

2019 PERIODIC REVIEW REPORT and ANNUAL SITE MANAGEMENT PLAN (SMP) REPORT

for the

CLOSED LANDFILL SITE SWMF #32N03

(Formerly UCAR Carbon Company, Republic Site Registry No. 932035) (Per the SMP Approved October 29, 2018)

Prepared by:

GrafTech International Holdings Inc. 982 Keynote Circle Brooklyn Heights, OH 44131

January 28, 2020 – Revised June 18, 2020

Table of Contents

1.	. Intr	oduction	
2.	Inst	itutional Controls and Engineering Controls (IC/EC)	7
	2.1.	Engineering Controls (EC)	7
	2.2.	Institutional Controls (IC)	8
3.	Оре	rations and Monitoring (O&M) Plan	10
	3.1.	Groundwater Monitoring	
	3.2.	Soil Vapor Monitoring	16
	3.3.	Site Inspections and Records	16
	3.3.1.	General Landfill and Site Security Inspections and Records - Weekly	17
	3.3.2.	Groundwater Monitoring Well Inspections and Records - Quarterly	
	3.4.	Routine Maintenance and Repairs	
	3.5.	Record Retention	
4.	Exc	avation Plan Status	
5.	Pro	perty Transfer Status	20
6.	Con	clusions and Recommendations	21

Tables

Table 1

Site Monitoring Well Details

Table 2

Analytical Results Summary - May 2019

Table 3

Summary of Bedrock Well Analytical Results: PCE, TCE, cis-1,2-DCE, and Vinyl Chloride

Figures

Figure 1

Historical Data Graph - Well BW-3

Figure 2

Historical Data Graph - Well BW-4

Figure 3

Historical Data Graph - Well GW-8B

Appendices

Appendix A

Weekly General Landfill and Site Security Inspection Report Form Quarterly Groundwater Well Inspection Report Form

Appendix B

Letter from NYSDEC, DER - Region 9, to GrafTech, dated February 8, 2018 (SM PRR Response Letter)

Appendix C

Letter from NYSDEC, DER - Region 9, to GrafTech, dated October 29, 2018 (Site Management Plan)

Appendix D

GHD Letter to GrafTech, Reference No. 11194450, 2019 Annual Groundwater Monitoring Results Summary Letter

GHD Letter to GrafTech, Reference No. 11194450-01, Bedrock Well Redevelopment Summary Letter

Appendix E

Copy of Signed Institutional and Engineering Controls Certification Form Appendix F

Copies of Weekly General Landfill and Site Security Inspection Reports - 2019

Appendix G

Copies of Quarterly Groundwater Well Inspection Reports - 2019

1. Introduction

This Periodic Review Report (PRR) is being submitted for the GrafTech International Holdings Inc. (GrafTech) (formerly UCAR Carbon Company Inc.) closed landfill facility, SWMF #32N03 (Registry No. 932035) ("Landfill" or "Site"), under the provisions of the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) Inactive Hazardous Waste Site Program. The Landfill is located in the Town of Niagara, Niagara County, State of New York, on Parcel Number 130.20-1.1. The Site is located off Hyde Boulevard behind the former UCAR Carbon Republic Plant. The Site is comprised of a 16.48 acres capped landfill on 61.60 acres of undeveloped land.

The 16.48 acre landfill was closed in accordance with a NYSDEC-approved closure plan under Part 360 Solid Waste Management Facility (SWMF) Guidelines, which included the installation of an engineered cap, completed in June 1987. A Preliminary Site Assessment (PSA) report was issued in April of 1995. The assessment involved the entire property in order to effectively characterize the Landfill and any on-site or off-site contaminant migration. Based on the results of the PSA, the state made a "no significant threat" determination and reclassified the Landfill in 1997 from Class 2a to a Class 4 Inactive Hazardous Waste Site. There have been no required remedial programs or remedial objectives established for this Site. GrafTech has continued to monitor the groundwater quality and implement the established institutional/engineered controls (IC/EC) at the Site, discussed in more detail in Sections 2.0 and 3.1, for over 30 years.

Prior to May 2016, this Site was being managed under the state programs of both the DER and the Division of Materials Management (DMM). On May 25, 2016, NYSDEC communicated to GrafTech that, going forward, the Site would be managed solely by the DER, thereby eliminating some prior reporting and oversight redundancies.

GrafTech voluntarily submitted a proposed Site Management Plan (SMP) to NYSDEC Region 9 on December 17, 2013, to bring the Plan in line with the state's Technical Guidance for Site Investigation and Remediation, DER 10. The more comprehensive SMP incorporated and replaced the prior Operation, Maintenance and Monitoring (OM&M) Plan, which the state had previously approved on November 4, 2009. NYSDEC issued a letter on November 17, 2016, approving GrafTech's proposed December 2013 SMP; the only change being that GrafTech would no longer be required to submit a separate annual groundwater monitoring report to the DMM.

The PRR for Reporting Year 2017 submitted in January 2018 included a request to downsize the groundwater monitoring plan and reduce the number of parameters that would be analyzed. NYSDEC issued the Site Management (SM) Periodic Review Report (PRR) Response Letter dated February 8, 2018, which approved GrafTech's proposal for a modified sampling program to only include sampling of monitoring wells BW-3, GW-8B and BW-4 with analysis of only volatile organic compounds (VOCs). Based on approval of the modified sampling program, GrafTech submitted a revised SMP dated October 23, 2018, to include the updated monitoring program requirements and to bring the SMP in line with the NYSDEC recommended SMP format. NYSDEC subsequently issued a letter dated October 29, 2018 accepting GrafTech's revised SMP.

The NYSDEC-approved SMP specifies the routine site inspection, maintenance and groundwater monitoring programs, and outlines the reporting and record retention requirements for the Site. In addition, the SMP describes provisions for an approved Excavation Plan to manage potentially contaminated soils at the Site in the event that GrafTech has future plans to excavate soil from any areas outside the footprint of the Landfill.

The purpose of this PRR is to document GrafTech's implementation and conformance with the post closure care procedures and Institutional Controls (IC)/Engineering Controls (EC) outlined in the SMP. This PRR covers the period of January 1, 2019 through December 31, 2019. It should be noted that, in past agreement with Mr. Michael Hinton, NYSDEC, DER, Region 9, the annual SMP compliance report for this Site is incorporated in this annual PRR to eliminate unnecessary redundancy.

For the report period specified above, GrafTech has designated the GrafTech Corporate Health, Safety and Environmental Protection (HS&EP) Manager, to be responsible for managing the Site. This position is currently filled by Ms. Julianne Snyder, who is located at the GrafTech Corporate Headquarters, 982 Keynote Circle, Brooklyn Heights, Ohio 44131. In addition, GrafTech has also contracted the services of National Maintenance Contracting Corporation (NMCC), a local general maintenance contractor, to act as the local point of-contact for the Site. NMCC is responsible for managing the routine operations at the Landfill, including site security; conducting the routine site inspections according to the schedule and protocols established in the SMP; completing or arranging for any needed maintenance and/or repairs at the Site; escorting approved visitors at the Site such as environmental contractors commissioned by GrafTech; responding to neighborhood requests, etc. All NMCC activities are supervised by Ms. Snyder.

NMCC is also responsible for communicating to Ms. Snyder whenever a significant event took place that could have possibly prevented full conformance with the SMP, or for any other important matters concerning the Landfill outside the scope of this Plan.

Ms. Snyder has been granted the authority by GrafTech to requisition the necessary resources so that appropriate corrective actions can then be promptly implemented to adequately address any identified deficiency and ensure full conformance with the provisions of the SMP.

2. Institutional Controls and Engineering Controls (IC/EC)

There is no required Remedial Program or remedial objectives for this Site.

2.1. Engineering Controls (EC)

The EC in place at the Landfill include a physical barrier installed in 1987, which is an engineered cap to contain and eliminate potential exposure pathways to the contaminants in the waste disposal area, and a groundwater monitoring well network. Another EC employed at the Site is a security system designed to prevent unauthorized access, which consists of an eight (8) foot high metal hurricane-style perimeter fence and two (2) locked gates. In addition, the casings on the groundwater monitoring wells are equipped with locking devices and padlocks to prevent unauthorized access and potential contamination to groundwater. These engineering controls were routinely inspected and repaired/replaced, as needed, to ensure that unauthorized access was restricted. The padlocks were kept locked except when drawing groundwater samples or when performing internal inspections of the monitoring wells.

As detailed in the Final Landfill Closure report¹, the engineered cap is a low-permeability cap installed over the entire 16.48-acre Site, except for the wooded areas. The final cover consists of a 6-inch thick topsoil layer with vegetative cover (grass) overlying a 3-inch thick sand/gravel layer (drainage layer) overlying an 18-inch thick clay layer. The clay was placed and compacted to a hydraulic conductivity of less than 1×10^{-7} cm/sec. At the edge of the waste disposal area, the clay cover was keyed approximately two feet into the existing native fine-grained soils or to the top of bedrock, whichever was encountered first. The drainage layer was spread over the entire clay cap to laterally drain precipitation and reduce infiltration. The sand used for the drainage layer was obtained from Niagara Stone No. 1B. Geotechnical testing completed on this sand during source selection yielded a maximum hydraulic conductivity of 2.68 × 10⁻² cm/sec. The topsoil layer was placed on top of the drainage layer and was seeded with a persistent vegetative species that was selected to effectively minimize erosion. The vegetative cover has a shallow root system which should not penetrate beyond the lateral drainage layer. The topsoil is a fertile loamy material obtained from an abandoned cornfield at Shevlin-Manning's mining operation.

The surface slope of the final cover was designed at 3 percent slope. The final slope varies slightly across the cover in order to accommodate the total amount of fill, but does not

¹ Final Landfill Closure, Solid Waste Management Facility, Union Carbide Corporation, Republic Plant, Town of Niagara, New York, prepared by Conestoga-Rovers & Associates for Union Carbide Corporation, dated September 1987.

exceed 5 percent and is not less than 2 percent. Side slopes around the landfill portions of the Site are at a 3:1 slope (33 percent) or less.

The western area of the SWMF was never used for waste disposal, but was covered with a thin layer of carbonaceous material. This area was regraded and capped at a 2 percent slope with final contour elevations matching existing ground elevations around the perimeter of the Site. In order to accomplish this, the thickness of the clay, drainage, and topsoil layers was reduced over the last 100 feet to a total thickness of approximately 1.5 feet toward the edge of the Site. Surface water at the Site is allowed to follow natural drainage paths, given the slopes and runoff characteristics of the Site, engineered cap, and surrounding area. This decision was made at the time of closure and is further described in the closure report. There are no additional erosion/drainage controls in place at the Site.

2.2. Institutional Controls (IC)

The IC at this Site is the implementation of the SMP, including the Operation and Monitoring Plan discussed below, which specifies the groundwater monitoring program; the routine facility inspections for the engineered cap and the security features of the Site; maintenance of the Site; and the recordkeeping and reporting requirements. These inspection and groundwater monitoring programs were conducted in 2019 in accordance with the state-approved SMP to ensure the EC remained in place, were properly maintained and continued to be effective.

Under the previous and current NYSDEC approved groundwater monitoring program for the Landfill, one (1) sampling event must occur in every calendar year; scheduling of the sample collection must be rotated every year between spring (every odd year) and fall (every even year). Groundwater elevation measurements are also recorded during each annual sampling campaign.

Annual groundwater monitoring for the identified Contaminants of Concern (COCs) was conducted per the rotating schedule established in the SMP, which in this compliance period was a spring sampling campaign for an odd numbered year. Further details of the 2019 groundwater monitoring program are provided below in subsection 3.1 -Groundwater Monitoring.

No soil vapor monitoring program is required for the Landfill. In May 2007, Graftech submitted a Soil Intrusion Evaluation Report to the NYSDEC, which concluded that there is no threat to neighboring residential properties, and recommended that no further action regarding vapor studies was warranted. NYSDEC and NYSDOH informed Graftech on December 28, 2008, that they had reviewed the report and agreed that no further action

was needed regarding soil vapor intrusion. No vapor intrusion monitoring program is required at the landfill.

Inspections of the Site were performed and documented weekly and quarterly in accordance with the approved SMP. Further details of the 2019 site inspection programs are provided below in subsection 3.3 – Site Inspections and Records.

3. Operations and Monitoring (O&M) Plan

3.1. Groundwater Monitoring

Overview of the Historical Annual Groundwater Monitoring Program for the Landfill

The Landfill was capped and closed in 1987. The groundwater monitoring well network at the Landfill site currently consists of 11 active on-site wells; three (3) of which are sampled for analysis annually (BW-3, BW-4, and GW-8B) and another eight (8) of which are only subject to hydraulic monitoring requirements (BW-1, BW-2, BW-5, BW-6, GW-9B, MW-1, MW-2, and MW-3). Water levels were collected from all 11 active wells in 2019. In addition, there are seven (7) inactive groundwater wells (WW-1, OW-1, OW-2, GW-7B, GW-8A, GW-9A, and GW-11B), which are included in the Site inspection program only and are not subject to chemical or hydraulic monitoring. A table listing the active and inactive monitoring wells and associated monitoring well details is presented as Table 1. Elevations of the top of riser, top of outer casing (where present), and ground surface at each of the 11 active wells and at the two inactive bedrock wells GW-7B and GW-11B were resurveyed on June 1, 2020. Table 1 also lists the full names of these wells, which appear on Site drawings and other documents. The abbreviated well names are used within this document.

The locations of the groundwater monitoring wells are shown on the map of the Landfill included as part of the Site inspection forms (refer to Appendix A) and on the groundwater contour maps provided in Appendix D.

Groundwater monitoring wells GW-10A and GW-10B are located outside the Landfill perimeter security fencing on neighboring property not owned by GrafTech. Following GrafTech's request during a state inspection of the Landfill in May 2010, NYSDEC subsequently reviewed the PSA records and confirmed that NYSDEC had installed and still owns these two (2) wells. Thus, GrafTech is not responsible to secure, maintain or sample these wells and, therefore, they were not covered under the SMP.

The history of the groundwater monitoring program is as follows.

<u>1987 - 2005</u>

Between 1987 and 2000, groundwater monitoring was conducted quarterly. Following their review of the collected groundwater quality data, the NYSDEC DER and the Division of Solid and Hazardous Materials approved a modified semiannual sampling program in a letter dated January 18, 2000, in accordance with the requirements of 6 NYCRR Section 360 to monitor the effectiveness of the solid waste landfill closure in

protecting groundwater quality. This new monitoring program was implemented from April 2000 to November 2005.

<u>2006 - 2017</u>

Following a subsequent review of the post closure groundwater monitoring program and historical groundwater quality data, the NYSDEC DER and the Division of Solid and Hazardous Materials agreed to a modified annual post-closure groundwater monitoring program, which was first implemented in the fall of 2006.

The groundwater monitoring program remained in effect from 2006 through 2017 and consisted of sampling seven (7) of the 11 active on-site groundwater wells at the Landfill (specifically, bedrock wells BW-1, BW-2, BW-3, BW-4, GW-8B, GW-9B and the overburden monitoring well MW-3). The collected representative samples were analyzed for VOCs, Total and Dissolved Iron, Potassium and Zinc, Ammonia, Nitrite, and Total Kjeldahl Nitrogen (TKN) following EPA methodologies. Standard field measurements to assess well stabilization for sampling were also collected. Water level readings were taken on all of the active monitoring wells.

2018 - Current

Based on a review of the Site's historical groundwater data through 2017 showing that concentrations remained relatively consistent, in the PRR for Reporting Year 2017, GrafTech proposed that the groundwater monitoring program be downsized from seven (7) wells to three (3) wells and that the COCs be reduced so that representative samples are tested for only VOCs, Total and Dissolved Iron, and Ammonia; thus, Potassium, Zinc, Nitrite and TKN would be dropped from the parameter list. In the SM PRR Response Letter dated February 8, 2018, NYSDEC accepted GrafTech's proposal for a reduced monitoring program. Beginning in the fall of 2018 and moving forward, only three (3) bedrock wells would require to be sampled (BW-3, GW-8B, and BW-4), and samples would only be analyzed for VOCs.

In a letter from the NYSDEC dated March 18, 2019 commenting on the 2018 PRR for the Site, the NYSDEC requested that bedrock wells with a buildup of sediment/debris be redeveloped to remove sediment buildup to the extent practicable prior to the next annual sampling and hydraulic monitoring event. As per this request, GrafTech's environmental consultant, GHD, redeveloped bedrock wells BW-1 through BW-6 on April 24 and 25, 2019. The results of the well redevelopment were detailed in "Bedrock Well Redevelopment Summary Letter, Former Republic Landfill, Niagara Falls, New York," dated May 22, 2019, prepared by GHD for GrafTech. GrafTech subsequently submitted

this letter to the NYSDEC for its files. The letter is also included herein in Appendix D, following the 2019 Annual Groundwater Monitoring Letter. Six drums of well redevelopment water were transported off-site by EnviroServe to Vexor Technology LLC in Medina, Ohio, for disposal as non-hazardous waste.

Summary of the 2019 Groundwater Sampling Campaign, Reports and Results

The annual groundwater sampling campaign was conducted by GHD on May 23, 2019. The NYSDEC was present for a portion of the sampling event. GHD's 2019 Annual Groundwater Monitoring Letter, dated July 2, 2019 (revised June 18, 2020), is included as Appendix D. Samples collected from bedrock wells BW-3, BW-4, and GW-8B were submitted to Test America for analysis of VOCs. Analytical test results were compared to the New York State Class GA Groundwater Standards and Guidance Values ("criteria") and to the results of the historical monitoring data for the Landfill for analytes of interest. The full analytical results for May 2019 are included in Appendix D and in Table 2 of this PRR. Table 2 identifies all analytes that were detected at concentrations above the criteria during the sampling event. Analytes that were detected above criteria during this monitoring event are also discussed below.

Water levels were collected from the three active overburden wells (MW-1, MW-2, and MW-3) and eight active bedrock wells (BW-1 through BW-6, GW-8B, and GW-9B) to document groundwater flow conditions in the overburden and bedrock at the time of the sampling event and to assist in evaluating the analytical results from the bedrock wells sampled. Based on the water level data collected, groundwater flow in the overburden was flowing in a general southerly direction and groundwater in the bedrock was flowing in general southerly and northwesterly directions at the time of sample collection. This is generally consistent with groundwater flow directions observed during previous monitoring events.

Table 3 presents the current and historical concentration data for BW-3, BW-4, and GW-8B for tetrachloroethylene (PCE), trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-1,2-DCE), and vinyl chloride. Although other VOCs have been detected in these wells, they have only been detected intermittently and at levels below or only slightly above criteria. The four above-listed VOCs have collectively been detected consistently and at elevated concentrations among these three bedrock wells, and as such their concentrations have been monitored through time. Figures 1 through 3 present the historical concentration data for these four VOCs, from March 2000 to the present. For BW-4, the average concentrations of the parent and duplicate samples were used for plotting.

The following is a brief discussion of the 2019 sampling results relative to historical concentrations for these four VOCs in the three bedrock wells sampled.

BW-3 (Figure 1)

- Vinyl Chloride: Vinyl chloride was detected at a concentration of 5.1 micrograms per liter (μ g/L) in May 2019, which was above the criteria of 2 μ g/L. Concentrations have increased over the last two monitoring events. Future monitoring events will aid in determining if the increased concentrations detected in September 2018 and May 2019 are part of an increasing trend, or if they constitute a fluctuation in the overall decreasing trend that has been observed since September 2008. Concentrations of vinyl chloride have either been non-detect or below 9 μ g/L since September 2001 and appear to have historically shown seasonal variations with higher concentrations historically observed during the fall sampling events.
- Cis-1,2-DCE: Cis-1,2-DCE was detected at a concentration of 1.2 μg/L in May 2019 and has not been detected at concentrations above the criteria of 5 μg/L from March 2000 to the present.
- **PCE and TCE:** PCE and TCE were non-detect in May 2019 and have been non-detect since March 2000. As such, they are not shown on Figure 1.

BW-4 (Figure 2)

- Cis-1,2-DCE: Cis-1,2- DCE was detected at a concentration of 1,000 μg/L (also 1,000 μg/L in the duplicate) in May 2019, which was above the criteria of 5 μg/L. Concentrations of cis-1,2-DCE have been above criteria since March 2000. Concentrations have been slightly increasing since September 2016 but remain below the maximum concentration observed in October 2014.
- PCE: PCE was detected at a concentration of 390 µg/L (400 µg/L in the duplicate) in May 2019, which was above the criteria of 5 µg/L. Concentrations of PCE have been above criteria since March 2000 and were relatively stable from March 2000 to May 2013. Concentrations have been higher since October 2014 relative to the previous concentrations, but appear to have stabilized overall. Future monitoring events will aid in determining if the increased concentrations detected in September 2018 and May 2019 are part of an increasing trend or a fluctuation in the apparent stable trend that has been observed since October 2014.
- TCE: TCE was detected at a concentration of 510 µg/L (540 µg/L in the duplicate) in May 2019, which was above the criteria of 5 µg/L. Concentrations of TCE have been above criteria since March 2000 and increased from March 2009 to October 2014. Concentrations have been decreasing since October 2014.

- Vinyl Chloride: Vinyl chloride was detected at a concentration of 230 µg/L (270 µg/L in the duplicate) in May 2019, which was above the criteria of 2 µg/L. Concentrations of vinyl chloride have been above criteria since March 2000 and gradually increased from March 2000 to October 2014. Concentrations have been slowly decreasing since October 2014 and appear to have stabilized overall.
- Other Analytes: 1,1-Dichloroethene, chloroform, and trans-1,2-dichloroethene were detected at concentrations slightly above criteria in BW-4 during the May 2019 monitoring event. Based on low historical concentrations and intermittent detections of these analytes, these results do not present an obvious concern.

GW-8B (Figure 3)

- Cis-1,2-DCE: Cis-1,2-DCE was detected at a concentration of 18 µg/L in May 2019, which was above the criteria of 5 µg/L. Concentrations of cis-1,2-DCE have been above criteria since March 2000, with the exception of a non-detect in September 2003, but appear to have remained stable since that time. Concentrations observed since September 2012 appear to be part of an overall decreasing trend.
- Vinyl Chloride: Vinyl chloride was detected at a concentration of 2.1 μ g/L in May 2019, which was above the criteria of 2 μ g/L. Vinyl chloride was non-detect from March 2000 to March 2005 and has been detected at concentrations slightly above criteria since September 2006, with the exception of a non-detect in March 2007 and concentrations in May 2015 and May 2017 that were slightly below criteria. Concentrations appear to have remained stable since September 2006.
- TCE: TCE was detected at a concentration of 8.0 µg/L in May 2019, which was above the criteria of 5 µg/L. Concentrations were above criteria from September 2001 to May 2017 and appeared to have been relatively stable throughout that time. Future monitoring events will aid in determining if the concentrations observed since May 2015 are part of an overall decreasing trend.
- **PCE:** PCE was non-detect in May 2019 and has been non-detect since March 2000. As such, PCE is not shown on Figure 3.

Concentrations of VOCs detected in the three (3) bedrock wells sampled were generally consistent with the concentrations detected during the May 2018 sampling event. The historical data has shown that concentrations of VOCs in well BW-3 remain low, with only vinyl chloride present at concentrations slightly above criteria. This well was hydraulically downgradient of the landfill during the May 2019 monitoring event, but has been shown to be hydraulically upgradient of the landfill during some previous monitoring events. These shifts in gradient direction may be due to seasonality, as monitoring events have alternated

between spring and fall. Water levels will be measured in bedrock wells GW-7B and GW-11B on a voluntary basis during the next monitoring event to help further understand groundwater flow direction in the bedrock in this area of the Site. Concentrations of VOCs in GW-8B, which is hydraulically downgradient of the landfill, also remain low and have either stabilized or are decreasing. As such, **no discernable negative trend in groundwater quality was observed for the Site.** Concentrations of VOCs in BW-4, which is hydraulically upgradient of the landfill based on the current and historical gauging events, remain elevated and are 2 to 3 orders of magnitude higher than VOC concentrations in the other bedrock monitoring wells. This strongly suggests an off-Site source.

Discussion of BW-4

The analytical results from the annual groundwater monitoring events have remained relatively stable since 2010, with the exception of the bedrock aquifer upgradient well BW-4, which during the October 2014 sampling event had notable increases in the four (4) VOCs of interest, namely PCE, TCE, vinyl chloride, and cis-1,2-DCE. In addition, several of these analytes have shown long-term increasing trends since March 2000. The reason for these long-term increases is not known. This well is hydraulically upgradient of the landfill, and does not represent groundwater quality at the Site.

A voluntary supplemental investigation of the entire groundwater well network at the Site conducted by Conestoga-Rovers & Associates (CRA) in January 2015 did not identify any structural abnormalities of the wells in the network that could account for the increases in VOC concentrations in BW-4. A copy of CRA's well inspection report was submitted as part of the 2014 PRR. BW-4 was redeveloped in fall 2016, the results of which were submitted as part of the 2016 PRR. No further investigations or developments of the monitoring wells have been conducted at the Site since 2016, other than the redevelopment of bedrock wells BW-1 through BW-6 in April 2019 due to buildup of sediment/debris (refer to Appendix D).

During the following sampling events, the VOC concentrations in well BW-4 all decreased from the 2014 levels, although they remained elevated in comparison to the analytical results from the prior years. The concentrations of these four (4) VOCs at this upgradient well have continued to have a downward trend since 2014 and, by the May 2017 sampling event, all had generally returned to pre-2014 levels or similar except for PCE. However, the concentrations of these VOCs still remain well above criteria, consistent with prior years.

It is noteworthy that the VOC exceedances of the applicable state criteria at bedrock monitoring well BW-4, which is upgradient of the landfilled area, continue to be at much

higher concentrations (by 2 to 3 orders of magnitude) than the VOC levels at the other bedrock aquifer monitoring wells (refer to Table 3).

Furthermore, the significant increases in VOC concentrations detected at the upgradient bedrock aquifer well BW-4 during the 2014 sampling event were not observed in the other bedrock monitoring wells. Although not currently in the sampling plan, historically these VOCs have not been detected in the downgradient bedrock wells BW-2 and GW-9B. This indicates that contaminant migration has not occurred.

It is also significant that the more notable exceedances of the applicable VOC criteria are in the bedrock groundwater monitoring wells located along the northern border of the Site (BW-4 and GW-8B), which are adjacent to the Niagara Mohawk right-of-way (ROW). BW-4 is hydraulically upgradient of the landfill, and GW-8B is hydraulically downgradient of the landfill (refer to the bedrock potentiometric surface map included in Appendix D). Although GW-8B is hydraulically downgradient of the landfill, the proximity of upgradient well BW-4, with VOC impacts 2 to 3 orders of magnitude greater than in the other bedrock wells, strongly suggests that the VOC concentrations in both of these wells are the result of an off-site source. Nevertheless, as concentrations of VOCs in GW-8B are low and have either stabilized or are decreasing, concentrations in this well do not represent a negative trend in groundwater quality for the Site.

3.2. Soil Vapor Monitoring

No soil vapor monitoring was required or performed during the report year.

3.3. Site Inspections and Records

NYSDEC did not conduct a state inspection of the Landfill in 2019.

Based on a deficiency in the groundwater well inspection program that was identified by NYSDEC during its last Site inspection in May 2013, GrafTech increased the frequency of its inspections of the monitoring wells on a temporary basis between August 2013 through December 2013, by including them in the scheduled weekly inspections. GrafTech also proposed to NYSDEC a formal modification to the Site inspection program to consist of:

- weekly general and security inspections at the Site; and
- quarterly monitoring well inspections (increased from annually).

NYSDEC subsequently approved this proposal. GrafTech implemented the improved inspection program starting in January 2014.

GrafTech incorporated the modified Site inspection protocol and inspection forms into the proposed SMP, which was submitted to the state for approval in December 2013, and subsequently approved by NYSDEC in November 2016. There have been no other deficiencies identified in the approved IC/EC at this Site nor any other recommended improvements to the SMP during the prior or current certification periods.

Routine inspections continued to be performed at the Site in 2019 by the current contracted GrafTech Designated Representative, NMCC, in accordance with the modified protocol specified in the SMP. Further details are provided below.

Routine inspections of the facilities and established controls at the Landfill Site were conducted and the results documented by NMCC (refer to the standard forms for documenting the weekly and quarterly inspections in Appendix A). NMCC was responsible for scheduling and managing the routine maintenance, repairs or any other actions needed to correct any deficiencies identified during these periodic inspections, under the supervision of the GrafTech Representative, currently Julianne Snyder.

Details are provided below of the modified weekly and the quarterly inspection programs, first initiated in 2014.

3.3.1. General Landfill and Site Security Inspections and Records - Weekly

The following areas were inspected once per week and the inspection results documented on the standard inspection form.

- Fence (general condition, evidence of security breaches).
- Gate (general condition, lock, evidence of security breaches).
- Cap (general condition, signs of erosion, adequate vegetation).
- Surrounding area (general condition).

Note: if any evidence of a Site security breach was found during the above inspections, the groundwater well installations were also inspected for potential tampering or damage, and those inspections were documented on the standard quarterly monitoring well inspection form.

Any noted deficiency was identified on the inspection record and the corrective action was documented on the same or a subsequent inspection record when completed. Any fence areas that were found to be damaged were also duly noted on the inspection map. 3.3.2. Groundwater Monitoring Well Inspections and Records - Quarterly

The GrafTech-Designated Representative, currently NMCC, inspected all the active on-site GrafTech-owned groundwater monitoring well installations quarterly to ensure they were kept in good condition and were properly secured with a lock. The inspector recorded his/her name, the date and time of the inspection, the inspection results and any recommended corrective actions on the standard report form.

- Closed locks on the well casing caps.
- Condition of outer well casing.
- Condition of concrete seals.

Documentation of any needed corrective actions were recorded on the same or a subsequent inspection record when completed.

3.4. Routine Maintenance and Repairs

The following maintenance and repair activities were conducted per the SMP:

- Repairs were made as needed by outside contractor(s) to timely correct any deficiencies discovered during the routine weekly Site security and quarterly monitoring well inspections. These included repairs to the perimeter security fencing and the concrete pads at the well installations, as needed.
- Mowing of the vegetative cover on the Landfill cap and the perimeter lawn of the Landfill, and other general care of the Site were scheduled, as needed.
- General clean-up of any debris found along the fence line and inside the Site were performed, as needed, to keep the Landfill and surrounding area clear of any objectionable or unsightly materials.
- 3.5. Record Retention

All inspection records are being retained for a minimum period of three (3) years. Completed inspection forms are located in Appendices F (weekly inspections) and G (quarterly inspections). Completed inspection forms will be made available for review during scheduled NYSDEC Site inspections, or copies will be made available to the state upon reasonable written request.

4. Excavation Plan Status

No excavations were performed during 2019.

5. Property Transfer Status

No property transfer activities were completed in 2019.

6. Conclusions and Recommendations

The GrafTech Landfill is a Class 4 Inactive Hazardous Waste Site, with no required Remedial Program or remedial objectives. Site inspections, monitoring and maintenance activities, and reporting requirements were implemented in conformance with the SMP for the Site during the certification period.

The analytical results from the 2019 groundwater monitoring campaign were consistent with the historical data. The groundwater monitoring program for the past 30+ years since closure of the Landfill has identified no negative trends in the groundwater quality associated with the landfill. VOC concentrations in well BW-4, which is upgradient of the landfill, continue to be 2 to 3 orders of magnitude higher than VOC concentrations detected in the other bedrock wells at the Site. This strongly suggests an off-site source.

The engineering controls and associated institutional controls are still in place, are performing properly, remain effective, and continue to be protective of public health and the environment. Based on GrafTech's review, there is no indication that changes to the IC/EC are needed. A copy of the completed and signed IC/EC Certification form is attached in Appendix E.

Due to the following facts:

- 1) this Landfill is a Class 4 Inactive Hazardous Waste Site;
- 2) there is no required Remedial Program or remedial objectives; and

3) the monitoring program for the past 32 years since closure of the Site has identified no negative trends in the groundwater quality at downgradient wells;

GrafTech recommends that compliance be maintained with the approved SMP during 2020. Once the fall 2020 groundwater monitoring campaign has been completed, and the data is available from the laboratory and has been validated by GHD, an assessment will be made at that time to determine whether modifications to the established Site management programs are recommended. GrafTech will communicate the results of its assessment to NYSDEC with its recommendations, if any, for proposed changes to the Site Management Plan for this Landfill.

Site Monitoring Well Details

Table 1Site Monitoring Well Details

Well	Status	Well Type	Well Diameter (inches)	Installed Depth (ft. bgs)	Ground Elevation (ft. AMSL)	Top of Riser Elevation (ft. AMSL)	Top of Casing Elevation (ft. AMSL)	Monitored Interval (ft. bgs)	Full Name of Well
BW-1	Active	Bedrock/Open Hole	4/3	34.5	609.05	608.55	611.66*	19.5 to 34.5	BW1-86
BW-2	Active	Bedrock/Open Hole	4/3	35.0	605.37	606.58	608.40*	19.0 to 35.0	BW2-86
BW-3	Active	Bedrock/Open Hole	4/3	22.4	602.00	603.46	605.02*	7.4 to 22.4	BW3-86
BW-4	Active	Bedrock/Open Hole	4/3	25.0	604.33	605.47	607.13*	11.4 to 25.0	BW4-86
BW-5	Active	Bedrock/Open Hole	4/3	24.9	599.60	600.36	603.27*	10.0 to 24.9	BW5-86
BW-6	Active	Bedrock/Open Hole	4/3	32.9	607.59	607.08	611.11*	17.7 to 32.9	BW6-86
GW-7B	Inactive	Bedrock/Open Hole	3	29.7	599.80	602.49	603.81*	19.4 to 29.7	GW7B-93
GW-8A	Inactive	Overburden	3	17.5	601.50	NA	604.04*	12.4 to 17.4	GW8A-93
GW-8B	Active	Bedrock/Open Hole	3	27.5	601.38	603.30*	603.97	20.7 to 27.5	GW8B-93
GW-9A	Inactive	Overburden	3	20.3	601.50	NA	603.29*	15.3 to 20.3	GW9A-93
GW-9B	Active	Bedrock/Open Hole	3	29.5	600.55	602.74*	602.99	24.8 to 29.5	GW9B-93
GW-11B	Inactive	Bedrock/Open Hole	3	25.4	599.07	601.40*	601.66	16.0 to 25.4	GW11B-93
MW-1	Active	Overburden	4	18.3	608.55	608.97	611.13*	16.8 to 18.3	MW1-78
MW-2	Active	Overburden	4	20.1	607.04	611.62*	NP	17.5 to 18.0	MW2-78
MW-3	Active	Overburden	2	13.4	599.27	601.80*	602.18	8.0 to 13.0	MW3-79
WW-1	Inactive	Overburden	2	NA	NA	NA	NA	NA	WW1-86
OW-1	Inactive	Overburden	2	NA	NA	NA	NA	NA	OW1-88
OW-2	Inactive	Overburden	2	NA	NA	NA	NA	NA	OW2-88

* = Reference elevation for determining groundwater elevation

NA = Not available

NP = Not present

4/3 =Casing diameter/corehole diameter

ft. bgs = Feet below ground surface

ft. AMSL = Feet above mean sea level

Analytical Results Summary – May 2019

Page 1 of 2

Table 2

Analytical Results Summary May 2019

Sample Location: Sample ID: Sample Date: Parameters		NYSDEC Class GA Criteria	BW-3 WG-11194450-052319-DT-002 5/23/2019	BW-4 WG-11194450-052319-DT-003 5/23/2019	BW-4 WG-11194450-052319-DT-004 5/23/2019 (Duplicate)	GW-8B WG-11194450-052319-DT-001 5/23/2019
Volatile Organic Compounds						
1,1,1-Trichloroethane	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	µg/L	5	1.0 U	20 U	3.3	1.0 U
1,1,2-Trichloroethane	µg/L	1	1.0 U	20 U	1.0 U	1.0 U
1,1-Dichloroethane	µg/L	5	0.50 J	20 U	1.0 U	1.0 U
1,1-Dichloroethene	µg/L	5	1.0 U	6.3 J	4.3	0.36 J
1,2-Dichloroethane	µg/L	0.6	1.0 U	20 U	1.0 U	1.0 U
1,2-Dichloropropane	µg/L	1	1.0 UJ	20 U	1.0 U	1.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	µg/L	50	10 U	200 U	10 U	10 U
2-Hexanone	µg/L	50	5.0 U	100 U	5.0 U	5.0 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	µg/L		5.0 U	100 U	5.0 U	5.0 U
Acetone	µg/L	50	3.1 J	200 U	3.2 J	10 U
Benzene	µg/L	1	1.0 U	20 U	0.42 J	1.0 U
Bromodichloromethane	μg/L	50	1.0 U	20 U	1.0 U	1.0 U
Bromoform	μg/L	50	1.0 U	20 U	1.0 U	1.0 U
Bromomethane (Methyl bromide)	μg/L	5	1.0 U	20 U	1.0 U	1.0 U
Carbon disulfide	µg/L	60	1.0 U	20 U	1.0 U	1.0 U
Carbon tetrachloride	μg/L	5	1.0 U	20 U	1.0 U	1.0 U
Chlorobenzene	μg/L	5	1.0 U	20 U	1.0 U	1.0 U
Chloroethane	μg/L	5	1.0 U	20 U	1.0 U	1.0 U
Chloroform (Trichloromethane)	μg/L	7	1.0 U	8.0 J	5.5	1.0 U
Chloromethane (Methyl chloride)	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	µg/L	5	1.2	1000	1000	18
cis-1,3-Dichloropropene	μg/L	0.4	1.0 U	20 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	50	1.0 U	20 U	1.0 U	1.0 U
Ethylbenzene	μg/L	5	1.0 U	20 U	1.0 U	1.0 U
Methylene chloride	µg/L	5	0.62 J	20 U	1.0 U	1.0 U
Styrene	μg/L	5	1.0 U	20 U	1.0 U	1.0 U
Tetrachloroethene	µg/L	5	1.0 U	390	400	1.0 U
Toluene	μg/L	5	1.0 U	20 U	0.91 J	1.0 U
trans-1,2-Dichloroethene	µg/L	5	1.0 U	20 UJ	6.1 J	1.0 U

Page 2 of 2

Table 2

Analytical Results Summary May 2019

	Sample Location: Sample ID: Sample Date:	NVADEO	BW-3 WG-11194450-052319-DT-002 5/23/2019	BW-4 WG-11194450-052319-DT-003 5/23/2019	BW-4 WG-11194450-052319-DT-004 5/23/2019	GW-8B WG-11194450-052319-DT-001 5/23/2019
Parameters	Units	NYSDEC Class GA Criteria			(Duplicate)	
Volatile Organic Compounds						
trans-1,3-Dichloropropene	μg/L	0.4	1.0 U	20 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	1.0 U	510	540	8.0
Vinyl chloride	μg/L	2	5.1	230	270	2.1
Xylenes (total)	µg/L	5	2.0 U	40 U	1.1 J	2.0 U

Notes:

J - Estimated concentration

Class GA Criteria - New York State Ambient Water Quality Standards and Guidance Values ("criteria"), June 1998

-Boxed cell denotes exceedance of water quality criteria

U - Not detected at the associated reporting limit

UJ - Not detected; associated reporting limit is estimated

5.1

Summary of Bedrock Well Analytical Results: PCE, TCE, cis-1,2-DCE, and Vinyl Chloride

Summary of Bedrock Well Analytical Results: PCE, TCE, cis-1,2-DCE, and Vinyl Chloride March 2000 - May 2019

Well Number	Parameter	Groundwater Criteria (ppb)	March 2000 (ppb)	Sept. 2001 (ppb)	March 2002 (ppb)	Sept. 2002 (ppb)	March 2003 (ppb)	Sept. 2003 (ppb)	March/April 2004 (ppb)	Sept. 2004 (ppb)	March 2005 (ppb)	Sept. 2006 (ppb)	March 2007 (ppb)
	Cis-1,2-DCE	5	10U	5U	5U	5U	5U	5U	5U	5U	5U	1.8	5U
BW-3	PCE	5	10U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U
BVV-3	TCE	5	10U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U
	Vinyl Chloride	2	15	5U	5U	5U	5U	5U	5U	6.1	5U	5.7	5.0U
	Cis-1,2-DCE	5	14	23 (22)	26	27	22	5U	21	20	22	23	20
GW-8B	PCE	5	10U	5U (5U)	5U	5U	5U	5U	5U	5U	5U	5U	5U
GW-0D	TCE	5	10U	7.5 (7.2)	10	10	13	12	8.3	13	6.5	6.9	9.8
	Vinyl Chloride	2	10U	5U (5U)	5U	5U	5U	5U	5U	5U	5U	4.6J	5.0U
	Cis-1,2-DCE	5	180	270	420	300	230 (240)	500	660	370 (390)	540 (530)	620 (620)	710 (640)
BW-4	PCE	5	135	240	64	230	29 (30)	100	110	55 (56)	64 (65)	84 (86)	120 (110)
Dvv-4	TCE	5	178	410	230	420	170 (170)	330	230	290 (290)	180 (180)	290 (290)	310 (280)
	Vinyl Chloride	2	115	74	92	59	41 (41)	100	180	75 (79)	180 (180)	140 (140)	170 (150)

