.pdf

The electronic version of this file/report should have the file name:

Type of document . Site Number . Year-Month . File Year-Year or Report name . pdf

example: letter . Year-Month . File Year-Year . pdf

Report, HW. 932039. 1987. 11.27. Recordof Clousure.pdf. .pdf

example: report . Site Number . Year-Month . Report Name . pdf

Project Site numbers will be proceeded by the following:

Municipal Brownfields - B Superfund - HW Spills - SP ERP - E VCP - V BCP - C

Van De Mark Chemical Co., Inc.

ì

NAN-1987-4-136

932039

RECORD OF CLOSURE ACTIVITIES

Former Landfill Site

November 1987

, î

1

} ÿ

2.9

L

PRINTED ON NOV 2.7 1987

Van De Mark Chemical Co., Inc.

RECORD OF CLOSURE ACTIVITIES Former Landfill Site

November 1987

Ref. No. 1277

TABLE OF CONTENTS

.

1.0	INTRODUCTION	1
2.0	CLOSURE ACTIVITIES	3
	2.1 PRE-GRADING	3
	2.2 INTERCEPTOR TRENCH	6
	2.3 REMEDIATION OF MONITORING WELLS	7
	2.4 LIME TREATMENT	9
	2.5 LOW PERMEABLE CLAY FILL	10
	2.6 PAN LYSIMETER INSTALLATION	17
	2.7 DRAINAGE LAYER	19
	2.8 SANDY LOAM LAYER	20
	2.9 TOPSOIL LAYER	21
	2.10 ADDITIONAL REMEDIATION OF DITCH AREA	23
3.0	MAINTENANCE PROGRAM	25
	3.1 SITE SECURITY AND ACCESS	27
4.0	POST-CLOSURE MONITORING PROGRAM	28
5.0	CONTINGENCY PROGRAM	32

Page

TABLES

Following <u>Page</u>

TABLE	1	MONITORING WELL TOP OF CASING ELEVATIONS	8
TABLE	2	CLAY TEST PAD RESULTS	10
TABLE	3	SUMMARY OF CLAY TEST RESULTS	12
TABLE	4	CLAY LAYER THICKNESS VERIFICATION	16
TABLE	5	COVER LAYER THICKNESS VERIFICATION	20

APPENDICES

APPENDIX A	EQUIPMENT USED DURING CONSTRUCTION ACTIVITIES
APPENDIX B	CLAY TESTING RESULTS
APPENDIX C	1B STONE TEST RESULTS
APPENDIX D	SAMPLING AND ANALYSIS PROGRAM - MONITORING

LIST OF PLANS

PLAN	1	PRE-CLOSURE CONDITIONS	enclosed
PLAN	2	EARLY AND RECENT LANDFILL AREAS	enclosed
PLAN	3	LOCATION OF VARIOUS SITE FEATURES	enclosed
PLAN	4	TESTING LOCATIONS - A	enclosed
PLAN	` 5	TESTING LOCATIONS - B	enclosed
PLAN	6	TOP OF CLAY CONTOURS	enclosed
PLAN	7	FINAL GRADE CONTOURS	enclosed
PLAN	8	MISCELLANEOUS DETAILS	enclosed

This report describes the construction activities involved with the closure of a former landfill owned by VanDeMark Chemical Co., Inc. (VDM) of Lockport, New York. The proposed closure plan, as presented in the report entitled "Closure Plan - Former Landfill Site" was approved by the New York State Department of Environmental Conservation (NYSDEC) prior to initiation of closure activities. The cover sheet of the plans enclosed with this report illustrates the location of the former VDM Landfill Site.

On June 19, 1987 the contract to complete the closure activities at the landfill was awarded to Secure Landfill Consultants-Constructors (SLC) of Lockport, New York. Construction activities commenced on June 29, 1987 and were completed during the week of August 10, 1987. The work involved the following:

- a. Site preparation including clearing and grubbing of area, pre-grading and proof-rolling.
- b. Addition of crushed limestone in surface depressions on-site and surface treatment through the application of powdered lime.

- c. Construction of a limestone interceptor trench.
- d. Installation of a monitoring well within the interceptor trench.
- e. Installation of a pan lysimeter and monitor standpipe.
- f. Installation of layers of low permeable clay, a drainage blanket, sandy loam and topsoil over the existing waste and cover material.
- g. Hydraulic seeding.
- h. Post closure activities including hydrogeologic monitoring and maintenance programs.

As designed by Conestoga-Rovers & Associates (CRA), the construction activities address the site specific conditions of the former landfill area with respect to the local and regional geology, soil and groundwater conditions, topography, and surface drainage patterns.

2.0 CLOSURE ACTIVITIES

The VanDeMark landfill area has been covered with a low permeability cap to reduce precipitation infiltration. The final cover consists of:

- vegetative cover (grass)
- 6-inch thick topsoil layer
- 15-inch thick loam layer
- 3-inch thick drainage layer
- 24-inch thick clay layer
- only imported soils were used for cover construction

The areal extent and final surface elevations of the cover are presented on Plan 7. A typical cross section of the cap is presented on Plan 8. The following sections detail the closure activities:

2.1 PRE-GRADING

The initial step of the closure plan construction involved the clearing and grubbing of the site. Excess vegetation cleared from the site which could not be pulverized and combined with the pre-graded soils was removed from the site. Following clearing and grubbing, the site was pre-graded such that all areas of the site sloped

off site at a minimum grade of approximately 3 percent. Disturbance of existing cover soils over the landfilled areas was minimized to the extent practicable during pre-grading of the site. In fact, rather than cut into the Landfill in certain areas, additional cover material (1100 cubic yards) was imported for pre-grading usage. Plan 1 presents the site conditions prior to closure construction. Plan 2 illustrates the extent of the landfilled areas.

The entire site was proof-rolled using a vibratory drum compactor. Any settlement due to proof-rolling was backfilled, graded and proof-rolled again. The proof-rolling of the site was completed so as to reduce cover settlement following closure. During pre-grading, all significant on-site surface depressions were filled with crushed limestone and compacted. A total of 60 cubic yards of crushed limestone was used for this purpose.

As part of the site grading provisions, the existing iron oxide-stained material was removed from the downstream ditch area adjacent to the landfill site perimeter fence. The area where staining was visible was excavated to a depth of approximately two feet using a backhoe. This excavated material, along with several randomly occurring stained pieces of rock, was deposited inside the limits of the area to be capped. Specifically, the material was scattered along the low-lying area on the southerly edge of

the landfill and in the ditch along the easterly portion of the landfill site. Crushed limestone was used to backfill and cover the entire area outside the perimeter of the landfill site where excavation was necessary. The crushed limestone was then covered with a four to six-inch layer of topsoil and was seeded. Plan 3 illustrates the location of the remediated ditch area.

The toe of the rock face which runs parallel to the entire length of the eastern ditch area was graded. A cut was made with a bulldozer into the fragmented shale and granular materials to promote adhesion of the low permeable clay to the rock face and thus prevent runoff from the rock face from penetrating underneath the clay cover in the ditch. The material generated from this cut was graded evenly into the slope of the entire ditch area prior to the clay capping activities.

The existing slope at the northwest corner of the landfill site was reduced by cutting into the slope. Materials generated from this cut were used as fill in a depression at the centerline of the northerly portion of the landfill site.

The equipment used on site during the closure program is presented in Appendix A.

CONESTOGA-ROVERS & ASSOCIATES

On July 7-8, 1987, an interceptor trench and monitoring well were installed in the ditch in the southeast corner of the landfill site. Plan 3 indicates the location of the interceptor trench.

A backhoe was used to excavate the interceptor trench. A 3-foot wide cut was made running perpendicular from the existing rock face and across the ditch for a length of 15 feet. The proposed depth of the interceptor trench was six feet, however, bedrock was encountered approximately 3.3 feet below the existing ground surface and the excavation was terminated at the top of the bedrock.

Once excavated, the interceptor trench was lined with Amaco Propex 4551 filter cloth. The monitoring well, which will be used to monitor groundwater in the interceptor trench, was assembled at this time by welding a 2-foot length of 2-inch diameter stainless steel well screen to a piece of 2-inch diameter Schedule 40 black steel pipe approximately 10.5 feet in length. Once assembled, the monitoring well screen was wrapped with two layers of Amaco Propex 4551 filter cloth and inserted to the bottom of the interceptor trench.

The interceptor trench (including the monitoring well) was backfilled with crushed Lockport dolomite/limestone. The filter cloth lining the trench was overlapped around the limestone backfill and a small amount of crushed limestone was placed over the top fold of the filter cloth to protect the cloth from separating during future site capping activities.

Finally, a length of 4-inch diameter protective casing (approximately seven feet long) was installed over the monitoring well. A locking cap was installed on the protective casing to ensure the security of the well.

2.3 REMEDIATION OF MONITORING WELLS

The increase in elevation of the surface of the landfill site by the addition of four feet of cover materials necessitated the adjustment of elevation of all on-site monitoring wells.

The following wells: VDM-1, VDM-2, VDM-3, VDM-9, VDM-10, VDM-11 and VDM-12 were all adjusted by simply removing the existing protective casings and extending the inner well casing with similar material. Wells VDM-1, VDM-2 and VDM-3 were extended by coupling a 1-inch diameter

piece of PVC pipe (Schedule 80) to the existing inner casings while wells VDM-9, VDM-10 and VDM-11 required lengths of 2-inch diameter Schedule 80 PVC material. The extension of the PVC casings required the use of couplings and PVC joint compound. Care was taken to prevent the introduction of the PVC cement into the inside of the inner casing.

Well VDM-12 required welding pieces of 2-inch diameter black steel pipe onto the existing inner casing. The welds were visually examined for cracks to ensure prevention of infiltration of surface or groundwater into the well.

At each of the above mentioned wells, lengths of either 2-inch or 4-inch diameter protective casings were installed over the inner casings. Lockable caps were included at each well to maintain security. All on-site wells were resurveyed to establish new top of casing elevations. Table 1 lists the revised elevations including the new wells.

Monitoring wells VDM-1 and VDM-4 were affected by construction activities at the landfill site. The casings of both wells were damaged with the inner casing of well VDM-1 being completely severed at the existing ground surface. The integrity of the grout/bentonite seal above the screen of well VDM-4 was questionable. Consequently, the

CONESTOGA-ROVERS & ASSOCIATES

TABLE 1

MONITORING WELL TOP OF CASING ELEVATIONS

Monitoring Well Number Top of Casing Elevation (inside casing - feet) VDM1 451.98 VDM2 451.76 VDM3 449.84 VDM4 Abandoned VDM5 (off-site) 365.6* (no change) 365.6* (no change) VDM6 (off-site) VDM7 (borehole) -----VDM8 (borehole) VDM9 451.14 VDM10 448.67 VDM11 453.95 VDM12 451.58 VDM13 (lysimeter monitor) 453.27 (new) VDM14 (trench monitor) 446.31 (new)

*Approximate ground elevation.

CONESTOGA-ROVERS & ASSOCIATES

well was closed on July 7, 1987. The inner PVC casing and borehole of this well was filled to the existing ground surface with dry bentonite and subsequently wetted down with water. The newly constructed clay cap covers this abandoned well.

Well VDM-1, however, was remediated although some foreign materials had apparently entered the well casing. This does not necessarily preclude the exclusion of this well in future hydrogeological studies as it may be possible to evacuate the foreign material by well development. The well can certainly be included in future hydraulic studies.

2.4 LIME TREATMENT

Prior to the construction of the low permeable clay fill cover, the entire landfill site was treated with powdered lime. The lime was applied at a rate of 0.3 lbs./square foot with a mechanical spreader. The total amount of applied lime, 15,000 lbs., is three times the amount originally specified for the project. The lime application rate was increased at the request of VDM to insure that any precipitation infiltrating the cover had good buffering capacity.

Prior to construction of the clay cap, clay from each of the two borrow sources proposed by SLC was delivered to the site and used in the construction of a clay test pad. Clay from the Frontier Stone pit was placed and compacted using a sheepsfoot vibratory drum compactor. Following four, six and eight passes of the compactor, density, percent moisture and compaction measurements were made using a nuclear densometer at each of three locations. Shelby tube soil samples were also taken after four, six and eight passes at the test location which exhibited the median compaction value. The Shelby tube samples were then tested for permeability using the constant head triaxial method. The test results, as illustrated by Table 2, indicate that a compaction value of 90 percent results in a permeability value less than $1x10^{-7}$ cm/sec.

The clay from the alternate source, the Summit Park Lake, was also field tested in a similar manner, complete with laboratory permeability testing. From the testing it was determined that a compaction value of 90 percent results in an 'in-situ' permeability of less than 1×10^{-7} cm/sec.

Based upon the results of the testing completed in conjunction with the clay test pad construction,

TABLE 2

CLAY TEST PAD RESULTS

Test Pad 1:

Clay Source - Frontier Stone

No. of Passes	Moisture Content (%)	Percent Compaction	Permeabibility cm/sec
4	22.5	89.0	-
4	19.9	91.3	
4	20.4	89.3	0.73×10^{-7}
6	19.1	93.1	_
6	21.8	91.9	0.22×10^{-7}
6	19.6	90.7	_
8	18.2	94.9	_
8	22.3	91.1	
8	19.8	90.8	0.47×10^{-7}

Test Pad 2:

Clay Source - Summit Park Lake

No. of Passes	Moisture Content (%)	Percent Compaction	Permeabibility cm/sec
6	21.6	86.0	0.11×10^{-7}
6	20.2	86.2	
6	21.5	84.1	-
8	20.3	84.1	-
8	21.3	89.9	
8	21.1	86.4	0.12×10^{-7}

both clay sources were approved as suitable for the VDM Site Closure. It was determined that the clay would be compacted to a minimum of 90 percent. All of the clay used during the construction of the landfill cover originated from the approved Frontier Stone site in Lockport.

The application of the low permeable clay cover commenced on July 7, 1987 and continued through July 23, 1987. The prevailing weather conditions for this period, hot and dry, were ideal for construction of this nature.

In general, the clay capping process consisted of the importation of material, levelling to grade, and compaction.

The clay was placed in 6-inch thick lifts at all times during the construction project. The establishment of a 50-foot grid pattern during the pre-grade survey and the use of lift lines on the grid stakes assured that the 6-inch limit was not exceeded. Each lift was compacted with a sheepsfoot roller until the percent compaction and percent moisture values necessary to achieve a maximum permeability of 1.0×10^{-7} cm/sec were achieved.

CONESTOGA-ROVERS & ASSOCIATES

Testing of the in-place compacted clay was performed by representatives of Glynn Geotechnical Engineers (GGE) to assure field quality control. The following details the testing conducted and indicates the testing frequency required (in parenthesis):

- A. One remolded permeability test of the clay used at the VDM site was completed plus four permeability tests were completed on 'in-situ' clay samples collected during the construction of the clay test pad. Three samples from the clay test pad exhibited permeabilities of less than 1×10^{-7} cm/sec while the remolded sample was tested to have a permeability of 4.12×10^{-7} cm/sec. However, a review of the field permeability test results presented by Table 3 indicates that the use of the Frontier Stone clay material is suitable (remolded permeability required once every 5,000 cubic yards, i.e. two required in total).
- B. Twelve permeability tests plus one retest were completed on 'in-situ' samples using the triaxial permeability method with confining pressure and back pressure. All tests indicated a permeability value of 1×10^{-7} cm/sec or less with the exception of one sample (11B = 2.20×10^{-7} cm/sec) plus the retest of that sample (4.96×10^{-7} cm/sec). However, these two permeability values are of the same order of magnitude

CONESTOGA-ROVERS & ASSOCIATES

TABLE 3

.

SUMMARY OF CLAY TEST RESULTS

•

Sample No.	Permeability Rate -7 x10 cm/sec	Cylinder Dry Density	Moisture Content	Percent Compaction	Atter Liquid Limit	berg Plastic Limit
Test Pad	0.729	108.6	19.5	94.8	37	23
Test Pad	0.221	108.9	20.1	95.1	39	22
Test Pad	0.471	107.3	19.3	93.7		
1B	0.176	110.2	16.5	96.2	43	22
2B	0.510	105.7	19.5	92.3	37	20
3A	0.200	107.8	15.8	94.1	39	20
4A	0.440	110.7	17.7	96.7	38	20
5B	0.248	108.7	18.5	94.9	34	19
6A	0.569	109.2	19.8	95.4	36	17
7A	0.461	110.5	14.9	96.5	45	24
8B	0.418	109.8	17.0	. 95.9	36	19
9A	1.09	105.0	18.2	91.7	48	26
10B	0.336	103.2	15.6	90.1	38	. 19
11B	2.201	101.9	18.2	89.0	38	20
11R2	4.96	102.4	13.3	89.4	32	19
12A	0.574	108.5	17.9	94.8	48	25
Bag #2	4.12	107.1	19.1	93.5	35	18
Avg. 1-12	0.60	107.6				

.

.

-

as required and are not significantly greater than 1×10^{-7} cm/sec (in-place permeability, one test per acre per lift required, i.e. 10 in total).

- C. 16 grain size distribution curves were produced regarding samples of the clay used in the cap construction. A grain size distribution analysis was also completed with each permeability test. These samples were collected randomly over the Site including three from the test pad construction (grain size distribution analysis required once per 1,000 cubic yards, i.e. eight required in total).
- D. Also, in conjunction with all 16 of the permeability tests completed on the clay used to cover the VDM site, laboratory moisture content tests were completed (moisture content determination required once per 1,000 cubic yards, i.e. eight required in total).
- E. Two moisture density curves were calculated for the clay placed at the VDM site using ASTM D1557 Method 'A' (see "Compaction Test Data" presented in Appendix B). The results of testing of the sample collected during the test pad construction, which was completed just prior to cover construction, indicated a maximum dry density of 114.5 pounds per cubic foot at an optimum moisture content of 14.5 percent. The results of testing of the

CONESTOGA-ROVERS & ASSOCIATES

second sample, which was collected approximately midway during clay placement, indicated a maximum dry density of 116.5 pounds per cubic foot at an optimum moisture content of 15.0 percent (moisture density curve required once per 5,000 cubic yards, i.e. two required in total).

- Sixteen liquid limit and plasticity index determinations F. were made regarding clay placed at the VDM site. This testing was undertaken in conjunction with each of the permeability tests completed. As indicated by GGE, Atterberg limit values were less consistent than the proctor and grain size results but were indicative of suitable material for clay cap construction. As indicated by Table 3, the liquid limit ranged between 32 and 48, within the recommended limits of 30 to 50 maximum, while the plastic limit ranged between 17 and 26, compared to a recommended plastic index of 20 to 50 (liquid limit and plasticity index determinations required once every 5,000 cubic yards, i.e. two required in total).
- G. A soils technician was present during essentially all of the clay placement activity. Approximately 170 measurements of 'in-situ' density, percent moisture and percent compaction were made using a nuclear densometer. Eight measurements of the same parameters were made

CONESTOGA-ROVERS & ASSOCIATES

using the 'sand cone method'. This testing included a number of retests completed to ensure that areas which had originally been tested to be below the required compaction had been recompacted adequately. The test results illustrated on Plan 4 and detailed in Appendix B indicate that essentially all of the clay was compacted to in excess of 90 percent of the modified proctor compaction value, which corresponds to a permeability value of less than 1×10^{-7} cm/sec (in place moisture/density tests, nine per acre per lift required, i.e. 90 required in total).

Results of the field and laboratory analysis are presented in Appendix B of this report. Plans 4 and 5 summarize the testing results and illustrate the location of each test.

A representative of CRA was present for field observation during the placement of most of the low permeable clay material. Special attention was focused upon the quality of the clay material and its placement. It should be noted that unsuitable materials in the clay (i.e. large rock, roots, sands and gravel etc.) were very seldom observed and were rejected when observed. Proper bonding between the clay lift layers was accomplished by treatment of surfaces with the sheepsfoot roller and occasionally wetting of the surface before the addition of the next clay lift.

Several areas of the landfill site required special attention with respect to the placement of the clay material. Greater than 24 inches of clay material was placed over a large area of the southerly portion of the landfill area to attain the minimum 3 percent slope requirement for the final cover. Extra clay material was also deposited along the length of the rock face/ditch interface. This material was then wrapped up the rock face by running the sheepsfoot roller on a perpendicular axis to the rock face. This treatment will enhance the adhesion of the clay material to the rock face and reduce introduction of surface water runoff from the rock face below the clay cover of the ditch.

Eight split spoon soil samples were taken at random locations at the landfill site to verify the thickness of the low permeable clay layer. The locations of the random sampling are presented in Plan 5. The results of this sampling are tabulated in Table 4. All split spoon samples were within the 1-inch tolerance for the final grade of clay material. A survey of the entire grid area was also ordered to verify the thickness of the clay cover material. The results of this survey are presented in tabular form in Table 4. During the course of the closure program, approximately 8,140 cubic yards of clay was placed on the site as cover material. This volume was determined by Ivan R. Klettke, Licensed Land Surveyor.

TABLE 4

CLAY LAYER THICKNESS VERIFICATION

Split Spoon Data:

Clay Thickness
2.2
2.1
2.1
2.0
2.0 2.1
2.1
2.1

Survey Data:*

Station	Line B	Line C	Line _D	Head of 	Toe of Ditch	Line E	Line F
0+00	_	-	3.3	_	-	-	-
0+50	2.4	3.1	3.5	-	-	3.3	2.8
1+00	1.9	3.3	3.5	1.9	1.3**	2.3	2.5
1+50	1.7	3.3	2.3	2.3	1.2**	2.3	
2+00	-	2.0	2.2	2.2	3.1	2.8	-
2+50	-	1.6**	2.5	1.6**	2.2	2.5	2.1
3+00	-	2.0	2.2	2.4	2.1	2.0	1.5
3+50	-	2.5	2.7	2.4	2.2	1.9	2.6
4+00	-	2.6	2.4	1.4	2.5	2.3	1.7
4+50	-	3.0	1.7	1.7	0.9	2.0	_

Note:

Above clay thicknesses are in feet.

- * Elevation of top of clay minus elevation of pre-graded surface, based upon topographic surveys completed by Ivan R. Klettke, Neal R. Klettke, Licensed Land Surveyors.
- ** These measurements have been determined to be inaccurate for either of two reasons:
 - 1. due to proximity of edge of cap
 - 2. due to difficulty in relocating a survey point precisely on a sloping surface.

The pan lysimeter, designed to monitor the effectiveness of the low permeable clay cover over the landfill site, was installed on July 31 and August 1, 1987. Record details illustrating the pan lysimeter installation have been prepared and are presented on Plan 8.

The pan lysimeter had been originally proposed to be located roughly midway along the north-south midline of the landfill site. However, the pan lysimeter was actually installed at an alternately approved location as presented in Plan 3. At this location, a total area of approximately 625 square feet was excavated through the previously constructed clay cover layer. Using a backhoe, the excavated clay and native materials were segregated and stockpiled in the area for use in the replacement of the clay cap and backfilling operations.

As illustrated in Plan 8, the sections of lateral 2-inch diameter galvanized steel pipe and the riser pipe were assembled with the lysimeter pan section by welding the components together with elbow joints. All welds on the pan lysimeter were visually inspected and judged to be watertight. Once assembled, the pan lysimeter, minus the riser pipe, was lowered onto a stone bedding of 1B stone lining the excavation. This 1-foot thick stone bedding will

prevent any detrimental events associated with possible settling of the pan lysimeter unit. In order to function properly, the pan lysimeter must remain level at all times. To assure this, the pan lysimeter was levelled using a survey instrument to an elevation of 444.56 feet at the perforated plate of the pan section. The lateral extension pipe was levelled in a similar fashion. Caution was taken during the installation and levelling activities to prevent the inclusion of any water or solid materials into the pan section or the lateral extension pipe of the pan lysimeter unit. The vertical riser pipe was welded to the installed unit after it was placed in the excavation.

A double layer of filter cloth was placed over the perforated plate of the lysimeter with extra material running up the sides to prevent solid material from entering the pan between the sidewall and the filter cloth. The section of lysimeter above the perforated plate was then filled to two inches from the top with 1B stone. The area around the pan unit was also backfilled to this level with native material and compacted with a hydraulic jumping jack.

Once backfilled, the entire area over the pan lysimeter was capped by two feet of clay material in 6-inch lifts. The edges of the excavation were regraded to ensure adequate bonding between the pre-existing clay cover and the newly constructed cover over the lysimeter. The first two

lifts were hand compacted using a Bomag Compactor and the hydraulic jumping jack. For the compaction of the third and final clay lifts, the sheepsfoot roller was used without the hydraulic vibrator running. Also, the clay material was wetted down with water during the second, third and final lifts to enhance proper "knitting" between clay layers. Soils testing was performed on the lysimeter area for compaction, moisture and density by GGE.

2.7 DRAINAGE LAYER

A 3-inch thick drainage layer was placed on the low permeable clay cap over the entire landfill site. The drainage layer consisted of 1B stone, an approved substitute material for the specified sand. The stone material was visually inspected in the field and found to be uniform, free of debris, slightly moist and free of large lumps and stones. The 1B stone was supplied to SLC by Niagara Stone. Previous testing has shown that the 1B stone has a hydraulic conductivity of 2.68x10⁻² cm/sec. Results of testing of the 1B stone are presented in Appendix C.

The stone material was hauled to the site in tandem axle dump trucks, deposited, rough graded with a bulldozer and brought to finish grade using a blade grader.

Confirmation of the 3-inch drainage layer was obtained by taking four randomly located split spoon samples at the landfill site. The results of the split spoon samples and the locations of the samples are presented in Table 5 and Plan 5 respectively.

2.8 LOAM LAYER

A 15-inch thick layer of loam was installed over the underlying drainage and low permeable clay cover layers over the entire area of the landfill site.

The loam was hauled to the site in tamdem axle dump trucks, deposited and brought to final grade using a bulldozer and blade grader.

All of the loam was obtained from the Coulson Pit located at Ewings Road and Chestnut Street in the Town of Newfane. The loam was inspected and approved by the Site Engineer prior to being imported to the site and was visually examined in the field during placement. The loam was moist, free of lumps, stones, vegetation and debris.

Confirmation of the 15-inch loam layer was obtained by taking four randomly located split spoon samples at the landfill site. The results of the split spoon samples

CONESTORA-ROVERS & ASSOCIATES

TABLE 5

COVER LAYER THICKNESS VERIFICATION

Split Spoon Data:

Sample Number	Cover Thickness	1B Stone	Loam	Topsoil
A	2.1	0.3	1.2	0.6
В	1.9	0.3	1.1	0.5
С	2.0	0.3	0.9	0.8
D	1.9	0.3	0.9	0.7

Survey Data:*

Station	Line B	Line C	Line D	Head of Ditch	Toe of Ditch	Line E	Line F
<u></u>							
0+00	-	-	-	-	-	-	-
0+50	2.4	2.5	2.1	-	-	2.3	1.8
1+00	2.6	2.5	2.2	2.5	1.9	2.7	2.2
1+50	1.9	1.9	2.3	2.4	2.0	2.5	-
.2+00	-	2.7	2.5	2.4	2.4	2.0	-
2+50	-	2.9	2.1	2.8	2.6	2.2	4.0
3+00	-	2.7	2.6	1.9	2.2	2.4	4.4
3+50	-	2.4	2.1	2.0	2.6	2.4	3.3
4+00	-	1.9	1.9	1.7	1.8	2.1	2.4
4+50	-	-	1.7	1.7	1.9	-	-

Note:

Above cover thicknesses are in feet.

* Elevation of final grade minus elevation of top of clay based upon topographic surveys completed by Ivan R. Klettke, Neal R. Klettke, Licensed Land Surveyors.

.

and the locations of the samples are presented in Table 5 and Plan 5 respectively.

2.9 TOPSOIL LAYER

A 6-inch layer of topsoil was installed over the underlying loam, drainage and low permeable clay cover layers over the entire area of the landfill site.

The topsoil material was hauled to the site in tamdem axle dump trucks, deposited and brought to final grade using a bulldozer and blade grader.

All of the topsoil was obtained from the Shevlin-Manning Pit in the Town of Wheatfield which was inspected and approved by the Site Engineer prior to being imported to the Site and was visually examined in the field during placement. The topsoil material was moist, free of large stones and debris, and free of roots, weeds and other vegetation.

Confirmation of the 6-inch topsoil layer was obtained by taking four randomly located split spoon samples at the landfill site. The results of the split spoon samples and the locations of the samples are presented in Table 5 and Plan 5 respectively.

A final grade survey was taken on top of the topsoil cover layer on August 14, 1987. The results of the field survey are presented in Plan 7.

The surface of the final cover has a minimum slope of approximately 3 percent. This low slope minimizes erosion due to runoff while still allowing adequate drainage so as to reduce infiltration. It is also expected that due to proof-rolling of the site prior to cap construction and adequate compaction during construction of the cap, that settlement of cover soils will be minimal. The cover as placed will also minimize the effects of freeze-thaw cycles due to frost on the clay cover. Since the typical depth of frost penetration in the area is approximately 36 inches, 12 inches of clay remains below the depth of potential frost penetration.

Prior to seeding, fertilizer with a nitrogen/phosphoric acid/pot ash rating of 10/20/20 was applied to the topsoil for purposes of soil enhancement. The fertilizer application rate was 300 lb./acre.

To reduce infiltration and erosion from rainfall, the following seed mix has been planted over the cover:

Name	Variety	Weight/Acre
Red Fescue	Commercial	50 lb.
Kentucky Bluegrass	Commercial	10 lb.
Perennial Ryegrass	Commercial	40 lb.
White Clover	Commercial	10 lb.
Maximum 25 percent	hard seed	5-10 lb.
Total		105-110 lb.

Mulch was applied uniformly in a continuous blanket sufficiently thick enough to reasonably cover the soil.

2.10 ADDITIONAL REMEDIATION OF DITCH AREA

During the period between the time the site was seeded and the grass had sprouted to a reasonable height, the Lockport area experienced some extremely heavy rainfall events. The surface water runoff from these storms resulted in the erosion of some of the cover material that had been placed off-site, downstream of the ditch outfall in the southeastern corner of the site. In the week following the storms it was noted that the some iron oxide staining was appearing in the eroded ditch area. Additional limestone was placed on the surface in the area where staining was observed. Areas of topsoil erosion in the remediated ditch area have been repaired and sodded as required to maintain overland flow of surface water coming off the former landfill

via the ditch line. A second interceptor trench has also been constructed in an attempt to reconnect the groundwater flow in the crushed limestone back into the subsurface regime in the newly capped ditch area. The shallow trench constructed was approximately three feet wide by 22 feet long and backfilled with limestone which had been wrapped in filter fabric material. It is intended that this trench will direct groundwater flowing underneath the topsoil from below the clay lining of the ditch to a depressed area of course boulders where the original ditch line flowed. The groundwater flow entering the depressed area re-enters the subsurface flow regime through the coarse rock material, thereby minimizing oxidation potential.

