2021 Hazardous Waste Scanning Project

File Form Naming Convention.

(File_Type).(Program).(Site_Number).(YYYY-MM-DD).(File_Name).pdf

.pdt

Note 1: Each category is separated by a period "." Note 2: Each word within category is separated by an underscore "_"

320.35. 1988-10-26. Site - Investigation

Specific File Naming Convention Label:

report.

1035

UNION CARBIDE CORPORATION CARBON PRODUCTS DIVISION

SITE INVESTIGATION

AREA WEST OF SOLID WASTE MANAGEMENT FACILITY

Union Carbide Corporation Republic Plant Town of Niagara, New York

OCT 2 6 1988

JT-

UNION CARBIDE CORPORATION CARBON PRODUCTS DIVISION

SITE INVESTIGATION

AREA WEST OF SOLID WASTE MANAGEMENT FACILITY

Union Carbide Corporation Republic Plant Town of Niagara, New York

October 1988 Ref. No. 2293

CONESTOGA-ROVERS & ASSOCIATES

EXECUTIVE SUMMARY

The Union Carbide Corporation (UCC) operated the Republic Plant located in Niagara Falls, New York from 1934 until 1987. Prior to UCC operations, the Republic Plant was operated and maintained by the Aluminum Corporation of America, Carborundum Corporation and Acheson Graphite. Historically, UCC waste from the facility was disposed in the area east of the building complex. During the last 40 years of the plant operation, waste was disposed in an isolated eastern area which in 1978 became an approved solid waste management facility (SWMF). Operations at the Republic Plant ceased in 1987 and the SWMF was closed in accordance with a NYSDEC approved closure plan. The plant facility was purchased by Niagara Vest and UCC retained title to 64 acres which included the SWMF.

In June 1987, UCC consented to the construction of a watermain by the Town of Niagara. The watermain was to cross the area west of the closed Solid Waste Management Facility (SWMF). During excavation for the watermain, waste was identified outside the SWMF and on property now owned by Niagara Vest. Hence, the watermain across the property was installed in a berm located above ground and a site investigation was undertaken to assess the areal extent of waste deposition west of the SWMF.

This executive summary presents a brief overview of the investigation conducted, the result obtained,

i

and the recommendations and conclusions formulated. Further detail of the investigation and subsequent data evaluation is presented in the ensuing report.

The Site Investigation included:

- Collection of water samples for chemical analysis from two locations along the newly installed watermain traversing the Site;
- Excavation of test pits at eight locations along the newly constructed watermain and the collection of soil samples immediately underlying the bedding gravel for chemical analysis;
 - 3) Completion of electromagnetic (EM) and magnetometer (MAG) geophysical surveys over the area west of the SWMF to identify potential locations for disposed waste and buried drums;
 - 4) Excavation of a total of 22 test pits over the area west of the SWMF to confirm the presence or absence of potential buried drums based on the geophysical survey data;
 - 5) Collection of samples for chemical analysis from the three drums encountered during the test pit excavations;

ii

- 6) Collection of composite soil samples for chemical analysis in conjunction with test pit excavation; and
- 7) Installation of two shallow groundwater monitoring wells in areas of confirmed waste presence and subsequent sample collection and chemical analysis of groundwater samples.

Geology

The geological conditions beneath the site were determined based upon excavations and borehole data from this Investigation and from previous studies conducted at the SWMF and surrounding area.

The overburden materials encountered in this investigation are typical of those encountered in the previous test pit and monitoring well installation programs conducted at the SWMF and surrounding area. In general, the Site is underlain by four geologic units: Fill Material; Glaciolacustrine Clay; Glacial Till; and Bedrock.

The Fill Material consists of demolition debris, wood, ash, brick, glass and vegetation, intermixed with a black sand to cobble-size carbonaceous matrix and varies in thickness across the Site from 0 to 12 feet. The

iii

carbonaceous materials are believed to be from UCC and include graphite and other carbon products which are present in both dust and solid form. The Fill Material extends onto Niagara Vest and Niagara Mohawk property, to the west and north, respectively.

The Glaciolacustrine Clay underlying the Fill Material consists of very stiff gray to brown silty clay and extends almost to the top of Bedrock which is encountered at a depth of approximately 17 to 20 feet. A thin layer of Till material is usually present between the Clay and the top of Bedrock.

Hydrogeology

A perched water table condition exists in the Fill Material with the groundwater flowing in a northerly direction. The perched water table is generally confined vertically by the underlying clay aquitard. The groundwater flow direction in the underlying bedrock ranges from easterly to southeasterly towards the PASNY conduits located east of the site as presented on Figure 1.

Surface Water

Surface water runoff from the SWMF and the area west of the SWMF historically drained through the

iv

Republic Plant in a southwesterly direction. Construction of the berm and newly installed watermain has resulted in surface water ponding recently in the southwest corner of the Site.

Chemical Data Assessment

The analytical data collected during the Site Investigation indicated that the test pit soil samples collected from the watermain berm at locations both upstream and downstream of the Site were not impacted by Site conditions. Similarly, the parameters reported present in watermain water samples collected from fire hydrants located upstream and downstream of the Site were essentially identical, also indicating no site impact.

Various semi-volatiles, pesticides, and metals were detected in the test pit composite soil samples collected over the Site. The parameters identified in the test composite soil samples generally correspond to the parameters detected during the 1987 SWMF Soil Investigation. Benzene was not detected in any of the composite soil samples or groundwater samples, however, benzene was detected in six of the eight test pit locations along the watermain berm. Contaminants present in the soils imported to construct the watermain are expected to be the result of contamination external to the Site.

V

The results of the geophysical surveys indicate that the EM Survey was not interpretable due to the large deviations in readings caused by the heterogeneity of the fill material. The MAG survey successfully pinpointed 22 areas of buried metal presence including one area containing 3 drums.

Samples were collected from the three drums encountered on site. The results for these samples indicate that the drum contents exhibit characteristics of an off-specification material and may be an altered form of the impregnating compound Code 88 formerly used at the UCC facilities.

The concentrations of chemicals detected in the perched groundwater system are relatively low and all are below applicable standards, with the exception of total recoverable phenols for which the standard is based on taste effects and not health effects. Alpha-BHC was also detected in one sample at 0.02 ppb above the detection limit, but was not detected in a duplicate sample.

Public and Environment Health Assessment

A public health assessment was conducted based on a set of indicator chemicals which included detected carcinogenic PAHs and pesticides.

vi

The potential human exposure pathways and exposure points identified at the Site include exposure of surface soils to on-site workers through dermal contact, inhalation and inadvertent ingestion. Other potential exposure points off-site include exposure to nearby residents through dust inhalation and to the general population through consumption of fish and water from the PASNY reservoir and the Niagara River.

The only complete pathways of exposure were determined to be on-Site exposure of workers to surface soils and off-Site exposure of residents in surrounding areas to dust from surface soils. Using worst case estimates for exposure under either of these scenarios, results in a calculated risk estimate that is well within acceptable risk levels.

The limited and occasional presence of wildlife on the Site precludes concerns regarding environmental exposure.

Conclusions and Recommendations

Based upon the results of the Site Investigation, the following conclusions and recommendations have been formulated:

vii

- The site does not pose a significant current or potential future threat to public health or the environment.
- 2) Water quality in the Town watermain is unaffected by the fill material and/or berm construction material. Contaminants in the berm construction material are not Site related.
- 3) Groundwater is essentially unaffected by the site and is contained as a perched water zone. Discharge to surface water is not a problem (based on chemical analysis). Bedrock groundwater is protected by a relatively thick clay aquitard.
- 4) Three buried drums were located during the investigation. These drums have been removed and disposed at a permitted waste disposal facility.
- 5) On-site exposure of workers to surface soils and exposure of off-site areas to dust from surface soils are the only complete potential pathways of exposure resulting from on-site wastes. Using worst case estimates for exposure under either of these scenarios results in a calculated risk estimate that is well within acceptable levels.
- 6) Soils containing PAHs and pesticides are present on site and are consistent with results from the SWMF.

viii

- 7) PAHs stay sorbed to soils and do not create an unacceptable risk to public health or the environment.
- 8) As no existing or potential risk was identified at the site, it is recommended that remedial measures are not required.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND	2
3.0	SITE INVESTIGATION	4
	3.1 WATERMAIN INVESTIGATION	4
	3.1.1 Watermain Soils Sampling	4
	3.1.1.1 Sampling Methodology	5
	3.1.2 Watermain Hydrant Sampling	8
	3.2 GEOPHYSICAL SURVEY	9
	3.2.1 Methodology	10
	3.2.2 Results of the EM Survey	13
	3.2.3 Results of the MAG Survey	14
	3.3 SITE INVESTIGATION TEST PITS	15
	3.4 SOIL SAMPLING PROGRAM	18
	3.4.1 Methodology	18
	3.5 MONITORING WELL INSTALLATION	19.
	3.5.1 Methodology	20
	3.6 GROUNDWATER SAMPLING	21
	3.6.1 Methodology	22
4.0	SITE CHARACTERIZATION	23
	4.1 FILL MATERIAL	23
	4.2 GLACIOLACUSTRINE CLAY	24
	4.3 GLACIAL TILL	25
	4.4 BEDROCK	26
	4.5 GROUNDWATER CONDITIONS	26
	4.6 SURFACE WATER CONDITIONS	27

Page

TABLE OF CONTENTS

	\cdot		
5.0	ANALYTICAL RESULTS		
	5.1 WATERMAIN INSTALLATION PROGRAM GRAB SAMPLES	29	
	5.2 WATERMAIN INVESTIGATION	30	
	5.2.1 Watermain Soils Sampling	31	
	5.2.2 Watermain Hydrant Sampling	35	
	5.3 SOIL SAMPLING PROGRAM	37	
	5.4 WASTE DRUM SAMPLE	43	
	5.5 SITE GROUNDWATER	45	
6.0	PUBLIC AND ENVIRONMENTAL HEALTH ASSESSMENT	49	
	6.1 PUBLIC HEALTH ASSESSMENT	49	
. •	6.1.1 Sélection of Indicator Chemicals	49	
	6.1.2 Exposure Pathways and		
	Exposure Point Concentrations	51	
	6.1.3 Risk Assessment	55	
	6.1.4 Summary and Conclusion	56	
	6.2 ENVIRONMENTAL EXPOSURE	57	
7.0	CONCLUSIONS AND RECOMMENDATIONS	59	

CONESTOGA-ROVERS & ASSOCIATES

Page

LIST OF FIGURES

		Following Page
FIGURE 1	LOCATION PLAN	2
FIGURE 2	SITE PLAN	2
FIGURE 3	TEST PIT AND SAMPLING LOCATIONS	4
FIGURE 4	TYPICAL ABOVEGROUND WATERMAIN TEST PIT EXCAVATION	5
FIGURE 5	1988 ANALYTICAL SAMPLING LOCATIONS	18
FIGURE 6	ISOPACH OF FILL MATERIAL	23
FIGURE 7	TEST HOLE LOCATIONS	24

LIST OF PLANS

- PLAN 1 EM SURVEY RESULTS
- PLAN 2 MAG SURVEY RESULTS

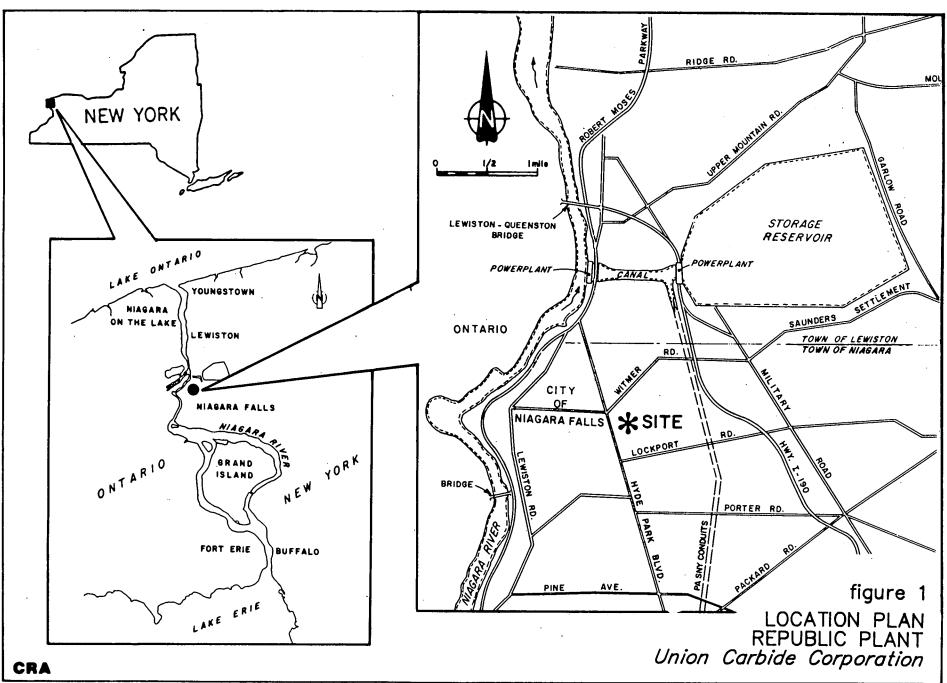
LIST OF TABLES

,			Following Page
TABLE	1	SAMPLE SUMMARY WATERMAIN SOILS SAMPLING PROGRAM	8
TABLE	2	SAMPLE SUMMARY WATERMAIN HYDRANT SAMPLING PROGRAM	9
TABLE	3	WELL INSTALLATION DETAILS	21
TABLE	4	GROUNDWATER SAMPLING SUMMARY	22
TABLE	5	WATER LEVEL ELEVATIONS	26
TABLE	6	SUMMARY OF COMPOUNDS DETECTED WATERMAIN SOILS SAMPLING	32
TABLE	7	SUMMARY OF COMPOUNDS DETECTED WATERMAIN HYDRANT SAMPLING	35
TABLE	8	SUMMARY OF COMPOUNDS DETECTED SOIL SAMPLING PROGRAM	38
TABLE		SUMMARY OF ANALYTICAL RESULTS WASTE DRUM SAMPLING	44
TABLE	10	SUMMARY OF COMPOUNDS DETECTED GROUNDWATER MONITORING PROGRAM	45
TABLE	11	WORKER EXPOSURE TO SURFACE SOILS	54
TABLE	12	ESTIMATED EXPOSURE OF RESIDENTS TO ON-SITE SURFACE SOIL	56

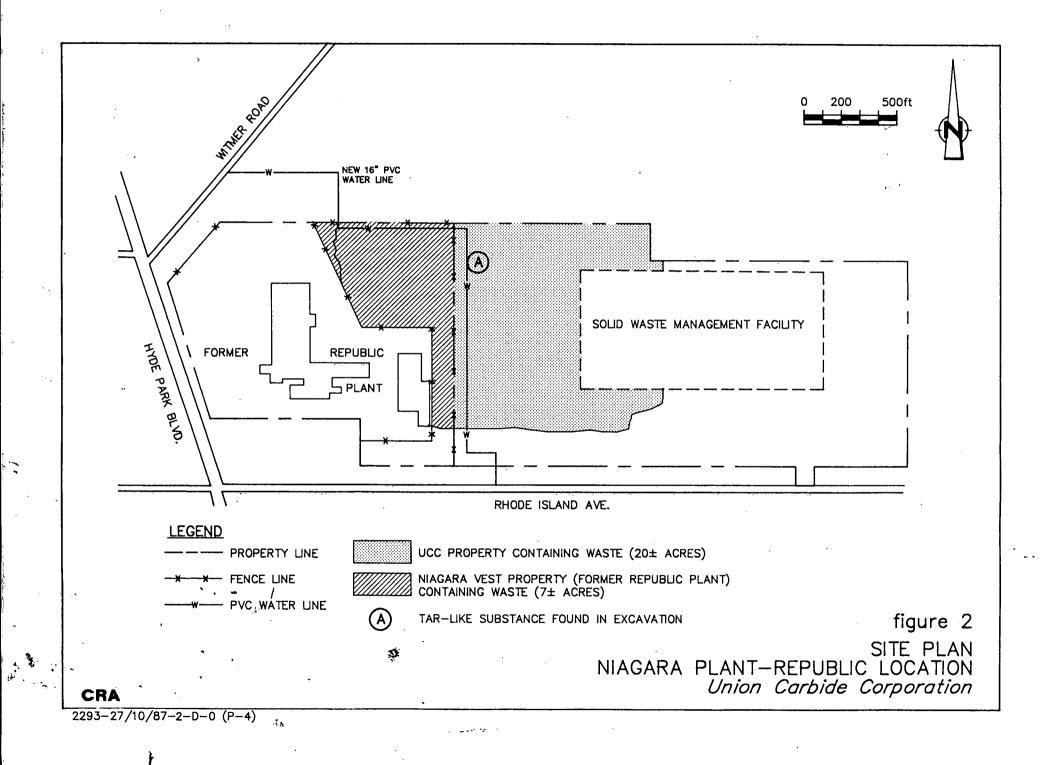
LIST OF APPENDICES

APPENDIX A	EM SURVEY DATA
APPENDIX B	MAG SURVEY DATA
APPENDIX C	TEST PIT SAMPLING AND DRUM EXCAVATION SUMMARY
APPENDIX D	STRATIGRAPHIC AND INSTRUMENTATION LOGS
APPENDIX E	ANALYTICAL RESULTS - WATERMAIN SAMPLING PROGRAM
APPENDIX F	ANALYTICAL RESULTS - SITE SOILS
APPENDIX G	ANALYTICAL RESULTS - WASTE DRUM SAMPLES
APPENDIX H	ANALYTICAL RESULTS - GROUNDWATER SAMPLING PROGRAM
APPENDIX I	WATERMAIN INSTALLATION PROGRAM - SAMPLE "A" RESULTS
APPENDIX J	SURFACE WATER SAMPLE RESULTS

In June 1987, Union Carbide Corporation (UCC) completed the closure of the 16.5 acre Solid Waste Management Facility (SWMF) located on a parcel of property east of the former Republic Plant in Niagara Falls, New York. The SWMF had been used as a waste disposal site by UCC for approximately the past 40 years and was closed in accordance with a NYSDEC approved Closure Plan. In 1986, the Town of Niagara requested and received an easement to install a watermain through the Union Carbide property west of the Later in June 1987, during the installation of this SWMF. watermain, it was discovered that the areal extent of waste deposition on the area west of the SWMF and on property now owned by Niagara Vest was larger than had been expected. As a result, a plan of investigation to assess this discovery was prepared and submitted to the New York State Department of Environmental Conservation (NYSDEC) in the document entitled "Proposed Plan of Work, Area West of Solid Waste Management Facility".


The purpose of this report is to present the results of the investigation agreed upon with the NYSDEC along with the results of additional work undertaken by Union Carbide Corporation (UCC) in resolving this matter.

2.0 BACKGROUND


Union Carbide Corporation (UCC) operated a SWMF located east of its former Republic Plant (currently Niagara Vest) for approximately 40 years. The location of the SWMF is presented in Figures 1 and 2. In conjunction with the closure of UCC operations in Niagara Falls, use of the SWMF for waste disposal ended on (December 1, 1986). Final closure of the SWMF was completed in accordance with the NYSDEC approved closure plan entitled "Final Landfill Closure, Solid Waste Management Facility, Union Carbide Corporation, Republic Plant, Town of Niagara, New York", dated September 1987.

At the time of the SWMF closure it was believed, based on historical records, that waste disposal to the west of the SWMF was limited to a thin layer (0 to 2 feet in thickness) of carbonaceous materials and surficial debris consisting of wood, bricks, glass and vegetation. The carbonaceous materials are from Union Carbide and include graphite and other carbon products which are present in both dust and solid form. Some of the larger solid pieces are on the order of 10 feet in size.

In June 1987 the Town of Niagara proceeded with the installation of a 16-inch diameter watermain along an acquired easement through Union Carbide and Niagara Vest

2293-30/09/88-2-D-1

the second se

properties. During excavation for the placement of this watermain, a tar-like substance was encountered which indicated that materials other than carbonaceous materials may have been disposed in this area.

After discovery of these possible waste materials along the proposed route of the watermain, it was decided that the watermain would be placed above, rather than below ground. This was accomplished by installing the watermain inside a berm constructed of imported clay.

Figure 2 shows the locations of the SWMF, watermain installation and the location of the original excavation where the "tar-like" substance was identified. (Denoted as location "A" on Figure 2.)

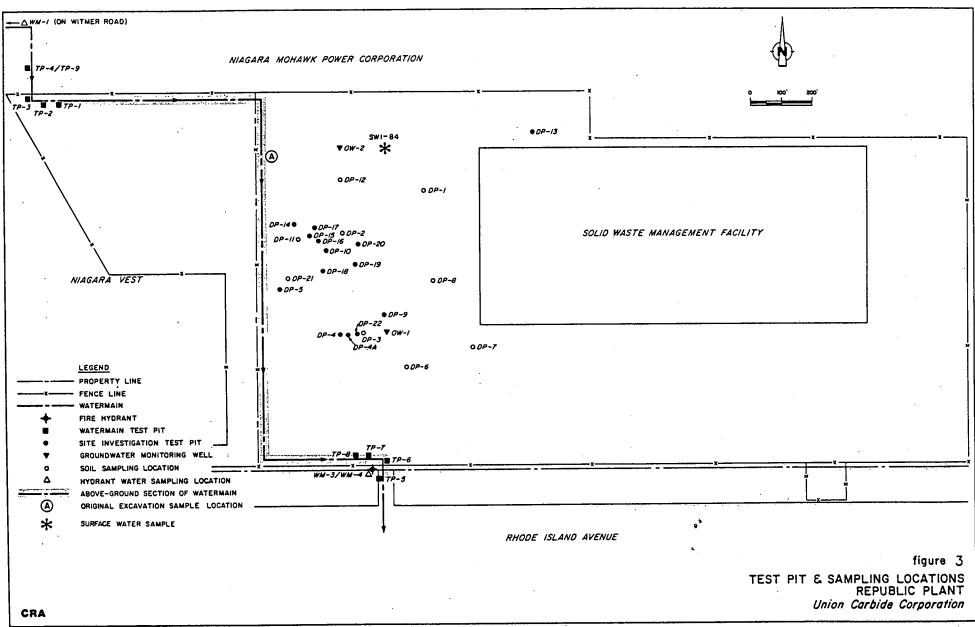
Subsequent to NYSDEC approval of the Plan of Work developed for the Site, the field investigation phase began. The field investigation included:

 Watermain Investigation, including soil and water sampling;

3

- Geophysical Survey;
- * Test Pit Excavation and Sampling;
- * Monitoring Well Installation; and
- ' Groundwater Sampling.

CONESTOGA-ROVERS & ASSOCIATES


3.0 SITE INVESTIGATION

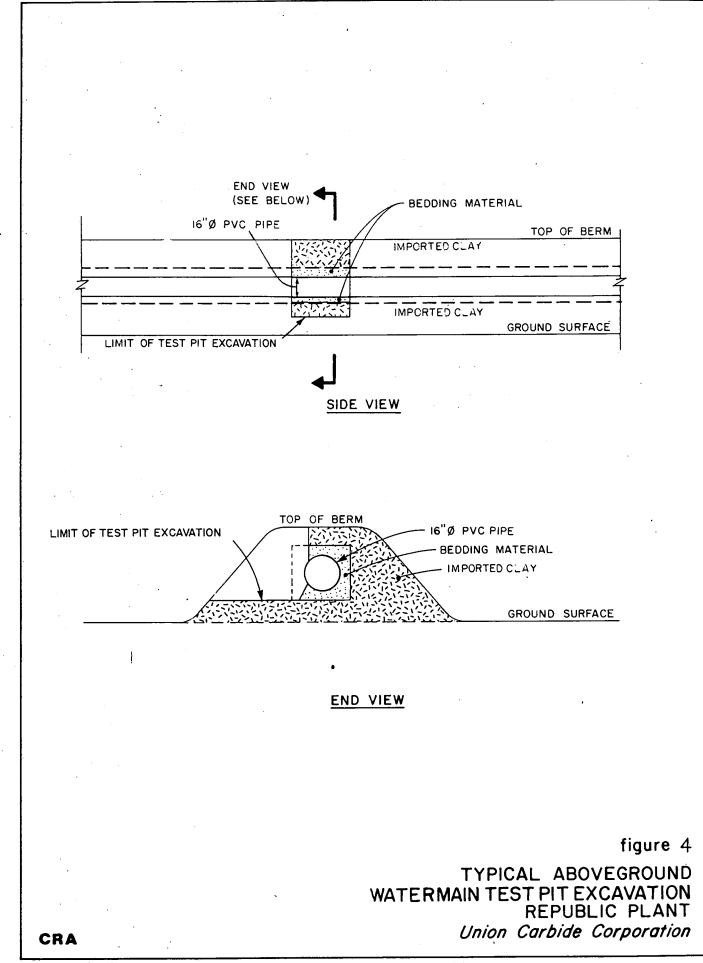
3.1 WATERMAIN INVESTIGATION

In order to determine whether the presence of UCC waste materials has impacted the quality of water supplied by the Town of Niagara watermain, samples of the bedding materials around the pipe were collected as well as samples of the water supply itself both upstream and downstream of the UCC Site. The locations of all watermain bedding test pits and the two watermain samples collected as part of this program are presented on Figure 3.

3.1.1 Watermain Soils Sampling

In February 1988, eight test pits were excavated along the newly installed watermain with the intent of sampling the pipe bedding material. The purpose of this sampling was to determine the chemical nature of the bedding material that is in contact with the water supply pipes. Upon excavation of the first test pit, it was confirmed that the bedding material was composed entirely of gravel. Consequently, the soils immediately surrounding the bedding gravel were sampled and submitted for analysis since the gravel itself cannot be analyzed.

2293-30/09/88-2-0-2


·

With the exception of Test Pits 3 and 4, the excavations were placed at 50-foot intervals along the pipe from a point at which the pipe is entirely above the surrounding ground elevation, (Test Pits 1 and 8), to a point at which the pipe is entirely below the elevation of the surrounding ground (Test Pits 4 and 5). The area between the original proposed location for Test Pit 3 and Test Pit 4 was flooded at the time of the sampling program. Consequently, Test Pit 3 was excavated at the location originally proposed for Test Pit 4 and Test Pit 4 was relocated to a drier location approximately 100 feet upstream from Test Pit 3.

3.1.1.1 Sampling Methodology

Test pits were excavated using a backhoe with a precleaned bucket. The backhoe bucket was cleaned with fresh water before beginning the excavation of each pit. Wash water was allowed to drain onto the ground in the vicinity of the excavation.

Test pits were excavated perpendicular to the watermain in order that the bedding could be exposed as easily as possible. A typical schematic of a test pit excavation is presented on Figure 4.

2293-30/09/88-2-D-3

At the locations where soil and groundwater conditions would permit sampling personnel to enter the excavation, samples were collected in the following manner:

- Exposed surfaces surrounding the bedding which had been contacted by the backhoe bucket were scraped "clean" using a precleaned sampling trowel. The sampling trowel was cleaned with soapy water, rinsed with a water, acetone, hexane, acetone, distilled water sequence and allowed to air dry before use at each location.
 - Sample containers for chemical analyses were filled using the same trowel by collecting a composite of the soil material which was in immediate contact with the gravel bedding material under and alongside the watermain pipe.
- Sample containers were subsequently stored in a cooler and packed with ice for later transport to the laboratory.

At locations which were either too deep or too wet to permit safe entry of sampling personnel, the following procedures were followed:

.

After the watermain had been located and exposed, the backhoe removed a bucket of material from around the bedding.

- After allowing water to drain from the bucket of soil, the exposed surfaces were scraped clean using a trowel precleaned using the above described rinse sequence.
- Composite samples were collected from the remaining material in the backhoe bucket using the same trowel and placed in sample containers.
- Sample containers were subsequently stored in a cooler and packed with ice for later transport to the laboratory.

After sampling was completed at each location, the displaced gravel bedding material was replaced using clean gravel of comparable size. The test pit was subsequently backfilled using all of the original berm soil and compacted using a backhoe compactor.

On June 8, 1988 three of the test pits (TP-2, TP-4 and TP-6) were re-excavated for confirmatory sampling. The new test pits were excavated adjacent to the original locations and samples were collected following the same protocols used during the original program.

An additional composite sample was also collected from the clay stockpile located at the Town of

Niagara garage as this was the source of the imported clay material used for the watermain berm construction onsite. Using a precleaned trowel, several aliquots of soil were collected from the areas where the watermain berm material had been removed from the stockpile.

A representative of the Town of Niagara was present at all times during test pit and stockpile sampling.

Table 1 summarizes the samples collected during the Watermain Soils Sampling Program.

3.1.2 Watermain Hydrant Sampling

In order to collect samples of the water within the watermain, it was necessary to use the fire hydrants as these are the only available access points. The fire hydrants sampled were situated immediately up and downstream of the UCC Site as shown on Figure 3. The upstream and downstream hydrant locations were selected based on information provided by the Town of Niagara. Because the watermain was installed, according to the Town of Niagara, to provide improved water service to the area south of the SWMF, the flow of water within the watermain traversing the Site is from the north along Witmer Road to the south along Rhode Island Avenue.

TAPLE 1

SAMPLE SUMMARY WATERMAIN SOILS SAMPLING PROGRAM UNION CARBIDE - REPUBLIC PLANT

Location	Date	Sample No.	Comments
Test Pit 1	2/24/88	፹₽ 1	Sampled from bottom and side wall of watermain trench. Red-brown clay, moist.
Test Pit 2	2/24/88	TP2	Excavation filled with 1+ foot water, sampled sidewall of watermain trench above water level. Red-brown clay, moist to wet.
	6/8/88	TP-2	Sampled from bottom of excavation. Red-brown clay.
Test Pit 3	2/24/88	TP3	Excavation filled with water. Cleared bedding around watermain pipe as much as possible. Removed one backhoe bucket of material from around the side and bottom of the bedding, sampled from bucket. Red-brown clay, moist to wet.
Test Pit 4	2/25/88	TP4	Excavation filled with water, could not see watermain pipe. Cleared away bedding, removed one backhoe bucket of material from around side and bottom of the bedding, sampled from bucket. Red-brown clay, moist to wet. Collected samples in duplicate (labelled TP9).
	6/8/88	<u></u> ₽ −4	Sampled from bedding/trench interface above watermain pipe. Red-brown clay, moist.
Test Pit 5	2/25/88	TP5	Excavation filled with water. Cleared away bedding, removed one backhoe bucket of material from side and bottom of the bedding, sampled from bucket. Red-brown clay, moist.
Test Pit 6	2/26/88	TP6	Excavation filled rapidly with water to within 1 foot of ground surface. Could not locate pipe. Sampled from excavation sidewall above pipe, 1.5 <u>+</u> feet below ground surface.
	6/8/88	TP-6	Sampled from bottom and sidewall of watermain trench. Brown clay.
Test Pit 7	2/26/88	TP7	Sampled from bedding/trench interface above watermain pipe. Red-brown clay, moist.
Test Pit 8	2/25/88	Ͳ ₽8	Sampled from sidewall of watermain pipe trench. Red-brown clay, moist.

CONESTOGA-ROVERS & ASSOCIATES

Each fire hydrant was opened by a representative of the Town of Niagara and allowed to flush for two to three minutes before sampling. Water samples were collected directly from the fire hydrant stream in the appropriate sample containers. Collected samples were subsequently stored in coolers packed with ice for later transport to the laboratory.

Table 2 summarizes the watermain hydrant water samples collected.

3.2 GEOPHYSICAL SURVEY

Included in the field investigation were two geophysical surveys designed to detect and delineate, if possible, the potential locations of buried steel disposal containers (i.e. 55 gallon drums). Discussions with former employees indicated that drums may possibly have been disposed in the area. By performing these geophysical surveys over the entire area, this uncertainty could be addressed and appropriate action taken if necessary.

Because the effects, if any, of the carbonaceous (graphitic) materials at the Site on instrument performance were unknown, surveys were conducted using two types of instruments (electromagnetic (EM) and magnetometer

TABLE 2 SAMPLE SUMMARY WATERMAIN HYDRANT SAMPLING PROGRAM UNION CARBIDE - REPUBLIC PLANT

Sample No.	Location	Description
WM-1	Hydrant-1	North side of Witmer Road, upstream of UCC Site.
WM-3 WM-4	Hydrant-3	North side of Rhode Island Avenue, downstream of UCC Site.

(MAG)) over the same area. It was suspected that large pieces of carbonaceous waste may have conductivities similar to that of metallic deposits. The metallic deposits are readily identified by anomalous MAG readings. The carbonaceous waste, on the other hand, was expected to have no influence on the MAG readings. It was anticipated that using both the EM and MAG techniques would improve anomaly identification by making carbonaceous and metallic deposits distinguishable using the following identification criteria:

- An EM conductivity anomaly coupled with a MAG non-anomaly (i.e. no magnetic material detected) would be indicative of a deposit of carbonaceous waste.
- An EM conductivity anomaly coupled with a MAG anomaly would be more representative of buried ferrous wastes such as drums.

The surveys covered, in systematic fashion, the 20 acre area surrounding the SWMF which is owned by UCC.

3.2.1 Methodology

A 100 foot interval sample grid spacing was established by a licensed land surveyor prior to undertaking

the geophysical surveys. Easting and northing coordinates were assigned to each location and marked by a wooden stake for future reference. The established grid was infilled at 25-foot intervals by pacing. The 25-foot station spacing was used for EM and MAG surveys over the entire 20 acres.

The shallow sensing Geonics EM31

electromagnetic instrument was chosen for the terrain conductivity survey to map the bulk conductivity of the earth materials to a depth of approximately 15 feet. The EM instrumentation is designed to detect terrain conductivity by utilizing a current flow induced in the subsurface materials by a surface transmitter. An alternating electric current produced in a transmitter coil generates an alternating magnetic field. The magnetic field penetrates the ground surface and induces current flow through the earth material which in turn induces a secondary magnetic field. The secondary magnetic field sensed at the receiver coil depends on the strength of the primary field, current frequency, distance between transmitter and receiver coils (factors considered constant for the EM31), and the presence of a conductive body. The EM31 is portable, permitting data to be gathered simply as the instrument is moved across the Site.

The Geonics EM31 instrument has transmitter and receiver coils separated by a rigid boom 3.6 meters (11.8 feet) in length. The device reads in milliSiemen per

meter (mS/m). Generally, the conductivity readings obtained with the EM31 will vary smoothly from one region to another. In some cases however, an edge effect (due to fences, powerlines, etc.) may be seen in which the readings vary rapidly with position and are no longer a good indicator of terrain conductivity. The inphase component of the magnetic field is significantly more sensitive to large metallic objects than the quadrature-phase component. The Geonics EM31 is typically best suited for determining the location of buried steel containers. However, large pieces of carbonaceous waste may have conductivities similar to those expected from buried drums making data interpretation difficult if the EM31 is used alone.

Magnetometers can also be utilized to detect perturbations in the geomagnetic field created by buried ferromagnetic objects such as steel drums. The most common instruments currently in use are the gradiometric and the proton precession magnetometers. The proton precession magnetometer typically measures the magnetic susceptibility of the total field. That is to say that it is capable of sensing both the vertical and horizontal field components. The gradiometric magnetometer (MAG) has the advantage in being able to sense the vertical field while remaining relatively insensitive to the horizontal field component. This feature allows the instrument to sense subsurface targets in the presence of anthropogenic interferences such as steel fences.

Based upon this advantage, the McFar fluxgate MAG selected for use in the survey work at the Site. The MAG is portable, permitting data to be collected rapidly and continuously as the operator and the instrument move across the land surface. In soil with minimum interference, individual typical steel containers such as 55-gallon drums can easily be detected to a depth of 10 feet.

A computer aided "nearest neighbor" mapping package was used to store, manipulate and present the EM and MAG data. The nearest neighbor package is the simplest search method that finds the nearest neighboring data point, in an Euclidean distance sense, regardless of their angular distribution around the point being estimated. This method is fast and satisfactory if control points (instrument readings) are distributed in a comparatively uniform pattern and is based on the idea that a nearby observation point is a better estimate of the value of a point on a surface than a more distant one, and that a small number of nearest control points provide essentially all the information that is relevant to the estimate.

3.2.2 Results of the EM Survey

Plan 1 represents the EM inphase component values collected during the survey at the Site. Data obtained during the EM survey are presented in Appendix A.

Underground conductors are prevalent throughout the Site as evidenced by the large fluctuations in the data that occur over relatively short distances. Background readings obtained along the southern boundary of the Site (off the grid) averaged 30 mS/m. Due to the large and continuous degree of change over the Site, it is apparent that the EM Survey has been of limited value.

As discussed previously in Section 3.2.1, the inphase component of the magnetic field is typically significantly more sensitive to large metallic objects than the quadrature-phase component. However, no variation in the inphase and quadrature-phase component was observed in the field during the survey at the Site. This deviation has been attributed to the extensive deposits of carbonaceous wastes present which have masked the possible response of the EM31 to metal. Therefore, the locations of potential buried drums could not be identified under EM survey.

3.2.3 Results of the MAG Survey

The results of the MAG survey conducted at the Site are presented on Plan 2. Data obtained during the MAG survey are presented in Appendix B.

Typical background levels on the order of 10,500 gammas were obtained for the MAG survey. The results of the MAG survey indicated 29 areas of response, as shown on Plan 2. At each of these locations, the MAG survey crew collected additional readings in the field to pinpoint the location having the highest MAG reading in the vicinity of the area of response for future references.

These areas of magnetic highs could not be explained by anthropogenic sources such as steel cased observation wells, metal posts or bars and scrap metal noted during the survey. The presence of carbonaceous waste did not influence the MAG survey as was the case with the EM results. Ground truthing of the MAG results was conducted with a test pit excavation program. The results of this program are discussed in the following section of this report.

3.3 SITE INVESTIGATION TEST PITS

After the location of suspected metal areas were identified through the geophysical surveys described in Section 3.2, a test pit excavation program was conducted to pinpoint the locations of buried drums, if any. Test pits were excavated at 22 of the 29 locations which had shown MAG readings of 15,000 gammas or more or, in one case, a negative

reading. Test pits were not excavated at the remaining seven locations with high MAG readings in an effort to avoid disturbance of the clay cap on the closed SWMF. The identified peak MAG reading location was used as the starting point for each excavation.

Test pits were excavated using a backhoe. The test pits extended through the fill material to the top of the native clay regime. Drums were encountered in only one of the 22 test pit locations (DP-21). The locations of all test pits are shown on Figure 3.

Materials of a metallic nature were found at each of the test pit locations. These materials generally consisted of large chunks of reinforced Acheson furnace sidewall block. However, objects such as fence posts, metal pails, wire mesh and pipe were also encountered. Appendix C presents a summary of the stratigraphic logs from the test pit excavation program.

Following documentation of the type of fill encountered and other conditions such as the presence or absence of groundwater, each test pit was backfilled with the original material. To the extent practicable, excavated material was replaced in the same order in which it had been removed.

At location DP-21, three intact 55-gallon drums containing waste materials were encountered. The drums appeared to be watertight and the primary substance contained in these drums was a solid, black, tar-like material. These drums also contained cloth, cardboard, wood, rope and miscellaneous trash. The test pit excavation was expanded in the immediate area, however, no other drums were located.

After exposing the buried drums, they were lifted out of the excavation using the backhoe. Three samples were collected, one from each drum, and subsequently submitted to the laboratory for selected chemical analysis. In addition, two random samples, one consisting of a solid black material and the other of a black tar-like material, were collected from the excavation and submitted to the laboratory for chemical analysis. The tar-like material was also submitted for selected physical analysis. The results of these analyses are discussed in detail in Section 5.4.

Following sampling of the drums, they were placed inside oversize salvage drums, tightly covered and labelled. These salvage drums were then placed in the open excavation and markers were placed next to them which extended above ground. The entire excavation was then backfilled with the original material in the same manner as the other excavations. Subsequent to receipt of analytical results, the drums were excavated and were disposed at a permitted disposal facility.

3.4 SOIL SAMPLING PROGRAM

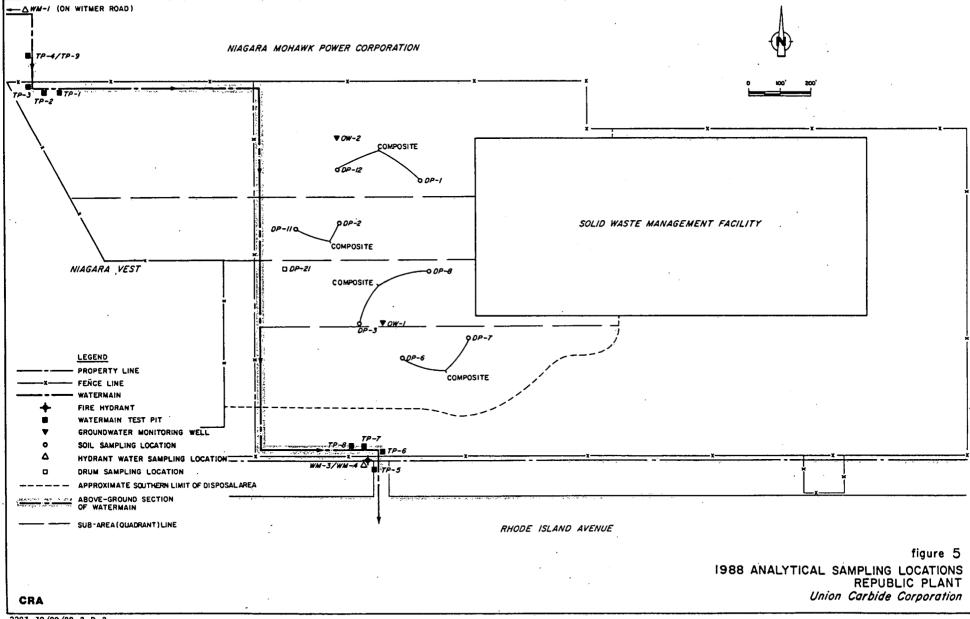
A Soil Sampling Program was conducted in conjunction with the test pit excavation program. As outlined in the "Proposed Plan of Work", the Site was divided into four sub-areas of approximately equal size. In each sub-area, two test pits were chosen for soil sampling. (See Figure 5.)

The sample sites were picked with the following criteria in mind:

Location

-

Nature of the fill material


Groundwater conditions

3.4.1 Methodology

Sampling of the test pits was conducted in a manner similar to the watermain soil (bedding) samples except that the backhoe was not cleaned between each excavation. The sampling tools, however, were precleaned at each location using the rinse sequence previously described in Section 3.1.1.1.

2293-30/09/88-2-0-2

As discussed previously in Section 3.3, test pits were excavated through the fill material to the top of the native clay. Then, using a precleaned sampling trowel the exposed surface which had contacted the backhoe was scraped clean. Composite samples of the fill material over the entire depth of the excavation were then collected and placed in appropriate sample containers. Sample containers were subsequently stored in a cooler packed with ice for later transport to the laboratory.

Two samples from each sub-area were composited into one sample and homogenized at the laboratory prior to analysis.

3.5 MONITORING WELL INSTALLATION

After completion of the test pit excavation program, two locations were chosen for the installation of shallow groundwater monitoring wells. The principle factors of concern in the selection of well locations were:

suitable depth of fill; and

appreciable groundwater presence.

In general, the groundwater in the fill material was observed to be perched upon the top of the native clay strata.

Consequently, excavations were made through the fill and into the underlying clay to a depth which would ensure an adequate column of water within the well for the purpose of sampling.

The locations of the monitoring wells are presented on Figure 5.

3.5.1 Methodology

Using a backhoe which had been precleaned with clean water, a pit was excavated to a depth believed to be sufficient to provide at least three feet of groundwater in the well. After excavation, each monitoring well pit was allowed to stand for approximately two to three hours to reach a static, or near static water level.

Well materials were prepared and assembled in the following manner:

- A 2-foot long, #10-slot, 2-inch diameter stainless steel well screen was fitted to an appropriate length of 2-inch ID black steel riser pipe.
- The assembled well was then cleaned inside and out by rinsing with acetone, hexane, acetone and distilled water.

A 3-foot long, 4- to 5-inch diameter geotextile filter fabric bag was placed around the well screen and filled with quartzite sand. This filter fabric bag was secured to the riser pipe above the well screen.

- The assembled well and sandpack was lowered into the excavated pit and held in a vertical position to a depth at which the static water level was at least one foot above the top of the well screen.
- The pit was then backfilled with the excavated fill and clay material. The fill material was placed first so it would be sure to be situated around the well screen. The clay was placed at the top of the well installation.

The well was fitted with a lockable cap and lock.

Table 3 summarizes the well installation details. Stratigraphic and Instrumentation Logs are contained in Appendix D.

3.6 GROUNDWATER SAMPLING

After the groundwater monitoring wells had been allowed to stabilize for five days, they were developed and sampled.

TABLE 3 WELL INSTALLATION DETAILS UNION CARBIDE - REPUBLIC PLANT

Well Number	Bottom of Screen (BGS)	Bottom of Fill (BGS)	Static Water Level (BGS)
OW-1-88	4.6 ft.	4.6 ft.	1.80 ft.
OW-2-88	6.0 ft.	4.9 ft.	1.95 ft.

3.6.1 Methodology

Each well was purged of a minimum of ten volumes of standing water before sampling. This was accomplished using a peristaltic pump fitted with clean, well-dedicated teflon tubing.

On March 22, 1988, after purging was complete, samples for volatile analysis were collected using a precleaned bottom-loading stainless steel bailer attached to a stainless steel lead and nylon rope. Other samples were collected using the same peristaltic pump and tubing which had been used for purging.

Sample containers were subsequently stored in a cooler packed with ice and immediately transported to the laboratory.

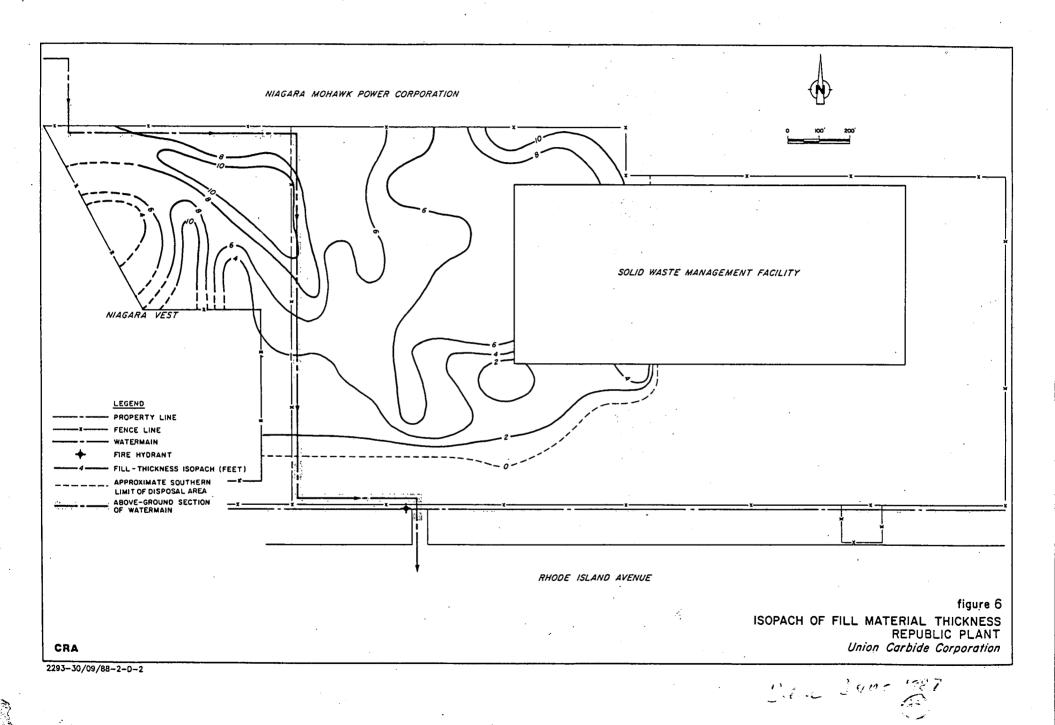
Table 4 summarizes the Well Sampling

Program.

TABLE 4 GROUNDWATER SAMPLING SUMMARY UNION CARBIDE - REPUBLIC PLANT

Well No.	Date	One Well Volume	Total Volume Purged	Comments	
O₩- 1-88 '	3/22/88	.43 gal.	6.0 gal.	Final water quality slightly cloudy, colorless, trace suspended black sediment, no odor (initially water had a slight petroleum-like odor).	
OW-2-88	3/22/88	0.75 gal.	7.5 gal.	Final water quality clear and colorless.	

4.0 SITE CHARACTERIZATION

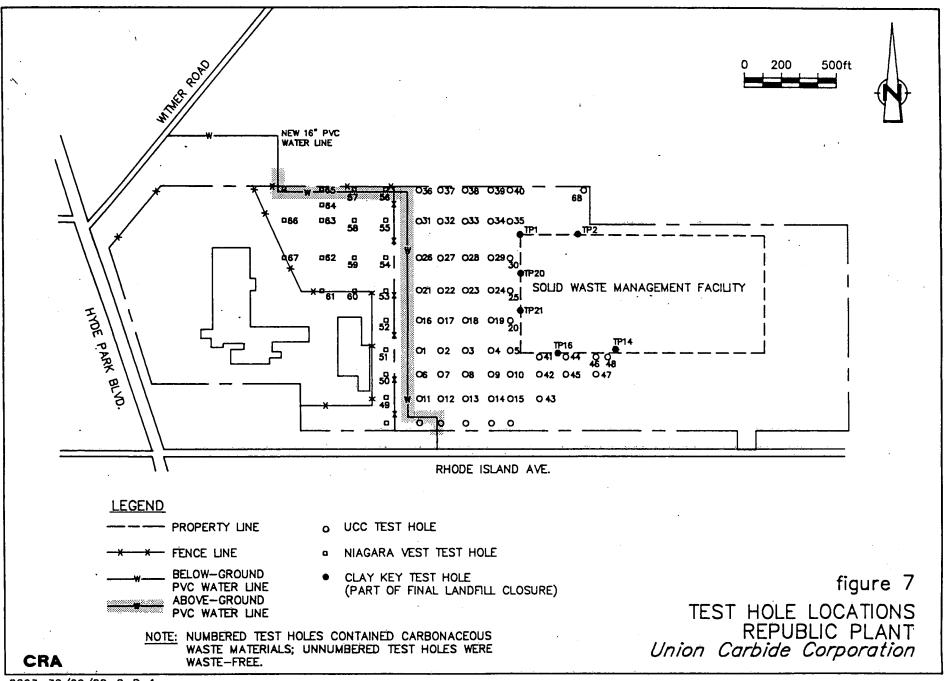

The overburden materials encountered during the investigation are typical of those encountered in previous test pit and monitoring well installation programs conducted at the SWMF and surrounding area. In general, the Site is underlain by four geologic units. These are: Fill Material, Glaciolacustrine Clay, Glacial Till and Bedrock. During this study, only the two uppermost geologic units were encountered as the study did not require penetration beyond the top of the clay strata. Descriptions of the fill and clay encountered during this study are presented in Appendix C and are further discussed in the following subsections.

4.1 FILL MATERIAL

The uppermost unit consists of Fill Material. The Fill Material typically consists of demolition debris, including Acheson furnace sidewall block fragments (large chunks of material resembling reinforced concrete), wood, ash, brick, glass and vegetation, intermixed in a black sand to cobble-size carbonaceous matrix. Also present in the fill matrix is gravel, sand, silt and clay. The thickness of the Fill Material varies across the Site from 0 to 12.0 feet and averages 5.4 feet (see Figure 6). The thickest fill deposits exist along the northeast corner and in the northwest portion

23

CONESTOGA-ROVERS & ASSOCIATES


of the Site. No fill was encountered along the southern segment of the Site. Information pertaining to the thickness of fill material was generally obtained from the test pit survey performed by UCC in June 1987. This survey included the excavation of 75 test pits to determine the depth and areal extent of fill material presence at the Site. The location of the test pits are presented in Figure 7.

The northern and western limits of the fill were not defined since the presence of fill extends onto Niagara Mohawk and Niagara Vest property.

Generally the Fill Material is coarse and consequently is very conducive to infiltration and groundwater flow.

4.2 GLACIOLACUSTRINE CLAY

The Fill Material is underlain by Glaciolacustrine Clay which generally consists of very stiff gray to brown silty clay. Due to the fine grained nature of this unit, the clay is a low permeable strata which acts as an aquitard. The top of this unit is exposed along the southern boundary of the Site and gradually slopes downwards toward the north and northwest. During this study, the Glaciolacustrine Clay was excavated to a maximum depth of

2293-30/09/88-2-D-1

2.7 feet. However, the Glaciolacustrine Clay is known, from other borings on the Site, to extend almost to the top of the bedrock formation which lies 7 to 20 feet below grade around the SWMF. At the western end of the SWMF, the depth to bedrock was in the 17 to 20 foot range.

It is surmised that prior to the use of the area as a disposal facility, some of the native clay was excavated and used for fill in other areas of the plant. Thus, throughout the Site, pockets of clay may have been removed. As the clay under the western portion of the site extends to depths ranging from 17 to 20 feet deep, it is expected that at least 10 feet of clay remains beneath the entire western area. Thus, there is considerable separation between the Fill Material and Bedrock.

4.3 GLACIAL TILL

Immediately overlying the bedrock, between the clay and bedrock, there is usually a thin layer of till (0.5 to 6 feet thick) which is also of low permeability.

The till is generally silty but can range from clayey to sandy. Information obtained from other sites in Niagara Falls confirms that even the sandy tills generally contain sufficient fines (silt and clay) to maintain a low permeability.

4.4 BEDROCK

The bedrock beneath the Site is the Lockport Group of the Middle Silurian System. The Lockport Group is comprised of brownish to dark gray dolomite that is typically medium to thick bedded and medium grained.

The upper 30 to 45 feet of the Lockport Group is generally heavily fractured and consequently, a significant water bearing unit.

4.5 GROUNDWATER CONDITIONS

During the course of the Site Investigation, groundwater levels were measured periodically in the new Fill Material monitoring wells OWl and OW2. Four rounds of groundwater level measurements were conducted in April and May (see Table 5). These rounds included measurement of water levels in the two newly installed wells and in all of the existing Site Monitoring wells. However, since the existing overburden wells on the Site (MWl, MW2 and MW3) are screened in native materials rather than fill, no correlation can be made between the new and existing overburden wells.

The water level elevations of the two newly installed fill wells reveal that the groundwater in the Fill

TABLE 5

Well Number	Top of Casing Elevation (feet AMSL)	Date	Water Level Elevation (feet AMSL)
OW1-88	605.38	4/26/88 4/29/88 5/02/88 5/09/88	599.46 599.56 599.60 599.38
OW2-88	599.21	4/26/88 4/29/88 5/02/88 5/09/88	592.71 592.78 593.04 592.52

WATER LEVEL ELEVATIONS UNION CARBIDE CORPORATION - REPUBLIC PLANT

,

CONESTOGA-ROVERS & ASSOCIATES

Material is lower in the northern portion of the Site around OW2 and higher in the southern portion around OW1. The difference in groundwater elevations between the wells is on the order of six to seven feet which is consistent with the change in ground surface elevation between the wells. Based on the difference in groundwater elevations between the wells, the groundwater gradient is approximately 0.01 foot/foot in a northerly direction. U.S. Department of the Interior Niagara Falls Quadrangle indicates a surface elevation in the range of 595+ feet AMSL in the vicinity of the Niagara-Mohawk property, north of the UCC Site. This area has been observed to be in swampy condition with standing water and bullrushes. The measured water levels of OW-2 are in the range of 592 to 593 feet AMSL. It is thus possible that the swampy area may be an area of groundwater discharge to the surface.

4.6 SURFACE WATER CONDITIONS

Surface water ponding has occurred in the southwest corner of the Site as a result of the installation of the watermain berm. At the time of the closure of the SWMF it was assumed that some of the surface water runoff would continue to drain unabated to the southwest without problem. However, the watermain berm has effectively created a dam which retains the runoff in a relatively small area.

Once the overburden materials above the clay strata become saturated, water ponds on the surface in this area. At the time of the Site Investigation (April) the depth of surface water in this area was approximately 6-8 inches. It was noted that during the drier, warmer seasons of the year, surface water accumulation was considerably less however the ponded area never completely dried up.

28

CONESTOGA-ROVERS & ASSOCIATES

Sampling procedures for the various programs conducted during this investigation have been described in Section 3.0. The locations of all monitoring points have been presented previously on Figure 3. The subsequent subsections present and discuss the analytical data collected under this investigation.

5.1 WATERMAIN INSTALLATION PROGRAM GRAB SAMPLES

Water, soil and tar samples were collected from an excavation during the June 1987 watermain installation program described in Section 2.0. During excavation, grab samples were taken at location "A", shown previously on Figure 2. The excavation had been open for an unknown amount of time before sampling. Volatile compounds may have volatilized from the excavation before samples were taken. Also, the collection protocols were not recorded. Due to these reasons, the samples taken at location "A" have been included for qualitative purposes only, but should not be assumed to be representative of in situ conditions.

The results of the soil, water and tar samples are contained in Appendix I. Soil sample results are from analyses of Toxicity Characteristic Leaching Procedure (TCLP) extracts.

No priority pollutant volatile organics, pesticides or PCBs were detected in the water or soil samples. Analyses for petroleum products detected tar primer in the water, soil and tar samples. Various metals were detected in the water and soil samples. The metals concentrations in the water were below the applicable New York State groundwater standards except for manganese which was reported at a concentration of 1.86 ppm. The New York State (NYS) Groundwater Quality Standard for manganese is 0.3 ppm, for Class GA waters (source of potable water supply).

Various Polynuclear Aromatic Hydrocarbons (PAHs) were also detected in water and soil samples. Of the PAHs detected, only fluoranthene (detected at 321 ppb) has an established standard (EPA Water Quality Criteria - 42 ppb). There is no NYS Groundwater Quality Standard established for fluoranthene.

5.2 WATERMAIN INVESTIGATION

As stated previously, soil and water samples were collected from in and around the watermain installation to determine what, if any, impact the presence of waste materials on the UCC Site has had on the city watermain.

Soil samples were collected from TP-1 to TP-4, upstream of the Site and from TP-5 to TP-8, downstream of the Site. One field duplicate sample (TP-9) was also collected from location TP-4. As summarized on Table 1, presented previously, material encountered in the test pit excavations consisted of pipe bedding and red-brown (imported) clay. The soil samples collected from each individual test pit were composites of the clays in direct contact with the pipe bedding.

Table 6 summarizes the compounds that were detected in the watermain soil samples. Appendix E presents the laboratory results for the soil samples and a summary of the analytical Quality Control (QC) review conducted on the data. On the basis of the reported data and QC review, the data presented on Table 6, with the exceptions noted below, are valid and acceptable for assessment purposes.

Analyses of the field duplicate samples (TP4/TP9) produced data that were generally comparable with the exception of a relatively small, acceptable deviation in nitrite concentrations and a significant deviation for benzene. Reported benzene concentrations for TP4 and TP9 were 53,000 ppb and 1,300 ppb, respectively. In order to confirm the presence or absence of benzene and investigate the duplicate data anomaly, Test Pits TP2, TP4 and TP6 were re-excavated and resampled as described previously in

					WATERMAIN SOILS SAMPLING, FEBRUARY 1988 UNION CARBIDE CORPORATION - REPUBLIC PLANT						,		
Compound	Units	<u>TP-1</u>	<u>TP-2</u>	<u>TP-3</u>	<u>TP-4</u>	/ TP-9*	<u>TP-5</u>	<u> 1P-6</u>	TP-7	<u>TP-8</u>	TP-10 (Stockpile)	Lab <u>Blank</u>	Quantifiable
Wet Chemistry											·		. ·
Ammonia	ррт	0.07	0.04	0.04	0.06	/ 0.08	0.02	0.22	0.04 (0.05)	0.02		BQL	0.01
TKN	ppm	BQL	BQL	BQL	0.1	/ 0.1	BQL .	0.1	0.1 (0.1)	0.1		BQL	0.1
Nitrite	ppm	0.07	0.02	0.04	0.15	/ 0.06	0.10	0.02	0.04 (0.05)	0.05		BQL	0.01
Total Recoverable Phenols	ррт	0.060	BQL	0.008	0.010	/ 0.008	0.006	0.006	0.006(0.006)	BQL		BQL	0.005
Diethyl Sulfate (As SO ₄)	ppm	74	94	17	15	/ 12	14	12	20	67		BQL	2.0
Volatile Organics													
Benzene	рръ	1,000(930)	•	BQL	•	/ 1,300	800	2,100	BQL	880		BQL	800
			[3,900]		(BQL (BC	QL))		[500]			(BQL)		[100]
Semi-Volatiles													
Fluoranthene	ppb	BQL (BQL)	1,300	BQL	BQL	/ BQL	BQL	BQL	BQL	BQL		BQL	660
Pyrene	ppb	BQL (BQL)	1,300	BQL	BQL	/ BQL	BQĽ	8QL	BQL	BQL		BQL	660
Benzo(b)Fluoranthene	ррЬ	BQL (BQL)	2,500	BQL	BQL	/ BQL	BQL	BQL	BQL.	BQL		BQL	660
<u>Metals</u>													
Total Potassium	ppm	1,570	1,798	1,241	1,708	/ 2,548(2,554)	1,204	1,943	2,270	1,613			100
Total Iron	ppm	16,600	16,850	19,500	20,700	/ 21,750(21,600)	17,250	24,600	22,300	19,750			30
Total Zinc	ррт	27.0	95.0	90.0	39.0	/ 50(49)	39	55	50	76			5.0
Total Arsenic	ppm	2.3	1.4	3.0	2.6	/ 2.3	2.6	3.0	3.0	2.8			0.5
Total Copper	ppm	21.0	BQL	24.0	23.0	/ 21.0	21.0	24.0	22.0	23.0			20.0
Total Mercury	ррт	BQL	0.50	BOL	BQL	/ BQL	BQL	BQL	BQL	BQL			0.10
Total Nickel	ppm	34.0	44.0	36.0	32.0	/ 39.0	39.0	31.0	46.0	42.0			30.0

TABLE 6 SUMMARY OF COMPOUNDS DETECTED

= Below Quantifiable Limits BQL

٠ = Duplicate Sample

CONESTOGA-ROVERS & ASSOCIATES

() = Duplicate Laboratory Sample {] = Resampled 6/8/88

Section 3.1.1. As was also discussed in Section 3.1.1 a composite soil sample was collected (TP10) from the clay stockpile (source of imported clay) located at the Town of Niagara garage. The confirmatory test pit samples were analyzed for benzene and the results are summarized on Table 6. Complete analytical reports for these samples are presented in Appendix E.

A review of the data indicates that the presence of benzene was confirmed with consistent confirmatory data at locations TP2 and TP6. Benzene was not detected in the sample (TP10) from the clay stockpile, hence the source of the benzene cannot be confirmed. However, it should be noted that the samples collected from around the bedding material were not in contact with Site soils and therefore, it is concluded that the site is not the source of the benzene detected in these samples.

Benzene was not detected at a quantification limit of 100 ppb in the confirmatory sample from TP4 and the laboratory duplicate for this sample. The initial samples at this location were reported to have concentrations of 53,000 ppb and 1,300 ppb for benzene. This indicates that the soil matrix is not homogeneous, an observation that was substantiated during the collection of the composite stockpile soil sample, and may explain why benzene was not detected in the stockpile sample (TP10). The sample

33

collected at the stockpile was also only taken from the remaining portion of the stockpile and not of the same material that was brought to the UCC Site and the results are therefore somewhat inconclusive.

The presence of benzene could be due to other factors such as fuel spillage from the equipment used to install the watermain or other such possibilities.

The maximum allowable holding period established for nitrite in water covered by USEPA and Standard Methods is 48 hours. The leachate from the soils were analyzed with 48 hours of leaching with deionized water, however, the analyses were conducted more than 48 hours after sample collection. The presence of oxidizing or reducing agents in the sample matrix could possibly affect conversion of nitrites to nitrate or ammonia, respectively. As the overall effects on nitrite concentrations cannot be adequately determined, it is recommended that the reported nitrite data be used for qualitative purposes only.

