

UCAR CARBON COMPANY INC. P.O. BOX 513, COLUMBIA, TENNESSEE 38402-0513

April 26, 1991

Confidence of the grant factor of the grant factor

Mr. Robert J. Mitrey
Associate Sanitary Engineer
New York State Department of Environmental Conservation
600 Delware St.
Buffalo, New York 14202-1073

Re: Quarterly Report of Groundwater Analysis Republic Solid Waste Management Facility Post-Closure Monitoring Program

Dear Mr. Mitrey:

I am enclosing a copy of the twelth quarter's groundwater sampling analysis from the closed Republic Solid Waste Management Facility. Bedrock well, BW-4, continues to demonstrate some slight semi-volatile and volatile organic contamination in the less than one part per million range.

The following will summarize the positive organic parameters:

Contaminate	12th Qtr. ppb_	Mean Conc. ppb	Range ppb
Hexachlorobutadiene	38	43	10-150
Trichloroethylene	280	338	30-740
Vinyl Chloride	300	108	29-300
Tetrachloroethylene	260	260	72-380
Acetone	150	100	51-150 *
1,1-Dichloroethene	6.9	6.9	6.9
Trans-1,2-Dichlorethene	7.6	7.6	7.6

^{*} See Narrative in report.

We do not feel that this contamination at BW-4-86 is related to the Republic Solid Waste Management Facility.

If you have further questions or concerns about this data, please contact me at 615/380-4215.

Very truly yours,

R.A. Bolton, Manager

HS&EP

cc: Mr. Jim Devald, Sr. Public Health Engineer Niagara County Health Department

Mr. Dave O'Tool, New York Department of Environmental Conservation

Mr. A.C. Ogg

QUARTERLY REPUBLIC WASTE MANAGEMENT FACILITY POST CLOSURE MONITORING PROGRAM

Report Prepared For

UNION CARBIDE CORP.

Maura S. Cattarin

Customer Service Representative

Paul T. McMahon

Quality Control Officer

April 22, 1991 AES Report CTC

COMMITMENT TO HONESTY - QUALITY - SERVICE

REPORT NARRATIVE:

CLIENT: UNION CARBIDE

PROJECT: POST CLOSURE MONITORING PROGRAM - REPUBLIC WASTE

MANAGEMENT FACILITY

AES PROJECT CODE: CTC

AES SAMPLE NUMBERS: 2706, 2708, 2713-14

REPORT DATE: APRIL 22, 1991

Sampling of organic compounds for wells BW-4, BW-6, and the blind duplicate (BW-6) at the above facility was conducted by AES field service personnel on March 27-28, 1991. During the analysis of the target compound list volatile compounds, a high level of acetone was discovered in the trip blank. Acetone was also present in the samples for wells BW-4 and BW-6. After a laboratory investigation, it was discovered that the acetone contamination evident in the samples was due to contamination of the hydrochloric acid used as a preservative in the sampling. The problem was promptly corrected, and procedures have been instituted to avoid a reoccurrence of the contamination.

Unfortunately, the acetone contamination present in the samples collected March 27-28, 1991 invalidates the resulting acetone data. Mary McIntosh of the NYSDEC was contacted by telephone on March 9, 1991, and the matter was discussed. It was decided that the acetone data would be reported as analyzed, with the contamination problem noted. The wells will be resampled for acetone content by AES on April 29, 1991. A supplemental report containing valid acetone results for BW-4 and BW-6 will be forwarded to Union Carbide shortly thereafter.

Paul T. McMahon

Quality Control Director

Advanced Environmental Services, Inc.

Quarterly Monitoring Field Information Union Carbide Company Niagara Falls, New York

AES Code: CTC

Monitoring	Date	Sampling	Water	Filter	Comments
Well		Time	Level	Time	
I.D.			(ft.)		
BW-1	3/27/91	11:25 AM	13.60	1:30 PM	Clear w/ strong sulfur odor.
BW-2	3/28/91	11:10 AM	10.81	4:50 PM	Slightly cloudy w/ strong sulfur odor
BW-3	3/27/91	4:00 PM	4.42	5:15 PM	Clear to rust colored w/ no odor
BW-4	3/27/91	2:30 PM	6.62	5:22 PM	Clear, orange particuli, sheen, volatile odor
BW-5	3/27/91	4:00 PM	3.63	5:30 PM	Cloudy, suspended solids, no odor
BW-6	3/28/91	3:30 PM	15.95	4:25 PM	Slightly cloudy w/ strong sulfur odor
MW-1	3/28/91	2:20 PM	9.90	4:45 PM	Clear with solids, odor present
MW-2	3/28/91	11:50 AM	22.66	4:35 PM	Brownish/black with a carbon odor
MW-3	3/28/91	2:55 PM	3.25	4:40 PM	Clear with solids, coke oven odor
OW-1 SOUTH	N/A	N/A	N/A	N/A	N/A
OW-2 NORTH	N/A	N/A	N/A	N/A	N/A
BLIND DUP*	3/28/91	3:30 PM	15.95	4:30 PM	Cloudy with a carbon odor

Muke Champ Technician 4-2-91

Advanced Environmental Services, Inc.

