2021 Hazardous Waste Scanning Project

File Form Naming Convention.

(File_Type).(Program).(Site_Number).(YYYY-MM-DD).(File_Name).pdf

.pdf

Note 1: Each category is separated by a period "." Note 2: Each word within category is separated by an underscore "_"

932025, 1987-01-01, Phase 1

Specific File Naming Convention Label:

report

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES IN THE STATE OF NEW YORK PHASE I INVESTIGATIONS

N46

UNION CARBIDE-CARBON PRODUCTS DIVISION NIAGARA FALLS, NIAGARA COUNTY, NEW YORK Site Code:932035 JANUARY 1987

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD, ALBANY, NEW YORK 12233 HENRY G. WILLIAMS, COMMISSIONER

> Division of Solid and Hazardous Waste NORMAN H. NOSENCHUCK, P.E. DIRECTOR

WEHRAN ENGINEERING, P.C. Middletown & Grand Island, New York ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES IN THE STATE OF NEW YORK PHASE I INVESTIGATIONS

UNION CARBIDE REPUBLIC PLANT LANDFILL NIAGARA FALLS, NIAGARA COUNTY, NEW YORK SITE CODE: 932035

Prepared for

DIVISION OF SOLID AND HAZARDOUS WASTE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, NEW YORK 12233-0001

Prepared by

WEHRAN ENGINEERING, P.C. 666 EAST MAIN STREET MIDDLETOWN, NEW YORK 10940

WE Project No. 01424339

January 1987

UNION CARBIDE

TABLE OF CONTENTS

		Page <u>Number</u>
1.0	EXECUTIVE SUMMARY	1-1
2.0	PURPOSE	2-1
3.0	SCOPE OF WORK	3-1
4.0	SITE ASSESSMENT	4-1
	 4.1 Site History 4.2 Site Topography 4.3 Site Hydrogeology 4.4 Site Contamination 	4-1 4-2 4-2 4-3
5.0	PRELIMINARY APPLICATION OF THE HAZARD RANKING SYSTEM	ِ 5–1
	5.1 Narrative Summary	5-1
6.0	ASSESSMENT OF DATA ADEQUACY AND RECOMMENDATIONS	6-1
·	 6.1 Groundwater Route 6.2 Surface Water Route 6.3 Air Route 6.4 Fire and Explosion 6.5 Direct Contact Route 6.6 Conclusions 	6-1 6-2 6-2 6-2 6-2 6-2
7.0	PHASE II WORK PLAN	7-1

APPENDIX

0

;

. [

Ņ

.

1.0 EXECUTIVE SUMMARY

• •

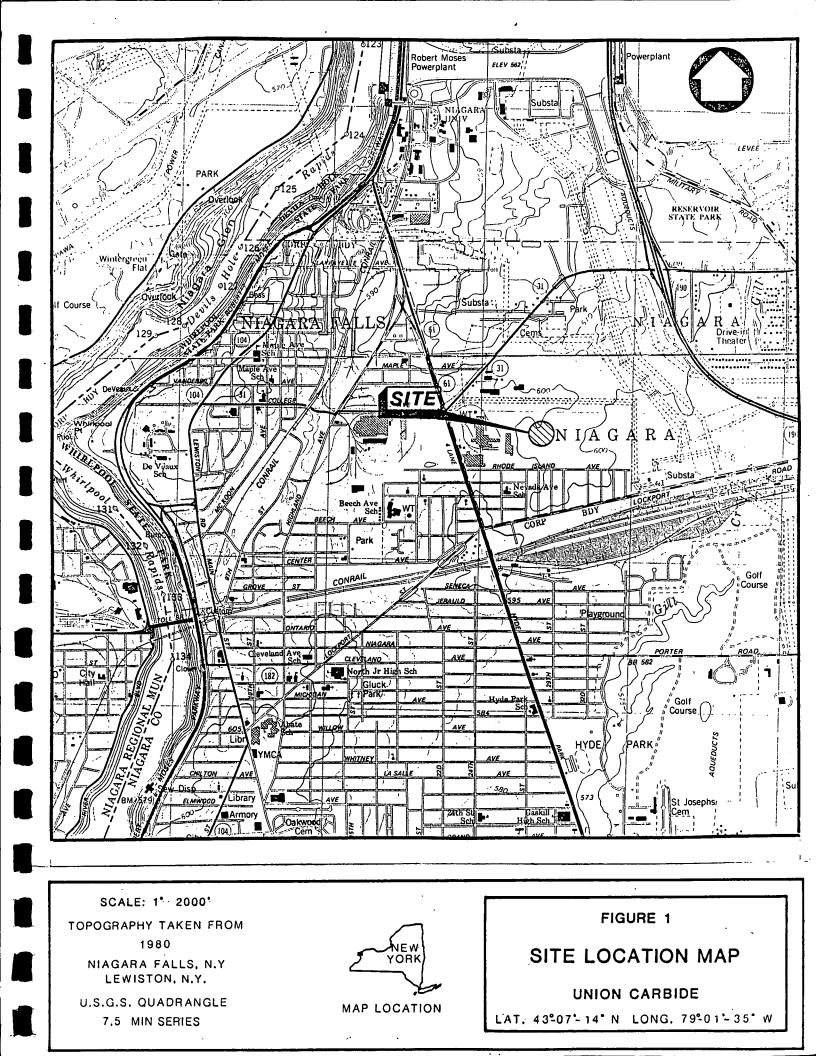
· · ·

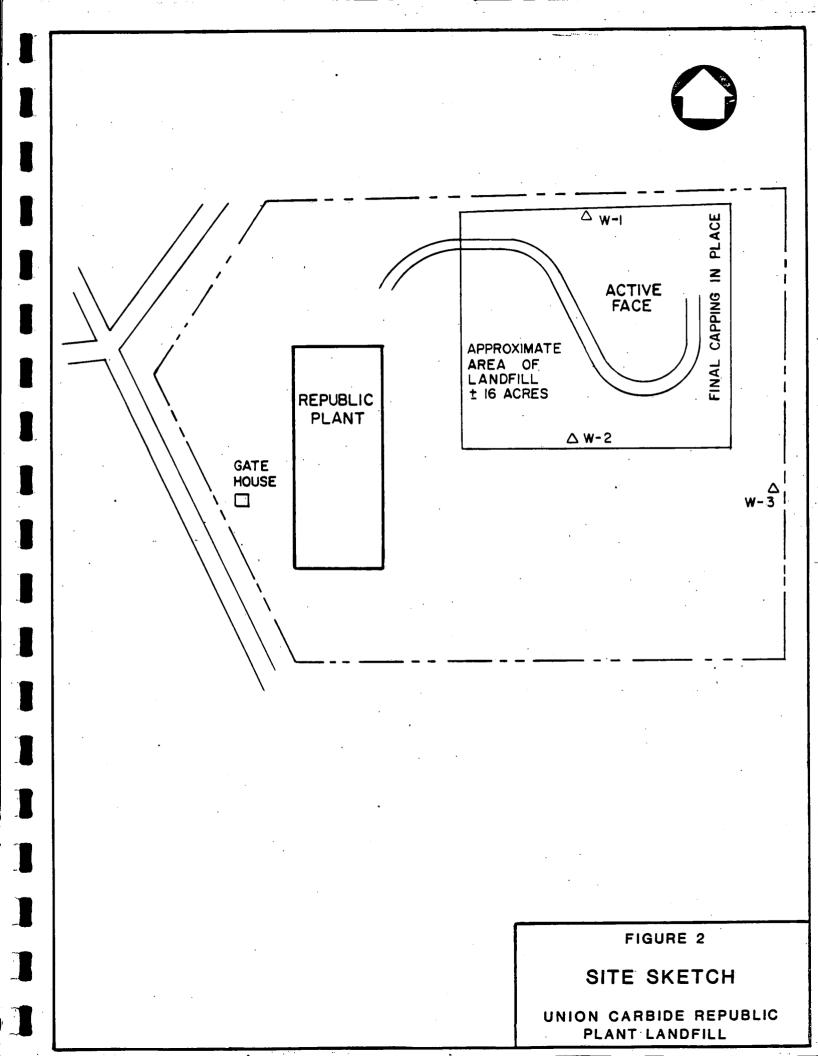
.

.

Y

1.0 EXECUTIVE SUMMARY


The Union Carbide Republic Plant Landfill site is a 16-acre active landfill on Hyde Park Boulevard, Niagara Falls, Niagara County, New York. The site is used by Union Carbide to dispose of carbonaceous waste, fire brick and wood pallets generated during their production process. The site is not open to the general public. The site has been active during the period of 1934 through the present. The landfill services the National, Acheson and Republic locations of Union Carbide's Niagara Plant. The Union Carbide Products Division is expected to close the landfill by December 1986 in accordance with Part 360. Carbon and graphite manufacturing occurred at each of these plants. Industrial processes included calcine, mill, mix and forming carbon products, baking and graphitizing carbon products, pitch impregnation and machining of carbon products. Raw materials utilized include anthracite coal, petroleum coke and coal tar pitch.


Wehran Engineering conducted a site visit, which included a walk around the site, noting any disturbed areas, leachate etc.; as well as the use of an HNU photoionizing organic vapor detector to measure the ambient air quality.

The site appeared to be well maintained and organized. The working face is kept to a limited area and the the site is progressively closed and capped as the operation continues. There was no leachate visible and it appears that it would not be a problem due to the type of material disposed of at the site. No organic vapors were detected by the HNU.

The wastes disposed of at this site include carbonaceous dust and scrap, firebrick, waste wood and pallets. Other waste types generated and deposited on the site in the past include coke, pitch, lunch waste, silica sand, coal tars and petroleum tars (see P. Millock - S. Dorr interview, November 15, 1978), machining oils and spent sludges from degreasing (1,1,1-trichloroethane). Water quality data indicates that phenols, heavy metals, and low levels of halogenated organics exceed New York State groundwater criteria in the till hydrologic zone. Additional investigation is necessary in order to identify the types and concentrations of disposed materials and the potential health and environmental hazards. A Phase II work plan has been proposed to more accurately assess this site. The preliminary HRS score is $S_{\rm M} = 11.03$.

1-1

• • • • •

. .

2.0 PURPOSE

• • • •

· ·

2.0 PURPOSE

This Phase I investigation was conducted under contract to the New York State Department of Environmental Conservation Superfund Program to evaluate the potential environmental or public health hazard associated with past disposal activities at the Union Carbide Republic Plant Landfill site. Divided into two parts, this initial investigation consisted of a detailed file review of available information and an initial site investigation. The culmination of this phase is the development of a preliminary Hazard Ranking System (HRS) score.

Where information is lacking and a final score cannot be computed, recommendations will be made for a Phase II investigation designed to verify the assumptions made in the preliminary scoring and to collect the additional data needed to complete the site assessment. 3.0 SCOPE OF WORK

3.0 SCOPE OF WORK

To complete the preliminary HRS score for the Union Carbide site, the following scope of work was completed:

A review of the following:

- Available information from federal, state, and municipal agencies
- Published documents from the U.S. Geological Survey, Soil
 Conservation Service and state agencies for geological,
 hydrological and topographical data

- Available files, reports and court cases

Interviews with individuals having knowledge of the site

Information gathered included well logs, land use data, water usage patterns, critical habitats and endangered species data, meteorological data, hydrological, geological and topographical data, waste characteristics and demographic information.

Following an initial file review a site inspection was conducted. The intent of the inspection was to verify existing file information and to conduct an HNU survey to screen for potential air releases. Items of specific interest in the site investigation were:

- Overall site environmental conditions
- . The presence of disturbed areas
- Visual signs of waste materials (drums, sludges, etc.)
- . The occurrence of leachate
- Site topography

A detailed analysis was performed on all data collected in preparation of a preliminary HRS score. Where information was lacking and a final HRS

3-1

score could not be computed, recommendations were made for a Phase II investigation. This investigation was designed to verify the assumptions made in the preliminary scoring and to collect the additional data needed to complete the site assessment. A summary of agencies contacted, contact person, address and information obtained follows.

SOURCES -- UNION CARBIDE REPUBLIC PLANT LANDFILL (Page 1)

•		
Type of Contact	Date	Information Provided
Letter	8-24-84	None available
Letter	8-24-84	None available
Interview	8-24-84	None available
Letter	8-24-84	None available
Letter	8=24-84	None available
Letter	8-24-84	Name and address of local representative
Letter	8-24-84	None available
	Contact Letter Letter Interview Letter Letter Letter	ContactDateLetter8-24-84Letter8-24-84Interview8-24-84Letter8-24-84Letter-8=24-84Letter8-24-84

SOURCES -- UNION CARBIDE REPUBLIC PLANT LANDFILL (Page 2)

Name/Address/Phone	Type of Contact	Date	Information Provided
Mr. James L. Larocca, Commissioner NYSDOT 1220 Washington Avenue Albany, New York 12232 (518) 457-4422	Letter	8-24-84	None available
Mr. Lawrence A. Martens, District Chief U.S. Department of the Interior U.S. Geological Survey Albany District Office	Letter	8-24-84	None available
P.O. Box 1350			
U.S. Post Office and Court House Albany, New York 12201			
(518) 472-3107		· .	
Mr. Peter J. Mollock Interagency Task Force on Hazardous Wastes 80 Wolf Road Albany, New York 12233	Letter		File information regarding correspondence with Union Carbide
Mr. Carl B. Sciple, Division Engineer Army Corps of Engineers New England Division 424 Trapelo Road Waltham, Massachusetts 02154 (617) 894-2400	Letter	8-24-84	None available
Mr. Frederick J. Scullin, Jr. U.S. Department of Justice U.S. Attorney Northern District of New York 369 Federal Building 100 South Clinton Street Syracuse, New York 13260 (315) 423-5165	Letter	8-24-84	None available
Mr. Richard D. Spear, Chief Surveillance & Monitoring Branch USEPA, Region II Woodbridge Avenue Edison, New Jersey 08817 (201) 321-6685	Letter	8-24-84	None available

SOURCES -- UNION CARBIDE REPUBLIC PLANT LANDFILL (Page 3)

Type of Name/Address/Phone Contact Date Information Provided Mr. Michael G. Steppon Interview Maps, permits, operations, Environmental Coordinator disposal of wastes, etc. Union Carbide Corporation P.O. Box 887 Niagara Falls, New York 14302 Mr. Mike Hopkins Personal 10/25/8 Groundwater use, quality; Assistant Public Health Engineer Commun. 7/14/86 Site history Niagara County Health Department 10th and East Falls Street Niagara Falls, New York 14302 (716) 284-3126 Mr. Larry Claire Personal 2/28/85 Provided access to Region 9: 3. **NYSDEC Region 9** Commun. 600 Delaware Avenue Buffalo, New York 14202 (716) 847-4551

4.0 SITE ASSESSMENT

4.0 SITE ASSESSMENT

4.1 SITE HISTORY

The Union Carbide Niagara Plant has facilities at three locations: the National Plant - 3625 Highland Avenue, Niagara Falls, New York; the Republic Plant - 3501 Hyde Park Boulevard, Town of Niagara, New York; and the Acheson Plant - 1930 Buffalo Avenue, Niagara Falls, New York, which officially closed October 1982. Carbon and graphite manufacturing occurred at each of these plants. Industrial processes included calcine, mill, mix and forming carbon products, baking carbon products, graphitizing carbon products, pitch impregnation and machining of carbon products. Raw materials used in the process include anthracite coal, petroleum coke and coal tar pitch. The products manufactured at the plants included specialty machined graphite, carbon liners, cathode blocks and electrodes for furnacing.

The Union Carbide Republic Plant Landfill is used exclusively by Union Carbide. The landfill was purchased from Aluminum Co. of America on July 24, 1934 and is anticipated to close operations by December 1986 in accordance with Part 360. The site is presently operating under permits granted by the DEC and the Town of Niagara.

The waste facility at the Republic location presently services the National, Acheson and Republic locations of Union Carbide's Niagara plant. The waste material consisted mainly of carbonaceous material, primarily as dust from dust collectors, and amounts to approximately 6.5 million pounds per year; fire brick wastes contribute 1.25 million pounds per year and wood scrap 1.0 million pounds per year. These materials are collected daily from all three locations and deposited together. Other waste types generated and deposited at the site include coke, pitch, lunch waste, silica sand, coal tars, petroleum tars (see P. Millock - S. Dorr interview, November 15, 1978), machining oils and spent sludges from degreasing (1,1,1-trichloroethane). Approximately 200 gallons per month of oil were collected in 55-gallon drums and taken to the dump or used on roadways in the summer. This practice stopped in 1978.

Since 1978 the only flammable materials to arrive on site have been wood scraps. These flammable materials are mixed with nonflammable

4-1

materials or are covered, thus minimizing fires. Union Carbide has a 360 variance from a daily cover requirement. Waste is covered every two weeks. The cover material at one time consisted of aged waste deposited no less than five years previously. A final cover is applied at the completion of each 50-foot lift. Apparently, anywhere from six to 24 inches of material suitable to sustain plant growth has been deposited on the compacted lifts.

As of May 1982 all baghouse dust has been placed into plastic bags prior to placing the waste in the landfill. Site groundwater and surface water monitoring is conducted in conformance with the NYSDEC and Town of Niagara permit requirements. Groundwater results are submitted to the NYSDEC every six months and quarterly to the Town of Niagara.

4.2 SITE TOPOGRAPHY

The site is located in a topographically flat area at an elevation of approximately 600 feet. The landfill itself is mounded approximately 30 feet above grade with an average slope of 30 percent. Surface water to the south and southwest of the site appears to be under perched conditions and does not drain into any other surface water body. The area surrounding the site is primarily residential with some industrial-type buildings. There are five drinking water wells on Pennsylvania Avenue, 2,000 feet north of the site. Most everyone in the area is served by public water taken from the Niagara River.

4.3 <u>SITE HYDROGEOLOGY</u>

The site is underlain by fine grained lake sediments and glacial till, with dolomite bedrock at a depth of approximately 20 feet. Three monitoring wells have been installed in the glacial till in order to monitor the groundwater quality (Figure 2). These wells indicate that the groundwater flow direction is south-southeast with a seasonally high water table at a depth of approximately five feet.

Carbonaceous fill material was described as the surficial material at wells 1 and 2. The original soil consisted of a stone-free clayey and silty lake sediment resting on glacial till. Thickness of the lake sediment at well 3 was about 10 feet. This lake sediment mantle should be continuous across the total site as indicated in the Niagara County soil survey. However, no lake sediments were described in any of the five bore sites augered at or near well 1. Therefore the originally deposited lake sediment and part of the glacial till material was likely excavated prior to landfilling.

Permeability and infiltration of the carbonaceous fill are extremely high, as demonstrated by the rapid infiltration rate after an intense thunderstorm on September 9, 1979 (as observed by Earth Dimensions, Inc.). This would allow water to move downward in the fill and become perched on the glacial till or lake sediments. Since a portion of the glacial till over the dolomite bedrock was removed from the area near well 1, as noted during the drilling of the most easterly bore site, saturation within the fill may exist by well 1. The extent of this excavated area and this saturated fill cannot be delineated based on the existing surface fill configuration.

Saturation of the fill was not noted at the southerly site (W-2), but based on the original soil drainage characteristics, a natural water table would be present at the fill-soil contact. Water was detected in the glacial till above bedrock.

At well 3, a stone-free clayey and silty lake sediment mantles glacial till. This is similar to the glacial/till sediment sequence indicated in the Niagara County soil survey. A natural perched water table exists near the surface during wetter seasons and water was detected in the thin glacial till.

4.4 SITE CONTAMINATION

The Republic Plant site is presently being monitored on a quarterly basis in accordance with its permit agreements. The monitoring program consists of three wells -- one upgradient, two downgradient -- which are screened in the glacial till which overlies bedrock. The monitoring wells consist of carbon steel riser pipes with a 1-1/2-foot double stainless steel screens. Couplings were sealed with pipe cement.

The range of groundwater quality results from September 1978 to December 1984 are summarized in Table 1. Results indicate that elevated levels (above New York State criteria) of phenols (0.26 ppm), chromium

TABLE 1

RANGE OF GROUNDWATER QUALITY RESULTS FROM MONITORING WELLS 1, 2 AND 3

(Monitoring Dates September 1978 to December 1984)

		S	ample Identificat	ion
Parameter	Units of Measure	Well 1	Well 2	Well 3
pH Specific Conductance (25°C)	Standard Units umhos/cm	7.77-8.94 1,2001,900.	6.83-7.61 5803,120.	7.38-8.23 5202,100.
Total Coliform	Organisms/100 ml	3.6-750.	<243.	0.0.15
Biochemical Oxygen Demand (5 day)	mg/l	<2.0-110.	8.0-140.	2.0-15. <2.0-5.0
Chemical Oxygen Demand	mg/l	33344.	38.4-180.	6.8-30.
Total Organic Carbon	mg/l	11108.	5.5-130.	<1.0-35.
Ammonia	mg N/l	0.63-14.4	<0.5-1.8	<0.1-0.5
Total Kjeldahl Nitrogen	mg N/1	1.1-24.0	0.21-2.8	0.2-0.56
Total Phosphorus	mg P/1	<0.01-5.0	0.024-0.56	<0.02-1.0
Nitrate	mg N/l	<0.02-4.8	0.3-4.5	<0.2-2.7
Nitrite	mg N/l	<0.005-0.19	<0.01-0.19	<0.01
Chloride	mg/l	75440.	45391.	7.5-22.
Total Residue (103°C)	mg/l	1,100-1,500.	2,480.	440952.
Total Recoverable Phenolics	mg/l	0.011-0.235	<0.01-0.260	<0.01-0.053
Sulfate	. mg/l	3.9-360.	130940.	9.2-650.
Alkalinity (pH 4.5)	mg/l as CaCO3	330898.	170820.	240275
Total Hardness	mg/l as CaCO3	2401,260.	2951,750.	270540.
True Color	Pt-Co Color Units	20100.	30.0-50.	50.0-70.
Carbon Chloroform Extraction	mg/l	2.0-26.9	1.6-8.0	<1.0-5.2
Methylene Blue Active Substances	mg/l	<0.1	<0.04-0.08	<0.1
Total Aluminum	mg/l	0.4-56.	0.4-5.0	<0.1-1.2
Total Arsenic	ug/1	<511.4	· <5.0	<5.0
Total Chromium	mg/l	0.005-0.09	<0.002-0.012	<0.005
Hexavalent Chromium	mg/l	<0.001-0.09	<0.002-0.008	<0.005
Total Copper	mg/l	0.010-0.783	<0.003-0.05	<0.003-0.042
Total Calcium	mg/l	3.5-110.	17275.	1455.
Total Iron	mg/l	3.0-280.	9.3-114.	0.27-70.
Total Lead	mg/l	0.02-0.72	<0.02-<0.04	<0.04
Total Mercury	ug/l	0.82-36.6	<0.4-2.6	<0.7-<1.0
Total Potassium	mg/l	2.2-110.	4.5-54.	3.8-6.0
Total Silver	mg/l	<0.003-0.052	<0.003-0.016	<0.005
Total Sodium	mg/l	16.0-3,500.	17197.	1475.
Halogenated Organic Scan (ECD)	ug/l as Chlorine; Lindane Standard	1.3-21.0	0.7-8.8	1.0-22.0

(0.09 ppm), lead (0.72 ppm) and mercury (36.6 ppb), plus other parameters, occur in the three monitoring wells. According to Mike Hopkins of the Niagara County Health Department, the levels of heavy metals in these wells are typical of the Niagara Falls area. A leach test performed on a composited waste sample indicates that the waste could be a substantial source of the phenols (Tables 2 and 3).

Well logs for monitoring wells 1 and 2 indicate that these wells were installed through the waste. The water quality of these wells could be directly affected by this practice. The effect on the water quality is compounded by the fact that the waste material is highly permeable and that perched water tables typically occur. The downgradient well (well 3) was not installed through the waste. Water quality data from this well indicates that contamination has occurred, suggesting that there is a potential for subsurface migration of contaminants off site. The installation of the monitoring wells is not in accordance with Chapter 4 of USEPA's Guidance Manual for the Classification of Solid Waste Disposal Facilities.

The file data and reports state that nonhazardous carbonaceous waste has been disposed of at this site. However, water quality data indicates that phenols, heavy metals and low levels of halogenated organics have contaminated the till hydrologic zone. Additional investigation needs to be done to identify the types and concentrations of disposed materials.

TABLE 2

RESULTS OF LEACH TEST ON COMPOSITED WASTE SAMPLES ANALYSES OF SOLIDS FRACTION

Parameter	Unit of Measure	Leach Test
Carbon – Chloroform Extractable	mg/g (dry)	20.9
Phenol	ug/g (dry)	2.6 ~
pH	Standard Units	8.02
Chemical Oxygen Demand	mg/g (dry)	439
Chloride (Water Soluble)	ug/g (dry)	73.8
Fluoride (Water Soluble)	ug/g (dry)	0.002
Cyanide (Free – Water Soluble)	ug/g (dry)	<1.0
Total Grease & Oils	mg/g (dry)	6.66
Hydrocarbon Grease & Oils	mg/g (dry)	4.95
Polar Grease & Oils	mg/g (dry)	1.45
Total Chlorinated Hydrocarbons	ug/g (dry) as Chlorine; Lindane Standard	29.6
Hexavalent Chromium (Water Soluble)	ug/g (dry)	<0.040
Total Aluminum	ug/g (dry)	819
Total Arsenic	ug/g (dry)	0.029
Total Cadmium	ug/g (dry)	0.30
Total Chromium	ug/g (dry)	10.6
Total Copper	ug/g (dry)	33.7
Total Iron	ug/g (dry)	253
Total Lead	ug/g (dry)	10.5
Total Mercury	ug/g (dry)	<0.020
Total Nickel	ug/g (dry)	24.0
Total Selenium	ug/g (dry)	<0.003
Total Zinc	ug/g (dry)	19.2
Total Solids	percent	98.8

TABLE 3

RESULTS OF LEACH TEST ON COMPOSITED WASTE SAMPLES LEACHING TEST ON SOLIDS FRACTION

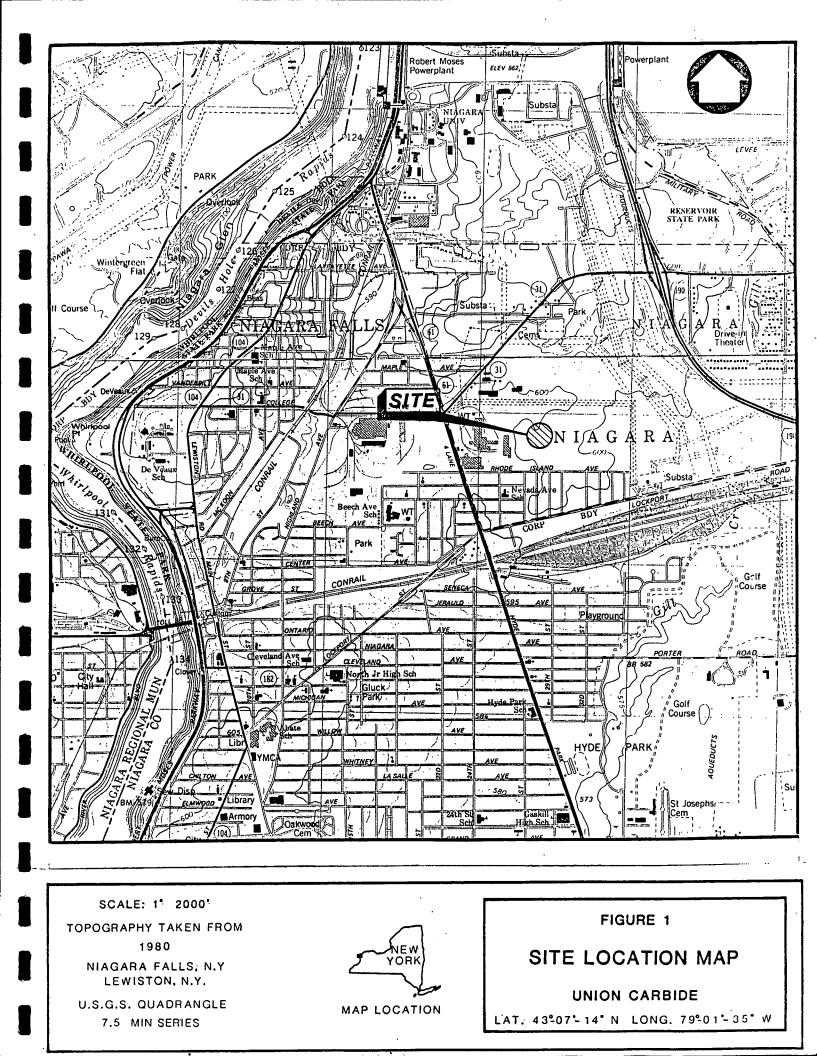
Parameter	Unit of Measure	Leach Test
Carbon - Chloroform Extractable	mg/l	<2.0
Phenol	mg/l	0.110
Total Organic Carbon	mg/l	<1.0
pH	Standard Units	8.02
Chemical Oxygen Demand	mg/l	16.2
Chloride	mg/l	18.2
Fluoride	mg/l	0.569
Cyanide (Free)	mg/l	<0.3
Total Grease & Oils	mg/l	<1.0
Hydrocarbon Grease & Oils	mg/l	<1.0
Polar Grease & Oils	mg/l	<1.0
Total Chlorinated Hydrocarbons	ug/l as Chlorine; Lindane Standard	3.70
Hexavalent Chromium	mg/l	<0.01
Soluble Aluminum	mg/l	<0.03
Soluble Arsenic	ug/l	<3.5
Soluble Cadmium	mg/l	<0.003
Soluble Chromium	mg/l	<0.003
Soluble Copper	mg/l	0.005
Soluble Iron	mg/l	<0.01
Soluble Lead	mg/l	<0.02
Soluble Mercury	ug/l	<0.5
Soluble Nickel	mg/l	<0.02
Soluble Selenium	ug/l	<2.5
Soluble Zinc	mg/l	0.007

5.0 PRELIMINARY APPLICATION OF THE HAZARD RANKING SYSTEM

5.0 PRELIMINARY APPLICATION OF THE HAZARD RANKING SYSTEM

5.1 NARRATIVE SUMMARY

The Union Carbide Republic Plant Landfill site is a 16-acre active landfill on Hyde Park Boulevard, Niagara Falls, Niagara County, New York. The site is used exclusively by Union Carbide to dispose of carbonaceous and packaging wastes generated during their production process from the National, Acheson and Republic plants. The site was purchased by Union Carbide on July 24, 1934 from Aluminum Co. of America and has been active since that time. The site is currently permitted by the DEC and the Town of Niagara as a non-hazardous active landfill. The Union Carbide Products Division is expected to close the landfill by December 1986 in accordance with Part 360.


The wastes disposed of at this site include carbonaceous dust and scrap, firebrick, waste wood and pallets. Other waste types generated and deposited on the site in the past included coke, pitch, lunch waste, silica sand, coal tars and petroleum tars (see P. Millock - S. Dorr interview, November 15, 1978), machining oils and spent sludges from degreasing (1,1,1-trichloroethane).

The site is currently monitored on a quarterly basis by the extraction of groundwater samples from three monitoring wells installed around the perimeter of the site. Two of these wells have been completed through the waste. Water quality data indicates that phenols, heavy metals and low levels of halogenated organics exceed New York State groundwater criteria in the till hydrologic zone. Additional investigation is necessary in order to identify the types and concentrations of disposed materials. The E.P. toxicity tests and leachate tests performed on the waste materials indicate that all levels are within acceptable limits, with the exception of phenols, which are approximately 100 times the groundwater standard.

A site visit indicated that the site is well managed; however, there have been documented dust incidents as reported by the Niagara County Health Department during the period 1981-1982. Final cover and seeding are taking place as directed in their operations permit. The site is bordered on the south-southeast by a residential area. The waste types currently disposed of do not produce any odors and carbonaceous dust is bagged to prevent blowing. The area is generally served by public water, although private drinking water wells exist 2,000 feet north of the site.

The overall site appearance and conditions are very good.

LOCATION

HRS WORKSHEETS

L

Facility Name: Union Carbide

Location: Hyde Park Boulevard, Niagara Falls, New York

EPA Region: Region 9

Person(s) in Charge of the Facility:

Michael G. Steffan Environmental Coordinator

Name of Reviewer: Timothy R. Roeper

Date: March 27, 1985

General Description of the Facility:

(For example: landfill, surface impoundment, pile, container; types of hazardous substances; location of the facility; contamination route of major concern; types of information needed for rating; agency action, etc.)

The Union Carbide Republic Plant Landfill, located in Niagara Falls, is a 16-acre active landfill which only accepts carbonaceous and packaging wastes from Union Carbide. The site is presently permitted and has approved operations, monitoring and closure plans. No hazardous waste was reported to have been disposed of at this site.

