Transmitted as stipulated under "Special Conditions #3 and #4" of our approved Permit #2586, for the Republic Solid Waste Management Facility, are the Operations Reports as requested. This report will bring you up-to-date with the types and quantities of wastes deposited and the semi-annual well sampling results during the second quarter of 1982.

Enclosed in this package you will find:

- One copy of the Second Quarter 1982 Report of the types and Quantities of Wastes Deposited Quarterly at the Facility. (Note - future reports will be submitted quarterly.)
- 2. One copy of the results of the semi-annual ground water monitoring, certified sampling and analytical results performed by Recra Research Inc.

If you have any further questions regarding this report, please do not hesitate to call.

Very truly yours,

Engineering Department

Michael D. Steffar

M.G.Steffan baf

Enc.

CC: Messrs. M.Vaughan/R.Abbott Niagara County Health Dept. Box 428

Niagara Falls, New York 14302

Messrs. M.A.Balent/W.J.Giambrone

TYPES AND QUANTITIES OF WASTES DEPOSITED

Union Carbide Corporation Carbon Products Division

REPUBLIC SOLID WASTE FACILITY

Period: 3/31/82 thru 6/30/82

	AMOUNT DEPOSITED (In Lbs.) - 1982				ACCUMULATED TOTAL
MATERIAL DEPOSITED	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	YEAR-TO-DATE
·			•		
Carbonaceous Material	1,411,000	956,000	•		2,367,000
Wood Scrap	225,750	162,750	·		388,500
Firebrick	290,500	187,750			478,250
			•		. <u> </u>
TOTALS	1,927,250	1,306,500			3,233,750

UNION CARBIDE CORPORATION CARBON PRODUCTS DIVISION

Report Date: 6/25/82

Dates Received: 5/28 & 6/3/82

		SAMPLE	SAMPLE IDENTIFICATION		
PARAMETER	UNITS OF MEASURE	W-1 (5/28 & 6/3/82)	W-2 (5/28/82)	W-3 (5/28 & 6/3/82)	
Total Recoverable		(3/20 0 0/3/02)	(3/20/02)	(3) 20 0 0, 3, 02)	
Phenolics	mg/l	0.090	_	<0.1	
Total Organic Carbon	mg/1	17	15	5	

COMMENTS:

Analyses were performed according to U.S. Environmental Protection Agency methodologies. Value reported as less than (<) indicates the working detection limit for the particular sample or parameter. Due to small volume available from Well-2 some analyses could not be performed. Wells W-1 and W-3 were sampled on two days to obtain enough volume for all parameters.

FOR RECRA RESEARCH, INC. RV France/
DATE 6/25/82

Hazardous Waste And Toxic Substance Control

June 25, 1982

ENGINEERING DEPT.

Mr. Michael Steffan Union Carbide Corporation Carbon Products Division P.O. Box 887 Niagara Falls, New York 14302

JUN 2 8 1982

U.C.C.-C.P.D.

Re: Analytical Results

Dear Mr. Steffan:

Please find enclosed Recra Research, Inc. results of the analyses of samples collected by Recra personnel on May 28, and June 3, 1982.

If you have any questions concerning these data, do not hesitate to contact the undersigned.

Sincerely,

RECRA RESEARCH, INC.

James A. Ploscyca Laboratory Manager

JAP/df Enclosure

> I.D. #82-558 82-558A Additional

•

.

.

•

•

.

RECRA ENVIRONMENTAL LABORATORIES

Division of Recra Research, Inc.

December 20, 1982

Mr. Michael Steffan Union Carbide Corporation Carbon Products Division P.O. Box 887 Niagara Falls, NY

Re: Analytical Results

Dear Mr. Steffan:

Please find enclosed results of the analyses of water samples collected by Recra personnel on December 3 and 6, 1982.

These results were reported by telephone to you on December 17, 1982.

If you have any questions concerning these data, do not hesitate to contact the undersigned.

Sincerely,

RECRA ENVIRONMENTAL LABORATORIES

James A. Ploscyca Laboratory Manager

RVF/JAP/skb Enclosure

> I.D. #82-1182 82-1182A

UNION CARBIDE CORPORATION

Report Date: 12/20/82

		SAMPLE IDENTIFICATION (DATE)		
		W-1	W-3	
PARAMETER	UNITS OF MEASURE	(12/3/82)	(12/6/82)	
Total Recoverable			•	
Phenolics	mg/l	<0.01	<0.01	
Total Organic Carbon	mg/l	15	4.0	

COMMENTS: Analyses were performed according to U.S. Environmental

Protection Agency methodologies. Values reported as "less than" (<) indicate the working detection limit

for the particular sample or parameter. Sampling Point W-2

was dry and could not be sampled. .