3.0 MAINTENANCE PROGRAM

Following site closure, the site will be inspected semi-annually. The site will be inspected with regards to:

a. cover integrity;

b. ditch lining integrity and presence of iron staining;

c. condition of vegetation over the cover;

d. drainage conditions

e. condition of the fence surrounding the site;

f. pan lysimeter and

g. monitoring wells and water quality monitoring locations

A log will be maintained of the inspections for a minimum of six years from the date of inspection. The log will indicate the name of the inspector, item of inspection, date and time of inspection, observations and date and nature of remedial action(s).

Any deficiencies noted during inspection will be addressed immediately. Any damage or inaccessibility to the monitoring wells will be rectified within 14 days and the NYSDEC will be notified within 20 days of the inspection. The notification to the NYSDEC will include the following:

- i) description of the problem associated with the well;
- ii) a description of the repairs made; or
- iii) a schedule for the rehabilitation or replacement of the
 well.

If a problem with a well prevents collection of a scheduled sample, a sample will be obtained within 14 days after rehabilitation or replacement of the well. It is to be noted that should the off-site upgradient well D-55 be damaged or otherwise become inaccessible thereby preventing collection of a sample from that well, an alternate upgradient well will be selected and sampled upon approval by the NYSDEC.

Any settlement of the cover, should it occur, in excess of 12 inches will be remedied by removal of the topsoil, loam and drainage layer and subsequent backfilling with additional clay to the top of clay grade. The drainage layer, loam and topsoil layers will then be replaced. Any erosion of the cover will be repaired by reconstruction of the cover in the eroded area. If necessary sod will be used to re-establish vegetative cover.

Security for the VanDeMark Landfill Site will be maintained by the existing 6-foot high chain link fence. The fence was inspected at the conclusion of capping construction and was repaired as necessary.

The existing gates will be maintained and kept locked at all times when the site is not being supervised by VanDeMark personnel.

The existing site access road shall be maintained in reasonable condition to provide vehicular access to the site. No on-site access road will be constructed. The purpose of the post-closure monitoring program is to monitor the effectiveness of the closure construction for containing the migration of the contaminants within the landfilled area. The program consists of the collection and analysis of a series of groundwater and stream samples at regular intervals. The samples will be analyzed for the site specific parameters which include the following:

- pH (measured in the field)
- purgeable halocarbons (method 601)
- chlorides (method 407B)
- total recoverable phenolics (method 430)
- soluble metals:
 - * arsenic (method 206.2)
 - ° chromium (method 218.2)
 - copper (method 220.1)
 - * iron (method 236.1)
 - * lead (method 239.2)
 - * mercury (method 245.1)
 - * zinc (method 289.1)

The sampling locations will include:

- monitoring wells VDM9, VDM10, VDM11, VDM12 and D-55;
- ditch interceptor trench monitor VDM14;
- the seep in the area of the southwest corner of the landfill (if flowing); and
- upstream and downstream locations of Eighteen Mile Creek.

Protocols are outlined in Appendix D.

Samples will be collected according to the following schedule:

Initial 18 months following closure	-	quarterly
18 months to end of year 3 following closure	-	semi-annually
Years 4 and 5 following closure	-	annually
Years 5 to 30 following closure	-	every 5 years

Prior to each sampling round, one complete set of groundwater elevation measurements will be made using all of the wells that have been installed on the landfill site proper.

29

The results of each sampling event will be submitted to the NYSDEC within one week of receipt of the analytical data.

In order to evaluate the performance of the clay cap, a lysimeter has been installed on the site. During the regular sampling events outlined for the post-closure program, the water level in the lysimeter will be measured. The water accumulated in the lysimeter and lysimeter monitor will then be pumped out (i.e. using a peristaltic pump) and the total volume of water will be measured. This measurement will be converted into an estimated infiltration rate of the clay cap, compared to the required cap permeability of 1×10^{-7} cm/sec and reported along with the analytical results to the NYSDEC. A volume change of 40 gallons is approximately equal to an infiltration rate of 1×10^{-7} cm/sec over a six month period.

At the end of 18 months, VDM will submit to the NYSDEC a report which evaluates the performance of the cover system. The following data will be included in the Performance Evaluation Report:

 All available historic water quality data from each monitoring point and all data collected during the performance period. Supporting QA/QC results will be submitted for data collected during the performance monitoring period.

30

- All available groundwater level data presented in a spreadsheet showing monitoring point and water level for each sampling event.
- Lysimeter data and calculations used to determine permeability/performance of the cap.

The report will discuss this data, evaluate the effectiveness of the cover system and include a proposal for future monitoring or additional remedial measures at the landfill. Until that proposal is approved by the Department and implemented, VanDeMark will continue monitoring as specified in the Post-Closure Monitoring Program. Following each post-closure monitoring event, the analytical data will be reviewed for accuracy and evaluated to determine whether there have been any significant changes in the landfill conditions. The purpose of the contingency program is to outline the required remedial actions to be taken, where appropriate, based on observations made during post-closure monitoring program activities.

The mechanism which will trigger the implementation of the contingency program will be a significant impact measured in the stream. This will be done by monitoring water quality trends in the stream. Should this monitoring identify a significant increase in chemical parameter resulting from the former landfill, a reassessment of the remedial action will be undertaken. The indication that cap permeability exceeds 1×10^{-7} cm/sec shall also trigger the implementation of the contingency program.

The initial step of the contingency plan is to immediately notify the NYSDEC representative assigned to the site. The second step is to verify the increase by taking two additional samples at the sample location(s) in question, and analyzing for the particular parameter(s). This must be done within two weeks of receipt of the suspect

CONESTOCA-ROVERS & ASSOCIATES

32

analytical data. If the increase is verified, a study will be initiated to determine the cause of the increase and the potential consequences. Within eight weeks of the initial receipt of analytical data which triggered the contingency program, a report must be submitted to the NYSDEC which details these causes and consequences as well as the recommended remedial action and proposed schedule. Likewise, should an indication that the cap permeability exceeds 1×10^{-7} cm/sec then this must be confirmed within two weeks and an evaluation, complete with proposed remedial action and schedule, will be submitted to the NYSDEC within eight weeks. In summary, the former Van De Mark Landfill Site was closed in accordance with the approved plan entitled "Closure Plan - Former Landfill Site" with the minor exceptions as noted within the text of this report.

All of Which is Respectfully Submitted,

CONESTOGA-ROVERS & ASSOCIATES

Donald J. Miller, P.E.

James K. Kay, P. Eng.

APPENDIX A

.

•

EQUIPMENT USED DURING CONSTRUCTION ACTIVITIES

EQUIPMENT USED DURING CONSTRUCTION ACTIVITIES VAN DEMARK CHEMICAL COMPANY LANDFILL LOCKPORT, NEW YORK

1. Hauling Vehicles:

Tandem dump trucks used to haul impervious clay, stone material for drainage layer, sandy loam and topsoil cover material. A maximum of 10 vehicles used at one time with various types and models, including:

Autocar, Brockway, International, Kenworth and Mack

2. Heavy Equipment:

Α.	Bulldozer	-	John Deere 750 '
в.	Flat Roller		Ingersoll Rand SPF-56
с.	Sheepsfoot Roller	-	Ingersoll Rand SPF-56
D.	Flat Roller		Pull behind hydraulic compactor Hyster C-200
Е.	Grader	-	Caterpillar 120
F.	Backhoe	-	Ford 450

3. Hand Operated Equipment:

A. Compactors - Bomag Hydraulic Roller and Wacker Jumping Jack

B. Chainsaw, arc welder, Agrotech water sprayer

APPENDIX B

.

CLAY TESTING RESULTS

Glynn Geotechnical Engineering

		3		/		• • • •		**** * *		
<u>M.\x</u>	GLYNN		- 19 - 8	7	-			SHEET		OF
CHKD. BY DATE PROJECT NO. 87 - 0125										
	CONE	STOGA	ROVE	RS						_
PROJECT	VAN	DE MAI	zk G	HEMIC	AL					
				ST D			•••			
									······	
		PE	RMEA	BILIT	ΥT	EST	TABL	-E		
		•			L 1	-01	1/10			
PER	MEABILIT	Y								
CAMPLE	1	CYLINDER	MOIST	IRF	PERCEN	J T	ATTERE	ERGS	Veid	RATIO
NO,	x 10-7	DRY	CONTE		COMPAC		LIQUID	FLASTIC	BEFORE	AFTER_
	CM/SEC	DENSITY	FIELD	CYL.	FIELD		LIMIT	LIMIT	TEST	TEST
TESCT	· · · ·			<u> </u>					· ·	<u> </u>
TEST PAD	0.729	108.6	20.4	19.5	89.3	94.3	37	23	. 592	.501
PAL	0.221	108.9	2.8	20.	91.9	95.1	39	22	.494	.478
E	0 17		19.8	19.3		·				
PAL 1E	0,471	107.3	17.4	16.5	90.8 94.2	93.7 96.2	42	22	·569 .489	.577 .505
ZE	0.510	105.7	24.1	19.5	88.9	92.2	37	20	.623	. 619
3A	0.200	107.8	18.7	15.8	90.8	94.1	39	20	.563	.560
AA	0.440	110.7	18.1	17.7	93.2	96.1	38	20	.505	.454
5B	0.248	108.7	19.4	18.5	92.7	94.9	34	19	.573	. 572
6A	0.569	109.2	19.9	19.8	92.8	95.4	36	17	.571	. 559
74	0.460	110.5	1 B .	14.9	91.6	96.5	45	24	.468	. 479
BE	0.418	109.5	21.9	17.0	90.9	95.9	36	19	.562	.552
9A	1.09	05.0	18.5	18.2	93.0	91.7	48	26	.670	.707
10B	0.336	102.2	16.9	15.6	90.2	90.1	38	19	.608	.579
ILE	2.201	101.9	17.7	18.2	90.7	89.0	38	20	.709	630
IIR2	4.96	102.4	N.A.	13.3	90.7	8 9.4	32	19	. 656	. 600
12A	0.574	108.5	18.5	17.8	90.1	94.8	48	25	.599	. 653
₽2GI	4.12	(RECOMPLOT)	N.A.	(REMOLD)	N.A.	93.5 (REMOLD)	35	18	.608	.617
₩G.	0.60	107.6								
1-12										

PERMEABILITY BY STRATA

LIFT	NORTH SECTOR	MIDDLE Sector	South Sector
4th 3rd	0.34 0.46	2.20	0.57
ZND	0.44	0.25	1.09 0.57
AVG.	0.1B	0,51 0,85	0.20

PROJECT NO.: 85.984

REPORT NO.: 1

CLIENT: Glynn Geotecnnical

Ë

PROJECT: Van De Mark Chemical. Lockoort

CONTRACTOR: SLC Consultants-DATE: June 29. 1987 Constructors. Inc. TECHNICAN: Alan R. Hookins TIME: 8:30 - 7:00

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.					PERCENT COMPACTIO:	
1.	IZI	8"	126.9	7.1	NZA	On site material-uncompacted
2	Ø	8''	124.6	7.5	N/A	for information only (outsice test bad) On site material compacted for subpase of test bad
3	Ø	. 4"	87.2	18.6	NZA	area Off site fill - as received
4	21	4 "	82.4			Off site fill - as received
5	Ø	4 ''	78.1			Off site fill - as received
6	Ø	4 ''	100.8			Off site fill - as received
7	` 1	6"	104.8			Test oad 2 oasses
8	1	€"	94.9	22.4		Test pag 2 passes
Э	1	6"	95.8	19.8		Test pad 2 passes
12	1	6"	101.9	22.5		Test bad 4 basses
1 i	1	6"	104.6	19.9		Test bad 4 passes
12	1	6"	102.2	20.4		Test pad 4 passes
13	1	6"	106.6	19.1		Test oad 6 oasses
14	1	6"	105.2			Test pad 6 passes
MAXIM	UМ	OPTIM	Ъ		-	
DENSI	TY (PCF)	MDISTU	RE (%)		MATERIAL	. TYPE AND SOURCE

1: 125.7 K 2: 112.5

: 12.1

MATERIAL TYPE AND SOURCE Niagara Stone Overburgen Shevlin Manning - River Road

REMARKS:

Ξ

2

RESPECTFULLY SUBMITTED. BUFFALD TESTING LABORATORIES, INC.

VEROM EMPIRE SOILS DATA GREE DATA = 114.5 PCF PROTOR "O" BASE LEVEL FOR TEST FAD : ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

' Glat

REFORT NO.: 1	PROJECT: Van De Mark Chemical, Lockbort
CLIENT: Glynn Geotechnical	PROJECT NO.: 85,984
CONTRACTOR: SLC Consultants- Constructors. Inc.	DATE: June 29. 1987
TECHNICAN: Alan R. Hookins	TIME: 8:30 - 7:00

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.	PROCTOR NO.	ELEV. (-DEPTH)	DENSITY (PCF)	PERCENT MOISTURE	PERCENT COMPACTION	LOCATION
15	1	6"		19.6		Test pad 6 passes
16	ĺ	6"	108.7	18.2		Test Dad 8 Dasses
17	1	6"	104.3	22.3	- In Cart	Test Dad 8 Dasses
18	1	6"	104.0	19.8		Test pad 8 passes
19	1	6"	109.6	18.5	87 195.1	Test pad lifted with dry
	_					Material 4 passes
20	2	6"	98.7	19.0	87.7	2nd test bad 2 basses
21	2	6"	93.Ø	22.1	82.7	2nd test pad 2 passes
22	2	6"	96.5	EQ.4	85.8	2nd test bad 2 basses
23	2	6"	94.6	22.1	84.1	2nd test bad 4 basses
24	2	6"	100.1	19.2	89.Ø	Retest #23
25	2	6"	89.9	27.4		2nd test pad 4 passes
26	2	6"	96.4	23.3		Retest #25
27	2	6"	88.8	27.5		2nd test pad 4 passes
28	2 2	6"	95.7	21.9	85.1	Retest #27
29	2	6"	96.7	21.6		End test pad 6 passes
30	2	6"	97. U			End test bad 6 basses
31	8	6"	94.6	21.5	84.1	End test pad 6 passes
MAXIML	IM	OPTIML	ina			
	Y (PCF)				MOTOTO	
1: +25		: 42.1-				TYPE AND SOURCE
2: 112		:				Stone Overburden
		•			Snevlin M	Manning - River Road
REMARK	S:					

Glynn Geotechnical Engrng. 6437 Locust St. Extn. Lockport, NY 14094

:

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

alan IL im : ALAN R. HOPKINS

.IMITATION OF LIABILITY - The amount of Piability will be limited to an amount equal to the fee.

- GGE How

ØE

REPORT NO.: 1PROJECT: Van De Mark Chemical, LockoortCLIENT: Glynn GeotechnicalPROJECT NO.: 85,984CONTRACTOR: SLC Consultants-
Constructors, Inc.DATE: June 29, 1987TECHNICAN: Alan R. HookinsTIME: 8:30 - 7:00

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.	PROCTOR NÜ.	ELEV. (-DEPTH)	DENSITY (PCF)	PERCENT MOISTURE	FERCENT COMPACTION	Ł	LOCAT:	ION			
32 33 34	2 2 2	6" 6" 6"	103.2 101.1 97.2	20.3 21.3 21.1	89.9	Erid	test	oad	8	Dasses passes passes passes	

MAXIMUM OFTIMUM DENSITY (PCF) MDISTURE (%) 1: 125-7 : 12:1---2: 112.5 :

MATERIAL TYPE AND SOURCE Niagara Stone Overburgen Shevlin Manning - River Road

REMARKS:

:

Glynn Geotechnical Engrng. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

hins : ALAN R. HOPKINS

_IMITATION OF LIABILITY - The amount of liability will be limited to an amount sound to the fee.

ØE . 1

REPORT NO.: 2	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85,984
CONTRACTOR: SLC Consultants- Contructors. Inc.	DATE: July 6, 1987
TECHNICAN: Alan R. Hookins	TIME: 7:30 - 10:00

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.	PROCTOR NO.	ELEV. (-DEPTH)	DENSITY (PCF)	PERCENT	PERCENT COMPACTION	LOCATION	
1 2 3	2 2 2	6" 6" 6"	100.9 102.4 104.3	14.2 14.1 14.7	91.0	2nd Test Pad	10 passes 10 passes 10 passes
			102.5	14.3	91.1	Average of tes	its 1, 2, & 3

MAXIMUM OPTIMUM DENSITY (PCF) MOISTURE (%) 1: : 2: 112.5 :

MATERIAL TYPE AND SOURCE

Shevlin Manning - River Road

REMARKS:

:

Glynn Geotechnical Enging, 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED, BUFFALD TESTING LABORATORIES, INC.

alan R. HOPKINS : ALAN R. HOPKINS

IMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

Ξ

REPORT NO.: 3	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85.984
CONTRACTOR: SLC Consultants - Constructors. Inc.	DATE: July 8. 1987
TECHNICAN: Alan R. Hookins	TIME: 7:00 - 6:00

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.	PROCYOR NO.	ELEV. (-DEPTH)	DERSITY (PCF)	PERCENT MOISTURE	PERCENT COMPACTION	LOCATION
1		12"		14.0		fill moisture check as
						receivec
e B	Ē	4 ''	107.6	15.0	93.9	35' E - 20' N of VDM 9
						(Fill Area)
З	3	4 "	100.9	17.1	88.1	55' W - 25' N of VDM 10
4	3	Zį. *1	102.9	15.6	89.8	15' E - 30' N OF VDM 9
5	3	4 ¹¹	106.3	15.4	92.E	Retest of #4 after retamoino
6	З	4 "	108.7	17.1	94.9	Retest of #3 after retamping
7	3	4 **	105.4	16. V	92.0	50° E - 0° N of VDM 12
8	З	4 ''	108.9	15.7	95.1	$Q^{2} = -4Q^{2}$ S of VDM 12
9	3	4 **	105.3	16.2	91.9	5' E - 70' N of VDM 9

MAXIMUM	097IMUM	
DENSITY (PCF)	MOISTURE	(%)
1:	:	
2:	:	
3: 114.5	: 14.5	
REMARKS:		
:		
-		

MATERIAL TYPE AND SOURCE

Frontier Stone - CLAY OVERBURDEN

Glynn Geotechnical Enging. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALD TESTING LABORATORIES, INC.

ilon N Happing

: ALAN R. HOPKINS

.

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount ecual to the fee.

÷

REFORT NO.: 4	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85,984
CONTRACTOR: SLC Consultants - Contructors. Inc.	DATE: July 9, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:00 - 3:00

FIELD IN-PLACE DENSITY TEST REPORT

TEST NŪ.		ELEV. (-DEPTH)			PERCENT COMPACTION	
1	3	41	107.9	17.4	94.2	45' W - 0' N of VDM 11
2					And the second second second	Perm Cylincers 1A + 1B taken.
						at location $\#1$
З	3	6"	106.8	18.1	93.2	50' XE 15' N of VDM 10.
						End lift
4						Per Cylinders 48 + 48 taken 4
						at location #3
5	3	6"	97.8	18.5	85.1	30' E - 25' N of VDM 9,
						Ênc lift
6	3	6"	106.1	17.4	92.6	45' W - 10' N of VDM 3
7	3	£"	105.3	18.9	91.9	Retest #5 after retamoing
8	З	6"	103.9	19.4	90.7	15' E - 35' S of VDM 12,
						2nd lift
9	3	6"	104.1	20.2	90.9	30' W - 30' S of VDM 12,
						2nd lift
10	З	6"	104.3	14.7	91.9	10' E - 40' N of VDM 3,
						2nd lift

MAXIMUM	OP71MUM
DENSITY (PCF)	MOISTURE (%)
1:	:
2:	:
3: 114.5	: 14.5
REMARKS:	

:

:

MATERIAL TYPE AND SOURCE

Frontier Stone - CLAY OVERBURDEN

Glynn Geotechnical Engrng. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

Haplun : ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

Ξ

(716)-873-2302 PROJECT: Van De Mark Chemical REPORT NO.: 4 CLIENT: Glynn Geotechnical PROJECT NO.: 85.984 CONTRACTOR: SLC Consultants -DATE: July 9. 1987 Contructors. Inc. TECHNICAN: Alan R. Hookins TIME: 8:00 - 3:00

FIELD IN-PLACE DENSITY TEST REPORT

BUFFALD TESTING LABORATORIES. INC.

902 KENMORE AVE BUFFALD N.Y. 14216

TEST NO.		ELEV. (-DEPTH)	DENSITY (PCP)		PERCENT COMPACTION	LOCATION
11		6	105.0	18. i	91.6	15' X^E 25' N of VDM 10. 3rg 11ft
18						Perm Cylincers 7A + 7B taken at location #11
13	3	£"	107.8	17.9	94.1	10' E - 40' N of VDM 9, 3rd lift
14	Ē	6"	108.9	16.3	95.Ø	3@' W - 25' N of VDM 3,
15	3	6"	107.8	18.2	94.1	3rc lift 40' E - 55' N of VDM 10,
16	3	6"	108,8	17.6	95.0	3rd lift 35' E - 30' S of VDM 12,
17	ت	6"	100.7	19.7	87.9	3rd lift 10' W - 50' N of VDM 3,
18	З	ē"	103.8	20.1	90.6	3ra lift Retest #17

ÖPTIMUM MAXIMUM DENSITY (PCF) MOISTURE (%) MATERIAL TYPE AND SOURCE 1 : : 2: : Frontier Stone - CLAY OVELBURDEN 3: 114.5 : 14.5 REMARKS: 2 :

Glynn Geotechnical Enging. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALD TESTING LABORATORIES, INC.

mm

: ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

ZΞ

REPORT NO.: 5	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85.984
CONTRACTOR: SLC Consultants - Constructors. Inc.	DATE: July 10, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:00 - 6:30

FIELD IN-PLACE DENSITY TEST REPORT

						PERCENT COMPACTIO:	LOCATION
	1	З	6"	105.6	20.5		40°E - 10°N of VDM 12. lst Lift
	8	Ξ	€"	104.8	19.9		10'E - 10'N of VDM 12. 1st Lift
	3	3	6"	100.8	21.5	88.0	20'W - 15'N of VDM 12. 1st Lift
ł	4	З	6"	104.2	20.5	91.0	25'E - 70'S of VDM 11, 1st Lift
)	5	Ē	6"	103.3	23.6	90.2	5'E - 65'N of VDM 12, 1st Lift
	6	З	6"	101.8	24.1	88.9	40'E - 65'N of VDM 12. 1st Lift
	7						Perm Cylinders 2A - 2B taken location 5
	8	3			20.8		Retest #3 after retamping
	9	З	6"	101.5	23.6	88.6	Retest #6 after retamoing
	10	З	6"	99.1	23.3	86.5	Retest #9 after retamping
	MAXIMU	м	OPTIML	Im			
		Y (PCF)				MATERIAL	TYPE AND SOURCE
	3: 114 REMARK		: 14.5			Frontier	Stone

Glynn Geotechnical Engrug. 6437 Locust St. Extn. Lockport, NY 14094

:

:

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

cm : ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

З

REPORT NO.: 5	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85.984
CONTRACTOR: SLC Consultants - Constructors, Inc.	DATE: July 10, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:00 — 6:30

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.		ELEV. (-DEPTH)			PERCENT COMPACTIO	
11	3	6"	106.7	21.4	93.2	30'W - 50'S of VDM 2. 1st Lift
12	3	£"	126.0	20.5	92.5	
13	З	6"	104.4	21.5	91.1	
14	3	6"	106.3	18.7		Retest #10 after retamoing
15	3	6"	100.0	22.3		
16	З	6"	105.4	16.7	92.0	Retest #15 after retamping
17	3	6"	106.8	19.1	93.2	20'E - 15'N of VDM 10. 4th Lift
18	З	6"	107.3	18.1	93.7	65'W - 20'N of VDM 9, 4th Lift
19	З	· 6"	106.6	19.7	93.1	0'W - 20'N of VDM 9, 4th Lift
20	З	6"	105.4	21.0	92.0	60'E - 20'N of VDM 3. 4th Lift
21	З	6"	105.4	21.1	92.0	25'W - 45'N of VDM 3, 4th Lift
MAXIMU		OPTIMU	ML		·	
DENSIT	Y (PCF)	MOISTUF	RE (%)		MATERIAL	TYPE AND SOURCE
3: 114. REMARKS		: 14.5			Frontier	Store - CLAY WELBURDEN
:	Geol 6437 Lock	Glynn echnical Eng Locust St. 9 port, NY 14	1 ng. Extn. 1094		CTFULLY SL LO TESTING Com 1 N R. HOPKI	LABORATORIES, INC.

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

.

-

ØE

REPORT NO.: 5	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85,984
CONTRACTOR: SLC Consultants - Constructors, Inc.	DATE: July 10, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:00 - 6:30

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.	PROCTOR NO.	ELEV. (-DEPTH)	DENSITY (PCF)		PERCENT COMPACTIO	
22	З	6"	106.3	21.0	92.8	25'E - 35'S of VDM 12.
23	E	6"	103.8	19. i	90.6	4th Lift 40'E - 10'N of VDM 12,
24	3	6"	100.2	23.2	87.5	. 2nd Lift 10'E - 10'N of VDM 12, 2nd Lift
25	З	€"	100.9	19.9	88.1	20'W - 10'N of VDM 12, 2nd Lift
86	З	6"	102.7	22.3	89.E	
27	З	6"	104.4	21.2		Retest #24 after retamping
28	З	6"	106.2	19.4	92.7	Retest #25 after retamping 25'W - 25'N of VDM 12,
<u>:9</u>	З	6"	102.0	24.Ø	89. Ø	2nd Lift 45'E - 25'N of VDM 12, 2nd Lift
30	3	6"	99.3	17.7	86.7	15'E - 25'N of VDM 12, 2nd Lift
31						Perm Cylinders 5A & 5B taken on location 28
	IM	OPTIMU				
	TY (PCF)	MOISTUR			MOTERIA	

 INXIMUM
 OPTIMUM

 PENSITY (PCF)
 MOISTURE (%)

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 1:
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 :
 :

 <

MATERIAL TYPE AND SOURCE

Frontier Stone - CLAY AVERBURDEN

× 1

Glynn Geotechnical Engrng. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

alin 1 7 0 : ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

Ø2

REPORT ND.: 5PROJECT: Van De Mark ChemicalCLIENT: Glynn GeotechnicalPROJECT NO.: 85,984CONTRACTOR: SLC Consultants -
Constructors, Inc.DATE: July 10, 1987TECHNICAN: Alan R. HopkinsTIME: 8:00 - 6:30

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.	PROCTOR NO.	ELEV. (-DEPTH)	DENSITY (PCF)	PERCENT MOISTURE	PERCENT COMPACTION	LOCATION
32 33 34 35 36	3 N N N N N N N N	6" 6" 6" 6"	104.1 102.0 100.5 103.8	18.6 19.5 20.4 20.5	90.9 89.1 87.7 90.6	Retest #30 after retamping Retest #29 after retamping Retest #33 after retamping Retest #33 after retamping
		_	104.6	21.1	91.3	50'W - 15'N of VDM 12, 3rd Lift
37 38	3 3	6" 6"	102.0 95.9	20.4 20.0	89.0 83.7	Taken at VDM 12 - 3rd Lift 20'E - 30'N of VDM 12,
39	3	6"	104.6	21.5	91.3	3rd Lift 50'E - 15'N of VDM 12, 3rd Lift
40	З	6"	99.3	18.9	86.7	Retest #38 after retamoing
41	З	6"	102.6	19.8		Retest #37 after retamoino
42	З	6"	101.0	21.0		Retest #40 after retamoing
43	3	6"	99.6	20.7	87.0	Retest #42 after retamoing
44	З	6"	104.1	21.9	90.9	30'W - 30'N of VDM 12, 3rd Lift

MAXIMUM OFTIMUM DENSITY (PCF) MOISTURE (%) 1: : 2: : 3: 114.5 : 14.5 REMARKS: :

:

MATERIAL TYPE AND SOURCE

Frontier Stone - CLAY ALEDURDEN

Glynn Geotechnical Engrug. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

alm 1 : ALAN R. HOPKING

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

Ø.E

REPORT NO.: 5	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85.984
CONTRACTOR: SLC Consultants - Constructors. Inc.	DATE: July 10, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:00 ~ 6:30

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.	PROCTOR NO.	ELEV. (-DEFTH)	DENSITY (PCF)	PERCENT MDISTURE	PERCENT COMPACTION	LOCATION
45						Perm Cylinders 8A & 8B taken
46	3	6"	102.6	21.1	89.6	on location #44 20'E - 20'S of VDM li, 3rd Lift
47	3	6"	97.7	21.8	85.3	70'E - 15'S of VDM 11, 3rd Lift
48	E	6"	95.8	22.7	83.6	Ketest #47

MAXIMUM	OPTIMUM
)ENSITY (PCF)	MOISTURE (%)
. :	:
2:	
114.5	: 14.5
EMARKS:	
•	

MATERIAL TYPE AND SOURCE

Frontier Stone - CLAY ALEURDEN

Glynn Geotechnical Engrag. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

Haphing_ alum 1 : ALAN R. HOPKINS

IMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

図上

REPORT NO.: 6	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85,984
CONTRACTOR: SLC Consultants - Constructors, Inc.	DATE: July 13, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:00 - 5:00

FIELD IN-PLACE DENSITY TEST REPORT

	Geotec 6437 L Lockpe	Glynn hnical Engn Locust St. Ex ort, NY 140	Y . (tn. 9 4		CTFULLY SU LO TESTING	EMITTED. LABORATORIES, INC.
3: 114 REMARK :		: 14.5 .#1 - #3	were ret	ested area	Frontier s from reo	Stone - CLAY OVERBURDEN Port #5
1: 2:	Y (PCF)	OPTIMU Moistuf : :				TYPE AND SOURCE
9	3	6"	99.8	18.1	87.1	70'W - 60'N of VDM 9, 4th (Cap) Lift
8	3	6"	102.1	19.4	89.2	$20^{\circ}W - 65^{\circ}N \text{ of VDM 9,}$ 4th (Cao) Lift
7	З	€"	105.3	17.4	91.9	$20^{\circ}W - 10^{\circ}N$ of VDM 3, 4th (Cab) Lift
6	3	6"	105.2	16.1	91.9	$20^{\circ}W = 20^{\circ}N \text{ of VDM 9,}$ 4th (Cap) Lift
5						Perm Cylinder 10A & 10E taken location #4
4	З	6"	103.3	16.9	90.2	$75^{\circ}E = 10^{\circ}N \text{ of VDM } 10$, 4th (Cap) Lift
3	3	e	105.0	13.5	91.6	20'E - 30'N of VDM 12. 3rd Lift
2	З	6"	110.3	10.5	96.3	3rd Lift 60'E - 25'S of VDM 11, 3rd Lift
1	З	6"	113.5	11.5	99.1	80'E - 10'S of VDM 11, 3rd Lift
TEST NO.	PROCTOR NO.	ELEV: (-DEPTH)		PERCENT MOISTURE	PERCENT COMPACTION	

: ALAN R. HOPKINS

1

_IMITATION OF LIABILITY - The amount of liability will be limited to an amount goual to the fee.