Scores:

 $S_{M} = 11.03$ ($S_{gw} = 19.09$ $S_{sw} = 0$ $S_{a} = 0$) $S_{FE} = 0$ $S_{DC} = 0$

HRS COVER SHEET

GI	ROUND WATER ROUTE WORK S	SHEET	 F				
Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)		
1 Observed Release	0 45	1	0	45	3.1		
If observed release is given a score of 45, proceed to line 4. If observed release is given a score of 0, proceed to line 2.							
2 Route Characteristi Depth to Aquifer of Concern		2	6	6	3.2		
Net Precipitation Permeability of the Unsaturated Zone	0 1 2 3 0 1 2 3	1 7	2 1	3 - 3			
Physical State	0 1 2 3	1	3	3			
3 Containment	Total Route Characteristics Score		12	15			
	0 1 2 3	1	3	3	3.3		
Waste Characteristic Toxicity/Persistence Hazardous Waste Quantity		1 1	18 1	18 8	3.4		
· •.							
	Total Waste Characteristics Score		19	26			
Targets Ground Water Use Distance to Nearest Well/Population Served	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 1	6 10	9 40	3.5		
	Total Targets Score		16				
6 If line 1 is 45, mu				49	· .		
If line 1 is 0, mult		11),9441 5	7.330			
7 Divide line 6 by 5	7.330 and multiply by 100 $S_{gw} = 19.1$	09~					

.

•

	Rating Factor		Aasigne (Circle		Multi- plier	Score	Max. Score	Ref. (Section
1	Observed Releas	8	0	45	1	0	45	4.1
	if observed releas	se is given a se is given a	value of 45, p value of 0, pro	roceed to line	⊥ . 2].	<u> </u>		
2	Route Characteris Facility Slope and Terrain	-	0 1 2	3	1	0	· 3	4.2
	1-yr. 24-hr. Rainfa Distance to Neare Water		0 1 (2) 0 1 2 (3	1 2	2 6	3 6	
	Physical State	r	0 1 2 (3	1	3	3	
		Toi	al Route Char	acteristics Score		11	15	
3	Containment		012(3	1	3	3	4.3
	Waste Characterist Toxicity/Persisten Hazardous Waste Quantity		0 3 6 0 1 2	9 12 15 18 3 4 5 5, 7	1 8 1	18 1	18 8	4.4
							— <u> </u>	
		Tota	al Waste Chara	cteristics Score		19	26	
:	Targets Surface Water Use Distance to a Sensi Environment	itiv e	0 1 2 3 0 1 2 3		3 2	19 · 0 0	26 9 6	4.5
	Surface Water Use Distance to a Sensi	itiv e	0 1 2 3 0 1 2 3	10	3	0	9	4.5
	Surface Water Use Distance to a Sensi Environment Population Served/1 to Water Intake	itiv e	0 1 2 3 0 1 2-3) 0 4 6 8	10 40	3 2	0 0	9	4.5

٠.

۰. ۲

		1			
					• • •
		AIR ROUTE WO	RK SHEET		
	Rating Factor	Assigned Value (Circle One)	e Multi- plier		
	Observed Release	0 4	5 1	0 45	5.1
	Date and Location: 3/2	7/85	,	·	
		U photoionizing deter	ctor		
		0. Enter on line 5. rocsed to line. 2.			
2	Waste Characteristics Reactivity and Incompatibility Toxicity Hazardous Waste Quantity	0 1 2 3 0 1 2 3 0 1 2 3 4	1 3 5 6 7 8 1	- - - - - - - - - - - - - - - - - - -	5.2
		Total Waste Characteri	stics Score	20	
3	Targets Population Within				5,3
	4-Mile Radius Distance to Sensitive	0 9 12 15 18 21 24 27 30 0 1 2 3	1	30 6	•
	Environment	0 1 2 3	-	3	
			÷	,	
				<u></u>	-
	; ~	Total Targets Se	core	39	
4	Multiply 1 x 2 x [3		35,10	D
5	Divide line 4 by 35.10	0 and multiply by 100	S a = 0	<u>ب</u>	· • ·

· _

•

• •

,

. .

• •	S	s²
Groundwater Route Score (Sgw)	19.09~	364.43
Surface Water Route Score (S _{SW})	0	0
Air Route Score (Sa)	0	0 .
$s_{gw}^2 + s_{sw}^2 + s_a^2$		364.43
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		19.09
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73$		s _M - 11.03

WORKSHEET FOR COMPUTING SM

FIRE AND EXPLOSION WORK SHEET Rating Factor Assigned Value Multi-Max. Ref. Score (Circle One) plier Score (Section) Containment · 1 7.1 Waste Characteristics 7.2 Direct Evidence Ignitability Reactivity Incompatibility 2 3 Hazardous Waste Quantity Total Waste Characteristics Score 3 Targets Distance to Nearest 7.3 Population Distance to Nearest Building Distance to Sensitive Environment Land Use Population Within 2-Mile Radius Buildings Within 2-Mile Radius Total Targets Score Multiply 1 x 2 x 3 1,440 ~ 5 Divide line 5 by 1,440 and multiply by 100 SFE - 0

Insufficient Data to Score

	DIRECT CONTACT WORK SHEET							
	Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score.	Ref. (Section)		
	Observed Incident	0 45	1	0	45	8.1		
	If line 1 is 45, proceed If line 1 is 0, proceed to		•					
2	Accessibility	0 1 2 3	1	0	3	8.2		
3	Containment	0 (15)	1	15	15	8.3		
4	Waste Characteristics Toxicity	0 1 2 3	5	<u></u> 15	15	8.4		
3	Targets Population Within a 1-Mile Radius Distance to a Critical Habitat	0 1 2 3 (4) 5 0 1 2 3	4	16 0	20 12	8.5		
		Total Targets Score	•	16	32			
ß	If line 1 is 45, multiply [16				
	If line 1 is 0. multiply 2	x 3 x 4 x 5		0	21,600			
7	Divide line 6 by 21,600 and multiply by 100 Spc = 0							

•

.

•

i X

HRS DOCUMENTATION RECORDS

DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

<u>INSTRUCTIONS</u>: The purpose of these records is to provide a convenient way to prepare an auditable record of the data and documentation used to apply the Hazard Ranking System to a given facility. As briefly as possible summarize the information you used to assign the score for each factor (e.g., "Waste quantity = 4,230 drums plus 800 cubic yards of sludges"). The source of information should be provided for each entry and should be a bibliographic-type reference that will make the document used for a given data point easier to find. Include the location of the document and consider appending a copy of the relevant page(s) for ease in review.

FACILITY NAME: Union Carbide

LOCATION:

Hyde Park Boulevard, Niagara Falls, New York

-1-

GROUND WATER ROUTE

1 OBSERVED RELEASE

Contaminants detected (5 maximum):

No observed release; upgradient well installed through waste.

Source: Union Carbide documentation, April 12, 1985

Rationale for attributing the contaminants to the facility:

Not applicable

2 ROUTE CHARACTERISTICS

Depth to Aquifer of Concern

Name/description of aquifer(s) of concern:

10 to 15 feet clayey lake sediments underlain by 1 to 10 feet dense loamy glacial till. Unconsolidated material underlain by Lockport dolomite with an average yield of 124 gpm. Average depth to bedrock 16 feet, average depth to water table 30 feet. Water table of concern is the unconsolidated material.

Source: Water Resources of the Buffalo-Niagara Falls Region, USGS Circular 173 Soil and Boring Log Reports, Earth Dimensions, Inc. Mike Hopkins, Niagara County Health Department

Depth(s) from the ground surface to the highest seasonal level of the saturated zone (water table(s)) of the aquifer of concern;

Highest seasonal water table is approximately 8 feet below ground surface in the vicinity of the site.

Source: Union Carbide documentation, April 12, 1985 Monitoring Well Reports, 1978-1984

Depth from the ground surface to the lowest point of waste disposal/storage:

12.5 feet

Score = 3

Source: Soils and Boring Log Reports, Earth Dimensions, Inc.

Net Precipitation

Mean annual or seasonal precipitation (list months for seasonal):

36 inches

Source: National Oceanic and Atmospheric Administration, Climates of the States, Vol. II, 1978

Mean annual lake or seasonal evaporation (list months for seasonal):

24 inches

Source: HRS Users Manual (HW-10), USEPA, 1984

Net precipitation (subtract the above figures):

12 inches

Score = 2

Permeability of Unsaturated Zone

Soil type in unsaturated zone:

Glacial lake sediments, thinly laminated silt and clay

Source: Soils and Boring Log Reports, Earth Dimensions, Inc.

Permeability associated with soil type:

$$10^{-5} - 10^{-7}$$
 cm/sec

Score = 1

Source: HRS Users Manual (HW-10), USEPA, 1984

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

Solids, dust, sludges, liquids.

Score = 3

Source: Wehran Engineering site visit, March 27, 1985 Union Carbide documentation, April 1985 Letter dated February 9, 1977, Dorr to Quackenbush Community Right-to-Know, Volume III, April 1, 1985, p. 214 Dorr-Millock Interview, November 15, 1978

-3--

3 CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Low permeability glacial lake sediments and/or glacial till underlie the site. No collection system is present.

Source: Soils and Boring Log Reports, Earth Dimensions, Inc.

Method with highest score:

No liner or collection system

Score = 3

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated:

1,1,1-Trichloroethane - 12 Phenols - 12 Chromium - 18 Lead - 18 Mercury - 18

Source: Union Carbide Well Monitoring and Leach Test Reports Community Right-to-Know, Volume III, April 1, 1985, p. 214

Compound with highest score:

Heavy Metals 18

Source: EPA Hazard Ranking System Waste Characteristic Values, Table 1

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum):

Total solid waste present is approximately 125,000 tons; however, the percentage of hazardous waste is unknown. For scoring purposes, a minimum quantity will be assumed.

Score = 1

Basis of estimating and/or computing waste quantity:

According to Mike Hopkins of the Niagara County Health Department, no hazardous waste has ever been disposed of at this site. However, water quality data and leach tests on the waste indicate the presence of heavy metals and phenols.

Source: Union Carbide documentation, April 1, 1985

-4-

5 TARGETS

Ground Water Use

Use(s) of aquifer(s) of concern within a 3-mile radius of the facility:

Drinking water with alternate source available.

Score = 2

Source: Mike Hopkins, Assistant Public Health Engineering, Niagara County, December 18, 1985; July 14, 1986

Distance to Nearest Well

Location of nearest well drawing from <u>aquifer of concern</u> or occupied building not served by a public water supply:

North of the landfill

Distance to above well or building:

2,000 feet

Score = 4

Source: Mike Hopkins, Assistant Public Health Engineering, Niagara County, December 18, 1985; July 14, 1986

Population Served by Ground Water Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from <u>aquifer(s) of concern</u> within a 3-mile radius and populations served by each:

There are 5 private drinking water wells north of the site, of which most are hard dug and completed in the unconsolidated material and bedrock interface.

Source: Mike Hopkins, Assistant Public Health Engineering, Niagara County, December 18, 1985; July 14, 1986 NYS Atlas of Community Water Supply Systems, 1982

Computation of land area irrigated by supply well(s) drawing from <u>aquifer(s)</u> of concern within a 3-mile radius, and conversion to population (1.5 people per acre):

No known irrigation in a 3-mile radius

Source: Wehran Engineering site visit, March 27, 1985

Total population served by ground water within a 3-mile radius:

5 homes x 3.8 = 19 people

Score = 1

Matrix score = 10

Source: Mike Hopkins, Assistant Public Health Engineering, Niagara County, December 18, 1985; July 14, 1986

SURFACE WATER ROUTE

1 OBSERVED RELEASE

Contaminants detected in surface water at the facility or downhill from it (5 maximum):

No significant contamination detected

Score = 0

Rationale for attributing the contaminants to the facility:

Not applicable

2 ROUTE CHARACTERISTICS

Facility Slope and Intervening Terrain

Average slope of facility in percent:

Side slopes approx. 30%

Source: Union Carbide documentation - Site Map, 1983

Name/description of nearest downslope surface water:

Wet ponded area (most likely perched water) south and east of the landfill. This ponded area only occurs during wet periods.

Source: Wehran Engineering site visit, March 27, 1985 Union Carbide documentation, March 31, 1978

Average slope of terrain between facility and above-cited surface water body in percent:

2-3%

Matrix score = 0

Source: USGS Quadrangles, Niagara Falls, Lewiston

Is the facility located either totally or partially in surface water?

No

Source: USGS Quadrangles, Niagara Falls, Lewiston Wehran Engineering site visit, March 27, 1985

-6-

Is the facility completely surrounded by areas of higher elevation?

No

Source: USGS Quadrangles, Niagara Falls, Lewiston

1-Year 24-Hour Rainfall in Inches

Approx. 2.3 inches

Score = 2

Source: HRS Users Manual (HW-10), USEPA, 1984

Distance to Nearest Downslope Surface Water

Approx. 400 feet from active portion of landfill

Score = 3

Source: Wehran Engineering site visit, March 27, 1985 USGS Quadrangles, Niagara Falls, Lewiston

Physical State of Waste

Solids, dust, sludges, liquids

Score = 3

Source: Wehran Engineering site visit, March 27, 1985 Union Carbide documentation, April 1985 Letter dated February 9, 1977, Dorr to Quackenbush Community Right-to-Know, Volume III, April 1, 1985, p. 214 Dorr-Millock Interview, November 15, 1978

3 CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

Currently the site is progressively being closed with a final cover and seed being applied. However, past operations consisted of applying aged waste as a final cover.

Source: Union Carbide documentation, April 1982 and March 31, 1978

Method with highest score:

Landfill not adequately covered

Score = 3

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated

1,1,1-Trichloroethane - 12 Phenols - 12 Heavy Metals - 18

Source: Water quality results from wells 1, 2 and 3, and from leach test on waste, Union Carbide documentation Community Right-to-Know, Volume III, April 1, 1985, p. 214

Compound with highest score:

Heavy Metals

Score = 18

Source: EPA Hazard Ranking System Waste Characteristics Values, Table 1

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of 0 (Give a reasonable estimate even if quantity is above maximum);

Total solid waste present is approximately 125,000 tons; however, the percentage of hazardous waste is unknown. For scoring purposes, a minimum quantity will be assumed.

Score = 1

Basis of estimating and/or computing waste quantity:

According to Mike Hopkins of the Niagara County Health Department, no hazardous waste has ever been disposed of at this site. However, water quality data and leach tests on the waste indicate the presence of heavy metals and phenols.

Source: Union Carbide documentation, April 1, 1985

5 TARGETS

Surface Water Use

Use(s) of surface water within 3 miles downstream of the hazardous substance:

Ponded surface water does not appear to drain into any other stream or source of surface water

Score = 0

Source: Wehran Engineering site visit USGS Quadrangles, Niagara Falls, Lewiston

Is there tidal influence?

No

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

No coastal wetlands

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

No freshwater wetlands within the area

Source: USGS Quadrangles, Niagara Falls, Lewiston

Distance to critical habitat of an endangered species or national wildlife refuge, if 1 mile or less:

None present

Source: NYSDEC Endangered Species Unit

Population Served by Surface Water

Location(s) of water-supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static water bodies) downstream of the hazardous substance and population served by each intake:

Surface water within the area is not used; ponded water does not appear to drain into any other body

Score = 0

Computation of land area irrigated by above-cited intake(s) and conversion to population (1.5 people per acre):

None known

Source: Wehran Engineering site visit, March 27, 1985 USGS Quadrangles, Niagara Falls, Lewiston

Total population served:

Not applicable

Name/description of nearest of above water bodies:

Not applicable

Distance to above-cited intakes, measured in stream miles:

AIR ROUTE

1 OBSERVED RELEASE

Contaminants detected:

No contaminants were detected

Date and location of detection of contaminants:

March 27, 1985 On site

Methods used to detect the contaminants:

HNU photoionizing organic vapor detector

Rationale for attributing the contaminants to the site:

2 WASTE CHARACTERISTICS

Reactivity and Incompatibility

Most reactive compound:

Not applicable

Most incompatible pair of compounds: Not applicable

Toxicity

Most toxic compound:

Not applicable

Hazardous Waste Quantity

Total quantity of hazardous waste:

Not applicable

Basis of estimating and/or computing waste quantity:

Not applicable

3 TARGETS

Population Within 4-Mile Radius

Circle radius used, give population, and indicate how determined: 0 to 4 mi 0 to 1 mi 0 to 1/2 mi 0 to 1/4 mi

Not applicable

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less: Not applicable

Distance to 5-acre (minimum) fresh-water wetland, if 1 mile or less:

Distance to critical habitat of an endangered species, if 1 mile or less: Not applicable

Land Use

Distance to commerical/industrial area, if 1 mile or less:

Not applicable

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

Not applicable

Distance to residential area, if 2 miles or less:

Not applicable

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Not applicable

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Not applicable

Is a historic or landmark site (National Register of Historic Places and National Natural Landmarks) within the view of the site?

-13-

FIRE AND EXPLOSION

1 CONTAINMENT

Hazardous substances present:

To score the fire and explosion hazard mode either a state or local fire marshall must have certified that the facility presents a significant fire or explosion threat to the public or to a sensitive environment, or there must be a demonstrated threat based on field observations (e.g. combustible gas indicator readings). The available records give no indication that either one of these tasks has been done. Further, the available data do not suggest any imminent threat of fire and explosion at this site. Therefore the route score cannot be completed.

Type of containment, if applicable:

Not applicable

2 WASTE CHARACTERISTICS

Direct Evidence

Type of instrument and measurements:

Not applicable

Ignitability

Compound used:

Not applicable

Reactivity

Most reactive compound:

Not applicable

Incompatibility

Most incompatible pair of compounds:

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility:

Not applicable

Basis of estimating and/or computing waste quantity: Not applicable

3 TARGETS

Distance to Nearest Population

Not applicable

Distance to Nearest Building

Not applicable

Distance to Sensitive Environment

Distance to wetlands:

Not applicable

Distance to critical habitat

Not applicable

Land Use

Distance to commercial/industrial area, if 1 mile or less: Not applicable

-15-

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

Not applicable

Distance to residential area, if 2 miles or less:

Not applicable

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Not applicable

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Not applicable

Is a historic or landmark site (National Register of Historic Places and National Natural Landmarks) within the view of the site?

Not applicable

Population Within 2-Mile Radius

Not applicable

Buildings Within 2-Mile Radius

DIRECT CONTACT

1 OBSERVED INCIDENT

Date, location, and pertinent details of incident:

There are no records in the file to indicate that an observed direct contact incident has occurred.

Score = 0

2 ACCESSIBILITY

Describe type of barrier(s):

Site is fenced and guarded

Score = 0

Source: Wehran Engineering site visit, March 27, 1985

3 CONTAINMENT

Type of containment, if applicable:

Part of site was covered with aged waste materials.

Score = 15

Source: Union Carbide documentation, April 1, 1985

4 WASTE CHARACTERISTICS

Toxicity

Compounds evaluated:

Phenols - 3 Chromium - 3 Lead - 3 Mercury - 3 1,1,1-Trichloroethane - 2

Source: Union Carbide Well Monitoring and Leach Tests Reports Community Right-to-Know, Volume III, April 1, 1985, p. 214

Compound with highest score:

Phenols and Heavy Metals

Score = 3

5 TARGETS

Population within one-mile radius

Estimated 1 3,500

Score = 4

Source: House Count, USGS Quadrangles, Niagara Falls, New York, Lewiston, New York 1980 Census of Population

Distance to critical habitat (of endangered species)

None present

Score = 0

Source: NYSDEC Endangered Species Unit, Delmar, NY

TELEPHONE CONVERSATION MEMORANDUM

·						
CLIENT	PROJ. No					
PROJECT Phase I Round 3 Union Carbide	DATE					
	TIME					
CALL TO/FROM Mr. Mke Hopkins	REPRESENTING Niagara County Health					
PHONE No. 716-284-3126	· · · · · · · · · · · · · · · · · · ·					
SUMMARY OF CONVERSATION:						
Union Carbide is closing the Niagara Falls Plant, cls	oure started summer of 1986.					
Verified site location	· · · · · · · · · · · · · · · · · · ·					
Verified the existence of five private drinking water wells 2,000 feet north of the site. Most of these wells are dug down to the top of bedrock 20-30 feet deep. Wells are showing signs of contamination. this contamination is not lekely a result of Union Carbide. There are at least two other potential sources.						
Great Lakes Chemical does not have an industrial we	211.					
Results indicate that heavy metals levels in the grou most levels are typical of groundwater witin the area that New York State criteria should be used with the water data from the area.	a. For scoring the HRS, mike Hopkins agrees					
Will send site inspection forms						
Believe there has been no hazardous waste disposed of COPIES TO:	BY: Trun March					
	Terry Haelen					
······································	· · ·					
•	· · · ·					
	N ENGINEERING B ENGINEERS					

"COMMUNITY RIGHT-TO-KNOW"

VOLUME III

PAST HAZARDOUS WASTE DISPOSAL PRACTICES

January 1952 - December 1981

Appendices I - P

APRIL 1, 1985

New York State/Department of Environmental Conservation

SITE DESCRIPTIONI OLIN CORP.GOOD ST SITE , BUFFALD AVE, NIAGARA FALLS, NY SITE CODE: 9-32-031 MASTE DESCRIPTION QUANTITY U L S D GENERATOR MARE ID COMPTOENTIALITY REQUESTED NOURY CHENICAL CORP. GC914928 TRANSPORTERS - RESPONDING WITH QUESTIONMAIRE ID NUMBER GENERATOR MARE ID NOURY CHEMICAL CORP.102M BT SITE , BUFFALD AVE, NIAGARA FALLS, NY SITE CODE: 9-32-031 STEE DESCRIPTIONI OLIN CORP.102M BT SITE , BUFFALD AVE, NIAGARA FALLS, NY SITE CODE: 9-32-031 WASTE DESCRIPTIONI OLIN CORP.102M BT SITE , BUFFALD AVE, NIAGARA FALLS, NY SITE CODE: 9-32-031 WASTE DESCRIPTIONI OLIN CORP.102M BT SITE , BUFFALD AVE, NIAGARA FALLS, NY SITE CODE: 9-32-031 WASTE DESCRIPTIONI OLIN CORP.102M BT SITE , BUFFALD AVE, NIAGARA FALLS, NY SITE CODE: 9-32-031 WASTE DESCRIPTION QUANTITY U L S D GENERATOR MARE ID UNKNOWN :		REPORTED HA	ZARDOUS	PROGR WASTE DA	ATA	LI	STEI YPE	D 1	£Υ			FAGE -	- 214
CONFIDENTIALITY REQUESTED NOURY CHEMICAL CORP. GC914928 TRANSPORTERS - RESPONDING WITH QUESTIONNAIRE ID NUMBER NOURY CHEMICAL CORP.102ND ST SITE . RESPONDING WITH QUESTIONNAIRE ID NUMBER NOURY CHEMICAL CORP.2153 LOCKPORT-OLCOTT T0901886 SITE DESCRIPTIONI QLIN CORP.102ND ST SITE . RUFFALD AVE NIAGRAR FALLS.NY SITE CODE: 9-32-031 MAGTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID UNKNOWN : <	**************************************	WASTE DESCRIPTION	NIAGARA *******	FALLS,NY ********	** *	****	****	***1	********* GE1	(*******) VERATOR 1	SITE ******** NAME	CODE: 9	********** 7-32-031 ********
NOURY CHEMICAL CORP,2153 LOCKPORT-OLCOTT TO901886 SITE DESCRIPTION: OLIN CORP.102ND ST SITE , BUFFALD AVE,NIAGARA FALLS,NY SITE CODE: 9-32-031 MASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID UNKNOWN : : X X X I OLIN CORP. CHEMICALS GROUP (NIAGA G0914876 SITE DESCRIPTION: ** UNION CARBIDE *LANDFILL(REFUBLIC), 3S01 HYDE 'PARK BLUD,N.F SITE CODE: 9-32-035 MASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID HALDWAX 1006 : 0.16 T ! - X - ! UNION CARBIDE CORP GX900288 SFENT SLUDGES FROM DEGREASING (1,1,1-TKICHLOROETHANE) : 0.16 T ! - X - ! UNION CARBIDE CORP GX900288 UNKNOWN : : : : UNION CARBIDE CORP GX900288 SITE DESCRIPTION: OLIN CORP.C-2 WELL,2400 BUFFALD AVE,NIAGARA FALLS,NY SITE CORP.(CARBON FRODUC G0914874 SITE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID C-2 END LIQUOR 30X SULFURIC ACID,5-10X NACL,60-65XH20 :130,000.00 T : X - : OLIN CORP. CHEMICALS GROUP (NIAGA G0914876 G0914876 STIE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID C-2 END LIQUOR 30X SULFURIC ACID,5-10X NACL,60-65XH20 :130,000.00 T : X - : OLIN CORP. CHEMICALS GROUP (NIAGA G0914876 STIE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID<	•	INFIDENTIALITY REQUESTED			-	_		1	NOURY CHEM	ICAL COR	>.	, (((()	
NOURY CHEMICAL CORP,2153 LOCKPORT-OLCOTT T0901886 SITE DESCRIPTIONI OLIN CORP,102ND ST SITE , BUFFALD AVE,NIAGRAF FALLS,NY SITE CODE: 9-32-031 MASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID UNKNOWN :		TRANSPORTERS - RESPONDING	WITH QUE	STIONNAIRE	Ξ			II	D NUMBER				
SITE CORF. 100K 0LIN CORP.100K 0ST SITE, BUFFALD AVE, NIABJARA FALLS,NY SITE CODE: 9-32-031 UNKNOWN I IX X X 1 OLIN CORP. CHEMICALS GROUP (NIAGA G0914876 SITE DESCRIPTION: ILINION CARBIDE «LANUFILL (REPUBLIC), 3501 HYDE PARK BLVD,N.F SITE CODE: 9-32-035 WASTE DESCRIPTION: ILINION CARBIDE «LANUFILL (REPUBLIC), 3501 HYDE PARK BLVD,N.F SITE CODE: 9-32-035 WASTE DESCRIPTION: ILINION CARBIDE MANUFILL (REPUBLIC), 3501 HYDE PARK BLVD,N.F SITE CODE: 9-32-035 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID HALOWAX 1006 SFENT SLUDGES FROM DEGREASING (1,1,1-TRICHLOROETHANE) 0.16 T I - X - I UNION CARBIDE CORP GX900288 UNKNOWN I 0.16 T I - X - I UNION CARBIDE CORP GX900288 UNKNOWN IIII I UNION CARBIDE CORP GX900288 UNKNOWN IIIIIII I UNION CARBIDE CORP. (CARBON FRODUC G0914875 SITE DESCRIPTION: GUANTITY U L S D GENERATOR NAME ID C-2 END LIQUOR 30X SULFURIC ACID, 5-10X NACL, 60-45XH2D 1130,000.00 T I X I OLIN CORP. CHEMICALS GROUP (NIAGA G0914876 SITE DESCRIPTION: GLIN CORP.CHABIDE CORP. CHEMICALS GROUP (NIAGA G0914876 SITE DESCRIPTION GUANTITY U L S D GENERATOR NAME ID </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>т</td> <td>0901886</td> <td>:</td> <td></td> <td></td> <td></td>					-			т	0901886	:			
UNKNOWN : </th <th>SITE DESCRIPTION</th> <th>******************</th> <th>N1AGARA *******</th> <th>FALLS,NY ********</th> <th></th> <th>**** L. :</th> <th>**** 3 D</th> <th>***</th> <th>********** GEN</th> <th></th> <th>SITE ******** NAME</th> <th>CODE: 5</th> <th>9-32-031 ********</th>	SITE DESCRIPTION	******************	N1AGARA *******	FALLS,NY ********		**** L. :	**** 3 D	***	********** GEN		SITE ******** NAME	CODE: 5	9-32-031 ********
Diffe bedering the working endance flamp file (kervelic), soil Hype Park BLUD, N.F SITE CODE: 9-32-035 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID HALOWAX 1006 : 0.16 T : -X - : UNION CARBIDE CORP GX900288 SPENT SLUDGES FROM DEGREASING (1,1,1-TRICHLORDETHANE) : 0.02 T : X X - : UNION CARBIDE CORP GX900288 UNKNOWN : : : UNION CARBIDE CORP. (CARBON PRODUC G0914874 SITE DESCRIPTION: OLIN CORP, C-2 WELL, 2400 BUFFALD AVE, NTAGARA FALLS, NY SITE CODE: 9-32-035 SITE CODE: 9-32-035 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID C-2 END LIQUOR 30% SULFURIC ACID, 5-10% NACL, 60-65%H2D :130,000.00 T : X : OLIN CORP. CHEMICALS GROUP (NIAGA G0914876 SITE DESCRIPTION: OLIN CORPORATION-OVERFLOW WATER FOND, BUFF AVE, NIAG FALLS NY SITE CODE: 9-32-037 SITE CODE: 9-32-037 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID C-2 END LIQUOR 30% SULFURIC ACID, 5-10% NACL, 60-65%H2D :130,000.00 T : X : OLIN CORP. CHEMICALS GROUP (NIAGA G0914876 SITE DESCRIPTION: OLIN CORPORATION-OVERFLOW WATER FOND, BUFF AVE, NIAG FALLS NY SITE CODE: 9-32-038 WASTE DESCRIPTION QUANTITY U L S D	UNKNOWN	· · · · · · · · · · · · · · · · · · ·	:		-								G0914B76
HALDWAX 1006 SPENT SLUDGES FROM DEGREASING (1,1,1-TRICHLORDETHANE) 0.16 T : - X - : UNION CARBIDE CORP GX900288 UNKNOWN 0.02 T : X X - : UNION CARBIDE CORP.(CARBON FRODUC G0914874 UNKNOWN : : UNION CARBIDE CORP.(CARBON FRODUC G0914874 STEE DESCRIPTION: OLIN CORP.C-2 WELL,2400 BUFFALD AVE,NIAGARA FALLS,NY SITE CODE: 9-32-037 STEE DESCRIPTION: OLIN CORP.C-2 WELL,2400 BUFFALD AVE,NIAGARA FALLS,NY SITE CODE: 9-32-037 WASTE DESCRIPTION UNANTITY U L S D GENERATOR NAME ID C-2 END LIQUOR 30% SULFURIC ACID,5-10% NACL,60-65%H2D :130,000.00 T : X : OLIN CORP. CHEMICALS GROUP (NIAGA G0914876 ************************************	OTIC CCOCUTLITON	**************************************	3501 HYD *******	E'PARK BLU *******	/EL, **	N∙F ****	****	***	********* GEN	ERATOR N	SITE	CODE: 9	-32-035 ********
STIE DESCRIPTION: DEIN CDRP, C-2 WELL, 2400 BUFFALD AVE, NIAGARA FALLS, NY SITE CODE: 9-32-037 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME ID C-2 END LIQUOR 30% SULFURIC ACID, 5-10% NACL, 60-65%H2D :130,000.00 T : X : OLIN CORP. CHEMICALS GROUP (NIAGA G0914876 SITE DESCRIPTION: OLIN CORPORATION-OVERFLOW WATER FOND, BUFF AVE, NIAG FALLS NY SITE CODE: 9-32-038 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME SITE DESCRIPTION: OLIN CORPORATION-OVERFLOW WATER FOND, BUFF AVE, NIAG FALLS NY SITE CODE: 9-32-038 WASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME UMASTE DESCRIPTION QUANTITY U L S D GENERATOR NAME	SFENT SLUDGES F	ROM DEGREASING (1,1,1-TRICHLOROETHANE)	: : :	0.16 T 0.02 T	-	: X :	< 	: U : U : U	JNION CARBI JNION CARBI JNION CARBI	DE CORP DE CORP DE CORP	CARBON	PRODUC	GX900288 G0914874
C-2 END LIQUOR 30% SULFURIC ACID, 5-10% NACL, 60-65%H2D :130,000.00 T : X: OLIN CORP. CHEMICALS GROUP (NIAGA G0914876 ************************************	**************************************	WASTE DESCRIPTION	IAGARA FI	ALLS,NY *******	**	(***	(***	***	********* GEN	ERATOR N	SITE ******** IAME	CODE: 9	70 077
WATER POND, BUFF AVE, NIAG FALLS NY SITE CODE: 9-32-038 WASTE DESCRIFTION QUANTITY U L S D GENERATOR NAME ID	C-2 END LIQUOR		· :130	0,000.00 T	•	× -		: 0	LIN CORP.	CHEMICAL	.S GROUP	(NIAGA	 G0914876
	**************************************	: OLIN CORFORATION-OVERFLOW WATER FOND, ************************************	BUFF AVE	NIAG FALL	S 1 **1	(****) (***	. * * *		*****	******	SITE	005-54	-32-038 *****
	HYDROGEN BLOWER		:					: 0			·		

November 9, 1975

Kr. S.C. Dorr Chief Plant Engineer Union Carbide Corporation Carbon Products Division P.O. Dox 607 Niagara Falls, New York 14302

Dear Mr. Dorr:

This is to confirm that we will be meeting on November 15, 1976 at 1:00 p.m. at your office to discuss the questionnaire and the questions that I raised in my letter to you.