FOR RECRA ENVIRONMENTAL LABORATORIES

DATE

Waste-Landfiel, State Perm - Spec. Conk

UNION CARBIDE CORPORATION P.O. BOX 887, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

January 12, 1983

New York State
Dept. of Environmental Conservation
Region 9 Office
600 Delaware Avenue
Buffalo, New York 14202

THIS DOCUMENT CONTAINS PROPRIETARY INITIALIZATION PROPERTY OF UNION CARBIDE CORPORATION IT IS NOT 10 BE DISCLOSED OR REPRODUCED WITHOUT THE EXPRESSED WRITTEN PERMISSION OF U. C. C. AND IS NOT 10 BE USED IN ANY WAY DETRIMENTAL TO THE USE OF U. C. C.

Attn: Mr. Robert J. Mitrey, P.E.

Re: Republic Solid Waste Management Facility

Dear Mr. Mitrey:

Transmitted as stipulated under "Special Conditions #3 and #4" of our approved Permit #2586, for the Republic Solid Waste Management Facility, are the Operation Reports requested. These reports will bring you up-to-date with the types of wastes deposited, areas of active operation, intermediate cover and final cover. In addition, are the results of the semi-annual ground water monitoring program.

Enclosed in this package you will find the 1982 Operations Report with the following attachments:

- 1. One copy of the revised topographical map entitled "Operations and Topographical Report Union Carbide Corporation, Carbon Products Division, Republic Solid Waste Management Facility, for the year 1982". The Plan includes updated topography by The Bissell Company, licensed land surveyors, location of active operations and notes on intermediate and final cover.
- 2. One copy of the results of the semi-annual Ground Water Monitoring, certified sampling and analytical results performed by Recra Research Inc.
- 3. One copy of the 1982, 4th Quarter and Year to Date report of the Types and Quantities of Wastes Deposited at the Facility.

Future operations reports regarding types and quantities of wastes deposited at the Facility will be submitted on a quarterly basis in the months of April, July, October and December of 1983. If you have any further questions regarding this report, please call me at 278-3718.

Very truly yours,

Engineering Department

Milast I Steffen

M.G. Steffan/baf Attach.

CC: Messrs. J.F.Baylus M.A.Balent

TYPES AND QUANTITIES OF WASTES DEPOSITED

Union Carbide Corporation Carbon Products Division

REPUBLIC SOLID WASTE FACILITY

Report Quarterly Period: 10/1/82 thru 12/31/82
Report Yearly Period: 1982

		AMOUNT DEPOSITED (In Lbs.) - 1982				ACCUMULATED TOTAL
MATERIAL DEPOSITED		lst Quarter	2nd Quarter	3rd Quarter	4th Quarter	YEAR-TO-DATE
Carbonaceous Materia	1 .	1,411,000	956,000	1,859,000*	1,270,250	5,496,250
Wood Scrap		225,750	162,750	251,000*	203,000	842,500
Firebrick		290,500	187,750	157,200	127,500	762,950
	, ,	· · · · · · · · · · · · · · · · · · ·		<u></u>	. <u> </u>	·
·	TOTALS	1,927,250	1,306,500	2,267,200	1,600,750	7,101,700

^{*} Increased due to Acheson Location closure to be completed 10/1/82.

□ =778783 • •

•

• ,

•

•

Union PAREIDE Waste bless Spee Cond.

UNION CARBIDE CORPORATION P.O. BOX 887, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

July 8, 1983

Mr. Robert J. Mitrey, P.E. New York State Dept. of Environmental Conservation Region 9 Office 600 Delaware Avenue Buffalo, New York 14202

Re: Republic Solid Waste Management Facility

Dear Mr. Mitrey:

Transmitted as stipulated under "Special Conditions #3 and #4" of our approved Permit #2586, for the Republic Solid Waste Mangement Facility, are the Operations Reports as requested. This report will bring you up-to-date with the types and quantities of wastes deposited and the semi-annual well sampling results during the second quarter of 1983.

Enclosed in this package you will find:

- One copy of the Second Quarter 1983 Report of the types and Quantities of Wastes Deposited Quarterly at the Facility. (Note - future reports will be submitted quarterly.)
- 2. One copy of the results of the semi-annual ground water monitoring, certified sampling and analytical results performed by Recra Research Inc.

If you have any further questions regarding this report, please do not hesitate to call.

Very truly yours,

Engineering Department

Michael G. Steffan

M.G.Steffan baf

Enc.

CC: Messrs. M.Vaughan/R.Abbott
Niagara County Health Dept.
Box 428
Niagara Falls, New York 14302

BC: Mr. M.A.Balent

TYPES AND QUANTITIES OF WASTES DEPOSITED

Union Carbide Corporation Carbon Products Division

REPUBLIC SOLID WASTE FACILITY

Period: 4/1/83 thru 6/30/83

	AMOUNT DEPOSITED (In Lbs.) -				ACCUMULATED TOTAL	
MATERIAL DEPOSITED	lst Quarter	2nd Quarter	3rd Quarter	4th Quarter	YEAR-TO-DATE	
Carbonaceous Material	1,612,000	1,575,000			3,187,000	
Wood Scrap	200,000	205,000			405,000	
Firebrick	225,000	237,000			462,000	
	، سعفت وريست مين	· · · · · · · · · · · · · · · · · · ·	and the same of th	·		
TOTALS	2,037,000	2,017,000			4,054,000	

RECRA ENVIRONMENTAL LABORATORIES

Division of Recra Research, Inc.