ØE

REPORT NO.: 6	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85,984
CONTRACTOR: SLC Consultants - Constructors, Inc.	DATE: July 13, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:00 - 5:00

FIELD IN-PLACE DENSITY TEST REPORT

-						
TEST NO.	PROCTOR NO.	ELEV. (-DEPTH)	DENSITY (PCF)	PERCENT MDISTURE	PERCENT COMPACTIO	LOCATION
10	З	6"	 1024.⊇	15.9	91.0	 Retest #9
11	3	£''	106.1	16.4		20'W - 20'N of VDM 12.
12	З	6"	105.4	18.5	92.0	4th (Cap) Lift
				1010	JC. 0	15'W - 0'N of VDM 12. 4th (Cao) Lift
:3	З	6"	98.4	19.1	85.9	5'W - 15'N of VDM 12.
14	З	C 11				4th (Cap) Lift
14	د.	£"	102.7	19.4	89.7	Ø'W - BØ'N OF VDM 12,
5	З	6"	+ <i>(</i> 'b /, ('b			4th (Cap) Lift
	5	6	104.0	17.7	90.7	$10^{\circ}W - 25^{\circ}N$ of VDM 12,
16	з	6"	106.8	15.8		4th (Cap) Lift
	-	0	140.0	1. J. C	93.3	15'W - 80'N of VDM 12.
7	З	6"	105.1	17.9	91.7	4th (Cap) Lift Sig - GSin as Upw in
				17.5	21.7	$5^{\circ}E = 85^{\circ}N$ of VDM 12, 4th (Cao) Lift
- 18 - 18		N= ==				Perm Cylinders 11A & 11B
						taken at location #15
19	3	6"	104.8	16.5	91.5	Retest #13 after retamping
AXIML	JM	OPTIMU	M			
LENSIT	(PCF)		• •		MOTERTO	TYPE AND SOURCE
1:		:			PHAICKIAL	. TYPE AND SOURCE
3		:				
: 114		: 14.5			Frontier	Stone - CLAY NELBURDEN
REMARK	(S:					
- •		-				

Glynn Geotechnical Engrig. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

shins : ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount potal to the fee.

PROJECT: Van De Mark Chemical

FROJECT NO.: 85, 984

REPORT NO.: 6

CLIENT: Glynn Geotechnical

CONTRACTOR: SLC Consultants -DATE: July 13, 1987 Constructors, Inc.

TECHNICAN: Alan R. Hookins TIME: 8:00 - 5:00

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.		ELEV. (-DEPTH)			PERCENT COMPACTION	
20	З	£ "	91.3	15.2	91.3	110°N of VDM 2, ditch area. 1st Lift
81	3	6"	109.0	16.6	95.1	90'N of VDM 2, ditch area. 1st Lift
22	3	6"	105.8	17.9	92.3	20'N of VDM 2. ditch area. 1st Lift
53	З	6"	107.1	16.3	93.5	10'S of VDM 2, oitch area. 1st Lift
24	3	6"	110.2	8.3	96.2	80'S of VDM 2, ditch area. 1st Lift
25	3	ε"	101.4	19.7	88.5	110'S of VDM 2. ditch area. 1st Lift
26	3	6"	103.4	17.5	90.3	150'S of VDM 2, ditch area. 1st Lift
27	З	٤"	102.8	15.8	89.7	75'S - 25'W of VDM 1, 1st Lift

MAXIMUM DENSITY 1:	OFTIMUM (PCF) MOISTURE :	(%)	MATERIAL	TYPE AND	SOURCE
2: 3: 114.5 REMARKS:	: : 14.5		Frontier	Stone - 41	AY OVERBURDEN
:					
:	Chan				

Glynn Geotechnical Enging. 6437 Locust St. Exm. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALD TESTING LABORATORIES, INC.

: ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

ØÐ

.

FIELD OBSERVATION Glynn Geotechnical Engineering REPORT 6437 LOCUST STREET EXTN. . LOCKPORT, NEW YORK 14094 (718) 434-7118 PROJECT NO. 87-0125 REPORT NO. PAGE 1 OF 1 PROJECT: VAN DE MARK CHEM. DAY TUCSDAY DATE JULY 14, 1987 SUBJECT: DAILY REPORT TIME 8 AM. - 10 AM WEATHER: HEAVY RAIN PHOTOS-YES NO in construction activity halted do to wet conditions ITEMS REQUIRING FURTHER ATTENTION: PERSONNEL CONTACTED: **DISTRIBUTION:** REPORT BY: M. - H-QUITH

- 1

REPORT NO.: 7 PROJECT: Van De Mark Chemical CLIENT: Glynn Geotecnnical PROJECT NO.: 85,984 CONTRACTOR: SLC Consultants - DATE: July 15, 1967 Constructors, Inc. TECHNICAN: Alan R. Hopkins TIME: 8:00 - 5:30

FIELD IN-PLACE DENSITY TEST REPORT

TEST NG.					PERCENT COMPACTIO	
1	3	6"	102.1	19.1	87.3	90'S - 35'W of VDM 1. 1st Lift
2	З	е "	115.3	15.6	1224	80'S - 5'E of VDM 1, 1st Lif
З	3	6"	101.2		88.3	65'5 - 25'E of VDM 1. 1st Lift
4	З	4 "	113.7	14.5	99.2	Retest #2 (Verification)
5	3	6 ''	104.0	18.7	90.8	Retest #1 after retamping
6	З	6"	112.4	14.9	98.1	Retest #3 after retamoing
7						Perm cylinders 3A & 3B taken at location #5
8	З	£ ''	126.2	17.7	92.7	50'S - 10'W of VDM 1. End Lift
Э	Ŭ.	6"	102.0	18.2	89.0	$40^{\circ}S - 20^{\circ}E$ of VDM 1, 2nd Lift
10	З	6"	106.3	19.9	92.8	5'S - 0'E of VDM 1, 2nd Lift
11						Perm cylinders 6A & 6B taken at location #10
12	3	6"	105.1	19.9	91.7	Retest #9 after retamping
MAXIM	JM	OPTIMU	۲			
DENSI	TY (PCF)	MOISTU	RE (%)		MATERIAL	. TYPE AND SOURCE
1:						
2:		:				
3: 114 REMAR		: 14.5			Frontier	Storie - CLAY OVERBURDEN
:		Classes				
	Control	yynn		RESPE	CTFULLY SU	BMITTED.

Geotechnical Engrng. 6437 Locust St. Extn. Lockport, NY 14094

.

BUFFALO TESTING LABORATORIES, INC.

: ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

. .

.

REPORT NO.: 7	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85.984
CONTRACTOR: SLC Consultants - Constructors. Inc.	DATE: July 15. 1987
TECHNICAN: Alan R. Hopkins	TIME: 8:00 - 5:30

.

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.					PERCENT Compron 10	LOCATION
13	3	6"	103.1	21.2	90.0	$20^{\circ}S - 30^{\circ}E$ of VDM 1. End Lift
14	З	e."	105.8	19.7	92.4	70'N - 30'W of VDM 2. 2nd Lift
15	З	6"	104.6	20.2	91.3	70'N - 60'W of VDM 2. End Lift
16	Ē	6."	108.7	19.3	94.9	$70^{\circ}N = 25^{\circ}E$ of VDM 11, 2nd Lift
17	e	ē.,	102.6	20.1	89.5	110'N - 25'E of VDM 11, 2nd Lift
18	З	6"	98.6	20.2	86.1	
19	З	6"	102.7	19.8	89.6	
20	ڎ	6"	106.6	18.6		60'S - 10'W of VDM 1. End Lift
21	3	6"	108.2	18.5	94.5	
	UM TY (PCF)	OPTIML MOISTUR			MATERIAL	- TYPE AND SOURCE
1: 2: 3: 114 REMARH		: : : 14.5			Frontier	Storie - CLAY OVERBURDEN
:		Chma				
	Geotech 6437 Lo Lockpon	Glynn inical Engry ocust St. Ext rt, NY 1409	₹• :n. !4	BUFFA	ECTFULLY SU ALO TESTING Ulan 1	JBMITTED. B LABORATORIES, INC. 24 April 19

: ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

ØE

.

EFORT NO.: 7	PROJECT: Van De Mark Chemical
_IENT: Glynn Geotechnical	PROJECT NO.: 85,984
JNTRACTOR: SLC Consultants - Constructors. Inc.	DATE: July 15, 1987
ECHNICAN: Alan R. Hookins	TIME: 8:00 - 5:30

FIELD IN-PLACE DENSITY TEST REPORT

28T 40.	PROCTOR NO.	ELEV. (-DEPTH)	DENSITY (PCF)	PERCENT MOISTURE	PERCENT COMPACTION	LOCATION
2	З	6"	106.2	16.4	92.7	40'S - 35'E of VDM 1. 3rd Lift
3	З	6"	106.6	18.5	93.0	50'S - 0'W of VDM 1, 3rd Lift
÷	3	6"	104.2	16.9	91.0	30'S - 15'W of VDm 1. 3rd Lift
5						Perm cylinders 9A & 9B taken at location #23
,	3	€"	1 ወወ. ወ	19.4	87.3	50'S - 25'W of VDm 1, 3rd Lift
,	3	6"	101.1	22.0	88.2	30'S - 25'W of VDM 1. 3rd Lift
ŀ	3	6"	104.8	19.4	91.5	15'S - 25'W of VDM 1. 3rd Lift
i	Ξ	6"	101.6	20.2	88.7	40'S - 35'W of VDM 1, 3rd Lift
4	3 - 3	6"	103.5	18.8	90.3	
	- 3	6"	105.2	19.3	91.8	Q'N - 10'W of VDM 1. 3rd Lift
	З	6"	106.1	19.3		Retest #27 after retamoing
XIMU	η	OPTIML	IMI			
NSIT	(PCF)					TYPE AND SOURCE
i14. MARKS		: 14.5			Frontier	Stone - CLAY OVERBURDEN

Glynn Geotechnical Enging. 6437 Locust St. Exm. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

alan N Hophins

: ALAN R. HOPKINS

MITATION OF LIABILITY - The amount of liability will be limited to an amount ual to the fee. .

2

REPORT NO.: 7	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85,984
CONTRACTOR: SLC Consultants - Constructors. Inc.	DATE: July 15, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:00 - 5:30

FIELD IN-PLACE DENSITY TEST REPORT

NO.	PROCTOR NO.	ELEV. (-DEPTH)	DENSITY (PCF)	PERCENT MOISTURE	PERCENT COMPACTION	LOCATION N
33	3	 6 ''	103.4	19.1	90.3	Retest #29 after retamoing
34	З	6"	107.4	18.3	93.8	Retest #26 after retamoing
35	3	6"	107.2	19.4	93.6	90'N - 30'E of VDM 11, 3rd Lift
36	3	6"	102.6	20.6	89.5	80'N - 40'E of VDM 11, 3rd Lift
37	3	6"	102.8	20.7	89.7	30'N - 30'E of VDM 11, 3rd Lift
38	З	6"	107.1	19.3	93.5	70'S of VDM 2, 2nd Lift, Ditch Area
39	3	6"	102.8	18.4	89.8	100'S of VDM 2, 2nd Lift. Ditch Area
4121	3	6"	102.2	18.0	89.2	150'S of VDM 2, 2nd Lift, Ditch Area
41	3	6"	101.2	21.0	88.3	Retest #40 after retamping
42	З	6"	103.4	20.5		Retest #40 after retamping

MAXIMUM	OPTIMUM
DENSITY (PCF)	MOISTURE (%)
1:	:
2:	:
3: 114.5	: 14.5
REMARKS:	

:

MATERIAL TYPE AND SOURCE

Frontier Stone - CLAY - CLEBURDEN

Glynn Geotechnical Engrng. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALD TESTING LABORATORIES, INC.

A Im : ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

ØE

. ,

REPORT NO.: 8	PROJECT: Van De Mark Cnemical
CLIENT: Glynn Geotechnical	PRDJECT NO.: 85.984
CONTRACTOR: SLC Consultants - Constructors, Inc.	DATE: July 16, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:00 - 5:00

FIELD IN-PLACE DENSITY TEST REPORT

					PERCENT COMPACTION	
1	3	6."	107.1	19.1	93.5	15'E - 70'S of VDM 1. 4th (cap) Lift
8	E	6"	103.2	18.5	90.1	15'E - 40'S of VDM 1, 4th (cap) Lift
З	3	6"	109.3	18.3	95.4	$10^{2} = -15^{2} = 0$ of VDM 1, 4th (cap) Lift
L.	3	6"	105.4	18.2	92.Ø	20'W - 20'S of VDM 1. 4th (cap) Lift
5	3	€.''	107.6	19.0	93.9	15'W - 30'S of VDM 1, 4th (cap) Lift
6	3	6"	128.2	18.5	94.3	$20^{\circ}W = 80^{\circ}S \text{ of VDM 1},$ $4th (cas) Lift$
7	E.	6"	108.8	18.5	95.0	65'W - 90'S of VDM 1, 4th (cap) Lift
8	Ξ	6"	107.3	17.8	93.7	70'W - 45'S of VDM 1. 4th (cap) Lift
Э	З	£"	107.3	19.2	93.7	95'W - 20'S of VDM 1, 4th (cap) Lift
1: 2:	TY (PCF)	OPTIM: MOISTUI : :				TYPE AND SOURCE
3: 114 REMARI :		: 14.5			Frontier	Stone - CLAY AVERBURDEN
Glynn Geotechnical Engrug. 6437 Locust St. Fran				BUFFF	CTFULLY SUB	LABORATORIES, INC.

6437 Locust St. Extn. Lockport, NY 14094

alan R Haphins : ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

Č.

.

REPORT NO.: 8	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85.984
CONTRACTOR: SLC Consultants - Constructors. Inc.	DATE: July 16, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:20 - 5:00

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.					PERCENT Compaction	
1 1 1 1 1						Perm cylincers 12a & 12o taken at location #2
11	3	6"	105.1	18.9	91.7	40'N of VDM 1, 3rd Lift, Ditch area
12	З	6"	101.2	21.7	88.3	90'N of VDM 2, 3rd Lift, Ditch area
13	3	6 ''	103.9	20.3	90.7	Retest #12
14	3	6"	101.0	21.9	88.2	50'N of VDm 2, 3rd Lift. Ditch area
15	3	6"	103.1	21.1	90. 0	20'N of VDM 2, 3rd Lift, Ditch area
16	3	6.4	108.5	17.0	94.7	30'S of VDM 2, 3rd Lift. Ditch area
17	i)	6"	104.0	18.7	90.8	100'S of VDM 2, 3rd Lift, Ditch area
18	З	6"	105.7	19.0	92.3	150'S of VDM 2, 3rd Lift, Ditch area

MAX1MUM DENSITY (PCF)	OPTIMUM Moisture (%)
1:	:
2:	:
3: 114.5	: 14.5
REMARKS:	
:	

2

MATERIAL TYPE AND SOURCE

Frontier Stone - CLAY SCREWDEN

Glynn Geotechnical Engrog. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

phino alan 1 ----: ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

ØE.

REPORT NO.: 8	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85.984
CONTRACTOR: SLC Consultants - Constructors, Inc.	DATE: July 16, 1987
TECHNICAN: Alan R. Hookins	TIME: 8:00 - 5:00

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.			DENSITY (PCF)		PERCENT COMPACTION	LOCATION
19	3	6"	105.7	19.1	92.3	200'S of VDM 2, 3rd Lift
20	З	£"	104.E	20.E	91.3	Diton area Retest #14 after retamoino

MUMIXAN OFTIMUM ENSITY (PCF) . : . ÷ : 2 :: 114.5 KEMARKS:

MOISTURE (%) : 14.5

MATERIAL TYPE AND SOURCE

Frontier Stone - CLAY CUERBURDEN

Glynn Geotechnical Engrag. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALD TESTING LABORATORIES, INC.

in : ALAN R. HOPKINS

IMITATION OF LIABILITY - The amount of liability will be limited to an amount cual to the fee.

ØЭ

REPORT NO.: 9	PROJECT: Van De Mark Chemical
CLIENT: Glynn Geotechnical	PROJECT NO.: 85.984
CONTRACTOR: SLC Consultants - Constructors, Inc.	DATE: July 17. 1987
TECHNICAN: Alan R. Hookins	TIME: 9:00 - 11:30

FIELD IN-PLACE DENSITY TEST REPORT

TEST NO.	PROCTOR NO.	ELEV. (-DEPTH)	DENSITY (PCF)	PERCENT	PERCENT COMPACTION	LOCATION
1	З	6"	108.8	18.2	94.9	200'S of VDM 2, 4th Lift, Ditch Area
8	З	6 "	124.2	17.3	90.8	150'S of VDM 2, 4th Lift, Ditch Area
3	3	,6 "	105.0	18.4	91.7	100°S of VDM 2, 4th Lift, Ditch Area
4	3	6"	104.8	20. Ø	91.5	40'S of VDM 2, 4th Lift. Ditch Area
• 5	3	6"	104.5	18.5	91.2	40'N of VDM 2. 4th Lift. Ditch Area

MAXIMUM	OPTIMUM				
DENSITY (PCF)	MOISTURE (%)				
1:	:				
2:	:				
3: 114.5	: 14.5				
REMARKS:					

:

MATERIAL TYPE AND SOURCE

Frontier Stone - CLAY OVERBURDEN

Glynn Geotechnical Engrng. 6437 Locust St. Extn. Lockport, NY 14094

RESPECTFULLY SUBMITTED. BUFFALO TESTING LABORATORIES, INC.

Haghins : ALAN R. HOPKINS

LIMITATION OF LIABILITY - The amount of liability will be limited to an amount equal to the fee.

ØЗ

FIELD OBSERVATION Blynn Geotechnical Engineering REPORT 6437 LOCUST STREET EXTN. . LOCKPORT, NEW YORK 14094 (716) 434-7118 PROJECT NO. 87-0125 REPORT NO. PAGE OF PROJECT: VDM CHEM. LANDFILL DAY LUESDAY DATE 7.28.87 SUBJECT: DAILY REPORT TIME 11/2 hr. WEATHER: SUNNU 70'S (AM) PHOTOS-YES NO Due to the organized on find lyen ever boutien, material placement was ABORTED. Placement to resume on Wednesday once information is clarified ITEMS REQUIRING FURTHER ATTENTION: PERSONNEL CONTACTED: DISTRIBUTION: (52C)ROBER REPORT BY: ASQUITH

The Following Image is the Best Copy Available

FIELD OBSERVATION **Glynn Geotechnical Engineering** REPORT 6437 LOCUST STREET EXTN.

LOCKPORT, NEW YORK 14094 (716) 434-7118 PROJECT NO. <u>87-C/25</u> REPORT NO. PAGE OF PROJECT: VDM CHEM LANDFILL DAY URANESTIC DATE 7.29-87 SUBJECT: Dance REPORT TIME 6/2 hr WEATHER: STANK, DEG NO Cher Mars PIPCES A- ORIGINAL MEMorier bestich. Silverie was schercied and watered prior to chaminent. CLANIFILL NOR als watered in staticale And merry internet LE LIFTS OF MATL, VIES WINCEL, EACH Life for country of SCARIELS AND STERNING INTO EXISTING DIAL. FUL MADERIAL had been stockening at an earlier date. Remented to site in afternoon to collect permeability, Samples. Smalles were tested to replace failing test ITEMS REQUIRING FURTHER ATTENTION: PERSONNEL CONTACTED: DISTRIBUTION: 520 KREEK REPORT BY: Aspart

Glynn Geotechnical Engineering

6437 LOCUST STREET EXTN. . LOCKPORT, NEW YORK 14094

(716) 434-7118

- 1

SAND CONE DENSITY TESTING

Technician: A sourth	<u></u>	- -			Date:	7-29-8
Sequential Test Number	7-29-1	7-29-2	7-29-3	7-29 -4		
Liner Layer/Lift	LIFT		LIFT#3	LIFT#4		
1 Wt. Sand & Bottle Before	6601	6761	4536	1.60%		
2 Wt. Sand & Bottle After	3238	2647	247?	2235	,	
3 Wt. Sand Used (1-2)	3363	4114	4057	4371		
4 Grams to lbs. ÷ 454	7.4	9.06	8.94	9.63		
5 Density of Sand in PCF	83.92	83.72	83,92		····	
6 Volume of Sand $(4 \div 5)$.088	./08	,107	.115	· · · · ·	
7 Volume of Cone in CF	.041	.04	.041	.09.1		
8 Volume of Hole (6-7)	.047	.067	.066	.074		i
9 Weight of Wet Soil	2938	4168	3893	4488		
0 Grams to lbs 454	6.4.7	9,18	8.57	9.89		
1 Wet Density (10 - 8)	137.7	137.0	129.8	133,6		
2 % Speedy Moisture	14.5	15.5	15.3	14.8		
3 Corrected Moisture w%	16.5	17.2	17.0	16.8		
4 Dry Density (11-1 + w%)	118.2	116.9	110.9	114.4		
5 Maximum Proctor Density	114.5	114.5	114.5	114.5		
6 % Compaction (14 ÷ 15)	100+	100+	96.9	99.9		
7 Location N/S	25'EAST	30'EAST	40'EAST	IS' FACT		
8 Location E/W	of C2+75	OF C 2+65	OF C 2+85	OFC 2+75		
9 Elevation						
OMMENTS/ACTIONS TESTS TAKEN: AT VAN DE N	liasic Ch	tenice:				

LANDFILL (CAP). CLAY FLACEMENT AT ORIGINAL LYSIMETER LECHTION.

Two Form Somples taken: 10'EAST OF C2+80(11-R1) 20'EAST OF C2+60(11-R2)

Glynn Geotechnics	ll Engineering	FIELD OBSERVAT REPORT	ION
6437 LOCUST STREET EXTN. • LOCKPORT		····	(716) 434-711
PROJECT NO. <u>87-0125</u>	REPORT NO.	PAGE/	OF/
PROJECT: YDM. CHEM. LANDE	IL DAY FRIDAY	DATE	31-87
SUBJECT: DAILY REPORT		TIME	re,
WEATHER: SUNNY 80'S		PHOTOS-YES	V NO
APPILED ON SITC IN to unforeseen diff. had problems place position Requenced ince at 11 unfor price ince at 11 unfor price ITEMS REQUIRING FURTHER ATTENTIO	d Teck Photon	- te au era	SLC ct, level area
EPORT BY: ASULTH		V:	

•

.

FIELD OBSERVATION Glynn Geotechnical Engineering REPORT 6437 LOCUST STREET EXTN. . LOCKPORT, NEW YORK 14094 (716) 434-7118 PROJECT NO. 87-0125 REPORT NO. _____ PAGE ___/ OF _/__ PROJECT: UDM CHEMICAL DAY Saturday ____ DATE ______ 8-7 SUBJECT: DALLY REPORT ____ TIME 7:00 - 3:30 WEATHER: SUNING SC'S _____ PHOTOS-YES V NO + CIAN placed around and on true of Lysmeter Sondcone to were performed on each lift, Agreed with MARK Beaker that parministing samples need not be taken due convertence on mutanial compaction and most were Franking token of Lycinder in place. TESTS TAKEN ON FIRST THESE LIFTS OF CLAY MATE. ALL LIFTS PASSED. (LAY MATERIAL WAS STOCKPILED FOR FILL. Additionial MATERIAL WAS taken from previously PLACEd liner at construction limits, + HAND tAMPERS USED ON first two clay lists SHEEPSFOOT (WITHOUT Vibention) was used on 3rd lift. ITEMS REQUIRING FURTHER ATTENTION: ONE addition, àl LIFT MUST be placed. No tests will be needed as per MARK BECKER PERSONNEL CONTACTED: DISTRIBUTION: MANER FROKEr RUGER · " ... C REPORT BY: A = GOUTH

Glynn Geotechnical Engineering

6437 LOCUST STREET EXTN. . LOCKPORT, NEW YORK 14094

(716) 434-7118

SAND CONE DENSITY TESTING

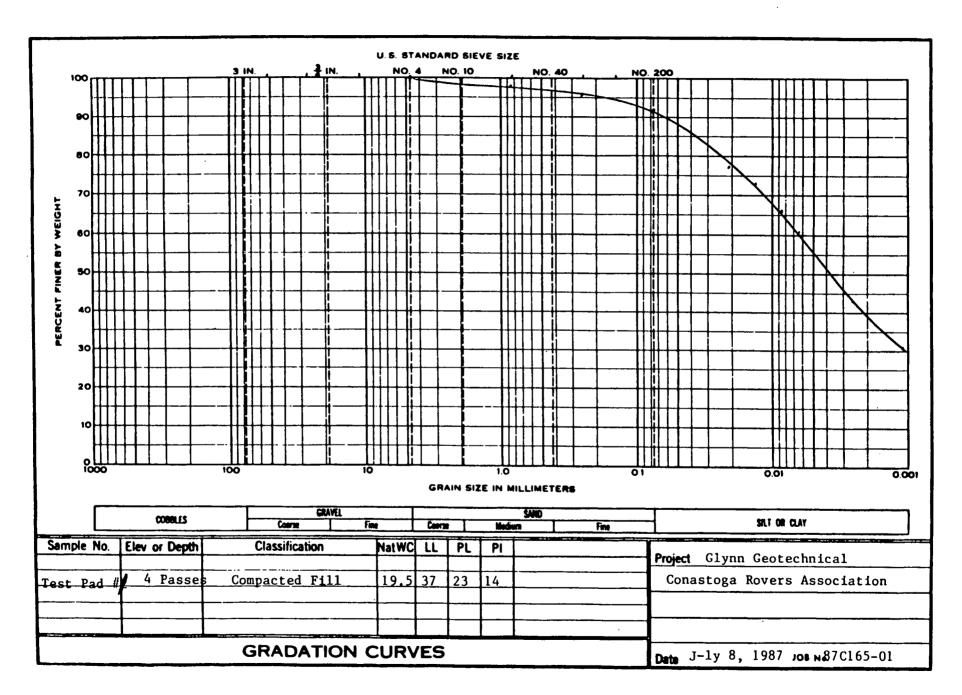
Sequential Test Number						1
	8-1-1	8.1.2	8-1-3	8-1-4		
liner Layer/Lift		RETEST	LIFT 2	8-1-4 LIFT 3		
l Wt. Sand & Bottle Before	6151	6592	6330	6153		
2 Wt. Sand & Bottle After	2346	3068	2775	2392		
3 Wt. Sand Used (1-2)	3805	35-14	2555	3761		
4 Grams to 1bs 454	8.38	7.74	7.83	8.28		1
5 Density of Sand in PCF	83.92	83.92	83.92	83.92		
6 Volume of Sand $(4 \div 5)$.100	.092	,093	.098		
7 Volume of Cone in CF	.041	.041	.041	.041		
8 Volume of Hole (6-7)	.059	.051	.052			
9 Weight of Wet Soil	3195	3042	3224	3465		
0 Grams to 1bs 454	7.04	6.70	7.10	7.63		
l Wet Density (10 - 8)	119.3	131.4	1365	133,9		
2 % Speedy Moisture	14.8	15.0	15.6	13.9		
3 Corrected Moisture w%	110.1	16.5	17.5	15.8		
4 Dry Density (ll∸l + w%)	102.8	//2.8	116.2	115.6		
5 Maximum Proctor Density	114.5	114.5	114.5	114.5		
5 % Compaction (14 ÷ 15)	81.8	98.5	100+	100+		
Location N/S	5.W		CENTER OF	CENTER		
Location E/W	QUAD	->	FILL	OF FILL		<u>.</u>
9 Elevation						
MMENTS/ACTIONS COMPACTION TESTS TAKEN	AT 2	451142761	- LOCAT	ION	<u> </u>	

CLIENT:GLYNN GEOTECHNICAL PROJECT LOCATION:CONASTOGA ROVERS SAMFLE NO.:TEST PAD 1 DESCRIPTION:4 PASSES COMPACTED FILL CLAY

DATE: JULY 8 1987 JOB No.: 87C165-01 £

CELL NO.:8

FLUID:WATER


B-Parameter:1.0

PHYSICAL PROPERTY DATA.....

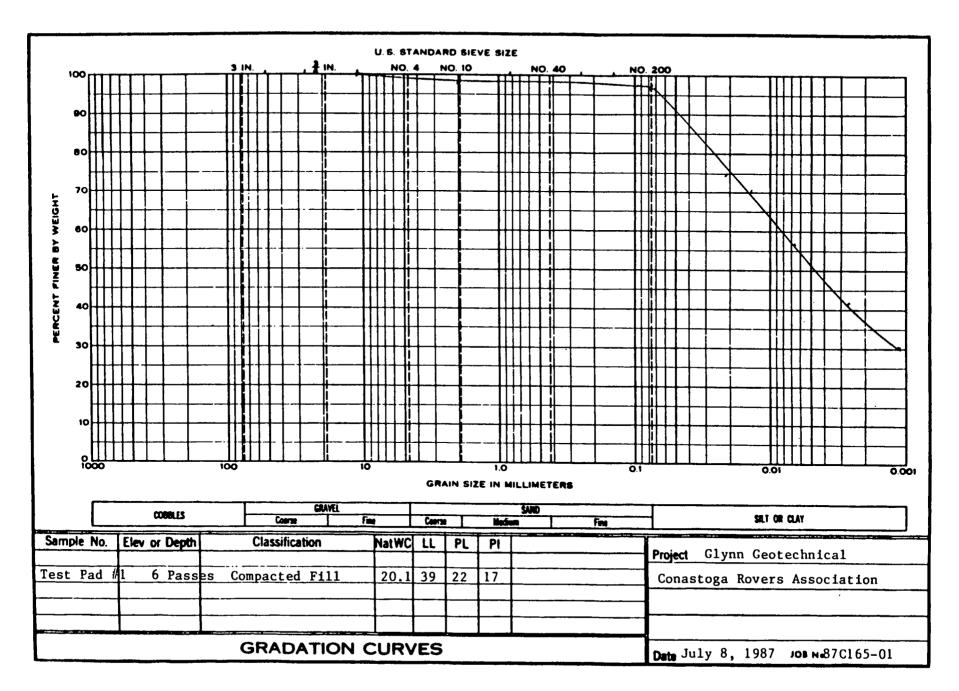
MDISTURE CONTENT: DRY DENSITY: INITIAL SATURATION:	2.8330 in 670.8 gm 129.8 pcf 19.5 % 108.6 pcf	FINAL DI FINAL WE WET DENS MOISTURE DRY DENS FINAL SA	T WEIGHT: ITY : CONTENT:	18.1 115.1	in gm pcf % pcf %
TEST PARAMETERS			• • • •		
CELL PRESSURE: HEAD WATER:	55.00 50.00	.00 .00	.00	.00	psi
TAIL WATER:	42.00	.00	.00	.00 .00	psi psi
PERMEABILITY INPUT DATA		••••••			
FLOW (Q):	7.50	.00	.00	.00	cc
LENGTH (L):	3.11	.00	.00	.00	in
AREA (A):	6.22	.00	.00	.00	sqin
HEAD (h):	8.00	.00	.00	.00	nsi

		• • • •	.00	.00	sain
HEAD (h):	8.00	.00	.00	.00	psi
TIME (t):	600.00	.00	.00	.00	min

TEST NO. 1,	k=	7.286E-008	cm/sec
TEST NO. 2,	k=	.000E+000	cm/sec
TEST ND. 3,	k=	.000E+000	cm/sec
TEST ND. 4,	k=	.000E+000	cm/sec

J & L TESTING COMPANY, INC.