Very truly yours,

Peter J. Hillock

PJH/ksk

INTERVIEW COVER SHEET

P. Millock
Interviewer
Person Interviewed: S. Dorr. W. Haller
Address:
Telephone:
Referred By:
Date/Time of Interview: Nov. 15, 1978 1:00 P.M.
Nature of Interview: Telephone: Office:
Field (specify): Carbide - Carbon Products Office
Others Present:
· · · · ·
Present Affiliation: UC-CP
Past Affiliation: $\mu_{\ell} - c\rho$
Principal Subject of Interview: <u>UC-CP</u> clisposal activities
Waste Generators Discussed: $UC-CP$
•
Disposal Sites Discussed: <u>Republic Plant Site</u>
Disposal Sites Discussed: <u>Republic Plant Site</u> Neureo
Other Contacts Suggested:
Additional Action Appropriate:
•
Confidentiality: All:None:Some (specify)
(Note stamp on completed avastroning)

Dorr Haller Meeting ____1/15/78 Millock there by uc-cp -1. Newco - No dumping , ; was another dir. 2. Republic plant - 1930 to present _3. Do widrice - NOT dumped at Republic site <u>≯</u>___ ____Coal___Tars ___ > ___in solid form * Petrol. tars have keen dumped. Wd have to have ---- no at very high <u>y. Machining oils</u> were dumped to liguid _stopped_doing mat -----Now sold to oil prople. Booth Oil (Tonowanda) How Imy - coupled ----years now · · · · going to Boothoil hk. w/ high reading at Republic Dump site :hk. w/ 6. Reviewed what I will do with info; no prob. w/ confiden. of general into. disclosure 1. Cat. wastes are hanked off site and not to Republic. . 8. The haubers listed on guest. hand to Rep. site from the 3 plants

Table I is the listing of EPA Hazard Ranking System (HRS) Waste Characteristics Values (Toxicity/Persistence matrix) used by the NPL quality assurance team. These rating factor values are based on the criteria specified in the HRS (toxicity rating assigned to each substance in Sax, Dangerous Properties of Industrial Chemicals, 4th, 5th and 6th editions). The listing shows the matrix values for ground water and surface water and the toxicity value for air. The values shown are "post multiplier" for use on the HRS worksheets. Changes to this list are made, albeit infrequently, as a result of response to public comment and changes in the reference material. Questions should be directed to the NPL quality assurance team via Mr. Steve Caldwell, EPA Headquarters, (202) 475-8103.

DRAFT

TABLE I

EPA Hazard Ranking System Waste Characteristics Values (Toxicity/Persistence Matrix)

Chemical/Compound Acenapthene Acetaldehyde Acetic Acid	Ground & Surface Pathway 9 6	Water and Water Values		Air Pathway Values 3 6
Acetone	6			6
	6			6.
2-Acetylaminoflourene Aldrin	18			9
_	18			9
Ammonia	9			9
Aniline Anthracene	12		•	9
	15			9
Arsenic	18			9
Arsenic Acid	18	• -		9
Arsenic Trioxide Asbestos	. 18	•		9
Aspestos	15			9
Barium	-			2
Benzene	18			9
Benzidine	12			9
Benzoapyrene	18			9
Benzopyrené, NOS	18	· .	*	.9
Beryllium & Compounds NOS	18			9
Beryllium Dust, NOS	18			9
Bis (2-Chloroethyl) Ether	18	•		9
Bis (2-Ethylhexyl	15			9
Phthalate				-
Bromodichloromethane	12			. 3
Bromoform	15			6
Bromomethane	15			6
2102020101010	15			- 9
Cadmium			~	
Carbon Tetrachloride	18			
Chlordane	18			<u>9</u>
Chlorobenzene	18			.9
Chloroform	12			6
3-Chlorophenol	18			6
4-Chlorophenol	12			6
2-Chlorophenol	15			9
Chromium	12		•	6
Chromium, Hexavalent	18			9
(Cr ⁺⁶)	10			-
-	18			9

Chemical/Compound	Ground Water and Surface Water Pathway Values	Air Pathway Values
Chromium, Trivalent (Cr ⁺³)	• • • • • • • • • • • • • • • • • • •	
Copper & Compounds, NOS	15	6
Creosote	18	9
Cresols	15	6
4-Cresol	9	6
Cupric chloride	12	9
Cyanides (soluble	18	9
salts), NOS	. н 	-
Cyclohexane	12 12	9 6
DDE	10	
DDT	18	9
Diaminotoluene	18 18	. 9
Dibromochloromethane	15	6
1, 2-Dibromo, 3-		6
chloropropane	18	
Di-N-Butyl-Phthalate	18	9
1, 4-Dichlorobenzene	15	6
Dichlorobenzene, NOS	18	6
1, 1-Dichloroethane	12	6
1, 2-Dichloroethane	12	6
1, 1-Dichloroethene	· 15	9 9
1, 2-cis-Dichloro-		9
ethylene	12	3
1, 2-trans-Dichloro- ethylene		J
Dichloroethylene, NOS	12	3
2, 4-Dichlorophenol	12	3
2, 4-Dichlorophenoxyacetic Acid	18	6 .
Dicyclopentadiene	18	9
Dieldrin	18	9
2, 4-Dinitrotoluene	18	9
Dioxin	15	9
	18	9
Endosulfan	10	
Endrin	18 18 -	9
Ethylbenzene	18 ~	9 '
Ethylene Dibromide	18	6
Ethylene Glycol	9	9
Ethyl Ether	15	6
Ethylmethacrylate	12	3 6

Chemical/Compound	Ground Water and Surface Water Pathway Values	Air Pathway Values
Fluorine	18	0
Formaldenyde	9	9
Formic Acid	9	• 9
•		6
Heptachlor	18	•
Hexachlorobenzene	15	9
Hexachlorobutadiene	18	б -
Hexachlorocyclohexane,	10	9
NOS	18	•
Hexachlorocyclopentadiene	18	9
Hydrochloric Acid	9	. 9
Hydrogen Sulfide	18	6
	10	9
Indene	12	
Iron & Compounds, NOS	18	6
Isophorone	12	9
Isopropyl Ether	9	6
	2	3
Kelthane	15	· ·
Kepone	18	6
	20	9
Lead	18	•
Lindane	18	9
:		9
Magnesium & Compounds,		
NOS	15	· ·
Manganese & Compounds,		6
NOS	18	. 9
Mercury	18	9
Mercury Chloride	18	9
Methoxychlor	15	6
4, 4-Methylene-Bis-(2-		0
Caloroaniline)	18	0
Methylene Chloride	12	9 6
Methyl Ethyl Ketone	6	
Methyl Isobutyl Ketone	12	6 6
4-methyl-2-Nitroaniling	12	9
Metnyl Parathion	9	9
2-Methylpyridine	12	
Mirex	18	· 6 9
		-

Chemical/Compound	Ground Water and Surface Water Pathway Values	Air Pathway Values
Naphthalene	•	
Nickel & Compounds, NOS	9	6
Nitric Acid	18	9
Nitroaniline, NOS	9 18	9
Nitrogen Compounds, NOS	12	9
Nitroguanidine	12	0 .
Nitrophenol, NOS	15	9
m-Nitrophenol	15	9
o-Nitrophenol	12	
p-Nitrophenol	15	
Nitrosodiphenylamine	12	. 6
Parathion	9	
Pentachlorophenol (PCP)	18	9
resticides, NOS	18	. 9
Phenanthrene	15	9
Phenol	12	9
Phosgene	9	· 9
Polybrominated Biphenyl	-	9
(PBB), NOS	18	9
Polychlorinated Biphenyls (PCB), NOS		2
Potassium Chromate	18	· 9
:	18	9
Radium & Compounds, NOS	18	
sauon & Compounds Nos	15	9
RDX (Cyclonite)	15	. 9
2. 4-0. Salas 5 7		
2, 4-D, Salts & Esters Selenium	18	.9
Sevin (Carbary1)	15	9
Sodium Cyanide	18	9
Styrene	12	-
Sulfate	9 9 ₋	9 6
Sulfuric Acid	9	0
2, 4, 5-T	-	9
1, 1, 2, 2-Tetrachloro-	18	9
ethane		-
Tetrachloroethane, NOS	18	9
1, 1, 2, 2-Tetrachloro-	18	9 9
ethene	10	,
	12	6

Chemical/Compound	Ground Water and Surface Water Pathway Values	Air Pathway Values
Tetraethyl Lead	18	9
Tetrahydrofuran	15	6
Thorium & Compounds, NOS	18	9
Toluene	9	· 6
TNT	12	U
Toxaphene	18	0
Tribromomethane	18	9
1, 2, 4-Trichlorobenzene	15	9
1, 3, 5-Trichlorobenzene	15	6
1, 1, 1-Trichloroethane	12	6
1, 1, 2-Trichloroethane	15	6
Trichloroethane, NOS	15	6 ⁻ 6
Trichloroethene	12	6
1, 1, 1-Trichloropropane	12	6
1, 1, 2-Trichloropropane	12	6
1, 2, 2-Trichloropropane	12	6
1, 2, 3-Trichloropropane	15	· 9
Uranium & Compounds, NOS	18	9
Varsol	12	_
Vinyl Chloride	12	6
		9
Xylene	. 9	6
Zinc & Compounds, NOS	18	0
Zinc Cyanide	18	9
	20	. 9

November 9, 1973

Mr. S.C. Dorr Chief Plant Engineer Union Carbide Corporation Carbon Products Division P.O. Dox 607 Niagara Falls, New York 14302

Dear Hr. Dorr:

This is to confirm that we will be meeting on November 15, 1976 at 1:00 p.m. at your office to discuss the questionnaire and the questions that I raised in my letter to you.

Very truly yours,

Peter J. Hillock

PJH/ksk

----- Newco --- No dumping h ; was another dir. 2. Republic plant - 1930 to present .____ J. Do widrick - NOT dumped at Republic site ____Coel____Tars ____ > ___in solid torm Petrol. Tars have keen dumped. ----- Wd have to have hoat icry high _____ were damped change to liquid______ _____ Machining oils______ on____ dump roods______ _stopped_doing that____ Now_sold_to oil people. Booth Oil (Tonowanda) How long - could years now going to Boothoil w/ high reading of hk. w/ Banaszak high reading at Republic Dump site 6. Reviewed what I will do with info; no prob. w/ confiden. of genoral into. disclosure ____. Cat. wastes_ are hanked off site and not to Republic. 8. The haubers listed on guest. hand to Rep. site from The 3 plants

UNION CARBIDE CORPORATION CARBON PRODUCTS DIVISION

P.O. POX 897, BUASARA FALLS, F.E. 14302

SOLID WASTE MANAGEMENT FACILITY

NO. 32503

UNION CARBIDE CORPORATION CARBON PRODUCTS DIVISION

NIAGARA FALLS, NEW YORK

Republic Location Town of Niagara, New York

I hereby certify that the detailed engineering plans and report for the Republic Solid Waste Management Facility have been prepared in a professional manner and in accordance with Part 360 Solid Waste Management Facility and Content Guidelines for plans and specifications issued by New York State Department of Environmental Conservation.

Signed:

Comes T. Henderco Sh.

Date:

March 31, 1978

ELEVEN CONTRACTOR AND A CONTRACT A

5.0 SITE ANALYSIS OF PROPOSED PROJECT

5.1 Waste Facility Location

The Solid Waste Management Facility is located behind the Republic location about 1/2 mile east of Hyde Park Blvd. and within the Town of Niagara zoning limits classified as a heavy industrial type area. The designated area for the waste facility is 16.48 acres and no more than 30 ft. above the existing grade. The entire facility is within the plant's legal boundaries which is surrounded by an 8 ft. high chain link fence. The Niagara Mohawk Power Company owns land bordering the north and east areas of the perimeter, residential property borders the south, with a small section in the southwest corner to Carborundum Company, and the remaining west section is frontage on Hyde Park Blvd.

5.2 Sub-Surface Conditions

Sub-surface conditions include bedrock and the seasonal water table with no underground utilities or sub-surface structures under the water disposal area. Bedrock can be located approximately 25-30 ft. below the foot of the facility and the ground water table between 5 and 15 ft. below grade depending on the season.

5.3 Transportation System

The major route used by company vehicles to bring the waste to the facility is all the primary roads and have capacities of approximately 300 Jbs./sq.in. These are, Buffalo Avenue, Packard Road, Hyde Park Boulevard. and College Avenue. The access road into the waste facility is only graded earth, but sufficient enough to support the vehicles with a small amount of traffic. On an average work day, the access road may be traveled about 6 times by a company service vehicle. During dry periods, the graded access road will be treated to prevent excessive dusting.

5.4 Surface Water

Any surface water in the area is from wet periods and mostly stagnant accumulations in low lying areas. Rainfall almost immediately perculates through the waste pile into the grade, but because of the water repelling nature of the carbonaceous material, little or no pick-up is encountered when water leaches through. Because of this characteristic leachate contamination is no problem. An estimate on leachate per year is approximately 8.0 million gals./year.

¥ 5.5 Monitoring Area

The ground water monitoring area is a simple trench excavated by a back hoe and protectively covered. It is located about half-way and to the south of the waste pile as shown on drawing AX-1A-15. Since

A second s

6.4 Special Handling

All materials deposited are odorless, but the carbonaceous materials at times can be dusty. When this occurs, a special area in each lift will be used to maintain the fugitive dust. The special area will be a hole or trench in the lift being worked, depending on wind direction for the location of the trench, in which the dusty material will be deposited and immediately covered.

In general, all solid wastes will be delivered in either a lift trailer. dump truck, or dumpster depending on the material and collection point. Upon arrival at the service area, the operator will take the load to the working lift and deposit it. The machine operator then will distribute the load on the lift. After every two weeks of operation, the working lift will be covered with cover material from the next area to be worked. When an entire lift is completed, it will be prepared with final cover in preparation for seeding.

7.0 MARKET ANALYSIS

At present, the only marketable material is the carbonaceous dust. The higher quality dust can be sold for limited applications. Unfortunately, technology is not developed enough to market the material in quantities large enough to make the pusiness profitable. Trials are being conducted with the hope off possibly reducing the carbonaceous material presently deposited in the waste facility.

¥ 8.0 COVER MATERIAL

8.1 Daily Cover

Because of the size of the operation and availability of good material, daily cover is not done. (A copy of the Variance Form 47-19-5 on Cover Material is in Appendix B-3.)

8.2 Cover Material

The material consists of aged waste deposited no less than 5 years previous. This particular "aged waste" is dust free and can support minimal plant life. Depending upon the amount of waste deposited, the working lift will be covered with this material no less than once every two weeks.

5 -

.

1.1.1 the state of the

UNION CARBIDE CURI DRATION CARBON PRODUCTS DIVISION

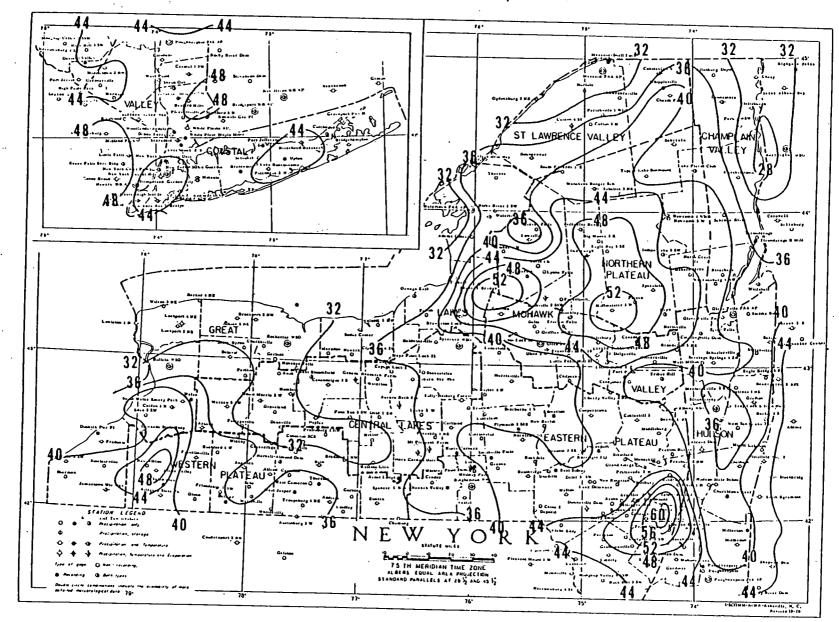
P.O. BOX 887, NIAGARA FALLS, N.Y. 14302

February 9, 1977

Mr. Daniel Quackenoush Dept. of Environmental Conservation Division of Solid Waste Management 50 Wolf Road Albany, New York 12233

Dear Mr. Quackenbush:

Per request during our recent meeting, we advise that approximately 100 gallons/month of oil are collected in 55 gallon drums and taken to the dump or used on roadways in the summer.


Very truly yours,

S.C.Dorr baf

Chief Plant Engineer

CC: Mr. R.A.Hardison UCC-CPD, Parma MEAN ANNUAL PRECIPITATION, INCHES

 $A^{\alpha} P^{\alpha} = C^{\alpha} P^{\alpha}$

Data are based on the period 1931-55. Isolines are drawn through points of approximately equal value. Caution should be used in interpolating on these maps, particularly in mountainous areas.

National Oceanic and Atmospheric Administration, <u>Climates of the States</u>, Vol. 2, p. 719, 1978.

719

TELEPHONE CONVERSATION MEMORANOUM

CLIENT 20750	ECT UNION CARBIDE PROJ. NO.
PROJECT UNION	CAITBIOE DATE
	TIME
CALL TO/FROM	
PHONE No.	
SOMMARY OF CON	VERSATION: TO: MIKE HUPKINS ASSISTANT PUBLIC HERLTH ENGINEER
	BEDROCH: LOCKPORT DOLOMITE 110-140 FT TNICK
	4-9 SEPRINTE WASER RENRING ZONES
	SURFICIAL GLAY OVER GLACIAL TILLS 10-30FT TH
	QUITE IMPERMENSIE 10-6 TO 10-7 CM/SEC
· · ·	WRTURLY NO GROUNDWATER USE IN NIRGAAR RA
	NIAGARA RIVER PROVINES SALE SOURGE
	PHETTE FRUM GARDO ISLAND INTAKES
	Cumatentias
_	OLIN CHEMICAL PNO GREATLAKES CARBON
······································	PRE G.W. USERS PRUGROBLY FOR COOLING.
	OLIN WELL PRUBOBLY PENETRATES MOST
· · · · · · · · · · · · · · · · · · ·	OF THE SEPARATE WATER PRODUCING ZONES
	W/ 12" WELL, GREAT VOLUME
	NOT MUCH DATA REPORTABLE ON STATLES OR
	YIELDS
OPIES TO:	BY: Conchef
· · · · · · · · · · · · · · · · · · ·	
	WEHRAN ENGINEERING
	CONSULTING ENGINEERS

UNION CARBIDE CORPORATION P.O. BOX 887, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

November 4, 1985

Wehran Engineering 666 East Main Street Middletown, New York 10940 RESTRICTED DISTRIBUTION Do Not Reproduce

Attn: Mr. T. Haehen

Dear Mr. Haehen:

With reference to your phone request for additional copies or the right to photostat portions of our submission to Mr. T.R.Reoper of your office, we attach four (4) bound and stamped copies of Sections 2, 3, 4 and 5, as were included in the 4/2/85 report.

We understand these copies are to be used in your Ranking/Scoring process for the New York State Department of Environmental Conservation.

If you have any further questions, or need other information, do not hesitate to call.

Very truly yours,

mA Balent ;

Chief Plant Engineer

M.A.Balent, P.E. baf

Attach.

UNION CARBIDE-CARBON DIVISION GROUNDWATER WELL MONITORING

Report Date: 10/12/78 Sample Dates: 9/21-25/78

PARAMETER		UNITS OF MEASURE	SAMPLE IDEN NORTH WELL	NTIFICATION SOUTH WELL
Carbon Chloroforn Soluble Aluminum Soluble Silver Soluble Calcium Soluble Total Chi Soluble	·	mg/l mg/l mg/l mg/l	<pre></pre>	2.5 1.60 20.003 32 0.012
Hexavalent Chron Soluble Potassium Soluble Sodium Soluble Lead Soluble Arsenic Soluble Mercury Soluble Copper Total Iron	nium n	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	<pre><0.01 67 248 0.02 <!--3.5 0.82 0.014 103 </pre--></pre>	<0.01 20.2 197 0.02 <3.5 0.82 0.014 114

Samples were collected by Recra personnel. Due to low recharge MMENTS: rates, samples were collected on both 9/21/78 and 9/25/78 from the North Well. Insufficient volume of sample was available for Chemical Oxygen Demand analyses from the both wells and Total Coliforms from the South Well. Due to the formation of a severe emulsion, Methylene Blue Active substances could not be determined. for the North Well sample. Values reported as "less than" indicate the working detection limit for those sample analyses. The Biochemical Oxygen Demand being greater than the Total Organic Carbon from the South Well sample is believed to be a function of the suspended solids content of this sample.

FOR RECRA RESEARCH, INC.

DATE 10-13-75

RECRA RESEARCH, INC. 111 Wales Avenue/Tonawanda. New York 14150/(716) 692-7620

UNION CARBIDE CORPORATION - CARBON DIVISION NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION LEACH TEST

Report Date: 10/12/78 Sample Date: 8/22-24/78

PARAMETER	UNIT OF MEASURE	SAMPLE IDENTIFICATION CARBON COMPOSITE - MEAN OF DUPLICATE TESTS
Carbon - Chloroform		DOI DICKI. 11313
Extractable	mg/l	<2.0 10 TIMES MITR 0.110 - GROUND 5 TPS
Phenol	mg/1	0.110 - GARMAN
Total Organic Carbon	mg/l	<1.0
pH	Standard U	-1.0
Chemical Oxygen Demand	mg/1	16.2
Chloride	mg/1	18.2
Fluoride	mg/1	0.569
Cyanide (Free)	mg/1	<0.3
Total Grease & Oils	mg/1	<1.0
Hydrocarbon Grease & Oi		<1.0 <1.0
Polar Grease & Oils	mg/1	<1.0
Total Chlorinated	μg/l as	< 1. U
Hydrocarbons	Chlorine,	
	Lindane	
·.	Standard	3.70
Hexavalent Chromium	mg/1	< 0.01
Soluble Aluminum	mg/1	20.03
Soluble Arsenic	μg/1	< 3.5
Soluble Cadmium	mg/1	< 0.003
Soluble Chromium	mg/1	<0.003
Soluble Copper	mg/1	0.005
Soluble Iron	mg/l	< 0.01
Soluble Lead	mg/1	40.02
Soluble Mercury	μg/1	20.5
Soluble Nickel	mg/l	∠0.02
Soluble Selenium	µg/1	42.5
Soluble Zinc	mg/1	0.007

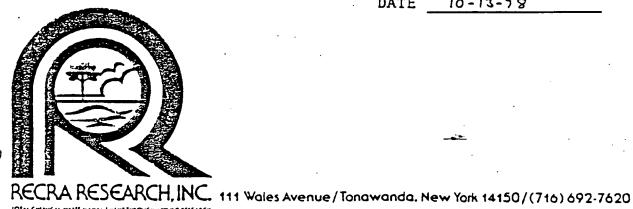
COMMENTS: Samples of the carbon material were collected by Recra personnel on 8/22, 8/25 and 8/24/1978. These samples were composited and analyzed in duplicate.

For Recra Research, Inc.

Date

10-13-78

RECRA RESEARCH, INC. 111 Wales Avenue / Tonawanda. New York 14150/(716) 692-7620


UNION CARBIDE-CARBON DIVISION GROUNDWATER WELL MONITORING

10/12/78 9/21/78 - 9/25/78 Report Date: Sample Dates:

		SAMPLE IDENT	
PARAMETER	UNITS OF MEASURE	NORTH WELL	SOUTH WELL
Biochemical Oxygen Demand Chemical Oxygen Demand	mg/l mg/l	13.5	79.5
Conductivity pH Alkalinity (pH 4.5)	umhos/cm Standard Units mg/l as CaCO ₃	1,430 8.94 563	2,920 7.42 529
Chloride Hardness Color Total Solids		382 240 68	391 295 45
Ammonia Total Kjeldahl Nitrogen Nitrate	mg/l mg N/l mg N/l mg N/l	2,720 4.42 7.38 2.7	2,910 0.23 0.21 2.5
Nitrite Total Phosphorus Sulfate Lenol	mg N/1 mg P/1 mg/1	<0.005 <0.01 360	0.041 0.024 940
iotal Organic Carbon Methylene Blue	mg/1 mg/1	0.235 108	0.238 50
Active Substances Total Coliforms	mg/1 MPN/100mls	5,400	0.08

FOR RÈCRA RESEARCH, INC.

DATE 10-13-78

WELL MONITORING REPORTS

FIRST QUARTER 1979 thru FOURTH QUARTER 1979

UNION CARBIDE-CARBON DIVISION

NESTRESTED TO

Report Date: 194/28/79

Sample Date: 3/29/79

SURFACE	AND	GROUNDWATER
---------	-----	-------------

)	GREAT GREAT		AMPLE IDE	NTIFICATI	ON
PARAMETER	UNITS OF MEASURE	Wl	W2	W3	SP1
Ammonia	mg/l	0.63	1.8	0.47	0.52
Nitrite	mg/l	< 0.01	< 0.01	< 0.01	<0.01
Nitrate	mg/l	2.0	4.5	1.0	0.20
Biochemical Oxygen Demand (5 Day)	mg/l	37.5	< 50	< 50	5
Chemical Oxygen Demand	mg/l	344	38.4	< 10	68.7
Total Kjeldahl Nitrogen	mg/l	1.1	-	0.56	_
Total Phosphorus	mg/l	1.1	0.25	0.04	0.25
Sulfate	mg/1	7.8	700	650	150
Methylene Blue Active Substances	mg/l	<0.4	<0.4	<0.4	<0.4
Alkalinity (pH 4.5)	mg/l as CaCO3	330	820	275	240
Total Solids (103°C)	mg/1	1,870	-	1,360	-
Color	Pt-Co Color Units	-	-	70	75
Total Hardness	mg/l as CaCO3	1,260	1,630	940	400
Chloride	mg/1	260	180	22	20
Total Coliform	MPN/100mls	430	< 30	≥24,000	40
Total Organic Carbon	mg/l	93	16.7	9.0	23.1
Phenols	mg/l	0.09	0.01	<0.01	0.01
pH	Standard Units	7.84	6.83	7.38	7.19
Conductance	umhos/cm	1,540	1,370	2,100	692
Carbon Chloroform Extraction	mg/1	10.8	-	_	3.3
	<pre>µg/l as Chlorine;</pre>				
Total Chlorinated Hydrocarbons	Lindane Standard	2.1	0.7	1.0	0.8
Total Aluminum	mg/l	52	5.0	1.2	0.1
Stal Arsenic	ug/1	11.4	. < 1.7	<1.7	<1.7
Total Chromium	mg/1	0.088	0.008	< 0.003	<0.003
Total Copper	mg/l	0.635	0.028	·0.008	0.014
Total Lead	mg/l	0.60	<0.02	<0.02	<0.02
Total Mercury	ug/l	36.6	< 0.7	< 0.7	< 0:7
Total Iron	mg/l	170	33	8.8	1.0
Total Potassium	mg/l	70	6.5	5.5	8.3
Total Sodium	mg/1	200	68	30	8.3
Total Calcium	mg/1	66	17	55	28
Total Silver	mg/l	0.011	< 0.003	<0.003	0.005

COMMENTS: Samples were collected by Recra personnel on 3/29/79. All analyses were performed according to U.S. Environmental Protection Agency methodologies except where noted. Due to an overestimation of BOD content, Samples W2 and W3 were inappropriately diluted, therefore yielding the reported detection limits. Sample W1 and W2 could not be quantifie

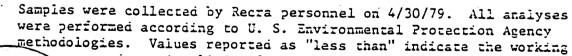
DATE

for color since their colors were not comparible to the platinumcobalt standards. Carbon Chloroform Extraction could not be analyzed on Samples W2 and W3 due to breakage of sample containers. Chromatograms used to quantify TCH show the possible presence of Polychlorinated Biphenyls. Values reported as "less than" indicate the working detection limits for the particular sample/parameter. Samples SP1 and W2 did not have all analyses performed due to lack of sufficient volume.

FOR RECRA RESEARCH, INC.

RECRA RESEARCH, INC. 111 Wales Avenue / Tonawanda, New York 14150 / (716) 692-7620

UNION CARBIDE-CARBON DIVISION


Report Date: 5/29/79 Sample Date: 4/30/79

410 Augu

GROUND WATER

		SAMPLE IDENTIFICATION
PARAMETER	UNITS OF MEASURE	WELL #1
Amionia	mg/l	10.0
Nitrite .	mg/l	< 0.01
Nitrate	mg/l	4.8
Biochemical Oxygen Demand (5 Day)	mg/l	13
Chemical Oxygen Demand	mg/l	71.8
Total Kjeldahl Nitrogen	mg/l	7.7
Total Phosphorus	mg/l	5.0
Sulfate	mg/1	<1
Methylene Blue Active Substances	mg/1	-
Alkalinity (pH 4.5)	mg/l as CaCO3	780
Toral Solids (103°C)	mg/1	1,570
Color	Pt-Co Color Units	100
Iozal Hardness	mg/l as CaCO3	920
Chloride	mg/l	190
Iotal Coliform	MPN/100mls	750
Iotal Organic Carbon	mg/l	26.1
Phenols	 mg/l	< 0.01
DH .	Standard Units	8.13
Conductance	umhos/cm	1,480
Carbon Chloroform Extraction	mg/1	26.9
	µg/l as Chlorine;	20.9
lotal Chlorinated Hydrocarbons	Lindane Standard	6.5
Otal Aluminum	mg/1	
Otal Arsenic		7.4
otal Chromium	μg/1 ·	6.4
otal Copper	mg/l	0.026
otal Lead	mg/l	0.103
otal Mercury	mg/l	0.07
otal Iron	_ µg/1	17
otal Potassium	mg/l	6.5
otal Sodium	mg/l	110
otal Calcium	mg/l	160
otal Galcium Otal Silver	mg/l	46
JLAL JLAVEL	mg/l	< 0.003

CONDENTS:

detection limits for a particular sample/parameter. Methylene Blue Active Substances could not be quantified due to the formation of a severe emulsion during extraction. The discrepancy between TKN and Ammonia is believed to be the result of an electrode interference, caused by coating of the membrane. The TKN value is probably more reliable since the interference may be removed during distillation.

FOR RECRA RESEARCH, INC.

 $INC, \frac{1}{29/76}$

EARCH, INC. 111 Wales Avenue/Tonawanda, New York 14150/(716) 692-7620

nimia, wasti managimint Inaquin applied Allaach

Page 1 of 2

ANALYTICAL RESULTS

UNION CARBIDE CORPORATION - REPUBLIC PLANT SEMI-ANNUAL WELL MONITORING

Report Date: 12/27/79 Sample Date: 11/21/79

		SAMPLE IDENTIFICAT		CATION
PARAMETER	UNITS OF MEASURE	W-I	W-II	W-III
pH	Standard Units	8.52	7.91	7.93
Conductance	umhos/cm	1,310	3,120	1,340
Total Coliform	MPN/100 mls	2	< 2	2
Biochemical	· · · · · · · · · · · · · · · · · · ·			<u>-</u>
Oxvgen Demand (5day)	mg/1	22	8	5
Chemical				
Oxygen Demand	mg/1	160	174	30
Total		· · · ·		
Organic Carbon	mg/1	70	130	35
Ammonia	mgN/1	14.4	< 0.5	0.5
Total		1		
Kjeldahl Nitrogen	mgN/1	24.0	2.8	2.0
Total Phosphorus	mgP/1	0.62	0.56	0.06
Nitrate	mgN/1	< 0.2	0.3	< 0.2
Nitrite	mgN/1	< 0.01	< 0.01	< 0.01
Chloride	mg/1	145	121	14
Total Residue (103°C)	mg/1	1,500	2,480	952
Total				
Recoverable Phenolics	mg/1	0.080	0.040	< 0.010
Sulfate	mg/1	6.0	750	400
Alkalinity (pH 4.5)	mg/l as CaCO3	898	804	260
Total Hardness	mg/1 as CaCO3	775	1,750	540
Color	Pt-Co Color Units			

COMMENTS: Samples were collected by Recra personnel on 11/21/79. Comments pertain to data on one or both pages of this report. Values reported as "less than" indicate the working detection limit for the particular sample or parameter. The above samples could not be quantified for color since their colors were not comparible to the platinum-cobalt standards. All analyses were performed according to U. S. Environmental Protection Agency methodology with the exception of Carbon Chloroform Extraction (CCE).

FOR RECRA RESEARCH, INC.

DATE 12/28

RECRA RESEARCH, INC.

