The electronic version of this file/report should have the file name:

Type of document . Site Number . Year-Month . File Year-Year or Report name . pdf

_.pdf

_.pdf

example: letter. Year-Month. File Year-Year. pdf Report, HW, 932039, 1989.03, 29. PCPaplication, pN

example: report. Site Number. Year-Month. Report Name. pdf

Project Site numbers will be proceeded by the following:

Municipal Brownfields - B Superfund - HW Spills - SP ERP - E VCP - V BCP - C

VanDeMark Chemical Co., Inc.

March 29, 1989

Mr. Steven Doleski Regional Permit Administrator NYS Dept. of Environmental Conservation Region 9 Dffice 600 Delaware Avenue Buffalo, New York 14202

Re: 6NYCRR Part 373 Post-Closure Permit Application EPA ID No. NYD991290529

Dear Mr. Doleski:

In accordance with 6NYCRR Part 373-2, enclosed please find a Part 373 State post-closure permit application for the VanDeMark Landfill. The application includes information outlined in 6NYCRR 373-1.4(a) and (b) as well as both general and specific information applicable as stated under 373-1.5(a) and (h). Additional information required by 6NYCRR 373-1.5 and all referenced Part 373-2 information relevant to post-closure care activities is also included.

Attached please find an environmental assessment short form (EAF) required to determine the environmental significance of the postclosure activity.

If you have any questions or comments, please call `me.

Very truly yours,

Gregory H. Beck Safety/Environmental Director

Att.

cc: Mr. Paul Counterman, P.E. Mr. Edward Belmore Mr. Frank Langone

• •

RECEIVED APR 3 1989 ENVIRONNENTAL CONSERVATION

. .

.

.

.

•

-

14-16-4 (2/87)-Text 12

PROJECT I.D. NUMBER

617.21

•

SEQR

	Appendix C	
	State Environmental Quality Review	
SHORT	ENVIRONMENTAL ASSESSMENT	FORM
	For UNLISTED ACTIONS Only	

PART I-PROJECT INFORMATION (To be completed by Applicant or Project sponsor)

1. APPLICANT /SPONSOR Van De Mark Chemical Co., Inc.	2. PROJECT NAME	
3. PROJECT LOCATION:	Former Landfill	
Municipality Lockport	County Niagara	
4. PRECISE LOCATION (Street address and road intersections, prominent	iandmarks, etc., or provide map)	
Mill Street @ Plank Road Lockport, New York 14094	Former Landfill County Niagara landmarks, etc., or provide map) RECER 31989 RECONSERVATION RECONSERVATION NUMERINE ACONSERVATION NUMERINE ACONSERVATION	
5. IS PROPOSED ACTION:	N.M. P.F.O.	
6. DESCRIBE PROJECT BRIEFLY:	ENVIR	
6'NYCRR Part 373 Post - Closure Permit	Application	
7. AMOUNT OF LAND AFFECTED:		
Initially2 acres Ultimately2	acres	
8 WILL PROPOSED ACTION COMPLY WITH EXISTING ZONING OR OTHE	R EXISTING LAND USE RESTRICTIONS?	
Describe: Woods	riculture Park/Forest/Open space Other	
STATE OR LOCAL)?	DR ULTIMATELY FROM ANY OTHER GOVERNMENTAL AGENCY (FEDERAL, is	
NYSDEC, Post - Closure Permit	· · ·	
11. DOES ANY ASPECT OF THE ACTION HAVE A CURRENTLY VALID F	PERMIT OR APPROVAL?	
Yes No If yes, list agency name and permit/approval		
NYSDEC, Closure Plan Approval		
12. AS A RESULT OF PROPOSED ACTION WILL EXISTING PERMIT/APPRO	OVAL REQUIRE MODIFICATION?	
I CERTIFY THAT THE INFORMATION PROVIDED A	ABOVE IS TRUE TO THE BEST OF MY KNOWLEDGE	
	·	
Applicant/sponsor name: Van De Mark Chemical Co	D., Inc. Date: <u>March 29, 1989</u>	
nature:		
	nd you are a state agency, complete the epiceeding with this assessment	
۵۱	/ER	

PART II-ENVIRONMENTAL ASSESSMENT (To be completed by Agency)

	- CHARTAC ASSESSMENT (To be completed by Agency)	
A. DOE	ES ACTION EXCEED ANY TYPE I THRESHOLD IN 6 NYCRR, PART 617.12? If yes, coordinate the review process and use the FULL EA	F.
may	L ACTION RECEIVE COORDINATED REVIEW AS PROVIDED FOR UNLISTED ACTIONS IN 6 NYCRR, PART 617.6? If No, a negative decly be superseded by another involved agency.	aration
C. COU C1.	JLD ACTION RESULT IN ANY ADVERSE EFFECTS ASSOCIATED WITH THE FOLLOWING: (Answers may be handwritten, if legible) . Existing air quality, surface or groundwater quality or quantity, noise levels, existing traffic patterns, solid waste production or dispotential for erosion, drainage or flooding problems? Explain briefly:	sposal,
C2.	Aesthetic, agricultural, archaeological, historic, or other natural or cultural resources; or community or neighborhood character? Explain) briefly:
C3.	. Vegetation or fauna, fish, shellfish or wildlife species, significant habitats, or threatened or endangered species? Explain briefly:	
C4.	. A community's existing plans or goals as officially adopted, or a change in use or intensity of use of land or other natural resources? Explai	in briefly
C5.	Growth, subsequent development, or related activities likely to be induced by the proposed action? Explain briefly.	
C6.	Long term, short term, cumulative, or other effects not identified in C1-C5? Explain briefly.	
C7.	Other impacts (including changes in use of either quantity or type of energy)? Explain briefly.	ſ
	HERE, OR IS THERE LIKELY TO BE, CONTROVERSY RELATED TO POTENTIAL ADVERSE ENVIRONMENTAL IMPACTS? Yes No If Yes, explain briefly	
INSTI Each irreve	—DETERMINATION OF SIGNIFICANCE (To be completed by Agency) RUCTIONS: For each adverse effect identified above, determine whether it is substantial, large, important or otherwise sign a effect should be assessed in connection with its (a) setting (i.e. urban or rural); (b) probability of occurring; (c) durate ersibility; (e) geographic scope; and (f) magnitude. If necessary, add attachments or reference supporting materials. Ensu- anations contain sufficient detail to show that all relevant adverse impacts have been identified and adequately address	tion; (d ure tha
_	Check this box if you have identified one or more potentially large or significant adverse impacts which N occur. Then proceed directly to the FULL EAF and/or prepare a positive declaration.	
· · ·	Check this box if you have determined, based on the information and analysis above and any support documentation, that the proposed action WILL NOT result in any significant adverse environmental imparent AND provide on attachments as necessary, the reasons supporting this determination:	ting tots
	Name of Lead Agency	
	Print or Type Name of Responsible Officer in Lead Agency Title of Responsible Officer	`

Signature of Responsible Officer in Lead Agency

Signature of Preparer (If different from responsible officer)

Date 2 6NYCRR PART 373 POST-CLOSURE PERMIT APPLICATION

VanDeMark Chemical Co., Inc. 1 North Transit Road Lockport, New York 14094

EPA ID No. NYD991290529

Prepared by: Gregory H. Beck Safety/Environmental Director

.

Date: March 29, 1989

.

TABLE OF CONTENTS

1.0	Certification	1
2.0	General Information	5
э.0	Site Security	2
4.0	Inspection Schedule	2
5.0	Facility Location	2
6.0	Closure Plan	2
7.0	Post-Closure Plan	З
8.0	Post-Closure Cost Estimate	З
9.0	Additional Requirements	4
10.0	Exposure Information	5
11.0	Contingency Program	5

Page

LIST OF APPENDICES

Appendix A - Figures

- Appendix B Record of Closure Activities, Ref. No. 1277
- Appendix C Post-Closure Plan
- Appendix D Summary of Groundwater Monitoring Quarterly Data

Appendix E - Summary of Each Groundwater Monitoring Point

LIST OF FIGURES

- Figure 1 Silicon Tetrachloride MSDS
- Figure 2 Semi-Annual Inspection Schedule
- Figure 3 Flood Insurance Rate Map
- Figure 4 Wastewater Analysis Cost
- Figure 5 Lawn Maintenance Cost Estimate
- Figure 6 Letter of Credit
- Figure 7 Aquifer Water Surface Contours

1.0 <u>Certification</u>

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is , to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment."

General Manager

Date

2.0 General Information

VanDeMark Chemical Co., Inc. operated a waste disposal facility from approximately 1957 to 1982. The former Landfill area is located on a relatively flat plateau, located approximately 80 feet above Eighteen Mile Creek and approximately 275 yards west of the VanDeMark Chemical plant.

The waste consisted mainly of drums of silicon tetrachloride (SiCl₄) and chlorodisiloxane formed as by-products during the commercial production of silicon tetrachloride. A copy of a Material Safety Data Sheet (MSDS) for silicon tetrachloride is provided in Appendix A as Figure 1.

3.0 Site Security

Security for the VanDeMark Landfill Site will be maintained by the existing six-foot high chain link fence. Warning signs stating "DANGER - AUTHORIZED PERSONNEL ONLY" will be placed at the entrance to the site as well as the surrounding perimeter at a maximum of 50 feet apart. The entire fence will be inspected on a semi-annual basis.

The existing gates will be maintained and kept locked at all times when the site is not being supervised by VanDeMark personnel.

Since the facility is not active, there will be no chance of physical contact of waste, structures or equipment within the facility to injure unknowing or unauthorized persons or livestock which may enter the facility.

4.0 <u>Inspection Schedule</u>

A copy of the semi-annual post-closure inspection schedule is shown as Figure 2 in Appendix A.

5.0 Facility Location

Figure 3 in Appendix A shows a map for the National Flood Insurance Program determining that the former Landfill is located outside of the 100-year floodplain in Zone C (no shading).

6.0 <u>Closure Plan</u>

A copy of the Record of Closure Activities without the associated Appendices and Lists of Plans is shown in Appendix B.

7.0 Post-Closure Plan

The post-closure program is to monitor the effectiveness of the final cover system, inspect and maintain the integrity of the cap, and conduct a groundwater monitoring program. Inspections will include erosion damage, settlement and subsidence problems, condition of vegetative cover and drainage system. Groundwater and stream monitoring will be conducted to determine the impact of the landfill after closure. The post-closure monitoring period will be for 30 years. A copy of the Post-Closure Plan is shown in Appendix C.

8.0 Post-Closure Cost Estimate

The estimated cost for post-closure monitoring and maintenance is as follows:

Monitoring:

18	months -	З	years	Semi-Annually	\$12,690.00
	4 –	5	years	Annually	\$ 4,230.00
	6 -	30	years	Every 5 Years	<u>\$10,575.00</u>
					\$27,495.00

Maintenance:

29 years 7 Times per Year \$18,270.00

Total Cost:

\$45,765.00

Figure 4 in Appendix A shows a copy of the costs associated with the wastewater analysis. Figure 5 in Appendix A shows a copy of the costs associated with the lawn maintenance. Figure 6 in Appendix A shows a copy of the financial assurance mechanism adopted in compliance with section 373-2.8(f).

9.0 Additional Requirements

١.

Appendix D shows a summary of the groundwater monitoring data obtained for all monitoring wells and points during each quarterly sampling period. All hi-lited values are actual values while other values are the detection limit of the equipment. Although most values were below the detection limit, the detection limit was entered as the value in order to determine the standard deviation and student t.

Groundwater elevations measured in the overburden/bedrock interface monitoring wells within VDM Landfill area (VDM-1, VDM-2, VDM-9, VDM-11, and D-55 and D-61) indicate that the general groundwater flow is in a southerly direction towards the embankment leading to Eighteen Mile Creek. Due to the removal of the Grimsby Formation in the area of the landfill the overburden/bedrock interface aquifer is believed to be connected with the Grimsby/Power Glen contact groundwater in the area east of the landfill to the railroad cut and are therefore considered to be the same aquifer. Grimsby/Power Glen Aquifer water surface contours are presented in Appendix A as Figure 7. Although hazardous constituents have been measured in the groundwater which exceed the concentration limits established under section 373-2.6(e), by comparing the results of 18-Mile Creek upstream and downstream, it is evident that the former landfill does not show any impact upon 18-Mile Creek.

Appendix E shows a summary of the groundwater monitoring data obtained for each monitoring well and point during the interim status period. Again, all hi-lited values are actual values while other values are the detection limit of the equipment. This data shows that the cap installed in September 1987 has been operating as designed for the following reasons:

- 1. VDM-12 has been dry since September 1987 showing that no water has been infiltrating the perched water zone. In addition, VDM-13 (pan lysimeter) has had no significant accumulation since its installation.
- 2. The average water elevation of wells VDM-9, VDM-10 and VDM-14 has dropped indicating that infiltration of surface water through the former landfill has been reduced.
- 3. The average pH of wells VDM-10, VDM-11 and VDM-14 has increased indicating there is less flow through the cap thus decreasing the amount of acidic groundwater filtering to the water table resulting in a higher pH value.

The results also show a decreasing trend as shown by the negative values obtained using the **Student's t.** All values fall within the 95% confidence level and were determined using the following t-ratio:

$$t = \frac{\overline{X} - u_{e}}{s_{v}}$$

Where: \overline{X} = Average of all data u_{er} = Average of all data except last results $s_{\underline{x}} = \frac{\text{Standard deviation of all data}}{X}$ $x = \frac{1}{X}$ Square root of n-1 n = Number of sample data

Due to the above information, VanDeMark Chemical does not feel it is necessary at this time to implement a corrective action program.

The detailed plans for describing the groundwater monitoring program are provided in the Post-Closure Plan (Appendix C).

10.0 Exposure Information

Based on the analytical data obtained on Eighteen Mile Creek downstream from the former Landfill since its closure, there has been no evidence of migration from the landfill which would indicate a potential for the public to be exposed to hazardous wastes or hazardous constituents through releases related to the unit.

11.0 <u>Contingency Program</u>

The Contingency Program for the post-closure monitoring is outlined in the Closure Plan, Former Landfill Site, located in Appendix B.

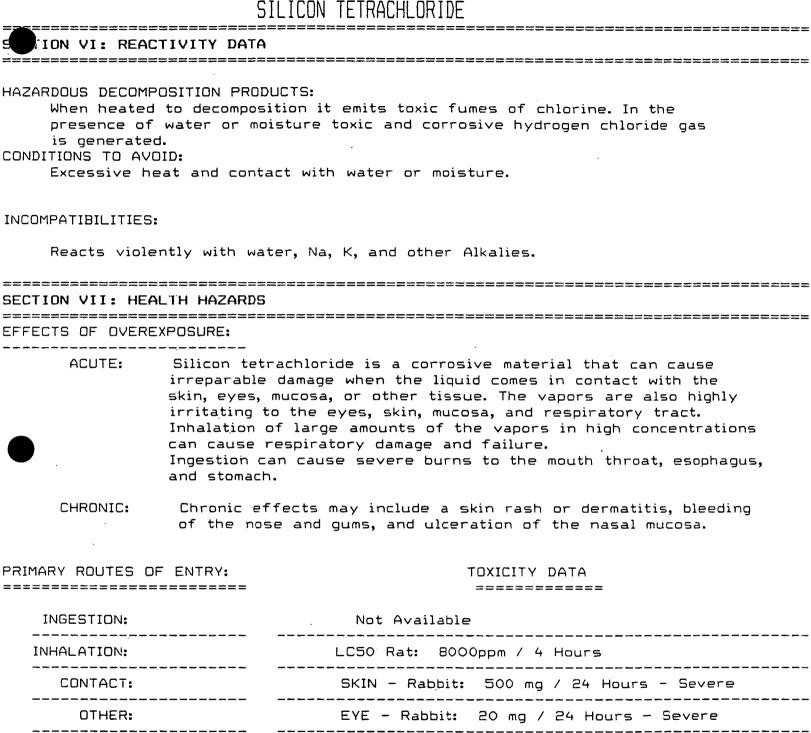
	- FIGURE 1 -		
	Van De Mark Chemical Co	o., Inc.	
	1 N. TRANSIT ROAD • LOCKPORT, NEW YORK 14094-2399	• 716 - 433-6764	
		MSDS#: VDM06-87-02	
SECTION I: PRODUCT INFO			==
PRODUCT NAME:	Silicon Tetrachloride	HAZARD RATINGS	
TRADE NAME/ SYNONYM:	Tetrachloro Silane, Siltet Silicon Chloride	HEALTH	3
CHEMICAL FAMILY:	Transition Metal Halide	FLAMMABILITY	0
CHEMICAL FORMULA	siCl ₄	REACTIVITY	1
CAS REGISTRY NUMBER:	10026-04-07	The Hazard Ratings have been conducted using the National Paint and Coatings Association HMIS system.	
SECTION II: MANUFACTURE	R INFORMATION		==
COMPANY NAME:	VanDeMark Chemical Company Inc.		==
ADDRESS:	1 North Transit Road, Lockport, NY. 140	94	
EMERGENCY PHONE NUMBER:	716-433-6764		
SECTION III: HAZARDOUS	INGREDIENTS		
MATERIAL (CAS #)	THRESHOLD LIMIT VALUES	% BY VOLUME	
Silicon Tetrachloride (10026-04-07)	None established	> 99%	

.

MATERIAL SAFETY DATA SHEET

MSDS#: VDM06-87-02

•


SILICON	TETRACHL	.ORIDE

.

SECTION IV: PHYSICAL DATA		
BOILING POINT: 57.5°C at 760 mmHg VAPOR PRESSURE: 210mmHg at 21.1°C VAPOR DENSITY: (air=1) 5.86 APPEARANCE AND ODOR: A clear to ligh	SPECIFIC GRAVITY: (25°C / FREEZING RANGE: -6)	B.7°C
odor of hydrog		
SECTION V: FIRE AND EXPLOSION HAZARD		
FIRE EXTINGUISHING MEDIA: (CHECK IF APPI	LICABLE) Not Applicable.	
FOAM: ALCOHOL FOAM: CO2: DRY CHEMICAL:	WATER: WATER FOG: OTHER:	
UNUSUAL FIRE AND EXPLOSION HAZARDS:		
Silicon tetrachloride is not flamma toxic fumes of chlorine, and in th chloride gas.	able. If heated to decomposition it e presence of water or moisture,	: emits hydrogen
SPECIAL FIRE FIGHTING PROCEDURES:		
If containers are involved in a fi by applying water. If spilled, conta chloride gas. Fire fighters should source of respirable air and acid	act with water will generate hydro utilize a full face piece with a resistant protective clothing.	supplied
SECTION VI: REACTIVITY DATA:		
STABILITY:	STABLE:	x
	UNSTABLE:	
HAZARDOUS POLYMERIZATION:	MAY OCCUR:	
	WILL NOT OCCUR:	X
·		
		•

MATERIAL SAFETY DATA SHEET

MSDS#: VDM06-87-02

STATUTORY HAZARD/CARCINOGEN RATING:

HAZARDOUS:	No
CARCINOGEN:	No

MATERIAL SAFETY DATA SHEET MSDS#: VDM06-87-02

SILICON TETRACHLORIDE

.

.

GENTET VILL: EMERGENCY	AND FIRST AID PROCEDURES
EYE CONTACT:	Flush with copious amounts of water for at least 15 minutes. Irrigate eyes with normal saline solution for 30 to 60 minutes. Seek medical attention immediately.
SKIN CONTACT:	Flush with copious amounts of water for at least 15 minutes. If burning or irritation occurs, apply a magnesium oxide paste. Seek medical attention.
INGESTION:	Administer a soluble calcium such as milk and large amounts of fluids. Do not induce vomiting.
INHALATION:	Remove victim to fresh air. If conscious and breathing is difficult, administer oxygen by nasal cannula or mask (6-10L). If unconscious, administer mouth to mouth res- piration and seek medical attention.
SECTION IX: PERSONAL F	:=====================================
RESPIRATORY:	Use only NIOSH/MSHA approved respiratory protection. For low concentrations, half or full face piece respirators with acid gas cartridges may be used. In higher concent- rations, SCBA's are required.
EYE:	Safety glasses and monogoggles or a face shield are required.
SKIN:	Impervious gloves (Neoprene) are required. Acid proof clothing and boots are required when handling could result in contact with the skin.
OTHER:	A safety shower and eye wash station is required in the area where handling occurs.
	ING / SPILL AND LEAK PROCEDURES
	BE TAKEN IN HANDLING AND STORAGE:
provided to Silicon tetra for the trar must be take storage tank	cool dry place with adequate ventilation. Diking should be prevent any spilled material from entering the sewer system. achloride can be stored in steel storage tanks. Piping used nsfer of the material can also be of steel construction. Care en to exclude all moisture from all piping, equipment and ks. Aluminum is not suitable material of construction for storage of this product.

PAGE 4 OF 6

MATERIAL SAFETY DATA SHEET

MSDS#: VDM06-87-02

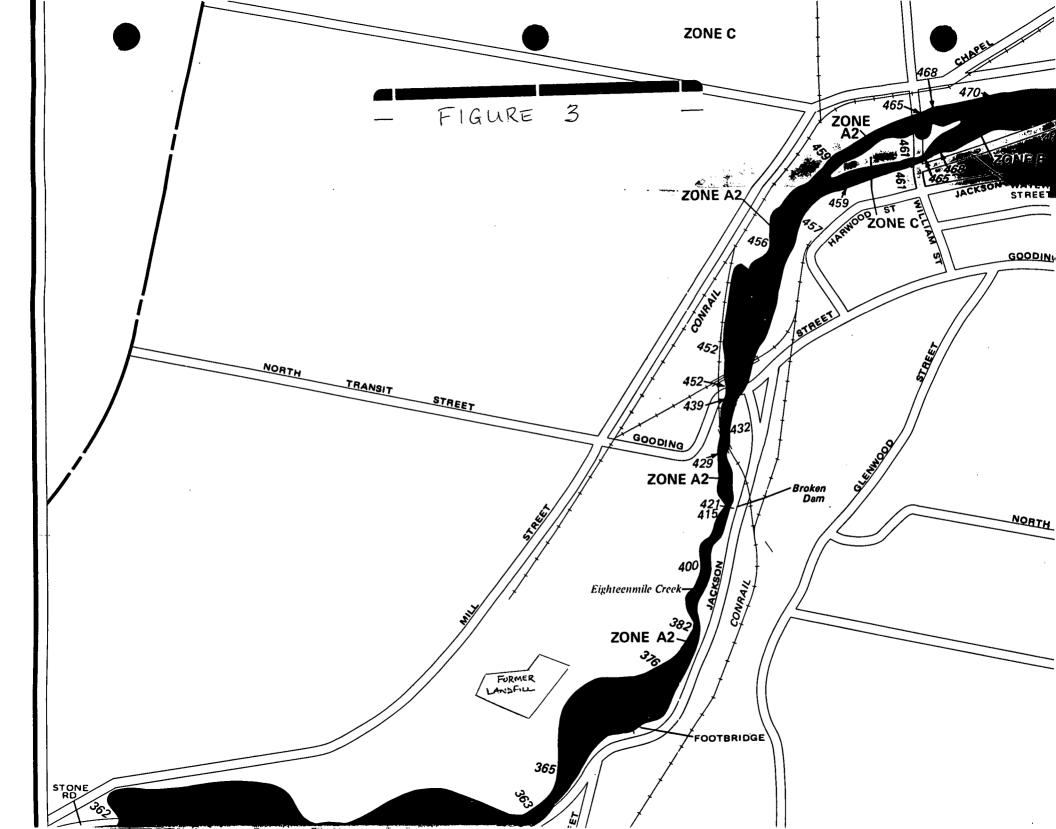
SILICON TETRACHLORIDE

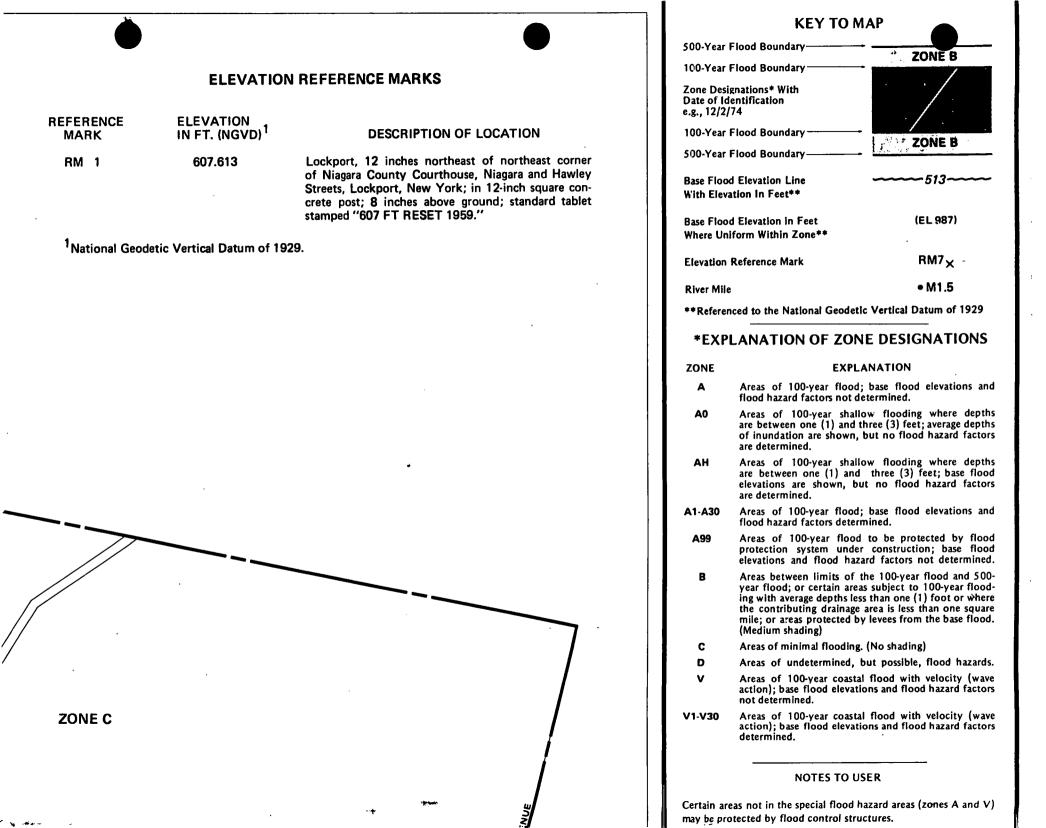
19 1 n n

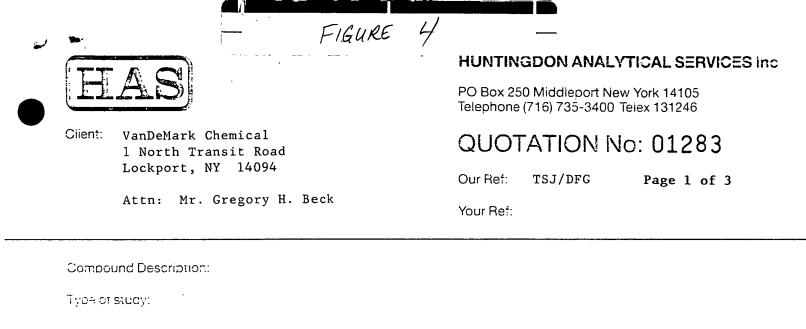
ECTION X: SAFE HANDLING / S						
SPILL AND LEAK PROCEDUR Evacuate the area the spill. Ventilatic workers should wear all usable product a compound. Place all						
can be neutralized discharging the eff	Silicon Tetrachloride waste is considered a hazardous waste. The waste can be neutralized by diluting with large quantities of water and discharging the effluent to a POTW following all local, state, and federal regulations.					
ECTION XI: DOT INFORMATION						
TRANSPORTATION REQUIREME						
DOT SHIPPING NAME:	SILICON TETRACHLORIDE					
DOT HAZARD CLASS:	CORROSIVE MATERIAL					
DOT LABELS:	CORROSIVE					
DOT PLACARDS:	CORROSIVE					
BILL OF LADING DESCRIPTION:	SILICON TETRACHLORIDE CORROSIVE MATERIAL					
UN/NA NUMBER:	UN 1818					
ADDITIONAL DOT REQUIREMENTS:	NONE					

MATERIAL SAFETY DATA SHEET

MSDS#: VDM06-87-02


CTI TCON TETOACHI ODINE


	SILICUN TETRACHLORIDE
S. XII: TRANSPORTER	INFORMATION
EMERGENCY RESPONSE:	In the event of an unusual delay, fire, accident or release of product during transportation, the transporter can refer to this MSDS for emergency response information In any of the above mentioned circumstances the trans- porter shall immediately call the emergency response phone number on page one of this MSDS for emergency response support.
	JR EMERGENCY PHONE NUMBER: 1-800-424-9300
SECTION XIII: ADDITIONAL	
MSDS PREPARATION INF	ORMATION:
	EFFECTIVE DATE: 06/20/87
	REPLACES MSDS DATED: 03/03/86
	PREPARED BY: Matthew Barmasse Safety/Environmental Director


This MSDS has been prepared in compliance with the Federal Hazard Communication Standard (29 CFR Part 1910.1200). All information contained herein has been prepared by technically knowledgeable personnel and is correct to the best of our knowledge. This information is given without warranty or representation. We do not assume any legal responsibility for the source. It is the customers responsibility to establish policies for safe handling and use of this product, but our technical staff will be happy to respond to any questions concerning this product or information contained herein.

- FIGURE 2 -		
VAN DE MARK CHEMICAL LANDFILL SEMI-ANNUAL INSPECTION SCHEDULE		
1. Does the integrity of the cover look satisfactory?	Yes	No
2. Does the integrity of the ditch lining look satisfactory?	Yes	No
3. What is the condition of the vegetation over the cover?		
4. Does rainwater appear to be draining properly?	Yes	No
5. Is the fence surrounding the site secure?	Yes	No
6. What is the water level in the pan lysimeter?		
7. Are all the caps on the monitoring wells locked?	Yes	No
If any of the above were answered "no", please explain below	N. 	
8. Are there any iron stains present in the ditch? 9. Are any of the well casings damaged?	Yes	No
If any of the above were answered "yes", please explain belo	Yes ow.	No
·		
Date: Time: Inspected by:		
The name, address and phone number of the person or office t contact about the landfill is:	0	

Gregory H. Beck VanDeMark Chemical Co., Inc. 1 North Transit Road Lockport, New York 14094 (716)433-6764

Annual Wastewater Analysis as per your request of 12/21/88

Please use Attachment I for unit pricing.

Annual Analytical Estimate

Sampling bottles and pick-up service additional and based upon need.

\$11,575.00

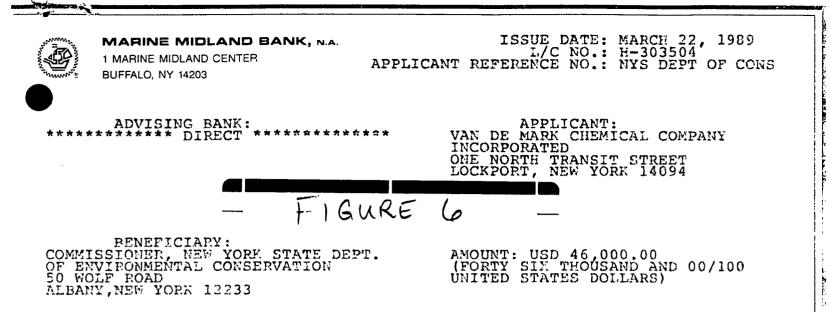
*A 10% analytical discount will be applied upon issuance of a total annual analytical purchase order by January 31, 1989.