June 29, 1983

Mr. Michael Steffan Union Carbide Corporation Carbon Products Division P.O. Box 887 Niagara Falls, NY 14302

Re: Analytical Results

Dear Mr. Steffan:

Please find enclosed results of the analyses of water samples collected by Recra personnel on June 14, 1983.

If you have any questions concerning these data, do not hesitate to contact the undersigned.

Sincerely,

RECRA ENVIRONMENTAL LABORATORIES

James A. Ploscyca Laboratory Manager

RVF/JAP/jah Enclosure

I.D. #83-518

ENCINEEUNG DEBY.

ANALYTICAL RESULTS

UNION CARBIDE REPUBLIC PLANT

Report Date: 6/29/83 Date Received: 6/14/83

		SAMPLE IDENTIF	CATION (DATE)
	•	W-1	W-3
PARAMETER	UNITS OF MEASURE	(6/14/83)	(6/14/83)
	Feet from top of		
Water Level	well casing	9.00	10.25
Total Recoverable			
Phenolics	mg/l	<0.01	<0.01
Total Organic Carbon	mg/l	28	23

COMMENTS: Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled.

FOR RECRA ENVIRONMENTAL LABORATORIES

 $\frac{6/29/82}{\text{DATE}}$

£.

UNION CARBIDE CORPORATION P.O. BOX 887, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

January 11, 1985

New York State Dept. of Environmental Conservation Region 9 Office 600 Delaware Avenue Buffalo, New York 14202

Attn: Mr. Robert J. Mitrey, P.E. Re: Republic Solid Waste Management

Facility -

Dear Mr. Mitrey:

Transmitted as stipulated under "Special Conditions #3 and #4" of our approved Permit #2586, for the Republic Solid Waste Management Facility, are the Operation Reports requested. These reports will bring you up-to-date with the types of wastes deposited, areas of active operation, intermediate cover and final cover. In addition, are the results of the semi-annual ground water monitoring program.

Enclosed in this package you will find the 1984 Operations Report with the following attachments:

- 1. One copy of the revised topographical map entitled "Operations and Topographical Report - Union Carbide Corporation, Carbon Products Division, Republic Solid Waste Management Facility, for the year 1984". The Plan includes updated topography by The Bissell Company, licensed land surveyors, location of active operations and notes on intermediate and final cover.
- 2. One copy of the results of the semi-annual Ground Water Monitoring, certified sampling and analytical results performed by Recra Research Inc.
- 3. One copy of the 1984, 4th Quarter and Year-to-Date report of the Types and Quantities of Wastes Deposited at the Facility.

Future operations reports regarding types and quantities of wastes deposited at the Facility will be submitted on q quarterly basis in the months of April, July, October and December of 1985. If you have any further questions regarding this report, please call me at 278-3718.

Very truly yours,

/s/ M.G.Steffan

M.G.Steffan/baf M.G. Steffan/bat Enc. (see mays in Town file) Environmental Coordinator

CC: Mr. M.A.Balent

RECRA ENVIRONMENTAL LABORATORIES

Division of Recra Research, Inc.

December 21, 1984

Mr. Michael Steffan Union Carbide Corporation Carbon Products Division P.O. Box 887 Niagara Falls, NY 14302

ENGINEERING DEPT.

JAN 7 1985

U.C.C.-C.P.D. MIAGARA PLANT

Analytical Results

Dear Mr. Steffan:

Please find enclosed results of the analyses of the samples collected by Recra personnel on December 4 & 5, 1984.

If you have any questions concerning these data, do not hesitate to contact our Customer Service Representative at (716) 692-7620.

Sincerely,

RECRA ENVIRONMENTAL LABORATORIES

James A. Ploscyca Laboratory Manager

RVF/JAP/mdc Enclosure

> I.D. #84-1212 (1) 1212A

ANALYTICAL RESULTS

UNION CARBIDE-REPUBLIC PLANT

Report Date: 12/21/84 Date Received: 12/4-5/84

		SAMPLE IDENTIF	CICATION (DATE)
PARAMETER	UNITS OF MEASURE		W-3 (12/4/84)
Total Organic Carbon	mg/1	15	1.0
Total Recoverable Phenolics	mg/l	<0.01	<0.01

COMMENTS:

Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled. Total Organic Carbon results may not include volatile organics since the samples are purged with an inert gas prior to analysis.