THICKES EN. Do No! Reproduce

UNION CARBIDE CORPORATION - REPUBLIC PLANT SEMI-ANNUAL WELL MONITORING

Report Date: 12/27/79 Sample Date: 11/21/79

Page 2 of 2

	1	1		
PARAMETER		SAMP	LE IDENTIF	ICATION
	UNITS OF MEASURE	W-I	W-II	W-III
Carbon	· ·			
Chloroform Extract	mg/1	2.0	1.6	< 1.0
Methylene Blue		1		
Active Substances	mg LAS/1	< 0.4	< 0.4	< 0.4
Total Aluminum	mg/1	56	0.6	< 0.1
Total Arsenic	µg/1	5.3	< 1.4	< 1.4
Total Chromium	mg/l	0.090	< 0.002	
Hexavalent Chromium	mg/l	0.090	< 0.002	< 0.002
Total Copper	mg/l	0.783	< 0.002	< 0.002
Total Calcium	mg/l	99	275	< 0.003
Total Iron	mg/l	280	11.7	· 14
Total Lead	mg/1	0.72	0.03	0.27
Total Mercury	μg/1	13	< 0.4	< 0.02
Total Potassium	mg/1	66	6.4	< 1.0
Total Silver	mg/1	0.052		4.2
Total Sodium	mg/1	180	< 0.005	< 0.005
Halogenated	<pre>µg/l as Chlorine;</pre>	100	85	75
Organic Scan	Lindane Standard	1.80	1.47	1.54

COMMENTS:

: The CCE procedure employed, is a modification of the procedure found in <u>Standard Methods for the Examination of</u> <u>Water and Wastewater, 14th Edition</u>. Specific modifications to the procedure were submitted previously with the original proposal. Differences in detectability for a given parameter are a function of varying sample volumes taken for analysis. Halogenated organic scan results are used for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the response factor of Lindane but do not imply either the presence or absence of Lindane itself. Halogenated organic scan results do not include volatile organic constituents.

FOR RECRA RESEARCH. INC.

DATE 12/28/29

RECPA RESEARCH INC

WELL MONITORING REPORTS

FIRST QUARTER 1980 thru FOURTH QUARTER 1980

UNION CARBIDE CORPORATION - REPUBLIC PLANT SEMI-ANNUAL WELL MONITORING

Report Date: 7/31/80 Dates Received: 5/28/80 and 6/9/:0

rage 1 of _

		SAMPLE	DENTIFIC	LATION]
PARAMETER	UNITS OF MEASURE	W-I	W-II	W-III	
pH 6.5-8.5		0.4.8.10	7.61%	7.94 0.1	6.5-8.5
Conductance	umhos/cm	1,520 <	2,200	890	10-0-0.U
Total Coliform	MPN/100 mls	<2 -	- <2	<2	
Biochemical Oxygen		<u>†</u> −−−− †			
Demand (5-day)	mg/l	110	e 140	<2	'
Chemical Oxygen Demand	mg/l	67 4		<10	
Total Organic Carbon	mg/l	19 🖌	72	24	{ '
Amnonia	mg N/1	9.1 7	<1	<0.5	1 '
Total Kjeldahl Nitrogen	mg N/l		- <1	<0.50	1
Total Phosphorus	mg P/1	<0.02		0.03	1 .
Nitrate 20/1		P.K. 0.45	= 4.1 °		10.0 - 11
Nitrite	mg N/1	<0.01	- <0.01	<0.01	
Chloride 500 mg/1		o.K.103	< 109 • .4.		250 mg/1
Total Residue (103 ⁰ C)	mg/l	1,400	< 4,600	700	
Total Recoverable Phenolics	mg/1	0.025 <	0.26		0,001-00/1
Sulfate 300 mg/1	mg/l	• *.11 4		260	—• - •, I
Alkalinity (pH 4.5)	mg/l as CaCO,	770	560	280	

COMMENTS: Sample W-III was collected by Recra personnel on 5/28/80. W-I and W-II were not collected until 6/9/80 due to their slow recharging rate. Comments pertain to data on one or both pages of this report. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Differences in detectability for a specific parameter are due to varying sample volumes taken for analysis.

FOR RECRA RESEARCH, INC. Karen & Marchese DATE ________ W-1 GREATER 11 15 W-Z GREATER. W-1 - 3-N.G. (IRON, ALUMINUM, LEAD) W-2 - 3-NG (MED ~ ALUMINUM, SULFATE)

W-3 - 1-N.G. (1Row)

RECFARESEARCH INC.

UNION CARBIDE CORPORATION - REPUBLIC PLANT SEMI-ANNUAL WELL MONITORING

UY STATE GA WATERS

CLASS (PISCHARGE) GA TER.

Report Date: 7/31/80 Dates Received: 5/28/80 and 6/9/30

	· · · · · · · · · · · · · · · · · · ·	1	CIVITY P			-
			SAMPLE	IDENTIFI		4
	PARAMETER	UNITS OF MEASURE	W-I	W-II	W-III	
	Total Hardness	mg/l as CaCO,	560 <	the second s	480	
	True Color	Pt-Co Color Units	27	50	0	
	Carbon Chloroform Extract	mg/1	3.1	8.0	5.2	-
	Methylene Blue Active				1	
5	Substances 10eg/1	mg LAS/1	<0.1 ***	<0.2°.*.	<0.1	0.5 mg/1
	Total Aluminum 2.0 mg/,	mg/l	4.6	3.1 ~. 5.	1.4 0.8	
	Total Arsenic 0.05mg/1	ug/1	10 ~ ~ >		<1 • 4	0.025 mg
	Total Chromium	mg/l	0.008 >	<0.003	<0.003	
	Hexavalent Chromium 0,0	mg/1				0.05 mg/1
	Total Copper 10-11	mg/l	·×0.043 >	0.008	0 0070	1.0 mg/1
	Total Calcium	mg/1	28 <	100	39	
Ч	Total Iron a6m9/1		27 4.4.4	80 ~ 4.	6 4 N.G.	0.3 mg/1
ſ	Total Lead 0.05mg/1	mg/1	0.07-4.	<0.02		0.025mg/1
ſ	Total Mercury 0,004mg/1	ug/1	3.00.			0,002mg/1
	Total Potassium	mg/1	64	7.9	4.1	0,00 GmJ/
71	Total Silver O, O Mell		~<0.005	<0.005		a com 10
۲ (Total Sodium		200	100	66	
. 1	Halogenated Organic Scan	µg/l as Chlorine;			0	
· [Lindane Standard	4.6 4	8.8	0.81	

COMMENTS: All analyses were performed according to U.S. Environmental Protection Agency methodology with the exception of Carbon Chloroform Extraction (CCE). The CCE procedure employed is a modification of the procedure found in <u>Standard Methods for the Examination of Water and Wastewater</u>, <u>14th Edition</u>. Total Kjeldahl Nitrogen could not be determined on Sample W-I due to interfering substances. Hexavalent chromium analysis was not determined on these samples due to their low total chromium concentration.

Halogenated Organic Scan (ECD) analyses were performed using an electron capture detector. Results of these scans are for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the chlorine content and response factor of Lindane, but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan (ECD) results generally do not include volatile organic constituents.

FOR RECRA RESEARCH, INC. Kaun & majories

DATE 731100

RECEA RESEARCH INC.

I.D.#517

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Report Date: 1/2/81 Sample Date: 11/17/80

Not Re

SUCO

		SAMPLE IDENTIFICATION
PARAMETER	UNITS OF MEASURE	W-I
Groundwater	Feet Below	
Elevation	Top of Casing	12'7"
pH	Standard Units	8.33
Conductance (25°C)	umhos/cm	2,150
Total Coliform	Colonies/100 mls	0
Biochemical Oxygen	· ,	· •
Demand (5 day)	mg/1	6
Chemical Oxygen		
Demand	mg/1	48
Total Organic		
Carbon	mg/1	210
Ammonia	mg N/1	28
Total Kjeldahl		
Nitrogen	mg N/l	-
Total Phosphorus	mg P/1	0.45
Nitrate	mg N/1	0.32
Nitrite	mg N/1	. <0.01
Chloride	mg/1	85
Total Residue (103°C)	mg/l	1,200
Total Recoverable		
Phenolics	mg/1	0.03
Sulfate	mg/1	. 3.0
Alkalinity (pH 4.5)	mg/l as CaCO ₃	1 850
Total Hardness	1 mg/l as CaCO ₃	540 1
Color	Pt-Co Color Units	35

COMMENTS: Sample was collected by Recra personnel on 11/17/80. Comments pertain to data on one or both pages of this report. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable. Total Kjeldahl Nitrogen could not be determined due to the suspected presence of interfering substances. Wells W-2 and W-3 were 20'2" and 15'2", respectively, to the bottom of each well from the top of casing.

FOR RECRA RESEARCH, INC. R. U. Fun DATE // 9/81

RECRA RESEARCH, INC.

I.D. #1033

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Report Date: 12/31/80 Sample Date: 11/17/80

Ĉ.

REST

		SAMPLE IDENTIFICATION
PARAMETER	UNITS OF MEASURE	W-I
Carbon		
Chloroform Extract	mg/1	<1
Methylene Blue		
Active Substances	mg/1	<0.1
Total Aluminum	mg/1	0.3
Total Arsenic	ug/1	8.0
Total Chromium	mg/1	<0.005
Hexavalent Chromium	mg/1	-
Total Copper	mg/1	0.006
Total Calcium	mg/l	110
Total Iron	mg/1	1.9
Total Lead	mg/1	0.03
Total Mercury	μg/1	`<2
Total Potassium	mg/l	330
Total Silver	mg/l	<0.005
Total Sodium	mg/1	3,500
Halogenated	µg/l as Chlorine;	
Organic Scan (ECD)	Lindane Standard	0.91

COMMENTS:

Halogenated Organic Scan (ECD) analyses were performed using an electron capture detector. Results of these scans are for screening purposes only and are not designed for quantification or qualification of any specific organic compound. Results are calculated based upon the chlorine content and response factor of Lindane, but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan (ECD) results generally do not include volatile organic constituents.

FOR RECRA RESEARCH, INC. R. U. Finn

DATE ______

RECRA RESEARCH, INC. I.D. #1083

WELL MONITORING REPORTS

FIRST QUARTER 1981 thru FOURTH QUARTER 1981

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Tel Act Report Commence

Report Date: 7/6/81 Sample Date: 6/9/81

The second s

	<u> </u>	SAMPLE IDENTIFICATION		
PARAMETER	UNITS OF MEASURE	W-I	W-II	W-III ,
Groundwater	Feet Below			
Elevation	Top of Casing	9'4"	18'10"	9'7"
pH	Standard Units	7.77	7.13	7.90
Specific				
Conductance (25°C)	umhos/cm	1,730	1,050	540
Total Coliform	Colonies/100 ml	<3	9	· 15
Biochemical Oxygen	· · · · · · · · · · · · · · · · · · ·			_
Demand (5 day)	mg/1	<5	<5	<5
Chemical Oxygen	· ·			
Demand	mg/1	41	32	6.8
Total Organic				
Carbon	mg/1	16	13	3.1
Ammonia	mg N/l	-	<0.5	<0.5
Total Kjeldahl Nitrogen	mg N/1	2.4	<0.5	<0.5
Total Phosphorus	mg P/1	<0.02	<0.02	<0.02
Nitrate	mg N/1	<0.1	<0.1	<0.1
Nitrite	mg N/1	0.016	<0.01	<0.01
Chloride	mg/l	87	83	5.8
Total Residue (103°C)	mg/1	1,100	960	440
Total Recoverable				
Phenolics	mg/1	<0.01	<0.01	<0.01
Sulfate	mg/1	35	330	120
Alkalinity (pH 4.5)	mg/l as CaCO ₃	890	170	240
Total Hardness	mg/l as CaCO ₃	630	550	270
Color	Pt-Co Color Units	40	17.5	30
Carbon Chloroform				_
Extraction	mg/1	14	<2	<1
Merhylene Blue				
Active Substances	mg/1	<0.03	0.058	<0.2

(Continued)

PECRA RESEARCH INC. I.D. #81-452

)

ANALYTICAL RESULTS (cont'd.)

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Report Date: 7/6/81 Sample Date: 6/9/81

		SAMPLE IDENTIFICATION		
PARAMETER	UNITS OF MEASURE	W-I	W-II	W-III
Total Aluminum	mg/1	<0.2	<0.2	<0.2
Total Arsenic	µg/1	6.1	<5	<5
Total Chromium	mg/1	<0.005	<0.005	<0.005
Hexavalent Chromium	mg/1	<0.005	<0.005	<0.005
Total Copper	mg/l	0.054	0.050	0.042
Total Calcium	mg/l	32	70	42
Total Iron	mg/1	16	9.3	. 70
Total Lead	mg/l	<0.03	<0.03	<0.03
Total Mercury	μg/1	<3	<3	<3
Total Potassium	mg/l	2.2	54	6.0
Total Silver	mg/1	0.015	0.016	<0.005
Total Sodium	mg/1	47	51	14
Halogenated Organic	µg/l as Chlorine;			
Scan (ECD)	Lindane Standard	21	-	22

COMMENTS:

Samples were collected by Recra personnel on 6/9/81. Comments pertain to data on one or both pages of this report. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable. Halogenated Organic Scan (ECD) analysis for Sample W-II could not be performed due to insufficient sample volume. Halogenated Organic Scan (ECD) analyses were performed using an electron capture detector. Results of these scans are for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the chlorine content and response factor of Lindane, but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan (ECD) results generally do not include volatile organic constituents. Results of the Halogenated Organic Scan (ECD) analyses indicated that the major contribution to the high values was from peaks (compounds) with gas chromatographic retention times of less than two minutes. The ammonia value for W-I could not be determined due to suspected interferences.

FOR RECRA RESEARCH, INC. De F DATE _____/./5/____

RECPA RESEARCH INC. I.D. #81-452

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

RESTRICTED DISTRIC Da Not Reproduce

Report Date: 1/7/82 Sample Date: 12/9/81

		SAMPLE IDENTIFICATION		
PARAMETER	UNITS OF MEASURE	W-1	W-2	W-3
Groundwater	Feet Below			
Elevation	Top of Casing	9'7"	18'10"	5'6"
рН	Standard Units	8.63	7.32	8.23
Specific Conductance	· · ·		•	
(25°C)	umhos/cm	1,250	580	560
Total Coliform	Organisms/100 ml	3.6	43	9.1
Biochemical Oxygen Demand (5 day)	mg/l	<2	_	<2
Chemical Oxygen				
Demand	mg/1	33		8
Total Organic	<u>8</u>			
Carbon	mg/1	11	-	<1
Ammonia	mg N/l	10	-	<0.1
Total Kjeldahl Nitrogen	mg N/1	9	-	0.2
Total Phosphorus	mg P/1	0.16	-	<0.02
Nitrate	mg N/l	0.47	2.7	2.7
Nitrite	mg N/1	0.19	0.19	<0.01
Chloride	mg/l	75	45	7.5
Total Residue (103°C)	mg/l	1,100	-	600
Total Recoverable			· ·	
Phenolics	mg/1	0.012	<0.01	<0.01
Sulfate	mg/1	3.9	130	110
Alkalinity (pH 4.5)	mg/l as CaCO3	660	190	240
Total Hardness	mg/l as CaCO ₃	410		270
True Color	Pt-Co Color Units	20	30	50
Carbon Chloroform	· · · ·			
Extraction	mg/1	- ·	-	-
Methylene Blue Active Substances	mg/l	<0.1	_	<0.1

(Continued)

I.D. +d1-1130

ste we.

ANALYTICAL RESULTS (cont'd.)

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Report Date: 1/7/82 Sample Date: 12/9/81


		SAMPLE IDENTIFICATION		CATION
PARAMETER	UNITS OF MEASURE	W-1	W-2	W-3
Total Aluminum	mg/1	0.4	0.4	0.4
Total Arsenic	ug/1	<5	<5	<5
Total Chromium	mg/l	<0.005	<0.005	<0.005
Hexavalent Chromium	mg/1	<0.005	<0.005	<0.005
Total Copper	mg/1	0.010	<0.01	<0.01
Total Calcium	mg/1	10	50	28
Total Iron	mg/1	3.0	29	3.0
Total Lead	mg/1	0.05	<0.04	<0.04
Total Mercury	ug/1	<1	2.6	<1
Total Potassium	mg/1	59	4.5	3.8
Total Silver	mg/1	<0.005	<0.005	<0.005
Total Sodium	mg/l	170	17	61
Halogenated Organic	vg/l as Chlorine;			1
Scan (ECD)	Lindane Standard	1.3	-	1.1

CONCHENTS:

Samples were collected by Recra personnel on 12/9/81. Comments pertain to data on one or both pages of this report. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable. Many analyses for Sample W-2 could not be performed due to insufficient sample volume. Halogenated Organic Scan (ECD) analyses were performed using an electron capture detector. Results of these scans are for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the chlorine content and response factor of Lindane, but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan (ECD) results generally do not include volatile organic constituents. Carbon Chloroform Extraction results will follow shortly.

FOR RECRA RESEARCH, INC.

INC. <u>R.U. Frim</u>/2000 DATE 1/3/82

UNION CARBIDE CORPORATION SEMI-ANNUAL WELL MONITORING

Report Date: 1/13/82 Sample Date: 12/9/81

·4.		•	SAMPLE	IDENTIFI	CATION
	PARAMETER	UNITS OF MEASURE	<u>W-1</u>	<u>k-2</u>	<u>W-3</u>
	Carbon Chloroform Extraction	mg/1	7.2	-	<2

COMMENTS:

(

: The Carbon Chloroform Extraction analysis for Sample W-2 could not be performed due to insufficient sample volume. The value reported as "less than" (<) indicates the working detection limit for the particular sample and/or parameter.

FOR RECRA RESEARCH, INC.

DATE

105

FICRARICE/FIN, INC. I.D. /81-1130

WELL MONITORING REPORTS

FIRST QUARTER 1982 thru FOURTH QUARTER 1982

UNION CARBIDE CORPORATION CAREON PRODUCTS DIVISION -

RESTRICTED DISTRI - Selfingered of

Report Date: 3/18/82 Dates Received: 3/4 & 8/82

		SAMPLE IDENTIFICATION (DATE)			
PARAMETER	UNITS OF MEASURE	W-1 (3/4/82)	W-2 (3/4/82)	W-3 (3/8/82)	
Total Residue (103°C)	mg/1	1,100	-	530	
Conductance (25°C)	umhos/cm	1,220	_	530	
Total Phosphorus	mg P/1	0.07	-	<0.01	
Sulfare	mg/l	8.4	-	82	
Chloride	mg/1	440	-	8.8	
Total Recoverable Phenolics	mg/1	<0.01	_	<0.01	
Total Mercury	<u>ug/1</u>	<0.9	_	<0.9	
Total Iron	mg/1	3.2	-	29	
Biochemical Oxygen Demand (5 dav)	mg/l	<10	<5	<5	
Total Organic Carbon	mg/1	11	5.5	35	

COMMENTS: Analyses were performed according to U.S. Environmental Protection Agency methodologies. Values reported as less than (<) indicate the working detection limit for the particular sample or parameter. Due to the small volume available from Well-2, many analyses could not be performed.

FOR RECRA RESEARCH, INC.

DATE

ACH. INC. #82-208-

UNION CARBIDE CORPORATION CARBON PRODUCTS DIVISION

Report Date: 6/22/82 Dates Received: 5/28 & 6/3/82

net en e

125

		SAMPLE IDENTIFICATION (DATE)				
PARAMETER	UNITS OF MEASURE	W-1 (5/28 & 6/3/82)	W-2 (5/28/82)	W-3 (5/28 & 6/3/82)		
Total Residue (103°C)	mg/l	1,400	3,700	350		
Conductance (25°C)	umhos/cm	1,400	470	520		
Total Phosphorus	mg P/1	1.6	0.74	0.03		
Sulfate	mg/l	12	69	74		
Chloride	mg/l	95	170	6.7		
Total Recoverable Phenolics	mg/l	0.090		<0.1		
Total Mercury	ug/l	8.0	11	<0.5		
Total Iron	mg/1	230	2,100	22		
Biochemical Oxygen Demand (5 day)	mg/1.	<5		<5		
Total Organic Carbon	mg/l	17	15	5		

COMMENTS: Analyses were performed according to U.S. Environmental Protection Agency methodologies. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Due to the small volume available from Well-2, some analyses could not be performed. Wells W-1 and W-3 were sampled on two days to obtain enough volume for all parameters.

FOR RECRA RESEARCH, INC.

6 DATE

UNION CARBIDE CORPORATION

Report Date: 9/30/82 Date Received: 9/17/82

RESTRICTED DISTRICT

Do Not

• ,=

<u>_</u>		SAMPLE IDENTIFICATION (DATE)
		• W-1
PARAMETER	UNITS OF MEASURE	(9/17/82)
Total Residue (103°C)	mg/l	960
Specific Conductance (25°C)	umhos/cm	1,470
Total Phosphorus	mg/1	<0.02
Sulfate	mg/l	6.7
Chloride	mg/l	110
Total Recoverable Phenolics	mg/1	<0.01
Total Organic Carbon	mg/1	31
Biochemical Oxygen Demand (5 day)	mg/1	4.0
Total Mercury	mg/1	<0.001
Total Iron	mg/l	2.6

COMMENTS:

Analyses were performed according to U.S. Environmental Protection Agency methodologies. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Wells W-2 and W-3 were dry and could not be sampled.

FOR RECRA ENVIRONMENTAL LABORATORIES DATE 9/ 30,

ECRA ENVIRONMENTAL LABORATORIES 1.0. #82-419

UNION CARBIDE CORPORATION

DE NOT PERSONNE

Report Date: 12/20/82

		SAMPLE IDENTIFICATION (DAT		
PARAMETER	UNITS OF MEASURE	W-1 (12/3/82)	W-3 (12/6/82)	
Total Residue (103°C)	mg/1	975	860	
Specific Conductance (25°C)	umhos/cm	1,200	. 1,080	
Total Phosphorus	mg/1	<0.02	<0.02	
Sulface	mg/l	<1	180	
Chloride	mg/l	100	11	
Total Recoverable Phenolics	mg/1	<0.01	<0.01	
Total Organic Carbon	mg/1	15	4.0	
Biochemical Oxygen Demand (5 dav)	mg/l	8	<4	
Total Mercury	mg/l	<0.0008	<0.0008	
Total Iron	mg/1	26	35	

COMMENTS:

Analyses were performed according to U.S. Environmental Protection Agency methodologies. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Sampling Point W-2 was dry and could not be sampled.

DATE

FOR RECRA ENVIRONMENTAL LABORATORIES

34 COVISIONMENTAL LABORATORIES

32-1122

WELL MONITORING REPORTS

FIRST QUARTER 1983 thru FOURTH QUARTER 1983

UNION CARBIDE REPUBLIC PLANT

Report Date: 3/30/83 Date Received: 3/16/83

.

11 - Batt Republic

		SAMPLE IDENTIFICATION (DATE		
		W-1	W-3	
PARAMETER	UNITS OF MEASURE	(3/16/83)	(3/16/83)	
Water Level	Feet from top of well casing	8.58	4.67	
Biochemical Oxygen Demand (5 day)	mg/1	<5	<2	
Total Residue (103°C)	mg/1	1,100	2,200	
Specific Conductance (25°C)	umhos/cm	1,440	555	
Total Phosphorus	mg P/1	0.65	1.1	
Chloride	- mg/1	85	<2	
Total Iron	mg/1	25	140	
Total Mercury	mg/1	<0.0008	<0.0008	
Total Recoverable Phenolics	mg/1	0.011	<0.01	

NVIRGENTAL AUORATORIES

COMMENTS: Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled.

FOR RECRA ENVIRONMENTAL LABORATORIES DATE

UNION CARBIDE REPUBLIC PLANT

RESTRUCTED DOCT Do No. Sept tota

Report Date: 6/29/83 Date Received: 6/14/83

.

· · · · · · · · · · · · · · · · · · ·		SAMPLE IDENTIFICATION (DATE		
•		W-1	W-3	
PARAMETER	UNITS OF MEASURE	(6/14/83)	(6/14/83)	
Water Level	Feet from top of well casing	9.00	10.25	
Biochemical Oxygen Demand (5 day)	mg/l	7.3	<2	
Toral Residue (103°C)	mg/l	960	500	
Specific Conductance (25°C)	umhos/cm	1,500	550	
Total Phosphorus	mg P/1	0.062	0.048	
Chloride	mg/1	82	3.7	
Total Iron	mg/l	18	28	
Total Mercury	mg/l	<0.0006	<0.0006	
Total Recoverable Phenolics	mg/l	<0.01	<0.01	

COMMENTS: Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled.

FOR RECRA ENVIRONMENTAL LABORATORIES DATE

RECRA ENVIRONMENTAL LABORATORIES

I.D. #83-518

UNION CARBIDE REPUBLIC PLANT

RESTRICTED DISTRIBUT Dc Not Reproduce 10

Report Date: 10/27/83 Date Received: 10/3/83

		SAMPLE IDENTIFICATION (DATE)		
		· W-1		
PARAMETER	UNITS OF MEASURE	(10/3/83)		
Water Level	Feet from top of well casing	9.16		
Biochemical Oxygen Demand (5 day)	mg/l	5		
Total Residue (103°C).	mg/1	820		
Specific Conductance (25°C)	umhos/cm	1,150		
Total Phosphorus	mg P/1	0.11		
Chloride	mg/1	80		
Total Iron	mg/1	1.16		
Total Mercury	mg/1	<0.0005		
Total Recoverable Phenolics	mg/l	⊲0.01		

COMMENTS: Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Wells W-2 and W-3 were dry and could not be sampled.

FOR RECRA ENVIRONMENTAL LABORATORIES

DATE _____

RECRA ENVIRONMENTAL LABORATORIES

L.D. #83-994

RESTRICTLE LISAV C. R. An Explosion

UNION CARBIDE REPUBLIC PLANT

De Nor Hebrodany

رزي يالاستعلام و

Report Date: 12/16/83 Date Received: 12/2/83

	· ·	SAMPLE IDENTIFICATION (DATE)	
		W-1	W-3
PARAMETER	UNITS OF MEASURE	(12/2/83)	(12/2/83)
	Feet from top of		
Water Level	well casing	12.66	2.75
Biochemical Oxygen Demand (5 dav)	mg/l	<2 .	<2
Total Residue (103°C)	mg/1	950	. 500
Specific Conductance (25°C)	umhos/cm	1,440	580
Total Phosphorus	mg P/1	0.33	0.78
Chloride	mg/l	93	5.4
Total Iron	mg/1	2.6	16
Total Mercury	mg/l	<0.001	<0.001
Total Recoverable	•		. *
Phenolics	mg/1	0.011	0.050
Sulfate	mg/1	19	9.2

COMMENTS:

Ć

Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled.

FOR RECRA ENVIRONMENTAL LABORATORIES DATE

RECRA ENVIRONMENTAL LABORATORIES

C.D. #82-1278

WELL MONITORING REPORTS

FIRST QUARTER 1984 thru THIRD QUARTER 1984*

* Fourth Quarter Report due by 1/10/85

UNION CARBIDE REPUBLIC PLANT

Report Date: 3/30/84 Date Received: 3/14/84

Charles A

		SAMPLE IDENTIFICATION (DATE)	
PARAMETER	UNITS OF MEASURE	W-1 (3/14/84)	W-3 (3/14/84)
Water Level	Feet from top of well casing	7.92	3.92
Biochemical Oxygen Demand (5 day)	mg/l	2.2	<2
Chloride	mg/l	78	3.9
Sulfate	mg/1	13	43
Specific Conductance (25°C)	umhos/cm	1,150	440
Total Residue (103°C)	mg/1	1,070	392
Total Phosphorus	mgP/1	0.27	<0.05
Total Recoverable Phenolics	mg/l	0.012	<0.01
Total Iron	mg/l	32	19
Tocal Mercury	mg/l	. <0.001	<0.001

COMMENTS:

Analyses were performed according to U.S. Environmental Protection Agency methodologies. Values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled.

FOR RECEA ENVIRONMENTAL LABORATORIES DATE

RECRA ENVIRONMENTAL LABORATORIES

ANALYTICAL RESULTS

UNION CARBIDE - REPUBLIC PLANT

<u>0</u>2, 855, 655

Report Date: 6/22/84 Date Received: 6/8/84

		SAMPLE IDENTIE	ICATION (DATE)
		· W-1	W-3
PARAMETER	UNITS OF MEASURE	(6/8/84)	(6/8/84)
Water Level	feet from top of well casing	8.00	7.25
Biochemical Oxygen Demand (5 Dav)	mg/l	13	9.6
Chloride	mg/1	100	2.4-
Sulfate	mg/l	1.2	45
Specific Conductance (25°C)	umnos/cm	1,900	680
Total Residue (103°C)	mg/l	1,070	383
Total Phosphorus	mg P/1	0.44	<0.05
Total Recoverable Phenolics	mg/1	<0.01	<0.01
Total Iron	mg/1	6.4	5.3
Total Mercury	mg/l	<0.001	<0.001

COMMENTS:

: Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled.

FOR RECRA ENVIRONMENTAL LABORATORIES

6.1.1 DATE

26.479126.5220

ECRA ENVIRONMENTAL LABORATORIES

ANALYTICAL RESULTS

RESTRICTED DISTRIBUT

UNION CARBIDE - REPUBLIC PLANT

Report Date: 9/18/84 Date Received: 8/30/84

		SAMPLE IDENTIF	ICATION (DATE)
	•	. W-1	W-3
PARAMETER	UNITS OF MEASURE	(8/30/84)	(8/30/84)
 .	Feet from top	•• ••	
Water Level	of well casing	11.62	13.17
Biochemical Oxygen Demand (5 Dav)	mg/l	<5	· <5
Chloride	mg/1	93	<1
Sulfate	mg/l	8.0	97
Specific Conductance (25°C)	uminos/cm	1,200	540
Total Residue (103°C)	mg/1	1,050	518
Total Phosphorus	mg P/1	0.32	0.07
Toral Recoverable Phenolics	mg/1	<0.01	<0.01
Total Iron	mg/l	12	20
Total Mercury	mg/l	<0.001	<0.001

COMMENTS:

Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled.

FOR RECRA ENVIRONMENTAL LABORATORIES 18/921 DATE

1.3. 494-878

ANALYTICAL RESULTS

UNION CARBIDE-REPUBLIC PLANT

Report Date: 12/21/84 Date Received: 12/4-5/84

1.54

MAS

	на стана стана Стана стана стан			10 2 20.2 . 2
		SAMPLE IDENTIF	ICATION (DATE)	1 • • • •
PARAMETER	UNITS OF MEASURE	W-1 (12/5/84)	W-3 (12/4/84)	
Biochemical Oxygen Demand (5 Day)	mg/1	<2	<2	
Chloride	mg/1	<1	2.6	
Sulfate	mg/l	8.8	121	
Specific Conductance (25°C)	unhos/cm	1,400	740	
Total Residue (103°C)	mg/l	1,010	518	
Total Phosphorus Total Recoverable	mg P/1	0.24	<0.05	•
Phenolics	mg/1	<0.01	<0.01	• • • • • • • • • •
Total Iron	mg/1	1.5	3.3	
Total Mercury -	mg/1	<0.0005	<0.0005	····. ·

COMMENTS:

 $\mathcal{C}\mathcal{O}$

Analyses were performed according to U.S. Environmental Protection Agency methodologies. The values reported as "less than" (<) indicate the working detection limit for the particular sample or parameter. Well W-2 was dry and could not be sampled.

FOR RECRA ENVIRONMENTAL LABORATORIES DATE

I.D. #84-1212

BORING LOG

and

SOILS REPORT

SOILS REPORT

WELLS #1 & #2

1978

H) DIMENSIONS, INC.

Soil Investigations and Natural Resource Assessments 797 Center Street • East Aurora, New York 14052 • (716) 655-1717

SOILS REFORT - WILL INSTALLATION Union Carbide Corporation - Wiagara Falls

Two monitoring wells were installed on the Union Carbide Corporation's landfill site in the City of Niagara Falls. The approximate placement sites were located on site by Mr. James Foreman of Union Carbide.

soil descriptions were written at the well sites based on the split spoon samples that were taken of every major soil horizon or at every five foot increments in the thicker soil horizons. The split spoon samples were advanced through the hollow stem augers.

The most southerly well was installed September 9 with the northerly well installed September 16, 1978. The continued collapsing of the bore hole for the north end well forced the installation of a 2 inch inside diameter well instead of a 4 inch inside diameter that was installed in the southern site.

Carbonaceous fill material was described as the surficial material at both locations. The original soil consisted of a stone free clayey and silty lake sediment resting on glacial till. Thickness of the lake sediment at the southerly well site was about 10 feet. This lake sediment mantle should be continuous across the total site as indicated in the Niagara County soil survey. No lake sediments were described or observed in any of the five bore sites augered at or near the northern well location. Therefore the original lake sediment and part of the glacial till material was excavated prior to land filling industrial wastes.

rermeability and infiltration of the carbonaceous fill are extremely high as observed by the water intake after an intense thunder storm september 9. This would allow water to move downward in the fill and perch on the glacial lake or till sediments. The glacial till over the dolomite bedrock was removed from the area near the northern well site as noted during the drilling of most easterly bore site. In essence, an internal pond exists within the fill by the north well.

Continued on page 2...