Method or payment: Net upon receipt of invoice Prices snown are exclusive of applicable taxes.

To confirm your acceptance of this quotation, please re	turn one copy, duly signed, to the HAS signatory below						
Issued on penalf of HAS:	Accepted on behalf of client:						
Signature: Douglos 1. Hills	Signature:						
Name Douglas F. Gillard, Ph.D.	Name:						
Date: January 5, 1989	Date.						
THIS QUOTATION IS VALID ONLY FOR A PERIOD OF THREE MONTHS FROM THE DATE OF ISSUE AND UNLESS ACCEPTED AND DELIVERED TO HUNTINGDON ANALYTICAL SERVICES Inc WITHIN THE SAID PERIOD SHALL THEREAFTER BECOME ABSOLUTELY VOID.							

THIS OUDTATION IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON THE REVERSE SIDE

VçnDe¥ark Chemical Quotation No. 01283 January 5, 1988


ATTACHMENT I

arameter	Method	# of <u>of Samples</u>	Frequency	Price/ <u>Sample</u>	Price/ <u>Event</u>
Total Residual Chlorine	330.4	3	Monthly	\$15	\$45
Ammonia	350.2, .3	3	"	20	60
Chemical Oxygen Demand	410.1	1	11	30	30
			м	onthly Total	\$135
Total Suspended Solids	160.2	3	Quarterly	\$10	\$ 3 0
(Purgeable Halocarbons	601	9	(70	(630)
Chloride	325.3	9	u	15	(135
(Total Metals;					
Digestion		9	**	10	୍ ୨୦
As	206.2	9	11	20	(180)
Cd	200.7	9	11	10	(90)
Cr	2.00.7	9	11	10	(90
Cu	200.7	9	"	10	(90)
Zn	200.7	9	"	10	(90)
Pb	239.2	9	11	20	
Hg	245.1 420.1	9 9		30 . 30	(270)
(Total Phenols)	420.1	9		50	<u>(270</u>)
			Qua	rterly Total	\$2145
	SM 507				
iochemical Oxygen Deman		3	Semi-Annual	25	75
Total Suspended Solids	160.2	3	n	10	30
Chemical Oxygen Demand	410.1	3	11	30	90
Total Kjeldahl Nitrogen	351.3	3	**	30	<u>_90</u>
			Semi-	Annual Total	\$285 ⁻
Priority Pollutants:					
Volatiles	624	1	Annual		\$190
Semi-Volatiles	625	1	"		325
Pesticides & PCB's	608	1	11		75
Cyanide	335.2	1	"		30
Phenols	420.1	1	11		30
Metals:					
As	206.2	1	II		20
Be	200.7	1	11		10
Cd	200.7	1	II 		10
Cr	200.7	1	"		10
Hg	245.1	1	**		30
Ni	200.7	1	11		10
Se	270.2	1	11		20 10
Ag	200.7	1	11		20
T1 7~	279.2	1			10
Zn	200.7 239.2	1			20
Pb Sb	239.2	1 1	11		10
Cu	200.7	1	11		10
Digestion	200.7	Ŧ			10
516001011					

Group price for all metals \$155 Annual Total \$805/sample

•

LAWN • ¥ MED	BOX 201 208	AGARA 3 OAKH PORT, 1	URST)94						SERVICES	
	625-6820	433-42					_	05		Bus. Regis. # 05846 Applicato	or ID. # C9277\$74
<u></u>	Mr. Gregory Beck			F16	auRi		5		-	Facing Slopes Steep Slopes	Dense Shade
NAME	VanDeMark Chemical Corp. Inc.	4				Jncontro	llable \	Veeds		Other	
ADDRESS	1 North Transit			L	AWN (DIAGRAI				SERVICES RECOMMENDED	COST \$
	Lockport, NY ZIP 14094			T		Υ				CHECK OFF SERVICES DESIRED	
PHONE NO. HOME	BUS433-6764	Fe	hced	in a	rea r	ear p	ipel:	ne	ļ	BELOW	<u>.</u>
LOCATION OF PRO	* .	re	ferre	ed to	as a	land	fill				<u> </u>
	ROUTE ZONE		•,							6-10 mowings per yr.	\$ 90.00/mowing
DATE REC'D 3/1	10/89DATE OF EST 3/14/89TIME		6-10 mow:		ings	per y	ear=	\$ 90	.00/	less than 6 mowings	<pre>\$ 120.00/mowing</pre>
MY NAME IS]	Brian Van Buren		less	s tha	n 6 m	wing	s= \$	120.0	00/	NU Lawn	·
ADDITIONAL RECO	MMENDED SERVICES		MOW	ing				<u> </u>		Tax	
Power Aerate & Ro	II Core Aeration									Number of Services	
Dethatch	Renovation									Cost Per Service	
Seed	Over seed -			-		_	<u> </u>	ļ			
□Top soil	Surface Insect Control	÷								TERMS: SERVICES BILLED AS APPLIE WITHIN 10 DAYS OF SERVICE.	D PAYMENT DUE
Grub Control	Broadleaf Weed Control	,									
Pre-emergent Cra Control	b Grass Coarse Fescue Creeping Bent Grass Control	SPEC	IAL SE	RVICE	I					TO BEGIN SERVICE SIGN AND RETURN LAWN MEDIC	WHITE COPY TO
NU Lawn Program	Total Vegetational Control							<u></u>		-	
Other Lawr	n Mowing (fenced in area)	.									
		-								CUSTOMER AUTHORIZATION	, _, _, _, _, _, _, _, _, _, _
· EXPLANATION OF	SERVICES RECOMMENDED:	- ,		3.000					2000		x cor cor cor
			und pero gua lawi	n Medic ler grass centage trantee is n is no lo	c, at en covera is not sexpres onger u	d of last age. That achieved ased or in nder Law	Season all see d, Lawr nplied. (n Medi	NU-L al Appli d used i Medic Guarant c care.	AWI ication V s of high will cor ee dces	N GUARANTEE Visit, guarantees a stated percentage of total law h quality and none of annual species or varieties ntinue service at no charge until guarantee is not apply beyond end of last seasonal service tim	wn area will be . If guaranteed met No other he period when

GENTLEMEN:

WE HEREBY ESTABLISH AND OPEN OUR IRREVOCABLE STANDBY LETTER OF CREDIT NO. P-303504 IN YOUR FAVOR, AT THE REQUEST AND FOR THE ACCOUNT OF VAN DE MARK CHEMICAL COMPANY, INC. UP TO THE AGGREGATE AMOUNT OF FORTY-SIX THOUSAND AND 00/100 U.S.DOLLARS (\$46,000.00), AVAILABLE UPON PRESENTATION OF:

(1) YOUR SIGHT DRAFT, BEARING REFERENCE TO THIS LETTER OF CREDIT NG. H-303504, AND

(2) YOUR SIGNED STATEMENT READING AS FOLLOWS:

"I CERTIFY THAT THE AMOUNT OF THE DRAFT IS PAYABLE PURSUANT TO RECULATIONS ISSUED UNDER AUTHORITY OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW."

THIS LETTER OF CREDIT IS EFFECTIVE AS OF MARCH 22, 1999 AND SHALL EXPIRE ON MARCH 31, 1990, BUT SUCH EXPIRATION DATE SHALL BE AUTOMATICALLY EXTENDED FOR A PERIOD OF ONE YEAR AND ON EACH SUCCESSIVE EXPIRATION DATE THEREAFTER, UNLESS, AT LEAST 120 DAYS BEFORE THE CURRENT EXPIRATION DATE, WE NOTIFY BOTH YOU AND VAN DE MARK CHEMICAL COMPANY, INC. BY CERTIFIED MAIL, RETURN RECEIPT PEQUESTED, THAT WE HAVE DECIDED NOT TO EXTEND THIS LETTER OF CREDIT BEYOND THE CURRENT EXPIRATION DATE. IN THE EVENT YOU ARE SO NOTIFIED, ANY UNUSED PORTION OF THE CREDIT SHALL BE AVAILABLE UPON PRESENTATION OF YOUR SIGHT DRAFT AND THE ADOVE-REFERRED TO SIGNED STATEMENT FOR 120 DAYS AFTEF THE DATE OF PECEIPT EY BOTH YOU AND VAN DE MARK CHEMICAL COMPANY, INC., AS SHOWN ON THE SIGNED RETURN RECEIPTS.

THIS IS A NOTATION CREDIT. EACH DRAFT HEREUNDEP MUST BE ENDERSED ON THE REVEPSE OF THIS LETTER OF CREDIT AND EACH DRAFT OF ATTACHED WRITING MUST INDICATE THAT SUCH NOTATION HAS BEEN MADE. THIS LETTER OF CREDIT MUST BE ATTACHED TO THE LAST DRAFT WHEN THE CREDIT ESTABLISHED BY THIS LETTER OF CREDIT IS EXHAUSTED.

THE SUM OR SUMS OF ALL DRAFTS UNDER THIS LETTER OF CREDIT MUST NOT EXCEED THE AGGREGATE AMOUNT OF FORTY-SIXTY THOUSAND AND 00/100 U.S. DOLLARS (\$46,000.00). THE PURPOSE OF THIS LETTER OF CREDIT IS TO ENSURE THAT FUNDS WILL BE AVAILABLE AND DRAFTS MAY BE DRAWN HEPEUNDEP FOP THE ACCOUNT OF THE COMMISSIONER OF THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION, FOR THE BENEFIT OF THE DEPARTMENT OF ENVIRONMENTAL CONSERVATION, FOF PURPOSES PURSUANT TO ARTICLE 27 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW.

-CONTINUED-

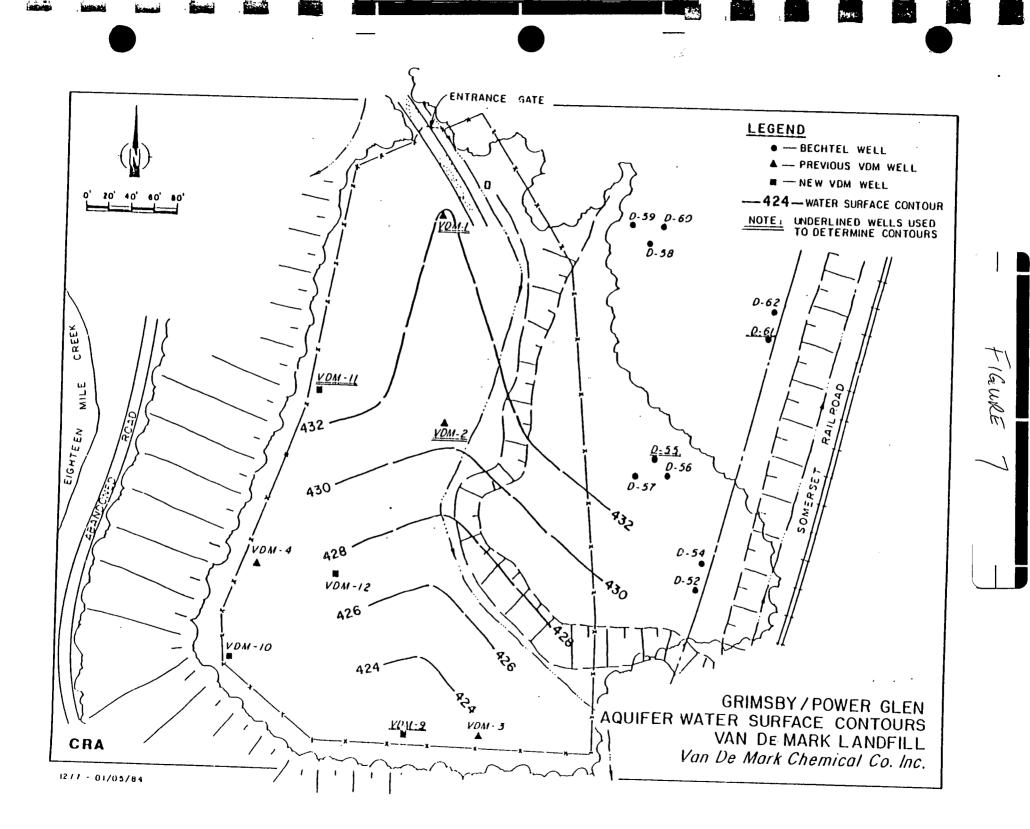
H-303504- -001-L1-01-02-01

- 1

MARINE MIDLAND BANK, N.A. I MARINE MIDLAND CENTER BUFFALO, NY 14203 ADVISING BANK: ADVISING BANK: MARINE MIDLAND CENTER BUFFICIAPY: COMMISSIONER, NEW YORK STATE DEPT. ADVISING BANK: MARINE MIDLAND BANK, N.A., AGREES THAT WHENEVER THIS LETTER OF CREDIT IS ALBANY, NEW YORK 12233 MARINE MIDLAND BANK, N.A., AGREES THAT WHENEVER THIS LETTER OF CREDIT IS MARINE MIDLAND BANK, N.A., AGREES THAT WHENEVER THIS LETTER OF CREDIT IS MARINE MIDLAND BANK, N.A., AGREES THAT WHENEVER THIS LETTER OF CREDIT IS DRAWF OF, UNDEF AND IN COMPLIANCE WITH THI TERMS OF THIS LETTER OF CREDIT, THAT MARINE MIDLAND BANK, N.A., SHALL DULY HONOF SUCH DRAFT UPON PRESENTATION TO MARKE MIDLAND BANK, K.A., MARINE MIDLAND FANK, N.A., SHALL PUY THE AMOUNT OF THE DRAFT TO THE COMMISSIONER OF NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION MARINE MIDLAND FANK, N.A., SHALL PUY THE MARY OF INDER AND BANK, K.A. MARINE MIDLAND FANK, N.A., SHALL PUY THE MARY OF INDER TO THE COMMISSIONER OF NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATIONS ON INTO STANDBY TPUST IN ACCORDANCE WITH THE MARY OF INSTRUCTIONS.

WE HEREBY AGREE WITH YOU THAT DRAFTS DRAWN UNDER AND IN COMPLIANCE WITH THE TERMS OF THIS CPEDIT WILL BE DULY HONORED ON DUE PRESENTATION TO THE DRAWEES, PRESENTED ON OF BEFORE THE EXPIRATION DATE TO THE DRAWEES TOGETHER WITH HIS LETTER OF CREDIT. THE AMOUNT AND DATE OF PAYMENT OF EACH DRAFT MUST BE ENDORSED ON THE REVERSE HEREOF BY OURSELVES.

EXCEPT SO FAR AS OTHERWISE EXPRESSLY STATED, THIS LETTER OF CREDIT IS SUBJECT TO THE UNIFORM CUSTOMS AND PRACTICES FOR DOCUMENTARY CREDITS (1983 PEVISION) INTERNATIONAL CHAMBER OF COMMERCE PUBLICATION NO. 400


H-303504- -001-L1-01-02-01

MORIZED SIGNATURE 3171

1111

12.1

C.R. Martines

RECEIVEDOCT 1 7 1988

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233

1 1 1988

Thomas C. Jorling Commissioner

Mr. Matthew Barmassee Safety/Environmental Manager Van De Mark Chemical Co., Inc. 1 North Transit Road Lockport, NY 14094

> Re: Closure Certification; Release of financial assurance for closure; Establishment of financial assurance for post-closure

Dear Mr. Barmassee:

:

The Department has reviewed your submission of the Record of Closure Activities Report dated November 1987 and subsequent correspondence by Conestoga-Rovers and Associates regarding the closure of the Van De Mark Landfill. Staff have also observed and inspected the cover both during construction and after completion.

Based upon the above, the Department accepts the Certification of Closure for the Van De Mark Landfill and that closure has been accomplished in accordance with applicable regulations and the approved Closure Plan.

Under Part 373-3.8(d)(8), the Department hereby notifies that Van De Mark is no longer required to maintain financial assurance for closure of the landfill. However, under Part 373-3.8(f), Van De Mark is required to establish financial assurance for post-closure care of the facility.

At this time, Van De Mark <u>has not</u> supplied the Department with any financial assurance for post-closure care of the landfill.

Upon examination of Van De Mark's approved Closure Plan, the cost estimate for monitoring and maintenance was determined to be \$177,100 for a thirty-year post closure care period. Van De Mark presently has a letter of credit for \$44,730 which the Department will apply toward the partial post-closure financial assurance required. It is the owners responsibility to establish financial assurance for the entire post-closure amount using one or a combination of the mechanisms specified in Part 373-3.8(f).

Van De Mark must supply the appropriate financial assurance to the Department no later than March 31, 1989. In addition, the Post-Closure Permit Application that Van De Mark will be submitting, should in detail break down and verify the maintenance and monitoring costs that have previously been submitted in your Closure Plan. Please be aware that all costs must reflect third party costs. Should you have any questions concerning the above matters, do not hesitate to contact Mr. Timothy DiGiulio at (518) 457-9253.

Sincerely,

Paul R.

Paul R. Counterman, P.E. Director Bureau of Hazardous Waste Facility Permitting Division of Hazardous Substances Regulation

cc: P. Ingrisano, EPA, Region II

τ

🖌 س ، ند

- F. Langone, EPA, Region II
- L. Thomas, NYSDEC Albany
- J. Moran, NYSDEC Albany
- T. DiGiulio, NYSDEC Albany

CONESTOGA-ROVERS & ASSOCIATES LIMITED 651 Colby Drive, Waterloo, Ontario, Canada N2V 1C2 (519) 884-0510

April 11, 1988

Reference No. 1277

Mr. Tim Digiulio NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 Wolf Road Albany, NY 12233

Dear Mr. Digiulio:

Re: Van deMark Chemical Corporation - Lockport, NY I.D. No.: NYD991290529

I hereby certify that the above referenced Landfill was closed as per the approved Closure Plan as amended in the "Record of Closure Activities" by Conestoga-Rovers & Associates (CRA) in November 1987.

No further investigations by the engineer are planned at this time.

Yours very truly,

CONESTOGA-ROVERS & ASSOCIATES

Donald J. Miller, P.E. NYS #051886

Matthew Barmasse Safety/Environmental Director Van deMark Chemical Company

Van De Mark Chemical Co., Inc.

•

.

.

CLOSURE PLAN Former Landfill Site

February 1987 Ref. No. 1277

r.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	EXISTING CONDITIONS	4
3.0	LANDFILL PRACTICES	5
4.0	SUPPLEMENTAL SAMPLING	6
5.0	RECOMMENDED CLOSURE PLAN	7
6.0	SURFACE PREPARATION	10
7.0	FINAL COVER	11
8.0	QUALITY ASSURANCE PLAN	13 13 13 15
9.0	SURFACE WATER DRAINAGE	19
10.0	SITE SECURITY AND ACCESS	20
11.0	POST-CLOSURE MONITORING PROGRAM	21
12.0	CONTINGENCY PROGRAM	23
13.0	MAINTENANCE PROGRAM	25
14.0	SCHEDULE	27
15.0	ESTIMATED COST	29
16.0	SUMMARY	30

Page

LIST OF APPENDICES

APPENDIX A	FORMER	LANDFILL	INVESTIGATION	AND	CLOSURE	PLAN
------------	--------	----------	---------------	-----	---------	------

- APPENDIX B SOMERSET RAILROAD PROJECT, HYDROGEOLOGIC STUDY, DANIELEWICZ ROUTE, STATION 51+810 TO 52+330
- APPENDIX C CLOSURE PLAN FOR SOLID WASTE MANAGEMENT FACILITY VAN DE MARK CHEMICAL CO. INC., LOCKPORT, N.Y.
- APPENDIX D RESPONSE TO USEPA LETTER OF FEBRUARY 20, 1986
- APPENDIX E ANALYTICAL RESULTS SUPPLEMENTAL SAMPLING MAY 12, 1986

APPENDIX F SAMPLING AND ANALYSIS PROGRAM FOR MONITORING THE VAN DE MARK LANDFILL SITE

LIST OF FIGURES

.

			FOLLOWING PAGE
FIGURE	1	EXISTING CONDITIONS	4
FIGURE	2	EARLY AND RECENT LANDFILL AREAS	5
FIGURE	3	LOCATION OF MONITORING WELLS	6
FIGURE	4	EIGHTEEN MILE CREEK SAMPLING LOCATIONS	6
FIGURE	5	INTERCEPTOR TRENCH	9
FIGURE	6	PRE-GRADING PLAN	10
FIGURE	7	CROSS SECTION OF COVER	11
FIGURE	8	FINAL GRADING PLAN	11
FIGURE	9	PROPOSED DITCH LINING	19
FIGURE	10	SCHEDULE	27

LIST OF TABLES

TABLE 1	ANALYTICAL RESULTS OF SAMPLES COLLECTED MAY 12, 1986	6
TABLE 2	COST ESTIMATE	29

From approximately 1957 to 1982, Van De Mark Chemical Co. Inc. operated a waste disposal area on their property in Lockport, New York. A hydrogeologic investigation of the former landfill facility was undertaken in 1983 and 1984. The results of the investigation were presented in the report entitled "Former Landfill Investigation and Closure Plan" which was submitted to Van De Mark Chemical Co. Inc. in May 1984 by Advanced Environmental Systems (AES) and Conestoga-Rovers & Associates (CRA). The report presents details on the regional and local geology of the landfill area, including soil conditions, groundwater conditions, local topography, surface drainage and local groundwater quality, as well as addressing environmental concerns and presenting a recommended closure plan. A copy of the "Former Landfill Investigation and Closure Plan" is included in Appendix A of this report.

Previous reports detailing some of the area characteristics were used as references for the above mentioned report. These previous reports are presented in Appendices B and C. These reports are:

Somerset Railroad Project, Hydrogeologic Study,
 Danielewicz Route, Station 51+810 to 52+330', February,

1

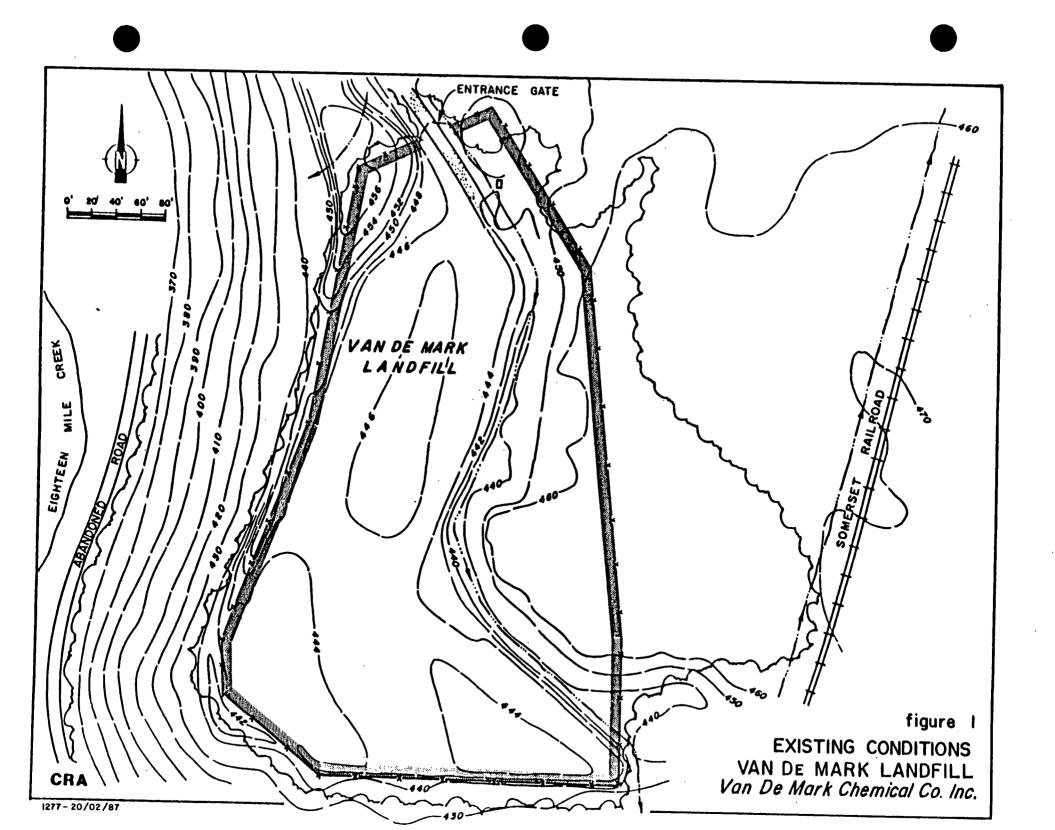
1982 by Bechtel Associates Professional Corporation (Appendix B).

 Closure Plan for Solid Waste Management Facility Van De Mark Chemical Co. Inc., Lockport, N.Y.', July 1, 1982 by William W. Whitemore, Consulting Engineers (Appendix C).

The "Former Landfill Investigation and Closure Plan" was subsequently submitted to the New York State Department of Environmental Conservation (DEC) and the U.S. Environmental Protection Agency (EPA) for review. Comments made by the DEC/EPA, and subsequent Van De Mark responses to the DEC/EPA comments, are included in Appendix D of this document.

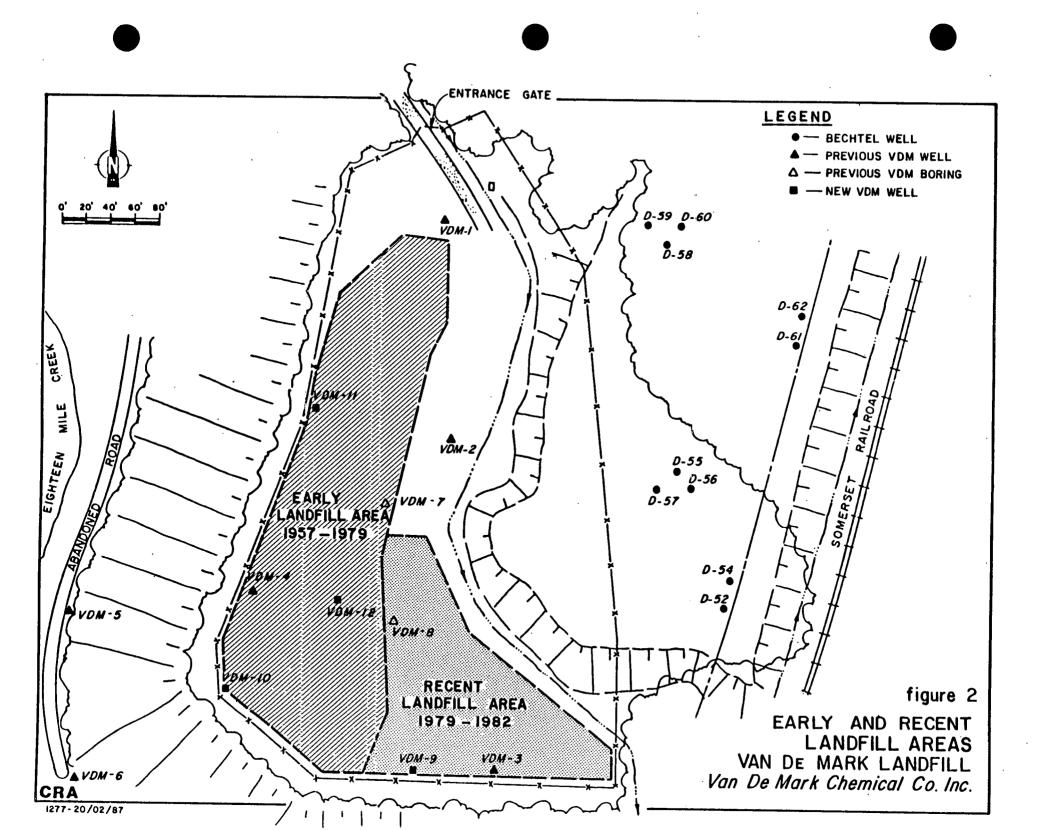
Based upon the comments received and analytical data from a recent sampling program, it was deemed necessary to revise the originally proposed closure plan. The purpose of this document is to present the updated Closure Plan. This document provides the details for the following aspects of the Closure Plan:

- Construction of final cover
- Quality assurance of construction
- Provisions for surface water drainage
- Security and site access
- Post-closure monitoring plans


- Post-closure maintenance plan
- Environmental contingency plans
- Estimated costs closure

- post closure

- Estimated closure schedule


The former Landfill area is located on a relatively flat plateau, located approximately 80 feet above Eighteen Mile Creek and approximately 275 yards west of the Van De Mark Chemical Plant. The Creek flows along the western and southern boundaries of the Site. The northern and eastern limits of the Landfill Site are bordered by a ridge which rises approximately 25-feet above the site to a second plateau. A general site plan indicating surface contours is shown in Figure 1. See also Plan 1.

A small berm, one to two feet in height, extends along the edge of the western and southern disposal limits to prevent on-site surface water discharge over the embankment to Eighteen Mile Creek. A drainage ditch is located along the east and northeast boundaries of the landfilled area. This drainage ditch channels surface water flow toward the railroad track and subsequently into Eighteen Mile Creek.

The Van De Mark Landfill can be subdivided into two major disposal areas as shown by Figure 2 and Plan 2. The Western region consists of an area which was used for waste disposal between 1957 and 1979 by Van De Mark Chemical. In this area, landfilling methods were generally random, consisting of excavation, disposal and covering. The waste consisted mainly of drums of silicon tetrachloride (SiCl4) and chlorodisiloxane formed as by-products during the commercial production of silicon tetrachloride.

The Eastern region of the landfill was used for the disposal of similar by-products as well as carbon and silicon carbide. Such waste was disposed of according to Permit 2111, issued February 9, 1979 and which expired in February 1982. The drummed waste was deposited in pits on a base of crushed limestone and backfilled with crushed limestone. The drums were then perforated to enhance the neutralizing of the waste. The cover consisted of bags of finish lime and agricultural lime beneath an earthen cap of red silty clayey soils. Upon expiry of Permit 2111 VDM began disposal of pretreated wastes to the Lockport Wastewater Treatment Plant.

On May 12, 1986, a sample collection program was conducted at the Van De Mark Landfill by AES. The intent of the program was to provide supplemental data and to provide confirmation of the analytical information presented from the April 1984 sampling program. Samples were collected from the following: groundwater monitoring wells VDM 9, 10, 11 and 12; water from the ditch adjacent to the Landfill; and from upstream and downstream locations on Eighteen Mile Creek. The samples were analyzed for chlorides, total recoverable phenols, total organic halides, pH, and priority pollutant volatiles, PCBs and pesticides, base/neutral extractables, acid extractables and metals.

Table 1 presents a summary of the analytical results. Complete analytical results are detailed in Appendix E. Figures 3 and 4 illustrate the locations of all of the wells in the landfill area and the creek sampling stations respectively.

The analytical results indicate that zinc levels have risen over 1984 levels but in general the water quality is very similar to 1984 conditions.