CLIENT:GLYNN GEOTECHNICAL PROJECT LOCATION:CONASTOGA ROVERS SAMPLE NO.:TEST FAD 1 DESCRIPTION:6 PASSES COMPACTED FILL CLAY


DATE: JULY 8 1987 JOB No.: 87C165-01

CELL NO.:5	L NO.:5 FLUID:WATER			er:1.0	
PHYSICAL PROPERTY DATA.	• • • • • • • • • • • • • • • • •	• • • • • • • • • • •	••••		
INITIAL HEIGHT: INITIAL DIAMETER: INITIAL WET WEIGHT: WET DENSITY <i>=</i> MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION: INITIAL VOID RATIO:	2.8450 in 676.2 gm 130.9 pcf 20.1 % 108.9 pcf 106.1 %	FINAL DI FINAL WE WET DENS MOISTURE DRY DENS FINAL SA	IGHT: AMETER: T WEIGHT: ITY : CONTENT: ITY: TURATION: ID RATIO:	2.8800 : 687.3 130.4 ; 18.3 ; 110.2 ; 99.9 ;	in gm ocf X ocf X
TEST PARAMETERS			••••		
CELL PRESSURE: HEAD WATER: TAIL WATER:			.00 .00 .00	.00 .00 .00	psi
PERMEABILITY INPUT DATA					
AREA (A): HEAD (h):	3.20 3.08 6.51 8.00 800.00	.00 .00 .00 .00	.00	.00 .00 .00 .00	cc in sqin psi min

COMPUTED PERMEABILITY @ 20 degrees Centigrade.....

TEST NO. 1,	k:=	2.	2068-008	cm/sec
TEST ND. 2,	k=		000E+000	cm/sec
TEST NO. 3,	k=	•	000E+000	cm/sec
TEST NO. 4,	k=		000E+000	cm/sec

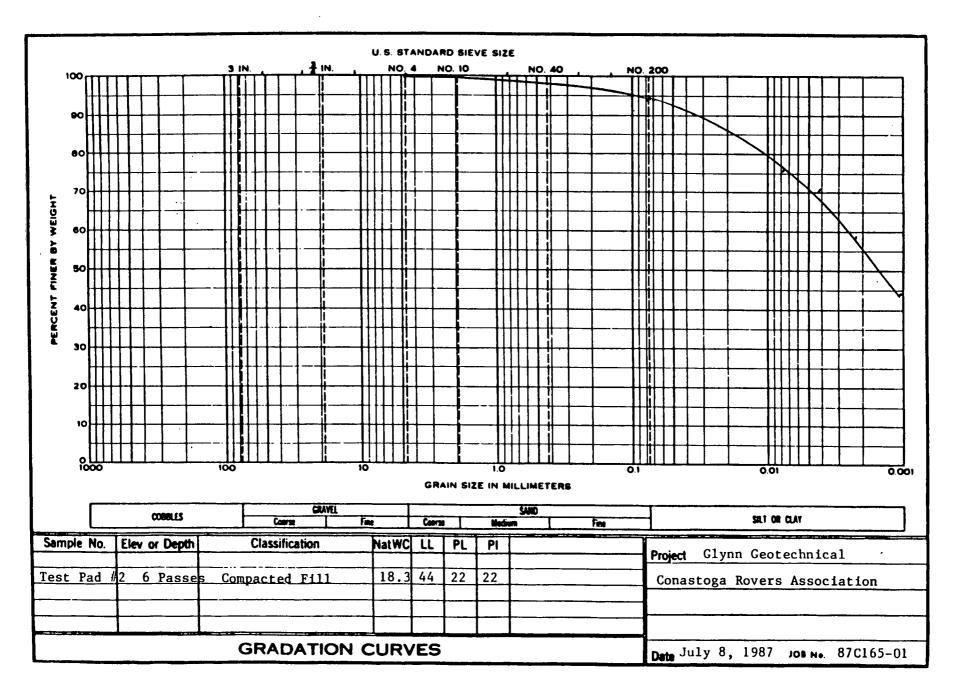
•

CLIENT: GLYNN GEOTECHNICAL PROJECT LOCATION: CONASTOGA ROVERS SAMPLE NO.: TEST PAD 2 DESCRIPTION: 6 FASSES COMPACTED FILL CLAY

DATE: JULY 8 1987 JOB No.:87C165-01

> > psi psi psi

сc in sqin psi min

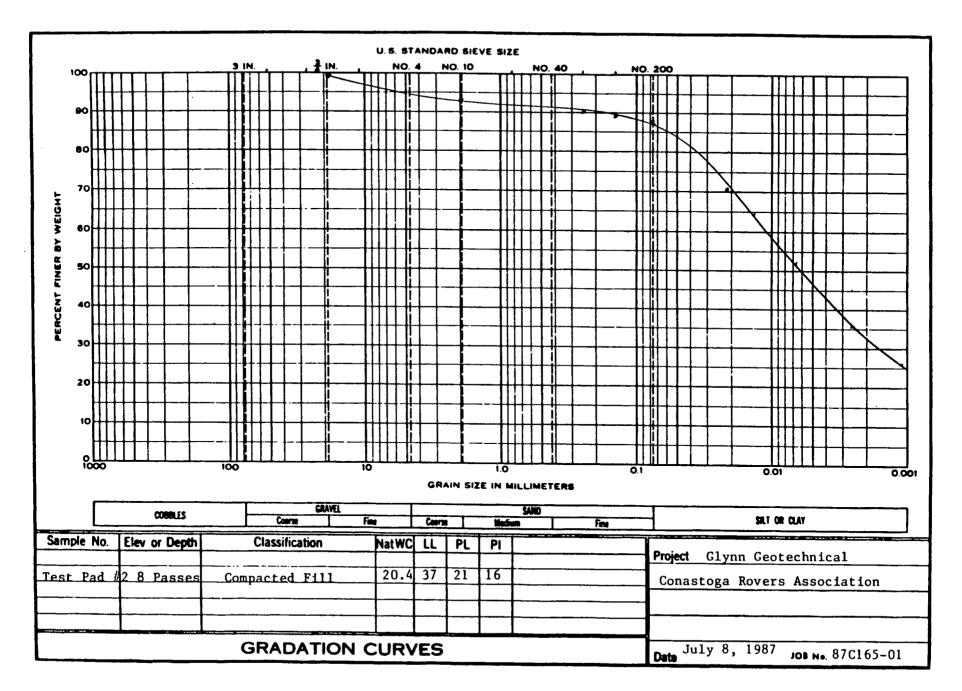

1

CELL NO.:6	FLUID:WATER	B-Parameter:1.0			
PHYSICAL PROPERTY DATA.		• • • • • • • • • • • • • • • • • •			
INITIAL DIAMETER: INITIAL WET WEIGHT: WET DENSITY <i>=</i>	2.8350 in 510.0 gm 120.9 pcf 18.3 % 102.2 pcf 75.5 %	MOISTURE CONTENT:	2.8500 541.0 127.6 23.8 103.1 100.0	gm pcf % pcf %	
test parameters	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •			
CELL PRESSURE: HEAD WATER: TAIL WATER:	55.00 50.00 42.00	.00 .00 .00 .00 .00 .00	.00 .00 .00	P P	
PERMEABILITY INPUT DATA					
FLOW (Q): LENGTH (L): AREA (A): HEAD (h): TIME (t):	1.90 2.53 6.38 8.00 800.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00		c i S P M	

COMPUTED PERMEABILITY @ 20 degrees Centigrade.....

TEST NO.	1,	k≕	1.099E-008 ci	m/sec
TEST NO.	2,	k=		m/sec
TEST NO.	з,	k=		m/sec
TEST NO.	4,	k=	• • • • • • • • • • • • • • •	n/sec

• ,


CLIENT: GLYNN GEDTECHNICAL PROJECT LOCATION: CONASTOGA ROVERS SAMPLE NO.: TEST PAD 2 DESCRIPTION:8 PASSES COMPACTED FILL CLAY

DATE: JULY 8 1987 JOB No.:87C165-01

CELL ND.:7	CELL ND.:7 FLUID:WATER		B-Paramet	er:1.0	
PHYSICAL PROPERTY DATA.	••••••	•••••	••		
INITIAL HEIGHT: INITIAL DIAMETER: INITIAL WET WEIGHT: WET DENSITY = MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION: INITIAL VOID RATIO:	2.8310 in 719.5 gm 123.3 pcf 20.4 % 102.4 pcf 87.3 %	FINAL DIAM FINAL WET WET DENSIT MOISTURE C DRY DENSIT FINAL SATU	ETER: WEIGHT: Y : CONTENT: Y: RATION:	2.8300 i 747.1 129.3 20.4 107.4 99.5	in gm ⊃cf % ⊃cf %
TEST PARAMETERS			•••		
CELL PRESSURE: HEAD WATER: TAIL WATER:	50.00	.00	.00	.00 .00 .00	psi
PERMEABILITY INPUT DATA					
FLOW (Q): LENGTH (L): AREA (A): HEAD (h): TIME (t):	6.29	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	sqin psi
Computed Permeability @	20 degrees Cent	igrade	••		
TEST NO. 1, k= TEST NO. 2, k= TEST NO. 3, k= TEST NO. 4, k=	.000E+000 .000E+000	0 cm/sec			

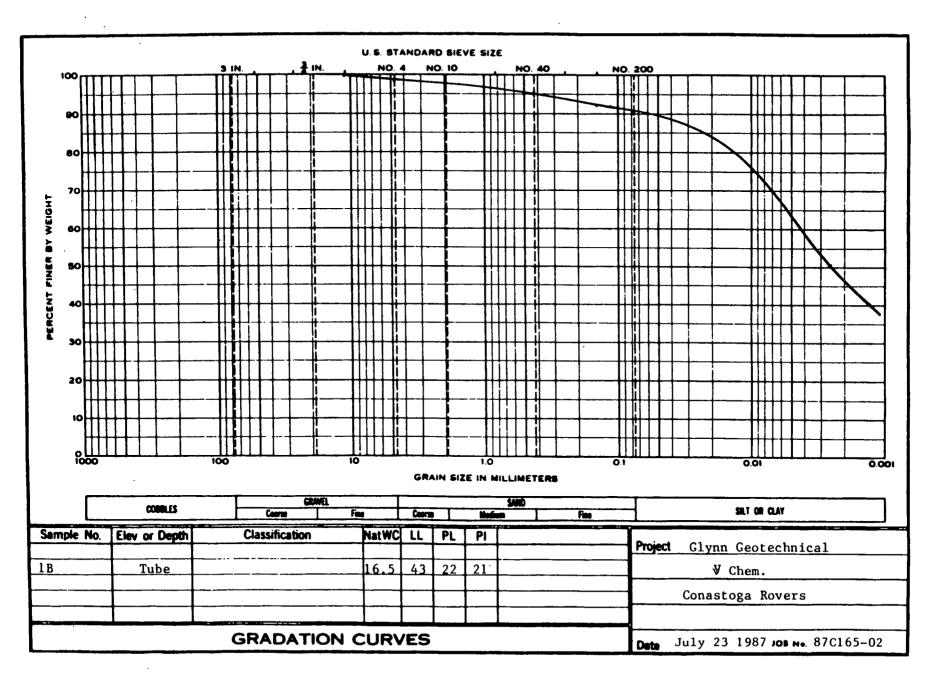
.

, de

CLIENT:GLYNN GEOTECHNICAL FROJECT LOCATION:CONASTOGA ROVERS SAMFLE NO.:18 DESCRIPTION:COMPACTED FILL

DATE:JULY 19 1987 JOB No.:87C165-02 11

CELL NO.:7


FLUID:WATER

B-Parameter:1.0

PHYSICAL PROPERTY DATA.....

	2.8700 in 632.5 gm 128.3 pcf 16.5 % 110.2 pcf 88.4 % .489302	FINAL DIAMETER: FINAL WET WEIGHT: WET DENSITY : MOISTURE CONTENT: DRY DENSITY: FINAL SATURATION: FINAL VOID RATIO:	2.9000 in 652.0 gm 130.0 pcf 19.2 % 109.1 pcf
TEST PARAMETERS			
CELL PRESSURE: HEAD WATER: TAIL WATER:	55.00 50.00 42.00	.00 .00 .00 .00 .00 .00	.00 psi .00 psi .00 psi
PERMEABILITY INPUT DATA			
LENGTH (L): AREA (A): HEAD (h):	.69 2.89 6.61 8.00 200.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 cc .00 in .00 sqin .00 psi .00 min

	TEST NO.	1,	k=	1.761E-008	cm/sec
•	TEST NO.	2,	k=	.000E+000	cm/sec
	TEST NO.	з,	k=	.000E+000	cm/sec
•	TEST NO.	4,	k:=	.000E+000	cm/sec

J & L TESTING COMPANY, INC. Materials Fasting

SUMMARY OF TRIAXIAL PERMEABILITY

CLIENT:GLYNN GEOTECHNICAL PROJECT LOCATION:V M CHEM SAMPLE NO.:28 DESCRIPTION:COMPACTED FILL TUBE SAMPLE

DATE: JULY 26 1987 JOB No.: 87C165-03

.

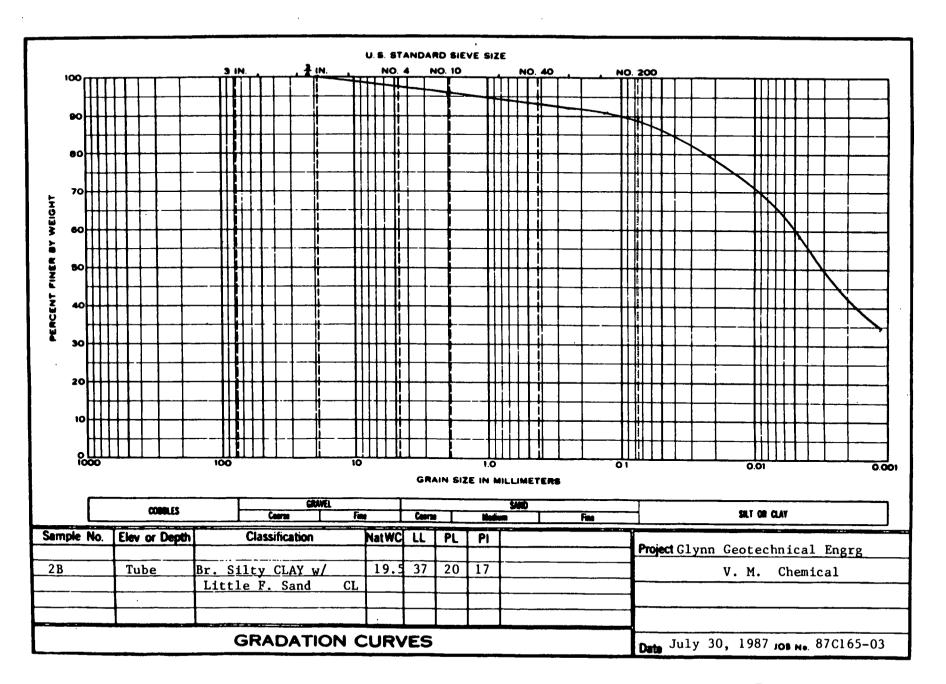
CELL NO.:29

FLUID:WATER

B-Parameter:0.98

PHYSICAL PROPERTY DATA.....

INITIAL DIAMETER:	4.341 in 2.8460 in	FINAL HEIGHT: FINAL DIAMETER:	4.340 in 2.8450 in
INITIAL WET WEIGHT: WET DENSITY =	916.5 gm 126.3 pcf	FINAL WET WEIGHT: WET DENSITY :	941.2 gm 129.8 pcf
MOISTURE CONTENT:	•	MOISTURE CONTENT:	22.5 %
DRY DENSITY:	105.7 p∈f	DRY DENSITY:	106.0 pcf
INITIAL SATURATION:	86.0 %	FINAL SATURATION:	100.0 %
INITIAL VOID RATIO:	.623357	FINAL VOID RATIO:	.618927


TEST PARAMETERS.....

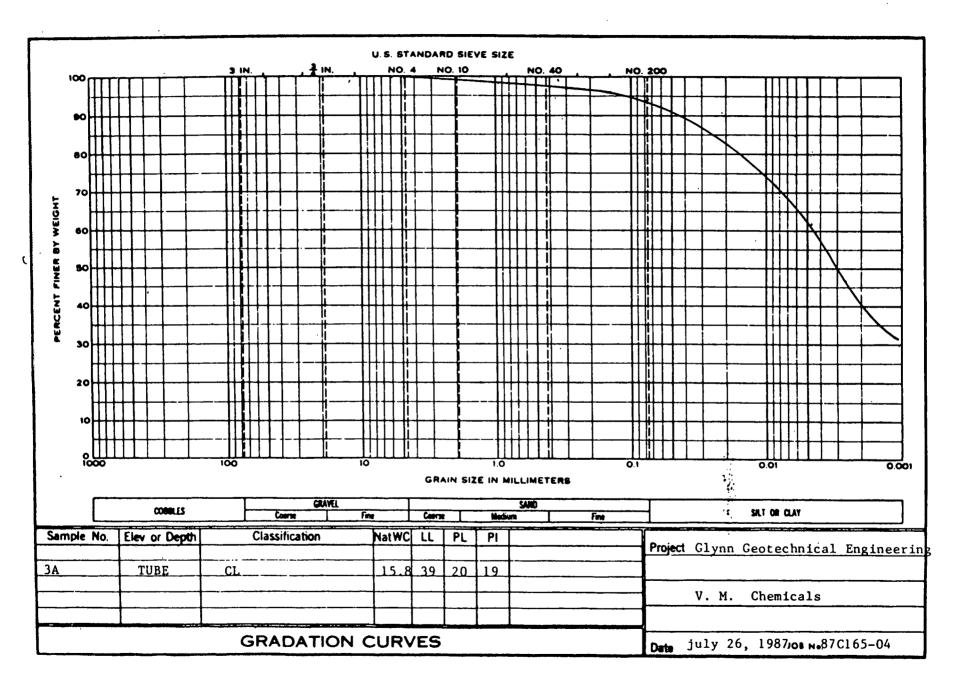
CELL PRESSURE:	55.00	.00	.00	.00	psi
HEAD WATER:	50.00	.00	.00	.00	psi
TAIL WATER:	42.00	.00	÷00	.00	psi

PERMEABILITY INPUT DATA.....

FLOW (Q): LENGTH (L):	3.20 4.34	.00 .00	.00	.00 .00	cc in
AREA (A):	6.36	.00	.00	.00	sqin
HEAD (h):	8.00	.00	.00	.00	psi
TIME (t):	500.00	.00	.00	.00	min

TEST NO.	1,	k=	5.097E-008	cm/sec
TEST NO.	2,	k=	.000E+000	cm/sec
TEST NO.	З,	k=	.000E+000	cm/sec
TEST NO.	4,	k=	.000E+000	cm/sec.

J & L TESTING COMPANY, INC. Materials Tearing


CLIENT:GLYNN GEOTECHNICAL PROJECT LOCATION:V M CHEM SAMFLE NO.:3A DESCRIPTION:COMPACTED FILL TUBE SAMFLE

DATE: JULY 26 1987 JOB No.:87C165-04

.

CELL NO.:27	FLUID:WATER	B-Farameter:.98			
PHYSICAL PROPERTY DATA.	• • • • • • • • • • • • • • • • • •				
INITIAL HEIGHT: INITIAL DIAMETER: INITIAL WET WEIGHT: WET DENSITY = MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION: INITIAL VOID RATIO:	2.8850 in 706.4 gm 124.8 pcf 15.8 %	FINAL HEIG FINAL DIAM FINAL WET WET DENSIT MOISTURE C DRY DENSIT FINAL SATU FINAL VOID	HETER: WEIGHT: TY: CONTENT:	734.6 130.5 20.8 108.0	in gm ocf 4 Angf
TEST PARAMETERS	·				
CELL PRESSURE: HEAD WATER: TAIL WATER:	50.00	.00	.00	.00 .00 .00	psi
PERMEABILITY INPUT DATA			• • •		
FLOW (Q): LENGTH (L): AREA (A): HEAD (h): TIME (t):	1.70 3.29 6.51 8.00 500.00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	cc in sqin psi min
COMPUTED PERMEABILITY @	20 degrees Cent	igrade			
TEST NO. 1, k= TEST NO. 2, k= TEST ND. 3, k= TEST NO. 4, k=	.000E+00 .000E+00	0 cm/sec	·		

.

CLIENT:GLYNN GEOTECHNICAL FROJECT LOCATION:CONASTOGA ROVERS SAMPLE NO.:4A DESCRIPTION:COMPACTED FILL

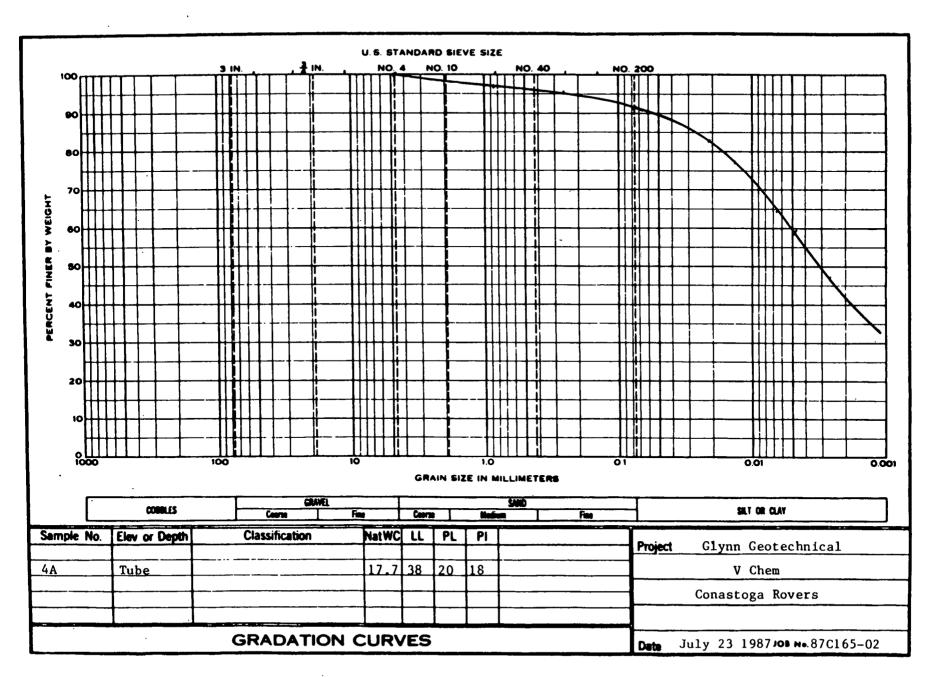
DATE: JULY 19 1987 JOB No.: 87C165-02

CELL NO.:6

FLUID:WATER

B-Parameter:.99

PHYSICAL PROPERTY DATA.....


INITIAL HEIGHT:	4.100 in	FINAL HEIGHT:	4.077 in
INITIAL DIAMETER:	2.8760 in	FINAL DIAMETER:	2.8750 in
INITIAL WET WEIGHT:	911.4 gm	FINAL WET WEIGHT:	932.5 gm
WET DENSITY =	130.2 pcf	WET DENSITY :	134.1 pcf
MOISTURE CONTENT:	17.7 %	MOISTURE CONTENT:	17.0 %
DRY DENSITY:	110.7 pcf	DRY DENSITY:	114.6 pcf
INITIAL SATURATION:	93.3 %	FINAL SATURATION:	100.1 %
INITIAL VOID RATIO:	.505147	FINAL VOID RATIO:	.453620

CELL	PRESSURE:	55.00	.00	.00	.00	psi
HEAD	WATER:	50.00	.00	.00	.00	psi
TAIL	WATER:	42.00	.00	.00	.00	psi

PERMEABILITY INPUT DATA.....

FLOW (Q):	1.20	.00	.00	.00	cc
LENGTH (L):	4.08	.00	.00	.00	in
AREA (A):	6.49	.00	.00	.00	sgin
HEAD (h):	8.00	.00	.00	.00	psi
TIME (t):	200.00	.00	.00	.00	min

TEST NO.	1,	k=	4.395E-008	cm/sec
TEST NO.	2,	k=	.000E+000	cm/sec
TEST NO.	з,	k=	.000E+000	cm/sec
TEST NO.	4,	k=	.000E+000	cm/sec

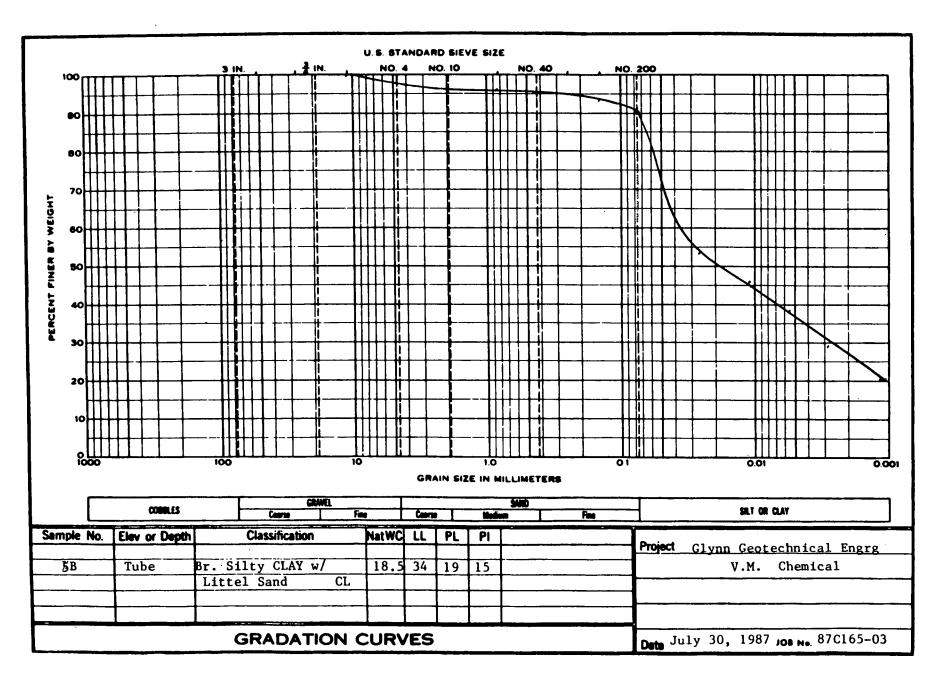
J & L TESTING COMPANY, INC.

CLIENT:GLYNN GEOTECHNICAL FROJECT LOCATION:V M CHEM SAMPLE NO.:5B DESCRIFTION:COMPACTED FILL TUBE SAMPLE

DATE: JULY 26 1987 JOB No.: 87C165-03

CELL NO.:30

FLUID:WATER


.

B-Parameter:0.98

PHYSICAL PROPERTY DATA.....

INITIAL DIAMETER: INITIAL WET WEIGHT: WET DENSITY = MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION:	.572921	WET DENS MOISTURE DRY DENS FINAL SA FINAL VO	AMETER: T WEIGHT: ITY : CONTENT: ITY: TURATION: ID RATIO:	3.145 2.8460 i 690.7 131.4 (20.8 108.8 (99.7 .57182)	in gm ocf % ocf %
CELL PRESSURE:	55.00	.00	.00	.00	psi
HEAD WATER:	50.00	.00	.00	.00	psi
TAIL WATER:	42.00	.00	.00	.00	psi
PERMEABILITY INPUT DATA					
FLOW (Q):	2.15	.00	.00	.00	cc
LENGTH (L):	3.15	.00	.00	.00	in
AREA (A):	6.36	.00	.00	.00	sqin
HEAD (h):	8.00	.00	.00	.00	psi
TIME (t):	500.00	.00	.00	.00	min

TEST	NO.	1,	k=	2.480E-008	cm/sec
TEST	NO.	2,	k=	.000E+000	cm/sec
TEST	NO.	з,	k=	.000E+000	cm/sec
TEST	NO.	4,	k≡	.000E+000	cm/sec

- ----

ט

CLIENT:GLYNN GEOTECHNICAL PROJECT LOCATION:V M CHEM SAMFLE NO.:6A DESCRIPTION:COMFACTED FILL TUBE SAMFLE

DATE: JULY 26 1987 JOB No.: 87C165-04

CELL ND.:28

...

FLUID:WATER

B-Parameter:.99

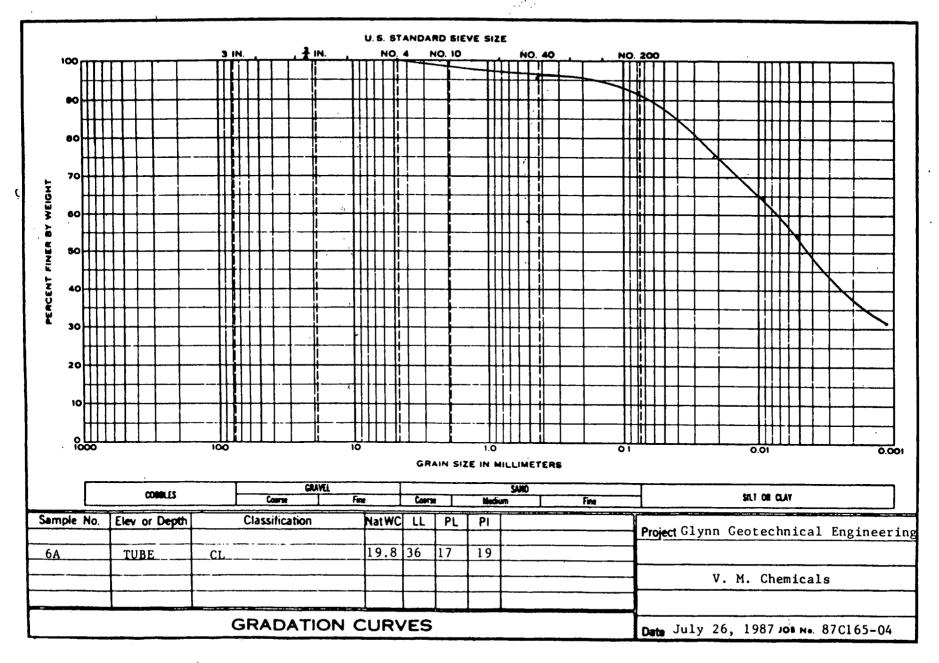
. . . .