Shaded cells indicate the concentrations exceeds the New York State Class GA Groundwater Criteria

Parentheses indicate the results of the duplicate sample

* - Concentration represents total 1,2-DCE

** - Concentration represents total DCE

J - Concentration is an estimated value

U - Not present at or above the associated value

Summary of Bedrock Well Analytical Results: PCE, TCE, cis-1,2-DCE, and Vinyl Chloride March 2000 - May 2019

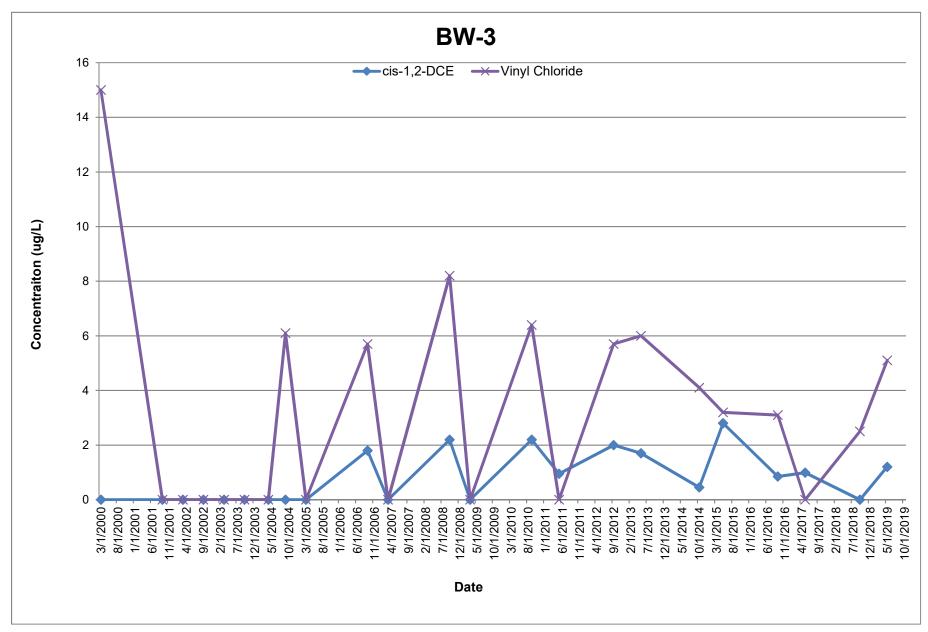
Well Number	Parameter	Groundwater Criteria (ppb)	Sept. 2008 (ppb)	March 2009 (ppb)	Sept. 2010 (ppb)	May 2011 (ppb)	Sept. 2012 (ppb)	May 2013 (ppb)	Oct. 2014 (ppb)	May 2015 (ppb)	Sept. 2016 (ppb)	May 2017 (ppb)	Sept. 2018 (ppb)	May 2019 (ppb)
	Cis-1,2-DCE	5	2.2	10U*	2.2J*	0.95J**	2	1.7	0.45	2.8	0.85	0.99	1.0U	1.2
BW-3	PCE	5	5U	5U	5U	0.42U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U
DVV-3	TCE	5	5U	5U	5U	0.30U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U
	Vinyl Chloride	2	8.2	5.0U	6.4	0.3U	5.7	6.0	4.1	3.2	3.1	1.0U	2.5	5.1
	Cis-1,2-DCE	5	23	20*	20*	19**	23	20	22	17	24	14 (14)	21.0	18
GW-8B	PCE	5	5U	5U	5U	0.42U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U
GW-0D	TCE	5	5.7	7.4	8.8	8.2	7.6	7.2	12	12	9.7	9.2 (9.2)	4.7	8.0
	Vinyl Chloride	2	4.7J	3.5J	3.5J	2.9J	3.5	3.8	2.7	1.6	3.1	1.7	3.5	2.1
	Cis-1,2-DCE	5	580 (540)	720*	740*	1000**	1700	1300	2200 (1700)	1300	930J	950	1000 (940)	1000 (1000)
BW-4	PCE	5	86 (79)	140J	97	92	120	92	390 (330)	300	240	250	390 (410)	390 (400)
Dvv-4	TCE	5	320 (300)	220J	300	390	640	510	1300 (980)	790	660J	600	650 (640)	510 (540)
	Vinyl Chloride	2	100 (100)	160J	170	190	290	240	350 (270)	270	180	240	150 (180)	230 (270)

Shaded cells indicate the concentrations exceeds the New York State Class GA Groundwater Criteria

Parentheses indicate the results of the duplicate sample

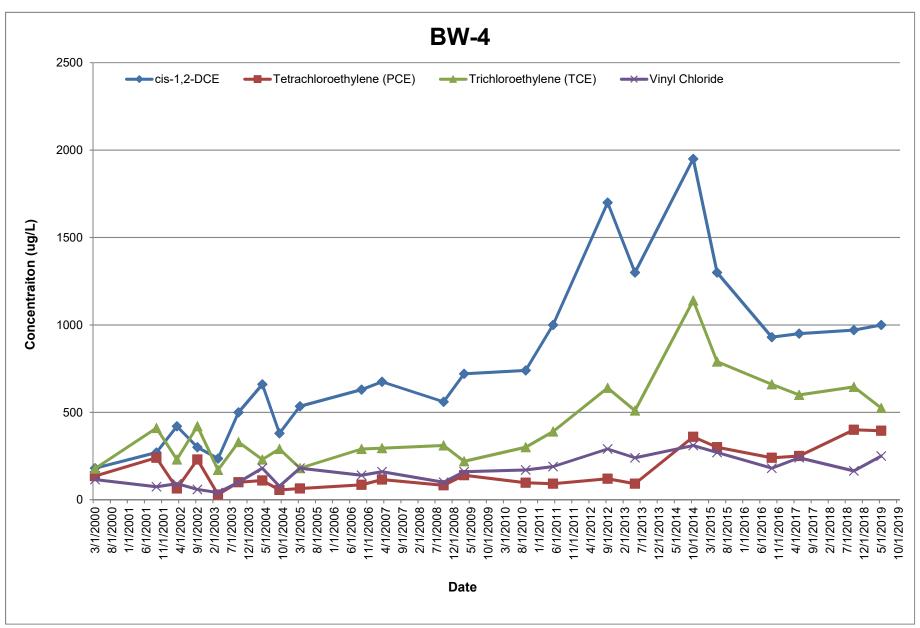
* - Concentration represents total 1,2-DCE

** - Concentration represents total DCE


J - Concentration is an estimated value

U - Not present at or above the associated value

Figures


Figure 1 Historical Data Graph Well BW-3

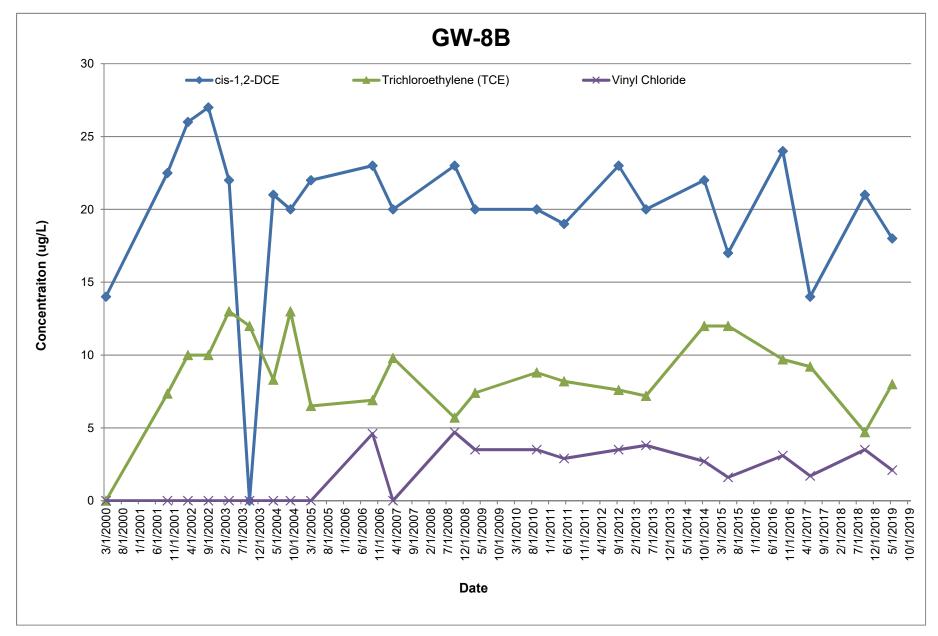

Figure 2 Historical Data Graph Well BW-4

Figure 3 Historical Data Graph Well GW-8B

GrafTech Site

Appendix A

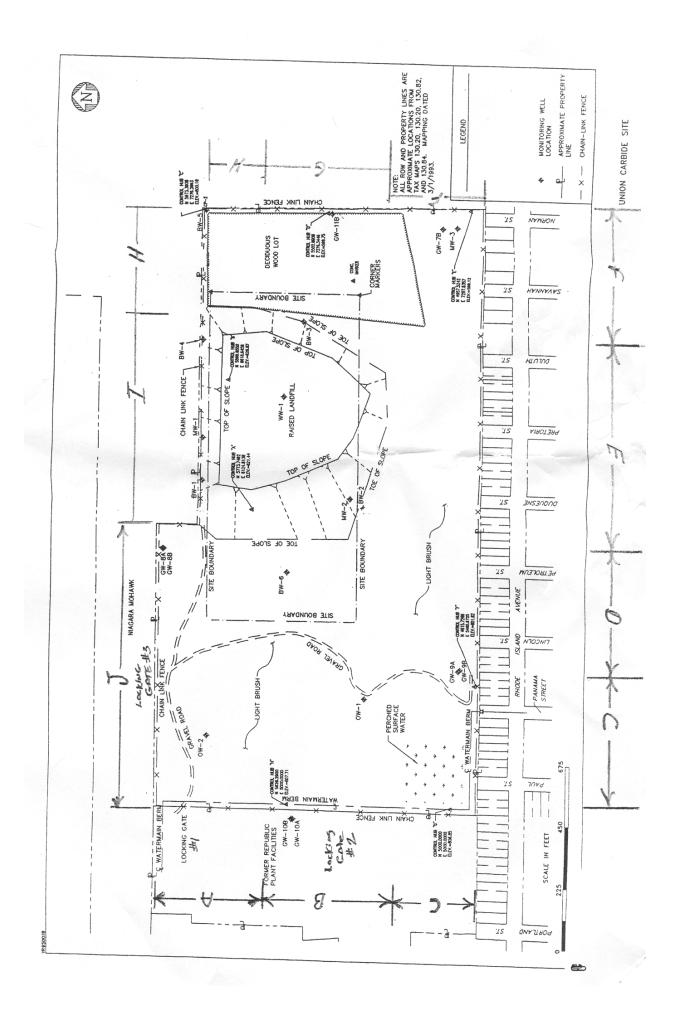
Weekly General Landfill and Site Security Inspection Report Form Quarterly Groundwater Well Inspection Report Form

WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

DATE	TIME	INSPECTOR NAME			

FENCE AREA	ОК	DAMAGED	REPAIR DATE	REMARKS
Α				
В				
С				
D				
E				
F				
G				
н				
I				
J				

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				
2				
3				


SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

<u>CAP COMMENTS</u>: (Check for erosion and adequate vegetation)

<u>SURROUNDING AREA COMMENTS:</u> (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_____

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

QUARTERLY GROUNDWATER WELL INSPECTION REPORT

WELL I.D. NUMBER	WELL I.D. TAG INTACT <u>(Y</u> ES/ <u>N</u> O)	LOCK CONDITION	OUTER CASING CONDITION	CONCRETE SEAL CONDITION	COMMENTS
MW1-78					
MW2-78					
MW3-79					
BW1-86					
BW2-86					
BW3-86					
BW4-86					
BW5-86					
BW6-86					
WW1-86					
OW1-88					
OW2-88					

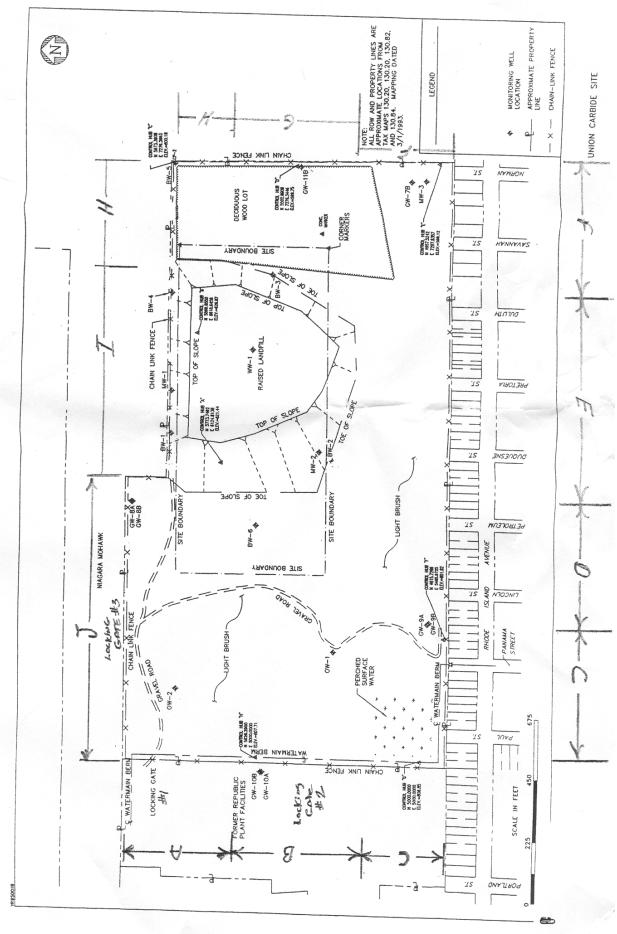
GRAFTECH WELLS

ON-SITE WELLS INSTALLED BY NYSDEC

(Installed Sept./Oct. 93)

WELL I.D. NUMBER	WELL I.D. TAG INTACT (YES/NO)	LOCK CONDITION	OUTER CASING CONDITION	CONCRETE SEAL CONDITION	COMMENTS
GW7B-93					
GW8A-93					
GW8B-93					
GW9A-93					
GW9B-93					
GW11B-93					

Note:


MW wells are installed in the overburden.

BW wells are bedrock wells.

GWA wells are installed in the overburden.

GWB wells are bedrock wells.

OW and WW wells are overburden wells installed with the screen above the till layer.

Appendix B

Letter from NYSDEC, DER - Region 9, to GrafTech, dated February 8, 2018 (SM PRR Response Letter)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7220 I F: (716) 851-7226 www.dec.ny.gov

February 8, 2018

GrafTech International Holdings, Inc. Juanita M. Bursley 982 Keynote Circle Brooklyn Heights, OH 44131

Dear Ms. Bursley:

Site Management (SM) Periodic Review Report (PRR) Response Letter GrafTech International Holdings Inc., Niagara Niagara County, Site No.: **932035**

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for the period of December 31, 2016 to December 31, 2017.

The Department hereby accepts the PRR and associated Certifications. We have also considered GrafTech's proposals to reduce the monitoring program, drop specific parameters and to only analyze for VOC's. After a review of historical data, trend plots and parameter applicability, GrafTech's proposals are approved. Therefore, going forward, the monitoring program will be reduced from seven to three wells. Wells MW-3, BW-1, GW9B and BW-2 will be eliminated. Wells BW-3, GW-8B and BW-4 will be kept. Parameters of Potassium, Zinc, TKN, Total Iron, Dissolved Iron and Ammonia will be eliminated. VOC's will be kept and the only analysis to run.

The frequency of Periodic Reviews for this site is 1 year, your next PRR is due on January 30, 2019. You will receive a reminder letter and updated certification form approximately 75-days prior to the due date. Regardless of receipt or not, of the reminder notice, the next PRR including the signed certification form, is still due on the date specified above.

If you have any questions, please contact me at 716-851-7220 or e-mail: brian.sadowski@dec.ny.gov.

Sincerely,

Brian Sadowski Project Manager

BS/tm

ec: Mary McIntosh, RSG, Buffalo Glenn May, EGII, CPG, Buffalo

Department of Environmental Conservation

Appendix C

Letter from NYSDEC, DER - Region 9, to GrafTech, dated October 29, 2018 (Site Management Plan)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

October 29, 2018

GrafTech International Holdings, Inc. Juanita M. Bursley 982 Keynote Circle Brooklyn Heights, OH 44131

Dear Ms. Bursley:

Site Management Plan GrafTech International Holdings Inc. Niagara (T), Niagara County DER Site No.: 932035

The Department completed its review of GrafTech's Site Management Plan submitted on October 23, 2018. This correspondence provides formal transmittal that the Site Management Plan is accepted.

Sincerely,	
Brian	Digitally signed by Brian Sadowski DN: cn=Brian Sadowski, o=DEC, ou=DER.
Sadowski	email=brian.sadowski@dec.ny.go v, c=US Date: 2018.10.29 13:32:35 -04'00'
Project M	anager

ec: Stan Radon, NYSDEC, Buffalo Glenn May, NYSDEC, Buffalo

Department of Environmental Conservation

Appendix D

GHD Letter to GrafTech, Reference No. 11194450,2019 Annual Groundwater Monitoring Results Summary Letter

GHD Letter to GrafTech, Reference No. 11194450-01, Bedrock Well Redevelopment Summary Letter

July 2, 2019 – Revised June 18, 2020

Reference No. 11194450

Ms. Julianne Snyder HSEP Manager GrafTech International Holdings Inc. 982 Keynote Circle Brooklyn Heights, OH 44131

Dear Ms. Snyder:

Re: 2019 Annual Groundwater Monitoring Results Summary Letter Former Republic Landfill, Niagara Falls, New York

GHD is presenting this 2019 Annual Groundwater Monitoring Results Summary Letter documenting the results of the annual groundwater monitoring event completed on May 23, 2019 at the Former Republic Landfill in Niagara Falls, New York (New York State Department of Environmental Conservation [NYSDEC] Site No. 932035). The monitoring event was conducted in accordance with the Field Sampling Plan (FSP) Post-Closure Monitoring Program for UCAR Carbon Solid Waste Management Unit (SWMU) No. 32NO3, prepared by Conestoga-Rovers & Associates (CRA), dated July 2000. This letter presents a summary of the completed Scope of Work and results of the annual monitoring event.

1. Scope of Work

The Scope of Work for the monitoring event consisted of the following tasks:

- Measurement of groundwater depths (hydraulic monitoring) at eight bedrock wells (BW-1 through BW-6, GW-8B, and GW-9B) and three overburden wells (MW-1 through MW-3).
- Purging and collection of groundwater samples and quality assurance samples from bedrock wells BW-3, BW-4, and GW-8B for analysis of Target Compound List (TCL) volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method SW-846 8260C.
- Preparation of a groundwater monitoring letter report documenting the monitoring activities.

The results of the monitoring event are summarized below. The field notes for the monitoring event are located in Attachment A.

2. Hydraulic Monitoring

Prior to sampling, GHD measured static water levels and well depths in bedrock wells BW-1 through BW-6, GW-8B, and GW-9B; and in overburden wells MW-1 through MW-3 using an electronic water level tape. Measurements were collected from the top of the well's reference point (either top of casing or top of riser, depending on the well) and were completed to the nearest 0.01 foot. Table 2.1 below presents the

collected depth to water measurements and calculated groundwater elevations. Table 2.2 below presents the sounded well depths. Wells BW-1 through BW-6 were last redeveloped on April 24 and 25, 2019. The sounded well depths following the April 2019 redevelopment as well as the reported installed well depths are shown for comparison.

Table 2.1 Water Levels and Groundwater Elevations - May 23, 2019										
Well ID	Well Type	Reference Point Elevation (ft. AMSL)	Depth to Water (ft. BTOR _f)	Groundwater Elevation (ft. AMSL)						
MW-1	Overburden	611.13 (TOC)	7.54	603.59						
MW-2	Overburden	611.62 (TOR)	11.62	600.00						
MW-3	Overburden	601.80 (TOR)	4.03	597.77						
BW-1	Bedrock	611.66 (TOC)	13.22	598.44						
BW-2	Bedrock	608.40 (TOC)	7.65	600.75						
BW-3	Bedrock	605.02 (TOC)	4.41	600.61						
BW-4	Bedrock	607.13 (TOC)	5.40	601.73						
BW-5	Bedrock	603.27 (TOC)	1.23	602.04						
BW-6	Bedrock	611.11 (TOC)	9.18	601.93						
GW-8B	Bedrock	603.30 (TOR)	6.96	596.34						
GW-9B	Bedrock	602.74 (TOR)	9.97	592.77						
Notes:										
Ft. AMSL	- Feet above me	ean sea level								
Ft. BTOR _f	- Feet below top	of reference point								
TOC	- Top of casing									
TOR	- Top of riser									

Well ID	Well Type	Sounded Depth (ft. BTOR _f)	Sounded Depth after April 2019 Redevelopment (ft. BTOR _f)	Installed Depth (ft. BTOC)
MW-1	Overburden	21.13	NA	21.10
MW-2	Overburden	24.68	NA	21.10
MW-3	Overburden	15.32	NA	14.40
BW-1	Bedrock	28.98	29.00	35.90
BW-2	Bedrock	25.78	27.63	37.10
BW-3	Bedrock	23.60	25.00	22.70
BW-4	Bedrock	25.57	27.10	27.50
BW-5	Bedrock	25.68	28.75	28.20
BW-6	Bedrock	25.83	30.40	36.50
GW-8B	Bedrock	29.20	NA	29.50
GW-9B	Bedrock	31.98	NA	31.70
Notes:				
Ft. BTOR _f	- Feet below top o	f reference point		
Ft. BTOC	- Feet below top o	f casing		
NA	- Not applicable			

Table 2.2 Sounded Well Depths - May 23, 2019

Figures 2.1 and 2.2 present potentiometric surface maps for the observed groundwater elevations in the overburden and bedrock, respectively. Based on the maps, groundwater was flowing in a general southerly direction in the overburden and, in general, southwesterly and northwesterly directions in the bedrock during the monitoring event. This is generally consistent with groundwater flow directions observed during previous monitoring events.

3. Groundwater Quality Monitoring

3.1 Sample Collection

Following measurement of static water levels, GHD purged and sampled wells BW-3, BW-4, and GW-8B using a Masterflex[®] peristaltic pump with ¼-inch diameter Teflon tubing following USEPA low-flow sampling procedures. During the purging activities, field parameters (temperature, pH, specific conductivity, dissolved oxygen, oxidation-reduction potential, and turbidity) were measured in approximate 5-minute intervals. Attachment B presents the field parameters collected during the well purging. In accordance with the FSP, purge waters were discharged to the ground surface following the sampling event.

Following completion of purging, GHD collected groundwater samples from BW-3, BW-4, and GW-8B for analysis of TCL VOCs via USEPA Method SW-846 8260C. One field duplicate sample was collected from

BW-4. A trip blank prepared by the laboratory accompanied the sample bottles at all times and was also analyzed for VOCs. The samples were submitted on ice under standard chain of custody procedures to TestAmerica Laboratories, Inc. in Amherst, New York, a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory.

3.2 Analytical Results

The laboratory analytical data report for the groundwater samples submitted for analysis is included as Attachment C. Table 3.1 presents the analytical results. According to the laboratory report, the following analytes were detected at concentrations above the NYSDEC Class GA Standards and Guidance Values ("criteria"):

- BW-3: Vinyl chloride (VC)
- BW-4: Trans-1,2-dichloroethylene (duplicate only), 1,1-dichloroethylene, chloroform, cis-1,2-dichloroethylene (DCE), tetrachloroethylene (PCE), trichloroethylene (TCE), and VC
- GW-8B: cis-1,2-DCE,TCE, and VC

A GHD chemist completed a reduced data validation on the laboratory analytical data package from the sampling event. The chemist concluded that the laboratory data are acceptable without qualification except for the concentrations of 1,1-dichloroethane, 1,2-dichloropropane, and methylene chloride in BW-3; and the concentrations of trans-1,2-dichloroethylene in BW-4 and its duplicate, which were qualified as estimated. The data validation memo is included as Attachment D.

3.3 Trends Analysis

Table 3.2 presents the current and historical concentration data for BW-3, BW-4, and GW-8B for PCE, TCE, cis-1,2-DCE, and VC. Although other VOCs have been detected in these wells, they have only been detected intermittently and at levels below or only slightly above criteria. The four above-listed VOCs have collectively been detected consistently and at elevated concentrations in these three bedrock wells, and, as such, their concentrations have been monitored through time. Figures 3.1 through 3.3 present the historical concentration data for these four VOCs, from March 2000 to the present. The following is a brief discussion of the May 2019 sampling results relative to historical concentrations for these four VOCs in the three bedrock wells sampled.

BW-3 (Figure 3.1)

Vinyl chloride was detected at a concentration of 5.1 micrograms per liter (µg/L) in May 2019, which was above the criteria of 2 µg/L. Concentrations have increased over the last two monitoring events. Future monitoring events will aid in determining if the increased concentrations detected in September 2018 and May 2019 are part of an increasing trend, or if they constitute a fluctuation in the overall decreasing trend that has been observed since September 2008. Concentrations of VC have either been non-detect or below 9 µg/L since September 2001 and appear to have historically shown seasonal variations with higher concentrations historically observed during the fall sampling events.

- cis-1,2-DCE was detected at a concentration of 1.2 μg/L in May 2019 and has not been detected at concentrations at or above the criteria of 5 μg/L from March 2000 to the present.
- PCE and TCE were non-detect in May 2019 and have been non-detect since March 2000. As such, they are not shown on Figure 3.1.

BW-4 (Figure 3.2)

- cis-1,2-DCE was detected at a concentration of 1,000 µg/L (also 1,000 µg/L in the duplicate) in May 2019, which was above the criteria of 5 µg/L. Concentrations of cis-1,2-DCE have been above criteria since March 2000. Concentrations have been slightly increasing since September 2016 but remain below the maximum concentration observed in October 2014.
- PCE was detected at a concentration of 390 µg/L (400 µg/L in the duplicate) in May 2019, which was above the criteria of 5 µg/L. Concentrations of PCE have been above criteria since March 2000 and were relatively stable from March 2000 to May 2013. Concentrations have been higher since October 2014 relative to the previous concentrations, but appear to have stabilized overall. Future monitoring events will aid in determining if the increased concentrations detected in September 2018 and May 2019 are part of an increasing trend or a fluctuation in the apparent stable trend that has been observed since October 2014.
- TCE was detected at a concentration of 510 µg/L (540 µg/L in the duplicate) in May 2019, which was above the criteria of 5 µg/L. Concentrations of TCE have been above criteria since March 2000 and increased from March 2009 to October 2014. Concentrations have been decreasing since October 2014.
- VC was detected at a concentration of 230 µg/L (270 µg/Lin the duplicate) in May 2019, which was above the criteria of 2 µg/L. Concentrations of VC have been above criteria since March 2000 and gradually increased from March 2000 to October 2014. Concentrations have been slowly decreasing since October 2014 and appear to have stabilized overall.
- Other Analytes: Trans-1,2-dichloroethene, 1,1-dichloroethylene, and chloroform were detected at concentrations slightly above criteria in BW-4 during the May 2019 monitoring event. Based on low historical concentrations and intermittent detections of these analytes, these results do not present an obvious concern.

GW-8B (Figure 3.3)

- cis-1,2-DCE was detected at a concentration of 18 µg/L in May 2019, which was above the criteria of 5 µg/L. Concentrations of cis-1,2-DCE have been above criteria since March 2000, with the exception of a non-detect in September 2003, but appear to have remained stable since that time. Concentrations observed since September 2012 appear to be part of an overall decreasing trend.
- VC was detected at a concentration of 2.1 μg/L in May 2019, which was above the criteria of 2 μg/L.
 VC was non-detect from March 2000 to March 2005 and has been detected at concentrations slightly above criteria since September 2006, with the exception of a non-detect in March 2007 and

concentrations in May 2015 and May 2017 that were slightly below criteria. Concentrations appear to have remained stable since September 2006.

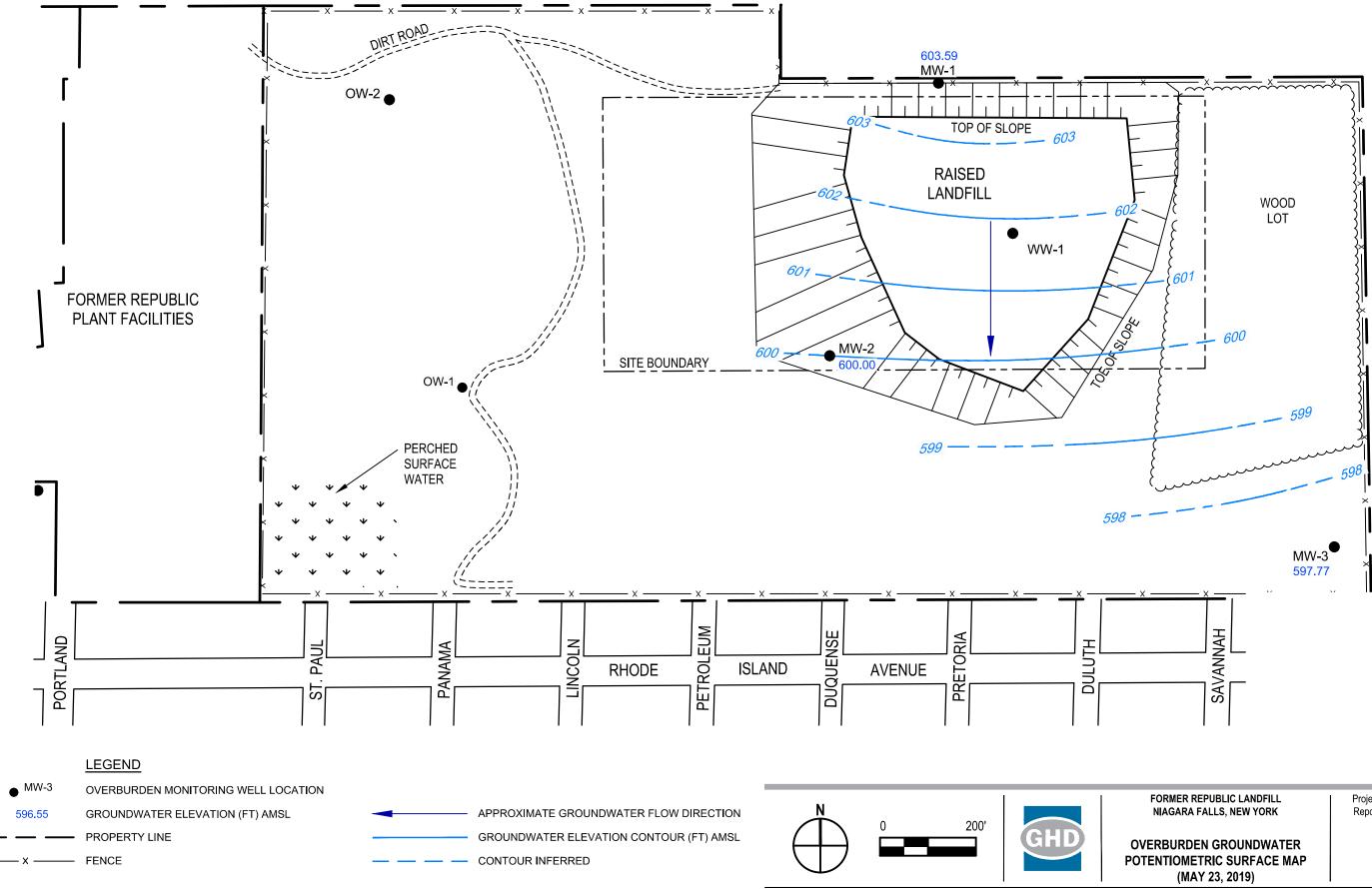
- TCE was detected at a concentration of 8.0 µg/L in May 2019, which was above the criteria of 5 µg/L. Concentrations were above criteria from September 2001 to May 2017 and appeared to have been relatively stable throughout that time. Future monitoring events will aid in determining if the concentrations observed since May 2015 are part of an overall decreasing trend.
- PCE was non-detect in May 2019 and has been non-detect since March 2000. As such, PCE is not shown on Figure 3.3.

Concentrations of VOCs detected in the three bedrock wells sampled were generally consistent with the concentrations detected during the May 2018 sampling event. The historical data has shown that concentrations of VOCs in well BW-3 remain low, with only vinyl chloride present at concentrations slightly above criteria. This well was hydraulically downgradient of the landfill during the May 2019 monitoring event, but has been shown to be hydraulically upgradient of the landfill during some previous monitoring events. These shifts in gradient direction may be due to seasonality, as monitoring events have alternated between spring and fall. Water levels will be measured in bedrock wells GW-7B and GW-11B on a voluntary basis during the next monitoring event to help further understand groundwater flow direction in the bedrock in this area of the Site. Concentrations of VOCs in GW-8B, which is hydraulically downgradient of the landfill, also remain low and have either stabilized or are decreasing. As such, no discernable negative trend in groundwater quality was observed for the Site. Concentrations of VOCs in BW-4, which is hydraulically upgradient of the landfill based on the current and historical gauging events, remain elevated and are 2 to 3 orders of magnitude higher than the VOC concentrations in the other bedrock monitoring wells. This strongly suggests an off-Site source.

4. Closing/Recommendations

Results from the 2019 groundwater monitoring activities indicate that concentrations of cis-1,2-DCE, PCE, TCE, and VC are consistent with previous results. The groundwater monitoring program for the past 30 years since closure of the landfill has identified no negative trends in the groundwater quality associated with the landfill. VOC concentrations in well BW-4, which is upgradient of the landfill, continue to be 2 to 3 orders of magnitude higher than VOC concentrations detected in the other bedrock wells at the Site. This strongly suggests an off-Site source. The next groundwater monitoring event will occur in September 2020.

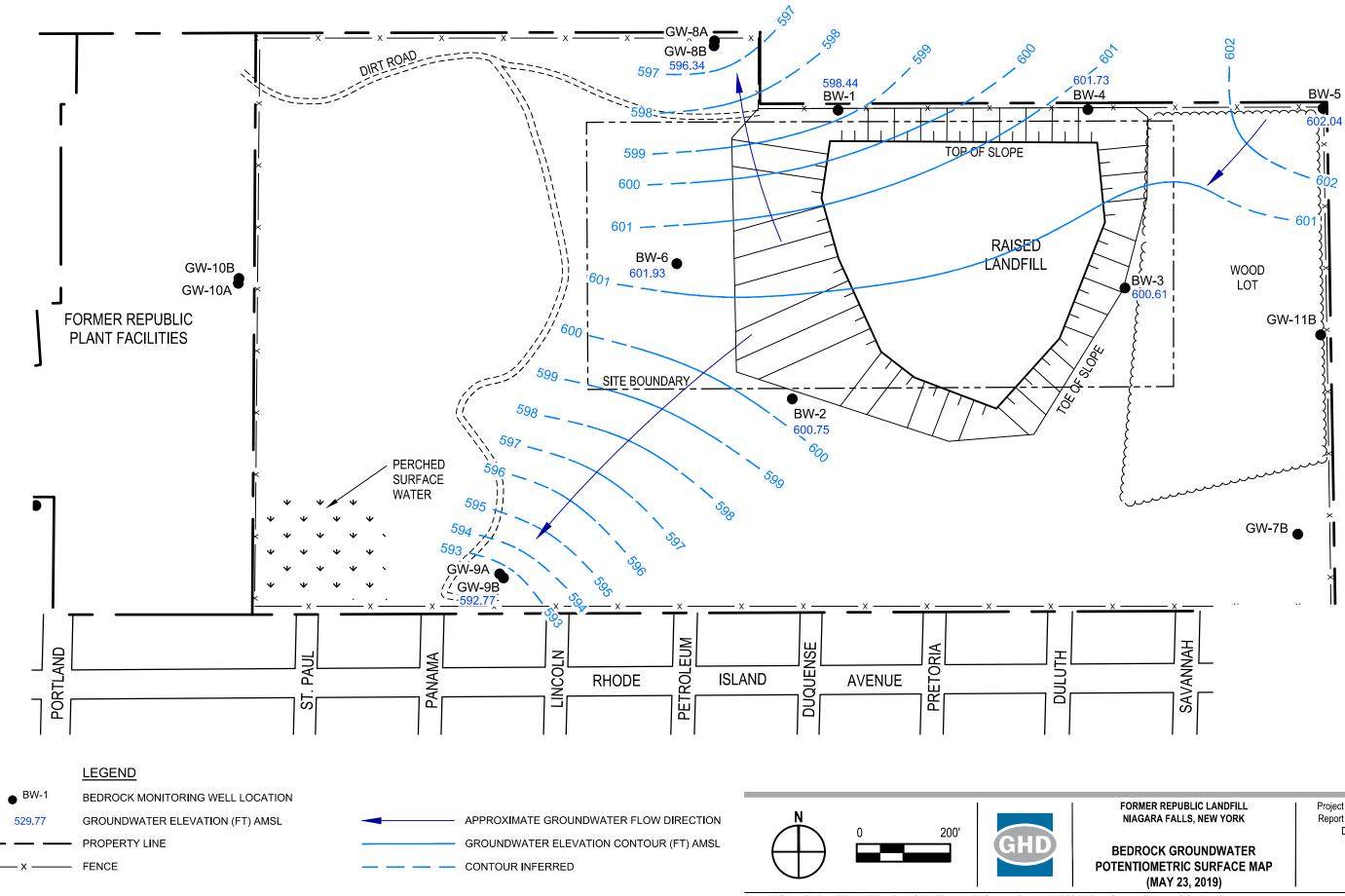
GHD appreciates the opportunity to conduct this work. If you have any questions regarding this or require additional assistance, please contact the undersigned at 716-297-6150 or margaret.popek@ghd.com.