Quarterly Monitoring Well Information Union Carbide Company Niagara Falls, New York

AES Code: CTC

Monitoring	Evacuation	Top of	Monitoring	Water	Water	Bottom	Volume of	Volume of	Recharge
Well	Date	Inner	Well	Level	Elevation	of Well	Standing	Evacuated	Rate
I.D.		Casing	Diameter	(ft.)	(ft.)	(ft.)	Water	Water	
		Elevation					(gallons)	(gallons)	
		(ft.)							
BW-1	3/27/91	610.72	· 4	13.50	597.22	28.60	9.86	28.5	С
_ BW−2	3/28/91	608.43	4	10.65	597.78	26.10	10.09	31.0	С
BW-3	3/27/91	604.72	4	4.41	600.31	24.70	13.25	40.0	С
○ BW-4*	3/27/91	607.08	4	6.52	600.56	22.50	10.43	32.0	С
	3/27/91	603.33	4	3.63	599.70	25.70	14.41	44.0	С
B ₩−6	3/28/91	607.04	4	13.31	593.73	24.65	7.40	25.0	R
_∕MW-1	3/27/91	609.43	2	10.06	599.37	21.10	1.80	2.0(DRY)	S
∠ MW−2	3/28/91	607.54	2	16.19	591.35	24.40	1.34	4.0(DRY)	R
/MW−3	3/27/91	601.61	2	3.26	598.35	16.20	2.11	1.5(DRY)	S
OW-1 SOUTH	3/28/91	608.81	4	4.99	603.82	N/A	N/A	N/A	N/A
OW-2 NORTH	3/28/91	607.06	4	4.90	602.16	N/A	N/A	N/A	N/A

^{*} Monitoring well top was open, elevation may have been affected.

Abbreviations:

VS = Very Slow ---- Recharge Rate longer than 24 hr period.

S = Slow ----- Recharge Rate within 24 hr period.

R = Rapid ----- Recharge Rate within 1 hr period.

C = Continuous ---- Recharge Rate immediate.

Mike Charp 4-4-91
Technician Date

Type of Analysis: INORGANICS

Client: UNION CARBIDE CORP. A.E.S. JOB CODE CTC

			AES Lab I Sample :		2704 BW-1 GRAB	2705 BW-3 GRAB	2706 BW-4 GRAB	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample	Date-	3/27/91	3/27/91	3/27/91	
Ammonia (mg/l)	350.1	0.02			0.61	0.11	4.37	
Nitrite (mg/l)	353.2	0.01			BQL *	BQL	BQL	
Total Kjeldahl Nitrogen(mg/l)	351.2	0.1			0.8	0.3	4.0	

Gary L. Amato

Technical Supervisor

^{*} Below Quantifiable Limits

Type of Analysis: INORGANICS

A.E.S. JOB CODE CTC Client: UNION CARBIDE CORP.

AES Lab No. -2707 2708 Sample ID -BW-5 TRIP BLANK GRAB **GRAB** Analytical Method Quant. Parameter(s) No. Limits Sample Date-3/27/91 3/27/91 0.12 BQL * Ammonia (mg/l) 350.1 0.02 Nitrite (mg/l) BQLBQL 353.2 0.01 Total Kjeldahl Nitrogen(mg/l) 0.4 BQL 351.2 0.1

Gary L. Amato

Technical Supervisor

^{*} Below Quantifiable Limits

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION

Type of Analysis: Duplicate Analysis
Units of Analysis: Milligrams/Liter or ppm
Client: UNION CARBIDE CORP. A.E.S. Job Code:CTC

Analytical Parameters	Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Total Kjeldahl Nitrogen	2706	4.0	4.1	4.0	0.1	2.5
Ammonia	2706	4.37	4.37	4.37	0	0
Nitrite	2706	BQL *	BQL	BQL	NA **	NA

Relative Percent Difference = Range/Average X 100 * Below Quantifiable Limits

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: UNION CARBIDE CORP. A.E.S. Job Code: CTC

(Units:mg/l or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Ammonia Ammonia Nitrite	2706 2706 2706	SPK EPA SPK INDSTD SPK	8.4 5.0 10.2 52 0.28	4.0 5.0 4.37 50 BQL **	5.0 5.00 0.25	88 100 117 104 112

^{* %} Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)
** Below Quantifiable Limits

Type of Analysis: INORGANICS

Client:	UNION C	ARBIDE	CORP.	A.E.S.	JOB	CODE	CTC
				- -			

			AES Lab No Sample ID -	2709 MW-1 GRAB	2710 MW-2 GRAB	2711 MW-3 GRAB	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	3/28/91	3/28/91	3/28/91	
Ammonia (mg/l)	350.1	0.02		8.10	0.46	0.06	
Nitrite (mg/l)	353.2	0.01		BQL *	BQL	BQL	
Total Kjeldahl Nitrogen(mg/l)	351.2	0.1		8.4	1.1	0.3	