All test pit samples, including both upstream samples and downstream samples, exhibit similar characteristics (i.e. detected parameters exhibit comparable levels of concentrations) with two exceptions. In TP-4, fluoranthene, pyrene and benzo(b)fluoranthene were detected at concentrations of 1,300, 1,300 and 2,500 ppb, respectively. These parameters were not quantifiable

(quantification limit of 660 ppb) in any of the other test pit samples. Benzene was detected in six of the eight test pits, at concentrations ranging from 880 ppb to 2,100 ppb (benzene concentration of 53,000 ppb at TP4 was previously discussed). Benzene was not quantifiable at a concentration of 800 ppb in the remaining two test pits (TP-3 and TP-7). A comparison of the data summarized on Table 6 to the data collected under the Soil Sampling Program is subsequently presented in Section 5.3.

5.2.2 Watermain Hydrant Sampling

Water samples were collected from two hydrants (No. 1 and No. 3) situated along the watermain which passes through the Site. Hydrant No. 1 is located upstream of the Site and hydrant No. 3 is located downstream of the Site (see Figure 3). One sample, WM-1, was collected from hydrant No. 1 and two samples WM-3 and WM-4 (duplicate sample) were collected from hydrant No. 3. These samples were analyzed for the same compounds as the watermain soil samples. In addition, analyses of soluble iron and soluble zinc were performed.

Table 7 summarizes the compounds that were detected in the watermain water samples. Complete laboratory results are contained in Appendix E.

TABLE 7

SUMMARY OF COMPOUNDS DETECTED WATERMAIN HYDRANT SAMPLING, JANUARY 1988 UNION CARBIDE CORPORATION - REPUBLIC PLANT

Compound	Units	WM- 1	WM-3 / WM-4*	Quantifiable
Wet Chemistry				-
TKN Sulfate	ppm	0.33 15	0.14 / 0.19 16 / 15	0.01 2.0
Metals				
Total Potassium	ppm	1 . 36 ',	1.83 / 1.26	1.00
Volatiles				
Chloroform Bromodichloromethane	ppb dqq	14 8	17 / 17 10 / 10	5 5

* = Duplicate Samples

CONESTOGA-ROVERS & ASSOCIATES

A review of the detected compound concentrations summarized on Table 7, indicates that the water quality in the watermain downstream of the Site is essentially identical to the water quality measured upstream of the Site. There were only five compounds detected in the water samples: TKN, sulfate, total potassium, chloroform and bromodichloromethane. All five compounds were present in both the upstream sample and downstream sample at similar concentrations.

Of the five compounds detected, three of the compounds were present in watermain soil samples: TKN, sulfate and total potassium. Chloroform and bromodichloromethane which were present in the watermain water samples at maximum concentrations of 17 ppb and 10 ppb, respectively, were not detected in the watermain soil samples. The only volatile organic compound detected in the watermain soil samples was benzene.

Since the watermain water quality was essentially the same at both the upstream and downstream locations, and, the volatile organic compounds present in the watermain water samples were not detected in the watermain soil samples, it is concluded that the materials used to construct the watermain berm have not impacted the water quality within the watermain.

As discussed in Section 3.4, eight soil samples were collected from selected test excavations, and composited into four analytical samples at the laboratory. (DP-1/DP-12, DP-2/DP-11, DP-3/DP-8 and DP-6/DP-7). Each of these composite samples represent a quadrant of the Site as shown on Figure 5.

As presented on Figure 5, the four quadrants are oriented in an east-west direction. The northernmost quadrant covers the area of maximum fill material thickness and the southernmost quadrant covers the area of minimum fill material thickness. The thickness of the fill material was presented previously on Figure 6.

The composite soil samples were analyzed for the following compounds:

- Ammonia

- Nitrite
- Total Kjeldahl Nitrogen (TKN)
- Total Recoverable Phenols
- Diethyl Sulfate
- HSL Volatile Organics
- HSL Semi-Volatiles
- HSL Pesticides and PCBs

- Priority Pollutant Metals

- Cyanide
- Total Potassium
- Total Iron

Table 8 summarizes the compounds that were detected in the composite soil samples. Complete laboratory results are contained in Appendix F.

Initially, the metals analyses for the composited soil samples included only total potassium, total iron and total zinc. These samples were subsequently analyzed for the complete list of priority pollutant metals. Consequently, duplicate results for total zinc appear on Table 8.

Ammonia, nitrite, TKN and diethyl sulfate were detected in all of the composite samples at maximum concentrations 2.3, 0.25, 3.3 and 62 ppm, respectively. Total recoverable phenols were detected in composite samples DP-2/DP-11 and DP-3/DP-8 at a concentration of 0.006 ppm but were not quantifiable at a concentration of 0.005 ppm in the other two composite samples.

Acetone was detected in composite samples DP2/DP11 and DP3/DP8 at concentrations of 190,000 ug/kg and 53,000 ppb, respectively. Acetone was not quantifiable at a concentration of 8,000 ppb in the other two composite samples or in the trip blank and lab blank. Acetone was not detected in any other sampling programs conducted during this investigation (i.e. watermain soil and water sampling, groundwater sampling and drum sampling). In order to confirm

TABLE 8
÷.
SUMMARY OF COMPOUNDS DETECTED
SOIL SAMPLING PROGRAM, MARCH 1988
UNION CARBIDE CORPORATION - REPUBLIC PLANT

.

Compound	Units	DP1/DP12 Composite	DP2/DP11	DP3/DP8	DP6/DP7	Trip	Lab	Quantifiable
et Chemistry		Composite	Composite	Composite	Composite	Blank	Blank	Limit
ice calendary								
Ammonia (As N)	ppm	0.42	0.08	0.52	2.3 (2.3)		BQL	0.01
Nitrite (As N)	ppm	0.25	0.15	0.24	0.06 (0.06)		BOL	0.01
rkn	ppm	0.6	0.3	3.2	3.3 (3.2)		BQL	0.1
Total Recoverable Phenols	ppm	BQL	0.006	0.006	BQL (BQL)		BOL	0.005
Diethyl Sulfate (As SO4)	ppm	25	22	24	62 (58)		BQL.	2.0
Volatile Organics (HSL)								
Acetone	ppb	BQL	190,000	53,000	BQL	BQL	BQL	8000
			[BQL]	[BQL]	-			[500]
Semi-Volatiles (HSL)								
2-Methylnaphthalene	ppb	11,000	3,600	3,300	5,800 (5,400)		BQL	660
Naphthalene	ppb	21,000	13,000	13,000	12,000 (10,000)		BQL	660
cenaphthylene	ppb	FQL	7,000	BQL	BQL (BQL)	[`]	BQL	660
cenaphthene	ppb	41,000	43,000	23,000	21,000 (22,000)		BOL	660
luorene	ppb	36,000	24,000	17,000	26,000 (23,000)		BOL	660
henanthrene	ppb	100,000	84,000	45,000	43,000 (44,000)		BQL	660
nthracene	ppb	26,000	36,000	19,000	11,000 (11,000)		BQL	660
)uoranthene	рръ	150,000	71,000	11,000	78,000 (72,000)		BQL	660
yrene	ppb	110,000	62,000	40,000	61,000 (59,000)		POL	660
enzo(a)Anthracene	Б Ър	750,000	260,000	150,000	99,000 (90,000)		BQL	660
hrysene	pph	9,600	230,000	110,000	49,000 (44,000)		BQL	660
enzo(b)Fluoranthene	рръ	500,000	95,000	36,000	500,000(470,000)		BOL	660
Senzo(k)Fluoranthene	ppb	37,000	PQL	29,000	36,000 (37,000)		BQL	660
enzo(a)Pyrene	ppb	550,000	640,000	BQL				

.

4

CONESTOGA-ROVERS & ASSOCIATES

. . . .

continued....

TABLE 8

SUMMARY OF COMPOUNDS DETECTED SOIL SAMPLING PROGRAM, MARCH 1988 UNION CARBIDE CORPORATION - REPUBLIC PLANT

Compound	Units	DP1/DP12 Composite	DP2/DP11 Composite	DP3/DP8 Composite	DP6/DP7 Composite	Trip Blank	Lab Blank	Quantifiable Limit
Wet Chemistry		•	•				<u></u>	
Pesticides and PCBs (HSL)					•			
Aldrin	ppm	BQL	0:146	0.121	0.282 (0.452)		BQL	0.010
Alpha-BHC	ppm	0.181	0.112	1.04	0.138 (0.256)		BQL	0.010
Beta-BHC	ppm	BQL	BQL	0.541	BQL (BQL)		EQL	0.010
Gamma-BHC	ppm	0.570	0.910	0.729	1.06 (1.54)		BQL	0.010
Heptachlor	ppm	BQL	0,215	0.274	0.264 (0.282)		BQL	0.010
Metals								
Total Potassium	ppm	595	339	823	711 (701)			100
Total Iron	ppm	15,800	6,000	12,250	19,500 (19,250)	~ ~		30
Total Zinc	ppm	53/50	66/56	142/134	136/52 (47)			5
Total Arsenic	ppm	6.7	5.3	2.8	4.3 (4.4)			0.5
Total Chromium	ppm	54	67	90	300 (303)	<u> </u>		50.0
Total Copper	ppm	79	85	53	83 (83)			20.0
Total Mercury	ppm	BQL(BQL)(BQL)	BQL(BQL)(BQL)	BQL(BQL)(BQL)	BQL(0.50)(BQL)	·		0.10
Total Nickel	ppm	34	35	46	59 (54)			30.0
Total Selenium	ppm	0.6	0.6	0.5	0.7 (0.7)			0.5

() = Indicates Laboratory Duplicate
RQL = Relow Quantifiable Limits
[] = Resampled 6/8/88

the presence or absence of acetone, composite soil samples were recollected from locations DP2/DP11 and DP3/DP8 following the same protocols as described previously in Section 3.4.1 and analyzed for acetone. The confirmatory results are summarized on Table 8 and complete analytical reports are presented in Appendix E.

A review of the data indicates that acetone was not detected at a quantification limit of 500 ppb in the confirmatory composite soil sample DP2/DP11 or DP3/DP8. Since acetone was not detected in the confirmatory samples or in any other sampling programs conducted during this investigation, the initial presence of acetone is probably attributable to field and/or laboratory contamination.

There were a total of 14 semi-volatiles detected in the composite soil samples ranging in concentrations from 3,300 ppb to 750,000 ppb. Of the 14 compounds detected, nine compounds corresponded with compounds detected in the leachate from the sample collected at location "A" and seven compounds corresponded with compounds detected in surface soil samples collected from the slopes of the SWMF as part of the SWMF Site Investigation⁽¹⁾. A summary of the corresponding parameters between the three sets of samples is presented below:

Corresponding Semi-Volatiles

Parameters S	Composite Soil Samples	1987 SWMF Soil Samples Site Investigation	Sample "A" Leachate
Acenaphthylene	Х		x
Phenanthrene	Х	x	х
Anthracene	х		Х
Fluoranthene	х	x	х
Pyrene	· X	x	х
Benzo(a)anthracene	х	х	Х
Chrysene	х	х	Х
Benzo(b)fluoranthene	e X		X
Benzo(k)fluoranthene	e X	х	Х
Benzo(a)pyrene	x	х	Х
Indeno(1,2,3-CD)pyre	ene	х	X
Benzo(g,h,i)perylene		x	х

In addition to the semi-volatiles, a majority of the metals detected in the composite soil samples also correspond to the metals detected in the leachate from the sample collected at location "A" and the surface soil samples collected from the slopes of the SWMF as part of the SWMF Site Investigation⁽¹⁾. A summary of the corresponding parameters between the three sets of samples is presented as follows:

Corresponding Metals

Parameters		1987 SWMF Soil Samples Site Investigation	
Arsenic	х	х	
Chromium	Х	х	Х
Copper	Х	х	х
Nickel	Х	x	Х
Zinc	Х	х	х
Lead		x	Х

Based upon the above comparisons and the data presented on Table 8, it is concluded that the fill material (composite samples) sampled under this investigation exhibits levels of PAHs that are above background levels and consistent with the material disposed of within the SWMF.

There were a total of five pesticides detected in the composite soil samples: aldrin; alpha-BHC; beta-BHC; gamma-BHC; and, heptachlor. Concentrations ranged from 0.112 ppm to 1.54 ppm. Of the five compounds detected, only heptachlor and gamma-BHC were analyzed in the leachate from the sample collected at location"A". Heptachlor was not detected at a quantification limit of 0.50 ppb and gamma-BHC was not detected at a quantification limit of 0.10 ppb. Of the five compounds detected, only beta-BHC was detected in surface soil samples collected from the slopes of the SWMF as part of the SWMF Site Investigation⁽¹⁾.

A comparison of the data summarized on Table 8 to that summarized previously on Table 6 yields the following observations.

Ammonia, nitrite, TKN, total recoverable phenols and diethyl sulfate were detected in both the watermain soil samples and the composite soil samples. Also, with the exception of chromium and selenium, similar metals were detected in both the watermain soil samples and the composite soil samples.

Fluoranthene, pyrene and benzo(b)fluoranthene were the only semi-volatiles detected in the watermain soil samples at location TP-2. A total of 14 semi-volatiles, including the three discussed above, were detected in the composite soil samples. The concentrations of fluoranthene, pyrene and benzo(b)fluoranthene in the composite samples are approximately one to two orders of magnitude higher than in the watermain soil samples. It should be noted that during the watermain soil sample collection in TP-2 the excavation filled with water, thus the presence of these three parameters may be attributed to the sloughing of residual waste contamination from the sidewalls of the excavation into the test pit.

Benzene was detected in the watermain soil samples at a maximum concentration of 53,000 ppb. Benzene was not detected in any of the composite soil samples or in any other sample ever collected at the UCC Site.

Based on the above comparisons, it can be concluded that the waste material has not impacted the imported clay material used to construct the berm for the watermain. It is further concluded that contaminants present in the clay berm material, especially benzene, are not site related.

22.2

At site investigation test pit DP-21, three drums of waste materials were encountered. Materials within the drums and the soils in the surrounding excavation consisted of a black, tar-like solid. It was suspected that this waste material was an altered form of an impregnating compound (Code 88) formerly used at the UCC facilities.

One sample from each drum plus two random samples from the excavation, one consisting of a solid black material and the other of a black tar-like material, were collected and were analyzed for the following parameters using EP Toxicity extraction procedures:

- Components of tar pitch
- Diethyl sulfate
- Furfural

The tar-like material was also submitted for the following physical testing:

- softening point
- percent quinolline insoluble

- percent toluene insoluble
- percent coking value

Table 9 summarizes the results of these analyses and also previous analyses of Code 88 material. Complete laboratory reports for all waste material analyses are contained in Appendix G.

The previous analyses of Code 88 material were conducted on November 20, 1987. This material contained toluene, m/p-xylene and o-xylene at concentrations of 8.48, 28.2 and 27.8 ppb, respectively. Total recoverable phenol, ammonia, diethyl sulfate and furfural were also detected at concentrations of 0.009, 0.12, 89 and 22.7 ppm, respectively.

The three drum samples contained m/p-xylene, o-xylene, naphthalene and anthracene at maximum concentrations of 5.11, 5.11, 23.5 and 426 ppb, respectively. Total recoverable phenol, ammonia and diethyl sulfate were also detected at maximum concentrations of 0.179, 60 and 186 ppm, respectively. Similar results were also recorded for the tar-like and solid materials.

The above comparison indicates that the material encountered in the drums and in the soils surrounding the drums is an off-specification material which may be an altered form of the impregnating compound Code 88.

CONESTOGA-ROVERS & ASSOCIATES

	TABLE 9					
SUMMARY	OF	ANALYTICAL	RESULTS			

WASTE DRUM SAMPLING

. **..**.

Ň

			•		<u> </u>			
· · · ·	Units	Code 88	Drum #1	DP21 Drum #2	Drum #3	Tar Material	Solid Material	Quantifiable Limit
Compounds								· ·
- Benzene	ppb	BQL	BQL	BQL	вог	BQL	BOL(BOL)	2.00
- toluene	ррb	8.48	BQL	BQL	BQL	BQL	BQL(BQL)	2.00
- m/p-xylene	ppb	28.2	3.82	5.11	4.97	BQL	4.53(4.42)	2.00
- o-xylene	ppb	27.8	5.11	2.46	2.21	BQL	2.81(2.74)	2.00
- naphthalene	ppb	BQL	16.4	23.5	22.7	125	21.7(23.7)	3.00
- anthracene	ppb	BQL	71.4	15.3	426	19.4	415(436)	3.00
- thiophene	ppm	BQL	BQL	BQL	BOL	BQL	BQL(BQL)	2.00
- total recoverable phenol	ppm	0.009	0.084	0.179	0.150(0.150)	0.046	0.124	0.005
- ammonia	ppm	0.12	46	60	27	BQL(BQL)	60	0.01
, Diethyl sulfate	ppm	89	186	130	26(30)	4.2	198	2.0
Furfural	ppm	22.7	BQL	BQL	BQL	BQL	BQL(BQL)	2.0
Softening Point	°C					58		
Quinolline Insoluble	8					11.22		
Toluene Insoluble	8					22.97		
Coking Value	. B				,	61.46		

BQL = Below Quantifiable Limits

() = indicates laboratory duplicate

ſ

5.5 SITE GROUNDWATER

Two monitoring wells, OW-1 and OW-2, were installed in test pits that encountered the perched water table system. The pits were backfilled with the same material that had been excavated. These wells were installed at locations that, by visual inspection, contained larger than average quantities of waste in the soil. The wells were developed and sampled five days after installation.

Sampling results for the groundwater samples are summarized in Table 10, and complete laboratory results are contained in Appendix H.

Total recoverable phenols were detected in well OW1-88 at a concentration of 0.044 ppm but not detected in well OW2-88 at a quantifiable limit of 0.005 ppm. The New York State (NYS) Groundwater Quality Standard, for Class GA waters (source of potable water supply), for total recoverable phenols is 0.001 ppm. This level is based upon the prevention of organoleptic (taste) effects. Total recoverable phenols were detected in two of the four composite soil samples. Total recoverable phenols were also detected in the groundwater during the SWMF Site Investigation⁽¹⁾ at levels that exceeded the standard of 0.001 ppm. The other wet chemistry parameters, ammonia, nitrite, TKN or diethyl sulfate, which were detected in the

TABLE 10

.

SUMMARY OF COMPOUNDS DETECTED GROUNDWATER MONITORING PROGRAM MARCH 1988 UNION CARBIDE CORPORATION - REPUBLIC PLANT

Compound	Units	<u>c</u>	W1-88	OW2-88	Field Blank	Quantifiable Limit
Wet Chemistry						
Total Recoverable Phenols	ppm	0.0		BQL(BQL)		0.005
PCBs and Pesticides						
Alpha-BHC	ppb	0.5	2(BQL)	BQL		0.50
Base/Neutral Extractables						
Phe nanthre ne	ppb	14	(14)	BQL	BQL	10
Fluoranthene Pyrene	ppb ppb	13 12	(10) (BQL)	BQL BQL	BQL BQL	10 10
Metals			•			
Soluble Arsenic Soluble Zinc	ppm	0.0 0.0	13(0.014) 6	BQL 0.12(0.12)	BQL BQL	0.005 0.05

BQL = Below Quantifiable Limits
() = Indicates Laboratory Duplicate

composite soil samples, were not analyzed for in the groundwater.

Alpha-BHC was detected in well OW1-88 at a concentration of 0.52 ppb but was not detected in well OW2-88 at a quantifiable limit of 0.50 ppb. The NYS Groundwater Quality Standard, for Class GA waters (source of potable water supply), for alpha-BHC is not detectable by analytical determination. Alpha-BHC was detected in the one groundwater sample at only 0.02 ppb greater than the detection limit making its presence suspect particularly in view of the fact that it was not detected in the duplicate. Alpha-BHC was detected in the four composite samples collected during this investigation. The other pesticides, aldrin, beta-BHC, gamma-BHC and heptachlor, which were detected in the composite soil samples, were not detected in the groundwater.

Phenanthrene, fluoranthene and pyrene were detected in well OW1-88 at maximum concentrations of 14, 13 and 12 ppb, respectively. These compounds were not detected in well OW2-88 at quantifiable limits of 10 ppb. There are no NYS Groundwater Quality Standards available for these three compounds. Phenanthrene, fluoranthene and pyrene were all detected in the composite soil samples. None of these parameters were detected in any of the groundwater samples collected from the existing wells sampled as part of the SWMF Site Investigation⁽¹⁾.

Soluble arsenic was detected in well OW1-88 at a concentration of 0.013 ppm but was not detected in well OW2-88 at a quantifiable limit of 0.005 ppm. The NYS Groundwater Quality Standard for arsenic is 0.025 ppm for Class GA waters (source of potable water supply). The level of arsenic detected is below this standard. Total arsenic was detected in all of the soil composite samples. Arsenic was not detected in any of the existing wells sampled as part of the SWMF Site Investigation⁽¹⁾.

Soluble zinc was detected in wells OW1-88 and OW2-88 at concentrations of 0.06 and 0.12 ppm, respectively. The NYS Groundwater Quality Standard for zinc is 5 ppm for Class GA waters (source of potable water supply). The levels of zinc detected are significantly less than the standard. Total zinc was detected in all of the composite soil samples and in various existing wells sampled as part of the SWMF Site Investigation⁽¹⁾.

Based on the analytical data collected, it is concluded that the waste material is the probable source of contaminants in the groundwater. However, the concentrations of chemicals detected in the groundwater are relatively low and are all below applicable standards, with the exception of total recoverable phenols (standard based on taste effects) and possibly alpha-BHC (0.02 ppb above the detection limit and standard is set at less than detection limit). It is

further noted that the groundwater quality in the area of OW2-88, which is located in fill material and is downgradient of OW1-88, is essentially free of impact. Both wells monitor groundwater in direct contact with the waste material. It can be reasonably concluded, therefore, that groundwater downgradient of the Site will be of better quality than at OW2-88, due to attenuation and dilution, and will also be essentially free of impact.

6.0 PUBLIC AND ENVIRONMENTAL HEALTH ASSESSMENT

To evaluate the potential chemical impact on public health and the environment it is necessary to identify the Site related chemicals present at significant concentrations, the media contaminated and the potential exposure of receptor organisms. The Public Health Assessment evaluation will generally follow the EPA "Superfund Public Health Evaluation Manual" (the Manual)⁽²⁾. Because the small size and industrial nature of the Site severely limits potential wildlife exposure, the Environmental Assessment will be limited to a brief comment on potential effects on wildlife.

6.1 PUBLIC HEALTH ASSESSMENT

6.1.1 Selection of Indicator Chemicals

A limited number of chemicals were reported in media at the Site, therefore it was not necessary to apply the selection process described in the Manual.

The metals concentrations reported in soils were within the normal range of concentrations of metals in soil as published by Baker, et al⁽³⁾. Since metal concentrations are within natural ranges, metals in soils will not be further evaluated.

Benzene, polynuclear aromatic hydrocarbons (PAHs), and pesticides are the only organic chemicals of concern, the presence of which are reported consistently in soil samples from the Site.

Benzene was reported in the soil samples collected along the watermain. Benzene was not reported in samples of water from the monitoring wells on Site or in any of the composite soil samples collected. The presence of benzene was concluded to be the result of contamination external to the Site (see Section 5.3). Consequently, benzene will not be assessed as an indicator chemical.

Acetone was reported in two of the four original composite soil samples. Acetone was not detected in confirmatory samples of the two composites nor was it detected in any other sampling programs conducted during this investigation. The presence of acetone in the initial two composite samples was concluded to be attributed to field and/or laboratory contamination (see Section 5.3). Consequently, acetone will not be assessed as an indicator chemical.

6.1.2 Exposure Pathways and Exposure Point Concentrations

The Site is a controlled access (fenced) industrial property. The Site could continue to be used for industrial purposes. On-Site exposure would therefore be limited to industrial workers. Since the groundwater within the Fill material is not available for contact, the only on-Site point of contact is contaminated soil.

The chemicals of concern in the surface soil are PAHs and pesticides. None of the chemicals are volatile, therefore vapor exposure is not a concern on or off-Site. However, dust can be carried off-Site.

Off-Site migration of contaminants could potentially occur through surface water runoff, groundwater migration and airborne vapor or dusts. The Site Fill material is comparatively permeable and groundwater will move laterally through the Fill toward the north; possibly discharging to the surface water exposure along the Niagara Mohawk property.

Surface water from this northerly area historically drained through the Republic Plant by way of a drainage swale. The drainage swale water was sampled in 1984 and was determined to be clean, except for

1,2-dichlorobenzene which was present at a concentration of 8.44 ppb. This concentration is approximately 2 orders of magnitude lower than the EPA proposed Recommended Maximum Contaminant Level (RMCL) of 620 ppb. The sampling point was located approximately 300 feet west of the SWMF boundary at the intersection of the access road and the swale as shown on Figure 2 (SW-1-84). Since 1,2-dichlorobenzene has not been detected in any of the site soil or water samples, it was probably not site related. Since the Republic Plant site compounds were not detected in the surface water sample, any groundwater discharge to the north has had no impact on the surface water in that area. The complete surface water sample results are contained in Appendix J. It should be noted, as discussed in Section 4.4, that the construction of the watermain across the UCC property has effectively created a dam which retains runoff from the UCC property in a relatively small area.

The vertical movement of groundwater from the perched water table downward toward the bedrock is severely limited by the Glaciolacustrine Clay layer. In any case, if the perched water in the Fill enters the main groundwater flow in the bedrock formation, the ultimate exposure point for groundwater would be the PASNY reservoir and Niagara River because groundwater from the bedrock formation enters the PASNY conduits near the Site. As discussed previously in Section 5.5, the concentrations of chemicals detected in the

groundwater are relatively low and all are below applicable standards, with the exception of total recoverable phenols for which the standard is based on taste effects.

In summary, the potential human exposure pathways are:

On-Site Worker: Surface soil (contact, dust inhalation and inadvertent ingestion)

Off-Site: Nearby Residents: Dust inhalation

General Population: Consumption of fish and water from the PASNY reservoir and Niagara River

A special concern was the possible contamination of the water in the City watermain that traverses the Site. Chemical levels in upstream and downstream water samples were essentially the same which confirms that the above ground placement of the watermain precludes any impact from the on-Site chemicals.

An on-Site worker could be exposed to surface soil due to dermal contact, inhalation of dust and/or inadvertent ingestion due to hand to mouth contact, cigarettes, food, etc. Using the adult soil exposure

estimate published by Kimbrough et al⁽⁴⁾ of 0.1 gm per day and assuming: 1) a worker would spend a significant part of an 8-hour work day in this area once every two weeks for 20 years, and 2) that conditions exist 50% of the time which allow significant soil exposure (frozen ground, snow cover and other weather conditions prevent soil exposure in cold months), a worker weighing 70 kg (155 lbs) would be exposed to an average 0.3 gm of soil per day. This soil exposure and the resulting chemical exposures are summarized in Table 11. Because the carcinogenic PAHs account for the preponderance of the potential risks from PAH exposure, only the carcinogenic PAHs and pesticides are evaluated in Table 11.

Off-Site exposure to indicator chemicals in groundwater is judged to be insignificant for the following reasons. The migration of the water through soil would result in significant attenuation due to adsorption. The resulting low (to non-detectable) concentrations, when combined with the fact that only a small volume of water would reach the PASNY conduit, would be diluted by many orders of magnitude. The resulting concentration would be of no health consequences. The potential for groundwater discharge into the surface water pond area north of the Site is also not of concern due to the fact that the groundwater is essentially clean and sampling of the surface water has shown it also to be essentially clean.

TABLE 11

WORKER EXPOSURE TO SURFACE SOILS AND INDICATOR CHEMICALS

Indicator Chemical	Concentration ⁽¹⁾ in Soil mg/kg		Worker's Daily Exposure			
		Soil mg ⁽²	Chemicals mg ⁽³⁾	Cancer ⁽⁴⁾ _Risk_		
Benzo(a)anthracene	315	0.3	4.5×10^{-5}	1.1 x 10 ⁻⁵		
Chrysene	100	0.3	3.0×10^{-5}	4.8×10^{-6}		
Benzo(b)fluoranthene	283	0.3	8.5×10^{-5}	1.9 x 10 ⁻⁵		
Benzo(k)fluoranthene	26	0.3	7.8×10^{-6}	1.1×10^{-5}		
Benzo(a)pyrene	302	0.3	9.1 x 10^{-5}	1.4×10^{-5}		
Aldrin	0.161	0.3	4.8×10^{-8}	5.5 x 10^{-7}		
Alpha-BHC	0.382	0.3	1.1×10^{-7}	1.2×10^{-7}		
Beta-BHC	0.135	0.3	4.1×10^{-8}	7.3×10^{-8}		
Gamma-BHC	0.877	0.3	2.6×10^{-7}	3.4×10^{-7}		
Heptachlor	0.193	0.3	5.8×10^{-8}	2.0×10^{-7}		
			Total	-5 6.6 x 10		

NOTES:

- (1) Average of four composites.
- (2) Based in assumption in text.
- (3) Concentration on soil x Daily Exposure to soil.
- (4) Based on Potency Factor (oral route). Exhibit C-4 in the Manual. Oral route is used because the inadvertent ingestion accounts for the major exposure to soil at all ages.

÷

The off-Site exposure to dust can be estimated by assuming the average dust concentration in the air to be 0.0525 mg/m^3 . This is the annual geometric mean for 1976 - 1986 of suspended particulate level in the Niagara Falls area. Using a conservative estimate that half the dust in a near off-Site area originates on Site and that any home is downwind 10 percent of the time, the average concentration of dust from the Site in off-Site air would be 0.0026 mg/m^3 . Assuming: 1) an individual inhales 20 m^3 per day, 2) lives in the area 35 years, 3) spends 12 hours at home each day, and 4) that 50 percent of the PAH on the inhaled dust is absorbed, the effective soil exposure for an individual is 0.0065 mg. For a 70 kg adult, the daily soil exposure would be 0.000093 mg/kg. Table 12 summarizes this soil exposure and the resulting exposure to carcinogenic PAHs and pesticides.

It should be noted that there are only a limited number of houses (estimated 70) within 1000 feet of the identified waste deposition area.

6.1.3 Risk Assessment

When developing maximum contaminant levels (MCL) for drinking water, EPA stated "the target reference risk range for carcinogens is 10^{-4} to 10^{-6} ", and

further states "EPA considers these to be safe levels and protective of public health"⁽⁵⁾. Since this acceptable risk range is applied to the drinking water for the general population, it is considered a very conservative range for the assessment of the potential risks to a comparatively small population of workers or neighbors which are the potential receptors for this Site assessment.

Tables 11 and 12 present the estimated cancer risk based on the EPA Potency Factors presented in the Manual. The risk levels are based on worst case assumptions and provide a very conservative evaluation. Since these worst case estimates are all below a 1 x 10^{-6} risk level for neighbors and within the acceptable range of 10^{-4} to 10^{-6} for the workers, the estimated risks are considered acceptable with a wide margin of safety for the small populations potentially exposed.

6.1.4 Summary and Conclusion

On-Site exposure of workers to surface soils and off-Site exposure to neighbors to dust from surface soils are the only complete pathways of exposure. Using worst case estimates for exposure, the estimated exposure will result in a calculated risk estimate that is well within levels of acceptable risk.

TABLE 12

ESTIMATED EXPOSURE OF OFF-SITE RESIDENTS TO ON-SITE SURFACE SOIL

Indicator Chemical	Concentration ⁽¹⁾ in Soil mg/kg		dent's Daily y Exposure	(4)
		Soil mg ⁽²	⁽³⁾ Chemicals mg	Cancer ⁽⁴⁾ <u>Risk</u>
Benzo(a)anthracene	315	0.0065	2.9×10^{-8}	3.2×10^{-7}
Chrysene	100	0.0065	9.3×10^{-9}	1.0×10^{-8}
Benzo(b)fluoranthene	283	0.0065	2.6×10^{-8}	2.9×10^{-7}
Benzo(k)fluoranthene	26	0.0065	2.2×10^{-9}	2.4×10^{-8}
Benzo(a)pyrene	302	0.0065	2.8×10^{-8}	3.1×10^{-7}
Aldrin	0.161	0.0065	1.0×10^{-9}	1.1 x 10 ⁻⁸
Alpha-BHC	0.382	0.0065	2.5×10^{-9}	2.8×10^{-8}
Beta-BHC	0.135	0.0065	8.8×10^{-10}	1.6×10^{-9}
Gamma-BHC	0.877	0.0065	5.7×10^{-9}	7.7 x 10^{-9}
Heptachlor	0.193	0.0065	1.3×10^{-9}	4.4×10^{-9}
		·	Total	-6 1.0 x 10

NOTES:

(1) Average of four composites.

- (2) Based in assumption in text.
- (3) Concentration on soil x Daily Exposure and assumes individual weighs 70 kg.
- (4) Based on Potency Factor (oral route). Exhibit C-4 in the Manual. Oral route is used because the inadvertant ingestion accounts for the major exposure to soil at all ages.

6.2 ENVIRONMENTAL EXPOSURE

The Site is in an urban area essentially surrounded by industrial plants and residential areas. Although wildlife, such as upland birds, ducks and deer have been observed to enter the Site, it is not well suited as a wildlife habitat. Cover and food sources are limited and the ponded water is shallow, especially in drier periods.

Regardless of the number of animals and/or birds that would frequent the Site, the acute and subchronic toxicity levels, the comparatively low concentrations of Site related chemicals to which the wildlife could be exposed, and the limited time that the wildlife would spend on the Site preclude any potential adverse impacts on health.

The prohibition of hunting within city boundaries and the limited area involved limits the potential for using exposed wildlife for food. The limited exposure to wildlife containing Site-related chemical residues precludes the human consumption of unacceptable dose levels of Site-related chemicals.

In summary, the available information would indicate that wildlife would not be impacted by on-Site chemical residues in surface soils and surface water. The potential for human consumption of meat from wildlife

precludes unacceptable exposure to Site-related chemicals due to consumption of game birds or animals from the Site area.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon the results of the Site Investigation, the following conclusions and recommendations have been formulated:

- The site does not pose a significant current or potential future threat to public health or the environment.
- 2) Water quality in the Town watermain is unaffected by the fill material and/or berm construction material. Contaminants in the berm construction material are not site related.
- 3) Groundwater is essentially unaffected by the site and is contained as a perched water zone. Discharge to surface water is not a problem (based on chemical analysis). Bedrock groundwater is protected by a relatively thick clay aquitard.
- 4) Three buried drums were located during the investigation. These drums have been removed and disposed off Site at a permitted waste disposal facility.
- 5) On-site exposure of workers to surface soils and exposure to off-site areas to dust from surface soils are the only complete potential pathways of exposure resulting from

on-site wastes. Using worst case estimates for exposure resulted in a calculated risk estimate that is well within the published levels of acceptable risk for the public.

- 6) Soils containing PAHs and pesticides are present on site. The PAHs and pesticides detected are consistent with results from the SWMF. ζ
- 7) PAHs stay sorbed to soils and do not create an unacceptable risk to public health or the environment.
- 8) As no existing or potential risk was identified at the Site, it is recommended that remedial measures are not required.

Soled Waste Mgat Facility

CONESTOGA-ROVERS & ASSOCIATES

REFERENCES

- (1) Conestoga-Rovers & Associates. Site Investigation, Solid Waste Management Facility, Union Carbide Corporation, Republic Plant, Town of Niagara, New York, July 1987.
- (2) Superfund Public Health Evaluation Manual. EPA 540/1-86/060 (OSWER Directive 9285.4-1) October 1986.
- (3) Baker, Dale E. and Chesnin, Leon. Chemical Monitoring of Soils for Environmental Quality and Animal and Human Health.
- (4) Kimbrough, Renata, D. et al. Health implications of 2,3,7,8-Tetrachlorodibenzo-dioxin (TCDD) contamination of residential soil. J. Fox Environmental Health 14:47-93.
- (4) Federal Register (40 CFR Parts 141 & 142) Wednesday, July 8, 1987 pages 25700 - 25701.

~

۰ ۱

•

EM SURVEY DATA

	Comments	Phase(mS)	Oper(mS)	Easting	Northing
	··· ··· ···· ···· ····				
			46	-700	-800
			80	-675	-800
			96	-650	-800
			200	-625	800
			3.2	-600	800
		NR .	NR**	-575	-800
			54	-550	-800
			64	-525	-800
			57	-500	800
. • '			42	-475	800
		·	42	-450	-800
•			67	-425	800
			58	-400	-800 ·
			22	-375	800
LE N-S	E-W (OFFSCA		OS*	-350	-800
			110	-325	-800
			68	-300	800
			78	-275	-800
			54	-250	800
		•	40	-225	-800
			42	-200	800
			36	-175	-800
			37	-150	800
		·	25	-125	-800
			42	-100	800
			165	-75	-800
			65	-50	800
			32	-25	800
			10	0	800
			40	25	-800
			24	50	800
			10	75	-800
			37	100	-800
		,	12	125	-800
			34	150	800
			32	: 175	800
			23	200	800
• •			21	225	-800
			23	250	-800
			23	275	-800
			21	300	800
	·		. 62	-700	775
			48	-675	775
			110	650	-775
			360	-625	-775
			320	-600	-775
			240	-575	-775
			72	-550	-775
			100	-525	-775
			1 V V	· · · · · · · · · · · · · · · · · · ·	

orthing	Easting	Oper(mS)	Phase(mS)	Comments
-775	-500	64		
-775	-475	- 64		
-775	-450	74		
-775	-425	120		
-775	-400	130		
-775	-375	210		
-775	-350	210		
-775	-325	220		
-775	-300	64		
-775	-275	94		
-775	-250	. 170		· · · · · · · · · · · · · · · · · · ·
775	-225	05*	-	L10 E-W
-775	-200	160		
-775	-175	90		
-775	-150	52		
775	-125	90		
-775	-100	05*		L35 E-W
775	-75	NR**	NR	
-775	-50	OS*		35 E-W
775	-25	90		
-775	0	52		
775	25	105		
-775	50	40		
-775	75	30		
-775	100	43		
-775	125	25		
-775	150	36		
-775	175	24		
-775	200	29		
-775	225	23		
-775	250	24		
-775	275	20		
-775	300	26		
750 75 0	-700	110		
-750 -750	-675	26 310		
750	-650	310 130		
-750 -750	-625	44		
-750 -750	575	200		
-750 -750	-550	240		
-750	-525	230		
-750	-525	230 90		
-750	-475	120		
-750	-475	120		
-730 -750	-430	230		
-730 -750	-420	250 250	•	
-750 -750	-400	· 300		
-750 -750	-350	300		

•
•
•

rthing	Easting	Oper(mS)	Phase(mS)	Comments
				_
-725	-100	280		•
-725	-75	150		
-725	-50	560		
-725	-25	315		
-725	0	27		
-725	25	340		
-725	50	20		
-725	75	110		
-725	100	250		
-725	125	155	,	
-725	150	56	· . • .	
-725	175	130		
-725	200	76		
-725	225	NR**	NR	
-725	250	39		
-725	275	72		
-725	300	14		
-700	-700	85		
-700	-675	195		
-700	-650	NR××	NR	
-700	-625	245		·
-700	-600	545		
-700	-575	200		
700	-550	180		
-700	-525	185		
700	-500	320		
-700	-475	220		
700	-450	600		
-700	-425	560		
-700	-400	360		
-700	-375	320		
700	-350	. 480		· ·
-700	-325	NR × ×	NR	н. Т
700	-300	530		
-700	-275	780		
700	-250	440		
-700	-225	510		
700	20Ò	265		
-700	-175	240		
700	-150	180		
-700	-125	90	·	
-700	-100	110		4
-700	-75	290		
700	-50	300		
700	-25	230		
700	ō	500		
-700	25	220		
-700	50	240		•
-700	75	450		

AFFENDIX A

Northing	Easting	Oper(mS)	Phase(mS)	Comments	
-700	100	280			
-700	125	240			
-700	150	260			
-700	175	210			
700	200	220			•
-700 -700	225 250	400 370			
-700	275	220			
-700	300	100			
-700	325	18			
700	350	. 84			
-675	-700	. 58	• •	, .	•
-675	-675	6		a	
-675	-650	720			
-675	-625	160			
-675	-60Ó	560			
-675	-575	260			
-675	-550	240			
-675	-525	160			
-675	500	540			
-675	-475	420			
-675	-450	420			
-675	-425	280			•
-675	-400	560			
-675	-375	290			
-675	-350	130			
-675 -675	-325	440			
-675	-300 -275	380 70		<u>.</u>	
-675	-270	400			
-675	-225	420			
-675	-200	300			
-675	-175	440	,		
-675	-150	290			
-675	-125	295			
-675	-100	185		ſ	
675	-75	240			
-675	50	54			
675	-25	320			
-675	0	290			
675	25	160			
-675	50	220		•	
675	75	165	,		
-675	100	300			
-675	125	300			
· -675	150	280			
-675	175	560			
-675	200	370			
-675	225	400			

	Northing	Easting	Oper(mS)	Phase(mS)		Comments	
•						* = = = = _ = = = =	•
	-675	250	650				
	-675	275	460				
	-675	300	420				
	<u>~</u> 675	325	OS*		300 E	EW	
	-675	350	150				
	-650	700	32				
	-650	-675	48				
	650	-650	680				
	-650	-625	13			•	
	650	-600	680				
	-650	-575	OS*		1 E	E₩	
	-650	-550	200		•		
	650	-525	. 110				
	-650	-500	320				
	-650	-475	440				
	-650	-450	660				
	-650	-425	640				•
	650	-400	400				
	-650	-375	290				
	-650	-350	310				
	-650	-325	NR**	NR			
	650	-300	475				
	-650	-275	360				•
	-650	-250	340				
	-650	-225	900				
	650	-200	620				
	-650 -650	-175	210				
	-650	-150 -125	235				
	-650	-120	50 205				
	-650	-75	110			•	
	-650	-50	240			•	
	-650	-25	240				
	-650	0	325				
	-650	25	420				
	-650	· 50	220				
	-650	75	240				
	650	100	610				
	-650	125	330				
	-650	150	195				
	-650	175	230				
	650	200	480				
	-650	225	220				
	650	250	560				
	-650	275	280				
	650	300	510				
	650	325	600				
	-650	350	610			•	
	-625	-700	46				

EM-31 GROUND CONDUCTIVITY

Northing	Easting	Oper(mS)	Phase(mS)		Comments	
		oper(mo)				
-625	675	34				
-625	-450	NR**	NR			
-625	-625	OS*		300	E-W	
-625		440				
-625	-575	78				
-625	-550	240				
-625	-525	280				
-625	-500	560				•
-625	-475	230				
-625	-450	830				
-625	-425	270				
-625	-400	340	••			
-625	-375	300				
-625	-350	230				
-625	-325	480				
-625						
	-300	400				
-625	-275	715				
-625	-250	740				
-625	-225	390				
-625	-200	360				
-625	-175	640			•	
-625	-150	39				
-625	-125	340				
-625	-400	170				
-625	-75	NR**	NR			-
-625	-50	NR**	NR		•	
625	-25	420				
-625	0	255				
-625	25	250				
-625	50	170				-
-625	- 75	520	•			
-625	100	300			· ·	
-625	125	470				
-625	150	385				
-625	175	32 <u>0</u>				
-625	200	410				
-625	225	220				
-625	250	400				
625	275	220				
-625	300	750				
-625	325	945				
-625	350	390				
600	-700	270			•	
-600	675	200				
600	650	130				
-600	-625	360				
~600	-600	520				
-600	-575	150				
-600.	-550	NR * *	NR			
	~					

-

	Comme	Phase =======	Oper(mS)	Easting	Vorthing
			50	-525	-600
			400	500	600
			270	-475	-600
			420	-450	-600
			370	-425	-600
			230	-400	-600
			220	-375	-600
			500	-350	600
			340	-325	-600
			290	-300	600
			200	-275	-600
			500	250	600
			360	-225	-600
			250	-200	600
			190	-175	-600
			1000	-150	-600
			740	-125	-600
			320	-100	-600
			320	-75	-600
				-50	-600
			300		
			480	-25	-600
			340	0	-600
			500	25	-600
			370	50	-600
			560	75	-600
			230	100	600
			210	125	-600
			250	150	600
			290	175	-600
			420	200	600
			420	225	-600
•			190	250	600
		NR	NR**	275	600
			400	300	600
			360	325	-600
			110	350	600
			560	375	-600
				400	-600
			340		
			480	425	600
			140	-700	-575
			600	-675	-575
			260	-650	-575
			490	-625	-575
		•	120	-600	-575
			64	-575	-575
			230	550	575
			255	-525	-575
			250	-500	575
			420	-475	-575

Northing	Easting	Oper(mS)	Phase(mS)	Comments	
		· · · · · · · · · · · · · · · · · · ·		- 122 122 222 223 223 223 223 223 223 223	
-575	-450	420	Ŷ		
-575	-425	930			
-575	400	820			
-575	-375	550			
-575	-350	. 500			· .
-575	-325	580			
-575	-300	390			
-575	-275	300			
-575	-250	600			
-575	-225	60			
-575	-200	380	•		
-575	-175	420			
-575	-150	350			
-575	-125	560			
-575	-100	680 Teo			
-575	-75	300			
575	50	270			
-575	-20	160 300			
-575	25	380			
-575	50	340			
-575	75	450			•
-575	100	220	•		
-575	125	480		•	
-575	150	580			
-575	175	280			
575	200	20			
-575	225	700		•	•
575	250	100			
-575	275	210			
-575	300	26		•	•
-575	325	500			
575	350	NR**	NR		
-575	375	190			
-575	400	380			
-575	425	250			
550	700	120			
-550	-675	180			
550	-650	300 ·		•	
-550	-625	450 700			
-550	-600	300 240			
550	-550	185			
-550	-525	185	•		
-550	-500	420			
-550	-475	410			
550	-450	470			
-550	-425	270			
550	-400	295			•

÷

orthing	Easting	Oper(mS)	Phase(mS)	Comments
			· · · · · · · · · · · · · · · · · · ·	
-550	-375	480		. <i>.</i> . . .
550	-350	58		
-550	-325	510		
-550	-300	500		
-550	-275	430		
550	-250	OS*		25 E-W
-550	-225	240		
-550	-200	300		
-550	-175	800		
550	-150	425		
-550	-125	. OS*		OS E-W
550	-100	220		
-550	-75	68		
550	-50	620		
-550	-25	320		
550	Ō	400		
-550.	25	320		
550	50	460		
-550	75	580		
-550	100	440		
-550	125	230		
-550	150	530		
-550	175	360		
-550	200	440		•
-550	225	500		
-550	250	490		
-550	275	270		
-550	300	225		
-550	325	300		
550	350	520		
-550	375	340		
550	400	400		
-550	425	200		
-525	-700	125		
-525	-675	120		
525	-650	160		
-525	-625	630		
525	-600	460		
-525	-575 -	365		
525	-550	320		
-525	-525	480		
-525	-500	400		
-525	-475	260	,	
-525	-450	220		
-525	-425	OS*		OS E-W
-525	-400	50		· · ·
-525	-375	280		
-525	-350	440		
-525	-325	400		

i

EM-31 GROUND CONDUCTIVITY

.

j.

·. . ·

Northing	Easting	Oper(mS)	Phase(mS)	Comments
-525	-300	360		
-525	-275	520		
-525	-250	420		
-525	-225	560		
-525	-200	400		
-525	-175	600		
-525	-150	OS*		OS E-W
-525	-125	NR * *	NR	
-525	-100	150		
-525	-75	400		
-525	50	480		
-525	-25	560		
-525	0	380		
-525	25	520		
-525	50	480		
-525	75	380		
-525	100	680		
-525	125	420		
-525	150	200		
-525	175	450		
525	200	440		
-525 -525	225 250	510		
-525	230	500 440		
-525	300	440 460		·
-525	325	510		
-525	350	280		
-500	-700	190		
-500	-675	380		
-500	-650	360 360		
500	-625	350		
-500	-600	240		
-500	575	740		
500	-550	460		
-500	-525	560		
-500	-500	590		
-500	-475	790		
-500	-450	420		
-500	-425	175		
-500	-400	520		
500	-375	500		
-500	-350	360		
-500	-325	450		
-500	-300	620		
500	-275	110		
-500	-250	390		
500	-225	- 390		
-500	-200	420		
500	-175	360		

Northing	Easting	Oper(mS)	Phase(mS)	Comments
-500	-150	620		
500	-125	640		
-500	100	410		
500	-75	440		
-500	-50	260		·
-500	-25	840		
-500	0	440		
500	25	540		
-500	50	510		
-500	75	330		
-500	100	380		
500	125	250		
500	150) 240		
500	175	260 700		
-500	200 225	300		,
-500		460		
500	250 275	430 460		
500	300	400		
475	-700	140		
-475	-675	320		
-475	-650	310 310		
-475	625	38		
-475	-600			
-475	-575	220		
-475	550	440		
-475	-525	630		
-475	-500	48		
-475	-475	-40 650		
-475	-450	0.5		
-475	-425	NR**	26	
-475	-400	260	المنا منقد	•
-475	-375	260		
-475	-350	275		
-475	-325	380		
-475	-300	235	· _	
-475	-275	280		
-475	-250	860		
-475	-225	400		
-475	-200	380		
-475	-175	310		
-475	-150	630	•	
-475	-125	22		
-475	-100	OS*		74 E-W
-475	-75	370		
-475	-50	730		
-475	-25	220		
475	ō	58		
-475	25	480		

AFFENDIX A

.

j.

. - :

EM-31 GROUND CONDUCTIVITY

Northing	Easting	Oper(mS)	Phase(mS)	Comments	
	ar 12 an 22 an 12 an 12 an 12 an 12 an 12	19 72 JUL 19 19 99 19 19 15 16 19 19 19 19		1.8 979 102 102 102 103 102 103 102 103 103	
-475	50	340			
-475	75	415			
-475	100	360	۲.		
-475	125	440			
-475	150	190			
-475	175	280			
-475	200	220			
-475	225	340			
-475	250	450			
-475	275	460			
-475	300				
-450	-700	235			
-450	-675	440			
-450	-650	236			
-450	-625	145			
-450	-600	440			
-450	-575	430			
-450	-550	76			
-450	-525	465		· · ·	
-450	-500	05*	35	E-W	
-450	-475	490	1. 1199		
-450	-450	NR**	NR		
-450	-425	700	4 -	<u> </u>	
-450	-400	OS*	1.5	E-W	
-450	-375	220	N 17 ⁻¹		
-450 -450	-350 -325	NR**	NR		
-450		NR**	NR		
-450	-300 -275	640 700			
-450	-270	39 0 730			
-450	-230	320 430		i	
-450	-220	430 350			
-450	-175	290			
-450	-170	200			
-450	-125	NR**	35	E-W	
-450	-100	330		L_ W	
-450	-75	41			
-450	-50	290			
-450	-25	NR**	NR		
-450	0	NR**	30	c	
-450	25	96			
-450	50	58			
-450	75	110			
-450	100	250			
-450	125	84			
-450	150	· 25			
450	175	315			
-450	200	360			
450	225	340			

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Northing	Easting	Oper(mS)	Phase(mS)	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			350		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			280		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		300 -	380		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-700	270		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-675	496		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-650	880		
-425 -575 550 -425 -550 360 -425 -500 120 -425 -475 880 -425 -475 880 -425 -4425 165 -425 -400 $NR**$ NR -425 -375 14 -425 -350 380 -425 -350 380 -425 -325 65 -425 -325 65 -425 -225 300 -425 -225 300 -425 -225 120 -425 -175 890 -425 -175 890 -425 -125 205 -425 -125 205 -425 -125 205 -425 -150 360 -425 -25 260 -425 275 310 -425 100 130 -425 125 76 -425 175 180 -425 175 315 -425 125 76 -425 125 276 -425 225 290 -425 225 290 -425 275 360 -425 275 360 -425 275 360 -425 275 360 -425 275 360 -425 275 360 -425 275 360 -425 275 </td <td></td> <td></td> <td>480</td> <td></td> <td></td>			480		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			550		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			360		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-525	OS*	OS .	, .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-425	-500	120		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-475	880		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-450	Ō.4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-425	165		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-400	NR * *	NR	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-425	-375	14		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-350	380		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-425	-325	65		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	425	-300	290		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-425	-275	380		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	425	-250	300		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-425	-225	120		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	425	-200	330		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-425	-175	890		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-425	-150	360		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-425	-125	205		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-425	-100	100		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-425	-75	170		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-425	50	580		
-425 25 310 -425 50 NR** 66 -425 75 180 -425 100 130 -425 125 76 -425 125 76 -425 150 195 -425 175 315 -425 200 260 -425 225 290 -425 250 320 -425 275 360 -425 300 315 -400 -675 750 -400 -650 460 -400 -625 570 -400 -600 560	-425	-25	260		
-425 25 310 -425 50 NR** 66 -425 75 180 -425 100 130 -425 125 76 -425 150 195 -425 175 315 -425 200 260 -425 225 290 -425 225 290 -425 275 360 -425 300 315 -400 -675 750 -400 -650 460 -400 -625 570 -400 -600 560	-425	0		1.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-425				
-42575180 -425 100130 -425 12576 -425 12576 -425 150195 -425 200260 -425 225290 -425 250320 -425 275360 -425 300315 -400 -675 750 -400 -675 570 -400 -625 570 -400 -600 560				66	
-425100130 -425 12576 -425 150195 -425 175315 -425 200260 -425 225290 -425 250320 -425 275360 -425 300315 -400 -675 750 -400 -625 570 -400 -600 560					
-425 125 76 -425 150 195 -425 175 315 -425 200 260 -425 225 290 -425 225 290 -425 275 360 -425 275 360 -425 300 315 -400 -675 750 -400 -625 570 -400 -625 560					
-425150195 -425 175315 -425 200260 -425 225290 -425 250320 -425 275360 -425 300315 -400 -675 750 -400 -625 570 -400 -600 560					
-425 175 315 -425 200 260 -425 225 290 -425 250 320 -425 275 360 -425 300 315 -400 -675 750 -400 -625 570 -400 -600 560					
-425200260 -425 225290 -425 250320 -425 275360 -425 300315 -400 -675 750 -400 -650 460 -400 -625 570 -400 -600 560					
-425 225 290 -425 250 320 -425 275 360 -425 300 315 -400 -675 750 -400 -625 570 -400 -600 560					
-425250320 -425 275360 -425 300315 -400 -675 750 -400 -650 460 -400 -625 570 -400 -600 560					
-425 275 360 -425 300 315 -400 -675 750 -400 -650 460 -400 -625 570 -400 -600 560					
-425300315-400-675750-400-650460-400-625570-400-600560					
-400-675750-400-625460-400-625570-400-600560					
400650 460 400625 570 400600 560					
-400 -625 570 -400 -600 560					
-400 -600 560					
	-400	-575	500		

1

••

EM-31 GROUND CONDUCTIVITY

.

j.

2

Northing	Easting	Oper(mS)	Phase(mS)	Comments
-400	-550	630		
400	-525	OS*	760	E-W (OFFSCALE N-S)
-400	-500	660		
400	-475	500		
-40Ó	-450	320		
-400	-425	175		
-400	-400	44		
400	-375	OS*	NR	E-W (OFFSCALE N-S)
-400	-350	OS*	NR	E-W (OFFSCALE N-S)
400	-325	NR**	NR	
-400	-300	90		
400	-275	410		
-400	-250	215		
400	-225	110		
-400	-200	120		
400	-175	140		
-400	-150	96		
400	-125	32	L 1999.	
-400	-100	NR**	NR	
400	-75	05*		E-W (OFFSCALE N-S)
-400	-50	NR**	NR	
-400 -400	25	170 /		
-400	0	85 440		•
-400	25	440 64		
400	75	130		•
-400	100	24		
-400	125		89	
-400	150	320	07	
400	175	200		
-400	200	320		
-400	225	110		
-400	250	320		
-400	275	320		
-400	300	300		
-375	-700	230		
-375	-675	600		
-375	-650	540		
-375	-625	580		
-375	-600	440	,	
-375	-575	580		
-375	-550	380		
-375	-525	320		
-375	~500	340		
-375	-475	560		
-375	-450	240		· .
-375	-425	480		
-375	-400	900		
-375	-375	. 7		

Northing	Easting	Oper(mS)	Fhase(m	5) Comments	
-375	-350	NR**	NE		
-375	-325	NR * *	30		
-375	-300	NR××	NR		
-375	-275	150			
-375	250	NR × ×	NR		
-375	-225	190			
-375	-200	52			
-375	-175	NR**	NR	•	
-375	-150	120			
-375	-125	- 560			
-375	-100	NR**	NR	<i></i>	
-375	-75	NR**	NR		
-375	-50	NR**	NF		
-375	-25	680			
-375	0	340			
-375	25	570			
-375	50	280		•	
-375	75	NR**	60		
-375	100	52			
-375	125	. 82			
-375	150	330		-	
-375	175	265			
-375	200 1	320			•
-375	225	360			
-375	. 250	300			
-375	275	290			
-375	300	250		•	
-350	-700	210			
-350	-675	620			
-350	-650	660			
-350	-625	540			
-350	600	500			
-350	-575	560			
-350	-550	480			
-350	525	640			
-350	-500	69 0 [°]			
-350	-475	680			
-350	-450	300			
-350	-425	900			
-350	-400	880			
-350	-375	260			
-350	-350	580			
-350	-325	300			
-350	-300	OS*		60 E-W	
-350	-275	NR**	12		
-350	-250	140			
350	-225	100			
-350	-200	NR**	50		
350	-175	NR**	NR		

orthing	Easting	Oper(mS)	Phase(mS)	Comments
		···· ···· ··· ··· ··· ··· ··· ··· ···		
-350	-150	. 110		
-350	-125	300		
-350	-100	300		
-350	-75	160		
-350	-50	360		
-350	-25	300		
-350	O	110		
350	25	78		
-350	50	42		
-350	75	NR * *	16	
-350	100	NR**	NR	
-350	125	NR**	NR	
-350	150	260		
350	175	225		
-350	200	320		
350	225	360		
-350	250	340		
-350	275	250		
-350	300	370		
325	700	210		
-325	-675	580		
325	-650	440		
-325	-625	560		
-325	-600	520		
-325	-575	520		
325	-550	180		
-325	-525	660		
-325	-500	300		
-325	-475	420		
-325	-450	490		
-325	-425	520		
325	-400	760		
-325	-375	800		
-325	-350	720		
-325	-325	320		
-325	-300	NR**	12	E-W
-325	-275	20		
-325	-250	110		
-325	-225	32		
-325	-200	. 70	.*	
-325	-175	NR**	64	
-325	-150	NR**	10	
-325	-125	NR**	24	E-W
-325	-100	560		
-325	-75	300		
-325	-50	20		
-325	-25	880		
-325	Õ	NR**	NR	
-325	25	OS*	••••	28 E-W
				the and have 97

AFPENDIX A

ŀ

Northing	Easting	Oper(mS)	Phase(mS)	Comments
-325	50	NR**	NR	
-325	75	NR**	NR	
-325	100	NR**	70	E – W
-325	125	NR**	42	
-325	150	260		
-325	175	420		
-325	200	420		
-325	225	470		
-325	250	295	•	
-325	275	290		
-325	300	300		• •
-300	-700	145		
300	-675	620		
-300	-650	420		
-300	-625	640		. ·
-300	-600	450		
-300	-575	420		•
-300	-550	OS*	640	E-W (OFF-SCALE N-S
-300	-525	940		
-300	-500	260		
-300	-475	110		
-300	-450	640		
-300	-425	520		
-300	-400	460		
-300	-375	500		
-300	-350	250		
-300	-325	NR**	NR	
-300	-300	84		
-300	-275	380		
-300	-250	OS*	56	E-W (OFF-SCALE N-S
-300	-225	NR**	NR	
-300	-200	54		
-300	-175	NR**	NR	
-300	-150	NR**	NR	
-300	-125	NR**	NR	
-200	-100	NR**	53	
-300	-75	NR**	NR	
-300	-50	230		
-300	-25	140		
-300	0	280		
-200	25	62		62 E-W (OFF-SCALE N-S
-300	50	05*		28 E-W (OFF-SCALE N-S
-300	75	05*		64 E-W (OFF-SCALE N-S
-300	100	OS*	40	· · · · · · · · · · · · ·
300	125	OS*	50	
-300	150	340		
300	175	500		
-300	200	400		
-300	225	480	·	
				•

	Comments	Phase(mS)	Oper(mS)	Easting	Northing
			360	250	-300
			220	275	-300
			240 230	300	-300 -275
			230 620	-700 -675	-275
			310	-650	-275
			630	-625	-275
	•		510	-600	-275
			OS*	-575	-275
			340	-550	-275
			440	-525	-275
• • •	, .	••	110	-500	-275
			440	-475	-275
			740	-450	-275
			200	-425	-275
			520	-400	-275
•			600	-375	-275
		NF	NR**	-350	-275
			280	-325	-275
	•		200	-300	-275
ŧ		10	NR**	-275	-275
		NR	NR**	-250	-275
		NR 54	NR * * NR * *	-225 -200	-275 -275
		30		-175	-275
			105	-150	-275
	, ,	NR	NR**	-125	-275
		1411	100	-100	-275
		NR	NR**	-75	-275
	•		480	-50	-275
•			180	-25	-275
			300	Ō	-275
			98	25	-275
			76	50	275
			9 0	75	-275
			110	100	-275
			210	125	-275
			440	150	-275
			450	175	-275
			270	200	-275
			415	225	-275
			240	250	275
			225	275	-275
			210	300	-275
			180	-700	-250
			280	-675	250
			400	-650	-250
			620 540	-625 -600	-250 -250
			040	-000	- <u></u>

lorthing	Easting	Oper(mS)	Fhase(mS)	Comments
-250	-575	440	I.	
-250	-550	680		
-250	-525	680		
-250	-500	440		
250	-475	560		•
-250	-450	880		
250	-425	790		
-250	-400	140		
-250	-375	700		
-250	-350	NR**	NR	
-250	-325	NR**	NR	
-250	-300	60	•	
-250	-275	26		
-250	-250	135		
-250	-225	NR**	NR	
-250	-200	135		
250	-175	50		
-250	-150	5		
-250	-125	NR**	1.2	
-250	-100	16		
-250	-75	540		
-250	-50	NR**	NR	-
-250	-25	NR**	50	
-250	0	NR**	NR	
-250	25	260		
-250	50	34		
-250	75	38		•
-250	100	110		
-250	125	150		
-250	150	380		
-250	175	480		
-250	200	310		
-250	225	340		
-250	250	460		
-250	275	360		
-250	300	300		
-225	-700	150		
-225	-675	390		
-225	-650	500		
-225	-625	750		
-225	-620	580		
-225	-575	440		
-225	-575			
		130		
-225	-525	290 740	м м	
-225	-500	740		
-225	-475	250		
-225	-450	440		
-225	-425	550		
-225	400	750		

EM-31 GROUND CONDUCTIVITY

lorthing	Easting	Oper(mS)	Phase(mS)	Comments
-225	-375	640	. –	
225	-350	NR**	15	E-W
-225	-325	NR * *	NR	
-225	-300	110		
-225	-275	NR**	NR	
225	-250	NR**	53	
-225	-225	NR**	75	
-225	-200	135		
-225	-175	70		
-225	-150	NR**	NR	
-225	-125	52		
225	-100	NR**	0.3	
-225	-75	NR**	NR	
-225	50	25		
-225	-25	NR**	NR	
-225	Q	36		
-225	25	130		
-225	50	20		
-225	75	260		
225	100	230		
-225	125	300		
-225	150	365		
-225	175	360	•	
-225	200	380		
-225	225	460		
-225	250	520		
-225	275	340		
-225	300	340		
-200	-700	190		
-200	-675	65 <u>0</u>		
-200	-650	600		
-200	-625	600		
-200	-600	180		
-200	-575	540		
-200	-550	680		
200	-525	280		
-200	-500	160		
-200	-475	21		
-200	-450	540		
-200	-425	560	•	
-200	-400	720		
200	-375	200		
-200	-350	460		
200	-325	110		
-200	-300	NR**	120	
200	-275	NR**	30	
-200	-250	190		
-200	-225	220		
-200	-200	130		