Sincerely,

GHD

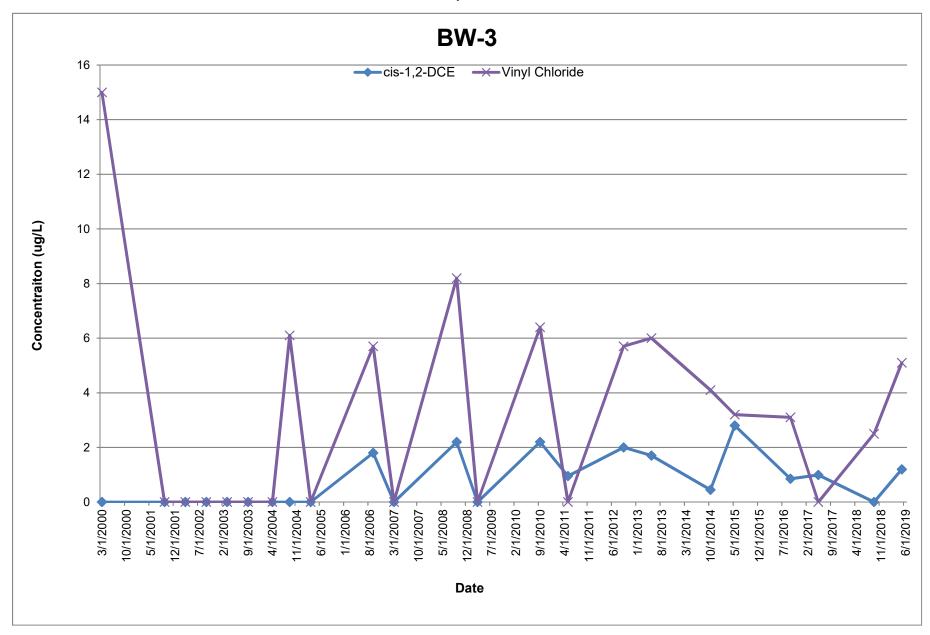
Margaret a. Popek


Margaret A. Popek Geologist MP/adh Encl. cc: D. Hoyt, GHD

Filename: N/US/Niagara Falls/Projects/564/11194450/Digital_Design/ACAD 2018/Figures/May 2020 Groundwater Contours/11194450-FiG-2020 Overburden Groundwater Potentiometric Surface Map.dwg Plot Date: 11 June 2020 - 12:19 PM

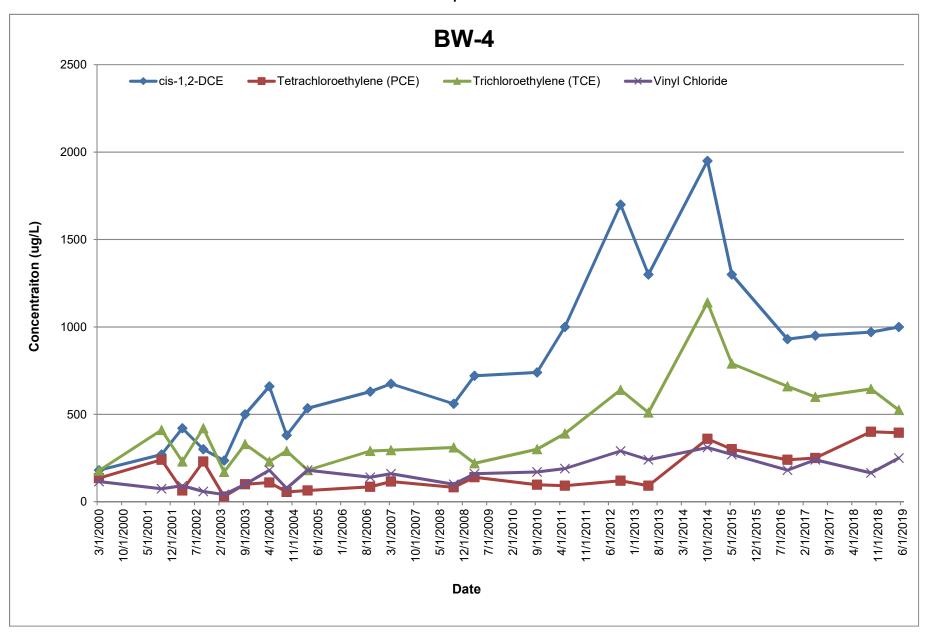
Project No. 11194450 Report No. Date JUNE 2020

FIGURE 2.1

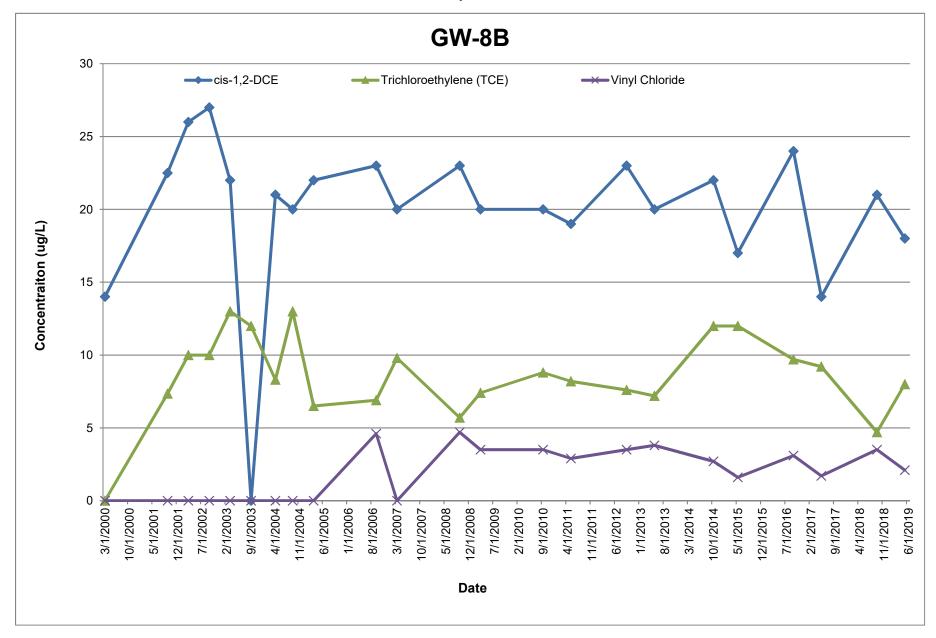

Filename: N1USINiagara Falls/Projects/56411194450/Digital_Design/ACAD 2018/Figures/May 2020 Groundwater Contours/11194450-FIG-2020 Bedrock Groundwater Potentiometric Surface Map.dwg Plot Date: 11 June 2020 - 12:22 PM

Project No. 11194450 Report No. Date JUNE 2020

FIGURE 2.2


Figure 3.1 Historical Data Graph Well BW-3

Former Republic Landfill


Figure 3.2 Historical Data Graph Well BW-4

Former Republic Landfill

Figure 3.3 Historical Data Graph Well GW-8B

Former Republic Landfill

Analytical Results Summary Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York May 2019

Sample Location: Sample ID: Sample Date:		NYSDEC	BW-3 WG-11194450-052319-DT-002 5/23/2019	BW-4 WG-11194450-052319-DT-003 5/23/2019	BW-4 WG-11194450-052319-DT-004 5/23/2019 (Duplicate)	GW-8B WG-11194450-052319-DT-001 5/23/2019
Parameters	Units	Class GA Criteria/TOGS				
Volatile Organic Compounds						
1,1,1-Trichloroethane	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	5	1.0 U	20 U	3.3	1.0 U
1,1,2-Trichloroethane	µg/L	1	1.0 U	20 U	1.0 U	1.0 U
1,1-Dichloroethane	µg/L	5	0.50 J	20 U	1.0 U	1.0 U
1,1-Dichloroethene	µg/L	5	1.0 U	6.3 J	4.3	0.36 J
1,2-Dichloroethane	µg/L	0.6	1.0 U	20 U	1.0 U	1.0 U
1,2-Dichloropropane	µg/L	1	1.0 UJ	20 U	1.0 U	1.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	µg/L	50	10 U	200 U	10 U	10 U
2-Hexanone	µg/L	50	5.0 U	100 U	5.0 U	5.0 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	µg/L		5.0 U	100 U	5.0 U	5.0 U
Acetone	µg/L	50	3.1 J	200 U	3.2 J	10 U
Benzene	µg/L	1	1.0 U	20 U	0.42 J	1.0 U
Bromodichloromethane	µg/L	50	1.0 U	20 U	1.0 U	1.0 U
Bromoform	µg/L	50	1.0 U	20 U	1.0 U	1.0 U
Bromomethane (Methyl bromide)	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Carbon disulfide	µg/L	60	1.0 U	20 U	1.0 U	1.0 U
Carbon tetrachloride	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Chlorobenzene	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Chloroethane	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Chloroform (Trichloromethane)	µg/L	7	1.0 U	8.0 J	5.5	1.0 U
Chloromethane (Methyl chloride)	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	µg/L	5	1.2	1000	1000	18
cis-1,3-Dichloropropene	µg/L	0.4	1.0 U	20 U	1.0 U	1.0 U
Dibromochloromethane	µg/L	50	1.0 U	20 U	1.0 U	1.0 U
Ethylbenzene	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Methylene chloride	µg/L	5	0.62 J	20 U	1.0 U	1.0 U
Styrene	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Tetrachloroethene	µg/L	5	1.0 U	390	400	1.0 U
Toluene	µg/L	5	1.0 U	20 U	0.91 J	1.0 U
trans-1,2-Dichloroethene	µg/L	5	1.0 U	20 UJ	6.1 J	1.0 U

Analytical Results Summary Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York May 2019

	Sample Location: Sample ID: Sample Date:	NYSDEC	BW-3 WG-11194450-052319-DT-002 5/23/2019	BW-4 WG-11194450-052319-DT-003 5/23/2019	BW-4 WG-11194450-052319-DT-004 5/23/2019 (Duplicate)	GW-8B WG-11194450-052319-DT-001 5/23/2019
Parameters	Units				(Duplicate)	
Volatile Organic Compounds						
trans-1,3-Dichloropropene	μg/L	0.4	1.0 U	20 U	1.0 U	1.0 U
Trichloroethene	μg/L	5	1.0 U	510	540	8.0
Vinyl chloride	μg/L	2	5.1	230	270	2.1
Xylenes (total)	µg/L	5	2.0 U	40 U	1.1 J	2.0 U

Notes:

J - Estimated concentration

Class GA Criteria/TOGS - Groundwater Effluent Limitations/Technical and Operational Guidance Series

U - Not detected at the associated reporting limit

UJ - Not detected; associated reporting limit is estimated

Summary of Bedrock Well Analytical Results: PCE, TCE, cis-1,2-DCE, and Vinyl Chloride Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York

Well Number	Parameter	Groundwater Criteria (ppb)	March 2000 (ppb)	Sept. 2001 (ppb)	March 2002 (ppb)	Sept. 2002 (ppb)	March 2003 (ppb)	Sept. 2003 (ppb)	March/April 2004 (ppb)	Sept. 2004 (ppb)	March 2005 (ppb)	Sept. 2006 (ppb)	March 2007 (ppb)
	Cis-1,2-DCE	5	10U	5U	5U	5U	5U	5U	5U	5U	5U	1.8	5U
BW-3	PCE	5	10U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U
DVV-3	TCE	5	10U	5U	5U	5U	5U	5U	5U	5U	5U	5U	5U
	Vinyl Chloride	2	15	5U	5U	5U	5U	5U	5U	6.1	5U	5.7	5.0U
	Cis-1,2-DCE	5	14	23 (22)	26	27	22	5U	21	20	22	23	20
GW-8B	PCE	5	10U	5U (5U)	5U	5U	5U	5U	5U	5U	5U	5U	5U
GVV-8B	TCE	5	10U	7.5 (7.2)	10	10	13	12	8.3	13	6.5	6.9	9.8
	Vinyl Chloride	2	10U	5U (5U)	5U	5U	5U	5U	5U	5U	5U	4.6J	5.0U
	Cis-1,2-DCE	5	180	270	420	300	230 (240)	500	660	370 (390)	540 (530)	620 (620)	710 (640)
BW-4	PCE	5	135	240	64	230	29 (30)	100	110	55 (56)	64 (65)	84 (86)	120 (110)
Dvv-4	TCE	5	178	410	230	420	170 (170)	330	230	290 (290)	180 (180)	290 (290)	310 (280)
	Vinyl Chloride	2	115	74	92	59	41 (41)	100	180	75 (79)	180 (180)	140 (140)	170 (150)

Shaded cells indicate the concentrations exceeds the New York State Class GA Groundwater Criteria

Parentheses indicate the results of the duplicate sample

* - Concentration represents total 1,2-DCE

** - Concentration represents total DCE

J - Concentration is an estimated value

U - Not present at or above the associated value

Summary of Bedrock Well Analytical Results: PCE, TCE, cis-1,2-DCE, and Vinyl Chloride Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York

Well Number	Parameter	Groundwater Criteria (ppb)	Sept. 2008 (ppb)	March 2009 (ppb)	Sept. 2010 (ppb)	May 2011 (ppb)	Sept. 2012 (ppb)	May 2013 (ppb)	Oct. 2014 (ppb)	May 2015 (ppb)	Sept. 2016 (ppb)	May 2017 (ppb)	Sept. 2018 (ppb)	May 2019 (ppb)
	Cis-1,2-DCE	5	2.2	10U*	2.2J*	0.95J**	2	1.7	0.45	2.8	0.85	0.99	1.0U	1.2
BW-3	PCE	5	5U	5U	5U	0.42U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U
DVV-3	TCE	5	5U	5U	5U	0.30U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U
	Vinyl Chloride	2	8.2	5.0U	6.4	0.3U	5.7	6.0	4.1	3.2	3.1	1.0U	2.5	5.1
						1014								10
	Cis-1,2-DCE	5	23	20*	20*	19**	23	20	22	17	24	14 (14)	21.0	18
GW-8B	PCE	5	5U	5U	5U	0.42U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U
GVV-0D	TCE	5	5.7	7.4	8.8	8.2	7.6	7.2	12	12	9.7	9.2 (9.2)	4.7	8.0
	Vinyl Chloride	2	4.7J	3.5J	3.5J	2.9J	3.5	3.8	2.7	1.6	3.1	1.7	3.5	2.1
	Cis-1,2-DCE	5	580 (540)	720*	740*	1000**	1700	1300	2200 (1700)	1300	930J	950	1000 (940)	1000 (1000)
BW-4	PCE	5	86 (79)	140J	97	92	120	92	390 (330)	300	240	250	390 (410)	390 (400)
Dvv-4	TCE	5	320 (300)	220J	300	390	640	510	1300 (980)	790	660J	600	650 (640)	510 (540)
	Vinyl Chloride	2	100 (100)	160J	170	190	290	240	350 (270)	270	180	240	150 (180)	230 (270)

Shaded cells indicate the concentrations exceeds the New York State Class GA Groundwater Criteria

Parentheses indicate the results of the duplicate sample

* - Concentration represents total 1,2-DCE

** - Concentration represents total DCE

J - Concentration is an estimated value

U - Not present at or above the associated value

Attachment A Field Notes

Graftech Annual GW Sampling May 23, 2019

Project # 11194450 Field File

Field Data Record Form Monitor, PID MiniRae/UltraRae (Gas) (QSF-259D)

Page 1 of 1

Control number: $N = 67522$ Date (mm/dd/yyyy): $5/23/2019$ User (print name): $D = Tyrco$	Project number: Project name: Location:	1194450 Graftech Annuel GW Samplins Witmer & Hyde Park Blud
Calibration gas(es): $\underline{T30}$ $\underline{V/ene}$ Lot #(s): $\underline{BB1} - \underline{Z48} - \underline{100} - \underline{5}$ Supplier(s): $\underline{T \cdot E}$ Expiration date(s): $\underline{1/30}$ Additional information:		

Field procedure before use:

 Unscrew and remove the probe assembly. Remove the dust filter (steel wool) from the cavity in the probe using a pair of tweezers. Check to ensure the probe is clean. Replace the filter back into the probe cavity and replace the probe assembly. Turn on the instrument and allow to warm up and stabilize. Check battery voltage by pressing the down arrow 4 times, until display reads reads bAt X.X. Check battery level and record on the space provided, recharge if below 6.0 V. Check pump inlet flow using your finger to detect suction. Perform zero gas calibration. If calibrating in unclean air attach the charcoal filter (to exclude any organic gas) to the gas inlet tube. Press [Menu] key until "CO 0.0" is displayed on LCD. Press [Enter] key to zero the instrument. Indicate the use of the charcoal filter by filling in a check box on the side of the filter (if used). Remove the zero gas charcoal filter (if used). Press the [Menu] key until the display reads "Clu 100.0" (or 107.0 depending on the concentration of isobutylene used to previously calibrate the instrument). If the concentration of the calibration gas to be used is the same as the displayed value, press the [Enter] key 4 times to accept the value otherwise use the arrow keys to change the digit value and [Enter] key to confirm the digit. The flashing digit will move to the next digit to its right. Repeat the process until all 4 digits are entered. "Gas On" will be displayed on the LCD. Connect the instrument to the calibration gas cylinder". Turn the cylinder on. Press [Enter] key to continue the calibration procedure. Press [Menu] until the instrument is in real time measurement mode. Expose the instrument to calibration gas and record reading on the space provided. The reacting must be with the action the calibrate the use of the charcod reading on the space provided. The reactin	-		Check when completed
Turn the instrument off by pressing the [ON] button and then confirming by pressing [Enter].		Remove the dust filter (steel wool) from the cavity in the probe using a pair of tweezers. Check to ensure the probe is clean. Replace the filter back into the probe cavity and replace the probe assembly. Turn on the instrument and allow to warm up and stabilize. Check battery voltage by pressing the down arrow 4 times, until display reads reads bAt X.X. Check battery level and record on the space provided, recharge if below 6.0 V. Check pump inlet flow using your finger to detect suction. Perform zero gas calibration. If calibrating in unclean air attach the charcoal filter (to exclude any organic gas) to the gas inlet tube. Press [Menu] key until "CO 0.0" is displayed on LCD. Press [Enter] key to zero the instrument. Indicate the use of the charcoal filter by filling in a check box on the side of the filter (if used). Remove the zero gas charcoal filter by filling in a check box on the side of the filter (if used). Remove the zero gas charcoal filter (if used). Press the [Menu] key until the display reads "Clu 100.0" (or 107.0 depending on the concentration of isobutylene used to previously calibrate the instrument). If the concentration of the calibration gas to be used is the same as the displayed value, press the [Enter] key 4 times to accept the value otherwise use the arrow keys to change the digit value and [Enter] key to confirm the digit. The flashing digit will move to the next digit to its right. Repeat the process until all 4 digits are entered. "Gas On" will be displayed on the LCD. Connect the instrument to the calibration gas cylinder. Turn the cylinder on. Press [Enter] key to continue the calibration procedure. Press [Menu] until the instrument is in real time measurement mode. Expose the instrument to calibration gas and record reading on the space provided. The reacting must be within ±2 opm of the cal gas otherwise the instrument must be recalibrated.	

	Filing:	Field	file
--	---------	-------	------

Signature:

Dac Jayon

Field Data Record Form Meter, Turbidity (Portable) Hach 2100P and 2100Q (QSF-421D)

Page 1 of 1

ontrol number: NF05040 ate (mm/dd/yyyy): <u>5/23/2019</u> ser (print name): <u>D.Tyran</u>	Project number: Project name: Location:	Hyde Par Graffech Hyde Par and Wilme	k Blud
dditional equipment control numbers and des O NTU LOT # A 8080 ex DO NTU LOT # A 8075 ex DO NTU LOT # A 8079 ex	$c_{p} = 6/(017)$		
field procedure before use:		3	
Do not calibrate in the field.			
			Check when completed
 Check kit contents; Meter STABLCAL standards (2100Q) Low 0-10, medium 0-100, high standards (2⁻¹) Extra AA batteries Sample vials 	100P)	289 ⁴⁸	X X X X X X
Test and record standards: Gelex (2100P)/STABLCAL (2100Q) Standard <u>IOO</u> <u>IOO</u>	Meter Reading 9.96 9.5.1 7.5 C		

This completed form is a quality record

Field Data Record Form Meter, Water Level (QSF-251D)

Page 1 of 1

	e (mm/dd/yyyy): r (print name):	<u>05 123 12019</u> D Tyran	Project name:	Ayde Park	Bled @
ldi	itional equipme	nt control numbers and d	escriptions:		
					· · · ·
_					
_		· · · ·			
ie	ld procedure be	tore use:			
					Check when completed
,	Check for broke	n or missing parts.	· ·	* .	
•	Check battery		•		I
•	Check operation	n of buzzer.		۰,	E
>	Check operatio				E.
>		ater to ensure unit operates	s, both visually and aud	libly.	E1
	Check cable.		-, -		III
.	CHECK Cable.	••. •	· · · ·		-
			• .		1
		· · · ·			-
-				· ·	
•					
•				••	

Signature:

Filing: Field file

Water Level Measurement Equipment and Supply Checklist (Form SP-10)

Date:	05/23/2019 (mm/dd/yyyy)	Reference No. 11194450
Instru		
P	Water level indicator	
	Steel tape	
	Oil/Water interface probe	
	Air monitoring equipment	
Suppl	ies .	Personal Protective Equipment
Ċ	Foil	Latex gloves
	Tyveks (assorted sizes and types)	Hard hats/liner(s)
9	Paper towels [Rags	Field overboots
	Decontamination fluids	Work gloves (cotton and chemical resistant)
	2 - Propanol	Safety glasses/or side shields on
	Deionized water	OSHA-approved prescription lenses
23	Hexane (pesticide grade)	First aid kit
	Methanol (pesticide grade)	Bespirators
	E Other Liguinox	Check health and safety plan
4	Trash bags	
0	Plastic spray bottles	
Docu	mentation	
	Well logs	A
	Notebook/Field book	
	Photolog	2
	Site pass/badge	
	Previous well logs/previous historical well data	
	. Site map	
	Blank well data forms	
Mico	ellaneous	
WISC	Well cap keys	Pen/Pencil/Indelible marking pen
	Bolt cutters	Tool box
	Camera/Film	Spare locks/keys
	Knife	On site transportation
	Spare batteries for instruments	(all-terrain vehicle/snowmobiles)
2	Lock deicer (winter)	

Completed By:

David Tyran (please print)

.05/23/2019 (mm/dd/yyyy) Date:

Groundwater Sampling Equipment and Supply Checklist (Form SP-05)

Date:	05/23/2019	Reference No.
	(mm/dd/yyyy)	
Equip	ment	Instruments
	Required sampling equipment	Water level indicator
	(as per work plan or QAPP)	Thermometer *
		pH meter *
		Conductivity probe *
		Turbidity meter
		HNu/OVA/Microtip
		Air monitoring equipment
Suppl	ies	Documentation
	Gasoline can/gas	Chain of custody forms
	Polypropylene rope	Well logs
	Aluminum foil	Notebook/Field book
P	Paper towels / Rags	Photolog
	pH buffer solution(s)	Site pass/badge
	Conductivity standard solution(s)	Federal Express manifests
	Decontamination fluids	Previous well logs/previous historical well data
	(as per work plan and QAPP)	Site-map
U/	Sample jars (extra)	Blank well data forms
	Sample jar labels (GHD) materials	
•	Cooler(s)/ice packs/packing materials	
	Trash bags	
Π	Sample preservatives	
	Plastic spray bottles	
	Plastic basin or pan	
	Sample filter (on line or external filter)	
	Polyethylene sheeting	
4	First aid kit	
9	Personal protective equipment (as per HASP)	
Misc	ellaneous	
TV	Well cap keys	Beinforced packing tape
	Bolt cutters	Pen/pencil/indelible marking pen
Π	Camera/film	Tool box
9	Knife	Spare locks/keys
	Spare batteries for instruments	On site transportation
	Lock deicer (winter)	(all-terrain vehicle/snowmobiles)
		Delastano
Con	npleted By: <u>David (Yran</u> (please print)	Date: <u>05/23/2019</u> (mm/dd/vvvv)
	(piesse print)	(THEFT OUT YYYY)

Project Planning Completion and Follow-Up Checklist (Form SP-02)

Date:

05/24/2019 (mm/dd/yyyy)

Reference No.

11194450

Prior Planning and Coordination

/	
	Confirm well numbers, location and accessibility
Ø	Review of project documents, Health and Safety Plan (HASP), sampling Quality Assurance/Quality Control (QA/QC) and site-specific sampling requirements
U	Historical well data; depth, p H, performance and disposition of purge water
U.	Site access notification and coordination
U	Coordination with laboratory through GHD chemistry group
U	Procurement, inventory and inspection of all equipment and supplies
U	Prior equipment preparation, calibration or maintenance
	All utilities located and approved
Filed	Procedure
F	Instruments calibrated daily
	Sampling equipment decon taminated in accordance with the QAPP
	Field measurements and sampling details logged in appropriate field books or an appropriate field form
9	Well volume calculated and specified volumes removed
	Specified samples, and QA/QC samples taken per Quality Assurance Project Plan (QAPP)
4	Samples properly labeled, preserved and packed
9	Sampling locations secured or completed according to work plan
U	Sample date times, locations and sample numbers have all been recorded in applicable log(s)
	Samples have been proper by stored if not shipped/delivered to lab same day
U	Samples were shipped with complete and accurate chain of custody record
Follow	v-Up Activities
Ū	Questionable measuremen ts field verified
R	_Confirm all samples collect e d
P	All equipment has been max i intained and returned
U V	Sampling information reduced and required sample keys and field data distributed
P	_Chain of custody records fil ed
R	Expendable stock supplies replaced
9	GHD and client-controlled items returned (i.e., keys)
	· · · · · · · · · · · · · · · · · · ·

- 5 Arrange disposal of investig ation generated wastes with client
- 4 Confirm all samples collect ed

Completed By:

David Tyran (please print)

Date: 05/24/2019 (mm/dd/yyyy)

Tailgate Safety Meeting Form Small Group Format - Multiple Days

36

	Project No.: //	194450
Date: 5/23/2019 Project N	ame: Graftech	
Presenter: D. Tyran Hojost		
Safety topics/items discussed:	11	he likely hood
The conditions	will increase t	mecautions.
N Neve and moskutory	to make sure	ground is solid
Walk area before and)
enough.		
Emergency preparedness:	Muster Point:	Front Gate
First Aid Provider(s): D. Tyran		mont circle
	Method of Communication:	Cell Phone
AED Responder: 911	Fire Extinguisher Location:	GHD Truck
	Eye Wash Location:	GHD Truck
First Aid Kit GHD Truck		×.
Print Name	Signature	Company
David Tyran	Daic fron	Groffech_
Julianne Snyder	Autorite	DEC
Andrew Zweick	-(e)	
	Project No.:	
Date: Time:		
Presenter: Project	t Name:	
Safety topics/items discussed:		
Safety topics/items diseased.		
Emergency preparedness:		
First Aid Provider(s):	Muster Point:	
	Emergency Communication:	A -
	Fire Extinguisher	
AED Responder.	Location:	
	Eye Wash Location	n:
First Aid Kit Location:	16	
Loouton		

 Print Name
 Signature
 Company

 Image: Company
 Image: Company

 Image: Company
 I

L.B.B.		Sec.
1	100	-
(+	11	1)
		100
100		101

CHAIN OF CUSTODY RECORD

Phone:_____

COC NO .:

_____PAGE _____ OF ____

-	_	_	_	_	_	_	_	_	-	_	_				

Fax: _____Fax: _____

Project No/ Phase/Task Code:					Laboratory Name:										Loc	atior	n.			SSOW ID:					
Project Name:					act:	21.	410		N	a sh	~			MA texter A								Coole	er No:		
Project Location:	RJ		SAM	PLE T	S. Star			ANALYSIS REQUES (See Back of COC for Def			JEST Defir	(TED finitions)					Carrier:			He is the most of			ed		
GHD Chemistry Contact:	-																	0		Airbill	No:				
The Andresker				(C)														sampl		Total	# of C	ontain	ers:		
Sampler(s):			L COC)	Com	(N/λ)	-												iners/	equest		1			_	
SAMPLE IDENTIFICATION (Containers for each sample may be combined on one line)	DATE (mm/dd//yy)	Time	Matrix Code (see back of	Grab (G) or Comp (C)	Filtered (Y	NQ.										-		Total Containers/sample	MS/MSD Request		SPE		MENTS		is:
PRESERVATION - (SEE BAC	K OF COC	FOR AB	BREVI	ATIO	NS)	J							の語				なない						(A)	3	
1 11114/ 11194450 M 2219 DT	57319	1230	Vile	6	M	\checkmark												3					/		
2 -001																						1			
3																					1	1			
4	2	21																			1				
5	- Aller	1					-													Í	(
6		1	1			/				1							4								
7		1	1	1	1					1						1	4								
8	1		1	-												1	the second se	1	1						
9	1	/		-						Ì				,	1		!	1	Γ						
10	1	1		+										1			\smile		Γ						
11	V									-	┢──								Γ						
12			+	1-						ļ		-							Γ						
																			-						
TAT Required in business days (use separate COCs if 1 Day 1 Day 2 Days 3 Days 1 Week 2 Week					No	tes/ S	Speci	al Re	equire	eme	nts:														
			DATE	-172	TIM	IE		1		22	- 1	RECE	IVED	BY					С	MPANY	,		DATE		TIME
	RELINQUISHED BY COMPANY				14	43		1,																	
2.								2.																	
3.								3.																	
	THE CHAI		TODY	SALE	GAL E	Docu	ACAT	A.L.	Erri	DC 4	ALICT	BE C	OHD	ETER	Acc	UDAT	E V								B (2011080

Pro	ject No/ Phase/Task Code:				orato	ry Na	me:			_		27			Locat				ax:	SSOW ID:		
	ject Name:			Lab	Cont		<u>†</u>	An	1.01	110			-	1	¥.			4.3	, j = -	Cooler No	»:	
Pro	ject Location:		12	201000	M	See See	551	in an	12.	JE.	YSIS F	PEOU			N'N	815	1	\mathbb{N}	1 Downlow	1		
	Hude Park Plant Polition	or B	1	SAM		YPE					of CO							ĻĽ	Carrier:	1 201	1.47	2001
	D Chemistry Contact:				(c)												aple		Airbill No:			
	npler(s):			coc)) dwo	(N	~										sisa	est	Total # of	Containers:	T	
un.	SAMPLE IDENTIFICATION	DATE	Тіме	Matrix Code (see back of COC)	Grab (G) or Comp	Filtered (Y/N)	20										Total Container	MSD Redu		Commen		
ite	(Containers for each sample may be combined on one line)	(mm/dd//yy)	(hh:mm)	W S	ΰ	Ξ			unza 1084	to update		alleria da		25.4			2º	W	SF	PECIAL INSTR	RUCTIC	ONS:
	PRESERVATION - (SEE BA	CK OF COC	FOR AB	BREVI	ATIO	NS)	HC										Contract of					
1	LAG HIGHASON NO 34 DT MI	5 73 19	1135	VIG.	G	N	X	1.2									3					
2	1.16 11194450 052319 DT-012	.5 2319	13:5	WG	G	N.	\times										9	X				
3	1/16, 11 1944 40 0523 19 DT-003	5.23.19	1405	W.	(în	N	X	- 1				-					3	1.5				
4	W16-11194150-052319-NT-004	5.23.19	1405	WG	7	N	X			17							3			- /	<	- >
5	TR 111944.50 052319 DT	5 23.19		ΠB	4	N			_						1		1				and the second s	محمح المعد
6										-				_			_					
7						_		1			Ζ.			-	_	-		1	52			
8		1				_	~			/												
9		1		/		·	-	-		/		_	-		1							
10													_		_	+						
11			-				-	+	-	-	+			-	_							
12																						_
	[®] Required in business days (use separate COCs ■ Day □ 2 Days □ 3 Days □ 1 Week ☑ 2 We					Not	es/ Sj	pecial	Requi	reme	nts:											
5.5	1	OMPANY	1831 (1931)	DATE	385	Тімі	E		1.5280	den a	R	ECEIVE	D BY	145		4.7 îs	54 67555	Co	MPANY	DATE	2 33 2	TIME
1.	Die Tiper G	4ID	5 3	23sl	9	Įι	136	2	t,													
2.		<u> </u>			,				2.													
3.									3.								-					

Graftech 11194450 Graftech

DAILY LOG 5/23/2019 Calbrate Horiba W-72 control# NE07597 with auto Cal solution Lot # 19040042 exp 2/15/2020 After Betore 3.99 4.07 DH (4.00) 4.43 4.48 Cond (4.49) 8.61 DO 0812 DJT on-site neet Maggie 63-73°F Winds WSW 5-8mph Overcast Talgate safety meeting 0815 Julie Snyder on-site 0845 Maggie off-site Start W/L Round 0900 Andrew Zwak Frong DEC on -site 1000 Rain coming will start sampling before it starts Set up on GWBB purge & Sample low flow (mester flow) 1030 Heave sein lightning SWA 1105 start back on GWBB TB-11194450-052319. DT 1×40m/ w/HCL Trip Blank= 1210 Checked 6 development water droms with PID Sampled drum with highest reading (0.3ppm) ID WW-11194450-052319 DT-001 Time 1230 3×40ml w/HCL 1250 setup on BW-3 Purge & Sample Low - flow (masterflow) BW-4 Purge (Sample Low- Flow (master fler) 1335 Setus on 1430 Complete Sampling - f. 11 out Chains 1450 Julie Off-site to deliver samples - DJT grab hast centre level close clouns 1555 OFF-Site

Jacq year

64 (64) Hydraulic Monitoring Dite 5/23/19 Project # 11194450 W/C Meter NF07581 Crew DJT Crew DJY Well # Jime W/L MW-1 0906 7.54 DTB 21.13 2468 MW-2 0956 11.62 MW-3 1522 4.03 15,32 BN-1 C858 13.22 28.98 (BW-2 0948 7.65 25.78 (BW-3 0915 4.41 23.60 BW-4 0910 5.40 25.57 BW-5 0928 1.23 25,68 25.83 BW-6 0943 9.18 GW-88 0851 6.96 29.20 GW-9B 1011 9.97 31.98

Monitoring Well Record for Low-Flow Purging (Form SP-09)

Project Data:	Project Name: Ref. No.:	Graf	tech A 4450	nncal		Date: Personnel:	5-Z	3-19 Tyran	-	-	
Constructed V Measured V	Weil Data: Weil No.: apour PID (ppm): asurement Point: Vell Depth (m/ft): Vell Depth (m/ft): Sediment (m/ft):			S	aturated Screen L Depth to Pump In Well Diamete Well Screen Volu Initial Depth to	take (m/ft) ⁽¹⁾ : _. er. D (cm/in):					
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft) sion Required ⁽⁵⁾ :	Temperature °C ±3 %	Conductivity (mS/cm) ±0.005 or 0.01 ⁽⁶⁾	Turbldity NTU ±10 %	DO (mg/L) ±10 %	pH ±0.1 Units	ORP (mV) ±10 mV	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾
101	130	7.83		12.1	2.00	3.99	<u> .33</u> 0	9-67		•	
1111	80	7.65 7.62		12-9 12-2	2.03	2.20 2.15 2.06	0	8-20 7-91 7-80			
1126	20	7.55		12.5	2.08	1.34	0	7-77			
									5. 		
Sample ID:	WG-111	9445-	052319-7	DT-001		. Si	ample Time:	(135		
Notes: (1) (2) (3)	The well screen For Imperial unit The drawdown fr	volume will be s, V _s =n*(r ²)*L* rom the initial y	based on a 1.52 n (2.54) ³ , where r a water level should	netres (5-foot) so and L are in inche not exceed 0.1 m	(0.3 ft). The pump	oing rate shoul	d not exceed	500 mL/min.	ains visually i	urbid 🕹	Inst. Control #
(4)	and appears to b	e clearing, or	unless stabilization Volumes Purged value of three readi	n parameters are = Vp/Vs. ings <1 mS/cm ±	0.005 mS/cm or wh	ere conductivi		atter ertre orbite		Ý	16 NF05040 L NF07581
Form SP-09 - Revision	02 – August 8, 2017		Sta	irt Pu	rge C /1	025	Å	Jund	Jup		

ĠHD

Masterflex

Monitoring Well Record for Low-Flow Purging (Form SP-09)

Measured 1	ell Data: Well No.: apour PID (ppm): asurement Point: Well Depth (m/ft): Well Depth (m/ft): f Sediment (m/ft):				aturated Screen L Depth to Pump In Well Diamet Well Screen Volu Initial Depth to	er, D (cm/in): ime, V _a (L) ⁽²⁾ :					
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from InItial Water Level ⁽³⁾ (m/ft)	Temperature °C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pH	ORP (mV) ±10 mV	Volume Purged, Vp (L)	No, of Well Screen Volumes Purged ⁽⁴⁾
1301	150	Preci	sion Required ⁽⁵⁾ :	±3 %	±0.005 or 0.01 ⁽⁶⁾ 1-25	±10 %	±10 %	±0.1 Units	-54		
306	120	4.40	0.00	11-3	1. 22	3.60	0	7.54	-46	<i>(</i>)	
311	150	1.10		11-3	1.18	4.77	0	7-49	-41		
1316		4.40	6.00	<u>n.</u> 1	1-18	3.26	0	7.47	-41		
							17			•	
									12 J		
10				57							
	-										
					23						-
				1		- AL					
	Ø					1.50			~		
mple ID:	WYYDON 1	NG-1119	4450-05	52319 - D	T-002	Sa	mple Time:	132	<u>)</u>		
ites:		·							1	1. A.	Inst. Conta
	The pump lotake	a wili be placed	at the well screen	mid-point or at a	minimum of 0.6 m	(2 ft) above an	y sediment a	accumulated a	at the well bo	ottom.	TIGI- CONT
	The well screen	volume will be	based on a 1.52 n	netres (5-foot) sci	reen length (L). Fo	r metric units,	V₃=л*(г²)*L l	n mL, where r	r (r=D/2) and	L are in cm.	W/L NFO7: briba NF075
	For Imperial unit	ls V.=π*(r ²)*L*	$(2.54)^3$, where r a	nd L are in inche	S					L.	hold NE015
			بالمانيسيان المتنبط متطامر	natiovagad 0.4 m	(0.3 ft). The pump screen volumes hav	ing rate should	not exceed	500 mL/min. ne water rema	ains visually i	turbid	Dribt No.
)	Purging will cont and appears to 1	tinue until stabl	lization is achieved unless stabilization	g or unui 20 well s n parameters are	varying slightly out	side of the stab	lization crite	ria and appe	ar to be	T	Urb NFOS
	and appears to a	of Moll Screen	Volumes Purged	= Vn/Vs).005 mS/cm or wh		1.1			<u></u>	

Musterflax

Monitoring Well Record for Low-Flow Purging (Form SP-09)

	nitoring We Va Mea	Well No. apour PID (ppm) isurement Point:	BW	-4	\$	Saturated Screen L Depth to Pump In	_ength (m/ft): stake (m/ft) ⁽¹⁾ :		3/19 Tyran			
Cor N	leasured V	Vell Depth (m/ft): Vell Depth (m/ft): Sediment (m/ft):				Well Screen Volu Initial Depth to			- 39			
	Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temperature °C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pH	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾
	11110			islon Regulred ⁽⁵⁾ ;	±3 %	±0.005 or 0.01 ⁽⁶⁾	±10 %	±10 %	±0.1 Units	±10 mV	1	
1	353	140	1	-** 	12.4	1.63	18.6	0.00	7.45	-42	1	
Ì	358		5.39	6.00	13-1	1.63	3.69	0.00	7.46	- 97	2471-2	
l	403_				13.4	1.61	2.53	\$-06	7.46	-101		
_												
						. 1						
-												
							8					
						10		2				
			-		14241	- 20 				<u>-</u>		
_											_ <u>_</u>	
Sam	npie ID:	1.1G-11199	450-0	52319-D	T-003		Sa	mple Time:	14(<u> </u>		
		let k	16.1119	4450 -05	2319-D	T-004			1216		· 83	- 1 C 1.
Note	es: LU	plicale "		1000		a minimum of 0.6 m	(2 fi) above ar	w sediment	accumulated	at the well bo	ttom.	Inst Contr
(1)		The pump Intake	will be placed	hased on a 1.52 n	netres (5-foot) sc	reen length (L). Fo	r metric units,	V _s =n*(r ²)*L	n mL, where	r (r=D/2) and	Lare in cm.	ILNF075
(2)		For Imperial uni	ts. V.=n*(r ²)*L*	(2.54) ³ , where r a	nd L are in inche	S					-	Inst Contre ULNF075
3)				unter laval abould i	act avceed 0.1 m	(03ft) The ouron	ing rate should	not exceed	500 mL/min.	فبالمبيعة بممام	urblet	016 101 00
4)				بصبيحا وامريح ليربح الانتها	بالصبيد 10 الأصب سماح	screen volumes hav varying slightly out	ia haan hijirdar	i runiess our			*	briba NF07
		and appears to	of Well Screen	Volumes Purged	Vp/Vs.	Mana and and and and and and and and and			-			
		aroning 140.	o,		at - Olam II	0.005 mS/cm or wh	are conductivit	v > 1 mS/cm	+0.01 mS/cm			

Attachment B Field Parameters

Attachment B

Groundwater Quality Parameters Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York May 2019

Monitoring Well Location	Date	Time (hours:minutes)	Purge Rate (mL/per min.)	Water Level (ft. BTOC)	Temperature (°C)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	pH (Units)	ORP (mv)
GW-8B	05/23/2019	11:01	130	7.83	11.4	2.00	3.99	1.33	9.67	NM
		11:06	80	NM	12.1	2.02	3.50	0.00	8.74	NM
		11:11	80	7.65	12.9	2.03	2.20	0.00	8.20	NM
		11:16	90	7.62	12.2	2.09	2.15	0.00	7.91	NM
		11:21	80	NM	12.5	2.08	2.06	0.00	7.80	NM
		11:26	80	7.55	13.1	2.08	1.34	0.00	7.77	NM
BW-3	05/23/2019	13:01	150	4.40	11.4	1.25	5.39	0.00	7.75	-54
		13:06	150	4.40	11.3	1.22	3.60	0.00	7.54	-46
		13:11	150	4.40	11.3	1.18	4.77	0.00	7.49	-41
		13:16	150	4.40	11.1	1.18	3.26	0.00	7.47	-41
BW-4	05/23/2019	13:53	140	5.39	12.4	1.63	18.60	0.00	7.45	-92
		13:58	140	5.39	13.1	1.63	3.69	0.00	7.46	-97
		14:03	140	5.39	13.4	1.61	2.53	0.00	7.46	-101

Notes:

ft. BTOC - Feet below top of casing

NM - Not measured

DO - Dissolved oxygen

ORP - Oxidation-reduction potential

Attachment C Laboratory Report

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-154078-1

Client Project/Site: 11194450-02, GrafTech International Hold

For:

GHD Services Inc. 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, New York 14304

Attn: Ms. Deborah Andrasko

Authorized for release by: 5/31/2019 4:44:02 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	18
Lab Chronicle	19
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

Definitions/Glossary

Client: GHD Services Inc. Project/Site: 11194450-02, GrafTech International Hold

Job ID: 480-154078-1

3 4

Qualifiers

GC/MS VOA	
Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

F1	MS and/or MSD Recovery is outside acceptance limits.	
F2	MS/MSD RPD exceeds control limits	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		- 6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	-
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	-
%R	Percent Recovery	0
CFL	Contains Free Liquid	ð
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEO	Tovicity Equivalent (Diovin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 480-154078-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-154078-1

Receipt

The samples were received on 5/23/2019 3:20 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.0° C.