ANALYTICAL RESULTS OF SAMPLES COLLECTED MAY 12, 1986

Analytical Paramoter(s)	Method No.	Det. Limits	VDM 9 5/12/86	VDM 10 5/12/86	VDM 11 5/12/86	YUM 12 5/12/86	UPSTREAM 18MI CREEK 5/12/86	DOWNSTREAM 18M1 CREEK 5/12/86	DITCH 5/12/86	F TELD RLANK 5/12/86
Chiorides mg/L Total Recoverable Phenois, mg/L Total Organic Haildes, mg/L pH	407B 420+1 9020	1 0.01 0.001	18,000 (15068) 0.01 4.30 (4.79)	6,470 (7730) 0.54 6.18 (5.32)	4,803 (1859) 0.23 2.20 (2.37)	57,200 (53593) BDL (0.08) 2.81 1.83 (4.01)	34 . 4 0 . 01 7 . 89	40.1 BDL 8.13	2,385 BDL 4.66	BDL*
PURGEABLE HALOCARBONS micrograms/liter, or ppb Bromodichioromethane Bromomethane Carbon Tetrachioride Vinyi Chioride Chioroethane 2-Chioroethyivinyi Ether Chioroethane Dibromochioromethane Trichicrofiuoromethane Trichicroethene 1,1,2-Trichioroethane	601 601 601 601 601 601 601 601 601 601	10.0 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	801 HDL BDL 6 - 36 (BDL) BDL BDL 163 (169) BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL 5.97 (98) BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL 72.9 (196) BDL BDL BDL BDL BJL 6.75 GDL		BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	801, 801, 804, 804, 804, 804, 804, 804, 804, 804	60L 801, 801, 801, 801, 801, 801, 801, 801,	001 601, 601, 601, 801, 801, 801, 801, 801, 801, 801, 8

* BDL - Below Detection Limit

··

continued....

.

.

ANALYTICAL RESULTS OF SAMPLES COLLECTED MAY 12, 1986

Analytical <u>Parameter(s)</u> Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane	Method <u>No.</u> 601 601	Det. <u>Limits</u> 5.0 5.0	VDM 9 <u>5/12/86</u> BDL BDL	VDM 10 5/12/86 BDL BDL	VDM 11 5/12/86 BDL BDL	VUM 12 5/12/86	UPSTREAM 18M1 CREEK 5/12/86 BDL BDL	DOWNS TREAM 18MI CREEK 5/12/86 BOL BOL	DI FCH 5/12/86 BDL	F IELD BLANK 5/12/06 BIA
1,1-Dichi oroe thene 1,1-Dichi oroe thene Trans-1,2-Dichi oroe thene 1,2-Dichi oropropane Cis-1,3-Dichi oroe thene Trans-1,3-Dichi oroe thene Methylene Chi or ide 1,1,2,2-Tetrachi oroe thene Tetrachi oroe thene 1,1,1-Trichi oroe thene	601 601 601 601 601 601 601 601	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	32.0 BDL 5.43 BDL BDL BDL - 34.3 (263) 257 46.0 BDL	9.91 BDL BOL BOL BOL BOL BOL BOL BOL	5.45 BDL BDL BDL BDL BDL 168 (232) BDL 71.6 (230) BDL		BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BNL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL 15.2 BDL BDL BDL BDL BDL BDL 6.45 BDL 6.45	602 601 601 602 602 601 601 601 601 601
VOLATILE ORGANICS micrograms/liter, or ppb Chioromethane Vinyi Chioride	624 624	10 10				490 (858) B()L				5.12

continued...

.

:

.

.

ANALYTICAL RESULTS OF SAMPLES COLLECTED MAY 12, 1986

Analytical Parameter(s)	Method No.	Det. Limits	VDM 9 5/12/86	VDM 10 5/12/86	VDM 11 5/12/86	VDM 12 5/12/86	UP STRE AM 18M1 CREEK 5/12/86	DOWNSTREAM 18MF CREEK 5/12/86	DITCH 5/12/86	F IELD BLANK 5/12/86
Chloroe thane	624	10				0.04				
Bromomethane	624	10				BDL				
2-Chloroethyl Vinylether	624	10				BDL.				
Ethylbenzene	624	10				BIAL				
Methylene Chloride	624	10				BDL				
Chlorobenzene	624	10				180 (898)				
1,1-Dichioroethylene	624	10				BDL				
1,1-Dichloroethane	624	10				BDL				
trans-1,2-Dichloroethylene	624	10				BDL				
Chloroform	624	10				BDL				
t,2-Dichloroethane	624	10				360 (616)				
1,1,1-Trichtoroethane	624	10				BDL				
Carbon Tetrachloride	624	10				BOL				
Bromod I chl orome thane	624	10				38 (20)				
1,2~Dichioropropane	624	10	•			BDL				
trans-1,3-Dichloropropene	624	10				BDL				
Tr Ichloroethylene	624	10				801.				
	•					13				

.

.

continued...

.

ANALYTICAL RESULTS OF SAMPLES COLLECTED MAY 12, 1986

Analytical Paramater(s)	Hethod No.	Det. Limits	VDM 9 5/12/86	VDM 10 5/12/86	VUM 11 5/12/86	VDM 12 5/12/86	UPSTREAM 18MI CREEK 5/12/86	DOWNSTREAM 18M1 CREEK 5/12/86	D [Ci] 5/12/86	F IELD BLANK 5/12/86
Benzene cis-1,3-Dichloropropene t,1,2-Trichloroethane Dibromochloromethane Bromoform 1,1,2,2-Tetrachloroethylene 1,1,2,2-Tetrachloroethane Toluene	624 624 624 624 624 624 624 624	10 10 10 10 10 10 10				BOL BOL BOL BOL BOL 140 (120) 43 BOL				

PCBs AND PESTICIDES

Groundwater sample from VDH-12 tested. No PCB's or pesticides found above detection timits.

continued...

:

·

.

.

ANALYTICAL RESULTS OF SAMPLES COLLECTED MAY 12, 1986

Analytical Parameter(s)	Method No.	Det. <u>Limits</u>	VDM 9 5/12/86	VDM 10 5/12/86	VDM 11 5/12/86	VDM 12 5/12/86	UPSTREAM IBMI CREEK 5/12/86	DOWNS THE AM 18MI CREEK 5/12/86	DI TCH 5/12/86	F IELD BLANK 5/12/86
BASE/NEUTRAL EXTRACTABLES										

.

.

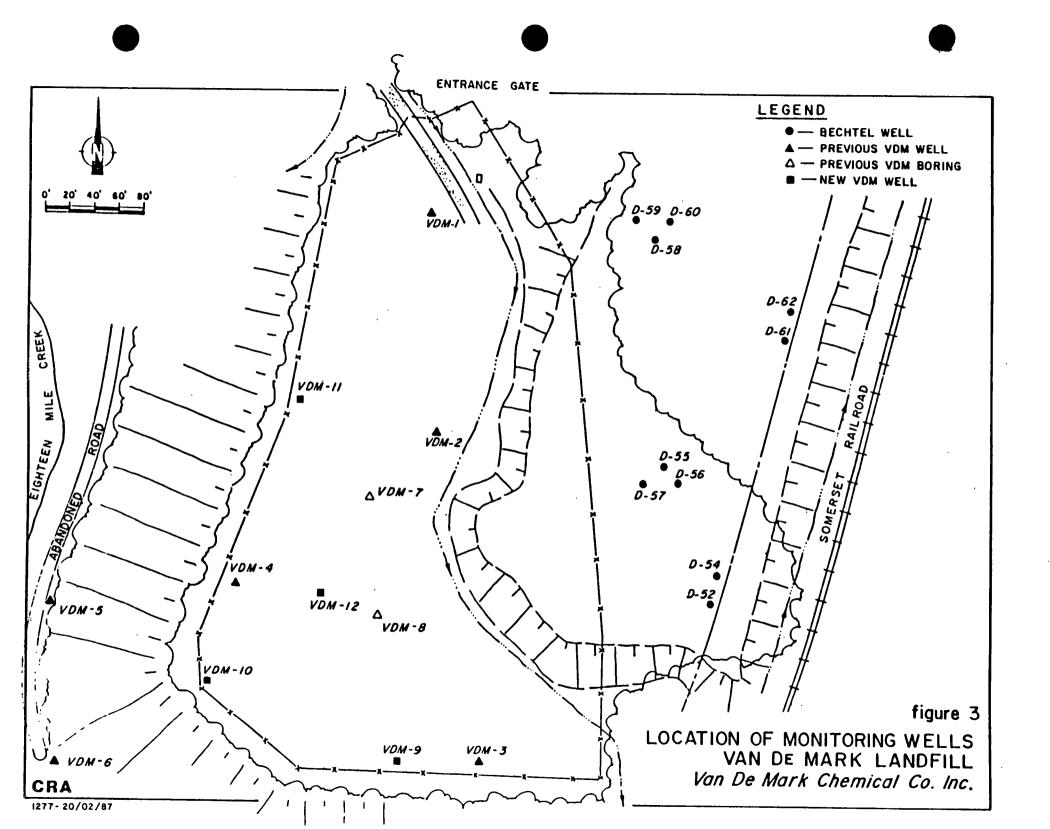
Groundwater sample from VDH-12 tested. No Base/Neutral Extractables found above detection limits. During analysts of VDH-12 sample of January 24, 1984, Octylphthalate was found at 100 ppb.

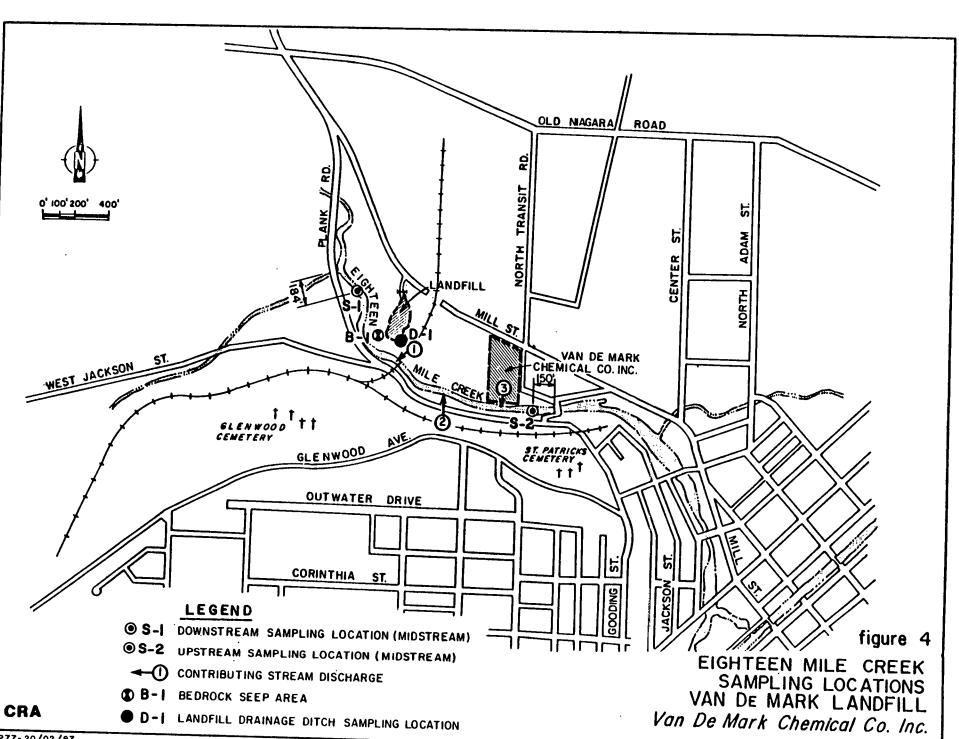
ACIDS

Groundwater sample from VDH-12 tested. No acids found above detection limits.

continued...

TABLE I


ANALYTICAL RESULTS OF SAMPLES COLLECTED MAY 12, 1986


Analyticat Parameter(s)	Method No.	Det. Limits	VDM 9 5/12/86	VDM 10 5/12/86	VDH 11 5/12/86	VDM 12 5/12/86	UPSTREAM 18MI CREEK 5/12/86	DOWNSTREAM 18M1 CREEK 5/12/86	DI TCH 5/12/86	F TELD HLANK 5/12/86
METALS milligrans/liter, or ppm Arsenic (As) Beryltium (Be) Cadmium (Cd) Chromium (Cr) Copper (Cu) iron (Fe) Lead (Pb) Mercury (Hg) Nickei (Ni) Selenium (Se) Silver (Ag) Thallium (Ti) Zinc (Zn)	206 .2 210 .1 213 .1 218 .1 220 .1 236 .1 236 .1 239 .1 245 .1 249 .1 270 .2 272 .1 279 .1 289 .1	0.005 0.050 0.50 0.20 0.20 1.00 0.001 0.50 0.005 0.10 1.00 0.050	0.181 0.084 (0.028) BDL (0.096) 1.4 (0.19) 6.0 (7.8) 1,965 2.17 (0.75) 0.006 3.70 (1.73) BDL (0.21) BDL (0.85) 1,150 (3.05)	0.023 BOL BDL (0.04) BDL (0.16) 0.45 (0.29) 1,920 BUL (0.07) 0.005 BDL (0.31) BDL BUL (0.06) BDL (0.3) 0.51 (1.14)	0.105 BDL (0.016) BDL (0.017) BDL (0.19) 1.09 (0.51) 3,250 BDL (0.1) 0.002 0.86 (0.6) BDL BDL (0.06) BDL (0.2) 1.19 (2.92)	4.0 0.38 (0.186) BDL (0.294) 8.1 (5.26) 29 (57) 14,500 27 (22.2) BDL 1.94 (26.6) 0.017 BDL (0.87) BDL (1.23) 1,360 (497)	801 801 801 801 801 801 801 801 801 801	BDL BDL BDL DL BDL 0.74 BDL DL BDL BDL BDL BDL BDL BDL 0.22	BDL BDL BDL BDL 500 BDL 0→004 0→68 BDL BDL BDL BDL BDL BD1, 0→33	

:

Notes: Analytical Results given in brackets are the highest results from previous sample rounds by AES.

.

1277-20/02/87

Based upon the results of investigations by AES and CRA, it is apparent that the groundwater beneath the Van De Mark Landfill has been impacted by the placement of waste materials. Analytical data from groundwater samples collected from VDM12 (located in the middle of the landfill) reveal high concentrations of chlorides (52,000 ppm) and iron (10,000 ppm) and a low pH (4). Elevated concentrations of soluable metals (i.e. chromium - 8.1 ppm, and zinc -1,360 ppm) and purgeable halocarbons (i.e. chloroform -616 ppb, and chloromethane - 858 ppb) were also evident. Samples from monitoring wells VDM9, VDM10, and VDM11 as well as from the drainage ditch along the eastern limits of the landfill revealed some migration of various chemical components but at low concentrations. Surface water samples from upstream and downstream locations along Eighteen Mile Creek indicate that there is no measurable impact on Eighteen Mile Creek by the Van De Mark landfill site. See Table 1. Since the north shore of Eighteen Mile Creek is the site property boundary no off-site impact is occuring.

The principle mode of contaminant migration from the site is via groundwater flow. The main driving force behind groundwater flow is infiltrating precipitation which collects on the relatively flat, porous surface of the landfill area. The groundwater descends vertically through

the fill layer, enters the groundwater flow regime in the bedrock and moves southerly towards the embankment. As indicated by the "Former Landfill Investigation and Closure Plan" the major flow paths through the bedrock are lateral.

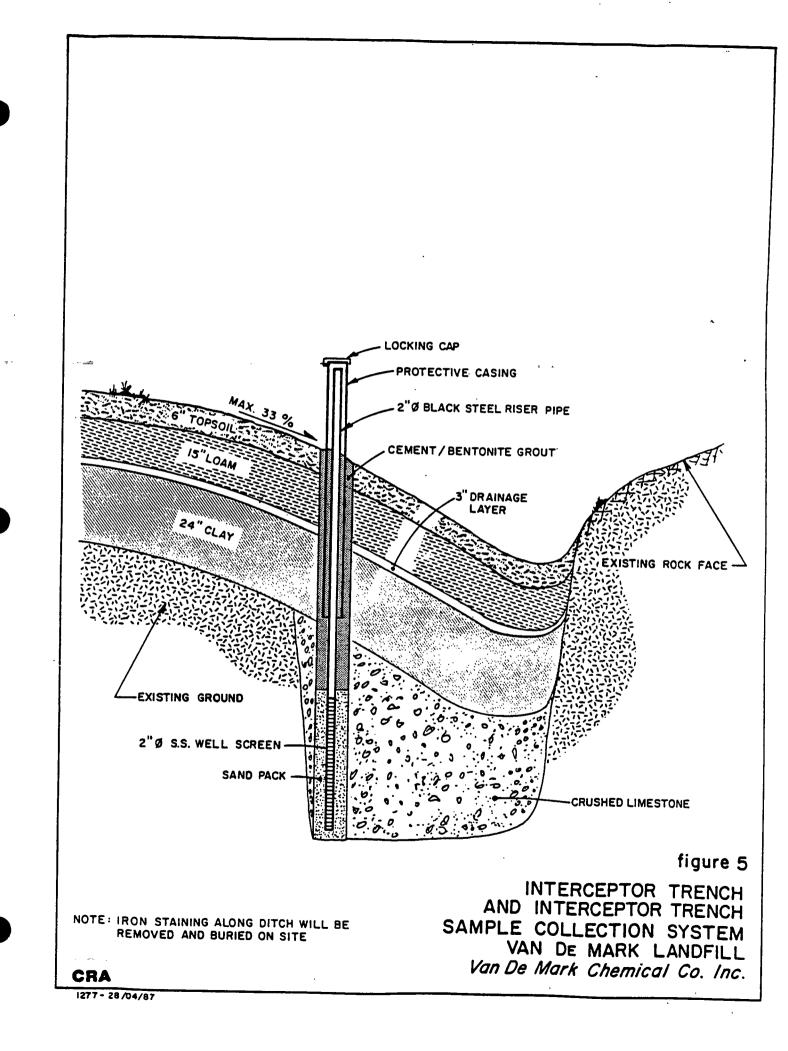
In general, the proposed closure plan is based upon the implementation of a low permeable clay cover over the former Landfill area to reduce infiltration and therefore the migration of landfilled contaminants. A layer of lime powder will be placed over the waste material prior to cap construction for the purpose of pH control. Precipitation penetrating through the cap will contact the lime and provide a buffering action to combat the low pH levels in the waste areas. A pan-lysimeter will be installed beneath the cap to measure the amount of any such infiltration through the cap. The surface of the cover will be graded such that a major portion of the surface runoff will flow east into the drainage ditch, while runoff from the remainder of the site will flow over the embankment to the west and south of the Landfill (see Plan 3 and Plan 4).

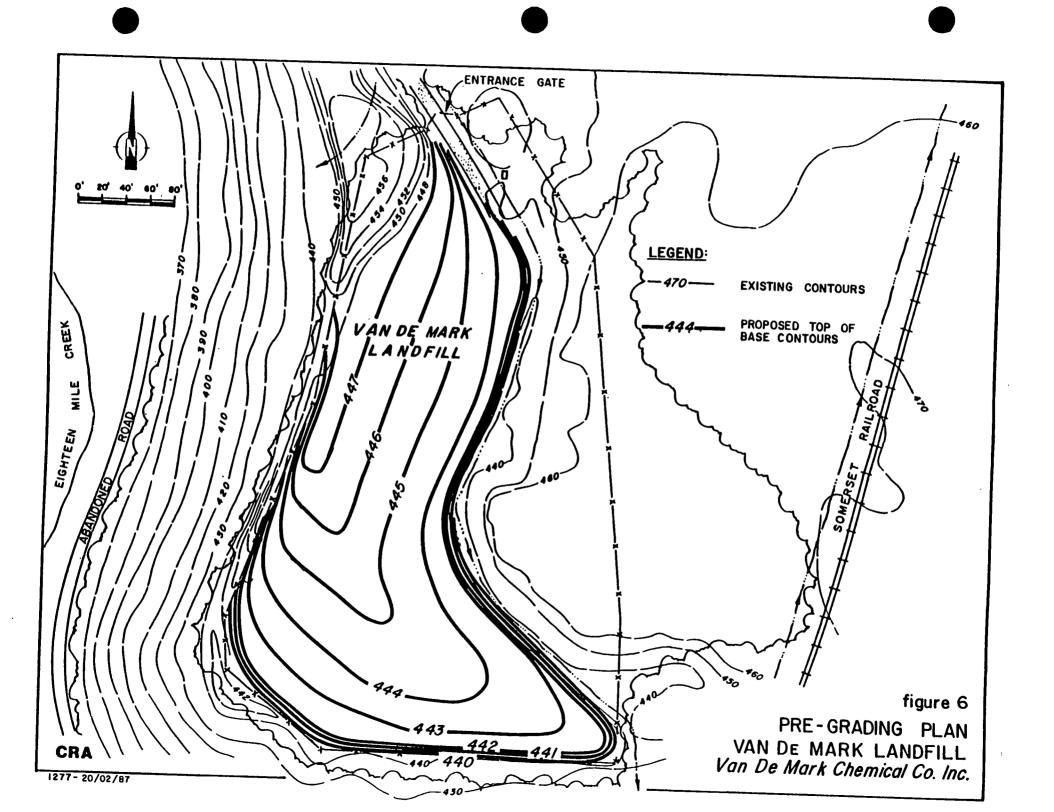
The existing drainage ditch traversing along the eastern limits of the Landfill area will be lined with clay to restrict the infiltration of ditch flow into the landfilled soils. Conversely, in order to prevent groundwater seepage from the landfilled area continuing to discharge into the ditch and along the underside of the clay

lining to an off-site discharge point, an interceptor drain will be dug near the downstream end of the ditch. The trench will extend from the underside of the clay ditch lining to a depth of two feet and will be backfilled with crushed limestone. Any seepage flowing along the clay lining will be intercepted and buffered then reenter the groundwater flow regime (see Figure 5).

In summary, the recommended closure plan will consist of the following:

- a) Site grading and proof-rolling
- b) Installation of a pan-lysimeter
- c) Lime application
- d) Installation of interceptor trench in ditch
- e) Construction of a two-foot clay cover including lining of ditch with clay
- f) Addition of loam and drainage layers
- g) Addition of topsoil layer and application of seeding
- h) Implementation of maintenance program
- i) Implementation of post-closure monitoring program


The initial step of the closure plan construction involves the clearing and grubbing of the site. Any vegetation cleared from the site will be disposed of at a sanitary landfill site. Following clearing and grubbing, the site will be pre-graded according to the pre-grading plan (see Figure 6). Disturbance of existing cover soils over the landfilled areas will be minimized to the extent practicable during pre-grading of the site.


Where appropriate, areas of existing topsoil will be stripped and stockpiled for future use. Large surface debris (i.e. concrete, boulders) will be buried beneath the cover in the northeast section of the Landfill.

The entire site will be proof-rolled (20 ton <u>+</u> static weight). Any settlement due to proof-rolling will be backfilled, graded and proof-rolled again. Proper proof-rolling of the site will reduce cover settlement following closure.

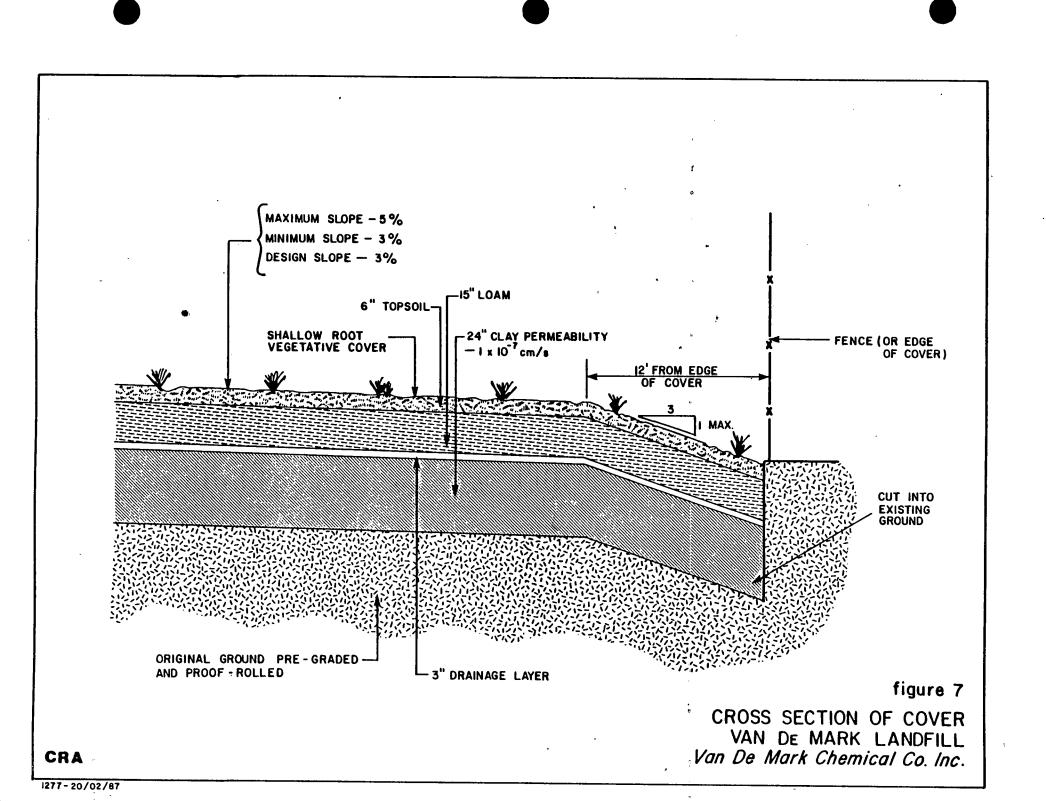
In conjunction with the pre-grading the pan-lysimeter will be installed. Further consideration is required prior to design of the pan-lysimeter.

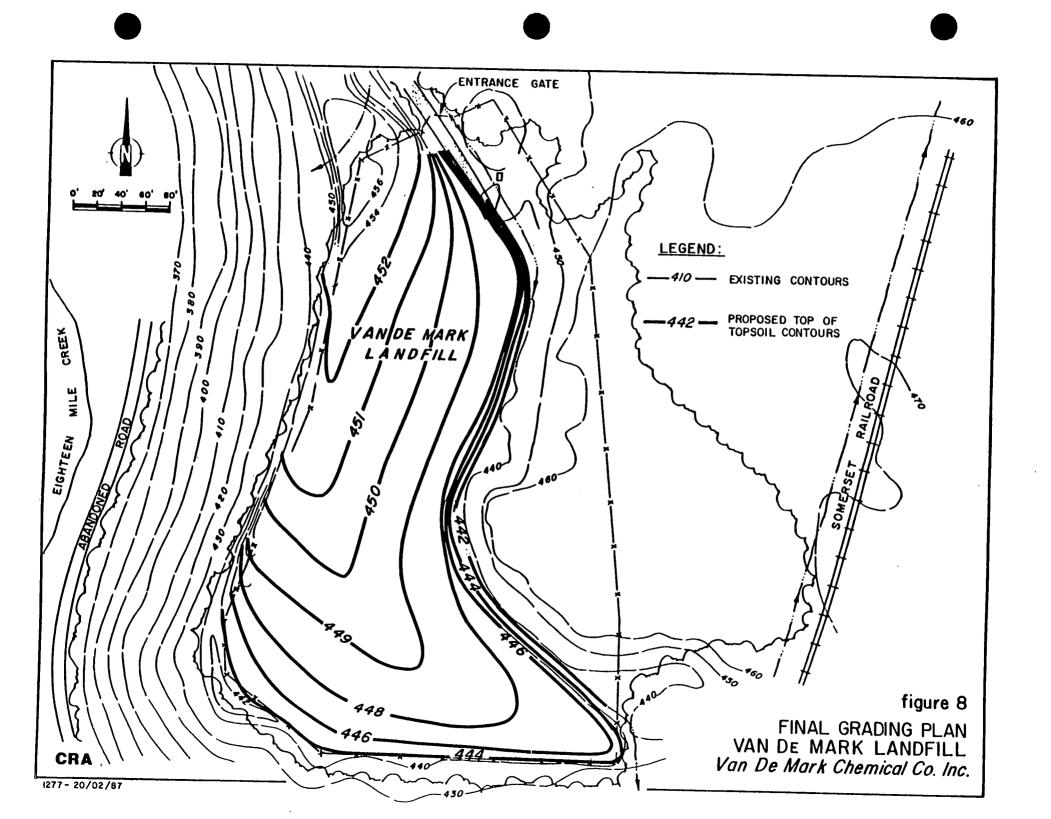
Following pre-grading and proof-rolling, powdered lime will be added to the entire surface of the site at a rate of application of 0.1 pounds per square foot.

The entire Van de Mark Landfill area will be covered with a low permeability cap to reduce precipitation infiltration. The final cover will consist of:

- vegetative cover (grass)

- 6-inch thick topsoil layer


- 15" thick loam layer


- 3" sand drainage layer

- 24-inch thick clay layer.

A typical cross section of the clay cap is presented on Figure 7. The areal extent and final surface elevations of the cover are presented on Figure 8. The clay will be placed and compacted to a hydraulic conductivity of 1 x 10-7 cm/sec or less.

The six-inch thick topsoil layer will be placed on top of the loam layer and will be planted with a persistent vegetative species. The vegetative cover will have a shallow root system. The surface slope of the final cover has been designed at three percent slope, but will never exceed five percent or be less than three percent. Effective vegetation and the proper slope of the cover surface will effectively minimize erosion. Any erosion that does occur will be suitably addressed by the maintenance program.

Settlement of the proposed cover will be minimal as existing fill to be covered has had some time to settle and will be proof-rolled during the site grading program. Use of good quality materials and adequate compaction of same during construction of the proposed cover will also minimize settlement following closure. Due to the flexibility of the clay layer it is apparent that minor settlement will have very little effect on the permeability of the cover.

The proposed cover design minimizes the effects of freeze thaw cycles. The depth of frost penetration in the area is on the order of 36 inches, such that 12 inches of the clay layer remains below the depth of frost penetration.

Due to the nature of the fill disposed at the site, biodegradation or volatilization is not a concern. As a result, it will not be necessary to install a venting system to relieve generated gases.

8.1 MATERIAL SPECIFICATIONS

All materials used to construct the final cover will be approved by the Site Supervisor prior to use to ensure they meet the required specifications as described in the following:

a) Clay

Clay for the final cover construction will be clayey soil obtained from sources as directed by the Site Supervisor. Clay material will have a permeability of 1×10^{-7} cm/sec or less, with a minimum of 45 percent fines passing the 200 sieve (clay, classified as CL or ML under the Unified Soils Classification System or defined by ASTM D-421-58 and D-422-63 procedures).

b) Sand

Sand for the drainage layer will be imported clean material from a source approved by the Site Supervisor. The sand shall have a minimum hydraulic conductivity of 1 x 10^{-3} cm/sec when remolded at 95 percent Standard Proctor Density at Optimum Moisture Content.

c) Loam

Loam material for the construction of the cover will be an imported clean sand or gravel fill which shall contain a minimum of 30 percent by volume of topsoil from a source approved by the Site Supervisor. Soil stockpiled during grading of the landfill site and soils from other VandeMark property will be used in construction of the cover as is suitable. In addition the topsoil requirements defined below shall apply to the loam.

d) <u>Topsoil</u>

Topsoil will be fertile loamy material free from roots, vegetation, weed, parts of weeds, weed seeds and other debris. The source of topsoil will be an area free from growth of Quackgrass, Japanese Clover, Horsetail, Morning Glory, and other persistent weed plants. Topsoil will be free from stones and clods over two inches in diameter.