Gary L. Amato Technical Supervisor

^{*} Below Quantifiable Limits

Type of Analysis: INORGANICS

Client:	UNION	CARBIDE	CORP.	A.E.S.	JOB	CODE	CTC

Analytical Parameter(s)	Method	Quant.	AES Lab No Sample ID - Sample Date-	2712 BW-2 GRAB 3/28/91	2713 BW-6 GRAB 3/28/91	2714 BLIND DUP GRAB (BW-6) 3/28/91	
Ammonia (mg/l)	350.1	0.02	_	1.35	0.37	0.28	
Nitrite (mg/l)	353.2	0.01		BQL *	BQL	BQL	
Total Kjeldahl Nitrogen(mg/l)	351.2	0.1		1.4	0.5	0.4	

Gary L. Amato Technical Supervisor

Durylamato

^{*} Below Quantifiable Limits

AES INORGANICS DEPARTMENT TRACEABILITY JOB CODE: ______

Jakul Chifin 7 About Juffer January Counts	2704-08 2704-08 2704-08 2706 2106	35/12 35/12 35/12 35/2 (REMANNES) 35/2 (REMANNES)	Date of Analysis 4/3/9/ 14-8-67 4/9/9/ 4-3-67 4-10-41
		. 1	
-			

AES INORGANICS DEPARTMENT TRACEABILITY JOB CODE: CTC

Jahre Cufa Jahre Chara Jahre Chara Jahre Chara Jahren	2709-14 2709-14 2709-14 2709-14	Method 35%2 350.1 353.2 350.1 (KERNALYA,6)	Date of Analysis 4/3/9/. 4-3-6/ 4/9/9/ 4-2-9/
		1	

Type of Analysis: INORGANICS

Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

(All results are in mg/l)

		AES Lak Sample		2704 BW-1	2705 BW-3	2706 BW-4	
Analytical Parameter(s)	Method No.	Quant. Limits Sample	Date-	GRAB 03/27/91	GRAB 03/27/91	GRAB 03/27/91	
Total Iron Soluble Iron Total Potassium Soluble Potassium Total Zinc Soluble Zinc	236.1 236.1 258.1 258.1 289.1 289.1	0.30 0.30 1.00 1.00 0.05 0.05		1.05 1.03 4.80 4.79 0.15 0.08	5.42 4.78 1.46 1.42 1.04 1.10	4.94 1.16 17.9 17.6 0.78 0.26	

Gary L. Amato Technical Supervisor

Type of Analysis: INORGANICS

Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

(All results are in mg/l)

AES Lab No. -2707 2708 Sample ID -BW-5 TRIP BLANK

			1	
Analytical Parameter(s)	Method No.	Quant. Limits Sample Date-	GRAB 03/27/91	GRAB 03/27/91
Total Iron	236.1	0.30	3.42	BQL *
Soluble Iron	236.1	0.30	1.14	NR **
Total Potassium	258.1	1.00	2.39	BQL
Soluble Potassium	258.1	1.00	2.17	NR
Total Zinc	289.1	0.05	0.12	BQL
Soluble Zinc	289.1	0.05	0.10	NR

** None Requested.

Gary L. Amato Technical Supervisor

Below Quantifiable Limit.

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION _____

Type of Analysis: Duplicate Analysis
Units of Analysis: Milligrams/Liter or ppm
Client: UNION CARBIDE CORP. A.E.S. Job Code:CTC

Analytical Parameters	Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Total Potassium Total Iron Total Zinc Soluble Potassium Soluble Iron Soluble Zinc	2706	18.0	17.8	17.9	0.2	1.1
	2706	5.02	4.87	4.94	0.15	3.0
	2706	0.79	0.77	0.78	0.02	2.6
	2706	17.5	17.8	17.6	0.3	1.7
	2706	1.18	1.13	1.16	0.05	4.3
	2706	0.26	0.25	0.26	0.01	3.8

Relative Percent Difference = Range/Average X 100

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: UNION CARBIDE A.E.S. Job Code: CTC

(Units:mg/l or ppm)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
Total Potassium	2706	SPK	37.8	17.9	20.0	100
IND (K) Std.		STD	9.55	10.0		96
Total Iron	2706	SPK	8.90	4.94	4.00	99
IND (Fe) Std.		STD	4.02	4.00		100
Total Zinc	2706	SPK	1.74	0.78	1.00	96
IND (Zn) Std.		STD	0.47	0.50		94
Soluble Potassium	2706	SPK	37.2	17.6	20.0	98
IND (K) Std.		STD	9.55	10.0		96
Soluble Iron	2706	SPK	5.12	1.16	4.00	99
IND (Fe) Std.		\mathtt{STD}	4.02	4.00		100
Soluble Zinc	2706	SPK	1.26	0.26	1.00	100
IND (Zn) Std.		STD	0.47	0.50		94

^{* %} Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)

Type of Analysis: INORGANICS

Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

(All results are in mg/l)

		<i>.</i>	AES Lab No Sample ID -	2709 MW- 1	2710 MW-2	2711 MW-3	
Analytical Parameter(s)	Method No.	Quant. Limits	 Sample Date-	GRAB 3/28/91	GRAB 3/28/91	GRAB 3/28/91	
Total Iron Soluble Iron Total Potassium	236.1 236.1 258.1	0.30 0.30 1.00		1.14 BQL * 53.2	48.4 30.0 8.31	1.44 BQL 1.64	
Soluble Potassium Total Zinc Soluble Zinc	258.1 289.1 289.1	1.00 0.05 0.05		51.5 0.24 0.07	7.94 0.81 0.56	1.60 0.17 0.05	

Gary L. Amato Technical Supervisor

^{*} Below Quantifiable Limit.