GC/MS VOA

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: WG-11194450-052319-DT-003 (480-154078-3). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following samples was diluted to bring the concentration of target analytes within the calibration range: WG-11194450-052319-DT-004 (480-154078-4). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-475447 recovered above the upper control limit for Carbon tetrachloride and 1,1,1-Trichloroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: WG-11194450-052319-DT-002 (480-154078-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: GHD Services Inc. Project/Site: 11194450-02, GrafTech International Hold

Client Sample ID: WG-11194450-052319-DT-001

-								
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichlorethylene	0.36	J	1.0	0.29	ug/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	18		1.0	0.81	ug/L	1	8260C	Total/NA
Trichloroethene	8.0		1.0	0.46	ug/L	1	8260C	Total/NA
Vinyl chloride	2.1		1.0	0.90	ug/L	1	8260C	Total/NA

Client Sample ID: WG-11194450-052319-DT-002

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethane	0.50	J F2	1.0	0.38	ug/L	1	8260C	Total/NA
Acetone	3.1	J F2	10	3.0	ug/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	1.2	F2	1.0	0.81	ug/L	1	8260C	Total/NA
Methylene Chloride	0.62	J F1 F2	1.0	0.44	ug/L	1	8260C	Total/NA
Vinyl chloride	5.1		1.0	0.90	ug/L	1	8260C	Total/NA

Client Sample ID: WG-11194450-052319-DT-003

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
1,1-Dichlorethylene	6.3	J	20	5.8	ug/L	20	8260C	Total/NA
Chloroform	8.0	J	20	6.8	ug/L	20	8260C	Total/NA
cis-1,2-Dichloroethene	1000		20	16	ug/L	20	8260C	Total/NA
Tetrachloroethene	390		20	7.2	ug/L	20	8260C	Total/NA
Trichloroethene	510		20	9.2	ug/L	20	8260C	Total/NA
Vinyl chloride	230		20	18	ug/L	20	8260C	Total/NA

Client Sample ID: WG-11194450-052319-DT-004

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,2,2-Tetrachloroethane	3.3		1.0	0.21	ug/L	1		8260C	Total/NA
1,1-Dichlorethylene	4.3		1.0	0.29	ug/L	1		8260C	Total/NA
Acetone	3.2	J	10	3.0	ug/L	1		8260C	Total/NA
Benzene	0.42	J	1.0	0.41	ug/L	1		8260C	Total/NA
Chloroform	5.5		1.0	0.34	ug/L	1		8260C	Total/NA
Toluene	0.91	J	1.0	0.51	ug/L	1		8260C	Total/NA
trans-1,2-Dichloroethene	6.1		1.0	0.90	ug/L	1		8260C	Total/NA
Xylenes, Total	1.1	J	2.0	0.66	ug/L	1		8260C	Total/NA
cis-1,2-Dichloroethene - DL	1000		20	16	ug/L	20		8260C	Total/NA
Tetrachloroethene - DL	400		20	7.2	ug/L	20		8260C	Total/NA
Trichloroethene - DL	540		20	9.2	ug/L	20		8260C	Total/NA
Vinyl chloride - DL	270		20	18	ug/L	20		8260C	Total/NA

Client Sample ID: TB-11194450-052319-DT

No Detections.

This Detection Summary does not include radiochemical test results.

Job ID: 480-154078-1

Lab Sample ID: 480-154078-1

Lab Sample ID: 480-154078-2

Lab Sample ID: 480-154078-3

Lab Sample ID: 480-154078-4

5

Client Sample Results

Result Qualifier

ND

ND

Client: GHD Services Inc. Project/Site: 11194450-02, GrafTech International Hold

Analyte

1,1,1-Trichloroethane

Toluene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Trichloroethene

Vinyl chloride

Xylenes, Total

Surrogate

1,1,2,2-Tetrachloroethane

Client Sample ID: WG-11194450-052319-DT-001 Date Collected: 05/23/19 11:35 Date Received: 05/23/19 15:20

Method: 8260C - Volatile Organic Compounds by GC/MS

1,1,2-Trichloroethane	ND	1.0	0.23 ug/L	05/30/19 14:57
1,1-Dichloroethane	ND	1.0	0.38 ug/L	05/30/19 14:57
1,1-Dichlorethylene	0.36 J	1.0	0.29 ug/L	05/30/19 14:57
1,2-Dichloroethane	ND	1.0	0.21 ug/L	05/30/19 14:57
1,2-Dichloropropane	ND	1.0	0.72 ug/L	05/30/19 14:57
2-Butanone	ND	10	1.3 ug/L	05/30/19 14:57
2-Hexanone	ND	5.0	1.2 ug/L	05/30/19 14:57
4-Methyl-2-pentanone	ND	5.0	2.1 ug/L	05/30/19 14:57
Acetone	ND	10	3.0 ug/L	05/30/19 14:57
Benzene	ND	1.0	0.41 ug/L	05/30/19 14:57
Bromodichloromethane	ND	1.0	0.39 ug/L	05/30/19 14:57
Bromoform	ND	1.0	0.26 ug/L	05/30/19 14:57
Bromomethane	ND	1.0	0.69 ug/L	05/30/19 14:57
Carbon disulfide	ND	1.0	0.19 ug/L	05/30/19 14:57
Carbon tetrachloride	ND	1.0	0.27 ug/L	05/30/19 14:57
Chlorobenzene	ND	1.0	0.75 ug/L	05/30/19 14:57
Chloroethane	ND	1.0	0.32 ug/L	05/30/19 14:57
Chloroform	ND	1.0	0.34 ug/L	05/30/19 14:57
Chloromethane	ND	1.0	0.35 ug/L	05/30/19 14:57
cis-1,2-Dichloroethene	18	1.0	0.81 ug/L	05/30/19 14:57
cis-1,3-Dichloropropene	ND	1.0	0.36 ug/L	05/30/19 14:57
Dibromochloromethane	ND	1.0	0.32 ug/L	05/30/19 14:57
Ethylbenzene	ND	1.0	0.74 ug/L	05/30/19 14:57
Methylene Chloride	ND	1.0	0.44 ug/L	05/30/19 14:57
Styrene	ND	1.0	0.73 ug/L	05/30/19 14:57
Tetrachloroethene	ND	1.0	0.36 ug/L	05/30/19 14:57

1.0

1.0

1.0

1.0

1.0

2.0

Limits

77 - 120

73 - 120

0.51 ug/L

0.90 ug/L

0.37 ug/L

0.46 ug/L

0.90 ug/L

0.66 ug/L

RL

1.0

10

MDL Unit

0.21 ug/L

0.82 ug/L D

Prepared

Date Collected: 05/23/19 13:25			
Client Sample ID: WG-111944	50-052319-DT-00	2	
Dibromofluoromethane (Surr)	103	75 - 123	
Toluene-d8 (Surr)	95	80 - 120	

Qualifier

ND

ND

ND

8.0

2.1

ND

115

99

%Recovery

Date Received: 05/23/19 15:20

Method: 8260C - Volatile Organic C	compounds l	oy GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	F1 F2	1.0	0.82	ug/L			05/30/19 21:39	1
1,1,2,2-Tetrachloroethane	ND	F2	1.0	0.21	ug/L			05/30/19 21:39	1
1,1,2-Trichloroethane	ND	F2	1.0	0.23	ug/L			05/30/19 21:39	1

Eurofins TestAmerica, Buffalo

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Lab Sample ID: 480-154078-1 Matrix: Water

Analyzed

05/30/19 14:57

05/30/19 14:57

6

Lab Sample ID: 480-154078-2 Matrix: Water

05/30/19 14:57

05/30/19 14:57

05/30/19 14:57

05/30/19 14:57

05/30/19 14:57

05/30/19 14:57

Analyzed

05/30/19 14:57

05/30/19 14:57

05/30/19 14:57

05/30/19 14:57

Prepared

Project/Site: 11194450-02, GrafTech International Hold Client Sample ID: WG-11194450-052319-DT-002

Date Collected: 05/23/19 13:25 Date Received: 05/23/19 15:20

Client: GHD Services Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.50	J F2	1.0	0.38	ug/L			05/30/19 21:39	1
1,1-Dichlorethylene	ND	F2	1.0	0.29	ug/L			05/30/19 21:39	1
1,2-Dichloroethane	ND	F2	1.0	0.21	ug/L			05/30/19 21:39	1
1,2-Dichloropropane	ND	F1 F2	1.0	0.72	ug/L			05/30/19 21:39	1
2-Butanone	ND		10	1.3	ug/L			05/30/19 21:39	1
2-Hexanone	ND		5.0	1.2	ug/L			05/30/19 21:39	1
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L			05/30/19 21:39	1
Acetone	3.1	J F2	10	3.0	ug/L			05/30/19 21:39	1
Benzene	ND	F2	1.0	0.41	ug/L			05/30/19 21:39	1
Bromodichloromethane	ND	F2	1.0	0.39	ug/L			05/30/19 21:39	1
Bromoform	ND	F2	1.0	0.26	ug/L			05/30/19 21:39	1
Bromomethane	ND	F2	1.0	0.69	ug/L			05/30/19 21:39	1
Carbon disulfide	ND	F2	1.0	0.19	ug/L			05/30/19 21:39	1
Carbon tetrachloride	ND	F1 F2	1.0	0.27	ug/L			05/30/19 21:39	1
Chlorobenzene	ND	F2	1.0	0.75	ug/L			05/30/19 21:39	1
Chloroethane	ND		1.0	0.32	ug/L			05/30/19 21:39	1
Chloroform	ND	F2	1.0	0.34	ug/L			05/30/19 21:39	1
Chloromethane	ND		1.0	0.35	ug/L			05/30/19 21:39	1
cis-1,2-Dichloroethene	1.2	F2	1.0	0.81	ug/L			05/30/19 21:39	1
cis-1,3-Dichloropropene	ND	F2	1.0	0.36	ug/L			05/30/19 21:39	1
Dibromochloromethane	ND	F2	1.0	0.32	ug/L			05/30/19 21:39	1
Ethylbenzene	ND	F2	1.0	0.74	ug/L			05/30/19 21:39	1
Methylene Chloride	0.62	J F1 F2	1.0	0.44	ug/L			05/30/19 21:39	1
Styrene	ND	F2	1.0	0.73	ug/L			05/30/19 21:39	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/30/19 21:39	1
Toluene	ND	F2	1.0	0.51	ug/L			05/30/19 21:39	1
trans-1,2-Dichloroethene	ND	F2	1.0	0.90	ug/L			05/30/19 21:39	1
trans-1,3-Dichloropropene	ND	F2	1.0	0.37	ug/L			05/30/19 21:39	1
Trichloroethene	ND	F2	1.0	0.46	ug/L			05/30/19 21:39	1
Vinyl chloride	5.1		1.0	0.90	ug/L			05/30/19 21:39	1
Xylenes, Total	ND	F2	2.0	0.66	ug/L			05/30/19 21:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 - 120			_		05/30/19 21:39	1
4-Bromofluorobenzene (Surr)	98		73 - 120					05/30/19 21:39	1
Toluene-d8 (Surr)	93		80 - 120					05/30/19 21:39	1
Dibromofluoromethane (Surr)	108		75 - 123					05/30/19 21:39	1

Client Sample ID: WG-11194450-052319-DT-003 Date Collected: 05/23/19 14:05

Date Received: 05/23/19 15:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		20	16	ug/L			05/30/19 15:45	20
1,1,2,2-Tetrachloroethane	ND		20	4.2	ug/L			05/30/19 15:45	20
1,1,2-Trichloroethane	ND		20	4.6	ug/L			05/30/19 15:45	20
1,1-Dichloroethane	ND		20	7.6	ug/L			05/30/19 15:45	20
1,1-Dichlorethylene	6.3	J	20	5.8	ug/L			05/30/19 15:45	20
1,2-Dichloroethane	ND		20	4.2	ug/L			05/30/19 15:45	20

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-154078-3

Job ID: 480-154078-1

Lab Sample ID: 480-154078-2

Matrix: Water

Matrix: Water

Project/Site: 11194450-02, GrafTech International Hold Client Sample ID: WG-11194450-052319-DT-003

Date Collected: 05/23/19 14:05

Date Received: 05/23/19 15:20

Client: GHD Services Inc.

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		20	14	ug/L			05/30/19 15:45	20
2-Butanone	ND		200	26	ug/L			05/30/19 15:45	20
2-Hexanone	ND		100	25	ug/L			05/30/19 15:45	20
4-Methyl-2-pentanone	ND		100	42	ug/L			05/30/19 15:45	20
Acetone	ND		200	60	ug/L			05/30/19 15:45	20
Benzene	ND		20	8.2	ug/L			05/30/19 15:45	20
Bromodichloromethane	ND		20	7.8	ug/L			05/30/19 15:45	20
Bromoform	ND		20	5.2	ug/L			05/30/19 15:45	20
Bromomethane	ND		20	14	ug/L			05/30/19 15:45	20
Carbon disulfide	ND		20	3.8	ug/L			05/30/19 15:45	20
Carbon tetrachloride	ND		20	5.4	ug/L			05/30/19 15:45	20
Chlorobenzene	ND		20	15	ug/L			05/30/19 15:45	20
Chloroethane	ND		20	6.4	ug/L			05/30/19 15:45	20
Chloroform	8.0	J	20	6.8	ug/L			05/30/19 15:45	20
Chloromethane	ND		20	7.0	ug/L			05/30/19 15:45	20
cis-1,2-Dichloroethene	1000		20	16	ug/L			05/30/19 15:45	20
cis-1,3-Dichloropropene	ND		20	7.2	ug/L			05/30/19 15:45	20
Dibromochloromethane	ND		20	6.4	ug/L			05/30/19 15:45	20
Ethylbenzene	ND		20	15	ug/L			05/30/19 15:45	20
Methylene Chloride	ND		20	8.8	ug/L			05/30/19 15:45	20
Styrene	ND		20	15	ug/L			05/30/19 15:45	20
Tetrachloroethene	390		20	7.2	ug/L			05/30/19 15:45	20
Toluene	ND		20	10	ug/L			05/30/19 15:45	20
trans-1,2-Dichloroethene	ND		20	18	ug/L			05/30/19 15:45	20
trans-1,3-Dichloropropene	ND		20	7.4	ug/L			05/30/19 15:45	20
Trichloroethene	510		20	9.2	ug/L			05/30/19 15:45	20
Vinyl chloride	230		20	18	ug/L			05/30/19 15:45	20
Xylenes, Total	ND		40	13	ug/L			05/30/19 15:45	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		77 - 120			-		05/30/19 15:45	20
4-Bromofluorobenzene (Surr)	104		73 - 120					05/30/19 15:45	20
Toluene-d8 (Surr)	99		80 - 120					05/30/19 15:45	20
Dibromofluoromethane (Surr)	105		75 - 123					05/30/19 15:45	20

Client Sample ID: WG-11194450-052319-DT-004

Date Collected: 05/23/19 14:05 Date Received: 05/23/19 15:20

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/30/19 16:10	1
1,1,2,2-Tetrachloroethane	3.3		1.0	0.21	ug/L			05/30/19 16:10	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/30/19 16:10	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/30/19 16:10	1
1,1-Dichlorethylene	4.3		1.0	0.29	ug/L			05/30/19 16:10	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/30/19 16:10	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/30/19 16:10	1
2-Butanone	ND		10	1.3	ug/L			05/30/19 16:10	1
2-Hexanone	ND		5.0	1.2	ug/L			05/30/19 16:10	1

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-154078-3 Matrix: Water 5 6

Job ID: 480-154078-1

Lab Sample ID: 480-154078-4 Matrix: Water

Client: GHD Services Inc.	
Project/Site: 11194450-02, GrafTech International Hold	t

Client Sample ID: WG-11194450-052319-DT-004 Date Collected: 05/23/19 14:05 Date Received: 05/23/19 15:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L			05/30/19 16:10	1
Acetone	3.2	J	10	3.0	ug/L			05/30/19 16:10	1
Benzene	0.42	J	1.0	0.41	ug/L			05/30/19 16:10	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/30/19 16:10	1
Bromoform	ND		1.0	0.26	ug/L			05/30/19 16:10	1
Bromomethane	ND		1.0	0.69	ug/L			05/30/19 16:10	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/30/19 16:10	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/30/19 16:10	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/30/19 16:10	1
Chloroethane	ND		1.0	0.32	ug/L			05/30/19 16:10	1
Chloroform	5.5		1.0	0.34	ug/L			05/30/19 16:10	1
Chloromethane	ND		1.0	0.35	ug/L			05/30/19 16:10	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/30/19 16:10	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/30/19 16:10	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/30/19 16:10	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/30/19 16:10	1
Styrene	ND		1.0	0.73	ug/L			05/30/19 16:10	1
Toluene	0.91	J	1.0	0.51	ug/L			05/30/19 16:10	1
trans-1,2-Dichloroethene	6.1		1.0	0.90	ug/L			05/30/19 16:10	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/30/19 16:10	1
Xylenes, Total	1.1	J	2.0	0.66	ug/L			05/30/19 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		77 - 120			-		05/30/19 16:10	1
4-Bromofluorobenzene (Surr)	99		73 - 120					05/30/19 16:10	1
Toluene-d8 (Surr)	98		80 - 120					05/30/19 16:10	1
Dibromofluoromethane (Surr)	117		75 - 123					05/30/19 16:10	1

Method: 8260C - Volatile Organic Compounds by GC/MS - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	1000		20	16	ug/L			05/30/19 22:03	20
Tetrachloroethene	400		20	7.2	ug/L			05/30/19 22:03	20
Trichloroethene	540		20	9.2	ug/L			05/30/19 22:03	20
Vinyl chloride	270		20	18	ug/L			05/30/19 22:03	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		77 _ 120			-		05/30/19 22:03	20
4-Bromofluorobenzene (Surr)	107		73 - 120					05/30/19 22:03	20
Toluene-d8 (Surr)	103		80 - 120					05/30/19 22:03	20
Dibromofluoromethane (Surr)	107		75 - 123					05/30/19 22:03	20

Client Sample ID: TB-11194450-052319-DT Date Collected: 05/23/19 00:00 Date Received: 05/23/19 15:20

Method: 8260C - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			05/30/19 16:34	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			05/30/19 16:34	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			05/30/19 16:34	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			05/30/19 16:34	1

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-154078-5 Matrix: Water

Job ID: 480-154078-1 Lab Sample ID: 480-154078-4 Matrix: Water

Client: GHD Services Inc. Project/Site: 11194450-02, GrafTech International Hold

Client Sample ID: TB-11194450-052319-DT Date Collected: 05/23/19 00:00

Date Received: 05/23/19 15:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichlorethylene	ND		1.0	0.29	ug/L			05/30/19 16:34	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/30/19 16:34	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/30/19 16:34	1
2-Butanone	ND		10	1.3	ug/L			05/30/19 16:34	1
2-Hexanone	ND		5.0	1.2	ug/L			05/30/19 16:34	1
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L			05/30/19 16:34	1
Acetone	ND		10	3.0	ug/L			05/30/19 16:34	1
Benzene	ND		1.0	0.41	ug/L			05/30/19 16:34	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/30/19 16:34	1
Bromoform	ND		1.0	0.26	ug/L			05/30/19 16:34	1
Bromomethane	ND		1.0	0.69	ug/L			05/30/19 16:34	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/30/19 16:34	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/30/19 16:34	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/30/19 16:34	1
Chloroethane	ND		1.0	0.32	ug/L			05/30/19 16:34	1
Chloroform	ND		1.0	0.34	ug/L			05/30/19 16:34	1
Chloromethane	ND		1.0	0.35	ug/L			05/30/19 16:34	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/30/19 16:34	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/30/19 16:34	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/30/19 16:34	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/30/19 16:34	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/30/19 16:34	1
Styrene	ND		1.0	0.73	ug/L			05/30/19 16:34	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/30/19 16:34	1
Toluene	ND		1.0	0.51	ug/L			05/30/19 16:34	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/30/19 16:34	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/30/19 16:34	1
Trichloroethene	ND		1.0	0.46	ug/L			05/30/19 16:34	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/30/19 16:34	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/30/19 16:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		77 - 120			-		05/30/19 16:34	1
4-Bromofluorobenzene (Surr)	104		73 - 120					05/30/19 16:34	1
Toluene-d8 (Surr)	101		80 - 120					05/30/19 16:34	1
Dibromofluoromethane (Surr)	111		75 - 123					05/30/19 16:34	1

Lab Sample ID: 480-154078-5

Matrix: Water

5

6

Client: GHD Services Inc. Project/Site: 11194450-02, GrafTech International Hold

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

Matrix: Water	- •	-				Prep Type: Total/NA
-				Percent Sur	rogate Recovery (Acce	eptance Limits)
		DCA	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)	
480-154078-1	WG-11194450-052319-DT-001	115	99	95	103	
480-154078-2	WG-11194450-052319-DT-002	106	98	93	108	
480-154078-2 MS	WG-11194450-052319-DT-002	105	101	97	100	
480-154078-2 MSD	WG-11194450-052319-DT-002	113	103	96	105	
480-154078-3	WG-11194450-052319-DT-003	118	104	99	105	
480-154078-4	WG-11194450-052319-DT-004	111	99	98	117	
480-154078-4 - DL	WG-11194450-052319-DT-004	107	107	103	107	
480-154078-5	TB-11194450-052319-DT	112	104	101	111	
LCS 480-475230/5	Lab Control Sample	106	106	102	99	
LCS 480-475447/5	Lab Control Sample	111	105	100	110	
MB 480-475230/7	Method Blank	104	96	97	102	
MB 480-475447/7	Method Blank	107	102	98	98	
Surrogate Legend						

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Job ID: 480-154078-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Eurofins TestAmerica, Buffalo

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-475230/7 Matrix: Water

Analysis Batch: 475230

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/30/19 09:57	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/30/19 09:57	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/30/19 09:57	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/30/19 09:57	1
1,1-Dichlorethylene	ND		1.0	0.29	ug/L			05/30/19 09:57	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/30/19 09:57	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/30/19 09:57	1
2-Butanone	ND		10	1.3	ug/L			05/30/19 09:57	1
2-Hexanone	ND		5.0	1.2	ug/L			05/30/19 09:57	1
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L			05/30/19 09:57	1
Acetone	ND		10	3.0	ug/L			05/30/19 09:57	1
Benzene	ND		1.0	0.41	ug/L			05/30/19 09:57	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/30/19 09:57	1
Bromoform	ND		1.0	0.26	ug/L			05/30/19 09:57	1
Bromomethane	ND		1.0	0.69	ug/L			05/30/19 09:57	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/30/19 09:57	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/30/19 09:57	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/30/19 09:57	1
Chloroethane	ND		1.0	0.32	ug/L			05/30/19 09:57	1
Chloroform	ND		1.0	0.34	ug/L			05/30/19 09:57	1
Chloromethane	ND		1.0	0.35	ug/L			05/30/19 09:57	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/30/19 09:57	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/30/19 09:57	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/30/19 09:57	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/30/19 09:57	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/30/19 09:57	1
Styrene	ND		1.0	0.73	ug/L			05/30/19 09:57	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/30/19 09:57	1
Toluene	ND		1.0	0.51	ug/L			05/30/19 09:57	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/30/19 09:57	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/30/19 09:57	1
Trichloroethene	ND		1.0	0.46	ug/L			05/30/19 09:57	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/30/19 09:57	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/30/19 09:57	1
· · · · · · · · · · · · · · · · · · ·	MB	МВ			- 3				

Surrogate	%Recovery	Qualifier Lim	its	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	77 -	120		05/30/19 09:57	1
4-Bromofluorobenzene (Surr)	96	73 -	120		05/30/19 09:57	1
Toluene-d8 (Surr)	97	80 -	120		05/30/19 09:57	1
Dibromofluoromethane (Surr)	102	- 75	123		05/30/19 09:57	1

Lab Sample ID: LCS 480-475230/5 Matrix: Water

Analysis Batch: 475230

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	23.5		ug/L		94	73 - 126	·
1,1,2,2-Tetrachloroethane	25.0	23.5		ug/L		94	76 _ 120	

Prep Type: Total/NA

Client Sample ID: Method Blank

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

5

8

12 13

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-475230/5

Matrix: Water Analysis Batch: 475230

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichloroethane	25.0	24.8		ug/L		99	76 - 122	
1,1-Dichloroethane	25.0	22.5		ug/L		90	77 - 120	
1,1-Dichlorethylene	25.0	18.6		ug/L		74	66 ₋ 127	
1,2-Dichloroethane	25.0	25.5		ug/L		102	75 ₋ 120	
1,2-Dichloropropane	25.0	22.3		ug/L		89	76 ₋ 120	
2-Butanone	125	122		ug/L		98	57 ₋ 140	
2-Hexanone	125	122		ug/L		97	65 - 127	
4-Methyl-2-pentanone	125	122		ug/L		97	71 ₋ 125	
Acetone	125	135		ug/L		108	56 ₋ 142	
Benzene	25.0	21.9		ug/L		87	71 - 124	
Bromodichloromethane	25.0	25.4		ug/L		102	80 _ 122	
Bromoform	25.0	26.7		ug/L		107	61 - 132	
Bromomethane	25.0	19.9		ug/L		80	55 ₋ 144	
Carbon disulfide	25.0	18.6		ug/L		74	59 ₋ 134	
Carbon tetrachloride	25.0	22.2		ug/L		89	72 ₋ 134	
Chlorobenzene	25.0	24.1		ug/L		97	80 - 120	
Chloroethane	25.0	20.3		ug/L		81	69 - 136	
Chloroform	25.0	20.9		ug/L		84	73 ₋ 127	
Chloromethane	25.0	18.9		ug/L		76	68 ₋ 124	
cis-1,2-Dichloroethene	25.0	22.6		ug/L		90	74 ₋ 124	
cis-1,3-Dichloropropene	25.0	24.7		ug/L		99	74 ₋ 124	
Dibromochloromethane	25.0	27.8		ug/L		111	75 - 125	
Ethylbenzene	25.0	23.5		ug/L		94	77 ₋ 123	
Methylene Chloride	25.0	20.5		ug/L		82	75 ₋ 124	
Styrene	25.0	25.2		ug/L		101	80 - 120	
Tetrachloroethene	25.0	22.8		ug/L		91	74 ₋ 122	
Toluene	25.0	23.5		ug/L		94	80 - 122	
trans-1,2-Dichloroethene	25.0	20.5		ug/L		82	73 - 127	
trans-1,3-Dichloropropene	25.0	27.4		ug/L		109	80 - 120	
Trichloroethene	25.0	22.0		ug/L		88	74 - 123	
Vinyl chloride	25.0	19.3		ug/L		77	65 ₋ 133	

	LCS	LCS				
Surrogate	%Recovery	Qualifier	Limits			
1,2-Dichloroethane-d4 (Surr)	106		77 - 120			
4-Bromofluorobenzene (Surr)	106		73 - 120			
Toluene-d8 (Surr)	102		80 - 120			
Dibromofluoromethane (Surr)	99		75 - 123			

Lab Sample ID: MB 480-475447/7 Matrix: Water Analysis Batch: 475447

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 1.0 0.82 ug/L 05/30/19 20:57 1 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/L 05/30/19 20:57 1 05/30/19 20:57 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 1 1,1-Dichloroethane ND 1.0 0.38 ug/L 05/30/19 20:57 1 1,1-Dichlorethylene ND 1.0 0.29 ug/L 05/30/19 20:57 1

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Job ID: 480-154078-1

Prep Type: Total/NA

Client Sample ID: Method Blank

7 8 9 10

13

14

Lab Sample ID: MB 480-475447/7 Matrix: Water Analysis Batch: 475447

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/30/19 20:57	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/30/19 20:57	1
2-Butanone	ND		10	1.3	ug/L			05/30/19 20:57	1
2-Hexanone	ND		5.0	1.2	ug/L			05/30/19 20:57	1
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L			05/30/19 20:57	1
Acetone	ND		10	3.0	ug/L			05/30/19 20:57	1
Benzene	ND		1.0	0.41	ug/L			05/30/19 20:57	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/30/19 20:57	1
Bromoform	ND		1.0	0.26	ug/L			05/30/19 20:57	1
Bromomethane	ND		1.0	0.69	ug/L			05/30/19 20:57	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/30/19 20:57	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/30/19 20:57	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/30/19 20:57	1
Chloroethane	ND		1.0	0.32	ug/L			05/30/19 20:57	1
Chloroform	ND		1.0	0.34	ug/L			05/30/19 20:57	1
Chloromethane	ND		1.0	0.35	ug/L			05/30/19 20:57	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/30/19 20:57	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/30/19 20:57	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/30/19 20:57	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/30/19 20:57	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/30/19 20:57	1
Styrene	ND		1.0	0.73	ug/L			05/30/19 20:57	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/30/19 20:57	1
Toluene	ND		1.0	0.51	ug/L			05/30/19 20:57	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/30/19 20:57	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/30/19 20:57	1
Trichloroethene	ND		1.0	0.46	ug/L			05/30/19 20:57	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/30/19 20:57	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/30/19 20:57	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		77 - 120		05/30/19 20:57	1
4-Bromofluorobenzene (Surr)	102		73 - 120		05/30/19 20:57	1
Toluene-d8 (Surr)	98		80 - 120		05/30/19 20:57	1
Dibromofluoromethane (Surr)	98		75 - 123		05/30/19 20:57	1

Lab Sample ID: LCS 480-475447/5 Matrix: Water Analysis Batch: 475447

Analysis Baton, Horri	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	29.7		ug/L		119	73 - 126
1,1,2,2-Tetrachloroethane	25.0	23.8		ug/L		95	76 - 120
1,1,2-Trichloroethane	25.0	25.1		ug/L		100	76 - 122
1,1-Dichloroethane	25.0	26.0		ug/L		104	77 _ 120
1,1-Dichlorethylene	25.0	25.8		ug/L		103	66 - 127
1,2-Dichloroethane	25.0	27.5		ug/L		110	75 - 120
1,2-Dichloropropane	25.0	24.4		ug/L		98	76 - 120

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

5

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-475447/5

Matrix: Water Analysis Batch: 475447

Analysis Baten. 470447	Spike	LCS	1.09				%Rec.	
A	•			· 1		N/ Dee		
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
2-Butanone	125	130		ug/L		104	57 - 140	
2-Hexanone	125	124		ug/L		99	65 - 127	
4-Methyl-2-pentanone	125	120		ug/L		96	71 - 125	
Acetone	125	163		ug/L		130	56 - 142	
Benzene	25.0	24.3		ug/L		97	71 - 124	
Bromodichloromethane	25.0	27.8		ug/L		111	80 - 122	
Bromoform	25.0	26.2		ug/L		105	61 - 132	
Bromomethane	25.0	23.1		ug/L		92	55 ₋ 144	
Carbon disulfide	25.0	26.0		ug/L		104	59 - 134	
Carbon tetrachloride	25.0	30.3		ug/L		121	72 - 134	
Chlorobenzene	25.0	25.3		ug/L		101	80 - 120	
Chloroethane	25.0	24.7		ug/L		99	69 - 136	
Chloroform	25.0	23.7		ug/L		95	73 ₋ 127	
Chloromethane	25.0	21.6		ug/L		86	68 ₋ 124	
cis-1,2-Dichloroethene	25.0	24.9		ug/L		99	74 - 124	
cis-1,3-Dichloropropene	25.0	26.3		ug/L		105	74 ₋ 124	
Dibromochloromethane	25.0	28.5		ug/L		114	75 - 125	
Ethylbenzene	25.0	25.7		ug/L		103	77 - 123	
Methylene Chloride	25.0	24.0		ug/L		96	75 ₋ 124	
Styrene	25.0	25.9		ug/L		104	80 - 120	
Tetrachloroethene	25.0	26.9		ug/L		108	74 - 122	
Toluene	25.0	25.9		ug/L		104	80 - 122	
trans-1,2-Dichloroethene	25.0	27.1		ug/L		109	73 - 127	
trans-1,3-Dichloropropene	25.0	26.6		ug/L		106	80 - 120	
Trichloroethene	25.0	26.4		ug/L		105	74 - 123	
Vinyl chloride	25.0	23.6		ug/L		95	65 - 133	

	LCS LCS						
Surrogate	%Recovery	Qualifier	Limits				
1,2-Dichloroethane-d4 (Surr)			77 - 120				
4-Bromofluorobenzene (Surr)	105		73 - 120				
Toluene-d8 (Surr)	100		80 - 120				
Dibromofluoromethane (Surr)	110		75 - 123				

Lab Sample ID: 480-154078-2 MS Matrix: Water Analysis Batch: 475447

Analysis Datch. 47 3447									
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND	F1 F2	25.0	24.8		ug/L		99	73 - 126
1,1,2,2-Tetrachloroethane	ND	F2	25.0	19.8		ug/L		79	76 _ 120
1,1,2-Trichloroethane	ND	F2	25.0	20.4		ug/L		82	76 - 122
1,1-Dichloroethane	0.50	J F2	25.0	19.8		ug/L		77	77 _ 120
1,1-Dichlorethylene	ND	F2	25.0	20.0		ug/L		80	66 - 127
1,2-Dichloroethane	ND	F2	25.0	22.1		ug/L		88	75 - 120
1,2-Dichloropropane	ND	F1 F2	25.0	18.2	F1	ug/L		73	76 _ 120
2-Butanone	ND		125	97.4		ug/L		78	57 - 140
2-Hexanone	ND		125	101		ug/L		81	65 _ 127
4-Methyl-2-pentanone	ND		125	99.5		ug/L		80	71 _ 125

Client Sample ID: WG-11194450-052319-DT-002 Prep Type: Total/NA

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: WG-11194450-052319-DT-002

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-154078-2 MS

Matrix: Water Analysis Batch: 475447

Analysis Batch: 475447									
	•	Sample	Spike		MS				%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D		Limits
Acetone			125	103		ug/L	_	80	56 - 142
Benzene	ND	F2	25.0	18.8		ug/L		75	71 ₋ 124
Bromodichloromethane		F2	25.0	20.3		ug/L		81	80 - 122
Bromoform	ND	F2	25.0	21.5		ug/L		86	61 - 132
Bromomethane	ND	F2	25.0	19.3		ug/L		77	55 - 144
Carbon disulfide	ND	F2	25.0	18.0		ug/L		72	59 ₋ 134
Carbon tetrachloride	ND	F1 F2	25.0	24.1		ug/L		97	72 - 134
Chlorobenzene	ND	F2	25.0	20.5		ug/L		82	80 - 120
Chloroethane	ND		25.0	23.7		ug/L		95	69 - 136
Chloroform	ND	F2	25.0	18.6		ug/L		75	73 - 127
Chloromethane	ND		25.0	21.3		ug/L		85	68 - 124
cis-1,2-Dichloroethene	1.2	F2	25.0	20.2		ug/L		76	74 - 124
cis-1,3-Dichloropropene	ND	F2	25.0	19.7		ug/L		79	74 - 124
Dibromochloromethane	ND	F2	25.0	23.3		ug/L		93	75 - 125
Ethylbenzene	ND	F2	25.0	21.5		ug/L		86	77 _ 123
Methylene Chloride	0.62	J F1 F2	25.0	16.9	F1	ug/L		65	75 ₋ 124
Styrene	ND	F2	25.0	21.1		ug/L		84	80 - 120
Tetrachloroethene	ND		25.0	24.4		ug/L		98	74 ₋ 122
Toluene	ND	F2	25.0	20.5		ug/L		82	80 - 122
trans-1,2-Dichloroethene	ND	F2	25.0	20.2		ug/L		81	73 - 127
trans-1,3-Dichloropropene	ND	F2	25.0	22.5		ug/L		90	80 - 120
Trichloroethene	ND	F2	25.0	19.6		ug/L		78	74 - 123
Vinyl chloride	5.1		25.0	27.3		ug/L		89	65 - 133
	MS	MS							

	1//5	11/2	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120
Toluene-d8 (Surr)	97		80 - 120
Dibromofluoromethane (Surr)	100		75 - 123

Lab Sample ID: 480-154078-2 MSD Matrix: Water Analysis Batch: 475447

Client Sample ID: WG-11194450-052319-DT-002 Prep Type: Total/NA

Analysis Batch: 475447											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND	F1 F2	25.0	33.8	F1 F2	ug/L		135	73 - 126	31	15
1,1,2,2-Tetrachloroethane	ND	F2	25.0	23.8	F2	ug/L		95	76 ₋ 120	18	15
1,1,2-Trichloroethane	ND	F2	25.0	25.8	F2	ug/L		103	76 _ 122	23	15
1,1-Dichloroethane	0.50	J F2	25.0	27.1	F2	ug/L		107	77 - 120	31	20
1,1-Dichlorethylene	ND	F2	25.0	27.9	F2	ug/L		112	66 _ 127	33	16
1,2-Dichloroethane	ND	F2	25.0	28.4	F2	ug/L		114	75 ₋ 120	25	20
1,2-Dichloropropane	ND	F1 F2	25.0	25.4	F2	ug/L		102	76 ₋ 120	33	20
2-Butanone	ND		125	119		ug/L		95	57 ₋ 140	20	20
2-Hexanone	ND		125	117		ug/L		94	65 - 127	15	15
4-Methyl-2-pentanone	ND		125	118		ug/L		95	71 ₋ 125	17	35
Acetone	3.1	J F2	125	120	F2	ug/L		94	56 - 142	16	15
Benzene	ND	F2	25.0	26.8	F2	ug/L		107	71 - 124	35	13
Bromodichloromethane	ND	F2	25.0	29.4	F2	ug/L		118	80 - 122	37	15

Eurofins TestAmerica, Buffalo

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-154078-2 MSD

Client Sample ID: WG-11194450-052319-DT-002 Prep Type: Total/NA

Matrix: Water Analysis Batch: 475447

Analysis Batch: 475447												
	•	Sample	Spike		MSD				%Rec.		RPD	5
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Bromoform	ND	F2	25.0	25.1		ug/L		101	61 - 132	16	15	
Bromomethane	ND	F2	25.0	24.0	F2	ug/L		96	55 _ 144	22	15	
Carbon disulfide	ND	F2	25.0	26.1	F2	ug/L		104	59 _ 134	37	15	
Carbon tetrachloride	ND	F1 F2	25.0	34.8	F1 F2	ug/L		139	72 - 134	36	15	
Chlorobenzene	ND	F2	25.0	26.6	F2	ug/L		106	80 - 120	26	25	8
Chloroethane	ND		25.0	25.1		ug/L		100	69 _ 136	6	15	Ο
Chloroform	ND	F2	25.0	24.9	F2	ug/L		100	73 - 127	29	20	
Chloromethane	ND		25.0	21.9		ug/L		88	68 - 124	3	15	9
cis-1,2-Dichloroethene	1.2	F2	25.0	26.5	F2	ug/L		101	74 - 124	27	15	
cis-1,3-Dichloropropene	ND	F2	25.0	27.6	F2	ug/L		111	74 - 124	34	15	
Dibromochloromethane	ND	F2	25.0	28.1	F2	ug/L		113	75 _ 125	19	15	
Ethylbenzene	ND	F2	25.0	27.1	F2	ug/L		108	77 - 123	23	15	
Methylene Chloride	0.62	J F1 F2	25.0	24.3	F2	ug/L		95	75 _ 124	36	15	
Styrene	ND	F2	25.0	27.8	F2	ug/L		111	80 - 120	28	20	
Tetrachloroethene	ND		25.0	29.0		ug/L		116	74 - 122	17	20	_
Toluene	ND	F2	25.0	26.6	F2	ug/L		106	80 - 122	26	15	
trans-1,2-Dichloroethene	ND	F2	25.0	27.7	F2	ug/L		111	73 - 127	32	20	
trans-1,3-Dichloropropene	ND	F2	25.0	27.7	F2	ug/L		111	80 - 120	21	15	
Trichloroethene	ND	F2	25.0	27.4	F2	ug/L		109	74 - 123	33	16	
Vinyl chloride	5.1		25.0	29.7		ug/L		99	65 - 133	9	15	
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1,2-Dichloroethane-d4 (Surr)	113		77 - 120									
4-Bromofluorobenzene (Surr)	103		73 - 120									
Toluene-d8 (Surr)	96		80 - 120									
Dibromofluoromethane (Surr)	105		75 - 123									

QC Association Summary

Client: GHD Services Inc. Project/Site: 11194450-02, GrafTech International Hold

Job ID: 480-154078-1

GC/MS VOA

Analysis Batch: 475230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-154078-1	WG-11194450-052319-DT-001	Total/NA	Water	8260C	
480-154078-3	WG-11194450-052319-DT-003	Total/NA	Water	8260C	
480-154078-4	WG-11194450-052319-DT-004	Total/NA	Water	8260C	
480-154078-5	TB-11194450-052319-DT	Total/NA	Water	8260C	
MB 480-475230/7	Method Blank	Total/NA	Water	8260C	
LCS 480-475230/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 475447

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
WG-11194450-052319-DT-002	Total/NA	Water	8260C	
WG-11194450-052319-DT-004	Total/NA	Water	8260C	
Method Blank	Total/NA	Water	8260C	
Lab Control Sample	Total/NA	Water	8260C	
WG-11194450-052319-DT-002	Total/NA	Water	8260C	
WG-11194450-052319-DT-002	Total/NA	Water	8260C	
	WG-11194450-052319-DT-002 WG-11194450-052319-DT-004 Method Blank Lab Control Sample WG-11194450-052319-DT-002	WG-11194450-052319-DT-002 Total/NA WG-11194450-052319-DT-004 Total/NA Wdethod Blank Total/NA Lab Control Sample Total/NA WG-11194450-052319-DT-002 Total/NA	WG-11194450-052319-DT-002Total/NAWaterWG-11194450-052319-DT-004Total/NAWaterMethod BlankTotal/NAWaterLab Control SampleTotal/NAWaterWG-11194450-052319-DT-002Total/NAWater	WG-11194450-052319-DT-002 Total/NA Water 8260C WG-11194450-052319-DT-004 Total/NA Water 8260C Method Blank Total/NA Water 8260C Lab Control Sample Total/NA Water 8260C WG-11194450-052319-DT-002 Total/NA Water 8260C

Lab Chronicle

Client: GHD Services Inc. Project/Site: 11194450-02, GrafTech International Hold

Job ID: 480-154078-1

Client Samp	le ID: WG-11	194450-0523	19-DT-001				Lat	o Sample IE	D: 480-154078-
ate Collected	: 05/23/19 11:3	5							Matrix: Wate
ate Received:	05/23/19 15:2	0							
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			475230	05/30/19 14:57	AEM	TAL BUF	
Client Samp	le ID: WG-11	194450-0523	19-DT-002				Lat	o Sample IE	D: 480-154078-
Date Collected	: 05/23/19 13:2	5						-	Matrix: Wate
Date Received:	05/23/19 15:2	0							
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	475447	05/30/19 21:39	RJF	TAL BUF	
- Cliont Samn		194450-0523	10_T_003				l at	Samplo II): 480-154078-
Date Collected			13-01-003				Lai		
	: 05/23/19 14:0								Matrix: Wate
	05/25/19 15.2	0							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		20	475230	05/30/19 15:45	AEM	TAL BUF	
Client Samp	le ID: WG-11	194450-0523	19-DT-004				Lat	o Sample IE): 480-154078-
Date Collected	: 05/23/19 14:0	5							Matrix: Wate
Date Received:	05/23/19 15:2	0							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	475230	05/30/19 16:10	AEM	TAL BUF	
Total/NA	Analysis	8260C	DL	20	475447	05/30/19 22:03	RJF	TAL BUF	
Client Samp	le ID: TB-11	194450-05231	9-DT				Lat	Sample IE	D: 480-154078-
Date Collected									Matrix: Wat
	05/23/19 15:2								
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
· · · · · ·									

475230

1

05/30/19 16:34

AEM

TAL BUF

Laboratory References:

Total/NA

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

8260C

Analysis

5/31/2019

Page 20 of 24

Client: GHD Services Inc.
Project/Site: 11194450-02, GrafTech International Hold

Laboratory: Eurofins TestAmerica, Buffalo
The accreditations/certifications listed below are applicable to this report.