FOR RECRA ENVIRONMENTAL LABORATORIES

DATE

TYPES AND QUANTITIES OF WASTES DEPOSITED

Union Carbide Corporation Carbon Products Division

REPUBLIC SOLID WASTE FACILITY

Period: 10/1/84 thru 12/31/84

	AMOUNT DEPOSITED (In Lbs.) -								
MATERIAL DEPOSITED	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	TOTAL YEAR-TO-DATE				
Carbonaceous Material	828,000	975,000	1,150,000	725,000	3,678,000				
Wood Scrap	182,000	189,000	185,000	160,000	716,000				
Firebrick	197,000	170,000	162,000	150,000	679,000				
			. ,						
TOTALS	1,207,000	1,334,000	1,497,000	1,035,000	5,073,000				

.

·

UNION CARBIDE CORPORATION P.O. BOX BB7, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

July 15, 1985

Mr. Robert J. Mitrey, P.E. New York State Dept. of Environmental Conservation Region 9 Office 600 Delaware Avenue Buffalo, New York 14202

Re: Republic Solid Waste Management

Facility

Dear Mr. Mitrey:

Transmitted as stipulated under "Special Conditions #3 and #4" of our approved Permit #2586, for the Republic Solid Waste Management Facility, are the Operations Reports as requested. This report will bring you up-to-date with the types and quantities of wastes deposited and the semi-annual well sampling results during the second quarter of 1985.

Enclosed in this package you will find:

- One copy of the Second Quarter 1985 Report of the types and Quantities of Wastes Deposited Quarterly at the Facility. (Note - future reports will be submitted quarterly.)
- 2. One copy of the results of the semi-annual ground water monitoring, certified sampling and analytical results performed by Recra Research Inc.

If you have any further questions regarding this report, please do not hesitate to call.

Very truly yours,

M.G.Steffan baf

Engineering Department

Michael & Steffen

Enc.

CC: Messrs. M.Vaughan/R.Abbott Niagara County Health Dept. Box 428, Niagara Falls, N.Y.

TYPES AND QUANTITIES OF WASTES DEPOSITED

Union Carbide Corporation Carbon Products Division

REPUBLIC SOLID WASTE FACILITY

Period: 3/31/85 thru 6/30/85

	AMOUNT DEPOSITED (In Lbs.) -								
MATERIAL DEPOSITED	lst Quarter	2nd Quarter	3rd Quarter	4th Quarter	YEAR-TO-DATE				
Carbonaceous Material	805,000	775,000			1,580,000				
Wood Scrap	175,000	125,000			300,000				
Firebrick	161,000	100,000	· .		261,000				
					 				
TOTALS	1,141,000	1,000,000			2,141,000				

RECRA ENVIRONMENTAL LABORATORIES

Division of Recra Research, Inc.

July 3, 1985

ENGINEERING DEPT.

JUL 1 0 1985

U.C.C.-C.P.D. MAGARA PLANT

Mr. Michael Steffan Union Carbide Corporation Carbon Products Division P.O. Box 887 Niagara Falls, NY 14302

Re: Analytical Results

Dear Mr. Steffan:

Please find enclosed results of the analyses of the samples received at our laboratories on June 14, 1985.

The information contained in this report has been reviewed for completeness and accuracy by the individuals whose signature appears on this cover letter.

If you have any questions concerning these data, do not hesitate to contact our Customer Service Representative at (716) 692-7620.

Sincerely,

RECRA ENVIRONMENTAL LABORATORIES

James A. Ploscyca

Laboratory Operations Manager

Richard V. Finn

Inorganic Coordinator

RVF/JAP/dmf Enclosure

I.D. #85-618 (1)

ANALYTICAL RESULTS

UNION CARBIDE-REPUBLIC PLANT

Report Date: 7/3/85 Date Received: 6/14/85

			SAMPLE IDENTIFICATION (DATE)				
PARAMETER	DATE OF UNITS ANALYSIS MEASUR		W-1 (6/14/85)	W-3 (6/14/85)			
Total Organic Carbon	6/19/85	mg/l	12	2.3			
Total Recoverable Phenolics	6/19/85	mg/l	<0.01	<0.01			

COMMENTS:

Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled. Total Organic Carbon results may not include volatile organics since the samples are purged with an inert gas prior to analysis.

FOR RECRA ENVIRONMENTAL LABORATORIES

DATE

FIELD REPORT

QUARTERLY GROUNDWATER MONITORING UNION CARBIDE REPUBLIC PLANT NIAGARA FALLS, NEW YORK

June 13-14, 1985

Prepared For:

Union Carbide Republic Plant Hyde Park Boulevard Niagara Falls, NY 14303

Prepared By:

Recra Research, Inc. 4248 Ridge Lea Road Amherst, NY 14226

Written By:	Robert P. Bauer
,	
Reviewed By:	Jeorge Morett
Date:	6 - 21 - 85

FIELD REPORT UNION CARBIDE REPUBLIC

1.0 INTRODUCTION

The following field report describes the quarterly groundwater monitoring conducted at Union Carbide Republic Plant located in Niagara Falls, New York. This field event was performed on June 13-14, 1985 by Recra personnel Robert P. Bauer.