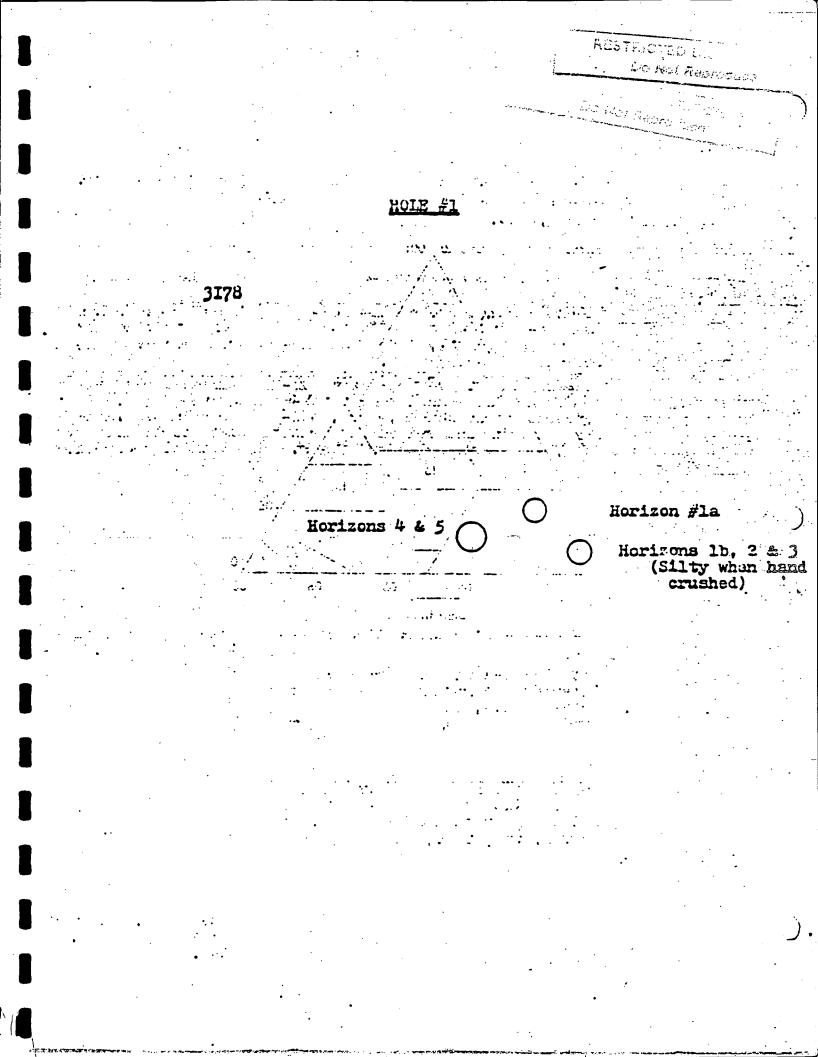
DOTES RELORT-WEDE INSTRUCTION Union Carbiae Corporation - Miagara Falls Fage 2

The extent of this excavated area can not be delineated based on the existing surface fill configuration.

NO perched water table was noted at the southerly site, but based on the original soil drainage characteristics, a natural perched water table would be present at the fill-soil contact from october through April most years. water was detected in the glacial till in the till above bedrock, yet soil coloration would not suggest this moisture regime in this zone.

rreparea by,

Yest They


9/16/78

Lonald ... Owens Soil Scientist

3178 J.J.dew

		Test Borings and Logs 797 Center Street • East Aurora	New York 14052 6 1746 655-1717
3178 HOLENO.	<u> </u>		SURF. ELEV.
PROJECT	Union Carbid	e Corporation LOC/	ANON North side of propert
-	Niagara Fall		nyde rark Boulevard
CLIENT _	RECRA Resear	DATE	STARTED 9/6/78 COMPLETED 9/
	OWS ON AMPLER	•	
	12 18 N 15 24 N	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
		ntly moist brown silt I YEY-SILT) width 10 to 1	
• 125 29	suba	ugular gravel, firm, no: with fiberous wood.	
	Slig bona	htly moist grayish blac. ceous fill ranging from	k car- Carbonaceous fill pow- terial to 12.5 fe
┣ ── ┤─┤──	der ·	to augular shunks, firm	, non- over dense glacia
	wood	tic with intermixed fibe , yellowish brick and g	erous till to 19 feet o lass. dolometic bedrock
5 5 19	17 32		
2			
		•	
		Clear transition t	into hole at 9.7
<u>10 5 5</u>		olackish fill material v rmixed carbonaceous wood	
		c chunks, loose	
			•
1224		t light redailsn brown de se silt loam (SANDY-JII	
	widtr	1 15% subaugular dolomet	ic
15 1212		el, very firm, nonplasti	
5		· · ·	
			ater at 9.5 feet
			low surface at con
			tion.

CALLE AND CARDELED OF SERVICES STREET, STRE

3178	б но		o.	1			DIMENSIONS, INC. Test Borings and Logs 797 Center Street • East Aurora, New York 14052 • (716) 655-1717 SURF. ELEV.	
	PR	OJEC	T _				Carbide Corporation LOCATION North side of property	r
	CU	ENT		RE	<u>:C</u> R	A F	Research Inc. DATE STARTED 9/9/78 COMPLETED 9/9	<u>1/78</u>
feet	SAMPLE	0/0		12/18		N	DESCRIPTION & CLASSIFICATION WATER TABLE & REMARKS	
					.		(Same horizon as described on previous page)	
20			•	-	••••	· · ·	Gray microcrystalline dolomite	
					-		Sampling discontinued at 20.5 Fieet Used two 10.5 foot s tions of carbon stee	ec-
		· · · ·					pipe with one-4 inch coupling sealed wit pipe dope. Well end	h
			•				packed with 12 feet greater than 1.5 mm graded coarse sand at	wel. nd
							gravel below pipe an l ₂ feet above pipe en End of pipe double screened with 0.5 mm	'nd.
							stainless steel scree ing. Bentonite used between 6 and log for	ot
			_				depths to seal vertic water movement along outside of pipe. The top 6 feet was back	8
							filled with SILT-CLA lake sediment consid ing the porous natur	Y er- 8
							of the carbonaceous at this depth.	2 · ·
 							Bottom of pipe 10.3 below surface. Fipe protruding 2.0 feet bove surface.	1
				· 				· · · · · · ·
iew							0 DRIVE " SPOON " WITH 140 ID. WT. FALLING 30 " PER BL	OW.
	LOG						B & Lenhardt OF OF	

THE FOLLOWING IMAGE(S) ARE THE BEST COPY AVAILABLE

THE FOLLOWING IMAGE(S) ARE THE BEST COPY AVAILABLE

THE FOLLOWING IMAGE(S) ARE THE BEST COPY AVAILABLE

THE FOLLOWING IMAGE(S) ARE THE BEST COPY AVAILABLE

THE FOLLOWING IMAGE(S) ARE THE BEST COPY AVAILABLE

InStream, LLC

1178 HOLENG 2 SURF ELEX PROJECT Union Carbide Corporation LOCATION South side of fill are CLENT AECRA Research. Inc. DATE STARTED 2/9/78 COMPLETED 9/ CLENT AECRA Research. Inc. DATE STARTED 2/9/78 COMPLETED 9/ Prescuence Slightly moist, grayish-black car- istore DATE STARTED 2/9/78 COMPLETED 9/ Prescuence Slightly moist, grayish-black car- istore Carbonaceous fill to rescuence to angular chunks with fill to 19.8 feet o Carbonaceous fill to rescuence to angular chunks with fill to 19.8 feet o 1 1/7 Noist, highly 'mooth cassified grayish- brown silty clay Icoan (STLT-CLAY brown silty clay Icoan (STLT-CLAY desization cracks, finely lami- nated structure, very firm, plas- tic. No water at 13.5 feet 10 13 15/18 Moist to extremely moist, brown heavy silt load (CLAYE-SILT) with very thin, very fine sandy lenses finaly laminated, firm, slightly plastic. Sample #2 spans con- minated structure, firm, slightly 15 12 20 12 Extremely moist to wet reddish- brown sandy loam (SILTT-SAND) w/ Water at 13.5 feet					A.			Test Borings and Logs 797 Center Street • East Aurora, New You	rk 14052 (716) 655-1717
PROJECT Union Carbide Corporation Niazara Palls. New York LOCATION South side of fill are Near Hyde Fark Blyd. CLENT RECRA Research, Inc. DATE STARTED 9/9/75 COMPLETED 9/9 Yeet Stightly moist, grayish-black car- ey lake sediments to intermixed wood, bricks, and gravel dolomitic bedrock Wate Yame & Heavest gravel Carbonaceous fill the over slity and ey lake sediments to intermixed wood, bricks, and gravel dolomitic bedrock 5 9 17 22 Moist. Highly mottled gravish- brown slithy clay Yoam (SILTY-CLAY) No water observed a - original soil con- stint desication cracks, findly lami- nated structure, very fina las- tic, structure, very fina las- tic, structure, very fina las- tic, structure, very fina plas- tic, structure, very fina plas- surface at completion water at 13.5 feet surface at completion	3778	ער		0	.2				DC Meeters
Mizzra Palls, New York Near Hyde Fark Blyg. CLENT RECRA Research. Inc. DATE STARTED 9/9/75 COMPLETED 9/ 2001 Sample Slightly moist, grayish-black car bonaceous fill material ranging - internixed wood, bricks, and graval dolonitic bedrock Carbonaceous fill t feet over sandy gla till to 19.8 feet over internixed wood, bricks, and graval dolonitic bedrock 5 9 17 22 30 Moist, highly mottled grayish- brown silty clay Toam (SILT-CLAY designation cracks, finely lami- nated structure, very firm, plas- tic No water observed a - original soil con 10 13 15bb b3 Moist to extremely moist brown heavy silt loam (CLAYEY SILT) with very thin, very firm, slightly plastic. Sample #2 spans con water at 13.5 feet o surface at completion water at 13.5 feet o surface at completion water at 13.5 feet o surface at completion	0110	ΠL	ו בוו	10.			• .		SURF. ELEV.
CLENT RECRA Research, Inc. DATE STATED 9/9/72 COMPLETE 9/9/72 COMPLETE <th< td=""><td></td><td>. PR</td><td>OJEC</td><td>T</td><td><u> </u></td><td>nic</td><td>on (</td><td></td><td></td></th<>		. PR	OJEC	T	<u> </u>	nic	on (
Dermi 2 1000 Comparison 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• • • • •	•. •••• ••• •	-	. · •				Regearch The	lear Hyde Fark Blyd.
2 Summer Discription & CASSEGATION & CASSEGATION WATE TABLE & REMARKS 2 1		נט	ENI	-				DATE STARTED	9/9/70 COMPLETED 9/
Yeet 2 2 2 2 3	DEPTH	. 14	1						1
1 Slightly moist, grayish-black car bonaceous fill material ranging - from powder to angular chunks with ill to 19.8 feet over sandy gla from powder to angular chunks with ill to 19.8 feet over ily soil, hoose to very friable, nonplastic. Moist, nighly -mottled grayish- brown silty clay loam (SILTY-CLAY 5 9 17 21 Moist, nighly -mottled grayish- brown silty clay loam (SILTY-CLAY 6 Moist distinctly mottled reddish- brown SILTY-CLAY with vertical desication cracks, finely lami- tic,		AMPL	0	10/	112/	110/	1.		WATER TABLE & REMARKS
1 Slightly moist, grayish-black car bonaceous fill material ranging - from powder to angular chunks with fill to 19.8 feet over sandy gka from powder to angular chunks with fill to 19.8 feet o intermixed wood, bricks, and gravel-dolomitic bedrock iy soil 'loose to very friable, nomplastic. No water observed a - original soil con brown silty clay Toam (SILTY-CLAY) 2	eet		16	Ľ	2/18	/24			•
17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 <td< td=""><td></td><td>-</td><td>┼──</td><td></td><td>+</td><td><u> </u></td><td>-</td><td></td><td>Carbonaceous fill t</td></td<>		-	┼──		+	<u> </u>	-		Carbonaceous fill t
1 1			•	1	<u> </u>	<u> </u>		Slightly moist, gravish-black car	- ev lake sediments to
1 1 1 10 19.85 feet o 1 19 soil, loose to very friable, nonplastic. No water observed a: - original soil con 2 1 1 10 2 1 1 10 10 2 1 1 10 10 3 1 1 10 10 10 13 15 10 15 10 13 15 10 15 10 13 15 10 15 10 13 15 10 15 10 13 15 10 11 10 13 15 12 10 13 15 15 12 20 22 16 10 15 10 17 10 15 10 10 10 15 10 10 10 15 10 11 10 15 10 12 10 15 10 15 12 20 22 10 10 15 10 10 10 15 10 10 10			7	7	10		17	Donaceous IIII material ranging -	- feet over sandy glad
1y soll, loose to very friable, nonplastic. 5 917 21 5 917 21 6 17 21 7 17 21 7 17 21 8 17 21 9 17 21 10 10 10 13 1518 10 13 1518 10 13 1518 10 13 1518 11 10 12 10 13 10 14 10 15 12 20 22 16 12 20 22 17 10 18 10 19 10 10 10 15% predominantly fine and medium subangular dolometic gravel, firm, nonplastic		· ·	<u>·</u>				•	LICOM powder to angular chunks wit	N Yill to 19.8 feet or
5 9 17 21 38 Moist, highly mottled grayish- brown sity clay loam (SILTY-CLAY 2 Clear transition to Clear transition to Clear transition to 1 Clear transition to Clear transition to 1 Clear transition to	· · · · · ·						. 🏹	ly soll, loose to very friable.	1
5 9 17 22 38 Moist, highly mottled grayish- brown silty clay Toam (SILTY-CLAY 2 Clear transition to		<u> </u>						nonplastic.	
5 9 17 21 38 Moist. Alignly "mottled grayish - original soil com brown silty clay loam (SILTY-CLAY friable. 									No water observed at
1 Initiable. Initiable. Sample #2 spans control 1 Moist distinctly mottled reddish- Sample #2 spans control 1 dessication cracks, finely lami- Initiable. 1 nated.structure, very firm, plas- Initiable. 10 13 1518 15 10 13 1518 15 10 13 1518 15 10 13 1518 15 10 13 1518 15 11 heavy silt loam (CLAYEY-SILT) with very thin, very fine sandy lenses finely laminated, firm, slightly plastic. 15 12 20 22 42 14 Extremely moist to wet reddish- 15 12 20 22 42 16 10 to 15% predominantly fine and medium subangular dolometic gravel, firm, nonplastic	5	·	9	17	21	_	-38	Moist, highly mottled grayish-	I - original soil cont
10 11 Moist distinctly mottled reddish- brown SILTY-CLAY with vertical dessication cracks, finely lami- nated structure, very firm, plas- tic, Sample #2 spans cont dessication cracks, finely lami- nated structure, very firm, plas- tic, 10 13 15/26 33 10 13 15/26 33 10 13 15/26 33 10 13 15/26 33 10 13 15/26 33 10 13 15/26 33 10 13 15/26 33 10 13 15/26 33 10 13 15/26 10 11 10 10 10 12 20 22 42 14 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 water at 13.5 feet 10 10 15% predominantly fine and medium subangular dolometic gravel, firm, nonplastic surface at completion		2	-		•••	•	•••	friable.	1
10 13 15 12 20 22 4 15 12 20 22 4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 water at 13.5 feet surface at completion								Clear transition to	
10 13 1518 15 10 13 1518 15 10 13 1518 15 10 13 1518 15 10 13 1518 15 10 13 1518 15 10 13 1518 15 10 13 1518 15 10 13 1518 16 11 16 17 12 16 17 15 12 20 22 12 15 12 20 22 12 16 12 20 22 12 17 10 15 18 10 15 19 10 15 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 11 10 15 12 10 10 13 10 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10 <td< td=""><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td>Moist distinctly mottled reddish-</td><td>Sample #2 spans cont</td></td<>				<u> </u>				Moist distinctly mottled reddish-	Sample #2 spans cont
10 13 1518 33 Moist to extremely moist, brown heavy silt loam (CLAYAY-SILT) with very thin, very fine sandy lenses finely laminated, firm, slightly plastic. 15 12 20 22 42 4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ l0 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic	· · · · ·				•		<u> </u>	dessication cracks, finely lami-	
10 13 15 15 15 15 12 20 22 4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 water at 13.5 feet surface at completion water at completion 1 1 10 15% 10 10 15% predominantly fine and medium subangular dolometic gravel water at completion							.,	nated structure, very firm, nlas-	
10 13 15 15 15 15 12 20 22 4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 water at 13.5 feet surface at completion water at completion 1 1 10 15% 10 10 15% predominantly fine and medium subangular dolometic gravel water at completion									
<pre>3 heavy silt loam (CLAYEY-SILT) with very thin, very fine sandy lenses finely laminated, firm, slightly plastic. 15 12 20 22 42 4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ lo to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic</pre>				-+				Branes nominatos to	
<pre>3 heavy silt loam (CLAYEY-SILT) with very thin, very fine sandy lenses finely laminated, firm, slightly plastic. 15 12 20 22 42 4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ lo to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic</pre>	10		2	75					•
15 12 20 22 42 4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic water at 13.5 feet	<u>+0 ·</u>	3	-21	-21			2	heavy silt loam (CLAYEY-STLT) with	
15 12 20 22 42 4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic water at 13.5 feet		-+					-	very thin, very fine sandy lenses	
15 12 20 22 42 4 4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic water at 13.5 feet								finely laminated, firm, slightly	•
15 12 20 22 42 4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic water at 13.5 feet surface at completion						·			:
4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic									· · ·
4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic			+		-+	+			
4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic					_†	-+			• •
4 Extremely moist to wet reddish- brown sandy loam (SILTY-SAND) w/ 10 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic	ĺ								
) brown sandy loam (SILTY-SAND) w/ water at 13.5 feet 10 to 15% predominantly fine and medium subangular dolometic gra- vel, firm, nonplastic	15 [_	.2	20	22	-	2		
) 10 to 15% predominantly fine and surface at completion medium subangular dolometic gra- vel, firm, nonplastic		4	\rightarrow	-+		_			Waton of 12 C foot 1
) medium subangular dolometic gra- vel, firm, nonplastic	ŀ		+			\dashv			surface at completion
	<u> </u>		-+		-+-	+		medium subangular dolometic gra-	
								vel, Ilrm, nonplastic	

and the station way -Barker and the second -1.2.1.7 5-1.4 mm 18: 1-2 1.9.14 HOLE #2 MOLE TI - HOLE F =100-0 Star State in Artony States 3178 يتهم الألا 54.80 - OJ LIJI VIOSOBACOTISE LONARD VILLS MAYRESEL Direction 2b 507 .40 /_ . +c-Tids Anten observation -/. Ling Horizon 2a ustrou lice Lenirito 20 20 - 10 - 10 - F Yt 524 10 52 and all water of Horizon 3 Jereinstration (Horigon Horizon 1 Lock- In Lick Store 100 100 -Percent scand Percentisand Clay sci Sandy clay loam-Sill בשמת ליבו או הפתפת איכו לבווא לומי וכי ביו אוניין איני איניין איני איניין איניין איניין איניין איניין איני 12.2. ...

Laon clay the second to be said to Sin loos of the second to be second sic and a straight sond

Textural Anangle showing the percentages of clar ()ex than TL002 nut), silt (0.002 To pont int and (0.05-2.0 mer in the basic soft texter asary (pilapied from Soul Survey Scattering St.

dechoer to other lan vienentor Var (Ther- Trille) * 130 I Vhrad miona Sigenalor asiganadun aulben Nell's little and the search of the search o

1.6.4

. . . .

1.45

بمرفود فتشتو بجاره

)			Test Borings and Logs 797 Center Street • East Aurora, New York	k 14052 • (716) 655-1717
178 178	HOLE NO.	_2 Cont		SURF. ELEV.
,	PROJECT	Union Niagar		outh side of fill are ear Hyde Fark blvd.
	CLIENT	RECRA		<u>9/9/78</u> completed <u>9/</u>
DEPTH .	SAMPLE NO.	BLOWS ON SAMPLER	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
<u>(feet)</u>	3- /8	12 18 18 N	(Same horizon as described on	•
•			previous page)	
20	5 120		Gray, microcrystalline dolomite	
			bedrock Sampling discontinued at 20.1 feet	
			Sampring discontinued at 20.1 1661	
·				<u>PIPE NOTES</u> Used one 10.0 feet
)				two 5.0 feet section of carbon steel pin
				with 2-4 inch coup sealed with pipe de Well end packed with
				l foot of greater t 1.5 mm well graded
<u>.</u>				coarse sand and gra below pipe and la
				above pipe end. in of pipe double scre with 0.5 mm stainle
			•	steel screening. I tonite used to plug
				surface. One foot pipe protruded above
				surface.
ļ				
			· · ·	•
		┼╾┼╾┤╾┤ ┼╌┼╾┼╾┥		

SOILS REPORT

WELL #3

EARTH) DIMENSIONS, INC.

Soil Investigations and Natural Resource Assessments

797 Center Street • East Aurora, New York 14052-• (716) 655-1717

De Noi Reproduce

SOILS REPORT - WELL #3 INSTALLATION

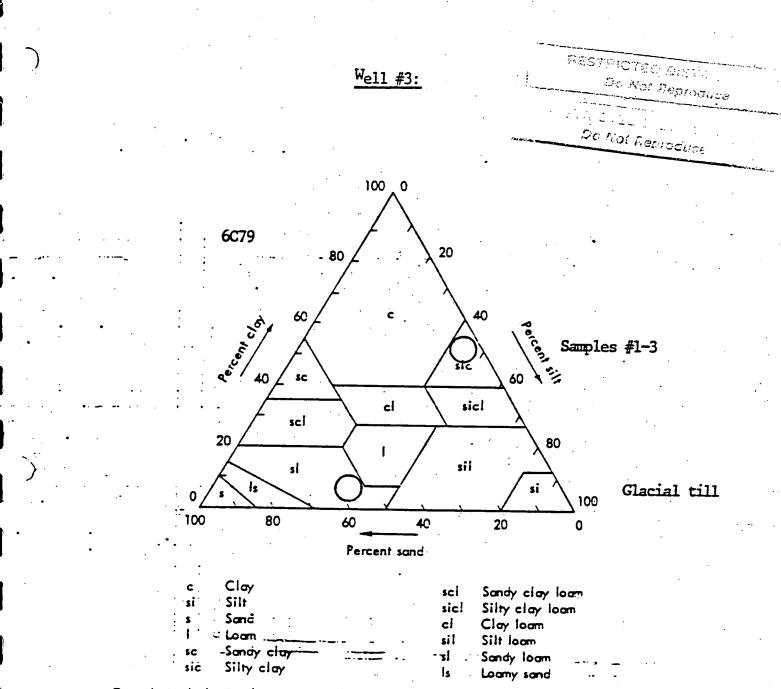
Union Carbide Corporation - Niagara Falls

One additional monitoring well was installed on the Union Carbide Corporation's property southeast of the present landfill site in Niagara Falls. Last September, two monitoring wells were placed in the landfill.

Large boulders were encountered at the original placement site for well #3. This site was selected by Mr. James Foreman of Union Carbide. Six borings were augered in an attempt to reach bedrock. The extremely hard cherty dolomitic and granitic boulders were encountered at the following depths:

Bore number	Depth to hard boulders \star
1 .	11.2
2	9.0
3	5.2
4	5.1
5	5.8
6	5.1

* Feet below surface.


Based on the difficulties encountered at the original placement site, permission was given to move the location further to the southeast to avoid the bouldery glacial till. This did not compromise the intended purpose of this well, to monitor the internal water table some distance from the landfill.

A stone-free clayey and silty lake sediment mantles glacial till at the original and relocated bored sites. This is similar to the glacial sediment sequence.indicated in the Niagara County soil survey. The lake sediment was thinner and containing less clay at the original placement site than at the relocated site. A natural perched water table exists near the surface during wetter seasons. Water was detected in the thin glacial till yet soil coloration would not suggest this moisture regime in this zone. Two borings about 10 feet apart at the relocated well site revealed that the soil sequence was within inches at both sites.

> Prepared by / / / M(wend Donald W. Owens, Soil Scientist

DWO/dew 6C79

	Ĥ		RTH DIMENSION Test' Borings and Logs 797 Center Street • East A	Aurora. New York	<u>-14052</u>	(716) 655-1717 Quantum Content of the second
/	HOLE NO.					SURF. ELEV.
6G79	PROJECT	<u>Union Ca</u> <u>Niagara</u>	rbide Corporation Falls, New York	provimately	120 f+	ern portion of site, a
	CLIENT .	Recra Re	search, Inc.	DATE STARTED	of eas	5/79 COMPLETED 3/20/7
DEPTH		BLOWS ON SAMPLER 12 18 24 N	DESCRIPTION & CLASSIFICATION	4	Well	WATER TABLE & REMARKS
	1 14 1	2 18 30	Moist dark grayish brown h loam (CLAYEY-SILT) topsoil slightly sticky	L. friable.	and ned	Clayey lake sedi- ments to 13.4 ft. over very dense loamy glacial till
					com 1½° slotted and screened clay cuttings	to 14.0 ft. over dolomitic rock.
5	2 13 19	9 26 45	Moist distinctly mottled r brown SILTY-CLAY with vert desiccation cracks and ver coarse silt and very fine ses, extremely firm (stiff	ical gray	with bottom 1½ ¹ ite with clay cu	PIPE NOIES: 15 ft ot 2 in. ID carbon steel pipe install with 2 ft. stickup
			tic, sticky	•	l pipe Benton	above surface, ben tonite with clay cuttings placed fr surface to 8.0 ft. depth, gravel bet- .0 ween 8.0 and 14.1 depths.
10	3 10 11	15 26	grading downward to - Moist grading to extremely	10.0	carbon stee	
			brown SILTY-CLAY, thinly la clays with very thin silt I very firm grading to firm, sticky	minated z	Gravel .	· ·
	20		Extremely moist reddish bro velly sandy loam (SILTY-SAN 15-20% subrounded dark gray mitic gravel, very firm in massive soil structure, non	D) with dolo- place, plastic 14.0		
			Gray microcrystalline dolon Description discontinued at			Water table was 13.
-		OF BLOWS TO		VITH140 Ib.		<u>ft. below surface</u>

Textural triangle showing the percentages of clay (less than 0.062 mm), siit (0.002-0.05 mm), and sand (0.05-2.0 mm) in the basic soil textural classes (adapted from Soil Survey Stail, 1951).

e .

....

EP TOXICITY & LEACHATE

PROCEDURE

t co

ŝ

DRAFT

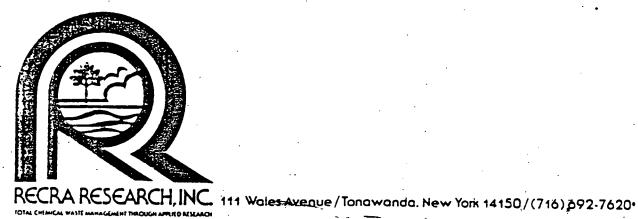
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY TOXICANT EXTRACTION PROCEDURE

- (A) EOUIPMENT
 - (I) An agitator which while preventing stratification of sample and extraction fluid, also insures that all sample surfaces are continuously brought into contact with well-mixed extraction fluid.
 - (II) Equipment suitable for maintaining the pH of the extraction medium at a selected value.

(B) PROCEDURE

- Take a representative sample (minimum size 100 gms) of the waste to be (I) tested. Separate sample into liquid and solid phases. The solid phase ' is defined as that fraction which does not pass through a 0.4-0.5 micron filter medium under the influence of either pressure, vacuum, or centrifugal force. Reserve the liquid fraction under refrigeration 1-5°C (34-41°F) for further use.
- (II) The solid portion of the sample, resulting from the separation procedure above or the waste itself (if it is already dry), shall be prepared either by grinding to pass through a 9.5mm .(3/8") standard sieve or by subjecting it to the structural integrity procedure.
- (III) Add the solid material from paragraph II to 16 times its weight of deionized water. This water should include any water used during transfer operations. Begin agitation and extract the solid for 24 ± 0.5 hours. Adjust the solution to pH 5 and maintain that pH during the course of the extraction using 0.5N acetic acid. If more than 4 ml of acid, for each gm of solid would be required to maintain the pH at 5, then once 4 ml per gram of solid has been added, complete the 24 hour extraction without adding any additional acid. Maintain the sample between 20-30° (68-86°F) during extraction.
- At the end of the 24 hour extraction period, separate the sample into (IV) solid and liquid phases as in paragraph I. Adjust the liquid phase with deionized water so that its volume is 20 times that occupied by a quantity of water at 4°C equal in weight to the initial sample of soild (e.g., for an initial sample of lg, dilute to 20ml). Combine this liquid with the original liquid phase of the waste. This combined liquid, including any precipitate which later forms from it, is the Toxicant Extraction Procedure extract.
 - (ii) Analysis Analyses conducted shall be made in accordance with EPA approved methodologies.

ADUGH APPRIED RESEARCH


NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

LEACHING POTENTIAL TEST

TESTING PROCEDURE:

The following procedure shall be used to evaluate a waste for its potential to readily leach deleterious substances. Triplicate samples of the wastes shall be analyzed to obtain representative results.

- 1. A representative sample of the waste shall be taken according to ASTM Standard Methods.
- 2. Any free liquid contained in the sample shall be removed by decanting or filtering. Such free liquid shall be analyzed in accordance with 3 below and the solid material in accordance with 4 and 5 below.
- 3. A qualitative and quantitative analysis of the free liquid shall be preformed in accordance with accepted standard methods. Suspended particulate matter shall be removed before analyses by filtering the supernatant solution through a 0.45 micron glass filter.
- 4. A qualitative and quantitative analysis of a representative portion of the solid ... fraction shall be performed by standard methods.
- The following procedure shall be used on the residual solid material. 5.
 - A 250 gram sample of the residual solid shall be mixed with one liter of ·a. distilled or deionized water.
 - b. The mixture shall be agitated for 48 hours by shaking or slow stirring.
 - The sample container shall be stoppered and the sample allowed to settle c. for at least three days.
 - d. The supernatant water shall be decanted and filtered through a 0.45 micron glass filter.
 - e. A qualitative and quantitative analysis of the supernatant shall be performed in accordance with accepted standard methods.

LEACH TESTING

.

LEACHING POTENTIAL TEST REPORT

SAMPLING PROCEDURES: Samples of the waste material were collected by personnel of Recra Research, Inc. on 8/22, 8/23, and 8/24 1978. These samples were composited and analyzed in duplicate. -

B. ANALYSES OF LIQUID FRACTION: No free liquid was associated with the sample. ALTRICTED DISTRICT

с. ANALYSES OF SOLIDS FRACTION:

Α.

Do Kol Reprodus.

•	PARAMETER	UNIT OF MEASURE	SAMPLE IDENTIFICATION COMPOSITE - MEAN OF DUPLICATE TESTS
	Carbon - Chloroform Extractable	mg/g (dry)	20.9
	Phenol	µg/g (dry)	2.6
	pH	Standard Units	8.02
	Chemical Oxygen Demand	mg/g (dry)	439
	Chloride (Water Soluble)	ug/g (dry)	73.8
	Fluoride (Water Soluble)	µg/g (dry)	0.002
\	Cyanide (Free - Water Soluble)	ug/g (d ry)	<1.0
ļ	Total Grease & Oils	mg/g (dry)	<1.0
	Hydrocarbon Grease & Oils	mg/g (dry)	4.95
	Polar Grease & Oils	mg/g (dry)	1.45
	Total Chlorinated Hydrocarbons	μg/g (dry) as Chlorine; Lindane Standard	29.6
	Hexavalent Chromium (Water Soluble)	µg/g (dry)	<0.040
	Total Aluminum	ug/g (dry)	. 819
	Total Arsenic	ug/g (dry)	0.029
	Total Cadmium	ug/g (dry)	0.30
	Total Chromium	ug/g (dry)	10.6

RECRA RESEARCH, INC. 111 Wales Avenue/Tonawanda, New York 14150/(716) 692-7620 TOTAL CHEMICAL WASTE MANAGEMENT THROUGH APPLIED RESEARCH

Ē

Continued .

ANALYSES OF SOLIDS FRACTION: (continued)

1.31

PARAMETER	UNIT OF MEASURE	SAMPLE IDENTIFICATION COMPOSITE - MEAN OF DUPLICATE TESTS
Total Copper	µg/g (dry)	33.7
Total Iron	µg/g (dry)	253
Total Lead	µg/g (dry)	10.5
Total Mercury	µg/g (dry)	<0.020
Total Nickel	µg/g (dry)	24.0
Total Selenium	µg/g (dry)	<0.003
Total Zinc	µg/g (dry)	19.2
Total Solids	7	98.8
	• •	

Samples of waste carbon were collected on 8/22, 8/23, and 8/24/78 by COMMENTS: Recra personnel. The waste samples were composited and analyzed in duplicate. The mean of the analyses are presented. Hexavalent Chromium, Chloride, Fluoride, Cyanide (free) and pH were measured as water soluble. The composited waste carbon was mixed in a 1:4 ratio with deionized water, shaken, filtered and analyzed. The reported water soluble results are blank corrected. Total Halogenated Organic analyses are screening tests not intended for qualification or quantification of any particular constituent.