Topsoil will not be obtained from swampy areas and will not be infested with the seeds of noxious weeds. The pH of the topsoil will be between 5.5 and 7.0.

Topsoil will be inspected and approved by the Site Supervisor prior to delivery to the job site. Topsoil of suitable quality from Van De Mark property will be incorporated into the final cover.

8.2 CONSTRUCTION QUALITY ASSURANCE PLAN

a) <u>Clay Placement</u>

Clay for the lower component of the final cover will be placed in 6-inch horizontal lifts compacted to a Modified Proctor Density determined to achieve a maximum permeability of 1.0 x 10^{-7} cm/sec for that clay as outlined in ASTM 1557, at a moisture content of -1 to +3 percent of its optimum moisture content as determined periodically by the Site Supervisor. During placement of the clay liner, grain size and moisture content determinations will be made for every 1,000 cubic yards of clay; and liquid limit, plasticity index and triaxial permeability will be determined every 5,000 cubic yards of clay. Compaction tests and moisture density determinations will be carried out in place by a soils technician, at a frequency of nine tests per acre per 6-inch lift. Following construction, in situ samples of the clay cap will be collected and tested for hydraulic conductivity at a frequency of one per acre of completed cap.

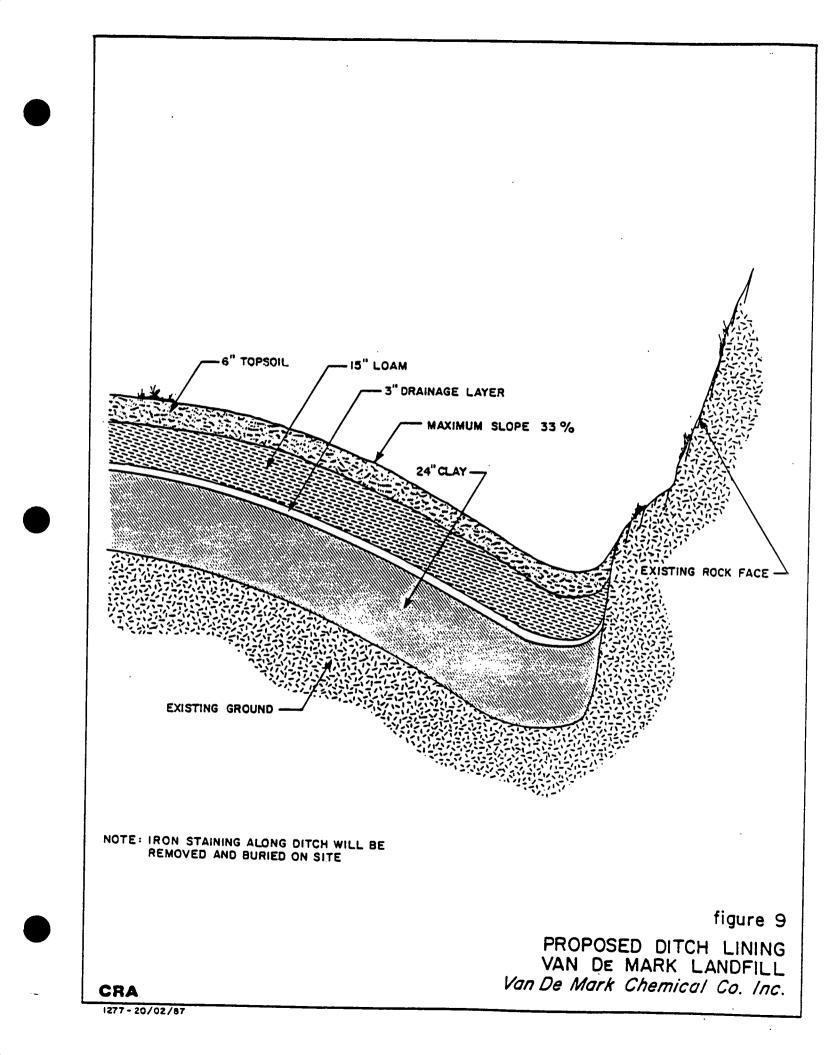
The clay component of the final cover will be sloped at a minimum two-percent grade.

All clay placed will meet compaction specifications. Should compaction specifications not be met, the affected area will be reworked and recompacted until subsequent testing confirms compliance with the specifications. Clay will not be placed until underlying lifts have been approved by the Site Supervisor.

b) Drainage Layer and Loam Placement

Following placement of clay layer a 3-inch layer of clean sand will be spread and compacted to 90% Standard Proctor Density over the 24-inch depth clay layer. 15 inches of loam will then be placed over the sand drainage layer. The loam will be placed and compacted in two lifts (each lift no greater than 8 inches thick) to 90% Standard Proctor Density.

c) <u>Topsoil</u>


Six inches of topsoil will be evenly and uniformly spread over the capped area following final grading of the loam.

Prior to seeding, fertilizer with a nitrogen/phosphoric acid/pot ash rating of 10/20/20 will be applied to the topsoil for purposes of soil enhancement. The fertilizer application rate will be 300 lb/acre. If a neutral or mildly alkaline silt loam is used for topsoil, the addition of lime will not be necessary.

A combination of Kentucky bluegrass and rye grass (at a ratio of 4:1) will be planted over the cover to reduce infiltration and erosion from wind and rainfall. Rye grass is an especially fast grower, able to survive dry conditions, and is a perennial plant. The Kentucky bluegrass has a shallow and strong root system, requires moderate maintenance, and is also a perennial plant. In combination, this provides an effective vegetative cover. A neutral or mildly alkaline silt loam is favorable to the grass. Suggested seed density for Kentucky bluegrass is 3 lb of seed per 1,000 square feet. This is equivalent to approximately 130 lb of seed per acre. With a 4:1 application of Kentucky bluegrass to rye grass, this amounts to 104 lb/acre and 26 lb/acre, respectively.

As-built engineering drawings noting final clay cover elevations, topsoil elevations, final drainage features, monitoring device locations and elevations, test locations and any deviations from the approved plans, shall be provided. One east-west and one north-south cross-section through the completed area shall also be generated for cap certification. Once completed, all soil test reports, inspection reports, photographs of all major activities along with the construction certification plans (as-constructed drawings), shall be submitted to the NYSDEC. It is proposed that the post-closure drainage pattern be similar to the existing pattern in that as little flow as possible be directed over the embankment bordering the Western and Southern limits of the Landfill. By diverting the majority of the flow toward the eastern ditch erosion of the embankment will be minimized. The proposed final grading plan (Figure 7) illustrates the surface drainage configuration.

It is proposed that the existing ditch be lined with clay and in fact will be an extention of the clay cap for the site. The ditch lining will be built to the same specifications as the site cap. The side slope of the ditch will have a maximum slope of 33 percent. A typical detail of the ditch lining is presented in Figure 9.

Security for the Van De Mark Landfill Site will be maintained by the existing six-foot high chain link fence. The entire fence will be inspected at the conclusion of capping construction and repaired as necessary.

The existing gates will be maintained and kept locked at all times when the site is not being supervised by Van De Mark personnel.

The existing site access road shall be maintained in reasonable condition to provide vehicular access to the site. No on-site access road will be constructed.

The purpose of the post-closure monitoring program is to monitor the effectiveness of the closure construction for containing the migration of the contaminants within the landfilled area. The program consists of the collection and analysis of a series of groundwater and stream samples at regular intervals. The samples will be analyzed for the site specific parameters which include the following:

- pH (measured in the field)

- purgeable halocarbons (method 601)

- chlorides (method 407B)

- soluable metals: arsenic (method 206.2)

chromium (method 218.2) iron (method 236.1) lead (method 239.2) mercury (method 245.1) zinc (method 289.1)

The sampling locations will include: - monitoring wells VDM 9, VDM 10, VDM 11, VDM 12, and D-55; - the effluent from the drainage ditch east of the Landfill; - the seep in the area of the southwest corner of the Landfill; and, - upstream and downstream locations of Eighteen Mile Creek. Sampling Protocols are outlined in Appendix F.

Samples will be collected according to the following schedule:

Initial 18 Months following closure - quarterly 18 Months to end of year 3 following closure - semi-annually Years 4 and 5 following closure - annually Years 5 to 30 following closure - every five years

Prior to each sampling round, one complete set of groundwater elevation measurements will be made using all of the wells that have been installed on the landfill site proper.

The results of each sampling event will be submitted to the NYSDEC within one week of receipt of the analytical data.

In order to evaluate the performance of the clay cap, a lysimeter will be installed on the Site. During the regular sampling events outlined for the post-closure program, the water level in the lysimeter will be measured. This measurement will be converted into an estimated infiltration rate of the clay cap, compared to the required cap permeability of 1 x 10^{-7} cm/sec and reported along with the analytical results to the NYSDEC.

Following each post-closure monitoring event, the analytical data will be reviewed for accuracy and evaluated to determine whether there have been any significant changes in the landfill conditions. The purpose of the contingency program is to outline the required remedial actions to be taken, where appropriate, based on observations made during post-closure monitoring program activities.

The mechanism which will trigger the implementation of the contingency program will be a significant impact measured in the stream. This will be done by monitoring water quality trends in the stream. Should this monitoring identify a significant increase in chemical parameter, a reassessment of the remedial action will be undertaken.

The initial step of the contingency plan is to notify the NYSDEC representative assigned to the site. The second step is to verify the increase by taking two additional samples at the sample location(s) in question, and analyzing for the particular parameter(s). This must be done within one month of receipt of the analytical data. If the increase is verified, a study will be initiated to determine the cause of the increase and the potential consequences. Within six months of the initial receipt of analytical data

23

which triggered the contingency program, a report must be submitted to the NYSDEC, which details these causes and consequences, as well as the recommended remedial action. Following site closure, the site will be inspected semi-annually. The site will be inspected with regards to:

- a) cover integrity;
- b) ditch lining integrity and presence of iron staining;
- c) condition of vegetation over the cover;
- d) drainage conditions and
- e) condition of the fence surrounding the site.

A log will be maintained of the inspections for a minimum of six years from the date of inspection. The log will indicate the name of the inspector, item of inspection, date and time of inspection, observations, and date and nature of remedial action(s).

Any deficiencies noted during inspection will be addressed immediately.

Any settlement of the cover, should it occur, in excess of 12 inches will be remedied by removal of the topsoil, loam and drainage layer and subsequent backfilling with additional clay to top of clay grades and replacement of the drainage layer, loam and topsoil, properly compacted.

25

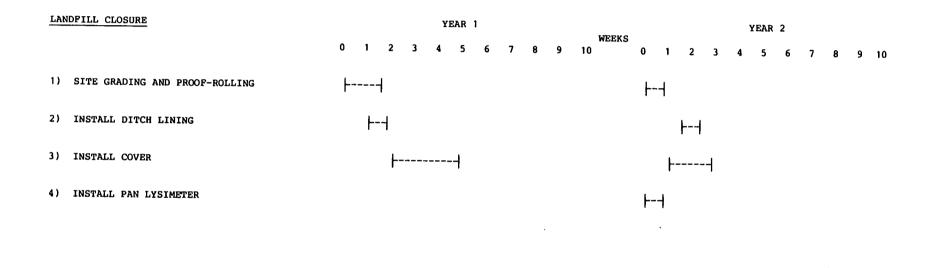
Any erosion of the cover will be repaired by reconstruction of the cover in the eroded area. If necessary sod will be used to re-establish vegetative cover.

. .

.

The closure plan construction activities will be completed in two phases. Each phase will be completed in one of two consecutive construction seasons (years).

During the initial construction phase (Year 1) the entire site will be cleared and grubbed, proof-rolled and graded. A portion of the site cover, approximately the southern half of the site, will be completed including clay, drainage layer, loam, topsoil and seed and mulch during Year 1.


Year 2 construction activities will begin with regrading of the area remaining to be covered, and any repairs or upgrading required of Year 1 installations. Following these activities the lysimeter will be installed and the construction of the cover and ditch lining will be completed.

The estimated schedule is presented in Figure 10.

27

FIGURE 10

SCHEDULE OF LANDFILL CAPPING AND CLOSURE ACTIVITIES

It is to be noted that site capping is a warm weather construction project and as such could not be undertaken during the winter months. Closure is tentatively scheduled to begin in the spring of 1987, with completion being expected by summer of 1988. The estimated costs for closure of the Van De Mark Landfill in accordance with the specifications contained herein are on the order of \$261,000. Table 2 provides a breakdown of the cost components included in this estimate.

The estimated annual monitoring, maintenance and seepage collection/treatment costs for the site are as follows:

Monitoring-Year 1	\$14,400
-Year 2	\$10,800
-Year 3	\$ 7,200
-Years 4 and 5	\$ 3,600
-Thereafter	\$ 700

Maintenance (Cap and Collection System) \$ 4,000 annually

TABLE 2

COST ESTIMATE SOLID WASTE MANAGEMENT FACILITY CLOSURE

ITEM

B)

.

A) Site Preparation

1.	Site Grading and Proof-Rolling 2.5 acres @ \$1,200/acre	i	\$ 3,000.
2.	Application of Powdered Lime 2.5 acres @ \$2,000/acre	:	\$ 5,000.
3.	Survey Crew to set and check grades 2.5 acres @ \$1,000/acre	:	\$ 2,500.
	SECTION A Subtotal		\$10,500.
<u>Cla</u>	y Cover Installation and Testing		
1.	24-inch clay layer installation 8,000 c.y. @ \$11.00/c.y.	\$	88,000.
2.	Placement of 3-inch sand drainage layer 1,000 c.y. @ \$17.00/c.y.	\$	17,000.
3.	Placement of 15-inch loam cover 5,000 c.y. @ \$12.00/c.y.	\$	60,000.
4.	Placement of 6-inch topsoil layer 2,000 c.y. @ \$12.00/c.y.	Ş	24,000.
7.	Application of seed and mulch 12,000 sq. yd. @ \$0.30/sq. yd.	\$	3,600.
6.	Testing a) Grain size and moisture content		
	 b) Liquid limit and plasticity 	\$	300.
	2 @ \$50/test	\$	100.
	<pre>c) Moisture-density measurements</pre>	\$	200.
	d) Remolded permeability tests 2 @ \$270/test	\$	600.
	e) In-place moisture-density 90 @ \$15/test	\$	1,350.
	f) Falling head permeability 10 @ \$220/test	Ş	2,200.

continued...

TABLE 2 (cont'd)

COST ESTIMATE SOLID WASTE MANAGEMENT FACILITY CLOSURE

ITEM							
7. Construct trench in drainage ditch and backfill with crushed limestone l L.S. @ \$1,000	\$ 1,000.						
8. Supply and install lysimeter l L.S. @ \$1,500	\$ 1,500.						
SECTION B Subtotal	<u>\$199,850.</u>						
C) <u>Closure Certification</u>							
 Certification by land surveyor 2.5 acres @ \$300/acre 	\$ 800.						
 Certification by professional engineer l L.S. @ \$1,000 	\$ 1,000.						
3. Closure Report - 1 L.S. @ \$5,000	\$ 5,000.						
SECTION C Subtotal	\$ 6,800.						
Estimated Cost Summary							
Estimated Cost Summary							
TOTAL SECTIONS A - C \$217,150							
MOBILIZATION/DEMOBILIZATION \$ 1							
CONTINGENCY (15 PERCENT)	\$ 34,000.						
TOTAL	<u>\$261,150.</u>						

Closure of the Van De Mark Landfill in accordance with the specifications described herein including capping, monitoring and maintenance, will reduce the migration of contaminants discharging with the groundwater beneath the site through a reduction in the driving force created through precipitation infiltration.

All of which is respectfully submitted,

Frank A. Rovers, P. Eng.

David E. Black, P. Eng.

ADDENDUM I

CLOSURE PLAN FOR VAN DE MARK LANDFILL

March 1987 ·

ંગ

#1277

This Addendum has been prepared in response to comments presented by the New York State Department of Environmental Conservation (NYSDEC) regarding the report entitled "Closure Plan - Former Landfill Site" for Van De Mark Chemical Company.

The NYSDEC has requested additional information regarding the following items of the Closure Plan:

- 1) Soil Loss
- 2) Clay Testing
- 3) Contingency Plan Cap Permeability

This addendum presents the requested information.

As part of the design of the final cover, erosion rate calculations have been completed based upon the United States Department of Agriculture (USDA) universal soil loss equation.

The estimated soil loss for that part of the cap having a maximum slope of 5 percent is 0.14 tons per acre. This is based upon the following assumptions:

- A tons/acre = RKLSCP = universal soil loss equation
- R = 70, Rainfall Erosivity Factor,
- K = 0.3; equivalent to cover soil consisting of loam having an organic matter content of approximately 4 percent,
- LS = 0.66; assumes longest slope at 5 percent is less
 than 150 feet in length,
- C = 0.01; assumes vegetative cover to be grass,
- P = 1; no land management practice to reduce erosion,
- The above factors have been interpreted from Tables 5,
 6, 7 and 8 and from Figure 20 as presented by the USEPA publication "Evaluating Cover Systems for Solid and Hazardous Waste, SW-867, September 1982".

Similarly, the calculation of soil loss was completed for the cap boundary area which has a slope as great as 33.3 percent over a 12 foot horizontal distance. The calculated soil loss based on the following assumptions for this slope is 0.84 tons per acre:

- R = 70, Rainfall Erosivity Factor
- K = 0.3; equivalent to cover soil consisting of loam having an organic matter content of approximately 4 percent,
- LS = 4.0; equal to a 30 percent slope 25 feet long,
- C = 0.01; assumes vegetative cover to be grass
- P = 1; no land management practice to reduce erosion.

The above soil loss quantities compare favorably with the recommended maximum rate of erosion of 2.0 tons per acre for any part of a cover as presented in the "Draft RCRA Guidance Document - Landfill Design - Liner Systems and Final Cover - Issued: 7/82". It is expected that a rate of runoff of less than 2.0 tons/acre will minimize potential gully development and will not significantly increase cover maintenance. The selection of the clay borrow source will be determined in part by a review of data submitted by the clay suppliers. This determination will be supplemented by a rigorous on-site inspection program which will include testing of each unit of clay prior to placement. Prior to placement, each 1,000 cubic yards of clay cover material will be tested for grain size distribution and moisture content determination. Liquid limit, plasticity index and triaxial permeability tests will be conducted prior to placement of each 5,000 cubic yards of clay.

Compaction tests and moisture density determinations will be carried out in place on the completed site at a frequency of nine tests per acre per lift of clay. In-situ samples of the clay cap will be collected and tested for hydraulic conductivity (falling head method) at a frequency of one per acre of completed cap. Table 1 further describes the clay placement quality control program.

TABLE 1

.

Test Description	Frequency	Clay Quantity	Quantity	Test Method	• •	mate Cost - Total)
Grain Size Distribution	1/1,000 cy	8,000 cy	8	ASTM D 422	\$120	\$ 960
Moisture Content	1/1,000 cy	8,000 cy	8	ASTM D 2216	\$ 30	\$ 240
Liquid Limit	1/5,000 cy	8,000 cy	2	ASTM D 423	4	• • • • •
Plasticity Index	1/5,000 cy	8,000 cy	2	ASTM D 424	\$ 50	\$ 100
Moisture-Density Curve	1/5,000 cy	8,000 cy	2	ASTM D 698 (5-15 blow modification)	\$ 8 0	\$ 160
Laboratory Permeability	1/5,000 cy	8,000 cy	2	ASTM D 698 (5-15 blow modification)	\$270	\$ 540
Moisture-Density	9/acre/lift	2.5 acres x 3 lifts	68	Nuclear Densitometer	\$ 15	\$1,020
Permeability	1/acre/lift	2.5 acres x 3 lifts	8	Falling Head	\$270	<u>\$2,160</u>

Estimated Testing Cost \$5,180

٠

ç

:

A pan Lysimeter will be installed at one location beneath the clay cover. The pan will measure 10'x10' and intercept moisture infiltrating through a 100 square foot area of the cap. Determination of infiltration will be made at six month intervals.

The Lysimeter will be calibrated such that infiltration can be determined by a simple water level measurement in the stand pipe connected to the Lysimeter. The water level will correspond to a calibrated volume of infiltration which in turn will be compared to the design infiltration rate of 1.0×10^{-7} cm/sec. A volume change of approximately 38 gallons is approximately equal to an infiltration rate of 1×10^{-7} cm/sec over six months.

If the volume of water intercepted by the Lysimeter is greater than 38 gallons for any six month period, the following contingency plan will be implemented:

- Increase the frequency of Lysimeter water level
 measurement/infiltration determination to monthly,
- Inspect integrity of cap, noting any subsidence, surface cracking, erosion and take immediate measures to restore the cap to within specified design criteria.

- If the cap appears to be in excellent condition then the cap must be inspected by excavating test pits and determining the condition of the clay layer itself.
- If the inspection and any subsequent repairs to the cap do not reduce the infiltration rate to below 1x10⁻⁷ cm/sec, VanDeMark and the NYSDEC will meet to discuss the situation.

5.0 SUMMARY

.

It is intended that the responses contained herein be attached to and incorporated into the Closure Plan for the Van De Mark Site.

·. .

ADDENDUM II

. .

CLOSURE PLAN FOR VANDEMARK LANDFILL

.

. '

MAY 1, 1987

-

1

.

.

3,

.

1.0 INTRODUCTION

This addendum has been prepared in response to a conversation with T. DiGulio, NYSDEC Albany, on April 29, 1987 with regard to the VanDeMark Chemical Company Closure Plan for the Industrial Landfill EPA ID# NYD991290529.

The information requested and included in Addendum II are as follows:

- 1) Will the loam, topsoil, and seeding extend down to cover the drainage ditch.
- 2) Provide a copy of the calculations for the water loading to the pan lysimeter.
- 3) In the post closure plan, provide a means of sampling the interceptor trench.
- 4) Provide the specifications of the limestone to be used in the interceptor trench.
- 5) Specify the location of the pan lysimeter in the landfill.
- 6) What will the wording of the hazard signs placed around the landfill and the spacing of those signs.
- 7) Provide the name address and phone number of the person or office to contact about the disposal facility during the post closure care period.
- 8) Submit a construction schedule based upon closing the site in a 180 day period following approval of the closure plan.

2.0 COVERAGE OF THE DRAINAGE DITCH

The ditch will be covered with 24" of clay, a 3" drainage layer, 15" of loam, 6" of topsoil and seeded as shown in figure 1 of the attached letter from CRA.

3.0 CALCULATIONS FOR THE WATER LOADING TO THE PAN LYSIMETER.

The calculations for the water loadings to the pan lysimeter are contained in the attached letter from CRA number 1.

4.0 INTERCEPTOR TRENCH SAMPLING.

The interceptor trench shall be sampled in the post closure plan as provided for in the letter attached from CRA, number 2 and shown in figure 1.

5.0 LIMESTONE SPECIFICATIONS.

The specifications for the limestone to be used in the interceptor trench are provided in the attached letter from CRA, number 3.

6.0 LOCATION OF THE PAN LYSIMETER.

The pan lysimeter will be centrally located on the site. The approximate location will be 40 feet southeast of monitoring well VDM-12.

7.0 LOCATION AND WORDING OF THE HAZARD SIGNS AT THE SITE.

The exact wording of the signs is specified on figure 2 of this addendum. Signs will be located a a maximum of 50 feet apart. Signs will be placed on the entrance to the site and be conspicuous at any area where public access to the fence may be expected.

-

The VanDeMark contact for the site for the post post closure period will be the Safety Environmental Director of the company. The phone number and address are:

> Safety/Environmental Director VanDeMark Chemical Company 1 North Transit Road Lockport, New York 14094

Phone Number: 716-433-6764

9.0 SCHEDULE OF CLOSURE.

Closure of the landfill within the specified 180 day time frame is provided for in Table 1 of the attached letter from CRA. The closure is scheduled to be completed in 20 weeks or 140 days from approval of the closure plan.

CONESTOGA-ROVERS & ASSOCIATES LIMITED 651 Colby Drive, Waterloo, Ontario, Canada N2V 1C2 (519) 884-0510

April 30, 1987

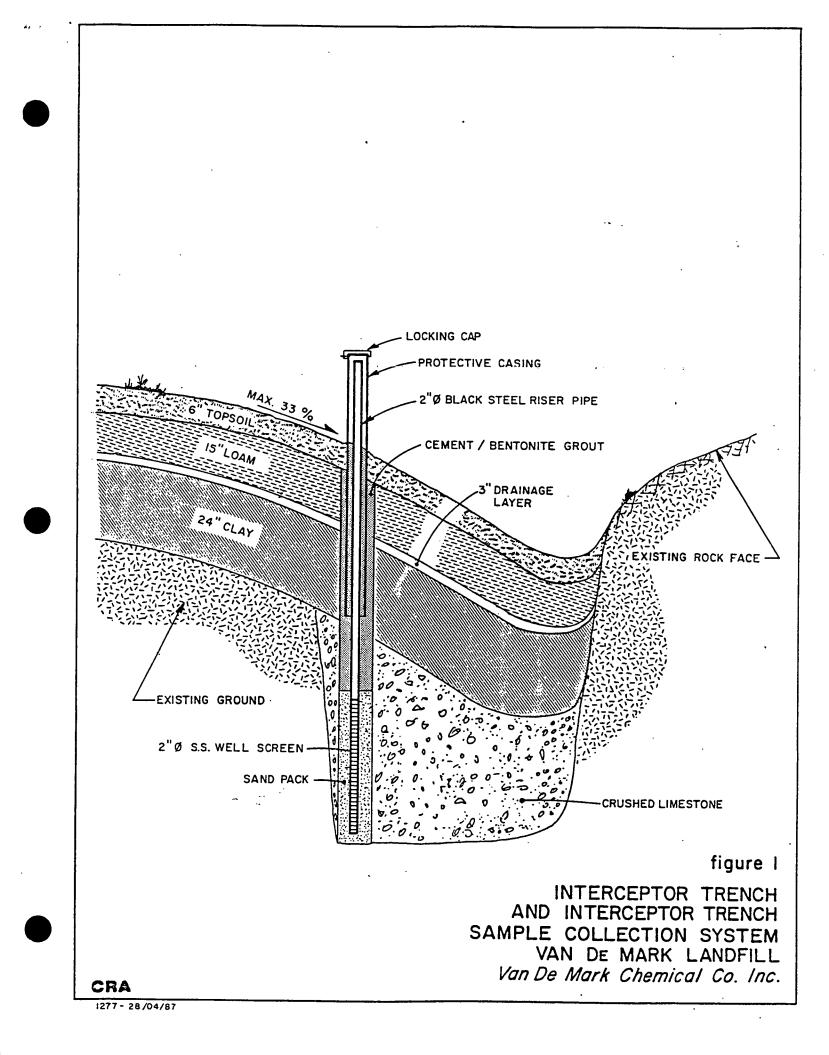
Reference No. 1277

Mr. Matthew Barmasse Safety/Environmental Director VAN DEMARK CHEMICAL COMPANY, INC. 1 North Transit Lockport, NY 14094

Dear Matt:

Re: Additional Information Concerning Closure Program

Included with this letter is additional information obtained regarding the Closure Program for VanDeMark. Enclosed you will also find Figure 1 "Interceptor Trench and Interceptor Trench Sample Collection System".


1. Lysimeter Volume:

The calculation used to determine the critical volume change of water collected by the Lysimeter is presented below. A volume change of 40 gallons (38.73 gallons) is approximately equal to an infiltration rate of 1×10^{-7} cm/sec over a six month period.

 $\Delta V = A x t x K$ $\Delta V = infiltration volume$ A = Area (100 sf) t = duration (6 months) $K = permeability (1x10^{-7} cm/sec)$ Assumptions = maximum gradient (1) saturated conditions

2. Ditch Interceptor Sampling System:

To facilitate collection of groundwater samples from the interceptor trench, a 2-inch diameter monitoring well will be installed into the bottom of the interceptor trench. The well will be installed through the cap, extending to the bottom of one end of the trench. The bottom of the trench will be constructed so as to slope towards the monitoring well at a minimum slope of 1 percent. The well will consist of a 2-foot long 2-inch diameter stainless steel well screen and a 2-inch diameter black steel riser pipe extending approximately three feet above grade. A 4-inch diameter black steel protective casing and locking cap will be

:

.

TABLE 1

SCHEDULE OF LANDFILL CAPPING AND CLOSURE ACTIVITIES (WEEKS)

LANDFILL CLOSURE	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1) Authorization to Proceed	*																				
2) Preparation of Bid Package																•					
3) Contract Award							-														
4) Site Grading & Proof Rolling									_ فریف جی ہ												
5) Install Cover															•====						
6) Install Ditch Lining																					
7) Install Pan Lysimeter																					
8) Closure Certification																					

RECEIVED MAY 1 1 1987

New York State Department of Environmental Conservation

50 Wolf Road, Albany, New York 12233-

Henry G. Williams

Commissioner

MAY 0 8 1987

Mr. Matthew Barmasse Safety/Environmental Director Van De Mark Chemical Co., Inc. 1 N. Transit Road Lockport, New York 14094-2399

Dear Mr. Barmasse:

Re: Public Notice of Closure Plan Van De Mark Chemical Co., Inc. Landfill Lockport, New York - EPA I.D. #NYD991290529

The New York State Department of Environmental Conservation (NYSDEC) has reviewed the Van De Mark "Closure Plan, Former Landfill Site" revised February 1987, with Addendum I and Addendum II dated March 1987 and May 1987 respectively. As an interim status closure, this plan was reviewed for compliance with the applicable portions of 6 NYCRR Subpart 373-3. We have determined that the closure plan is substantively complete as amended by Attachment A of this letter. The items addressed in Attachment A must be incorporated into the Van De Mark Closure Plan at the appropriate locations.

Under the provisions of the New York State regulations, 6 NYCRR 373-3.7, when the owner or operator of a TSD facility submits a closure and post-closure plan, opportunity must be provided through a newspaper notice for the affected public to comment.

Therefore, to satisfy the aforementioned regulatory requirements in conjunction with closure/post-closure of your facility, the enclosed Public Notice must be published unedited in its entirety for one day by May 15, 1987 in a local newspaper of at least weekly circulation in the Lockport area. It is requested that the selected newspaper be a daily publication having wide circulation in the area surrounding your facility. Please note that you must insert the date that the public comment period will end (i.e. 30 days after publication, see last paragraph of public notice).

The notice should not be revised or edited unless you have been authorized to do so by this office. Minor revisions may be authorized by phone if necessary.

Please instruct the newspaper publisher to provide this office with an affidavit of publication. You are responsible for the cost of publication.

Also enclosed for your information is the "Fact Sheet" which will accompany the closure/post-closure plan during the public comment period. Any interested party has the right to comment on the amended closure/post-closure plan during the 30-day comment period. All comments made during this period must be resolved before closure/post-closure plan approval is granted by the NYSDEC. Mr. Barmasse

If you should have any further questions regarding the above, please call Mr. Timothy I. DiGiulio, of my staff, at (518) 457-9253.