2.0 METHODOLOGIES

Collection of samples was performed in accordance with accepted EPA methodologies. Chain of Custody was maintained from the time of collection until arrival at Recra Environmental Laboratory located in Tonawanda, New York.

3.0 FIELD OBSERVATIONS

Information concerning well evacuation and sampling procedures can be found in Table I. Measurements for specific conductance and temperature were made in the field using calibrated and EPA approved methods. A summary of this data can be found in Table II.

TABLE I

WELL INFORMATION UNION CARBIDE REPUBLIC PLANT

WELL TIME WATER BOTTOM VOLUME OF VOLUME METHOD OF METHOD OF RECHARGE DATE SIZE/TYPE I.D. OF CASING LEVEL OF WELL STANDING **EVACUATED EVACUATION** SAMPLING -RATE + (FT.)* (FT.)* WATER (GAL.) (GAL.) Peristaltic Peristaltic 2" steel 21.0 6-14-85 1230 9.45 1.85 To Dryness Pump Rapid W-1 Pump NO SAMPLE -- DRY WELL W-2 Peristaltic Peristaltic 6-14-85 1330 2" steel | 12.12 20.0 1.26 To Dryness

* From Top of Casing.

W-3

Elevation Above Sea Level.

+ Recharge Rate Determined by the following Criteria: Continuous - no drop in water level during evacuation. Rapid - recharges within one (1) hour. Slow - recharges after eight (8) hours. Very Slow - must return another day.

OR	RECRA	RESEARCH,	INC.	Horge Smorth	,
		•			
			DATE	L - 71 · 0C	

Pump

SAMPLING DATE 6-14-85

Pump

Rapid

TABLE II FIELD MEASUREMENTS

SAMPLING	DATE	6-14-85

SAMPLE I.D.	DATE	TIME	CONDUCTIVITY (uMHOS/CM)	TEMP (°C)	COMMENTS
W-1	6-14-85	1230	760	13.0	
W-2	6-14-85	1330	-	-	DRY NO SAMPLE
W-3	6-14-85	1300	1860	13.5	

FOR RECRA RESEARCH,	INC.	George C Wweth
•	DATE	6-27-85

	PROJECT SAC SAMPLER	SITE NAME: SITE NAME: NA			NO. OF CON-	adal					//	REMARKS			
	0 = 0 = 0 0 0 0			сомр.			ION LOCATION	TAINERS	100	0/0					
7	1 /	6/14	1245			GROUNDA	VATER WELL	3	1	<i>y</i> .	X				
Ì	W-Z							·							-DRY-NOSAMPLE
	W-30	///	1315			Ground	VATER WELL	.3	A.	ķ	X				• .
	·														
		<u> </u>													
								ļ							
		<u> </u>	ļ												
				<u> </u>				ļ	·						
			ļ 												
		ļ						-							
		-		ļ 		<u> </u>					-				
			-	-	ļ			ļ	_	-	·			_	
	RELINQUISHED BY (SIGNATURE): DATE/TIME: RECEIVED BY (SIGNATURE)			RE): RELINQUISHED BY (SIGNATURE):				BY (S	IGNAT	URE	DATE/TIME: RECEIVED BY (SIGNATURE):				
	RELINGL					4	RECEIVED BY (SIGNATU	RE):	RELI	NQUIS	SHED	BY (SI	IGNAT	(URE)	: DATE/TIME: RECEIVED BY (SIGNATURE):
	RELINGL	JISHED	BY (SI	IGNATU	RE):	DATE/TIME:	RECEIVED FOR LABORA (SIGNATURE):	TORY BY		DATE	/TIME	E: REMARKS:		S:	a
	Distribution Original accompanies shipment, copy to coordinator for								·			1_			Y

UNION CARBIDE CORPORATION P.O. BOX 887, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

February 27, 1984

New York State
Dept. of Environmental Conservation
Region 9 Office
600 Delaware Avenue
Buffalo, New York 14202

THIS DOCUMENT CONTAINS PROPRIETARY INFO AND AND PROPERTY OF UNION CARBIDE CORPORATION OF US NOT TO BE DISCLOSED OR REPRODUCED WITHOUT THE EXPRESSED WRITTEN PERMISSION OF U. C. C. AND IS NOT TO BE USED IN ANY WAY DETRIMENTAL TO THE INTERESTS OF U. C. C.

Attn: Mr. Robert J. Mitrey, P.E.

Re: Republic Solid Waste Management Facility

Dear Mr. Mitrey:

Transmitted as stipulated under "Special Conditions #3 and #4" of our approved Permit #2586, for the Republic Solid Waste Management Facility, are the Operation Reports requested. These reports will bring you up-to-date with the types of wastes deposited, areas of active operation, intermediate cover and final cover. In addition, are the results of the semi-annual ground water monitoring program.