LEACHING TESTS ON SOLIDS FRACTION:

	PARAMETER	UNIT OF MEASURE	SAMPLE IDENTIFICATION COMPOSITE - MEAN OF DUPLICATE TESTS
	Carbon - Chloroform Extractable	mg/l	<2.0
I i	Phenol	mg/l	0.110
_	Total Organic Carbon	mg/l	<1.0
1	pH	Standard Units	8.02
(Chemical Oxygen Demand	mg/l	16.2 [;]
	Chloride	mg/l	18.2

RA RESEARCH, INC. 111 Wales Avenue/Tonawanda. New York 14150/(716) 692-7620

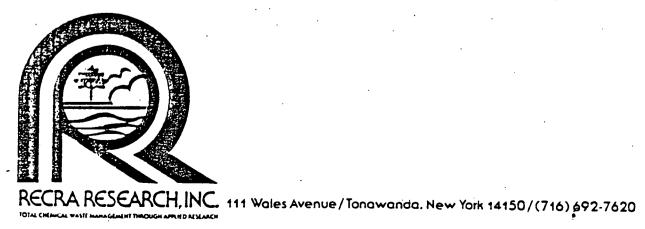
Continued . .

F

D.

えりの

LEACHING TEST ON SOLIDS FRACTION:


(continued)

/			· · ·
	PARAMETER	UNIT OF MEASURE	COMPOSITE - MEAN OF DUPLICATE TESTS
	Fluoride	mg/l	0.569
	Cyanide (free)	mg/1	<0.3
	Total Grease & Oils	mg/l	<1.0
	Hydrocarbons Grease & Oils	mg/1	<1.0
	Polar Grease & Oils	mg/l	<1.0
	Total Chlorinated Hydrocarbons	µg/l as Chlorine, Lindane Standard	3.70
	Hexavalent Chromium	mg/l	<0.01
	Soluble Aluminum	mg/l	<0.03 / 5 🐔 /
	Soluble Arsenic	µg/l	<3.5
	Soluble Cadmium	mg/l	<0.003
	Soluble Chromium	mg/l	<0.003
	Soluble Copper	mg/l	0.005 / 🖧 😤 /
	Soluble Iron	mg/l	<0.01
	Soluble Lead	mg/l	<0.01 <0.02 <0.5
	Soluble Mercury	ug/1	<0.5
	Soluble Nickel	mg/l	<0.02
•	Soluble Selenium	µg/1	<2.5
	Soluble Zinc	. mg/1	0.007
	· •		

X

ROBERT K. WYETH 5 LABORATORY DIRECTOR

RECRA RESEARCH, INC.

 The second s Co Not Reproduces

RESTRICTED. DISTRIBUTION

2. Not Reproduce

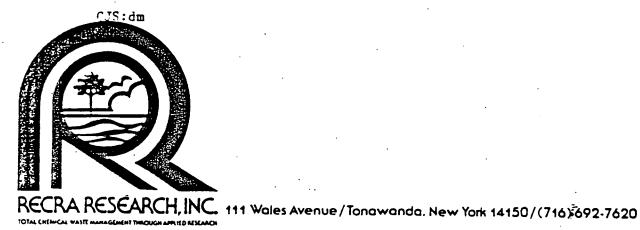
October 31, 1978

Mr. James E. Foreman, III Union Carbide Corporation Carbon Products Division P. O. Box 887 Niagara Falls, New York 14302

Application for Treatment or Disposal of an Industrial or Hazardous Re: Waste Stream (Form 47-19-7) and Leaching Potential Test Report (Form 47-15-6)

Dear Jim:

Please find enclosed the above referenced forms which are completed and awaiting your signature. Dr. K. C. Malinowski will be meeting with Mr. Banaszak of the New York State Department of Environmental Conservation, Region 9 on Wednesday, November 1, 1978 to present these signed forms and answer any questions pertaining to procedures and/or results.


If you have any questions, please contact the undersigned.

Yours very truly,

RECRA RESEARCH, INC.

- Stellucht

C. James Stellrecht Technical Representative

ANALYTICAL RESULTS UNION CARBIDE CORPORATION - CARBON DIVISION WASTE CARBON ANALYSES

Sample Date: 8/22-24/78 Report Date: 10/31/78

Parameter	Units of Measure	Sample Identification Carbon Composite-Mean of Duplicate tes
Carbon Chloroform Extract	mg/g (dry)	20.9
Phenol	µg/g (dry)	2.6
Chemical Oxygen Demand	mg/g (dry)	439
рН	Standard Units	8.02
Hexavalent Chromium (Water Soluble)	µg/g (dry)	<0.040
Chloride (Water Soluble)	µg/g (dry)	73.8
)oride (Water Soluble)	µg/g (dry)	73.8 0.002 <1.0
Cyanide (Free-Water Soluble)	µg/g (dry)	<1.0
Total Grease & Oil	mg/g (dry)	6.66
Hydrocarbon Grease ६ Oil	mg/g (dry)	4.95
Polar Grease & Oil	mg/g (dry)	1.45
Total Solids	e. 9	98.8
Total Alumimum	µg/g (dry)	819

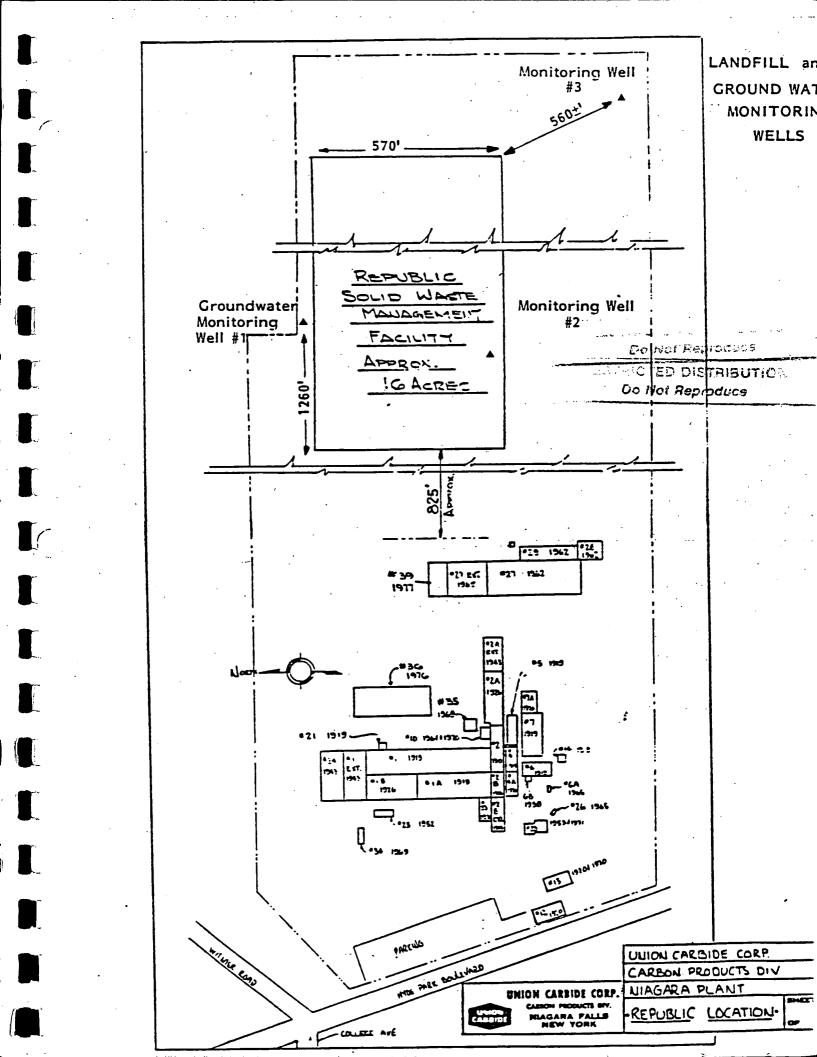
Continued

RECRA RESEARCH, INC. 111 Wales Avenue/Tonawanda. New York 14150/(716)_692-7620

ō, 31		
Parameter	Units of Measure	Sample Identification Carbon Composite-Mean of Duplicate tes
)al Arsenic	µg/g (dry)	0.029
Total Cadmium	,ug/g (dry)	0.30
Total Chromium	,ug/g (dry)	10.6
Total Copper	μg/g (dry)	33.7
Total Iron	µg/g (dry)	253
Total Lead	,ug/g (dry)	10.5
Total Mercury	μg/g (dry)	< 0.020
Total Nickel	μg/g (dry)	24.0
Total Selenium	Jug/g (dry)	۲٥.003 5 2
Total Zinc	ug/g (dry)	19.2
Total Halogenated Organics	یg/g (dry) as Chlorine; Lind Standard	29.6 Iane

Page 2 of 2

)MENTS:


· 9/ 10

Samples of waste carbon were collected on 8/22, 8/23 and 8/24/78 by Recra Personnel. The waste samples were composited and analyzed in duplicate. The mean of the analyses are presented. Hexavalent chromium, chloride, fluroide, cyanide (Free) and pH were measured as water soluble. The composited waste carbon was mixed in a 1:4 ratio with deionized water, shaken, filtered and analyzed. The reported water soluble results are blank corrected. Total Halogenated organic analyses are screening tests not intended for qualification or quantification of any particular constituent.

For Recra Research,	Inc. Calt K lyeth
Date:	10/31/28

RECRA RESEARCH, INC. 111 Wales Avenue/Tonawanda. New York 14150/(716) 592-7620

UNION CARBIDE CORPORATION P.O. BOX 887, NIAGARA FALLS, NY 14302 CARBON PRODUCTS DIVISION

April 30, 1984

RESTRICTED DISTRIBUTIO

- Do Not Reproduce

New York State Dept. of Environmental Conservation 50 Wolf Road Albany, New York 12233

Attn: Mr. Joel W. Benjamin

Re: Notice of Incomplete Application Waste Transporter Permits

Dear Mr. Benjamin:

Per our discussion, I enclose the results of the agreed-upon EP toxic analysis performed on representative samples of our carbon/water slurry located at Union Carbide Corporation, Carbon Products Division, Niagara Plant, National and Republic Locations.

The enclosed analysis will indicate to your office that the carbon/water slurry mentioned as Item #13 of your Notice of Incomplete Application, is a nonhazardous material (copy enclosed), and can be handled by our past permitted trucks to our permitted Solid Waste Facility.

In addition, the results of this testing <u>will not require</u> the Hazardous Waste Transportation financial security requirements as mentioned as Item #12 of your same notice.

We trust that we have answered all your questions and that your office will now forward our Industrial Transporter Permits (four trucks) as soon as possible.

Should there be any questions regarding any portion of the submittal, please call my office at (716) 278-3718.

Very truly yours,

Michael & Stiffam

Environmental Coordinator

M.G.Steffan baf

CC: Mr. M.A.Balent

Mr. Robert Mitrey New York State, Dept. of Environmental Conservation Region 9 600 Delaware Avenue, Buffalo, N.Y., 14202

NULLE UF INCOMPLETE APPLICATION New York State Department of Environmental Conservation f. 50 Wolf Road, Albany, New York 12233 ENGINEERING DEPT. Union Corbide Corp. P.O. Box 887 Nicgara Italla, N.Y. OCT 1 2 1983 U.C.C.C.D. Henry G. Williams Commissioner Dear Applicant: 14302 We have received your application for a Waste Transporter Permit. Upon review of the application, it was determined that the following information was either missing or inaccurate. Please note that the items checked below are in need of attention before the application can be considered complete. 1. Information concerning your business address and/or the location of where your vehicles are garaged is either missing or incomplete. Please note, a post office box is not an acceptable address for vehicle location. 2. Information concerning vehicles is missing/incomplete. 3. The check for the permit fee was missing/insufficient. The basic fee is \$25 for one vehicle plus \$5 for each additional vehicle used. 4. Information concerning the physical and chemical characteristics of the waste handled is missing/incomplete. 5. Location and manner of disposal information is missing/incomplete. 6. Location and manner of disposal is not acceptable. 7. Applicant MUST sign and date the application. 8. Signatures from the owner or operator of receiving stations for site(s) were missing. 9. Annual report forms were missing/incomplete. Blank forms are attached. 10. The Industrial Waste Collector Permit Form Continuation (SW-14) was missing/incomplete. Blank forms are attached. 11. Names and addresses for all waste generators for the calendar year 19___ must be provided. 12. Proof of insurance is missing or inadequate. Refer to attachment. 13. Other - EP FOX:C -We would appreciate your prompt attention to the above mentioned items. Should there by any questions, please contact us at (518) 457-3254. Sincerely,

Bureau of Hazardous Waste Operations Division of Solid and Hazardous Waste ANALYSIS OF FOUR CARBON SLURRY SAMPLES

AS REQUIRED FOR PERMIT NO. 32N03

8-1.

Report Prepared For

UNION CARBIDE CORPORATION

CARON PRODUCTS DIVISION

.by

ADVANCED ENVIRONMENTAL SYSTEMS, INC.

Prepared by:

December 5, 1983

RESTRICTED DISTRIBU

De Not Reproduce

£1.CUIZETHIS 22:17.

0.0.0.0.2.2. WAGARA IL DAT

6 1993

AES - Report AFE

ŝ

m. Costa

Diane M. Costantino - GC Division

.

nor Boynut

Leonard Borzynski - Metals Division

Jour An Mit () currell. - Quality Control Verification W. Joseph McDougall

RESTRICTED DISTRIBUTICO De Nol Reproduces

Do Hol Reproduce

ŝ

SCRIBUTIC

SCOPE OF WORK

This work was performed to fulfill the requirements of New York State Department of Environmental Conservation, Bureau of Hazardous Waste Operations, Division of Solid and Hazardous Waste. The DEC has required analysis of carbon slurries generated at the Union Carbide Corporation, Carbon Products Division, Niagara Plant, to determine if the waste material exceeds any of the maximum concentrations of contaminants characteristic of Extraction Procedure (EP) Toxicity¹. This test has been required for the Republic Solid Waste Management Permit No. 32N03.

SAMPLE COLLECTION

A composite sample of carbon slurry was collected from four (4) sumps, or basins, by William Knight on October 31, 1983. Each of the four basins; SBN1, SBR1, SBR2, and SBR3, were divided into an imaginary three-dimensional grid² of sampling points and then six (6) sampling points were selected from a table of random numbers³. Twenty-four (24) samples were collected with a stainless steel Bacon Bomb and delivered into a 500 ml glass container with a Teflon-lined lid.

The nature of the settled material and the sampling apparatus was such that sampling at the imaginary grid intersects was approximate at best.

The composite sample was transported directly to the AES laboratory.

¹ Federal Register, Vol. 45, No. 98, Monday, May 19, 1980

² Sampling Guidelines - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, 2nd Edition, US EPA 1982

³ Table Z - Courtesy of Rand Corporation

BESTRICTED DISTRUCTO

Do Not Reproduce

ANALYTICAL METHODOLGY

...

Since the material was homogeneous, the sample was stirred by hand, and a representative >100 gram aliquot was removed for extraction.

Analyses were performed in strict accordance with methods described in "Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods", SW-846, 2nd Edition, US EPA 1982.

The method of standard additions was used in the analysis of metals.

RESTRICTED DE LO RESTRICTED

F

Do Not Reprodura

Table 1. EP Toxicity Analysis for Metals¹ (Expressed as milligrams per liter, or ppm)

				•
Analysis	SBN1	SBR1	SBR2	SBR3
Arsenic	0.026	0.026	0.021	0.022
Barium	<5.0²	<5.0	<5.0	<5.0
Cadmium	<0.5	<0.5	<0.5	<0.5
Chromium	<1.0	<1.0	<1.0	<1.0
Lead	<2.5	<2.5	<2.5	<2.5
Mercury	<0.001	<0.001	<0.001	<0.001
Selenium	<0.05	<0.05	<0.05	<0.05
Silver	<1.0	<1.0	<1.0	<1.0
			•.	1

¹ Analyses were performed by method of standard additions

RESULTS

² (<) Less than reportable limits. This is a function of the detection limit of the analysis and the dilution factor associated with the method of standard additions.

····	·	
	PESTAPETED DISTRIB	S. Carlos
Ser and and a	Do Nol Reprocue	ş
 *	Do Not Repros	Uc y

RESULTS

Table 2. EP Toxicity Analysis for Pesticides and Herbicides ((Expressed as micrograms per liter, or ppb)

Analysis	SBN1	SBRL	SBR2	SBP3
Lindane	<0.01 (<0.01) ¹	<0.01	<0.01	<0.01
Endrin	<0.01 (<0.01) ¹	<0.01	<0.01	<0.01
Methoxychlor	<0.10 (<0.10) ¹	<0.10	<0.10	<0.10
Toxaphene	<0.81 (<0.81) ¹	<0.81	<0.81	<0.81
2,4D	<0.10	<0.10	<0.10	<0.10 (<0.10)
2,4,5TP (Silvex)	<0.01	<0.01	<0.01	<0.01 (<0.01) ¹

¹ Duplicate Analysis

CUALTRY 7.950RADCE

Analysis	Туре	Original Concen.	Added Concen.	Expected Concen.	Reported Concen.	Acceptable 95% Confidence Limits
Arsenic	ЕРА	0.060	-	0.060	0.056	0.037 - 0.076
Barium	EPA	10.0		10.0	10.5	9.4 - 11.4
Cadmium	EPA	1.30	. – '	1.30	1.37	0.95 - 1.51
Chromium	ΕΡΛ	2.50	-	2.50	2.79	1.96 - 2.88
Lead	ЕРА	0.80	-	0.80	0.77	0.65 - 0.96
Mercury	EPA	0.0035	· 🛥	0.0035	0.0020	0.0016 - 0.0050
Selenium	EPA	0.030	-	0.030	0.031	0.022 - 0.035
· · · · · · · · · · · · · · · · · · ·	¥s _b .	1	— • • • • • • • • • • • • • • • • • • •		ST. ICTED	
•			RESTRICTO Do M	D DISTRIBUTIO		•
•		:* .			SUTIO	

Table 3. Results of EPA Test Standards for Metals (Expressed as milligrams per liter, or ppm)

·• 11

QUALITY ASSURANCE

....

• .

Table 4. Results of EPA Test Standards for Pesticides and Herbicides (Expressed as micrograms per liter, or ppb)

Analysis	Туре	Original Concen.	Added Concen.	Expected Concen.	Reported Concen.	Percent Recovery
Toxaphene (Pesticide)	ЕРА	4.50	-	4.50	4.93	109.62
2,4,5TP (Herbicide)	EPA	7.00	-	7.00	0.01	None ¹

¹ Quality Control Note: Herbicide quality assurance samples fell below the recovery control limits. It is a common occurance that herbicides are lost during sample extraction.

DUSTRIC FED DISTRIBUTION Do Not Reproduce o Noc Reproduce

TH.

le,of Facility	Republic - Solid Haste Management Facility	Registration I	0, 32.5(3
----------------	--	----------------	-----------

Iress

3501 Hyde Park Blvd., Yown of Siagara, J.Y.

Phone No.

List all industrial wastes which you currently receive, or which you expect to receive. Generic waste types (such as acids containing menols or heavy metals, carcinogenic organics, paint sludges, halogenated solvents or cyanides) are adequate as long as the description is of sufficient detail to permit evaluation of the proposed treatment and disposal method.

Mastes currently handled

Type of Maste	Quantity*	Physical State**	Treatment or Disposal Method
) Carbonaceous materials	<u>6.5 millio</u> n	Solid	Land fill
[)Firebrick	1bs. 1.25 "		н 0
3) <u>Wood</u>	1.0 "	1 1	эр II
· · · · · · · · · · · · · · · · · · ·			
b)	·		
		······································	
3)		· · ·	
	·	<u></u>	
10)		<u></u>	
		· · · · · · · · · · · · · · · · · · ·	
1 2)	•	<u></u>	
:3)	•	<u> </u>	
([*])			
:5)		·	
. Mastes you expect to receive	- <u> </u>	•	
Type of Waste	Expected <u>Quantity</u> *	Physical State**	Treatment or Disposal Nethod
1) <u>Same as above - item #1</u>			
2)			
3)			(4) (4) (4) (4) (4) (4)
			the second s
		1. 1. 19	
lition gellons per year Dityrid, selid: sludge		-	
		• .	·

REPUBLIC SOLID WASTE MANAGEMENT FACILITY

INTRODUCTION

This updated Operational Plan is a further supplement to the original plans and specifications submitted by Union Carbide Corporation to the New York State Department of Environmental Conservation on April 3, 1978 and August 11, 1981.

The original plans and specifications were approved and Permit Number 2020 was issued by the NYS DEC with certain Special Conditions. On August 11, 1981 a Permit Renewal Application was submitted by Union Carbide Corporation with updated plans and was approved as Permit Number 32NO3 with Special Conditions.

The wastes that are being disposed of are:

Carbonaceous materials	=	4.50 million lbs./yr.	
Firebrick	=	.92 million lbs./yr.	
Wood	=	.66 million lbs./yr.	
		6.08 million lbs./yr.	

Based upon a bulk density of about 50 lbs./cu.ft., the total volume of wastes equates to 4250 cubic yards per year.

PHYSICAL SITE

The site is located east of Hyde Park Boulevard, Town of Niagara, Niagara County, New York. The site is part of the Republic production facility of Union Carbide Corporation. This site has been used for waste disposal for over 40 years. West of the landfill is the production facility, north is a Niagara Mohawk Power Corporation power transmission right-of-way, east is a Niagara Mohawk power transmission right-of-way and south is a residential area. The residential area is separated from the landfill by a distance of about 400 feet of which about 100 feet is presently treed along the eastern 700 feet.

The prevailing winds are from the southwest.

EPA FORMS 2070-12 AND 2070-13

≎EPA ,	POTENTIAL HA PRELIMINA PART 1 - SITE INFOR	ARY ASSES	SSMENT		L IDENTIF	TICATION 2 SITE NUMBER 932035	
IL SITE NAME AND LOCATION							
Union Carbide Republic Plar	nt Landfill		le Park Bo	n specific location ulevard	N IDENTIFIER		
Niagara Falls	<u> </u>	04 STATE NY	05 ZIP CODE 14302	Niagara		07COUNTY CODE	08 CONG DIST
	LONGITUDE 79° 01' 35 0"		· · · · · · · · · · · · · · · · · · ·	·			
Hyde Park Boulevard, just so	outh of the inte	rsection c	of Witmer	Road and Co	ollege Av	e.	
IL RESPONSIBLE PARTIES				· · · · · · · · · · · · · · · · · · ·			
Union Carbide			. Box 887	readenius)			
Niagara Falls .	<u> </u>	04 STATE NY	05 21 CODE 14302	06 TELEPHONE (716) 278			
OPERATOR (# course of a contrast (ref) courses) Union Carbide			Box 887			· · · · · · · · · · · · · · · · · · ·	
Niagara Falls		10 STATE NY	11 ZIP CODE 14302	(716) 278			
			L			·	
	(Agency name (Soncorv)	• •	C. STAT			NICIPAL	
CXA. PRIVATE B. FEDERAL:	VEAR B. UNCONT	+ ROLLED WAST	_ C G. UNK			· · · · · · · · · · · · · · · · · · ·	NONE
CA. PRIVATE B. FEDERAL:	AN ADDY) / YEAA ZARD BY (Check of the appy) A. EPA B E. LOCAL HEALTH	EPA CONTRA OFFICIAL	E SITE (CIRCLA 1)	NOWN DATE RECEIV		· · · · · · · · · · · · · · · · · · ·	NONE
CA. PRIVATE C B. FEDERAL:	ALE ADDY) / YEAA ZARD BY (CHECK of PHE ADDY) D A. EPA D B CONTRACTOR NAME	epacontra Official (sj:	E SITE (CIRCLA 1)	NOWN DATE RECEIV			NONE
CXA. PRIVATE D. B. FEDERAL:	AUX ADDY) B. UNCONT ZARD	epacontra Official (sj:	ESITE ICERCIA IO ESITE ICERCIA IO D.F. OTHER: an Engined 34 Pres	NCWN DATE RECEIV D.C. STATE			NONE
CXA. PRIVATE B. FEDERAL: F. OTHER: OWNER/OPERATOR NOTIFICATION ON FILE (CROSS of a CARCA 3001 DATE RECEIVED: OXYLED A RCRA 3001 DATE RECEIVED: OXYLED A RCRA 3001 DATE RECEIVED: NO CHARACTERIZATION OF POTENTIAL HA ON SITE INSPECTION X. CHARACTERIZATION OF POTENTIAL HA ON SITE INSPECTION X. CHARACTERIZATION OF POTENTIAL HA ON SITE INSPECTION X. CHARACTERIZATION OF SUBSTANCES POSSIBLY PRESENT CARDONACEOUS WASTE, firebri S DESCRIPTION OF POTENTIAL HAZARD TO ENVIRONME	BY (CHECK OF THE ADDY) A. EPA B. UNCONT BY (CHECK OF THE ADDY) BY (CHECK OF THE ADDY) BY (CHECK OF THE ADDY) CONTRACTOR NAME CONTRACTOR	EPA CONTRA OFFICIAL (ST: Wehr OPEAATION 19 BEGINNERG VI	ESITE ICERCLA IO CTOR DI F. OTNER: an Engined 34 Pres	NCWN DATE RECEIV D.C. STATE ering ent			NONE
QA. PRIVATE B. FEDERAL: F. OTHER:	BY (CHECK OF THE ADDY) A. EPA B. UNCONT BY (CHECK OF THE ADDY) BY (CHECK OF THE ADDY) BY (CHECK OF THE ADDY) CONTRACTOR NAME CONTRACTOR	EPA CONTRA OFFICIAL (ST: Wehr OPEAATION 19 BEGINNERG VI	ESITE ICERCLA IO CTOR DI F. OTNER: an Engined 34 Pres	NCWN DATE RECEIV D.C. STATE ering ent			NONE
CA. PRIVATE B. FEDERAL: F. OTHER: OUNTER/OPERATOR NOTIFICATION ON FILE (CROSS of a CA. RCRA 3001 DATE RECEIVED: OKY CHARACTERIZATION OF POTENTIAL HA I ON SITE INSPECTION X. CHARACTERIZATION OF POTENTIAL HA I ON SITE INSPECTION X. CHARACTERIZATION OF POTENTIAL HA I ON SITE INSPECTION X. CHARACTERIZATION OF POTENTIAL HAZARD TO ENVIRONMA A DESCRIPTION OF POTENTIAL HAZARD TO ENVIRONMA POSSIBLE leaching of phenols X. PRIORITY ASSESSMENT	ENT ANO/OR POPULATION	EPA CONTRA OFFICIAL (S): Wehr DPEAATION 19 BECOMMENT S	E SITE / CFR CLA 10 CTOR C P. OTHER: _ an Engined 34 Pres 149 EHOM	NCWN DATE RECEIV D.C. STATE ering ent			NONE
C F. OTHER: A OWNER/OPERATOR NOTIFICATION ON FILE (CANES AND CARCA 3001 DATE RECEIVED:	ENT ANO/OR POPULATION from carbonace	EPA CONTRA OFFICIAL (S): Wehr DPEAATION 19 BECOMMENT S	E SITE I GERCLA 10 E SITE I GERCLA 10 CTOR C P. OTNER: an Enginer 34 Pres IAR ENOME e.	NCWN DATE RECEIV D. C. STATE ering ent a vear			NONE
CA. PRIVATE D. B. FEDERAL: F. OTHER: A OWNER/OPERATOR NOTIFICATION ON FILE (Choice and A. RCRA 3001 DATE RECEIVED: A OWNER/OPERATOR NOTIFICATION OF POTENTIAL HA ON SITE INSPECTION X. CHARACTERIZATION OF POTENTIAL HA ON SITE INSPECTION X. CHARACTERIZATION OF POTENTIAL DAY VEAN 2 SITE STATUS (Check and) CA. ACTIVE D. B. INACTIVE D. C. UNIXN 4 DESCRIPTION OF SUBSTANCES POSSIBLY PRESENT. Carbonaceous waste, firebric 5 DESCRIPTION OF POTENTIAL HAZARD TO ENVIRONMA POSSIBLE leaching of phenols 7. PRIORITY ASSESSMENT 1 PRIORITY FOR INSPECTION (Check and, Fingh of Potential Check and presently) C. INFORMATION AVAILABLE FROM	BY (Check of the case) A EPA B UNCONT CONTRACTOR NAME CONTRACTOR NAME OJ YEARS OF (CONTRACTOR NAME) CONTRACTOR NAME CONTRACTOR NAME C	EPA CONTRA OFFICIAL (s): Wehr DPEAATION 19 BECOMMON VI S	E SITE I GERCLA 10 E SITE I GERCLA 10 CTOR C P. OTNER: an Enginer 34 Pres IAR ENOME e.	NOWN DATE RECEIV C. STATE ering ent avean			·
CXA. PRIVATE D B. FEDERAL:	ENT ANO/OR POPULATION from carbonace	EPA CONTRA OFFICIAL (s): Wehr DPEAATION 19 BECOMMON VI S	E SITE I GERCLA 10 E SITE I GERCLA 10 CTOR C P. OTNER: an Enginer 34 Pres IAR ENOME e.	NOWN DATE RECEIV C. STATE ering ent avean			·
CXA. PRIVATE D B. FEDERAL:	BY (Check of the case) A EPA B UNCONT CONTRACTOR NAME CONTRACTOR NAME OJ YEARS OF (CONTRACTOR NAME) CONTRACTOR NAME CONTRACTOR NAME C	EPA CONTRA OFFICIAL (S): Wehr DPEAATION 19 BEGUNNING VI S S S S S S S S S S S S S S S S S S S	E SITE (CERCLA 10 CTOR C D F. OTHER: an Engined 34 Pres AR ENOM CHOM	NOWN DATE RECEIV C. STATE ering ent avean			·

·····

··· ·

- . .

. .

≎EF	PA	POT	PRELIMINARY	DOUS WASTE ASSESSMENT EINFORMATION	SITE	LIDENTIFICATI	the second se
L WASTE ST	ATES, QUANTITIES, AN	D CHARACTER	ISTICS				
	TATES , Check at Intel 40017	02 WASTE QUANT	ITY AT SITE	03 WASTE CHARACTE	ERISTICS (Check at that an		
XA. SOLID X8. POWOEI C. C. SLUDGE		TONS .	125,000 ton:	C A. TOXIC C B. CORROL C C. RADIOA C D. PERSIST	CTIVE 👘 🖸 G. FLAMN	ABLE CK. REACT	IVE VE PATIBLE
C D. OTHER	(Seecity)	NO. OF DRUMS					
IIL WASTE T	YPE						
CATEGORY	SUBSTANCE N	IAME	01 GROSS AMOUNT	OZ UNIT OF MEASURE	03 COMMENTS		
SLU	SLUDGE						
OLW	OILY WASTE		8,800	•	oil collected	in drums or sp	read on ro
SOL	SOLVENTS						
PSD	PESTICIDES						<u></u>
000	OTHER ORGANIC CH	HEMICALS					
100	INORGANIC CHEMIC		1	·			
ACD	ACIDS						
BAS	BASES						
MES	HEAVY METALS					•	
IV. HAZARDO	OUS SUBSTANCES (See A	opence for most income	ety case GAS Numbers)	•	· · · · · · · · · · · · · · · · · · ·		
1 CATEGORY	02 SUBSTANCE N	IAME	03 CAS NUMBER	04 STORAGE/DIS	POSAL METHOD	05 CONCENTRATION	06 MEASURE CONCENTRAT
	phenols		108-95-2				
	heavy metals						
	oil						
	coal tars						
	petroleum tar	S			· · ·	•	
	1,1,1-trichlord	athene					
		Jethane					
		<u></u>					
				1			1
					······································		1
	· · · · · · · · · · · · · · · · · · ·			+	<u> </u>		1
				· · · · · · · · · · · · · · · · · · ·			1
					· · · · · ·		1
		<u> </u>					· ·
				<u></u>	<u> </u>		1
			<u> </u>	<u></u>		1	<u> </u>
V. FEEDSTO	CKS (See Appende to CAS Anone			1			
CATEGORY		CK NAME	02 CAS NUMBER	CATEGORY	01 FEEDSTO		02 CAS NUMB
FDS	•			FDS			
FDS				FDS			
FDS				FDS			
FDS	1			FDS			

!

.