.

• •

PHYSICAL PROPERTY DATA.....

INITIAL HEIGHT: INITIAL DIAMETER: INITIAL WET WEIGHT: WET DENSITY = MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION:	4.305 in 2.8440 in 940.1 gm 130.8 β≿f 19.8 % 109.2 pcf 95.3 %	FINAL HEIGHT: FINAL DIAMETER: FINAL WET WEIGHT: WET DENSITY : MOISTURE CONTENT: DRY DENSITY: FINAL SATURATION:	951.0 gm 132.6 pcf 20.5 % 110.0 pcf
INITIAL SATURATION:	95.3 %	FINAL SATURATION:	100.8 %
INITIAL VOID RATIO:	.571209	FINAL VOID RATIO:	


TEST PARAMETERS.....

• ·	•	• • •				
CELL	PRESSURE:	55.00	.00	.00	.00	psi
HEAD	WATER:	50.00	.00	.00	.00	psi
TAIL	WATER:	42.00	.00	.00	.00	psi
•	-			•		

PERMEABILITY INPUT DATA.....

	· · ·				
FLOW (Q):	3.60	.00	.00	.00	cc
LENGTH (L):	4.30	.00	.00	.00	in
AREA (A):	6.35	.00	.00	.00	sqin
HEAD (h):	8.00	.00	.00	.00	psi
TIME (t):	500.00	.00	.00	.00	min

			·· . `		
TEST NO. 1,	k=	5.6898-008	cm/sec	•	•
TEST NO. 2,	k=	.000E+000	cm/sec		· ·
TEST NO. 3,	k=	.000E+000	cm/sec		
TEST NO. 4,	k=	.000E+000	cm/sec		

J & L TESTING COMPANY, INC.

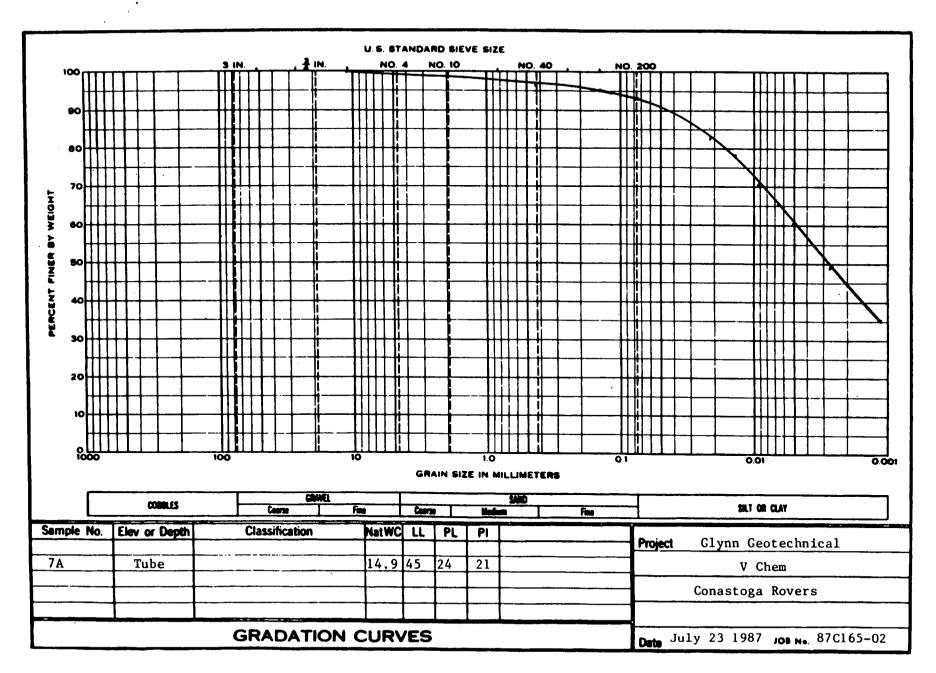
Manager Francis

CLIENT:GLYNN GEOTECHNICAL FROJECT LOCATION:CONASTOGA ROVERS SAMPLE NO.:7A DESCRIPTION:COMPACTED FILL

DATE: JULY 19 1987 JOB No.: 87C165-02

n

CELL NO.:5


FLUID:WATER

B-Parameter:0.99

PHYSICAL PROPERTY DATA.....

INITIAL HEIGHT: INITIAL DIAMETER: INITIAL WET WEIGHT: WET DENSITY = MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION: INITIAL VOID RATIO:	2.8600 in 900.2 gm 127.0 pcf 14.9 % 110.5 pcf 82.8 %	MOISTURE CONTENT DRY DENSITY: FINAL SATURATION	2.8600 in : 938.4 gm 132.4 pcf : 16.7 % 113.5 pcf : 100.9 %
TEST PARAMETERS	•••	• • • • • • • • • • • • • • • • • • • •	
CELL PRESSURE:			.00 psi
HEAD WATER:	50.00	.00 .00	.00 psi
TAIL WATER:	42.00	.00 .00	.00 psi
PERMEABILITY INPUT DATA			
FLOW (Q):	1.21	.00 .00	.00 cc
LENGTH (L):	4.20	.00 .00	.00 in
AREA (A):	6.42		.00 sqin
HEAD (h):	8.00		.00 psi
	200.00	.00 .00	.00 min
		••••	

TEST NO.	1,	k=	4.613E-008	cm/sec
TEST NO.	2,	k=	.000E+000	cm/sec
TEST NO.	з,	k=	.000E+000	cm/sec
TEST NO.	4,	k=	.000E+000	cm/sec

J & L TESTING COMPANY, INC.

CLIENT: GLYNN GEOTECHNICAL ENGINEERING PROJECT LOCATION: V M CHEMICAL SAMFLE ND.:88 DESCRIPTION: COMPACTED FILL TUBE SAMPLE CL

DATE: JULY 28 1987 JOB No.:870165-03

.00

.00

min

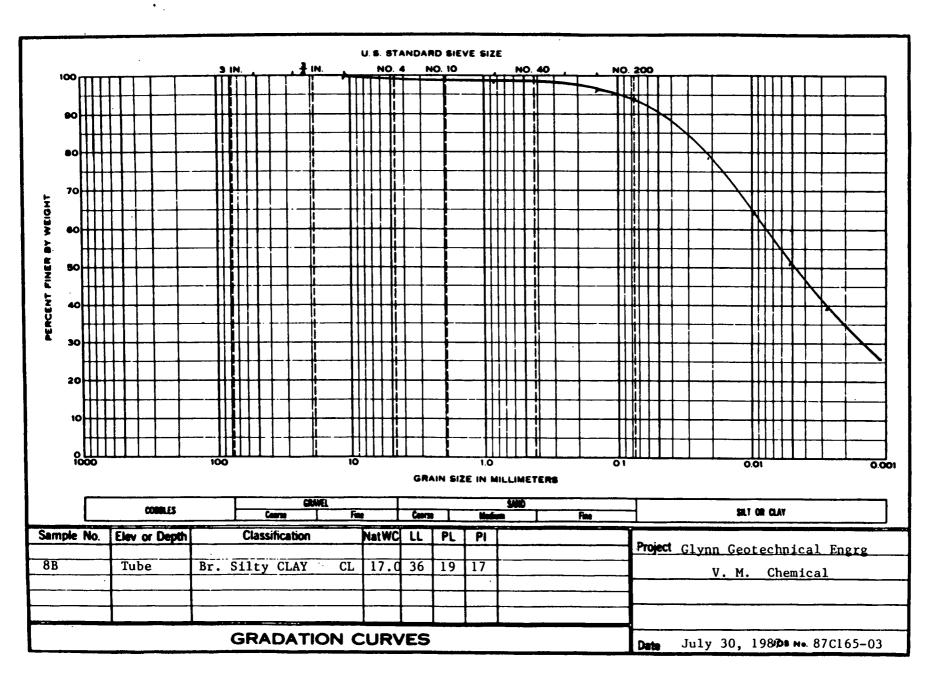
CELL NO.:1

TIME (t):

FLUID:WATER

B-Farameter:0.99

PHYSICAL PROPERTY DATA.....


INITIAL WET WEIGHT: WET DENSITY = MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION:	109.8 pcf 83.3 % .562279	MOISTURE CONTENT: DRY DENSITY: FINAL SATURATION: FINAL VOID RATIO:	708.5 gm 132.9 pcf 20.2 % 110.6 pcf
CELL PRESSURE: HEAD WATER: TAIL WATER:	55.00 50.00 42.00	.00 .00 .00 .00	.00 psi .00 psi .00 psi
PERMEABILITY INPUT DATA	a		
FLOW (Q):	5.70	.00 .00	.00 cc
LENGTH (L):	3.20	.00 .00	.00 in
AREA (A):	6.35	.00 .00	.00 sqin
HEAD (h):	8.00	.00 .00	.00 psi

.00

COMPUTED PERMEABILITY @ 20 degrées Centigrade.....

TEST NO.	1,	k=	4.180E-008	cm/sec
TEST NO.	2,	k≖	.000E+000	cm/sec
TEST NO.	з,	k:=	.000E+000	cm/sec
TEST NO.	4,	k=	.000E+000	cm/sec

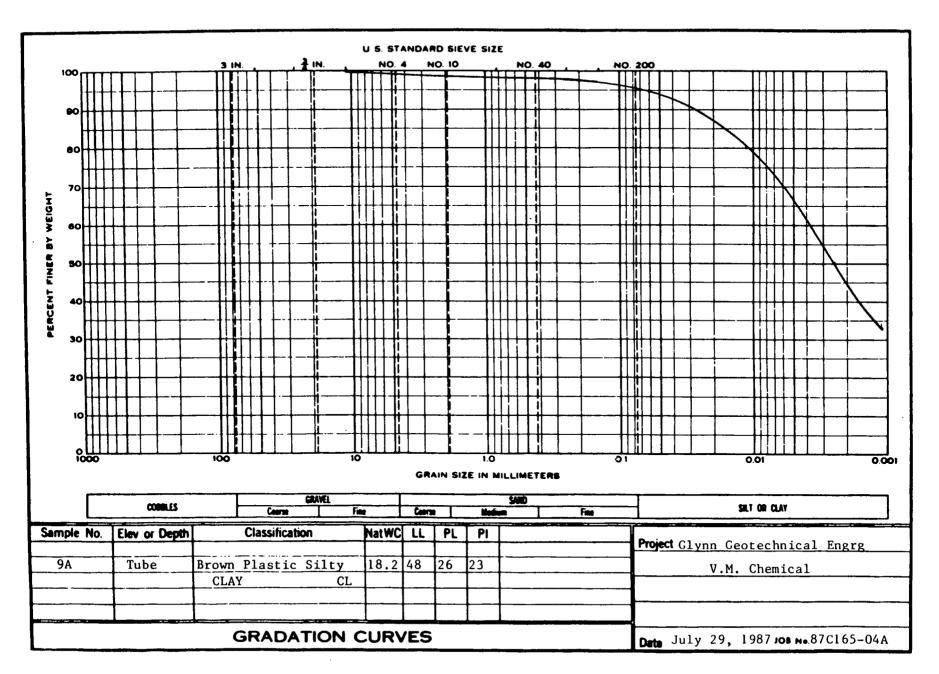
800.00

.

J & L TESTING COMPANY, INC. 43 Materians Taking

CLIENT: GLYNN GEOTECHNICAL PROJECT LOCATION: V M CHEM SAMPLE NO.: 9A DESCRIPTION: COMPACTED FILL PLASTIC SOIL TUBE SAMPLE

DATE: JULY 29 1987 JOB No.:870165-04A


CELL NO.:7

FLUID:WATER B-Parameter:0.99

PHYSICAL PROPERTY DATA.....

INITIAL HEIGHT: INITIAL DIAMETER: INITIAL WET WEIGHT: WET DENSITY = MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION: INITIAL VOID RATIO:	2.8680 in 676.2 gm 124.1 pcf 18.2 % 105.0 pcf 76.3 %	DRY DENSIT FINAL SATU	ETER: WEIGHT: Y : ONTENT: Y: RATION:	2.8700 696.1 128.8 25.4 102.7 101.0	in gm pof X pof X
test parameters		• • • • • • • • • • • • •			
CELL PRESSURE:	55.00	.00	.00	.00	ρει
	50.00				
TAIL WATER:	42.00	.00	.00	.00	psi
PERMEABILITY INPUT DATA					
FLOW (Q):	9.50	.00	.00	.00	сc
	3.18			.00	
AREA (A):		.00		.00	sqin
	8.00				
	500.00		.00	.00	min
COMPUTED PERMEABILITY @	-		••		

TEST	NO.	1,	$\mathbf{k} =$	1.089E-007 c	:m/sec
TEST	NO.	2,	k ==	.000E+000 c	m/sec
TEST	NO.	·3,	k=	,000E+000 c	m/sec
TEST	NO.	4,	k=	.000E+000 c	m/sec

CLIENT:GLYNN GEOTECHNICAL ENGINEERING FROJECT LOCATION:V M CHEMICAL SAMFLE NO.:10B DESCRIPTION:COMPACTED FILL TUBE SAMFLE CL

.

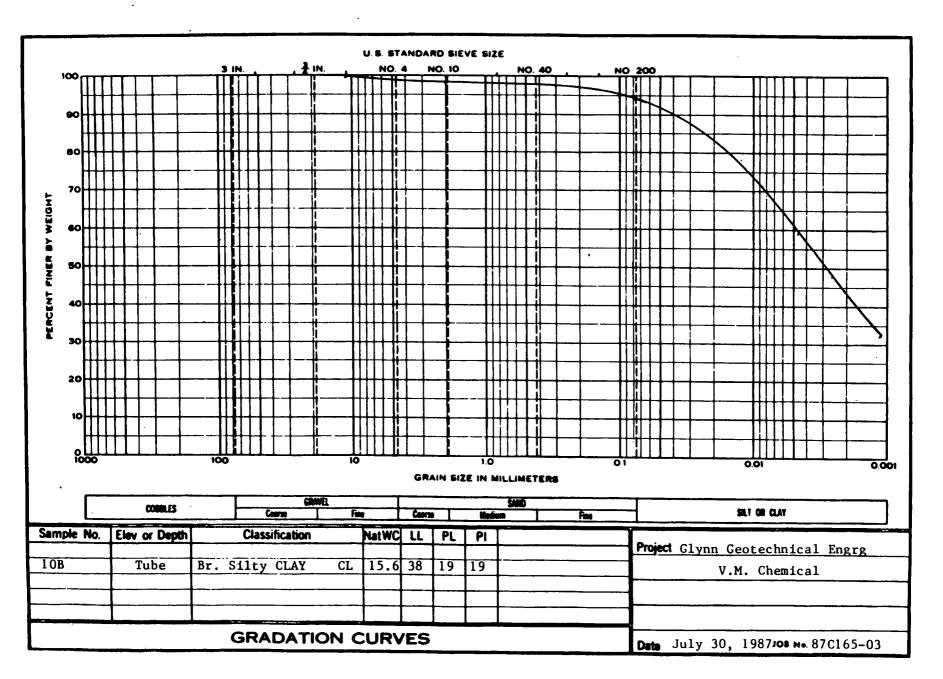
DATE: JULY 28 1987 JOB No.: 87C165-03

CELL NO.:8

FLUID:WATER

B-Parameter:0.99

PHYSICAL PROPERTY DATA.....


• •

INITIAL HEIGHT: INITIAL DIAMETER: INITIAL WET WEIGHT: WET DENSITY = MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION: INITIAL VOID RATIO: TEST PARAMETERS	2.595 in 2.8400 in 515.6 gm 119.4 pcf 15.6 % 103.2 pcf 68.4 % .607819	FINAL HEIGHT: FINAL DIAMETER: FINAL WET WEIGHT: WET DENSITY : MOISTURE CONTENT: DRY DENSITY: FINAL SATURATION: FINAL VOID RATIO:	2.521 in 2.8290 in 532.7 gm 128.0 pcf 21.7 % 105.1 pcf 99.8 % .578884
CELL PRESSURE:	55.00	.00 .00	.00 psi
HEAD WATER:	50.00	.00 .00	.00 psi
TAIL WATER:	42.00	.00 .00	.00 psi

PERMEABILITY INPUT DATA.....

FLOW (Q):	5.75	.00	.00	.00	СC
LENGTH (L):	2.52	.00	.00	.00	in
AREA (A):	6.29	.00	.00	.00	sqin
HEAD (h):	8.00	.00	.00	.00	psi
TIME (t):	800.00	.00	.00	.00	min

TEST NO.	1,	k=	3.362E-008	cm/sec
TEST NO.	2,	$\mathbf{k} =$.000E+000	cm/sec
TEST NO.	З,	k≃	.000E+000	cm/sec
TEST NO.	4,	k=	.000E+000	cm/sec

.

SUMMARY OF TRIAXIAL PERMEABILITY

CLIENT:GLYNN GEOTECHNICAL ENGINEERING FROJECT LOCATION:V M CHEMICAL SAMFLE NO.:11B DESCRIPTION:COMPACTED FILL TUBE SAMFLE

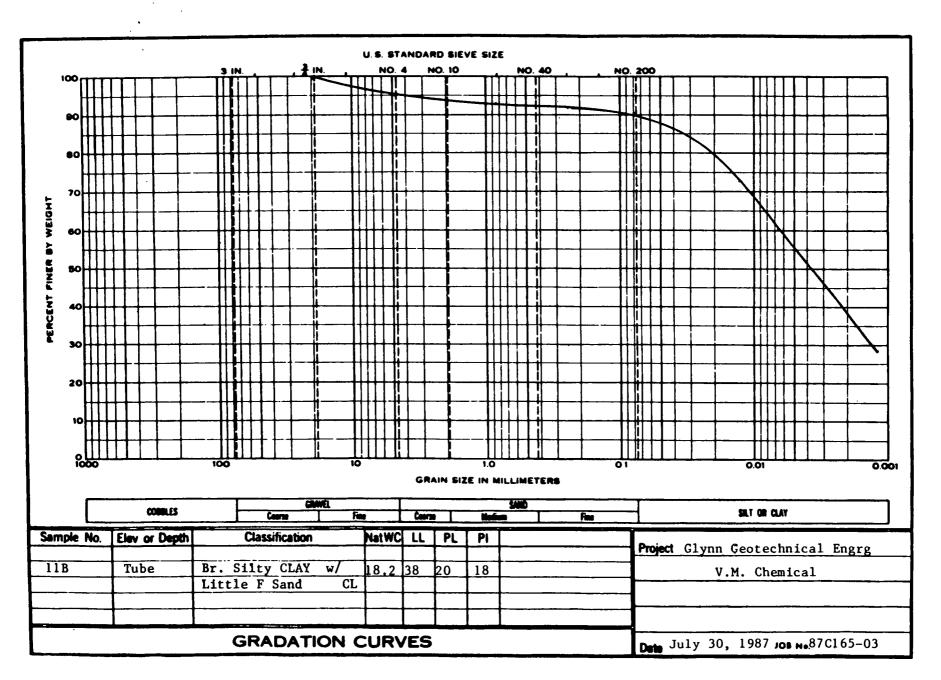
DATE:JULY 28 1987 JOB No.:87C165-03 ۱

CELL NO.:5

FLUID:WATER

B-Parameter:0.99

PHYSICAL PROPERTY DATA.....


INITIAL HEIGHT:	3.091 in	FINAL HEIGHT:	3.024 in
INITIAL DIAMETER:	2.8600 in	FINAL DIAMETER:	2.8120 in
	628.2 gm	FINAL WET WEIGHT:	643.3 gm
WET DENSITY -	120.4 pcf	WET DENSITY :	130.4 pcf
MOISTURE CONTENT:	18.2 %	MOISTURE CONTENT:	22.1 %
DRY DENSITY:	101.9 pcf	DRY DENSITY:	. 106.8 pc1
INITIAL SATURATION:	71.5 %	FINAL SATURATION:	97.8 %
INITIAL VOID RATIO:	.708562	FINAL VOID RATIO:	.630440

CELL PRESSURE:	55.00	.00	.00	,00	psi
HEAD WATER:	50.00	.00	.00	.00	psi
TAIL WATER:	42.00	.00	.00	.00	psi

PERMEABILITY INPUT DATA.....

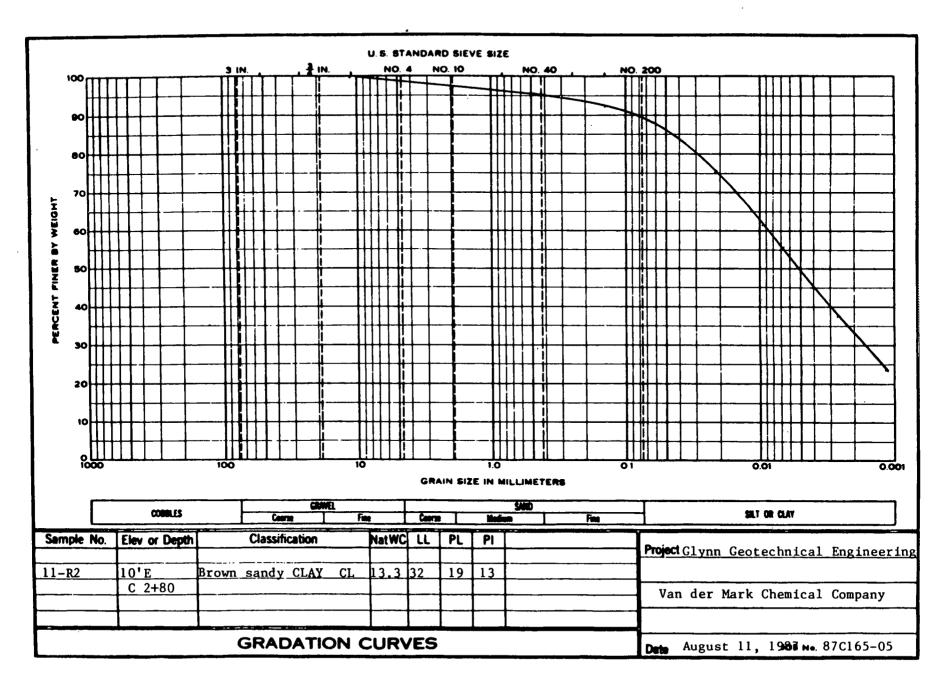
FLOW (Q):	15.50	.00	.00	.00	сc
LENGTH (L):	3.02	.00	.00	.00	in
AREA (A):	6.21	.00	.00	.00	sqin
HEAD (h):	8.00	.00	.00	.00	psi
TIME (t):	400.00	.00	.00	.00	min

TEST NO.	1,	k=	2.201E-007	cm/sec -
TEST NO.	2,	k≢	.000E+000	cm/sec
TEST NO.	з,	k=	.000E+000	cm/sec
TEST NO.	4,	k=	.000E+000	cm/sec

SUMMARY OF TRIAXIAL PERMEABILITY TEST RESULTS

.

	CLIENT:GLYNN GEOTECHN FROJECT LOCATION:VAN SAMFLE NO.:10'E DESCRIFTION:C2+80TUBE COMFACTED	DER MARK CHEMICA SAMPLE			NUG 10 19 5.:87C165	
INITIAL HEIGHT: 4.240 in FINAL HEIGHT: 4.163 in INITIAL DIAMETER: 2.8100 in FINAL DIAMETER: 2.7960 in INITIAL WET WEIGHT: 801.2 gm FINAL WET WEIGHT: 864.1 gm WET DENSITY = 116.0 pcf WET DENSITY : 128.7 pcf MOISTURE CONTENT: 13.3 % MOISTURE CONTENT: 22.2 % DRY DENSITY: 102.4 pcf DRY DENSITY: 105.3 pcf INITIAL VOID RATION: 55.6 % FINAL VOID RATION: 99.9 % INITIAL VOID RATIO: .645953 FINAL VOID RATIO: .600066 TEST PARAMETERS	CELL NO.:3	FLUID:DEAIRED	WATER	B-Faramete	er:1.0	
INITIAL WET WEIGHT: 801.2 gm FINAL WET WEIGHT: 864.1 gm WET DENSITY = 116.0 pcf WET DENSITY : 128.7 pcf MOISTURE CONTENT: 13.3 % MOISTURE CONTENT: 22.2 % DRY DENSITY: 102.4 pcf DRY DENSITY: 105.3 pcf INITIAL SATURATION: 55.6 % FINAL SATURATION: 99.9 % INITIAL VOID RATIO: .645953 FINAL VOID RATIO: .600066 TEST PARAMETERS CELL PRESSURE: 55.00 .00 .00 .00 psi HEAD WATER: 50.00 .00 .00 psi TAIL WATER: 42.00 .00 .00 psi PERMEABILITY INPUT DATA FLOW (Q): 18.80 .00 .00 .00 cc LENGTH (L): 4.16 .00 .00 .00 in AREA (A): 6.14 .00 .00 .00 sqin	PHYSICAL PROPERTY DATA.					
CELL FRESSURE: 55.00 .00 .00 .00 psi HEAD WATER: 50.00 .00 .00 .00 psi TAIL WATER: 42.00 .00 .00 .00 psi PERMEABILITY INPUT DATA .00 .00 .00 .00 cc FLOW (Q): 18.80 .00 .00 .00 cc LENGTH (L): 4.16 .00 .00 .00 in AREA (A): 6.14 .00 .00 .00 sqin	INITIAL WET WEIGHT: WET DENSITY = MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION:	801.2 gm 116.0 pcf 13.3 % 102.4 pcf 55.6 %	FINAL WE WET DENS MOISTURE DRY DENS FINAL SA	ET WEIGHT: GITY : E CONTENT: GITY: ATURATION:	864.1 128.7 22.2 105.3 99.9	gm pcf % pcf %
TAIL WATER: 42.00 .00 .00 .00 psi PERMEABILITY INPUT DATA .00<	TE'ST PARAMETERS					
FLOW (Q): 18.80 .00 .00 .00 cc LENGTH (L): 4.16 .00 .00 .00 in AREA (A): 6.14 .00 .00 .00 sqin					.00	psi
AREA (A): 6.14 .00 .00 .00 sqin	PERMEABILITY INPUT DATA			••••		
HEAD (h): 8.00 .00 .00 psi TIME (t): 300.00 .00 .00 .00 min	LENGTH (L): AREA (A): HEAD (h):	18.80 4.16 6.14 8.00 300.00	.00	.00	.00 .00 .00	in sqin psi
COMPUTED PERMEABILITY @ 20 degrees Centigrade		-	-			


TEST NO.	1,	k=	4.956E-007 cm/sec
TEST NO.	2,	k=	.000E+000 cm/sec
TEST NO.	з,	k≡	.000E+000 cm/sec
TEST NO.	4,	k=	.000E+000 cm/sec

.

,

. •

-

SUMMARY OF TRIAXIAL PERMEABILITY TEST RESULTS

CLIENT:GLYNN GEOTECHNICAL PROJECT LOCATION:V M CHEM SAMFLE NO.:12A DESCRIFTION:COMPACTED FILL FLASTIC SOIL TUBE SAMFLE

· .

DATE:JULY 29 1987 JOB No.:87C165-04A

CELL NO.:6

FLUID:WATER

B-Parameter:0.99

.

PHYSICAL PROPERTY DATA.....

INITIAL HEIGHT:	2.468 in	FINAL HEIGHT:	2.484 in
INITIAL DIAMETER:	2.8410 in	FINAL DIAMETER:	2.8690 in
INITIAL WET WEIGHT:	525.4 gm	FINAL WET WEIGHT:	546.7 gm
WET DENSITY =	127.8 pcf	WET DENSITY :	129.6 pcf
MOISTURE CONTENT:	17.9 %	MOISTURE CONTENT:	23.5 %
DRY DENSITY:	108.5 pcf	DRY DENSITY:	104.9 pcf
INITIAL SATURATION:	82.8 %	FINAL SATURATION:	100.0 %
INITIAL VOID RATIO:	.599404	FINAL VOID RATIO:	.653338

TEST PARAMETERSCELL PRESSURE:55.00.00.00

CELL PRESSURE:	55.00	.00	.00	.00	psi
HEAD WATER:	50.00	.00	.00	.00	psi
TAIL WATER:	42.00	.00	.00	. 00	psi.

PERMEABILITY INPUT DATA.....

FLOW (Q):	6.40	.00	.00	.00	\odot \odot
LENGTH (L):	2.48	.00	.00	.00	in
AREA (A):	6.46	.00	.00	.00	sqin
HEAD (h):	8.00	.00	.00	.00	psi
TIME (t):	500.00	.00	.00	.00	min

COMPUTED PERMEABILITY @ 20 degrees Centigrade.....

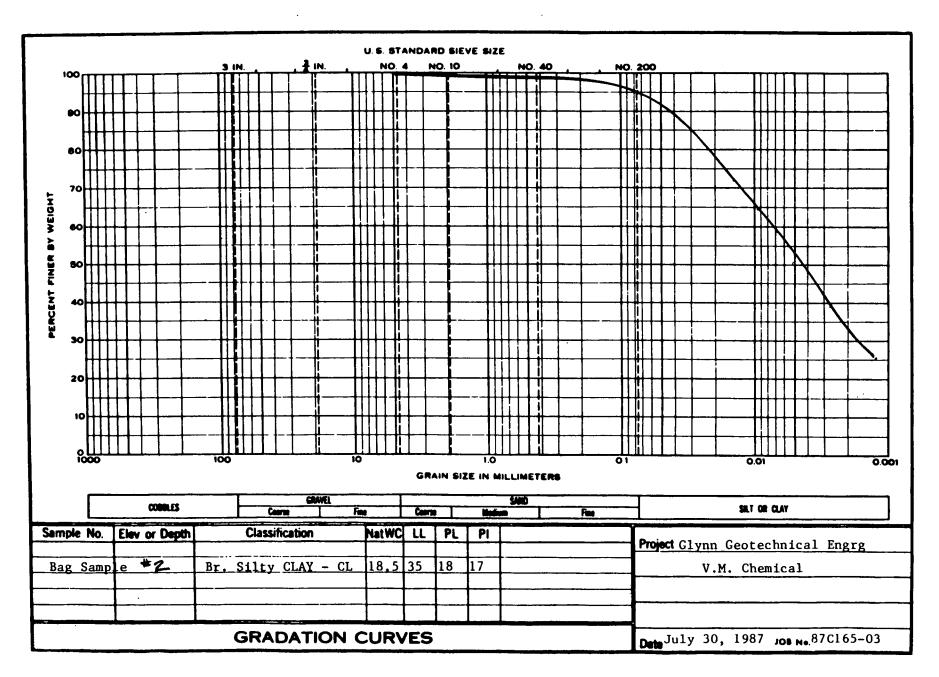
TEST NO). 1,	k≔	5.737E-008	cm/sec
TEST NO). 2,	k≕	.000E+000	cm/sec
TEST NO). 3,	k≕	.000E+000	cm/sec
TEST NO). 4,	k≕	.000E+000	cm/sec

.