Enclosed in this package you will find the 1983 Operations Report with the following attachments:

- 1. One copy of the revised topographical map entitled "Operations and Topographical Report Union Carbide Corporation, Carbon Products Division, Republic Solid Waste Management Facility, for the year 1983". The Plan includes updated topography by The Bissell Company, licensed land surveyors, location of active operations and notes on intermediate and final cover.
- 2. One copy of the results of the semi-annual Ground Water Monitoring, certified sampling and analytical results performed by Recra Research Inc.
- 3. One copy of the 1983, 4th Quarter and Year to Date report of the Types and Quantities of Wastes Deposited at the Facility.

Future operations reports regarding types and quantities of wastes deposited at the Facility will be submitted on a quarterly basis in the months of April, July, October and December of 1984. If you have any further questions regarding this report, please call me at 278-3718.

Very truly yours,

/s/ M.G.Steffan

M.G.Steffan/baf Enc.

Environmental Coordinator

CC: Mr. M.A.Balent

RECRA ENVIRONMENTAL LABORATORIES

Division of Recra Research, Inc.

December 16, 1983

Mr. Michael Steffan Union Carbide Corporation Carbon Products Division P.O. Box 887 Niagara Falls, NY 14302

ENGINEERING DEPT.

Analytical Results

MEGASA PLANT

Dear Mr. Steffan:

Please find enclosed results of the analyses of a water sample collected by Recra personnel on December 2, 1983.

If you have any questions concerning these data, do not hesitate to contact the undersigned.

Sincerely,

RECRA ENVIRONMENTAL LABORATORIES

James A. Ploscyca Laboratory Manager

RVF/JAP/jah Enclosure

I.D. #83-1278 (2)

ANALYTICAL RESULTS

UNION CARBIDE REPUBLIC PLANT

Report Date: 12/16/83 Date Received: 12/2/83

		SAMPLE IDENTIF	ICATION (DATE)
·		W-1	W-3
PARAMETER	UNITS OF MEASURE	(12/2/83)	(12/2/83)
	Feet from top of		
Water Level	well casing	12.66	2.75
Total Recoverable			
Phenolics	mg/l	0.011	0.050
Total Organic Carbon	mg/l	13	2.5

COMMENTS: Analyses were performed according to U.S. Environmental Protection Agency methodologies. Well W-2 was dry and could not be sampled.

FOR RECRA ENVIRONMENTAL LABORATORIES

DATE

TYPES AND QUANTITIES OF WASTES DEPOSITED

Union Carbide Corporation Carbon Products Division

REPUBLIC SOLID WASTE FACILITY

Report Quarterly Period: 10/1/83 thru 12/31/83

Report Yearly Period: 1983

	AMOUNT DEPOSITED (In Lbs.) -									
MATERIAL DEPOSITED	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	YEAR-TO-DATE					
Carbonaceous Material	1,612,000	1,575,000	1,225,000	1,075,000	5,487,000					
Wood Scrap	200,000	205,000	120,000	135,000	660,000					
Firebrick	225,000	237,000	232,000	227,000	921,000					
				·						
TOTALS	2,037,000	2,017,000	1,577,000	1,437,000	7,068,000					

o 6/4/84 6

UNION CARBIDE CORPORATION P.O. BOX 887, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

July 17, 1984

Mr. Robert J. Mitrey, P.E. New York State Dept. of Environmental Conservation Region 9 Office 600 Delaware Avenue Buffalo, New York 14202

Re: Republic Solid Waste Management Facility

Dear Mr. Mitrey:

Transmitted as stipulated under "Special Conditions #3 and #4" of our approved Permit #2586 for the Republic Solid Waste Management Facility, are the Operations Reports as requested. This report will bring you up-to-date with the types and quantities of wastes deposited and the semi-annual well sampling results during the second quarter of 1984.

Enclosed in this package you will find:

- One copy of the Second Quarter 1984 Report of the types and Quantities of Wastes Deposited Quarterly at the Facility. (Note - future reports will be submitted quarterly.)
- 2. One copy of the results of the semi-annual ground water monitoring, certified sampling and analytical results performed by Recra Research Inc.

Our Operations Permit is due to expire November 30, 1984. Out intentions would be to continue our Solid Waste Management Program at Union Carbide. I would like to request any information which is required to initiate continuation of our permit.

If you have any further questions regarding this report, please do not hesitate to call me at 278-3718.

Very truly yours,

M.G.Steffan baf

Environmental Coordinator

Mcksel H. Steffon

Enc.