File information provided by Union Carbide Community Right-to-Know, Volume III, April 1, 1985, p. 214 Interview, Dorr-Millock, 11/15/78

1

EPA FORM 2070-12 (7-81)

•				
مى يې يې يې د بې د بې د بې د بې د بې د بې				CATION
	HAZARDOUS WASTE SITE	· .	OI STATE OZ	STE MUMBER
PARTS-DESCRIPTION OF	HAZAROUS CONDITIONS AND	NCIDENTS	s <u> </u>	
HAZARDOUS CONDITIONS AND INCIDENTS				
21 CA. GROUNDWATER CONTAMINATION 23 POPULATION POTENTIALLY AFFECTED:	02 81 CESERVED (DATE:)	D POTEMAL	
3 on-site monitoring wells show conta				
DI C'B. SURFACE WATER CONTAMINATION	02 COBSERVED (DATE:)	D POTENTIAL	C ALLEGE
3 POPULATION POTENTIALLY AFFECTED:				
Unused pond adjacent to landfill.				
01 🗇 C. CONTAMINATION OF AIR 03 POPULATION POTENTIALLY AFFECTED:		}	O POTENTIAL	C ALLEGE
HNU did not detect any air release		•		
MNO and hot detect any an resource			•	
				· .
01 D D. FISE/EXPLOSIVE CONDITIONS	02 COBSERVED (DATE:)	C POTENTIAL	
03 POPULATION POTENTIALLY AFFECTED:				
• • •	· · · ·			
)	C POTENTIAL	C ALLEG
03 POPULATION POTENTIALLY AFFECTED:	UA MARAINE DESCRIPTION		,	
Site fenced and guarded.				
01 D.F. CONTAMINATION OF SCIL 16	02 CI OBSERVED (DATE:	·	6 POTENTIAL	C ALLEG
03 AREA POTENTIALLY AFFECTED:				
Waste disposed in landfill, no liner.				
01 C G. DRINKING WATER CONTAMINATION 19	02 CI OBSERVED (DATE:)	D POTENTIAL	
03 POPULATION POTENTIALLY AFFECTED:				·
Groundwater used for industrial and	to			
Surface water intake upstream of si				
GI I H. WORKER EXPOSURE INJURY	02 C CESERVED (CATE:)	O POTENTIAL	C'ALLSO
	CA NARRATIVE DESCRIPTION			
03 WORKERS POTENTIALLY AFFECTED:				
03 WORKERS POTENTIALLY AFFECTED:				
03 WORKERS POTENTIALLY AFFECTED: None reported. 01 GL FOFULATION EXPOSUREAKJURY	02 [] C30ERVED (DATE:)	C POTENNAL	وعيلة ت
03 WORKERS POTENTIALLY AFFECTED:	02 (I OBSERVED (DATE: 04 NARPATIVE DESCRIPTION)	C POTENTIAL	C ALLEG
03 WORKERS POTENTIALLY AFFECTED: None reported. 01 GL FOFULATION EXPOSUREAKJURY			C POTENTIAL	C ALLEG

•

	······································		.*	
·			•	
	• •			
· · ·				
			•	
BOTENTIAL H	AZARDOUS WASTE SITE		I. IDENTIFIC	CATION
	NARY ASSESSMENT		OI STATE 02	SITE MUMBER 932035
	ZARDOUS CONDITIONS AND INCIDEN	TS		002000
IL HAZARDOUS CONDITIONS AND INCIDENTS (Common				
01 I J. DAMAGE TO FLORA	02 - OBSERVED (DATE:)	a 1	POTENTIAL	C ALLEGED
04 MARATIVE DESCRIPTION				
Unknown				
				·
CI CI K. DAMAGE TO FAUNA	02 [] C2SERVED (DATE:)	a	POTENTIAL	
CA MARRATIVE DESCRIPTION (presses namesia) of especies				
Unknown				
01 C L CONTAMINATION OF FOOD CHAIN	02 [] COSERVED (DATE:)		POTENTIAL	C ALLEGED
C4 NARRATIVE DESCRIPTION				•
Unknown	· .			
C1 X M. UNSTABLE CONTAINMENT OF WASTES	02 (] OBSERVED (DATE:)	2	POTENTIAL	C ALLEGED
(Zours Runon: Stancong course, Loanny course	04 NAPRATIVE DESCREPTION			
03 POPULATION POTENTIALLY AFFECTED:	• • • • • • • • • • • • • • • • • • • •			
Drum of oil alleged to be buried, no obser	ven reicase.			
			POTENTIAL	
	02 COSERVED (DATE:)			
None reported.	•			
	·			
<u> </u>			A 497	
01 I O. CONTAMINATION OF SEWERS, STORM DRAWS, WWTPS	OZ C CESERVED (DATE:)	. 🖸	POTENTIAL	L ALLEGED
None reported.				
A dire reported.				
· · · · · · · · · · · · · · · · · · ·	·			<u></u>
01 C P. ILLEGAL/UNAUTHORIZED DUMPING	02 1 C2SERVED (DATE:)		POTENTIAL	C ALLEGED
CA NARRATIVE DESCRIPTION	-			
All waste dumping controlled by Union Ca	arbide.			
	· · · · · · · · · · · · · · · · · · ·			
05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLE	GED HAZAFOS			
Unknown	_ · ·			
IL TOTAL POPULATION POTENTIALLY AFPECTED:				
N. COMMENTS				
			<u>.</u>	
1		<u></u>	· · · · · · · · · · · · · · · · · · ·	
Site visit DEC Files	escribed by Union Carbide	•		
Information d Water quality data	escribed by onton carbide		· ·	
	an and a fur the an a function of the state of the		فمسموها وأسافان معجدا والمحاجزان	
(1717) (1717)				

.

	PO'	TENTIAL HAZA	RDOUS	WASTE SITE		I. IDENT	FICATION	
\$epa		SITE INSPEC	CTION P	REPORT		oi state NY	02 STE NUMBER 932035	1
IL SITE NAME AND LOC								
OT SITE NAME (Legal commen, o					SPECIFIC LOCATION	DENTIFIER		
Union Carbide I	Republic Plant Land	lfill	-	le Park Boul			· · · · · · · · · · · · · · · · · · ·	
Niagara Falls			NY	14302	Niagara		CODE	V 08 CONK DIST
4 3° 07' 14".	0 79 01 3 5"	10 TYPE OF OWNERS	E 🗆 8. F			D. COUNT		PAL.
IL INSPECTION INFORM 01 DATE OF INSPECTION	AATION 02 SITE STATUS	03 YEARS OF OPER	ATION					
3 / 27/85			19 34	Present		UNKNOWN		
04 AGENCY PERFORMING INS		- -			•			
CALEPA CBLEPAC	CONTRACTOR	n Engineering	_ 0 C. N [0 Q. C	_	MUNICIPAL CONTR		(Name of thing	
Timothy R. Roe		06 771.2		logist	Wehran		08 TELEPHON	ENQ.
					Engine	ering	(914)343-	
09 OTHER INSPECTORS		. 10 TITLE	Geo	logist	Wehran		12 TELEPHONE	
Kevin J. Burns					Engine	ering	(914)343-	-0660
							()	
				-			()	
	·						()	
	·						()	
13 SITE REPRESENTATIVES M	TERVIEWED	14 TILE		15ACORESS			16 TELEPHONE	
Michael Balent		Plant Engi Environme		P.O. Box 8	87, Niagara	Fails, r	14(716) 278	-3541
Michael Steffan		Environme Engineer		P.O. Box 88	87, Niagara I	Falls, N	¥ (716) 278	-3718
		_					()	
							()	
							(.)	
	,						()	
						•		
17 ACCESS GAINED BY	18 TIME OF INSPECTION	19 WEATHER CON			· · · ·			
Ö PERMISSION U WARRANT	11:00 a.m.	Clear,	Sunny					
V. INFORMATION AVAIL	ABLE FROM					· .		
Dennis Fenn		Wehran En	-	ing			(914)343-(
	SITE INSPECTION FORM	05 AGENCY		SANIZATION	07 TELEPHONE	<i>i</i> a.	08 DATE	
04 PERSON RESPONSIBLE FOR			Weh		(914)343-			, 85

•

.

•

· . •

\$EP	A	P	OTENTIAL HAZAR SITE INSPECT PART 2 - WASTE	ION REPORT		I. IDENTIFICATI	-
I MACTE CT	ATES, QUANTITIES, AN	DCHARACTE					· · · · ·
	ATES (Check of the span)	02 WASTE QUA	the second s	03 WASTE CHARACT	TERISTICS (Check of their appry)		
CXA SOLID M 8. POWDER. C C. SLUDGE	FINES C. F. LIQUE	· TONS		E A. TOXIC E B. CORRIC C C. RADIO E D. PERSK	SIVE C F. INFECTION ACTIVE C G. FLAMMAR	US DJ. EXPLOS	NE VE VATIBLE
D. OTHER	(Speedy)	NO. OF DRUM					
IL WASTE TY	PE						
CATEGORY	SUBSTANCE N	AME	01 GROSS AMOUNT	2 UNIT OF MEASUR	E 03 COMMENTS		
SLU	SLUDGE						
OLW	OILY WASTE		8,800 gals.		oil collected in	n drums or spi	read on r
SOL	SOLVENTS				·		
PSD	PESTICIDES						
220	OTHER ORGANIC CI	IEMICALS				<u></u>	
IOC	INORGANIC CHEMIC	ALS					
ACD	ACIOS						
BAS	BASES						
MES	HEAVY METALS				1		
V. HAZARDO	US SUBSTANCES (See A	mands for made inco	wantly called CA.8 Mundarity				
1 CATEGORY	02 SUBSTANCE N	AME	03 CAS NUMBER	04 STORAGE/DE	SPOSAL METHOD	S CONCENTRATION	OB MEASURE
	phenols		108-95-2				·
	heavy metals	• •				·	
	oil						ļ
	coal tars						L
	petroleum tar	S					<u></u>
	1,1,1-trichloro	oethane					
	<u> </u>						
	•						
V FEEDETO	CXS (See Accounts for CAS Mun					. ·	
CATEGORY	01 FEEDSTOO		02 CAS NUMBER	CATEGORY	OI FEEDSTOC	KNAME	02 CAS NUME
	UTPEEDSIG			FDS			
F09				F03			
FDS				FDS			
FDS				FDS			
FDS					1		
VI. SOURCES	Union Carbid	e operatio	ns plan		<u> </u>	<u></u>	
	Community Interview, D		Know, Volume Il ck, 11/15/78	I, April 1, 19	985, p. 214		

.

EPA FORM 2070-13(7-81)

.

· · ·

POTENTIAL POTENTIAL	L HAZARDOUS WASTE SITE		L IDENTIF	
	INSPECTION REPORT		OI STATE O	32035
PART 3 - DESCRIPTION OF	HAZARDOUS CONDITIONS AND I	NCIDENTS		
IL HAZARDOUS CONDITIONS AND INCIDENTS				
	02 E OBSERVED (DATE:)	D POTENTIAL	
03 POPULATION POTENTIALLY AFFECTED:	_ 04 NARRATIVE DESCRIPTION			
3 on-site monitoring wells show conta	amination			
· · · · · · · · · · · · · · · · · · ·	·			
01 CB. SURFACE WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED:	02 CI OBSERVED (DATE:)	D POTENTIAL	
Unused pond adjacent to landfill.		•		
01 C. CONTAMINATION OF AR 03 POPULATION POTENTIALLY AFFECTED:	02 C OBSERVED (DATE:			C ALLEGE
HNU did not detect any air release				
		•		
01 C D. FIRE/EXPLOSIVE CONDITIONS				
03 POPULATION POTENTIALLY AFFECTED:	_ 04 NARRATIVE DESCRIPTION			
01 C E DIRECT CONTACT 03 POPULATION POTENTIALLY AFFECTED:)	D POTENTIAL	
	_ 04 NARRATIVE DESCRIPTION			
Site fenced and guarded.				
01 CAF. CONTAMINATION OF SOL 16	02 - OBSERVED (DATE:	1	2 POTENTIAL	
03 AREA POTENTIALLY AFFECTED:	04 NARRATIVE DESCRIPTION	/		
Waste disposed in landfill, no liner.	· · · ·			
· .				
01 I G. DRINKING WATER CONTAMINATION 19	02 CBSERVED (DATE:	;		
Groundwater used for industrial and Surface water intake upstream of site				
Surface water intake upstream of site	c.			
01 CH. WORKER EXPOSURE/INJURY	02 C OBSERVED (DATE:)		
03 WORKERS POTENTIALLY AFFECTED:	04 NARRATIVE DESCRIPTION			
None reported.				
-				
01 CI. POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY AFFECTED:	02 CI OBSERVED (DATE:)		
None reported.		-		

· · ·

•••

•

.....

	SITE	HAZARDOUS WASTE SITE ISPECTION REPORT IAZARDOUS CONDITIONS AN		I. IDENTIFIC 01 STATE 02 NY	
L HAZARDOUS CONDITIONS AND INC	JULETEIS (Continued)	02 - OBSERVED (DATE:			
14 NARRATIVE DESCRIPTION			1		
Unknown					
· ·	:				
		02 0 OBSERVED (DATE:)		
Unknown	al shecari				
UIKIIOWII					
	V)		
A NARRATIVE DESCRIPTION		•			
Unknown		•		н. -	
¥					
M. UNSTABLE CONTAINMENT OF W)	S POTENTIAL	
3 POPULATION POTENTIALLY AFFECTED	•	_ 04 NARRATIVE DESCRIPTION			
Drum of oil alleged to be t	ouried, no obse	erved release.			
DI C N. DAMAGE TO OFFSITE PROPERTY DA NARRATIVE DESCRIPTION	1)	D POTENTIAL	
None reported.		•			
None reported.		•			
None reported.	TORM DRAINS, WWT)	POTENTIAL	
01 🖸 O. CONTAMINATION OF SEWERS, S	TORM DRAINS, WWT	Pa 02 C OBSERVED (DATE:			
01 I O. CONTAMINATION OF SEWERS, S 04 NARRATIVE DESCRIPTION	TORM DRAINS, WWT)	POTENTIAL	
01 C O. CONTAMINATION OF SEWERS, S MARRATIVE DESCRIPTION None reported.					
01 I O. CONTAMINATION OF SEWERS, S 04 NARRATIVE DESCRIPTION		Pa 02 C OBSERVED (DATE:		POTENTIAL	
DI C P. ILLEGAL/UNAUTHORIZED DUMPIN A NARRATIVE DESCRIPTION None reported.	NG	02			
DI C P. ILLEGAL/UNAUTHORIZED DUMPH	NG	02			
DI C P. ILLEGAL/UNAUTHORIZED DUMPIN A NARRATIVE DESCRIPTION None reported.	NG led by Union (02 🗆 OBSERVED (DATE: - Carbide.			
DI C O. CONTAMINATION OF SEWERS. S A NARRATIVE DESCRIPTION None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPH A NARRATIVE DESCRIPTION All waste dumping control	NG led by Union (02 🗆 OBSERVED (DATE: - Carbide.			
DI C O. CONTAMINATION OF SEWERS. S A NARRATIVE DESCRIPTION None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPH A NARRATIVE DESCRIPTION All waste dumping control	NG led by Union (02 🗆 OBSERVED (DATE: - Carbide.			
DI C O. CONTAMINATION OF SEWERS. S A NARRATIVE DESCRIPTION None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPH A NARRATIVE DESCRIPTION All waste dumping control DS DESCRIPTION OF ANY OTHER KNOWN Unknown	ng led by Union (), potential, or all	02 🗆 OBSERVED (DATE: - Carbide.			
DI C O. CONTAMINATION OF SEWERS. S A NARRATIVE DESCRIPTION None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPI A NARRATIVE DESCRIPTION All waste dumping control DS DESCRIPTION OF ANY OTHER KNOWN Unknown	ng led by Union (), potential, or all	02 🗆 OBSERVED (DATE: - Carbide.			
DI C O. CONTAMINATION OF SEWERS. S A NARRATIVE DESCRIPTION None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPH A NARRATIVE DESCRIPTION All waste dumping control DS DESCRIPTION OF ANY OTHER KNOWN Unknown	ng led by Union (), potential, or all	02 🗆 OBSERVED (DATE: - Carbide.	· · · · · · · · · · · · · · · · · · ·		
DI C O. CONTAMINATION OF SEWERS. S A NARRATIVE DESCRIPTION None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPI A NARRATIVE DESCRIPTION All waste dumping control DS DESCRIPTION OF ANY OTHER KNOWN Unknown	ng led by Union (), potential, or all	02 🗆 OBSERVED (DATE: - Carbide.			
DI C O. CONTAMINATION OF SEWERS. S A NARRATIVE DESCRIPTION None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPI A NARRATIVE DESCRIPTION All waste dumping control DS DESCRIPTION OF ANY OTHER KNOWN Unknown	ng led by Union (), potential, or all	02 🗆 OBSERVED (DATE: - Carbide.	· · · · · · · · · · · · · · · · · · ·		
DI C O. CONTAMINATION OF SEWERS. S A NARRATIVE DESCRIPTION None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPI A NARRATIVE DESCRIPTION All waste dumping control DS DESCRIPTION OF ANY OTHER KNOWN Unknown	ng led by Union (), potential, or all	02 🗆 OBSERVED (DATE: - Carbide.	· · · · · · · · · · · · · · · · · · ·		
DI C O. CONTAMINATION OF SEWERS. S A NARRATIVE DESCRIPTION None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPI A NARRATIVE DESCRIPTION All waste dumping control DS DESCRIPTION OF ANY OTHER KNOWN Unknown	NG led by Union (). POTENTIAL, OR ALL Y AFFECTED:	02 🗆 OBSERVED (DATE: Carbide.	· · · · · · · · · · · · · · · · · · ·		
DI C O. CONTAMINATION OF SEWERS. S A NARRATIVE DESCRIPTION None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPH A NARRATIVE DESCRIPTION All waste dumping control DS DESCRIPTION OF ANY OTHER KNOWN Unknown IL TOTAL POPULATION POTENTIALLY V. COMMENTS	NG led by Union (. POTENTIAL, OR ALL Y AFFECTED: DEC Files	02 COBSERVED (DATE: Carbide.			
A NARRATIVE DESCRIPTION None reported. None reported. DI C P. ILLEGAL/UNAUTHORIZED DUMPI A NARRATIVE DESCRIPTION All waste dumping control DS DESCRIPTION OF ANY OTHER KNOWN Unknown Unknown IL TOTAL POPULATION POTENTIALLY V. COMMENTS	NG led by Union (. POTENTIAL, OR ALL Y AFFECTED: DEC Files	02 🗆 OBSERVED (DATE: Carbide.			

· ···· ·

				•		• •
•	•		•			
				٠		
	POTENTI			S WASTE SITE		LIDENTIFICATION
SEPA	PART 4 - PERMI	SITE INS		'ION TIVE INFORMAT		NY 932035
01 TYPE OF PERMIT ISSUED	02 PERMIT NUMBER	03 DATE	ISSUED	04 EXPIRATION DATE	05 COMMENTS	· · · · · · · · · · · · · · · · · · ·
A. NPOES						· . ·
(1) B. UKC						
						·
D. RCRA						
CKG. STATE	32N03					· · · · · · · · · · · · · · · · · · ·
TXH LOCAL TOWN OF		10/0	1/01		0	v baing nanowad
UI. OTHER (Second)	12473	12/3	1/81		Currenti	y being renewed
		+				
L SITE DESCRIPTION		I		· · · · · · · · · · · · · · · · · · ·		
1 STORAGE/DISPOSAL (Create of that appry)	ZAMOUNT 03 UNIT C	F MEASURE	04 TR	EATMENT (Channel of the o		05 OTHER
				NCENERATION		
C 8. PILES			08.1	UNDERGROUND INJ	ECTION	A. BUILDINGS ON ST
C. DRUMS, ABOVE GROUND	·			CHEMICAL/PHYSICA	4	
E TANK, BELOW GROUND				BIOLOGICAL NASTE OIL PROCES	\$9M73	OB AREA OF SITE
CKF. LANDFILL	4250 . tor	ns/yr.		SOLVENT RECOVER		
G. LANDFARM H. OPEN DUMP		<u> </u>		OTHER RECYCLING/	RECOVERY	<u> 16 </u> (A
			Ωн.(OTHER		
(Scenty)						
COMMENTS						
7 COMMENTS	·.			,		
7 COMMENTS	·					
7 COMMENTS	· · ·	<u></u>	L			
7 COMMENTS	· · · · · · · · · · · · · · · · · · ·		Lu, <u>1</u> ,			
COMMENTS	· · · · · · · · · · · · · · · · · · ·		- -			· · ·
						· · · · · · · · · · · · · · · · · · ·
7. CONTAINMENT						•.
CONTAINMENT	Q B. MODERATE	C. N	IADEQU	ATE, POOR	C D. INSECU	RE. UNSOUND, DANGEROUS
CONTAINMENT	and guarded 24-h low permeability ed, in past cover	rs. a day	ş		C D. INSECU	RE. UNSOUND, DANGEROUS
CONTAINMENT CONTAINMENT OF WASTES (Chief and C A. ADEQUATE, SECURE RESCRIPTION OF ORUMS, DIKING, LINERS, BA Site is completely fenced a Underlying material is of Final cover is being applie 55-gallon drums of oil wer	and guarded 24-h low permeability ed, in past cover	rs. a day	ş		C D. INSECU	RE, UNSOUND, DANGEROUS
CONTAINMENT CONTAINMENT OF WASTES (Check and C A ADEQUATE, SECURE RESCRIPTION OF ORUMS, DIKING, LINERS, BA Site is completely fenced a Underlying material is of Final cover is being applie 55-gallon drums of oil wer CACCESSIBILITY 01 WASTE EASLY ACCESSIBLE: Q YES	AMERS. ETC. and guarded 24-hi low permeability ed, in past cover re landfilled.	rs. a day	ş		C D. INSECU	RE, UNSOUND, DANGEROUS
CONTAINMENT CONTAINMENT OF WASTES (Check and) C A. ADEQUATE, SECURE RESCRIPTION OF ORUMS, DIKING, LINERS, BA Site is completely fenced a Underlying material is of Final cover is being applie 55-gallon drums of oil wer ACCESSIBILITY 01 WASTE EASLY ACCESSIBLE: Q YES 02 COMMENTS	AMERS. ETC. and guarded 24-hi low permeability ed, in past cover re landfilled.	rs. a day	ş			RE. UNSOUND, DANGEROUS
CONTAINMENT CONTAINMENT OF WASTES (Check and C A. ADEQUATE. SECURE DESCRIPTION OF ORUMS, DIKING, LINERS, BA Site is completely fenced a Underlying material is of Final cover is being applie 55-gallon drums of oil wer C. ACCESSIBILITY OI WASTE EASLY ACCESSIBLE: Q YES 02 COMMENTS See above comments.	AMERS. ETC. and guarded 24-hi low permeability ed, in past cover re landfilled.	rs. a day	y ed of a		CI D. INSECU	RE. UNSOUND, DANGEROUS
CONTAINMENT CONTAINMENT OF WASTES (Check and C A ADEQUATE. SECURE DESCRIPTION OF ORUMS, DIKING, LINERS, BA Site is completely fenced a Underlying material is of Final cover is being applie 55-gallon drums of oil wer CACCESSIBILITY OI WASTE EASLY ACCESSIBLE: Q YES 02 COMMENTS See above comments.	AMERS. ETC. and guarded 24-hi low permeability ed, in past cover re landfilled.	rs. a day	y ed of a			RE. UNSOUND, DANGEROUS
A. ADEQUATE. SECURE CONTAINMENT OF WASTES (Check and) C. A. ADEQUATE. SECURE ROESCRIPTION OF ORUMS, DIKING, LINERS, BA Site is completely fenced a Underlying material is of Final cover is being applie 55-gallon drums of oil wer / ACCESSIBILITY OI WASTE EASLY ACCESSIBLE: Q YES 02 COMMENTS	AMERS. ETC. and guarded 24-hi low permeability ed, in past cover re landfilled.	rs. a day consiste	y ed of a			RE, UNSOUND, DANGEROUS
CONTAINMENT CONTAINMENT OF WASTES (Check only C A ADEQUATE. SECURE DESCRIPTION OF ORUMS, OKUNG, UNERS, BA Site is completely fenced a Underlying material is of Final cover is being applie 55-gallon drums of oil wer .ACCESSIBILITY 01 WASTE EASLY ACCESSIBLE: O YES 02 COMMENTS See above comments. .SOURCES OF INFORMATION (CED 400C Site visit	AMERS. ETC. and guarded 24-hi low permeability ed, in past cover re landfilled.	rs. a day consiste	y ed of a			RE. UNSOUND, DANGEROUS

· ·

SEPA	PART 5 - WATER	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA			LIDENTIFICATION 01 STATE 02 SITE NUMBER NY 932035			
IL DRINKING WATER SUPPL	1	······					· · · · · · · · · · · · · · · · · · ·	
Check as application		02 STATUS				03	DISTANCE TO SI	TE
SURI		ENDANGER		ED	MONITORED		0 000 64	
	dX 8.0		8. 🔾		C. 🗆	•	2,000 ft	.(mi)
NON-COMMUNITY C.	<u> </u>	0.04	E.O		F. C	B.		_(mi)
IL GROUNDWATER								
C A. ONLY SOURCE FOR DRIVE	NG A B. DRINGING	ann IOLISTRIAL, IPRICIATIC IPR A-IMIDIN		MERCIAL Poster seu	, MOUSTRIAL, IRRIGA Tous crustians;	TION C) D. NOT USED, L	NUSEABLE
2 POPULATION SERVED BY GROUN	DWATER19	-	OS DISTANCE T	O NEARES		WELL	2,000 ft	.(mi)
4 DEPTH TO GROUNDWATER	05 DIRECTION OF GRO	UNDWATER FLOW	OS DEPTH TO A		07 POTENTIAL YIEL	ا م	OB SOLE SOURC	E AQUIFEI
approx. 8.0 (m)	S-SE		approx. 1		OF AQUIFER	_ (cod).	C YES	
				-				
TYES COMMENTS		•	TI DISCHARGE	ARA DAMENT				
ARECHARGE AREA			U YES a		3			
A RESERVOIR, RECREATION	N C. B. RRIGATION CE IMPORTAN	N. ECONOMICALLY TRESOURCES	U YES CA		NL, INDUSTRIAL		. NOT CURREN	<u> </u>
YES COMMENTS NO SURFACE WATER SURFACE WATER USE (Cross and OC A. RESERVOIR, RECREATION DRINKING WATER SOURCE AFFECTED/POTENTIALLY AFFECT NAME:	IN C B. FRIGATION CE IMPORTAN ED BOOMES OF WATER		U YES CA				DISTANCE TO	<u> </u>
YES COMMENTS NO SURFACE WATER SURFACE WATER USE (Cross and OC A. RESERVOIR, RECREATION DRINKING WATER SOURCE AFFECTED/POTENTIALLY AFFECT NAME:	IN C B. FRIGATION CE IMPORTAN ED BOOMES OF WATER		U YES CA		NL, INDUSTRIAL		- <u> </u>	SITE
AFFECTED/POTENTIALLY AFFECT	IN C B. FRIGATION CE IMPORTAN ED BOOMES OF WATER		U YES CA		AFFECTED		DISTANCE TO	SITE (m
XYES COMMENTS NO SURFACE WATER SURFACE WATER USE (Cross and CA. RESERVOIR, RECREATION DRINKING WATER SOURCE CORINKING WATER SOURCE AFFECTED/POTENTIALLY AFFECT NAME: ponded area adjacen	IN C B. FREGATION DE BOOKES OF WATER t to landfill		U YES CA		AFFECTED		DISTANCE TO	SITE (m
XYES COMMENTS NO SURFACE WATER SURFACE WATER USE (Cross and CA. RESERVOIR, RECREATION DRINKING WATER SOURCE RAFFECTED/POTENTIALLY AFFECT NAME:	IN C B. FREGATION DE BOOKES OF WATER t to landfill		U YES CA		AFFECTED		DISTANCE TO adjacent	SITE (n
COMMENTS NO SURFACE WATER SURFACE WATER SURFACE WATER USE (CROSS CONT ORINKING WATER SOURCE APPECTED/POTENTIALLY APPECT NAME: DONDED AREA ADJACEN	IN C B. FREGATION DE BOOKES OF WATER t to landfill	THREE (3 C. 210	U YES CA		AFFECTED		OISTANCE TO adjacent	SITE (m
COMMENTS NO SURFACE WATER SURFACE WATER SURFACE WATER USE (Cross and CA. RESERVOIR, RECREATION DRINKING WATER SOURCE CORINKING WATER SOURCE AFFECTED/POTENTIALLY AFFECT NAME: DONDED area adjacen DEMOGRAPHIC AND PROPERTO TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A	ED BOOKES OF WATER ED BOOKES OF WATER ED BOOKES OF WATER ET to landfill ERTY INFORMATION TWO (2) MILES OF SITE B	THREE (3 C. 210			AFFECTED	ST POPUL	DISTANCE TO adjacent	
AFFECTED/POTENTALLY AFFECT NAME: DEMOGRAPHIC AND PROPI TOTAL POPULATION WITHIN ONE (1) MILE OF SITE A MUMBER OF BUILDINGS WITHIN TW	ED BOOKES OF WATER ED BOOKES OF WATER ED BOOKES OF WATER ET to landfill ERTY INFORMATION TWO (2) MILES OF SITE B	THREE (3 C. 210				ST РОРИ. 0X. 1/4	DISTANCE TO adjacent	SITE (n
COMMENTS I NO SURFACE WATER SURFACE WATER SURFACE SURFA	ED BOORS OF WATER ED BOORS OF WATER ED BOORS OF WATER ET to landfill ERTY INFORMATION TWO (2) MILES OF SITE B NO. OF PERSONS O (2) MILES OF SITE INOWN					ST POPUL	DISTANCE TO adjacent	SITE (m
COMMENTS NO NO SURFACE WATER SURFACE WATER SURFACE WATER USE (Cross and CA. RESERVOIR, RECREATION ORINKING WATER SOURCE CORINKING WATER SOURCE CORINKING WATER SOURCE CORINKING WATER SOURCE CORINKING WATER SOURCE CORINKING WATER SOURCE COMMENTS	ED BOOKES OF WATER ED BOOKES OF WATER ED BOOKES OF WATER ET to landfill ERTY INFORMATION TWO (2) MILES OF SITE B MO. OF PERSONS O (2) MILES OF SITE INOWN TTE (Provide networks description of m		YES C NO C. COM COM C. COM C			ST РОРИ. 0X. 1/4	DISTANCE TO adjacent	SITE (m

.

()

•.

. . .