Sincerely,

an

Paul R. Counterman, P.E. Chief Bureau of Hazardous Waste Technology Division of Solid and Hazardous Waste

Enclosure

cc: w/enc. - P. Ingrisano, USEPA Robert Mitrey, Region 9

Public Notice Closure and Post-Closure Plans for Landfill Van De Mark Chemical Corp., Inc. Lockport, New York

Notice is hereby given that Van De Mark Chemical Corp., Inc. EPA No. NYD991290529 has applied to the New York State Department of Environmental Conservation (NYSDEC) under the provisions of the Resource Conservation and Recovery Act (RCRA) and New York State regulations at 6NYCRR 373-3, for closure and post-closure of it's hazardous waste landfill located in Lockport, New York.

The complete closure of the landfill consists of two distinct, but related plans. The first plan is termed "closure" and involves the design and construction of a final cover system over the landfill. This system must be capable of controlling surface water infiltration into the landfill and minimize erosion. The second plan is termed "post-closure" and involves the implementation of a groundwater monitoring program and the long term maintenance of the final cover system.

The closure plan involves the construction of the final cover consisting of three layers. The bottom layer will consist of 24 inches of compacted clay with a very low permeability. The middle layer will consist of three inches of sand for drainage and 15 inches of loam. The top layer will be a top soil of sufficient thickness to support vegetation.

The second program includes both a groundwater monitoring program, that is currently underway, and a final cover performance evaluation to determine the effectiveness of the cover design. Based on the results of this program, additional closure requirements to mitigate any adverse effects from contamination may be required.

The closure/post-closure plans and fact sheet are available for public review during the normal business hours at the NYSDEC Region 9 office located at 600 Delaware Avenue, Buffalo, NY 14202. Further information may be obtained by calling Mr. Robert Mitrey, Regional Solid Waste Engineer at (716) 847-4585.

Interested persons with reasonable concerns of the adequacy or sufficiency of the closure and post-closure plans have an obligation to raise all reasonably ascertainable issues and submit, in writing, all available arguments and factual grounds supporting their position to the Regional Solid Waste Engineer, Region 9 at the above address no later than (insert 30 days from date of publication).

Appendix A

The following is an addendum to the Van De Mark Chemical Co., Inc. "Closure Plan, Former Landfill Site", dated February 1987, Ref. No. 1277 Addendum I and II dated March and May 1987 respectively. This addendum must be incorporated into the Closure Plan at the locations specified as follows:

Addendum to 8.0 Material Specifications and Quality Assurance Plan

8.1 Material Specifications

The material to be utilized for construction in the closure of the Van De Mark landfill must meet or exceed the material specifications as stated in 8.0 of the Closure Plan and herein.

Delete paragraph a) on page 13 and replace with the following:

a) <u>Clay</u>

Natural clay material free from roots, organic matter, trash, debris and rocks or slag larger than 1-inch and other deleterious materials shall be imported for use as the soil liner. It shall have a minimum of 45 percent passing the No. 200 sieve, a plastic index of 20 to 50 and a liquid limit of 30 to 50 maximum. The permeability of water through the clay shall be 1×10^{-7} cm/sec or less when compacted to 90 percent of the clay's maximum modified proctor density, when tested by a commercially independent laboratory approved by the Engineer/Site Supervisor. The following tests shall be performed on each borrow source utilized at least the prescribed frequency.

Organic Content	Initially and whenever organics are visually evident
Grain Size Moisture Content Atterberg Limits (liquid limit and plasticity index)	1000 cubic yards 1000 cubic yards 5000 cubic yards
Proctor Moisture - Density Curve	5000 cubic yards or changes in materials
Lab Permeability (remolded samples)	5000 cubic yards
Consolidated-undrained Triaxial Tests (remolded samples)	5000 cubic yards

Delete the second sentence of paragraph c) on page 14 and replace with the following:

c) Loam

1

During site grading of the landfill, soil will not be stockpiled for future utilization. All soil presently in the boundary of the landfill shall be used for grading purposes only and shall be contained within the clay component of the cap. Soils outside the limits of the landfill on Van De Mark property may be utilized providing they meet minimum specifications and there is no potential of soil contamination caused by offsite migration from the landfill.

Delete paragraphs in d) on page 14 and 15 and replace with the following:

- d) Topsoil
 - 1. Topsoil shall have at least 2 percent by weight of fine-textured stable organic material, and no greater than 6 percent. Muck soil shall not be considered topsoil.
 - 2. Topsoil shall have not less than 20 percent fine-textured material (passing the No. 200 sieve) and not more than 15 percent clay.
 - 3. Topsoil treated with soil sterilants or herbicides shall be so identified to the purchaser.
 - Topsoil shall be relatively free of stones over 11/2 inches diameter, trash, noxious weeds such as nutsedge and quackgrass, and will have less than 10 percent gravel by volume.
 - 5. Topsoil containing soluble salts greater than 500 ppm shall not be used.
 - 6. Topsoil shall have a pH between 5.5 and 7.0.

8.2 Construction Quality Assurance Plan

Delete section a) on page 13 and 14 and replace with the following:

a) Clay Placement

The natural clay material shall be prepared for placement at a moisture content of optimum to +3 percent of its optimum moisture content and in loose lifts not exceeding 6 inches thickness. The clay shall be compacted to 90 percent maximum relative compaction as determined by ASTM D 1557. Install the clay to lines and grades as shown on the Drawings.

Compacted clay zones shall be constructed by placing clay in horizontal lifts no less than 10 feet wide, compacted full width, and cut back on side slopes to the lines and grades shown. The surface of each lift shall be scarified prior to placing the next lift of clay to ensure no construction seepage path or seam remains.

Intermediate lifts shall also be rolled to seal when subsequent lifts will not be placed until after 2 calendar days. The sealed surface of

the intermediate lifts will be scarified, moistened if required to aid compaction, and prepared to receive subsequent lifts prior to placement of clay material.

Prior to placing clay, the subgrade will be prepared by trimming to lines and grades shown and removing any zones of segregation or coarse particles which may cause loss of clay into voids. Final subgrade for clay shall be firm, uniformly well-graded, and free of soft or wet areas. The Engineer's/Site Supervisor's approval of subgrade preparation shall be obtained prior to placing clay.

Piles deposited by haul vehicles shall not exceed one rank beyond the spreading face. Each course shall not be placed in excess of 500 linear feet without being compacted. Damage to any compacted lift at any time during the course of construction, such as rutting under the loads imposed by earth moving equipment, shall be fully repaired prior to placement of any overlying materials.

During all compacting operations, maintain optimum practicable moisture content required for compaction purposes in each lift of the earth fill. Maintain moisture content uniform throughout the lift. Insofar as practicable, add water to the material at the site of excavation. Supplement, if required, by sprinkling the earth fill. The clay material at the time of compaction shall have a moisture content of optimum to three percentage points above optimum.

Compaction of fill material that contains excessive moisture will not be attempted. The material will be aerated by blading, discing, harrowing or other methods, to hasten the drying process.

The clay can be adjusted downward in moisture content by discing or can be adjusted upward by discing, watering, and discing again. However, whatever method is used should ensure an even distribution of moisture within the lift.

The clay shall not be overworked. No area shall receive more than twice the predicted number of passes necessary to reach the required density, except when the upper layer of the lift does not form a dry brittle crust.

Keying of one placed volume to another shall take place along certain important contact surfaces. One important contact surface is when fresh clay is placed in any area that was placed more than a few hours earlier. Another important contact surface is when clay from one borrow source touches clay from a different borrow source. Others should be determined by the Engineer/Site Supervisor. At a minimum, the previously placed clay should be scarified and adjusted to a proper moisture content.

If the differences in the clay type are larger or if the contact surface is parallel to the hydraulic gradient of a potential leak, then the contact surface shall be stepped and or keyed in order to minimize the possibility that a leak could travel along the contact surface due to incomplete bonding. The top surface of the clay liner shall be smooth and the upper 4 inches (0.1 meters) shall be completely free of stones greater than one inch (25 mm) in diameter.

The surface shall be rolled with a smooth drum steel or pneumatic roller or acceptable alternative, as determined by the Engineer/Site Supervisor and found acceptable by the Department, so as to be free of irregularities, loose earth, and abrupt changes in grade. Monitoring checks shall be performed on at least the frequency specified as follows:

Clay Compaction:

Moisture - Density 9 per acre per lift Testing - Nuclear Densitometer Per ASTM D2922

- Note: The results of each test should be compared to the most recent moisture density curve to assure that the proper percent compaction is being obtained and to the most recent permeability - density curve to assure that the proper permeability is being obtained.
- Also Note: The calibration of each nuclear densitometer should be checked daily by comparison to density measured on the same material by ASTM D-1556.

Clay Permeability:

Undisturbed sample from One per acre per lift (but no fewer than one per lift) falling head permeability test performed on each.

Note: This test should be run in a flexible wall permeameter with backpressure used to saturate the sample and keep it saturated during the test.

The clay component of the final cover shall be sloped at a <u>minimum three-percent</u> grade.

Delete section c) on page 16 and replace with the following:

c) Topsoil

Topsoil shall be distributed to a uniform depth of six inches over the capped area following final grading of the loam. It shall not be placed when it is partly frozen, muddy, or on frozen slopes or over ice, snow, or standing water puddles.

Topsoil placed and graded on slopes steeper than 5 percent shall be promptly fertilized, seeded, mulched and stabilized by "tracking" with suitable equipment (i.e. drainage ditch area). Delete the second paragraph in Section d) on page 17 and replace with the following:

d) To reduce infiltration and erosion from wind and rainfall, the following seed mix shall be planted promptly over the cover.

Name	Variety	Wt. of Pure Live Seed Per Acre
Red Fescue	Commercial	50 lbs.
Kentucky Bluegrass	Commercial	10 lbs.
Perennial Ryegrass	Commercial	40 lbs.
White Clover	Commercial	10 lbs.
	Max 25% Hard Seed	5-10 lbs.

Total 105-110 lbs./acre

Total application of the seed mix is 105-110 lbs./acre.

Mulch shall be spread uniformly in a continuous blanket of sufficient thickness to reasonably hide the soil from view, taking care not to over apply. Mulch may be spread by hand or by machinery. Mulch may be spread before, but not later than 72 hours after spreading.

e) Construction Certification

Add the following to page 18.

When closure is completed, Van De Mark shall submit to the commissioner certification both by Van De Mark and by an independent professional engineer registered in New York State that the facility has been closed in accordance with the specifications in the approved closure plan.

11.0 Post Closure Monitoring Plan

Add the following to page 21.

- <u>Copper</u> shall be added to the parameter list for metals. All metal analyses must include <u>total</u> metals. Soluble metals can be run in addition to, but not in lieu of, total metals.
- Total Recoverable Phenolics shall be added to the parameter lists.

Add the following to page 22 of the Closure Plan.

In addition to groundwater elevation measurements, lysimeter measurements shall also be taken quarterly during the initial 18 months of performance monitoring.

At the end of the 18 month monitoring period, Van De Mark shall prepare and submit a report to the Department which evaluates the performance of the cover system. The following data will be included in the Performance Evaluation Report:

- 1. All available historic water quality data from each monitoring point and all data collected during the performance period presented in spreadsheets. Supporting QA/QC results should also be submitted for data collected during the performance monitoring period.
- 2. All available groundwater level data presented in a spreadsheet showing monitoring point and water level for each sampling event.
- 3. Lysimeter data and calculations used to determine permeability/performance of the cap.

The report shall discuss this data, evaluate the effectiveness of the cover system and include a proposal for future monitoring or additional remedial measures at the landfill. Until that proposal is approved by the Department, and implemented, Van De Mark will continue monitoring as specified in the Post-Closure Monitoring Program.

12.0 Contingency Program

Delete paragraph two on page 23 and replace with the following:

The mechanism which will trigger the implementation of the contingency program shall be:

- 1. If monitoring results indicate that a significant deterioration in water quality has occurred.
- 2. If it is determined that cap permeability exceeds 10-7 cm/sec (i.e. through pan-lysimeter monitoring).

Delete paragraph three on page 23 and 24 and replace with the following:

Should the contingency plan be implemented at any time, the following steps will be taken:

- 1. Immediately notify NYSDEC.
- Within 2 weeks of implementation, collect duplicate samples at the monitoring point(s) in question, and analyze for the parameter(s) of concern.
- 3. If a deterioration of the water quality or cap performance is verified, an evaluation of the potential impact to health and the environment will be made. This evaluation, along with a proposal for remedial action, will be submitted to the Department within eight (8) weeks of the implementation of the contingency program. If remedial action is warranted, the proposal must contain a schedule for the required additional work.

The NYSDEC has the right to implement the contingency plan and/or the Alternative Remedial Measures when deemed necessary.

13.0 Maintenance Program

Add the following to the semi-annual inspection list on page 25.

- f) pan-lysimeter
- g) monitoring wells and water quality monitoring points

If it is determined that a well may not provide accurate piezometric values, may be damaged in some way, or is inaccessible, within fourteen (14) days of such knowledge will attempt to remedy the problem.

Within twenty (20) days of such knowledge, through written notification to the NYSDEC, Van De Mark shall provide information which describes the nature of the problem associated with the well, and in the event of a failure to obtain a sample, the reason why the sample was not obtained.

In addition, the notification will contain:

- 1. A description of how the problem with the device was corrected; or
- 2. A schedule for the rehabilitation or replacement of the well.

If a problem with a well prevented the collection of a scheduled sample, a sample must be obtained within fourteen (14) days after rehabilitation or replacement of the well.

APPENDIX F

<u>Sampling and Analysis Program for Monitoring the Van De Mark Landfill Site</u> The following shall be included in the plan:

- The frequency for sounding wells shall be annually.
- Total metals must be included and should be included in Table 3.
- A Field Blank and Blind Duplicate will be taken during every sampling event.
- Reporting ID of the blind duplicate will be included when reports are submitted to the NYSDEC

New York State Departme	nt of Envi	ironmenta	Conserva	ition 📀				
SEQR Negative Declaration Notice of Determination of Non-Significance								
Project # <u>NYD991290529</u>		-	, ,	Date <u>May</u> 1, 1987				
Article 8 (State Environmental (Quality Rev nmental Co	view) of the E onservation,	nvironmenta as lead age	ncy, has determined that the				
	ark Chemi Post-Clos	cal Corp., sure Plan	, Inc. Lan	dfill				
SEQR Status: Type I Unlisted Description of Action:		Z						
See attac	ched shee	ts.	· .					
<u>.</u>								
Location: (Include the name of t recommended)	he county a	and town. A	location ma	p of appropriate scale is also				
	located e Creek,	in Niagara Lockport,	County bo New York.	etween Mill Street				

Reasons Supporting This Determination:

See attached sheets.

For Further Information:

Contact Person:	Paul R. Counterman, P.E.
Address:	Bureau of Hazardous Waste Technology
	50 Wolf Road, Albany NY 12233
Phone No.:	(518) 457-9253

Copies of this Notice Sent to:

Commissioner-Department of Environmental Conservation, 50 Wolf Road, Albany, New York 12233-0001

Appropriate Regional Office of the Department of Environmental Conservation Office of the Chief Executive Officer of the political subdivision in which the action will be principally located Applicant (if any)

Other involved agencies (if any)

<u>:</u>-

Page 2

SEQR Negative Declaration Van De Mark Chemical Corp., Inc. Landfill Closure Plan EPA ID No. NYD991290529

Description of Action

Van De Mark Chemical Co., Inc. has submitted to the Department a plan for the closure of a hazardous waste landfill located in Lockport, New York. This unit will be closed under the New York State Regulations 6NYCRR 373-3.

Van De Mark manufactured and produced silicone tetrachloride for commercial use. Through this process, chemical waste by-products are produced which have been disposed of in a landfill located between Mill Street and Eighteen Mile Creek, in Lockport, New York. Van De Mark disposed of these wastes beginning in 1953 and ending in 1982. Since 1982, the pre-treated wastes are processed through the Lockport Wastewater Treatment Facility.

Van De Mark Landfill consists of a largely flat 2.5 - acre plateau located on a bluff approximately 80 feet above Eighteen Mile Creek. The wastes that were previously landfilled were deposited in 55-gallon drums and placed in limestone lined trenches approximately 7-foot-deep by 12-foot-wide. Additional crushed limestone was placed on top of the drums and then backfilled to the original grade. The limestone was to enhance the neutralization process of the waste.

When closure begins, the site will be proof-rolled, graded and spread with lime. The plan includes a final cover system consisting of two feet of compacted clay with permeability of 1×10^{-7} cm/sec for less, overlain by a drainage layer of sand and loam, topped by soil capable of sustaining vegetative growth. The system is designed to minimize infiltration of surface water and promote drainage of run-off. The soil cover will then be fertilized and seeded to prevent erosion and to enhance the asthetics of the area.

Reasons Supporting This Determination of No Significant Impact Include:

- The Closure of this inactive landfill under the proposed plan dated February 1987 should reduce potential threats to the environment.
- 2. No significant adverse environment impacts have been identified on Eighteen Mile Creek as a result of the disposal of wastes into the landfill. Closure of this inactive unit under the proposed plan would significantly decrease any future potential threat of impact to the creek.
- 3. The closure operations will take place entirely on the applicants property and includes only basic construction equipment and operations. The facility is located away from population centers and this increased activity should not impact local residence.
- 4. The facility will be constructed with a cap to securely enclose the contaminated soils inplace and to decrease the downward driving force of precipitation into the wastes.

- 5. The groundwater beneath and downgradient of the landfill is being monitored. Van De Mark will continue to monitor groundwater as a part of post-closure requirements in accordance with 6NYCRR 373-3.6 regulations.
- 6. The post-closure plan will address the maintenance, inspection and integrity of the final cover system.

• •

POST-CLOSURE PLAN

VanDeMark Chemical Co., Inc. 1 North Transit Road Lockport, New York 14094

•

EPA ID No. NYD991290529

.

Prepared by: Gregory H. Beck Safety/Environmental Director

Date: March 29, 1989

.

TABLE OF CONTENTS

.

1.0	Monitoring Program	1
2.0	Maintenance Program	З
з.0	Contact Person	З

÷

دشنعو

9

Page

1.0 Monitoring Program

The purpose of the post-closure monitoring program is to monitor the effectiveness of the closure construction for containing the migration of the contaminants within the landfill area. The program consists of the collection and analysis of a series of groundwater and stream samples at regular intervals. The samples will be analyzed for the site specific parameters which include the following:

- pH (measured in the field)
- purgeable halocarbons (Method 601)
- chlorides (Method 407B)
- total metals: arsenic (Method 206.2)

chromium (Method 218.2) copper (Method 200.7) iron (Method 236.1) lead (Method 239.1) mercury (Method 245.1) zinc (Method 289.1)

- total recoverable phenolics (Method 420.1)

The sampling locations will include:

- monitoring wells VDM-9, 10, 11, 12, 14 (interceptor trench)
 and D-55
- the seep in the area of the southwest corner of the landfill
- upstream and downstream location of Eighteen Mile Creek

Samples will be collected according to the following schedule:

	Initial 18 months following closure	- quarterly
-	18 months to 3 years .	- semi-annually
	years 4 and 5 following closure	- annually
	years 5 to 30 following closure	- everv 5 vears

Prior to each sampling round, one complete set of groundwater elevation measurements will be made using all of the wells that have been installed on the landfill site proper. In addition to groundwater elevation measurements, lysimeter measurements shall also be taken quarterly during the initial 18 months of performance monitoring.

At the end of the 18 month monitoring period, VanDeMark shall prepare and submit a report to the Department which evaluates the performance of the cover system. The following data will be included in the Performance Evaluation Report:

- All available historic water quality data from each monitoring point and all data collected during the performance period presented in spreadsheets. Supporting QA/QC results should also be submitted for data collected during the performance monitoring period.
- All available groundwater level data presented in a spreadsheet showing monitoring point and water level for each sampling event.
- 3. Lysimeter data and calculations used to determine permeability/performance of the cap.

The report shall discuss this data, evaluate the effectiveness of the cover system and include a proposal for future monitoring or additional remedial measures at the landfill. Until that proposal is approved by the Department, and implemented, VanDeMark will continue monitoring as specified in the Post-Closure Monitoring Program.

The results of each sampling event will be submitted to the NYSDEC within one week of receipt of the analytical data.

2.0 Maintenance Program

During the post-closure, the site will be inspected semiannually. The site will be inspected with regards to:

- cover integrity
- ditch lining integrity and presence of iron staining
- condition of vegetation over the cover
- drainage conditions
- condition of the fence surrounding the site
- pan lysimeter
- monitoring wells and water quality monitoring points

A log will be maintained of the inspections for a minimum of six years from the date of inspection. The log will indicate the name of the inspector, item of inspection, date and time of inspection, observations and date and nature of remedial actions.

Any defeciencies noted during an inspection will be addressed immediately.

Any settlement of the cover, should it occur, in excess of 12 inches will be remedied by removal of the topsoil, loam and drainage layer and subsequent backfilling with additional clay to top of clay grades and replacement of the drainage layer, loam and topsoil, properly compacted.

Any erosion of the cover will be repaired by reconstruction of the cover in the eroded area. If necessary sod will be used to re-establish vegetative cover. The vegetation will be maintained on an as needed basis, approximately every six weeks.

3.0 Contact Person

Ś

The name, address and phone number of the person or office to contact about the landfill is:

Safety/Environmental Director VanDeMark Chemical Co., Inc. 1 North Transit Road Lockport, New York 14094 (716)433-6764

The Following Image(s) are the Best Copy Available

BIEL'S

.

.

متماقيتها سيأته فيسار مراغية معساد المداري المدوبة والسماد

·. · .

ه مستنده

May	12,	1986
-----	-----	------

Constituent	Upstrm	Dnstrm	D-55	VDM-9	VDM-10	VDM-11	VDM-12
Chloride		C407.12	-	C18800>	C6470>	C4803	1 57200
pH ,	7.89	8.13	-	4.3	6.18	2.20	1.83
Total Phenolics		0.01	. –		<u>C0+54</u>)	<u>C0:53</u> 7	0.01
Gromodichloromethane	0.01	0.01		0.01	0.01	0.01	0.01
hromoform	0.01	0.01	-	0.01	0.01	0.01	0.01
romomethane	0.005	0.005	-	0.005	0.005	0.005	0.01
a rbon Tetrachloride	0.005	0,005	-	<u>C07.00636</u> 2	0.005	COTO18	0.038
[→] :hloroethane	0.005	0,005	-	0.005	0.005	0.005	0.01
2-Chloroethylvinyl Ether	0.005	0.005	-	0.005	0.005	0.005	0.01
Chloroform	0.005	0.005	-	07173) C	0700597	0:07920	C0736)
Chloromethane	0.005	0.005		0.005	0.005	0.005	C0-49)
Dibromochloromethane	0.01	0.01		0.01	0.01	0.01	0.01
1,i-Dichloroethane	0.005	0.005	-	0.005	0.005	0,005	0.01
1,2-Dichloroethane	0.005	0.005	-	0.032 0	0:00991	0.00545>	0.01
1,1-Dichloroethene	0.005	0.005		0.005	0.005	0.005	0.01
Trans-1,2-Dichloroethene	0.005	0.005		<u>C0700543</u>	0.005	0.005	0.01 .
1,2-Dichloropropane	0.005	0.005	-	0.005	0.005	0.005	0.01
Cis-1,3-Dichloropropene	0.005	0.005		0.005	0.005	0.005	0.01
Trans-1,3-Dichloropropene	0.005	0.005	-	0.005	0.005	0.005	0.01
Methylene Chloride	0.005	0.005	-	0.0343>	070695>	<u>(0.168</u>)	<u>(0718</u>)
1,1,2,2-Tetrachloroethane	0.005	0.005	-	(0.257)	0.005	0.005	C.043J
Tetrachloroethene	0.005	0.005	-	C0T0460	0.005	<u>r070713</u>	C 0-14
1.1,1-Trichloroethane	0,005	0.005	-	0.005	0.005	0.005	0.01
1,1,2-Trichloroethane	0.005	0.005		0.005	0.005	0.005	0.01
Trichloroethene	0,005	0.005	-	(0:0399)	0.005 r	0.006752	CIOIS
Vinyl Chloride	0.005	0.005		0.005	0.005	0.005	0.01
Trichlorofluoromethane	0.005	0.005	-	0.005	0.005	0.005	0.01
Dichloredifluoromethane	0.005	0.005	-	0.005	0.005	0.005	0.01
Arsenic	0.005	0.005		<u>(07181)</u>	<u>C0:023</u>	<u>C0.105</u>	4.00
Beryllium	0.05	0.05	-	0-094	0.05	0.05	C07381
Cadmium	0.5	0.5		0.05	0.05	0.05	0.05
Chromium	0.5	0.5	-	r1-07)>	0.5	0.5	⊂ <u>8</u> _10
Copper	0.2	0.2	-	C5709	107455		C29.00
Iron	<u>()78</u>)	0774>	-	C1965>	C1820	(3250)	C 14500
Lead	1.00	1.00	-	(2717)	1.00	1.00	C27:0
Mercury	<07001>	0.003	-	0-006	07005>	(07002)	0.001
Nickel	0.5	0.5		C37701	0.5	C0.286	C17.942
Seleniúm	0.005	0.005		0.005	0.005	0.005	COT0172
Silver	0.1	0.1	-	0.1	0.1	0.1	0.1
Thallium	1.00	1.00	_	1.00	1.00	1.00	1.00
Zinc	<u>(0752</u>)	0.155>	-	<u>(1150</u>)	0751 >	(1719)	1100 11360

1

لا میرو بر ای بر ای <u>از مشاهر در از میروانمی مشیر آورید میکرم میرا</u>ر و است. از این مای م ۱۹۰۰ - ۲۰ ••••••

.....

~

January 22, 1987

Constituent	Upstrm	Dnstrm	D-55	VDM-9	VDM-10	VDM-10d	VDM-11	VDM-12
Chloride	35.80	C3670	C1078	C26270>	C 5451	(5424)	(411)	103005
ρH	7.67	7.13	6.40	2.38	5.76	5.84	4.54	1.45
Total Phenolics	C 0155	0.025	<u>(1058</u> 2)	-	€0.946	(07244)	0.01	-
Bromodichloromethane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Bromo form	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0,005
Bromomethane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0,005
Carbon Tetrachloride	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Chloroethane	0,005.	0.005	0.005	0.005	0.005	0.005	0.005	0.005
2-Chloroethylvinyl Ether	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Chloroform	0.005	0.005	0.005	د07:35>	0:0088>	0-0063	070522	C.TA
Chloromethane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0-148
Dibromochloromethane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
1,1-Dichloroethane	0.005	0.005	0.005	0.005	0,005	0.005	0.005	0,005
1,2-Dichlorcethane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
1,1-Dichloroethene	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Trans-1,2-Dichloroethene	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.063
1,2-Dichloropropane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Cis-1,3-Dichloropropene	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Trans-1,3-Dichloropropene	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Mathylene Chloride	0.005	0.005	0.005	OTT18	COT 0891	070932	0.005	all'es
1,1,2.2-Tetrachloroethane	0.005	0.005	0.005	0.198	0.005	0.005	0-183	0.005
Tetrachloroethene	0.005	0.005	0.005	0.141	0.005	0.005	0.005	
i,1,1-Trichloreethane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	6.005
1,1,2-Trichloroethane	0.005	0,005	0.005	070087	0.005	0.005	0.005	_
Trichloroethene	0,005	0.005	0,005	07151	0-0074	0.005	(070219)	0.0135
∀inyl Chloride	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Trichlorofluoromethane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Dichlorodifluoromethane	0.005	0.005	0.005	0.005	0.005	0.005	0,005	0.005
Arsenic	0.005	0.005	0.005	(07333>	0.005	(07033)	0,7048>	ee ee
Chromium	<u>(07188</u>)	07046	<u>(07029)</u>	CO.066>	<u>(07035</u>)	07021	0.006>	2 2
Copper	0.2	0.2	0.2	(4-94)	0.2	0.2	0.755>	a 20
Iron	C1708	c ⊕ - 74>	<572×	<1300>		6 .73 >	CED	C 5000
Lead	0-013>	CO.OIL	<u><07014></u>	0.76		07039		C 43
Mercury	C0:02	0.004	0.001	0.001	0.001	(07002x	0,001	C0-068
Zinc	0.12>	0.05	0.05	(376)	<u>0-2</u> >	0-18	0-660	É

A Contractor

فواعيت والاصاب كالكام وتاديك تشار والارتبا

. . . .

......

June 3, 1987.

Constituent	Upstrm	Dnstrm	D-55	VDM-9	VDM-10	VDM-10d	VDM-11
Chloride	C45)	C 50 ²	C 15	€15300>	ر6250	C 6250)	C 1750)
рН	7.63	7.67	6.81	4.18	5.51	5.57	2.93
Total Phenolics	0.01	0.01	C 0:08	C0754>	C 0717	C0,12>	<u> </u>
Bromodichloromethane	0.001	0.001	0.001	0,005	0.01	0.005	0.005
Bromoform	0.005	0.005	0.005	0.025	0.05	0.025	0.025
Bromomethane	0.001	0.001	0.001	0.005	0.01	0.005	0.005
Carbon Tetrachloride	0.001	0.001	0.001	0.005	0.01	0.005	0.005
Chloroethane .	0.001	0.001	0.001	0.005	0.01	0.005	0.005
2-Chloroethylvinyl Ether	0.001	0.001	0.001	0.005	0.01	0.005	0.005
Chloroform	0.001	0.001	0.001	CO,0952	(070432)	070478	0:0307
Chloromethane ·	0.001	0.001	0.001	0.005	0.01	0.005	0.005
Dibromochloromethane	0.001	0.001	0.001	0.005	0.01	0.005	0.005
1,1-Dichloroethane	0.001	0.001	0.001	0.005	0.01	0.005	0.005
1,2-Dichloroethane	0.001	0.001	ò.001	c07013	0.01	0.005	0.005
i,1-Dichloroethene	0.001	0.001	0.001	0.005	0.01	0.005	0.005
Trans-1,2-Dichloroethene	0.001	0.001	0.001	0.005	0.01	0.005	0.005
1,2-Dichloropropane	0.001	0.001	0.001	0,005	0.01	0.005	0.005
Cis-1,3-Dichloropropene	0.001	0.001	0.001	0.005	0.01	0.005	0.005
Trans-1,3-Dichloropropene	0.001	0.001	0.001	0.005	0.01	0.005	0.005
Mathylene Chloride	0.001	0.001	0.001	070342	0.01	0.005	0.005
1,1,2,2-Tetrachloroethane	0.001	0.001	0.001	0-076		0:0248	0.005
Tetrachloroethene	0.001	0.001	0.001	r0-0507	0.01	0.005	CT0372>
1.1,1-Trichloroethane	0.001	0.001	0.001	0.005	0.01	0.005	0.0323
1,1,2-Trichloroethane	0.001	0.001	0.001	0,005	0.01	0.005	0.005
Trichloroethene	0.001	0.001	0.001	070393>		0.005	0700546
Vinyl Chloride	0.001	0.001	0.001	0.005	0.01	0.005	0.005
Trichlorofluoromethane	0,001	0.001	0.001	0.005	0.01	0.005	0.005
Dichlerodifluoromethane	0.001	0.001	0.001	0.005	070311	0.005	0.005
Arsenic	0.005	0:005	0.005	<u>(07.018</u>)	C0:067>	<u>८०∓05</u>	0.005
Chromium	0.005	0.005	€0,008⊃		0.005	C0.006>	CT123
Copper	0.2	0.2	0.2	C2743	C ⁰ =51>	0.2	
Iron	C 0.42>	<u>c0-46</u>	C0742		C192	< <u>1728</u> >	
Lead	0.011	<u>C07011</u>	0.005	CO.028	0.005	0.005	COT008>
Hercury	0.001	C0703	0.001	C 0.002	C 0.0045	C070045	
Zinc	0.05	0.05	<u>c0-07</u>	11.58	0-75	032	C(

.