Northing	Easting	Oper(mS)	Fhase(mS)		nents
-200	-175	OS*		6 5-10	(OFF-SCALE N-S
-200	-150	05× NR**	64	• O EW	(UFF-SCHLE N-S
-200	-125	NR**	20		
-200	-100	NRXX	23		•
200	-75	700			
-200	-50	330			
-200	-25	420			
-200	0	110			
200	25	NR**	20		
-200	50	NR**	50		
-200	75	130			· · · · · ·
-200	100	240		· •	- · · ·
-200	125	340	•		
-200	150	340			· · ·
-200	175	340			
-200	200	490			
200	225	460			
-200	250	430			
200	275	400	4		
200	300	330	æ		
-175	-700	165			
-175	-675	360			
-175	-650	540			
-175	-625	640			
-175	-600	400			
-175	-575	360			
-175	-550	380			•
-175	-525	540	•		
-175	-500	38			
-175	-475	56 56	•		
-175	-450	300			
-175	-425	600 600			
-175	-400	540			
-175	-375	NR**	19		
-175	-350	NR**	NR		
-175	-325	800	INIX		
-175	-300	NR**	NR		•
-175	-275	NR**	NR		
-175	-250	NR**	NR		
-175	-225	- 255			
-175	-200	NR**	NR		
-175	-175		NR		
-175	-170		24		
-175	-125	NR**	24 82		
-175	-100	260	0.4		
-175	-75	230		,	
-175	-/5 -50				
-175	-25	- 540			•
-175		250			
1/0	0	160			

Northing	Easting	Oper(mS)	Phase(mS)	Comments	
		nen samt wind a ser free are free des free min and and and			
-175	25	190			
-175	50	44			
-175	75	110			
-175	100	190			
-175	125	340			
-175	150	320			
-175	175	320			
-175	200	410			
-175	225	420			
-175	250	440			
175 -175	275 300	320 360	· · · · ·		
-150	-700	170			
-150	-675	470			
-150	-650	440			
-150	-625	360			
-150	-600	360			
-150	-575	370			
-150	-550	700			
-150	-525	NR**	NR		
-150	-500	38			
-150	-475	NR**	30		
-150	-450	230			
-150	-425	NR**	68		
-150	-400	OS*		38 E-W (OFF-SCALE N-	S
-150	-375	870			
-150	✓ -350	NR**	NF		
-150	-325	NR**	26		
-150	-300	480			
-150	-275	380			
-150	-250 -225	195		· · ·	
-150	-220	NR** 760	15	E-W	
-150	-175	50			
-150	-150	NR**	NR		
-150	-125	640	1413		
-150	-100	240			
-150	-75	° 600			
-150	-50	500			
-150	-25	100			•
-150	0	300			
150	25	100			
-150	50	48			
-150	75	420			
-150	100	300			
-150	125	340			
-150	150	300			
-150	175	- 210			
-150	200	320			

AFFENDIX A

Northing	Easting	Oper(mS)	Phase(mS)	Comments
-150	225	380		
-150	250	280		
-150	275	170		
-150	300	190		
-125	-700	170		
-125	-675	480		
-125	-650	700		
-125	-625	590		
-125	-600	300		
-125	-575	280		
-125	550	. 550		
-125	-525	NR**	46	
-125	500	130		
-125	-475	64		
-125	-450	290	····	
-125	-425	NR**	31	
-125	-400	NR**	50	
-125 -125	-375	500		F 11
-125	-350 -325	NR** 710	1.0	E-W
-125	-320	460		
-125	-275	480		
-125	-250	400 50		
-125	-225	80		
-125	-200	200		
-125	-175	380		
-125	-150	480		
-125	-125	920		
-125	-100	220		
-125	-75	540		
-125	-50	380		
-125	-25	NR**	NR	
-125	0	48		
-125	25	18		
-125	50	160		
-125	75	380		
-125	100	360		
-125	125	370		
-125	150	. 340		
-125	175	320		
-125	200	360		
-125	225	360		•
-125	250	250		•
-125	275	90		
-125	300	170		
-100	-700	190		
-100	-675	450		
-100	-650	740		
-100	-625	860		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Oper(mS)		Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 90		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 NR**	NR NR	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) NR**	NR	• · · •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 NR * *	NR	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 480	¢	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 420		
$\begin{array}{ccccc} -100 & -20 \\ -100 & -17 \\ -100 & -15 \\ -100 & -12 \\ -100 & -10 \\ -100 & -7 \\ -100 & -7 \\ -100 & -7 \\ -100 & -5 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & -5 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & 12 \\ -100 & 12 \\ -100 & 12 \\ -100 & 12 \\ -100 & 12 \\ -100 & 12 \\ -100 & 12 \\ -100 & 12 \\ -100 & -2 \\ -1$	80		
$\begin{array}{ccccc} -100 & -17\\ -100 & -15\\ -100 & -12\\ -100 & -10\\ -100 & -7\\ -100 & -5\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & 12\\ -100 & 12\\ -100 & 12\\ -100 & 12\\ -100 & 12\\ -100 & 12\\ -100 & 22\\ -100 & 25\\ -100 & 27\\ -100 & 25\\ -100 & 27\\ -100 & 30\\ -75 & -67\\ -75 & -67\\ -75 & -65\\ -75 & -60\\ -75 & -57\\ -75 & -57\\ -75 & -55\\ \end{array}$	5 230		
$\begin{array}{ccccc} -100 & -15\\ -100 & -12\\ -100 & -10\\ -100 & -7\\ -100 & -5\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & 10\\ -100 & 10\\ -100 & 12\\ -100 & 10\\ -100 & 12\\ -100 & 12\\ -100 & 12\\ -100 & 12\\ -100 & 20\\ -100 & 27\\ -100 & 20\\ -100 & 27\\ -100 & 20\\ -100 & 27\\ -100 & 30\\ -75 & -67\\ -75 & -67\\ -75 & -65\\ -75 & -60\\ -75 & -57\\ -75 & -57\\ -75 & -55\\ \end{array}$) NR**	NR	•
$\begin{array}{cccc} -100 & -12\\ -100 & -10\\ -100 & -7\\ -100 & -5\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & -2\\ -100 & 12\\ -100 & 10\\ -100 & 12\\ -100 & 15\\ -100 & 15\\ -100 & 15\\ -100 & 17\\ -100 & 20\\ -100 & 27\\ -100 & 25\\ -100 & 27\\ -100 & 25\\ -100 & 27\\ -100 & 30\\ -75 & -67\\ -75 & -67\\ -75 & -65\\ -75 & -60\\ -75 & -57\\ -75 & -57\\ -75 & -55\\$	5 440	• •	
$\begin{array}{cccc} -100 & -10 \\ -100 & -7 \\ -100 & -5 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & -2 \\ -100 & -10 \\ -100 & 10 \\ -100 & 10 \\ -100 & 10 \\ -100 & 15 \\ -100 & 17 \\ -100 & 15 \\ -100 & 17 \\ -100 & 20 \\ -100 & 27 \\ -100 & 27 \\ -100 & 27 \\ -100 & 27 \\ -100 & 30 \\ -75 & -67 \\ -75 & -67 \\ -75 & -65 \\ -75 & -65 \\ -75 & -57 \\ -75 & -57 \\ -75 & -57 \\ -75 & -55 \\ \end{array}$) 780		
$\begin{array}{cccc} -100 & -7 \\ -100 & -5 \\ -100 & -2 \\ -100 & 2 \\ -100 & 2 \\ -100 & 7 \\ -100 & 10 \\ -100 & 10 \\ -100 & 10 \\ -100 & 15 \\ -100 & 15 \\ -100 & 17 \\ -100 & 20 \\ -100 & 27 \\ -100 & 27 \\ -100 & 27 \\ -100 & 30 \\ -75 & -67 \\ -75 & -67 \\ -75 & -65 \\ -75 & -65 \\ -75 & -57 \\ -75 & -57 \\ -75 & -57 \\ -75 & -57 \\ -75 & -57 \\ -75 & -55 \\ \end{array}$	5 NF:**	NR	
$\begin{array}{cccc} -100 & -5\\ -100 & -2\\ -100 & 2\\ -100 & 2\\ -100 & 5\\ -100 & 7\\ -100 & 10\\ -100 & 10\\ -100 & 12\\ -100 & 15\\ -100 & 17\\ -100 & 20\\ -100 & 27\\ -100 & 27\\ -100 & 25\\ -100 & 25\\ -100 & 25\\ -100 & 30\\ -75 & -67\\ -75 & -67\\ -75 & -65\\ -75 & -65\\ -75 & -57\\ -75 & -57\\ -75 & -57\\ -75 & -55\\ -75 &$) NR**	NR	
$\begin{array}{c cccc} -100 & -2 \\ -100 & 2 \\ -100 & 5 \\ -100 & 7 \\ -100 & 10 \\ -100 & 10 \\ -100 & 12 \\ -100 & 15 \\ -100 & 17 \\ -100 & 20 \\ -100 & 20 \\ -100 & 20 \\ -100 & 27 \\ -100 & 25 \\ -100 & 25 \\ -100 & 25 \\ -100 & 25 \\ -100 & -75 & -67 \\ -75 & -67 \\ -75 & -65 \\ -75 & -60 \\ -75 & -57 \\ -75 & -57 \\ -75 & -57 \\ -75 & -55 \\ \end{array}$	i 230		
$\begin{array}{c cccc} -100 & & & 2\\ -100 & & 5\\ -100 & & 7\\ -100 & & 10\\ -100 & & 12\\ -100 & & 12\\ -100 & & 15\\ -100 & & 17\\ -100 & & 20\\ -100 & & 20\\ -100 & & 22\\ -100 & & 25\\ -100 & & 27\\ -100 & & 25\\ -100 & & 27\\ -100 & & 30\\ -75 & -67\\ -75 & -67\\ -75 & -65\\ -75 & -60\\ -75 & -57\\ -75 & -57\\ -75 & -55\\ \end{array}$) 480		
$\begin{array}{cccc} -100 & 2\\ -100 & 5\\ -100 & 7\\ -100 & 10\\ -100 & 12\\ -100 & 15\\ -100 & 17\\ -100 & 20\\ -100 & 20\\ -100 & 20\\ -100 & 27\\ -100 & 25\\ -100 & 27\\ -100 & 30\\ -75 & -67\\ -75 & -67\\ -75 & -67\\ -75 & -65\\ -75 & -60\\ -75 & -57\\ -75 & -57\\ -75 & -57\\ -75 & -55\\ \end{array}$	5 NR**	NR	· · · ·
$\begin{array}{cccc} -100 & 5\\ -100 & 7\\ -100 & 10\\ -100 & 12\\ -100 & 15\\ -100 & 17\\ -100 & 20\\ -100 & 20\\ -100 & 20\\ -100 & 27\\ -100 & 25\\ -100 & 27\\ -100 & 30\\ -75 & -67\\ -75 & -67\\ -75 & -67\\ -75 & -65\\ -75 & -60\\ -75 & -57\\ -75 & -57\\ -75 & -55\\ \end{array}$) NR**	NR	
$\begin{array}{cccc} -100 & 7 \\ -100 & 10 \\ -100 & 12 \\ -100 & 15 \\ -100 & 17 \\ -100 & 20 \\ -100 & 20 \\ -100 & 22 \\ -100 & 25 \\ -100 & 27 \\ -100 & 30 \\ -75 & -67 \\ -75 & -67 \\ -75 & -65 \\ -75 & -65 \\ -75 & -60 \\ -75 & -57 \\ -75 & -57 \\ -75 & -57 \end{array}$	i 11		
$\begin{array}{cccc} -100 & 10\\ -100 & 12\\ -100 & 15\\ -100 & 17\\ -100 & 20\\ -100 & 22\\ -100 & 25\\ -100 & 25\\ -100 & 27\\ -100 & 30\\ -75 & -67\\ -75 & -67\\ -75 & -67\\ -75 & -65\\ -75 & -65\\ -75 & -60\\ -75 & -57\\ -75 & -55\end{array}$	120		
$\begin{array}{cccc} -100 & 12\\ -100 & 15\\ -100 & 17\\ -100 & 20\\ -100 & 22\\ -100 & 25\\ -100 & 25\\ -100 & 30\\ -75 & -70\\ -75 & -67\\ -75 & -67\\ -75 & -65\\ -75 & -60\\ -75 & -57\\ -75 & -57\\ -75 & -55\end{array}$	5 370		•
$\begin{array}{cccc} -100 & 15\\ -100 & 17\\ -100 & 20\\ -100 & 22\\ -100 & 25\\ -100 & 27\\ -100 & 30\\ -75 & -70\\ -75 & -67\\ -75 & -67\\ -75 & -65\\ -75 & -60\\ -75 & -57\\ -75 & -57\\ -75 & -57\\ -75 & -55\end{array}$	280		
$\begin{array}{cccc} -100 & 17 \\ -100 & 20 \\ -100 & 22 \\ -100 & 25 \\ -100 & 27 \\ -100 & 30 \\ -75 & -70 \\ -75 & -67 \\ -75 & -67 \\ -75 & -65 \\ -75 & -60 \\ -75 & -57 \\ -75 & -57 \\ -75 & -55 \end{array}$	i 400		•
$\begin{array}{cccc} -100 & 20 \\ -100 & 22 \\ -100 & 25 \\ -100 & 27 \\ -100 & 30 \\ -75 & -70 \\ -75 & -67 \\ -75 & -67 \\ -75 & -62 \\ -75 & -60 \\ -75 & -57 \\ -75 & -57 \\ -75 & -57 \end{array}$	9 410		
$\begin{array}{cccc} -100 & 22 \\ -100 & 25 \\ -100 & 27 \\ -100 & 30 \\ -75 & -70 \\ -75 & -67 \\ -75 & -67 \\ -75 & -65 \\ -75 & -60 \\ -75 & -57 \\ -75 & -57 \\ -75 & -57 \end{array}$	6 420	•	
$\begin{array}{cccc} -100 & 25 \\ -100 & 27 \\ -100 & 30 \\ -75 & -70 \\ -75 & -67 \\ -75 & -65 \\ -75 & -65 \\ -75 & -60 \\ -75 & -57 \\ -75 & -57 \\ -75 & -55 \end{array}$) 44Ö		
$\begin{array}{cccc} -100 & 27 \\ -100 & 30 \\ -75 & -70 \\ -75 & -67 \\ -75 & -67 \\ -75 & -62 \\ -75 & -60 \\ -75 & -57 \\ -75 & -57 \\ -75 & -57 \end{array}$	5 320		
$\begin{array}{cccc} -100 & 27 \\ -100 & 30 \\ -75 & -70 \\ -75 & -67 \\ -75 & -67 \\ -75 & -62 \\ -75 & -60 \\ -75 & -57 \\ -75 & -57 \\ -75 & -57 \end{array}$) 120		
-75 -70 -75 -67 -75 -65 -75 -62 -75 -60 -75 -57 -75 -55			
-75 -70 -75 -67 -75 -65 -75 -62 -75 -60 -75 -57 -75 -55) 170		
-75 -67 -75 -65 -75 -62 -75 -60 -75 -57 -75 -55			*
-75 -65 -75 -62 -75 -60 -75 -57 -75 -55			
-75 -62 -75 -60 -75 -57 -75 -55		•	
-75 -60 -75 -57 -75 -55			
-75 -57 -75 -55			
-75 -55			
-/.1			
-75 -50			
-75 -47			
-75 -45			
-75 -42		NR .	

.

Northing	Easting	Oper(mS)	Phase(m			ments	•
							·
-75	-400	290					
-75	-375	400					
-75	-350	NF(**	100				
75 75	-325	NR**	10		E-W		
-75	-300 -275	580				· · · · · ·	
-75	-270	05* 360		>1000	UFF	SCALE	
-75	-225	080 NR**	NR				
-75	-200	NR**	NR				
75	-175	NR**	NR				
75	-150	460	PHEN .				
-75	-125	98				··· - ·	
-75	-100	os*		42	E-W	(DEE-SC	ALE N-S
75	-75	3		1	<u> </u>		t there have a final second
75	-50	320					
-75	25	800					
75	0	180					
-75	25	28					
-75	50	NR**	34				•
-75	75	180					
-75	100	270					•
-75	125	210					
75	150	460					
-75	175	400					
-75	- 200	340					
-75	225	230					
-75 -75	250	200					
-75	275 300	80					
-50	-700	140 140					
-50	-675	460					
-50	650	380		•			
50	-625	- 560					
50	-600	680					
-50	-575	290					
-50	-550	520					
-50	-525	680					
-50	-500	280					
-50	-475	. 79					
-50	-450	2				•	
-50	-425	115					
-50	-400	560					
50	-375	380				. •	
-50	-350	700					
-50	-325	NR**	10				
50	-300	510					
50	-275	330					
50	-250	NR * *	NR				
50	-225	NR**	NR .				

Northing	Easting	Oper(mS)	Phase(mS)	Comments
50	-200	100		
50	-175.	NR * *	50	
-50	-150	NR**	1.4	
-50	-125	300		
-50	-100	205		
50	-75	460		
-50	-50	320		
50 50	-25 0	52 110		
	25	59		
-50	50			
50	75	200	n n n n n n n n n n n n n n n n n n n	
50	100	220		
-50	125	360		
-50	150	380		
-50	175	420		
-50	200	400		
-50	225	240		
-50	250	280		
-50	275	160		
-50	200	270		
-25	-700	140	•	· · ·
-25	-675	320	·	
-25	-650	415		
-25	-625	340	· · ·	
-25	-600	150		
-25 -25	-575	330		·
-25	-550	280 600 j		
-25	-525 -500	38	۰	·
-25	-475	380		· · · ·
-25	-450	NR**	80 ·	
-25	-425	50	0.2	
-25	-400	270		
-25	-375	320		
-25	-350	320	,	
-25	-325	200		
25	-300	810		-
-25	-275	580		
-25	-250	NR**	110	E-W
-25	-225	NF(**	0.4	
-25	-200	72,		
-25	-175	NR**	NR	
25	-150	NR * *	NR	•
-25	-125	NR**	28	
-25	-100	300		
-25	-75	225		
-25	50	300		
-25	-25	38		
الحرك كم المنا				

Northing	Easting	Oper(mS)	Phase(mS)	Comments
-25	0	NR * *	NR	
-25	25	120	(4) (
-25	50	200		
-25	75	420		
-25	100	340		
-25	125	380		
-25	150	560		
-25	175	470		
-25	200	250		
-25	225	340		
-25	250	380		
-25	275	360		
-25	300	170		
0	-700	170		· .
0	-675	240		
0	-650	220		
0	-625	260		
0	-600	660		
	575	280		
o o	-550	19		
0	-525	175	•	
0	-500	360		
0	-475	440		
0	-450	190		
0	-425	580		
0	-400	300		
0	· -375	26		
0	-350	440		·
Ō	-325	800		
0	-300	380		
Ö	-275	65		· · · · · · · · · · · · · · · · · · ·
, O	-250	OS*	•	62 E-W (OFF-SCALE N-S
Q	-225	OS*		300 E-W (OFF-SCALE N-S
Ō	-200	400		
0	-175	190		
. O	-150	320	,	
Q	-125	280		
O	-100	200		
Q	-75	44 0		
0	-50	150		
0	-25	OS*		980 E-W (OFF-SCALE N-S
0	0	48		•
0	25	170		•
O	50	205		
0	75	400		
O	100	300		
0	125	- 60		
O	150	280		
Õ	175 .	260		

.

1

Northing	Easting	Oper(mS)	Phase(mS)	Comments
0	200	230		
Ō	225	220		
0	250	220		
0	275	175		
0	300	210		
Q	325	420		
. 0	350	300		
0	375	270		
0	400	280		
. O	425	30 <u>0</u>		i
25 25	-700	150		. بر ا
	-675	210		
25	-650	NR**	31	
25	-625	90		
25	-600	390		
25	-575	300		
25	-550	44		
25	525	155		
25	500	30		
25	-475	11		
25	-450	220		
25	-425	. 760		
25	-400	390		
25	-375	470		· · · · · · · · · · · · · · · · · · ·
25 25	-350	140		
25 25	-325	560		•
25	-300 -275	640 300		
25	-250	150		
25	-225	340 340		
. 25	-200	320		
25	-175	52		
25	-150	290		
25	-125	185		
25	-100	.65		
25	-75	400		
25	-50	670		
25	-25	460		
25	0	460		
25	25	620		·
25	- 50	380		,
25	75	350		
25	100	520		
25	125	620		
25	150	210		, ,
25	175	320		•
25	200	300		· ·
25	225	340		
25	250	320		
				-

Northing	Easting	Oper(mS)	Phase(mS)	Comments	
				- 21 22 23 23 24 25 25 27 26 28 28 28 28 28	
25	275	340			
25	300	380			
25	· 325	160			
22.0	350	165	·		
25	350	180			
50	-700	150			
50	-675	195			
50	-650	380			
50	-625	570			
50	-600	200			
50	-575	340		· · · · · · · · · · · · · · · · · · ·	• •
50	-550	NR**	11		
50	-525	170			
50 50	-500 -475	140 NEW #	6.1 m		
50	-475	NR** 500	NR		
50	-425	880			
. 50	-400	680			
50	-375	560	P		
50	-350	330			
50	-325	365			
50	-300	410			
50	-275	145			
50	-250	110			
50 ⁽	-225	340			
50	-200	400			
50	-175	250			
50	-150	NR * *	780	E-W	
50	-125	90			
50	-100	OS*	30	. E-W (OFF-SCALE N-S	i
50	-75	NR**	70	E-W	
50	-50	NR**	130	E-W	
50	-25	335	L 1		
50 50	0	NR**	NR		
50	25 50	10 410			
50	75	410			
50	100	400			
50	125	400			
50	150	300			,
50	175	415			
50	200		L -		
50	225	195			
50	250	190			
50	275	280			
50 ·	300	320			
· 50	325	145			
50	350	100			
75	-700	200			
	•				

EM-31 GROUND CONDUCTIVITY

.

Northing	Easting	Oper(mS)	Phase(mS)	Comments	
75	-675	380			
75	-650	520		•	
75	-625	530			
75	-600	550			
75	-575	440			
75	-550	540		·	
75	-525	380			
75	-500	420			
75	-475	300			
75	-450	130			
75	-425	300			ر به در
75	400	195	. ·		
75	-375	400			
75	-350	560			
75	-325	620			
75	-300	340			
75	-275	215			
75	-250	520			
75	-225	48			
75	-200	240			
75	-175	540			,
75	-150	360 .			
75	-125	520			
75	-100	400			
75	-75	NR**	12		
75	-50	270			
75	-25	260			
75	0	NR**	2		
75	25	300			
75	50	430			
75	75	610			5. 7
75	100	475			;
75	125	280			
75	150	480			
75	175	500			
75	200	180			
75	225	160			
75	250	210			
75	275	340			
75	300	40 <u>0</u>			
75	325	220			
75 .	350	150		•	
100	-700	200			
100	-675	260			
100	-650	370			
100	-625	420			
100	-600	370			
100	-575	480			
100	-550	250	v		

EM-31 GROUND CONDUCTIVITY

:hing =======	Easting	Oper(mS)	Fhase(mS)	Comments
		ann ann ann aint fan ann ann ann ann ann ann ann ann ann		
100	-525	710		
100	-500	340		
100	-475	270		
100	-450	380		
100	-425	260		
100	-400	420		· · · ·
100	-375	340		••
100	-350	300		
100	-325	400		
100	-300	OS*		120 E-W (OFF-SCALE N-S
100	-275	420		
100	-250	410		· · · · · · · · · · · · · · · · · · ·
100	-225	700		
100	-200	17		
100	-175	OS*		80 E-W (OFF-SCALE N-S
100	-150	220		
100	-125	260		
100	-100	245		
100	-75	NR**	NR	
100	50	180		
100	-25	240		
100	· 0	280		
100	25	410		
100	50	460		
100	75	100		
100	100	200		
100	125	300		
100	150	360		
100	175	180		
100	200	190		
100	225	260	· · . ·	and the second
100	250	280	• .	•
100	275	290		
100	300	400		
100	325	63		
100	350	100		

NOTES: * - Reading was off scale. ** - No reading.

.

جو ہ ج

÷.

- 1

9

MAG SURVEY DATA

١.

Northing	Easting	Reading	Comments
800	-700	10000	
-800	-675	9500	
800	-650	10000	
-800	-625	10000	
-800	-600	10000	
-800	-575	9500	
800	-550	10000	
-800	-525	10000	
800	500	10000	
-800	-475	10000	
	-450	10000	
-800	-425	10000	
800	400	10000	
-800	-375	10000	
800	-350	10000	
-800	-325	10000	
-800	-300	10000	
-800	275	10000	
-800	-250	10000	
-800	-225	10500	
-800	-200	10000	
-800	-175	10000	
-800	-150	10000	·
-800	-125	10000	
-800	-100	10000	
-800	-75	10000	
800	-50	10500	
-800	-25	10000	
-800	0	9 500	
-800	25	9500	
-800	50	115 00 (
-800	75	10000	
800	100	10000	
-800	125	10000	
-800	150	10000	
-800	175	10000	
8ċ0	200	10000	
-800	225	10000	
800	250	10000	
-800	275	10000	
	300	10000	
-775	-700	10000	
-775	-675	9500	
-775	-650	9500	
-775	-625	10000	
-775 .	600	10000	
-775	575 .	9500	
-775	550	10000	
775	525	9500	

MAGNETICS DATA

Northing	Easting	Reading	Comments
-775	-500	10000	
-775	-475	10000	
-775	-450	10500	
-775	-425	10000	
-775	-400	10000	
-775	-375	10000	
-775	-350	10000	
-775	-325	10000	
-775	-300	10000	
-775	-275	10000	
-775	-250	10000	
-775	-225	10000	
-775	-200	10500	
-775	-175	10000	
-775	-150	10000	
-775	-125	10500	
-775	-100	10000	
775	-75	10000	
-775	-50	10000	
775	-25	10000	
-775	0	10000	•
-775	25	10000	
-775	50	10000	· · ·
-775	75	10500	
-775	100	10000	
-775	125	10000	
-775	150	10000	
-775	175	10000	
-775	200	10000	
-775	225	10000	
-775	250	10000	• •
-775	275	10000	
-775	300	10000	
-750	-700	10000	
-750	-675	. 9500	
-750	-650	10000	
-750	-625	9500	
-750	600	10000	
-750	-575	10000	
750	550	10000	
-750	-525	10000	
-750	-500	10500	
-750	-475	10000	
-750	-450	7500	
-750	-425	10000	
750	-400	10000	
-750	-375	10000	
-750	-350	10000	
-750	-325	10000	

പ്

Northing	Easting	Reading	Comments
-750	-200	10000	
-750	-275	10000	· · ·
-750	-250	10000	
-750	-225	10000	
-750	-200	10000	
-750	-175	10000	
750	-150	10000	
-750	-125	10000	•
-750	-100	10000	
-750	-75	10000	
-750	-50	10500	•
-750	-25	10000	
-750	O	10000	
-750	25 .	10000	
750	50	10000	
-750	75	10000	
750	100	10000	
-750	125	11000	
-750	150	10000	
-750	175	10000	· · · ·
-750	200	10000	
-750	225	10000	
-750	250	10000	•
-750	275	10000	
750	300	10000	
-725	-700	9500	
-725	-675	10000	. · ·
-725	-650	10000	
-725	-625	10000	
-725	-600	10000	
-725	-575	10000	·· · ·
-725	-550	10000	·
-725	-525	10000	
-725	500	10000	
-725	-475	10000	
-725	-450	10500	
-725	-425	10000	
-725	-400	10500	
-725	-375	10500	
-725	-350	10000	
-725	-325	10000	
-725	-300	10000	
725	-275	10000	
-725	-250	10500	
-725	-225	10000	
-725	-200	10000	
-725	-175	10000	
-725	-150	10000	
-725	-125	10000	
2 Jan 1.5			

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Northing	Easting	Reading	Comments
-725 -75 10000 -723 -25 10000 -723 25 10000 -725 50 10000 -725 75 10000 -725 125 10000 -725 125 10000 -725 125 10000 -725 200 10000 -725 250 10500 -725 250 10500 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -700 -650 9200 -700 -650 9200 -700 -655 900 -700 -555 9400 -700 -550 9200 -700 -550 9200 -700 -425 9800 -700 -425 9800 -700 -325 9600 -700 -225 11500 -700 -225 11500 -700 -225 11500 -700 -125 9800 -700 -125 9800 -700 -125 9800 -700 -150 9000 -700 -150 9200 -700 -150 9					
-725 -50 10000 -725 -25 10000 -725 25 10000 -725 75 10000 -725 75 10000 -725 125 10000 -725 125 10000 -725 125 10000 -725 225 10000 -725 225 10000 -725 225 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -700 -625 9000 -700 -625 9000 -700 -625 9000 -700 -550 9200 -700 -555 9400 -700 -555 9400 -700 -555 9400 -700 -375 9600 -700 -375 9600 -700 -325 9800 -700 -325 9800 -700 -275 1000 -700 -175 10500 -700 -175 10500 -700 -175 9800 -700 -175 9800 -700 -175 9800 -700 -175 9	•	-725	-100	10000	
-725 -25 10000 -725 25 10000 -725 73 10000 -725 73 10000 -725 100 10000 -725 125 10000 -725 125 10000 -725 125 10000 -725 200 10000 -725 200 10000 -725 200 10000 -725 275 10000 -725 275 10000 -725 275 10000 -725 275 10000 -700 -675 900 -700 -675 9000 -700 -625 9200 -700 -625 9400 -700 -550 9200 -700 -550 9200 -700 -555 9400 -700 -555 9400 -700 -355 9400 -700 -350 9400 -700 -355 9400		-725	-75	10000	
-725010000 -725 2510000 -725 5010000 -725 10010000 -725 12510000 -725 15010000 -725 22510000 -725 22510000 -725 22510000 -725 27510000 -725 27510000 -725 27510000 -725 27510000 -725 27510000 -700 -246 19500 -700 -650 9200 -700 -650 9200 -700 -650 9200 -700 -655 9600 -700 -555 9400 -700 -550 9200 -700 -555 9400 -700 -550 9200 -700 -555 9400 -700 -555 9400 -700 -555 9400 -700 -755 9600 -700 -755 9800 -700 -725 14000 -700 -725 14000 -700 -725 10500 -700 -725 9800 -700 -725 9800 -700 -725 9800 -700 -725 9800 -700 -725 9800 -700 -725 9800 -700 -725 9800 -700 -725 9800 -700 -725 <td< td=""><td></td><td>-725</td><td>-50</td><td>10000</td><td></td></td<>		-725	-50	10000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-725	-25	10000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-725	Ō	10000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			25	10000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-725	50	10000.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-725	75	10000	
-72515010000 -725 20010000 -725 22510000 -725 27510000 -725 27510000 -725 30010000 -709 -246 19500 -700 -700 9200 -700 -675 9000 -700 -650 9200 -700 -650 9200 -700 -655 9400 -700 -555 9400 -700 -555 9400 -700 -555 9400 -700 -555 9400 -700 -555 9400 -700 -475 9600 -700 -555 9400 -700 -555 9400 -700 -555 9400 -700 -475 9600 -700 -555 9400 -700 -325 9800 -700 -325 9800 -700 -325 9800 -700 -255 11500 -700 -250 8600 -700 -175 10500 -700 -125 9800 -700 -150 9200 -700 -150 9200 -700 -150 9200 -700 -255 9800 -700 -255 9800 -700 -125 9800 -700 -125 9800 -700 -255 9800 -700 -255 9800 -700 <td></td> <td></td> <td></td> <td>10000</td> <td></td>				10000	
-725 175 10000 -725 225 10000 -725 225 10000 -725 275 10000 -725 275 10000 -725 275 10000 -700 -244 19500 $STAKED$ -700 -675 9000 -700 -6455 9700 -700 -650 9200 -700 -655 9400 -700 -555 9400 -700 -555 9400 -700 -555 9400 -700 -555 9400 -700 -455 9400 -700 -455 9400 -700 -455 9400 -700 -455 9400 -700 -455 9400 -700 -455 9800 -700 -325 9800 -700 -250 8600 -700 -250 8600 -700 -255 11500 -700 -175 10500 -700 -175 10500 -700 -150 9000 -700 -150 9200 -700 -150 9200 -700 -150 9200 -700 -255 9800 -700 -255 9800 -700 -150 9200 -700 -150 9200 -700 -150 9200 -700 -150 9200 -700 <td></td> <td></td> <td>125</td> <td>10000</td> <td></td>			125	10000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			175	10000	
-725 250 10500 -725 300 10000 -709 -246 19500 STAKED -700 -700 9200 - -700 -655 9000 - -700 -625 9700 - -700 -625 9700 - -700 -625 9700 - -700 -525 9400 - -700 -550 9200 - -700 -555 9400 - -700 -555 9400 - -700 -525 9800 - -700 -425 9800 - -700 -425 9800 - -700 -325 9800 - -700 -325 9800 - -700 -275 14000 - -700 -275 1500 - -700 -275 1500 - -700 -125 9600 - -700 -125 </td <td></td> <td></td> <td>200</td> <td>10000</td> <td></td>			200	10000	
-725 275 10000 -729 -244 19500 -700 -700 9200 -700 -675 9000 -700 -625 9200 -700 -625 9200 -700 -625 9200 -700 -625 9200 -700 -625 9400 -700 -550 9200 -700 -555 9400 -700 -555 9400 -700 -525 9400 -700 -525 9400 -700 -425 9800 -700 -425 9800 -700 -325 9800 -700 -325 9800 -700 -325 9800 -700 -225 11500 -700 -225 16500 -700 -125 9600 -700 -125 9600 -700 -125 9600			225	10000	
-725 300 10000 -709 -246 19500 STAKED -700 -675 9000 -700 -650 9200 -700 -6650 9200 -700 -6625 9900 -700 -625 9400 -700 -550 9200 -700 -555 9400 -700 -552 9400 -700 -525 9400 -700 -525 9400 -700 -475 9600 -700 -475 9600 -700 -425 9800 -700 -425 9800 -700 -425 9800 -700 -325 9800 -700 -325 9800 -700 -225 11500 -700 -225 11500 -700 -125 9600 -700 -125 9600 -700 -125 9600 -700 -125 9800 -700				10500	
-709-24619500STAKED-700-7009200-700-6509200-700-6259700-700-6009200-700-5559600-700-5559400-700-5509200-700-5259400-700-5259400-700-4259800-700-4259800-700-4259800-700-3759600-700-3259800-700-3259800-700-3259800-700-3259800-700-2508600-700-25511500-700-17510500-700-1759800-700-1759800-700-259800-700-1259600-700-1259600-700-1259800-700-1259800-700-1259800-700-1259800-700-759800-700-759800-700-759800-700-759800-700-759800-700-759800-700-759800-700-759800-700-759800-700-759800-700-759800-700-759800-700				10000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			300	10000	· ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				19500	STAKED
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-700	9200	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-675	9000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				9200	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-625	9900	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				9200	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				9 200	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
-700-1009400-700-759800-700-509200-700-259800-700010500-700259600					
-700-759800-700-509200-700-259800-700010500-700259600					
-700 -50 9200 -700 -25 9800 -700 0 10500 -700 25 9600					
700 -25 9800 700 0 10500 700 25 9600					•
700 0 10500 700 25 9600					
-700 25 9600					
-700 50 9600					
		-700	50	9600	

Northing	Easting	Reading	Comments	
-700	75	99 00		
-700	75 100	78 00 9 400	<i>·</i> .	
-700	125	9400 9800		
-700	150	9800 9800		
-700	175	9800		
-700	200	9400		
700	225	9600		
-700	250	10000		
700	275	10000		
-700	300	10000		
700	325	10000		
-700	350	10000		
-675	-700	8600		
-675	-675	,9000	· · · · · · · · · · · · · · · · · · ·	
-675	-650	9200		
-675	-625	9400		
-675	-600	9400		•
-675	-575	.9500		
-675	-550	9000	•	
-675	-525	9400		
675	-500	9200		
-675	-475	9400		
-675	450	7600	•	•
-675	-425	9600		
-675	-400	9400	·	
-675	-375	· 9800		
675	-350	9600		-
-675	-325	9400		
-675	-300	9800		
-675	-275	7800		
-675	-250	9000		
-675	-225	11500		
675	-200	11000		
-675	-175	11000		
-675	-150	10500 9800		
-675 -675	-125 -100	9400		
-675	-75	10000		
-675	-50	9400		
-675	-25	9800		
-675	-20	9600 9600		
-675	25	7800 7800	÷	
-675	50	7600 7600		
-675	75	7800 9800		
-675	100	~ 9600		
-675	125	9800		
-675	150	· 9800		
-675	175	7800 7800		
-675	200	9400		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mments	Comr	Reading	Easting	Northing
250 9800 275 10000 320 9400 325 10000 350 10000 -700 6400 -675 8000 -625 9400 -625 9400 -550 9200 -475 9600 -525 9400 -525 9400 -475 9600 -475 9600 -425 9600 -425 9600 -425 9600 -350 9800 -3550 9800 -325 8800 -325 8800 -325 9600 -325 8800 -325 9600 -225 11000 -225 10000 -225 10000 -175 10500 -125 10000 -25 9800 -25 9800 -25 9800 -25 9800 -25				· · · ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9800	225	675
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9800	250	675
325 10000 350 10000 -700 6400 -675 8000 -8000 METAL POST -650 8800 -625 9400 -575 9600 -555 9400 -525 9400 -525 9400 -525 9400 -475 9400 -475 9400 -450 9200 -475 9600 -375 9600 -375 9600 -325 8800 -325 8600 -325 8600 -225 11000 -225 10000 -225 10000 -150 10500 -150 10500 -150 10500 -125 10000 -255 9800 0 9600 -25 9800 0 9600 -25 9800 0 9600 100 10000			10000	275	-675
350 10000 -700 6400 -675 8000 -8000 METAL POST -650 8800 -625 7400 -575 7600 -550 7400 -550 7400 -525 7400 -525 7400 -500 7200 -475 7400 -425 7600 -425 7600 -425 7600 -350 7200 -425 7600 -355 7800 -355 7800 -355 7800 -325 8800 -325 1000 -275 8600 -275 7600 -175 10500 -150 10500 -150 10500 -150 9600 -25 7800 0 7600 -25 7800 0 9400 -25 7800 100 10000			9600	300	675
-700 6400 -675 B000 -B000 METAL POST -650 8800 -625 9400 -575 9660 -555 9400 -525 9400 -525 9400 -525 9400 -525 9400 -475 9400 -475 9400 -475 9400 -475 9400 -475 9400 -475 9400 -475 9400 -475 9400 -475 9400 -475 9600 -350 9800 -325 8800 -225 11000 -200 10500 -175 10500 -125 10000 -25 9800 -25 9800 -25 9800 -25 9800 -25 9800 -28 1600			10000	325	-675
-675 8000 -8000 METAL POST -650 8800 -600 9400 -675 9600 -575 9600 -550 9400 -525 9400 -552 9400 -525 9400 -475 9400 -525 9400 -475 9400 -475 9400 -4425 9600 -425 9600 -375 9600 -325 8800 -375 9600 -275 8600 -250 9600 -275 8600 -250 9600 -275 10000 -200 10500 -1175 10500 -1175 10500 -1125 10000 -75 9600 -25 9800 -25 9800 -25 9800 -125 10000 -25 9800 -25 9800 -25 9800 -25 9800 -30 9400			10000	350	675
-6508800 -600 9400 -575 9600 -550 9400 -525 9400 -525 9400 -475 9400 -475 9400 -425 9600 -400 9200 -425 9600 -375 9600 -350 9800 -350 9800 -350 9800 -255 8600 -250 9600 -225 11000 -200 10500 -175 10500 -150 10500 -150 10000 -75 9600 -25 9800 0 9600 -25 13500 28 1600 50 9400 75 9600 100 10000 125 9800 0 9400 75 9600 125 10500 125 9600 100 10000 125 9600 <td></td> <td></td> <td>6400</td> <td>-700</td> <td>-650</td>			6400	-700	-650
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TAL POST	-8000 META	8000	-675	-650
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			8800	-650	-650
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9 400	-625	650
$\begin{array}{cccccccc} -550 & 9400 \\ -525 & 9400 \\ -475 & 9400 \\ -4475 & 9400 \\ -4450 & 9200 \\ -425 & 9600 \\ -375 & 9600 \\ -375 & 9600 \\ -375 & 8800 \\ -300 & 9800 \\ -275 & 8600 \\ -275 & 8600 \\ -225 & 11000 \\ -225 & 11000 \\ -225 & 11000 \\ -200 & 10500 \\ -1175 & 10500 \\ -1155 & 10500 \\ -1155 & 10000 \\ -125 & 10000 \\ -500 & 9600 \\ -25 & 9800 \\ 0 & 9600 \\ -25 & 9800 \\ 0 & 9400 \\ 50 & 9400 \\ 50 & 9400 \\ 100 & 10000 \\ 1150 & 9600 \\ -155 & 9600 \\ -155 & 9600 \\ -25 & 9800 \\ 0 & 9600 \\ -25 & 960 \\ -25 &$			9400	-600	-450
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7600	-575	-650
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-650
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					650
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9200		-650
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9400		650
$\begin{array}{cccccccc} -400 & 9200 \\ -375 & 9600 \\ -350 & 9800 \\ -325 & 8800 \\ -300 & 9800 \\ -275 & 8600 \\ -275 & 8600 \\ -225 & 11000 \\ -220 & 10500 \\ -175 & 10500 \\ -175 & 10500 \\ -150 & 10500 \\ -150 & 10000 \\ -125 & 10000 \\ -50 & 9600 \\ -25 & 9800 \\ 0 & 9600 \\ 25 & 13500 \\ 28 & 1600 & \text{STAKED} \\ 50 & 9400 \\ 75 & 9600 \\ 100 & 10000 \\ 125 & 9600 \\ 150 & 9600 \\ 150 & 9600 \\ 150 & 9600 \\ 150 & 9600 \\ 150 & 9600 \\ 150 & 9600 \\ 150 & 9800 \\ \end{array}$					-650
-375 9400 -350 9800 -325 8800 -300 9800 -275 8400 -250 9400 -225 11000 -200 10500 -175 10500 -175 10500 -150 10000 -100 10000 -75 9400 -25 9800 0 9400 25 13500 28 1400 STAKED 50 9400 75 9400 100 10000 125 9400 150 9400 150 9400 150 9400 150 9400 150 9400					650
-350 9800 -325 8800 -300 9800 -275 8600 -250 9600 -225 11000 -200 10500 -175 10500 -150 10500 -150 10500 -125 10000 -75 9600 -25 9800 0 9600 25 13500 28 1600 50 9400 75 9600 100 10000 125 13500 28 1600 STAKED 50 9400 STAKED 50 9400 STAKED 100 100000 100 125 9600 1150 150 9600 125 150 9600 175 175 10500 200 200 9800 100			9200	-400	-650
-325 8800 -300 9800 -275 8600 -250 9600 -225 11000 -200 10500 -175 10500 -150 10500 -125 10000 -125 10000 -75 9600 -50 9600 -25 9800 0 9600 25 13500 28 1600 50 9400 75 9600 100 10000 125 13500 28 1600 STAKED 50 9400 100 100 10000 10000 125 9600 100 150 9600 150 150 9600 175 175 10500 200 200 9800 1050			9600	-375	-650
-300 9800 -275 8600 -250 9600 -225 11000 -200 10500 -175 10500 -150 10500 -125 10000 -125 10000 -75 9600 -50 7600 -25 13500 28 1600 50 9400 75 9600 75 9600 100 10000 125 13500 28 1600 STAKED 50 75 9600 100 10000 125 9600 125 9600 150 9600 175 10500 200 9800			9800	-350	-650
-275 8600 -250 9600 -225 11000 -200 10500 -175 10500 -175 10500 -125 10000 -125 10000 -75 9600 -75 9600 0 9600 25 13500 28 1600 STAKED 50 9400 75 9600 100 10000 125 9600 100 10000 125 9600 125 9600			8800	-325	-650
-250 9600 -225 11000 -200 10500 -175 10500 -150 10500 -125 10000 -100 10000 -75 9600 -50 9600 0 9600 25 13500 28 1600 50 9400 75 9600 100 10000 125 9400 50 9400 50 9400 50 9400 150 9600 125 9600 125 9600 125 9600 120 9800			9 800	-300	-650
-225 11000 -200 10500 -175 10500 -150 10500 -125 10000 -100 10000 -75 9600 -75 9800 0 9600 25 13500 28 1600 50 9400 75 9600 100 10000 1100 10000 1125 9600 1150 9600 1150 9600 1150 9600 125 9800			8600	-275	-650
-200 10500 -175 10500 -150 10000 -125 10000 -75 9600 -75 9800 0 9600 25 13500 28 1600 50 9400 75 9600 100 10000 125 13500 28 1600 50 9400 75 9600 100 10000 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 1200 9800			5600	-250	-650
-175 10500 -150 10000 -100 10000 -75 9600 -50 9600 -25 9800 0 9600 25 13500 28 1600 50 9400 75 9600 100 10000 125 9600 100 10000 125 9600 100 10000 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 125 9600 126 9600 127 10500 200 9800			11000	225	-650
-150 10500 -125 10000 -100 10000 -75 9600 -50 9600 0 9600 25 13500 28 1600 STAKED 50 9400 75 9600 100 10000 125 9600 125 9600 126 9600 126 9600 127 9600 127 9600 128 9600 128 9600 129 9600 129 9600 120 960			10500	-200	-650
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10500	-175	650
-100 10000 -75 9600 -50 9600 -25 9800 0 9600 25 13500 28 1600 50 9400 75 9600 100 10000 125 9600 150 9600 175 10500 200 9800			10500	-150	-650
-75 9600 -50 9600 -25 9800 0 9600 25 13500 28 1600 STAKED 50 9400 75 9600 100 10000 125 9600 150 9600 175 10500 200 9800			10000	-125	650
-50 9600 -25 9800 0 9600 25 13500 28 1600 STAKED 50 9400 75 9600 100 10000 125 9600 150 9600 175 10500 200 9800	· •		10000	-100	-650
-25 9800 0 9600 25 13500 28 1600 STAKED 50 9400 75 9600 100 10000 125 9600 150 9600 175 10500 200 9800	·		9600	-75	650
0 9600 25 13500 28 1600 STAKED 50 9400 75 9600 100 10000 125 9600 150 9600 175 10500 200 9800			9600	-50	-650
25 13500 28 1600 STAKED 50 9400 75 9600 100 10000 125 9600 150 9600 175 10500 200 9800			9800	-25	-650
28 1600 STAKED 50 9400 75 9600 100 10000 125 9600 150 9600 175 10500 200 9800			9600		-650
50 9400 75 9600 100 10000 125 9600 150 9600 175 10500 200 9800			13500		-650
75 9600 100 10000 125 9600 150 9600 175 10500 200 9800	AKED	STAK	1600		-650
100 10000 125 9600 150 9600 175 10500 200 9800			9400	50	650
125 9600 150 9600 175 10500 200 9800			9 600	75	-650
150 9600 175 10500 200 9800			10000	100	-650
175 10500 200 9800			9600	125	-650
200 98 00			. 9600	150	-650
			10500		-650
	•		9800		650
225 10000			10000	225	-650
250 8200			8200	250	650
275 . 10000			10000	275	-650
300 10000			10000	300	-650
325 10000			10000	325	-650

Northing	Easting	Reading	Comments	_
-650	350	9200		
-625	-700	6500		
-625	-675	8800		
-625	-650	8600		
-625	-625	9400		
-625	600	9200		
-625	-575	9 800		
-625	-550	9200		•
-625	-525	10000		
-625	-500	9200		
-625	-475	9400	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
-625	-450	9400		
-625	-425	9400		
-625	-400	. 8400		
-625	-375	9400	•	ъ. ¹
-625	-350	9000		
-625	-325	9600		
-625	-300	· 9 200		
-625	-275	9600		
-625	-250	9600		• *
-625	-225	11500		
-625	-200	11000	· .	
-625	-175	10500		
-625	-150	10500		
-625	-125	9200		
-625	-100	9400		
-625	-75	9800	· .	
-625	-50	9600	-	
-625	-25	7800 7800		
-625	0	9800		· · · · ·
-625	25	9800		
-625	50			-
-625		9800		· ·
	75	9200		
-625	100	9600		
-625	125	9800		
-625	150	9600		-
-625	175	9800		
-625	200	10000		
625	225	10000	۰	
-625	250	, 9600		
62'5	275	9600		
-625	300	8000		
625	325	10000		
-625	350	· 10000		
-613	-350	14500		
-602	-455	16500	STAKED	
601	-380	24500	STAKED	•
600	-700	10000	•	
600	-67.5	10000		

Northing	Easting	Reading	Comments
		tran and area and and and the day one are that are the day in	
-600	-650	10000	
600	-625	10500	
-600	-600	11000	
600	-575	10500	
600 .	-550	10500	
600	-525	10500	
-600	-500	10500	
600	-475	10500	,
-600	-450	12500	
600	-425	10500	
-600	-400	10500	
600	-375	14500	
-600	-350	10000	
600	-325	10500	
-600	-300	1,4500	
600	-275	10500	
-600	-250	10500	
-600	-225	10500	
-600	-200	10500	
600	-175	. 10500	
-600	-150	10500	
-600	-125	10500	
-600	-100	10500	
-600	75	10500	
-600	-50	10500	
600	-25	10500	
-600	0	10500	
-600	25	10500	· .
-600	50	10500	
-600	75	10500	
-600	100	10500	· · · ·
-600	125	10500	
600	150	10500	
600	175	.10500	
-600	200	10500	
600.	. 225	10500	
600	250	10500	
-600	275	11000	
-600	300	11000	
-600	325	11000	
-600	350	10500	
-600	375	6800	
-600	400	11000	
-600	425	7400	OS WELL,value
-599	-302	15500	STAKED
594	-394	19500	STAKED
-580	400	2000	
-575	700	10000	
-575	-675	10000	
		···· · -	

Northing	Easting	Reading	Comments
-575	-650	10500	
-575	-625	10500	
-575	-600	10500	
-575	-575	10500	
-575	550	10500	
-575	-525	11000	
-575	-500	10500	
575	-475	10500	,
575	-450	10500	
-575	-425	10500	
-575	-400	7000	
-575	-375	10500	· · · · · · · · · · · · · · · · · · ·
-575	-350	10000	
-575	-325	10000	Χ.
-575	-300	9500	
-575	-275	10500	
575	-250	10500	
-575	-225	10500	
-575	-200	10500	
-575	-175	10500	
575	-150	10500	• .
-575	-125	10500	
-575	-100	10500	
-575	-75	10500	
575	50	10500	•,
-575	-25	10500	
-575	0		-7400 WELL CASING
-575	25	10500	VYON WEEL CHOIND
575	50	10500	
-575	75	10500	
-575	100	10500	· · ·
-575	125	10500	
-575	1.50	10500	(
-575	175	10500	
-575 -575	200 225	10500 10500	
-575	250	10500	
-575	275		
-575		10500	
	300	11000	
-575	325	10500	
-575	350	10500	· · ·
-575	375	11000	
-575	400	10500	•
-575	425	9500	
-550	-700	10000	
-550	-675	10000	
-550	-650	10500	
-550	-625	10000	
550	-600	10500	

lorthing	Easting	Reading	Comments
	· · ·		
-550	-575	10500	
-550	-550	10500	
-550	-525	10500	
-550	500	10500	
-550	-475	10500	
-550	-450	11000	
-550	-425	10500	
-550	-400	10500	
-550	-375	10500	
-550	-350	10500	
-550			
	-325	12000	المراجع المتعالم والمتعار والمراجع
	-300	10500	
-550	-275	10500	
-550	-250	9500	
-550	-225	10500	
550	-200	10500	
-550	-175	10500	
550	-150	10500	
-550	-125	10500	
-550	-100	10500	
-550	-75	10500	
550	-50	10500	
-550	-25	10500	
-550	01	10500	
-550	25	10500	
-550	50	10500	
-550	75	10500	
550	100	10500	
-550	125	10500	
-550	150	10500	
-550	175	10500	
-550	200	11000	
-550) 225	10500	
-550	250	· 10500	
-550	275	10500	
-550	300	10500	,
-550	325	10500	
-550	350	10500	
-550	375	10500	
-550	400	10500	
-550	425	9500	
544	-318	25500	STAKED
		•	
-537	-314		-5000
-532	44	16500	STAKED
-525	-700	10000	
-525	-675	10500	•
-525	-650	11000	
-525	-625	10500	
-525	-600	10500	

AFFENDIX B

	Comments	Reading	Easting	Northing
**				· · · · · · · · · · · · · · · · · · ·
		10000	-575	525
		10500	-550	-525
	>	10500	-525	-525
		10500	-500	-525
•		11000	-475	-525
		10500	-450	-525
		10500	-425	-525
		10500	-400	-525
		10500	-375	-525
		10500	-350	-525
		. 10000	-325	-525
,		10500	300 · · ·	-525
		10500	-275	-525
		10500	-250	-525
		10500	-225	-525
		10500	-200	-525
		10500	-175	-525
		10500	-150	-525
· .		10500	-125	-525
			-100	-525
		10500		
		10500	-75	-525
		11000	-50	-525
		8200	-25	525
		10500	0	-525
		10500	25	525
		10500	50	-525
		10500	75	-525
		10500	100	-525
		10500	125	-525
		10500	150	-525
		10500	175	525
	• *	10500	200	-525
		10500	225	-525
	• • •	10500	250	-525
• •		10500	275	-525
		10500	300	-525
		10500	325	-525
		10500	350	-525
		9500	-700	-500
		10000	-675	-500
		10000		500
			-650 -625	500
		10000		500
		9500		
		10500	-575	500
		10000	-550	-500
	· · ·	10000	-525	-500
		10000	-500 .	-500
		10000	-475	-500
		.10000	-450	-500

--

Northing	Easting	Reading	Comments		
-500	-425	10000			
500	-400	10000			
-500	-375	10000			
500	-350	10000	• '		
-500	-325	10000			
-500	-300	10000			
-500 -500	-275 -	10000			
	-250	10000			
-500	-225	10000			
-500 -500	-200	10000			
	-175	10000			• .
-500	-150	10000			
-500	-125	10000		,	
	-100	10000			
-500	-75	10000			
-500	50	10000			
-500	-25	10000	•	·	
-500	• 0	10000			
-500 -500	25	10500			
-500	50	10000			
	. 75	9500			
500	100	10000			
-500	125	10000		· .	
-500	150	10000			
-500	175	10000			
-500	200	10500			
-500	225	10000			
500	250	10000			
500 500	275	11000			
	300	10000	,		
-475	-700	10000			•. :
-475	-675	10500			
-475	650	. 9000			
-475	625	10000			
-475	-600 -575	95 00			
-475	-550	9500			
-475		10000			
-475	-525	10000			
-475	-500	10000			
-475	-475	10000			
-475	-450 -425	10500			
-475	-400	10000			
-475		10000	·		
-475	-375	10000			
	-350	10000			
-475	-325	10000			
-475	-300	10000		•	
-475 -475	-275	10000			
-4/0	-250	10000			

AFFENDIX B

Northing	Easting	Reading	Comments	•
·		10000		
-475	-225	10000		
-475	-200	10500		
-475	-175	10000		
-475	-1.50	10000		
-475	-125	10000		
-475	-100	10000		
-475	-75	10000		
-475	50	10500	ON GROUND	
-475	-25	10000		
-475	0	10000		
475		10500		
-475	50	10000		•
-475	75	10000		-
-475	1.00	10000	•	
-475	125	10500		
-475	150	10500		
-475	175	10500		•
-475	200	9500		
-475	225	10000		
-475	250	10000	•	•
-475	275	10500		
-475	300	10500		
459	-650	16000	STAKED	
-450	-700	10000		
-450	-675	9500		
-450	-650	12500		
-450	-625	10000		
-450	-600	10000		
-450	-575	10500		
-450	-550	10000	<i>.</i> .	
450	-525	10000		
-450	-500	10500		
450	-475	10000		
-450	-450	10500		
450	425	10000		
-450	-400	10500		
450	-375	10000		
450	-350	10000		
-450	-325	10000		
-450	-300	10000		
450	-275	10000		
-450	-250	10500	·	
-450	-225	10000	•	
-450	-200	10000		
-450	-175	10000		
-450	-150	9500		
-450	-125	9000		
-450	-100	10000		
450	-75	10000	· .	
	·			

Northing	Easting .	Reading	Comments	
-450	-50		00 SCRAP METAL	
-450	-25	10500		
-450	0	10000		
-450	25	10000		
-450	50	9500		
-450	75	10000		
-450	100	10000		
-450	125	10500		
-450	150	9500		
450	175	10500		
-450	200	10000		
-450	225	10000		
-450	250	10000		
-450	275	10500		
-450	300	10000		
-435	-152	. 17500	STAKED	
-425	-700	10000		•
-425	-675	10000	•	
-425	-650	8500		
-425	-625	18000	STAKED	
-425	-600	9 500		
-425	- 575.	- 9500		
-425	-550	10000		· ·
-425	525	10000		
-425	-500	10500		
-425	-475	10000		
-425	-450	10000	· ·	
-425	-425	9500		
-425	400	10500	•	
-425	-375	10000		
-425	-350	10500	. • •	·
425	-325	9500		
-425	-300	10000		
-425	-275	10000		
-425	-250	10500		
-425	-225	10000		
-425	-200	10000		
-425	-175	10000		
-425	-150	10000		
425	-125	10000		
-425	-100	9000		•
-425	-75	9500		
-425	-50	7000		
425	25	11500		
-425	0	10000		
-425	25	10000		
-425	50 .	· · 10000		
-425	75	10000	,	
-425	100	10000		

Northing	Easting	Reading	Comments
			· · · · · · · · · · · · · · · · · · ·
-425	125	10500	
-425	150	10000	•
-425	175	10000	
-425	200	10000	
-425	225	10500	•
-425	250	10000	
-425	275	10500	
-425	300	10000	
-401	-40	20000	•
-400	-700	10000	2 **
-400	675	9500	
-400	-650	8500	
-400	-625	10500	
-400	600	10500	
-400	575	10500	·
-400	-550	10500	
-400	-525	11000	
-400	-513	21000	STAKED
400	-500	10500	
-400	-475	11000	
-400	-450	~ 10500	
-400	-425	10500	
-400	-400	10500	· · · ·
-400	-375	10500	-
400	-350	10500	
-400	-325	10500	
-400	-300	10500	
-400	-275	10500	
-400	-250	11000	
-400	-225	10500	
-400	-200 ^{°°}	10500	
-400	-175	10500	
400	-150	10500	
-400	-125	10000	
400	-100	41500	
-400	-75	9500	
-400		12000	
-400	-25	10500	
-400	Ō	10500	
-400	25	10,500	
-400	50	10500	·. ·
-400	75	9500	• · · ·
-400	100	10500	
-400	125	10500	
-400	150	10500	
-400	175	10500	
-400	200	10500	
-400	225	10500	
400	250	10500	<i>.</i> •
* "e" "e"	alle California		

Northing	Easting	Reading	Comments
	** *** *** *** *** *** *** *** *** ***		
-400	275	10500	
-400	-300	10500	
-386	-408	19500	STAKED
-375	700	10000	tann I I I I - panam Gand
-375	-675	10500	
-375	650	10500	
-375	-625	10500	
-375	600	10500	
-375	575	10500	
-375	550	10500	
-375	-525	10500	
-375	500	10500	· · · · · · · · · · · · · · · · · · ·
-375	-475	10500	
-375	-450	10500	
-375	-425	10000	
-375	-400	10000	
-375	-375	10500	
-375	-350	10500	
-375	-325	10500	
-375	-300	10500	
-375	-275	10500	
-375	-250		
-375		10000	
-375	-225	10000	
-375	-200	10500	
	-175	10500	
-375	-150	11000	
-375	-125	11000	
-375	-100	10500	
-375	-75	10500	
-375	-50	10500	
-375	-25	10500	
-375	Q	10500	
-375	25	10500	
-375	50	10500	
-375	75	10000	
-375	100	11000	
-375	125	10500	· .
-375	150	10500	
-375	175	10500	
-375	200	10500	
-375	225	10500	
-375	250	10500	
-375	275	10500	
-375	300	10500	
-350	-700	10000	
-350	-675	10500	
-350	-650	10500	
-350	-625	10500	
-350	-600	11000	
		and and the test that	

AFFENDIX B

Northing	Easting	Reading	Comments
			·
-350	575	10000	
-350	-550	10500	
-350	-525	10500	
-350	-500	10500	
-350	-475	10500	
-350	-450	10500	
-350	-425	10500	
-350	-400	10500	
-350	-375	10500	
-350	-350	10500	
-350		10500	
-350	-300	10500	
-350	-275	10500	
-350	-250	10500	
-350	-225	11000	
-350	-200	10500	
350	-175	10500	
-350	-150	10000	
-350	-125	10500	
-350	-100	11000	
-350	-75	10500	
-350	-50	10500	
-350	-25	10000	
-350 -350	0	11000	
-350	25 50	10500	
-350	75	10500 10000	
-350	100	11000	
-350	100	10500	
-350	150	10500	
-350	175	10500	
-350	200	10500	
-350	225	10500	
-350	250	10500	
-350	275	10500	
-350	300	10500	
-342	-3	19000	STAKED
-332	-500	19500	STAKED
-325	-700	10500	
-325	-675	10500	
-325	-650	10500	
-325	-625	10500	
325		11000	•
-325	-575	10500	
-325	-550	11000	
-325	-525	10500	
-325	500	19000	
-325	-475	10500	. ·
325	-450	10500	

MAGNETICS DATA

Northing	Easting	Reading	Comments
		, mang angu angu angu angu angu angu angu a	
-325	-425	10000	
-325	-400	10500	
-325	-375	10500	
-325	-350	10500	
-325	-325	10500	
-325	-300	10500	
-325	-275	10500	
-325	-250	10500	
-325	-225	12000	
-325	-200	10500	
-325	-175	10500	
-325	-150	10500	· · · · · · · · · · · ·
-325	-125	10500	
	-100	10500	
-325	-75	10500	
-325	-50	10500	
-325	-25	10500	
-325		10000	
-325	25	10500	
-325	50	10500	
-325	75	10500	
-325	100	10500	
-325	125	10500	
-325	150	11000	
-325	175	9000	
-325	200	10500	
-325	225	10500	
-325	220		
-325	275	10500	
-325	273 300	10500	<u>,</u>
-321	· ·	10000	OTALICT
-321	0	15000	STAKED
-300	-397	22000	STAKED
-300	-700	10500	
	-675	10500	
-300	650	10500	
-300	-625	10500	
-300		9000	
-300	-590	19000	STAKED
-300	-575	11500	
-300		10500	
-300		1600	-1600 STAKED
-300	-500	10000	
-300	-475	11500	
-300	-450	10500	
-300	-425	9500	
-300	-400	9500	
-300	-375	10500	
~300	-350	10500	
300	-325	11000	

· . .