Type of Analysis: INORGANICS

Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

(All results are in mg/l)

AES Lab No. -2712 2713 Sample ID -BW-2 BW-6

Analytical	Method	Quant.	Sample Date-	GRAB	GRAB
Parameter(s)	No.	Limits		03/28/91	03/28/91
Total Iron	236.1	0.30		3.33	5.90
Soluble Iron	236.1	0.30		1.02	3.13
Total Potassium	258.1	1.00		12.4	2.77
Soluble Potassium	258.1	1.00		12.3	2.66
Total Zinc	289.1	0.05		5.60	BQL *
Soluble Zinc	289.1	0.05		0.45	\mathtt{BQL}

Gary L. Amato

Technical Supervisor

^{*} Below Quantifiable Limit.

Type of Analysis: INORGANICS

Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

(All results are in mg/l)

AES Lab No. - 2714 Sample ID - BLIND

				DUPLICATE	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date-	(BW-6) GRAB 03/28/91	
Total Iron	236.1	0.30		6.22	
Soluble Iron	236.1	0.30		3.25	
Total Potassium	258.1	1.00		2.53	
Soluble Potassium	258.1	1.00		1.88	
Total Zinc	289.1	0.05		BQL *	
Soluble Potassium	289.1	0.05		$\widetilde{\mathtt{BQL}}$	

Gary L. Amato Technical Supervisor

DuyLlimite

^{*} Below Quantifiable Limit.

AES INORGANICS DEPARTMENT TRACEABILITY JOB CODE: (T)

Mark Morcy Mark Morcy Commission	AES Sample # 2704-08 T/S	Method 258.1 236.1 289.1	Date of Analysis 4-8-91 4-6-01
· · · · · · · · · · · · · · · · · · ·			
		. 1	
-			

AES INORGANICS DEPARTMENT TRACEABILITY JOB CODE: CTC

.

Technician Signature Moccio Mack Morco Million	Sample # 2709-14 2704-14 27014 14	Me:hod 236.1 258.1 261.1	Date of Analysis 4-8-91 4-8-91
· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·			
-		. 1	
•			

Type of Analysis: TCL SEMI-VOLATILES

Units of Measure: Micrograms/ liter or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

					/		
			AES Lab N	0	2706	2708	
			Sample I	D - ,		TRIP BLANK	
				-	GRAB	GRAE	
Analytical		Quant.					
Parameter(s)	No.	Limits	Sample Da	te-	3/27/91	3/27/91	
N-Nitrosodimethylamine	0270		10			POT	
Aniline	8270		10		BQL *	BQI	•
Phenol							
Bis(2-Chloroethyl) ether	11		11		11	11	
1,3-Dichlorobenzene	"		11		••	11	
1,4-Dichlorobenzene	**		11		••	11	
Benzyl Alcohol	"		11		**	"	
1,2-Dichlorobenzene	**		11		11	"	
2-Methylphenol	**		11		11	**	
bis(2-Chloroispropyl)ether	**		11		**	11	
4-Methylphenol	**		11		11	11	
N-Nitrosodinpropylamine	**		11		11	11	
Hexachloroethane	"		11		**	•	
Nitrobenzene	**		11		11	**	
Isophorone	**		11		11	•1	
2-Nitrophenol	**		11		11	•	
2,4-Dimethylphenol	**		11		11	61	
Bis(2-Chloroethoxy) methane	"		11		11	11	
Benzoic Acid	"		11		11	•	
2,4-Dichlorophenol	"		11		**	•1	
1,2,4-Trichlorobenzene	"		11		***	11	
Naphthalene	"		II .		**	•	1
4-Chloroaniline	"		11		11	•1	1
Hexachlorobutadiene	11		11		38	•	
2-Chlorophenol	"		•		BQL	•	

^{*} Below Quantifiable Limits

Type of Analysis: TCL SEMI-VOLATILES

Units of Measure: Micrograms/ liter or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