Authority	Pro	ogram	EPA Region	Identification Number	Expiration Date
New York	NE	LAP	2	10026	03-31-20

Accreditation/Certification Summary

Job ID: 480-154078-1

Client: GHD Services Inc. Project/Site: 11194450-02, GrafTech International Hold

lethod	Method Description	Protocol	Laboratory
260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: GHD Services Inc. Project/Site: 11194450-02, GrafTech International Hold

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-154078-1	WG-11194450-052319-DT-001	Water	05/23/19 11:35	05/23/19 15:20
480-154078-2	WG-11194450-052319-DT-002	Water	05/23/19 13:25	05/23/19 15:20
480-154078-3	WG-11194450-052319-DT-003	Water	05/23/19 14:05	05/23/19 15:20
480-154078-4	WG-11194450-052319-DT-004	Water	05/23/19 14:05	05/23/19 15:20
480-154078-5	TB-11194450-052319-DT	Water	05/23/19 00:00	05/23/19 15:20

COC NO.: 58964	SSOW ID: Cooler No:	Carrier: Hend Delivered	1.2	COMMENTS/ SPECIAL INSTRUCTIONS:				E					000	ANY DATE TIME		5 5319 1520	
Fax:	YIN T			listnoʻJ IstoT Maria Barling Bec		M	X 6	m n	2-	V	+	+		COMPANY		The	D – Sampling C
OF CUSTODY RECORD	America Lab Location:	AMALYSIS REQUESTED (See Back of COC for Definitions)										480-154078 Chain of Custody	Notes/ Special Requirements:	RECEIVED BY	1, 2	* Jarea	LEGAL DOCUMENT – ALL FIELDS MUST BE COMPLETED ACCURATELY 1 Laboratory Copy PINK – Shipper GOLDENROD – Sampling Crew
OF CU		->< C11-	S- (N/.		2H Si (Si	NX	XX	×	22	1			Notes/ Special	TIME	1436		BAL DOCUMENT -
CHAIN Address:	Laboratory Name: TCS + Lab Contact:	SAMPLE TYPE	comp (c) (coc)	(ah.mm) (ah.mm) (ab.mm) (ab.mm) (ab.mm) (ab.mm) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	R ABBREVIATION	1135 WG G	1325 NG G	105 WG G	5.23-19 TB G	-			(Ts):	DATE	5.23-19		THE CHAIN OF CUSTODY IS A LEGAL DOCUMENT YELLOW – Receiving Laboratory Copy
A (Witmer Rd		DATE	BACK OF COC FO	5.23.19	202-5-23-19 1	03 5. 23 . 19 1	S1 23-52-5	X		5	e COCs for different T/ X 2 Week □ Other:	COMPANY	GHD		
(P)	vject No/ Phase/Task Code:	20	aseo	SAMPLE IDENTIFICATION Containers for each sample may be combined on one line)	PRESERVATION - (SEE BACK OF COC FOR ABBREVIATIONS)	WG-11194450-05239-DT-001	216-11194450 OS2319-DT-0045-23-19	16-11194450-052319-DT-003 5.23-19 1405 WG G	4-B-11194450 052319-DT-				AT Required in business days (use separate COCs for different TATs):	RELINOUISHED BY	Deel gran	/31/20	CI Inbution: WHITE - Fully Executed Copy (CRA)

Client: GHD Services Inc.

Login Number: 154078 List Number: 1

Creator: Maddux, Ann

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

List Source: Eurofins TestAmerica, Buffalo

Attachment D Data Validation Memo

Memorandum

June 20, 2019

To:	Maggie Popek	Ref. No.:	11194450
	st		
From:	Sheri Finn/eew/1	Tel:	716-205-1977
Subject:	Analytical Results and Reduced Validation Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York May 2019		

1. Introduction

This document details a validation of analytical results for groundwater samples collected in support of the Annual Groundwater Monitoring Program at the Niagara Falls, New York Site on May 23, 2019. Samples were submitted to TestAmerica Laboratories, Inc., located in Amherst, New York. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3.

Standard GHD report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody form, finished report forms, method blank data, recovery data from surrogate spikes/laboratory control samples (LCS)/matrix spikes (MS) and field QC samples.

The Quality Assurance/Quality Control (QA/QC) criteria by which these data have been assessed are outlined in the analytical method referenced in Table 3 and applicable guidance from the document entitled "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review", USEPA 540-R-08-01, June 2008, subsequently referred to as the "Guidelines" in this Memorandum.

2. Sample Holding Time and Preservation

The sample holding time criterion for the analysis is summarized in Table 3. The sample chain of custody document and analytical report were used to determine sample holding times. All samples were prepared and analyzed within the required holding time.

All samples were properly preserved, delivered on ice, and stored by the laboratory at the required temperature (0-6°C).

3. Laboratory Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

All method blank results were non-detect for the compounds of interest.

4. Surrogate Spike Recoveries

In accordance with the method employed, all samples, blanks, and QC samples analyzed for Volatile Organic Compounds (VOCs) are spiked with surrogate compounds prior to sample analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for VOC determinations were spiked with the appropriate number of surrogate compounds prior to sample analysis.

Surrogate recoveries were assessed against laboratory control limits. All surrogate recoveries met the laboratory criteria.

5. Laboratory Control Sample Analyses

LCS are prepared and analyzed as samples to assess the analytical efficiencies of the method employed, independent of sample matrix effects.

For this study, LCS were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

The LCS contained all compounds of interest. All LCS recoveries were within the laboratory control limits, indicating acceptable analytical accuracy.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the preparation process, measurement procedures, and accuracy of a particular analysis, samples are spiked with known concentrations of the analytes of concern and analyzed as MS/MSD samples. The relative percent difference (RPD) between the MS and MSD is used to assess analytical precision. If the original sample concentration is significantly greater than the spike concentration, the recovery is not assessed.

MS/MSD analysis was performed as specified in Table 1.

The MS/MSD sample was spiked with all compounds of interest. All percent recoveries and RPD values were within the laboratory control limits, indicating good analytical accuracy and precision with the exception of the results qualified as estimated in Table 4.

7. Field QA/QC Samples

The field QA/QC consisted of one trip blank sample, and one field duplicate sample set.

7.1 Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, a trip blank was submitted to the laboratory for VOC analysis. All results were non-detect for the compounds of interest.

7.2 Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, a field duplicate sample set was collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with the duplicate sample must be less than 50 percent for water samples. If the reported concentration in either the investigative sample or its duplicate is less than five times the reporting limit (RL), the evaluation criterion is one times the RL value for water samples.

The field duplicate results were in agreement, demonstrating acceptable sampling and analytical precision with the exception of some variability with the trans-1,2-dichlorothene results. The associated results were qualified as estimated (see Table 5).

8. Analyte Reporting

The laboratory reported detected results down to the laboratory's MDL for each analyte. Positive analyte detections less than the RL but greater than the MDL were reported as estimated (J) in Table 2 unless qualified otherwise in this memorandum. Non-detect results were presented as non-detect at the RL in Table 2.

9. Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable with the qualifications noted.

Table 1

Sample Collection and Analysis Summary Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York May 2019

Analysis

Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	VOCs	Comments
WG-11194450-052319-DT-002	BW-3	Water	05/23/2019	13:25	х	MS/MSD
WG-11194450-052319-DT-003	BW-4	Water	05/23/2019	14:05	Х	
WG-11194450-052319-DT-004	BW-4	Water	05/23/2019	14:05	Х	Field Duplicate of WG-11194450-052319-DT-003
WG-11194450-052319-DT-001	GW-8B	Water	05/23/2019	11:35	Х	
TB-11194450-052319-DT	-	Water	05/23/2019	00:00	Х	Trip Blank

Notes:

- -Not applicableFD Field Duplicate sample of sample in parentheses
- MS/MSD Matrix Spike/Matrix Spike Duplicate
- VOCs Volatile Organic Compounds

Page 1 of 2

Table 2

Analytical Results Summary Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York May 2019

Sample Location: Sample ID: Sample Date:		NYSDEC	BW-3 WG-11194450-052319-DT-002 5/23/2019	BW-4 WG-11194450-052319-DT-003 5/23/2019	BW-4 WG-11194450-052319-DT-004 5/23/2019 (Duplicate)	GW-8B WG-11194450-052319-DT-001 5/23/2019
Parameters	Units	Class GA Criteria/TOGS				
Volatile Organic Compounds						
1,1,1-Trichloroethane	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	μg/L	5	1.0 U	20 U	3.3	1.0 U
1,1,2-Trichloroethane	µg/L	1	1.0 U	20 U	1.0 U	1.0 U
1,1-Dichloroethane	µg/L	5	0.50 J	20 U	1.0 U	1.0 U
1,1-Dichloroethene	µg/L	5	1.0 U	6.3 J	4.3	0.36 J
1,2-Dichloroethane	µg/L	0.6	1.0 U	20 U	1.0 U	1.0 U
1,2-Dichloropropane	µg/L	1	1.0 UJ	20 U	1.0 U	1.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	µg/L	50	10 U	200 U	10 U	10 U
2-Hexanone	µg/L	50	5.0 U	100 U	5.0 U	5.0 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	µg/L		5.0 U	100 U	5.0 U	5.0 U
Acetone	µg/L	50	3.1 J	200 U	3.2 J	10 U
Benzene	µg/L	1	1.0 U	20 U	0.42 J	1.0 U
Bromodichloromethane	µg/L	50	1.0 U	20 U	1.0 U	1.0 U
Bromoform	µg/L	50	1.0 U	20 U	1.0 U	1.0 U
Bromomethane (Methyl bromide)	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Carbon disulfide	µg/L	60	1.0 U	20 U	1.0 U	1.0 U
Carbon tetrachloride	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Chlorobenzene	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Chloroethane	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Chloroform (Trichloromethane)	µg/L	7	1.0 U	8.0 J	5.5	1.0 U
Chloromethane (Methyl chloride)	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	µg/L	5	1.2	1000	1000	18
cis-1,3-Dichloropropene	µg/L	0.4	1.0 U	20 U	1.0 U	1.0 U
Dibromochloromethane	µg/L	50	1.0 U	20 U	1.0 U	1.0 U
Ethylbenzene	µg/L	5	1.0 U	20 U	1.0 U	1.0 U
Methylene chloride	µg/L	5	0.62 J	20 U	1.0 U	1.0 U
Styrene	μg/L	5	1.0 U	20 U	1.0 U	1.0 U
Tetrachloroethene	µg/L	5	1.0 U	390	400	1.0 U
Toluene	μg/L	5	1.0 U	20 U	0.91 J	1.0 U
trans-1,2-Dichloroethene	µg/L	5	1.0 U	20 UJ	6.1 J	1.0 U

Table 2

Analytical Results Summary Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York May 2019

	Sample Location: Sample ID: Sample Date:	NYSDEC	BW-3 WG-11194450-052319-DT-002 5/23/2019	BW-4 WG-11194450-052319-DT-003 5/23/2019	BW-4 WG-11194450-052319-DT-004 5/23/2019 (Duplicate)	GW-8B WG-11194450-052319-DT-001 5/23/2019
Parameters	Units	Class GA Criteria/TOGS			(Duplicate)	
Volatile Organic Compounds						
trans-1,3-Dichloropropene	μg/L	0.4	1.0 U	20 U	1.0 U	1.0 U
Trichloroethene	µg/L	5	1.0 U	510	540	8.0
Vinyl chloride	µg/L	2	5.1	230	270	2.1
Xylenes (total)	µg/L	5	2.0 U	40 U	1.1 J	2.0 U

Notes:

J - Estimated concentration

Class GA Criteria/TOGS - Groundwater Effluent Limitations/Technical and Operational Guidance Series

U - Not detected at the associated reporting limit

UJ - Not detected; associated reporting limit is estimated

Table 3

Analytical Method and Holding Time Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York May 2019

Parameter	Method	Matrix	Collection to Analysis (Days)
Volatile Organic Compounds	SW-846 8260C	Water	14

Notes:

SW-846 - "Test Methods for Solid Waste/Physical Chemical Methods," SW-846, Third Edition, September 1986 (with all subsequent revisions)

Page 1 of 1

Table 4

Qualified Sample Results Due to Outlying MS/MSD Results Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York May 2019

			MS	MSD		Control Li	mits	Qualified	
Parameter	Sample ID	Analyte	% Recovery	% Recovery	RPD	% Recovery	RPD	Result	Units
					(percent)				
N/22	N/O 44404450 050040 DT 000			407	04	77 400		0.50 1	"
VOC	WG-11194450-052319-DT-002	1,1-Dichloroethane	77	107	31	77-120	20	0.50 J	µg/L
	WG-11194450-052319-DT-002	1,2-Dichloropropane	73	102	33	76-120	20	1.0 UJ	µg/L
	WG-11194450-052319-DT-002	Methylene chloride	65	95	36	75-124	15	0.62 J	µg/L

Notes:

- MS Matrix Spike
- MSD Matrix Spike Duplicate
- RPD Relative Percent Difference
- J Estimated concentration
- UJ Not detected; associated reporting limit is estimated

Page 1 of 1

Table 5

Qualified Sample Data Due to Variability in Field Duplicate Results Annual Groundwater Monitoring Program GrafTech International Holdings, Inc. Niagara Falls, New York May 2019

				Qualified	Field Duplicate	Qualified	
Parameter	Analyte	RPD/Diff	Sample ID	Result	Sample ID	Result	Units
		4.0		00.111			4
VOC	trans-1,2-Dichloroethene	- 1.0	WG-11194450-052319-DT-003	20 UJ	WG-11194450-052319-DT-004	6.1 J	µg/L

Notes:

DIII - DIIIEIEIICE (I.E., >IA RE IOI WALEIS OI >ZARE IOI SOIIS	Diff	- Difference	(i.e., >1X RL for waters or >2XRL for soils
--	------	--------------	---

RPD - Relative Percent Difference

J - Estimated concentration

UJ - Not detected; associated reporting limit is estimated

Reference No. 11194450-01

May 22, 2019

Ms. Julianne Snyder HSEP Manager GrafTech International Holdings Inc. 982 Keynote Circle Brooklyn Heights, OH 44131

Dear Ms. Snyder:

Re: Bedrock Well Redevelopment Summary Letter Former Republic Landfill, Niagara Falls, New York

In accordance with GHD's April 8, 2019 proposal, GHD redeveloped bedrock wells BW-1 through BW-6 at the Former Republic Landfill in Niagara Falls, New York (Site) on April 24 and 25, 2019. In a letter from the New York State Department of Environmental Conservation (NYSDEC) dated March 18, 2019 commenting on the 2018 Periodic Review Report (PRR) for the Site, the NYSDEC requested that bedrock wells with a buildup of sediment/debris be redeveloped to remove sediment buildup to the extent practicable prior to the next annual sampling and hydraulic monitoring event. Measured well depths during the 2018 annual sampling event indicated that several wells (BW-1, BW-2, BW-3, BW-4, BW-5, and BW-6) had sediment thicknesses ranging from approximately 1.3 feet to 12.4 feet. As such, these wells were selected for redevelopment. Each well is 4 inches in diameter and includes a 3-inch diameter open hole in the bedrock formation.

GHD oversaw redevelopment of BW-1 through BW-6 by TREC Environmental, Inc. (TREC). TREC redeveloped the wells by injecting compressed air into the bottom of the wells and surging the wells using the resulting displaced well water by repeatedly alternating on-off the air flow. The injected air also agitated any solids present at the bottoms the wells in an attempt to loosen them for removal. The compressed air was delivered to the bottom of each well through tubing inserted into a 1-inch diameter polyvinyl chloride (PVC) pipe temporarily placed into the well. Following surging, water was removed from the well through the PVC pipe and transferred into a 55-gallon drum. The surging process was repeated at each well until the water removed from the well was clear and/or further redevelopment was deemed not practicable due to the presence of apparent obstructions in the well. Due to its low recharge rate, potable water was added to BW-6 to assist with the surging process. The water removed from the wells was placed into six 55-gallon drums and was sampled for the waste characterization parameters required by the intended disposal facility. The drums are currently staged on-site pending proper off-site disposal.

GHD measured both well depths and water levels in the wells before and after redevelopment. These measurements are presented in Table 1 below. The measured pre- and post-redevelopment well depths were compared to each other and compared to the reported installed well depths to assess the efficacy of the redevelopment in removing sediment/debris buildup. This efficacy is briefly discussed for each well following the table. Based on a comparison of the pre- and post- redevelopment water levels, all wells

except for BW-1 had fully recovered by the end of the redevelopment event. A summary of additional observations made by GHD during the redevelopment event follows the table.

Well	Water Level (feet BTOR)		Water Level (feet BTOR) Well Depth (feet BTOR)			R)
	Before Redevelopment	After Redevelopment	Before Redevelopment	After Redevelopment	Installed Depth (Reported)	
BW-1	11.90	12.29	26.78	29.00	35.92	
BW-2	9.22	9.15	26.45	27.63	37.13	
BW-3	5.14	5.18	24.91	25.00	24.72	
BW-4	6.47	6.49	22.82	27.10	27.48	
BW-5	3.51	3.54	28.61	28.75	28.23	
BW-6	9.94	8.65	25.37	30.40	36.54	

Table 1. Water Levels and Well Depths Before and After Redevelopment

BTOR = Below top of riser

Well Redevelopment Details

BW-1: Approximately 55 gallons of water (roughly 5 well volumes), which was black in color initially but cleared with time, were pumped from the well during redevelopment. A review of the Table 1 indicates that the sounded well depth after redevelopment was 29.00 feet BTOR while the reported installed well depth was 35.92 feet BTOR. The reason for the discrepancy between the sounded well depth (29.00 feet BTOR) and the reported installed well depth (35.92 feet BTOR) could not be ascertained in the field.

BW-2: Approximately 70 gallons of water (roughly 5.8 well volumes), which was cloudy and brown in color, with a few pieces of fine gravel present, were pumped from the well during redevelopment. A review of the Table 1 indicates that the sounded well depth after redevelopment was 27.63 feet BTOR while the reported installed well depth was 37.13 feet BTOR. Field observations noted during the redevelopment activities could not ascertain why there was an approximately 10 foot disparity between the measured and reported well depths.

BW-3: Approximately 40 gallons of water (roughly 3 well volumes), which was cloudy and grayish-brown in color initially but cleared quickly, were pumped from the well during redevelopment. An approximate 8-inch long piece of wood was recovered from the bottom of the well. The sounded well depth following redevelopment was comparable to the reported installed well depth.

BW-4: Approximately 40 gallons of water (roughly 3 well volumes) were removed from the well during redevelopment activities. The water was initially cloudy with a black to brown color that began to clear

after approximately 18 gallons was removed and continued to clear over time. The sounded well depth following redevelopment was comparable to the reported installed well depth.

BW-5: Approximately 40 gallons of water (roughly 2.4 well volumes), which was cloudy and brownish-orange in color initially but cleared quickly, were pumped from the well during redevelopment. The sounded well depth following redevelopment was comparable to the reported installed well depth.

BW-6: Approximately 17 gallons of water (roughly 1.3 well volumes) were removed from the well during redevelopment. The purged water was brown in color, very silty, and contained fine gravel. After surging the well with air and removing the initial 17 gallons, the bottom of the well was probed with the compressed air PVC pipe and silty/clayey/gravelly soil was observed in the bottom of the PVC pipe. Based on the probing, it was concluded that there was a partial obstruction in the well at approximately 25 feet BTOR and a solid blockage at approximately 30 feet BTOR. Surging of the well continued until all groundwater was removed from the well and the well was dry. Prior to going dry, the purged groundwater was observed to be very silty with sand and fine gravel present. The well was surged again. Potable water was added to the well to assist with the surging. Upon completion of redevelopment, the water removed from the well was again observed to be very silty with some fine gravel present. Approximately 70 gallons of water in total (roughly 5.3 well volumes) were removed during redevelopment. It appears that the discrepancy between the sounded well depth of 30.40 feet BTOR following redevelopment and the reported installed well depth of 36.54 feet BTOR is likely due to an obstruction of some type (heavy silting).

Thank you for the opportunity to perform this work for GrafTech. If you have any questions regarding this summary letter, please contact us at 716-205-1973.

Sincerely,

GHD

Margaret a. Popek Margaret A. Popek Project Manager/Geologist

MAP/eew

Encl.

cc: Dennis Hoyt

Appendix E

Copy of Signed Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No.	Site Details 932035	Box 1	
	GrafTech Intl. Hlds. Inc. (formerly Union Carbide)		
			- h,
Site Address: City/Town: N County: Niaga Site Acreage:	ara		
Reporting Per	riod: December 31, 2018 to December 31, 2019		
		YES	NO
1. Is the info	ormation above correct?	\varkappa	Д
If NO, inc	clude handwritten above or on a separate sheet.		
	e or all of the site property been sold, subdivided, merged, or undergone a amendment during this Reporting Period?		×
	e been any change of use at the site during this Reporting Period ′CRR 375-1.11(d))?	Π	X
	r federal, state, and/or local permits (e.g., building, discharge) been issued he property during this Reporting Period?		×
	swered YES to questions 2 thru 4, include documentation or evidence umentation has been previously submitted with this certification form		
5. Is the site	e currently undergoing development?		X
		Box 2	
		YES	NO
6. Is the cur Industrial	rrent site use consistent with the use(s) listed below?	X	
7. Are all IC	s/ECs in place and functioning as designed?	X	
IF	THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and	
A Corrective	Measures Work Plan must be submitted along with this form to address t	hese is:	sues.
NI	A		
Signature of C	Dwner, Remedial Party or Designated Representative Date		

SITE NO. 932035	4	Box 3	
Description of Institution	onal Controls		
130.20-1-1	<u>Owner</u> GrafTech International Holdings Inc. n dated December 17, 2013; groundwater m	Institutional Control Site Management Plan Monitoring Plan onitoring and landfill cap	
maintenance is required.			
		Box 4	
Description of Enginee	ring Controls		
Parcel	Engineering Control		
130.20-1-1 Constructed cover system and	Monitoring Wells Fencing/Access Control Cover System I closed under Division of Materials Manage	ment Part 360 in 1987.	

t

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	X
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institution or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health an the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	× □
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues. N/A

IC CERTIFICATIONS SITE NO. 932035

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1 Thomas R. Jacques print name	at <u>982 Keynote Circle, Brooklyn Heights</u> , Ohio priht business address <u>44131</u>
am certifying as <u>Designated</u>	Representative of Owner (Owner or Remedial Party)
for the Site named in the Site Detail	s Section of this form.
Signature of Owner, Remedial Party	or Designated Representative

Signature of Owner, Remedial Party, or Designated Representative Rendering Contification

IC/EC CERTIFICATIONS	
Qualified Environmental Professional Signature	Box 7
l certify that all information in Boxes 4 and 5 are true. I understand that a false stateme punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	
Julianne M. Snyder at 982 Keynote Circle, Brookly print name print business address	yn Heights, C 4413
am certifying as a Qualified Environmental Professional for the <u>OWNer</u> (Owner or Remedial F	Party)
Signature of Qualified Environmental Professional, for Stamp	2.2 2020 Date
the Owner or Remedial Party, Rendering Certification (Required for PE)	

ΞĒ.

i

Appendix F

Copies of Weekly General Landfill and Site Security Inspection Reports -2019

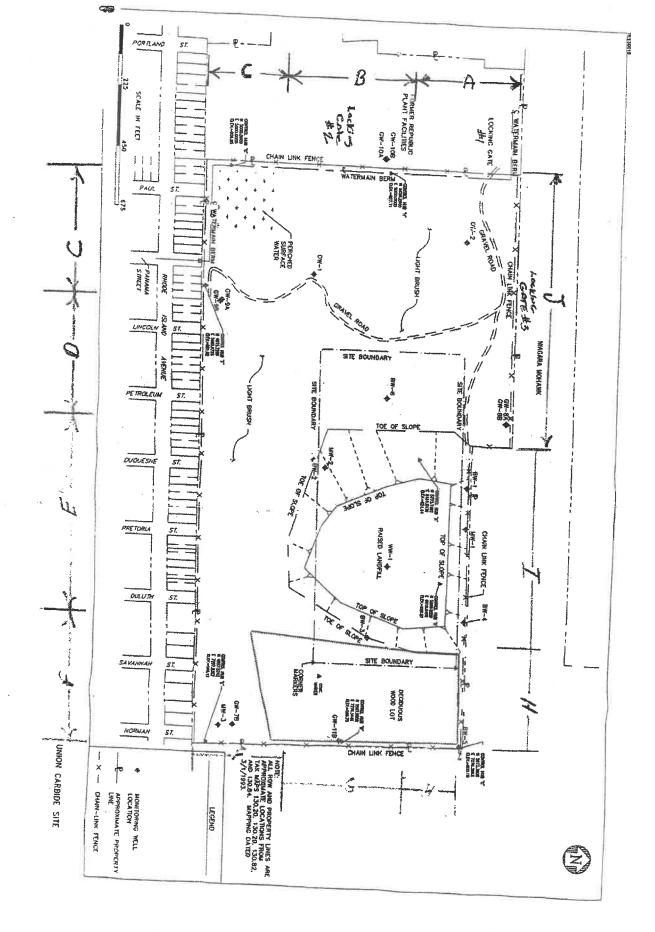
Date	Time	Inspector Name
12-29-18	12:00	Em Superfrase

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
Α	/			IL MARKS
В	1			
С	/			
D	/			1
E	/			
F	/			
G	1			
Н	/			
1	1			
·J	/			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1				nem many
2				
3		•		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

CAP COMMENTS: (Check for erosion and adequate vegetation)


allopf

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

all good

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

(250256 .0N YATCIDER) 50025# AMW2 809 NALPENERY NO. 932035)

.

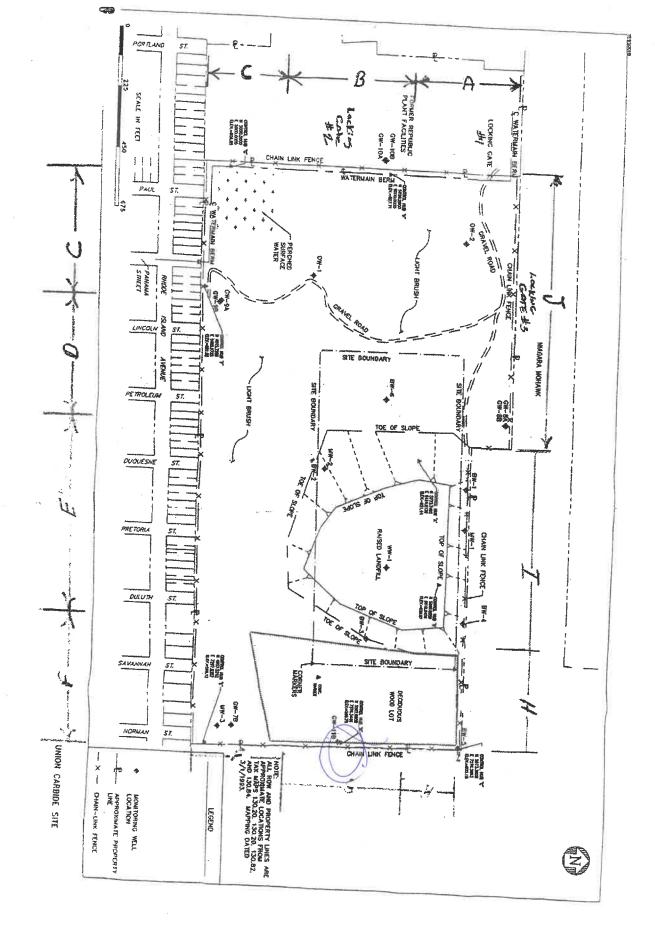
Time	Inspector Name
ion	Tohn Service
	Time

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A	1			
В	/			
С	1			
D	1			1
E	/			
F	1			
G		frack durage from t	Yew	-
Н	1			
1	1			
· J				

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				ALMARKS
2				
3				

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

<u>CAP COMMENTS:</u> (Check for erosion and adequate vegetation)


appel

Tree fell

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

7

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

Date Time Inspector Name -13-101 ∞

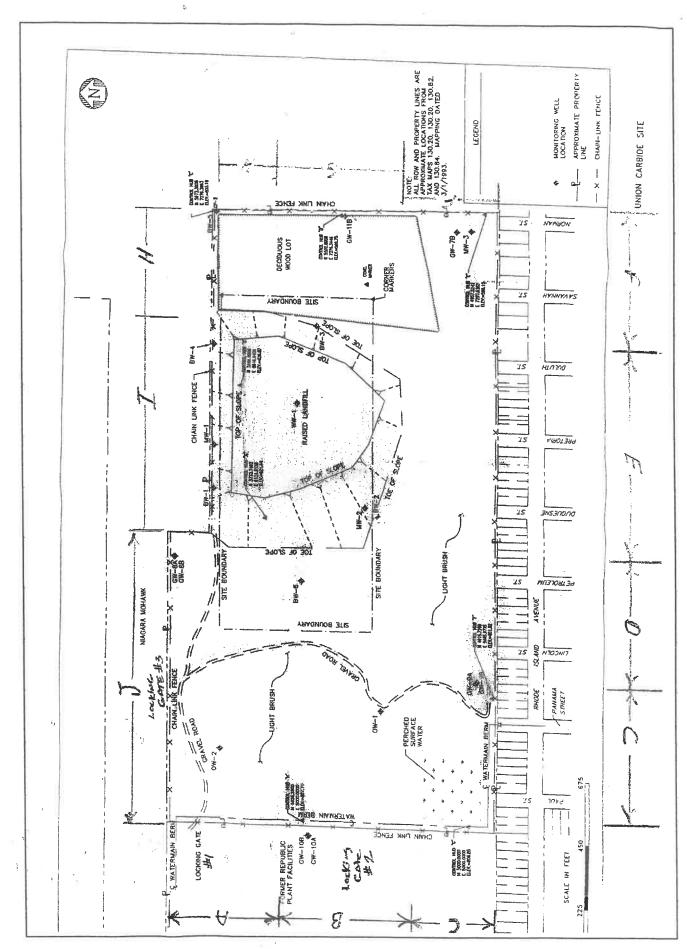
ENCE ARE	ок	DAMAGED	REPAIR DATE	REMARKS
Α	/			
В	/			
С	/			
D	/			1
E	1			
F				
G	1			
Н	/			5
1	1			
J	1			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	/			
2	/			
3	1	C.		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all

<u>CAP COMMENTS</u>: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

ale

RECORD THE DATE(S) THAT THE ENTIRE ČAP WAS MOWED:_

cell

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

 $\sim -e^{2}$

i .

ĵ

Date	Time	Inspector Name
1-20-19	2.00	John Scipalar

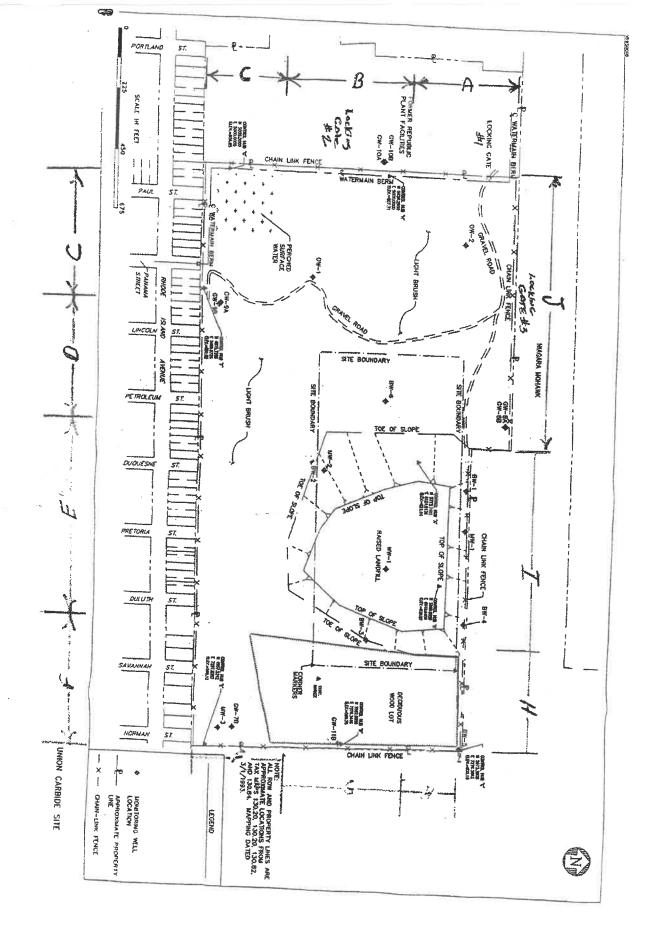
ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A	1			A CHARMS
В	/			
С	/			
D	/			3
E	/			
F	1		1	
G	1	2		
Н	/			
	1			
·J	/			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	1			
2	1			
3	1			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

CIII qua

CAP COMMENTS: (Check for erosion and adequate vegetation)


100

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

all accd

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

(SEOSEE .ON YATEI STORS AWME #32003 (REGISTRY NO. 932035)

SOL

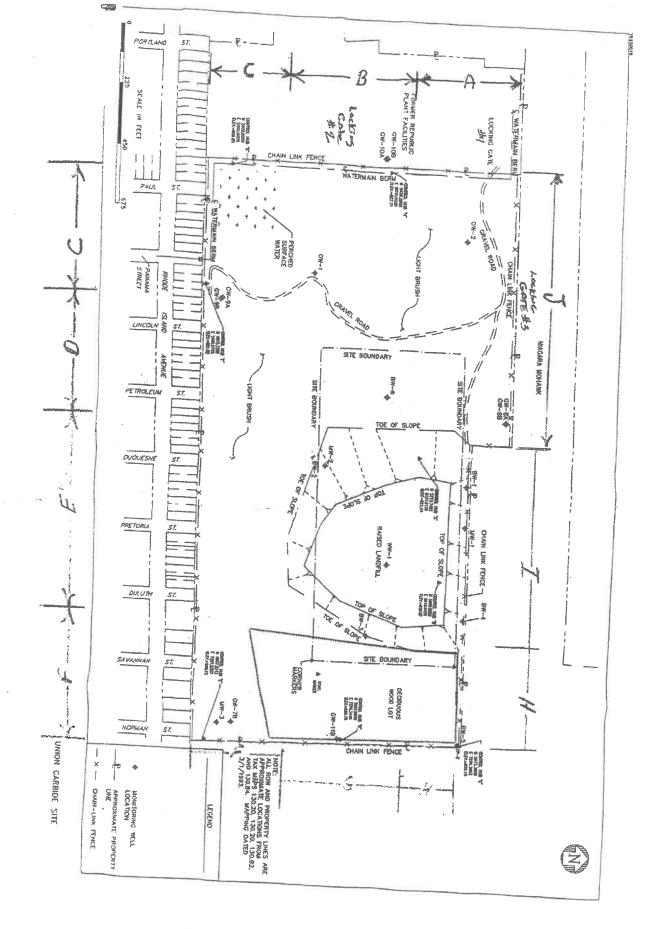
Date	Time	Inspector Name
1-27-11	12.00	Jyin Sutalpunin

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A	1			REWIARKS
B	1			
С	1			
D	1			1
E	1			
F	1			
G	1			
H	1			
1	1		9	
·J	/			

GATE	ОК	DAMAGED	REPAIR DATE	
4	/		INEFAIN DATE	REMARKS
1	1			
2	1		1	
-	-/			
3				

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

gard


<u>CAP COMMENTS</u>: (Check for erosion and adequate vegetation)

yout

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

i.