4

افرار الأنفار الاصفيتين بيم لاطبيد يستطفر بيساء لأصحافه فيطبيب سلامك الدمافيين الكارار والمدي

September 2, 1987

Constituent	Upstrm	Distrm	D-55	VDM-9	VDM-10	VDM-10H	VDM-10R	VDM-11
Chloride	- 44>	<u>(45)</u>	<u> </u>	 4000	€6000>	⊂5180>	⊂57112>	C 2405
рH	7.41	7.05	6.92	4.75	5.82	-	5.74	3.25
Total Phenolics	0.01	0.01	0.01	(15⊃	<u>⊂071</u> ⊃	0.1	. C 0:036	ಂಗಾ
Sromodichloromethane	0.005	0,005	0.005	0.005	0,005	0.0005	0.0002	0.005
Bromoform	0.005	0.005	0.005	0.005	0.005	0.0005	0.001	0.005
Bromomethane	0.005	0.005	0.005	0.005	0.005	0.001	0.0008	0.005
Carbon Tetrachloride	0.005	0.005	0.005	0,005	0.005	0.0005	0.0002	0.027
Chloroethane	0.005	0.005	0.005	0.005	0.005	C0100085	0.0004	0.005
2-Chloroethylvinyl Ether	0.005	0.005	0.005	0.005	0.005	0.0005	0.003	0.005
Chloroform	0,005	0.005	0.005	د<u>0-13</u>	C 07141	CTTO	C 0712	C Q⊋i-2è
Chloromethane	0.005	0.005	0.005	0.005	0.005	0.01	0.0004	0.005
Dibromochloromethane	0.005	0.005	0.005	0.005	0.005	0.0005	0,001	0.005
1,1-Dichloroethane	0.005	0.005	0.005	0.005	0.005	0.0005	0.0002	0.005
1,2-Dichloroethane	0.005	0.005	0.005	C 070132	©T0072>	0 - 0033 >	070072	⊖ 068€
i,1-Dichloroethene	0.005	0.005	0.005	0.005	0.005	0.0005	0.0004	0.005
Trans-1.2-Dichloroethene	0.005	0.005	0.005	~ 070088	0.005	0.0005	0.0004	0.005
1,2-Dichloropropane	0.005	0.005	0.005	0.005	0.005	0.0005	0.0004	0.00Ē
Cis-1,3-Dichloropropene	0.005	0.005	0.005	0.005	0.005	0.0005	0.001	0.003
Trans-1,3-Dichloropropene	0.005	0.005	0.005	0,005	0.005	0.0005	0.0002	0.005
Methylene Chloride	0.005	0.005	0,005	C 0.0214	(070053)	0.01	⊂07004>	0 7 0077-
1,1,2,2-Tetrachloroethane	0.005	0.005	0.005	C 071116	0.005	0:0034,	C0:0016)	
Tatrachloroethene	0.005	0.005	0.005	COTO61 7	0.005	0.0005	0.0004	
1,1,1-Trichloroethane	0.005	0.005	0.005	0.005	0.005	0,0005	0.0004	0.005
1.1.2-Trichloroethane	0.005	0.005	0.005	0.005	0.005	0.0005	0.001	0.00
Trichloroethene	0.005	0.005	0.005	COT0372	0.005	0700425	0.0002	€ ÷-0±6÷
Vinvl Chloride	0.005	0.005	0.005	0.005	0.005	0.0005	0.0004	0.005
Trichlorofluoromethane	0.005	0.005	0.005	0.005	0.005	0.0005		0.005
Dichlorodifluoromethane	0.005	0.005	0.005	0.005	0.005	0.0005		0.007
Arsenic	0.005	0.005	0.005	C 07103	<u>c</u> 0+01⊃	0.01	(07:0055)	• C
Chromium	0.005	0.005	0.005	C0-019A	C 0.037		C0.335	
Copper	0.2	0.2	0.2	C17.1	ر 01.78	€0725⊃	C01287	
Iron	().37>	<u>_0738</u> 2	C0:23		<u>C3376</u>	<u>c</u> 135,	C362	C:55
Lead	0.019	<u>C07017</u>	COT0092	0-057	⊂ 0.0082		C07095	
Mercury	0.001	0.001	0.001	0.002	0,001	C010037	0.002	0.001
Zinc	0.05	C0-027	<u>C0706</u>	0.78	<u>د2-7</u> ے	<u>_6-58</u>	1.9	
	0.00		CALINAT	-9-8-9 O			1 # 7	6

. . -

الكومانية مارس

وجهيما كالمتهارقية والدولايون والمراجع والترج والمترجوين

المرابع فالجام والمحمد المراجع والمراجع المراجع والمراجع والمحاج والمحا

.

November 5, 1987

Constituent	Upstrm	Dnstrm	D-55	VDM-9	VDM-10	VDM-10d	VDM-11	VDM-14
Chloride		<u> </u>	<u> </u>	, ⊂13000⊃	⊂4400⊃	C5600>	⊂1900	c 1600
pН	8.25	8.23	6.95	2.97	6.04	6.04	2.90	6.11
Total Phenolics	(07.003)	0.002	0,002	<u>⊂0-18</u>	0.299	<u>C07108</u> 5	C0:025	<u>८०२०३</u> ७
Bromodichloromethane	0.005	· 0.005	0.005	0.005	0.005	0.005	0,005	0.005
Bromoform	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Bromomethane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Carbon Tetrachloride	0.001	0.001		0.06410	0.001	0.001	C 0.028,	0.001
Chloroethane	Q.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
2-Chloroethylvinyl Ether	0.01	. 0.01	0.01	0.01	0.01	0.01	0.01	° 0.01
Chloroform	0.001	0.001	0.001	C 013587	C 0154	C 07124	CO.1232	070222
Chloromethane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Dibromochloromethane	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
1,1-Dichloroethane	0.001	0.001	0.001					
1,2-Dichloroethane	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1,1-Dichloroethene	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Trans-1,2-Dichloroethene	0.001	0.001	0.001	-07 0461	0.001	0.001	0.001	0.001
1,2-Dichloropropane	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Cis-1,3-Dichloropropene	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Trans-1,3-Dichloropropene	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Methylene Chloride	0.001	0.001	0.001	0.0493	0,001	0.001	C0.0183>	0.001
1,1,2,2-Tetrachloroethane	0:001	0.001	0.001	<u>⊂್</u> 51	0.001	0.001	0.001	0.001
Tetrachlorcethene	0.001	0.001	0.001	0:0847	0.001	0.001	COT07684	(0
1,1,1-Trichloroethane	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1,1,2-Trichloroethane	0.001	0.001	0.001	0.001	0.001	0.001	0.00555	0.001
Trichloroethene	0.001	0,001	0.001	C0708612C		C07001>	C 070153	
Vinyl Chloride	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Trichlorofluoromethane	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Dichlorodifluoromethane	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Arzenic	0.005	0.005	0.005	0.005	<0.005>	C 0.7005/	0.005	0.005
Chromium	C12020	0.005	<u>∠</u> 0 7 028⊾	C 0.016	-07035s	C07.04	C0705	(<u>0.0</u> 64
Copper	0.2	0.2	0.2	<u>_</u> 3>	C 0.23	C0.287	C1757	0.2
Iron	C07025>	< <u>073</u> >	C0731>	C 248	<3875>	(2072)	C427.93	_1.2 €195
Lead	0.005	0.005	0.005	50.65	COTOT82	C07012	C0.23D	-0 - 021
Mercury	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Zinc	0.05	0.05	0.06	1.18	0.54	0.58	2.3	0.001
					12" G 144" 1	0.00		v.c

.

فطيبونه وجافده بالرمير

همشکاره ما ولای روی میکاردی. با فانمانم ماهنده ا -----

March 31, 1988

Constituent	Upstrm	Dnstrm	D-55	VDM-9	VDM-10	VDM-10d	VDM-11	VDM-14
Chloride	$\overline{51}$			∠⊂ 15500 2	► C 2300-	><23007	 810	_ <=
рH	8.31	8.30	6.98	3.42	5.98	5.98	3.28	6.67
Total Phenolics	0.01	0.01	0.01	0.01	C 0.018	<u><0701</u> 2)	0.01	0.00
Bromodichloromethane	0.0002	0.0002	0.0002	0.0004	0.0002	0.0002	0.0002	0.0008
Bromoform	0.001	0.001	0.001	0.0024	0.001	0.001	(0.001)	0,001
Bromomethane	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008
Carbon Tetrachlori de	0.0005	0.0002	0.0002	0.012	0,0002	0.0002	07017	0.0022
Chloroethane	0,0004	0.0004	0.0004	0-000887		0.0004	.0.004	0,0004
2-Chloroethylvinyl Ether	0.001	0.001	0.001	0.001	0.004	0.004	0.001	0.001
Chloroform	200010	0.0002	0.0002	C 07171		the second states and	C 0.056 >	८ ०००३३
Chloromethane	0.0004	0.0004	0.0004	207 0046	0:00095	0.00117	C0:000647	0.0004
Dibromochloromethane	0.0005	0.0005	0.0002	<u>_070079</u> 1	0.0002	0.0002	C0100357	·0.000£
1,1-Dichloroethane	0.0005		<u><0700038</u>	0.0002	0.0004	0.0004	0,0004	0.0005
1,2-Dichloroethane	0.0005	2000.0	0.0002	<u>07019</u>		0 <u>;0078</u>	0.00352	0.0002
1,1-Dichlorpethene	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
Trans-1,2-Dichloroethene		0.00066	0.0002	0-011	0-00063	< 0.001	CO., 0021	0.000ā
1,2-Dichloropropane	0.0005	0.0002	0.0005	070033N	0.00027	0.00025	دو100192	0.0002
Cis-1,3-Dichloropropene	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	2000.0	0.0008
Trans-1,3-Dichloropropene	0.0002	0.0005	0,0005	0.001	0.0002	0,0002	0,0002	0.0005
Methylene Chloride	0.0005	0.0002	0.0002	0.0431	10.10037	0.0023	COTO00750	0,0008
1,1,2.2-Tetrachloroethane	0.0005	6500 <u>,</u> 0)	0.00053	< 0.292	<070028x	0.0029	<u>():39</u>	
Tetrachloroethene	0.0002	0.0002	0.0002	0.0005	0.0002	0.0002	S000.0	0.0005
1,1,1-Trichloroethane	0.0002	0,0002	0700033	0.0004	0.0002	0.0002	0.0004	0.0002
1,1,2-Trichloroethane	0.0005	0.0005	0,0002	0.0002	0.0002	0.0002	0,0002	0.0008
Trichloroethene	0,0005	0,0002	0.0002	62029	0700072	0700079	COT0038	000065
Vinyl Chloride	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
Trichlorofluoromethane Dichlorodifluoromethane							1	
Arsenic	CO01>	C0-7009	0.005	0.005	0.005	0.005	0.01	0.005
Chromium	0.005	0.005	0.005	0.005	0.005	0.005	C 07014	6 533
Copper	C 0008)	0.009	0.000	C 3 T 5	0.0351	ددن:03	CI5 2	८ ०:- <u>०</u> ६:
Iron	07872	C 0 . 862	0-34	C 490 >		C8-87	(4-9)	C 213
Lead	0.03	<u>(0703</u> ,	0.03	⊂07337		C 0.05)	0.03	
Mercury	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Zinc	0.014	C0:015	C0.041>	L1-9		· CI		ୢ୵୷ୠଡ଼ୄଽ

• •

..

•• * •

يستقصص والمراجع المسابق المراجع المراجع المراجع المراجع المراجع

...

•

June 28, 1988

Constituent	Upstrm	Dnstrm	D-55	VDM-9	VDM-10	VDM-10d	VDM-11	VDM-14
Chloride	(27)	<u>47</u>	⊂26=	> <u>⊂14400</u> ⊃	⊂7400⊃		> (2600⊃)	C7300
рH	8.25	8.32	7.36	3.32	5.83	5.83	3.36	5.32
Total Phenolics	0.01	0.01	0.01	0.01	0.15	<u>ر 15 %</u>	0.01	0.01
Bromodichloromethane	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Bromoform	0.0005	0.0005	0.0002	0.001	0.0002	0.0002	C020057	0,00083
Bromomethane	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008
Carbon Tetrachloride	0.0002	0.0005	0.0002	⊂07015	0.0002	0.0002	0.0002	C0.0092
Chloroethane	0.0002	0.0002	0.0002	0.0004	0.0005	0.0002	0.0005	0.0002
2-Chloroethylvinyl Ether	0.0005	0.0002	0.0002	0.001	0.0005	010005	0.0002	0.0002
Chloroform	0.0005	0.0002	0.0002	0.035	-0.167	20,18	(0.023)	C 0087
Chloromethane	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0066
Ditromochloromethane	0.0005	0.0002	0.0002		07000551	$C_{0.00097}$	C0.0012	C0T0025
1,1-Dichloroethane	0.0002	0.0005	0.0002	0.0002	0.0002	0.0002	(0.0051)	0.0002
1,2-Dichlorcethane	0.0005	0.0002	0.0002	C0701	C010537	<u>C0.023</u>	C0T0038	<u>co013</u>
1,1-Dichlorosthene	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Trans-1,2-Dichloroethene	0.0002	0.0002	0.0002	C070042	C0700h	L0100117	0.000675	C0.009
1,2-Dichloropropane	0.0002	0.0002	0.0002	0.0006>	(070022)	C070006	0.0002	010041
Cis-1.3-Dichloropropene	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	5000.0
Trans-1,3-Dichloropropene	0.0002	0.0002	0.0002	3000.0	0.0002	0.0002	0.0002	0.0002
Methylene Chloride	070013	0.000787	0.00357	<u>_0.018</u>	0.018	0,019>	0,700175	0.052
1,1,2,2-Tetrachloroethane	0.0002	0.0002	0.0002		0.0042	C070047>	C0.035	0.038
Tetrachloroethene	0.0005	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0,0002
1,1,1-Trichloroethane	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
1,1,2-Trichloroethane	0.0002	0.0002	0.0002	0.0002	0,0002	0.0002	0.0002	0,0002
Trichloroethene	0.0005	0.0002	0.0002	0.00837	<u>(0.0015)</u>	0700165	0.0016	C 0.01
Vinyl Chloride	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
Trichlorofluoromethane								
Dichlorodifluoromethane								
Arsenic	0.005	0.005	0.028	0.005	C0.027	(010557	C0.0137	0.005
Chromium	0.006	0.007	C0102	<u>⊂0.1</u> 7⊃	0.050	C070182	(0.048)	C 0.7034
Copper	0.015		(0.4)	<u>C5.5</u>		C0_992	(3.2)	0.014
Iron	07942	C11)	C397	€240	(36)	C685	C470	64 0
Lead	0.05	0.05	C0-062		C0711	C07135	C0:07	CO.T
Mercury	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Zinc	0.037>	(07036)	0728_			(7-6)	د4 =6	9.5
		• Contractor •						⊸t⊐≊^t_∔-

ىرىدە مەكەنىمەتلىدە ئىلەممىلىيە مەكىمەت ئەممەت ئەممەت مەسىدە بەلىمەد بالىمەد بەر مەلەر بەر مەلەر بەر مەلەر بەر مەكى مەكىيە يەسە ھەرچىچە ئىلە يېچىچە ئىلەر يەر بەر يەلەر بەر يەر بەر يەر بەر يەر مەلەر يەر مەلەر يەر بەر يەر بە ىر بە بىقىساتىيىتىدىغىنىشمىغىن

· - -

وكالاططاط وكالم وساطنا وال

٠

• • • •

..

August 31, 1988

Constituent	Upstrm	Dostra	D-55	VDM-9	VDM-10	VDM-10d	VDM-11	VDM-14
Chloride	36>	<35>	<u> </u>	C16310	<u>8280</u>	⊂8530>	(3460)	đố540
рН	8.14	8.32	7.53	3.26	5.17	5.10	3.24	4.83
Total Phenolics	0.01	0.01	0.01	0.01	€07.059>	<u>07045</u>	0-018	0.01
Bromodichloromethane	9.0002	0.0002	0.0002	0,0002	0.0002	0.0002	0.0002	0.001
Bromoform	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.005
Bromomethane	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.005
Carbon Tetrachloride	0.0005	0.0002	0.0002	0.0002	0.0002	0.0002	C0.00551	COLOIE
.Chloroethane	0.0002	0.0002	0.0005	0.0002	0.0002	0.0002	0.0002	0.00%
2-Chloroethylvinyl Ether	0.001	0.001	0.001	0.001	0.005	0.002	0.001	0.005
Chloroform	0.0005	S000.0	0.0002	C0.01-1	<u> ~0.3</u> 7	<0.257>	C0.0987	
Chloromethane	0.0004	0.0004	0.0004	0.0004	<u>د0:00465</u>	CO0027	0.0004	COTOIO
Dibromochloromethane	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	C 0701E
1,1-Dichloroethane	0.0005	0.0002	0.0002	0.0002	0.0005	0.0002	0.0002	0.001
1,2-Dichloroethane	0.0002	0.0002	0.0002	< 0.0057>	C120.0D	. <u>C0=0</u> 27	(0.007.1)	COLOS
1,1-Dichloroethene	0.0005	0.0002	0.0002	0.0005	0.0002	0.0002	0.0002	0.001
Trans-1,2-Dichloroethene	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	C0-01-
1,2-Dichloropropane	0.0002	0.0002	0.0002	0.0002	0.0022	0.0002	0.0002	0.001
Cis-1,3-Dichloropropene	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0008
Trans-1,3-Dichloropropene	0.0002	0.0002	0.0005	0.0002	0.0002	0.0002	0.0002	0.001
Methylene Chloride	0.0002	0.0002	0.0002	0.042	<u>⊂0.01</u> 5	C0.017	<070051	८ ०
1,1,2,2-Tetrachloroethane	0.0002	0.0002	0.0002	0.012	0.0047	C0.0042	C07097	C 0.745
Tetrachloroethene	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.001
1,1,1-Trichloroethane	0.0002	0.0002	0.0002	0.0002	0.0005	0.0002	0.0002	0.001
1,1,2-Trichloroethane	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0008
Trichloroethene	0.0002	0.0002	0.0002	0.0002	<u>C0.00181</u>	<070015	0.0002	0.023
Vinyl Chloride	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.002
Trichlorofluoromethane								
Dichlorodifluoromethane								
Arsenic .	0.005	0.005	0.005	د0. 007	<0.06ħ	<0	<u>∠0705</u> 3₀	07025
Chromium	0.008	0.008	0.008	CO.009-	C0702	C0.0237	C070537	C)52
Copper	60-04-12	C0101	0.014	د 315 ک	C 12 7	C 157	(27.7)	0.015
Iron	0-98-	(0.742	(1.4)	C 570 •		C1207	C ⁸ 7	(1100
Lead	0.06	0.06	0.06			0.06	0.0297	0.02
Mercury	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0-000472	0.0002
Zinc	C0.014>	0-016	0.047	C2742	ح5:2 2	∠ 37.7⊃	(3=5)	4 373
							لــــــه	_ ··· - .

a an taithe share sensista a an an baile a tha sa baile dheada a dheada an sa baile a hanna sababaile sa sa a

المحيوم بمعتدلة المعتدلة المراجب المائينية المترجا

· · · · · · · ·

November 16, 1988

Constituent	Upstrm	Dnstrm	D-55	VDM-9	VDM-10	VDM-11	VDM-14	VDM-14d
Chloride	<37>	37	27⊃		22000	C1400>	C250>	1 280
pH ,	8.30	8.52	7.22	2.87	5.84	3.25	6.69	6.68
Total Phenolics	0.01	0.01	0.01	0.01	<u>0.01</u> P	0.01	0.01	0.01
Bromodichloromethane	0.001	0.001	0.001	0.0005	0.001	0.001	0.001	0,001
Bromoform	0.003	0.003	0.003	0.002	0,003	0.003	0.003	0,003
Bromemethane	0.005	0.005	0.005	0.003	0.005	0.005	0.005	0.005
Carbon Tetrachloride	0.001	0.001	0.001	0.000842	0.001	0.001	C 0.0098	C 07009
Chloroethane	0.002	0.002	0.005	0.001	0.002	0.002	0.002	0.008
2-Chloroethylvinyl Ether	0.003	0.002	0.003	0.002	0.003	0.003	0.003	0.003
Chloroform	0.001	0.003	0.001	CO. 055	C 0.131	<u>د20:05</u> 2ک	<u>د201028</u>	८ ०.०३
Chloromethane	0.003	0.001	0,003	C 0.0032	£ 0 ₂ ,003	0.003	0.003	0.003
Dibromochloromethane	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.001
1,1-Dichloroethane	0.001	0.001	0.001	0.0005	0.001	0.001	0.001	0.001
1,2-Dichloroethane	0.001	0.001	0.001	C 070074	0.001	0.001	0.001	0.001
1,1-Dichloroethene	0.002	0.002	0.002	0.001	0.002	0.002	0.002	0.002
Trans-1,2-Dichloroethene	<0.0021>	0.001	0.001	<u><070039></u>	0.001	0.001	0.001	0.00]
1,2-Dichloropropane	0.003	0.003	0.003	0.002	0.003	0.003	0.003	0.003
Cis-1,3-Dichloropropene	0.001	0.001	0.001	0.0005	0.001	0.001	0.001	0.000
Trans-1,3-Dichloropropene	0.001	0.001	0.001	0.0005	0.001	0.001	0.001	0.001
Methylene Chloride	0.002	0.002	0.002	८ 0.70113	0.002	0.002	0.002	0.008
1,1,2,2-Tetrachloroethane	0.001	0.001	0.001	0,7029.	0.001	C 0.048	<07097⊃	0 7 0 7 3
Tetrachloroethene	0.001	0.001	0.001	0.0005	0.001	0.001	0.001	0.001
1.1.1-Trichloroethane	0.001	0.001	0.001	0.0005	0.001	0.001	0.001	0.001
1.1.2-Trichloroethane	0.001	0.001	0.001	0.0005	0.001	0.001	0.001	0.001
Trichloroethene	0.001	0.001	0.001	0.00692	0.001	0.001	<u>(070058</u>)	070015
Vinyl Chloride	0.003	0.003	0.003	0.002	0.003	0.003	0.003	0.003
Trichlorofluoromethane								
Dichlorodifluoromethane								
Arsenic	0.005	0.005	0.005	c 0.044	C0.0087	070682	0.005	0,003
	<u>_07024</u>	C 07018	C 07018	C 0 . 051	<u>c07034</u>	CO.0362	<u>C0724</u>	C 07.14
Соррег	C07026	c 0.018	C07039	C 5 <u>-</u> 5	0712	C11>	C0.028-	C0.028
Iron	(0.36)	C0.340	<078⊃		C20>	c25>	C3792	_ 3 - 5
Lead	0.05	0.05	0.05	C07315	0.05	0.05	0.05	0.05
Mercury	0.0004	0.0004	0.0004	0.0006	0.0004	0.0004	0.0004	0,0004
Zinc	070265	620.02	C0-036	C1770		c2:50	د 0-057ع-0 3	<u>0704</u> ?

. ,

, ż

February 15, 1989

Constituent	Upstrm	Dnstrm	D-55	VDM-9	VDM-10	VDM-11	VDM-14	VDM-14d
Chloride	<u> </u>		-24		C84000	<u> </u>	<180	5 (1 '90
рH	9.35	8.50	7.63	4.55	7.38	4.90	7.14	7.14
Total Phenolics	0.01	0.01	<0.015-	> 0.01	0.043)	0.01	0.01	0.01
Bromodichloromethane	0.0002	0.0002	0.0002	0.001	0.0002	0.001	0.001	0.001
Bromoform	0.0004	0.0004	0.0004	0.002	0.0004	0.002	0.002	0.002
Bromomethane	0.0005	0.0002	0.0002	0.001	0.0002	0.001	0.001	0.001
Carbon Tetrachloride	0.0002	0.0005	0.0002	0.001	0.0005	(0.0035)	0.001	0.001
Chloroethane	0.001	0.001	0.001	0.005	0.001	0.005	0.005	0.005
2-Chloroethylvinyl Ether	0.0004	0.0004	0.0004	0.002	0.0004	0.002	0.002	0.002
Chloroform	0.0002	0.0002	0.0002	(0.078-)	C0.12	(0.042)	0:0052	< 0,0051
Chloromethane	0.001	0.001	0.001		0.001	0.005	0.005	0.005
Dibromochloromethane	0.0005	0.0002	0.0002	C0.002	ò.0002	<0.00267	0.001	0.001
1,1-Dichloroethane	0.0002		(0.0013)	0.001	0.0002	<0.00357	0.001	0.001
1,2-Dichloroethane	0.0005	0.0005	0.0002	<07.0143	0.0002	0.001	0.001	0.001
1,1-Dichloroethene	0.0005	0.0002	0.0002	0.001	0.0002	0.001	0.001	0.001
Trans-1,2-Dichloroethene	0.0005	0.0005	0.0002	<0.0043	0.0002	<070015 <u>\</u>	0.001	0.001
1,2-Dichloropropane	0.0002	0.0002	0.0005	0.001	0.0002	0.001	0.001	0.001
Cis-1,3-Dichloropropene	0.0002	0.0002	0.0002	0.001	0.0002	0.001	0.001	0.001
Trans-1,3-Dichloropropene	0.0002	0.0002	0,0002	0.001	0.0002	0.001	0.001	0.001
Methylene Chloride	0:00079	C0700024	-0:00035	<u> </u>	-070054	C0700483	070012	07008
1,1,2,2-Tetrachloroethans	9,0002	0.0002	0.0002	< 0.12	0.0002	C0.11	<0:077	Q.065
Tetrachloroethene	0.0005	0.0002	0.0002	0.001	0.0002	0,001	0.001	0.001
1,1,1-Trichloroethane	0.0002	0.0002	0.0005	0.001	0.0002	0.001	0.001	0.001
1,1,2-Trichloroethane	0.0005	0.0002	0.0002	0.001	0.0002	0.001	0.001	0.001
Trichloroethene	0.0002	0.0002	0.0002	0.00677	0.0002	(0.0021)	0.001	0.001
Vinyl Chloride	0.0002	0.0002	0.0005	0.001	0.0002	0.001	0.001	0.001
Trichlorofluoromethane								
Dichlorodifluoromethane								
Arsenic	0.005	0.005	0.005	C0.012>	<07014	<u>07012</u>	0.005	0.005
Chromium	C070T1>	C0.0Pt	$\bigcirc 0.01$	€0.033	<0.035>	<0.017>	<2.7>	<5%
Copper	0.01	0.01	<07013⊾	<52 <	(473)	C01857	ح10703	C0:026
Iron	C0.152	C0725	<u><0755</u>	C1702	C4722	C4-45	<8.2>	CET
Lead	0.07	0.07	(0.07)	c0-81	€0.58>	<0.087	C0709	0.07
Mencury	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
Zinc	C0:026>	<u>د07027</u> 2	C0:517	(1-8)	(2-8)	(1-4)	0-17	C0- 24

VANDEMARK LANDFILL: QUARTERLY MONITORING PROGRAM RESULTS

18 HILE CREEK UPSTREAM

•

CONSTITUENT:	5/12/86	1/22/87	6/3/87	9/2/37	11/5/87	03/31/88 •	06788788	68/31/88	11/16/88	02/15/89	STANDARD DEVIATION	STUDENT (95%)
CHLORIDE		35.81	(45)	(44)	> (28)	50	د273 م	(36)	 ∖ (37″) <u>/8</u> 6 \	16.1445	0.399
pН	7.89	7.67	7.63	7.41	8.25	8.31	8.25	8.14	8.3	9.35	0.5114	0.801
TOTAL PHENOLS	0.01	∑ (.).22	0.01	0.01	(0.003)	0.01	0.01	0.01	0.01	(0.01)	0.0633	-0.107
BROMODICHLOROMETHANE	0.01	0.005	0.001	0.005	0.005	0.0002	0.0002	0.0002	0.001	0.0002	0.0032	-0.272
BROMOFORM	0.01	0.005	0.005	0.005	0.005	0.001	0.0002	0.001	0.003	0.0004	0.0029	-0.362
BROMOMETHANE	0.005	0.005	0.001	0.005	0.005	0.0008	0.0008	0.0004	0.005	0.0002	0.0022	-0.398
CARBON TETRACHLORIDE	0,005	0,005	0.001	0.005	0.001	0,0002	0.0002	0.0002	0.001	0.0002	0.0021	-0.270
CHLOROETHANE	0.005	0.005	0.001	0.005	0.001	0.0004	0.0002	0.0002	0.002	0.001	0.0020	-0.182
2-CHLOROETHYLVINYL ETHER	0.005	0.005	0,001	0.005	0.01	0.001	0,0002	0.001	0.003	0,0004	0.0030	-0.311
CHLUKOFORN	0.005	D.005	0.001	0.005	0.001	0.0002	0.0002	0.0002	0.001	0.0002	0.0021	-0.270
CHLOROMETHANE	0.005	0.005	0.001	0.005	0.005	0.0004	0.0004	0.0004	0.003	0.001	0.0021	-0.260'
DIBRONOCHLOROMETHANE	0.01	0.005	0.001	0.005	0.005	0.0002	0.0002	0.0002	0.001	0.0002	0.0032	-0.272
1,1-DICHLOROETHANE	0.005	0.005	0.001	0.005	0.001	0.0002	0.0002	0.0002	0.001	0.0002	0.0021	-0.270:
1,2-DICHLOROETHANE	0.005	0.005	0.001	0.005	0.001	0.0002	0.0002	0.0002	0.001	0.0002	0.0021	-0.270
1,1-DICHLOROETHENE	0.005	0.005	0.001	0.005	0.001	0.0004	5000.0	0.0002	0.002	0.0002	0.0020	-0,295.
TRANS-1,2-DICHLORGETHENE	0.005	0.005	0.001	0.005	0.001	0,000471	0.0002	2000.0	0.0020	0.0002	0.0020	-0.298
L,2-DICHLOROPROPANE	0.005	0,005	0.001	0.005	0.001	0,0002	0.0002	9.0002	0.003	0.0002	0.0021	-0.202:
CIS-1,3-DICHLOROPROPENE	0.005	0.005	0.001	6.005	0.001	0.0005	0.0002	0.0002	0.001	0.0002	0.0021	-0.270
TRANS-1, 3-DICHLOROPROPENE	0.005	0.005	0.001	0.005	0.001	0.0002	0.0002	0.0002	0.001	0.0002	0.0021	-0.270
METHYLENE CHLORIDE	0.005	0.005	0.001	0.005	0.001	0.0002	(01.0016	2000.0	0.002	0.000792	0.0019	-0.241
i.1,2,2-TETRACHLOROETHANE	0.005	0,005	0.001	0,005	0.001	0.0002	2000.0	0.0002	0.001	0,0002	0.0021	-0.270:
TETRACHLORGETHENE	0.005	0.005	0.001	0.005	0.001	0,0002	9.0002	0.0002	0.001	0.0002	0.0021	-0.270
1,1,1-TRICHLORDETHANE	0.005	0.005	0.001	0.005	0.001	0.0002	0.0002	0.0002	0.001	0.0002	0.0021	-0.270
1, 1, 2-TRICHLOROETHANE	0.005	0,005	0.001	0,005	0.001	0.0002	0.0002	0.0002	0.001	0.0002	0.0021	-0.270
TRICHLORDETHENE	0.005	0.005	0.001	0.005	0.001	0.0002	0.0002	0.0002	0.001	0.0002	0.0021	
VINYL CHLORIDE	0.005	0.005	0.001	0.005	0.001	0.0004	0.000L	0.000E 0.0004	0.001	0.0002	0.0021	-0,270* -0,320*
TRECHLOROFLUOROMETHANE	0.005	0.005	0.001	0.005	0.001	010003	010004	V	V:0V3	0.0002	0.0020	
DICHLORODIFLUOROMETHANE	0.005	0.005	0.001	0.005	0.001						0.0020	-0.867* -0.867*
ARSENIC	0.005	0.005	0.005	0,005	0.005	40.0)	0.005	0.005	0.005	0.005	0.0015	
CHROMIUM	0.5	€0.189	0,005	0.005	C0.021	0,005	0.005					-0.111
COPPER	0.2	0.2	0.00	0.003	-1-0.0- 5.0		C0:012	0.008 C0.01K	(0.025) (0.00)		0.1506	-0.145
IRON	Ő.Þ	2.V 1.021	C0.422		0.0 29070)	(0.89)	<u>(0.96</u>)	C0.98	(0.36)	0.01	0.0931	-0,347
LEAD	1	<u>((,013</u>	6.04	0.019	0.005					(0.25)	0.3477	-0.3465
MERCURY	406.0	-				0.03	0.05	0.06	0.05	0.07	0.2905	-0.0699
ZINC		(0.02)	0.001	0.001	0.001	0.0002	0.0005	0.0002	0.0004	0.0004	0.0058	-0.1243
<pre>clmb clmb clmb clmb clmb clmb clmb clmb</pre>	<u> 연</u> 월	્0:13	0.05	0.05	0.05	(0.014)	<u>0.037</u>	056143	0.026	0.0257	0.1460	-0.1470
				_13822222				=============	==========	**********		===========

•

VANDEMARK LANDFILL: QUARTERLY MONITORING PROGRAM RESULTS

18 MILE CREEK DOWNSTREAM

.