		AES Lab No Sample ID -		2708 TRIP BLANK	
Analytical			GRAB	GRAB	
Parameter(s)	Method No.	Quant. Limits Sample Date-	3/27/91	3/27/91	
4-Chloro-3-Methylphenol	8270	10	BQL *	BQL	
2-Methylnaphthalene	11		11	H	
Hexachlorocyclopentadier	ie "	II .	11	11	
2,4,6-Trichlorophenol	11	11	11	H	
2,4,5-Trichlorophenol	11	"	11	11	
2-Chloronaphthalene	"	II .	"	11	
Dimethylphthalate	11	"	"	"	
2,6-Dinitrotoluene	11	"	11	11	
Acenaphthylene	11	"	11	11	
3-Nitroanlline	11	ii .	11	11	
Acenaphthene	"	"	11	11	
2,4-Dinitrophenol	"	40	11	11	
Dibenzofuran	•	10	11	11	
2-Nitroaniline	"	II	"	"	
2,4-Dinitrotoluene	**	11			
4-Nitrophenol	11	40	11	11	
Diethylphthalate	"	10	11	II	
4-Chlorophenyl-phenyleth	er "	"	11	11	
Fluorene	11	11	11	H	
4-Nitroaniline	11	u ·	•1	H	
4,6-Dinitro-2-methylpher	ol "	40	**	11	
N-Nitrosodiphenylamine	11	10	**	II .	
1,2-Diphylhydrazine	11	"	11	11	
4-Bromophenyl-phenylethe	r "	11	11	11	

^{*} Below Quantifiable Limits

Type of Analysis: TCL SEMI-VOLATILES

Units of Measure: Micrograms/ liter or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

Analytical	 Method	 Quant.	AES Lab No Sample ID -	2706 BW-4 GRAB	TRIP BLANK	
Parameter(s)	No.		Sample Date-	3/27/91	3/27/91	
Hexachlorbenzene	8270		LO	BQL *	BQL	
Pentachlorophenol	"		10	H	11	
Phenanthrene	"		10	11	11	
Anthracene	11		11	11	11	
Di-n-Butylphthalate	"		11	11	II	
Fluoranthene	11		11	**	11	
Benzidine	11		10	11	11	
Pyrene	11	:	LO	11	11	
Butylbenzylphthalate	11		11		11	
3,3-Dichlorobenzidine	11	4	10	11	11	
Benzo(a)Anthracene	"	:	10	11	11	
bis(2-ethylhexyl)Phthalate	"	:	20	11	11	
Chrysene	11		LO	11	11	
Di-n-octylphthalate	11		11	11	***	
Benzo(b) fluoranthene	11		11	11	11	
Benzo(k) fluoranthene	11		11	11	11	
Benzo(a)pyrene	"		11	81	11	
Indeno(1,2,3-cd)pyrene	11		11	#1	11	
Dibenzo(a,h)anthracene	"		11	**	**	
Benzo(g,h,i)perylene	11		"	**	"	

^{*} Below Quantifiable Limits

Type of Analysis: TCL VOLATILES

Units of Measure: Micrograms/ liter or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

Don Lock Local		AES Lab No Sample ID -	2706 BW-4 GRAB	2708 TRIP BLANK GRAB	
Analytical Parameter(s)	Method No.	Quant. Limits Sample Date-	3/27/91	3/27/91	
Chloromethane Vinyl Chloride	8240	5.0	BQL *	BQL	
Chloroethane	"	"	300	"	
Bromomethane		 !!	BQL "	"	
Acetone		 50			
2 1,1-Dichloroethene	11	5.0	150 ** 6.9	2,000**	
Carbon Disulfide	11	5.0	BQL	BQL "	
Methylene Chloride	**	11	II DÖD	**	
trans-1,2-Dichlorethene	11	II .	5.6	**	
~1,1-Dichloroethane	**	II .	BQL	11	
Vinyl acetate	11	"	DQL II	11	
2-Butanone	11	50	11	Ħ	
Chloroform	***	5.0	11	11	
1,1,1-Trichloroethane	11	11	11	H .	
Carbon Tetrachloride	11	11	11	Ħ	
Benzene	***	11	11	***	
1,2-Dichloroethane	"	11	11	11	
Trichloroethene	**	11	280	**	
1,2-Dichloropropane	**	"	\mathtt{BQL}	11	
Bromodichloromethane	**	11	11	11	
2-Chloroethyl vinyl ether	"	"	11	11	
4-Methyl-2-pentanone	11	50	"	11	
cis-1,3-Dichloropropene	"	5.0	11	(1	
Toluene	"	!!	H	11	
trans-1,3-Dichloropropene	"	II	11	#	
1,1,2-Trichloroethane	"		"	II	
Tetrachloroethene	11	II .	260	**	

* Below Quantifiable Limits

** See Narrative

Denise R. Tuhovak Organics Supervisor

Deavie X Tuhral

Type of Analysis: TCL VOLATILES

Units of Measure: Micrograms/ liter or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

			AES Lab No Sample ID -	2706 BW-4 1 GRAB	2708 RIP BLANK GRAB
Analytical Parameter(s)		Quant. Limits	Sample Date-	3/27/91	3/27/91
Chlorodibromomethane	8240	5	.0	BQL *	BQL
Chlorobenzene	11		11	~11	~11
Ethylbenzene	**		11	11	"
Bromoform	**		**	11	**
1,1,2,2-Tetrachloroethane	**		11	11	11
2-Hexanone	**		50	II	**
m/p-Xylene	**	5	.0	11	11
o-Xylene	11	_	"	11	11
Styrene	11		11	II	11