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

"]

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

Date	Time	Inspector Name
2/3/19	12:00	John Screatencen

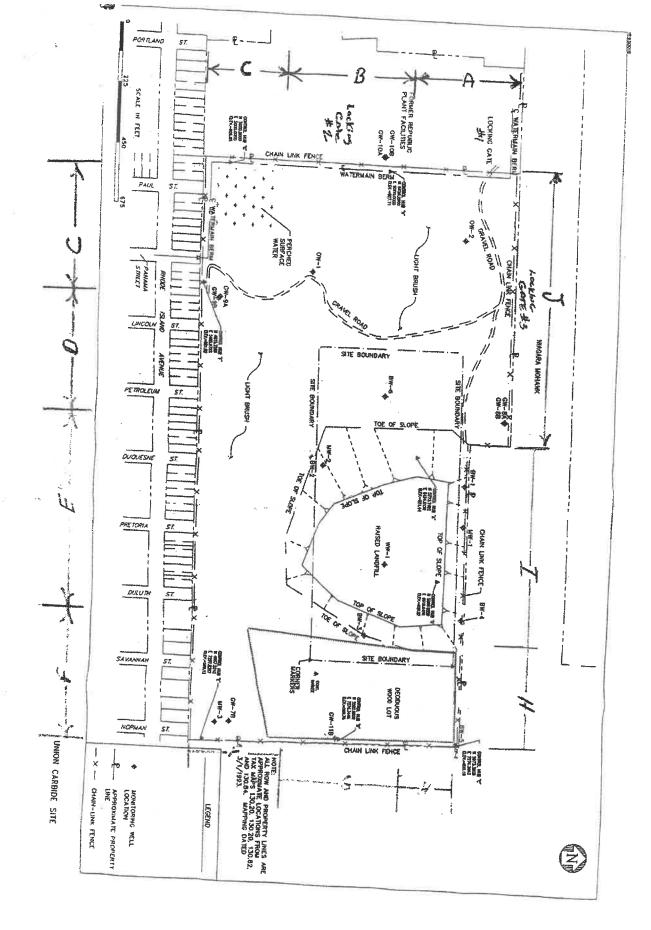
ENCE ARE	ок	DAMAGED	REPAIR DATE	REMARKS
A				INCIMARKS
B	/			
С	/			
D	1			1
E	1			
F	/			
G	1			
Н	/			
1	1			
J	/			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				IL INANAS
2	/			
3	/	-		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

<u>CAP COMMENTS:</u> (Check for erosion and adequate vegetation)


all oped

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

allyzed

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:____

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

Ĵ

Date	Time	Inspector Name
2-9-19	12:00	John Supaverana

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A	/			IL MANKS
В	/			
С	/			
D.	/			Ĵ.
E	/			
F	1			
G	/			
H	/			
1	1			
J	/			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	1			NEMARKS
2	/			
3	1.	- 6		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)


all good

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

9000

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

Ð

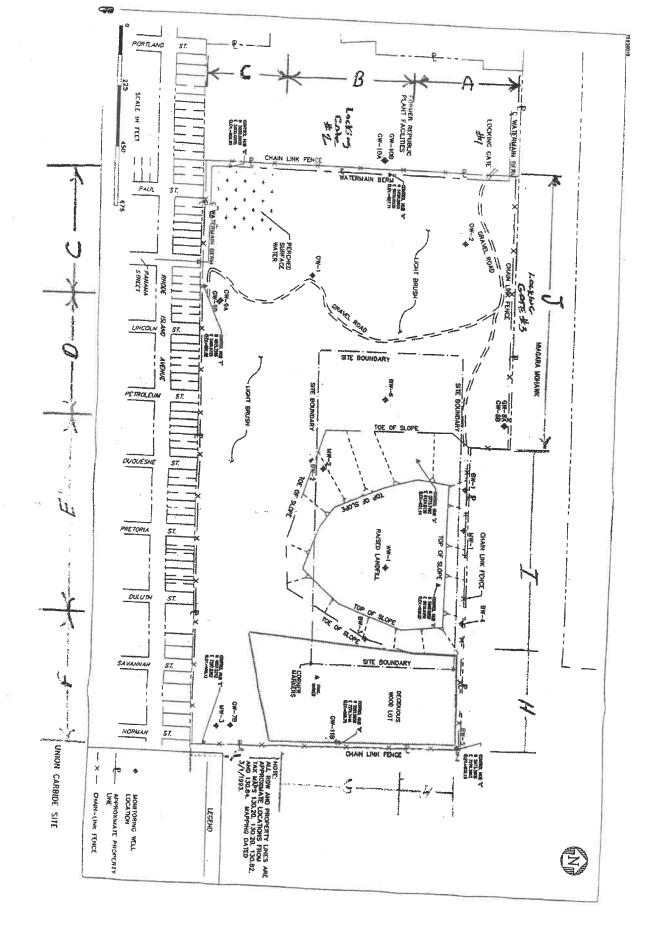
1

(SEGISTRY NO. 932035) LONDFILL SITE MANAGEMENT PLAN FOR SWMF #32003 (REGISTRY NO. 932035)

Date	Time	Inspector Name	
12-17-19	12:30	Tella Serveriziona	

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A				NEWANNS
В	/			
С	1			
D	/]
E	/			
F	/			
G	/			
Н	/			
1	1			
1	/			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				
2	1			
3	1	-		


SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

<u>CAP COMMENTS:</u> (Check for erosion and adequate vegetation)

Gllgcl SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

-

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

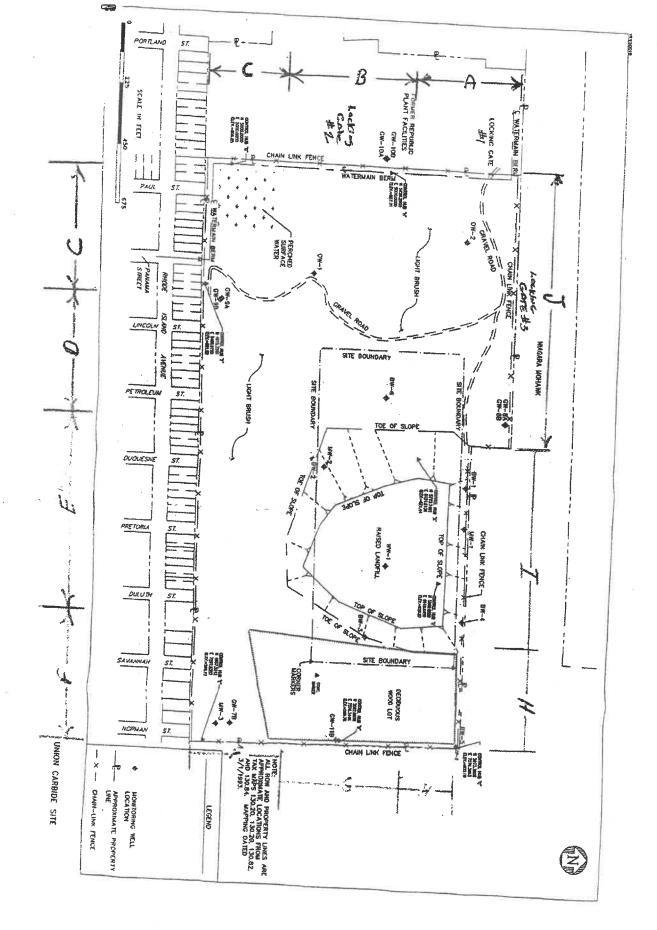
Date	Time	Inspector Name
2-25-19	4:00	Tohn Sciencenon

ENCE ARE	OK	DAMAGED	REPAIR DATE	REMARKS
A	-			, ALWARKS
В	V			
С	1			
D	1)
E	/			
F	1			
G	/			
Н	/			
1	1			
1	1			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	/			NEWIARNS
2	/			
3	/	18		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good


CAP COMMENTS: (Check for erosion and adequate vegetation)

900

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

1

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

D		
Date	Time	Inspector Name
5/3/19	12:00	The Same

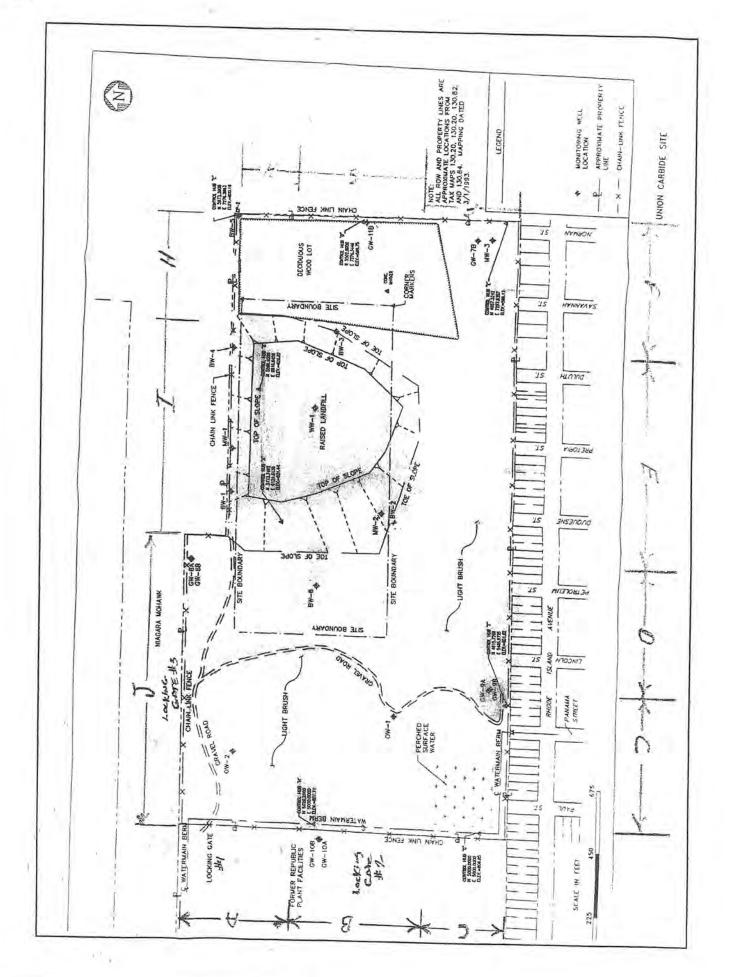
ENCE ARE	OK	DAMAGED	REPAIR DATE	DEMADUC
A	//	1		REMARKS
В	/		**	
С	1			
D	/		-	
E	1			
F	1			
G	1			
Н	1			
1.	1			
1	1			

GATE	OK	DAMAGED	REPAIR DATE	DELLEN
1	/		ALL AN DATE	REMARKS
2	1			
3	1	-		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

3/3/19

ţ

1 -

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

Date	Time	Inspector Name
3/9/19	2:00	John Scheakenorth

ENCE ARE	OK	DAMAGED	REPAIR DATE	REMARKS
Α	1	1		NEWARKS
В	1			
С	1			
D	1	4		ł
E	1	4		
F	1			
G	/			
H	1	0	-	
1	/		-	
1	/	10		

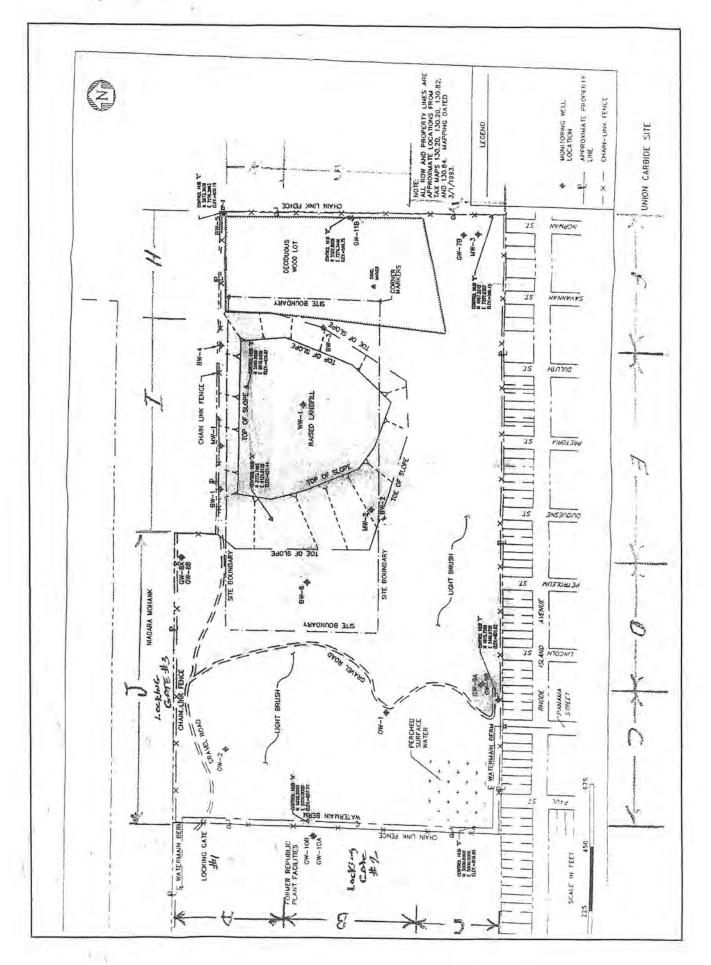
GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	1			
2	/			
3	/	7		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)

all.good


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

all good

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

3/9/19

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

200	Dat	e	Time		Inspector Name
5/17/19			1:00		John Screarennen
ENCE ARE	OK/	DAMAGED	REPAIR DATE		REMARKS
Α	0				REIVIARKS
В	V				
С	V				
D	/			1	
E	1				
F	1				

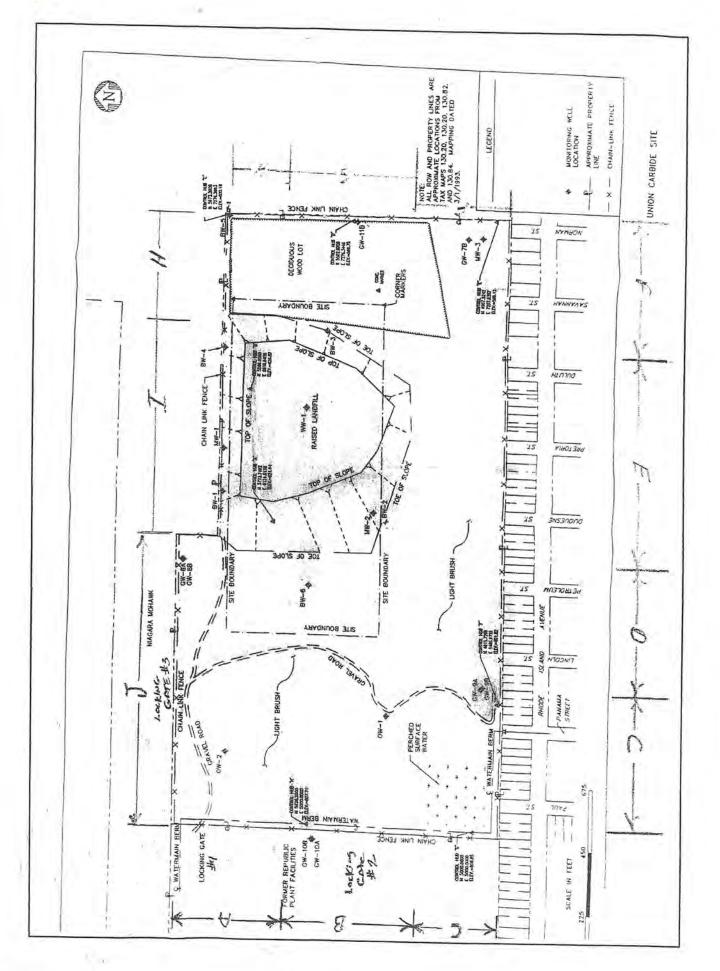
GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	1		· · · · · · · · · · · · · · · · · · ·	REMARKS
2	1			
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

GHI

11


CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

good d

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

3/17/19

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

Date	Time	Inspector Name
2/24/19	10:00	John Scipparingn

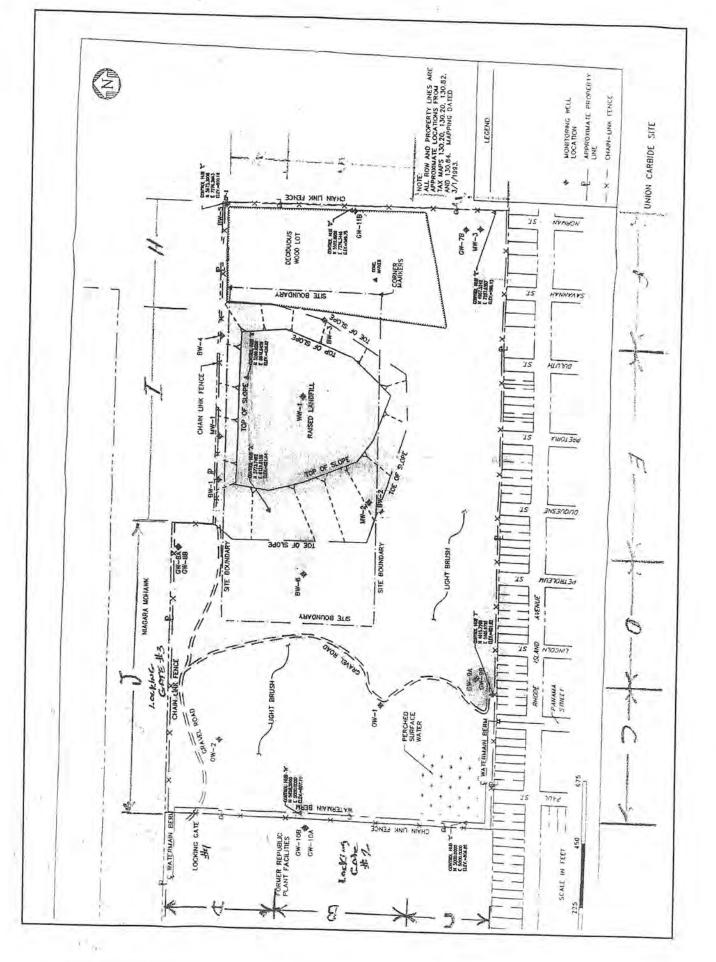
ENCE ARE	OK	DAMAGED	REPAIR DATE	REMARKS
A	1			
В	V		1	
C	0	*		
D	11			1
E	1			
F	1			
G	1			
H	1			
1	1			
J	V			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1		/		
2				
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)


all good

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

all good

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

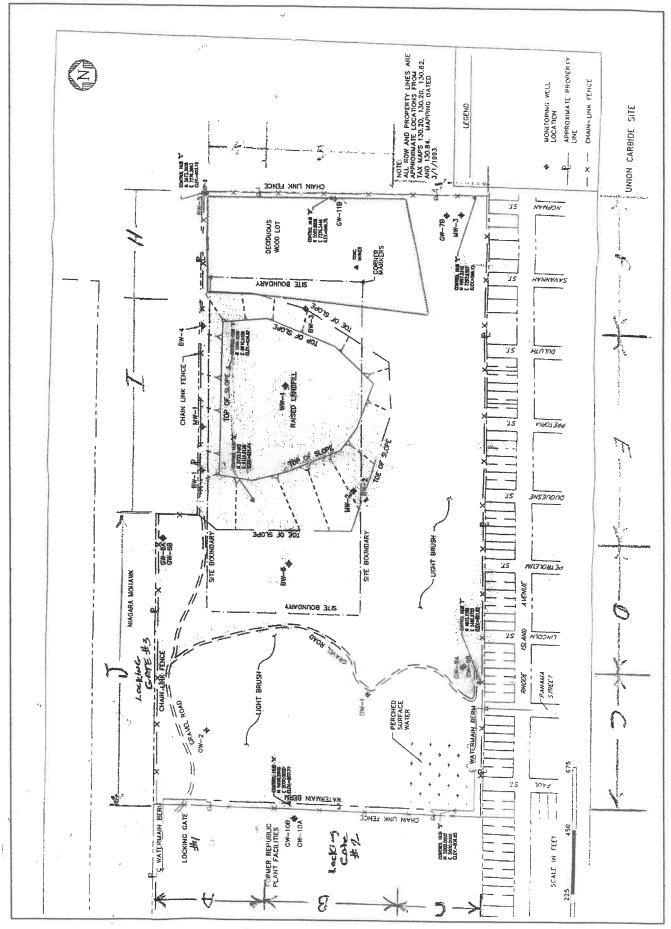
3/24/19

	Date 3/31/19		<u>т</u>	ime	Inspector Name
			200		John Screalengen
ENCE ARE	ОК	DAMAGED	REPAIR DATE	4	REMARKS
A	/				inclination of the second seco
В	V				
С	0				
D	1			1	
Ε	1				
F	1				
G	/				
Н				Vall to in	o fonce damage
1	/			Action line in	o fince dahage
J	/				<u> </u>

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	/	-		
2	/			
3	/	•		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all goal


CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

-Elen Trae

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

3/31/19

\$

Date Time **Inspector Name** 10 200

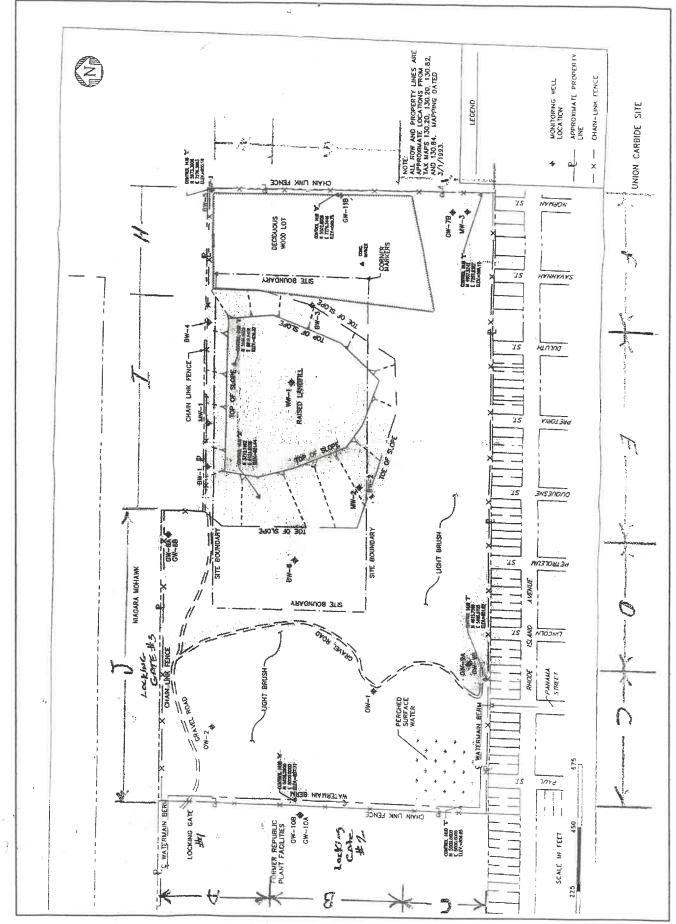
ENCE ARE	ОК	DAMAGED	REPAIR DATE	* REMARKS
A	V			I I I I I I I I I I I I I I I I I I I
В	/			
С	/			
D	1			1
E	/			
F	1			
G	1			
Н	1			
1	1			
J	1			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				
2				
3				

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

Il goog

CAP COMMENTS: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

4/7/19

\$

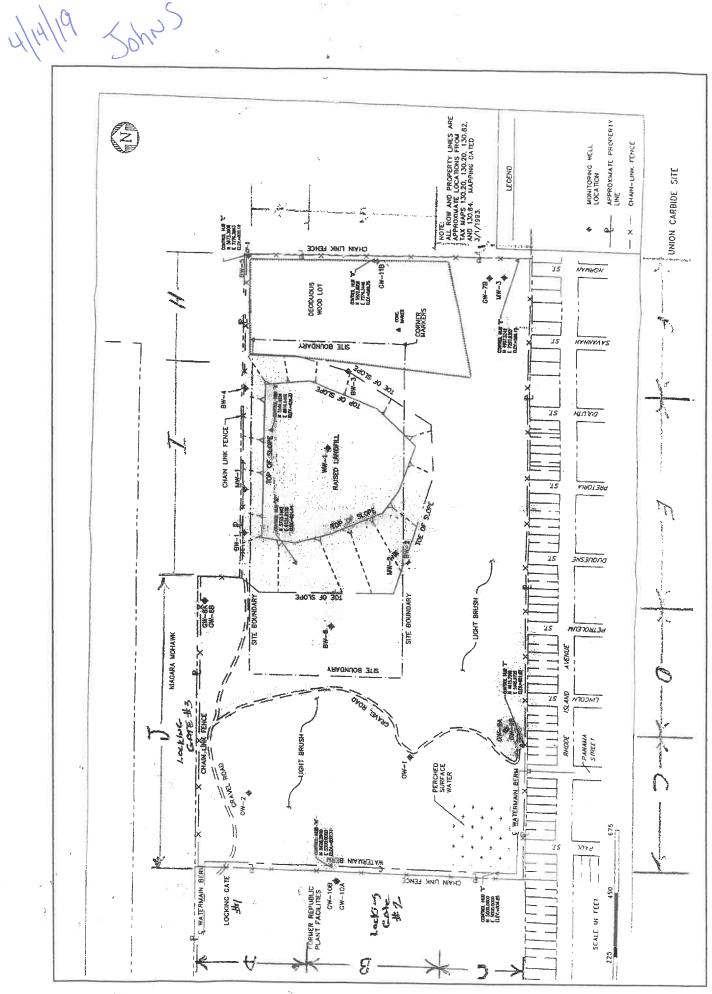
?

1

Date	Time	Inspector Name
4/14/19	4:30	John Scrallanne

ENCE ARE	ок	DAMAGED	REPAIR DATE	REMARKS
A	/		•	
В	0			
С	/	0		
D	V	/		1
E		/		
F	/	/		1
G	/			
H	/			
1	/			
J	/			

GATE	OK DAMAGED	REPAIR DATE	REMARKS
1	1		
2	V		
3			


SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

Date Time **Inspector Name** 101

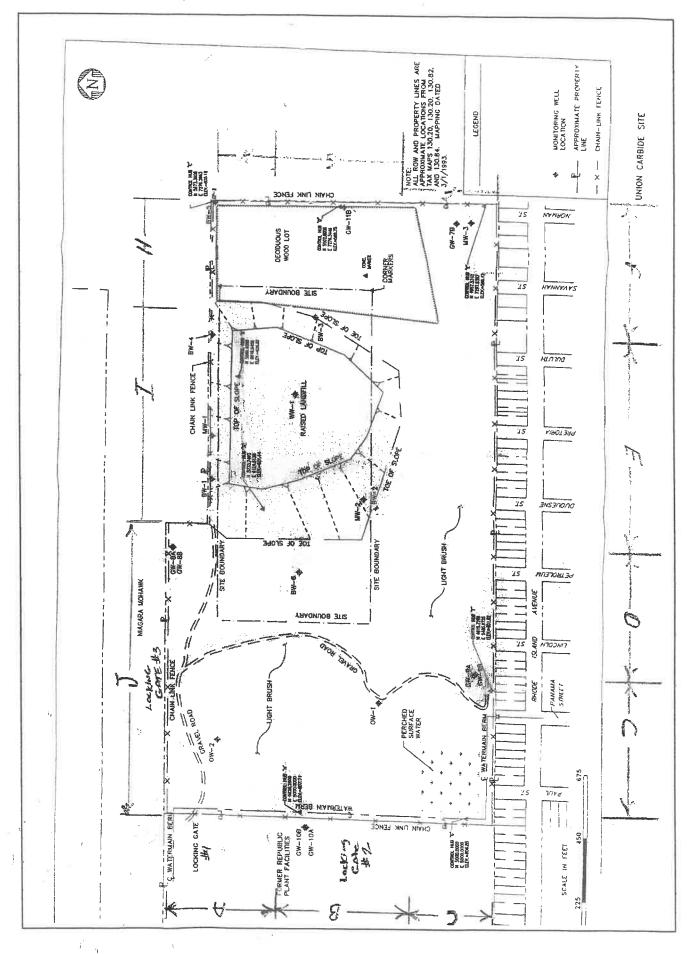
ENCE ARE	ОК	DAMAGED	REPAIR DATE	* REMARKS
Α	6		4.	
В	/			
С	/			
D	/			
E	/			
F	/			u.
G	/			
Н	/			
	1	×6.		
·J	/			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	/			
2	/			
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

<u>CAP COMMENTS:</u> (Check for erosion and adequate vegetation)

0100


900

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

đ

4/19/19

 \sim

1

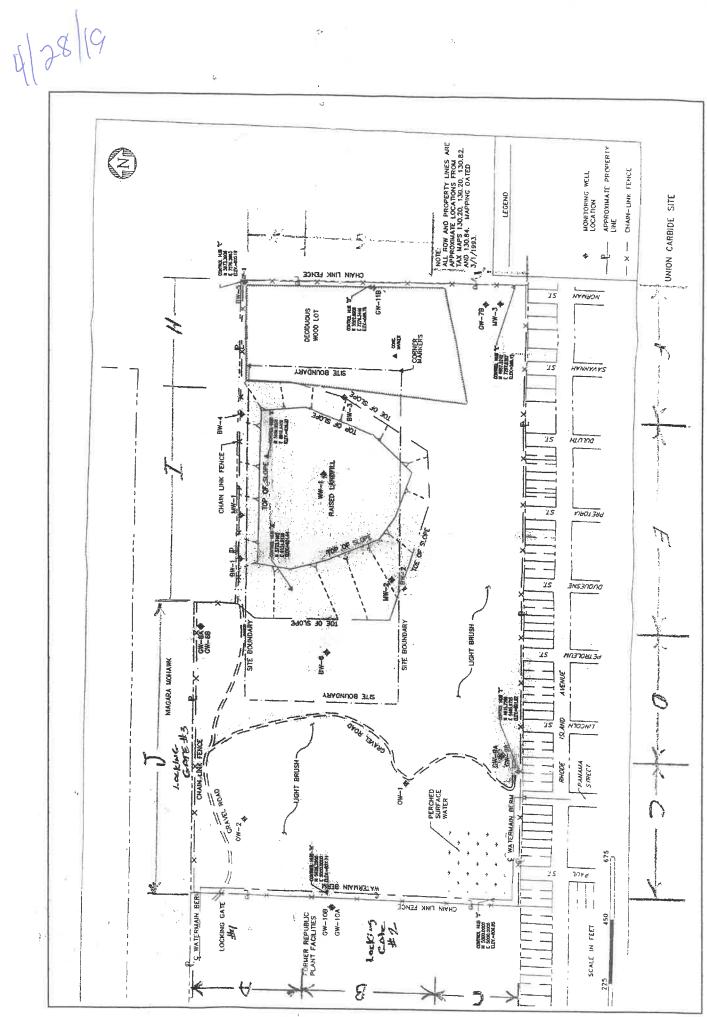
Date Time Inspector Name 1/10 12:30 John

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
Α	Ve			
B	V/			
C	V			
D	1			1
E	1			
F	1			4
G	1			
Н	1			
1	1			
J	1			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1				
2	/			
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good


CAP COMMENTS: (Check for erosion and adequate vegetation)

all good

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

all good

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

 $\langle \cdot \rangle$

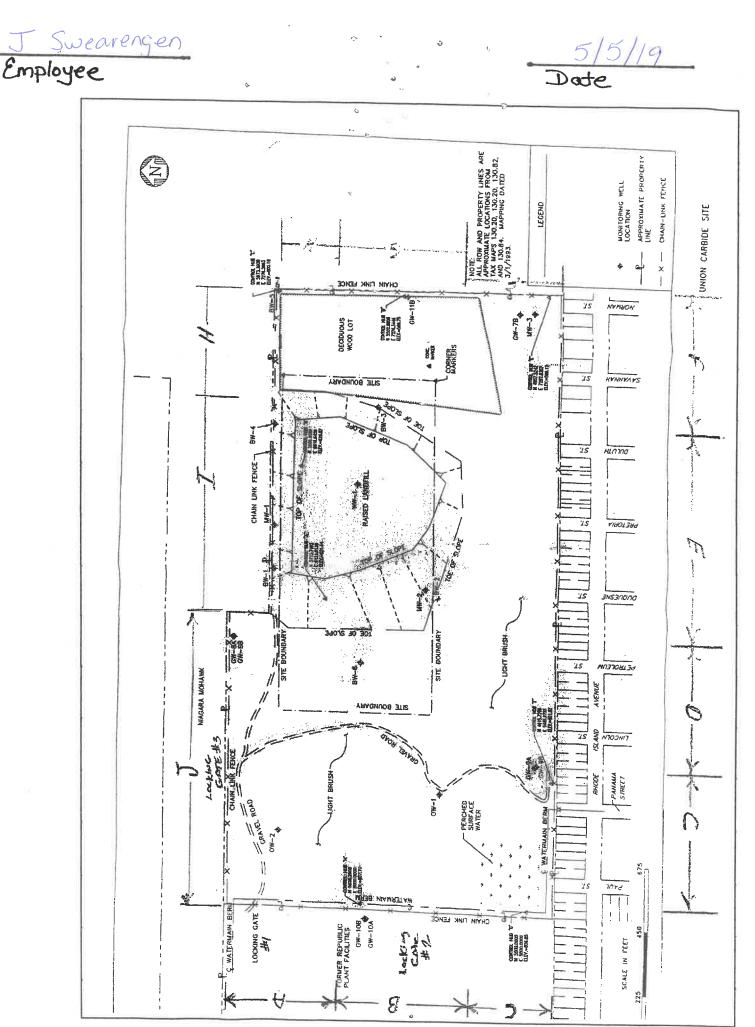
i'' y

, ŝ

Date Time **Inspector Name** 10 201

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A	V		¥-	
В	Vi			
С	1			
D	1			1
E	1			
F	1			u.
G	1			
Н	1			
1	1			
J	/			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	1			
2	1			
3		5-01		


SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

ŝ

Date	Time	Inspector Name
5/12/19	9:30	John Supriment

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
Α	V		4,5	
B	11			
С	VI	·		
D	1			1
E	11			
F	11			
G	11	<u>.</u>		·
Н	Vr			
1	1			
J	1			

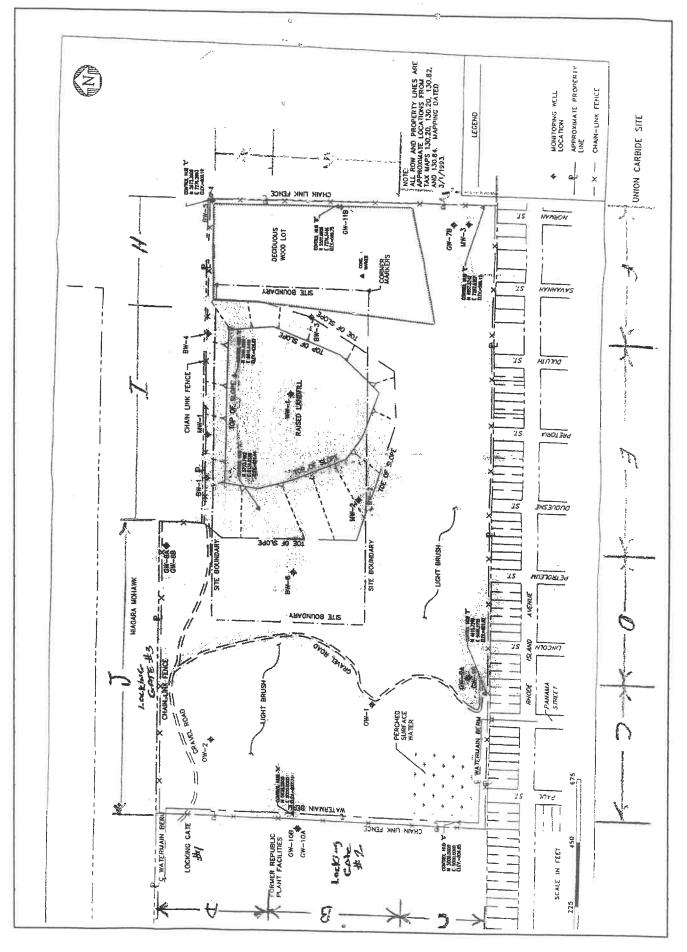
GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	1			
2	1,			
3	1			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)


1/1 goad

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:___

Employee

¢.

5/12/19 Dote

Ĵ

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32,N03 (REGISTRY NO. 932035)

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

Date Time Inspector Name ():00

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
Α	1			
В	V			
С				
D	1			1
E	1			
F	1,	-		1. 1.
G	1			
Н	1			
1	1	3		
·J	/			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1				
2	1			
3	/			

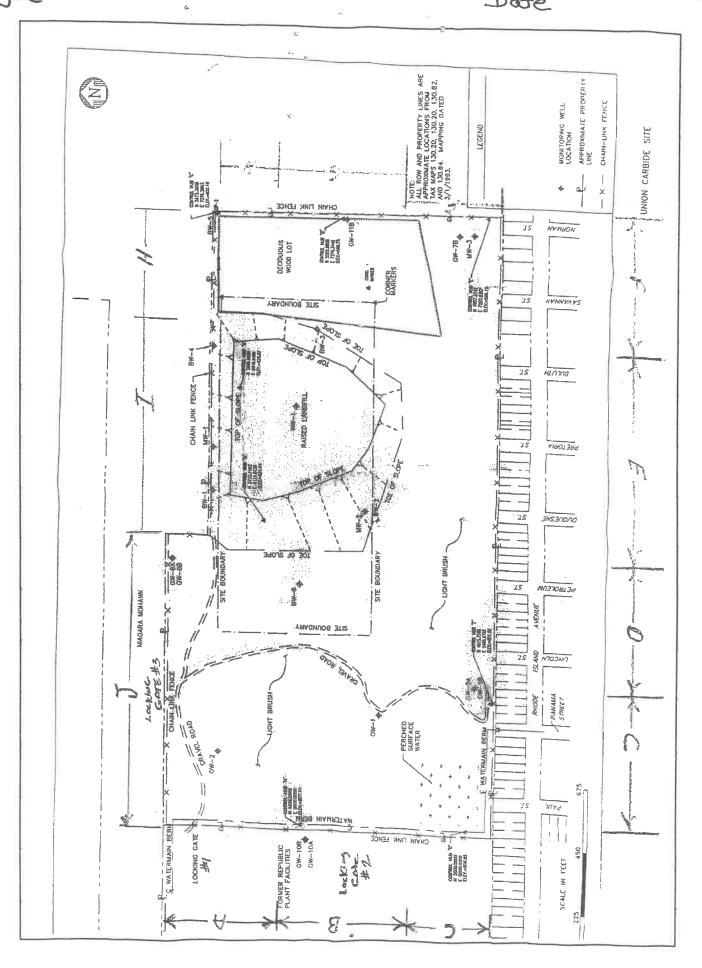
SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)

all good

all


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

900

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

Employee

5/19/19 Dote

Date Time Inspector Name 9 m

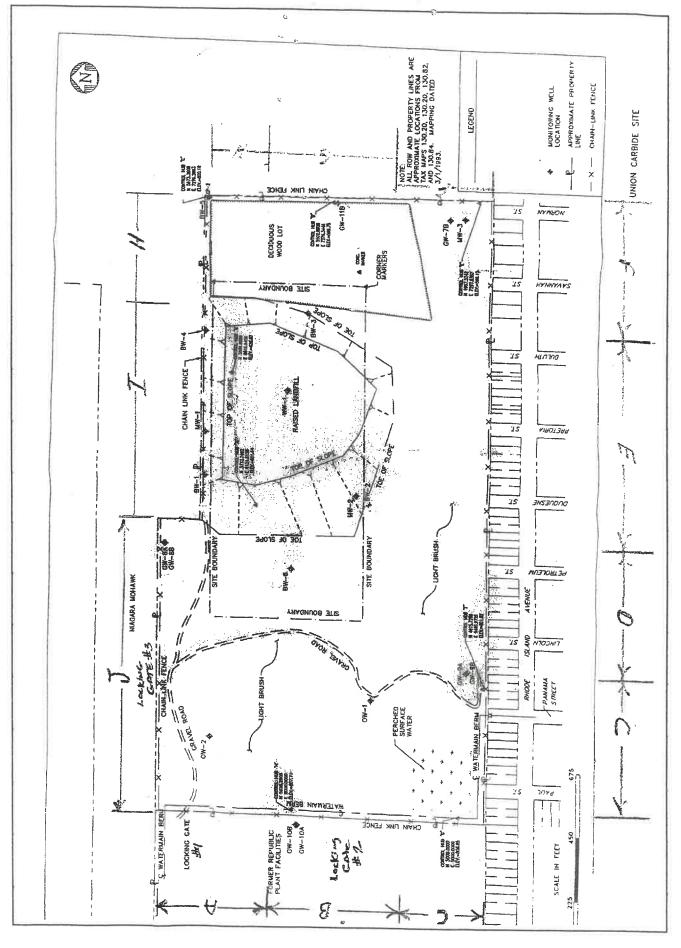
ENCE ARE	ок	DAMAGED	REPAIR DATE	REMARKS
A		-		
В	1	/		
C				
D	1			1
E	/			
F				
G	1	1		
H	/			
1	/			
J	/			

GATE	OK DAMAGED	REPAIR DATE	REMARKS
1			
2	1		
3	1		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

da

<u>CAP COMMENTS:</u> (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

CI ||

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

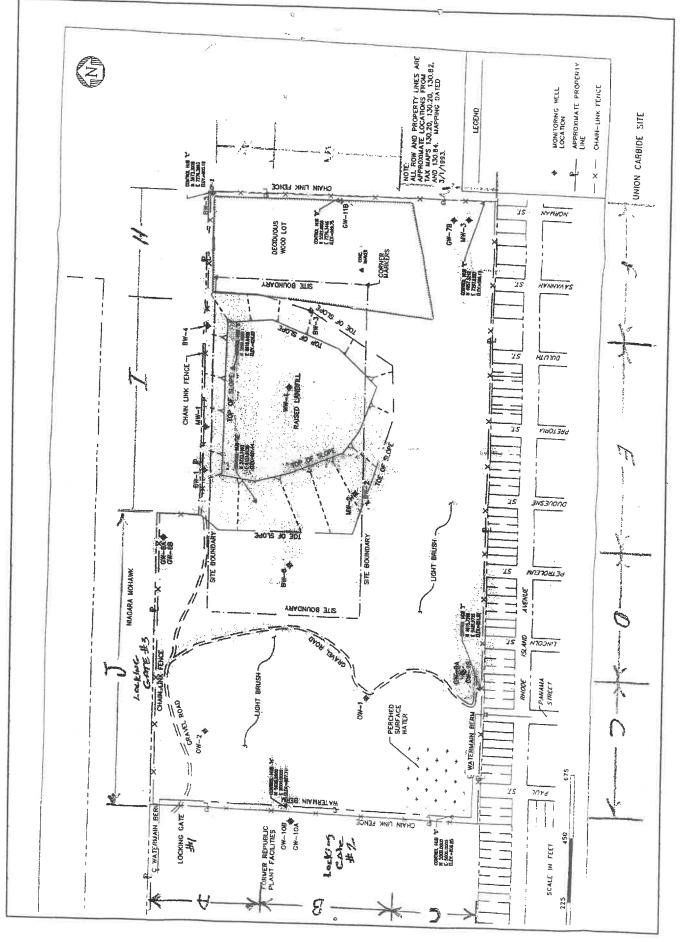
Swearongen Employee

Date Time Inspector Name SECO Scharmon 1

ENCE ARE	OK	DAMAGED	REPAIR DATE	REMARKS
A	/			, REWARKS
В	1			
С	1			
D				i i
E	/			
F	1			
G	1			
Ĥ	1			
1	1			
J	/			

GATE	OK DAMAGED	REPAIR DATE	REMARKS
1			REIMARKS
2	1		
3	1.		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)


CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

 \sim

Q

Date	Time	Inspector Name
6/8/19	7:001	Tohn Sevenia

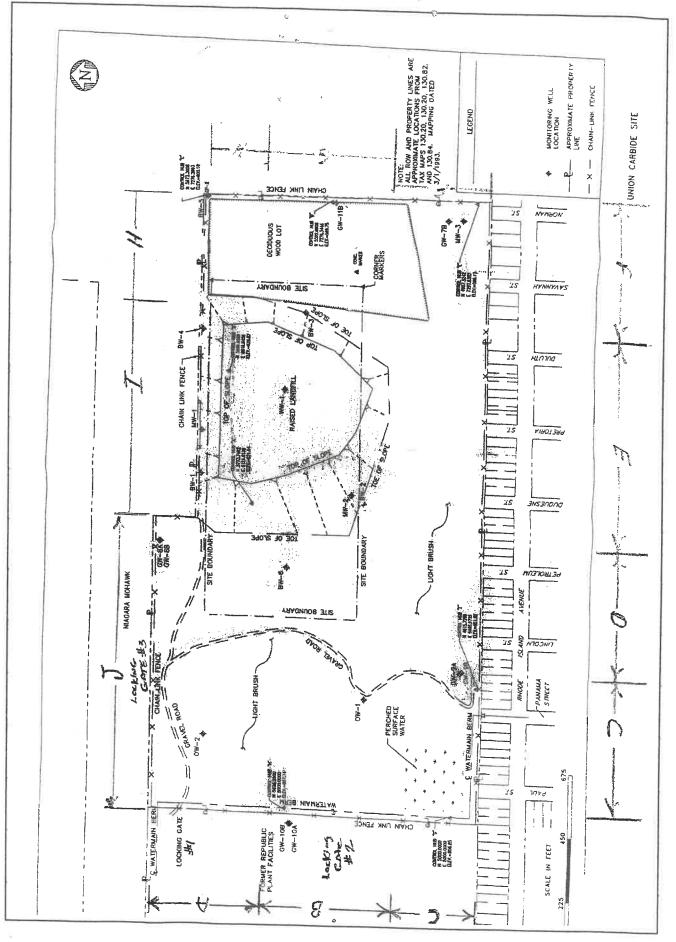
ENCE ARE	ОК	DAMAGED	REPAIR DATE	* REMARKS
Α	/			IL INIANS
В	/	/		
С	/			
D	/			¥
Ε	/			
F i	/			5
G	/	V		
H	/			
1	/			
J	/			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	/			ALWARKS
2	1			
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

allacar

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:___

Employee

-10/8/19 Date

Э

Date Time **Inspector Name** 19 gico Fhy Scie

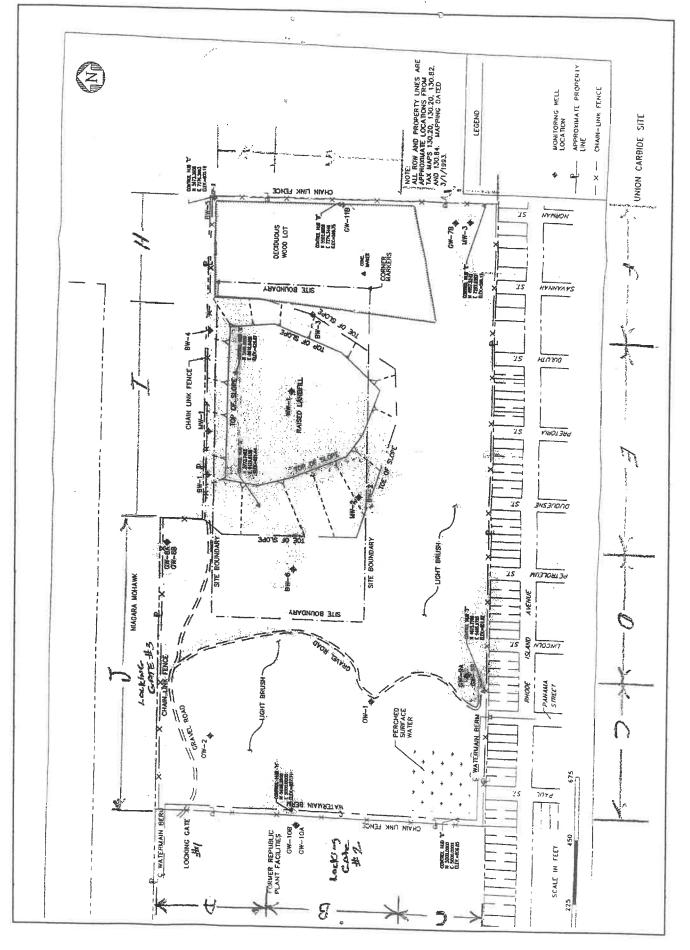
ENCE ARE	ОК	DAMAGED	REPAIR DATE	* REMARKS
A	/			NLIVIARKS
В	/			
C	/			
D	1			1
E	/			
F ·	1			
G				
H	/			
1	/			
J	/			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				
2	/		-	
3	/	5		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

coll good

CAP COMMENTS: (Check for erosion and adequate vegetation)


<u>SURROUNDING AREA COMMENTS:</u> (Check for condition, damage, signs of security breach)

all noo

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

John S. Employee

6/15/19 Dote

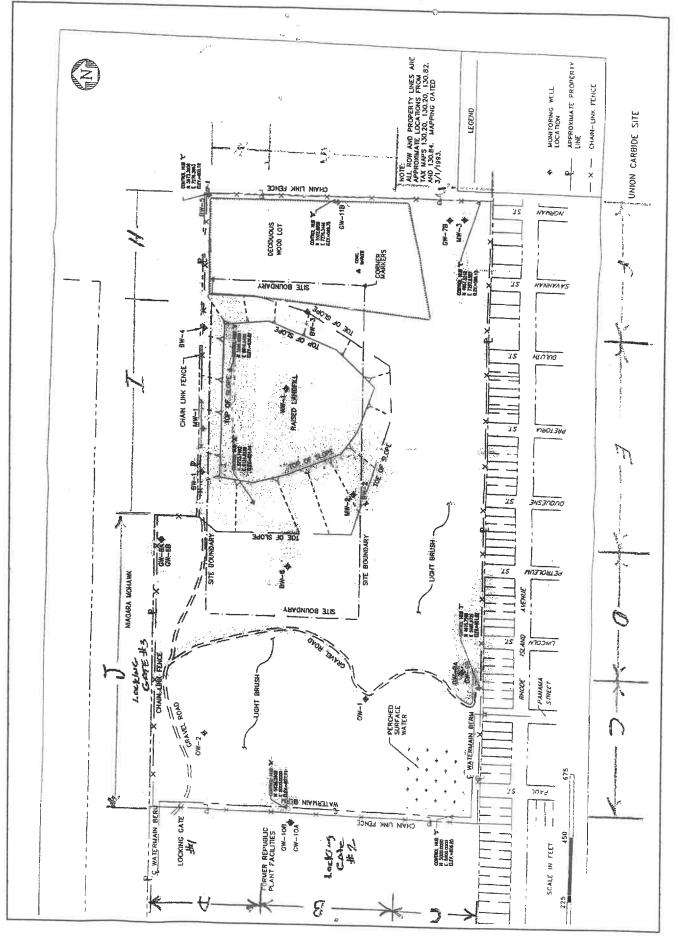
ð

Date Time Inspector Name 30

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A	1			REMARKS
B	1			
С	1			
D	1			1
E	1			
F	1			, in the second s
G	1			
H	/			
1	1			
J	1			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	/			
2	/			
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)


CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

John S. Employee

ç

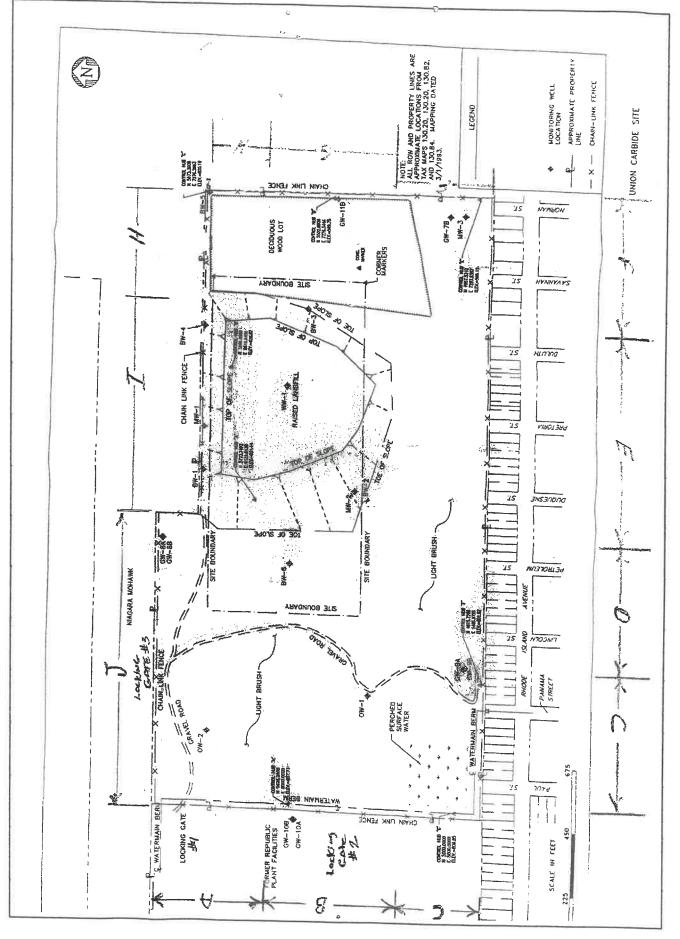
Û

Date	Time	Inspector Name
6/ 51/19	16:00	Solo Scorentenara

ENCE ARE	ОК	DAMAGED	REPAIR DATE	
A	1			REMARKS
В	-		*	
С	1			
D	1			1
E	1	A		
F	1			N
G	1			
Н	1	/		
1	/			
J	/			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				ACMAINS
2	1			
3	1			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)


CAP COMMENTS: (Check for erosion and adequate vegetation)

<u>SURROUNDING AREA COMMENTS:</u> (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

John C Employee

ç

Û

7

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

Date Time Inspector Name 3

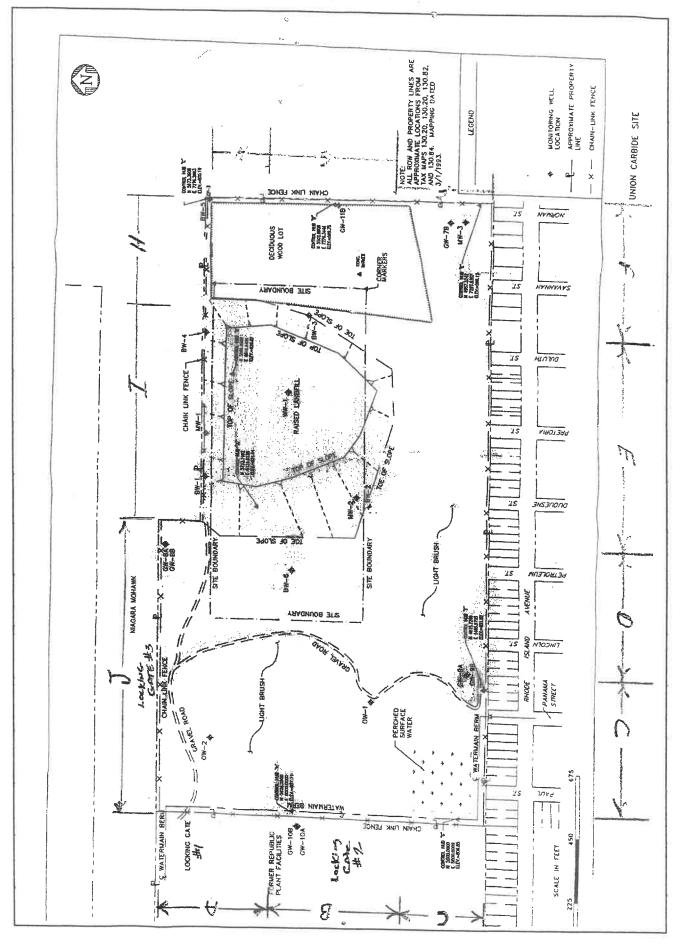
ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A	1		,	
В	/			
С	/			
D	1			j
E	1			
F	1			1
G	/			
H	1			
J	/			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	1			
2				
3	1			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

allaces

<u>CAP COMMENTS:</u> (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

Employee

ç.

19 Date

ð

7

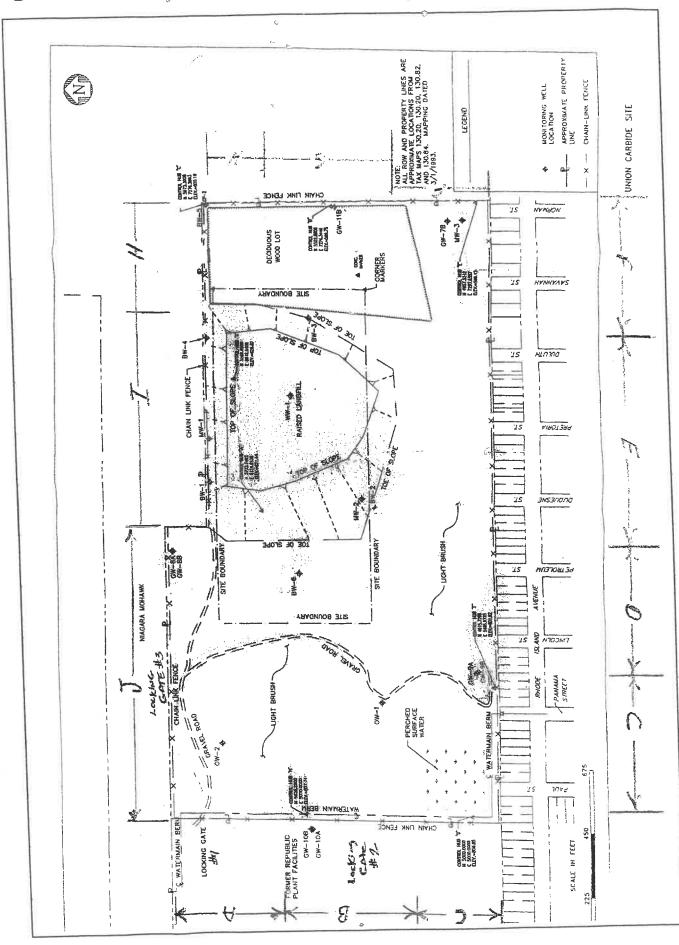
APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A	/		I	
В		·		
С	/			1
D		-		2
Ε				
F	/			
G				
Н	1			
ļ	/			
1	/			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				
2				
3	/	-		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

CAP COMMENTS: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

allow

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:___

Employee Employee

Date

Inspector Name Time Date John Sciences CC

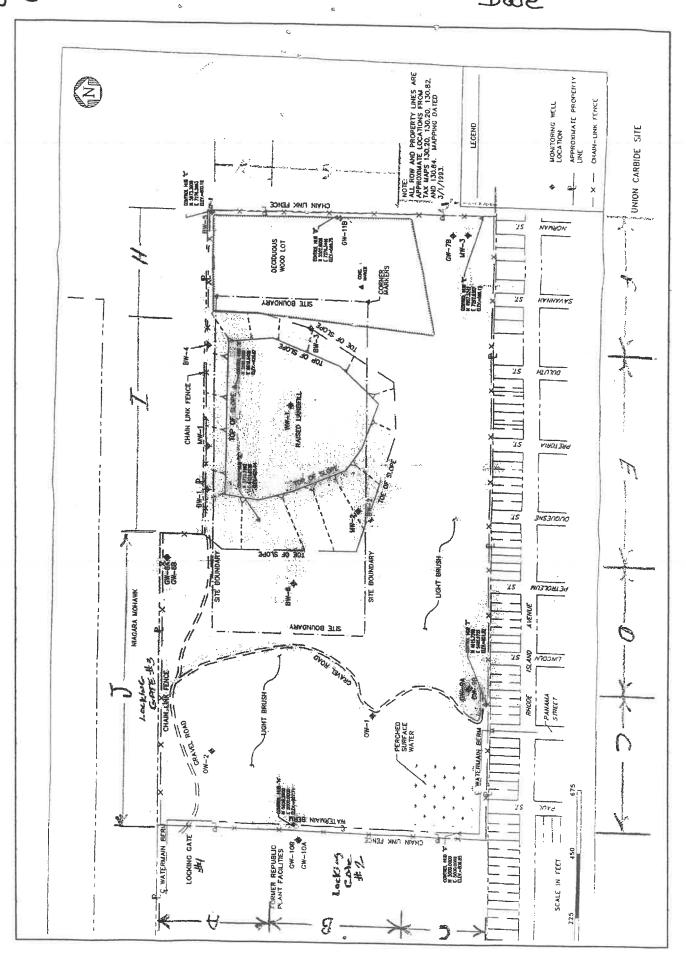
ENCE ARE	OK	DAMAGED	REPAIR DATE	REMARKS
A	1			
В				
С	/			1
D	/			
E	/	-		
F		-		
G				
Н	1	-		
	/			
-1	/			

			DEDALD DATE	REMARKS
GATE	OK	DAMAGED	REPAIR DATE	
1	/			
2		-		
3		-		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

CAP COMMENTS: (Check for erosion and adequate vegetation)

all good


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

all good

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

J Sweargen Employee

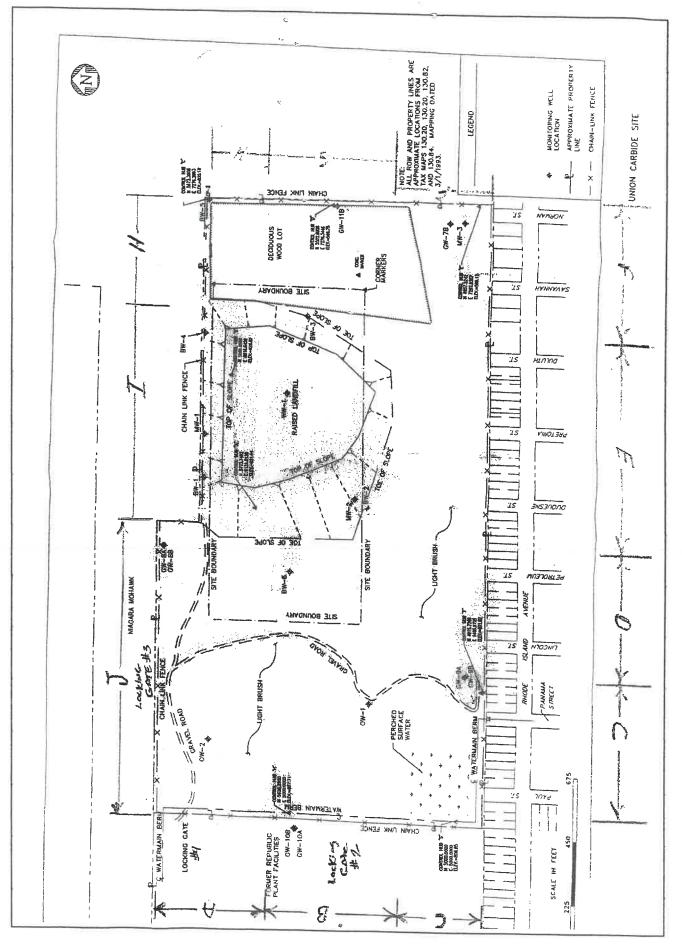
ENCE ARE	OK	DAMAGED	REPAIR DATE	REMARKS
Α	10			
В		·		
С				1
D	1			
E	/	-		
F	1	/		
G	J	- ·		
Н	/	-		
1	1	-		
	/			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	1			
2	1	-		
3				

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)


all good

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

all good RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

J. Swearengen Employee

7/27/19 Date

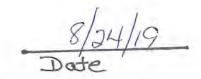
Inspector Name Time Date ohn werking 8:00

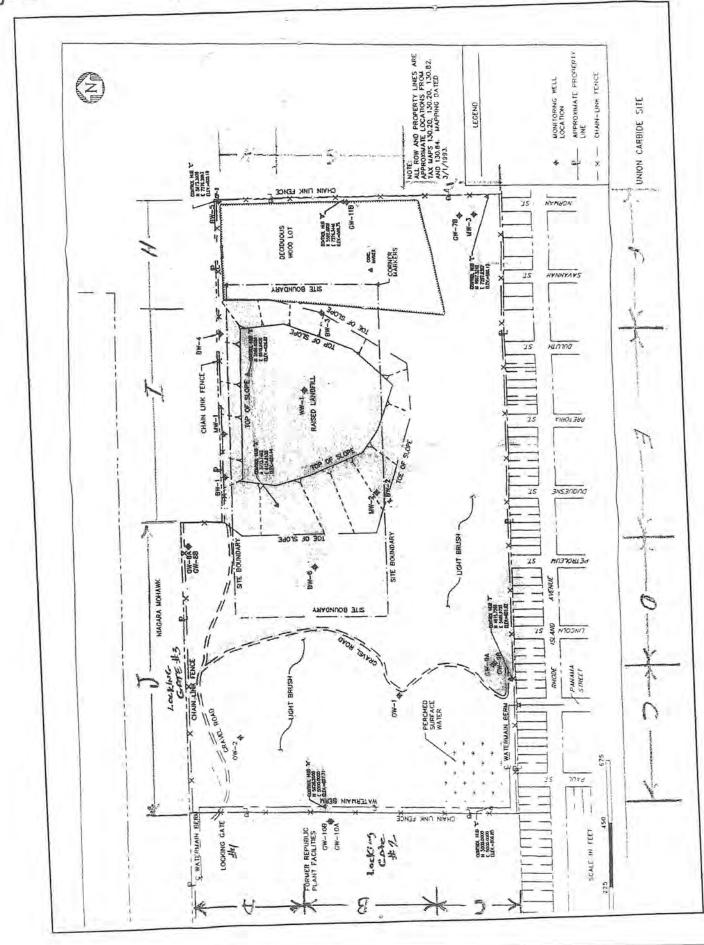
ENCE ARE	OK	DAMAGED	REPAIR DATE	REMARKS
A	V	-		
В	V	/	1	
С	1			7
D	1			
E	/	1		
- F	/	-		
G	/			
- H	1			
1	1	-		
1	1		a second second	

	the construction of the		REMARKS
GATE	OK DAMAGED	REPAIR DATE	REIVIARIO
1			
2			
3			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

good


CAP COMMENTS: (Check for erosion and adequate vegetation)


doc d

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:____

swearengen Employee

Inspector Name Time Date Em Swennigen

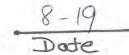
ENCE ARE.	OK	DAMAGED	REPAIR DATE	REMARKS
Α	1			
В	1			
С	1	-		1
D	1	1. 2. Cont. 1.		
E	1		1	
F	1			
G	1			
Н	1	-		
1	/			

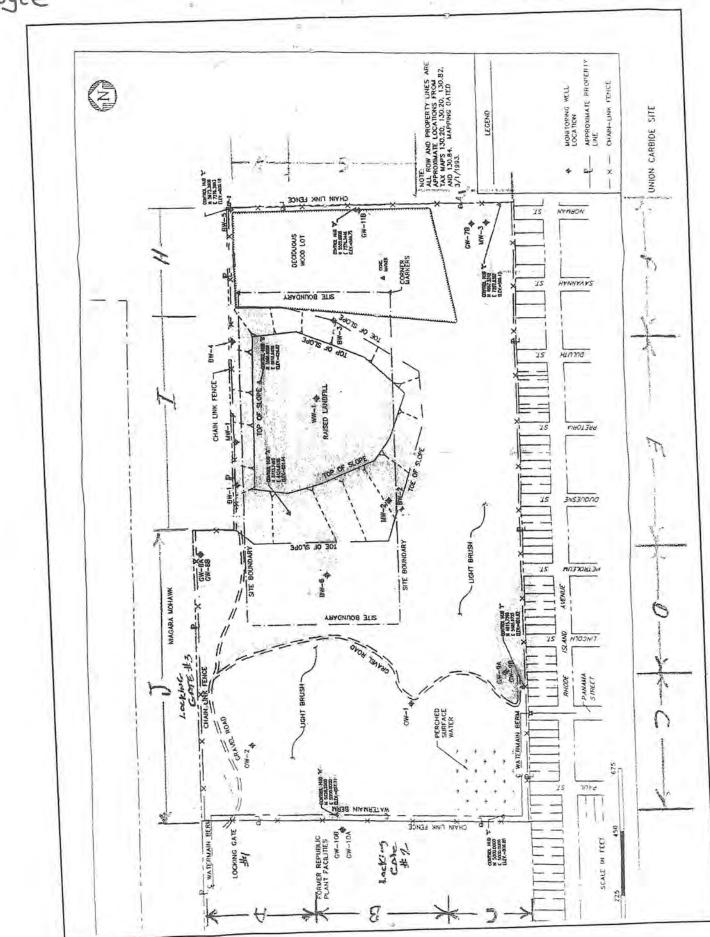
				REMARKS
GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1				
2				
3	/	1 e		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

Cicocli

CAP COMMENTS: (Check for erosion and adequate vegetation)


all good


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

allgood

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

T. Swearengen Employee

	Time	Inspector Name
Date	1: (0-)	Tohn Swaauga
8/10/19	1.00	0

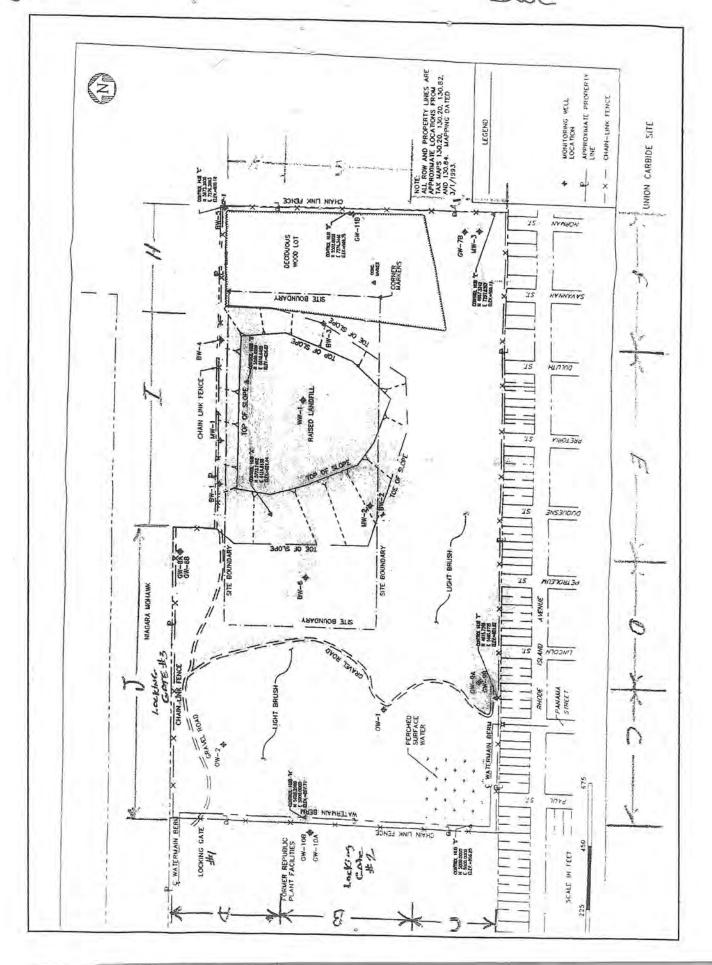
			REPAIR DATE	REMARKS
ENCE ARE.	OK/	DAMAGED	REPAIR DATE	
Α	11		-	
В	1			
С	1	-		1
D	11	1		
E	1			
F	4	1		
G	1	-	-	
н	11			
1	1	4		

				REMARKS
GATE	OK	DAMAGED	REPAIR DATE	
1				
2				
3	/	1		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of

security breach)

all good


CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

J. Swearengen Employee

Date

15

Inspector Name Time Elin Screaging Date 9:30

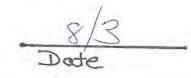
ENCE ARE.	OK	DAMAGED	REPAIR DATE	REMARKS
A	1			
В	1	f	1	
С	1	-		· · · · · · · · · · · · · · · · · · ·
D	1	-		
E	1	-		
F	1	1		
G	11	1		
н	1	1		
1	1	1		

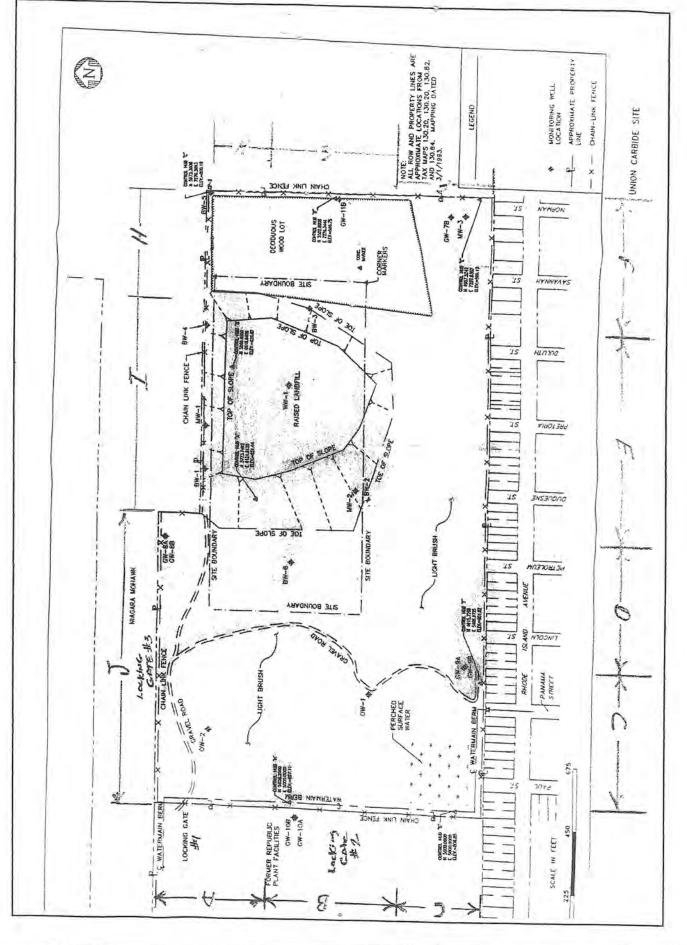
	and the second second			REMARKS
GATE	OK D	AMAGED	REPAIR DATE	REIMARKO
1	A	-		
2	11			
3	1		1	

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of

security breach)

all nood


CAP COMMENTS: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

0,000

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_____

<u>J. Sweargen</u> Employee

Date	Time	Inspector Name
CICINA	3.00.00	John Sareorener

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
Α		1		
В	0			
С				Ť.
D				л
Ε		0		
F		/		
G	/			
Н	/			
1	/			
	/			

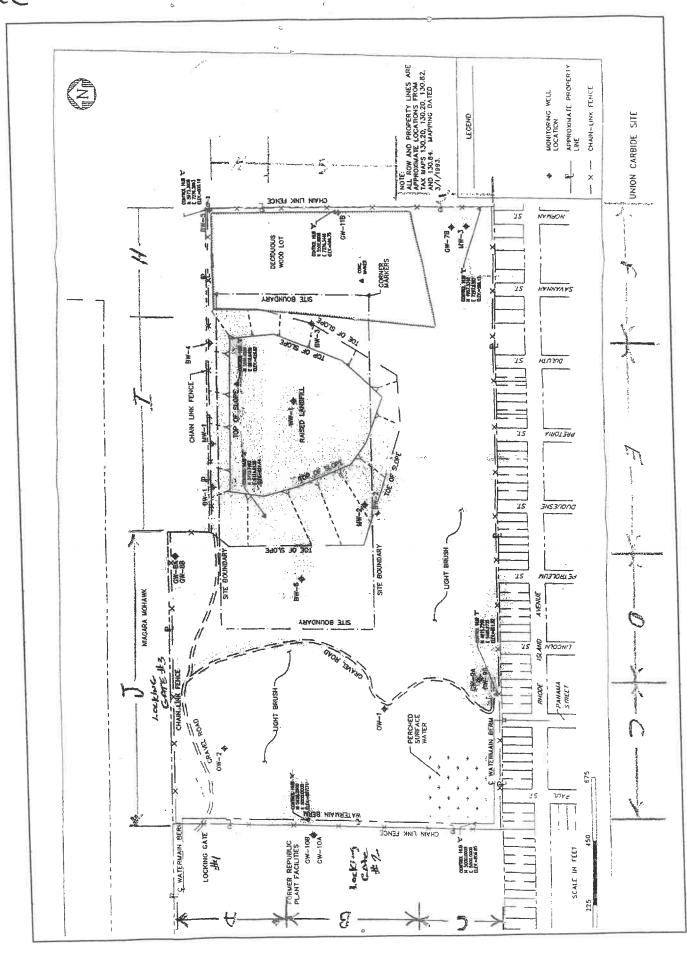
GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				
2		-		
3				

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of

security breach)

naco

CAP COMMENTS: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

CADO

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_____

9/1/19 Dote

Date	Time	Inspector Name	
9/7/14	1.00	John Swearrager	

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
Α	1			
В	V,			
С	V			
D	1			
E	1	-		
F	1			
G	1,			
Н	/			
1	1			
-1	/			

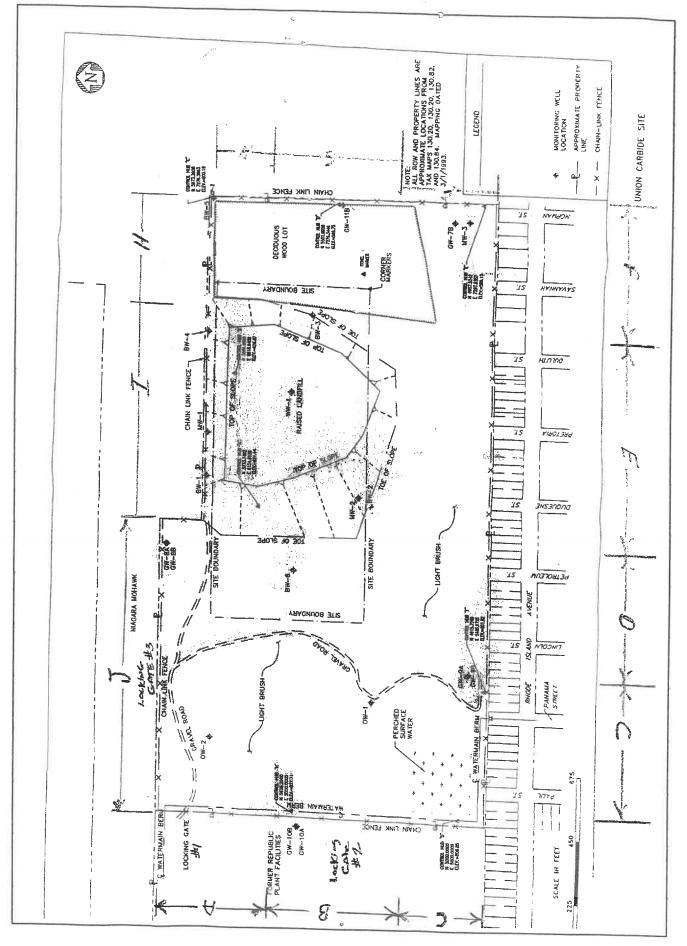
GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	1			
2				·
3		0		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all pood

CAP COMMENTS: (Check for erosion and adequate vegetation)

all god


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

allow

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:____

Employee

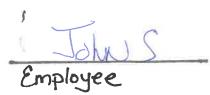
9 Date

۰.