Northing	Easting	Reading	Comments
		· · · · · ·	
-300	-300	10500	
-300	-275	11000	
-300	250	10500	
-300	-225	11000	
-300	-200	10500	
-300	-175	11000 -	
-300	-150	10500	
-300 -300	-125 -100	11000 10500	
-300	-75	10500	•
-300	50	11000	
-300	-25	11000	• •. • • • • • • • • • • • • • • • • •
-300	0	10500	
-300	25	- 11000	
-300	50	11000	
-300	75	11000	
-300	100	10500	
-300	125	11000	
-300	150	10500	
-300	175	11000	
-300	200	11500	
-300	225	11000	
-300	250	11000	
-300	275	11000	
-300	300	11000	
-286	-550	20000	STAKED
-275	-700	10500	
-275	675	10500	
275	-650	10500	
-275	-625	10500	•
275	-600	10000	
-275	-575	11000	
-275	-550	8500 -	
-275	-525	12000	
-275	-500	10500	· · · · · ·
-275	-475	11000	
-275	-450	20500	
-275	-445	28000	STAKED
-275	-425	11000	
-275	-400	11000	
· -275	-375	10500	
-275	-350	10500	
-275	-325	11000	
-275	-300	10500	
-275	-275	10500	
-275	-250	11000	
-275	-225	10500	
-275	-200 -175	10500 11000	
<u>-</u>		T T OOO	

Northing	Easting	Reading	Comments
			·
-275	-150	10500	
-275	-125	11000	
-275	-100	10500	
-275	-75	11500	
-275	50	10500	
-275	-25	10500	
-275	0	11500	
-275	25	11000	
-275	50	10500	
-275	75	11000	
-275	100	10500	
275	125	11000	
-275	150	11000	
-275	175	11000	
-275	200	10500	
-275	225	11500	
-275	250	6800	
-275	275	11000	
-275	300	10500	
-265	-535	22500	STAKED
-250	-700	10500	
-250	-675	11500	
-250	-650	12500	
-250	-625	× 10500	
-250	-601.33	25000	STAKED
-250	-600	23000	
-250	-575	11000	
-250	-550	11000	
-250	-525	8500	
-250	· -500	11000	
-250	-475	11000	
250	-450	10500	·
-250	-425	10000	
-250	-400	10500	
-250	-375	10500	
-250	-350	11000	
-250	-325	11000	
-250	-300	10500	
-250	-275	11000	
-250	-250	10500	
-250	-225	10500	
-250	-200	10500	
-250	-175	11000	
-250	-150	10500	
-250	-125	11000	
-250	-100	10500	
-250	-75	11500	
-250	-50	11000	
-250	-25	11000	
	ation Nation		

	Comments	Reading	Easting	Northing
_				
		11000	0	-250
		11000	25	-250
		11000	50	-250
		11000	75	-250
		11000	100	-250
		11000	125	-250
		10500	1.50	-250
		11000	175	-250
		10500	- 200	250
		11000	225	-250
,		11000	250	250
	· · · · · · · · · · · · · · · · · · ·	11000	275	-250
		10500	300	-250
		10500	-700	-225
		10000	-675	-225
		· 9200	-650	-225
			-625	-225
		10500		-225
		10500	-600	
		11000	-575	-225
	·	8000	-550	-225
		10500	-525	-225
		10500	-500	-225
•		11000	-475	-225
		10500	-450	-225
		10500	-425	-225
		10500	-400	-225
		10500	-375	-225
		10500	-350	-225
		11000	-325	-225
		11000	-300	-225
· ·	• • •	[~] 11000	-275	-225
	•	10500	-250	-225
		10500	-225	-225
		11000	-200	-225
		10500	-175	-225
		11500	-150	-225
		11000	-125	-225
			-100	-225
		11000		
		11000	-75	-225
		11000	-50	-225
		10500	-25	-225
		10500	0	-225
		11000	25	-225
		10500	50	-225
		11000	75	-225
		10500	100	-225
		· 11 000	125	-225
		10500	150	-225
		11000	175	-225

AFFENDIX B

Northing	Easting	Reading	Comments	
			-	,
-225	200	11000		·
-225	225	11000		
-225	250	11000		
-225	. 275	11000		
-225	300	10500		
-200	-700	10500		
-200	-675	8000		
-200	-650	9500	· · ·	
-200	-625	10000		
-200	-600	10000		
-200	-575	11000		
-200	-550	11000	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • •
-200	-525	7500		
-200	-500	11500		
-200	-475	10500		
-200	-450	10500		
-200	-425	11000		
200	-400	10500		
-200	-375	10500		
-200	-350	10500		
-200	-325	10500	2	
-200 -	-300	10500		•
-200	-275	11000		
-200	-250	10500		
-200	-225	10500		
-200	-200	10500		
-200	-175	10000		
-200	-150	10500		· .
-200	-125	10500		•
-200	-100	.10500		
-200	-75	10500		
-200	-50	10500	· · · ·	•
-200	-25	10500		
-200	Ŏ	10500		
-200	25	10500		•
-200	. 50	10500	· .	
-200	75	10500		
-200	100	10500		÷
-200	125	- 10500		
-200	150	10500		
-200	175	11000		
-200	200	10500	·	
-200	225	11000		
-200	250	11000		
-200	275	10500	/	
-200	300	10500		:
-175	-700 .	10500		
-175	-675	11500		
-175		9500		

Northing	Easting	Reading	Comments	
-175	-625	10500		
-175	-600	10500		
-175	-575	10500		
-175	-550	10500	· .	
-175	-525	10000		
-175	-500	10000		
-175	-475	11000		
-175	-450	10500		
-175	-425	11000		
-175	400	10500		
-175	-375	10500		
-175	-350	10500		
-175	-325	10500		
-175	-300	11000		
-175	-275	10500		
-175	-250	10500		
-175	-225	10000		
-175	-200	10000		
-175	-175	10500		
-175	-170	10500	、 、	
-175	-125	-10500		
-175	-100	10500		
-175	-75	10500		
-175	-50	10500		
-175	-25	10500		
-175	0	10500		
-175	25	10500		
-175	50	10000		
-175	75	10500		
-175	100	10500	· · ·	
-175	125	10500		
-175	150	10500		
-175	1.75	11000	· ·	
-175	200	10500		
-175	225	11000		
-175	250	10500		•
-175	275	10500		
-175	300	10500		
-155	-200	19500		
-150	-700	10500		
-150	-675	10500	<i>,</i> .	
-150	-650	10000		
150	-625	10000	•	
-150	600	10000		
-150	-575	10500		
-150	550	10000		
-150	-525	10000		
-150	-500	10000		
-150	-475	10000		
1 CV2	-T / U	T ////////		

		•	
Northing	Easting	Reading	Comments
-150	-450	10000	
-150	-425	11000	
-150	-400	. 10500	
-150	-375	8000	
-150	-350	10500	
-150	-325	11000	
-150	-300	10500	
-150	-275	10500	
-150	-250	10000	
-150	-225	11000	
-150	-200	11500	
-150	-175	10500	· · · · · · · · · · · · · · · · · ·
-150	-150	10500	
-150 '	-125	. 10500	
-150	-100	10000	
-150	-75	10500	
-150	-50	10500	
-150	-25	10500	
-150	0	10000	
-150	25	10500	
-150	50	10500	
-150	75	10500	
-150	100	10500	
-150	125	10500	
-150	150	10500	
-150	175	10500	
-150	200	10500	
-150	225	11000	
-150	250	10500	
-150	275	10500	···
-150	300	10000	
-125	-700	10500	
-125	-675	10000	
-125 -125	-650	10000	
-125	-625 -600	10500	
-125	-575	10000 10500	
-125	-550	10000	
-125	-525	10500	
-125	-500	10500	
-125	-475	10500	
-125	-450	12000	
-125	-425	11000	
-125	-400	10500	
-125	-375	11500	
-125	-350	10500	
-125	-325	10500	
-125	-300	10500	
-125	-275	11000	
	dan 7 'm'	and and the first full	

AFFENDIX B

Northing	Easting	Reading	Comments
		in and and the find the last of all the part of a star for the second of the second of the second of the second	
-125	250	10500	
-125	-225	10500	
-125	-200	11000	
-125	-175	11000	
-125	-150	10500	
-125	-125	10500	
-125	-100	10500	
-125	-75	10500	
-125	-50	10500	
-125	-25	10500	
-125	0 25	10500	
-125		10500	
-125	50	10500	· · ·
-125 -125	75	10500	
-125	100 125	10500 10500	
-125	125	10500	
-125	175	10500	
-125	200	10500	
-125	225	11000	
-125	250	10500	
-125	275	10500	
-125	300	10500	
-100	-700	10500	
100	675	12500	
-100	-650	11000	
100	-625	10500	
-100	-600	10000	
-100	-575	11000	
-100	550	11000	
-100	52 5	10500	
-100	-500	11000	
-100	-475	10500	
-100	-450	16000	STAKED
-100	-425	11000	
-100	-400	10500	
-100	-375	10500	
-100	-350.	10500	
-100	-325	10500	·
-100	-300	10500	
-100	-275	11000	
-100	-250	10500	
-100	-225	11500	
-100	-200	11000	
-100	-175	11000	
-100 -100	-150	11000	
-100	-125	10500 11000	
-100	-100 -75	14500	
T (1/1/1	-75	14000	·

· · ·

and the second second

Northing	Easting	Reading	Comments
-100	-50	11000	
-100	-25	10500	
-100	0	11000	
-100	25	10500	
-100	50	11000	
-100	75	10500	
-100	100	11000	
-100	125	10500	
-100	150	10500	
-100	175	10500	
-100	200	10500	,
-100	225	10500	
-100	250	10500	
-100	275	10500	
-100	300	10500	
75	700	10500	
-75	-675	10500	
-75	-650	10500	
-75	-625	10500	
75	-600	10500	
-75	-575	10500	
75	-550	10500	
-75	-525	10500	
-75	-500	11000	
-75	-475	10500	
-75	-450	10500	
-75	-425	11000	
75	-400	11000	
-75	-375	10500	
-75	-350	11000	
-75	-325	11000	
75	-200	10500	
-75	-275	10500	
75	-250	11000	
-75	-225	10500	
75	200	` 11 000	
-75	-175	11000	
-75	-150	11000	
-75	-125	10500	
75	-100	11000	
-75	-75	11000	
-75	50	10500	
-75	-25	10500	
75	·Ο	11000	
-75	25	11000	
-75	50	11 000	
-75	. 75	10500	
75 -	100	11000	
-75	125	11000	•

orthing	Easting	Reading	Comments
-75	150	11000	
	175	11000	
-75		10500	
-75	200	10500	
-75	225	10500	a
-75	250	10500	
-75 -75	275 300	10500	
-50		10500	· .
50	-700	10500	. ·
	-675	10500	
-50	-650	11000	
50	-625	10500	
-50	-600	10500	
-50	575	10500	
-50	-550	11000	
50	-525	11000	
-50	-500	11000	
-50	-475	10500	
50	-450	11000	
-50	-425	11000	
-50	-400	11000	
50	-375	10500	
50	-350	11000	
50	-325	10500	
-50	-300	11000	
-50	-275	11000	
-50	-250	10500	,
-50	-225	10500	
-50	-200	11000	
50	-175	10500	· · · · · ·
-50	-150	11000	
-50	-125	11000	•
-50	-100	11000	
50	75	10500	
-50	-50	11000	
50	-25	11000	
-50	0	11000	
-50	25	. 11000	
-50	50	11000	
-50	75	10500	
-50	100	10500 -	
50	125	10500	
-50	150	10500	
-50	175	10500	
-50	200	10500	
-50	225	10500	•
50	250	11000	
50	275	11500	
· -50	300	10500	
-25	700	10500	

Northing	Easting	Reading	Comments
-25	-675	11000	
-25	-650	10500	
-25	-625	11000	
-25	-600	11000	
-25	-575	11000	
-25	-550	11000	
-25	-525	10500	
-25	-500	10500	
-25	-475	11000	
-25	-450	11000	
> -25	-425	11000	
-25	-400	11000	
-25	-375	10500	
-25	-350	11000	
-25	-325	11000	
25	-300	11000	
-25	-275	10500	
-25	-250	- 11000	
-25	-225	11000	
25	-200	11000	· .
-25	-175	10500	
-:25	-150	10500	•
-25	125	11000	
-25	-100	11000	
-25	-75	10500	·
25	-50	. 11000	·
-25	-25	11000	
-25	0	11000	
-25	25	11000	
-25	50	11000	
-25	75	10500	• • •
-25	100	11000	
-25	125	10500	•
25	150	10500	
-25	175	10500	
-25	200	10500	·
-25	225	10500	
-25	250	11000	
-25	275	10500	
-25	300	10500	•
0	-700	7200	
0	-675	7600	
Ŏ	-650	7400	
Ō	-625	7000	•
Ō	-600	7200	
Ō	-575	7200	
0	-550	7000	
Ō	-525	7200	
Ō	-500	7200	
		,	

Northing	Easting	Reading	Comments	· .
0	-475	6800		
0	-450	7000		
0	-425	7000		
0	-400	7000	•	
O	-375	7000		
Q	-350	7000		
0	-325	7000		•
Q	300	6800	•	
Ó	-275	10500		
0	-250	10500	,	•
	-225	10500		• •
···· · · <u>·</u> ·	-200	10500	• • • • • • • • • • • • • • • • • • •	
Ō	-175	10500		
Ō	-150	10500		
Ō	-125	10500		
õ	-100	10000		
ò	-75	10500		
Ō	-50	10500		
Ō	-25	10500		
Ō	0	26500	WELL	
Ō	25	10500	V V Lass Long Long	
Ō	50	10000		
õ	75	10000		• .
· ō	100	10500		2
õ	125	10500		
Q	150	10500		
Õ	175	10000		
. 0	200	10000		
Ŏ	225	12000	•	
0	250	17000		
· · · Õ	275	10000		
0 O	300	10500		
Ŏ	325	10500		
ŏ	350	10500		
Č O	375	10000		
Ŏ.	400	10000		
ŏ	425	10500		
25	-700	7000		
25	-675	7000	•	
25	-670	7000		
25	-625			
25		7000		
25 25	-600	68 00	•	
	-575	7000		
25	-550	7000	•	
25	-525	7200		
25	-500	7000		
25	-475	7000		
25	-450	7000		
25	-425	7000		

Northing	Easting	Reading	Comments	
25	-400	7000		
25	-375	7400	_	
25	-350	7400		
25	-325	7000		
25	-300	7000		
25	-275	10500		
25	-250	10500		
25	-225	11000		
25	-200	10500		
25	-175	10500		
25	-150	10500		
25	-125	10500	······································	• •
25	-100	10500		
25	75	10500		
25	-50	10500		
25	-25	10500		
25	0	10500		
25	25	10500		
25	. 50	11000		
25	75	10500	,	
25	100	11000	· .	
25 -	125	10000		
25	150 .	12000	•	
25	175	10500		
25	200	10000		
25	225	11500		
25	250	10500		
25	275	10000		
25	300	11000		
25	325	11500		
25	350	10000		
45 50	247.5	19000	STAKED	
50	-700	11000		
50	-675 -650	12000		
50	-625	6800 · · · · · · · · · · · · · · · · · ·		
50	-600	7800 7800		
50	-575	6800		
50	-550	7000		
50	-525	7000		
50	-500	7000		
50	-475	6800		
50	-450	7000	• •	
50	-425	7000		
50	-400	7200	. ·	
50	-375	7000		
50 ·	-350	6800		
50	-325	6800		
50	-300	7000		
		• · · · · · · · · · · · · · · · · · · ·		

Northing	Easting	Reading	Comments
50	-275	8000	
50	-250	8400	
50	-225	10500	
50	-200	10500	
50	-175	10500	
50	-150	10500	
50	-125	10000	
50	-100	10500	
50	75	10500	
50	-50	10000	
	- <u> 25</u>	10000	
50	Q	11000	
50	25	10500	
50	50	10500	
50	75	11000	
50		10500	
50	125	10500	
50	150	10500	
50	175	18500	
50	200	11500	•
50	225	10500	
50	250	10000	
50	* 275	10000	
. 50	300	10500	
50	325	10000	
50	350	10000	
75	-700	8000	
75	-675	7400	
75	-650	7250	
75	-625	75 00	· ·
75	-600	10800	· ·
. 75	-575	7000	
75	-550	7200	
75	-525	7000	
75	-500	7000	
75	-475	7000	
75	-450	7000	
75	-425	7200	
75	-400	6800	
75	-375	7000	
75	-350	7200	
75	-325	- 7000	
75	-300	· 7000	
75	-275	· 7600	
75	-250	7000	,
75	-225	5200	
75	-200	7000	•
75	-175	10500	
75	-150	10500	

Northing	Easting	Reading	Comments
75	-125	10500	
75	-100	10500	
75	-75	10500	
75	-50	10500	
75	-25	10500	
. 75	0	10000	
75	25	10000	
75	50	10000	,
75	75	11000	
75	100	9 500	
	125	10500	······································
75	1.50	10500	
75	175	11000	
75	200	10500	
75	225	11500	
75 1	250	10500	
75	275	10000	
75	300	- 10500	
. 75	325	. 10500	
75	350	9500	
100	-700	7500	
100	-675	7500	
100	-650	7500	
100	-625	7000	
100	-600	7250	
100	-575	6800	
100	-550	7000	
100	-525	7200	
100	-500	6800	
100	-475	6800	
100	-450	7000	
100	-425	7000	
100	400	6800	
100	-375	7000	
100	-350	7200	
100	-325	7000	
100	-300	7800	
100	-275	6800	
100	-250	5800	
100	-225	7000	
100	-200	7800	
100	-175	11000	
100	-150	10500	
100	-125	11000	
100	-100	10500	
100	-75	10000	
100	-50	10500	
100	-25	10000	
100	0	9500	

ł

Northing	Easting	Reading	Comments
100	25	10000	
100	50	10000	
100	75	9500	
100	100	10000	
100	125	11000	
100	150	10500	
100	175	11000	
100	200	10500	
100	225	10500	
100	250	10500	
100	275	10500	
100	300	10000	
100	325	10000	
100	350	9500	

APPENDIX C

L_____

•

_____/ .

1

APPENDIX C

TEST PIT SAMPLING AND DRUM

EXCAVATION SUMMARY

Page 1.

Site No.	Coordinates	Sampled	Depth (ft. BGS)	Description
DP-1	155S & 200W	Yes	0 - 5.4	Black fine sand-size carbon material, carbon forms (1.5+ ft.) and vegetation; some Acheson* sidewall block fragments (3+ ft.), wood, fire brick and red-brown sandy clay; trace transite, oily sheen on water surface. (FILL) (Dry to Wet)
				W/L = 5.0 ft.
			5.4 - 6.4	Red-brown silty clay。 (NATIVE) (Wet)
····		···· · · ·		e de la companya de l
DP-2	275S & 445W	Yes	0 - 6.0	Black fine sand-size carbon material, carbon forms (1.5+ ft.), vegetation, Acheson sidewall block fragments (1+ ft.), brick and coarse angular gravel; trace firebrick, tar-like material, blue-gray sheen on water surface. (FILL) (Dry to Wet)
			*	W/L = 5.5 ft.
	•	•	6.0 - 6.6	Gray-brown silty clay。 (NATIVE) (Wet)
DP-3	6015 & 380W	Yes	0 - 6.0	Black fine sand-size carbon material, Acheson sidewall block fragments (1+ ft.); trace vegetation, firebrick, wood, carbon forms, glass (amber glass bottle), gray sandy clay, oily sheen on water surface, moderate chemical odor (mothball) dissipating with depth. (FILL) (Dry to Wet)
				W/L = 6.0 ft.
			6.0 - 7.0	Brown silty clay. (NATIVE) (Wet)
DP-4	602S & 455W	No	0 - 5.7	Black fine sand-size carbon material, Acheson sidewall block fragments (4.5 ft.), vegetation, carbon forms (1.5+ ft.); trace firebrick; brown sandy clay layer with slight chemical odor (2+ ft.). (FILL) (Dry to Wet)
				W/L = 5.0 ft.
			5.7 - 6.3	Gray-brown silty clay, some sand. (NATIVE) (Wet)

*large chunks of material resembling reinforced concrete.

J

. Page 2.

Site No.	Coordinates	Sampled	Depth	Description
			(ft. BGS)	
DP-4a	600S & 425W	No	0 - 4.9	Black fine sand-size carbon material; trace Acheson sidewall block fragments, coarse angular gravel, carbon forms, firebrick, brick, wood, vegetation, fragments of 5-galion bucket with material resembling coal tar pitch (3.8 ft.), brown sandy clay layer with slight chemical odor (1.3-2.0 ft.), metal pipe. (FILL) (Dry to Moist)
			4.9 - 6.6	Gray-brown silty clay, some sand. (NATIVE) (Wet)
	• • • •	•		ز
DP-5	459S & 650W	No	0 - 4.2	Brown to black fine sand-size carbon material; some coarse angular gravel; trace vegetation, Acheson sidewall block fragments, carbon forms (1.5+ ft.), metal pipe (0.5 ft.), firebrick, brick, wood, transite, metal fencepost and gray-brown sandy clay. (FILL) (Dry to Wet)
				W/L = 5.0 ft.
			4.2 - 5.3	Brown silty clay. (NATIVE) (Wet)
< • •		•		
DP-6	709S & 246W	Yes	0 - 5.0	Black fine sand-size carbon material, carbon forms (1.5+ ft.) and metal banding; some gray-brown sandy clay; trace vegetation, wood, firebrick, glove, boot, oily sheen on water surface. (FILL) (Dry to Wet)
	. 4.			W/L = 2.8 ft.
. • .	. •		5.0 - 6.3	Red-brown silty clay. (NATIVE) (Wet)
DP-7	650S & 28E	Yes	0 - 2.0	Black fine sand-size carbon material; trace Acheson sidewall block fragments (0.5 ft.), carbon forms,
	•.	•	•	vegetation, wood, firebrick, wire mesh, corrugated fiberglass and fiber drum fragments containing material resembling coal tar pitch。(FILL)(Dry to Wet)
				W/L = 2.7 ft.
			2.0 - 4.0	Gray-brown silty clay. (NATIVE) (Wet)

Page 3.

Site No.	Coordinates	Sampled	Depth	Description
<u> </u>			(ft. BGS)	
DP-8	435S & 152W	Yes	0 - 6.5	Black fine sand-size carbon material and wood; some Acheson sidewall block fragments; trace carbon forms (1.5 <u>+</u> ft.), vegetation, metal banding, truck tire, metal pipe, firebrick, fiberglass, plastic bag, oily sheen on water surface. (FILL) (Dry to Wet)
			`	W/L = 6.4 ft.
				Gray-brown silty clay. (NATIVE) (Wet)
· ·· · · · · · · · · ·				
DP-9	544S & 318W	No	0 - 5.7	Black fine sand-size carbon material; some Acheson sidewall block fragments (0.5 ft.) and carbon forms (1.5+ ft.); trace vegetation, firebrick, wood, red-brown sandy silt, blue-gray oily sheen. (FILL) (Dry to Wet) W/L = 3.6 ft.
	•		5.7	Gray-brown silty clay. (NATIVE) (Wet)
DP-10	332S & 500W	No	0 - 4.2	Black fine sand-size carbon material; some coarse angular gravel and carbon forms; trace vegetation, Acheson sidewall block fragments (1.0 ft.), large metal ring and nut, firebrick, brick, cloth, oily sheen on water surface. (FILL) (Dry to Wet)
		•		W/L = 3.7 ft.
			4.2 - 5.8	Gray-brown silty clay. (NATIVE) (Wet)
DP-11	300S & 590W	Yes	0 - 5.0	Black fine sand-size carbon material; some carbon forms and Acheson sidewall block fragments (1.0 ft.); trace
		•• •		coarse angular gravel, vegetation, wood, firebrick, brick, oily sheen on water surface。(FILL)(Dry to Wet)
		' e	-	W/L = 4.0 ft.
			5.0 - 6.0	Gray-brown silty clay. (NATIVE) (Wet)

Page 4.

Site No.	Coordinates	Sampled	Depth	Description
			(ft. BGS)	
DP-12	100S & 450W	Yes	0 - 4.7	Black fine sand-size carbon material and Acheson sidewall block fragments (1.0 ft. and 3+ ft.); trace carbon forms (1.5+ ft.), vegetation, wood, firebrick, oily sheen on water surface. (FILL) (Dry to Wet)
				W/L = 4.0 ft.
			4.7 - 6.0	Brown-gray silty clay. (NATIVE) (Wet)
DP-13	50N & 175E		0 - 6.2	Black fine sand-size carbon material; some red-brown sandy clay (0.5-1.7 ft.); trace vegetation, Acheson sidewall block fragments, firebrick, brick, cinder block, wood, carbon forms, gray ash, wire mesh, metal banding, metal pipe, plastic bag, oily sheen on water surface. (FILL) (Dry to Wet)
		· · · ·		W/L = 4.4 ft.
				Excavation filled with water, could not see native clay.
. ,				· · · · ·
DP-14	250S & 601W	No	0 - 5.5	Black and gray fine sand-size carbon material; some coarse angular gravel and carbon forms; trace Acheson sidewall block fragments (1.0 ft.), firebrick, brick, vegetation and wood. (FILL) (Dry to Wet)
				W/L = 1.6 ft.
			5.5 - 6.8	Gray silty clay. (NATIVE) (Wet)
DP-15	286S & 550W	No	0 - 4.7	Black fine sand-size carbon material; trace Acheson sidewall block fragments (0.5 ft.), vegetation, carbon forms, firebrick, brick, wood, carbon electrode butt, and rubber. (FILL) (Dry to Wet)
				W/L = 4.0 ft.
	•		4.7 - 5.0	Gray silty clay. (NATIVE) (Wet)
	• .			

Page 5.

<u>Site No.</u>	Coordinates	Sampled	Depth (ft. BGS)	Descr lpt ion
DP-16	300S & 525W	No	0 - 4.0	Black fine sand-size carbon material; some carbon forms and Acheson sidewall blocks; trace coarse angular gravel, vegetation, brick and wood. (FILL) (Dry to Wet)
		·		W/L = 2.0 ft.
			4.0 - 4.2	Gray silty clay. (NATIVE) (Wet)
DP-17	265S & 535W	No	0 - 4.2	Black fine sand-size carbon material, carbon forms and Acheson sidewall block fragments (0.5 ft.); trace coarse angular gravel, vegetation, firebrick and wood. (FILL) (Dry to Wet)
		•	• .	W/L = 2.5 ft.
			4.2 - 4.6	Gray silty clay. (NATIVE) (Wet)
DP-18	400S & 513W	No	0 - 4.5	Black fine sand-size carbon material; some carbon forms, Acheson sidewall block fragments (1.0 ft.) and wood; trace coarse angular gravel, firebrick, sintering tray, oily sheen on water surface. (FILL) (Dry to Wet)
				W/L = 4.5 ft.
			4.5 - 5.8	Gray silty clay. (NATIVE) (Wet)
Ď₽-19	3865 & 408W	No	0 - 4.3	Black fine sand-size carbon material; trace carbon forms, Acheson sidewall block fragments, coarse angular gravel, wood, firebrick, brick, glass bottle. (FILL) (Dry to Wet)
			· .	W/L = 3.7 ft.
			4.3 - 5.5	Gray silty clay. (NATIVE) (Wet)

Page 6.

	•		.	
Site No.	Coordinates	Sampled	Depth (ft. BGS)	Description
DP-20	3115 & 397W	No	0 - 4.8	Black fine sand-size carbon material; some Acheson sidewall block fragments (0.3 ft.); trace vegetation, coarse angular gravel, firebrick, wood and rubber.
				(FILL) (Dry to Wet)
				W/L = 3.3 ft.
			4.8 - 6.0	Gray silty clay. (NATIVE) (Wet)
DP-21	4255 & 625W	· · ·Yes · ·	0 - 4.5	Black fine sand-size carbon material, coarse angular gravel, firebrick and brick; some carbon forms, Acheson sidewall blocks and fragments, impregnating pitch (1.5+ ft.) and roofing material; trace wood, glass bottle, iron hooks, light bulbs, metal pipe, oily sheen on water surface. (FILL)
			•	Note: Three 55-gallon drum remains, with contents, were found at 4.5 ft. Drum No. 1 - metal drum with black solid material resembling coal tar pitch, cardboard, cloth and light bulb stem. Drum No. 2 - metal drum with black solid material resembling coal tar pitch, cardboard, three metal 1-gallon buckets, wood and newspaper. Drum No. 3 - metal drum with black solid material resembling coal tar pitch, cardboard, wood, rope and green grease. Drums with contents were placed in salvage drums and buried in the excavated pit. Samples of the black material were collected and submitted for analysis.
		· · · ·		W/L = 3.0 ft.
			4.5	Gray silty clay. (NATIVE) (Wet)
DP-22 -	594S & 394W	No	0 - 5.3	Black fine sand-size carbon material and Acheson sidewall block (1.0 ft.); some carbon forms; trace vegetation, coarse angular gravel, tar-like material, wood and firebrick; brown sandy clay layer with chemical (mothball) odor (1.5+ ft.). (FILL) (Dry to Wet)
		•		W/L = 4.0 ft.
			5.3 - 5.7	Brown silty clay. (NATIVE) (Wet)
•				

Page 7.

. si	te No.	Coordinates	Sampled	Depth	Description
				(ft. BGS)	••••••••••••••••••••••••••••••••••••••
OW-	-1	599S & 302W	No	0 - 4.6	Black fine sand-size carbon material; trace coarse angular gravel, carbon forms, Acheson sidewall block fragments, wood, rubber hose and fuel oil. (FILL) (Dry to Wet)
					Static W/L = 3.0 ft.
				4.6 - 5.9	Gray silty clay. (NATIVE) (Wet)
		· · · <i>·</i> · · -	. <i></i>	· · · · · · · · · · · · · · · · · · ·	Note: Monitoring well installed. Screen bottom at 4.6 ft.
OW-	-2	O & 450W	No	0 - 4.9	Black fine sand-size carbon material; trace carbon forms (1.5+ ft.), Acheson sidewall block fragments, vegetation, firebrick, brick, metal pipe, ceramics, shoe, glass, gloves and oily sheen on water surface. (FILL)
					Static W/L = 2.6 ft.
				4.9 - 6.5	Brown silty clay. (NATIVE) (WET)
					Note: Monitoring well installed. Screen bottom at 6.0 ft.

APPENDIX D

. . •

.

The second and a second and a

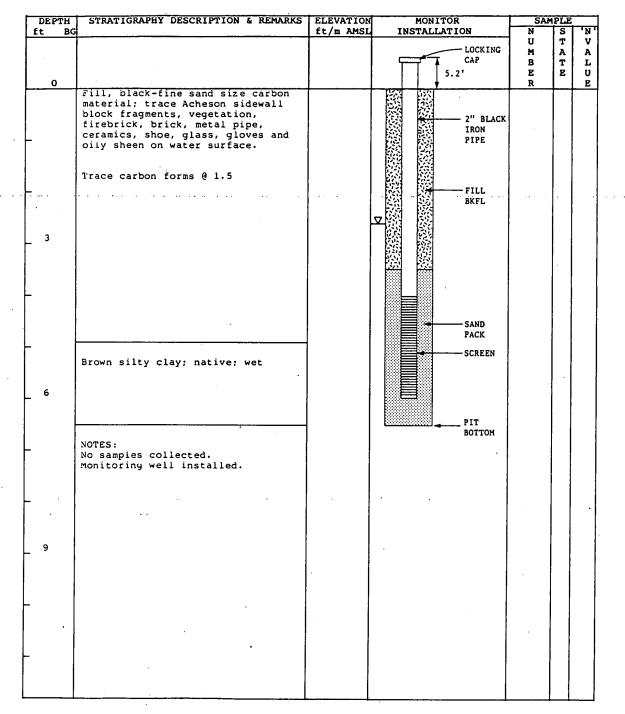
APPENDIX D

STRATIGRAPHIC AND INSTRUMENTATION LOGS

STRATIGRAPHIC AND INSTRUMENTATION LOG

, (O V E R B U R D E N)

PROJECT NAME: UNION CARBIDE CORPORATION - RUPUBLIC HOLE DESIGNATION: OW-1 PROJECT NO.: 2293 DATE COMPLETED: MARCH 17, 1988 CLIENT: UNION CARBIDE CORPORATION DRILLING METHOD: BACKHOE LOCATION: 5995 + 302W CRA SUPERVISOR: N.W. THOMPSON


DEPTH		ELEVATION	MONITOR	SAM		
ft B	G	ft/m AMSL	INSTALLATION	N	S	'N' V
			LOCKING	U M	T A	A
1	1		CAP	B	Ť	Ĺ
1		ļ	4.0'	Ē	Ê	U
0		l		R		E
	Fill, black-fine sand size carbon					
ľ	material; trace coarse angular		2" BLACK			ĺ
	gravel, carbon forms, Acheson		IRON			· ·
	sidewall block fragments, wood, rubber hose and fuel oil; dry to		PIPE			
<u>-</u>	wet.	· .	FILL FILL		1	
1 •	#CC.		BKFL BKFL			
· ·						
						i
· · ·	· · · · · · · · · · · · · · · · · · ·			· · · ·		• •
						ł
- 3						
۲ ^۲						
			SCREEN			
-						
1						
			SAND			
			PACK			
1	Gray silty clay; native; wet					
1						Į
						1
					.	.
6						
⊢°						
	NOTES:				1	
	No samples collected.					
	Monitoring well installed.					
<u> </u>						(
					1	1
		i .				-
Γ						
1						
1						
9						
⊦ "						
				1		1
l						
· ·						
L						
	ļ					
		1				
				1		
1					1	

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE GRAIN SIZE ANALYSIS 💆 WATER FOUND STATIC WATER LEVEL 3.0 FT.

STRATIGRAPHIC AND INSTRUMENTATION LOG

(OVERBURDEN)

PROJECT NAME:UNION CARBIDE CORPORATION - RUPUBLICHOLE DESIGNATION:OW-2PROJECT NO.:2293DATE COMPLETED:MARCH 16, 1988CLIENT:UNION CARBIDE CORPORATIONDRILLING METHOD:BACKHOELOCATION:0 + 450 WCRA SUPERVISOR:N.W. THOMPSON

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE GRAIN SIZE ANALYSIS \square water found static water level 2.5 ft.

1. N

. .

APPENDIX E

ANALYTICAL RESULTS

WATERMAIN SAMPLING PROGRAM

N

MEMO

TO: File/Jim Kay

FROM: Bruce Clegg/cd

DATE: March 28, 1988

REFERENCE NO. 2293

RE:

ANALYTICAL Q.C. REVIEW AES DATA UNION CARBIDE SOIL SAMPLING PROGRAM

The following comments are based on review of analytical data generated from the analyses of nine soil samples collected between February 24 and February 26, 1988 from the above-captioned Site.

Details are as follows:

Holding Times

On the basis of maximum allowable holding times established for analytes covered by USEPA and Standard Methods, all samples analyzed for nitrite exceeded the established 48 hour holding time. As reported by Advanced Environmental Services (AES), however, samples were analyzed within 48 hours of leaching with deionized water. The presence of oxidizing or reducing agents in the sample matrix could effect conversion of nitrites to nitrate or ammonia, respectively. However, on the basis of the available data, the overall effects on nitrite concentrations cannot be adequately determined. From this reported nitrite data should be used for qualitative purposes only. All other analytes were determined within an acceptable time period. Tables 1-6 present relevant dates and time elapsed to analyses.

Blank Analyses

No detectable analytes were found in method blanks run for VOCs, BNAs, thiophene or furfural. Method blank data for the remaining analytes were not reported.

Matrix, Surrogate and Q.C. Check Sample Recoveries

Matrix, surrogate and Q.C. check sample recoveries were acceptable for all analytes with the exception of 2,4-dimethylphenol (recovery = 49%) and phenol (recovery = 153%) in sample TP-1. Although recovery of 2,4-dimethylphenol is typical of acid extractable compounds, in general, the cause for high recovery of phenol from sources other than contamination is not readily apparent.

continued....

Analytical Precision

i) Laboratory Duplicates

Analytical precision was acceptable for all analyses. The poorest precision (as determined by high relative percent difference) did not exceed 25%. For both cases in which poor precision was observed analytical concentrations were low (<0.06 mg/L).

ii) Field Duplicates

Analyses of blind field duplicate samples (TP-4/TP-9) produced data that were generally comparable with the exception of relatively small, acceptable deviations in nitrite concentrations and significant deviations for benzene. Reported benzene concentrations for TP-4 and TP-9 were 53,000 ug/kg and 1,300 ug/kg, respectively: a variation in duplicate concentrations by a factor of 40. As other reported analyte concentrations did not vary significantly, it is apparent the samples were likely homogeneous with respect to these compounds and differences in benzene concentrations may have been due to poor analytical precision. Detailed evaluation of raw data and sample appearance by AES subsequent to our notification (March 29, 1988) indicated no apparent errors in raw data but visual differences between the duplicate samples.

Discussion

On the basis of the reported data and Q.C. information, these data, with the exceptions noted above, are valid and acceptable for assessment purposes.

UNION CARBIDE SOIL SAMPLES VOC - HOLDING TIMES

SAMPLE I.D.	COLLECTION DATE	ANALYSIS DATE	ELAPSED TIME (DAYS)
TP-1	02/24/88	03/08/88	13
TP-2	02/24/88	03/09/88	14
TP-3	02/24/88	03/08/88	13
TP-4	02/25/88	03/08/88	12
TP-5	02/25/88	03/09/88	13
TP-6	02/26/88	03/08/88	11
TP-7	02/26/88	03/08/88	11 %
TP-8	02/25/88	03/09/88	13
TP-9	02/25/88	03/09/88	13

• •••‡.....•*

· · · · · · · · ·

.

UNION CARBIDE SOIL SAMPLES B/N/A - HOLDING TIMES

SAMPLE I.D.	COLLECTION DATE	EXTRACTION DATE	ANALYSES RATE	ELAPSED TIME (DAYS) (EXTRACTION/ ANALYSES)
TP-1	02/24/88	03/04/88	03/16/88	9/12
TP-2	02/24/88	03/04/88	03/16/88	9/12
TP-3	02/24/88	03/04/88	03/16/88	9/12
TP-4	02/25/88	03/04/88	03/16/88	8/12
TP-5	02/25/88	03/04/88	03/16/88	8/12
TP-6	02/26/88	03/04/88	03/16/88	7/12
TP-7	02/26/88	03/04/88	03/16/88	7/12
TP-8	02/25/88	03/04/88	03/16/88	8/12
TP-9	02/25/88	03/04/88	03/16/88	8/12

UNION CARBIDE SOIL SAMPLES GENERAL CHEMISTRY - TKN HOLDING TIMES

SAMPLE I.D.	COLLECTION DATE	ANALYSES DATE	ELAPSED TIME (DAYS)
TP-1	02/24/88	02/29/88	5
TP-2	02/24/88	02/29/88	5
TP-3	02/24/88	02/29/88	5
TP-4	02/25/88	02/29/88	4
TP-5	02/25/88	02/29/88	4
TP-6	02/26/88	02/29/88	3
TP-7	02/26/88	02/29/88	3
TP-8	02/25/88	02/29/88	4
TP-9	02/25/88	02/29/88	4
			•

UNION CARBIDE SOIL SAMPLES GENERAL CHEMISTRY - NITRITE HOLDING TIMES

SAMPLE I.D.	COLLECTION DATE	ANALYSES DATE	ELAPSED TIME (DAYS)
TP-1	02/24/88	03/10/88	15
TP-2	02/24/88	03/10/88	15
TP-3	02/24/88	03/10/88	15
TP-4	02/25/88	03/10/88	14
TP-5	02/25/88	03/10/88	14
TP-6	02/26/88	03/10/88	13
TP-7	02/26/88	03/10/88	13
TP-8	02/25/88	03/10/88	14
TP-9	02/25/88	03/10/88	14

UNION CARBIDE SOIL SAMPLES GENERAL CHEMISTRY - PHENOLS HOLDING TIMES

SAMPLE _I.D.	COLLECTION DATE	ANALYSES DATE	ELAPSED TIME (DAYS)
TP-1	02/24/88	03/09/88	14
TP-2	02/24/88	03/09/88	14
TP-3	02/24/88	03/09/88	14
TP-4	02/25/88	03/09/88	. <u>1</u> 3
TP-5	02/25/88	03/09/88	13
TP-6	02/26/88	03/09/88	12
TP-7	02/26/88	03/09/88	12
TP-8	02/25/88	03/09/88	13
TP-9	02/25/88	03/09/88	13

UNION CARBIDE SOIL SAMPLES GENERAL CHEMISTRY - AMMONIA-N HOLDING TIMES

SAMPLE I.D.	COLLECTION DATE	ANALYSES DATE	ELAPSED TIME (DAYS)
TP-1	02/24/88	03/03/88	8
TP-2	02/24/88	03/03/88	8
TP-3	02/24/88	03/03/88	.8
TP-4	02/25/88	03/03/88	7
TP-5	02/25/88	03/03/88	7
TP-6	02/26/88	03/03/88	6
TP-7	02/26/88	03/03/88	6
TP-8	02/25/88	03/03/88	7
TP-9	02/25/88	03/03/88	7

LABORATORY REPORT

RESULTS

AES Lab Numbe Customer I.D.	17642 WM-1 GRAB	17643 WM-3 GRAB	17644 WM-4 Grað	METHOD BLANK			
Date of Sampl		1/26/88	1/26/88	:			
Analytical Parameter	, ; ;) ======= Units	Number	Guantifiabl Limits
Ammonia (As N)	 BQL#	BQL	BOL	BQL	mg/1	350.1	0.01
Total Kjeldahl Nitrogen	0.33	0.14	0.19	BOL	mg/1	351.2	0.1
Nitrite (As N)	BQL	BOL	BQL	BOL	mg/l	353.3	0.01
Total Recoverable Phenols	BQL	BQL	BGL	BOL	mg/l	420.2	0.001
Sulfate	15	16	15	BQL	mg/1	375.2	2.0
Total Potassium (K)	1.36	1.83	1.26	BOL	mg/1	7610	
Total Iron (Fe)	BOL	BOL	BQL.	BCAL	mg/1	7380	0.30
Total Zinc (Zn)	BQL	BQL.	BOL	BQL	mg/l	7950	0.05
Soluble Iron (Fe)	BOL	BQL	BCK.	BQL	mg/l	7380	0.30
Soluble Zinc (Zn)	BQL	BQL	BOL	BOL	mg/1	7950	0.05
			,	•			

Margawet L. Skowron Manager Wet Chemistry Department

Janette Bingert Manager Atomic Spectroscopy Department

	•	:	L	ABORATORY RESUL				· ·
AES Lab Number Customer I.D.	> >	17642 WM-1 GRAB	17643 WM-3 Grað	17644 WM-4 GRAB	METHOD BLANK	·		
Date of Sample		1/26/89	1/26/88	1/26/88				~
고려도로 모로 도망길 책 농황 바 우 방 방 문 문 방 문 문 방 방 문 문 방 방 문 문 방 방 방 문 문 방 방 방 문 문 방 방 방 문 문 방 방 방 문 문 방 방 방 방 문 문 방	===;				·	*****	ک ایک اینک المتحدیث آمند بنام دهند های دور این	
Analytical	:						Method	Quantifiable
Parameter	į					Units	Number	Limits
ここの其後の「「「「」」」。			2001			•		
Chloromethane		BQL BQL	BQL -	BCL	BQL	ug/1	8240	10
Vinyl Chloride Chloroethane		BGL	BGL ·	BQL BQL	BGL	ug/l ug/l	e1	10 10
Bromomethane		BOL	BQL	BOL	BOL	ug/l	••	10
2-Chloroethyl Vinyl Ether		BOL.	BOL	BQL	BQL	ug/l		10
Ethylbenzene		BOL	BGL	BQL	BOL	ug/l	et	5
Methylene Chloride		BOL	BGL	BOL	BOL	ug/l	•	· 5
Chlorobenzene		80L	BOL	BOL	BOL	ug/l	ea .	5
1,1-Dichloroethylene		BOL	BOL	BQL	BQL	ug/l	•	5
1,1-Dichloroethane		BOL	BQL	BQL	BQL	ug/l		5
trans-1,2-Dichloroethylene		BGL	BGL.	BQL	BQL	ug/l	t:	- 5
Chloroform		14	17	17	BOL	ug/l	41	. 5
1,2-Dichloroethane		BCL.	BQL	BOL	BQL	ug/1	81	5
1,1,1-Trichloroethane		BOL	BOL	BQL	BOL	ug/l	41	· 5
Carbon Tetrachloride		BQL_	BOL	BQL	BQL.	ug/1	8 1	5
Bromodichloromethane		B .	10.	10	BQL	ug/1	e)	5
1,2-Dichloropropane		BQL.	BQL	BOL	BQL	ug/l	41	5
trans-1,3-Dichloropropane		BOL	BOL	BOL	BOL	ug/l	01	5
Trichloroethylene		BOL	BOL	BQL	BQL	ug/l	41	5
Benzene		BOL	BQL	BQL.	BQL	ug/l	11	5
cis-1,3-Dichloropropene		BOL	BQL	BOL	BOL	ug/l	13	5
1,1,2-Trichloroethane		BGL	BOL	BOL	BOL	ug/1	41	5
Dibromochloromethane		BQL	BOL.	BOL	. BCA.	ug/l	61	5
Bromoform		BOL	BGL	BOL	BOL	'ug∕l	68	5

• •

Susan C. Scroechi Manager

· · ·		÷	L	LÁBORATORY RESUL		ORT			2
AES Lab Number Customer I.D.	> •	17642 WM-1 GRAĐ	17643 WM-3 GRAB	17644 WM-4 GRAB		THOD ANK			
Date of Sample	>	1/26/80	1/26/88	1/26/88					
Analytical Parameter	=== . · 					 	lenerere l l Units	Method Nunber	Guantifiable Límits
1,1,2,2-Tetrachloroethylene	,	BQL	BCIL	BOL		BOL	ug/l	8240	
1,1,2,2-Tetrachloroethane		BQL	BOL	BQL		BQL.	ug/l	•	5
Toluene		BQL	BCL.	BQL	ł	BOL	ug/l	H .	. 5
Acetone		BOL	BQL.	BQL	:	BGL	ug/l	· · · ·	50
Carbon Disulfide		BQL.	BOL.	BQL		BQL	' ug/1		5
2-Butanone		BOL	BQL .	BOL		BCI.	ug/l	-	50
Vinyl Acetate		BQL.	BOL	BQL.		BCIL	ug/1	•	50
2-Hexanone		BOL	BQL	BOL		BOL	ug/l	₩ ·	. 50
4-Methy1-2-Pentanone		BOL	, BQL	BOL		BQL	ug/l	•	50
Styrene		BQL	BQL.	BOL		BGL	ug/l	•	5
Xylenes (Total)		BOL	BQL.	BOL		BQL	ug/l	10	5
Trichlorofluoromethane		BGL.	BOL	BQL	:	BOL			5
	:				•		-		•

. . . .

Susan C. Scrocchi Manager

t status and status and

	•	Ĺ	ABORATORY RESUL				
AES Lab Number	> 17642	17643	17644				
Customer I.D.	> WM-1	WM3	WM-4	METHOD			
	GRAB	GRAB	GRAB	BLANK			
Date of Sample	> 1/26/88	1/26/88	1/26/88			•	
*======================================			3				
Analytical .	1	-			l	Method	Quantifiable
Parameter				1	Units	Number	Limits
돍챧츴걪륬,异삨¢복벌,붉훕츿녿봫4,복Շ꽈,굿겋,강별뉟ć박 박관2	****				******		
2-Methylnaphthalene	BGL.	BOL	BOF	BOL	ug/l	8270	10
Bis(2-Chloroethyl)Ether	BCIL	BCH	BQL.	BOL	ug/1	*1	10
1,3-Dichlorobenzene	BGL	BCIL	BQL	· BGL	ug/l	•	10
1,4-Dichlorobenzene	80L.	BQL	BOL	BOL	ug/l	=1	10
1,2-Dichlorobenzene	BGL.	BOL	BOL	BOL	ug/1	•	10
Bis(2-Chloroisopropyl)Ether	BQL.	BOL	BOL	BOL	· ug/1	•	10
Hexachloroethane	BQL.	BQL	BOL	BOL	ug/l		10
N-Nitrosodi-N-Propylamine	BQL	BQL	BOL.	BOL	ug/l		10
Nitrobenzene	BOL	BQL.	BOL	BOL	ug/l	H .	10
Isophorone	BCL	BOL	BOL	BQL	ug/l	18	10
Bis(2-Chloroethoxy)Methane	DCH_	BGL	BQL	BOL	ug/1		10
1,2,4-Trichlorobenzene	BQL	BQL.	BQL	BOL	ug/l		10
Naphthalene	BGL	BQL.	BOL	i DOL	ug/l	•	10
Hexachlorobutadiene	8 0 L	BOL	BQL	BOL	ug/1	•	10
Hexachlorocyclopentadiene	BQL	BQL.	BQL	BCL	ug/1		10
2-Chloronaphthalene	BQL	BQL	BOL	BQL	ug/1		10
Dimethylphthalate	BOL	BQL	BOL.	BGL	ug/l		10
Acenaphthylene	BOL	BCL	BOL	BOL	ug/l	19	10
2,6-Dinitrotoluene	BCIL	BOL	BOL	BQL	ug/l	10	10
Acenaphthene	BDL	BOL	BOL	BOL	ug/l	76	10
2,4-Dinitrotoluene	BQL	BQL	BQL	BOL	ug/l	11 ·	10
Diethylphthalate	BGL	BQL	BQL	BQL	ug/l	-	10

\$

.

Busan C. Scrocchi Manager

		L	ABORATORY RESUL				
AES Lab Number >	17642	17643	17644			·	
Customer I.D. >	WM-1 GRAB	WM-3 GRAB	NM-4 GRAB	METHOD BLANK			
Date of Sample >	1/26/88	1/26/88	1/26/88				
\$\$\$\$\$\$@203#26232222;3286222224652226		•		:		1 21 22 34 40 40 40 AL (AL (AL (AL (AL (AL (AL (AL (AL (AL	- 二非常 二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十
Analytical :				9		Plethod	Quantifiable
Parameter :				: (Units	Number	Limits
				: 1			
Fluorene	BQL	BQL	BOL	BQL	∘ug/1	8240	10
4-Chlorophenylphenylether	BOL.	BQL.	BCL	j BQL	ug∕l	*	10
Diphenylamine(N-Nitroso)	BOL.	BQL	BQL	i BCL	ug/l	10	10
Benzylalcohol	BOL	BGL	BQL	BOL	ug/l	••	10
4-Chloroaniline	BCL	BQL	BOL.	BQL	ug/l		10
4-Bromophenylphenylether	BCL	BOL.	90L	BQL	ug/l		10
Hexachlorobenzene	BOL	BOL	BOL.	BGL	ug/l	10 .	10
Phenanthrene	BOL	BCL.	BQL	, BCL	ug/l	12	10
Anthracene	BQL.	BOL	BOL	BCL	ug/l	10	10
Di-N-Butylphthalate	BQL.	BGL	BQL.	BQL	ug/l	11	10
Fluoranthene	BQL	BOL	90L	BOL.	ug/l	- 11	10
2-Nitroaniline	BOL	BOL.	BOL	BQL	ug/l	•	10
Pyrene	BOL	BQL	BQL .	BQL	ug/l		10
Butylbenzylphthalate	BQL	BCL.	BOL	BQL	ug/l	•	10
Benzo(a)Anthracene	BGL_	BCL	BOL	BQL	ug/1	, m	. 10
3,3'-Dichlorobenzidine	BQL	BOL	BQL.	BGL	ug/l		20
Chrysene	BOL	BQL	BQL	BQL	ug/l	**	10
Bis(2-Ethylhexyl)Phthalate	BQL.	BQL	BOL.	BQL	ug/l	••	10
Di-N_Octylphthalate	BQL	BOL	BGL	BQL	- ug/l	()	10
Benzo(b)Fluoranthene	BCL	BQL	BOL	BQL	ug/l	¢ t	10
Benzo(k)Fluoranthene	BQL	BQL,	BQL	BOL	ug/l	42	10
Benzo(a)Pyrene	BOL	BCL	BQL	· 1904_	ug/l	61	10
Indeno(1,2,3-C,D)Pyrene	BQL	BQL	BQL	BQL	ug/l	£ 4	10
Dibenzo(a,h)Anthracene	BOL	BCIL.	BOL	· BQL	ug/l	. E S	10
Benzo(g,h,i)Perylene	BQL	BQL	BCH_	BDL	ug/l	•	10

.

Susan C. Scrocchi Manager

.

	,			. L	ABORATORY	REPORT		•	
					RESUL		•		
	AES Lab Numb Customer I.D		17642 MM-1 GRAD	17643 17643 17643 17643 17643	17644 WM-4 GRAB	METHOD Blank		· . ·	
	Date of Samp		1/26/88	1/26/88	1/26/88	• :			
Analytical	구박는 유명계로 남고 환유로					:			
Parameter		i 1					: Units	Method Number	Quantifiable Limits
Pheno1			. 80			:		ی ور اور کار که که دو کار در این ک	「「「「「「「」」」」
2-Chloropheno	1		BQL BDL	BQL	BOL.	BQL,	ug/l	B270	10
2-Nitrophenol	-		BQL	BOL.	90L	BQL	ug/l	•	10
2,4-Dimethylp	hengl		BQL	BQL	BQL	BGL	ug/l	. 🖬	10
p-Chloro-m-Ch	esol		BQL	BQL BQL	BOL	BOL.	ug/l		10
2,4,6-Trichlo	ropheno1		BOL	BCL	BCIL	BQL	ug/1	. 4	10
2,4-Dinitroph	eno1		BQL	BGL	BQL	BOL	ug∕l	41	10
4-Nitrophenol			BQL	BQL	BCL	BQL	ug/l	••	50
4,6-Dinitro-O-	-Cresal		BOL	BQL	BOL.	BQL.	ug/l	**	50
Pentachlorophe	nol		BOL	BOL	BOL	BQL	ug/l	M .	50
2,4-Dichloropt	neno]		BOL	BQL	BCIL BCIL	BQL	ug/l	41	50
4-Methylphenal	L		BOL	BQL	BOL	BDL	ug/l	•	10
Benzoic Acid			BOL	BQL	BQL	BQL.	ug/l	. 🗭	10
2,4,5-Trichlor	rophenol		BQL	BQL	80L	BQL.	ug/l	n .	30
3-Nitroaniline	2		BQL	BQL	BQL	BOL.	ug/l		10
Dibenzofuran .			BQL.	BOL	BCL	BQL BQL	ug/l		· 10
4-Nitroaniline			BGL	BOL	BOL	BOL	ug/1		10
2-Methylphenol			BGL	BQL	BQL	BGL	ug/1		10
Benzidine			BCL	BQL	BOL	BCL	ug/1 ug/1		10 50

-Susan C. Scrocchi Manager Gas Chromatonraphy Department

	AES Lab Customer	- I.D.	> . > .	17642 WM-1 GRAB	H G	7643 IM-3 IRAB	17644 WM-4 GRAB	Method Blank		· .	
	Date of	Sample Sector	> : ==;	1/26/89	1/26	/88 _ 1	/26/88	:			
Analytical Parameter	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****	; ; === !					÷ ;	t l'Units	Nethod Number	Guantifiable Limits
Furfural Thiophene			•	BQL BQL		BQL BQL	BQL BQL	901 BCA		790 722 5	2.00 2,00
			• •		r	. •	· 				
			:				• .				
		-						:			
				· .		• •					
			•					:		•	
	· · · ·				• . •			:	•		•
						•					
				•		:		•	•	•	
		• •	•	•			•	:			
	•.				· .			· · ·	0	. (

÷.

Manager Gas Chromatography Department

CRA PROJECT #2293 (FOR UNION CARBIDE) PRIORITY POLLUTANT METALS AND CYANIDE

Report Prepared For

CONESTOGA ROVERS & ASSOCIATES, INC.

Hocnial Catherine Mocniak /

Project Manager

Ja Bingert

Quality Control Manager

April 14, 1988 AES Report CRF

COMMITMENT TO HONESTY · QUALITY · SERVICE

						ORY REPO	SERVICES, IN ORT	_		
	•		Type of	Analysi	s: RESUL	TS - WET	T CHEMISTRY	· · · · ·		
			Client:	CRA			A.E.S. Job C	lode CRF	•.	
· .					AES Lab Sample	No ID -	18231 TP-1 GRAB	18232 TP-2 GRAB	18233 TP-3 GRAB	18234 TP-4 GRAN
Analyti Paramet			Method No.		Sample	Date-	2/24/88	2/24/88	2/24/88	2/24/80
	Cyanide	(mg/l)	9010/335.3				BQL*	BQL	BQL	BQL
	•					•	, 1 ,			
							:			
				•			•			
						•	, ; ;			
			:				•			. •
	• •	• •	· · ·	. · ·				• •		
	•						:			
				•	•		•	· ·		
							1 10			
			•	·				<i>mlum Fec.</i> t L. Skowron		

		ADVANCEI	O ENVIRONMENTAL LABORATORY REF		NC.		•
	Type of	Analysis	s: RESULTS - WE	ET CHEMISTRY			
	Client:	CRA		A.E.S. Job	Code CRF		
			AES Lab No Sample ID -	18235 TP-5 GRAB	18236 TP-8 GRAB	18237 TP-9 GRAB	18243 TP-6 GRAB
Analytical Parameter(s)	Method No.		Sample Date-	2/25/88	2/25/88	2/25/88	2/26/88
Fotal Cyanide (mg/l)901	10/335.3	0.01		BQL*	BQL	BQL	BQL
				•			
				:			
· · · · · · · · · · · · · · · · · · ·			•	•			
		,				·	
				• •	-	· ·	
			-	:			
		. '					
		•				· · · ·	
		• ,		· .			
				,		· .	
				:			·
		н н н и	· ·			h c	
		•			L. Skowron	1	
* Below quantifiable lim	its.			Wet Cher	nistry Superv	isor	
			· · · · · ·	· · ·			•
	u.		2				
					•		

			ADVANCE	LABORAT	ORY REPO				
	, , , , , , , , , , , , , , , , , , ,	Type of				CHEMISTRY			
		Client:	CRA			A.E.S. Job	Code CRF		
				AES Lab Sample	No ID -	18244 TP-7 GRAB	18630 DP-1 & DP-12	18631 DP-2 & DP-11	
Analytical Parameter(s)		Method No.	Quant. Limits	Sample	Date-	2/26/88	LAB COMP 3/15-16/88	LAB COMP 3/15-16/88	
Total Cyanide (mg/l) 9()10/335.3	0.01			BQL*	BQL	BQL	
· ·		:				:			
						:			
						:			
						:			
· · · ·	. , .		•			•			
			· · ·	· · ·	• .		· .		
				:	••• • • • •	•			
						SIQ	enour Fort	ns.	
* Below qua	ntifiable lin	mits.	•••	· ·		Margar	et L. Skowro emistry Supe	n	

	Type of	======= Analysi:	s: RESULTS - WE		= =		
	Client:	CRA		A.E.S. Job	Code CRF		
			AES Lab No Sample ID -	18632 DP-3 & DP-8	18633 DP-6 & DP-7	LAB BLANK	
nalytical arameter(s)	Method No.		Sample Date-	LAB COMP 3/15/88	LAB COMP 3/15/88	DLANK	
otal Cyanide (mg/l)	9010/335.3	0.01		BQL*	BQL	BQL	
	· · ·	•				•	
				-	-		
							•
			. • •				
		• *					
				· •	America For	<u>M S.</u>	
* Below quantifiable	e limits.	• .		Margar Wet Ch	et L. Skowron emistry Superv	visor ·	

ADVANCED ENVIRONMENTAL SERVICES; INC. LABORATORY REPORT

Type of Analysis: METALS

Client: CRA

ं

A.E.S. Job Code CRF

(All results are in mg/kg)

			ab No le ID -	18231 TP-1 GRAB	18232 TP-2 GRAB	18233 TP-3 GRAB	18234 TP-4 GRAB
Analytical Parameter(s)	Method No.	Quant. Limits Samp	le Date-	2/24/88	2/24/88	2/24/88	2/24/88
Total Antimony (Sb)	7041	2.0		BQL*	BQL	BQL	BQL
Total Arsenic (As)	7060	0.5		2.3	1.4	. 3.0	2.6
Total Beryllium (Be)	7090	5.0		BQL	BQL	BQL	BQL
Total Cadmium (Cd)	7130	4.0		BQL	BQL	BQL	BQL
Total Chromium (Cr)	7190	50.0		BQL	BQL	BQL	BQL "
Total Copper (Cu)	7210	20.0		21.0	BQL	24.0	23.0
Total Lead (Pb)	7420	100		BQL	BQL	BQL	BQL
Total Mercury (Hg)	7471	0.10		BQL	0.50	BQL	BQL
Total Mercury (Hg)	7471	0.10		BQL	BQL	BQL	BQL
Total Mercury (Hg)	7471	0.10		BQL.	0.50	BQL	BQL
Total Nickel (Ni)	7520	30.0		34.0	44.0	36.0	32.0
Total Selenium (Se)	7740	0.5		BQL	BQL	BQL	BQL
Total Silver (Ag)	7760	10.0		BQL	BQL	BQL	BQL
Total Thallium (Tl)	7840	100		BQL	BQL	BQL	BQL
Total Zinc (Zn)	7950	5.0		27.0	95.0	90.0	39.0

Janette Bingert Atomic Spectroscopy Supervisor

* Below quantifiable limits.

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

Type of Analysis: METALS

Client: CRA

.

A.E.S. Job Code CRF

(All results are in mg/kg)

	Nothod		ES Lab No Sample ID -	18235 TP-5 GRAB	18236 TP-8 GRAB	18237 TP-9 GRAB
Analytical Parameter(s)	Method No.	Quant. Limits S	Sample Date-	2/25/88	2/25/88	2/25/88
Total Antimony (Sb)	7041	2.0		BQL*	BQL	BQL
Total Arsenic (As)	7060	0.5		2.6	2.8	2.3
Total Beryllium (Be)	7090	5.0		BQL	BQL	BQL
Total Cadmium (Cd)	7130	4.0		BQL	BQL	BQL
Total Chromium (Cr)	7190	50.0		BQL	BQL	BQL
Total Copper (Cu)	7210	20.0		21.0	23.0	21.0
Total Lead (Pb)	7420	100		BQL	BQL	BQL
Total Mercury (Hg)	7471	0.10		BQL	BQL	BQL
Total Mercury (Hg)	7471	0.10		BQL	BQL	BQL
Total Mercury (Hg)	7471	0.10		BQL	BQL	BQL
Total Nickel (Ni)	7520	30.0		39.0	42.0	48.0
Total Selenium (Se)	7740	0.5		BQL	BQL	BQL
Total Silver (Ag)	7760	10.0		BQL	BQL	BQL
Total Thallium (T1)	7840	100		BQL	BQL	BQL
Total Zinc (Zn)	7950	5.0		39.0	76.0	50.0

* Below quantifiable limits.

Janette Bingert () Atomic Spectroscopy Supervisor

. .

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

7

Type of Analysis: METALS

Client: CRA

= =

A.E.S. Job Code CRF

(All results are in mg/kg)

Analytical Parameter(s)	Method No.	Quant. Limits			DP-3 &	18633 DP-6 & DP-7 LAB COMP 3/15/88	
Fotal Antimony (Sb)	7041 7060	2.0		BQL* 5.3	BQL 2.8	BQL 4.4	
ſotal Arsenic (As) ſotal Beryllium (Be)	7000	5.0		BQL	BQL	BQL	
Total Cadmium (Cd)	7130	4.0		BQL	BQL	BOL	
Fotal Chromium (Cr)	7190	50.0)	67.0	90.0	302	
Total Copper (Cu)	7210	20.0)	85.0	•	83.0	
Total Lead (Pb)	7420	100)	BQL		BQL	
Total Mercury (Hg)	7471	0.10		BQL	BQL	BQL	
fotal Mercury (Hg)	7471	0.10)	BQL		0.50	
Total Mercury (Hg)	7471	0.10)	BQL	BQL	BQL	
Total Nickel (Ni)	7520	30.0)	35.0 ¹	46.0	56.5	
Total Selenium (Se)	7740	.0.5	5	0.6	0.5	0.7	
Fotal Silver (Ag)	7760	10.0)	BQL	BQL	BQL	
rotal Thallium (T1)	7840	100)	BQL	BQL	BQL	
Total Zinc (Zn)	7950	5.0)	66.0	142	136	

* Below quantifiable limits.

Janette Bingert () Atomic Spectroscopy Supervisor

			ED ENVIRONMEN LABORATORY I		INC.	
	Туре о	f Analys	is: METALS	· · ·		
	Client	: CRA		A.E.S. Job	Code CRF	
		(A1	l results are	in mg/kg)		
			AES Lab No Sample ID -	18243 TP-6 GRAB	18244 TP-7 GRAB	18630 DP-1 & DP-12
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/26/88	2/26/88	LAB COMP 3/15-16/88
Total Antimony (Sb)	7041	2.0	· · · · · · · · · · · · · · · · · · ·	BQL*	BQL	BQL
Total Arsenic (As)	7060	0.5		3.0	3.0	6.7
Total Beryllium (Be)	7090	5.0		BQL	BQL	BQL
Total Cadmium (Cd)	7130	4.0		BQL	BQL	BQL
Total Chromium (Cr)	7190	50.0		BQL	BQL	54.0
Total Copper (Cu)	7210	20.0		24.0	22.0	79.0
Total Lead (Pb)	7420	100		BQL	BQL	BQL
Total Mercury (Hg)	7471	0.10		BQL	BQL	BQL
Total Mercury (Hg)	7471	0.10		BQL	BQL	BQL
Total Mercury (Hg)	7471	0.10		BQL 31.0	BQL 46.0	BQL 34.0
Total Nickel (Ni)	7520	30.0		BQL	BQL	0.6
Total Selenium (Se)	7740 7760	0.5 10.0		BQL	BQL	BQL
Total Silver (Ag) Total Thallium (Tl)	7840	10.0		BQL	BQL	BQL
Total Zinc (Zn)	7950	5.0		56.0	52.0	53.0

ingent

Janette Bingert J Atomic Spectroscopy Supervisor

* Below quantifiable limits.