^{*} Below Quantifiable Limits

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - PRECISION

Type of Analysis: Duplicate Analysis

Units of Analysis: Micrograms/liter or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code:CTC

Analytical Parameters	Sample No.	Original Conc.	Duplicate Conc.	Average Conc.	Range	Rel. % Difference
Vinyl Chloride * (8240) Trichloroethene * (8240) Tetrachloroethene * (8240) Hexachlorobutadiene ** (8270)	2706	310	280	300	30	10
	"	300	270	280	30	11
	"	270	250	260	20	8
	"	36	39	38	3	8

Relative Percent Difference =
Range/Average X 100
* Diluted sample was duplicated, all others BQL

** All other analytes BQL

ADVANCED ENVIRONMENTAL SERVICES, INC. LABORATORY REPORT QUALITY CONTROL - ACCURACY

Type of Analysis: Matrix Spikes and E.P.A. Standards Client: UNION CARBIDE CORP. A.E.S. Job Code: CTC

(Units: ug/l, or ppb)

Analytical Parameters	Sample No.	Туре	Observed Conc.	Original Conc.	Added Conc.	Percent Recovery*
1,1-Dichloroethene	2706 ***	SPK	22.5	<50	20.0	112
Benzene	11	**	19.7	< 50	11	98
Trichloroethene	11	11	48.4	2.82	11	101
Toluene	11	11	22.2	< 50	11	111
Chlorobenzene	11	11	18.5	< 50	11	92
Phenol	2706	SPK	25.9	BQL **	80	32
2-Chlorophenol	11	11	48.1	11	11	60
1,4-Dichlorobenzene	11	11	23.5	"	40	59
N-Nitrosodipropylamine	11	11	24.7	11	11	62
1,2,4-Trichlorobenzene	11	11	26.8	11	11	67
4-Chloro-3-Methylphenol	11	11	58.8	11	80	73
Acenaphthene	11	11	25.7	11	40	64
4-Nitrophenol	11	H	27.9	11	80	35
2,4-Dinitrophenol	11	11	29.8	11	40	75
Pentachlorophenol	11	11	105	11	80	131
Pyrene	11	11	26.6	11	40	66

^{* %} Recovery=100 x ((Observed Conc. - "background" Original Conc.)/"Spike" Added Conc.)
** Below Quantifiable Limits

^{***} Diluted sample was spiked

Type of Analysis: TCL VOLATILES

Units of Measure: Micrograms/Liter, or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

Analytical Parameter(s)	Method No.	Quant. Limits	AES Lab No Sample ID - Sample Date-	2713 BW-6 GRAB 03/28/91	2714 BLIND DUP (BW-6) GRAB 03/28/91	
Chloromethane Vinyl Chloride Chloroethane	8240 "	5.	. O " "	BQL *	BQL "	
Bromomethane Acetone 1,1-Dichloroethene Carbon Disulfide	;; ;;	5.	50	1800 ** BQL	1800 BQL	**
Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane	11 11 11		II II	II II	# # #	
Vinyl acetate 2-Butanone Chloroform 1,1,1-Trichloroethane	11 11 11	5.	" 50 .0	11 11 11	11 11 11	
Carbon Tetrachloride Benzene 1,2-Dichloroethane	" " " "		11 11	 	# # #	
Trichloroethene 1,2-Dichloropropane Bromodichloromethane 2-Chloroethyl vinyl ether	11 11 11		11 11 11	!! !! !!	" "	
4-Methyl-2-pentanone cis-1,3-Dichloropropene Toluene	"	5.	11	H H H	H H	
trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene	11 11 11		11 11 11	11 11 11	11	

^{*} Below Quantifiable Limit.
** See narrative

Type of Analysis: TCL VOLATILES

Units of Measure: Micrograms/Liter, or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

Analytical Parameter(s)	Method	Quant. Limits	AES Lab Sample	ID -	2713 BW-6 GRAB 03/28/91	2714 BLIND DUP (BW-6) GRAB 03/28/91	
	NO.	TIMICS					
Ethylbenzene	8240	5	.0		BQL *	\mathtt{BQL}	
Bromoform	11		11		11	11	
1,1,2,2-Tetrachloroethane	11		11		11	11	
2-Hexanone	**		50		11	11	
m/p-Xylene	11		.0		11	11	
o-Xylene	11		11		**	11	
Styrene	11		11		11	11	
Chlorodibromomethane	H		11		H	"	
Chlorobenzene	"		II .		"	"	

^{*} Below Quantifiable Limit.