CC: Messrs. M.Vaughan/R.Abbott
Niagara County Health Dept.
Box 428
Niagara Falls, New York 14302

Mr. M.A.Balent

TYPES AND QUANTITIES OF WASTES DEPOSITED

Union Carbide Corporation Carbon Products Division

REPUBLIC SOLID WASTE FACILITY

Period:

4/1/84 thru 6/30/84

·	AMOUNT DEPOSITED (In Lbs.) -									
MATERIAL DEPOSITED	lst Quarter	2nd Quarter	3rd Quarter	4th Quarter	YEAR-TO-DATE					
Carbonaceous Material	828,000	975,000			1,803,000					
Wood Scrap	182,000	189,000		•	371,000					
Firebrick	197,000	170,000			367,000					
			·	·	·					
TOTALS	1,207,000	1,334,000			2,541,000					

RECRA ENVIRONMENTAL LABORATORIES

Division of Recra Research, Inc.

June 22, 1984

UN 2.7 1984

Mr. Michael Steffan Union Carbide Corporation Carbon Products Division P.O. Box 887 Niagara Falls, NY 14302

Re: Analytical Results

Dear Mr. Steffan:

Please find enclosed results of the analyses of the samples collected by Recra personnel on June 8, 1984.

If you have any questions concerning these data, do not hesitate to contact our Customer Service Representative at (716) 692-7620.

Sincerely,

RECRA ENVIRONMENTAL LABORATORIES.

James A. Ploscyca Laboratory Manager

RVF/JAP/dmf Enclosure

I.D. #84-584

ANALYTICAL RESULTS

UNION CARBIDE - REPUBLIC PLANT

Report Date: 6/22/84 Date Received: 6/8/84

		SAMPLE IDENTIA	FICATION (DATE)
•	·	W-1	W-3
PARAMETER	UNITS OF MEASURE	(6/8/84)	(6/8/84)
	feet from top		
Water Level	of well casing	8.00	7.25
Total Organic Carbon	mg/1	23	9.0
Total Recoverable			
Phenolics	mg/l	<0.01	<0.01

COMMENTS: Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled. Total Organic Carbon results may not include volatile organics since the samples are purged with an inert gas prior to analysis.

FOR RECRA ENVIRONMENTAL LABORATORIES

, •

UNION CARBIDE CORPORATION P.O. BOX 887, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

January 10, 1986

New York State Dept. of Environmental Conservation Region 9 Office 600 Delaware Avenue Buffalo, New York 14202

Attn: Mr. Robert J. Mitrey, P.E.

Re: Republic Solid Waste Management

Facility

Dear Mr. Mitrey:

Transmitted as stipulated under "Special Conditions #3 and #4" of our approved Permit #2586, for the Republic Solid Waste Management Facility, are the Operation Reports requested. These reports will bring you up-to-date with the types of wastes deposited, areas of active operation, intermediate cover and final cover. In addition, are the results of the semi-annual ground water monitoring program.

Enclosed in this package you will find the 1983 Operations Report with the following attachments:

- 1. One copy of the revised topographical map entitled "Operations and Topographical Report Union Carbide Corporation, Carbon Products Division, Republic Solid Waste Management Facility, for the year 1985". The Plan includes updated topography by The Bissell Company, licensed land surveyors, location of active operations and notes on intermediate and final cover.
- 2. One copy of the results of the semi-annual Ground Water Monitoring, certified sampling and analytical results performed by Recra Research Inc.
- 3. One copy of the 1985, 4th Quarter and Year-to-Date report of the Types and Quantities of Wastes Deposited at the Facility.

Future operations reports regarding types and quantities of wastes deposited at the Facility will be submitted on a quarterly basis in the months of April, July, October and December of 1986. If you have any further questions regarding this report, please call me at 278-3541.

Very truly yours,

Michael a. Balant

Chief Plant Engineer

M.A.Balent, P.E. baf

Enc. (for mag - see Town file)

ANALYTICAL RESULTS

UNION CARBIDE-REPUBLIC PLANT

Report Date: 1/10/86 Date Received: 12/5/85

			SAMPLE IDENTIFI	CATION (DATE)
PARAMETER	DATE OF ANALYSIS	UNITS OF MEASURE	W−1 (12/5/85)	W-3 (12/5/85)
Total Organic Carbon	12/9/85	mg/l	111	44
Total Recoverable Phenolics	12/27/85	mg/l	1.69	0.085

COMMENTS:

Analyses were performed according to U.S. Environmental Protection Agency methodologies. Well W-2 was dry and could not be sampled. Total Organic Carbon results may not include volatile organics since the samples are purged with an inert gas prior to analysis.

FOR RECRA ENVIRONMENTAL LABORATORIES

DATE

///0/86

Hazardous Waste And Toxic Substance Control

FIELD REPORT

QUARTERLY GROUNDWATER MONITORING UNION CARBIDE REPUBLIC PLANT NIAGARA FALLS, NEW YORK

December 1985

Prepared For:

Union Carbide Corporation Carbon Product Division P.O. Box 887 Niagara Falls, NY 14303

Prepared By:

Recra Research, Inc. 4248 Ridge Lea Road Amherst, NY 14226

5C057307

Written By:

Jerome L. Miller

Reviewed By:

12/3//8

Date:

1.0 INTRODUCTION

This report describes the quarterly groundwater monitoring sampling conducted at the Union Carbide Republic Plant located in Niagara Falls. Field Work was performed on December 4 and 5 by Recra Research, Inc. personnel Don Johnson and Jerry Miller.