1

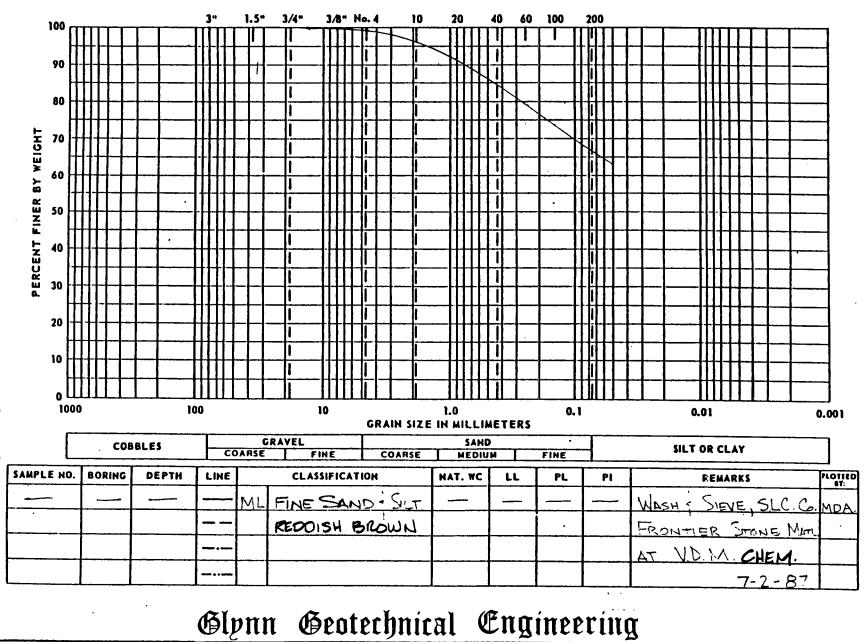
SUMMARY OF TRIAXIAL PERMEABILITY TEST RESULTS

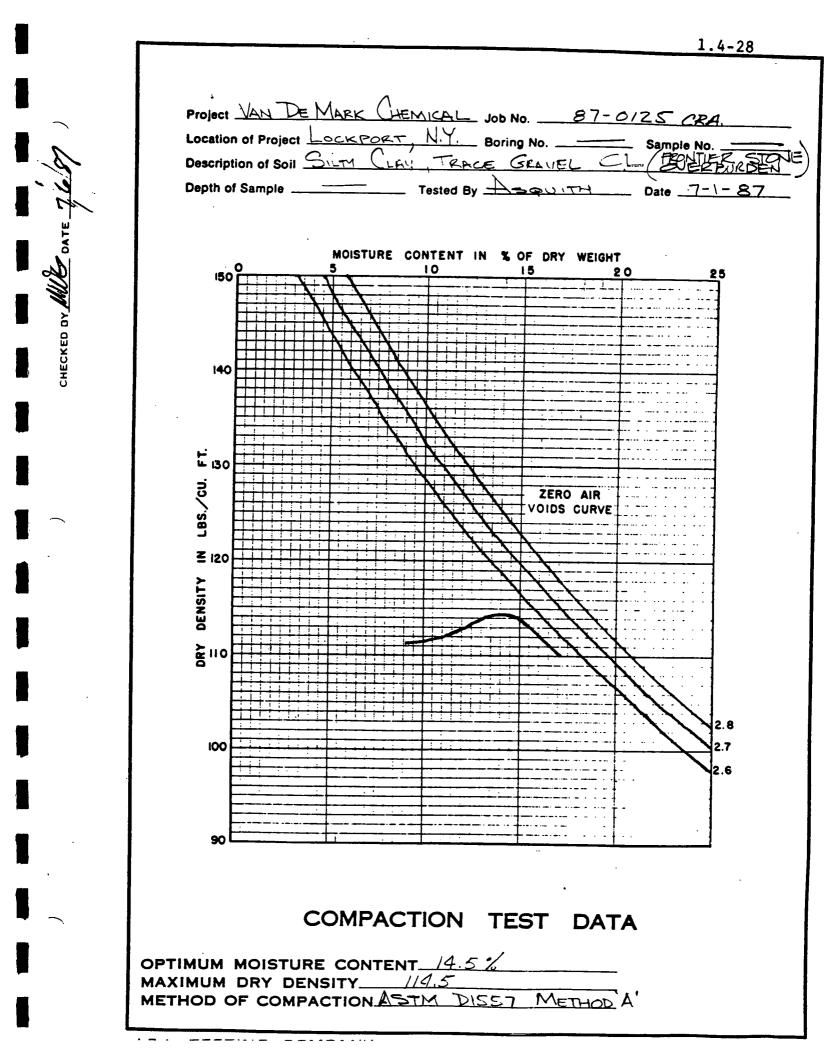
CLIENT:GLYNN GEOTECHNICAL PROJECT LOCATION:VAN DER MARK CHEMICAL SAMPLE NO.:#2 DESCRIPTION:FRONTIER CLAY LAB COMPACTED SAMPLE 91% OF PROCTOR TEST

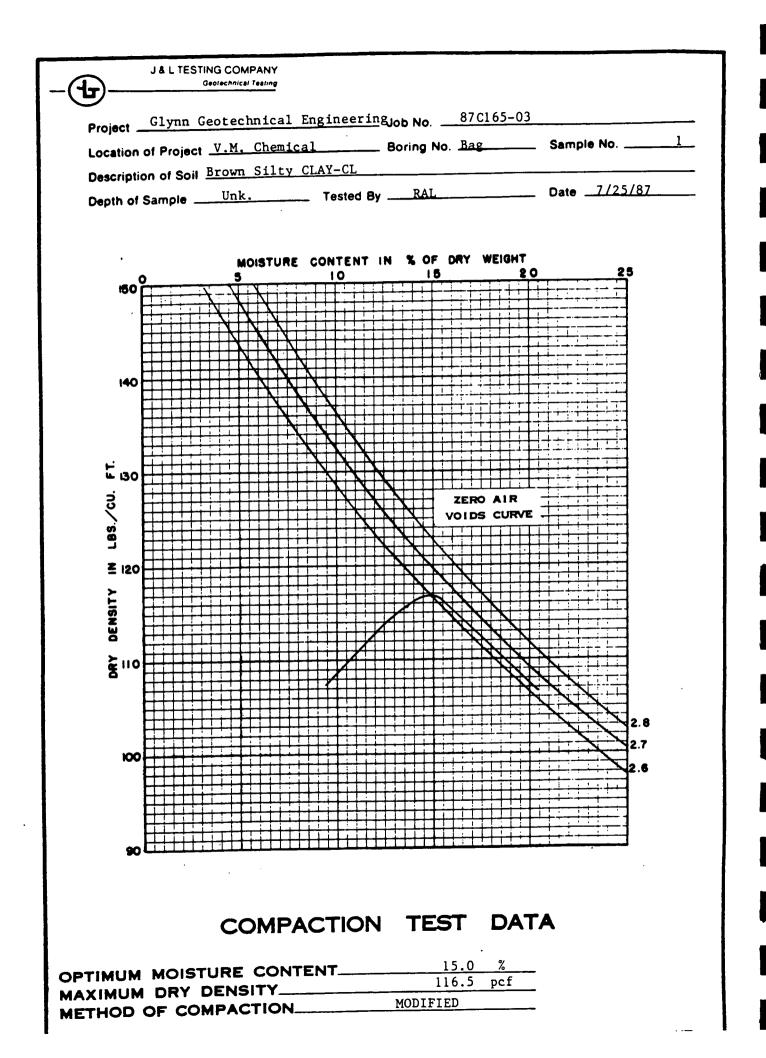

DATE:AUG 9 1987 JOB No.:87C165-03

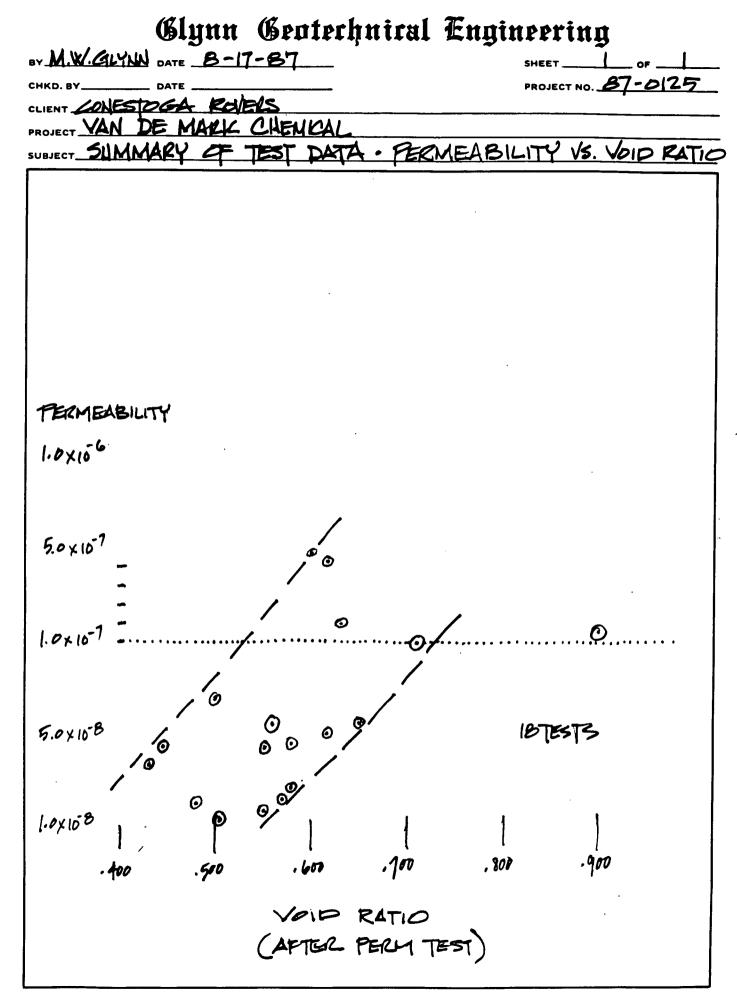
.. .

CELL NO.:8 FLUID:DEAIRED WATER B-Parameter:1.0 PHYSICAL PROPERTY DATA..... INITIAL HEIGHT: 4.000 in FINAL HEIGHT: 4.077 in FINAL DIAMETER: INITIAL DIAMETER: 2.8000 in 2.7910 in INITIAL WET WEIGHT: 825.9 gm WET DENSITY = 127.6 pcf FINAL WET WEIGHT: WET DENSITY : 854.9 gm WET DENSITY = 127.6 pcf MOISTURE CONTENT: 19.1 % DRY DENSITY: 107.1 pcf INITIAL SATURATION: 86.9 % 127.6 pcf 130.5 pcf 22.5 % MOISTURE CONTENT: DRY DENSITY: 106.5 pcf FINAL SATURATION: 100.6 % INITIAL VOID RATIO: .607687 FINAL VOID RATIO: .616983 TEST PARAMETERS..... 55.00 50.00 CELL FRESSURE: .00 .00 .00 psi HEAD WATER: .00 .00 .00 psi TAIL WATER: 42.00 .00 .00 .00 psi PERMEABILITY INPUT DATA..... FLOW (Q): 15.90 .00 .00 .00 сc LENGTH (L): 4.08 .00 .00 .00 in AREA (A): 6.12 .00 .00 .00 sqin 8.00 HEAD (h): .00 .00 .00 psi TIME (t): 300.00 .00 .00 .00 min


COMPUTED PERMEABILITY @ 20 degrees Centigrade.....


TEST NO.	1,	k=	4.120E-007	cm/sec
TEST NO.	2,	k=	.000E+000	cm/sec
TEST NO.	з,	k:=	.000E+000	cm/sec
TEST NO.	4,	k=	.000E+000	cm/sec




GRAIN SIZE DISTRIBUTION CURVE

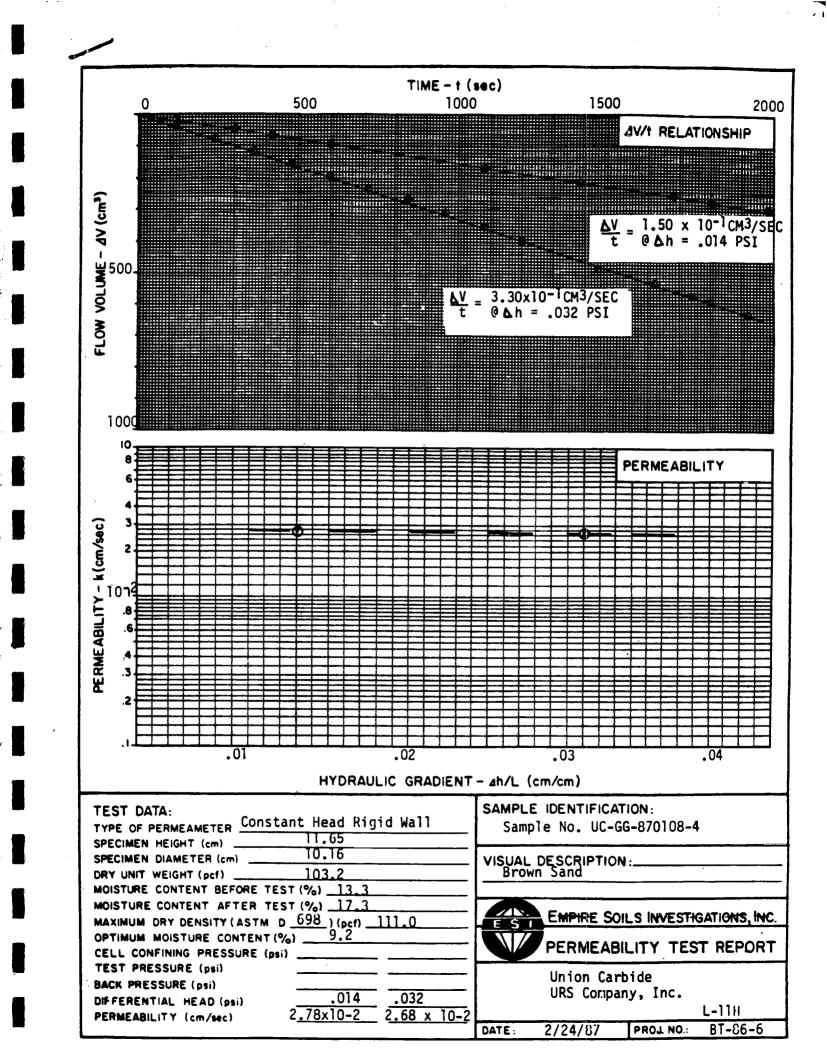
SUMMARY OF TRIAXIAL PERMEABILITY TEST RESULTS

CLIENT: GLYNN GEDTECHNICAL PROJECT LOCATION: CONASTOGA ROVERS SAMFLE ND.: TEST PAD 1 DESCRIPTION:8 PASSES COMPACTED FILL CLAY

DATE: JULY 8 1987 JOB No.:87C165-01

FLUID:WATER B-Farameter:1.0 CELL NO.:1

PHYSICAL PROPERTY DATA.....


MOISTURE CONTENT: DRY DENSITY: INITIAL SATURATION: INITIAL VOID RATIO:	620.9 gm 128.1 pcf 19.3 % 107.3 pcf 91.5 % .569498	FINAL WET WET DENSI MOISTURE DRY DENSI FINAL SAT FINAL VOI	AMETER: [WEIGHT: [TY : CONTENT: [TY: [URATION: [D RATIO:	21.3 106.9 99.8	in gm pcf % pcf %
TEST PARAMETERS	• • • • • • • • • • • • • • •				
CELL PRESSURE: HEAD WATER: TAIL WATER:	55.00 50.00 42.00	.00 .00 .00	.00 .00 .00	.00 .00 .00	psi psi psi
PERMEABILITY INPUT DATA					
FLOW (Q): LENGTH (L): AREA (A): HEAD (h): TIME (t):	7.20 2.91 6.49 8.00 800.00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	cc in sqin psi min

COMPUTED PERMEABILITY @ 20 degrees Centigrade.....

TEST NO.	1,	k=	4.709E-008	cm/sec
TEST NO.	2,	$\mathbf{k} =$.000E+000	cm/sec
TEST NO.	з.	k =	.000E+000	
TEST NO.				cm/sec
	- · ·	r. —	.000E+000	cm/sec

APPENDIX C

1B STONE TEST RESULTS

1

R'T Form E

APPENDIX D

.

·.^{*} .

.

SAMPLING AND ANALYSIS PROGRAM - MONITORING

SAMPLING AND ANALYSIS PROGRAM FOR MONITORING THE VAN DEMARK LANDFILL SITE

AUGUST 1986

1.0 INTRODUCTION

This program will be the procedures manual for the collection of water samples associated with the monitoring of the Van DeMark Landfill Site.

The items of environmental concern are:

Low pH High chlorides Low concentrations of chloroform

The Field Supervisor shall be completely responsible for implementing this Program. Any variation, no matter how small, shall be documented.

2.0 PRE-FIELD ACTIVITIES

To assure that no items have been omitted, a "punch list" of office activities will be used as a basis for organizing pre-field activities (Table 1).

- 2.1 Review the entire Program. Schedule sample collection and inform the Sample Controller. Prepare the Quarterly Schedule and give copies to the Customer Contact and the Sampler Controller.
- 2.2 The Sample Controller will use her copy of the Bottle Request Forms (Appendix A) so that she can fill the request.
- 2.3 The Field Supervisor will assemble all necessary equipment. The Equipment Checklist (Table 2) will be completed and signed by the Field Supervisor in preparation for each scheduled sampling.

3.0 <u>ON-SITE</u> ACTIVITIES

3.1 Field Log Book

Information recorded at each sampling site shall, at a minimum, contain the following details:

3.1.1 Sampling date and time

Face 2

- 3.1.2 Sampling location and identification number
- 3.1.3 Names of Field Crew present at the site
- 3.1.4 Brief description of weather conditions
- 3.1.5 pH measurements
- 3.1.6 Sampling remarks/observations
- 3.1.7 Collection of Quality Assurance/Quality Control samples
- 3.2 Sampling Procedure

Sample collection shall proceed in the following order:

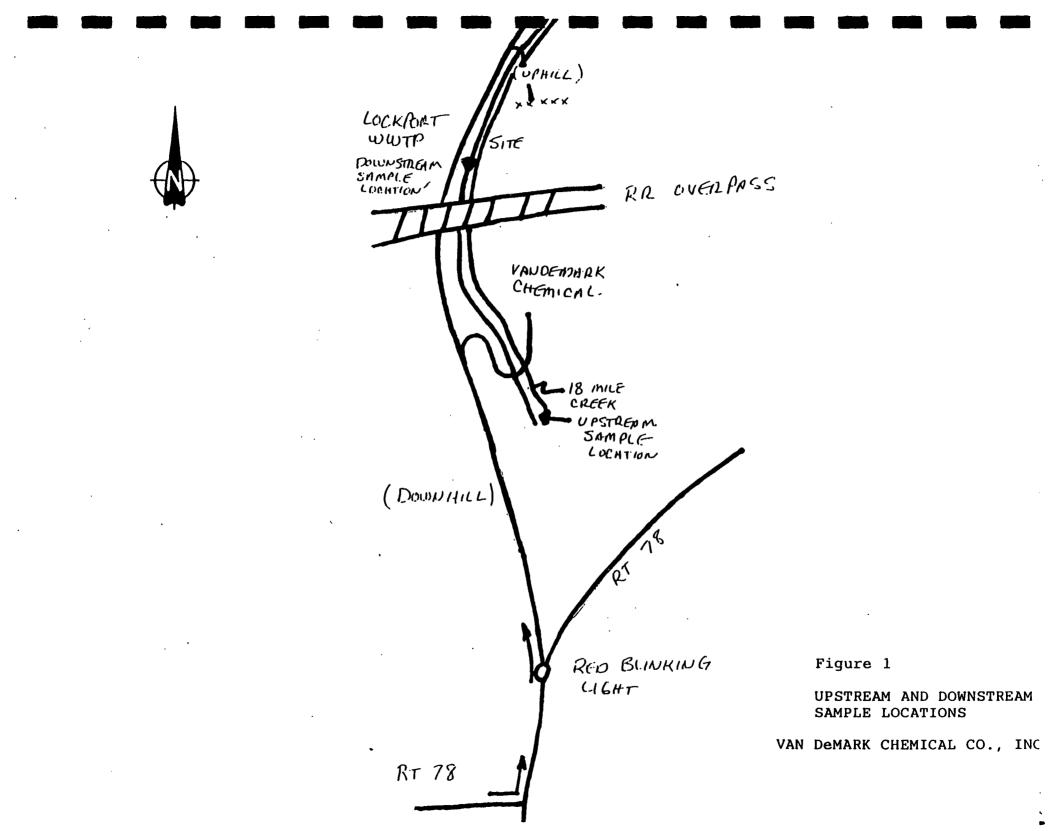
3.2.1 18 Mile Creek Samples

The upstream sample should be collected first, and the downstream sample second (Figure 1).

The upstream sampling location is approximately 25 feet upstream from the abandoned wooden railroad tressel.

The downstream sampling location is adjacent to the area where vehicles can park off the east side of the road. There is sufficient room to drive the van quite close to 18 Mile Creek. Note that this location is upstream from the Lockport Wastewater Treatment Plant discharge.

The sediment should not be disturbed during the measurement for pH_3 and the collection of samples for chlorides.


The VOA vials are to be filled directly under the surface of the creek water; that is; the water is not to be scooped into a container and then poured into VOA vials.

During pH measurements of creek water, be sure to thoroughly rinse the probe with deionized water.

3.2.2 Groundwater Seep

.

Although we have not yet observed sufficient water to sample, this seep should be checked during each monitoring quarter. The seep area to be checked is directly down the embankment from well VDM 10.

Fage 3

If water is flowing from the seep area, position the seep collector. The seep collector is a modified Rubbermaid dust pan. The modification allows collection over a period of time which is funnelled into a sample collection one gallon glass bottle.

The collector shall be left in place while the monitoring wells and ditch are being sampled.

3.2.3 Monitoring Wells - Figure 2

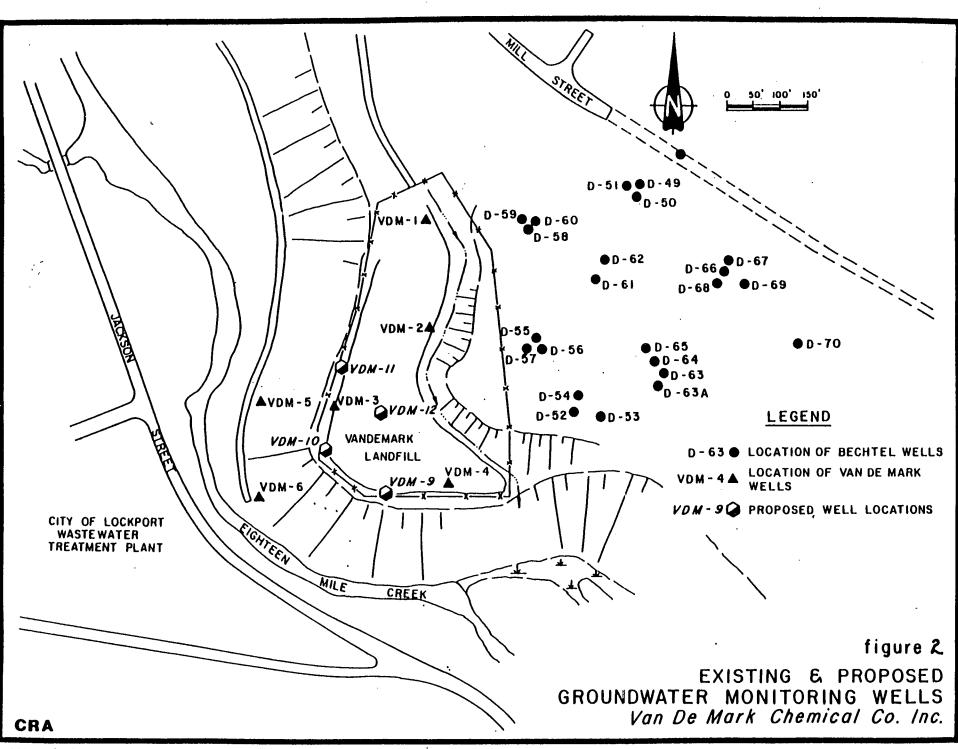
÷....

۰.

Start in the order of clean wells and work towards more contaminated wells.

The order for purging and sample collection shall be:

 $D{=}55,\ VDM{=}9,\ VDM{=}10,\ VDM{=}11,\ and\ lastly,\ VDM{=}12.$


- 3.2.3.1 Measure the static groundwater level in each monitoring well. The plopper must be thoroughly rinsed with acetone, hexane, acetone, and deionized water after each measurement.
- 3.2.3.2 Furge each monitoring well to remove stagnant water contained in the well casing. It is acceptable to use a peristallic pump for purging, but not for sampling. The suction tube must not touch the ground, but be placed in a clean plastic pail. The suction tube must be rinsed with deionized water between use in different wells.

Remove 4 well volumes or until dryness. It can be expected that well VDM 9 - 12 will probably be pumped.dry. Record the approximate volume purged.

3.2.3.3 Collection of samples from monitoring wells will be accomplished with a rope and stainless steel bailer dedicated to each well. After sample collection, each bailer and rope will be rinsed with deionized water, returned to their labeled case, and transported to AES for secure storage.

> VOA vials will be filled first with particular care that no air bubbles are present in the vial.

pH will be measured on a small separate aliquot. Groundwater will be poured into the appropriate containers for the analysis of chlorides and metals. The bottles will

ł

be placed in an insulated chest with blue ice and transported to the AES laboratory.

3.2.4 Drainage Ditch

As with the collection of 18 Mile Creek samples, try to keep the disturbance of sediment to a minimum.

pH measured directly in the standing water; if sufficient volume is available. The water will be poured into appropriate containers for the analysis. The bottles will be placed in an insulated chest with blue ice and transported to the AES laboratory.

TABLE I

VAN DeMARK LANDFILL SITE PRE-FIELD ACTIVITY PUNCH LIST

SCHEDULED SAMPLING DATE:

	Task	<u>Initials</u>	<u>Date</u> '
1.	Notify Sample Controller		
2.	Assemble Sampling Equipment and Completed Equipment Checklist		
3.	Check the accuracy of the field pH meter against the laboratory pH meter		
4.	Check operating condition of the Isco pump		
5.	Assemble necessary forms		
	a. Field notebook b. Field punchlist c. Chain of Custody		
6.	Receive sample containers from the Sample Controller		
7.	Check the accuracy of the labels on the sample containers		
8.	Review sampling procedures		
9.	Identify Quality Assurance samples and locations		

· • .

Ł

TABLE 2

VAN DEMARK LANDFILL SITE

SAMPLING EQUIPMENT CHECKLIST FOR

_____ SAMPLING

SAMPLING EQUIPMENT AND SUPPLIES

- <u>OUT IN</u>
- ____ Water Level Plopper with Clean Measuring Tape
- _____ Squeeze Bottles (3 total); Hexane, Acetone, Deionized Water
- ____ Isco Pump, Extra Battery, Extra Fuse, Clean Suction Tubing
- _____ Stainless Steel Bucket, Calibrated
- ____ Deionized Water for Rinsing the Suction Tube between Wells.
- _____ Plastic Garbage Pail
- ____ Dedicated Stainless Steel Bailers and Rope in Labeled Cylindrical Cases
- _____ pH Meter with Spare Batteries and Buffers (1)
- ____ Generator
- ____ Vacuum Pump (1), Vacuum Hose and Fittings 👘
- ____ Filter Apparatus and Whatman 40 Filters (2 boxes)
- ____ Well Keys
- ____ Coveralls
- Rubber Gloves

1

TABLE 2 (Cont'd.)

- <u>out in</u>
- ____ Lock-Eze
- ____ Mosquito Repellent
- Calculator
- ____ Rain Gear
- ____ Rubber Boots
- ____ Tools
- ____ Flashlight
- ____ Blue Ice
- ____ Paper Towels
- _____ Sample Bottles, Labelled, and Sealed Ice Chest
- ____ Field Log Book, Basic Information Included (1)
- ____ Field Punch List (1)
- ____ Chain of Custody Forms
- ____ Duct Tape (2 Rolls)
- ____ Project Site Maps
- Plastic Leakproof Bags
- _____ Seep Collector
- Dne (1) Gallon Glass Container

Supervisor

TABLE 3

MAXIMUM HOLDING TIME

ParametersHolding TimePurgeable Halocarbons (601)14 DaysChloride28 DaysMercury (W/HNO3, pH 2)28 DaysSoluble Metals (W/HNO3, pH 2)6 Months

APPENDIX A

BOTTLE REQUEST FORMS

. 1

.

· · · · ·

BOTTLE REQUEST FORM

Page 1 of 4

JOB	CODE:	BQL

DUE DATE:

OF BOTTL

1

PRESERVATIVE	LABEL - Parameters	BOTTL
None	Method 601 Purgeable Halocarbons	
	Field Blank	2
	Upstream	2
	Downstream	2
	Well D-55	2
	Well 9	2
	Well 10	2
	Well 11	2
	Well'12	2
	Blind Field Duplicate	2
	Ditch	2
	Seep	2
	Extra (Blank Label)	2
	TOTAL	24
		NoneMethod 601 Purgeable HalocarbonsField BlankUpstreamDownstreamWell D-55Well 9Well 10Well 11Well 12Blind Field DuplicateDitchSeepExtra (Blank Label)

PACKING

BOX:		CHAIN OF CUSTODY:	
COOLER:	2	BLUE ICE:	In the Extra Cooler Only
OTHER:			

SPECIAL INSTRUCTIONS:

To facilitate sample collection, please provide two (2) coolers - one with sampl bottles and one (1) empty cooler. As the sample collection progresses, the fill bottles will be placed in the extra cooler.

BOTTLE REQUEST FORM

•

Page 2 of 4

,

JOB CODE:	BQL	DUE	DATE:	
-----------	-----	-----	-------	--

.