Type of Analysis: TCL SEMI-VOLATILES

Units of Measure: Micrograms/Liter, or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

				ν		
			AES Lab No	2713	2714	
			Sample ID -	BW-6	BLIND DUP	
Analystical			 I	, ,	(BW-6)	
Analytical		Quant.	Gammla Data	GRAB	`GRAB	
Parameter(s)	No.	Limits	Sample Date-	03/28/91	03/28/91	
N-Nitrosodimethylamine	8270		10	BQL *	BQL	
Aniline	0270		"	II UQU	II DATI	
Phenol	"		11	11	11	
Bis(2-Chloroethyl) ether	11		11	11	11	
1,3-Dichlorobenzene	**		**	11	II .	
1,4-Dichlorobenzene	**		••	11	11	
Benzyl Alcohol	11		**	11	11	
1,2-Dichlorobenzene	***		**	11	***	
2-Methylphenol	***		**	11	11	
bis(2-Chloroispropyl)ether	***		11	**	11	
4-Methylphenol	***		11	11	11	
N-Nitrosodinpropylamine	11		**	**	11	
Hexachloroethane	**		**	11	11	
Nitrobenzene	"		11	11	11	
Isophorone	"		11	11	11	
2-Nitrophenol	***		11	11	11	
2,4-Dimethylphenol	11		11	II .	11	
Bis(2-Chloroethoxy)methane	11		11	11	11	
Benzoic Acid	11		**	11	11	
2,4-Dichlorophenol	11		11	11	11	
1,2,4-Trichlorobenzene	11		**	***	11	
Naphthalene	11		11	11	**	
4-Chloroaniline	11		11	***	II	
Hexachlorobutadiene	11		11	***	!!	
2-Chlorophenol	"		11	•	"	

Denise R. Tuhovak * Below Quantifiable Limit. Organics Supervisor

Type of Analysis: TCL SEMI-VOLATILES

Units of Measure: Micrograms/Liter, or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

			AES Lab No.		2714 BLIND DUP (BW-6)	
Analytical Parameter(s)	Method No.	Quant. Limits	Sample Date	GRAB - 03/28/91	GRAB 03/28/91	
4-Chloro-3-Methylphenol	8270		10	BQL *	BQL	
2-Methylnaphthalene	***		11	- ~ - 11	~	
Hexachlorocyclopentadiene	***	•	11	18	11	
2,4,6-Trichlorophenol	**		11	11	H	
2,4,5-Trichlorophenol	**		11	10	11	
2-Chloronaphthalene	**		11	11	11	
2-Nitroaniline	**		11	11	11	
Dimethylphthalate	**		11	11	**	
2,6-Dinitrotoluene	••		11	11	11	
Acenaphthylene	**		11	11	17	
3-Nitroaniline	**		11	11	11	
Acenaphthene	**		11	11	11	
2,4-Dinitrophenol	**		40	11	11	
Dibenzofuran	**		10	11	11	
2,4-Dinitrotoluene	**		11	11	11	
4-Nitrophenol	***		40	11	**	
Diethylphthalate	**		10	H	17	
4-Chlorophenyl-phenylether	"		11	11	**	
Fluorene	**		11	11	**	
4-Nitroaniline	**		11	11	11	
4,6-Dinitro-2-methylphenol	**		40	11	11	
N-Nitrosodiphenylamine	**		10	11	**	
1,2-Diphenylhydrazine	**		- ii	**	***	
Bromophenyl-phenylether	11		11	11	11	

Denise R. Tuhovak Organics Supervisor

^{*} Below Quantifiable Limit.

Type of Analysis: TCL SEMI-VOLATILES

Units of Measure: Micrograms/Liter, or ppb Client: UNION CARBIDE CORP. A.E.S. Job Code CTC

Analytical Parameter(s)	Method No.	Quant. Limits	AES Lab Sample - Sample I	ID -	2713 BW-6 GRAB 03/28/91	2714 BLIND DUP (BW-6) GRAB 03/28/91	,
Hexachlorbenzene	8270		10		BQL *	BQL	
Pentachlorophenol	**		40		11	11	
Phenanthrene	"		10		11	11	
Anthracene	"		11		11	II	
Di-n-Butylphthalate	**		11		11	11	
Fluoranthene	**		11		11	11	
Benzidine	**		40		11	11	
Pyrene	"		10		11	11	
Butylbenzylphthalate	11		11		11	11	
3,3-Dichlorobenzidine	***		40		11	11	
Benzo(a)Anthracene	11		10		11	11	
bis(2-ethylhexyl)Phthalate	11		20		11	11	
Chrysene	**		10		11	11	
Di-n-octylphthalate	11		11		11	11	
Benzo(b)fluoranthene	11		11		11	11	
Benzo(k)fluoranthene	11		11		11	11	
Benzo(a)pyrene	"		11		11	11	
Indeno(1,2,3-cd)pyrene	11		11		11	#1	
Dibenzo(a,h)anthracene	"		11		11	11	
Benzo(g,h,i)perylene	11		11		11	11	
	"		11		"	11	

Denise R. Tuhovak Organics Supervisor

^{*} Below Quantifiable Limit.