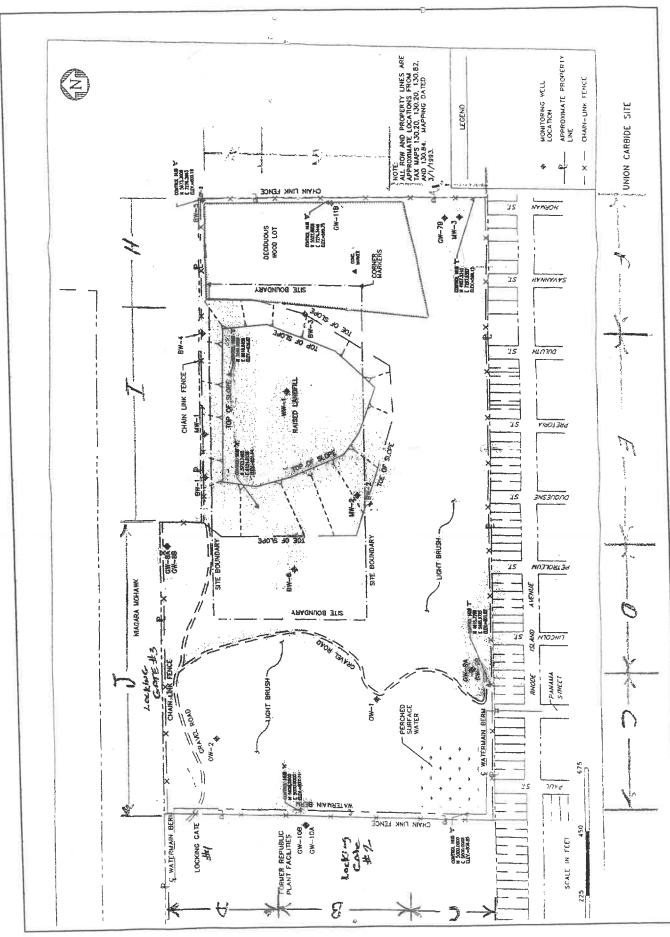
Inspector Name Time Date

ENCE ARE	ок	DAMAGED	REPAIR DATE	REMARKS
A				
В		-		
С	/			1
D				
E				
F		a		
G				
Н	1			
1	1			
J	/			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	(
2	1			
3	1			


SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

allopen


CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:____

Date

Date Time Inspector Name 0.70

ENCE ARE	OK	DAMAGED	REPAIR DATE	REMARKS
Α		-		
В	/			
С				
D	/	_		1
E	1	-		
F	/			
G	1			
Н	/			
1	1			
J	/			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				
2	1			
3	/			

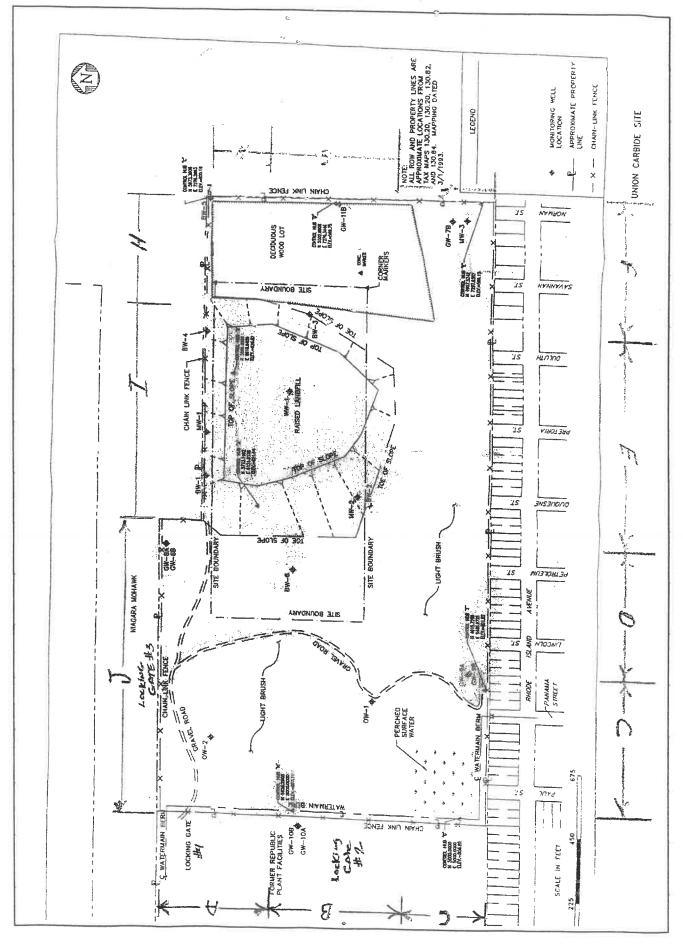
SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

allord

<u>CAP COMMENTS</u>: (Check for erosion and adequate vegetation)

0/000


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)


gligod

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

Employee

¢

Date	Time	Inspector Name
9/27/19	3:30	John Sciegher

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A	1		· · · ·	
В	/			
С	/			
D	/			1
E	/			
F	/			
G	/			
Н	1			
1	1			
·J	/			10.00

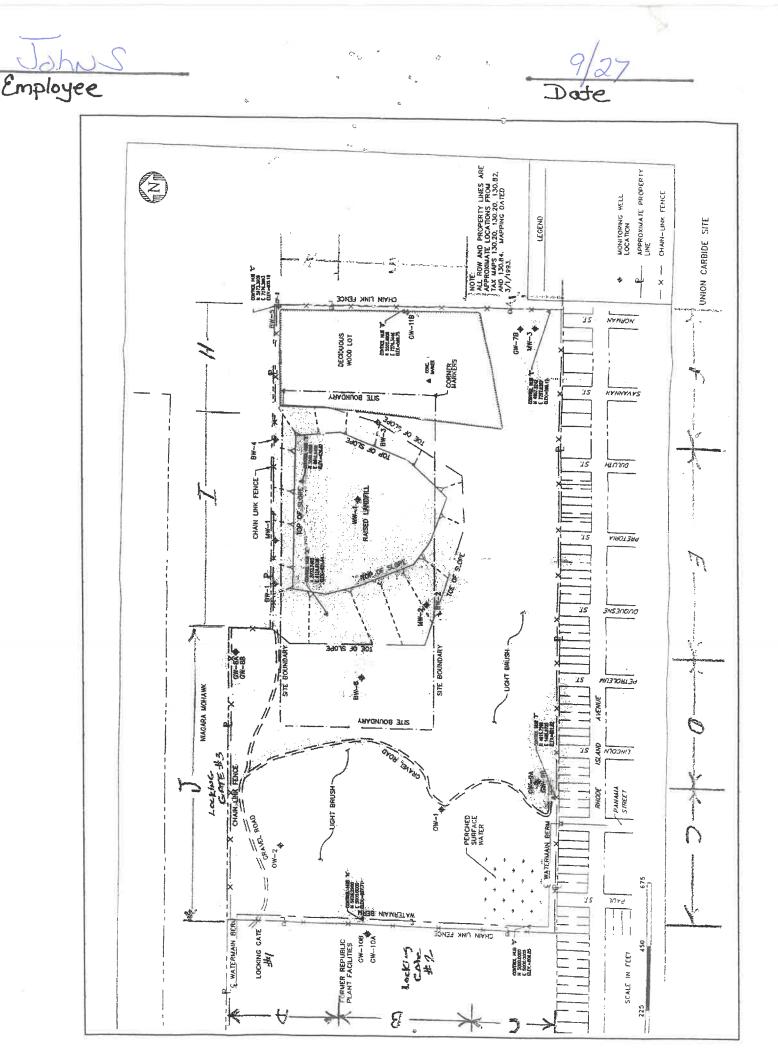
GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	/			
2	/			
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)

all good


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

alland

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

9/14/19

£

Date	Time	Inspector Name
0/6/9	3:30	John Schogungen

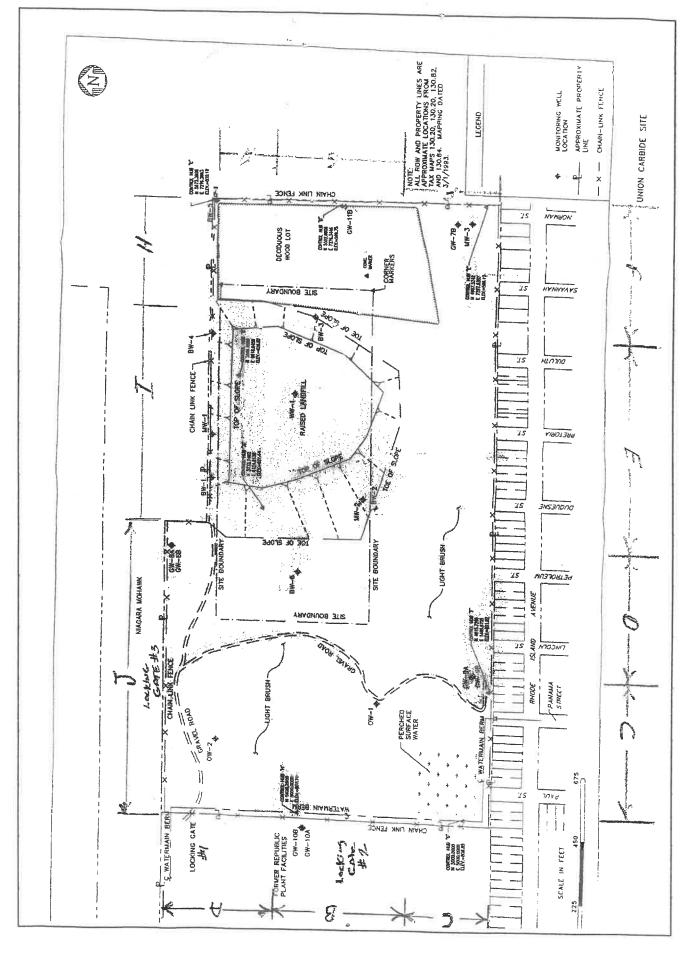
ENCE ARE	ок	DAMAGED	REPAIR DATE	REMARKS
A	0	1		
В	/	1		
С		/		
D	/	•		1
E				- U
F	1			14
G	1			
H	/			
1	/			
J	/			

GATE	OK DAMAGED	REPAIR DATE	REMARKS
1			
2			
3	/		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

200

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

Employee

Date

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

Date	Time	Inspector Name	
0/1/19	7:00	John Susan X	

ENCE ARE	ОК	DAMAGED	REPAIR DATE	* REMARKS
Α	\sim			
В	/			
С	1			
D	/			1
E	/			
F	/			
G	/			
H	/			
1	1			
1	/			

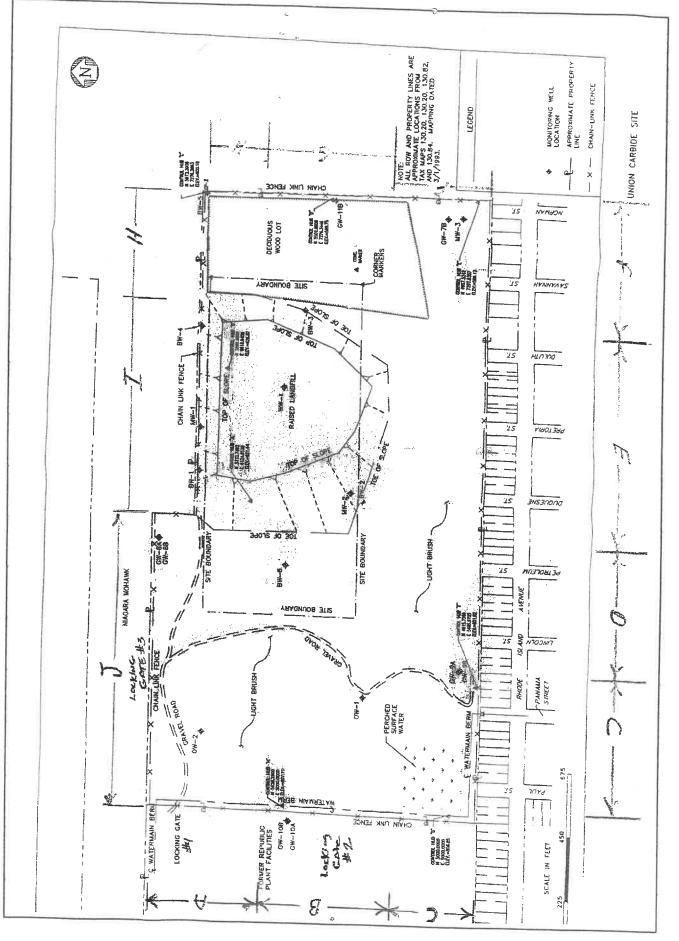
GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	/			
2	/			
3				

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all sad

CAP COMMENTS: (Check for erosion and adequate vegetation)

all good


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

all good

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:___

Employee

٥.,

Date	Time	Inspector Name	
0/19/19	11:00	John Screational	

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
Α	V			
В	1			
С	1			
D	/			1
E	1			C.
F	1			
G	/			
H	1			
1	1			
J	/		A	

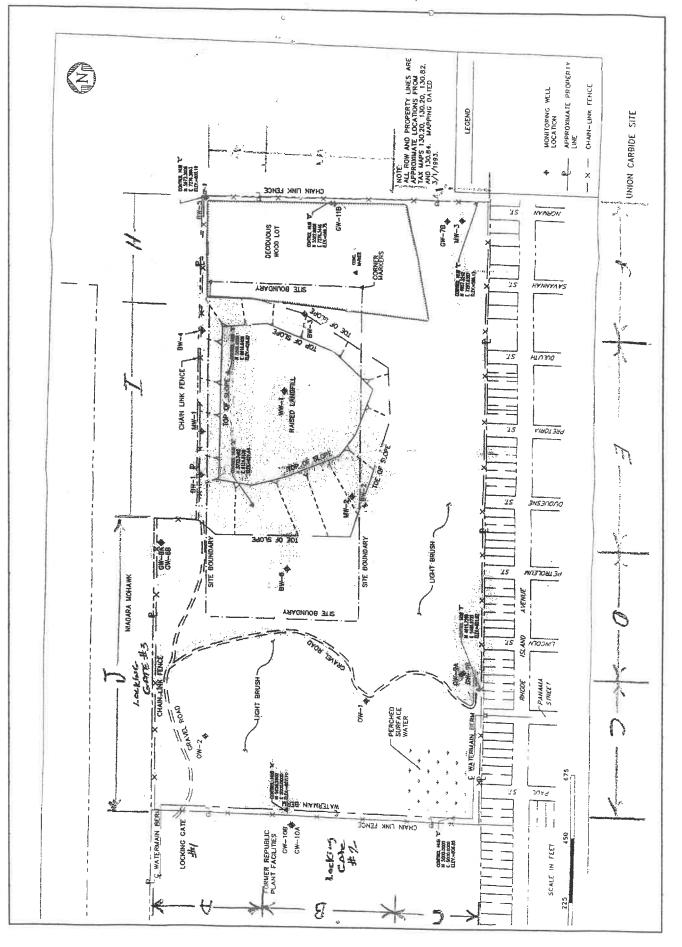
GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	/			
2	1			
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)

all good


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

all good

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

Employee

Date

Date	Time	Inspector Name
10/26/14	11:00	Tohn Scippiemin

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
Α				
В	1	/		
С	1			
D	/	-		1
E	/			
F	/	-		6
G	/			
Н	/	-		
1	/	/		
J	/		2	

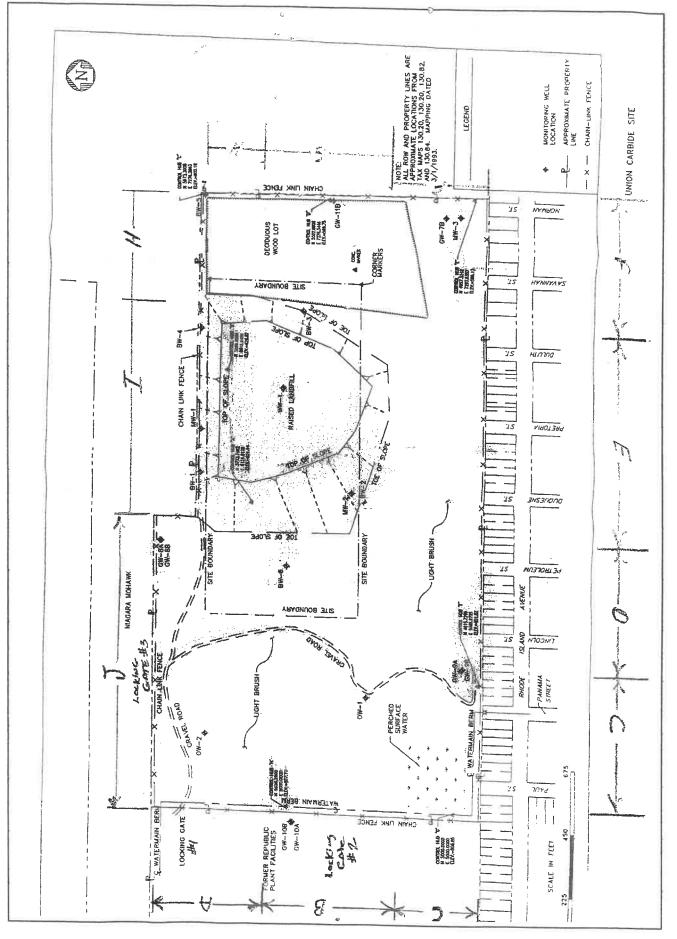
GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				
2		-		
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

<u>CAP COMMENTS:</u> (Check for erosion and adequate vegetation)

Nod


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

0,000

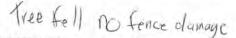
RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

Employee

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

Date Time Inspector Name 1-10 9:00 Am rihr edv-ennin

ENCE ARE	OK	DAMAGED		
A	1	PANAGED	REPAIR DATE	REMARKS
В	1			
С	1			
D	1			
E	/			
F	1		2	
G	1			
Н	1	-		
1.1.1	1			
J	1			


GATE	OK	DAMAGED	REPAIR DATE	
1	1		INLPAIN DATE	REMARKS
2	1			
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

Good

CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

Date		
Date	Time	Inspector Name
11-9-19	7:30	KI O
	1.00	John Scilections

ENCE ARE	ок		1.0.0	
A	UK	DAMAGED	REPAIR DATE	REMARKS
		•		
В	1	-		
С	/	1		
D	/			
E	/	([*]		
F	/		1	
G	1			
H	1			
- 1 - 1	1	-		
J	/			

GATE	OK	DAMAGED	REPAIR DATE	
1	1		ACPAIR DATE	REMARKS
2	/		-	
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

0009

CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

AND O

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

Date	Time	Inspector Name	
1/14/15	11:00 Am	Taka Sarenon	

ENCE ARE.	ОК	DAMAGED	REPAIR DATE	REMARKS
A	1			in the management of the man
В	1			
С	/			
D	1			1
E	/			
F	1			
G	1			
H	1			
1	1			
J	/			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	(· · · · · · · · · · · · · · · · · · ·		
2	1	1		
3	1			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

11 yood

CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

god

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

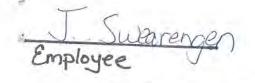
APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

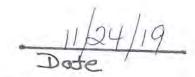
Date	Time	Inspector Name	
1/24/19	12:30 OM	John Syparengen	

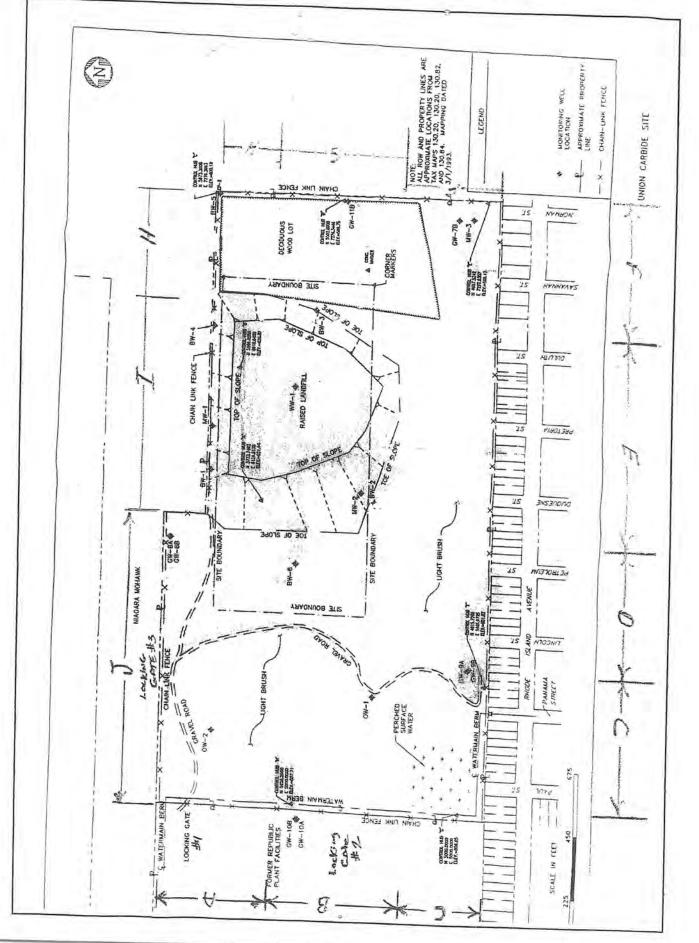
ENCE ARE	OK DAMAGED	REPAIR DATE	REMARKS
A	1		ALWARKS
В	1		
C	1		
D	1		1
E	/		
F			
G	/		
Н		-	
	1		
1	/		

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1		1		REMARKS
2				
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)


good


CAP COMMENTS: (Check for erosion and adequate vegetation)


good

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

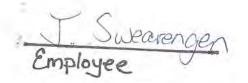
APPENDIX A - WEEKLY GENERAL LANDFILL AND SITE SECURITY INSPECTION REPORT

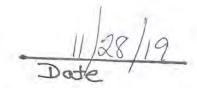
Date Time Inspector Name -28-19 2:30

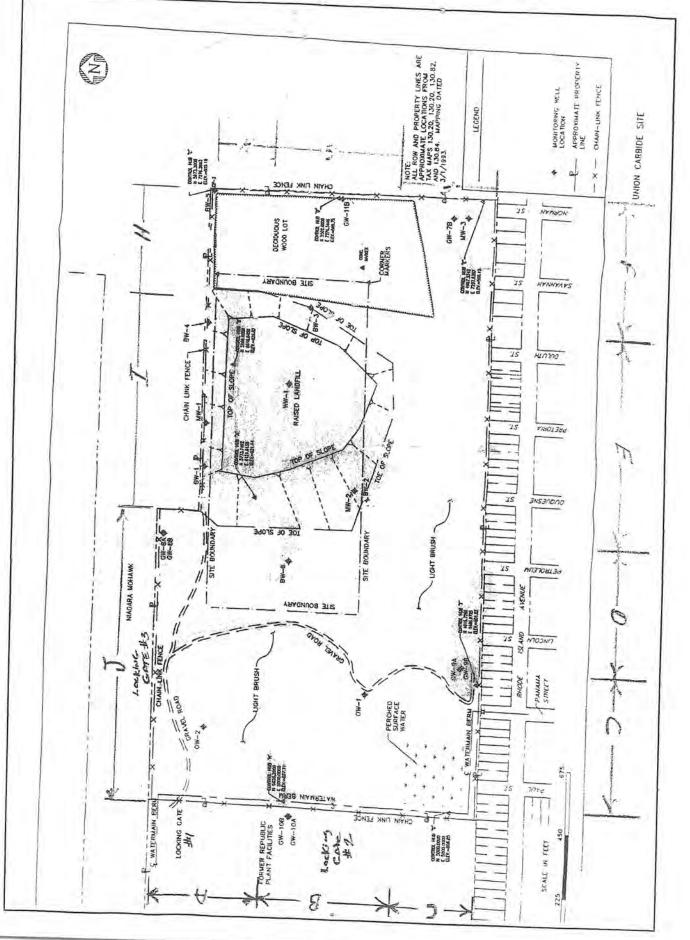
ENCE ARE	ок	DAMAGED	REPAIR DATE	BEMARKS
A	/			REMARKS
B	V			
C	1		-	
D	1			1
E	1			
F	1			
G	/			
Н	/		1	
1	1		-	
_ J	/			

GATE	OK	DAMAGED	REPAIR DATE	DEMADUC
1				REMARKS
2	1	Sec. 94		
3		4		

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)


ql 9000


CAP COMMENTS: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

all good

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

Date Time Inspector Name 12-8-19 7 20 Am Dalena

ENCE ARE	ок	DAMAGED	REPAIR DATE	REMARKS
A	1			
В	/			
С	1			
D	1			1
Ε				
F	1			
G	1			
Н	1			
1	1			
j	/			

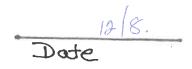
GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1				
2				
3	/			

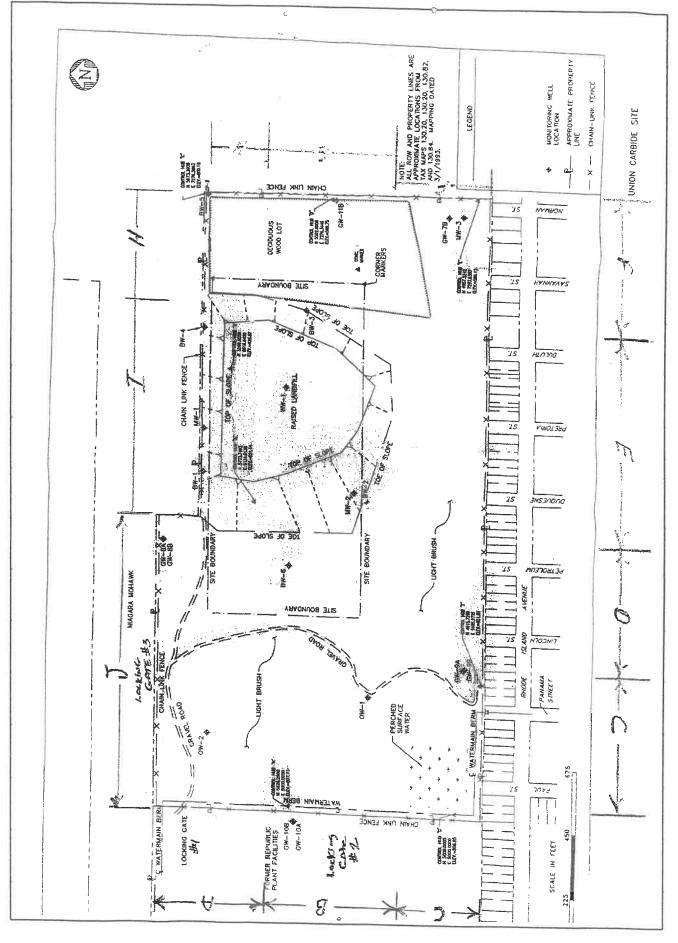
SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)


er 11


RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:_

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

NS

=

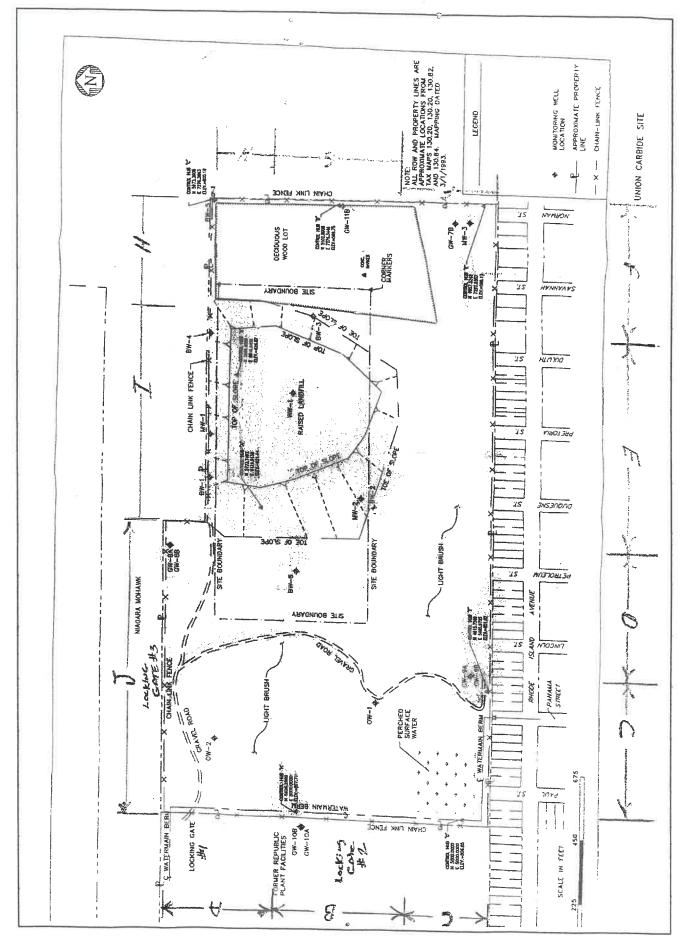
Date	Time	Inspector Name
12/11/19	8.cc	Taka Small

ENCE ARE	OK	DAMAGED	REPAIR DATE	REMARKS
Α	/	-		
В	/			
С	/			
D	/			}
E	1			· 7 .
F	/			6
G	/			·
Н	/			
1	1			
J	1			

GATE	ОК	DAMAGED	REPAIR DATE	REMARKS
1	//			
2	/	-		
3	/			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

CAP COMMENTS: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

2 (*

Date Time Inspector Name 7-19

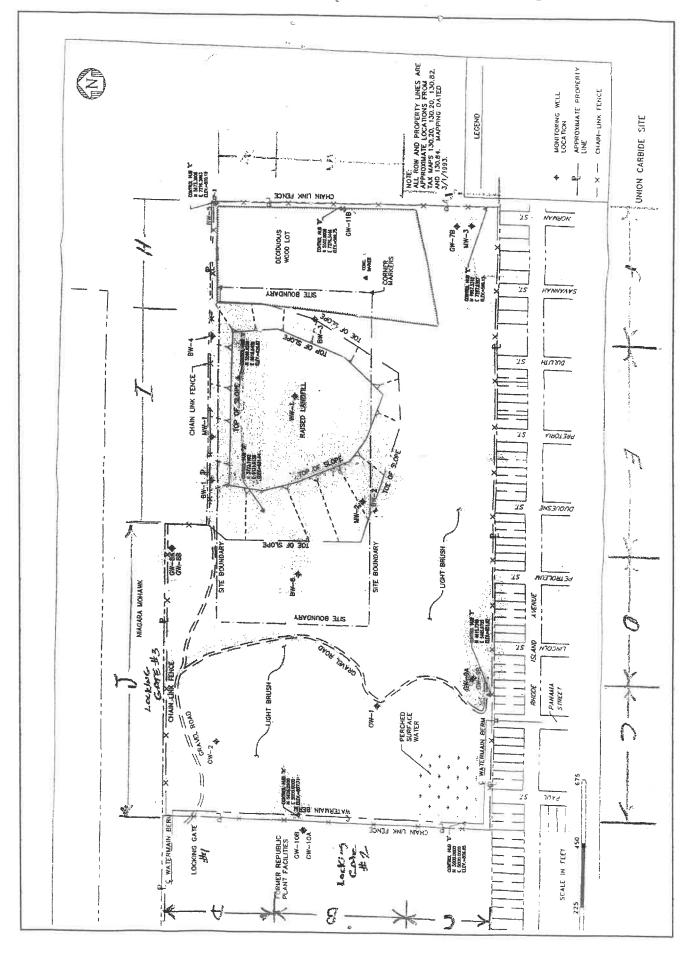
ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
Α	1			
В	/			
С	1			
D	1			Í
E	1			·
F	/			1.
G	1			
н	/			
1	1			
J	/			

GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	/			
2	1			
3	-			

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all good

CAP COMMENTS: (Check for erosion and adequate vegetation)


SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

12/22 Date

Date	Time	Inspector Name
12-29-19	Dicc	Eden Scherkuns

ENCE ARE	ОК	DAMAGED	REPAIR DATE	REMARKS
A	1			
В	V			
С	/			
D	/			1
E	/			
F	/			· · · · · · · · · · · · · · · · · · ·
G	/			
Н	/			
1	1			
J	1			

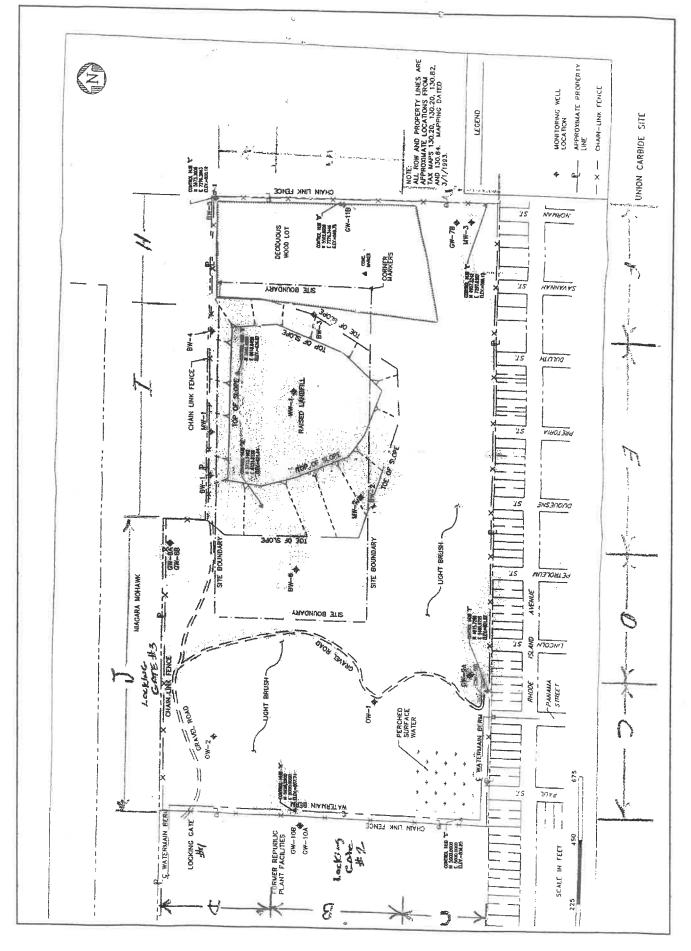
GATE	OK	DAMAGED	REPAIR DATE	REMARKS
1	/			
2				
3				

SECURITY-RELATED ENGINEERED CONTROLS COMMENTS: (Check for condition, damage, signs of security breach)

all open

<u>CAP COMMENTS</u>: (Check for erosion and adequate vegetation)

SURROUNDING AREA COMMENTS: (Check for condition, damage, signs of security breach)


all good

all good

RECORD THE DATE(S) THAT THE ENTIRE CAP WAS MOWED:____

IN THE EVENT THAT ANY SIGN OF A SITE SECURITY BREACH IS IDENTIFIED DURING THE ABOVE SITE INSPECTIONS, COMPLETE A FULL GROUNDWATER MONITORING WELL INSPECTION AND DOCUMENT RESULTS USING THE QUARTERLY GROUNDWATER WELL INSPECTION REPORT FORM (APPENDIX B) AND ATTACH TO THIS FORM.

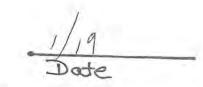
29/19 Date

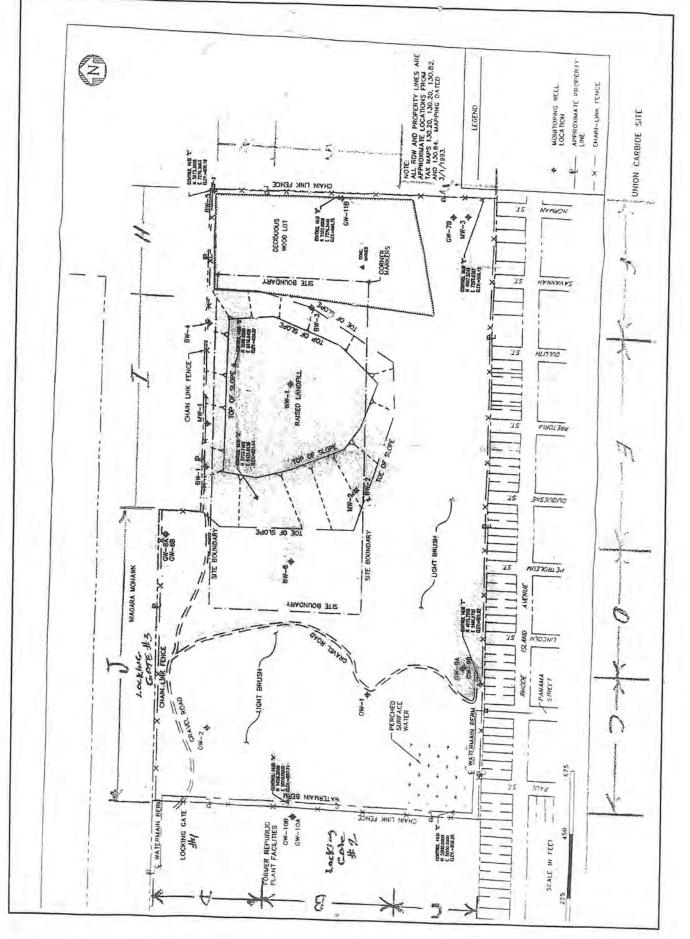
Appendix G

Copies of Quarterly Groundwater Well Inspection Reports -2019

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

10


APPENDIX B - QUARTERLY GROUNDWATER WELL INSPECTION REPORT


MARK	5		GRAFTECH	WELLS	
WELL I.D. NUMBER	WELL I.D. TAG INTACT <u>(Y</u> ES/ <u>N</u> O)	LOCK CONDITION	OUTER CASING CONDITION	CONCRETE SEAL CONDITION	COMMENTS
MW1-78	1	3000	Groop	d a	
MW2-78	Y	apod	good	43000	
MW3-79	X	yood	400d	Good	
BW1-86	Y	good	J .	good	
BW2-86		460d	Good	good	
BW3-86	X		good	good	
BW4-86	Y	good	-good	6,000	
BW5-86	Y	\sim	good	gioo A	
BW6-86	Y	good ()	good	CRAENERS	
WW1-86	Y	Sood	Jood	LEACHEd	
OW1-88	Y	Sooy	1900	Not visable	
OW2-88	Y	good	Good	Not Visable	

ON-SITE WELLS INSTALLED BY NYSDEC

WELL I.D. NUMBER	WELL I.D. TAG INTACT (YES/NO)	LOCK CONDITION	OUTER CASING CONDITION	CONCRETE SEAL CONDITION	COMMENTS
GW7B-93	4	0.00	awed	luce	1
GW8A-93	Y	LOUN	0 1	10050	Kansing up from ground
GW8B-93	Y	Quod	gist of	16050	Parising up trun ground
GW9A-93	Y	0	ynoa	good	
GW9B-93	Y	5000	BOOK	Sood	
GW11B-93	Y	0000	4000	Good	

Mark S Employee

Ъ., н

4

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

50	Shy Sa	Wianoj e	GRAFTECH	WELLS	6/1/19
WELL I.D. NUMBER	WELL I.D. TAG INTACT (YES/NO)	LOCK CONDITION	OUTER CASING CONDITION	CONCRETE SEAL CONDITION	COMMENTS
MW1-78	cres	gad	good	gad	
MW2-78	ins	and	and	dead	
MW3-79	Urs.	apad	accol	good	
BW1-86	YES	goo.l	good	appel	×
BW2-86	-OE7	god	good	good	
BW3-86	UPS	and	doili	chal	
BW4-86	183	oppol	opend	good	
BW5-86	incs	good	apad	Of Cracker	
BW6-86	Pps	gad	cood	cracted	
WW1-86	1103	rood	and.	patrisable	2
OW1-88	ines	doal	acal	notvisable	
OW2-88	Ves	člad	good	not visable	

APPENDIX B - QUARTERLY GROUNDWATER WELL INSPECTION REPORT

ON-SITE WELLS INSTALLED BY NYSDEC

WELLI.D. NUMBER	WELL I.D. TAG INTACT (YES/NO)	LOCK CONDITION	OUTER CASING CONDITION	CONCRETE SEAL CONDITION	COMMENTS
GW7B-93	Wes.	opol.	acad	loose	Give up from ground
GW8A-93	es	ciaco,	apped	base	Fairlup frem asocial
GW8B-93	cres	apod	acad	and	r J
GW9A-93	CS	gord	apoc	good	
GW9B-93	Ges	good	youl	good	
GW11B-93	408	0000	apad	noel	

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32N03 (REGISTRY NO. 932035)

John Sur	eclengen		GRAFTECH	WELLS 9	18/19
WELL I.D. NUMBER	WELL I.D. TAG INTACT <u>(Y</u> ES/ <u>N</u> O)	LOCK CONDITION	OUTER CASING CONDITION	CONCRETE SEAL CONDITION	COMMENTS
MW1-78	Urs	lockel	good	gast	
MW2-78	Vies	lockal	acad	gazel	
MW3-79	ives	lockel	Jacol	gcocl	
BW1-86	ve.)	lockal	good	good	
BW2-86	415	Jockel	good	good	
BW3-86	Cles	lockel	ggod	good	
BW4-86	Sec	locked	god	good	
BW5-86	1900	1 contra	gen	gover	
BW6-86	ijes	bekal	Good	@ cracke	1
WW1-86	US	Costiel	crood	not visable	l .
OW1-88	Ues	lockal	good	not visially	
OW2-88	yes	lockal	good	notvisible	

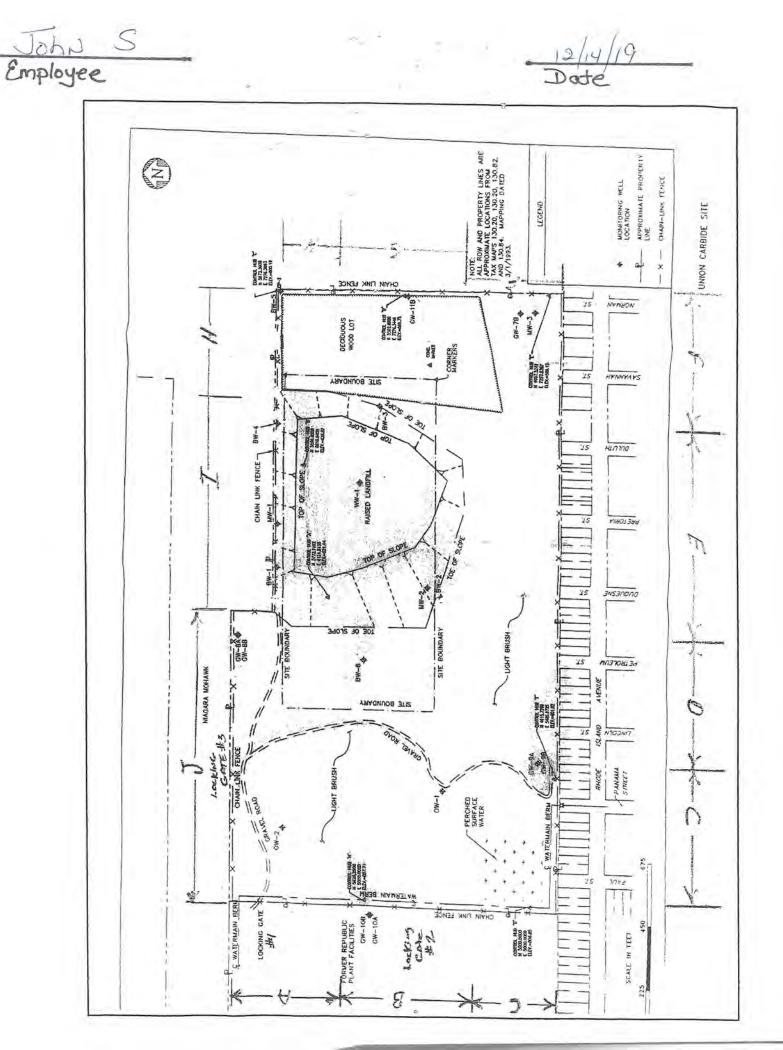
APPENDIX B - QUARTERLY GROUNDWATER WELL INSPECTION REPORT

ON-SITE WELLS INSTALLED BY NYSDEC

WELL I.D. NUMBER	WELL I.D. TAG INTACT (YES/NO)	LOCK CONDITION	OUTER CASING CONDITION	CONCRETE SEAL CONDITION	COMMENTS
GW7B-93	ues	lockal	cool	Losse	
GW8A-93	13	locted	and	LOOS	
GW8B-93	4:5	locked	cool		
GW9A-93	Bes	anal	and	good Losse	
GW9B-93	UCS	and	gaal	Lasse	
GW11B-93	UCD.	locked	appl	geon	

LANDFILL SITE MANAGEMENT PLAN FOR SWMF #32NO3 (REGISTRY NO. 932035) John Science 12-44/19

2019- 4th


APPENDIX B - QUARTERLY GROUNDWATER WELL INSPECTION REPORT

GRAFTECH WELLS

WELL I.D. NUMBER	WELL I.D. TAG INTACT <u>(Y</u> ES/ <u>N</u> O)	LOCK CONDITION	OUTER CASING CONDITION	CONCRETE SEAL CONDITION	COMMENTS
MW1-78	yes	locher	ejood	gaod	
MW2-78	yes	lockal	good	good	
MW3-79	cles	locked,	acod	good	
BW1-86	cies	locked	good	good	
BW2-86	(ye)	locked	0001	good	
BW3-86	ijes	behrd,	good	good	
BW4-86	ines	locked	good	yood	
BW5-86	lles	locked	appel	apach	
BW6-86	yes	locked	gad	apod	
WW1-86	ues .	lockal,	good	good	
OW1-88	Vie)	locked	good	gard	
OW2-88	4-5	loched	good	goal	

ON-SITE WELLS INSTALLED BY NYSDEC

WELL I.D. NUMBER	WELL I.D. TAG INTACT (YES/NO)	LOCK CONDITION	OUTER CASING CONDITION	CONCRETE SEAL CONDITION	COMMENTS
GW7B-93	Ules	locked	good	cracke o	and voised from ground
GW8A-93	Cros	locked.	good,	0000	
GW8B-93	lies	locked	gaal	eraked	101305 from optical
GW9A-93	405	lockd	good	crackel	vaised from gourd
GW9B-93	yes	locked	rood	Crackel	Verisial Francycan
GW11B-93	Clad	locked	Good	Good	