CHURNE C401 C38 C59 C45 C27 C54 C47 C33 C37 C85 15,423 0,337 PH 8.13 7.13 7.67 7.05 8.28 8.32 8.32 8.52 8.5 0.31 0.01 0.001 0.002 0.021 0.01 0.002 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.021 0.011 0.002 0.022 0.021 0.022	CONSTITUENT:	5/12/86	1/22/87	6/3/87	9/2/87	11/5/87	03/31/88	06/28/88	08/31/98	11/16/89	02/15/89	STANDARD DEVIATION	STUDENT ((95%)
TOTAL PRENDLS 0.01 0.02 0.01 0.002 0.01 0.01 0.01 0.01 0.01 0.002 0.021 BRUNDLICHLURDRETHAME 0.01 0.005 0.005 0.005 0.005 0.002 0.0002												15.4239	 0.8707
SchubblichLagenetinane 0.01 0.005 0.005 0.005 0.0062 0.0002 0.0022 0.0002	•												0.3127
BRUNDFERM 0.01 0.005 0.005 0.005 0.001 0.002 0.001 0.002	TOTAL PHERULS	0.01	450.9	0.01	0.01	0.002	0.01	0.01	0.01	0.01	0.01	0.0045	-0.0293
REMOMPLYANE 0.01 0.005 0.005 0.001 0.002 0.001 0.002 0.0021 0.0021 <td></td> <td></td> <td>0.005</td> <td>0.001</td> <td>0.005</td> <td>0.005</td> <td>9.0002</td> <td>0.0002</td> <td>0.0002</td> <td>0.001</td> <td>5000.0</td> <td>0.0032</td> <td>-0.272:</td>			0.005	0.001	0.005	0.005	9.0002	0.0002	0.0002	0.001	5000.0	0.0032	-0.272:
CARBON TETRACHLORIDE 0.005 0.001 0.005 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 <th0.002< th=""> 0.002 0.002<td></td><td></td><td></td><td>0.005</td><td>0.005</td><td>0.005</td><td>0.001</td><td>0.0002</td><td>0.001</td><td>0.003</td><td>0.0004</td><td>0,0029</td><td></td></th0.002<>				0.005	0.005	0.005	0.001	0.0002	0.001	0.003	0.0004	0,0029	
CHLORDETHANE 0.005 0.001 0.0004 0.0002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002			0.005	0.001	0.005	0.005	0.0008	0.0008	0.0004	0.005	0.0002	0.0022	
CHLBARGETHANE 0.005 0.005 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002			0.005	0.001	0.005	0.001	0.0002	5000.0	0.0002	0.001	0.0002	0.0021	-0.270:
2-CHLORDETHYLVINYL ETHER 0.005 0.005 0.001 0.005 0.001 0.002 0.001 0.002 0.			0,005	0.001	0.005	0.001	0.0004	9,0002	0.0002	0.002	0.001	0.0020	
CHURGHERK 0.005 0.005 0.001 0.005 0.001 0.002 <th0.002< th=""> 0.002 0.002</th0.002<>			0.005	0.001	0.005	0.01	0.001	0.0002	0.001	0,002	0,0004	0,0036	
CHLCRARETHAME 0.005 0.005 0.005 0.0004 0.0004 0.0004 0.001 0.001 0.0021 -0.2215 DIBRONDCHLGROWETHANE 0.01 0.005 0.001 0.005 0.0005 0.0002 0.0002 0.0001 0.001 0.0021 -0.2215 JI-BICHLGROETHANE 0.005 0.005 0.001 0.0022 0.0002 0.0002 0.0002 0.001 0.0002 0.0002 0.001 0.0002 0.001 0.0002 0.0002 0.001 0.0002 0.001 0.0002 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012		0.005	0.005	0.001	0.005	0.001	0,0002	0.0002	5000.0	0.003	0.0002	0.0021	
DIERNOCHLOROMETHAME 0.01 0.005 0.001 0.005 0.002 0.002 0.002 0.003 0.002 0.0031 -0.2955 1,1-DICHLOROETHAME 0.005 0.001 0.005 0.001 0.002 <	CHLOROMETHANE	0.005	0.005	0.001	0.005	0.005	0.0004	0.0004	0.0004	0.001	0.001	0.0021	
1,1-DICHLORDETHANE 0.005 0.001 0.005 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 </td <td>DIBRONOCHLOROMETHANE</td> <td>0.01</td> <td>0.005</td> <td>0.001</td> <td>0.005</td> <td>0.005</td> <td>0.0002</td> <td>0.0002</td> <td>0.0002</td> <td>0.003</td> <td>0.0002</td> <td>0.0031</td> <td></td>	DIBRONOCHLOROMETHANE	0.01	0.005	0.001	0.005	0.005	0.0002	0.0002	0.0002	0.003	0.0002	0.0031	
1,2-DICHUBAGETHANE 0,005 0,001 0,002 0,0001 0,0002 0,0002 0,00	1,1-DICHLOROETHANE	0.005	0.005	0.001	0,005	0.001	0.0002	0.0002	0.0002	0.001	0.0002		
1,1-DICHLORGETHENE 0.005 0.001 0.001 0.0004 0.0002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.00	1,2-DICHLOROETHANE	0,005	0.005	0.001	0.005	0,001	0.0002	0.0002	0.0002	0.001			
TRANS-1, 2-DICHLOROETHENE 0.005 0.005 0.001 0.005 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.	1,1-DICHLORGETHENE	0,005	0,005	0.001	0.005	0.001	0.0004	2000.0	0.0002				
1.2-DICHLOROFROPANE 0.005 0.005 0.001 0.0005 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.0002 0.001 0.002 <td>TRANS-1,2-DICHLOROETHENE</td> <td>0.005</td> <td>0.005</td> <td>0.001</td> <td>0.005</td> <td>0.001</td> <td>0.00056</td> <td>0.0002</td> <td>0.0002</td> <td></td> <td></td> <td></td> <td></td>	TRANS-1,2-DICHLOROETHENE	0.005	0.005	0.001	0.005	0.001	0.00056	0.0002	0.0002				
C15-1,2-D1CHLOROPROPENE 0.005 0.001 0.002 0.0002 0.001 0.001 0.0002 0.001 0.001 0.0002 0.001 0.001 0.001 0.0002 0.001 0.001 0.	1,2-DICHLOROPROPANE	0.005	0.005	0.001	0,005	0.001	0.0002	0.0002					
TRANS-1,3-DICHLORDFSQPENE 0.005 0.001 0.005 0.001 0.002 0.002 0.001 0.002	CIS-1,3-DICHLOROPROPENE	0.005	0.005	0.001	0.005	0.001	0.0002	0.0002					
METRYLENE CHLORIDE 0.005 0.001 0.005 0.001 0.002 0.021 0.022 </td <td>TRANS-1, 3-DICHLOROFSOPENE</td> <td>0.005</td> <td>0.005</td> <td>0,005</td> <td>0.005</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TRANS-1, 3-DICHLOROFSOPENE	0.005	0.005	0,005	0.005								
1,1,2,2-TETRACHLORDETHANE 0.005 0.005 0.001 0.005 0.001 0.002 0.002 0.001	METHYLENE CHLORIDE	0.005	0.005	0,001									
TETRACHLORDETHENE 0.005 0.001 0.005 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1,1,2,2-TETRACHLORDETHANE	0.005	0,005	0.001	0.005								
1.1.1-TRICHLOROBETHANE 0.005 0.001 0.005 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.0	TETRACHLOROETHENE	0.005	0.005	0.001	0.005	0.001	5000.0	0.0002	0.0002				
1,1,2-TRICHLORDETHANE 0.005 0.001 0.005 0.001 0.002 0.002 0.001 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.00111 0.0011 0	1,1,1-TRICHLOROETHANE	0.005											
TRICHLORCETHENE 0.005 0.001 0.005 0.001 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002		0.005											
VINYL CHLORIDE 0.005 0.005 0.001 0.005 0.001 0.0004 0.0004 0.0004 0.003 0.002 0.0020 -0.32(- TRICALOPOFLUOROMETHANE 0.005 0.005 0.001 0.005 0.001 0.0004 0.0004 0.003 0.0020 -0.32(- ARSENIC 0.005 0.005 0.005 0.005 0.005 0.001 0.005 0.001 0.0020 -0.32(- ARSENIC 0.005	TRICHLORCETHENE	0,005	0.005										
TRIC-LOPOFLUOROMETHANE 0.005 0.005 0.001 0.005 0.001 0.002 -0.8473 SICHLORODIFLUOROMETHANE 0.005 0.005 0.001 0.005 0.001 0.002 -0.8473 ARSENIC 0.005 0.00	VINYL CHLORIDE		0.005										
DICHLORODIFLUORDNETHANE 0.005 0.001 0.005 0.001 0.005 0.001 0.0020 -0.8475 ARSENIC 0.005 0.001 0.0										0177 9	*****		
CHROMIUM 0.5 G0.0256 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006													
CHROMIUM 0.5 G0.055 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 <	ARSENIC	0,005	 0.005	0.005	ύ.005	0.005	(-07005)	0.005	0.005	 2 005	 ۵ ۵۵۶	A 0010	
COPPER 0.2 <th0.2< th=""> <th0.2< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th0.2<></th0.2<>													
IRON CV.74> CO.74 CO.74 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></th<>										-			
LEAD 1 CO.011 Q.014 CO.017 0.005 CO.03 0.05 0.06 0.05 0.07 0.2907 -0.0693 MERCURY CO.003 CO.004 CO.001 0.001 0.0002 0.0005 0.0004 0.0012 -0.2323 ZINC CO.28 0.05 0.05 0.016 CO.024 CO.0024 0.0057 -0.1555													
MERCURY (0.003 C07.004 C1.002 0.001 0.0002 0.0005 0.0002 0.0004 0.0004 0.0012 -0.2355 ZINC (0.725) 0.05 0.05 (0.016) (0.016) (0.016) (0.026) (0.026) 0.0567 -0.1535		CALLY 1											
ZINC (0728) 0.05 0.05 (0.05 0.05 (0.016) (0.036) (0.016) (0.026) (0.026) 0.0567 -0.1585		ca: 102											
(113) MA (114) AND (AND) (MALA CURLA AND) - (1133)													
							~	(0.036)	(07010)				

•

•

WELL D-35

.

ł

```
STANDARD STUDENT T
```

PROMUDICHLORDMETHANE 0.005 0.001 0.002 0.001 0.002 0.001 0.002 </th <th>CONSTITUENT:</th> <th>1/6/84</th> <th>3/21/84</th> <th>1/22/87</th> <th>6/3/87</th> <th>9/2/87</th> <th>11/5/87</th> <th>03/31/88</th> <th>06/29/88</th> <th>08/31/88</th> <th>11/16/88</th> <th>02/15/89</th> <th>STANDARD DEVIATION</th> <th>STUDENT T (95%)</th>	CONSTITUENT:	1/6/84	3 /21/84	1/22/87	6/3/87	9/2/87	11/5/87	03/31/88	06/29/88	08/31/88	11/16/88	02/15/89	STANDARD DEVIATION	STUDENT T (95%)
pH 7.545 6.471 c.4 6.12 6.92 6.93 7.36 7.53 7.22 7.63 0.3781 0.447 T0*L FMENDLS 0.005 (0.025) (0.025) (0.025) (0.025) (0.025) (0.025) (0.010) (0.011) (0.011) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.022) (0.011) (0.012) (0.011) (0.002) (0.001) (0.002) (0.011) (0.002) (0.011) (0.002) (0.011) (0.002) (0.011) (0.002) (0.011) (0.011) (0.002) (0.011) (0.002) (0.011) (0.011) (0.011) (0.002) (0.011) (0.011)	NELL ELEVATION			434.05	432.77	432.96	433.19	433.71	432.61	432.8	433.58	433.05		
pH 7.545 6.571 c.4 6.82 6.935 c.935 7.36 7.32 7.22 7.43 0.3781 0.449 I0TAL PHENDLS 0.005 0.002 0.01 0.002 0.01 0.01 0.01 0.012 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.002 0.001 0.002 <td>CHLORIDE</td> <td>49</td> <td>636</td> <td>(1).B)</td> <td>(15)</td> <td>(32)</td> <td>£20</td> <td>5 (B)</td> <td>> (1261)</td> <td>> 725</td> <td>5 727</td> <td>N (24)</td> <td>176,1686</td> <td>-0.1002</td>	CHLORIDE	49	636	(1).B)	(15)	(32)	£20	5 (B)	> (1261)	> 725	5 727	N (24)	176,1686	-0.1002
IDTAL_PHENDLS 0.003 0.002 0.01 0.01 0.01 0.01 0.01 0.01 0.011 0.002 0.001 0.001 <	рH	7.545	6.471	<i>έ</i> ,4	6.B1		Sec 199							
BROMDELCHLORDRETHANE 0.005 0.001 0.002 0.001 0.0022 0.002 0.002 0.001 0.0022 0.002 0.002 0.001 0.0022 0.002 0.002 0.001 0.002 0.002 0.001 0.001 0.00	TOTAL PHENOLS		0.005	(1.028) (1.00)	(0,0 2)	0.01		0.01	0.01					0.1417
ERDBURDEN 0.005 0.005 0.005 0.001 0.0022 0.0040 0.0021 -0.1418 BRUMMETHANE 0.005 0.001 0.005 0.001 0.005 0.001 0.0022 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0011 0.001 <td>BROMODICHLOROMETHANE</td> <td></td> <td></td> <td>0.005</td> <td>0.001</td> <td>0.005</td> <td></td> <td></td> <td></td> <td>0.0002</td> <td>0.001</td> <td>0.0002</td> <td>0.0022</td> <td>-0,2911</td>	BROMODICHLOROMETHANE			0.005	0.001	0.005				0.0002	0.001	0.0002	0.0022	-0,2911
BRDB/DECTIMANE 0.005 0.001 0.005 0.0002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001	BROMOFORM			0.005	0.005	0.005	0.005	0.001	0.0002	0.001	0.003	0.0004		-0.4185
CAREBIN TETRACHLORUE 0.0002 0.001 0.001 0.0002 0.001 0.0012 0.0002 0.0013 0.0013 0.0014 0.0014 0.0012 0.0014 0.0014 0.0012 0.0012 0.0014 0.0014 0.0012 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0014 0.0002 0.0014 0.0014 0.0012 0.0014 0.0014 0.0012 0.0014 0.0012 0.0014 0.0014 0.0012 0.0014 0.0014 0.0014				0.005	0.001	0.005	0.005	0.0008	0.0008	0.0004	0,005	0.0002	0.0022	-0.3861
CHLCRDETHANE 0.005 0.001 0.0024 0.0022 0.002 0.0012 0.0019 -0.147 2-CHLGRDETHAVE 0.005 0.001 0.005 0.001 0.002 0.001 0.002 0.001 0.003 0.0019 -0.317 2-CHLGRDETHAVE 0.005 0.001 0.005 0.001 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 <t< td=""><td></td><td></td><td>0.00055</td><td>0.005</td><td>0.001</td><td>0.005</td><td>0.001</td><td>0.0002</td><td>0,0002</td><td>9,0002</td><td>0.001</td><td>0.0002</td><td>0.0018</td><td>-0.2197</td></t<>			0.00055	0.005	0.001	0.005	0.001	0.0002	0,0002	9,0002	0.001	0.0002	0.0018	-0.2197
2-CHLERRETHYLVIKYL ETHER 0.005 0.001 <th0.001< th=""> 0.001 0.00</th0.001<>				0,005	0.001	0.005	0.001	0.0004	0,0002	0.0002	0.002	0.001	0.0018	-0,1475
CHLOROPTRM 0.00013 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0011 0.0022 0.0012 0.0014 0.0002 0.0014 0.0002 0.0011 0.0022 0.0012 0.0012 0.0012 0.0011 0.0022 0.0012 0.0011 0.0022 0.0011 0.0022 0.0012 0.0011 0.0022 0.0012 0.0011 0.0022 0.0012 0.0011 0.0022 0.0012 0.0011 0.0012 0.0012 0.0012 0.0011 0.0012 0.0012 0.0011 0.0012 0.0012 0.0011 0.0012 0.0012 0.0012 0.0011 0.0011 0.0011 0.0011 0.0011 0.0012 0.0012 0.0011 0.0011 0.0011 0.0012 0.0012 0.0011 0.0011 <th0.0011< th=""> 0.0011 0.0011</th0.0011<>				0.005	0.001	0.005	0.01	0.001	0.0002	0.001	0.003	0.0004	0.0018	-0.3075
CHCDEDMETHARE 0.00026 0.001 0.005 0.005 0.004 0.004 0.003 0.001 0.0020 -e.189 DIBROMDCHLORMETHANE 0.005 0.001 0.005 0.005 0.0002 0.0002 0.001 0.0022 -0.281 1.1-DICHLORGETHANE 0.005 0.001 0.005 0.001 0.0002 0.0002 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001 0.0022 0.001				0.005	0.001	0.005	0.001	0.0002	0.0002	0.0002	0.001	0.0002		-0,2164
DIBRONCLURRONCTHANE 0.005 0.005 0.0005 0.0002 0.0002 0.001 0.0002 0.0012 0.0002 0.0002 0.0012 0.0			0.00026	0.005	0.001	0.005	0.005	0.0004	0.0004	0.0004	0.003	0.001	0.0020	-0.1898
1,1-DICHLORGETHANE 0,005 0,001 0,005 0,001 0,002 0,001 0,0012 0,0011 0,002 0,0011<				0.005	0.001	0.005	0.005	0.0002	0.0002	0.0002	0,001	0.0002	0.0022	-0.2911
1,2-DICHURGETHANE 0.005 0.001 0.005 0.001 0.002 0.002 0.001 <td></td> <td></td> <td></td> <td>0,005</td> <td>0.001</td> <td>0.005</td> <td>0.001</td> <td>0.00038</td> <td>0.0002</td> <td>0.0002</td> <td>0.001</td> <td>(10.00)</td> <td>0.0018</td> <td>-0.0732</td>				0,005	0.001	0.005	0.001	0.00038	0.0002	0.0002	0.001	(10.00)	0.0018	-0.0732
1,1-DICHLORGETHENE 0.005 0.001 0.005 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.001 </td <td>•</td> <td></td> <td></td> <td>0.005</td> <td>0.001</td> <td>0.005</td> <td>0.001</td> <td>0.0005</td> <td>0.0002</td> <td>0.0002</td> <td>0.001</td> <td>5000.0</td> <td>0,0019</td> <td>-0.2500</td>	•			0.005	0.001	0.005	0.001	0.0005	0.0002	0.0002	0.001	5000.0	0,0019	-0.2500
IRANS-1, 2-DICHLORDETHENE 0.005 0.001 0.0002 0.002 0.001 0.001 0.001 <td>1,1-DICHLORGETHENE</td> <td></td> <td></td> <td>0.005</td> <td>0.001</td> <td>0.005</td> <td>0.001</td> <td>0.0004</td> <td>0.0002</td> <td>0.0002</td> <td>0.002</td> <td>0,0002</td> <td></td> <td></td>	1,1-DICHLORGETHENE			0.005	0.001	0.005	0.001	0.0004	0.0002	0.0002	0.002	0,0002		
1,2-DICHLOROPROPENE 0.005 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.001 0.0002 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001				0.005	0.001	0.005	0.001	0.0002	0.0002	0.0002	0,001	0,0002		-0,2100
C1S-1,3-DICHLOROPROPENE 0.005 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.00	•			0.005	0.001	0.005	0.001	0.0002	0.0002	0.0002	0.003	0,0002		
TRANS-1,3-DICHLOROPROPENE 0.005 0.001 0.005 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.	-			0.005	0.001	0.005	0.001	0.0002	0.0002	0.0002	0,001	0.0002		-0.2500
METHYLENE CHLORIDE 0.00376 0.005 0.001 0.0012 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.00	•			0.005	0.001	0.005	0.001	0.0002	5000.0	0.0002				-0.2500
1,1,2,2-TETEACHLOROETHANE 0.005 0.001 0.005 0.001 0.00532 0.002 0.001 0.0022 0.001 0.001 0.001 0.0021 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0012 0.0012 0.001 0.0012 0.001 0.0012 0.0012 0.0011 0.002 0.0012 0.0012 0.0011 0.0011 0.0011 0.0012 0.0012 0.0012 0.0012 0.0011 0.0012 0.0012 0.0011 0.0021 0.0012 0.0012 0.0011 0.0012 0.0012 0.0012 0.0011 0.0012 0.0012 0.0012 0.0011 0.0012 0.0012 0.0012 0.0011 0.0012 0.0012 0.0011 0.0012 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0012 0.0011 0.0011 0.0012 0.0011 0.0012 0.0011 0.0011 0.0011 0.0011 0.0012 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011	METHYLENE CHLORIDE		0.00376	0,005	0.021	0.005	0.001	0.0002	C0.0038	0.0002				
TETRACHLOROETHENE 0.00014 0.005 0.001 0.005 0.001 0.0002 0.0002 0.0011 0.0012 0.0012 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 <th< td=""><td>1,1,2,2-TETRACHLOROETHANE</td><td></td><td></td><td>0.005</td><td>0.001</td><td>0.005</td><td>0.001</td><td></td><td></td><td>0.0002</td><td></td><td> ,</td><td></td><td></td></th<>	1,1,2,2-TETRACHLOROETHANE			0.005	0.001	0.005	0.001			0.0002		,		
1.1,1-TRICHLORDETHANE 0.005 0.001 0.005 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.00	TETRACHLOROETHENE		0.00014	0,005	0,001	0.005	0,001	0.0002	0.0002					
1,1,2-TRICHLORDETHANE 0.005 0.001 0.005 0.001 0.002 0.002 0.001 0.001 0.00	1,1,1-TRICHLOROETHANE			0.005	0.001	0.005	0.001	0.00033	0.0002	0.0002				
TRICHLOROETHENE 0.005 0.001 0:005 0.001 0:002 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	1,1,2-TRICHLOROETHANE			0.005	0.001	0.005	0.001	0.0002	0.0002					
VINYL CHLORIDE 0.005 0.001 0.005 0.001 0.004 0.004 0.004 0.003 0.002 0.001 -0.305 TRICHLOROFLUOROMETHANE 0.005 0.001 0.005 0.001 0.005 0.001 0.0020 -0.305 OICHLORODIFLUOROMETHANE 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.0020 -0.577 OICHLORODIFLUOROMETHANE 0.005	TRICHLOROETHENE			0.005			0.001	0,6002	0.000 2					
TRICHLOROFLUOROMETHANE 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.0020 -0.577 DICHLORODIFLUOROMETHANE 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.0020 -0.577 ARSENIC 0.005	VINYL CHLORIDE			0,005	0.001	0.005	0.001	0,0004						
DICHLORODIFLUOPOMETHANE 0.005 0.001 0.005 0.001 0.005 0.001 0.0020 -0.5774 ARSENIC 0.005 0.0	TRICHLOROFLUOROMETHANE			0.005	0.001	0.005	0.001							
CHROMIUM 0.16 0.029 0.008 0.005 0.005 0.005 0.008 0.008 0.011 0.0449 -0.167 COPPER 0.08 0.2 0.2 0.2 0.2 0.2 0.2 0.31 0.044 0.039 0.013 0.163 0.167 COPPER 0.08 0.2 0.2 0.2 0.2 0.2 0.31 0.044 0.039 0.013 0.1203 -0.3394 ISON 0.2 0.0001 5.2 0.34 0.34 38 (1.4) 0.33 (0.55 11.0400 -0.1324 LEAD 0.003 0.014 0.005 0.005 0.002 0.0005 0.005	DICHLORODIFLUOPOMETHANE			0,005	0,001	0.005	0.001							-0,5774
CHROMIUH 0.16 0.029 0.008 0.005 0.005 0.054 0.008 0.018 0.01 0.0449 -0.1670 COPPER 0.08 0.2 0.2 0.2 0.2 0.2 0.2 0.34 0.014 0.035 0.013 0.1203 -0.3394 ISON 0.2 0.001 (5.2 0.31 0.34 (3.8 (1.4) (9.9) (6.55 11.0400 -0.1324 LEAD 0.003 0.014 0.005 0.005 0.032 0.005	ARSENIC			9.005	0.005	0.005	0.005	0.005	0:026	0.005	0,005	0.905	0.0065	-0.1250
COPPER 0.08 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.334 0.04 0.039 0.013 0.1203 -0.3394 IRON 0.2 0.0001 6.2 0.2 0.23 0.34 0.34 0.044 0.039 0.013 0.1203 -0.3394 IRON 0.2 0.0001 6.2 0.24 0.23 0.34 0.34 0.34 0.9 0.05 11.0400 -0.1324 LEAD 0.003 0.014 0.005 0.005 0.03 0.024 0.0254 0.5168 HSRCURY 0.001 0.001 0.001 0.002 0.0005 0.0002 0.0009 0.0004 0.0003 -0.2421	CHRONTUH		0.16	-0:029	<0.008>	0.005	(0.028)		€0.054					-0.1670
ISON 0.2 0.0001 6.2 0.3 0.23 0.34 0.35 0.132	COPPER		0.08	0.2	0.2	0.2	0.2				4	-	*	
LEAD 0.003 0.005 0.005 0.005 0.03 0.06 0.05 0.025 0.0254 0.5166 MERCURY 0.001 0.001 0.001 0.001 0.002 0.0005 0.0002 0.0009 0.0003 -0.2421	LRON	0.2	0.0001											
MERCURY 0.001 0.001 0.001 0.002 0.0005 0.0002 0.0004 0.0003 -0.242	LEAD		0.003								-			
	HERCURY			0.001										
2180 0,00023 0,05 <u>(0,07) 0,06</u> 0,081 <u>0,28</u> (0,047, 0,036) (0,21, 0,0833 0,4986	ZINC		0,00025	0.05	<u>(0.07)</u>	0.06	(0,06)	0.041	0.28	<u>(1.042</u>)	.0.03b	(0.21	0.0833	0,4988