ADVANCED ENVIRONMENTAL SEVICES, Inc. EXTRACTION TRACEABILITY REPORT INORGANICS REPORT

A.E.S. Job Code: <u>CTC</u> A.E.S. Job Number: <u>911053</u>

1				27.02
ı	: TECHNICIAN	ANALYTICAL METHOD	SAMPLE CODE(S)	DATE OF EXTRACTION
	\cap			
ł	Tina Mull	8270	2706,2708	4/2/91
ı			-	· :
ı				
ı			·	
I	·			
I				
I				
I				
ı				
ı				
l				
ı				
I				
ı	-			

AES ORGANIC DEPARTMENT TRACEABLITY

JOB CODE: CTC

Technician Signature	AES Sample #'s	Method	Date of Analysis
A Turn	2706,2708	5240	4/5/91
from Fugl	2706,2705	8270	4/9/9/
•			
		•	
	Annual Control of the		· · · · · · · · · · · · · · · · · · ·

ADVANCED ENVIRONMENTAL SEVICES, Inc. EXTRACTION TRACEABILITY REPORT INORGANICS REPORT

A.E.S. Job Code: CTC A.E.S. Job Number: 911054

:. TECHNICIAN	ANALYTICAL METHOD	SAMPLE CODE(S)	DATE OF EXTRACTION
Tena Mull	8270	2713,2714	4/2/91
		7	
		·	
		·	
		•	
-		1	
	- Marian - M		

AES ORGANIC DEPARTMENT TRACEABLITY

JOB CODE: CTC

Technician Signature	AES Sample #'s	Method	Date of <u>Analysis</u>
7 7			
This is a second	<u>2713,2114</u> 2717, 3714	<u>8,340</u> 8270	<u>4/8/91</u> 4/9/91
- from tage	<u> </u>		7/7/7/
		•	
			-
·			
	-		

3. RELINQUISHED BY:

CHAIN OF CUSTODY RECORD

PROJE	ROJECT NAME: Union Carbide Wells					CONTAINER CLASSIFICATION					JOB CODE: <u>C7C</u>
SAMPI	LER'S SIGN	ATURE: John Ch	AL ALI	he Chap		LSERV	, _{vo,} vo,		PAEZ JINPE	RES.	IDENTIFICATION OF BLIND FIELD DUPLICATE SITE:
DATE	TIME	SAMPLE IDENTIFICATION	GRAE COMP	SAMPLE TYPE	JH	KINO.	4,50,40,	4ROK VIAL	VIAL TO	AL	PARAMETERS/REMARKS
3/27/91	11:25	BW-1	\times 6	round wat	/	2	;				Nitrate, TKN, Total 7
	16:00	BW-5				2			:3	/	retals.
	16:30	B(1)-3	-	'	-	2			3		
177	9.00	TripBlank	11 12	I. WATER	9 1	1	/	2	3	Anno	ia Nitrite TKN, Total
2	14:30	BW-4		roundwat	/` <u>`</u>	2 2	2	3		450/	metals TCLSVTCLV
										*//	ote * No Sol
										me	tals for the trip
										bla	nk
TOTAL NUMBER OF CONTAINERS 24											
NOTE: Please indicate required analysis, and whom we may contact with questions, if you have not yet done											
so through your customer service representative.											
1. REI	LINQUISHED B	Y: 1		DATE	TIME	ı	RECEIV	ED BY:		, ,	
	Mhe	Chang		3-27-91	545	PM		\nearrow	UM	7 🔀	insch
2. RE	LINQUISHED B	Y:		DATE	TIME		RECEIV	ED BY:	,		

RECEIVED BY:

TIME

DATE

CHAIN OF CUSTODY RECORD

1417	TUATIA I ALLO	, 111 14004 - (7 10) 200-3120								
PROJECT NAME: Union Carbide					CONTAINER CLASSIFICATION				JOB CODE: CTC	
SAMPL	ER'S SIGN	ATURE: Sold U.				وي	VED.		is presi	IDENTIFICATION OF BLIND FIELD DUPLICATE SITE: Bu) - (
DATE	TIME	SAMPLE IDENTIFICATION	GRAB COMP	SAMPLE TYPE	S	APRESER INC	45°	CL MOH	PRES UNPRES	PARAMETERS/REMARKS
3/18/A,	14:20	MW-1		Groundwa.	1	2	1		3 An	nmapia, Nytrite, TKN Tstal
,	11:50	MW-Z MW-3	+++			2	1	_	3 ¢	Sol metals
	11:10	BW-2				2			3	
	15:30 15:30	Blu- 6			<u> </u>	2	-	2	6 Sa	ame as above plus
	70 00								0 7	CASO, /CAO
						+				
						+		+ -		
NOTE:	Please indi	cate required analysis, and w	/hom we ma	ıy	TOTAL	NUMBE	ER OF C	CONTAINE	as 24	
		h questions, if you have not your customer service repres								,
1. RELINQUISHED BY			DATE / 3/28/9/	5!00	TIME RECEIVED BY:			1	Jah	
2. RELINQUISHED BY:		DATE	TIN	Щ_	RECEIVED BY:					
3. RELINQUISHED BY:			DATE	TIM	E	REC	EIVED BY:			