APPENDIX A

QUALITY CONTROL PRECISION AND ACCURACY DATA

į

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Analysis: Milligrams/Liter or ppm Client: CRA A.E.S. Job Code:CRF

2.17

Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
18243 18633	BQL* BQL	BQL BQL	BQL BQL	None None	None None
			· `: .		
			÷		
			- - -		
			1 A 1		
·					
•			:	•	
	No. 	No. Conc. 18243 BQL*	No. Conc. Conc. 18243 BQL* BQL	No. Conc. Conc. Conc. 18243 BQL* BQL BQL 18633 BQL BQL BQL	No. Conc. Conc. Conc. Range 18243 BQL* BQL BQL None 18633 BQL BQL BQL None

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

. **. .** . .

QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units:mg/l or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Cyanide Cyanide Cyanide Cyanide	18243 18633	**SPK **SPK STD	0.26 0.24 0.11	BQL*** BQL 0.10	0.25 0.25	104 96 110
·	• •	•				
			· · · · · · · · · · · · · · · · · · ·		• •	
<pre>* % Recovery=100 x ((Obs ** Spiked after distill</pre>	erved Conc '	"background	" Original Con	c.)/"Spike" Ad	ded Conc.)	
*** Below quantifiable 1	imits.		10			

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT WET CHEMISTRY DEPARTMENT

AES JOB CODE CRFANALYST ANALYTICAL METHOD SAMPLE CODE DATE OF ANALYSIS TIME OF ANALYSIS 4/8/88 1130 Silonourun 335.3 18230,->37,43,44 4/12/88 18630-739 - Donoiein 335-3 1500 1 11

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

QUALITY CONTROL - PRECISION

Type of Analysis: Duplicate Analysis Units of Analysis:Milligram/Kilogram, or ppm A.E.S. Job Code:CRF Client: CRA

Analytical Parameters	Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Antimony (Sb)	18633	BQL*	BQL	BQL	None	None
Arsenic (As)	18633	4.3	4.4	4.4	0.1	2
Beryllium (Be)	18633	BQL	BQL	BQL	None	None
Cadmium (Cd)	18633	BQL	BQL	BQL	None	None
Chromium (Cr)	18633	300	303	302	3	· 1
Copper (Cu)	18633	83.0	83.0	83.0	None	None
Lead (Pb)	18633	BQL	BQL	BQL	None	None
Nickel (Ni)	18633	59.0	54.0	56.5	5	9
Selenium (Se)	18633	0.70	0.70	0.70	None -	None
Silver (Ag)	18633	BQL	BQL	BQL	None	None
Thallium (Tl)	18633	BQL	BQL	BQL	None	None
Zinc (Zn)	18633	1.36	1.36	1.36	None	None

Relative Percent Difference = Range/Average X 100 * Below quantifiable limits.

ADVANCED ENVIRONMENTAL SERVICES, INC.

LABORATORY REPORT

QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units:mg/l or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*

Antimony (Sb)	18633	SPK	0.326	BQL**	0.300	109
EPA (Sb) std.	581	EPA	0.083	0.086		96
Arsenic (As)	18633	SPK	0.132	0.044	0.100	88
EPA (As) std.	386	EPA	0.032	0.030		107
Beryllium (Be)	18633	SPK	2.00	BQL	2.00	100
EPA (Be) std.	386	EPA	1.00	0.98		102
Cadmium (Cd)	18633	SPK	2.06	BQL	2.00	103
EPA (Cd) std.	1085	EPA	1.06	1.01		105
Chromium (Cr)	18633	SPK	12.38	3.02	10.00	94
EPA (Cr) std.	1085	EPA	4.70	5.06		93
Copper (Cu)	18633	SPK	5.86	0.83	5.00	101
EPA (Cu) std.	386	EPA	1.02	0.99		103
Lead (Pb)	18633	SPK	21.74	BQL	20.00	109
EPA (Pb) std.	1085	EPA	5.42	· 5.Ĩ2		106
Mercury (Hg)	18633	SPK	0.0107	BQL	0.0100	107
Independent (Hg) std.		STD	0.0039	0.0040		98
Nickel (Ni)	18633	SPK	4.92	0.56	5.00	88
EPA (Ni) std.	386	EPA	0.94	0.99		95
Selenium (Se)	18633	SPK	0.100	0.007	0.100	.93
EPA (Se) std.	386	EPA	0.007	0.007		100
Silver (Ag)	18633	SPK	3.70	BQL	4.00	92
EPA (Ag) std.	1085	EPA	2.53	2.50		101
Thallium (Tl)	18633	SPK	20.90	BQL	20.00	104
Independent (T1) std.		STD	10.42	10.00		104
Zinc (Zn)	18633	***SPK	1.60	0.68	1.00	92
EPA (Zn) std.	386		0.46	0.50		92 ·

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

****** Below quantifiable limits.

*** Spike on sample dilution factor of two.

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT ATOMIC SPECTROSCOPY DEPARTMENT

1

AES JOB CODE (

ANALYST ANALYTICAL METHOD SAMPLE CODE DATE OF ANALYSIS TIME OF ANALYSIS 18630-33 18 243-44 ahow 10 N4-7-88 1000 18231-37 18630-33 18233-44 70UM 7-88 コンわ 18231-37 18630-33 7-88 18242 -4N 7740 3 18231-37: 18630-33 18243-44 760 3-31-88 18231-37 2100 unand 18630 - 33 18243-44 3-31-88 520 2000 18231-37 18630-33 7420 18243-44 900 3-31-88 18231-37 18630 - 33 18243-49 7210 3-31-58 <u>700</u> 18231-37 18630-33 18-243-44 7190 3-31-88 1600 18231-37 14

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT ATOMIC SPECTROSCOPY DEPARTMENT

AES JOB CODE

ANALYST

:

Nani

SAMPLE CODE 18630-33 18243-44 7130 18231-37 18630 - 33 18243-44 090 18231-37 18630 - 33 18243-44 1840 18231-37 18630-33 18243-44 7950 18231-37 18630-33 18243-44 18231-37

ANALYTICAL METHOD

TNT

15

3-31-88 57) 2300 3-31-88 31-88 2400 1807 3-31-88 4-12-88 0700

DATE OF ANALYSIS

TIME OF ANALYSIS

APPENDIX B

CHAIN OF CUSTODY RECORDS

TP3 1 Test $P_i + 3$ Sec] 2 VoA Vice I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli I Ipt. Gli	CON	RA Consultin IESTOGA-RO Colby Drive, Wat		nada N2V 1C2								
SAMPLE INP. DATE TIME SAMPLE LOCATON 1111 111 1111	CH			ODY	1 1 1			PROJECT NAME: UCC - Watermain Ter			· Republic st Pits	
M Date / DATE / DATE / DATE / DATE / THEE Soil a VOA vi TP1 $2/24/35$ Test Pit 1 Soil a VOA vi TP2 1 Test Pit 2 Soil a VOA vi TP3 1 Test Pit 3 Soil a VOA vi TP3 1 Test Pit 3 Soil a VOA vi TP3 1 Test Pit 3 Soil a VOA vi TP3 1 Test Pit 3 Soil a VOA vi TP3 1 Test Pit 3 Soil a VOA vi TP3 1 Test Pit 3 Soil a VOA vi TP3 1 Test Pit 3 Soil a VOA vi TP3 1 Test Pit 3 Soil a VOA vi TP3 1 Test Pit 3 Soil a VOA vi TP4 1 Test Pit 3 Soil a VOA vi TP3 1 Test Pit 3 Soil a VOA vi TP4 1 Test Pit 3 Soil a VoA vi TP4 1 Test Pit 3 Soil a VoA vi				um	1304 (3004)				OF TANERS	R	EMARKS	
TP 2 1 Test Pit 2 Soil 2 VOA Ji TP 3 1 Test Pit 2 Soil 2 VOA Ji TP 3 1 Test Pit 3 Soil 2 VOA Ji TP 3 1 Test Pit 3 Soil 2 VOA Ji TP 3 1 Test Pit 3 Soil 2 VOA Ji TP 3 1 Test Pit 3 Soil 2 VOA Ji Total NUMBER OF CONTAINERS 2 VOA Ji 1 Total NUMBER OF CONTAINERS 9 Anticipated BY: Date/Time Matter Discourse 2 2 2 1 Matter Discourse 2 2 1 1 Matter Discourse 2 2 1 1 Matter Discourse 2 2 1 1 Matter Discourse 2 1 1 1 1 Matter Discourse 2 1 1 1 1 1 Matter Discourse 3 1 1 1 1 1 1 1 1 1 1 1 1	SEQ. №	SAMPLE NP.	DATE	TIME	<u> </u>		NIC					
TP 2 1 Test Pit 2 Soil 2 V OA Vi TP 3 1 Test Pit 3 Sail 2 V OA Vic TP 3 1 Test Pit 3 Sail 2 V OA Vic TP 3 1 Test Pit 3 Sail 2 V OA Vic TP 3 1 Test Pit 3 Sail 2 V OA Vic TP 3 1 Ipt gla 1 Ipt gla Total NUMBER OF CONTAINERS 0 1 Ipt gla Total NUMBER OF CONTAINERS 0 1 1 Total NUMBER OF CONTAINERS 0 1 0 RELINGUISHED BY: 1 1 1 1 Total NUMBER OF CONTAINERS 0 1 0 0 RELINGUISHED BY: 1 1 1 1 0 0 RELINGUISHED BY: 1 1 0 1 0 0 0 0 0	x ,	TPI	2/24/84		Test f	2111			12			_
Image: Second			+							10-	J	<u>></u>
TP3 1 Test Pit 3 Sec 2 2 VoA Vice I Ipt. Gli 1 Ipt. Gli 1 Ipt. Gli I Ipt. Gli 1 Ipt. Gli 1 Ipt. Gli I Ipt. Gli 1 Ipt. Gli 1 Ipt. Gli I Ipt. Gli 1 Ipt. Gli 1 Ipt. Gli I Ipt. Gli 1 Ipt. Gli 1 Ipt. Gli I Ipt. Gli 1 Ipt. Gli 1 Ipt. Gli I Ipt. Gli 1 Ipt. Gli 1 Ipt. Gli I Ipt. Gli 1 Ipt. Gli 1 Ipt. Gli I Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli Ipt. Gli ANTICIPATED CHEMICAL HAZARDS: Ipt. Ipt. Gli Ip	•	TPZ	11		Test	Dit 2		Soil	2	VO		
Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State				•••				1.	<u> </u>]	1 p+	glass	<u>;</u>
Image: Series of the series		TP3	- ii -		Test P	;+ 3	3	Sai	3	VOA	Vial	
TOTAL NUMBER OF CONTAINERS Q ANTICIPATED CHEMICAL HAZARDS: Unknown RELINQUISHED BY: DATE/TIME II DUMMER (SSAN) DATE/TIME RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME (SSAN) DATE/TIME RELINQUISHED BY: DATE/TIME (SSAN) CSAN RELINQUISHED BY: DATE/TIME (SSAN) CSAN RELINQUISHED BY: DATE/TIME (SSAN) DATE/TIME (SSAN) CSAN RECEIVED BY: CSAN (SSAN) CSAN RECEIVED BY: CSAN (SSAN) CSAN METHOD OF SHIPMENT: SHIPPED BY: METHOD OF SHIPMENT: SHIPPED BY:	•						_	84		1pt.	. glas	5
TOTAL NUMBER OF CONTAINERS Q ANTICIPATED CHEMICAL HAZARDS: Unknown RELINQUISHED BY: DATE/TIME II DUMMER (SSAN) DATE/TIME RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME (SSAN) DATE/TIME RELINQUISHED BY: DATE/TIME (SSAN) CSAN RELINQUISHED BY: DATE/TIME (SSAN) CSAN RELINQUISHED BY: DATE/TIME (SSAN) DATE/TIME (SSAN) CSAN RECEIVED BY: CSAN (SSAN) CSAN RECEIVED BY: CSAN (SSAN) CSAN METHOD OF SHIPMENT: SHIPPED BY: METHOD OF SHIPMENT: SHIPPED BY:												
TOTAL NUMBER OF CONTAINERS Q ANTICIPATED CHEMICAL HAZARDS: Unknown RELINQUISHED BY: DATE/TIME II COMPARE SOMO DATE/TIME RELINQUISHED BY: DATE/TIME SOMO SOMO RELINQUISHED BY: DATE/TIME STELET REQUIRED DATE/TIME METHOD OF SHIPMENT: SHIPPED BY: RECEIVED FOR LABORATORY BY: DATE/TIME		· · · ·										_
Image: Street Received BY: Image: Street Received BY: Image: Street Received BY: Image: Street Received BY: Image: Street Received BY: Image: Street Received BY: Image: Street Received BY: Image: Street Received BY: Relinquished BY: Image: Street Received BY: Image: Street Received BY: Image: Street Received BY: Relinquished BY: Image: Street Received BY: Image: Street Received BY: Image: Street Received BY: Relinquished BY: Image: Street Received BY: Image: Street Received BY: Image: Street Received BY: Relinquished BY: Image: Street Received BY: Image: Street Received BY: Image: Street Received BY: Method Of Shipment: Shipped BY: Received For Lagoratory BY: Image: Street Received BY:									ļ			
TOTAL NUMBER OF CONTAINERS Q ANTICIPATED CHEMICAL HAZARDS: Unknown RELINQUISHED BY: DATE/TIME II DUMME SORN JATE/TIME RELINQUISHED BY: DATE/TIME SORN SORN RELINQUISHED BY: DATE/TIME STEET REQUIRED SORN METHOD OF SHIPMENT: SHIPPED BY: RECEIVED FOR LABORATORY BY: JATE/TIME METHOD OF SHIPMENT: SHIPPED BY:		•										
ANTICIPATED CHEMICAL HAZARDS: Unknown RELINQUISHED BY: Durning - 2/24/SK 14-30 (SOR) DATE/TIME RECEIVED BY: 14 - 11 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 12 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) CARE AUXILIARE (SOR) ADDITIONAL SIGNATURE (SOR) CARE AUXILIARE (SOR) CARE AUXILIARE (SOR) (· · ·	•		•	. •	••••••••••••••••••••••••••••••••••••••		· · · · ·	••	
ANTICIPATED CHEMICAL HAZARDS: Unknown RELINQUISHED BY: Durning - 2/24/SK 14:30 (SOON) - 2/24/SK 14:30 RECEIVED BY: He durning - 2/24/SK 14:30 (SOON) RECEIVED BY: 10 / 14 / 14 / 14 / 14 / 14 / 14 / 14 /		·							_			
ANTICIPATED CHEMICAL HAZARDS: Unknown RELINQUISHED BY: Durning - 2/24/SK 14:30 (SOON) - 2/24/SK 14:30 RECEIVED BY: He durning - 2/24/SK 14:30 (SOON) RECEIVED BY: 10 / 14 / 14 / 14 / 14 / 14 / 14 / 14 /			· · ·						<u> </u>			
ANTICIPATED CHEMICAL HAZARDS: Unknown RELINQUISHED BY: Durning - 2/24/SK 14-30 (SOR) DATE/TIME RECEIVED BY: 14 - 11 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 12 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) RELINQUISHED BY: 20 - 11 - 0,0 (SOR) CARE AUXILIARE (SOR) CARE AUXILIARE (SOR) ADDITIONAL SIGNATURE (SOR) CARE AUXILIARE (SOR) CARE AUXILIARE (SOR) (· · · · · · · · · · · · · · · · · · ·									<u> </u>	
RELINQUISHED BY: Date/TBME RECEIVED BY: Her II Junch Ju	·				TOTAL NU	imber (OF CO	NTAINERS	9			
Image: Starting of the start of the starting of the starting of the starting of the starting	AN 1	ICIPATED CHEN	AICAL HAZARDS	"Un	know	<u>^'</u>						
RELINQUISHED BY: Image: State of the second sec	REL	INQUISHED BY		<u></u>		-		BY:	then	. Juns	J	
IZI IZI <td></td> <td>···· , 🗓</td> <td></td> <td>Û</td> <td colspan="3">7</td> <td></td> <td colspan="3">(5)000 /</td>		···· , 🗓		Û	7				(5)000 /			
RELINQUISHED BY: DATE/TIME RECEIVED BY: [3] (SIGN) ADDITIONAL SIGNATURE SHEET REQUIRED METHOD OF SHIPMENT: SHIPPED BY: RECEIVED FOR LABORATORY BY: 4-		• • • •	×			N. RECEIVED	(Ser)					
Image: State of the second												
ADDITIONAL SIGNATURE SHEET REQUIRED METHOD OF SHIPMENT: SHIPPED BY: RECEIVED FOR LABORATORY BY: DAT 4 (STOR)								· -		(39)		
METHOD OF SHIPMENT: SHIPPED BY: RECEIVED FOR LABORATORY BY: DAT	ADI She	NTIONAL SIGNA ET REQUIRED						······································				
(sing terl of transf -131			IENT:	SHIPP	ED BY:		REC	EIVED FOR LAB	ORAT	ORY BY:	_DATE/	
							(36	Acril A UP	The	yt_	-1211	3
CONDITION OF SEAL UPON RECEIPT: COOLER OPENED BY: '	cor	NDITION OF SE	AL UPON RECEI	PT:				OLER OPENED		•	DATE/	'n
GENERAL CONDITION OF COOLER:	GEN	ERAL CONDITIO	ON OF COOLER:				(36	w		<u>-</u>	1	
WHITE - CRA OFFICE COPY YELLOW - RECEIVING LABORATORY COPY PINK - CRA LABORATORY COPY COLDEN BOD - SHIPPERS	Y	ELLOW	- RECEIVING L	ABORATO	ORY COPY					•	473	^

.:

÷.,

ABVANGED. ENVIRONMENTAL SERVICES

•

۰.

.

ł

	<i>¥ # 3 # 4</i> (GED. AL SERVICES	INC.	2186 LIBERTY DRIVE NIAGARA PALLS, NY 14304 (716) 283-3120								
CHAI	N OF REC	F CUS ORD	TODY	JOB CODE CRF	PROJECT NA	me, Ec,	C.i.	blie Water	ui	-Test Rits		
SAMPI SIGNA							4		NO. OF CONTAINERS			
MPLE NO.	520. NO.	DATE	TDE	SAMPLE LOCAT	TION	GRAB	COME		-	REMARKS		
150	1	1/2-1/8		TEST FIT	r / .	X		SOIL.	3	210AS, 1-500		
	2	2/24/2		TEST FIT	TZ	X		11	3			
	3	-2/24/8	•	TEST FI	Т3	X		SOIL	3	" "		
						-						
					· · ·							
						-+						
										-2		
		1										
		1										
							 					
		ļ										
	·	ļ	ļ		<u> </u>							
	<u> </u>	<u> </u>	 	<u> </u>					+			
		_		<u> </u>					+			

-

-

9

TOTAL CONTAINERS

~

1 Alexen Sugar	DATE 2/24/99	тіне 3:00 р.т.	RECEIVED BY (Sign) 2 hillstoturili
RELINQUISHED BY (Sign) 2	DATE	TIME	RECEIVED BY (Sign)
RELINQUISHED BY (Sign)	DATE	TIME .	RECEIVED BY (Sign)
RELINQUISHED BY (Sign)	DATE	TIME	RECEIVED BY (Sign)

REMARKS	:
---------	---

· · · · • •....

CON	RA Consulting IESTOGA-RO Colby Drive, Wate	/ERS & ASS			SHI		TO (Labora HES	tory	name)	
CH	AIN OF REC	CUST ORD	ODY	J	PROJECT Nº: PRO			Determain Bedding		
SAM	PLER'S SIGNATU	re <u>C.</u>	kino	(3990)			SAMPLE	Nº OF CONTAMERS	F	EMARK
SEQ. Nº.	SAMPLE Nº.	DATE	TIME	SAMPLE	LOCAT	OIN	TYPE	2100		
	TP4	2/25/88		Test P	+ 4		Soil	1	Vo	
	TPA	<u></u>		<u> </u>	••		• •		1.0+	ight
	TP8	۱,		l. h	8		1.	1	VC	A
	TP8	1.		٤. ١,	8		3.		1 pt	_qla
	TP9	14		1	C	<u>}</u>				
	TP9	1,		h 1	<u>,</u> c	2	1	Ĺ		cle
		· · · · · · · · · · · ·	•			-				
	TP5	4	<u></u> · · · ·		<u>, c</u>		<u> </u>	$\frac{1}{1}$		DA - ala
									+ 1	
· · · · ·										
	· · · · · · · · · · · · · · · · · · ·		<u> </u>							<u> </u>
•	~~ ·	······································		TOTAL NUM	IBER (OF CONT	TAINERS	8		
ANT		CAL HAZARDS		know	2					
RELI	NQUISHED BY:		Lige	D	TE/T	ME / 4/3	RECEIVED	BY:	9. an	6.7
RELI	NQUISHED BY:	(SIGN)	()				RECEIVED	BY:		sé()
	[2]	(SICN)						3-		(NOE)
RELI	NOUISHED BY:	· · · · · · · · · · · · · · · · · · ·		D/		ME.	RECEIVED	_		
	[3] —	(SON)		_			<u> </u>		(son)
	TIONAL SIGNATU									:
METI	100 of Shipmed	NT:	SHIPPE	d by:			VED FOR LABO	RATO	RY BY:	DATE
CON	DITION OF SEAL	UPON RECEN	 PT:		<u></u>	(30)- COOL	ER OPENED B	Y:		DATE
	RAL CONDITION					(300)-				
		CRA OFFICE				(L
Pl	IK -	RECEIVING LI CRA LABORA SHIPPERS	ABORATOR ATORY COI	ry Copy Py			:		1.:	47:

· ...

.....

.

:

-

1

ł

2186 LIBERTY DRIVE NIAGARA FALLS, NY 14304 (716) 283-3120

CHAI	N OF REC	CUS ORD	TODY	лов с СК		PRO	лест нам <u>wa</u> +	E 4	(N) ma	in to the second	CARD+C Bedo		<u></u>
								T-T	T			1 10	
SAMPI SIGNA								GRAB	đ			NO. OF CONTAINERS	
ND.	587. 20	DATE	TDE		: 100AT				COH		PLE TYPE	NO.	REMARKS
TPH		2-25-58		Test	P.T	Н	•				SOIL	+	
TP 4													
TP8		<i>t</i> ,		~ 1									
TPS		11		٠.		<u>ر ا</u>					<u> </u>	<u> '</u>	
TP9-		<u> </u>		4		, ·	·	┢				1	
TPA		i et i i i		in the second se		1.5						. 1	
	<u> </u>			ر ۱		<u>, I</u>			┼╌┤				
TP5 175	<u> </u>			<u> </u>				┼─	$\left[- \right]$			$\frac{1}{1}$	
			<u> </u>										
		· · ·						_				+-+	
	ļ	<u> </u>						+-		<u> </u>		╉━╌╂━	
-	<u> </u>			 			<u></u>	┼─					
								T					
······································												<u> </u>	
				ļ				╋	-			++-	
			· · · ·					╀	+				
								T					
•												╶┨╌╌╶╂╼╸	
		<u> </u>							+			+	
								+	+	TOTA	L CONTAINERS		
			·.				DATE		TIM		PECETVED		
	\sim	DBY (S					ļ	1			a Pr	ento I	Server
	.00	mni	3-				21351	8	7.1	43			
RELIN	QUISHE	D BY (S	ign)				DATE	t.	TIM	E	RECEIVED H	BY (Sign)	· ·
2_				. <u> </u>							3		
RELIN	DUISHE	D BY (S	(ign)			······	DATE		TIM	E.	RECEIVED H	BY (Sign)	
5											0		
	DUTCUT	D BY (S					DATE	_	TIP		RECEIVED I	BY (Sign))
RELING	TATOUT	ל) זם ש.	arðu)]			(5)		
					·								
REMAR	KS:												•

CON	RA Consuiting ESTOGA-ROV olby Drive, Wate	'ERS & AS			SHIPPED TO (Laboratory name): AES						
		ORD		PROJECT		PROJE	ict NAME: Ll	ucc-Republic ain Test Pits			
SAMF SEQ.	PLER'S SIGNATU	1					SAMPLE TYPE	N [®] OF CONTAINERS	RE	EMARKS	
Nº.	SAMPLE Nº.	DATE	TIME				Soi I		VC	Δ	4
	TP6 TP6	2/26/88		Test P	+ <u></u> . (<u></u>	1		class	
	1196								<u> </u>	<u> </u>	
	TP7 TP7	2/26/88]4]5	ר <u>י</u> ר יי		<u> </u>			A Glass	
				ļ							┥
					<u></u>			1			
	· · · · ·									· · · · · ·	\neg
											\neg
								+			۲
		+			<u> </u>						
								<u> </u>			Ì
		<u> </u>		. 			<u></u>				
		1	·					+			
				TOTAL N			AINEDS	++	 		_
	CIPATED CHEM						AINERS	17	1		
			Unk	nown							
REL	INQUISHED BY:	<u> </u>	•		DATE/TI		RECEIVED	_	Niana	Thomas	sc
	<u>ה</u>	(SGN)	mige	- <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>	-1881-1	330		2		301)	
REL	INQUISHED BY:	Dana	Homps	ch 2/20	DATE/TI	ME 7:40	RECEIVED	BY:	hidy (son	<u>. </u>
REL	INQUISHED BY:	(0.0.1)			DATE/T	ME	RECEIVED	-			
	3-	(SIGN)						<u>_</u>	(SGN)	
	TIONAL SIGNAT										
	THOD OF SHIPMI	ENT: CRA)	ED BY:	NOSIV		VED FOR LAB			DATE/TIME	ý ľ	
CON	CONDITION OF SEAL UPON RECEIPT: GENERAL CONDITION OF COOLER:						LER OPENED	BY:		DATE/TIME	
WHITE – CRA OFFICE COPY YELLOW – RECEIVING LABORATORY COPY PINK – CRA LABORATORY COPY GOLDEN ROD – SHIPPERS							<u></u>	1	Nº	4802	

. .

• • •

2186 LIBERTY DRIVE NIAGARA FALLS, NY 14304 ENVIRONMENTAL SERVICES INC. (716) 283-3120											NY 14304				
CHAI	N OI REC	- CUS ORD	TODY	JOB CODE CRF	PR0 //C	ject nami 2 - É	- Recublic l'atermain Test fit								
SAMPLER'S SIGNATURE							GRAB				NO. OF CONTAINERS				
MPLE NO.	82. 2	DATE	TE TIME SAMPLE LOCATION					HOD	SAM	PLE TYPE		REMARKS			
		2/2/2		Text	Pit	6	X			2(6.	2	On tainers			
		2/2/2		Text	1-t	7	М	+	Ľ	ali-	2	<u>.</u>			
		<u> </u>						╉			+				
								_	. <u> </u>		┟──┤	<u></u>			
			<u> </u>				\vdash	+			┼──┼				
		· ·								· · · · · · · · · · · · · · · · · · ·					
											╀──┤				
		<u> </u>	 				\vdash	-+			┼──┼	······································			
							┝─┼	╉				2			
		1	1												
						·····					┼──┼	<u> </u>			
		<u> </u>	<u> </u>	<u> </u>		<u></u>	$\left - \right $	+			┼╌╌┼				
	 	+					+	+			+				
								+				<u> </u>			
*		<u> </u>					$\left \right $	+			$\left\{ \begin{array}{c} \end{array}\right\}$				
		<u> </u>	<u> </u>				┞╴┤	_			$\left \frac{1}{q} \right $				
	L	<u> </u>	<u> </u>	<u>l</u>					TOTAL	, CONTAINERS	171				
		D BY (S				DATE		IME		RECEIVED B	X (214	(\underline{n})			
ĪŁ	مى (1a	Ilin	noson		0/2:/5	4 '	ا کر کر	40 1,17.	2-12-1-	ich	roush			
ELINO	UISHE	D BY (S	ign)			DATE		/ IME		RECEIVED B	Y (Sig	n)			
2						-				3	-				
 						ļ	<u> </u>								
ELINO	UISHE	D'BY (S	ign)			DATE	T	IME		RECEIVED B	Y (Sig	n)			
3										•					
ELINQUISHED BY (Sign)			DATE	Ţ	IME		RECEIVED B	Y (Sig	n)						
4					<u>. </u>					(5		<u></u>			
					<u> </u>	<u> </u>	1								

CON	RA Consultin IESTOGA-RO Colby Drive, Wate	VERS & A			SHIPPED TO (Laboratory name): AES						
പ	AIN OF	CIIC.	TODY	PROJECT		PRO	JECT NAME:				
		COS		2293 UC			C-REPUBLIC				
SAM	PLER'S SIGNATL	JRE	ils W.	Thompson_			SAMPLE	INERS	REMARKS		
SEQ. Nº.	SAMPLE Nº	DATE	TIME	SAMPLE I		אוכ	TYPE	Nº OF CONTAINERS	REMARKS		
	DP-1	3/15/88	9:20	2000+	155	ک	FILL	2	100A 1500ml		
	DP-2	3/15/88		2755+			FILL	2	100A, 1500ml		
	DP-3	3/15/88	11=30	6015+	380	ມ ເ	FILL	2	1 VOA, 1 500ml		
	**	34548	12:00	45454	<u> </u>	Ę.		*	1 until mant		
	DP-6	3/15/82	1=55	7095+	246	ပ	FILL	ک	1 UOA, 1500ml		
	DP-7	3/15/88	2=10	650 5 +			FILL	2	1 VOA, 1 500ml		
	DP-8	3/15/88		15214+			FILL	2	1 UOA, 1 500ml		
	DP-11	3/16/88	9=10	3005 4	- 590	ာပ	FILL	2	1 UDA, 1 500ml		
	DP-12	3/16/88	10=10	1005+	- 450	ာယ	FILL	え	1 UOA, 1500ml		
NO	TE = TH	ABOU	EWIL	LBEC	OM	৯১	TED AS	F	DLLOWS-		
	DP-1	AND	DP-12								
	DP-2	AND	DP-11								
	DP-3	AND	DP-8						,		
.	DP-6	AND	DP-7								
							· · · · · · · · · · · · · · · · · · ·				
A.1.171				TOTAL NUM	BER O	FCON	ITAINERS				
		CAL HAZARI	DS:								
RELIN	NQUISHED BY: -	7-121	71. m	1 1 1	TE/TIN		RECEIVED B	IY: {	Diana Homoso		
	لــ []	(SIGN)			181			09			
RELIN	NQUISHED BY:	Diana)hompso	n <u>3/16/8</u>	TE/TIN 8 2	1E 1:60	RECEIVED B	IY: ©∕	udy Ostrowsh		
RELIN	QUISHED BY:			DA	TE/TIM	Æ	RECEIVED B	IY:	· · · · · · · · · · · · · · · · · · ·		
	3-	(SIGN)		-				()	(504)		
	TIONAL SIGNATU T REQUIRED										
METHOD OF SHIPMENT: SHIPPED BY:					_		IVED FOR LABO		1 12/11 13/10		
la carier D. Momp					521	(SIGN)					
CONDITION OF SEAL UPON RECEIPT:						cod	LER OPENED B	Y:	DATE/TIME		
GENE	RAL CONDITION	OF COOLER				(SIGN)	\ <u></u>				
WHITE – CRA OFFICE COPY YELLOW – RECEIVING LABORATORY COPY PINK – CRA LABORATORY COPY									••••••••••••••••••••••••••••••••••••••		
	-	SHIPPERS	•				N	<u>°</u> 4529			

AZ	ATHANGED 2186 LIBERTY DRIVE NIAGARA FALLS, NY 14304 ENVIRONMENTAL SERVICES INC. (716) 283-3120										
	N O REC	F CUS ORD	STÓDY	JOB CODE	PROJECT NAM UNION		PX	?ß	iDE		
SAMP SIGN	LER'S ATURE				· · · · · · · · · · · · · · · · · · ·					OF	
S'MPLE D.	SEQ. NO.	DATE	TIME	SAMPLE LOCATIO	N	GRAB	COMP	si	MPLE TYPE	NO. OF	REMARKS
	1	3/15/88		DP-1		X		Ś)IL	2	1-VOA 1-5TURL.
	1	╉──┤───		11-2		X				2	1 1
	3			11.3		Y				2	
				10-4						12	<u> </u>
	5	╆╌┾╌┥		DD-6		$\left \begin{array}{c} X \\ X \end{array} \right $				2	
	1			02-8	·	X				1	······································
	8	3/1.18		NP-11		X				2	<u> </u>
	_9	3/16/58	·	1.P.12		$\frac{1}{X}$				2	1
	10	3/14/88		TRIP BLAI	VK			ĸ	ATER	1	VOA
-				· · · · · · · · · · · · · · · · · · ·		\Box					
· · · · · · · · · · · · · · · · · · ·		 					\square				
											2.3
						\square					
							\square	·			·
							_				
							\rightarrow				
				·			+				
-'							+				
-ił							+	_			
┥ ━━━╋							+				
								TOTA	L CONTAINERS	17	
RELINOT	TSHED	BY ISI					-				
<u>u · v</u>					DATE		IME		RECEIVED BY	(Sig	n)
1 Ht	<u>), an (</u>	A	HUCY	<u>hrsen</u>	3/16/88	رشت	n.n	0 7.	2 milli	ar	were
RELINQU	ISHED	BY (Sig		<u>v</u>	DATE	<i>(</i>	IME				
		•				1	.ne		RECEIVED BY	(51g	n
ι)]]		
RELINQU	ISHED	BY (Sig	(n)	· · · · · · · · · · · · · · · · · · ·	DATE	ት ግኘ	ME		RECEIVED BY	184	
		-								(ardi	• ,
- <u> </u>									(4)		Ì.
RELINQU	SHED	BY (Sig	n)		DATE	TI	ME		RECEIVED BY	(Sign	· · · · · · · · · · · · · · · · · · ·
						•					-
									(5		
REMARKS :	:										

i

.

•. .

.

GROUNDWATER MONITORING PROGRAM CRA PROJECT #2293 (FOR UNION CARBIDE)

Report Prepared For

CONESTOGA ROVERS & ASSOCIATES, INC.

berial) Catherine Mocniak

Project Manager

sel Ph.D Dougall, Technical Evaluation

March 18, 1988 AES Report CRF

COMMITMENT TO HONESTY - QUALITY - SERVICE

· · · ·	Type of	.=======	D ENVIRON LABORATO ====================================					
	Client:	. –			A.E.S. Job (Code CRF		
Analytical	Method	Quant.	AES Lab Sample		18231 TP-1 GRAB	18232 TP-2 GRAB	18233 TP-3 GRAB	• •
Parameter(s)	No.	Limits	Sample	Date-	2/24/88	2/24/88	2/24/88	
Ammonia (As N) (mg/l)*	350.1	0.01			0.07	0.04	0.04	
Total Kjeldahl Nitrogen(mg/l)	351.2	0.1			BQL**	BQL	BQL	
Nitrite (mg/l)*	353.2	0.01			0.07	0.02	0.04	
Total Rec. Phenols (mg/l)	420.2	0.005			0.060	BQL	0.008	
Diethyl Sulfate (As SO_4)*	375.2	2.0			74	94	17	

* In 20% solution.
** Below quantifiable limits.

. .

Marga couron

ر

·. ·· ·.

Margaret L. Skowron Wet Chemistry Supervisor

Type of Analysis: RESULTS - WET CHEMISTRY

	Client:	CRA		A.E.S. Job			
			AES Lab No Sample ID -	18234 TP-4 GRAB	18235 TP-5 GRAB	18236 TP-8 GRAB	¢
Analytical Parameter(s)	Method No.	Quant. Limits		2/25/88	2/25/88	2/25/88	
Ammonia (As N) (mg/l)*	350.1	0.01		0.06	0.02	0.02	
Total Kjeldahl Nitrogen(mg/l)	351.2	0.1		0.1	BQL**	0.1	
Nitrite (mg/l)*	353.2	0.01		0.15	0.10	0.05	
Total Rec. Phenols (mg/l)	420.2	0.005		0.010	0.006	BQL	
Diethyl Sulfate (As SO_4)*	375.2	2.0		15	14	67	

won

Margaret L. Skowron Wet Chemistry Supervisor

* In 20% solution. ** Below quantifiable limits.

Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18237 TP-9 GRAB	18243 TP-6 SOIL	18244 TP-7 SOIL	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/25/88	2/26/88	2/26/88	
Ammonia (As N) (mg/l)*	350.1	0.01		0.08	0.22	0.04	
Total Kjeldahl Nitrogen(mg/l)	351.2	0.1		0.1	0.1	0.1	
Nitrite (mg/l)*	353.2	0.01		0.06	0.02	0.04	
Total Rec. Phenols (mg/l)	420.2	0.005		0.008	0.006	0.006	
Diethyl Sulfate (As SO ₄)*	375.2	2.0		12	12	20	

* In 20% solution.

Margan own

Margaret L. Skowron Wet Chemistry Supervisor

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Analysis: Milligrams/Liter or ppm Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Sulfate Total Kjeldahl Nitrogen Ammonia Total Recoverable Phenols Nitrite	18232 18244 18244 18244 18244 18244	94 0.1 0.04 0.006 0.05	93 0.1 0.05 0.006 0.04	94 0.1 0.04 0.006 0.04	1 None 0.01 None 0.01	l.l None 25 None 25

Relative Percent Difference = Range/Average X 100

LABORATORY REPORT

QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units:mg/l or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
						·
Sulfate	18232	SPK	160	· 94	72	92
Sulfate	384-2	EPA	7.4	7.2		103
Total Kjeldahl Nitrogen	18244	SPK	3.0	0.1		97
Total Kjeldahl Nitrogen	486-2	EPA	5.0	5.0		100
Ammonia	18244	SPK	0.62	0.04	0.50	116
Ammonia	9916	EPA	9.0	8.0		112
Total Recoverable Phenols	18244	SPK	0.220	0.006	0.200	107
Total Recoverable Phenols	694	STD	0.121	0.150		81
Nitrite	18244	SPK	0.28	0.04	0.25	96

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT WET CHEMISTRY DEPARTMENT

AES JOB CODE CRF

ANALYST	ANALYTICAL METHOD	SAMPLE CODE	DATE OF ANALYSIS	TIME OF ANALYSIS
-210 proven		<u>18231,32,3734,35,</u> 84 18243,4	2/29/85	
<u> Illeneuan</u>	357.2	<u>18231-118237</u> 18243,18244	3/2/38	1600
Donoutin	350.1	<u> 18231-18237, 1824</u> 3,44	3/3/88	
Monoucos	420.2	18231-137,18243-244	3/9/88	1000
Alleonoicen	353,2	<u> 18231-737,413</u> 44	3/10/85	<u> </u>
		·	· · · · · · · · · · · · · · · · · · ·	
	• . • •	· · · · · · · · · · · · · · · · · · ·		

Type of Analysis: VOLATILE ORGANICS (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

Client: CRA

																										•
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

			AES Lab No Sample ID -	18231 TP-1	18232 TP-2	18233 TP-3	•
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/24/88	2/24/88	2/24/88	
Chloromethane	8240	1600		BQL*	BQL	BQL	
Vinyl Chloride		1600		BQL	BQL	BQL	
Chloroethane	Ħ	1600		BQL	BQL	BQL	
Bromomethane		1600		BQL	BQL	BQL	
2-Chloroethyl Vinyl Ether		1600		BQL	BQL	BQL	
Ethylbenzene		800		BQL	BQL	BQL	
Methylene Chloride		. 800		BQL	BQL	BQL	
Chlorobenzene		800)	BQL	BQL	BQL	
1,1-Dichloroethylene	-	800)	BQL	BQL	BQL	
1,1-Dichloroethane		. 800		BQL	BQL	BQL	
trans-1,2-Dichloroethylene		800)	BQL	BQL	BQL	
Chloroform		800		BQL	BQL	BQL	
1,2-Dichloroethane		800		BQL	BQL	BQL	
1,1,1-Trichloroethane		800)	BQL	BQL	BQL	
Carbon Tetrachloride	. 🗰	. 800)	BQL	BQL	BQL	
Bromodichloromethane		. 800		BQL	BQL	BQL	
1,2-Dichloropropane		800		BQL	BQL	BQL	
trans-1,3-Dichloropropene		800		BQL	BQL	BQL	
Trichloroethylene	Ħ	800		BQL	BQL	BQL	
Benzene		800		1,000	2,000	BQL	
cis-1,3-Dichloropropene		800		BQL	BQL	BQL	
1,1,2-Trichloroethane		800		BQL	BQL	BQL	
Dibromochloromethane		800		BQL	BQL	BQL	
Bromoform		800		BQL	BQL	BQL	

Susan C. Scrocchi Gas Chromatography Supervisor

Type of Analysis: VOLATILE ORGANICS (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18234 TP-4	18235 TP-5	18236 TP-8	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/25/88	2/25/88	2/25/88	
Chloromethane	8240	1600)	BQL*	BQL	BQL	
Vinyl Chloride		1600) · · · · · · · · · · · · · · · · · · ·	BQL	BQL	BQL	
Chloroethane		1600		BQL	BQL	BQL	
Bromomethane	-	1600)	BQL	BQL	BQL	
2-Chloroethyl Vinyl Ether	•	1600) .	BQL	BQL	BQL	
Ethylbenzene		800)	BQL	BQL	BQL	
Metĥylene Chloride	-	800)	BQL	BQL	BQL	
Chlorobenzene		800)	BQL	BQL	BQL	
1,1-Dichloroethylene		800)	BQL	BQL	BQL	
l,l-Dichloroethane	•	800)	BQL	BQL	BQL	
trans-1, 2-Dichloroethylene		. 800		BQL	BQL	BQL	
Chloroform		800)	BQL	BQL	BQL	
1,2-Dichloroethane	×	800)	BQL	BQL	BQL	
1,1,1-Trichloroethane		.800) ,	BQL	BQL	BQL	
Carbon Tetrachloride	. 🖬	800)	BQL	BQL	BQL	
Bromodichloromethane		800)	BQL	BQL	BQL	
1,2-Dichloropropane		800)	BQL	BQL	BQL	
trans-1,3-Dichloropropene	. .	800)	BQL	BQL	BQL	
Trichloroethylene	. 🗰	800)	BQL	BQL	BQL	
Benzene		800)	53,000	800	880	
cis-1,3-Dichloropropene		. 800		BQL	BQL	BQL	
1,1,2-Trichloroethane	•	800)	BQL	BQL	BQL	
Dibromochloromethane		800)	BQL	BQL	BQL	
Bromoform		800)	BQL	BQL	BQL	

Susan C. Scrocchi Gas Chromatography Supervisor

	Type of	I ==========	ENVIRONMENTAL S ABORATORY REPOR SESSION OF A STATE OF A	T =========	•				
		Measure:	Micrograms/Kil	licrograms/Kilogram, or ppb A.E.S. Job Code CRF					
• .	• •	·	AES Lab No Sample ID -	18237 TP-9	18243 TP-6				
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/25/88	2/26/88				
Chloromethane Vinyl Chloride	8240	1600		BQL* BQL	BQL BQL				

Chloromethane	8240	1600	BQL*	BQL	
Vinyl Chloride	¥ 1	1600	BQL	BQL	
Chloroethane		1600	BQL	BQL	
Bromomethane		1600	BQL	BQL	
2-Chloroethyl Vinyl Ether		1600	BQL	BQL	
Ethylbenzene		800	BQL	BQL	
Methylene Chloride		800	BQL	BQL	
Chlorobenzene		800	BQL	BQL	
l,l-Dichloroethylene		800	BQL	BQL	
l,l-Dichloroethane	-	800	BQL	BQL	
trans-1,2-Dichloroethylene		800	BQL	BQL	
Chloroform		800	BQL	BQL	
1,2-Dichloroethane	· •	800	BQL	BQL	
l,l,l-Trichloroethane		800	BQL	BQL	·
Carbon Tetrachloride		800	BQL	BQL	
Bromodichloromethane		800	BQL	BQL	
1,2-Dichloropropane		800	BQL	BQL	
trans-1, 3-Dichloropropene		800	BQL	BQL	
Trichloroethylene	· · •	800	BQL	BQL	
Benzene		800	1,300	2,100	
cis-1,3-Dichloropropene		800	BQL	BQL	
1,1,2-Trichloroethane	•	800	BQL	BQL	
Dibromochloromethane	•	800	BQL	BQL	
Bromoform		800	BQL	BQL	
			· · · · · · · · · · · · · · · · · · ·		

Susan C. Scrocchi Gas Chromatography Supervisor

* Below quantifiable limits.

LABORATORY REPORT

Type of Analysis: VOLATILE ORGANICS (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18244 TP-7	METHOD * BLANK	·
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/26/88		
Chloromethane	8240	1600		BQL**	<10	
Vinyl Chloride		1600		BQL	<10	
Chloroethane		1600		BQL	<10	
Bromomethane	-	1600		BQL	<10	
2-Chloroethyl Vinyl Ether		1600		BQL	<10	
Ethylbenzene	Ħ	800		BQL	<5.0	
Methylene Chloride		800		BQL	<5.0	
Chlorobenzene		800		BQL	<5.0	
1,1-Dichloroethylene		800		BQL	<5.0	
l,l-Dichloroethane		800		BQL	<5.0	
trans-1,2-Dichloroethylene		800		BQL	<5.0	
Chloroform	•	8.0 0		BQL	<5.0	
1,2-Dichloroethane		800		BQL	<5.0	
1,1,1-Trichloroethane		800		BQL	<5.0	
Carbon Tetrachloride	-	800		BQL	<5.0	
Bromodichloromethane		800		BQL	<5.0	
1,2-Dichloropropane		800		BQL	<5.0	· · ·
trans-1,3-Dichloropropene		800		BQL	<5.0	
Trichloroethylene		800		BQL	<5.0	• •
Benzene		800		BQL	<5.0	
cis-1,3-Dichloropropene	-	. 800		BQL	<5.0	
1,1,2-Trichloroethane		800		BQL	<5.0	
Dibromochloromethane	-	800		BQL	<5.0	
Bromoform		800		BQL	<5.0	

Śusan C. Scrocchi

Gas Chromatography Supervisor

* Unit of measure are µg/l, ppb.
* Below quantifiable limits.

		L	ENVIRONMENTAL SI ABORATORY REPOR	T i i			
	Type of		SEMI-VOLATILES				
	Units Of Client:	Measure: CRA	Micrograms/Kilo A.E.	ogram, or ppb .S. Job Code (CRF	• • • • •	
			AES Lab No Sample ID -		18232 TP-2	18233 TP-3	
Analytical Parameter(s)	Method No.	Quant. Limits	 Sample Date-	2/24/88	2/24/88	2/24/88	
Fluorene	8240	660		BQL*	BQL	BQL	
4-Chlorophenylphenylether		660		BQL	BQL	BQL	
Diphenylamine(N-Nitroso)		660		BQL	BQL	BQL	
Benzyl Alcohol		660		BQL	BQL	BQL	
4-Chloroaniline	-	660		BQL	BQL	BQL	
4-Bromophenylphenylether		660		BQL	BQL	BQL	
Hexachlorobenzene	-	660		BQL	BQL	BQL BQL	
Phenanthrene		660		BQL	BQL	BQL	
Anthracene		660 660		BQL BQL	BQL BQL	BQL	
Di-N-Butylphthalate	-	660			1,300	BQL	
Fluoranthene		660		BQL BQL	•	BQL	
2-Nitroaniline		660		BQL	BQL 1,300	BQL	
Pyrene		660		BQL	BQL	BQL	
Butylbenzylphthalate Benzo(a)Anthracene	=	660		BQL	BQL	BQL	
3,3'-Dichlorobenzidine		1980		BQL	BQL	BQL	
Chrysene	W	660		BQL	BQL	BQL	
Bis(2-Ethylhexyl)Phthalat	•	660	•	BQL	BQL	BQL	
Di-N-Octylphthalate		660		BQL	BQL	BQL	
Benzo(b)Fluoranthene		660		BQL	2,500	BQL	
Benzo(k)Fluoranthene		660		BQL	BQL	BQL	
Benzo(a)Pyrene	•	660		BQL	BQL	BQL	
Indeno(1,2,3-C,D)Pyrene		660		BQL	BQL	BQL	
Dibenzo(a,h)Anthracene	=	660		BQL	BQL	BQL	
Benzo(g,h,i)Perylene	-	660		BQL	BQL	BQL	
				\wedge			

-Susan C. Scrocchi Gas Chromatography Supervisor

* Below quantifiable limits.

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18234 TP-4	18235 TP-5	18236 TP-8	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/25/88	2/25/88	2/25/88	
Fluorene	8240	66	0	BQL*	BQL	BQL	
4-Chlorophenylphenylether		66	D	BQL	BQL	BQL	
Diphenylamine(N-Nitroso)		66	D	BQL	BQL	BQL	
Benzyl Alcohol		66	0	BQL	BQL	BQL	
4-Chloroaniline	-	66	0	BQL	BQL	BQL	
4-Bromophenylphenylether	Π.	66	0	BQL	BQL	BQL	
Hexachlorobenzene		66	0	BQL	BQL	BQL	
Phenanthrene		66	0	BQL	BQL	BQL	
Anthracene		66	0	BQL	BQL	BQL	
Di-N-Butylphthalate		66		BQL	BQL	BQL	
Fluoranthene	-	66		BQL	BQL	BQL	
2-Nitroaniline		66	0	BQL	BQL	BQL	
Pyrene	· •	66	0	BQL	BQL	BQL	
Butylbenzylphthalate		66		BQL	BQL	BQL	
Benzo(a)Anthracene		66		BQL	BQL	BQL	
3,3'-Dichlorobenzidine	. #	198		BQL	BQL	BQL	
Chrysene		66		BQL	BQL	BQL	
Bis(2-Ethylhexyl)Phthalate		66		BQL	BQL	BQL	
Di-N-Octylphthalate		66		BQL	BQL	BQL	
Benzo(b)Fluoranthene		66		BQL	BQL	BQL	
Benzo(k)Fluoranthene		66		BQL	BQL	BQL	
Benzo(a)Pyrene		66		BQL	BQL	BQL	
Indeno(1,2,3-C,D)Pyrene	· .	66		BQL	BQL	BQL	
Dibenzo(a,h)Anthracene	-	66		BQL	BQL	BQL	
Benzo(g,h,i)Perylene		66		BQL	BQL	BQL	
		• -	- ·	() -	- <u>-</u> -	. ~	

* Below quantifiable limits.

Súsan C. Scrocchi Gas Chromatography Supervisor

• • • • • • • • • • • • • • • • • • •		L	ENVIRONMENTAL SI ABORATORY REPOR	r		
	Type of		SEMI-VOLATILES	•		
	Units Of Client:		Micrograms/Kilo A.E	ogram, or ppt .S. Job Code	CRF	
			AES Lab No Sample ID -		18243 TP-6	
Analytical Parameter(s)	Method No.	Quant. Limits	- Samplé Date-	2/25/88	2/26/88	
Fluorene 4-Chlorophenylphenylether Diphenylamine(N-Nitroso)	8240	660 660		BQL* BQL BQL	BQL BQL BQL	
Benzyl Alcohol 4-Chloroaniline 4-Bromophenylphenylether Hexachlorobenzene	1 1 1 1	660 660 660 660		BQL BQL BQL BQL	BQL BQL BQL BQL	•
Phenanthrene Anthracene Di-N-Butylphthalate		660 660 660		BQL BQL BQL	BQL BQL BQL	
Fluoranthene 2-Nitroaniline Pyrene	20 77 77	660 660 660		BQL BQL BQL	BQL BQL BQL	
Butylbenzylphthalate Benzo(a)Anthracene 3,3´-Dichlorobenzidine	•	660 660 1980		BQL BQL BQL	BQL BQL BQL	
Chrysene Bis(2-Ethylhexyl)Phthalat Di-N-Octylphthalate	e "	660 660 660 660		BQL BQL BQL BQL	BQL BQL BQL BQL	
Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-C,D)Pyrene	*	660 660 660 660		BQL BQL BQL BQL	BQL BQL BQL BQL	
Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene	*	660 660		BQL BQL	BQL BQL	

Supar C. Snocch

Susan C. Scrocchi Gas Chromatography Supervisor

LABORATORY REPORT

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18244 TP-7	METHOD * BLANK	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/26/88		
Fluorene	8240	660	,	BQL**	<10	
4-Chlorophenylphenylether		660	1	BQL	<10	
Diphenylamine(N-Nitroso)		660		BQL	<10	
Benzyl Alcohol	Ħ	660		BQL	<10	
4-Chloroaniline		660		BQL	· <10	•
4-Bromophenylphenylether	Ħ	660		BQL	<10	
Hexachlorobenzene		660		BQL	<10	•
Phenanthrene	-	660		BQL	<10	
Anthracene	Ħ	660		BQL	<10	
Di-N-Butylphthalate		660		BQL	<10	
Fluoranthene		660)	BQL	<10	
2-Nitroaniline		660		BQL	<10	
Pyrene		660)	BQL	<10	
Butylbenzylphthalate		660		BQL	<10	
Benzo(a)Anthracene	, #	660		BQL	<10	
3,3 [°] -Dichlorobenzidine		1980		BQL	<30	•
Chrysene	. •	660	H · ·	BQL	<10	,
Bis(2-Ethylhexyl)Phthalate		. 660	· ·	BQL	<10	
Di-N-Octylphthalate	. 🖬	660	I	BQL	<10	
Benzo(b)Fluoranthene		660		BQL	<10	
Benzo(k)Fluoranthene		660	· · · · ·	BQL	<10	
Benzo(a)Pyrene		660		BQL	<10	
Indeno(1,2,3-C,D)Pyrene		660	•	BQL	<10	
Dibenzo(a,h)Anthracene		660		BQL	<10	
Benzo(g,h,i)Perylene		660	•	BQL	<10	

* Units of measure are µg/1, ppb. ** Below months fights limits

Below quantifiable limits.

Susan C. Scrocchi Gas Chromatography Supervisor

.

LABORATORY REPORT

Type of Analysis: VOLATILE ORGANICS (HSL)

Units Of Measure:	Micrograms/Kilogram, or ppb
Client: CRA	A.E.S. Job Code CRF

			AES Lab No Sample ID -	18231 TP-1	18232 TP-2	18233 TP-3	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/24/88	2/24/88	2/24/88	
1,1,2,2-Tetrachloroethylene	8240	800)	BQL*	BQL	BQL	
1,1,2,2-Tetrachloroethane		800)	BQL	BQL	BQL	
Toluene	-	800)	BQL	BQL	BQL	
Acetone		8000)	BQL	BQL	BQL	
Carbon Disulfide	"	800)	BQL	BQL	BQL	
2-Butanone		8000)	BQL	BQL	BQL	
Vinyl Acetate	₩.	800)	BQL	BQL	BQL	
2-Hexanone	. #	8000)	BQL	BQL	BQL	
4-Methyl-2-Pentanone		8000)	BQL	BQL	BQL	
Styrene		. 800)	BQL	BQL	BQL	
Xylenes (Total)	*	800		BQL	BQL	BQL	
Trichlorofluoromethane		800)	BQL	BQL	BQL	

Susan C. Scrocchi Gas <u>Chromatography</u> Su<u>pervisor</u>

			ENVIRONMENTAL S ABORATORY REPOR					
	Type of	Analysis:	VOLATILE ORGAN					
	Units Of Client:		are: Micrograms/Kilogram, or ppb A.E.S. Job Code CRF				с. 	
			AES Lab No Sample ID -	18234 TP-4	18235 TP-5	18236 TP-8		
Analytical Parameter(s)	Method No.	Quant. Limits	- Sample Date-	2/25/88	2/25/88	2/25/88		
<pre>1,1,2,2-Tetrachloroethyle 1,1,2,2-Tetrachloroethane Toluene Acetone Carbon Disulfide 2-Butanone Vinyl Acetate 2-Hexanone 4-Methyl-2-Pentanone Styrene Xylenes (Total) Trichlorofluoromethane</pre>		800 800 800 800 800 800 800 800 800 800	· · · · · · · · · · · · · · · · · · ·	BQL* BQL BQL BQL BQL BQL BQL BQL BQL BQL BQL	BQL BQL BQL BQL BQL BQL BQL BQL BQL BQL	BQL BQL BQL BQL BQL BQL BQL BQL BQL BQL		
					•			
		на на 1999 г. ^{се} ла 19	· · · · · · · · · · · · · · · · · · ·		C. And	mali		

Below quantifiable limits.

Gas Chromatography Supervisor

.

Type of Analysis: VOLATILE ORGANICS (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18237 TP-9	18243 TP-6
Analytical Parameter(s)	Method No.	Quant. Limits	_ Sample Date-	2/25/88	2/26/88
1,1,2,2-Tetrachloroethylene	8240	800		BQL*	BQL
1, 1, 2, 2-Tetrachloroethane		800		BQL	BQL
Toluene		800		BQL	BQL
Acetone		8000	·	BQL	BQL
Carbon Disulfide		800		BQL	BQL
2-Butanone	Ħ	8000		BQL	BQL
Vinyl Acetate		800		BQL	BQL
2-Hexanone		8000		BQL	BQL
4-Methyl-2-Pentanone		8000	•	BQL	BQL
Styrene	H	800		BQL	BQL
Xylenes (Total)		800		BQL	BQL
Trichlorofluoromethane		800		BQL	BQL

Jupan & Seprechi

Susan C. Scrocchi Gas Chromatography Supervisor

Type of Analysis: VOLATILE ORGANICS (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

AES Lab No.-18244 Sample ID -TP-7 **METHOD *** BLANK Analytical Method Quant. Parameter(s) Limits No. Sample Date-2/26/88: 1,1,2,2-Tetrachloroethylene 8240 800 BQL** <5.0 1, 1, 2, 2-Tetrachloroethane 800 BQL <5.0 Toluene 800 BQL <5.0 Acetone 8000 BQL <50 Carbon Disulfide 800 <5.0 BQL 2-Butanone 8000 <50 BQL Vinyl Acetate 800 <5.0 BQL. 2-Hexanone 8000 BQL <50 4-Methyl-2-Pentanone 8000 BQL < 50 Styrene 800 BQL <5.0 Xylenes (Total) 800 <5.0 BQL Trichlorofluoromethane 800 BQL <5.0

Susan C. Scrocchi Gas Chromatography Supervisor

* Units of measure are µg/l, ppb.* Below quantifiable limits.

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Measure: Micrograms/Kilogram, ppb Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Chloromethane	18231	<1600	<1600	<1600	None	None
Vinyl Chloride	18231	<1600	<1600	<1600	None	None
Chloroethane	18231	<1600	<1600	: <1600	None	None
Bromomethane	18231	<1600	<1600	<1600	None	None
2-Chloroethyl Vinyl Ether	18231	<1600	<1600	<1600	None	None
Ethylbenzene	18231	<800	<800	· <800	None	None
Methylene Chloride	18231	<800	<800	<800	None	None
Chlorobenzene	18231	<800	<800	<800	None	None
1,1-Dichloroethylene	18231	<800	<800	<800	None	None
1,1-Dichloroethane	18231	<800	<800	<800	None	None
trans-1,2-Dichloroethylene	18231	<800	<800	<800	None	None
Chloroform	18231	<800	<800	<800	None	None
1,2-Dichloroethane	18231	<800	<800	<800	None	None
1,1,1-Trichloroethane	18231	<800	<800	: <800	None	None
Carbon Tetrachloride	18231	<800	<800	<800	None	None
Bromodichloromethane	18231	<800	<800	<800	None	None
1,2-Dichloropropane	18231	<800	<800	<800	None	None
trans-1, 3-Dichloropropene	18231	<800	<800	¹ <800	None	None
Trichloroethylene	18231	<800	<800	<800	None	None
Benzene	18231	1,000	930	965	70	7
cis-1,3-Dichloropropene	18231	<800	<800	<800	None	None
1, 1, 2-Trichloroethane	18231	< < 800	<800	<800	None	None
Dibromochloromethane	18231	<800	<800	<800	None	None
Bromoform	18231	<800	<800	<800	None	None

Relative Percent Difference = Range/Average X 100

· . ·

LABORATORY REPORT

QUALITY CONTROL - PRECISION

Type of Analysis: Duplicate Analysis Units of Measure: Micrograms/Kilogram, ppb Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
	10221	<800	<800	<800	None	None
1,1,2,2-Tetrachloroethylene	18231	<800	<800	<800	None	None
1,1,2,2-Tetrachloroethane	18231 18231	<800	<800	<800	None	None
Toluene	18231	<8000	<8000	<8000	None	None
Acetone	18231	<8000	<800	< 800	None	None
Carbon Disulfide	18231	<8000	<8000	< 8000	None	None
2-Butanone	18231	<800	<800	<800	None	None
Vinyl Acetate	18231	<8000	<8000	<8000	None	None
2-Hexanone 4-Methyl-2-Pentanone	18231	<8000	<8000	<8000	None	None
styrene	18231	<800	<800	<800	None	None
Xylenes (Total)	18231	<800	<800	<800	None	None
Trichlorofluoromethane	18231	<800	<800	<800	None	None

Relative Percent Difference = Range/Average X 100

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units: µg/l or ppb)*

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery**
Toluene	18243	SPK	38	<5.0	36	106
Ethylbenzene	18243	SPK	25	<5.0	31	81
o-Xylene	18243	SPK	43	<5.0	36	119
Chloroform		EPA	208		150	139
Carbon Tetrachloride		EPA	44	·	56	79
l,l,l-Trichloroethane		EPA	· 13	·	19	68
l,2-Dichloroethane		EPA	38		31	123
Dichlorobromomethane		EPA	9.7		15	65
Bromoform		EPA	26		39	67
l,2-Dichloroethane	18233	Surrogate	10		10	100
Toluene d _e	18236	Surrogate	10		10	100
Toluene d ⁸	18244	Surrogate	7.0		10	70

** % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)
 * Spike was performed on the sample extract.

LABORATORY REPORT

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

		: :	AES Lab No Sample ID -	18231 TP-1	18232 TP-2	18233 TP-3	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/24/88	2/24/88	2/24/88	
2-Methylnaphthalene	8270	660		BQL*	BQL	BQL	
Bis(2-Chloroethyl)Ether		660		BQL	BQL	BQL	
1,3-Dichlorobenzene		. 660	•	BQL	BQL	BQL	
1,4-Dichlorobenzene		. 660		BQL	BQL	BQL	
1,2-Dichlorobenzene		660		BQL	BQL	BQL	
Bis(2-Chloroisopropyl)							
Ether		660		BQL	BQL	BQL	
Hexachloroethane		660		BQL	BQL	BQL	
N-Nitrosodi-N-Propylamine		660)	BQL	BQL	BQL	
Nitrobenzene		660)	BQL	BQL	BQL	
Isophorone		660) .	BQL	BQL	BQL	•
Bis(2-Chloroethoxy)Methane		660)	BQL	BQL	BQL	
1,2,4-Trichlorobenzene		660) ·	BQL	BQL	BQL	
Naphthalene		660) ·	BQL	BQL	BQL	
Hexachlorobutadiene		660)	BQL	BQL	BQL	
Hexachlorocylopentadiene		660) .	BQL	BQL	BQL	
2-Chloronaphthalene		660) – station – statio	BQL	BQL	BQL	
Dimethylphthalate		. 660		BQL	BQL	BQL	
Acenaphthylene	, * #	660		BQL	BQL	BQL	
2,6-Dinitrotoluene		660	•	BQL	BQL	BQL	
Acenaphthene		660		BQL	BQL	BQL	
2,4-Dinitrotoluene		660		BQL	BQL	BQL	
Diethylphthalate		660		BQL	BQL	BQL	

Susan C. Scrocchi Gas Chromatography Supervisor

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18234 TP-4	18235 TP-5	18236 TP-8	• •
<pre>\nalytical Parameter(s)</pre>	Method No.	Quant. Limits	_ Sample Date-	2/25/88	2/25/88	2/25/88	
	 8270	660		BQL* :	BQL	BQL	
2-Methylnaphthalene	8270	660		BQL	BQL	BQL	
Bis(2-Chloroethyl)Ether	-	660		BQL	BQL	BQL	
L, 3-Dichlorobenzene		660		BQL	BQL	BQL	
1,4-Dichlorobenzene		660		BQL	BQL	BQL	
1,2-Dichlorobenzene		000		DQU .	DYU	рõп	
<pre>Bis(2-Chloroisopropyl) Sther</pre>		660		BQL	BQL	BQL	
Ether		660		BQL	BQL	BQL	
lexachloroethane		660		BQL	BQL	BQL	
N-Nitrosodi-N-Propylamine						BQL	
Nitrobenzene		660		BQL	BQL BQL	BQL	
Isophorone		660		BQL			
Bis(2-Chloroethoxy)Methane	e de la companya de la	660		BQL	BQL	BQL	
1,2,4-Trichlorobenzene	-	660		BQL	BQL	BQL	
Naphthalene	-	660		BQL	BQL	BQL	
Hexachlorobutadiene		. 660		BQL	BQL	BQL	
Hexachlorocylopentadiene		660		BQL	BQL	BQL	
2-Chloronaphthalene		660		BQL	BQL	BQL	
Dimethylphthalate	. #	- 660		BQL	BQL	BQL	
Acenaphthylene	W	660		BQL	BQL	BQL	
2,6-Dinitrotoluene	n	660		BQL	BQL	BQL	
Acenaphthene		660		BQL	BQL	BQL	
2,4-Dinitrotoluene		660		BQL	BQL	BQL	
Diethylphthalate		660	1	BQL	BQL	BQL	

Susan C. Scrocchi Gas Chromatography Supervisor

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

· ·			AES Lab No Sample ID -	18237 TP-9	18243 TP-6	
<pre>\nalytical 'arameter(s)</pre>	Method No.	Quant. Limits	Sample Date-	2/25/88	2/26/88	
?-Methylnaphthalene	8270	660		BQL*	BQL	
<pre>3is(2-Chloroethyl)Ether</pre>	-	660		BQL	BQL	
L,3-Dichlorobenzene		660		BQL	BQL	
L, 4-Dichlorobenzene		660		BQL	BQL	
1,2-Dichlorobenzene		660		BQL	BQL	
<pre>3is(2-Chloroisopropy1) </pre>		. 660		BQL	BQL	
Sther Jexachloroethane		660		BQL	BQL	
		660		BQL	BQL	
I-Nitrosodi-N-Propylamine		660		BQL	BQL	
litrobenzene	Ħ	660		BQL	BQL	
[sophorone		660		BQL	BQL	
3is(2-Chloroethoxy)Methane		. 660		BQL	BQL	
1,2,4-Trichlorobenzene		660		BQL	BQL	
Naphthalene Jexachlorobutadiene		660		BQL	BQL	
		660		BQL	BQL	
lexachlorocylopentadiene		660		BQL	BQL	
2-Chloronaphthalene		660		BQL	BQL	
Dimethylphthalate		660		BQL :	BQL	
Acenaphthylene	=	660		BQL	BQL	
2,6-Dinitrotoluene	Ħ	660		BQL	BQL	
Acenaphthene		660		BQL	BQL	•
2,4-Dinitrotoluene Diethylphthalate	N	. 660		BQL	BQL	

Jusa L. Scrocch

Susan C. Scrocchi Gas Chromatography Supervisor

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18244 TP-7	METHOD * BLANK		
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/26/88		• •	
2-Methylnaphthalene	8270	66()	BQL**	<10		
Bis(2-Chloroethyl)Ether	n	660)	BQL	<10		
l,3-Dichlorobenzene	Ħ	660)	BQL	<10		
1,4-Dichlorobenzene		660)	BQL	<10		
l,2-Dichlorobenzene Bis(2-Chloroisopropyl)	-	66()	BQL	<10		
Ether	-	66()	BQL	<10	•	
Hexachloroethane	· •	660)	BQL	<10		
N-Nitrosodi-N-Propylamine		660		BQL	<10		
Nitrobenzene		- 660) .	BQL	<10		
Isophorone		660		BQL	<10		
Bis(2-Chloroethoxy)Methane	9 .	660		BQL	<10		
1,2,4-Trichlorobenzene		660		BQL	<10		
Naphthalene		660		BQL	<10		
Hexachlorobutadiene		660		BQL	<10		
Hexachlorocylopentadiene		660		BQL	<10		
2-Chloronaphthalene	M	66 (BQL	<10		
Dimethylphthalate		660		BQL	·<10		
Acenaphthylene		660		BQL	<10		•
2,6-Dinitrotoluene		660		BQL	<10	•	
Acenaphthene		660		BQL	<10		
2,4-Dinitrotoluene	-	660		BQL	<10	·	
Diethylphthalate		. 660)	BQL	<10		

-Susan C. Scrocchi <u>Gas Chromatog</u>ra<u>phy</u> Su<u>per</u>vi<u>sor</u>

* Units of measure are µg/l, ppb.** Below quantifiable limits.