	1/6/84		3/21/84 3/61/844	5/12/86	1/25/87	4/3/82	9/2/87	11/5/87	88/18/80 88/82/90 88/18/80	06/28/88	88/31/88	11/16/80	02/15/89	STANDARD Deviation	Student-T (95%)
art clovalor	1 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ra cu cu cu cu cu	421.74		422,06	421.97	422.04	422.04	421.74		
	6197		15948	18800	26270	15306	4000	13000	15500	14400	16310	14400	11000	4940.1756	-0.2077
	-0 -0 -0	×	4.904	671 - 	က္က က	4.18	4.75	2.97	3,42	3,32	3.26	2.87	4.55	0.9391	0.1843
			0.02	0.01		0.54	0.13	0.18	0.01	0.01	0.01	0.01	0.01	0.1502	-0,1627
BLONGD I CHLGRONE THANE				0.01	0.005	0.005	0.065	0.005	0.0004	0.000P	0.0069	0 0005	0.001	1000 0	
LECKOFORM				0.01	0.005	0.025	6.005	0.005	0.0024	0.001	0.001	000 U	100.0	0700 V	-0°10°0-
				0.005	0.05	0.005	0.005	0.005	0.000	0.008	0.0004	0.003	0.001	0.000 N	5076 V-
CAREAN TETRACHLORIDE		0.00111	0.00022	0.00636	0.005	01010	0.005	0.0644	0.013	0.015	0.0002	0.00086	0.001	0.0170	-0.153P
estation to the second of the second s				0,005	0.005	0.005	0.005	0.001	0.00066	0,0004	0.0002	0.001	0.05	0.0022	0.3314
amustation (MALVINIL EINEN Pursporten				0.005	0.005	0.005	0.005	0.01	0.001	0.001	0.001	0.002	0.002	0.0027	-0.2082
LARLANDTSAN (m. Jejservaast		0,10721 A AAADA	0.13439	0.163	6.35	0.0932	.0.13	0.328	9.17	0.038	0.011	0.055	0.078	0.1013	-0.1935
LEI URUNE INANE 1120-1482740 SERMETUAME		16100.0	V. WWC&	C00.0	C00.0	0.005	0.005	0.005	0.0046	0.0004	0.0004	0.0032	0.005	0.0020	0.2465
				1010	0.001	0.005	0.005	0.005	0.0079	0.0013	0.000	0.001	0.002	0.0030	-0.2498
THE RECORDED AND THE STATE				C/00'0	0.0010	0.005	0.005		0.0002	0.0002	0.0002	0,0005	0.001	0.0023	-0.2245
I. CTUILLUNUE (ARNE)				0.032	0.005	0.0	0.0139	0.001	0.016	0.04	0.005	0.00%	0.044	0.0082	0.0718
INTELLACONUERANE VANUE - A ATOM ADATTATUT				C00.0	0.005	0.005	0.005	0.001	0,0004	0.0002	0.0002	0.001	0.001	0.0022	-0.2131
				0.005435	0.005	0.005	0.0088	0.046	0.014	0.00%	0.0002	0.0039	0.0043	0.0125	-0.1348
, роли стасцацийн питанс 1918 - М. Алтни разраартно				0.00	0.05	0.005	0.005	0.001	0,0039	0.000	0.0002	0.002	0.001	0.0020	-0.3082
utorityoratescurarradradradr Terstorin oratoscaronadrad				0.005	0.035	0.005	0.005	0.001	0.0002	0.0002	0.0002	0.0005	0.001	0.0022	-0.1972
afrasort,orutanuarauran seloantar amarar	. 4			400.0	0.005	0,005	0.005	0.001	0.001	0.0002	0.002	0.0005	0.001	0.0021	-0.2155
re actual thomas " e districtor acomposite		0.66313	0.35007	WENEO"O	0.110	6° 034	0.0210	0.0494	0.046	0.018	0.042	0.0M	0.026	0.1045	-0.1759
· · · · · · · · · · · · · · · · · · ·				9.67		0.076	0-116	6. 7	0.2	0.06%	0.016	0.039	0.1	0.1428	-0.1498
				0. (Here	9. I 💘	0.1502	0.0615	0.0842	0.0002	0,0002	0.0002	0.0005	0.001	0.0454	-0.2761
· · · · · · · · · · · · · · · · · · ·				C00'0	C00.0	0.005	0.05	0.001	0.0004	0.0002	0.0002	0.0005	0.001	0.0022	-0.2019
▶) ↓) ► TALENBURANCINANCINANCINANCINANCINANCINANCINANCI				0.00.0	0.008%	0.005	0.005	0.001	0.0002	0.0002	0.0002	0.0005	0.001	0,0033	-0.2054
ALENTERACIOENE Plavi rundacioene				0,0379	C.IJL	0.03%	0.03%	0.0861»	0.046	0.0089	6,0002	0.0049	0.0063	0,0441	-0.2532
a and a dense an				0.003	0.001	6.001 0	0.005	0.001	0,0004	0.0004	0.0004	0,002	0.001	0.0021	-0.2444
алалыматы поражетнинс В12-ы исолгоноражетнинс				C00'0	0.005	0,005	0,005	0.001						0.0024	-0.6708
THE				0.005	0,065	0.005	0,005	0.001						0.0024	-0.6682
				0.181	0.333	0.018	0.103	0.005	0.005	0.005	0.007	0 044	0.010	0601 0	
		0.19	0.19		0.064	0.017	0.019	A 11 A	A 0.05		0.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21010 V	0.1007	-V.17CV
		ar P	1.1		4.94		16 1	3	7 4 6 7 4 6		100.0	100.0	550.0	14/5.0	-0,1189
200 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	ũ		60 V	3 9 70	13001		111	n c		ษ. ป.	5	น้	τυ Γ	2.1005	-0.2713
11 102 7	3	20"A	10°2 20°2	1103		្ត្	14 C		78,4	9 1 2	270	280	170	539.8941	-0.1625
		P/0*A	70.V	2.11/2 A AAA			0.001s	9 A A	8 .0	0.45	0.31	0.31	0.81	0.5652	0.1658
		te C	5 6	V.WQ.		N.V.C.	Y.	0.001	0.000	0,0005	0.0008	0,0006	0,0004	0.0017	-0.1989
		0, 10	5	ALLI				1.11	1.9%	đ,	đ	1. 1 •]	5	317.2577	-0.0912

ALENARK LANDFILL. QUARTERLY MONITORING PROGRAM RESULTS

VANDEMARK LANDFILL: QUARTERLY MONITORING PROGRAM RESULTS

VDM 10

CONSTITUENT:

1/6/84 3/21/84 3/21/84d 5/12/86 1/22/87 1/22/87d 6/3/87 6/3/87d 9/2/87 9/2/87d 9/2/87R 9/2/37H 9/2/87Hd

			u anteroe	1/52/0/	1/66/0/0	0/3/0/	0/3/8/0	4/2/8/	9/2/8/0	4/2/8/K	972737H	972/878
WELL ELEVATION				414.54	414.54	414.17	414.17	413.46	413.46			
CHLOPIDE	7730	5039	6470	5451	5424	6250	6250	6000	4200	5711	5180	
PH TOTAL PH <u>enols</u>	5.321	6.358	6.18	5,76	5.84	5.51	5.57					
TOTAL PHENOLS		0.2	0.54	0.946	0.244	0.17	0.12	0.1	0.14	0.036		
BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE				0.005	0.005	0.01		0.005	0.005		0.0005	0.00049
BROMOFORM			0.01	0.005	0.005	0.05		0.005	0.005		0.0005	
BROMOMETHANE			0.005	0.005	0.005	0.01	0.005	0.005	0.005			0.0013
CARBON TETRACHLORIDE		0.00055 0.00055	0.005	0.005	0,005	0.01	0.005	0.005	0.005	5000.0	0.0005	
CHLOROETHANE			0.005	0.005	0.005	0.01	0.005	0.005	0.005		0.00082	
2-CHLOROETHYLVINYL ETHER			0.005	0.005	0.005	0.01	0.005	0.005	0.005		0.0005	
CARBON TETRACHLORIDE CHLOROETHANE 2-CHLOROETHYLVINYL ETHER CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE		0.0976 0.09646	0.00597	0.0088	0.0063	0.0432	0.0478	0.141	0.13	0.12		0.084
CHLOROMETHANE		0.00056 0.00056	0,005	0.005	0.005	0.01	0.005	0.005	0.005	0.0004	0.01	0.013
DISROMOCHLOROMETHANE			0.01	0.005	0.005	0.01	0.005	0.005	0.005	0.001	0.0005	
1,1-DICHLORDETHANE			0.005	0.005	0.005	0.01	0,005	0.005	0,005		0.0005	
1,2-DICHLOROETHANE			0.00991	0.005	0.005	0.01	0.005	0.0072	0.00786		0.0033	
,:-DICHLORGETHENE			0.005	0.005	0.005	0.01	0.005	0.005	0.005		0.0005	
RANS-1,2-DICHLORDETHENE			0.005	0.005	0.005	0.01	0.005	0.005	0.005	0.0004	0.0005	
L,2-DICHLOROPAOPANE			0.005	0.005	0.005	0.01	0.005	0.005			0.0005	
215-1,3-DICHLOROPROPENE			0.005	0.005	0.005	0.01	0.005	0.005	0.005		0.0005	
RANS-1,3-DICHLOROPROPENE			0.005	0.005	0.005	0.01		0.005			0.0005 (
ETHYLENE CHLORIDE		0.0417 0.04203	0.0695	0.0891	0.0932	0.0385	0.0248		0.005	0.004		0.0125
.1,2,2-TETRACHLOROETHANE			0,005	0.005	0.005	0.01	0.005	0.005	0.005		0.0034	
ETRACHLOROETHENE		0.00014 0.00014	0.005	0.005	0.005	0.01		0.005	0,005		0.0005 (
,1,1-TRICHLORDETHANE			0.005	0.005	0.005	0.01		0.005	0.005		0.0005	
,1,2-TRICHLORGETHANE			0.005	0.005	0.005	0.01		0.005	0.005		0.0005 (
RICHLORGETHENE			0.005	0.0074	0.005	0.01		0.005	0.005		0.0012 (
INYL CHLORIDE			0.005	0.005	0.005	0.01		0.005			0.0005	
RICHLORDFLUORDMETHANE			0.005	0.005	0.005	0.01			0.005		0.0005 0	
ICHLORODIFLUGROMETHANE		0.00014 0.00014	0.005	0.005	0.005	0.0311	0.005		0.005			
RSENIC			0.023	0.005	0.033	0.067	0.05	0.01	0.011	0,0055	0.01	
HRONIUM		9 . 15	0.5	0.035	0.021	0.005		0.037		0.036	0.05	
GPPER		0.29	0.45	0.2	0.2	0.51	0.2	0.78	0.27	9.28	0.25	
RON	27.5	0.0001	1820	7.85	6.73	19	1.28	33.5	34.65	36	135	
EAD		0.007	1	0.029	0.039	0.005	0.005	0,008		0.0095	0.37	
ERCURY			0.005	0.001	0.002	0.004		0.001	0.001	0.002	0.003	
INC		1.14	0.51	0.2	0.18	0.7	0.32	2.7	1.2	1.9	6.28	

VANDEMARK LANDFILL: QUARTER

VDM 10

1 . w .

• .

CONSTITUENT:	11/5/87	11/5/87d	3/31/88	3/31/88d	06/28/88	6/28/88d	08/31/88	8/31/88d	11/16/88	02/15/89	STANDARD DEVIATION	STUDENT (95%)
WELL ELEVATION	414.21	414.21	413.87	413.87	411.6	411.6	412.04	412.04	413.73	412.57		
CHLORIDE	4400	5600	2300	2300	7400	7000	8280	8530	5500	8400	1852.9451	0.32
pH	6.04	6.04	5.98	5.98	5.83	5.83	5.17	5.1	5.84	7.38	0.4655	0,750
TOTAL PHENOLS	0.299	0,108	0.015	0.012	0.16	0.12	0.059	0.046	0.011	0.043	0.2141	-0.14(
BROMODICHLOROMETHANE	0.005	0.005	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.001	0.0002	0.0032	-0.194
BROMOFORM	0.005	0.005	0.001	0.001	0.0002	0.0002	0.001	0.001	0.003	0.0004	0.0114	-0.11
BROMOMETHANE	0.005	0.005	0.0008	0.0008	0.0008	0.0008	0.0004	0.0004	0.005	0.0002	0.0026	-0.255
CARBON TETRACHLORIDE	0.001	0.001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.001	0.0002	0.0027	-0.15
CHLOROETHANE	0.001	0.001	0.0004	0.0004	0.0002	0.0002	0.0002	0.0002	0.002	0.001	0.0027	-0.122
2-CHLORGETHYLVINYL ETHER	0.01	0.01	0.004	0.004	0.0002	0.0002	0.005	0.002	0.003	0.0004	0.0030	-0.281
CHLOROFORM	0.154	0.124	0.11	0.12	0.19	0.19	0.3	0.29	0.13	0.12	0.0749	0.002
CHLOROMETHANE	0.005	0.005	0.00095	0.0011	0.0004	0.0004	0.0046	0.002	0.003	0.001	0.0034	-0.188
DIBROMOCHLOROMETHANE	0.005	0,005	0.0002	0.0002	0.00066	0.0006	0.0002	5000.0	0.001	0.0002	0,0031	-0.205
1,1-DICHLOROETHANE			0.0004	0.0004	0.0002	0.0002	0.0002	0.0002	0.001	0.0002	0.0028	-0.165
1,2-DICHLOROETHANE	0.001	0.091	0.0076	0.0078	0.023	0.023	0.021	0.02	0.001	0.0002	0.0073	-0,240
1,1-DICHLORDETHENE	0.001	0.001	0.0004	0.0004	0.0002	5000.0	0.0002	0.0002	0.002	0.0002	0.0027	-0.184
TRANS-1,2-DICHLORDETHENE	0.001	0.001	0.00063	0.001	0.001	0.0011	0.0002	0,0002	0,001	SC00.0	0.0025	-0.195
L.2-DICHLOROPROPANE	0.001	0.001	0.00027	0.00025	0.0022	0.0006	0.0002	0.0002	0.003	5000.0	0.0025	-0.201
CIS-1.3-DICHLORGPROPENE	0.001	0.001	5000.0	0.0002	0.0002	5000.0	0.0002	0.0002	0.001	0,0002	0.0027	-0.194
TRANS-1, 3-DICHLOROPROPENE	0.001	0.001	0.0002	0.0002	5000.0	0.0002	0.0002	0.0002	0.001	5000.0	0.0027	-0.175
METHYLENE CHLORIDE	0.001	0.001	0.003	0.0026	0.018	0.019	0.015	0.017	0,002	0.0054	0.0273	-0,145
1,1,2,2-TETRACHLOROETHANE	0.001	0.001	0.0028	0.0029	0.0042	0.0047	0.0047	0.004	0.001	0.0002	0.0022	-0,367
TETRACHLOROETHENE	0.001	0.001	0.0002	0.0002	2000.0	0.0002	0.0002	0.0002	0.001	0.0002	0.0025	-9.160
1.1.1-TRICHLORGETHANE	0.00	0.001	5000.0	5000.0	0.0002	0.0002	0.0002	0.0002	0.001	0.0002	0.0027	-0.179
I.I.S-TRICHLORDETHANE	0.001	0,001	0.0002	0.0002	3000.0	0.0002	0.0002	0,0002	0.001	0.0002	0.0027	-9,180
TRICHLOROSTHENE	0.00145	0.001	0.00072	0.00079	0.0015	0.0016	0.0018	0.0016	0.001	0.0002	0.0025	-6.225
VINVE CHLORIDE	2.001	0.001	0.0004	0.0004	0.0004	0,0004	0.0004	0.0004	0.001	0.0002	0.0025	-0.193
TRECHLOROFLUOROMETHANE	0.001	0.001	V • • • • • •	446644	VIVVI	V # V 1 7 1	V • V V • 1	A*AA/ 4	V.VV3	010002		
DICHLORODIFLUOROMETHANE	0.001	0.001									0.002E 0.0087	-0.335 -0.245
ARBENIC	0.005	 0.005	 0.005	 0.005	0.027	0.022	0.061	0.07	0.008	 0.011	0.0220	-9.127:
CHREMIUN	0.035	0.01	0.005	0.005	0.021	0.018	0.02	0.023	0.034	0.011		
COPPER	0.23	0.29	0.035	0.03	3.1	0.79	12	12	0.034	9.032 4.3	0.1072 3.5505	-0.048
IRON	38.5	20.2	9.5	8.8	86	58 58	12	120	20),159:
EAD	0.018	0.01	0.04	0.05	0.11	0.13	0.06			4.2	381.2810	-0.070
*ERCURY	0.001	0.001	0.0002	0.0002	0.0005	0.0005	2000.0	0.06	0.05	0.58	0.2433	0.424{
ZINC	0.54	0.58	1	*****C	9.0003	7.6	2.00.0	0.0002	0.0004	0.0004	0.0014	-0.171
				L	715	1.0	c.a	3.7	1.3	2.3	2.5089	0.0473

STANDARD STUDENT

VDM 11

•

STANDARD STUDENT T

COMETITUENT:	1/6/54	3/21/84	5/21/8 id	5712/86	1/22/87	673/97	9/2/97	11/5/97	03/31/59	(6/28/98):	06731.88	1/18/68	02/15/85	STANDORD DEVIATION	STUPENT T (75%)
NELL ELEVATIONS					433.19	431.52	431.46	«21.55	434.2	431.03	431	432.76	432.43		
CHLORIDE	1859	1859	1959	C 1903)	CHD	C1250	CZERD	C190D	CID	(2600-) CEM		0.05%	1125.8464	-0.3134
рН	3.628	2.365		5.5	4.54	2.93	3.29	9.5	3.28	3.36	3.24	3,25	4,5	0.7411	0,6417
TOTAL PHENOLS		0.013	0.013	0723>		C):(*)		<u>();05</u> 2)		0.(1	C0:0197		0,01	0.0599	-0.1493
BROMODICHLOROMETHANE				0,01	0.005	 9.005	0.005	0.005	0.0002	0,0002	 2000.0	 0.001	0,001	 0.0031	-0.2433
EROMOFORM				0.01	0.005	0.025	0.005	0.005		2000	0,001	0,003	0.002	0.0069	-0,1894
BROMOHETHANE				0.005	0.005	0.005	0.005	0.005	0,0008	0.0008	0.0004	0.005	0.001	0.0021	-0.3574
CARBON TETRACHLORIDE				C 07018,	0.005	0.005	0.0278				C)		0.700352		-0,1978
CHLOROETHANE				0.005	0.005	0.005	0.005	0.001	0.6004	0.0002	9,0002	0.002	0.005	0.0022	0,3249
2-CHLOROETHYLVINYL ETHER				6.005	0.005	0.005	0.005	0.01	0.001	0.0002	0.001	0.003	0.002	0.0028	-0.2071
CHLURUFURM				C) 707924	£ 0,79522)	COT03071	C 07.13B	C071233	07053		07079		C0.043	0.0370	-0.6471
CHLOROMETHANE				0,005	0.005	0.005	0,005		CO.40054		0,0004	0.003	0.005	0,0020	0.2558
DIBRONOCHLOROMETHANE				0.01	0.005	0,005	0.005	0.005	C0100357	(S10070)			C0:00262		-0.1499
1,1-DICHLOROETHANE				0.005	0.005	0.005	0.005			0.0051			6200.003a	0,0022	-0.0197
1,2-DICHLORDETHANE			C	0.00545	0.005	0.005	<i>1</i> 07,00595	0.001		C())038		0.001	0.001	0.0022	-0.4466
1,1-DICHLOFDETHENE				(.005	0.005	0.005	0.005	0.001	0.0004	0.0002	9.0002	0.002	0.001	0,0021	-0.2332
TRANS-1,2-DICHLORDETHENE				0.005	0.005	0.005	0,005	0.001	4500.03	0.0062	0.0005		C0700752		-0.1934
1,2-DICHLOROPROPANE				0,005	0.005	0.005	0.005	0,001	0.013	9,0002	9,0902	0,003	0.001	6.0020	-0.2878
CIS-1,3-DICHLOROPROPENE				0.005	0.005	0.005	0.005	0.001	0.0002	9.0002	0,0002	0.001	0,001	0.0022	-0.2082
TRANS-1, 3-DICHLOROPROPENE				0.005	0.005	0.005	9.005	0.001	0.0002	0.0002	0.0002	6.001	0,001	0.0022	-0.2082
HETHYLEVE CHLORIDE				<u>(7.33</u>)	0,005	0.005	C .00773. I	07.0193	CT.000755	0.000	12021	0.002	⊂ 0709 <u>4</u> 8.	0.0489	-0.1160
1,1,2,2-TETRACHLORDETHANE				0.005	0.005	0.1323	C.115)	0.001	C C C	<u>CT35</u>	r0:097	CTER .	COTIN	0.1097	0.0507
TETRACHLORDETHENE				C).715	C 0.1924	(07 0325	G .122	0.77782	0.0002	j.0002	9,0002	6.001	0,001	0.0609	-0.2640
1.1.1-TRICHLOROETHANE				0,005	0,005	0,005	(1, 905	0.001	0,0004	0,0008	3.0692	0,00:	0,001	0.0022	-0.2131
1,1,2-TRICHLOROETHANE				0.005	0.005	6,005	0.005 C	00553	0.0008	0.0002	9.0002	0.001	0.01	9.0023	-0.2611
TRICPLOROETHENE			(0.00575	<u> -0:19:0</u> -0-	0.60645	r(+; (+) 63)	C 70165	(C. 0013E)	610010	0,0002		CT. (150)	0.0074	-0.2522
/INYL_CHLORIDE				0.005	0.005	0.005	0,0(5	0.001	0.0004	0.0004	0,0004	0.003	0.001	0,0021	-0.2509
TRICKLORDFLUDROMETHANE				0.005	0.005	0.005	0.005	3,001						0.0024	-0.6709
2ICHLORODIFLUOROMETFANE				0,005	0.005	0.005	0,005	0.001						0.0024	-0.6708
ARSENIC				CO.1052	C 0.5481	0.005	C 2.705)	0.005		<u>(10.(0</u>				0.0318	-0.2511
CRECHLUN		0.19		0.5 (_0.006	C(1,123)	C97132			C.J. 045	C07.053	-0703A	(07017)	0.1360	-0.2011
COPPER		0.51		CED	C (.55)		C2:38)	C 1737	C .5	5	C :)		Lee . 0)	0.9048	-0.2559
IFON	45.3	9.225		C 3850	C]3	C 25)		CEE	0	<u>.</u>	(95)	C ² D		864,4692	-0.105E
LEAD		0.01				CT.008	C		0.03			0.05	(B)(T)(D)	57 75. 0	-0.0840
MERCURY						C	-	(.001		0.0005 C			0.0004	0.0006	-0.2673
ZING		2.93		C _[9]	E .50	E.78)	CD	Ð	63	C D	673	C 3	CD.	1.3026	-0.2236
***************************************	******													::220120222 :2222222222	

CONSTITUENT:	1/6/84	1/6/84d	3/21/84	3/21/84d	5/12/86	1/22/87	STANDARD DEVIATION	STUDENT T (95%)
WELL ELEVATION						437.97		
CHLORIDE	50682	51660	53593	53593	57200	(103000)	18616.9622	0.7803
рН	3.628		4.014		1.83	1.45	1.1072	-0.6677
TOTAL PHENOLS	0.08		0.043		0.01		0.0286	-0.8491
BROMODICHLOROMETHANE	*				0.01	0.005	0.0025	-1.0000
BROMOFORM					0.01	0.005	0.0025	-1.0000
BROMOMETHANE					0.01	0.005	0.0025	-1.0000
CARBON TETRACHLORIDE		0.028	0.00556		<u>C07038</u> 2	0.005	0.0143	-0.5707
CHLOROETHANE					0.01	0.005	0.0025	-1,0000
2-CHLOROETHYLVINYL ETHER					0.01	0.005	0.0025	-1.0000
CHLOROFORM	0.5	0.5	0.61583		0.35>	0-1-44	0.1611	-0.8641
CHLOROMETHANE	0.55	0.39	0.85821			0.148	0.2307	-0.7353
DIBROMOCHLORUMETHANE					0.01	0.005	0.0025	-1.0000
1,1-DICHLOROETHANE					0.01	0.005	0.0025	-1.0000
1,2-DICHLOROETHANE					0.01	0.005	0.0025	-1.0000
1,1-DICHLOROETHENE					0.01	0.005	0.0025	-1.0000
TRANS-1,2-DICHLOROETHENE					0.01	0.005	0,0025	-1,0000
1,2-DICHLOROPROPANE					0.01	0.005	0.0025	-i.0000
CIS-1,3-D1CHLOROPROPENE					0.01	0.005	0.0025	-1,0000
TRANS-1,3-DICHLOROPROPENE					0.01	0.005	0.0025	-1.0000
METHYLENE CHLORIDE	0.33	0.29	0.89764		0718>	0.12^{h}		-0.4343
1,1,2.2-TETRACHLORDETHANE					0.043>		0.0190	-1.0000
TETRACHLOROETHENE	0.11	0.12	0.03359		0.14	(0.1)	0.0363	0.1004
1,1,1-TRICHLORGETHANE					0.01	0.005		
1.1,2-TRICHLORDETHANE					0.01	0.005	0.0025	-1.0000
TRICHLOROETHENE					(0. 613 ₂₀	- 0.013 1	0.0000	1.0000
VINYL CHLORIDE					0.01	0.005	0.0025	-1.0000
TRICHLOROFLUOROMETHANE					0.01	0.005	0.0025	-1.0000
DICHLORODIFLUORDMETHANE					0.01	0.005	0.0025	-1,0000
ARSENIC							· · · · · · · · · · · · · · · · · · ·	
PERYLLIUM	0.186		A 105			> (32)		1.0000
CADHIUM	0.186		0.182				0.0924	C.9998
CHROMIUM	4.25		0.204		0,05	~~~~	0.1007	-0.9311
COPPER	4.25 31		5.26 57			(20) (10)	6.2792	0.9744
IPON	9.8				<u>(29)</u>		36.7721	0.9538
CEAD	7.8 0.485		17.5		(14500)		5967.5967	-0.1337
MERCURY	V " 400		5.55		22	(47)	19.1850	0.8373
NICKEL	<u> </u>		m (0.001	0.063		1.0000
SELENIUM	22.9		26.6		(1.94)		10.8583	-0.7903
SILVER	0.07		A 54		0.017			
THALLIUM	0.87		0.21		0.1		0.3400	-0.6100
ZINC	1.12		1.23		1	~~···	0.0939	-0.8783
2.1ML	497				(1360)	(41)	505.3519	-0.5598
		= S:					1 2 16 61 62 25 25 25 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16	

No samples collected on 6/3/87, 9/2/87, 11/5/87, 3/31/88, 6/28/82, 8/31/88, 11/16/88 and 2/15/89 - Well dry.

•

· ·

VDM - 12

-5

VDN 14

CONSTITUENT:

٩

STANDARD STUDENT T 11/5/87 03/31/88 06/28/88 08/31/88 11/16/88 11/16/88d 02/15/89 02/15/89d Deviation (95%)

بلىيىلىمىغىنى (بىلىغىلىكىن جرور، 2 م. مەڭمە ئىمەندە ئە مەر مەڭمە بە مەمەر يە مەلىپ بېرىكە 19 مىغ A second se

والمحادرة أأفاركم مراجع وم

.

.

436.46	436.98	435.77	433.57	436.96	436.96	436.29	1	;	
C 1600		م ر 7300	C 10540		C 580	-180	190-1 190-1	3797_1728	-0.234
6.11									0.390
		0.01	0.01	0.01	0.01	0.01	0.01	0.0079	-0.142
0.005	0.0002	0.0002	0.001	0.001	0.001	0.001	0.001	0.0014	-0.078
0.005	0.001	107000831	0.005	0.003	0.003	0.002			-0.183
0.005	0.0008	0.0008	0.002	0.005	0.005	0.001	0.001		-0.311
0.001	(0:0038;	\$10.0092	C 07018D	40:0098	(07009)	0.001	0.001		-0.375
0.001	0.0004	0.0002	0.001	0.002	0.002	0.005			0.616
0.01	0.001	0.0002	0.005	0.003	0.003	0.002			-0.032
C0:0227>	(0,0032)	C0:087)	20.173	<850.0⊃	C0:03				-0.271
0.005					0.003				-0.062
0.005	0.0002;	0:0025	C0.012	0.001	0.001				-0.200
	0.0002	0.0002	0.001	0.001	0.001				0.258
0.001	0.0002	0.013	0.02	0.001	0.001	0.001			-0.203
0.001	0.0004	0.0002	0.001	0.002	0.002	0.001			-0.046
0.001	0.0005	C0:0092	C0:0172	0.001	0.001	0.001	0.001		-0.194
0.001	0.0002	C0700412	0.001	0.003	0.003	0.001	0.001		-0,230
0.001	0.0002	0.0002	0.0002	0.001	0.001	0.001	0.001		0,292
0.001	0.0002	0.0002	0.001	0.001	0.001	0.001	0.001		0.218
0.001	0.0002			0.002	0.002 0	0.0012>	C0:002		-0.193
0.001	C0.046	> [0:038]	E Ó,745)	ב20:097					-0.123
C 070224	0.0002	0.0002	0,001	0.001	0.001	0.001			-0.1300
0.001	0.0002	0.0002	0.001	0.001	0.001	0.001	0.001	0,0003	0.218
0.001	0.0002	0.0002	0.0002	0.001	0.001	0.001	0.001		0.2928
C0.632	0.00035	C10:01	C0.023	10:0058A	0:0017	0.001			-0.152
0.001	0.0004	0.0004	0.002	0.003	0.003	0.001			-0.1805
0,001									
0.091		_							
0.005	0.005	0.005	107.0242	0.005	0.005	0.005	 0.005	0.0063	-0.1429
C 0.7057)	C 0.33	> r0.034>		C0.242	C0.192				0.8849
0.2						CO.018	-350103	0.0595	-0.1080
C 193)	€2.42	C5401	C11005						-0.2347
C2:02!>									0.1648
0.001	0.0002								-0.0605
C0:57	C0:095-			(0:057	10:047	C0717~	E0724	1.0810	-0.1618
	C1600 6.11 0:034 0.005 0.005 0.005 0.001	1600 45 6.11 6.67 0.034 0.01 0.005 0.0002 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.008 0.001 0.0038 0.001 0.0038 0.001 0.0032 0.005 0.004 0.01 0.0032 0.005 0.004 0.005 0.002 0.005 0.0002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c} \hline 1600 \\ \hline 45 \\ \hline (7300) \\ \hline (10540) \\ \hline (220) \\ \hline (280) \\ \hline (180) \\$</td> <td>$\begin{array}{c} 1600 & 45 & (7300) & (10540) & (220) \\ 6.11 & 6.67 & 5.32 & 4.83 & 6.69 \\ (0.003 & 0.01 & 0.007 \\ (0.005 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.005 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.005 & 0.0008 & 0.0008 & 0.002 & 0.003 & 0.003 & 0.002 & 0.002 & 0.001 \\ 0.005 & 0.0008 & 0.0008 & 0.002 & 0.005 & 0.003 & 0.002 & 0.002 & 0.001 \\ 0.001 & 0.0014 & (0.0022 & 0.001 & 0.002 & 0.005 & 0.0001 & 0.001 & 0.001 \\ 0.001 & 0.0014 & 0.0002 & 0.001 & 0.002 & 0.002 & 0.002 & 0.002 & 0.001 \\ 0.001 & 0.0014 & 0.0002 & 0.001 & 0.002 & 0.002 & 0.002 & 0.002 & 0.001 \\ 0.001 & 0.0014 & 0.0002 & 0.001 & 0.002 & 0.002 & 0.002 & 0.002 & 0.001 \\ 0.001 & 0.0004 & 0.0002 & 0.001 & 0.002 & 0.003 & 0.003 & 0.002 & 0.002 & 0.001 \\ 0.005 & 0.0002 & (0.0012 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.001 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.003 \\ 0.001 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0004 \\ 0.001 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 & 0.0001 \\ 0.001 & 0.0002 & 0.001 & 0.002 & 0.002 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.001 & 0.002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.001 & 0.0002 &$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \hline 1600 \\ \hline 45 \\ \hline (7300) \\ \hline (10540) \\ \hline (220) \\ \hline (280) \\ \hline (180) \\$	$ \begin{array}{c} 1600 & 45 & (7300) & (10540) & (220) \\ 6.11 & 6.67 & 5.32 & 4.83 & 6.69 \\ (0.003 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.007 \\ (0.005 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.005 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.005 & 0.0008 & 0.0008 & 0.002 & 0.003 & 0.003 & 0.002 & 0.002 & 0.001 \\ 0.005 & 0.0008 & 0.0008 & 0.002 & 0.005 & 0.003 & 0.002 & 0.002 & 0.001 \\ 0.001 & 0.0014 & (0.0022 & 0.001 & 0.002 & 0.005 & 0.0001 & 0.001 & 0.001 \\ 0.001 & 0.0014 & 0.0002 & 0.001 & 0.002 & 0.002 & 0.002 & 0.002 & 0.001 \\ 0.001 & 0.0014 & 0.0002 & 0.001 & 0.002 & 0.002 & 0.002 & 0.002 & 0.001 \\ 0.001 & 0.0014 & 0.0002 & 0.001 & 0.002 & 0.002 & 0.002 & 0.002 & 0.001 \\ 0.001 & 0.0004 & 0.0002 & 0.001 & 0.002 & 0.003 & 0.003 & 0.002 & 0.002 & 0.001 \\ 0.005 & 0.0002 & (0.0012 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.001 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.003 \\ 0.001 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0004 \\ 0.001 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 & 0.0001 \\ 0.001 & 0.0002 & 0.001 & 0.002 & 0.002 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.001 & 0.002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.0001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.001 & 0.0002 & 0.0002 & 0.001 & 0.001 & 0.001 & 0.001 & 0.001 \\ 0.001 & 0.0002 & $