100 C C C C

1700 C C 2		<i>.</i> .			• •		# OF
IZE/TYPE	PRESERVATIVE	- · ···LABEI		arameters-		·	BOTTL
<u>1</u>		_	-				

a an a su muni ana an ini ini ini matana ana ana ana ana ana ana ana ana an		1
None	Chloride	
n a canada a se se ana ana ana ana ana ana ana ana ana an	Field Blank	1
	Upstream	1
	Downstream	- 1
······································	Well D-55	1
	-Well 9	1
	-Well-10	1
	-Well-11	1
and a substant set of a substant set of a substant set.	Well 12	1
	Blind Field Duplicate	1
	Ditch	·· ·- 1
	Seep	1
د معرفی می مرکز می مرکز می مرکز می مرکز می مرکز می مرکز می می مرکز می مرکز می مرکز می مرکز می مرکز می مرکز می م مرکز می مرکز می	Extra (Blank Label)	·~~ 1
استان بینه کار این	TOTAL	-12
2012 - 171 - 1813 11 - 172 - 112 - 1931 - 1931 - 1951		
		Field Blank Upstrēām Downstrēam Well D-55 Well 9 Well 10 Well 10 Well 12 Blind Field Duplicate Ditch Seep Extra (Blank Label) TOTAL

	:			- 4 7	,		
			•.		CHAIN	OF	CUS

OX:				1 OF	CUSTODY:	ی د محمد ری و می میشود. د	
OOLER:	and the second secon	1 m 1 1 -	BLUE	ICE			
						and a second sec	

THER:

.

.

. د معد ری به م مصرفتهم ایس این

HEOUTDOUTSATTANT PECIAL INSTRUCTIONS: DIA SALA (Descar as condition of service and service

BOTTLE REQUEST FORM

Page 3 of 4

JOB CO	DDE:
--------	------

• , • •

BQL

.

DUE DATE:

• ••

- ---

SIZE/TYPE	PRESERVATIVE	LABEL - Parameters	# OF BOTTLE
250 ml/plastic	None	Metals (Unfiltered)	
		Field Blank	1
		Upstream Minister Die State	
		Downstream	1
		Well D-55	-1
		Well 9	1
· · · · · · · · · · · · · · · · · · ·		Well 10	~•] ····
		Well 11	1
-		Well 12	1
	an and a support of the second se	Blind Field Duplicate	1
445		Ditch	
	1999 au 1 an 1999 a 1990 an 1 1 an 20 Bhair ann an 1990 - Ann 1997 an 1997 a 19	Seep	1
		Extra (Blank Label)	1
		TOTAL	12
Whatman pape	er. The filtrat uble metals" an 1	A sample is to be field-filtered with number 42 te is to be poured into the appropriate bottle ad containing nitric acid preservative. <u>PACKING</u> <u>Litted</u> CHAIN OF CUSTODY:	2
COOLER	• • • • • • • •	BLUE ICE:	

•

SPECIAL INSTRUCTIONS: Please prepare one box of 24 bottles, with dividers, and in order - first, a set of 12 "unfiltered" bottles, and then a set of 12 "soluble metals" bottles. Effect of est appreciation of the set of the residence of the set of the residence of the set of the set

BOTTLE REQUEST FORM Page 4 of 4

JOB CODE: BQL

.

DUE DATE:

,

OF BOTTL

IZE/TYPE	PRESERVATIVE	÷	LABEL	-	Parameters

ml/plastic	hno ₃	Soluble Metals - As, Cr, Fe, Pb, Hg, Zn	
		Field Blank	1
		Upstream to de terms of the set of the set	1
		Downstream	1
		Well D-55	1
		Well 9	1
		Well 10	1
		Well 11	1
		Well 12	1
`		Blind Field Duplicate	1
		Ditch	1
		Seep	1
		Extra (Blank Label)	1
		TOTAL	12

PACKING 1_____ DX: CHAIN OF CUSTODY: . . OOLER: BLUE ICE: ------. THER:

. ·

PECIAL INSTRUCTIONS:

The Following Image(s) are the Best Copy Available

BIEL'S

• 	s de la sur de la 17 de la	FVICAUTREEG	B. V.
1	ni photo of oto 20 and - alar K photosof Arrendizaria	- OXE	
	JOB CONTROL SHEETS WITH METHOD MUMBERS AND	DETERMINABLE LI	ЕНГЗ
• • • • •	need a second and a second a second a second a Second a second a seco	a contante con a construction contante	-menalment is integra report of the second second
; سيند معرف	4611 11 55	annen annen medal deserveriena af e une same subscheren. N	a Pranada Professor a Constantina Constantina Constantina Constantina Constantina Constantina Constantina Const
		an a	·→ utarengi, najanin n
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		tere ren, kann sam annar mir sudarna if kann agnitur sam annar	արքերան ապատություն մերադարու
·····			
، ممتند،،، ر			al accas comato, a ascantator conservo, e e e
	straite '		· ·
	, an anna h-array h-array h-array - array and an array array of a second second second second here are an array	ananan an	,, ₉ ,, ₉ , , 49, <del>10</del> , .
	analana a manala da casa antera antera cana antera a constructiva, e e e se montante da antera da antera da a Quistã	na or og a navn og brygende forsyndader for e	
	in the second	ستوسط فلم در مرد مرد مرد م	
بين يو معمد مريد . بم يك	n an	an ben ankan ya kusa a a shi na kusaka tarinin.	
			<u> </u>
Later as graves as a management			
و بې وې			· · · · · · · · · · · · · · · · · · ·
			<b></b>

· • .

-2.007203-1. L

. . ماري م - 1

Page 1 of 3

RECEIVED DATE : ____

JOB CODE: BOL				DUE DATE	:
JOB CODE: BOL AES LAB NO				•	
CUSTOMER SAMPLE	ID -		- 1		
DATE SAMPLED -					
METHOD OF SAMPLIN	ig –				
-MAIL DATE:		FIELD		DOWN	WELL
PARAMETER	METHOD DET	BLANK	UPSTREAM	STREAM	D-55
	NO. LIMIT				
PURGEABLE HALOCARBONS	601 5./ppb	х	x	x	x
CHLORIDE	407B 1./ppm	х	x	х	x
······································			•		
ARSENIC	206.2 0.005/ppm	x	x	x	x
CHROMIUM	218.2 5./ppb	<b>X</b> .	x	Х	X
IRON	236.1 0.20/ppm	х	x	х	x
LEAD	239.2 5./ppb	X	x	X	x
MERCURY	245.1 0.001/ppm	· · · · · · · · · · · · · · · · · · ·	x	X	x
ZINC	289.1 0.05/ppm	x	x	X	x
		A	A	<u> </u>	<u> </u>
·	· · · · · · · · · · · · · · · · · · ·				<u> </u>
* <del>************************************</del>				· · · · · · · · · · · · · · · · · · ·	
· · ·	·				
	······································			· · · · · · · · · · · · · · · · · · ·	
·····					
				<u></u>	
· · ·					
					l
STORAGE AREA:					
AS	SUE'S FRIDGE	1			
В		2			

C_____

2_____ 3_____

D_____

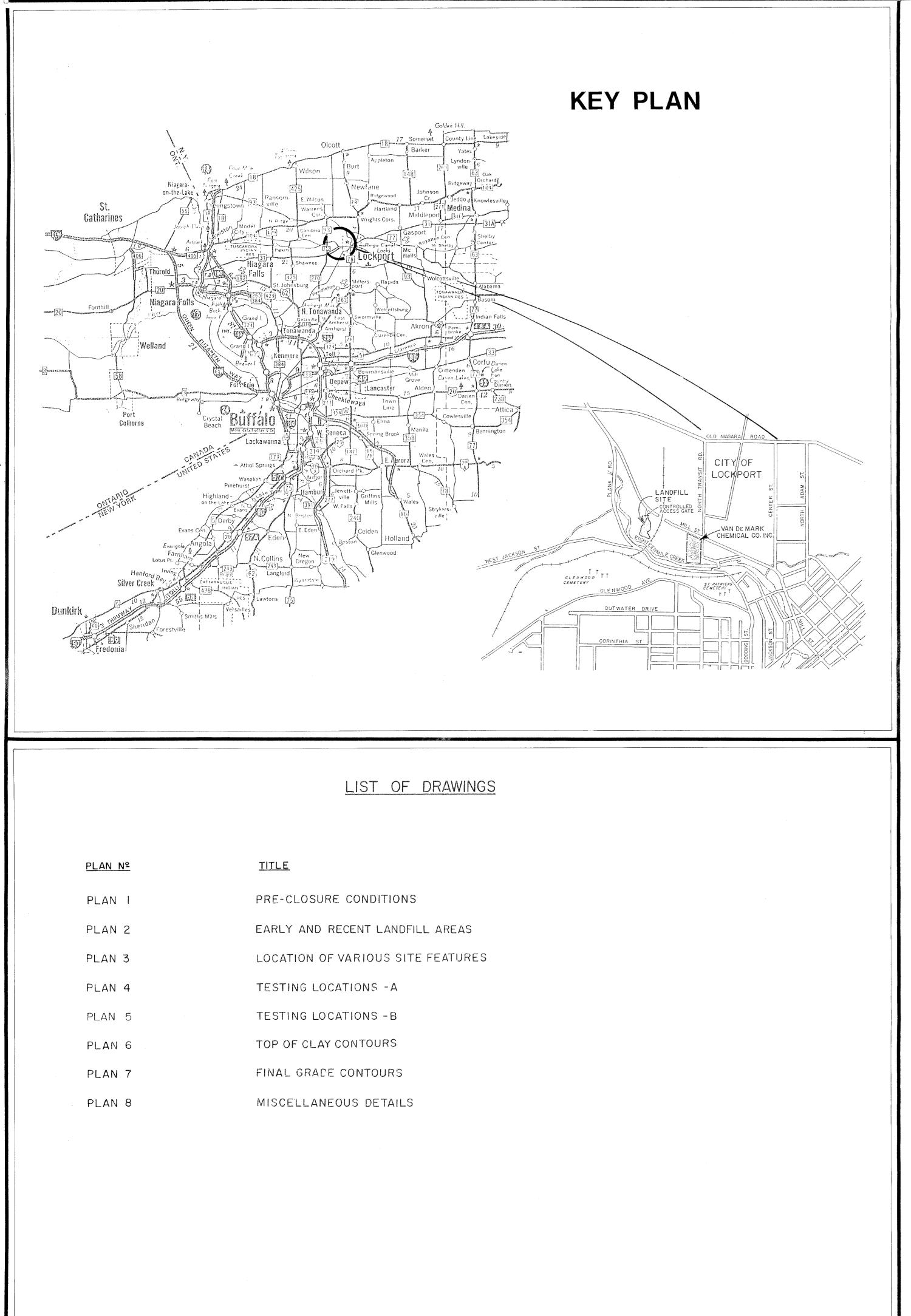
. .

۰<u>،</u> .

Page	2	of	3
------	---	----	---

 Page 2 of
RATEUED DATE :
DITE DATE-

JOB CODE: BOL AES LAB NO CUSTOMER SAMPLE ID - DATE SAMPLED - METHOD OF SAMPLING - -MAIL DATE;					
METHOD OF SAMPLING - -MAIL DATE ;				1	
-MAIL DATE ;					
ANALYTICAL PARAMETER	HOD DET.	WELL 9	WELL 10	WELL	WELL 12
GEABLE HALOCARBONS - 601	المحالة المراجع المالية				
SEABLE HALOCARBONS 601		<b>X</b>	A . 48	Str Agg. 5	X
DRIDE 407E	1./ppm		<b>XT</b> 0.5	······	<b>X</b> 2.77
ENIC 206:	2 0.005/ppm	X.,	×	×	X 21
······································	2 5./ppb	X	- X	X	X MUT
	1 0.20/ppm	X	X	X	X
· · · · · · · · · · · · · · · · · · ·	2 5./ppb	X		X	<u>X</u>
245.	1 0.001/ppm -	1 X.	n <b>X</b> e.:	X	X 751
289.	1 0.05/ppm	X	0 6 3 <b>X</b> (81	X	X
	Bartel along the bart bart bart of the state	a a guy ang a gaugating an ang barang ang ang barang ang barang ang barang ang barang barang ang barang barang Pang barang ba	ан, <u>ал андар Алар</u> а, <mark>а бар, баранда</mark> н айбайдан — ад уларад <i>ан бай о</i> го с	a handa oʻrayanga oʻra ayariyadi talan da	nukranina ar.antinump - uritin i
		na para para da ang na na na manana ang ina ang manan na na na mananana ang ina ang ina ang ina ang ina ang ina na na n		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	، بېدە بېغە بېيىر بېيىر ، بېيىپ يېيىپ بېيىپ بېيىپ بېيىپ بې	антарын уланда таралар салан (Санала) (Санала) (Санала) (Санала) (Санала) (Санала) (Санала) (Санала) (Санала) (С	an a	د میں بین بین مانیوں اور مالیتی اور میں ہے۔ 	
en e		с), ник, саран на на султ у на селото на на с			anganganeriansa i yang birahanin 190 min 190 m
an a sa a	. den ers som vern er at at at an en sesterproce bede at minste de	2 m	<b>49.16.11.01.2</b>		and a second of state of the second
	anne al manager i l'americano anterno anterno. I		an an a suite ann an tha ann an tha ann an tha an tha an tha ann an tha an tha ann an tha an tha an tha an tha	and I also when an independent and the party of the second s	gan go ngagg cargo - re tek (Dinings) dibarr
	e e en a varia, anta Lina anyer e an em		nanna e se hannannan e san se san	المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع	
				а далар <u>народн</u> а цаларов фу _л алери (цал ф. 1997). Во развите 1	
		i unita terrar internativa terraria de la compositiva de la comp			
	- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999				
a na an				.	
STORAGE AREA:		:		i Alif A Ci	DARC . E
ASUE'S	5 FRIDGE	1	<u>90707</u> 91502		
B			<u> </u>		2 2
c		3	<b>_</b>	analos and an and a second	
D					پورسید او مورمی او د


----

.

. . . . . •

• . .

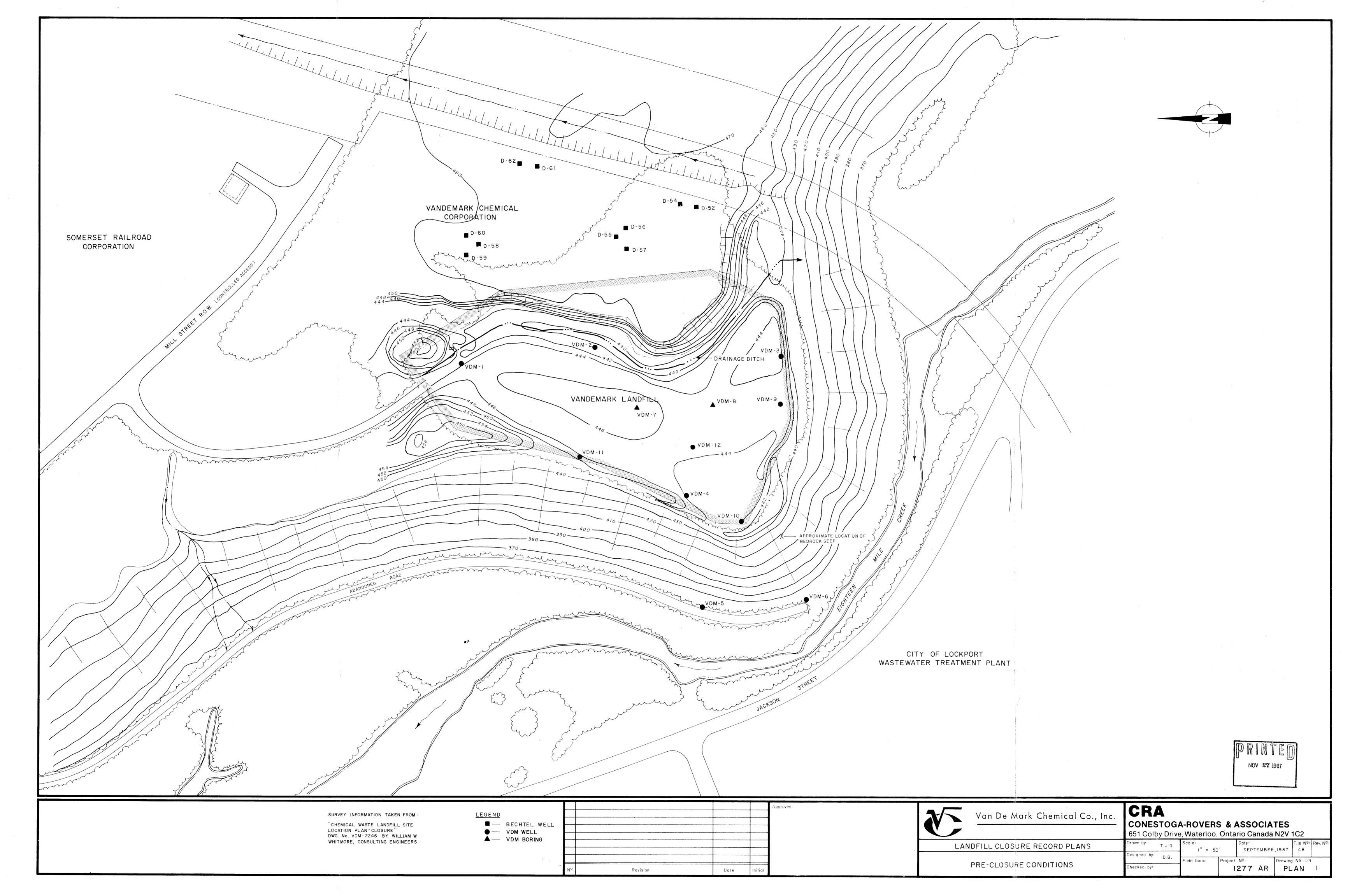
	1. 1. S.	5 95 <u>5</u> - 1									
								Ú	Page	3 of 3	
								-	Reserved DATE		
									DUE DATE	3 • 1. July 1. C	
~ 7	ES LAB	E: BQI		•						5	-
		R SAMPLE	ID -			<b></b>		·		NOT PLA	
L	DATE SA	MPLED -						<u> </u>		208 3	-+-
. M	ETHOD	OF SAMPL	ING -			<b>†</b> −−−−		1			
151	TAL D	ATE : TEN	<u>101 11</u> 2	18	9 JJ.	BLIN		100 L	1.5		
	NALYTI		METHO			FIEI	D TT	DITCH	SEEP Я	ET MARTIE	
		Contraction of the second s	No.	LIMI	T	DUPI	ICATI				· · · · ·
PURGEABL	E HALOC	ARBONS	+601	5/p	pb			<b>X</b>			
				1							
CHLORIDE	¥.	2.	407B	_1./p			4745		· · · · · · · · · · · · · · · · · · ·		-+-
			1	<u> </u>	P1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	<b>A</b>	· · · · · · · · · · · · · · · · · · ·		
		<u>X</u>						·			
ARSENIC		ين  مەربىيە	206.2	_0_00	5./ppm	<del>`X</del>	0000.0	X	X		•
CHROMIUM		<u>X</u>	218.2	_5_/p	pb	'X	<u> </u>	<u>2).</u> x. 2	X		<u></u>
IRON		X	_236 <u>×1</u> _	_0.20	/ppm X		/pem	01.0 4.3		·	
LEAD		¥.	239.2	_		X.		g <u>) 2 3</u> .61		<u>+</u>	+
MERCURY	2	X	245 1					00.0 <u>y</u> . č			- <1
	. I		- ( - unit		1/ppm.					· · · · · · · · · · · · · · · · · · ·	* :   # 
ZINC	net and a state of the second se		289/1	0.05	/ppm X		<u> </u>	9.4 0.05	×		
·	) 1 1014 - 1010 - 1010 - 1010 - 1010						n ,******				
			1	1						1	
1									an all fran Allan and a shi a shi Allan a shi		
											<del></del> _
				•••••••••••••••••							
		· · · · · · · · · · · · · · · · · · ·	(			:					
· · · · ·			•								-+
		*******								·	
+				·····					14444 AN 14.5 AN 14.5 AN 14.5 AN		
	antari, antimar na sages									14.	· · .
3 						*					
		• .		}		1					
			-ada ar se Hand was in annon F					figeral (			<b>-</b> <u>+</u> − '
-				<u> </u>	I	.:	····]·	<b>.</b>	l	l	
						.•					
	STORAGE	E AREA:							1 . L . L	2 807 8	
	A		SUE'S	FRIDGE		1	Ξ	SGISH SIE			ł
	••										
	B				-	2				-	1
1	_		-								
	C		•			3				*. •••••••	
· .	D										
l	<u> </u>	·····	•						and second and the second second second		
						<b></b>			•	<u> </u>	<u> </u>
										•	
						•					
				<u>-</u>							•
				•			• •				

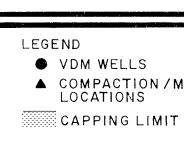


	<u>PLAN N=</u>	
	PLAN I	PRE-CLOSURE CONDITIONS
	PLAN 2	EARLY AND RECENT LANDFILL AREAS
	PLAN 3	LOCATION OF VARIOUS SITE FEATURES
	PLAN 4	TESTING LOCATIONS -A
	PLAN 5	TESTING LOCATIONS -B
	PLAN 6	TOP OF CLAY CONTOURS
	PLAN 7	FINAL GRADE CONTOURS
÷	PLAN 8	MISCELLANEOUS DETAILS



# LANDFILL CLOSURE RECORD PLANS


## Former Landfill Lockport New York


Prepared by:

Van De Mark Chemical Co., Inc.

CRA **CONESTOGA-ROVERS & ASSOCIATES** 









rawn by:

Checked by:

Designed by: D.B.

T.J.G.

LANDFILL CLOSURE RECORD PLANS

TESTING LOCATIONS-A

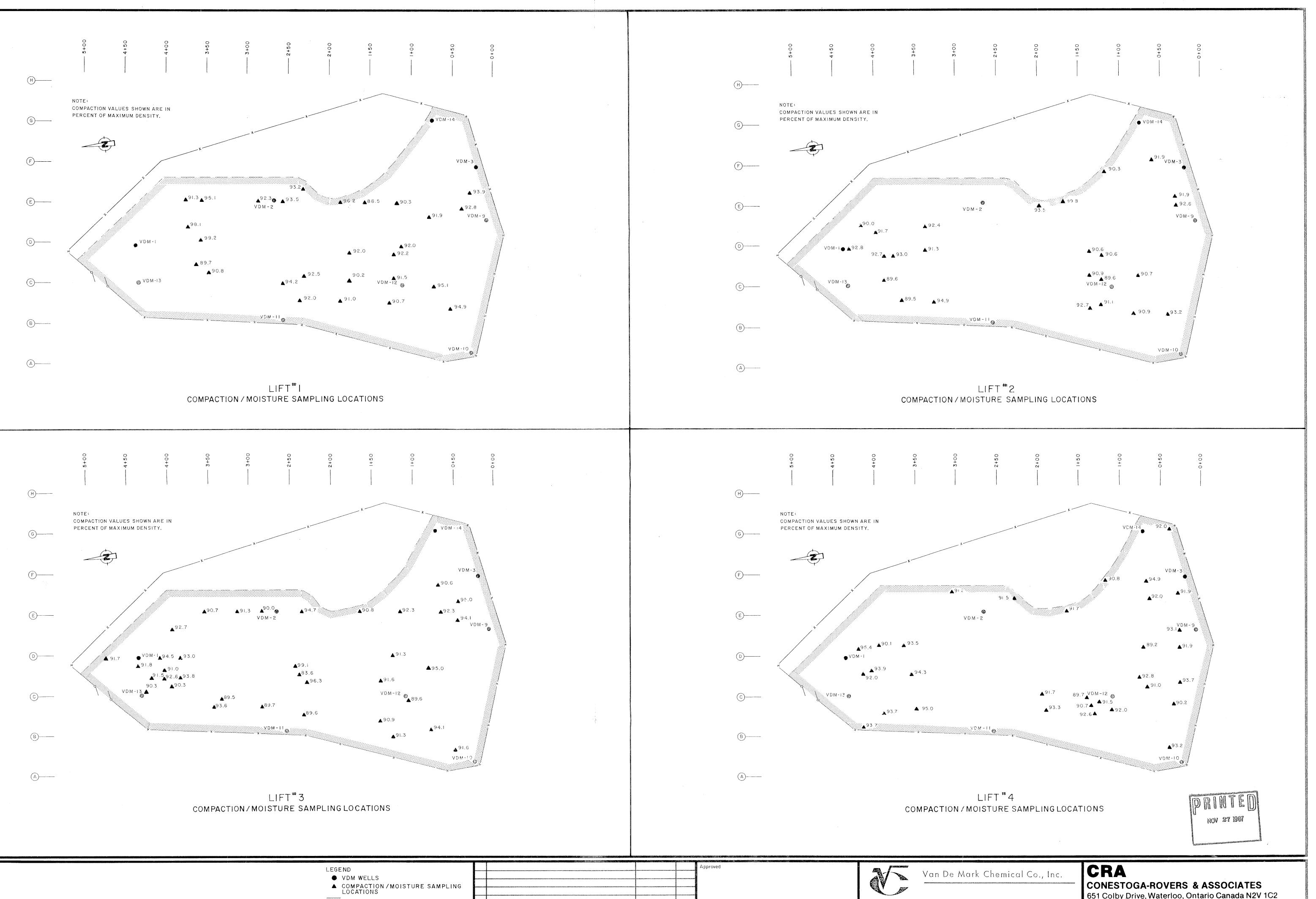
File Nº: Rev. Nº:

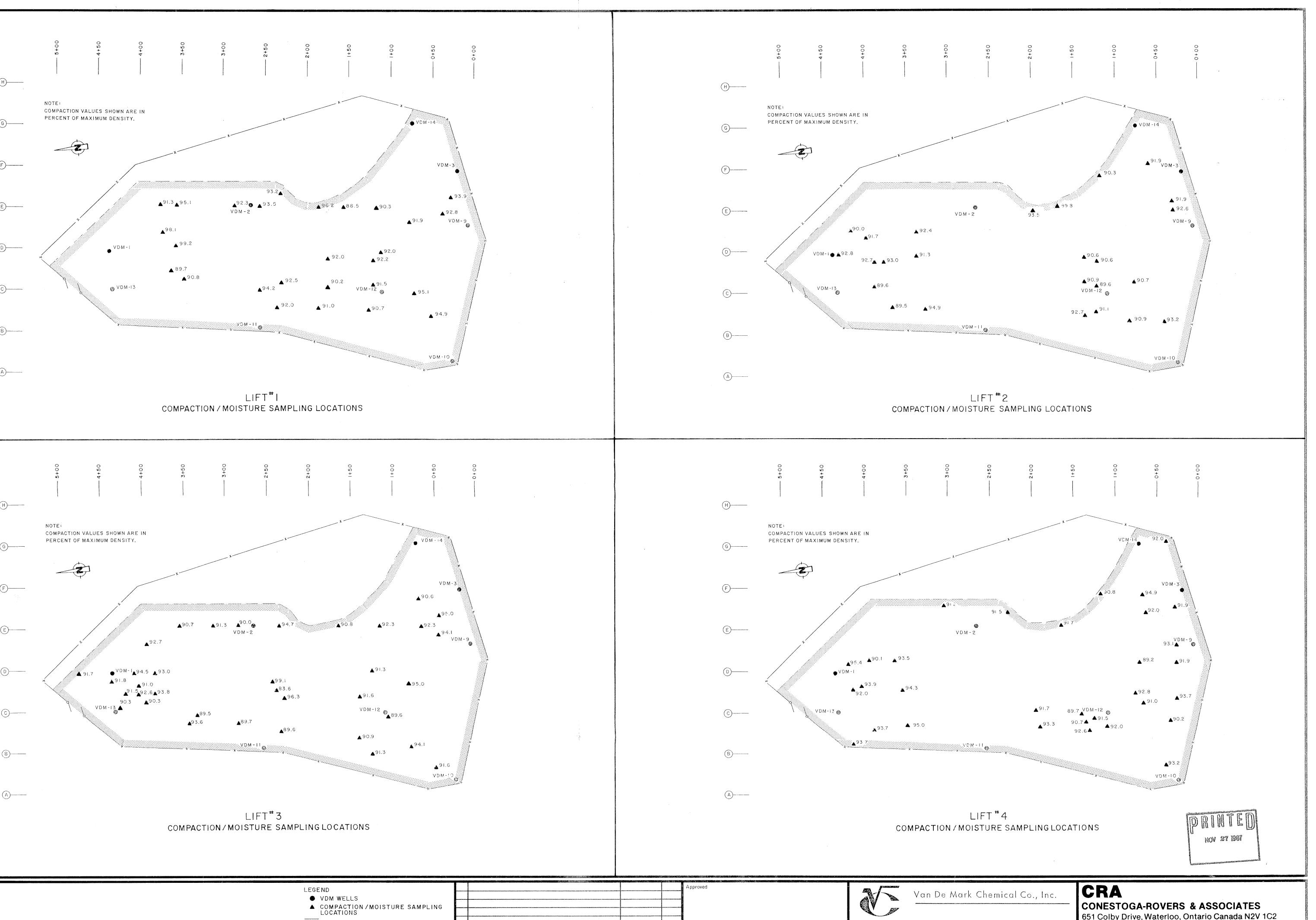
48

Drawing Nº:12

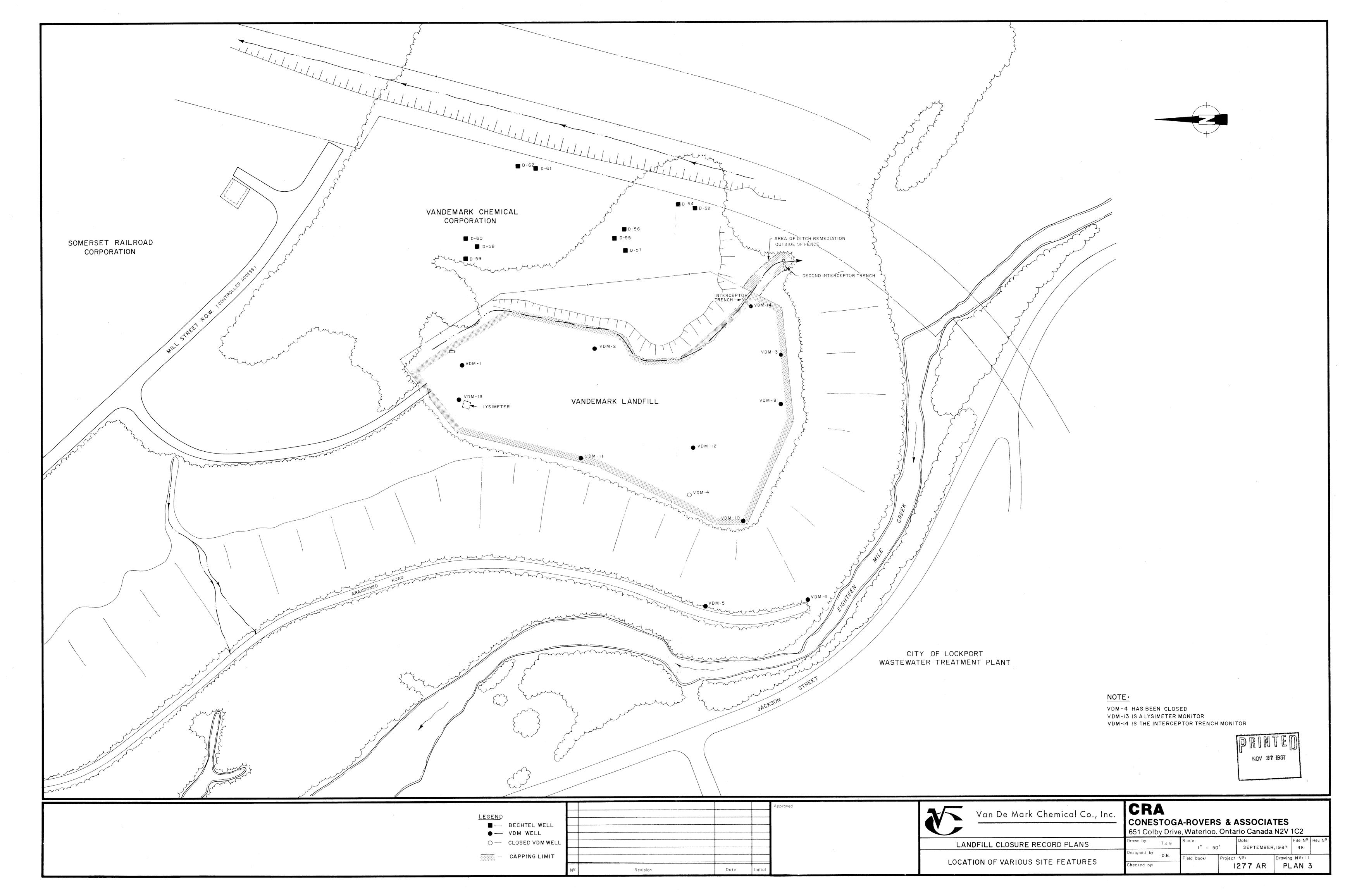
PLAN 4

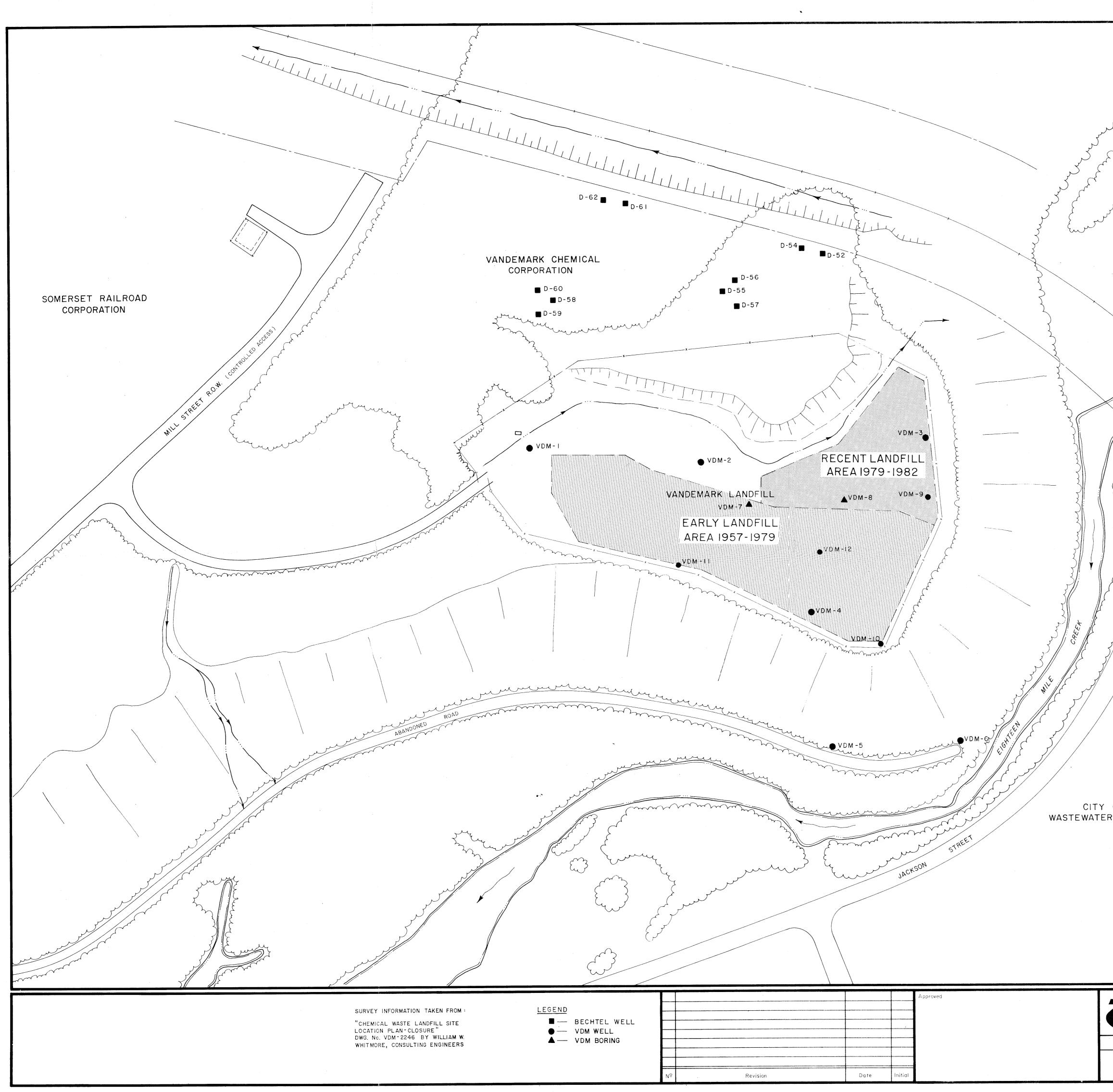
Date


1277 AR


Project Nº:

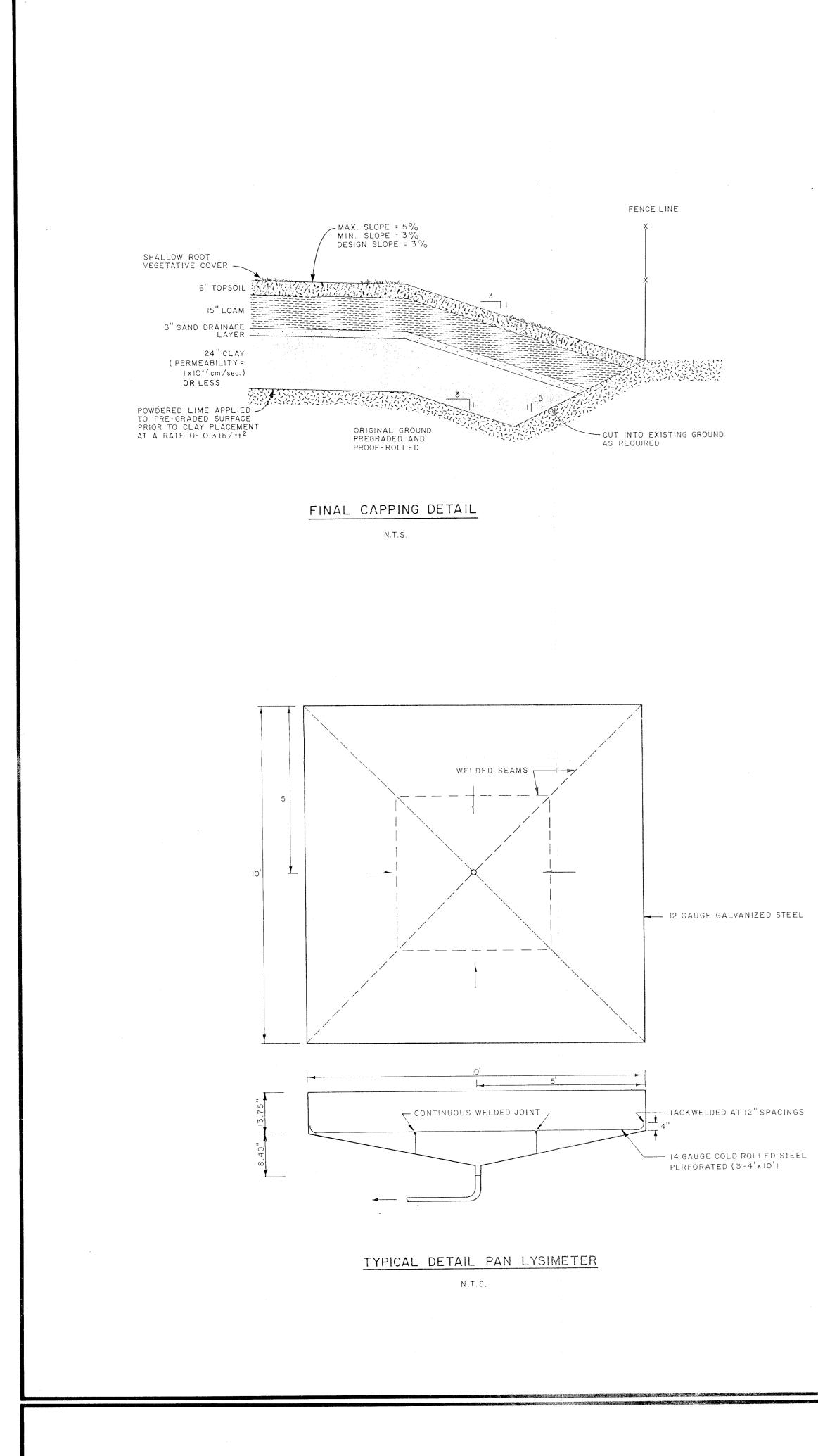
SEPTEMBER,1987

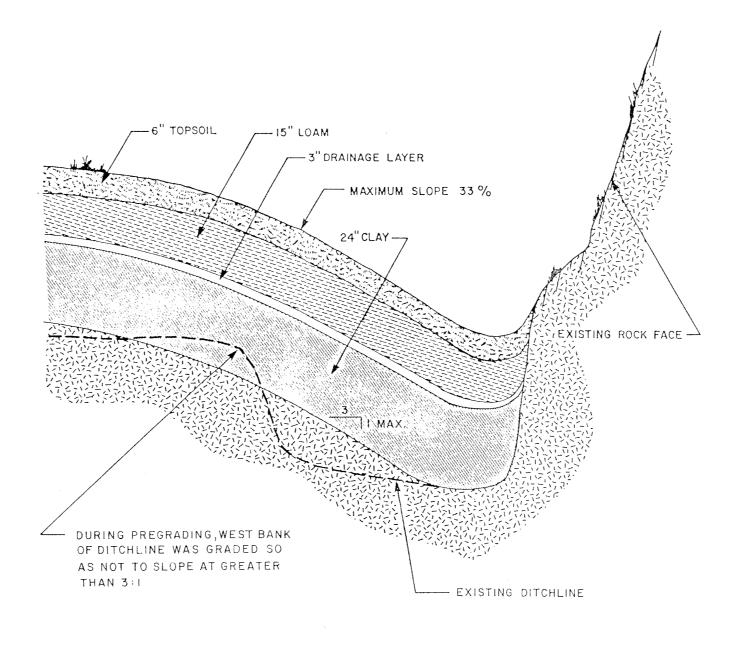

l"= 50'


Field book:

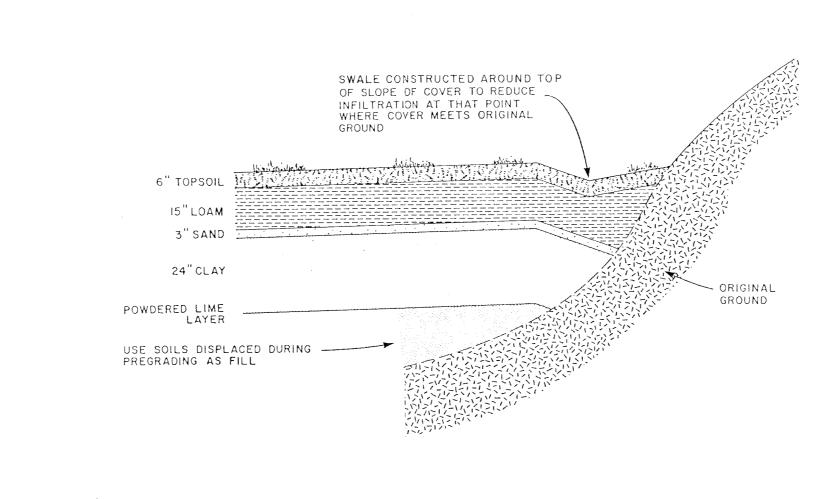





Date Revision Initia

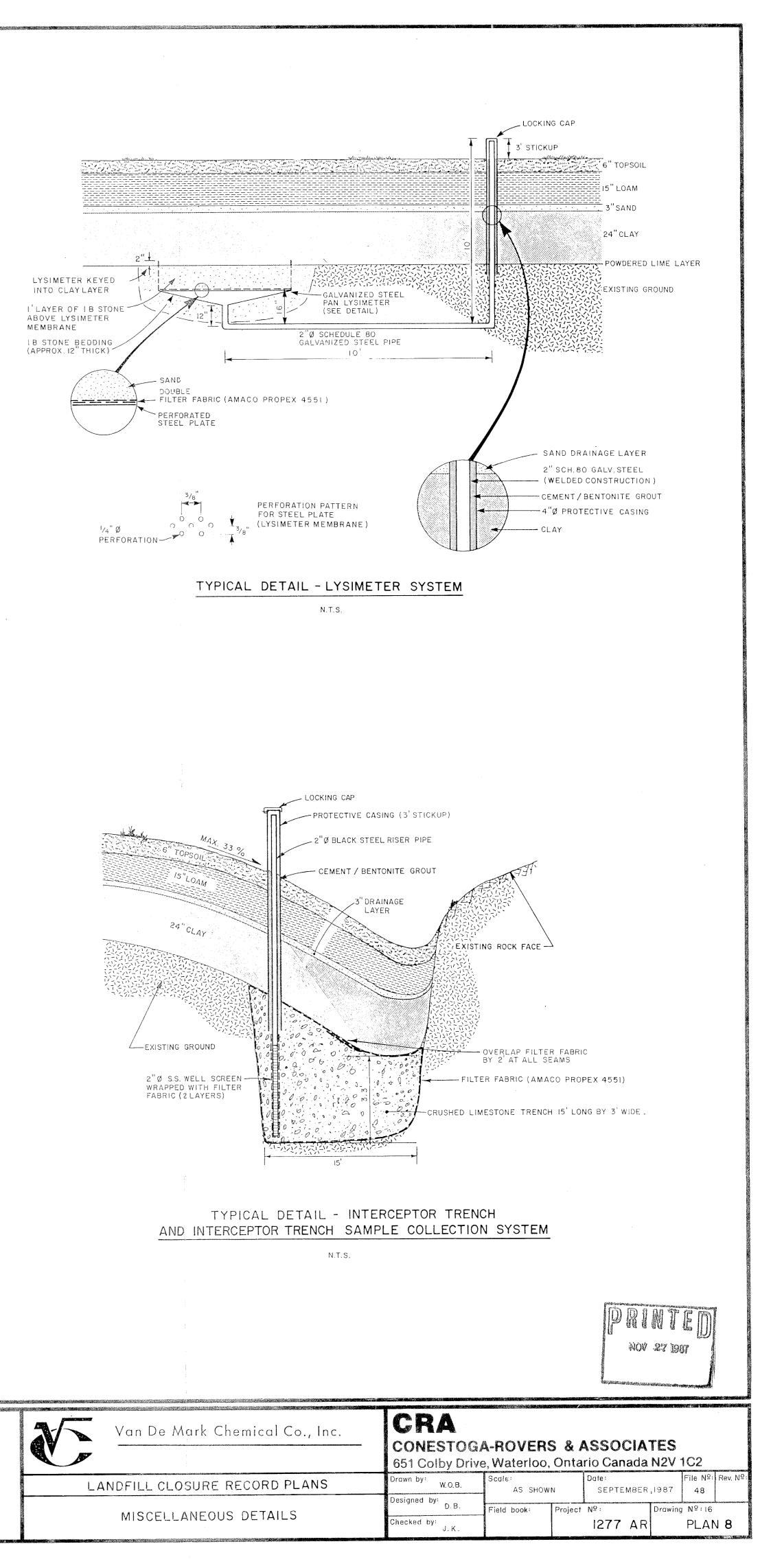


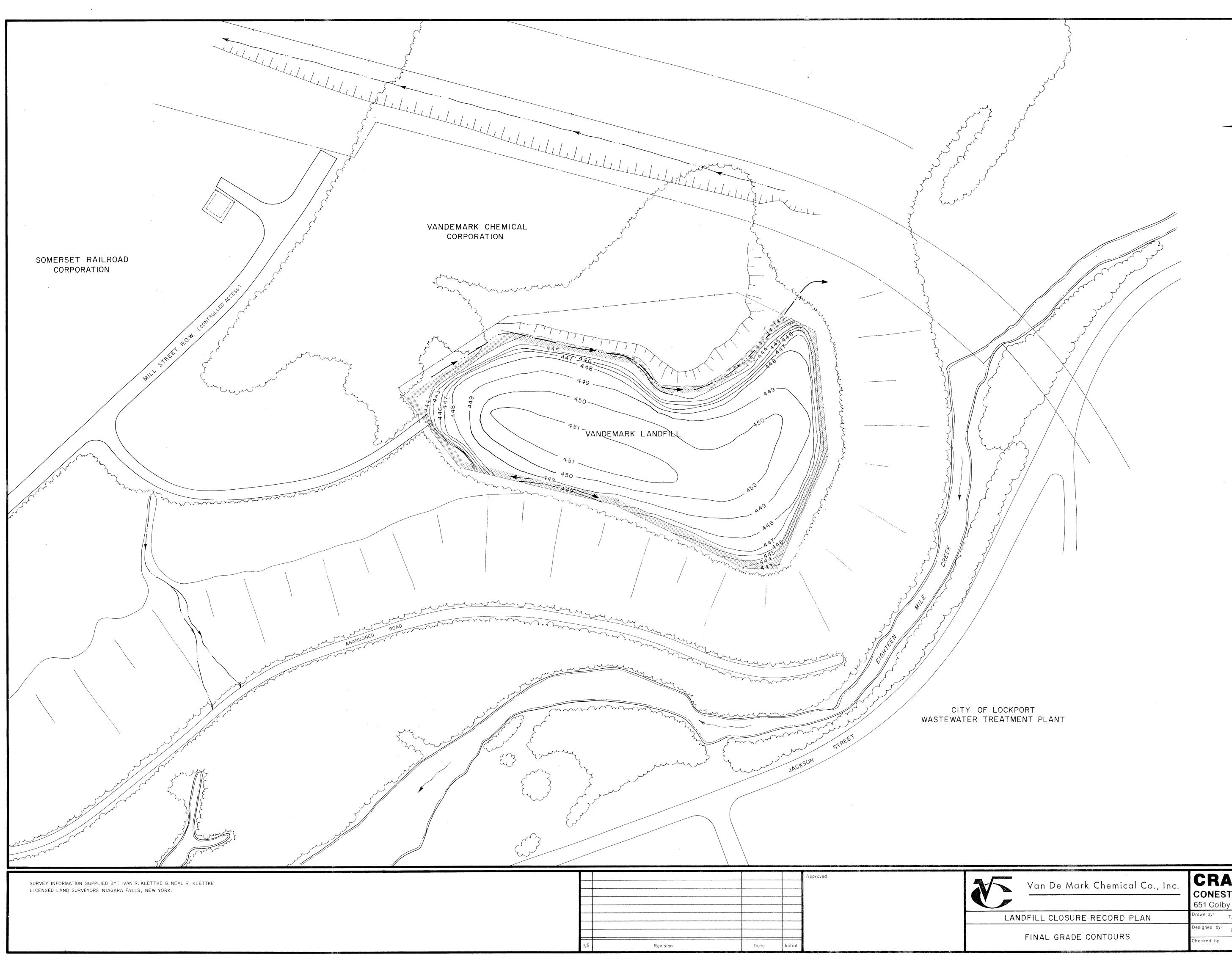




Ma . John and a start and a start a st	
OF LOCKPORT TREATMENT PLANT	
	PRINTED NOV 27 1987

Van De Mark Chemical Co., Inc.	CRA CONESTOGA-ROVERS & ASSOCIATES 651 Colby Drive, Waterloo, Ontario Canada N2V 1C2							
LANDFILL CLOSURE RECORD PLANS	Drawn by:	T.J.G	Scale:  " = 50	o'	Date: SEPTEMBER	,1987	File Nº: 48	Rev. N≌÷
EARLY AND RECENT LANDFILL AREAS	Designed by: Checked by:	D.B.	Field book:	Project	Nº: 277-AR	1	g №:10 _AN 2	2



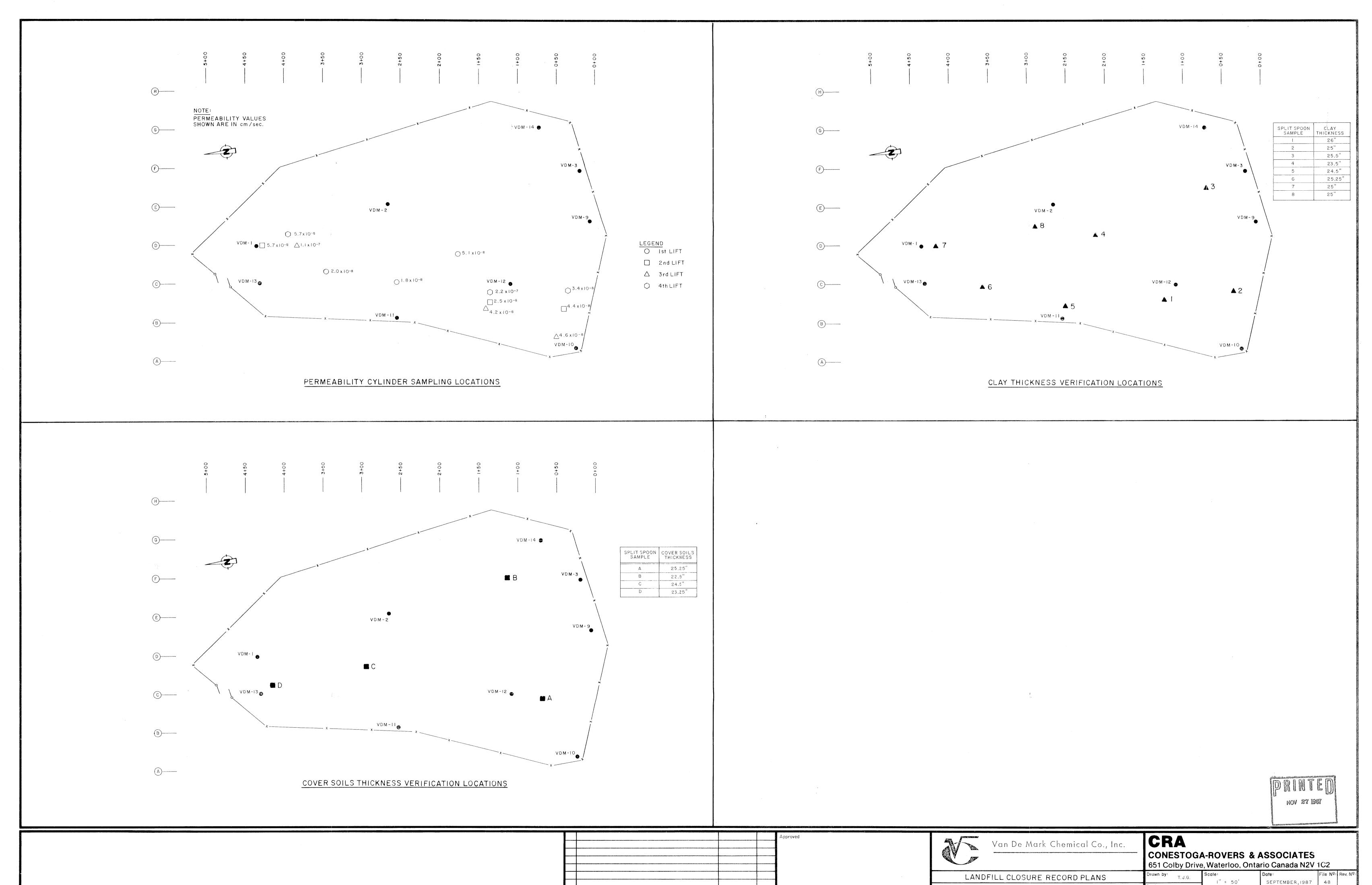







1995 - K.S.			and the second	
				Approved
aportas cinitate		and a standard and a standard of the standard to a subscription of the		
		aconcerna and a conservation are where a		
		And a surface of the second		
		Dete	Initial	
Nõ	Revision	Date	Initial	
-		<b>的时候,这些时候,这些时候,这时间的</b>	1.2 为此是市业也也是非	The second s








NON 3.4 1383
CRA CONESTOGA-ROVERS & ASSOCIATES 651 Colby Drive, Waterloo, Ontario Canada N2V 1C2

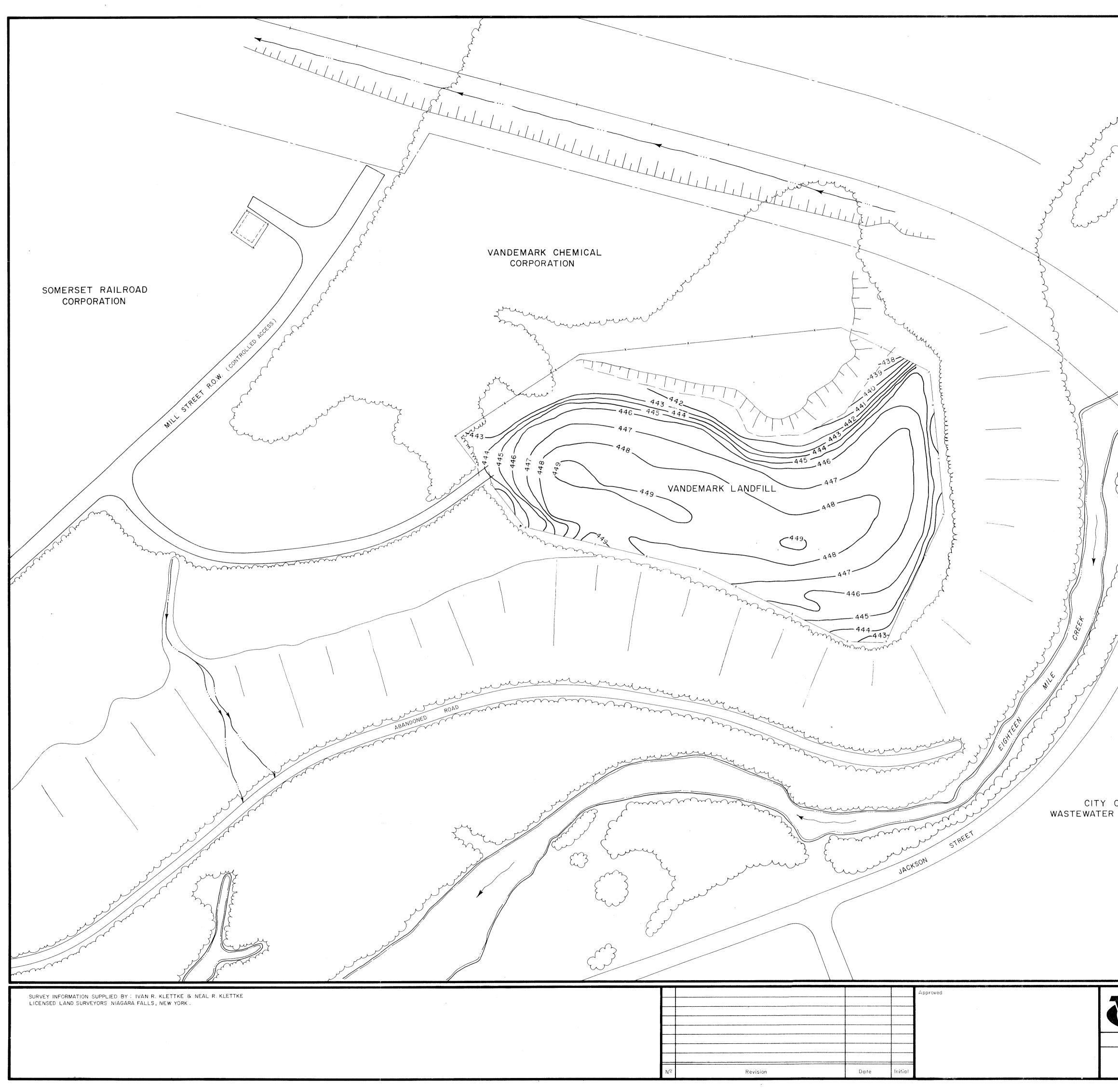
	, Inc. CONESTOGA-ROVERS & ASSOCIATES 651 Colby Drive, Waterloo, Ontario Canada N2V 1C2							
LANDFILL CLOSURE RECORD PLAN	Drawn by: T.J.G	Scale:  " = 50		Date: SEPTEMBER		File Nº: R 48	Rev. Nº∶	
	Designed by: D.B.	-	Project		, 	Nº:15		
FINAL GRADE CONTOURS	Checked by:		1	277 AR	PL	AN 7		



Date

Revision

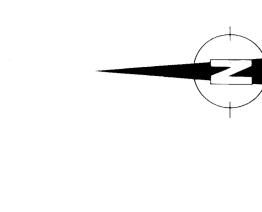
 Designed by:
 D.B.


 TESTING LOCATIONS - B
 Checked by:

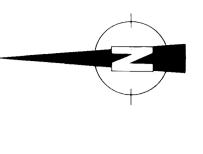
 SEPTEMBER, 1987
 48

 Project Nº:
 Drawing Nº: 13

 1277-AR
 PLAN 5


Field book:




CITY OF LOCKPORT WASTEWATER TREATMENT PLANT

Van De Mark Chemical Co., Inc.	CRA CONESTOGA-ROVERS & ASSOCIATES 651 Colby Drive, Waterloo, Ontario Canada N2V 1C2							
LANDFILL CLOSURE RECORD PLANS	Drawn by: T.J.G.	Scale: 1" = 50		Date: SEPTEMBE	R.1987	File Nº: 48	Rev. N⁰⊹	
TOP OF CLAY CONTOURS	Designed by: D.B. Field book: Checked by:		Project			Drawing N ² : 14 PLAN 6		





 $\int$ 