LABORATORY REPORT

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18231 TP-1	18232 TP-2	18233 TP-3	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/24/88	2/24/88	2/24/88	
Phenol	8720	660	2	BQL*	BQL	BQL	
2-Chlorophenol	Ħ	660		BQL	BQL	BQL	
2-Nitrophenol	W	660		BQL	BQL	BQL	
2,4-Dimethylphenol		660		BQL	BQL	BQL	
p-Chloro-m-Chesol	· W	660		BQL	BQL	BQL	
2,4,6-Trichlorophenol		660		BQL	BQL	BQL	
2,4-Dinitrophenol	. · · · · · · · · · · · · · · · · · · ·	1320		BQL	BQL	BQL	
4-Nitrophenol	W	1320		BQL	BQL	BQL	
4,6-Dinitro-O-Cresol	, M	1320		BQL	BQL	BQL	
Pentachlorophenol		1320		BQL	BQL	BQL	
2,4-Dichlorophenol		660		BQL	BQL	BQL	
4-Methylphenol		660		BQL	BQL	BQL	÷
Benzoic Acid		1320		BQL	BQL	BQL	
2,4,5-Trichlorophenol		660		BQL	BQL	BQL	
3-Nitroaniline	W	. 660		BQL	BQL	BQL	
Dibenzofuran		660		BQL	BQL	BQL	
4-Nitroaniline		660		BQL	BQL	BQL	
2-Methylphenol		660		BQL	BQL	BQL	
Benzidine		3300		BQL	BQL	BQL	

Suran L. Grach

Susan C. Scrocchi Gas Chromatography Supervisor

			ENVIRONMENTAL SI ABORATORY REPOR	•	. · 		
	Type of	Analysis:	SEMI-VOLATILES	(HSL)		r.	
	Units Of Client:		Micrograms/Kil A.E	ogram, or ppb .S. Job Code	CRF		
			AES Lab No Sample ID -	18234 TP-4	18235 TP-5	18236 TP-8	
nalytical 'arameter(s)	Method No.		Sample Date-	2/25/88	2/25/88	2/25/88	
henol	8720	660		BQL*	BQL	BQL	
?-Chlorophenol		660		BQL	BQL	BQL	
2-Nitrophenol	₩.	66Ô		BQL	BQL	BQL	
2,4-Dimethylphenol	¥	660		BQL	BQL	BQL	
>-Chloro-m-Chesol		660		BQL	BQL	BQL	
2,4,6-Trichlorophenol	Ħ	660		BQL	BQL	BQL	
2,4-Dinitrophenol		1320		BQL	BQL	BQL	
1-Nitrophenol		1320		BQL	BQL	BQL	
1,6-Dinitro-O-Cresol		1320		BQL	BQL	BQL	
Pentachlorophenol	-	1320		BQL	BQL	BQL	
2,4-Dichlorophenol		660		BQL	BQL	BQL	
1-Methylphenol		660		BQL	BQL	BQL	
3enzoic Acid		1320		BQL	BQL	BQL	
2,4,5-Trichlorophenol		660		BQL	BQL	BQL	
3-Nitroaniline		660		BQL	BQL	BQL	
Dibenzofuran	· · ·	660		BQL	BQL	BQL	
4-Nitroaniline		660		BQL	BQL	BQL	
2-Methylphenol	-	660		BQL	BQL	BQL	
Benzidine	-	3300		BQL	BQL	BQL	

<u>CNOCC M</u>

Susan C. Scrocchi Gas Chromatography Supervisor

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

		•	AES Lab No Sample ID -	18237 TP-9	18243 TP-6	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/25/88	2/26/88	
Phenol	8720	660		BQL*	BQL	,
2-Chlorophenol		660		BQL	BQL	
2-Nitrophenol		660		BQL	BQL	
2,4-Dimethylphenol		660		BQL	BQL	•
p-Chloro-m-Chesol		660		BQL	BQL	
2,4,6-Trichlorophenol	×	660		BQL	BQL	
2,4-Dinitrophenol		1320		BQL	BQL	
4-Nitrophenol		1320		BQL	BQL	
4,6-Dinitro-O-Cresol	-	1320		BQL	BQL	
Pentachlorophenol	. 🗰	1320		BQL	BQL	
2,4-Dichlorophenol		660		BQL	BQL	
4-Methylphenol		660		BQL	BQL	
Benzoic Acid		1320		BQL	BQL	
2,4,5-Trichlorophenol		660		BQL	BQL	
3-Nitroaniline		660		BQL	BQL	
Dibenzofuran		660		BQL	BQL	
4-Nitroaniline	· #	660		BQL	BQL	
2-Methylphenol		660		BQL	BQL	
Benzidine		3300		BQL	BQL	•

Susan C. Scrocchi Gas Chromatography Supervisor

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

		:	AES Lab No Sample ID -	18244 TP-7	METHOD* BLANK	
Analytical	Method	Quant.				
Parameter(s)	No.	Limits	Sample Date-	2/26/88		
Phenol	8720	660		BQL**	<10	
2-Chlorophenol	Π	660		BQL	<10	
2-Nitrophenol		660		BQL	<10	
2,4-Dimethylphenol		660		BQL	<10	
p-Chloro-m-Chesol		660		BQL	<10	
2,4,6-Trichlorophenol	Ħ	660		BQL	<10	
2,4-Dinitrophenol		1320		BQL	<20	
4-Nitrophenol		1320		BQL	<20	
4,6-Dinitro-O-Cresol		1320		BQL	<20	
Pentachlorophenol	W	1320		BQL	<20	
2,4-Dichlorophenol	Ħ	660		BQL	<10	,
4-Methylphenol		660		BQL	<10	•
Benzoic Acid		1320		BQL	<20	
2,4,5-Trichlorophenol		660		BQL	<10	
3-Nitroaniline		. 660		BQL	<10	
Dibenzofuran	=	660	••••	BQL	<10	
4-Nitroaniline	Ħ	660		BQL	<10	
2-Methylphenol	Ħ	. 660		BQL	<10	
Benzidine		3300		BQL	<50	

Serocchi ∕Śusan C. gra

* Units of measure are µg/l, ppb.
** Below quantifiable limits

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
2-Methylnaphthalene	18231	<660	<660	<660	None	None
Bis(2-Chloroethyl)Ether	18231	<660	<660	<660	None	None
1,3-Dichlorobenzene	18231	<660	<660	<660	None	None
l,4-Dichlorobenzene	18231	<660	<660	<660	None	None
1,2-Dichlorobenzene	18231	<660	<660	<660	None	None
Bis(2-Chloroisopropyl)Ether	18231	<660	<660	<660	None	None
Hexachloroethane	18231	<660	<660	<660	None	None
N-Nitrosodi-N-Propylamine	18231	<660	<660	<660	None	None
Nitrobenzene	18231	<660	<660	<660	None	None
Isophorone	18231	<660	<660	<660	None	None
Bis(2-Chloroethoxy)Methane	18231	<660	<660	<660	None	None
1,2,4-Trichlorobenzene	18231	<660	<660	<660	None	None
Naphthalene	18231	<660	<660	: <660	None	None
Hexachlorobutadiene	18231	<660	<660	<660	None	None
Hexachlorocylopentadiene	18231	<660	<660	<660	None	None
2-Chloronaphthalene	18231	<660	<660	<660	None	None
Dimethylphthalate	18231	<660	<660	<660	None	None
	18231	<660	<660	<660	None	None
Acenaphthylene	18231	<660	<660	<660	None	None
2,6-Dinitrotoluene	18231	<660	<660	<660	None	None
Acenaphthene	18231	<660	<660	<660	None	None
2,4-Dinitrotoluene	18231	<660	<660.		None	None
Diethylphthalate	18231	<660	<660	<660	None	None
Fluorene 4-Chlorophenylphenylether	18231	<660	<660	<660	None	None

Relative Percent Difference = Range/Average X 100

		UALITY CONTR	DRY REPORT	SION		
	Type of Anal Units of Mea Client: CRA	ysis: Duplic	cate Analysi grams/Kilogr	.s	F	
Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Diphenylamine(N-Nitroso)	18231	<660	<660	<660	None	None
Benzyl Alcohol	18231	<660	<660	<660	None	None
4-Chloroaniline	18231	<660	<660	<660	None	None
4-Bromophenylphenylether	18231	<660	<660	<660	None	None
Hexachlorobenzene	18231	<660	<660	<660	None	None
Phenanthrene	18231	<660	<660	<660	None	None
Anthracene	18231	<660	<660	< 660	None	None
Di-n-Butylphthalate	18231	<660	<660	<660	None	None
Fluoranthene	18231	<660	<660	<660	None	None
2-Nitroaniline	18231	<660	<660	<660	None	None
Pyrene	18231	<660	· <660	<660	None	None
Butylbenzylphthalate	18231	<660	<660	<660	None	None
Benzo(a)Anthracene	18231	<660	<660	<660	None	None
3,3'-Dichlorobenzidine	18231	<1980	<1980	<1980	None	None
Chrysene	18231	<660	<660	<660	None	None
Bis(2-Ethylhexyl)Phthalate	18231	<660	<660	<660	None	None
Di-N-Octylphthalate	. 18231	< 660	<660	<660	None	None
Benzo(b)Fluoranthene	18231	<660	<660	<660	None	None
Benzo(k)Fluoranthene	18231	<660	<660	<660	None	None
Benzo(a)Pyrene	18231	<660	<660	<660	None	None
Indeno(1,2,3-c,d)Pyrene	18231	<660	< < 660	<660	None	None
Debenzo(a,h)Anthracene	18231	<660	<660	<660	None	None
Benzo(g,h,i)Perylene	18231	<660	<660	<660	None	None

Relative Percent Difference = Range/Average X 100

in a second a contra transmission a second

Type of Analysis: Duplicate Analysis Units of Measure: Micrograms/Kilogram, ppb Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Phenol	18231	<660	<660	<660	None	None
2-Chlorophenol	18231	< 660	<660	<660	None	None
2-Nitrophenol	18231	<660	<660	<660	None	None
2,4-Dimethyphenol	18231	<660	<660	<660	None	None
p-Chloro-M-Cresol	18231	<660	<660	<660	None	None
2,4,6-Trichlorophenol	18231	<660	<660	<660	None	None
2,4-Dinitrophenol	18231	<1320	<1320	<1320	None	None
4-Nitrophenol	18231	<1320	<1320	<1320	None	None
4,6-Dinitro-o-Cresol	18231	<1320	<1320	<1320	None	None
Pentachlorophenol	18231	<1320	<1320	<1320	None	None
2,4-Dichlorophenol	18231	<660	<660	<660	None	None
4-Methylphenol	18231	<660	<660	. <660	None	None
Benzoic Acid	18231	<1320	<1320	<1320	None	None
2,4,5-Trichlorophenol	18231	<660	<660	<660	None	None
3-Nitroaniline	18231	<660	<660	<660	None	None
Dibenzofuran	18231	<660	<660	<660	None	None
4-Nitroaniline	18231	<660	<660	<660	None	None
2-Methylphenol	18231	<660	<660	<660	None	None
Benzidene	18231	<3300	<3300	<3300	None	None

Relative Percent Difference = Range/Average X 100

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units: ug/l or ppb)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Dimethylphthalate	18231	SPK	883	<660	1000	. 88
Diethylphthalate	18231	SPK	1220	<660	1100	111
Di-n-Butylphthalate	18231	SPK	1280	<660	1250	103
Butlybenzylphthalate	18231	SPK	1330	<660	1200	111
Bis(2-ethylhexyl)phthalate	18231	SPK	1600	<660	130	123
Di-n-octylphthalate	18231	SPK	1880	<660	1890	99
Phenol	18231	SPK	460	<660	300	153
2-Chlorophenol	18231	SPK	171	<660	164	104
4-Chloro-3-Methylphenol	18231	SPK	297	<660	400	75
2,4-Dichlorophenol	18231	SPK	173	<660	200	87
2,4,6-Trichlorophenol	18231	SPK	187	<660	250	75
Pentachlorophenol	18231	SPK	126	< 660	200	63
2-Nitrophenol	18231	SPK	344	<660	400	86
4-Nitrophenol	18231	SPK	410	<660	300	137
2,4-Dimethylphenol	18231	SPK	121	<660	250	49
Acenaphthylene	18231	EPA	726		1000	7.3
Benzo(a)pyrene	18231	EPA	724	· • • • • •	1000	72
Benzo(b)fluoranthene	18231	EPA	681		1000	68
Benzo(g,h,i)perylene	18231	EPA	695		1000	70

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

Type of Analysis: ORGANICS

Units Of Measure: Milligrams/Kilogram, ppm (dry wt. basis) Client: CRA A.E.S. Job Code CRF

	· ·	AES Lab No Sample ID -	18231 TP-1	18232 TP-2	18233 TP-3	
Analytical Parameter(s)	Method Quant. No. Limits	Sample Date-	2/24/88	2/24/88	2/24/88	
Thiophene Furfural	722J 10. 790 10.	0 0	BQL* BQL	BQL BQL	BQL BQL	
		•				
	:					
		•	•			
		- • •		· · ·		•
			Susan C. Scr	C. Enoce	<u>Li</u>	

* Below quantifiable limits.

.

Gas Chromatography Supervisor

		L	ENVIRONMENTAL S ABORATORY REPOR					
	Type of	Analysis:			•			
	Units Of Client:		Milligrams/Kil A.E	ogram, ppm (c .S. Job Code	n (dry wt. basis) ode CRF			
		•	AES Lab No Sample ID -	18234 TP-4	18235 TP-5	18236 TP-8		
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	2/25/88	2/25/88	2/25/88		
Thiophene Furfural	722J 790	10.0 10.0		BQL* BQL	BQL BQL	BQL BQL		
						•		
				- - - -				
				· ·				
		• • • •						
	•		· · ·	· . :	·			
· · · · · ·	. *	· · ·						
• • •				Jusan	A Groc	<u>rch</u>		

Susan C. Scrocchi Gas Chromatography Supervisor

* Below quantifiable limits.

Type of Analysis: ORGANICS

Units Of Measure: Milligrams/Kilogram, ppm (dry wt. basis) A.E.S. Job Code CRF Client: CRA 18243 AES Lab No.-18237 TP-9 Sample ID -TP-6 Method Ouant. Analytical Sample Date-2/25/88 2/26/88 No. Limits Parameter(s) BOL* BQL 722J 10.0 Thiophene 790 10.0 BQL BOL Furfural

* Below quantifiable limits.

Susan C. Scrocchi Gas Chromatography Supervisor

· · ·		ADVANCED ENVIRONMENTAL SERVICES, INC LABORATORY REPORT Analysis: ORGANICS Measure: Milligrams/Kilogram, ppm CRA A.E.S. Job Code			(dry wt. basis)		
Analytical	 Method		AES Lab No Sample ID -	18244 TP-7	METHOD BLANK		
Parameter(s) Thiophene Furfural	No. 722J 790	Limits 10.0 10.0	Sample Date-	2/26/88 BQL* BQL			
• • •	•		•				
• • • •				- - - -	· ·		
		•.	· . · · ·	Jusan	(pombi		

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Measure: Milligrams/Kilogram, ppm Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Thiophene Furfural	18244 18244	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	None None	None None
· · · · · · · · · · · · · · · · · · ·				•		•
	• . . ·					
		• •				· · ·
	:	•				
· · · · · · · · · · · · · · · · · · ·		· (· · · · · ·	
				•	•	
			• . • •			
Relative Percent Difference = Range/Average X 100		· · · · · · · · · · · · · · · · · · ·			· · · ·	
		• • • • • •			•	

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

=====

Type of Analysis: Matrix Spikes and E.P.A. Standards A.E.S. Job Code: CRF Client: CRA

(Units: mg/kg or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Furfural Furfural (mg/l) Thiophene Thiophene (mg/l)	18244 18244	SPK EPA SPK EPA	13.4 52 39.1 50	<10.0 <10.0	12.6 50 38.1 50	106 104 103 100

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

	AES JOB		
	ANALYTICAL METHOD	SAMPLE CODE	DATE OF EXTRACTION
-g	8240	18231-37,43,44	3/1/88
	8270	18231-37, 43, 44	314188
			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·			
	1		

ANALYST

are

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

AES JOB CODE CRE

ANALYST ANALYTICAL METHOD SAMPLE CODE DATE OF ANALYSIS TIME OF ANALYSIS 3/14/88 7225 18231-37,43,44 1815-2400 7 Fama 3/8/88 790 18231,33,36 2100 - 2230 3/9/88 790 18232,34,35,37,43 1545-2200 3270 3/16/88 18231-18237,18243,44 9:30 -22:00 8240 3/8/88 18244,33,31,43,34 16:00 -24:00 8240 3/9/88 18132,353736 9:30 - 16:00

_____ ______

Type of Analysis: METALS

Client: CRA	A.E.S.	Jop	Code (CRF

(All results are in mg/kg)

Analytical Parameter(s)		AES Lab Sample	ID -	18231 TP-1 SOIL GRAB 2/24/88	18232 TP-2 SOIL GRAB 2/24/88	18233 TP-3 SOIL GRAB 2/24/88	
Total Potassium (K) Total Iron (Fe) Total Zinc (Zn)	7610 7380 7950	100 30 5		1,570 16,600 95	1,798 16,850 91	1,241 19,500 39	

Janette Bingert () Atomic Spectroscopy Supervisor

		ADVANC	ED ENVIRONMENTA LABORATORY RE		NC.	
	Туре о	f Analys	is: METALS			••
	Client	: CRA		A.E.S. Job	Code CRF	•
		(Al	l results are in	n mg/kg)		
Analytical Parameter(s)	Method No.	Quant. Limits	AES Lab No Sample ID - Sample Date-	18234 TP-4 SOIL GRAB 2/25/88	18235 TP-5 SOIL GRAB 2/25/88	18236 TP-8 SOIL GRAB 2/25/88
Total Potassium (K) Total Iron (Fe) Total Zinc (Zn)	7610 7380 7950	100)	1,708 20,700 49	1,204 17,250 39	1,613 19,750 76

۰.

.

:

.

ι,

Janette Bingert () Atomic Spectroscopy Supervisor

Type of Analysis: METALS

Client: CRA

A.E.S. Job Code CRF

(All results are in mg/kg)

Analytical Parameter(s)	Method No.	AES Lab No Sample ID - Quant. Limits Sample Date-	18237 TP-9 SOIL GRAB 2/25/88	18243 TP-6 SOIL GRAB 2/26/88	18244 TP-7 SOIL GRAB 2/26/88	•
Total Potassium (K)	7610	100	2,552	1,943	2,270	
Total Iron (Fe)	7380	30	21,700	24,600	22,300	
Total Zinc (Zn)	7950	5	50	55	50	

Janette Bingert () Atomic Spectroscopy Supervisor

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Measure: Milligrams/Kilogram Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Potassium (K)	18237	2,548	2,554	2,551	6	0.2
Iron (Fe)	18237	21,750	21,600	21,700	150	1
Zinc (Zn)	18237	49	50	50	1	2

Relative Percent Difference = Range/Average X 100

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units: mg/l, or ppm)

Analytical Parameters	Sample		Observed	Original	Added	Percent
	No. Type		Conc.	Conc.	Conc.	Recovery*
Potassium (K) Independent (K) std. Iron (Fe) EPA (Fe) std. Zinc (Zn) Independent (Zn) std.	18237 18237 386 18237	**SPK STD ***SPK EPA SPK STD	32.20 10.48 9.20 1.06 1.44 0.49	$ 12.76 \\ 10.00 \\ 4.34 \\ 0.99 \\ 0.50 \\ 0.50 $	20.00 5.00 1.00	97 105 97 107 94 98

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)
 ** Spike on sample dilution factor of two.
*** Spike on sample dilution factor of fifty.

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT ATOMIC SPECTROSCOPY DEPARTMENT

AES JOB CODE CRF

ANALYST	ANALYTICAL METHOD	SAMPLE CODE	DATE OF ANALYSIS	TIME OF ANALYSIS
P. McMahow	7610	18243-44 18231-37	2-29-88	1700
	7380	18243-44 18 2 31-37	2-29-88	1500
	1950	18243 - 44 <u>18231 - 3</u> 7	2-29-88	1900
•				
			· · · · · · · · · · · · · · · · · · ·	
		· ·		<u></u>
				•

APPENDIX A

CHAIN OF CUSTODY RECORDS

.

1

2186 LIBERTY DRIVE NIAGARA FALLS, NY 14304 (716) 283-3120

	N OF		STODY	JOB CODE	PRO	DJECT NAM	ΕĊ	(N)	TUN	CARD+	?E	
ļ	REC	ORD		CRF	J	wat	er	ma	110	Beda	1:n9	•
	SAMPLER'S SIGNATURE										NO. OF CONTAINERS	
MPLE NO.	ġź	DATE	TIME	SAMPLE LOCA	TION		GRAB	COMP	SAI	APLE TYPE	NO.	REMARKS
TPH		2-2558		Test P.T	Н					SOIL	1	
P4				<u>, (</u>							1	
TPS		<i>(</i> ,		· · · ·	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					······································		······································
P S'		ti -		1.	, ۱						(
TP9 p9				ч.	···					······	$\frac{1}{c}$	·····
				<u> </u>				$\left - \right $			<u>'</u>	····
TPS				11	· · ·	. <u> </u>					1	······································
75		('		` 1	11						1	
		ļ			· · ·							
		<u> </u>					$\left - \right $					
-		{	· .				$\left - \right $	$\left \right $			┝──┤	
	·										┟╼╼┤	
		 	[]				$\left - \right $					
		<u> </u>		<u></u> .								· · · · · · · · · · · · · · · · · · ·
												-
		<u> </u>							<u>. </u>		┝──┼	
		 					$\left - \right $			L CONTAINERS		
·		L	<u> </u>									
		BY (Si				DATE	1	IME		RECEIVED BY	(Sig	3. Serwan
	Du	nnia	<u> </u>			2 12518	4	1.14	13	3 the	rk y	1. servan
		BY (Si	lgn)			DATE	T	IMI	8	RECEIVED BY	(Sig	n)
[2]	2							3	<u> </u>			
ELINQ	ELINQUISHED BY (Sign)			DATE	T	IME	Ξ.	RECEIVED BY	(Sig	n)		
1 3	[3]							· •				
ELINQ	ELINQUISHED BY (Sign)		DATE	Ţ	IME	 E	RECEIVED BY	(Sig	n)			
•							<u></u>					
<u>├</u> ───						<u></u>	1			L		

CON	RA Consulting ESTOGA-RO Colby Drive, Wate	VERS & AS			SHIPPED TO (Laboratory name): AES						
СН	AIN OF REC		FODY	project 2293			ect NAME: U		on Carbide edding		
SAMP	LER'S SIGNATU	re <u>C</u>	Juna	(San) A			SAMPLE		REMARKS		
SEQ. SAMPLE Nº. DATE TIME SAMPL				SAMPLE I	OCATO	NIN	TYPE	NP OF CONTAINERS			
	TP4	2/25/88		Test Pi	+ 4		Soil		VOA		
	P	° Ji -	. 	<u>n n</u>	••		11		1pt glass		
	TP8	31		li h	8		11		VOA		
	TP8	1,		<u> </u>	8)• <u>.</u>	-+-	1 pt glass		
	TP9	11		<u>l</u> 16	9		<u> </u>	1	νολ		
	ТР9	1,		n (,	9		1.		1 pt glass		
	TP5	•		()	5		h		VOA		
	TP5	11		h 1	5		h		1pt glass.		
		· · ·									
				•					· · · · · · · · · · · · · · · · · · ·		
	<u> </u>										
							<u></u>		· · · · · · · · · · · · · · · · · · ·		
			····					$\left \right $	· · · · · · · · · · · · · · · · · · ·		
A.	······	▲▲ ·====::-,		TOTAL NUM	BER O	F CONT	AINERS	8	·		
ANTI	CIPATED CHEMIC	CAL HAZARD	s:	know	~				• • •		
RELIN	NQUISHED BY:	10	•	DA		IE	RECEIVED	BY:	\sim		
		(SIGN)	nige	- <u> </u>	+1	4/5		@-*	(SQ4)		
RELIN	NOUISHED BY:			DA		Æ	RECEIVED	3 <u>7:</u> 3)	· · · · · · · · · · · · · · · · · · ·		
RELIN		(SIGN)					RECEIVED		(99)		
	3	(SIGN)		-		····		()	(394)		
	TIONAL SIGNATL					,			····		
	100 of shipme	NT:	SHIPPE	D BY:		RECEI	L VED FOR LABO	RATO	RY BY: DATE/TIME		
	DITION OF SEAL				COOLER OPENED BY: DATE/TIM						
YEI PIN	LLOW	CRA OFFICI RECEIVING CRA LABOR SHIPPERS	LABORATOF	RY COPY PY			<u>.</u>	ŕ	4738		

:.

Ľ

			BINC.	_			2186 LIBERTY DRIVE Niagara Falls, ny 14304 (716) 283-3120								
	N OF REC	- CUS ORD	TODY	JOB CODE CRF	pro U C	JECT NAM ² C - A	C - Republic Watermain Test Pits								
SAMPI SIGNA				······							NO. OF CONTAINERS				
MPLE NO.	SEQ. NO.	DATE	TIME	SAMPLE LOCAT	ION		GRAB	COMP		PLE TYPE	NO.	REMARKS			
		1/24/18		TEST PIT		-	X		50)IL	3	210AS, 1-50	2		
	2	2/24/5			2		X			/	3	1 * * * *			
	3	2/24/88		TEST PI	T3	··	ĮΧ_		.50	IL	3	<i>••</i> • • • • •			
							 								
			<u>-</u>									· · · · · · · · · · · · · · · · · · ·			
		}		· · ·	·					· · · ·	·	· · · · · · · · · ·			
				l 		<u> </u>	-	┝─┤							
							$\left - \right $	⊢∤		·· ····					
								┝╌┨			┼──┤				
		├ {	······	,, ,, ,, ,, ,,				\vdash			-{}				
-												••• •••••• •••			
	, i						\square								
						· · · ····	\square				+				
1				· · · · · · · · · · · · · · · · · · ·											
				<u>. </u>		· · · · · · · ·					++	· · · · · · · · · · · · · · · · · · ·			
							\square			· · · · · · ·					
							\square					·			
							\square								
												÷			
				· · · · · · · · · · · · · · · · · · ·			Π			· · · · · · · · · · · · · · · · · · ·					
												· · · · · · · · · · · · · · · · · · ·			
								Ι							
								\square				······································			
									TOTAL	CONTAINERS	9				
TTNOU	TSHED	BY (Si	art)			D305					V (0)				
 	Ile.	_	//		7	дате 7/24/00	12	'іме 5:0	0	2 pine					
ل	- w	~ *	uzer	want	— ľ	-127/88			<i>n</i> .	O Miring	Torn	w-1113			
LINQU	ISHED	BY (Si	gn)			DATE	1 4	IME		RECEIVED B	Y (Sig	 1)			
2]						. –				_	_ ,j.	· • .			
					-	_				3			<u>. </u>		
LINQU	ISHED	BY (Si	gn)			DATE	T	IME	E .	RECEIVED B	Y (Sigr	1)			
3]								(•)	• = = •	-					
ل 			· · · · · · · · · · · · · · · · · · ·		-					<u> </u>		· · · · · · · · · · · · · · · · · · ·			
LINQUISHED BY (Sign)				DATE	Т	IME	: T	RECEIVED B	Y (Sign	.)					
4							1	(5							
										<u> </u>					

CF	RA Consulting	Engineers				SHIPPED TO (Laboratory name):					
CON	IESTOGA-RO	/ERS & AS				AES					
CH	AIN OF	CUS	TODY	PROJEC	CT Nª: ⁻	PROJE	CT NAME: (100-	- Re	public	
		ORD		229.	3	Wat	ermain	Te	s+ (Dits	
SAMPLER'S SIGNATURE C. Dunning				San O			SAMPLE TYPE		F	REMARKS	
seq. Nº.	SAMPLE Nº.	DATE	ТІМЕ	SAMPL	E LOCATO	NIC		N ^e OF CONTAINERS			
	TPI	2/24/88		Test	Pit 1		Soil	2	V	A vial	
	· · · · · · · · · · · · · · · · · · ·						<u> </u>	+L	104.	glass	
	TPZ			Test	Pit 2		Soil	2	V 0	A vial	
					<u> </u>	-	11	Ĩ	10+	glass	
					<u>i</u>		<u> </u>			<u> </u>	
	TP3	<u> </u>) cst	$p_{i+1} =$	3	Sai	3		Vial	
				<u> </u>			•••		1 pr	- Glas	
				<u> </u>						• P · ·	
						<u></u>		+			
		·					·			<u>.</u>	
		·				· · ·				· · · · · · · · · · · · · · · · · · ·	
								┢──┤			
								1		••	
		· · · · · · · · · · · · · · · · · · ·		TOTAL N	IUMBĘR C	F CONTA	NERS	9		· · · · · · · · · · · · · · · · · · ·	
ΑΝΠ	CIPATED CHEMIC	CAL'HAZARD	S: Unl	cnow	v (•			· .	
RELI					DATE/TH	ME	RECEIVED	BY:	H		
		(SIGN)	ngc-	- <u>2/24</u>	-/58/11	<u>430</u>		2	C. Al-	(SIGN)	
RELI	NQUISHED BY:	Heren (SKGN)	Jupanas	ζ <u>-'</u> ,	DATE/TI	HE JUJAN	RECEIVED	BY:		(SICN)	
RELI	NQUISHED BY:	(July)	s	;	DATE/TI	νE	RECEIVED	BY:			
	3-	(SIGN)	<u>.</u>		!					(SQN)	
	TIONAL SIGNAT			, ,		. ~, 1					
меті	HOD OF SHIPME	NT:	SHIPPE	D BY:	<u> </u>	1	ED FOR LAB	7	1	DATE/TIME	
	DITION OF SEAL								<u> </u>	DATE/TIME	
	ERAL CONDITION				COOLER OPENED BY: DATE/TIME (SIGN)						

1

1

.

•••

5 a 5 a

22072 •••• •••

.

4.4×.5 400 **are** and a يعارشه يعرمون

ì

: 1

Ì

ş.

									y		
		S INC.	-	<u></u>	2186 LIBERTY DRIVE Niagara Falls, ny 14304 (716) 283–3120						
CHAIN O REC	F CUS ORD	STODY	JOB CODE CRF	PROJECT N		Си	h	lie	hat	erm	in Text fits
SAMPLER'S SIGNATURE	· · ·									NO. OF CONTAINERS	
SAMPLE SEQ. NO. NO.	DATE	TIME	SAMPLE LOCATIO	N		COMP	SA	MPLE T	YPE	NO.	REMARKS
	7/20/8		TextPe	it b	X			car	4.	2	containers
	2/26/	{	Test Pu	<u>t 7</u>	_ <u> </u> ×	1		cail	<u></u>	2	<u> </u>
	· · · · · ·	45°									
·						\square	<u> </u>	·			
				······							
						┦╌┨					······································
	· · ·			······			· · ·				
				<u></u>	+	┼┤					
				· · · · ·							
						$\left\{ \cdot \right\}$					
						\uparrow					
						\Box					
									· · ·		· · · · · · · · · · · · · · · · · · ·
						┼┼					·····
					+-	╞┼╏	. <u> </u>				
							TOTAL	L CONTA	INERS	4	······································
RELINQUISHED	BY (SI	gn)	·	DATE		TIME		DECET	YED BY	(61-	
Dian	\sim	A fr	1pson	- 2/2'2			40 m.				roush
RELINQUISHED	BY (Si	.gn)		DATE	<u> </u>	rime	3	RECEI	VED BY	(Sign	n)
2		·						<u></u>			
RELINQUISHED BY (Sign) DA								<u> </u>			· · · · · · · · · · · · · · · · · · ·
						FIME		-	VED BY	(Sigr	1)
3				•				<u> </u>			<u> </u>
	RELINQUISHED BY (Sign) DATE				1	TIME	:	RECEI	VED BY	(Sigr)
•								5		•	
REMARKS:								L		<u></u> <u>.</u>	

CON	RA Consulting IESTOGA-RO Colby Drive, Wate	VERS & AG	SOCIATE Canada N2	S 2V 1C2	SHIPPED TO (Laboratory name): AES						
		ORD		project 2293						с	
	PLER'S SIGNATU	re <u>C</u>	Juni				SAMPLE TYPE	Nº OF CONTAINERS	F	REMARKS	
SEQ. N ^P .	SAMPLE Nº.	DATE	TIME	SAMPLE		חומ		² 8			
	TP6	2/26/88		Test Pit	- 6		Soil_		V	AC	
	TP6			<u> </u>			<u> </u>		$ \rho_{i}$	Glass	<u>.</u>
]	TP7	2/26/88		J	<u> </u>		1(١	V	C)A	
	TP7			<u>ls l.</u>					p ! _	glass	
						· .	·				
										.	
	······									, T	
										•	<u></u>
									· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·							<u>-</u> -
										i-	
		••••••••••••••••••••••••••••••••••••••		TOTAL NUM	BER O	F CONT	AINERS	4		•	
ANTI	CIPATED CHEMI	CAL HAZARD		nown			·				
RELI	NQUISHED BY:	2 2				1E	RECEIVED	3Y: C	<u></u>	$\overline{\bigcirc}$	
		<u>L. Dirm</u>	mige	- 2/26/1	•			01	Jiana	(MOM	apso
						ИЕ 2.40 р	RECEIVED E	3Y:	udy (Atrow (SON)	sh.
RELI	NQUISHED BY:			DA	TE/TIM	íE	RECEIVED	-		<u> </u>	
(SIGN)								(4)	((904)	
ADDITIONAL SIGNATURE SHEET REQUIRED											
	OUTIER	CRA)	DBY: horr	oson	RECEN (SIGN)	ED FOR LABO			DATE/T 2/161 °	ime 	
CONDITION OF SEAL UPON RECEIPT: GENERAL CONDITION OF COOLER:						COOL (SIGN) -	ER OPENED B	Y:		DATE/TI	ME
WHITE CRA OFFICE COPYYELLOW RECEIVING LABORATORY COPYPINK CRA LABORATORY COPYGOLDEN ROD SHIPPERS						•		N	10	4802	

.

•

:

<u>|</u>: :

.

APPENDIX F

- - .

÷.

______ (

.

APPENDIX F

ANALYTICAL RESULTS

SITE SOILS

CRA PROJECT #2293 (FOR UNION CARBIDE)

Report Prepared For

CONESTOGA ROVERS & ASSOCIATES, INC.

Mocrial Catherine Mocniak (

Project Manager

Jahette Bingert Quality Control Manager

April 14, 1988 AES Report CRF

COMMITMENT TO HONESTY - QUALITY - SERVICE

	Type of		D ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT E RESULTS - WET CHEMISTRY	
	Client:	CRA	A.E.S. Job Code CRF	
Analytical Parameter(s)	Method No.		AES Lab No 18630 18631 Sample ID - DP-1 DP-2 - DP-12 DP-11 LAB COMP LAB COMP Sample Date- 3/15-16/88 3/15-16/99	
Ammonia (As N) (mg/l)	350.1	0.01	0.42 0.08	0.52
Nitrite (As N) (mg/l)	353.2	0.01	0.25 0.15	0.24
Total Kjeldahl Nitrogen(mg/l)	351.2	0.1	0.6 0.3	3.2
Total Rec. Phenols (mg/l)	420.2	0.005	BQL* 0.006	0.006
Diethyl Sulfate (As SO4)**	375.2	2.0	25 22	24

All analysis run on 20% solution of sample.

* Below quantifiable limits.
** Presumptive test.

Margaret L. Skowron Wet Chemistry Supervisor Seis-wien

1

•:. •

Type of Analysis: RESULTS - WET CHEMISTRY

Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18633 DP-6 DP-7	LAB BLANK	•
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	LAB COMP 3/15/88		
Ammonia (As N) (mg/l)	350.1	0.01		2.2	BQL*	
litrite (As N) (mg/l)	353.2	0.01		0.06	BQL	
fotal Kjeldahl Nitrogen(mg/l)	351.2	0.1		3.2	BQL	
Fotal Rec. Phenols (mg/l)	420.2	0.005		BQL	BQL	
)iethyl Sulfate (As SO4)**	375.2	2.0		60	BQL	

Margaret :-- 2

Margaret L. Skowron Wet Chemistry Supervisor

* Below quantifiable limits. ** Presumptive test.

			=========	LABORATORY REPO)RT ====================================		· .
				: ORGANICS			
	Uni Cli	ts Of lent:	Measure CRA	: Milligrams/Ki A.	logram, ppm E.S. Job Cod	(dry wt. bas e CRF 	is)
			•	AES Lab No Sample ID -	18630 DP-1	DP-2	18632 DP-3
Analytical Parameter(s)	Me	thod No.	Quant. Limits	Sample Date-	DP-12 LAB COMP 3/15-16/88	LAB COMP	DP-8 LAB COMP 3/15-16/88
Surfural Shiophene	Supelco Supelco	790 722J	10 10	•	BQL* BQL	BQL BQL	BQL BQL
					· ·	•	·
					:	·	
					:		
·					: . :		
				. · · ·	•		
• •							
					:		
						C	
				3	, isat	C Server	t.

·

.

Type of Analysis: ORGANICS

Units Of Measure: Milligrams/Kilogram, ppm (dry wt. basis) Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18633 DP-6 DP-7	METHOD BLANK*
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	LAB COMP	DLANK *

Turfural Thiophene	Supelco 790 Supelco 722J	10 10	BQL** BQL	<1.0 <1.0	• • •
		• ×	· · · · · ·		

* Units of measure are: mg/l,ppm ** Below quantifiable limits.

Susan C. Scrocchi

Gas Chromatography Supervisor

Type of Analysis: VOLATILE ORGANICS (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF _____

		А	ES Lab No	18630	18631	18632
			Sample ID -	DP-1	DP-2	DP-3
			•	DP-12	DP-11	DP-8
Analytical	Method	Quant.		LAB COMP	LAB COMP	LAB COMP
Parameter(s)	No.	Limits S	ample Date-	3/15-16/88	3/15-16/88	3/15/88
Chloromethane	8240	1600		BQL*	BQL	BQL
Vinyl Chloride		1600		BQL	BQL	BQL
Chloroethane		1600		BQL	BQL	BQL
Bromomethane		1600		BQL	BQL	BQL
2-Chloroethyl Vinyl Ether		1600		BQL	BQL	BQL
Ethylbenzene		800		BQL	BQL	BQL
Methylene Chloride		800		BQL	BQL	BQL
Chlorobenzene	-	800		BQL	BQL	BQL
l,l-Dichloroethylene		800		BQL	BQL	BQL
l,l-Dichloroethane	Ħ	800		BQL	BQL	BQL
trans-1,2-Dichloroethylene	Ħ	800		BQL	BQL	BQL
Chloroform		800		BQL	BQL	BQL
l,2-Dichloroethane	Ħ	800		BQL	BQL	BQL
l,l,l-Trichloroethane	Ħ	. 800		BQL	BQL	BQL
Carbon Tetrachloride		800		BQL	BQL	BQL
Bromodichloromethane		800		BQL	BQL	BQL
l,2-Dichloropropane		800		BQL	BQL	BQL
trans-1,3-Dichloropropene		800		BQL .	BQL	BQL
Trichloroethylene		800		BQL	BQL	BQL
Benzene		800		BQL	BQL	BQL
cis-1,3-Dichloropropene	-	800		BQL	BQL	BQL
1,1,2-Trichloroethane	-	800		BQL	BQL	BQL
Dibromochloromethane		800		BQL	BQL	BQL
Bromoform	•	800		BQL	BQL	BQL

* Below quantifiable limits.

.... ..

> Susan'C. Scrocchi Gas Chromatography Supervisor

•

5

Type of Analysis: VOLATILE ORGANICS (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18633 DP-6 DP-7	18634 Field Blank	LAB BLANK	
<pre>\nalytical 'arameter(s)</pre>	Method No.	Quant. Limits	Sample Date-	LAB COMP 3/15/88	3/14/88		
Chloromethane	8240	1600		BQL*	BQL	BQL	
/inyl Chloride	# *	1600		BQL	BQL	BQL	
Chloroethane		1600		BQL	BQL	BQL	
3romomethane		1600		BQL	BQL	BQL	
2-Chloroethyl Vinyl Ether		1600		BQL	BQL	BQL	
Sthylbenzene		800		BQL	BQL	BQL	
lethylene Chloride	· H	800		BQL	BQL	BQL	
Chlorobenzene	Ħ	800		BQL	BQL	BQL	
L,1-Dichloroethylene		800		BQL	BQL	BQL	
L,l-Dichloroethane		800		BQL	BQL	BQL	
<pre>:rans-l,2-Dichloroethylene</pre>		800		BQL	BQL	BQL	
Chloroform	. "	800		BQL	BQL	BQL	
L,2-Dichloroethane		800		BQL	BQL	BQL	
l,l,l-Trichloroethane	. 🗖	800		BQL	BQL	BQL	
Carbon Tetrachloride	a de la companya de l	. 800		BQL	BQL	BQL	
<pre>3romodichloromethane</pre>		800	· •	BQL	BQL	BQL	
1,2-Dichloropropane		800		BQL	BQL	BQL	
rans-1,3-Dichloropropene		800		BQL	BQL	BQL	
Crichloroethylene		800		BQL	BQL	BQL	
Benzene		800		BQL	BQL	BQL	
is-1,3-Dichloropropene		. 800		BQL	BQL	BQL	
1,1,2-Trichloroethane		800	×	BQL	BQL	BQL	
)ibromochloromethane	•	. 800		BQL	BQL	BQL	
3romoform	Ħ	800	· · ·	BQL	BQL	BQL	

' Below quantifiable limits.

Susan C. Scrocchi Gas Chromatography Supervisor

: .

6

Type of Analysis: VOLATILE ORGANICS (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

Analytical Parameter(s)	Method No.	Quant. Limits	AES Lab No Sample ID - Sample Date-	18630 DP-1 DP-12 LAB COMP 3/15-16/88	18631 DP-2 DP-11 LAB COMP 3/15-16/88	18632 DP-3 DP-8 LAB COMP 3/15/88
1,1,2,2-Tetrachloroethylene	8240	800		BQL*	BQL	BQL
1,1,2,2-Tetrachloroethane	· •	800		BQL	BQL	BQL
Toluene		800		BQL	BQL	BQL
Acetone		8000		BQL	190,000	53,000
Carbon Disulfide	63	800		BQL	BQL	BQL
2-Butanone		8000		BQL	BQL	BQL
Vinyl Acetate		. 800		BQL	BQL	BQL
2-Hexanone		8000		BQL	BQL	BQL
4-Methyl-2-Pentanone		8000		BQL	BQL	BQL
Styrene		800		BQL	BQL	BQL
Xylenes (Total)		800		BQL	BQL	BQL
Trichlorofluoromethane		800		BQL	BQL	BQL

* Below quantifiable limits.

Susan⁽⁾C. Scrocchi Gas Chromatography Supervisor

ADVANCED ENVIRONMENTAL SERVICES, INC.

LABORATORY REPORT

Type of Analysis: VOLATILE ORGANICS (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

Analytical Parameter(s)	Method No.	Quant. Limits	AES Lab No Sample ID - Sample Date-	18633 DP-6 DP-7 LAB COMP 3/15/88	18634 FIELD BLANK 3/14/88	LAB BLANK
1,1,2,2-Tetrachloroethylene	8240	800		BQL*.	BQL	BQL
1,1,2,2-Tetrachloroethane		800		BQL	BQL	BQL
Foluene	. 🗖	800		BQL	BQL	BQL
Acetone		8000		BQL	BQL	BQL
Carbon Disulfide		800		BQL	BQL	BQL
2-Butanone		8000		BQL	BQL	BQL
Vinyl Acetate		800		BQL	BQL	BQL
2-Hexanone		8000		BQL	BQL	BQL
4-Methyl-2-Pentanone		8000		BQL	BQL	BQL
Styrene		800		BQL	BQL	BQL
Xylenes (Total)		800		BQL	BQL	BQL
Frichlorofluoromethane	•	800	•	BQL	BQL	BQL

8

Susan C. Scrocchi Gas Chromatography Supervisor

* Below quantifiable limits.

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

Analytical Parameter(s)	Method No.	Quant. Limits	AES Lab No Sample ID - Sample Date-	18630 DP-1 DP-12 LAB COMP 3/15-16/88	DP-11 L'AB COMP	18632 DP-3 DP-8 LAB COMP 3/15/88	
2-Methylnaphthalene	8270	660		11,000	3,600	3,300	
<pre>3is(2-Chloroethyl)Ether</pre>		660		BQL*	BQL	BQL	
L,3-Dichlorobenzene	· #	660		BQL	BQL	BQL	
L,4-Dichlorobenzene	•	660		BQL	BQL	BQL	
L,2-Dichlorobenzene Bis(2-Chloroisopropyl)		660		BQL	BQL	BQL	•
Sther		660		BQL	BQL	BQL	
lexachloroethane	-	660		BQL	BQL	BQL	
I-Nitrosodi-N-Propylamine	•	660		BQL	BQL	BQL	
litrobenzene		660		BQL	BQL	BQL	
(sophorone		660		BQL	BQL	BQL	
<pre>Bis(2-Chloroethoxy)Methane</pre>		660		BQL	BQL	BQL	
1,2,4-Trichlorobenzene	-	660		BQL	BQL	BQL	
Japhthalene		660		21,000	13,000	13,000	
Iexachlorobutadiene		660		BQL	BQL	BQL	
lexachlorocylopentadiene		660		BQL	BQL	BQL	
2-Chloronaphthalene		660		BQL	BQL	BQL	
)imethylphthalate		660		BQL	BQL	BQL	
\cenaphthylene		660	•	BQL	7,000	BQL	
2,6-Dinitrotoluene	1	660		BQL	BQL	BQL	· ·
Acenaphthene	T	. 660		41,000	43,000	23,000	,
2,4-Dinitrotoluene		660		BQL	BQL	BQL	
)iethylphthalate		660		BQL	BQL	BQL	

9 Susan C. Scrocchi Gas Chromatography Supervisor

' Below quantifiable limits.

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

Analytical Parameter(s)	Method No.	Quant. Limits	AES Lab No Sample ID - Sample Date-	18633 DP-6 DP-7 LAB COMP 3/15/88	LAB BLANK	· · ·
2-Methylnaphthalene	8270	660		5,800	BQL*	
Bis(2-Chloroethyl)Ether		660		BQL	BQL	• · · ·
1,3-Dichlorobenzene		660		BQL	BQL	•
l,4-Dichlorobenzene		660		BQL	BQL	• •
1,2-Dichlorobenzene		. 660		BQL	BQL	· ·
Bis(2-Chloroisopropyl)					222	
Ether		660		BQL	BQL	
Hexachloroethane		660		BQL	BQL	
N-Nitrosodi-N-Propylamine		660		BQL	BQL	
Nitrobenzene	•	660		BQL	BQL	
Isophorone		660		BQL	BQL	
Bis(2-Chloroethoxy)Methane		660		BQL	BQL	·
1,2,4-Trichlorobenzene		660		BQL	BQL	
Naphthalene		660		12,000	BQL	
Hexachlorobutadiene		660	l i i i i i i i i i i i i i i i i i i i	BQL	BQL	
Hexachlorocylopentadiene		660		BQL	BQL	
2-Chloronaphthalene		660		BQL	BQL	
Dimethylphthalate		660		BQL /	BQL	, ,
Acenaphthylene		660		BQL	BQL	
2,6-Dinitrotoluene		660		BQL	BQL	•
Acenaphthene		660		21,000	BQL	
2,4-Dinitrotoluene	. •	660		BQL	BQL	
Diethylphthalate	W	660		BQL	BQL	

) Susan C. Scrocchi Gas Chromatography Supervisor

* Below quantifiable limits.

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

					•		
•			AES Lab No	18630		18632	
			Sample ID -	DP-1		DP-3	
nalytical	Nothod		-	DP-12	- ,	DP-8	
arameter(s)	Method	Quant.		LAB COMP		LAB COMP	
	No.	Limits	Sample Date-	3/15-16/88	3/15-16/88	3/15/88	
luorene	8270	660		36,000	24,000	17,000	
-Chlorophenylphenylether		660		BQL*		BQL	
)iphenylamine(N-Nitroso)		660		BQL	BQL	BQL	
enzyl Alcohol		660	·	BQL	BQL	BQL	
-Chloraniline		660		BQL	BQL	BQL	
-Bromophenylphenylether		660		BQL	BQL	BQL	
exachlorobenzene		. 660		BQL	BQL	BQL	·
henanthrene	-	660		100,000	84,000	45,000	
nthracene	-	660		26,000	36,000	19,000	
i-N-Butylphthalate	-	660		BQL	BQL	BQL	
luoranthene		660		150,000	71,000	11,000	
-Nitroaniline		660		BQL	BQL	BQL	
yrene		660		110,000	62,000	40,000	
utylbenzylphthalate		660		BQL	BQL	BQL	
enzo(a)Anthracene	· •	660		750,000	260,000	150,000	•
,3'-Dichlorobenzidine		1980	•	BQL	BQL	BQL	
hrysene	• •	660		9,600	230,000	110,000	
is(2-Ethylhexyl)Phthalate		660		BQL	BQL	BQL	
i-N-Octylphthalate		660		BQL	BQL	BQL	
enzo(b)Fluoranthene		660		500,000	95,000	36,000	
enzo(k)Fluoranthene		660	•	37,000	BQL	29,000	
enzo(a)Pyrene		660		550,000	640,000	BQL	
ndeno(1,2,3-C,D)Pyrene	· •	660		BQL	BQL	BQL	
ibenzo(a,h)Anthracene		. 660		BQL	BQL	BQL	
enzo(g,h,i)Perylene		660		BQL	BQL	BQL	

Below quantifiable limits.

Susan C. Scrocchi Gas Chromatography Supervisor . . .

ADVANCED ENVIRONMENTAL SERVICES, INC.

LABORATORY REPORT

Type of Analysis: SEMI-VOLATILES (HSL)

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

Analytical Parameter(s)	Method No.	Quant. Limits	AES Lab No Sample ID - Sample Date-	18633 DP-6 DP-7 LAB COMP 3/15/88	LAB BLANK	
Fluorene	 8270	660		26,000	BQL*	
4-Chlorophenylphenylether	W N	660		BQL	BQL	
Diphenylamine(N-Nitroso)		660		BQL	BQL	
Benzyl Alcohol		660		BQL	BQL	
4-Chloraniline	-	660		BQL	BQL	
4-Bromophenylphenylether		660		BQL	BQL	1 G
Hexachlorobenzene	T	660		BQL	BQL	
Phenanthrene		660		` 43, 000'	BQL	
Anthracene		660		11,000	BQL	<i>"</i> "
Di-N-Butylphthalate		660)	BQL	BQL	
Fluoranthene		660		78,000	BQL	
2-Nitroaniline		660)	BQL	BQL	
Pyrene	-	660)	61, 000:	BQL	· · · · · ·
Butylbenzylphthalate	-	660)	BQL	BQL	
Benzo(a)Anthracene		660)	99 , 000	BQL	
3,3'-Dichlorobenzidine		1980)	BQL	BQL	•
Chrysene		660) · · · ·	49,000	BQL	
Bis(2-Ethylhexyl)Phthalate		660)	BQL	BQL	
Di-N-Octylphthalate		660		BQL	BQL	
Benzo(b)Fluoranthene		66(500,000	BQL	
Benzo(k)Fluoranthene		. 660		36,000	BQL	
Benzo(a)Pyrene		66(17,000	BQL	
Indeno(1,2,3-C,D)Pyrene		660		BQL	BQL	
Dibenzo(a,h)Anthracene		660		BQL	BQL	
Benzo(g,h,i)Perylene	•	660)	BQL	BQL	

* Below quantifiable limits.

12

Susan C. Scrocchi / Gas Chromatography Supervisor

Type of Analysis: SEMI-VOLATILES

Units Of Measure: Micrograms/Kilogram, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18630 DP-1 DP-12	18631 DP-2 DP-11	18632 DP-3 DP-8	
Analytical	Method	Quant.	1	LAB COMP	LAB COMP	LAB COMP	
Parameter(s)	No.	Limits	Sample Date-	3/15-16/88	3/15-16/88	3/15/88	
Phenol	8270	660		BQL*	BQL	BQL	
2-Chlorophenol		660	l i i i i i i i i i i i i i i i i i i i	BQL	BQL	BQL	
2-Nitrophenol		660	L	BQL	BQL	BQL	
2,4-Dimethylphenol		660		BQL	BQL	BQL	
p-Chloro-m-Chesol		660	1	BQL	BQL	BQL	
2,4,6-Trichlorophenol		660	н <i>г</i>	BQL	BQL	BQL	
2,4-Dinitrophenol		1320	· .	BQL	BQL	BQL	
4-Nitrophenol		1320	1	BQL	BQL	BQL	
4,6-Dinitro-O-Cresol	. 🗖	1320		BQL	BQL	BQL	
Pentachlorophenol		1320	1	BQL	BQL	BQL	
2,4-Dichlorophenol		660	ł	BQL	BQL	BQL	
4-Methylphenol		660		BQL	BQL	BQL	
Benzoic Acid		1320	1	BQL	BQL	BQL	
2,4,5-Trichlorophenol		660	1	BQL	BQL	BQL	
3-Nitroaniline		660		BQL	BQL	BQL	
Dibenzofuran		660		BQL	BQL	BQL	
4-Nitroaniline	•	660		BQL	BQL	BQL	•
2-Methylphenol	, a	660	1	BQL	BQL	BQL	
Benzidine		3300	l	BQL	BQL	BQL	

* Below quantifiable limits.

13

Susan C. Scrocchi

Gas Chromatography Supervisor

Type of Analysis: SEMI-VOLATILES

Units Of Measure: Micrograms/Kiloggram, or ppb Client: CRA A.E.S. Job Code CRF

		AES Lab Sample		LAB BLANK	
Analytical Parameter(s)	Method No.	Quant. Limits Sample D	LAB COMP ate- 3/15/88		
	8270			 pot	
Phenol	0270	-	BQL*	BQL	
2-Chlorophenol		660	BQL	BQL	
2-Nitrophenol	-	660	BQL	BQL	
2,4-Dimethylphenol	-	660	BQL	BQL	
p-Chloro-m-Chesol		660	BQL	BQL	•
2,4,6-Trichlorophenol	-	660	BQL	BQL	
2,4-Dinitrophenol		1320	BQL	BQL	
4-Nitrophenol		1320	BQL	BQL	
4,6-Dinitro-O-Cresol	Ħ	1320	BQL	BQL	· · · ·
Pentachlorophenol		1320	BQL	BQL	
2,4-Dichlorophenol		660	BQL	BQL	
4-Methylphenol	H	660	BQL	BQL	
Benzoic Acid		1320	BQL	BQL	
2,4,5-Trichlorophenol		660	BQL	BQL	· · · · ·
3-Nitroaniline		660	BQL	BQL	
Dibenzofuran	Ħ	660	BQL	BQL	
4-Nitroaniline	Ħ	660	BQL	BQL	
2-Methylphenol		660	BQL	BQL	
Benzidine		3300	BQL	BQL	· ·

14

Susan C. Scrocchi Gas Chromatography Supervisor

* Below quantifiable limits.

Type of Analysis: METALS

Client: CRA A.E.S. Job Code CRF

(All results are in mg/kg)

Analytical Parameter(s)	Method No.	Quant.	AES Lab Sample - Sample	ID -	18630 DP-1 DP-12 LAB COMP 3/15-16/88	18631 DP-2 DP-11 LAB COMP 3/15-16/88	18632 DP-3 DP-8 LAB COMP 3/15/88	18633 DP-6 DP-7 LAB COMP 3/15/88
Total Potassium (K) Total Iron (Fe) Total Zinc (Zn)	7610 7380 7950	100 30 5			595 15,800 50	339 6,000 56	823 12,250 134	706 19,375 50

Janette Bingert UAtomic Spectroscopy Supervisor

Type of Analysis: METALS

Client: CRA

A.E.S. Job Code CRF

(All results are in mg/kg)

Analytical	Method	Quant.		ID -	METHOD BLANK
Parameter(s)	No.	Limits	Sample	Date-	
Total Potassium (K)	7610	100)		BQL*
Total Iron (Fe)	7380	30)		BQL
Total Zinc (Zn)	7950	5	i		BQL

Janette Bingert / Atomic Spectroscopy Supervisor

* Below quantifiable limits.

APPENDIX A.

QUALITY CONTROL PRECISION AND ACCURACY DATA

ļ

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION

Type of Analysis: Duplicate Analysis Units of Analysis: Milligrams/Liter or ppm Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
				:		
Ammonia	18633	2.3	2.2	2.2	0.1	4
Total Recoverable Phenols	18633	BQL*	BQL	BQL	None	None
Total Kjeldahl Nitrogen	18633	3.3	3.2	3.2	0.1	3
Sulfate	18633	62	58	60	4.0	. 7
Nitrite	18633	0.06	0.06	0.06	None	None

17

Relative Percent Difference = Range/Average X 100 * Below quantifiable limits.

QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards

Client: CRA A.E.S. Job Code: CRF

(Units	:mg/1 or	ppm)
--------	----------	------

	Sample		Observed	Original	Added	Percent
Analytical Parameters	No.	Туре	Conc.	Conc.	Conc.	Recovery*
				;		
Ammonia	18633 .	⁻ SPK	4.9	2.2	2.5	108
Ammonia	9916	EPA	10	8.0		125
Total Recoverable Phenols	18633	SPK	0.284	BQL**	0.300	95
Total Recoverable Phenols	728	STD	0.298	0.300	· • • • • •	99
Total Kjeldahl Nitrogen	18633	SPK	6.4	3.2	3.0	107
Total Kjeldahl Nitrogen	486-2	EPA	5.4	5.0		108
Sulfate	18633	SPK	172	60	···· 100	112
Sulfate	384-2	EPA	6.8	7.2		94
Nitrite	18633	SPK	0.56	0.06	0.50	100

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.) ** Below quantifiable limits.