•	•							
			•					
	· · · · · · · · · · · · · · · · · · ·	POTENTIAL HAZ					I. IDENTIFIC	
\$epa	PAR	SITE INSPE T 5 - WATER, DEMOGRAP				ATA	01 STATE 02 S NY 93	2035
VL ENVIRONMENTAL INFORM								
01 PERMEABILITY OF UNSATURATED			□ C. 10-+	- 10 ⁻³ cr	m/aec 🖸 D. GF	REATER TI	HAN 10-3 cm/	30C
02 PERMEABILITY OF BEDROCK (Check		· · · · · · · · · · · · · · · · · · ·						•••••••••••••••••••••••••••••••••••••••
	10 ⁻⁶ CRV80C)	B. RELATIVELY IMPERMEA	ve⊔e ⊠ic.	RELATIVE	ELY PERMEABLE			
03 DEPTH TO BEDROCK	G4 DEPTH C	DF CONTAMINATED SOIL ZONE		05 SOL 6				
approx. 20' (ff)	07 ONE YE	12.5 (R)	Ga SLOPE					
<u>12</u> (n)		0x. 2.3	SITES	2000 2x.30%	DIRECTION OF	SITE SLO		IN AVERAGE S
09 FLOOD POTENTIAL		10		<u>577.00</u>				1 4
SITE IS IN YEAR FLO	DOOPLAIN	SITE IS ON BAR	RIER ISLAND), COAST/	AL HIGH HAZAR	AREA, R	IVERINE FLOC	DWAY
11 DISTANCE TO WETLANDS (8 acro man		4	12 015TAN	CE TO CRI	TICAL HABITAT (or	ndergared a	workey .	
ESTUARINE		OTHER			_	· · ·		,
A (mi) 13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR	B	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI		PARKS.	ED SPECIES:	AGRICU AG LAND		DS AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR	<u> </u>	Residential Areas; Natio Forests, or Wildl	ONAL/STATE	PARKS.				
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR		RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u>	ONAL/STATE	PARKS.		AG LAND	ilturalianc mi) ∕0	
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> ONG TOPOGRAPHY relatively flat low ly	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> OING TOPOGRAPHY	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> ONG TOPOGRAPHY relatively flat low ly	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> ONG TOPOGRAPHY relatively flat low ly	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> ONG TOPOGRAPHY relatively flat low ly	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> ONG TOPOGRAPHY relatively flat low ly	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> ONG TOPOGRAPHY relatively flat low ly	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> ONG TOPOGRAPHY relatively flat low ly	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> ONG TOPOGRAPHY relatively flat low ly	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> ONG TOPOGRAPHY relatively flat low ly	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	to surroum nded by	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI B. <u>adjacent</u> ONG TOPOGRAPHY relatively flat low ly	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR Aadiacent(mi) 14 CESCRIPTION OF SITE IN RELATION T The site is surrour residential develo	ro surroun nded by opment.	RESIDENTIAL AREAS: MATR FORESTS, OR WHOL <u>8. adjacent</u> relatively flat low ly The site is approxim	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR AAdiacent(mi) 14 DESCRIPTION OF SITE IN RELATION T The site is surrout	ro surroun nded by opment.	RESIDENTIAL AREAS: MATR FORESTS, OR WHOL <u>8. adjacent</u> relatively flat low ly The site is approxim	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND
13 LAND USE IN VICINITY DISTANCE TO: COMMERCIAL/INDUSTR Aadiacent(mi) 14 DESCRIPTION OF SITE IN RELATION The site is surrour residential develo	ro surroun nded by opment.	RESIDENTIAL AREAS: MATR FORESTS, OR WHOL <u>8. adjacent</u> relatively flat low ly The site is approxim	DNAL/STATE FE RESERV	PARKS. ES	PRIME C hich is prir	narily	m) D used for	AG LAND

· · · · · · ·

\$epa

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6- SAMPLE AND FIELD INFORMATION

LIDENTIFICATION 01 STATE 102 SITE MIMBER NY 932035

IL SAMPLES TAKEN			·····
SAMPLE TYPE	O1 NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO	OJ ESTIMATED DATE RESULTS AVALABLE
GROUNDWATER	2-3 samples quarterly	RECRA Environmental laboratories	Present
SURFACE WATER			
WASTE			
AR			
RUNOFF			
SPILL			
SOL	•	· · · ·	
VEGETATION			· · · · · · · · · · · · · · · · · · ·
OTHER			
IL FIELD MEASUREME	ENTS TAKEN		· · · · · · · · · · · · · · · · · · ·
oi type Air	02 COMMENTS HNU photior	nzing organic vapor detector, Wehran site visit Mar	ch 27, 1985
· · ·			
IV. PHOTOGRAPHS AN	ID MAPS		
01 TYPE GROUND C	AERIAL ·	C2 IN CUSTODY OF	
03 MAPS 04	USGS Quads N	iagara Falls, Lewiston, Ramsonville	
	COLLECTED (Prover Automo out		
None			
		· ·	
	RMATION (Creation of the second secon		<u></u>
USGS Quadr	angles		
			· .
1			

	i		ZARDOUS WASTE SITE	I. IDENTIF	
\$epa			ECTION REPORT	NY	932035
IL CURRENT OWNER(S)			PARENT COMPANY (# molecular		•
DI NAME		02 D+8 NUMBER	OS NAME		09 0+8 NUMB
Union Carbide					
P.O. Box 887		04 SIC CODE	10 STREET ADORESS (P. O. Bos. AFO +, etc.)		11 SIC CO
05 CTTY	1	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
Niagara Falls	NY	14302			
01 NAME		02 0+8 NUMBER	OS NAME		09 0+8 NUMB
D3 STREET ADDRESS (P.O. dos. APD #, and.)		04 SIC CODE	10 STREET ADDRESS (P.O. Bus, APD #, and)		1150000
05 GTY	OS STATE	07 ZIP CODE	12 CITY	13 STATE	14 20 CODE
					<u> </u>
O1 NAME		02 D+8 NUMBER	OB NAME		C9 0+8 NUMB
DI STREET ADDRESS (P.O. das, NFO F. and)	<u> </u>	04 SIC CODE	10 STREET ADORESS (P.O. dos. APD #, and)		1150 CO
D5 CITY	OG STATE	07 ZP CODE	12 CTY	13 STATE	14 ZIP CODE
D1 NAME	L	02 D+6 NUMBER	OS NAME		090+8 NUM8
OJ STREET ADDRESS (P.C. BOL NO P. MEL)		O4 SIC CODE	10 STREET ADDRESS (P. C. dez, AFD J. esc.)		
					1130.00
95 GTY	08 STATE	OT ZP CODE	12 GTY	13 STATE	14 ZIP CODE
IL PREVIOUS OWNER(S)	er Arag		IV. REALTY OWNER(S) (T ADDRESS IN	t maat recent finit?	L
Aluminum Co. of Amer	rica	02 0+6 NUMBER	01 NAME		02 D+8 NUM8
03 STREET ACORESS (P.O. BOR. AFO P. B.)		04 SIC CODE	03 STREET ADDRESS (P.O. Box, AFO #, em.)		04 80 00
25 CITY	OBSTATE	07 ZIP CODE	05 CITY	OG STATE	07 ZIP CODE
· .			•		
D1 NAME		02 D+8 NUMBER	01 NAME		02 D+6 NUME
03 STREET ADORESS (P.O. das. APD P. an.)		04 SIC CODE	03 STREET ADORESS (P.O. Box, NFO P. on.)		04 SIC CC
35 GTY	OG STATE	07 ZIP CODE	OS CITY	06 STATE	07 ZIP CCDE
DI NAME	,	02 D+8 NUMBER	OI NAME		02 0+8 NUMB
AJ STREET ADDRESS (P.O. Bas. AFD P. COL)		04 SIC CODE	OJ STREET ADDRESS (P.O. Box, AFO J, MD.)		04 SIC CC
saty	Ine STATE I	01 79 0005	05 CTTY	los crutci	AT 110 CODC
		07 ZP CODE		VOSIALE	07 ZIP CODE
V. SOURCES OF INFORMATION (CR	e apacific references, a	n.g., anto Mas, apricas analysi	8. /800183		
Union Carbide					

. ...

- - - -

.....

· ··· ··· · · · · · · ·

09 0+8 NUMBER

09 0+8 NUMBER

09 0+8 NUMBER

090+8 NUMBER

02 D+8 NUMBER

02 D+8 NUMBER

02 0+8 NUMBER

04 SIC CODE

04 SIC CODE

04 SIC CODE

11 SIC CODE

11SIC CODE

11 SIC CODE

11 SIC CODE

EPA FORM 2070-13 (7-81)

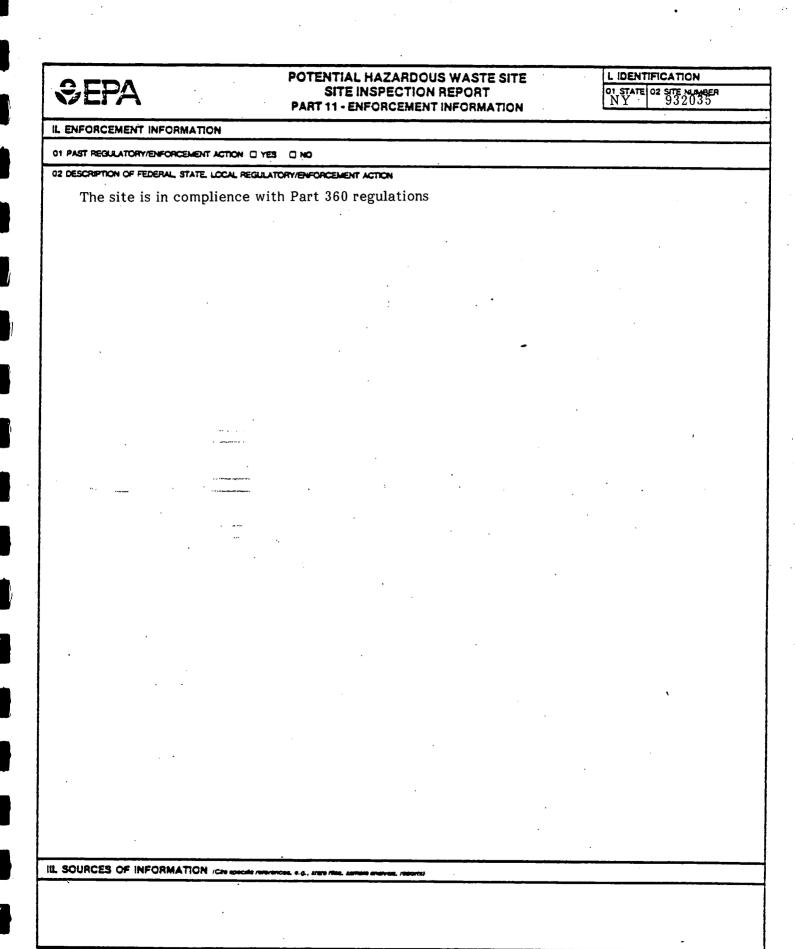
•

\$epa		SITE INSPE	ARDOUS WASTE SITE ECTION REPORT ATOR INFORMATION	L IDENTIF	FICATION 2 SITE NUMBER 932035
IL CURRENT OPERATOR (Proves & can			OPERATOR'S PARENT COMPAN	Y (Kanakana)	
Union Carbide		02 D+8 NUMBER	10 NAME		11 0+8 NUMBER
3 STREET ADORESS (P.O. BOL, RFD P. ML)		04 SIC CODE	12 STREET ADORESS (P.O. BOL, AFD &, and)	<u></u>	13 SIC CODE
P.O. Box 887					13 30 0002
Niagara Falls	OG STATE NY	07 ZIP CODE 14302	14 GTY	16 STATE	18 ZIP CODE
1934-Present	MNER			l	
IL PREVIOUS OPERATOR(S)	resort frac provide any		PREVIOUS OPERATORS' PARENT		
I NAME		02 D+8 MJMBER	10 NAME		11 D+8 NUMBER
STREET ADORESS (P.O. BOL MED 4. MAL		104 610 0005	· · ·		
(CINEE) ADDRESS (P.U. 202, 1997, 02.)		04 SIC CODE	12 STREET ADDRESS (P.O. BOR, AFD 4, an.)		13 SIC CODE
CATY	OG STATE	07 20 CODE	14077	15 STATE	16 ZP CODE
YEARS OF OPERATION 09 NAME OF OW	INER OURING THIS	PERIOD			
NAME	٥	2 D+8 NUMBER	10 NAME		11 0+8 NUMBER
STREET ADORESS (P.O. Box, APD #, ant.)		O4 SIC CODE	12 STREET ADORESS (P.C. Box, AFD P. and		13 SIC CODE
					13 30 0002
CITY	OG STATE O	7 ZIP CODE	14 CTY	15 STATE	16 ZIP CODE
YEARS OF OPERATION OF NAME OF OW	INER DURING THIS	PERIOD /			
NAME	0	2 D+9 NUMBER	10 NAME		11 0+8 NUMBER
STREET ADORESS (P.Q. Bos, APD #, ma.)		04 SIC CODE	12 STREET ADORESS (P.O. Box, AFD #, esc.)		13 SIC CODE
	OS STATE O	7 ZP CODE	14 GTY	15 STATE	16 ZIP CODE
YEARS OF OPERATION 09 NAME OF OW	NER DURING THIS P	PERIOD			
SOURCES OF INFORMATION (CR)	iseculti ratarances, e.g.	, state files, sample analysis	L regent)		
Inion Combile Dennis A					
Union Carbide Permit A	pplication			·.	
					÷

EPA FORM 2070-13 (7-81)

		POTENTIAL HA	L IDENTIFICATION		
SEPA		SITE INSP	01 STATE 02	SITE NUMBER	
PAR1		9 - GENERATOR	NY	932035	
IL ON-SITE GENERATOR					
01 NAME		02 0+8 NUMBER		<u> </u>	
Union Carbide					
03 STREET ADDRESS (P.O. BOL AFD . ME)		04 SIC CODE			·
P.O. Box 887	•				
05 GTY	IOS STAT	IOT ZIP CODE			
Niagara Falls	NY	14302			
IIL OFF-SITE GENERATOR(S)		<u> </u>			
Union Carbide		02 0+8 NUMBER	01 NAME		02 D+8 NUMBER
03 STREET AOORESS (P.O. Bon, AFD		04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD F, etc.)	<u> </u>	04 SIC CODE
P.O. Box 887					
Niagara Falls	OG STATE NY	14302	CS CITY	OG STATE	07 ZIP CODE
OI NAME		02 0+8 NUMBER	01 NAME		02 D+8 NUMBËR
03 STREET ADDRESS (P.O. BOL AFD #, enc.)		04 SIC CODE	03 STREET ADORESS (P.O. BOR, NFD P. ML)	l	04 SIC CODE
05 CITY	00 STATE	OT ZIP CODE	05 CITY	OG STATE	7 ZIP CODE
IV. TRANSPORTER(S)	<u> </u>	1		<u>1</u>	
OT NAME		02 D+8 NUMBER	OI NAME	Te te	2 D+0 NUMBER
Union Carbide	•			. {	
DI STREET ADDRESS (P.O. BOR. NO P. MIL)		04 SIC CODE	O3 STREET ADDRESS (P.O. BOR. AFD P. MR.)		04 SIC CODE
P.O. Box 887	•				
DS CITY	100 STATE	OT ZIP CODE		IOS STATE I	97 ZIP CODE
Niagara Falls	NY	14302			
01 NAME		02 D+8 NUMBER	01 NAME		2 D+8 NUMBER
DS STREET ADDRESS (P.O. Son, AFD ., on.)		04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFO #, ML)	<u>L</u>	04 SIC CODE
05 CITY	OS STATE	07 ZIP CODE	06 CITY	OB STATE	7 ZIP CODE
			,	1 1	

Union Carbide permit application


SEPA	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES		L IDENTIFICATION O1 STATE O2 SITE NUMBER NY 932035
PAST RESPONSE ACTIVITIES			
01 C A. WATER SUPPLY CLOSED	02 DATE	03 AGENCY	
04 DESCRIPTION			
None			
	XED 02 DATE	03 AGENCY	
04 DESCRIPTION			
None			
01 C. PERMANENT WATER SUPPLY PROVED 04 DESCRIPTION	ED 02 DATE	03 AGENCY	
None			
01 D. SPILLED MATERIAL REMOVED	02 DATE	03 AGENCY	
04 DESCRIPTION			
Unknown			
01 C E CONTAMINATED SOIL REMOVED	02 DATE	03 AGENCY	······································
04 DESCRIPTION			
None	· · · · · · · · · · · · · · · · · · ·		
01 🛱 F. WASTE REPACKAGED 04 DESCRIPTION	02 DATE	03 AGENCY	
55-gal drums of oil	02 DATE	03 AGENCY	
04 DESCRIPTION			
			•
01 OT H. ON SITE BURIAL	02 DATE	03 AGENCY	······································
04 DESCRIPTION			
drums of oil and carbonaceo			
01 I. IN SITU CHEMICAL TREATMENT	02 DATE	03 AGENCY	
None Known	/		
01 I J. IN SITU BIOLOGICAL TREATMENT	02 DATE	03 AGENCY	
04 DESCRIPTION		•••••	
None Known			
01 C K. IN SITU PHYSICAL TREATMENT	02 DATE	03 AGENCY	
04 DESCRIPTION None Known			
	02 DATE		
01 CL ENCAPSULATION 04 DESCRIPTION	02 DATE	US AGENUT	·
Landfill Covered			
01 C M. EMERGENCY WASTE TREATMENT	02 DATE	03 AGENCY	
04 DESCRIPTION			
Unknown			
01 IN. CUTOFF WALLS	02 DATE	03 AGENCY	
04 DESCRIPTION None			
	R CIVERSION 02 DATE	03 AGENCY	·
. 01 □ 0. EMERGENCY DIKING/SURFACE WATE 04 DESCRIPTION		US AGENCY	
None			
01 C P. CUTOFF TRENCHES/SUMP	02 DATE	03 AGENCY	
04 DESCRIPTION			
None	<u>a</u>		
01 C Q. SUBSURFACE CUTOFF WALL	02 DATE	03 AGENCY	
o4 description None			

.

SITE INSPECTION REPORT T 10 - PAST RESPONSE ACTIVITIES 02 DATE 02 DATE 01 an ongoing basis 02 DATE 02 DATE 02 DATE 02 DATE 02 DATE 02 DATE	O3 AGENCY O3 AGENCY O3 AGENCY Q3 AGENCY O3 AGENCY	
02 DATE on an ongoing basis 02 DATE 02 DATE 02 DATE 02 DATE	O3 AGENCY O3 AGENCY O3 AGENCY Q3 AGENCY O3 AGENCY	
02 DATE on an ongoing basis 02 DATE 02 DATE 02 DATE 02 DATE	O3 AGENCY O3 AGENCY O3 AGENCY Q3 AGENCY O3 AGENCY	
on an ongoing basis 02 DATE 02 DATE 02 DATE 02 DATE 02 DATE 02 DATE	O3 AGENCY O3 AGENCY O3 AGENCY Q3 AGENCY	
02 DATE 02 DATE 02 DATE 02 DATE 02 DATE 02 DATE	O3 AGENCY O3 AGENCY Q3 AGENCY O3 AGENCY	
02 DATE	O3 AGENCY O3 AGENCY Q3 AGENCY O3 AGENCY	
02 DATE	03 AGENCY Q3 AGENCY 03 AGENCY	
02 DATE	Q3 AGENCY.	
02 DATE	03 AGENCY.	
		· · · · · · · · · · · · · · · · · · ·
02 DATE		
	03 AGENCY	
	· ·	· .
02 DATE	03 AGENCY	
02 DATE	03 AGENCY	
hours/day		
02 DATE	03 AGENCY_	
02 DATE	03 AGENCY	·
		·
200 Abs. 46404 analysis, reports/		
1		· · · · · · · · · · · · · · · · · · ·
	02 DATE	02 DATE 03 AGENCY 02 DATE 03 AGENCY

EPA FORM 2070-13 (7-81)

6=

EPA FORM 2070-13 (7-81)

6.0 ASSESSMENT OF DATA ADEQUACY AND RECOMMENDATIONS

6.0 ASSESSMENT OF DATA ADEQUACY AND RECOMMENDATIONS

6.1 GROUNDWATER ROUTE

The information obtained from the boring logs, the site visit and Union Carbide's permit applications indicate that nonhazardous carbonaceous wastes have been disposed of at this site. However, water quality data indicates that phenols, heavy metals and low levels of halogenated organics have contaminated the till hydrological zone. Two of the three monitoring wells on site have been completed through the waste material (wells 1 and 2). Well 1 is supposedly the upgradient well. This suggests that leachate is seeping down the well, or that the well is not truly upgradient, or that another source of contamination is migrating through the till hydrological zone. The contamination of well 1 may also be a result of groundwater mounding within the waste pile, which may create localized changes in groundwater flow and increase contact time with the waste.

Groundwater resources are virtually unused in the Niagara area. The Niagara River provides water for both drinking water supply and industrial use. There are a few industries using groundwater for industrial purposes and five private wells 2,000 feet north of the site. Very little information was obtained on groundwater quality or on the potential for groundwater use in the future. A Phase II investigation is proposed to further characterize the site as follows:

- Identify the types, quantity and concentration of disposed materials.
- Determine the hydraulic characteristics of the till and bedrock hydrologic zones
- Determine the potential for groundwater use
- Assess the reliability of the existing monitoring wells
- Determine the degree of groundwater contamination

6.2 SURFACE WATER ROUTE

The surface water route score (S_{sw}) is 0. The information used to obtain this route score was sufficient. The surface water in the area is not used, and the site is being properly covered and capped in order to limit surface water runoff. The water supply for the Niagara area is obtained from the Niagara River, from the Grand Island intakes. These intakes are upstream of the site.

6.3 AIR ROUTE

During the Phase I site visit, an HNU photoionizing organic vapor detector was used to measure the ambient air quality. The HNU did not detect any volatiles in the air so the air route score is therefore 0.

6.4 FIRE AND EXPLOSION

To score the fire and explosion hazard mode either a state or local fire marshall must have certified that the facility presents a significant fire or explosion threat to the public or to a sensitive environment, or there must be a demonstrated threat based on field observations (e.g. combustible gas indicator readings). The available records give no indication that either one of these tasks has been done. Further, the available data do not suggest any imminent threat of fire and explosion at this site. Therefore the route score cannot be completed.

6.5 DIRECT CONTACT ROUTE

The direct contact route score is 0. The score is derived from the fact that the site is completely fenced and guarded. However, elevated levels of phenols are present, suggesting that a potential hazard exists. Furthermore, part of the site was covered with aged waste material. It is suggested that the quality and the hazard of the cover material be assessed.

6.6 CONCLUSIONS

In review of the accumulated information, it appears that there may be a threat to the environment from elevated readings of phenols. Since this threat is inconclusive at this time, a Phase II investigation is recommended. However, if the proposed Phase II work plan is not accepted, it is highly recommended that the monitoring well program and water quality analysis be continued on a monthly basis and that the HSL be analyzed at least yearly. In addition to continued monitoring and compliance with all operating permits, it is essential that a new upgradient well be located further from the refuse pile, possibly off site. This would eliminate any effect of a localized change in groundwater flow due to mounding within the waste pile and would also aid in determining the degree of groundwater contamination and its source.

7.0 PHASE II WORK PLAN

.

7.0 PHASE II WORK PLAN

INTRODUCTION AND OBJECTIVES

During the Phase I investigation, it was determined that the Union Carbide Republic Plant Landfill poses a potential threat to the groundwater, a virtually unused resource. This Phase II work plan is designed to further characterize the site as follows:

- Identify the types and concentrations of allegedly disposed materials
- Assess the reliability of the existing monitoring wells
- . Further identify subsurface hydrogeologic conditions at the site
- Determine the degree of groundwater contamination in the vicinity of the site
- Evaluate whether or not contamination from the site poses any environmental or health concerns
- Determine the potential for groundwater use and groundwater quality
- Evaluate the adequacy of the cover material
- Provide a Preliminary Hazard Ranking System (HRS) score
- Provide NYSDEC with a preliminary remedial cost estimate.

Procedures to be utilized for sampling and analysis, as well as health and safety, will be conducted in conformance with the consultant's generic procedures submitted to NYSDEC prior to initiation of work under this contract.

WORK PLAN

To accomplish the above mentioned objectives, the following tasks and subtasks are recommended:

Task 1 - Preparation of Site-Specific Work Plans

Wehran will prepare and submit for NYSDEC approval revised work plans for those sites NYSDEC recommends for Phase II investigation. These plans will include site-specific:

- Scope of work
- Health and safety plan
- . Sampling and analytical plan
- Detailed cost estimate

All plans will conform with the contractor's previously submitted established procedures.

Task 2 - Identify, Obtain and Evaluate Additional Data

To consider the possible cost for future remedial investigations, it will be necessary to collect and evaluate additional information relating to the area surrounding the Union Carbide site, including but not limited to:

- Available regional water supply sources
- Boring logs, if available, for all wells in the immediate area
- Potential for future groundwater use
- Waste materials disposed of

Task 3 - Hydrogeologic Investigation

Data Evaluation

The information obtained in Task 2 will be used to aid in the location of test borings and monitoring wells.

Test Borings

In order to define the hydrogeology beneath the subject site, three deep bedrock borings to approximately 50 feet will be drilled under the continuous supervision of Wehran Engineering. In addition, at two of these three locations two shallow overburden borings will be drilled to an approximate depth of 20 feet. Split-spoon samples will be collected at standard five-foot intervals in accordance with the procedures of the Standard Penetration Test. Soils will be visually classified in the field for grain size (according to the Unified Classification System) and lithology. Representative portions of each sample will be stored in moisture-tight jars at the office of Wehran Engineering in Middletown, New York, for future reference. In addition, it is anticipated that three samples will be analyzed in the laboratory for grain size, Atterberg limits, and hydrometer.

If a confining layer or other strata determined to be of particular significance to the migration of contamination is encountered, additional investigations will be conducted. These additional investigations will be performed as an extra, subject to NYSDEC approval, and may include the collection of undisturbed soil samples using Shelby tubes, continuous splitspoon sampling, and laboratory permeability testing.

Monitoring Well Installation

Monitoring wells will be installed in each of the five borings. All wells will be constructed using two-inch diameter, Schedule 40, threaded flushjoint PVC pipe and fifteen-foot long factory slotted PVC screens. The screened interval will be determined in the field according to the hydrologic conditions encountered. A sand pack will be placed around each screen to prohibit clogging of the screen openings. A bentonite pellet seal will be placed at the top of the sand to isolate it from upper soil zones. The annular space will be filled to the surface with a bentonite-cement grout using the "Tremie" method. A steel casing with a protective lock will then be cemented in place to prevent vandalism.

Survey Well Locations and Elevation

A survey will be conducted to determine the relative elevations of both ground surface and "top of casing" at each boring location. The location of each well will also be determined with sufficient accuracy for plotting on a site map.

In Situ Permeability Determinations

A variable head borehole test will be conducted in order to measure the in situ permeability of the soils at each monitoring well location. This test will involve recording the recovery of water level after bailing. Prior to the procedure, the static water level will be measured and recorded to facilitate a determination of groundwater flow direction.

Groundwater Sample Collection

Groundwater samples will be collected for analysis from each of the five wells using the following procedure.

The static water level in each well will be measured and recorded. Each well will be purged of at least three well volumes of water using a separate teflon bailer for each well. Each bailer will be cleaned in the laboratory prior to use.

Samples will be collected from each well by the use of the abovementioned bailer. Each sample will then be placed in the appropriate container, stored on ice, and transported to the lab in accordance with standard chain-of-custody protocol.

The samples will be analyzed for the Hazardous Substances List (HSL), Priority Pollutant Heavy Metals and water quality indicator parameters including: COD, pH, conductivity, chlorides, TSS, TDS, and iron.

The following assumptions have been made in the development of this scope of services and the associated costs:

- All drilling locations are accessible to a truck-mounted drilling rig as determined by the drilling subcontractor
- The soils do not contain excessive amounts of cobbles or boulders
- It is anticipated that three wells will be approximately 50 feet deep, two wells will be approximately 20 feet deep, and that ten normal, eight-hour days would be required for their installation.

Geophysical Survey

A terrain conductivity or earth resistivity survey will be conducted in order to obtain additional subsurface information. Both of these geophysical methods evaluate changes in the earth's resistance/conductance to an induced electrical current which may reflect changes in stratigraphy and/or groundwater quality. The survey would be implemented in areas of the site deemed appropriate based on existing geologic and water quality data.

Task 4 - Waste Characteristics Investigation

In order to determine the potential health and environmental threat posed by this site, and to determine if the phenols which have been found in the groundwater originate from the waste, a waste characteristics investigation is recommended. To achieve these objectives, continuous splitspoon samples will be collected from three borings within the disposed waste area. A composite sample from each boring will be collected. The depth of the borings will be limited to five feet above the water table and will be based on the existing and proposed monitoring wells. These waste samples will be analyzed for HSL and Priority Pollutant Heavy Metals.

Task 5 - Quantitative Air Monitoring

Throughout all Phase II activities conducted at the site, air monitoring will be performed using the HNU Systems Photoionizer and an O_2/LEL meter, both upwind and downwind of the site. If consistent, unusually high values are observed (five to ten ppm above background) with the HNU, a more quantitative air analysis would be requested as an extra, subject to NYSDEC approval.

<u>Task 6 – Laboratory</u> Analysis

During the field investigation the following samples will be collected for analysis by a subcontractor laboratory:

- Seven water samples (five wells, one field blank, one trip blank) for HSL, Priority Pollutant Heavy Metals and water quality indicator parameters
- Three waste samples for HSL and Priority Pollutant Heavy Metals

Task 7 - Preliminary Remedial Cost Estimate

The consultant will consider the possible cost of future remedial investigations, engineering plans and specifications, and the physical remediation anticipated for the site. A range of possible remedial costs will be developed using best engineering judgment and previous experience with possible feasible remedial schemes. This task is not intended to perform a cost-effectiveness analysis of feasible remedial alternatives but rather to provide a cost range estimate adequate for budget reporting purposes.

Task 8 - Phase II Report Preparation

Under this task, the engineer will compile a final report for the site. This report will contain the following:

- Phase II information developed under Tasks 1 through 7
- Final Site Assessment
- Final HRS score

Extras

This work plan has been developed based upon available site information as contained in the Phase I report. If conditions encountered during the Phase II investigation indicate the need for additional services or extras such as difficult drilling, poor access, etc., not included within the original scope of work, the costs will be negotiated with the NYSDEC. Such extra services will be performed on a time and materials basis with prior authorization by the NYSDEC project officer.

NYSDEC SUPERFUND INVESTIGATIONS PHASE II - TOTAL PROJECT COST SUMMARY¹ SITE: UNION CARBIDE REPUBLIC PLANT LANDFILL

Wehran's Labor and Expenses

\$ 53,000.00

Subcontractors:

Driller

Laboratory

TOTAL ESTIMATED COST

49,000.00 20,000.00

\$ 122,000.00*

¹This cost estimate does not include any provisions for inflation and salary adjustments and can be considered current for approximately three months....

*<u>Note</u>: This cost estimate has been developed for budgeting purposes only. Should this site be selected for Phase II investigation, Wehran will develop a detailed cost estimate for NYSDEC approval.

NEW YORK STATE REGISTRY FORMS

2

47-15-11(2/80)

HAZARDOUS WASTE DISPOSAL SITES REPORT NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Code:	
Site Code:932035	
Name of Site: Union Carbide Republic Plant	Region: 9
County: Niagara	Town/City Niagara Falls
Street Address Hyde Park Boulevard	·

Status of Site Narrative:

The Union Carbide Republic Plant site is a 16-acre active landfill on Hyde Park Boulevard, Niagara Falls, Niagara County, New York. The site is used exclusively by Union Carbide to dispose of carbonaceous and packaging wastes generated during their production process from the National, Acheson and Republic plants. The estimated life of the site is approximately 40 years at the current disposal rate of 3,500 tons/year.

Other waste types generated and deposited on the site in the past included coke, pitch, lunch waste, silica sand, coal tars, petroleum tars, and machining oils.

The site is currently monitored on a quarterly basis by the extraction of groundwater samples from three monitoring wells installed around the perimeter of the site.

Type of Site: Open Dump Treatm Landfill Lagoon Structure	n(s) D Number of Ponds Number of Lagoons
Estimated Size 16 Acres	
Hazardous Wastes Disposed? Confirmed	Suspected X
*Type and Quantity of Hazardous Wastes:	
TYPE	QUANTITY (Pounds, drums, tons, gallons)
Phenols	_Unknown
Heavy metals	Unknown
_Oil	8,800 gals
<u>Coal tars</u>	Unknown
Petroleum tars	Unknown
* Use additional sheets if more space is	

47-15-11(2/80)

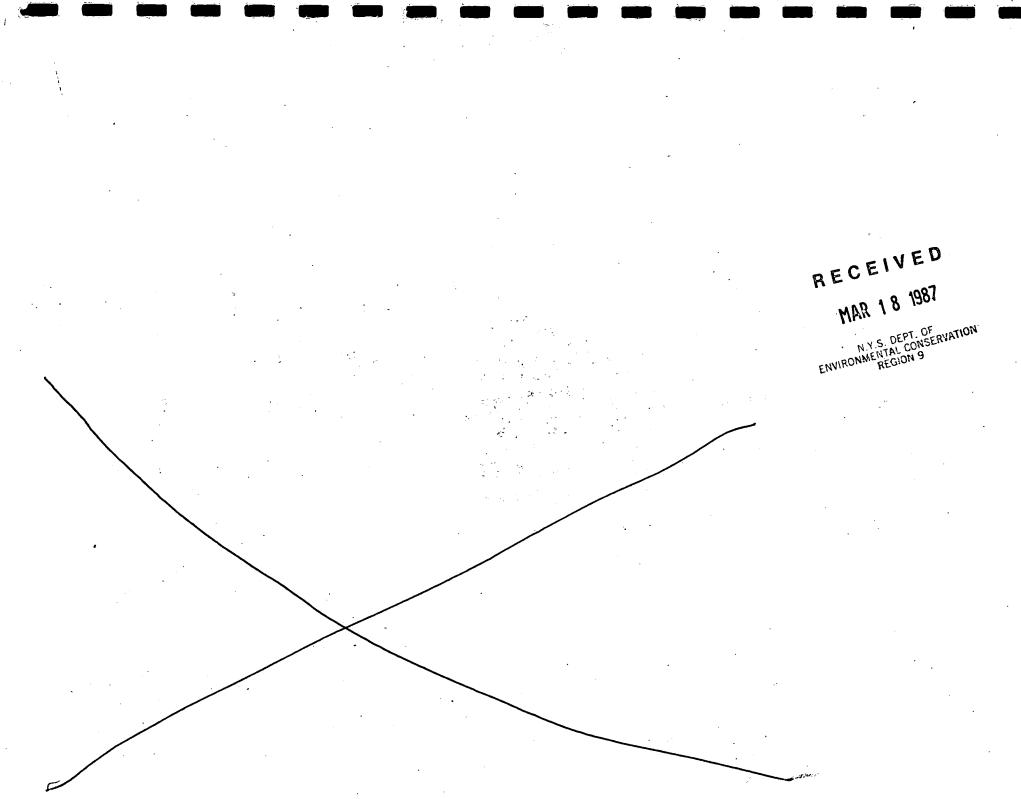
Name of Current Owner of Site: Union Carbide Republic Plant		
Address of Current Owner of Site: Hyde Park		
Time Period Site Was Used for Hazardous Waste Disposal:		
, 19 ³⁴	To Present	, 19 ⁸⁵
Is site Active X Inactive (Site is inactive if hazardous wastes were disposed of at this site and site was closed prior to August 25, 1979) Types of Samples: Air A Groundwater X None Surface Water Soil		
Remedial Action: Proposed In Progress Nature of Action: Final cover is being applied		
Status of Legal Action: Site is in compliance 360 regulations	with PartState X	Federal 💭
Permits Issued: Federal 🖾 Local Solid Waste 🗁 M	· · · · · ·	SPDES 💭 Wetlands 🗁 Other 🗔

Assessment of Environmental Problems:

The file data and reports state that nonhazardous carbonaceous waste has been disposed of at this site. However, water quality data indicates that phenols, heavy metals and low levels of halogenated organics have contaminated the till hydrologic zone. Additional investigation is necessary in order to identify the types and concentrations of disposed materials.

Assessment of Health Problems:

Persons Completing this Form:


<u>Terrance Haelen</u>

New York State Department of Environmental Conservation

Date November 1985

Wehran Engineering

New York State Department of Health

المتعاجب المتعاد المتعادية والمتعاد و