2.0 METHODOLOGIES

Collection and preservation of samples was performed in accordance with accepted EPA methodologies. Chain of Custody was maintained from the time of collection through arrival at Recra Environmental Laboratories located in Tonawanda, New York.

3.0 FIELD OBSERVATIONS

Information regarding well evacuation and sampling procedures are presented in Table 1. Measurements of pH, specific conductance, and temperature were made in the field using calibrated instrumentation and EPA approved methods. A summary of these data can be found in Table II.

TABLE I

UNION CARBIDE REPUBLIC PLANT NIAGARA FALLS, NEW YORK

WELL INFORMATION December 4, 1985

WELL I.D.	DATE/ TIME	SIZE/TYPE OF CASING	WATER LEVEL (FT.)*	BOTTOM OF WELL (FT.)*	VOLUME OF STANDING WATER (GAL.)	VOLUME EVACUATED (GAL.)	METHOD OF EVACUATION	METHOD OF SAMPLING	RECHARGE RATE +
W-1	12/4/85	2" Steel	7.73	21.00	2.12	7.0	Peristaltic Pump	Peristaltic Pump	Very Slow
W-2	12/4/85	4" Steel	Dry	20.16		-	Dry		
W-3	12/4/85	2" Steel	2.40	10.00	2.82	9.0	Peristaltic Pump	Peristaltic Pump	Very Slow

* From Top of Casing.+ Recharge Rate Determined by the following Criteria: Continuous - no drop in water level during evacuation.
Rapid - recharges within one (1) hour.
Slow - recharges after eight (8) hours.
Very Slow - must return another day.

FOR	RECRA	RESEARCH,	INC.	leione d'Mille	
	·		DATE	12-30-85	

TABLE II

UNIÓN CARBIDE REPUBLIC PLANT NIAGARA FALLS, NEW YORK

FIELD MEASUREMENTS December 4-5, 1985

SAMPLE I.D.	DATE	TIME	pH (STANDARD UNITS)	CONDUCTIVITY (uMHOS/CM)	TEMP (°C)	COMMENTS
W-1	12/5/85	11:03	7.63	1600	7°	
W-2	12/4/85	11:30				Dry
W-3	12/5/85	11:50	7.70	520	7°	

FOR RECRA RESEARCH,	INC.	Jerone L. Mille
	DATE	12-30-85

RECRA RESEARCH, INC.

CHAIN OF CUSTODY RECORD

PROJECT	NO.:				SITE NAN	ΛE:	,			1				. 17	7	
5CC		307	•		Unic	so Ca	ebide_	•		i	/.	/ري		/کیا	ω	
SAMPLER	S (SIG	NATU	RE):	_					NO. OF		/ OH	{/\ \}		^{۱۷} رژ	7	/ /
		Jen	a M	سفل	_				CON-	. /	~X		<i>II</i>		∇	REMARKS
STATION NO.	DATE	GIME	СОМР	GRAB	1	STATION L	OCATION		TANTENC]/>	ર્ગે/ ૧	<i>8</i> /~	Ÿ/~:		y%/	
W-1	ide								4	l	1	1	ř			
	4		<u> </u>							+ <u>-</u>	1		- -			
W-13			 			· .			8	2	2	2	2	_		Oc Duplicated
Fretdy	barok		ļ <u></u>							_	_	_	_			
W-2																Den
																0
			ļ							 	 			 		
			-							 	_					
						·										
							•									
						· · · · · · · · · · · · · · · · · · ·				-						·
												e:-				
					·		· · · · · · · · · · · · · · · · · · ·		. • • • •	ļ						
	<u></u>								13	3	3	3	3			
RELINQUI	SHED I	BY (SIC	SNATU	RE):	DATE/TIN	ME: RECE	IVED BY (SIG	NATUR	Ε):	RELI	NQUIS	HED	BY (SI	GNAT	URE):	DATE/TIME: RECEIVED BY (SIGNATURE):
RELINQUI	SHED I	BY (SIC	SNATUR	RE):	S-85 160	ME RECE	a. Nofe	NATURE	:):	RELIN	IQUIS	HED I	Y (SI	GNAT	URE):	DATE/TIME: RECEIVED BY (SIGNATURE):
· · · · · · · · · · · · · · · · · · ·			 													, (oldivatoria).
RELINQUI	SHED	BY (SIC	SNATUF	RE):	DATE/TIM	ME: RECEI	IVED FOR LAE ATURE):	BORATO	RYBY	C	DATE/	TIME	REN	IARKS	S:	
			Distribut	ion Origini	I accompanie	es shipment;	copy to coordinate	or field file	ıs _.	L		·	1			1