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT WET CHEMISTRY DEPARTMENT

AES JOB CODE \underline{CRF}

Silanowan

ANALYST

pm0181

Monaur

ANALYTICAL METHOD SAMPLE CODE 350.1 18 6 30, 31, 32, 33 420.2 186.30,31, 32,33 351.2 18630, 31, 32, 33 375.2 18630,31,32,33 353.2 18630,31,32,33

19

DATE OF ANALYSIS
3/24/88
3/28/88
3/30/88
4/4/88
4/1/88

TIME OF ANALYSIS
1200
1500
1500
1600

<u> </u>			
<u> </u>			

		ICED ENVIRON LABORAT UALITY CONT	ORY REPORT	:		
	Type of Anal Units of Mea Client: CRA	ysis: Duplio	grams/Kilogr	is am, ppm Job Code:CF	۲	
Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Furfural Thiophene	18633 18633	<10 <10	<10 <10	<10 <10	None None	None None
· · ·				:		
						· · · ·
· .		•				
						•
				:		
Relative Percent Difference Range/Average X 100						
	1		20			

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF)

(Units: ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Furfural (mg/l) Furfural (mg/kg) Thiophene (mg/l) Thiophene (mg/kg)	18633 18633	EPA SPK EPA SPK	12.2 63 9.42 83	<10 <10	12.6 63 9.64 96	97 100 98 86

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

	AES JOB	CODE <u>CRF</u>		
ANALYST	ANALYTICAL METHOD	SAMPLE CODE	DATE OF ANALYSIS	TIME OF ANALYSIS
Patricka Fame Patricka Fame	7225	18630-33	3/3/188	1730 - 2400
Patricka Jam	<u> </u>	18630-33	3/3/188-4/1/88	2000 - 0030
		· · ·		
		22		······································

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

AES JOB CODE CRE ANALYST ANALYTICAL METHOD SAMPLE CODE 7225 790 18630-33 23

Nate

DATE OF EXTRACTION 3125 88

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Measure: Micrograms/Kilogram, ppb Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Chloromethane	18633	<1600	<1600	<1600	None	None
Vinyl Chloride	18633	<1600	<1600	<1600	None	None
Chloroethane	18633	<1600	<1600	<1600	None	None
Bromomethane	18633	<1600	<1600	<1600	None	None
	18633	<1600	<1600	<1600	None	None
2-Chloroethylvinylether Ethylbenzene	18633	<800	<800	<800	None	None
Methylene Chloride	18633	<800	<800	<800	None	None
Chlorobenzene	18633	<800	<800	<800	None	None
	18633	<800	<800	< 800	None	None
1,1-Dichloroethylene	18633	<800	<800	<800		None
1,1-Dichloroethane				<800	None None	None
trans-1,2-Dichloroethylene	18633	<800	<800			
Chloroform	18633	<800	<800	<800	None	None
1,2-Dichloroethane	18633	<800	<800	<800	None	None
1,1,1-Trichloroethane	18633	<800	<800	<800	None	None
Carbon Tetrachloride	18633	<800	<800	<800	None	None
Bromodichloromethane	18633	<800	<800	<800	None	None
1,2-Dichloropropane	18633	<800	· <800	<800	None	None
trans-1,3-Dichloropropene	18633	<800	<800	, <800	None	None
Trichloroethylene	18633	<800	<800	<800	None	None
Benzene	18633	<800	<800	<800	None	None
cis-1,3-Dichloropropene	18633	<800	<800	<800	None	None
l,l,2-Trichloroethane	18633	<800	<800	<800	None	None
Dibromochloromethane	18633	<800	<800	. <800	None	None
Bromoform	18633	<800	< 800	<800	None	None

Relative Percent Difference = Range/Average X 100

24

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Measure: Micrograms/Kilogram, ppb Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
	10622					N
1,1,2,2-Tetrachloroethylene	18633	<800	<800	<800	None	None
1,1,2,2-Tetrachloroethane	18633	<800	<800	<800	None	None
Toluene	18633	< 800	<800	<800	None	None
Acetone	18633	<8000	<8000	<8000	None	None
Carbon Disulfide	18633	<800	<800	<800	None	None
2-Butanone	18633	<8000	<8000	<8000	None	None
Vinyl Acetate	18633	. <800	<800	<800	None	None
2-Hexanone	18633	<8000	<8000	<8000	None	None
4-Methyl-2-Pentanone	18633	<8000	<8000	<8000	None	None
Styrene	18633	<800	<800	<800	None	None
Xylenes (Total)	18633	<800	<800	<800	None	None
Trichlorofluoromethane	18633	<800	<800	<800	None	None
				· •		•

Relative Percent Difference = Range/Average X 100

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units: ng/ul or ppl)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Dimethylphthalate	18630	SPK	114	<10	100	114
Diethylphthalate	18630	SPK	130	<10	110	118
Di-n-Butylphthalate	18630	SPK	109	<10	125	87
Butylbenzylphthalate	18630	SPK	89	<10	120	74
Bis(2-ethylhexyl)phthalate	18630	SPK	157	<10	130	121
Di-n-Octylphthalate	18630	SPK	151	<10	189	80
Naphalene	18630	SPK	215	136	100	79
Acenaphthene	18630	SPK	354	266	100	88
Anthracene	18630	SPK	274	164	100	110
Nitrobenzene-d5	18630	Surrogate	81		100	81
4-Terphenyl-dl4	18630	Surrogate	68		100	68
2-Fluorobiphenyl	18630	Surrogate	. 79		100	79
Phenol-d6	18630	Surrogate	80		100	80
2-Fluorophenol	18630	Surrogate	74		100	74
2,4,6-Tribromophenol	18630	Surrogate	75		199	75

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units: ug/kg or ppb)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
1,1-Dichloroethane	18630	SPK	41	<5.0	50	82
Dibromochloromethane	18630	SPK	38	<5.0	40	95
Trichloroethylene	18630	SPK	30	<5.0	. 32	94
Carbon Tetrachloride	18630	SPK	- 51	<5.0	60	85
1,1,2,2-Tetrachloroethane	18630	SPK	31	<5.0	36	86
1,2-Dichloroethane-d4	18630	Surrogate	49		50	98
Toluene-d8	18630	Surrogate	47		50	94
1,2-Dichloroethane-d4	18631	Surrogate	27		50	54
Toluene-d8	18631	Surrogate	41	·	50	82
1,2-Dichloroethane	18632	Surrogate	31		50	62
Toluene	18632	Surrogate	37		50	74

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION

Type of Analysis: Duplicate Analysis Units of Measure: Micrograms/Kilogram, ppb Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
0. Mathematican bit ha lan a	10622	5 000	5,400	5,600	400	7
2-Methylnaphthalene	18633	5,800		•		Nono
Bis(2-chloroethyl)ether		<660	<660	<660	None	None
1,3-Dichlorobenzene	18633	<660	<660	<660	None	None
l,4-Dichlorobenzene	18633	<660	<660	<660	None	None
1,2-Dichlorobenzene	18633	<660	<660	<660	None	None
Bis(2-chloroisopropyl)ether	18633	<660	<660	<660	None	None
Hexachloroethane	18633	<660	<660	<660	None	None
N-Nitrosodi-N-Propylamine	18633	<660	<660	<660	None	None
Nitrobenzene	18633	<660	<660	<660	None	None
Isophorone	18633	<660	<660	<660	None	None
Bis(20Chloroethoxy)Methane	18633	<660	<660	<660	None	None
1,2,4-Trichlorobenzene	18633	<660	<660	<660	None	None
Naphthalene	18633	12,000	10,000	11,000	2,000	18
Hexachlorobutadiene	18633	<660	<660	<660	None	None
Hexachlorocylopentadiene	18633	<660	<660	<660	None	None
2-Chloronaphthalene	18633	<660	<660	<660	None	None
Dimethylphthalate	18633	<660	<660	<660	None	None
Acenaphthylene	18633	<660	<660	<660	None	None
2,6-Dinitrotoluene	18633	<660	<660	<660	None	None
Acenaphthene	18633	21,000	22,000	21,500	1,000	5
2,4-Dinitrotoluene	18633	<660	<660	<660	None	None
Diethylphthalate	18633	<660	<660	<660	None	None

A

Relative Percent Difference = Range/Average X 100

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Measure: Micrograms/Kilogram, ppb Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc:	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
			• • • • • • • • • • • • • • •			<i>.</i>
Fluorene	18633	26,000	23,000	24,500	3,000	12
4-Chlorophenylphenylether	18633	<660	<660	<660	None	None
Diphenylamine(N-Nitroso)	18633	<660	<660	<660	None	None
Benzyl Alcohol	18633	<660	<660	<660	None	None
4-Chloroaniline	18633	<660	<660	<660	None	None
4-Bromophenylphenylether	18633	<660	<660	<660	None	None
Hexachlorobenzene	18633	<660	<660	<660	None	None
Phenanthrene	18633	43,000	44,000	43,500	1,000	2
Anthracene	18633	11,000	11,000	11,000	0	0
Di-N-Butylphthalate	18633	<660	<660	<660	None	None
Fluoranthene	18633	78,000	72,000	75,000	6,000	. 8
2-Nitroaniline	18633	<660	<660	<660	None	None
Pyrene	18633	61,000	59,000	60,000	2,000	3
Butylbenzylphthalate	18633	<660	<660	<660	None	None
Benzo(a)Anthracene	18633	99,000	90,000	94,500	9,000	10
3,3'-Dichlorobenzidine	18633	<1980	<1980	<1980	None	None
Chrysene	18633	49,000	44,000	46,500	5,000	11
Bis(2-Ethylhexyl)Phthalate	18633	<660	<660	<660	None	None
Di-N-Octylphthalate	18633	<660	<660	<660	None	None
Benzo(b)Fluoranthene	18633	500,000	470,000	485,000	30,000	6
Benzo(k)Fluoranthene	18633	36,000	37,000	36,500	1,000	3
Benzo(a)Pyrene	18633	17,000	17,000	17,000	0	O
Indeno(1,2,3-c,d)Pyrene	18633	<660	<660	<660	None	None
Dibenzo(a,h)Anthracene	18633	<660	<660	<660	None	None
Benzo(g,h,i)Perylene	18633	< 660	<660	<660	None	None

Relative Percent Difference = Range/Average X 100

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Phenol	18633	<660	<660	<660	None	None
2-Chlorophenol	18633	<660	<660	<660	None	None
2-Nitrophenol	18633	<660	<660	. <660	None	None
2,4-Dimethyphenol	18633	<660	<660	<660	None	None
p-Chloro-m-Cresol	18633	<660	<660	÷ <660	Noné	None
2,4,6-Trichlorophenol	18633	<660	<660	⊧ <660	None	None
2,4-Dinitrophenol	18633	<1320	<1320	<1320	None	None
4-Nitrophenol	18633	<1320	<1320	<1320	None	None
4,6-Dinitro-o-Cresol	18633	<1320	<1320	<1320	None	None
Pentachlorophenol	18633	<1320	<1320	<1320	None	None
2,4-Dichlorophenol	18633	<660	<660	<660	None	None
4-Methylphenol	18633	<660	<660	<660	None	None
Benzoic Acid	18633	<1320	<1320	<1320	None	None
	18633	<660	<660	<660	None	None
2,4,5-Trichlorophenol	18633	<660	<660	<660	None	None
3-Nitroaniline			. <660	<660	None	None
Dibenzofuran	18633	<660		<660	None	None
4-Nitroaniline	18633	<660	<660			
2-Methylphenol	18633	<660	<660	<660	None	None
Benzidine	18633	<3300	<3300	<3300	None	None.

Relative Percent Difference = Range/Average X 100

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

ANAL

		······			
	AES JO	b code <u>CRF</u>			
<u>(ST</u>	ANALYTICAL METHOD	SAMPLE CODE	DATE OF ANALYSIS	TIME OF ANALYSIS	
m_Jugl	8240	18630-18633	4/5/88	1200 - 18:00	
m_figh		18630-18633	4/1,4/88	10:00-14:00, 12:00-1900	
• • •		31	5 • • •• •		
•		第120 推荐 · · · · · · · · · · · · · · · · · ·			

	ADVAN		ð			
	Type of Anal Units of Ana Client: CRA	F 				
Analytical Parameters	Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Potassium (K) Iron (Fe) Zinc (Zn)	18633 18633 18633	711 19,500 52	701 19,250 47	706 19,375 50	10 250 5	1 1 10
				: *		. · ·
				•		
				: : :		•
Relative Percent Difference = Range/Average X 100	: : ·				•	
			32	: •		

ADVANCED ENVIRONMENTAL SERVICES, INC.

LABORATORY REPORT

OUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA

A.E.S. Job Code: CRF

(Units:mg/l or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Potassium (K) Independent (K) std. Iron (Fe) EPA (Fe) std. Zinc (Zn) EPA (Zn) std.	18633 18633 386 18633 386	SPK STD **SPK EPA SPK EPA	29.38 11.06 8.90 1.05 1.66 0.46	7.0610.003.900.990.500.50	20.00 5.00 1.00	112 111 100 106 116 92

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)
** Spike on sample dilution factor of fifty.

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT ATOMIC SPECTROSCOPY DEPARTMENT

Aes job code CRFANALYST ANALYTICAL METHOD SAMPLE CODE DATE OF ANALYSIS TIME OF ANALYSIS 1900 3122188 7160 18630 - 33 7380 18630-33 2100 22188 2 2400 3 22 88 1950 18630-33. 34

APPENDIX B

CHAIN OF CUSTODY RECORDS

- -

						•			
CRA Consulting E CONESTOGA-ROVE 651 Colby Drive, Waterlo	SHIPPED TO (Laboratory name): AES								
	N [®] :	PRO	JECT NAME:			<u> </u>			
CHAIN OF RECO			229	3	uc	C-RE	PL	IBLI	C
SAMPLER'S SIGNATURE	<u> </u>	ib 7.	Thomps (SION)	<u>m</u>	-	SAMPLE TYPE	Nº OF CONTAINERS	R	EMARKS
SEQ. SAMPLE №	DATE	TIME	SAMPLE	LOCATO	NIN		² 8		
	3/15/88	9:20	2000+	155	٤	FILL	2		1500ml
			2753+			FILL	2		,1500ml
	3/15/88	11=30	6015+			FILL	2		, 1 500ml
			45753		-		R		
	3/15/22	1=55	7095+			FILL	2		4, 1500ml
	5/15/88 5/15/88	2=10	650 S + 15214+			FILL	2		+ 1 500ml
	5/15/88	9=10	30054			FILL	2		, 1 soant
	6/88	10=10	10054			FILL	2	IUOA	
	1.0/00								J
NOTE = THE	ABOU	EWIL	LBEC	OMP	205	ted as	Fo	DLLO	$\omega_{S}-$
DP-1	AND	DP-12					<u> </u>		
	I	DP-11							
		DP-8				······································			
DP-6	AND	PP-7					ļ		
							ļ		
									·····
			TOTAL NUN						
ANTICIPATED CHEMICA	AL HAZARD)S:					i	<u> </u>	
RELINQUISHED BY:	7.6.7.	Umper		ate/ti) 881 1		RECEIVED	9Y:	Diana	Anonpeo (Voie
RELINQUISHED BY:)iana (SKGN))hompsa	n <u>3/16/8</u>	ATE/TIME RECEIVED BY: Judy Att.			Attowsh SON)		
RELINQUISHED BY:				DATE/TIME		RECEIVED BY:			
	(SIGN)			I		•	() -	(510N)
ADDITIONAL SIGNATUR SHEET REQUIRED	^{RE}				.		<u> </u>	, <u>,</u> , , , , , , , , , , , , , , , , ,	
METHOD OF SHIPMEN	T:				RECE	WED FOR LABO		A	3/16 12:00
CONDITION OF SEAL I			Thomps	(571_	<u> </u>	LER OPENED B	Y.		DATE/TIME
GENERAL CONDITION									
WHITE - (CRA OFFIC	E COPY		<u></u>	L	, 	•		
YELLOW - I	RECEIVING	LABORATO						10	4529

ł

.

:

:

÷

.

· · · · ·	•										
A			S INC.	-		2186 LIBERTY DRIVE Niagara Falls, ny 14304 (716) 283-3120					
;HAI	n of Rec	- CUS ORD	STODY	JOB CODE CRF	PROJECT NAM		ARK	BIDE			
SAMP SIGN	LER'S							 -	P	2	
S MPLE 2.	NO.	DATE	TIME	SAMPLE LOCATI	01	GRAB	COMP	SAMPLE TYPE	NO. OF	REMARKS	
	1	3/15/88 		DP-1 DP-2		X X	5	DIL	2	1-VOA 1-5TUML.	
4	3			DP-3 AP 4		Ŷ			2		
	50			DP-6 DP-7	······································	X X			2		
····	- 7. 8	3/11.18	· · · ·	NP-8	·····	X X			2		
	9	3/16/88 3/14/88		DP-12 TRIP BLA	INK	X	2	VATER	2	VOA	
-					· · · · · · · · · · · · · · · · · · ·		+				
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		+				
-{				· · · · · · · · · · · · · · · · · · ·							
									· · ·	· · · · · · · · · · · · · · · · · · ·	
			· · · · · · ·					······································		* '	
					· · · · · · · · · · · · · · · · · · ·						
				· · · · · · · · · · · · · · · · · · ·				TAL CONTAINERS	17		
RELINQU	ISHED			npson	DATE 		IME 	RECEIVED BY	1	m) uuski	
RELINQU	ISHED	BY (Sig	yn)	· ·	DATE	T	IME	RECEIVED BY	Y (Sig		
RELINQU	ISHED	BY (Sid			DATE			3 RECEIVED BY	/ / 51 0		
[<u> </u>				-					n)	
RELINQUISHED BY (Sign) D					DATE	TI	IME	RECEIVED BY	(Sig	5	
REMARKS	:									3	

SERVICES INC.

ANALYSIS OF FOUR SOIL COMPOSITES FOR PRIORITY POLLUTANT PESTICIDES AND PCB'S (CRA PROJECT #2293)

· · ·

CONESTOGA ROVERS & ASSOCIATES, INC.

Report Prepared For

Mornial Catherine Mocniak

Project Manager

Janette Bingert () Quality Control Manager

April 28, 1988 AES Report CRF

COMMITMENT . TO HONESTY - QUALITY - SERVICE

Type of Analysis: PCBs AND PESTICIDES

Units Of Measure: Milligrams/Kilogram, ppm (dry wt. basis) Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID - -	19324 DP-1 & DP-12	19325 DP-2 & DP-11	
Analytical	Method	Quant.		LAB COMP	LAB COMP	•
Parameter(s)	No.	Limits	Sample Date-	4/7/88	4/7/88	
Aldrin	8080	0.010		BQL*	0.146	
alpha-BHC	n	0.010		0.181	0.112	-
beta-BHC	· •	0.010		BQL	BQL	
gamma-BHC		0.010		0.570	0.910	
delta-BHC	n	0.010		BQL	BQL	
Chlordane	W ·	0.100		BQL	BQL	
4,4 -DDT		0.010		BQL	BQL	-
4,4 -DDE	W .	0.010		BQL	BQL	
4,4 ⁻ -DDD	*	0.010		BQL	BQL	
Dieldrin	H .	0.010		BQL	BQL	
alpha-Endosulfan	H '	0.010		BQL	BQL	
beta-Endosulfan	n	0.010		BQL	BQL	
Endosulfan Sulfate	. 11	0.010		BQL	BQL	
Endrin		0.010		BQL	BQL	
Endrin Aldehyde	91	0.010		BQL	BQL	
Heptachlor	N -	0.010		BQL	0.215	
Heptachlor Epoxide	п.	0.010		BQL	BQL	
PCB-1242	n	0.010		BQL	BQL	
PCB-1254	er e	0.010		BQL	BQL	
PCB-1221	, H	0.010		BQL	BQL	
PCB-1232	T .	0.010		BQL	BQL	
PCB-1248		0.010		BQL	BQL	
PCB-1260	· •	0.010		BQL	BQL	
PCB-1016	M	0.010		BQL	BQL	
Toxaphene	Ħ	0.100		BQL	BQL	

Susan C. Scrocchi

Below quantifiable_limite

:

Rec'd CRA

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

AUG 5 1988

Type of Analysis: PCBs AND PESTICIDES

Units Of Measure: Milligrams/Kilogram, ppm (dry wt. basis) Client: CRA A.E.S. Job Code CRF

====

			-	÷ .		
		· · · ·	AES Lab No Sample ID -	19326 DP-3 & DP-8	19327 DP-6 & DP-7	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	LAB COMP 4/7/88	LAB COMP 4/7/88	
Aldrin	8080	0.010		0.121	0.367	
alpha-BHC	Π	0.010		1.04	0.197	
beta-BHC	Π	0.010		0.541	BQL*	
gamma-BHC	m	0.010		0.729	1.30	
delta-BHC	н	0.010		BQL	BQL .	
Chlordane		0.100		BQL	BQL	
4,4 ⁻ -DDT	· •	0.010		BQL	BQL	
4,4 -DDE		0.010		BQL	BQL	
4,4 ⁻ -DDD	π	0.010		BQL	BQL	•
Dieldrin	H	0.010		BQL	BQL	
alpha-Endosulfan	· · · · ·	0.010		BQL	BQL	
beta-Endosulfan		0.010	,	BQL	BQL·	
Endosulfan Sulfate	Ħ	0.010		BQL	BQL	
Endrin	Ň	0.010		BQL	BQL	
Endrin Aldehyde	Ħ	0.010		BQL	BQL	
Heptachlor	· #	0.010		0.274	0.273	
Heptachlor Epoxide	· •	0.010		BQL	BQL	
PCB-1242	W	0.010		BQL	BQL	
PCB-1254	n	0.010	۰.	BQL	BQL	
PCB-1221	Π	0.010	•	BQL	BQL	·
PCB-1232	· π	0.010	· · · · ·	BQL	BQL	
PCB-1248		0.010		BQL	BQL	_
PCB-1260	1 1	0.010	· · ·	BQL	BQL	·
PCB-1016	N	0.010		BQL	BQL	
Toxaphene		0.100		BQL	BQL .	
				O		

macch

* Below quantifiable limits.

2

Śusan C. Scrocchi Gas Chromatography Supervisor

Type of Analysis: PCBs AND PESTICIDES

Units Of Measure: Micrograms/Liter, or ppb Client: CRA A.E.S. Job Code CRF

AES Lab No.-

			Sample ID -	METHOD BLANK	`
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-		
Aldrin	 808ò	0.50		BQL*	· ·
alpha-BHC	Π	0.50		BQL	
beta-BHC	, H	0.50		BQL	
gamma-BHC	Ħ	0.50		BQL	
delta-BHC	n	0.50	•	BQL	
Chlordane		5.00	•	BQL	
4,4 -DDT		0.50		BQL	
4,4 -DDE	Ħ	0.50		BQL	
4,4 ⁻ DDD	Ħ	0.50		BQL	
Dieldrin	W	0.50		BQL	
alpha-Endosulfan	W	0.50	·	BQL	
beta-Endosulfan	Ħ	0.50		BQL	
Endosulfan Sulfate		0.50		BQL	
Endrin		0.50		BQL	
Endrin Aldehyde	Ħ	0.50		BQL	
Heptachlor	W	0.50	· ·	BQL	,
Heptachlor Epoxide	n	0.50		BQL	
PCB-1242	n	0.50		BQL -	
PCB-1254	**	0.50		BQL	
PCB-1221	Π.	0.50		BQL	
PCB-1232	н	0.50		BQL ;	
PCB-1248	. H .	0.50		BQL	
PCB-1260	Ħ	0.50		BQL	
PCB-1016	Ħ	0.50		BQL	
Toxaphene		5.00		BQL	

Susan C. Scrocchi Gas Chromatography Supervisor Ĩ.,

* Below quantifiable limits.

APPENDIX A

QUALITY CONTROL PRECISION AND ACCURACY DATA

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Measure: mg/kg, ppm

Client: CRA A.E.S. Job Code:CRF ______

:

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
·						
Aldrin	19327	0.282	0.452	0.367	0.170	46
alpha-BHC	19327	0.138	0.256	0.197	0.118	60
beta-BHC	19327	<0.010	<0.010	<0.010	None	None
gamma-BHC	19327	1.06	1.54	1.30	0.48	37
delta-BHC	19327	<0.010	<0.010	<0.010	None	None
Chlordane	19327	<0.100	<0.100	<0.100	None	None
4,4 -DDT	19327	<0.010	<0.010	<0.010	None	None
4,4 -DDE	19327	<0.010	<0.010	<0.010	None	None
4,4 ⁻ -DDD	19327	<0.010	<0.010	<0.010	None	None
Dieldrin	19327	<0.010	<0.010	<0.010	None	None
alpha-Endosulfan	19327	<0.010	<0.010	<0.010	None	None
beta-Endosulfan	19327	<0.010	<0.010	<0.010	None	None
Endosulfan Sulfate	19327	<0.010	<0.010	<0.010	None	None
Endrin	19327	<0.010	<0.010	<0.010	None	None
Endrin Aldehyde	19327	<0.010	<0.010	<0.010	None	None
Heptachlor	19327	0.264	0.282	0.273	0.018	6
Heptachlor Epoxide	19327	<0.010	<0.010	<0.010	None	None
PCB-1242	19327	<0.010	<0.010	<0.010	None	None
PCB-1254	19327	<0.010	<0.010	<0.010	None	None
PCB-1221	19327	<0.010	<0.010	<0.010	None	None
PCB-1232	19327	<0.010	<0.010	<0.010	None	None
PCB-1248	19327	<0.010	<0.010	<0.010	None	None
PCB-1260	19327	<0.010	<0.010	<0.010	None	None
PCB-1016	19327	<0.010	<0.010	<0.010	None	None
Toxaphene	19327	<0.100	<0.100	<0.100	None	None

Relative Percent Difference = Range/Average X 100

1.1

·

:

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units: mg/kg or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
alpha-BHC Heptachlor Heptachlor Epoxide Endrin Endrin (ug/l) gamma-BHC (ug/l)	19327 19327 19327 19327 19327 	SPK SPK SPK SPK EPA EPA	0.334 0.388 0.433 1.58 11.9 166	0.197 0.273 <0.010 <0.010 	0.124 0.156 0.499 1.25 10.0 200	110 74 87 126 119 83

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

	AES JOE	B CODE <u>CRF</u>	-			
ANALYST	ANALYTICAL METHOD	SAMPLE CODE	DATE OF ANALYSIS	TIME OF ANALYSIS		
Patrick a Juma	8620	19324-27	4/19/28	1730 - 2400		
			: . 	ž		
·						
· · · · · · · · · · · · · · · · · · ·			:			
		· · · ·	· · ·			
	· · · · · · · · · · · · · · · · · · ·		;			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u></u>		
		f				

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

		, Aes joi		
ANALYST		ANALYTICAL METHOD	SAMPLE CODE	DATE OF EXTRACTION
be Noverst		<u> </u>	19329 - 27	4/14/88.
	· · · · · · · · · · · · · · · · · · ·	·		
				· · · · · · · · · · · · · · · · · · · ·
		<u> </u>		· · · · · · · · · · · · · · · · · · ·
			·····	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •
				: . .

CHAII

Ċ,

APPENDIX B CHAIN OF CUSTODY RECORDS

ECORDS

ſ	0		·			T	SHIPPED TO (Laboratory name):					
	CON	RA Consulting ESTOGA-ROV colby Drive, Water	'ERS & AS	SOCIAT Canada N	ES 12V 1C	2			AES			
	СН	AIN OF	CUST	TODY	PR	OJECT N	P:		T NAME:			
		REC			2	293		uc	C-RE	PU	BLIC	
		PLER'S SIGNATU	RE <u>A</u> j	W.	7/20- (SON)	r-psi		_	SAMPLE TYPE	NP OF CONTAINERS	RE	MARKS
Ku ^B ontrostre	SEQ. №	SAMPLE Nº.	DATE	TIME	S	AMPLE L	OCATOI	N				
Le re		DP-1	4-7-88		_	55+2			FILL	•		des, PCBs
2 ¹	/	DP-12	4-7-88	07:50	> 100	> 5 + 4	500		FILL	2	restici	das PCBs
L ^{LB}					+	<u> </u>				z	P. 1' '	des PCBS
~ 1051 <	\square	DP-2	4-7-88			55+1			FILL FILL	2		des PCBS
		DP-11	4-7-88	09:51	30	05+	5104	<u> </u>		12	1ESTICI	<u></u>
LaB /E			4-7-88	14:25			2814		=144	2	Pestic	ides, PCBs
Lab E	$ \in$	DP-3	4-7-88			55+			FILL		1	des Puès
	\vdash	DP-8	<u> - + - 05</u>	13-10	-1-3	+ ((15 24			1-		
LUBTE		DP-6	4-7-88	15=28	70	95+2	2464	<u> </u>	FILL	2	Pestici	des, PCBs
LABTE	\leq	DP-7	4-7-88	16-18		05+			FILL	2		ides RBS
	 											<u></u>
			1								· · ·	
											ļ	· · · · · · · · · · · · · · · · · · ·
										<u> </u>		
										ļ	_	
											<u> </u>	
										16	┇	
	L				то	TAL NUM	IBER OF	CONTA	INERS	01	<u> </u>	
	AN'	TICIPATED CHEM	ICAL HAZAR	DS:								
		INQUISHED BY:		11.		D/		E	RECEIVED	BY:	\mathcal{P} + -	7
			TIL M.	Horse	200-	4/7/	DP 18	5.20		2 at tama (SQN)		
			(ŚIGN)				ATE/TIM	IF	RECEIVED BY:			
	REL	INQUISHED BY:				0,	1			3		90N)
			(SICN)						RECEIVED	RY.		
	REL	JNQUISHËD BY:				U.	ATE/TIM			<u>۹</u>	,	
		3-	(SIGN)								(90N)
		DITIONAL SIGNAT										
	ME	THOD OF SHIPM	ENT:	SHI	PPED E	3Y:		RECEIV	ED FOR LAB	ORAT	ORY BY:	DATE/TIME
		AUTO				40404	SON	(SIGN)	Pat 7a	mé	L	4/1/2 18:2
				1			•	•				DATE/TIME
		NDITION OF SEA						(SIGN) 7	Pat Za	m	<u> </u>	4/1/8/18:2
	١	FILOW .	- CRA OFFI - RECEIVING	LABORA	TORY	COPY						45.00
			- CRA LABO - SHIPPERS		I	N⁰	4532					

,

· .				•								
			S INC.	-	2186 LIBERTY DRIVE Niagara Falls, ny 14304 (716) 283-3120							
CHAI	n of Rec	CUS ORD	STODY	JOB CODE PROJECT NA CRF	CRA							
SAMPLER'S SIGNATURE								NO. OF CONTAINERS				
SAMPLE NO.	8.5 8.5	DATE	TIME	SAMPLE LOCATION	GRAD	сом	SAMPLE TYPE	NO.	REMARKS			
							Soil	16				
			 				· · · · · · · · · · · · · · · · · · · ·		·····-			
			 				·····					
			ļ				· · · · · · · · · · · · · · · · · · ·	++				
		·	.					+				
		l		· · · · · · · · · · · · · · · · · · ·		\vdash		+				
				· · · · · · · · · · · · · · · · · · ·				++	•••			
			t		+			1	•			
				· · · · · · · · · · · · · · · · · · ·	1				•			
				······································								
					1							
								1				
					1				· · · · · · · · · · · · · · · · · · ·			
						\square						
 		 	ļ	· · · · · · · · · · · · · · · · · · ·								
ļ			ļ			$\left - \right $		+				
 	ļ	 	ļ			$\left - \right $	· · · · · · · · · · · · · · · · · · ·	+				
 		 	<u> </u>			$\left - \right $		+	·····			
	<u> </u>	 		· · · · · · · · · · · · · · · · · · ·		$\left - \right $			· · · · · · · · · · · · · · · · · · ·			
}	<u> </u>					$\left - \right $	TOTAL CONTAINERS	16	-			
L	L	1	<u>I. </u>	L		L	TUTAL CUNTAINERS					

1 7 M. Thompson	DATE 4/7/25	TIME 18:20	RECEIVED BY (Sign) 2. Pat Fama
RELINQUISHED BY (Sign)	DATE	TIME	RECEIVED BY (Sign)
RELINQUISHED BY (Sign)	DATE	TIME	RECEIVED BY (Sign)
RELINQUISHED BY (Sign)	DATE	TIME	RECEIVED BY (Sign)

N.F. FILE COPY

CRA PROJECT #2293

Report Prepared For

CONESTOGA-ROVERS & ASSOCIATES, INC.

Karen E. Kuklis

Project Manager

W. Joseph McDougall, Technical Evaluation Ph.D.

June 22, 1988 AES Report CRF

COMMITMENT то HONESTY - QUALITY - SERVICE

Rec'd CRA JUN 2 2 1988

Type of Analysis: VOLATILE ORGANICS

Units Of Measure: Milligrams/Kilogram, or ppm (dry wt. basis) Client: CRA A.E.S. Job Code CRF

		AES Lab No Sample ID -	20677 TP-2 GRAB	20678 TP-4 GRAB	20679 TP-6 GRAB
Analytical Parameter(s)	Method Quan No. Limi		6/8/88	6/8/88	6/8/88
Benzene	8020	0.10	3.90	BQL*	0.50
	:				•
			:		
· ·			: :		
			.		
	. :	• •	• •		

Below quantifiable_limits.

Susan C. Scrocchi Ga<u>s Chromatography</u> Supervisor

Type of Analysis: VOLATILE ORGANICS

-2-

Units Of Measure: Milligrams/Kilogram, or ppm (dry wt. basis) Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	20680 DP-2,11 LAB COMP	20681 DP-3,8 LAB COMP	20694 TP-10 GRAB	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	6/8/88	6/8/88	6/9/88	
Acetone Benzene	8020	0.50 0.10		BQL* N/R	BQL N/R	N/R** BQL	

* Below quantifiable limits.
** Not required.

-Susan C. Scroechi

Gas Chromatography Supervisor

					•		
							·
					-		
		A DV AN		MENTAL SERVI	CES, INC.		
			UALITY CONTR	ORY REPORT ROL - PRECIS			
	Units	of Anal	ysis: Duplic sure: Millic	cate Analysi grams/Kilogr A.E.S.	.s	F	
Analytical Parameters		Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Benzene		20678	<0.10	<0.10	<0.10	None	None
					•		;
		:					
					: •.		
					:		
					-		·
					:		
		•					
							· · · ·
			• 、、		•		
					: .	•	
·			· .		• • • •		•
			• .			-	
							•
Relative Percent Difference = Range/Average X 100	= :,						

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units: mg/kg or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Benzene	20679	SPK	1.63	0.50	1.13	100
		•				
		• . •				
· · · ·		•		• • • •		
· · ·		د	· · · · ·			
		•			· ·	• •
	•	•••				
		.*		• •		
• • •	 	• • •	• • • •			
		.•				· ·
	· .			:		

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

	AES JOI	3 CODE CRF	•		
ANALYST	ANALYTICAL METHOD	SAMPLE CODE	DATE OF ANALYSIS	<u>TIME OF ANALYSIS</u> 2000 - 2300 1530 - 1715	
Patrik a Fama	5620	2067-79	6/13/58		
Patrika Farma	6020	20650,81,94	6/14/58		
			· ·		
	·		•	· · · ·	
	······································	·		,	
		, <u></u>		<u> </u>	
	·····			·	

			·					• *			
•	CI		Encineere			SHIF	PED	TO (Laborat	ory	name):	
	CON	IESTOGA-ROV Colby Drive, Water	ERS & AS					AES			
		AIN OF	CLIC		PROJECT	N ^p :		PROJECT NAME:			
	СП	REC			229	3	u	CC - Ref	bub	lic Plant	
		PLER'S SIGNATU	RE _ 27.	b. W. 7	(SIGN)	7		- SAMPLE TYPE		REMARKS	
	SEQ. N ^p .	SAMPLE Nº.	DATE	TIME	SAMPLE	LOCATO	NIC		NP OF CONTAINERS		
COMPOSITE		DP-2	6/8/88	2:23	2755+	445	·W	FILL	1	ALETONE	
LOMPUSITE		DP - 11	/ / ₁	2:48	3005+	590	ω	fi	1	•1	
COMPOSITE		DP - 3	0		6015+			le	<u> </u>	•1	
l		DP - 8	11	1=44.	4355+	152	. W	11	1	ч	
		E: COMPO						12-3 11TH	50	-8	
	001	E: COMPO	NITE D			<u>1 7 </u>					
		TP - 2	6/8/38	10-55	WATERMA	IN PI	T 2	SCIL	1	BENZENE	
		TP-4	1	9:30	"	11		ų	1	nt	
		TP - 6	11	11:45	i.	.1	6	11	1	51	
					ļ					· · · · · · · · · · · · · · · · · · ·	
					ļ				 		
									 		
					ļ						
	<u> </u>	· · · · · · · · · · · · · · · · · · ·			ļ				<u> </u>	· · · · · · · · · · · · · · · · · · ·	
										· · · · · · · · · · · · · · · · · · ·	
i .					<u> </u>						
		L		1	TOTAL NU	MBFR (OF CO	L NTAINERS	7	· · · · · · · · · · · · · · · · · · ·	
	ANT	ICIPATED CHEMI	CAL HAZAR	DS:					1	L ··· ··· ··· ···	
			<u> </u>			ATE/TI		RECEIVED	BY.7	1 1 07-7	
		INQUISHED BY:	Jin Tha (SIGN)	nepsoe		1813		-	Ŷ	(SQN)	
	REL	INQUISHED BY:			D	ATE/TI	ME	RECEIVED	_		
		[2]	(SIGN)					-	3-	(50)	
	REL	INQUISHED BY:			C	ATE/TI	ME	RECEIVED	-		
		3-	(SIGN)	·····				-	() -	(SQN)	
		ET REQUIRED									
	MET	THOD OF SHIPME A·以下ひ	NT:		ED BY: S THOM	rson)	EIVED FOR LAB			
		NDITION OF SEAL		EIPT:			1,00	OLER OPENED I	3Y:	DATE/TIME	
	Y P	ELLOW - INK -	CRA OFFIC RECEIVING CRA LABC SHIPPERS	LABORATO		<u></u>		<u> </u>	1	Nº 4571	

CON	RA Consulting NESTOGA-RO Colby Drive, Wate	VERS & AS			SHIF	AE:		-		
СН	IAIN OF REC	CUS CORD	TODY	PROJECT 2293	Nº:		ect NAME: LI	ICC -	-kep In	ublic ves.
	PLER'S SIGNATL	JRE <u>C.</u>	unn	1 <u>G</u> <u>C</u> (SOH)			SAMPLE TYPE	N ^R OF CONTAINERS	R	EMARKS
SEQ. Nº.	SAMPLE Nº.	DATE	ТІМЕ	SAMPLE I				28		
	TPIO	6/9/88		Stock	عا زم		Suil		Ber	zens
								$\left \right $		
				·						
	· · · · ·		· · · · · ·	· · ·				$\left[\right]$		· · · ·
						·				
		'								
										·
i										
								+		
		<u></u>		· · · · · · · · · · · · · · · · · · ·	<u> </u>					
	ICIPATED CHEM		os: Un	I TOTAL NUM	<u>^</u>			<u> </u>	·	
RELI	INQUISHED BY:	(SIGN)	<u></u>		ате/тік <u>Қ ((</u>	ме ()(; <i>С</i>)	RECEIVED	вү: / @-/	<u> 7 b 7</u>	Tuntas SON)
RELI	NQUISHED BY: -	Vis. II.	maser	- 6/4/8	ата/ПК . 8 ₁ (С			BY: Ja	BY: Jacky Ostrace (SQN)	
RELI	NQUISHED BY:	(SIGN)		DA	ATE/TIN			_		
	ITIONAL SIGNAT									
MET	HOD OF SHIPME	ENT:		ED BY: T 440~155	 z.N	RECEIV	VED FOR LABO			DATE/
CON	DITION OF SEAL	L UPON REC	EIPT:			COOL	ER OPENED E			DATE/ 6/9/88

•. F

ų,

••

-2

APPENDIX G

1

ŝ

م، او در

<u>.</u>

APPENDIX G

ANALYTICAL RESULTS WASTE DRUM SAMPLES

WASTE CHARACTERIZATION OF MATERIAL FOUND AT UNION CARBIDE CORPORATION SOLID WASTE MANAGEMENT FACILITY

Report Prepared For

UNION CARBIDE CORPORATION CARBON PRODUCTS DIVISION

Karen E. Kuklis

Project Manager

max for:

Janette Bingert / Quality Control Manager April 26, 1988 AES Report COH

COMMITMENT TO HONESTY - QUALITY - SERVICE

SCOPE OF WORK

Mr. Alvin Ogg of Union Carbide Corporation requested that samples of material found at Union Carbide Solid Waste Management Facility be analyzed for Waste Characterization.

	Client:	UNION CAR	BIDE A.E.S	5. Job Code	СОН	
			AES Lab No 163 Sample ID - cor		18689 PITCH	18690 DP-21-1
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-11/20	73/18/88	3/18/88	3/18/88
COMPONENTS OF COAL TAR PI	TCH:					
Benzene (ug/l)* Toluene (ug/l)*	602	2.00	8.48		BQL BQL	BQL BQL
m/p-Xylene (ug/l)* o-Xylene (ug/l)* Napthalene (ug/l)*		2.00 2.00 3.00	27.8	4.48 2.78 16.4	BQL BQL 125	3.82 5.11 16.4
Anthracene (ug/l)* Thiophene (mg/l)*	Supelco 816	3.00	BPL	34.5 BQL	19.4 BQL	71.4
Total Rec. Phenol(mg/l)* Ammonia (As N) (mg/l)*)* 420.2	0.005	.009	0.124	0.046 BQL	BQL 0.084 46
DIETHYL SULFATE (mg/l)* presumptive test)	375.2	2.0	89	198	4.2	186
URFURAL (mg/l)*	Supelco 790	2.00	22.7	BQL	BQL	BQL
:			Ма	rgaret L.	Skowron ry Supervisor	

* On E.P. Toxicity extraction.

** Below quantifiable limits.

Susan C. Scrocchi Gas Chromatography Supervisor

Client: UNION CARBIDE A.E.S. Job Code COH AES Lab No.-18691 18692 DP-21-2 Sample ID -DP-21-3 Analytical Method Quant. 3/18/88 Parameter(s) No. Limits Sample Date-3/18/88 COMPONENTS OF COAL TAR PITCH: Benzene (ug/1)* 602 BOL** 2.00 BQL Toluene (uq/1)* 2.00 BOL BOL m/p-Xylene (ug/l)* 2.00 5.11 4.97 o-Xylene (ug/1)* 2.00 2.46 2.21 Napthalene (ug/1)* 610 3.00 23.5 22.7 Anthracent (ug/1)* 3.00 15.3 426 Supelco Thiophene (mg/l)* 816 2.00 BQL BQL 0.179 Total Rec. Phenol(mg/1)* 420.2 0.005 0.150 Ammonia (As N) (mg/1)*350.1 0.01 60 27 DIETHYL SULFATE (mg/1)* 28 375.2 2.0 130 (presumptive test) Supelco FURFURAL (mg/1)* 790 2.00 BQL BQL Marg

Margaret L. Skowron Wet Chemistry Supervisor

Susan C. Scroechi

* On E.P. Toxicity extraction.

limi

Type of Analysis: RESULTS - WET CHEMISTRY

A.E.S. Job Code COH Client: UNION CARBIDE

			AES Lab No Sample ID -	18689 PITCH	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	3/18/88	
Softening Point (°C)*	ASTMD36			58	
Quinolline Insoluble (%)*	ASTMD2318			11.22	
Toluene Insoluble (%)*	ASTMD4072			22.97	
Coking Valve (%)*	ASTMD189			61.46	

* Subcontracted to Phoenix Chemical Laboratory, Inc.

Scouron lanate

Margaret L. Skowron Wet Chemistry Supervisor

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Benzene Toluene m/p-Xylene o-Xylene Naphthalene Anthracene Thiophene (mg/l) Furfural (mg/l)	18688 18688 18688 18688 18692 18692 18691 18691	<2.00 <2.00 4.53 2.81 21.7 415 <2.00 <2.00	<2.00 <2.00 4.42 2.74 23.7 436 <2.00 <2.00	<2.00 <2.00 4.48 2.78 22.7 426 <2.00 <2.00	None None 0.11 0.07 2.0 21 None None	4.9 None

Relative Percent Difference = Range/Average X 100

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: UNION CARBIDE A.E.S. Job Code: COH

(Units: ug/1, or ppb)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Benzene Toluene m/p-Xylene Naphthalene Furfural (mg/l) Thiophene (mg/l)	18689 18689 18689 18692 18692 18692 18690	SPK SPK SPK SPK SPK SPK	34.4 37.5 25.4 354 13.5 7.57	<2.00 <2.00 <2.00 22.7 <2.00 <2.00	31.0 35.7 26.2 335 12.6 9.65	111 105 97 99 107 78

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Analysis: Milligrams/Liter or ppm Client: UNION CARBIDE A.E.S. Job Code:COH

Analytical Parameters	Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference	
Ammonia	18689	BQL*	BQL	BQL	None	None	
Total Recoverable Phenols	18692	0.150	0.150	0.150	None	None	
Sulfate	18692	26	30	28	4.0	14	

Relative Percent Difference = Range/Average X 100 * Below quantifiable limits.

Client: UNION CARBIDE A.E.S. Job Code: COH

(Units:mg/l or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Ammonia Ammonia Total Recoverable Phenols Total Recoverable Phenols Sulfate Sulfate	18689 9916 18692 731 18692 384-2	SPK EPA SPK STD SPK EPA	0.48 8.0 0.336 0.286 148 6.8	BQL** 8.0 0.150 0.300 28 7.2	0.50 0.200 100	96 100 93 95 120 94

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.) ** Below quantifiable limits. APPENDIX H

1

_

APPENDIX H

ANALYTICAL DATA

GROUNDWATER SAMPLING PROGRAM

CC. NF tiles

GROUNDWATER MONITORING PROGRAM CRA PROJECT #2293 (FOR UNION CARBIDE)

Report Prepared For

CONESTOGA ROVERS & ASSOCIATES, INC.

Mornial

Catherine Mocniak Project Manager

Janette Bingert / Quality Control Manager

April 14, 1988 AES Report CRF

COMMITMENT TO HONESTY - QUALITY - SERVICE

• •	Type of	ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT ====================================						
	Client:	CRA	CRA A.E.S. Job Code CRF					
			AES Lab No Sample ID -	18739 OW1-88 GRAB	18740 OW2-88 GRAB	METHOD BLANK		
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	3/22/88	3/22/88			
Total Cyanide (mg/l)	335.3	0.01		BQL*	BQL	BQL		
Total Rec. Phenols (mg/l)	420.2	0.005		0.044	BQL	BQL	•	
			•					

* Below quantifiable limits.

Hermon Margan

Margaret L. Skowron Wet Chemistry Supervisor

ALVANCED ENVIRONMENTAL SERVICES, INC.

LABORATORY REPORT

Type of Analysis: PCBs AND PESTICIDES

Units Of Measure: Micrograms/Liter, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18739 OW1-88	18740 OW2-88	METHOD BLANK
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	3/22/88	3/22/88	
Aldrin	608	0.50		BQL*	BQL	BQL
alpha-BHC	-	0.50		0.52	BQL	BQL
beta-BHC		0.50		BQL	BQL	BQL
gamma-BHC	-	0.50		BQL	BQL	BQL
delta-BHC		0.50		BQL	BQL	BQL
Chlordane	-	5.00		BQL	BQL	BQL
4,4 -DDT		0.50		BQL	BQL	BQL
4,4 -DDE		0.50		BQL	BQL	BQL
4,4 -DDD		0.50		BQL	BQL	BQL
Dieldrin		0.50		BQL	BQL	BQL
alpha-Endosulfan		0.50		BQL	BQL	BQL
beta-Endosulfan		0.50		BQL	BQL	BQL
Endosulfan Sulfate		0.50		BQL	BQL	BQL
Endrin		0.50		BQL	BQL	BQL
Endrin Aldehyde		0.50		BQL	BQL	BQL
Heptachlor		0.50		BQL	BQL	BQL
Heptachlor Epoxide		0.50		BQL	BQL	BQL
PCB-1242		0.50	•	BQL	BQL	BQL
PCB-1254		0.50	-	BQL	BQL	BQL
PCB-1221	=	0.50		BQL	BQL	BQL
PCB-1232		0.50		BQL	BQL	BQL
PCB-1248	•	0.50		BQL	BQL	BQL
PCB-1260		0.50		BQL	BQL	BQL
PCB-1016		0.50		BQL	BQL	BQL
Toxaphene		5.00		BQL	BQL	BQL

- 2

Susan C. Scrocchi

* Below quantifiable limits.

Gas Chromatography Supervisor

ADVANCED ENVIRONMENTAL SERVICES, INC.

LABORATORY REPORT

Type of Analysis: VOLATILE ORGANICS

Units Of Measure: Micrograms/Liter, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18739 OW1-88 GRAB	18740 OW2-88 GRAB	18741 FIELD BLANK	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	3/22/88	3/22/88	3/17/88	
Chloromethane	624	1(1(BQL* BQL	BQL BQL	BQL BQL	
Vinyl Chloride Chloroethane		10		BQL	BQL	BQL	
Bromomethane		10		BQL	BQL	BQL	
2-Chloroethyl Vinyl Ether		10		BQL	BQL	BQL	
Ethylbenzene	Ħ	5.0	D .	BQL	BQL	BQL	
Methylene Chloride		5.0	D	BQL	BQL	BQL	
Chlorobenzene		5.0		BQL	BQL	BQL	
1,1-Dichloroethylene	*	5.0		BQL	BQL	BQL	
1,1-Dichloroethane		5.0		BQL	BQL	BQL	
trans-1,2-Dichloroethylene		5.0		BQL	BQL	BQL	
Chloroform	M	5.0		BQL	BQL	BQL	
l,2-Dichloroethane		5.0		BQL	BQL	BQL	
l,l,l-Trichloroethane		5.		BQL	BQL	BQL	
Carbon Tetrachloride		5.		BQL	BQL	BQL	
Bromodichloromethane	-	5.0		BQL	BQL	BQL	
1,2-Dichloropropane	-	5.		BQL	BQL	BQL	
trans-1,3-Dichloropropene	-	5.0		BQL	BQL	BQL	
Trichloroethylene	-	5.		BQL	BQL	BQL	
Benzene	-	5.		BQL	BQL	BQL	
cis-1, 3-Dichloropropene		5.0		BQL	BQL BQL	BQL BQL	
1,1,2-Trichloroethane	-	5.0		BQL	BQL	BQL	
Dibromochloromethane Bromoform		5.(5.(BQL BQL	BQL	BQL	

Susan C. Scrocchi Gas Chromatography Supervisor

* Below quantifiable limits.

ADVANCED ENVIRONMENTAL SERVICES, INC.

LABORATORY REPORT

Type of Analysis: VOLATILE ORGANICS

Units Of Measure: Micrograms/Liter, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID -	18739 OW1-88 GRAB	18740 OW2-88 GRAB	18741 Field Blank	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	3/22/88	3/22/88	3/17/88	
<pre>1,1,2,2-Tetrachloroethylen 1,1,2,2-Tetrachloroethane Toluene Trichlorofluoromethane</pre>	624	5. 5. 5. 5.	0 0	BQL* BQL BQL BQL	BQL BQL BQL BQL	BQL BQL BQL BQL	

* Below quantifiable limits.

Susan C. Scrocchi Gas Chromatography Supervisor

Type of Analysis: BASE/NEUTRAL EXTRACTABLES

Units Of Measure: Micrograms/Liter, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No	18739	18740	18741	
			Sample ID -	OW1-88	OW2-88	FIELD	
				GRAB	GRAB	BLANK	
Analytical	Method	Quant.		2 (22 (22	2 / 2 2 / 0 0	2/17/00	
Parameter(s)	No.	Limits	Sample Date-	3/22/88	3/22/88	3/17/88	
N-Nitrosodimethylamine	625	10		BQL*	BQL	BQL	
Bis(2-Chloroethyl)Ether		10		BQL	BQL	BQL	
1,3-Dichlorobenzene		10		BQL	BQL	BQL	
1,4-Dichlorobenzene		10		BQL	BQL	BQL	
1,2-Dichlorobenzene	-	10	i de la construcción de la constru	BQL	BQL	BQL	
Bis(2-Chloroisopropyl)		10	i de la construcción de la constru	BQL	BQL	BQL	
Ether		10		BQL	BQL	BQL	
Hexachloroethane		10	1	BQL	BQL	BQL	
N-Nitrosodi-N-Propylamine		10	i i i i i i i i i i i i i i i i i i i	BQL	BQL	BQL	
Nitrobenzene		10	1	BQL	BQL	BQL	
Isophorone	-	10		BQL	BQL	BQL	
Bis(2-Chloroethoxy)Methane	W	10) · · ·	BQL	BQL	BQL	
1,2,4-Trichlorobenzene		10	1	BQL	BQL	BQL	
Naphthalene		10	1	BQL	BQL	BQL	
Hexachlorobutadiene		10	•	BQL	BQL	BQL	
Hexachlorocylopentadiene		10	1	BQL	BQL	BQL	
2-Chloronaphthalene		10		BQL	BQL	BQL	
Dimethylphthalate		10	i de la constante de	BQL	BQL	BQL	
Acenaphthylene		10	•	BQL	BQL	BQL	
2,6-Dinitrotoluene		10	1	BQL	BQL	BQL	
Acenaphthene		10		BQL	BQL	BQL	
2,4-Dinitrotoluene		· 10		BQL	BQL	BQL	
Diethylphthalate		10)	BQL	BQL	BQL	

Susan C. Scröcchi 5 Gas Chromatography Supervisor

* Below quantifiable limits.

<u>....</u>

Type of Analysis: BASE/NEUTRAL EXTRACTABLES:

Units Of Measure: Micrograms/Liter, or ppb Client: CRA A.E.S. Job Code CRF

				AES Lab No Sample ID -	18739 OW1-88 GRAB	18740 OW2-88 GRAB	18741 Field Blank	
Analytical Parameter(s)	Method No.	Quant Limit		Sample Date-	3/22/88	3/22/88	3/17/88	
Fluorene	625		10		BQL*	BQL	BQL	
4-Chlorophenylphenylether			10		BQL	BQL	BQL	
Diphenylamine(N-Nitroso)	-		10		BQL	BQL	BQL	
1,2-Diphenylhydrazine				·				
(Azobenzene)			10		BQL	BQL	BQL	
4-Bromophenylphenylether			10		BQL	BQL	BQL	
Hexachlorobenzene			10		BQL	BQL	BQL	
Phenanthrene	W		10		14	BQL	BQL	
Anthracene			10		BQL	BQL	BQL	
Di-N-Butylphthalate			10		BQL	BQL	BQL	
Fluoranthene			10		13	BQL	BQL	
Benzidine			50		BQL	BQL	BQL	
Pyrene		_	10		12	BQL	BQL	
Butylbenzylphthalate			10		BQL	BQL	BQL	• •
Benzo(a)Anthracene			10		BQL	BQL	BQL	
3,3'-Dichlorobenzidine	W		30		BQL	BQL	BQL	
Chrysene			10		BQL	BQL	BQL	
Bis(2-Ethylhexyl)Phthalate			10		BQL	BQL	BQL	
Di-N-Octylphthalate	· •	• ,	10	. •	BQL	BQL	BQL	
Benzo(b)Fluoranthene			10		BQL	BQL	BQL	
Benzo(k)Fluoranthene		. :	10		BQL	BQL	BQL	
Benzo(a)Pyrene	-		10		BQL	BQL	BQL	
Indeno(1,2,3-C,D)Pyrene	*		10		BQL	BQL	BQL	
Dibenzo(a,h)Anthracene		,	10		BQL	BQL	BQL	
Benzo(g,h,i)Perylene	•	.•	10		BQL	BQL	BQL	

* Below quantifiable limits.

6

Susan'C. Scrocchi Gas Chromatography Supervisor

Type of Analysis: ACIDS

Units Of Measure: Micrograms/Liter, or ppb Client: CRA A.E.S. Job Code CRF

			AES Lab No Sample ID - -	18739 OW1-88 GRAB	18740 OW2-88 GRAB 3/22/88	18741 Field Blank	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	3/22/88		3/17/88	
Phenol	625	10		BQL*	BQL	BQL	
2-Chlorophenol		10		BQL	BQL	BQL	
2-Nitrophenol		10		BQL	BQL	BQL	
2,4-Dimethylphenol	¥	10		BQL	BQL	BQL	
p-Chloro-m-Chesol		10		BQL	BQL	BQL	
2,4,6-Trichlorophenol	W	10		BQL	BQL	BQL	
2,4-Dinitrophenol		[:] 20		BQL	BQL	BQL	
4-Nitrophenol		20		BQL	BQL	BQL	
4,6-Dinitro-O-Cresol		20		BQL	BQL	BQL	•
Pentachlorophenol	-	20		BQL	BQL	BQL	
2,4-Dichlorophenol		10		BQL	BQL	BQL	

Susan C. Scrocchi Gas Chromatography Supervisor

* Below quantifiable limits.

Type of Analysis: METALS

Client: CRA A.E.S. Job Code CRF

(All results are in mg/l)

			AES Lab No Sample ID -	18739 OW1-88 GRAB	18740 OW2-88 GRAB	METHOD BLANK
Analytical	Method	Quant.				
Parameter(s)	No.	Limits	Sample Date-	3/22/88	3/22/88	
Soluble Antimony (Sb)	204.2	0.020)	BQL*	BQL	BQL
Soluble Arsenic (As)	206.2	0.00	5	0.014	BQL	BQL
Soluble Beryllium (Be)	210.1	· 0.0	5 .	BQL	BQL	BQL
Soluble Cadmium (Cd)	213.1	0.04	1	BQL	BQL	BQL
Soluble Chromium (Cr)	218.1	0.50))	BQL	BQL	BQL
Soluble Copper (Cu)	220.1	0.20	0	BQL	BQL	BQL
Soluble Lead (Pb)	239.1	1.00	0	BQL	BQL	BQL
Soluble Mercury (Hg)	245.2	0.00	1	BQL	BQL	BQL
Soluble Nickel (Ni)	249.1	0.30	D	BQL	BQL	BQL
Soluble Selenium (Se)	270.2	0.00	5	BQL	BQL	BQL
Soluble Silver (Ag)	272.1	0.10	D	BQL	BQL	BQL
Soluble Thallium (Tl)	279.2	1.00	0	BQL	BQL	BQL
Soluble Zinc (Zn)	289.1	0.0	5	0.06	0.12	BQL

Janette Bingert () Atomic Spectroscopy Supervisor

* Below quantifiable limits.

· · 8

APPENDIX A

QUALITY CONTROL PRECISION AND ACCURACY DATA

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Analysis: Milligrams/Liter or ppm Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Total Cyanide Total Recoverable Phenols	18740 18740	BQL* BQL	BQL BQL	BQL BQL	None None	None None
			•	:		
	:			•		
						,
	• • •	· ·				
Relative Percent Difference = Range/Average X 100	-	• • •			•	
* Below quantifiable limits.			9	•		

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT OUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

10

(Units:mg/l or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Total Cyanide Total Cyanide Total Recoverable Phenols	18740 . 18740	SPK STD SPK	0.24 0.10 0.220	BQL** 0.10 BQL	0.25	96 100 110
Total Recoverable Phenols		STD	0.286	0.300		95

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.) ****** Below quantifiable limits.

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT WET CHEMISTRY DEPARTMENT

AES JOB CODE CRF

ANALYST

Donolar

1 Donaiem

420.2

335.3

SAMPLE CODE ANALYTICAL METHOD 18739,18740 18739,40

DATE OF ANALYSIS 3/28/88

3/29/88

TIME OF ANALYSIS

1500

1700

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT OUALITY CONTROL - PRECISION. _____ Type of Analysis: Duplicate Analysis Units of Measure: Micrograms/Liter, or ppb

A.E.S. Job Code:CRF Client: CRA

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
			· · · · ·			· · · · ·
Aldrin	18739	<0.50	<0.50	<0.50	None	None
alpha-BHC	18739	0.52	<0.50	N/A*	N/A	N/A
beta-BHC	18739	<0.50	<0.50	<0.50	None	None
gamma-BHC	18739	<0.50	<0.50	<0.50	None	None
delta-BHC	18739	<0.50	<0.50	<0.50	None	None
Chlordane	18739	<5.00	<5.00	<5.00	None	None
4,4 ⁻ DDT	18739	<0.50	<0.50	<0.50	None	None
4,4 ⁻ DDE	18739	<0.50	<0.50	<0.50	None	None
4,4'-DDD	18739	<0.50	<0.50	<0.50	None	None
Dieldrin	18739	<0.50	<0.50	<0.50	None	None
alpha-Endosulfan	18739	<0.50	<0.50	<0.50	None	None
beta-Endosulfan	18739	<0.50	<0.50	<0.50	None	None
Endosulfan Sulfate	18739	<0.50	<0.50	<0.50	None	None
Endrin	18739	<0.50	<0.50	<0.50	None	None
Endrin Aldehyde	18739	<0.50	<0.50	<0.50	None	None
Heptachlor	18739	<0.50	<0.50		None	None
Heptachlor Epoxide	18739	<0.50	<0.50	<0.50	None	None
PCB-1242	18739	<0.50	<0.50	<0.50	None	None
PCB-1254	18739	<0.50	<0.50	<0.50	None	None
PCB-1221	18739	<0.50	<0.50	<0.50	None	None
PCB-1232	: 18739	<0.50	<0.50	<0.50	None	None
PCB-1248	18739	<0.50	<0.50	<0.50	None	None
PCB-1260	18739	<0.50	<0.50	<0.50	None	None
PCB-1016	18739	<0.50	<0.50	<0.50	None	None
Toxaphene	18739	<5.00	<5.00	<5.00	None	None

Relative Percent Difference = Range/Average X 100

* Not applicable.

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT OUALITY CONTROL - ACCURACY ______

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF Client: CRA

(Units: ug/l, or ppb)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
beta-BHC	18740	SPK	1.22	<0.50	2.00	61
Heptachlor Epoxide	18740	SPK	1.85	<0.50	2.00	92
Heptachlor Epoxide		EPA	1.43	·	2.0	72
Endosulfan I		EPA	2.18		2.0	109
Endosulfan II		EPA	7.47		10.0	75

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

	AES JOE	AES JOB CODE <u>CRF</u>							
ANALYST /	ANALYTICAL METHOD	SAMPLE CODE	DATE OF EXTRACTION						
Joseph 5 Nover	608	18739,40	3/29/88						
			х · · · · · · · · · · · · · · · · · · ·						
		<u></u> i	: 						
	;								
		•							
			••••••••••••••••••••••••••••••••••••••						
		14							

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

AES JOB CODE <u>CRF</u>

ANALYST	ANALYTICAL METHOD	SAMPLE CODE	DATE OF ANALYSIS	TIME OF ANALYSIS
Patrick a tame	608	18739,40	3129188	2011-2400
				•
·				
		· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· ··			
			· • · · ·	
		15		

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Chloromethane	18739	<10	<10	<10	None	None
Vinyl Chloride	18739	<10	<10	<10	None	None
Chloroethane	18739	<10	<10	<10	None	None
Bromomethane	18739	<10	<10	<10	None	None
2-Chloroethylvinylether	18739	<10	<10	<10	None	None
Ethylbenzene	18739	<5.0	<5.0	<5.0	None	None
Methylene Chloride	18739	<5.0	<5.0	<5.0	None	None
Chlorobenzene	18739	<5.0	<5.0	<5.0	None	None
1,1-Dichloroethylene	18739	<5.0	<5.0	<5.0	None	None
1,1-Dichloroethane	18739	<5.0	<5.0	<5.0	None	None
trans-1,2-Dichloroethylene	18739	<5.0	<5.0	<5.0	None	None
Chloroform	18739	<5.0	<5.0	<5.0	None	None
1,2-Dichloroethane	18739	<5.0	<5.0	<5.0	None	None
1,1,1-Trichloroethane	18739	<5.0	<5.0	<5.0	None	None
Carbon Tetrachloride	. 18739	<5.0	<5.0	<5.0	None	None
Bromodichloromethane	18739	<5.0	<5.0	<5.0	None	None
1,2-Dichloropropane	18739	<5.0	<5.0	<5.0	None	None
trans-1,3-Dichloropropene	18739	<5.0	<5.0	<5.0	None	None
Trichloroethylene	18739	<5.0	<5.0	<5.0	None	None
Benzene	18739	<5.0	<5.0	<5.0	None	None
cis-1,3-Dichloropropene	18739	<5.0	<5.0	<5.0	None	None
1,1,2-Trichloroethane	18739	<5.0	<5.0	<5.0	None	None
Dibromochloromethane	18739	<5.0	<5.0	<5.0	None	None
Bromoform	18739	<5.0	<5.0	<5.0	None	None

Relative Percent Difference = Range/Average X 100

		LABORATO UALITY CONTI ========== ysis: Duplic sure: Micros	MENTAL SERVI DRY REPORT ROL - PRECIS cate Analysis grams/Liter, A.E.S.	ION ====== s or ppb		
Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	 Range	Rel. % Difference
1,1,2,2-Tetrachloroethylene 1,1,2,2-Tetrachloroethane Toluene Trichlorofluoromethane	18739 18739 18739 18739	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	None None None None	None None None None
				:	• •	
	•			· · ·		
· · · · · · · · · · · · · · · · · · ·	. · 					
	• •	• • • • • •	1			
		• • • • •			· _	
Relative Percent Difference = Range/Average X 100			• • • • • •			
	.* 11 - 1		17			

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
					. *	
N-Nitrosodimethylamine	18739	<10	<10	<10	None	None
Bis(2-Chloroethyl)Ether	18739	<10	<10	<10	None	
l,3-Dichlorobenzene	18739	<10	<10	<10	None	None
l,4-Dichlorobenzene	18739	<10	<10	<10	None	None
1,2-Dichlorobenzene	18739	<10	<10	<10	None	None
Bis(2-Chloroisopropyl)Ether	18739	<10	<10	<10	None	None
Hexachloroethane	18739	<10	<10	<10	None	None
N-Nitrosodi-N-Propylamine	18739	<10	<10	<10	None	None
Nitrobenzene	18739	<10	<10	<10	None	None
Isophorone	18739	<10	<10	<10	None	None
Bis(2-Chloroethoxy)Methane	18739	<10	<10	<10	None	None
1,2,4-Trichlorobenzene	18739	<10	<10	<10	None	None
Naphthalene	18739	<10	<10	<10	None	None
Hexachlorobutadiene	18739	<10	<10	<10	None	None
Hexachlorocylopentadiene	18739	<10	<10	<10	None	None
2-Chloronaphthalene	18739	<10	. <10	<10	None	None
Dimethylphthalate	18739	<10	<10	<10	None	None
Acenaphthylene	18739	<10	· <10	<10	None	None
2,6-Dinitrotoluene	18739	<10	<10	<10	None	None
Acenaphthene	18739	<10	<10	<10	None	None
2,4-Dinitrotoluene	18739	<10	<10	<10	None	None
Diethylphthalate	18739	<10	<10	<10	None	None

Relative Percent Difference = Range/Average X 100

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

QUALITY CONTROL - PRECISION

Type of Analysis: Duplicate Analysis Units of Measure: Micrograms/Liter, or ppb Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Fluorene	18739	<10	<10	<10	None	None
4-Chlorophenylphenylether	18739	<10	<10	<10	None	None
Diphenylamine(N-Nitroso)	18739	<10	<10	· <10	None	None
1, 2-Diphenylhydrazine(Azobenzene)	18739	<10	<10	<10	None	None
4-Bromophenylphenylether	18739	<10	<10	`<10	· None	None
Hexachlorobenzene	18739	<10	<10	<10	None	None
Phenanthrene	18739	14	14	14	0	0
Anthracene	18739	<10	<10	<10	None	None
Di-N-Butylphthalate	18739	<10	<10	<10	None	None
Fluoranthene	18739	13	10	11.5	3	26
Benzidine	18739	<50	<50	<50	None	None
Pyrene	18739	12	<10	N/A*	N/A	N/A
Butylbenzylphthalate	18739	<10	<10	<10	None	None
Benzo(a)Anthracene	18739	<10	<10	. <10	None	None
3,3'-Dichlorobenzidine	18739	< 30	<30	<30	None	None
Chrysene	18739	<10	<10	<10	None	None
Bis(2-Ethylhexyl)Phthalate	18739	<10	<10	<10	None	None
Di-n-Octylphthalate	18739	<10	<10	<10	None	None
Benzo(b)Fluoranthene	18739	<10	<10	<10	None	None
Benzo(k)Fluoranthene	18739	<10	<10	<10	None	None
Benzo(a)Pyrene	18739	<10	<10	<10	None	None
Indeno(1,2,3-c,d)Pyrene	18739	<10	<10	<10	None	None
Dibenzo(a,h)Anthracene	18739	<10	<10	<10	None	None
Benzo(g,h,i)Perylene	18739	<10	<10	<10	None	None

Relative Percent Difference =

Range/Average X 100 * Not applicable

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION Type of Analysis: Duplicate Analysis Units of Measure: Micrograms/Liter, or ppb Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample Code	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Phenol	18739	<10	<10	<10	None	None
2-Chlorophenol	18739	<10	<10	<10	None	None
2-Nitrophenol	18739	<10	<10	<10	None	None
2,4-Dimethyphenol	18739	<10	<10	<10	None	None
p-Chloro-M-Cresol	18739	<10	<10	<10	None	None
2,4,6-Trichlorophenol	18739	<10	<10	<10	None	None
2,4-Dinitrophenol	18739	<20	<20	<20	None	None
4-Nitrophenol	18739	<20	<20	<20	None	None
4,6-Dinitro-o-Cresol	18739	<20	<20	· <20	None	None
Pentachlorophenol	18739	<20	<20	<20	None	None
2,4-Dichlorophenol	18739	<10	<10	<10	None	None

Relative Percent Difference = Range/Average X 100

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units: ug/1, or ppb)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
l,l-Dichloroethane	18740	SPK	35	<5.0	28	125
Methylene Chloride	18740	SPK	59	<5.0	48	123
Chloroform	18740	SPK	. 38	<5.0	30	126
Trichloroethylene	18740	SPK	22	<5.0	32	69
1,1,2-Trichloroethane	18740	SPK	30	<5.0	40	75
Tetrachloroethylene	18740	SPK	24	<5.0	36.	67
1,2-Dichloroethane-d4	18739	Surrogate	52		50	104
Toluene-d8	18739	Surrogate	43		50	86
4-Bromofluorobenzene	18739	Surrogate	40	·	50	80
Naphthalene	18740	SPK	84	<10	100	84
Acenapthene	18740	SPK	71	· <10	100	71
Anthracene	18740	SPK	65	<10	100	65
Diethylphthalate	18740	SPK	63	<10	- 55	115
Di-N-Butylphthalate	18740	SPK	57	<10	63	90
Butylbenzylphthalate	18740	SPK	54	· <10	60	90
Bis-2-Ethylhexylphthalate	18740	SPK	61	<10	65	94
Di-N-Octylphthalate	18740	SPK	75	<10	95	79

% Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

×

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT GAS CHROMATOGRAPHY DEPARTMENT

AES JOB CODE <u>CRF</u> ANALYST ANALYTICAL METHOD SAMPLE CODE DATE OF ANALYSIS TIME OF ANALYSIS 3/24/88 624 18739-40 18:00 - 21:30 4/6/88 625 18739-40 14:00 - 19:00 22

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION

Type of Analysis: Duplicate Analysis Units of Analysis: Milligrams/Liter, or ppm Client: CRA A.E.S. Job Code:CRF

Analytical Parameters	Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
	:					
Soluble Antimony (Sb)	18739	BQL*	BQL	BQL	None	None
Soluble Arsenic (As)	18739	0.013	0.014	0.014	0.001	7
Soluble Beryllium (Be)	18739	BQL	BQL	BQL	None	None
Soluble Cadmium (Cd)	18739	BQL	BQL	BQL	None	None
Soluble Chromium (Cr)	18739	BQL	BQL	BQL	None	None
Soluble Copper (Cu)	18739	BQL	BQL	BQL	None	None
Soluble Lead (Pb)	18739	BQL	BQL	BQL	None	None
Soluble Mercury (Hg)	18739	BQL	BQL	BQL	None	None
Soluble Nickel (Ni)	18739	BQL	BQL	BQL	None	None
Soluble Selenium (Se)	18739	BQL	BQL	BQL	None	None
Soluble Silver (Ag)	18739	BQL	BQL	BQL	None	None
Soluble Thallium (Tl)	18739	BQL	BQL	BQL	None	None
Soluble Zinc (Zn)	18740	BQL	BQL	BQL	None	None

Relative Percent Difference = Range/Average X 100 * Below quantifiable limits.

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT

QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: CRA A.E.S. Job Code: CRF

(Units:mg/l or ppm)

	Sample		Observed	Original	Added	Percent
Analytical Parameters	No.	Туре	Conc.	Conc.	Conc.	Recovery*
Soluble Antimony (Sb)	18740	SPK	0.304	BQL**	0.300	101
	581	EPA	0.084	0.087		96
EPA (Sb) std. Soluble Arsenic (As)	18740	SPK	0.098	BQL	0.100	98
	386	EPA	0.034	0.030		113
EPA (As) std.	18740	SPK	1.78	BQL	2.00	89
Soluble Beryllium (Be)	386	EPA	1.03	0.99		104
EPA (Be) std.	18740	SPK	2.02	BQL	2.00	101
Soluble Cadmium (Cd)	1085		1.07	1.01		106
EPA (Cd) std.	18740	SPK	10.24	BQL	10.00	102
Soluble Chromium (Cr)	283	EPA	2.94	3.25		90
EPA (Cr) std.		SPK	5.20	BQL	5.00	104
Soluble Copper (Cu)	18740 386		1.13	0.99		114
EPA (Cu) std.	18740	SPK	19.46	BQL	20.00	97
Soluble Lead (Pb)		EPA	5.12	5.12	·	100
EPA (Pb) std.	1085		0.011	BQL	0.010	110
Soluble Mercury (Hg)	18740	SPK	0.0040	0.0046		87
EPA (Hg) std.	1183	EPA	4.48	BQL	5.00	. 90
Soluble Nickel (Ni)	18740	SPK	1.05	0.99		106
EPA (Ni) std.	386	EPA	0.093	BQL	0.100	93
Soluble Selenium (Se)	18740	SPK	0.008	0.007		100
EPA (Se) std.	386	EPA	3.80	BQL	4.00	95
Soluble Silver (Ag)	18740	SPK	2.46	2.50		98
EPA (Ag) std.	1085	EPA		BQL	20.00	111
Soluble Thallium (Tl)	18740	SPK	22.20	10.00	20.00	105
Independent (T1) std.	10740	EPA	10.50		1.00	91
Soluble Zinc (Zn)	18740	SPK	1.02	0.12	1.00	98
EPA (Zn) std.	386	EPA	0.49	0.50		

* % Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.) ** Below quantifiable limits.

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT ATOMIC SPECTROSCOPY DEPARTMENT

AES JOB CODE CRF

ANALYST som (

289, 245,2

fair.

ANALYTICAL METHOD

213,1

249,

2391

SAMPLE CODE 18739-40 18739-40 18739-40 18739-40 18739-40

DATE OF ANALYSIS 3-29-88 3-28-88 3-29-88 2-28-58 3-24-88

TIME OF ANALYSIS 2100 1400 1900 1800 200

ADVANCED ENVIRONMENTAL SERVICES, INC. PARAMETER TRACEABILITY REPORT ATOMIC SPECTROSCOPY DEPARTMENT

AES JOB CODE \underline{CRF} ANALYST ANALYTICAL METHOD SAMPLE CODE DATE OF ANALYSIS TIME OF ANALYSIS mcMahon 300 204. 18739-40 3-24-88 206, 2 3-24-88 18739-40 nor 3-24-88 270,2 18739-40 3-23-88 210 18739-40 707 220,1 3-23-88 18739-40 11000 279.1 3-23-88 18739-40 90 218, 18739-40 3-23-88 800 18739.40 3-23-88 136 26

APPENDIX B

CHAIN OF CUSTODY RECORDS

351 C	RA Consulting ESTOGA-RO Colby Drive, Wate	VEHS & AS Brioo, Ontario	Canada Na	2V 1C2	L	AE	-		
CH	AIN OF REC		FODY	PROJECT	N ^p :	PRO R-e	JECT NAME: Ur public, G	ni 0 Ira	n Carbide- undwater
SAMI	PLER'S SIGNATU		Jum				SAMPLE	Nº OF CONTAMERS	REMARKS
EQ. Nª.	SAMPLE Nº.	DATE	TIME	SAMPLE	LOCATO	AN	TYPE	2 100	
		3/22/88	1030	66	1-88		VOA	2	
							Metals	2	HNOS, filt
							Cyanide		Naoh
							Prend		Hasia Cusia
				ļ			Lead		- / -
	•	<u> </u>		ļ			PCB	12	
·			· · · · · · · · · · · · · · · · · · ·	· · ·	<u> </u>		625	12	
	· · ·	21. 50			<u> </u>		NOO		· · · · · · · · · · · · · · · · · · ·
		3/22/84	1200	αν3-	88		VOA	2	
							Metuls	12	HNO3, Fill.
-+				<u> </u>			Gionide	ĻĻ	Naot
				}			Phense	<u> </u>	Hoson, Cuscy
				<u> </u>	··· · · ·		Lead		
				<u> </u>			PCR	5	
				Trial	01.	1	625	17	
				Trip	Slar	<u>K</u> _	VOA		
			<u> </u>	<u> </u> -					
-+			· · · · · · · · · · · · · · · · · · ·	<u>}</u>					
		1	· · · · · · · · · · · · · · · · · · ·	TOTAL NUN	ABER O	F CO	NTAINERS	23	
	NQUISHED BY:	CAL HAZARE	un.	knowr) ATE/TIA		RECEIVED	372	A
		(SIGN)	nige		(7+)			Ô,	(SGN)
REL	NQUISHED BY:				ATE/TIN	Æ	RECEIVED	γ <u>.</u>	
	[2]-				1			(3)-	· ·····
0511		(SIGN)				15	RECEIVED		(SQI)
RELI	NQUISHED BY:				ATE/TIN			• •	· · · · · · · · · · · · · · · · · · ·
		(SIGN)					-		(991)
	ADDITIONAL SIGNATURE SHEET REQUIRED				a: *:			••	
			كالالت المستعين فينهون والم						and the second
SHEE		ENT:	SHIPPI				(xool, AT		

Anti-Ambundant 2186 IDENTY DRIVE WINCHARTING REWICE INC. INFORMERTING REWICE INC. INFORMERTING REWICE INC. HAIN OF CUSTODY JOB CODE PROJECT NAME UNION CARDIDE STRATURE C. Q.P.F. Q.R.A. UNION CARDIDE STRATURE C. Q.P.F. Q.R.A. UNION CARDIDE STRATURE C. Q.P.F. Q.P.F. Q.P.F. MAIN OF CUSTODY JOB CODE PROJECT NAME UNION CARDIDE STRATURE C. MARCE INC. Q.P.F. Q.P.F. Q.P.F. MAIN DATE TORE INCOME Q.P.F. Q.P.F. Y.P.F. Q.P.F. MAIN DATE TORE INCOME Q.P.F. Y.F. Y.F. Q.P.F. MAIN DATE TORE INCOME Q.P.F. Y.F. Y.F. Y.F. MAIN DATE Y.F. Y.F. Y.F. Y.F. Y.F. MAIN DATE Y.F. Y.F. Y.F. Y.F. Y.F. MAIN DATE Y.F. Y.F. Y.F. Y.F. Y.F. MAIN DATE	· .	-									·	
SAMPLER'S C Dimmedia B	Az			S INC.	_		NIAGARA FALLS, NY 14304					
SIGNATURE The SHOLLOUTION 5 g g g g g g g g g g g g g g g g g g g	CHAI	N OF REC	- CUS ORD	STODY	JOB CODE CRF							
Statis Name Owner Name	SAMPI SIGN	LER'S	0.1		nuto com					F		
Statis Name Owner Name	MPLE	SEQ.				TION	GRAB	COMP	SAMPLE TYPE	40. 0 DNTAI	REMARKS	
3/248 (100 0) 2-F8 "<					OW1-	88	\mathbf{x}		WATER			
RELINQUISHED BY (Sign) DATE TIME RECEIVED BY (Sign) Image: Second			3/22/88	1200	002-8	- 8	X			11		
N N N N <t< td=""><td></td><td></td><td></td><td></td><td>TRIP B</td><td>LANK</td><td>$\left \right$</td><td></td><td>"</td><td>1</td><td></td><td></td></t<>					TRIP B	LANK	$\left \right $		"	1		
N N N N <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>╀╌┨</td><td></td><td><u>,</u></td><td></td><td></td><td>·····</td></t<>							╀╌┨		<u>,</u>			·····
N N N N <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>╞─┨</td><td>+</td><td><u> </u></td><td>+</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td></t<>							╞─┨	+	<u> </u>	+	· · · · · · · · · · · · · · · · · · ·	
N N N N <t< td=""><td></td><td></td><td></td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td></t<>				·							· · · · · · · · · · · · · · · · · · ·	
N N N N <t< td=""><td>·</td><td></td><td></td><td></td><td></td><td></td><td>\square</td><td></td><td></td><td></td><td>······································</td><td></td></t<>	·						\square				······································	
N N N N <t< td=""><td></td><td></td><td></td><td></td><td></td><td>······································</td><td>┼┤</td><td>-+</td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td></t<>						······································	┼┤	-+			· · · · · · · · · · · · · · · · · · ·	
N N N N <t< td=""><td></td><td></td><td> </td><td></td><td><u> </u></td><td></td><td>\square</td><td></td><td>······</td><td>╉╼┨</td><td>· · · · · ·</td><td></td></t<>					<u> </u>		\square		······	╉╼┨	· · · · · ·	
N N N N <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>┼──┤</td><td>·</td><td></td></t<>										┼──┤	·	
N N N <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\square</td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>							\square				· · · · · · · · · · · · · · · · · · ·	
N N N <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>\downarrow</td> <td>·····</td> <td></td>								_		\downarrow	·····	
RELINQUISHED BY (Sign) DATE TIME RECEIVED BY (Sign) Image: Second							$\left - \right $	-+				
RELINQUISHED BY (Sign) DATE TIME RECEIVED BY (Sign) Image: Constraint of the state of the	1						╞╌┼	+		+		
RELINQUISHED BY (Sign) DATE TIME RECEIVED BY (Sign) Image: Constraint of the state of the					·		┝┊╂			+		· -
RELINQUISHED BY (Sign) DATE TIME RECEIVED BY (Sign) Image: Constraint of the state of the												
RELINQUISHED BY (Sign) DATE TIME RECEIVED BY (Sign) Image: Constraint of the state of the	}					· · · · · · · · · · · · · · · · · · ·		\square				
RELINQUISHED BY (Sign) DATE TIME RECEIVED BY (Sign) Image: Constraint of the state of the										+		
RELINQUISHED BY (Sign) DATE TIME RECEIVED BY (Sign) Image: Second S	·ł				<u> </u>					╉──╄		
RELINQUISHED BY (Sign) DATE TIME RECEIVED BY (Sign) Image: Second S								+		┼╌┼		
RELINQUISHED BY (Sign) DATE TIME RECEIVED BY (Sign) Image: Constraint of the state of the								1				
Image: Section of the section of th	·								IOTAL CONTAINERS	23]
Image: Second state of the second s	RELINQU	ISHED	BY (Si	gn)	<u> </u>	DATE	T	IME	RECEIVED B	Y (Siar		
DATE TIME RECEIVED BY (Sign) I	20	11		•	<u> </u>	3/22/0	1/	:15	- aludi	Ortr	insl	
DATE TIME RECEIVED BY (Sign) I				Δ	·····			<u>D.n</u>	<u>, </u>			
DATE TIME RECEIVED BY (Sign) I	-	ISHED	BY (Si	gn)		DATE	т: 	IME	RECEIVED B	Y (Sigr	1)	
DATE TIME RECEIVED BY (Sign) I	ل؛ _ا		••••••••••••••••••••••••••••••••••••••				ł		0			
DATE TIME RECEIVED BY (Sign) I	RELINQU	ISHED	BY (Si	gn)	<u></u>	DATE		IME	RECEIVED B	(Sian	· · · · · · · · · · · · · · · · · · ·	
DATE TIME RECEIVED BY (Sign) I	, <u>]</u>							-				_
<u></u>							L.					
	_	ISHED	BY (Si	gn)		DATE	TI I	IME	RECEIVED BY	(Sign	•)	
EMARKS:	·		·			-			3			-
	REMARKS	:	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · ·		······	•		····		<u></u>	

APPENDIX I

WATERMAIN INSTALLATION PROGRAM

SAMPLE "A" RESULTS

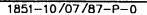
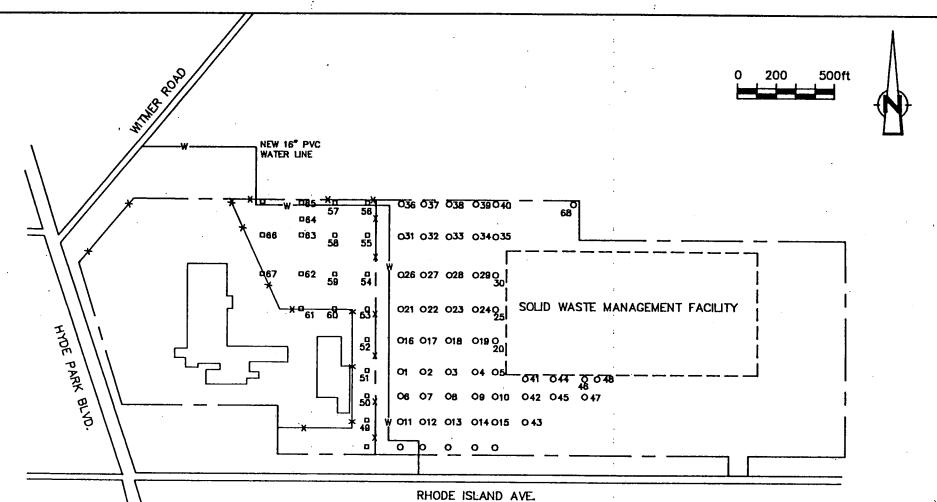
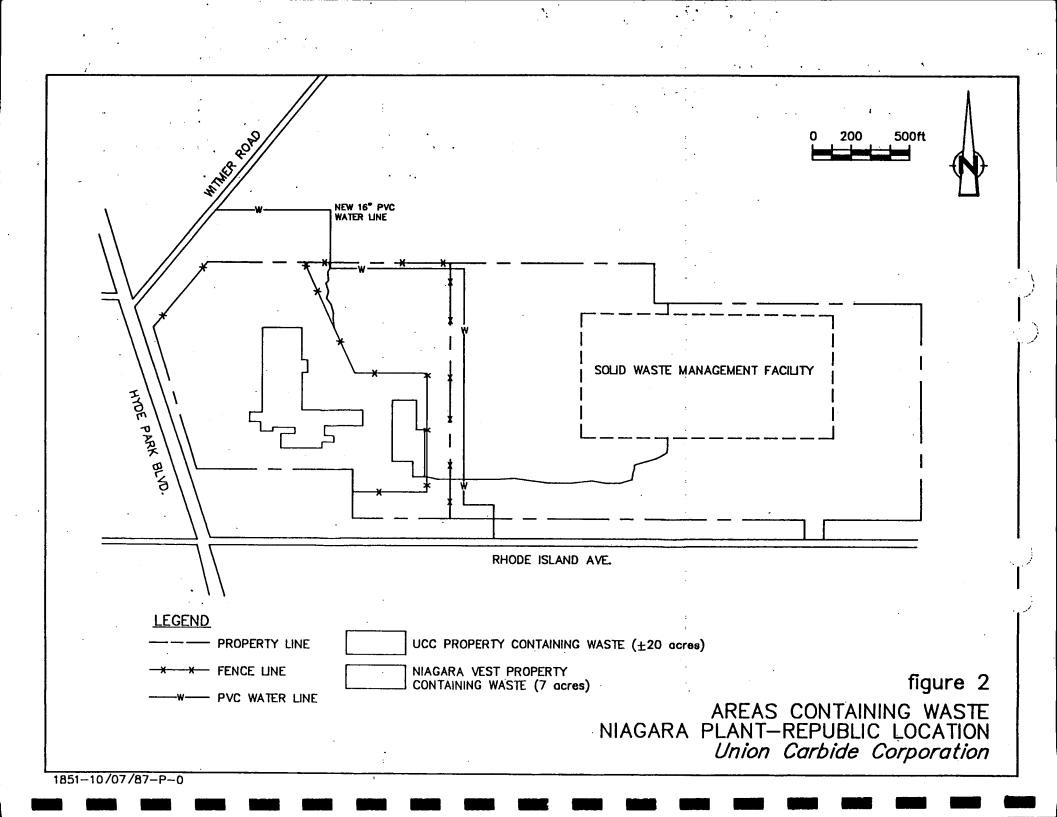
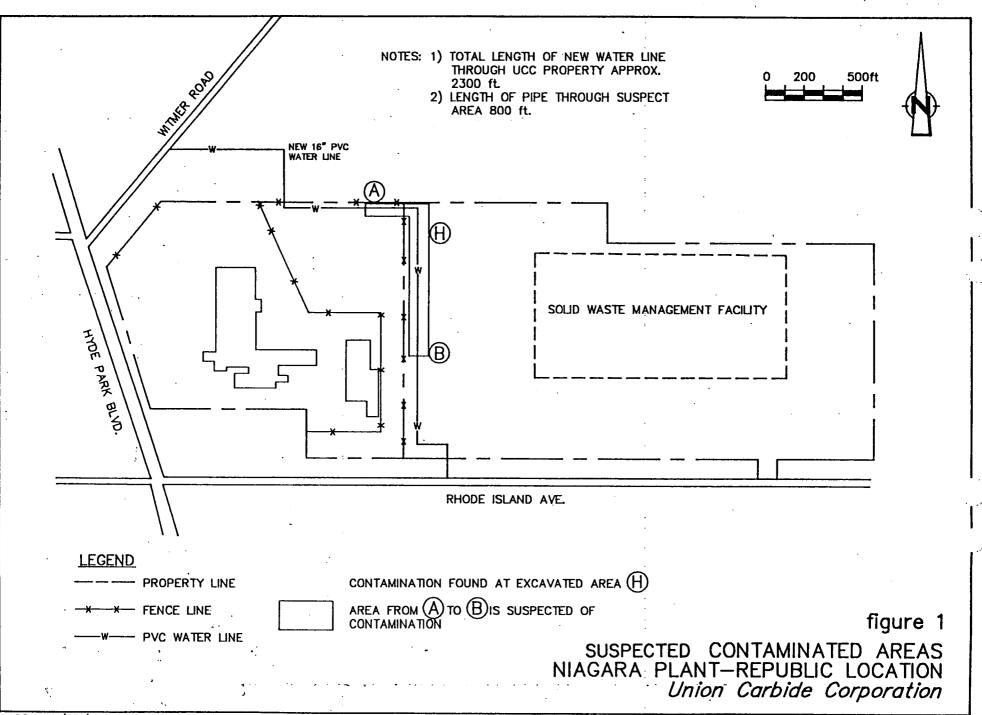


figure 3 TEST HOLE LAYOUT NIAGARA PLANT-REPUBLIC LOCATION Union Carbide Corporation

--------- PVC WATER LINE


*------ FENCE LINE


LEGEND


------ PROPERTY LINE

05 UCC TEST HOLE

62 NIAGARA VEST TEST HOLE

ast.

1851-10/07/87-P-0

TABLE :	7
---------	---

COMPARISON OF SOIL DATA TO EP TOXICITY LIMITS

Parameter	<u>Soil</u>	EP TOX ⁵ ppm
METALS		
Total Aluminum	1.99	
Total Barium	0.225	100
Total Calcium	224	
Total Chromium	0.006	5.0
Total Cobalt	0.056	
Total Copper	0.021	
Total Iron	2.73	·
Total Lead	0.191	5.0
Total Magnesium	70.4	· · · · · · · · · · · · · · · · · · ·
Total Manganese	2.47	
Total Mercury	<0.001	0.2
Total Nickel	0.163	
Total Potassium	2.71	
Total Sodium	1390	
Total Thallium	0.018	
Total Zinc	2.38	
PAHS PRELIMINARY	. .	
Napththalene	ND	_ _ [_]
Acenaphthylene	ND	
Acenaphthene	13.6	
Fluorene	· ND	
Phenanthrene	50.0	•
Anthracene	15.9	· _ ~
Fluoranthene	114	— —
Pyrene	92.7	
Chrysene	83.8	
Benzo(a)anthracene	68.7	·
Benzo(b+k)fluoranthene	130	·
Benzo(e)pyrene	ND	·
Benzo(a)pyrene	70.0	
Perylene	ND	· • • •
Indeno(1,2,3-CD)Pyrene	46.0	
Dibenz(a,h)anthracene	20.7	
Benzo(g,h,i)perylene	49.3	

NOTE:

د. ر:

Soil Data Result of TCLP Procedure

.

	Water Cons (mg/L)	EPA MCL (mg/L)	EPA (2) WQC (mg/L)	EPA (3) Proposed RMCL (mg/L)	N•Y• State Health Advisory (mg/day)	N.Y. State Groundwater Standards (mg/L)	N.Y. State Amblent Water Stands (mg/L)	
Total Aluminum	0-171					0.025		
Total Barlum	0.081	1.0		1.5	1.8	1.0	1-0	
Total Calcium	E41						100	
Total Chromlum	<0.005	0.05	0.05	0.12	0.170	0.05	0.05	÷.,
Total Cobalt	0.014						0.07	
Total Copper	0.007		1 •	1.3	•	1.0	0.2	
Total Iron	0.101	ò.3				0.3	0.3	•
Total Lead	0.010	0.05	0.05	0.02	0•020 [±]	0.025	0.05	·
Total Hagneslum	30.0				:		35.0	
Total Manganese	1-86	0.05				0.3	0.3	
Total Mercury	0.001	0.002	0+0001	0.003	0.006	0.002	0.002	
Total Nickel	0.037		0.0134		0.350			
Total Potassium	7.86	•						
Total Sodium	2.5				r			
Total Theillum	<0.005	•	0.013	•				
Total Zinc	0.09	5.0	5 *	· · · · · · · · · · · · · · · · · · ·		5	0.3	
						-		

Notes:

(1) Maximum Contaminant Levels, Primary and Secondary Drinking Water Standards,40 CFR Parts 141 and 143

(2) EPA Amblent Water Quality Criteria, Federal Register, November 28, 1980

based on taste and odor

** protection of human health (toxicity) ingested through water and contaminated aquatic organisms

(3) Proposed Recommended Contaminant Levels, Primary Drinking Water Standards, Federal Register, November 13, 1985

(4) EPA Drinking Water Health Advisories, Lifetime

• •

(5) NYSDEC Groundwater Classes and Quality Standards for Groundwaters (Class GA Water) Part 703.5

(6) NYSDEC Amblent Water Quality Standards, Part 702, Appendix 31

PRELIMINARY

TABLE 5

POLYNUCLEAR AROMATIC HYDROCARBON DATA

	Water Con (ug/L)	EPA MCL (ug/L)	EPA WQC (ug/L)	EPA (3) Proposed RHCL (ug/L)	N.Y. State Health Advisory (ug/day)	N.Y. State Groundwater Standards (ug/L)	N.Y. State Amblent Water Stands (ug/L)
Naphthalene		·		. 			10
Acenaphthylene	•						
Acenaphthene			20 📍	·			20
Fluorene	25.5						·
Phenanthrene	148			·			
Anthracene	41+7						
Fluoranthene	321	_	. 42 **	<u> </u>	• •		
Pyrana					· · · · · · · · · · · · · · · · · · ·		•
Ċhr ysene	280						
Benzo(a)anthracene	286						
Benzo(b+k)fluoranthene	705						
Benzo(e)pyrene					· ·		
Benzo(a)pyrene			2.8×10^{-3}	· · · · · ·		ND	
Perylene				**			
Indeno(1,2,3-CD)Pyrene		<u></u>					
Dibenz(a,h)anthracene							
Benzo(g,h,i)perylene					:		

Notes:

(1) Maximum Contaminant Levels, Primary and Secondary Drinking Water Standards,40 CFR Parts 141 and 143

(2) EPA Amblent Water Quality Criteria, Federal Register, November 28, 1980

based on taste and odor

** protection of human health (toxicity) ingested through water and contaminated aquatic organisms

(3) Proposed Recommended Contaminant Levels, Primary Drinking Water Standards, Federal Register, November 13, 1985

(4) EPA Drinking Water Health Advisories, Lifetime

(5) NYSDEC Groundwater Classes and Quality Standards for Groundwaters (Class GA Water) Part 703.5

(6) NYSDEC Amblent Water Quality Standards, Part 702, Appendix 31

PESTICIDES	AND	PCBs
(ug,	/L)	

Parameter	Detection Limits	Water	<u>Soil</u>	woc1
Lindane	0.10	ND	ND	.0123
Endrin	0.10	ND	ND	. 1
Heptachlor	0.50	ND	ND	.00028
Heptachlor epoxide	0.50	ND	ND	
Methoxychlor	5.0	ND	ND	
Toxaphene	5.0	ND	ND	.00071
Chlordane	5.0	^a ND	ND .	.00046
2,4-D	0.10	ND	ND	
Silvex	0.10	ND	ND	
PCB 1260 *	0.50	ND	ND	.000079
PCB 1254 *	0.50	ND	ND	.000079
PCB 1242 *	0.50	ND	ND	.000079

Notes:

* Since the analysis for PCBs were performed on the original soil sample, the units of measure and mg/kg (ppm).

ND: Not Detected at or above the reported detection limits.

¹EPA Ambient Water Quality Criteria for Protection of Human Health, Aquatic Organisms and Drinking Water.

. . .

PETROLEUM PRODUCTS (ppm)

Parameter	Detection Limits	Water	Soil	TAR"
	-			
Kerosene	0.25	ND	ND	ND
Fuel Oil #2	0.25	ND	ND	ND
Fuel Oil #4	0.25	ND	ND	ND
Fuel Oil #6	0.25	ND	ND	ND
Gasoline	0.25	ND	ŇD	ND
Lubricating Oils	0.25	ND	ND	ND
Tar Primer	0,25	3.17	269	(Present)

.

SEMI-VOLATILE ORGANICS (ug/L)

Parameter	Detection Limits	Water	<u>Soil</u>	woc ¹
Phenol	20	ND	ND	3500
Bis(2-chloroethyl)Ether	20	ND	ND	0.030
1,4-Dichlorobenzene	20	ND	ND	400
1,2-Dichlorobenzene	20	ND	ND	400
Hexachlorobenzene	20	ND	ND	.00072
Nitrobenzene	20	ND	ND	19800
Hexachlorobutadiene	20	ND	ND	0.45
2,4,5-Trichlorophenol	20	ND	ND	2600
2,4,6-Trichlorophenol	20	ND	ND	1.2
Pentachlorophenol	20	ND	ND	1010
2,3,4,6-Tetrachlorophenol	20	ND	ND	1.0
4-Methyl Phenol (p-Cresol)	20	ND	ND	
2-Methyl Phenol (o-Cresol)	20	ND	ND	
2,4-Dinitrotoluene	20	ND	ND	0.11

¹EPA Ambient Water Quality Criteria for Protection of Human Health, Aquatic Organisms and Drinking Water.

VOLATILE ORGANICS (ug/L)

Parameter	Detection Limits	Water	Soil	woc ¹
	• · · · · · · · · · · ·			
1,1-Dichlorœthylene	10	ND	ND	.033
1,2-Dichloroethane	10	ND	ND	0.94
2-Butanone	10	ND	ND	¨ —
Benzene	10	ND	ND	0.66
Acrylonitrile	100	ND	ND .	0.058
Carbon Disulfide	10	ND	ND	·
Carbon Tetrachloride	10	ND	ND	0.4
Chlorobenzene	10	ND .	ND	488
Chloroform	10	ND	ND	0.19
Methylene Chloride	10	ND	ND	
Tetrachloroethylene	10	` ND	ND	0.8
Toluene	10	ŅD	ND	14300
Vinyl Chloride	10	ND	ND	2.0
1,1,2,2-Tetrachloroethane	10	ND	ND	0.17
1,1,2-Trichloroethane	· 10	ND	ND	0.6
1,1,1-Trichloroethane	10	ND	ND	18400
1,1,1,2-Tetrachloroethane	10	ND ·	ND	·
Trichloroethylene	10	ND	ND	2.7

ND: Not Detected at or above the reported detection Limits.

•.

.

•

EPA Ambient Water Quality Criteria for Protection of Human Health, Aquatic Organisms and Drinking Water.

.

۰.

· . . .

. .

.

CONESTOGA-ROVERS & ASSOCIATES LIMITED Consulting Engineers

July 11, 1987

Reference No. 1851

4.2

- 2 -

The sample described as being soil is in fact a TCLP extract of a soil sample collected from the excavation pit. This data has been compared to the criteria for EP Toxicity. (Table 7). Assuming that this sample is representative of the fill materials in the area and that the extract method is equivalent to the requirements outlined for EP Toxicity, it can be seen that this material would not be characterized as hazardous by these standards. However, it should be noted that these assumptions may not be valid.

You will note, from the attached tables, that only selected Polynuclear Aromatic Hydrocarbons and metals were found in either the soil extract or the groundwater.

However, there are some questions that arise out of the evaluation of the reported data. The fact that the excavation pit was open for an undetermined amount of time and that only grab samples were taken for the initial characterization, could have led to the potential lost of any volatile compounds which may have been present.

At this stage, we can not comment on the representativeness of the samples and how they may or may not reflect the true in situ conditions.

We will, however, caution you to avoid making any major decisions based on the results of one sample set and encourage you to consider resampling the area to establish a sound database for a proper evaluation.

The resampling should be carried out in such a manner as to ensure that samples collected are representative of in situ conditions.

Should you have any questions or comments regarding this issue, please do not hesitate to contact our office.

Yours very truly,

CONESTOGA-ROVERS & ASSOCIATES

Paul E. Plotz, B.Sc.

PEP/jh Encl.

c.c. Jim Kay Carol Dunnigan

CONESTOGA-ROVERS & ASSOCIATES LIMITED 651 Colby Drive, Waterloo, Ontario, Canada N2V 1C2 (519) 884-0510

July 11, 1987

Reference No. 1851

Mr. Michael Balent Chief Plant Engineer Union Carbide Corporation P.O. BOX 887 Niagara Falls, New York U.S.A. 14302

Dear Mr. Balent:

Re: Samples from Excavation Site

The analytical data associated with the water and soil samples collected from the excavation of the UCC Repulic Plant Solid Waste Management Facility, was received from Advanced Environmental Systems (AES).

The attached tables summarize the Priority Pollutant analysis of the soil and water samples and compares the reported values to the available drinking water quality objectives as listed in the referenced sources. (Tables 5 and 6).

With the exception of the Polynuclear Aromatic Hydrocarbons (PAHs), all of the reported concentrations in the water samples are below the drinking water standards. The regulating agencies have set very few guidelines on objectives for the PAH compounds. In fact, only three of the compounds (Acenaphthene, Fluoranthene and Benzo(a)pyrene) have ambient Water Quality Criteria levels established. (Table 5).

Of the PAHs found in the samples analyzed only Fluoranthene had reported levels higher than the quoted objective of 42 ug/L for the protection of human health by ingestion of water and contaminated aquatic organisms.

Thus, assuming this sample is representative of the groundwater in the area, there appears to be no significant risk to public health.

For the most part, compounds for which there are no objectives listed are generally non-toxic and consequently not of concern.

continued....

APPENDIX J

r

÷ ي

. .

.

1.

•`

.

.

. . . .

8 5

÷ •

, -

· · ..

.

11- +

и 11. 12. .. t. .. • ' •••••• : • . i, · 3 ÷., • · . · , .

: • • • . .3 . • • • i, i . • • ΄, · · т. т. * 4- *2* . .,: . • i. ,

2.5 ۲. ب: ۰. • • ۶. ·

<u>.</u> ÷ ۹. . . ۹ • .

. ۰.

. . 58 .

3 • . • . ** · .

t, ÷ .

÷. ::

.:

.... .

.

Sec. 20

APPENDIX J

SURFACE WATER SAMPLE RESULTS

2

WASTEWATER DISCHARGE MONITORING **REPUBLIC #3**

FOURTH QUARTER 1984

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION, PROPERTY OF UNION CARBIDE CORPORATION. IT IS NOT TO LE DISCLOSED OR REPRODUCED WITHOUT THE EXPRESSED RITTEN PERMISSION OF U. C. C. AND IS NOT TO BE USED IN ANY WAY DETRIMENTAL TO THE INTERESTS OF U. C. C.

Report Prepared For

UNION CARBIDE CORPORATION CARBON PRODUCTS DIVISION

By

ADVANCED ENVIRONMENTAL SYSTEMS, INC.

Prepared by:

<u>rquetti</u> Susan M. Cerquetti

GC Division

Kathleen A. Martin Wet Chemistry Division

a McDougall Technical Evaluation

January 31,1984 AES JOD AEI

TYPE OF ANALYSIS: PURGEABLE AROMATICS UNITS OF MEASURE: MICROGRAMS/LITER, OR PPB CLIENT: UNION CARBIDE A.E.S. JOB CODE AEL

·		RO 12/17/84 REP #3	DETERMINABLE* LIMITS	
MONOCHLOROBENZENE BENZENE ETHYLBENZENE TOLUENE	602 1 """"""""""""""""""""""""""""""""""""	BDL BDL BDL BDL	25 25 25 25	
	· · · ·	• • • • • • • • • • • • • • • • • • •		
		• • • • • • • • • • • • • • • • • • • •		

· · · · · · · ·

SUSAN M. CERQUE G. C. DIVISION .i, .

ADVANCED ENVIRONMENTAL SYSTEMS, INC. LABORATORY REPORT

TYPE OF ANALYSIS: PHTHALATE ESTERS TYPE OF ANALYSIS: PHTHALATE ESTENS UNITS OF MEASURE: MICROGRAMS/LITER, OR PPB CLIENT: UNION CARBIDE A.E.S. JOB CODE AEI

· · · · ·

ANALYSIS

METHOD REF SAMPLE IDENTIFICATION

			R9 12/27/84 REP #3	DETERMINABLE* LIMITS	
•	aF918-1 STELLEXTS PHTHALATE BUTYL BENZYL PHTHALATE DIMETHYL PHTHALATE DIETHYL PHTHALATE DIETHYL PHTHALATE I J I AT COLORED STELLE GEORGEN STELLE STELLE CIP-1 T-DICHLOROS STELLE CIP-1 T-DICHLOROS STELLE STELLESSE I J - CONSTRUCTION STELLE CIP-1 CONSTRUCTIONS		BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	47 100 347 147 100 20 32 32 32 32 32 32 32 32 32 32 32 32 32	
		·			
	م محمد میں اور میں معرف میں میں میں میں اور	MMARGEN DES	. araann the	LTA446WAPPOW	
	*CITY'S REQUIRED LIMIT	it i tin the state of the state	ANDERDIGE - PORDE ANDERDIGE - PORDE	A CONTRACTOR CONT	· .

to devision, defense Anteresternet and termenter for the

Cirquitte

Μ.

CEROUETTIA

STRUCT WE CENSILLI.

KAL242 - 771

CERTE

oth

TYPE OF ANALYSIS: PURGEABLE HALOCARBONS UNITS OF MEASURE: MICROGRAMS/LITER, OR PPB CLIENT: UNION CARBIDE A.E.S. JOB CODE AEI

ANALYSIS

METHOD REF SAMPLE IDENTIFICATION

		•	RO 12/17/84 REP #3	DETERMINABLE** LIMITS	
CARBON TETRACHLORIDE	601	1	BDL	50	
CHLORODIBROMOMETHANE	H	ំអ	BDL	10	
DICHLOROBROMOMETHANE	ti		' BDL	10	
CHLOROFORM	11	61	BDL	45	
1,1- DICHLOROETHYLENE	80 _.	**	BDL	37.5	
BROMOFORM	42	67	BDL	10	
CIS-1, 3-DICHLOROPROPENE	60	. H	BDL	25	
1,1,2,2-TETRACHLOROETHANE	1 0	0 '	BDL	25	
TETRACHLOROETHYLENE			BDL	25 25 25	•
1,1,1-TRICHLOROETHANE	in .	ัม	BDL	25	•
FRICHLOROETHYLENE		'n	BDL	25	
THYLENE, CHLORIDE	11 (F	n	BDL	187.25	
VINYL CHLORIDE	` 0) u	BDL	37.5	
1,1,2-TRICHLOROETHANE	u ji	៊ីព	BDL	25	
TRANS-1,2-DICHLOROETHYLENE	. u 2 ⁴ - 22	5° m		37,5	
TRANS-1, 3-DICHLOROPROPENE	u	¹ ••	BDL BDL		
I WURLEVE NICUTAVALIATION.		.,		and the second of the second	الم المية عن مير من الم المي الم الم
				TI IT I.	
		•		19月1日(11)。 19月1日(11)。 19月1日(11)。	•
		· · · · · · ·	n na serie de la companya de la comp No serie de la companya de la company	an a	· · · · · · · ·

COTRAL MUSCH CVICTOR DUILE OF MEVERIL: NTCHOOR AUTOR G. C. DIVISION

HERRES - HERRES H

****CITY's REQUIRED LIMITS**

TYPE OF ANALYSIS: POLYNUCLEAR HYDDOCARBONS UNITS OF MEASURE: MICROGRAMS/LITER, OR PPB CLIENT: UNION CARBIDE A.E.S. JOB CODEAEI

	R9 12/27, REP #3		2/27/84	DETERMINABLE			
ACENAPHTHENE FLUORANTHENE CHRYSENE NAPHTHALENE BENZO (A) ANTHRACENE PYRENE PHENANTHRENE	610 "" "" "	1 " " " "	BDL BDL BDL BDL BDL BDL BDL	10 3 3 10 3 10 3	•		
III de Tigane e en la conserva de portes e III de Tigane e entre de la filipa II de Conservation de la conservation I de Conservation de la conservation I de Conservation de la definition de la co	· · · · · ·	4 4 4 4		: • • • • • • • • •	· · · · ·		
n an ann an Anailte Annailte a' chuir an Gruin ann ann an Annailte Thairtean an Annailtean Annailtean Annailtean Annailtean Annailtean Annailtean Annailtean Annailtean Annailtean A	~ ,	· ···· · · ·	n an an third an ann an An Antaine an Anna An Antaine an Anna Marta		i. Ne distriction de la companya de la		
*CITY'S REQUIRED LIMITS		932° 82	GERBORNE SCRIPT	LACE TOODES	్రాహాభవారాలు రాహుసుధారించుకు రాగు రాగు గ	•	
	661.2	DE UTI	M CAMELDE MORGE PICEOC MORGE PICEOC	VIELE ADY MARKE AND SUSAI	M. CERQUETTI		

	UNITS	OF ME	LYSIS: CHLORI ASURE: MICROG	NATED HYDROCARBO RAMS/LITER, OR P A.E.S. JOB COD	PB (BEBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	·
AUFIA. (BEARDEAD COMPANY) ANALYSIS	METHOD	REF	SAMPLE IDEN	TIFICATION		
			R-9 12/27/84 REP #3	DETERM LIMITS	IINABLE*	
1,2,4-TRICHLOROBENZENE 1,2-DICHLOROBENZENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE	612 " " "	1, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BDL 8.44 BDL BDL BDL	3 3 3 3 10		· .
	æ					
	ter an					
*CITY'S REQUIRED LIMIT				SUSAN (171) P. (171) SUSAN (171) P. (171) SUSAN (171) P. (171) SUSAN (171) P. (171) SUSAN	201 M. Cuquett M. CERQUETTY DEVISION	

	是有利益 云	*===	LABORATOR	Y REPORT	=======			
e e l'entre l'alle entre l'alle e	TYPE UNITS CLIEN	PF AN OF M T: UN	ALYSIS: RUSULT EASURE: MILLIG ION CARBIDE	S-WET CHEM RAMS/LITER A.E.S. J	ISTRY , OR'PPM OB CODE AE			
ANALYSIS	METHOD	REF	SAMPLE IDEN	TIFICATION				
			RO REP #3 12/17-18 1	R1 REP #3 12/18-19	R2 REP # 3 12/19-20		R5 REP # 3 2/21-22	
SOC TSS	415.1 160.2	3 3	8.28 14.9	9.28 6.5	7.88 5.3	8.12 7.3	9.88 17.7	
			· ·					
			· .					
n en		• •	51. St. Lety 244	•		· · · · · · · · · · · · · · · · · · ·		
						- 1999年 第一人称: 1997年 - 1997年		
- ·	·	۰.	1111-111-121-121-121-121-121-121-121-12	ender mille en verste menser Når i som en rederford	ಸಂಭಾನ ಗರ್ಶೇಷಕ್ಕು ಎ	<i></i>		
•						·	· ·	. •

.

TYPE OF ANALYSIS:GC - QUALITY CONTROL DUPLICATE**UNITS OF MEASURE:MICROGRAMS/LITER, OR PPBCLIENT:UNION CARBIDEA.E.S. JOB CODEAEI

	ANALYSIS	SAMPLE	ORIGINAL CONC.	DUPL. CONC.	AVERAGE CONC.	RANGE	REL. % DIFF.	
۰	PYRENE DIETHYL PHTHALATE 1,2-DICHLOROBENZENE	R9 R9 R9	6.95 53.89 7.74	2.31 55.64 9.13	4.63 54.76 8.44	4.64 1.75 1.39	100.2 3.2 16.5	
				:				
		1 2 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ran Ar	i ji		
برو ا	ಿಕ್ರೆಕ್ ಸ್ಕ್ರೀಯಲ್ಲಿ ನಿರ್ದಾರ್ ಕ್ರಾರ್ ಕ್ರಾಮಿ ಕ್ರಾಮಿ ಕ್ರಾಮಿ ಸಂಪ್ರಿಸಿ ಸಂಪ್ರ ಕ್ರಾ		n na strangera. Sym 2019 – Sys B	er an				·,
12	ne se				eta sustan de la compositione de la Presenta de la compositione de la co			
	**ALL COMPOUNDS NOT LISTED	BELOW DETE	RMINABLE LI		t (f. 1997) - George George (f. 1997) Alter de Age Anter de Age		•	
	Relative Percent Difference = Range/Average X 100	بمرتبع يحمدوني مراجي	in the provent	విషణం కార్ చిమిగాం	19 20 C C C C C C C C C C C C C C C C C C			

. ATT AND CALLED UNDER

ADVANCED ENVIRONMENTAL SYSTEMS, INC. L'ABORATORY REPORT

TYPE OF ANALYSIS::GC - QUALITY CONTROL DUPLICATE** UNITS OF MEASURE: MICROGRAMS/LITER, OR PPB CLIENT: UNION CARBIDE A.E.S. JOB CODE AEI

ANALYSIS		SAMPLE	ORIGINAL CONC.	DUPL. CONC.	AVERAGE CONC.	RANGE	REL. % DIFF.
METHYLENE [:] CHLORIDE [;] CHLOROFORM FETRACHLOROETHYLENE		RO RO RO	24.68 0.75 0.34	3°, 22 ⁷ 0°, 68 ⁵ 0°, 29 ⁵	295 072 0 . 32	0.,54 0),07/ 0),05,	18.3 9.7 15.6
		· ·	• 		•		
спистияния по порадияния по со уканистия по со уканистия по со	LID-ZI-X KD-CLX KD-CLX KD-ZI-X KD-ZI-X	<0155 45104	1924.2 110.64 110.64	178° 42 773° 42 778° 5 778° 5		68 BIT.7 95.9 57.8 57.8	2 - 2 2 - 27 2 - 2 2 - 2 2 2 - 2 2 2 2 - 2 2 2 2
	andra en la calacteria FA Telef	Conc. Conc. Conc.	Conc. Alged	COAC. EXIECTED	CONC.	ыл.Юлева Взвсена	
· · ·	entra s	of Meand	RE: MICPOGR	ANS/LITER, ANS/LITER, ANS/LITER, JO	OK BEB	•	

Relative Percent Difference -Nangel -ygrage x 109

	UNITS	F ANALYS OF MEASU : UNION	RE: MICROGR				
ANALYSIS	TYPE	ORIGINAL CONC.	ADDED CONC.	EXPECTED CONC.	REPORTED CONC.	PERCENT RECOVERY	95% CONFIDE C INTERVAL
ACENAPHTHENE BENZO (A) ANTHRACENE HEXACHLOROBENZENE 1,2-DICHLOROBENZENE	R9–SPK R9–SPK R9–SPK R9–SPK	<2.04 <0.20	226.2 75.2 113.68 110.04	228.9 75.2 113.68 118.48	156.5 88.5 109.01 68.43	68.4 117.7 95.9 57.8	**NA ** ** **
· · · · · ·	₩ • •		· ·	\$			
REPERE CHLORIDE PETRACHLOROCOPHIC PETRACHLOROCOP	•••	110 150 150	2. 68 0. 75 0. 33	9,22 0,68 0,29	2.55 0.72 0.42	11.54 11.67 14.75	
A T T T T T T T T T T T T T T T T T T T	an an air an an an an an an an an		obiciem. Conc.		Com" Families		,
**NA-NOT APPLICABLE	241.53	I TA MAN NA WINI MANIN	I CARBIDE DISTICTOR DISTIC	VINANARESSA VINANARESSA SAMARESA MARESSA	OR (BER OF (POPU) (MU STREAM	τ. τ., Γ. τ., φ.	• • •

TYPE OF ANALYSIS: GC - TEST CONTROLS UNITS OF MEASURE: MICROGRAMS/LITER, OR PPB CLIENT: UNION CARBIDE A.E.S. JOB CODE AEI

ANALYSIS	TYPE	ORIGINAL CONC.	ADDED CONC.	EXPECTED CONC.	REPORTED CONC.	PERCENT RECOVERY	95% CONFIDE" E INTERVAL
VINYL CHLORIDE	RO-SPK	<0.35	1101	11.01	9.63	87.5	5.9-15.1
TRANS-I, 2-DICHLOROETHYLENE			12,79	12.79	12.03	94.1	8.8-15.2
	RO-SPK		12.65	13.37	13.94	104.2	11.6-16.2
TRICHLOROETHLENE	RO-SPK		13.96	13,96	14.74	105.6	10.9-16.3
TETRACHLOROETHLENE	RO-SPK	<0.19	14.68	14.68	13.51	92.1	12.2-15.9
BENZENE	RO-SPK	<1.64	30,06	30.06	33.34	110.9	
TOLUENE	RO-SPK	<2.74	28.32	28.32	34.71	122.6	
ETHYL BENZENE	RO-SPK	<4.36	24.72	24-72	30.54	123.5	
1,2,4-TRICHLOROBENZENE	R9-SPK	<0.10	133.65	133.65	42.36	31.7	**NA
HEXACHLOROBUTADIENE	R9-SPK	<0,10	92.61	92.61	25.49	27.5	**
HEXACHLOROCYCLOPENTADIENE	R9-SRK	<0.10	149.80	149.80	48.37	32,3	
DIBUTYL PHTHALATE	R9-SPK	<4.5	110.96	110.96	141.99	128.0	* *

NOT APPLICABLE

	1+00N	15 15	10	10 1 ⁵	୍ଚ୍ଚ +	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12 +	& +
		80 1 [™] +	1 ³	$f^{\circ}(\overline{\Theta})$) $+$	ৰ্ব ম +	+ +	+ +
			1 I	+ + +	+	+	10 +	10 +
				10 68 + +		10 +	1 ¹ +	10 +
	0+00	12 10 + +	1*	10 12 + +	+	10 + 	1 ²	12 22 22
		+ +	+ -	+ + ,0° ,0° + +	+	+	+	+
				+ + ,0 ⁵ ,0 ⁶ + +			+ ² + ²	+ ¹ ¹ ¹
				+ + ,	+ + +			+
	1+00S			+ + ,09 ,09 + +		+ ,00 +		+ ,05 +
		+ + + +		+ + ,00 ,06	ہ ب ب			+ ,00 +
		+ 0,5		,0° ,0° + +	°, 6° +	+	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,00 +
	2+00S	+ (+		,00 ,0 ⁶ + +		+	(+)	Air
		+ + + +	of (-	,0 ⁵ ,0 ⁴	+	+		+20%
		+ + +	+ -		+10	+	<u>vu</u> 1	+
		+ +	+ -)%()%(+ 000
	3+00S	+ + +	+ + -	+ + -		Ŧ	۲	,00)+
		,0° ,0° +	+ -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,0°, 10°	+ ****	+	
		+ ⁰ ⁺ ⁰ ⁺ ⁺ ⁰ ⁺ ⁺ ⁰ ⁺ ⁺ ⁰ ⁺ ⁺ ⁰ ⁺ ⁰ ⁺ ⁺ ⁰ ⁺ ⁰ ⁺ ⁰ ⁺ ⁺ ⁰ ⁺ ⁰ ⁺ ⁺ ⁰ ⁺ ⁺ ⁰ ⁰ ⁺ ⁰ ⁺ ⁰ ⁺ ⁰	•	+ + +	+	+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	105
		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ -	+ + ,0°,0°	+	+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+ The second sec	+ ,05
	4+00S	+ +		+ +	+	+		Ś
					+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\int_{+}^{+} o_{o}$	+	+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
				00 05		1+00	•	,00 +
	5+00S	+)+ ⁰⁰	100)	00 95 + +	(+) (+)	$\int_{+}^{+} o^{0}$,00 +	,00 +
				,05 ,05 + +	+	+ * *	,05 +	,05 +
		,0 ⁰ ,0 ⁰		,00 ,0 <u>,</u>				+ +
				, o ⁵ , o ⁶				+ +
	6+00S	++		~ ⁰⁵ ~ ⁷ 0 + +	, 105 +	+ /	_	رمی +
		+ +		°°× °°×	→ + +	* +		9 ² +
			/	ο ^κ ο ^κ + +				จ๊า +
		100 + 00 + 00 + 00 + 00 + 00 + 00 + 00	+ -	9 ^k 9 ^k + +			• •	ର୍ଦ +
		+ + +		\$ + + *	\$ + %		°°+ °°°	* + ~
		+ + ,00 ,55 + +			T	Τ	— —	+ + +
		T T					+ °°+	+
	8+00S	100 30	•			L'od		$\int_{+}^{+} c_0$
	01000				•			
		2+0		6+00W				5+00W
LEGEND								
$ \begin{array}{c} \uparrow^{O} & \text{magnetometer reading} \\ + & \text{in gammas} (\textbf{7})_{x100} \\ \hline & & \\ \hline \\ \hline$								
GROUND CONTOUR CONTOUR INTERVAL 1507(x100) NR -NO READING								
OS -OFFSCALE								

in african

			$\mathbf{H}_{\mathbf{H}}^{\mathbf{H}} = \mathbf{H}_{\mathbf{H}}^{\mathbf{H}}$
Λ Δ Δ Δ	proved	CARBIDE CARBON PRODUCTS DIVISION REPUBLIC PLANT, NIAGARA NEW YORK MAGNETOMETER SURVEY	CRA consulting Engineers CONESTOGA-ROVERS & ASSOCIATES 651 Colby Drive, Waterloo, Ontario Canada N2V 1C2Drawn by: B.T.S.Scale: 1"=50'Date: MARCH 14, 1988File Nº: Rev.NP: SDesigned by:

.

1+00N

0+00

1+00S

2+00S

3+00S

4+00S

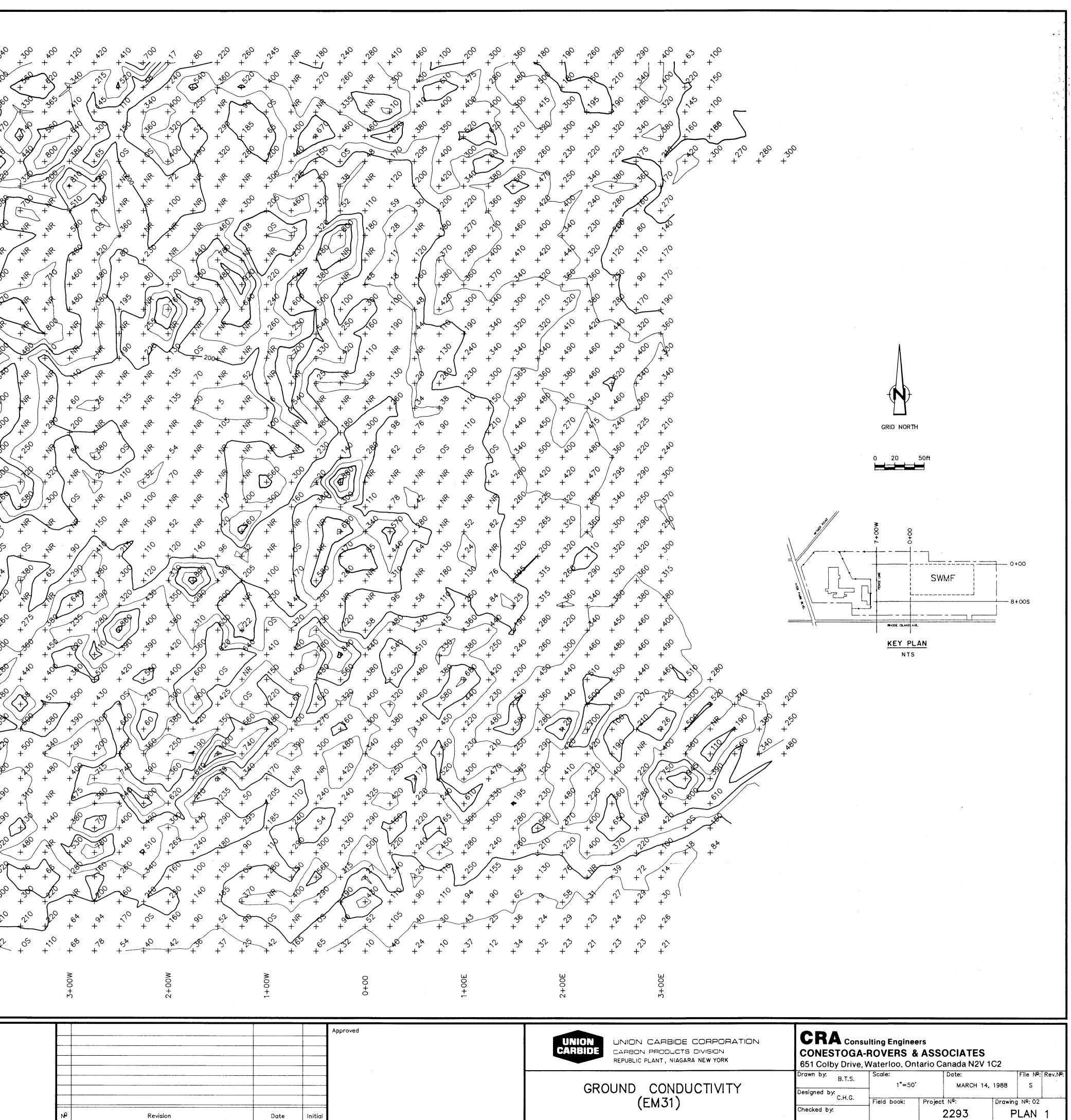
5+00S

6+00S

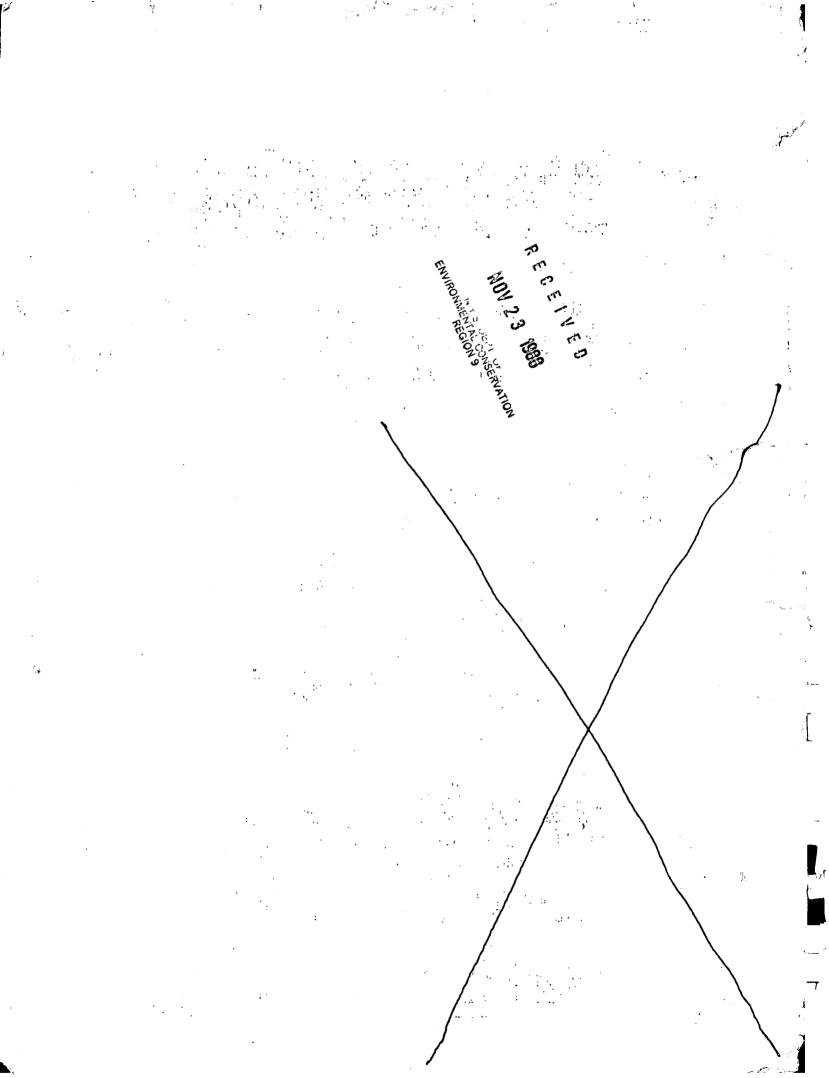
7+00S

8+00S

°44


<u>LEGEND</u>

GROUND CONDUCTIVITY READING IN mS/m ×6


GROUND CONDUCTIVITY CONTOUR INTERVAL 150 mS/m

NR -NO READING

OS -OFFSCALE

Revision Date Initial

