Frontier Chemical - Pendleton Site Order on Consent (#B9-0270-89-05)

March 2000 Semi-Annual Report #6

Prepared by Pendleton PRP Group

APR 1 9 2000

NYSDEC - REG. 9 FOIL __REL__UNREL

April 1, 2000

VIA AIRBORNE EXPRESS

Mr. Daniel King, P. E. Division of Environmental Remediation New York State Department of Environmental Conversation 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: Frontier Chemical - Pendleton Site, Pendleton, New York

Order on Consent (#B9-0270-89-05) March 2000, Semi-Annual Report #6

Post Closure Operation, Maintenance, and Monitoring Activities,

Dear Mr. King:

In accordance with the approved Pendleton O & M Manual, enclosed are three copies of the Semi-Annual Report on the Post-Closure Operation, Maintenance, and Monitoring of the Closure Components for the Frontier Chemical-Pendleton Site by the Pendleton PRP Group

If you have any questions regarding the above submittals, please contact me by telephone at 423-336-4057, by facsimile at 423-336-4166 or by e-mail at jmburns@corp.olin.com.

Sincerely,

Pendleton PRP Group

John M. Burns

Chairman - Technical Committee for

Pendleton PRP Group

Distribution:

Mr. Daniel King, P. E. (3 copies)
Division of Environmental Remediation
New York State Department of Environmental Conversation
270 Michigan Avenue
Buffalo, New York 14203-2999

Mr. G. Anders Carlson, Ph. D., Director (2 copies) Bureau of Environmental Exposure Investigation New York State Department of Health 2 University Place, Room 205 Albany, New York 12203-3399

Mr. Gerald Rider (1 copy)
Division of Hazardous Waste Remediation
New York State Department of Environmental Conservation
50 Wolf Road
Albany, New York 12233

Mr. James Devald (1 copy) Niagara County Health Department Environmental Services Division 5460 Upper Mountain Road Lockport, New York 14094

Pendleton PRP Technical Committee

David Cook, Esq. Nixon, Hargrave, Devans & Doyle 900 Clinton Square P.O. Box 1051 Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis McCanna SIVACO New York P.O. Box 646 3937 River Road Tonawanda, NY 14151-0646

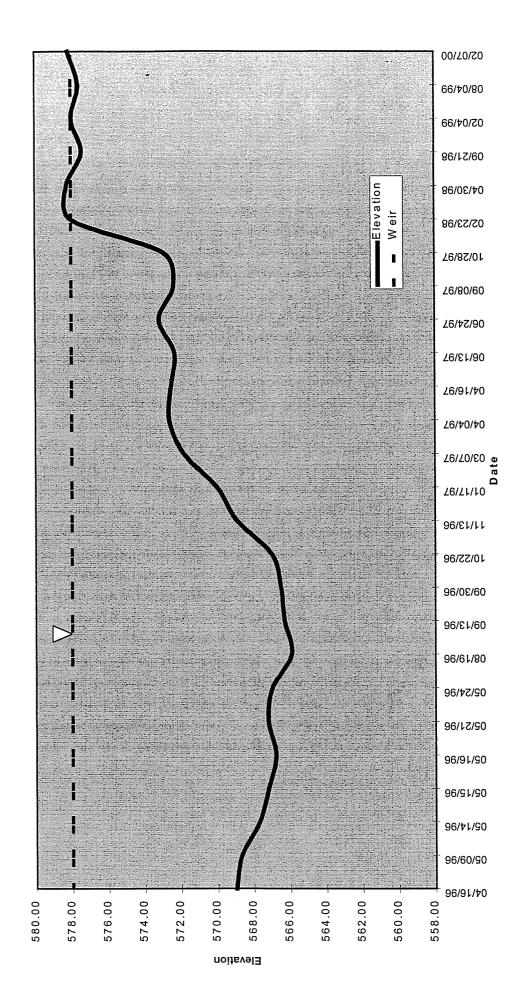
Brent Schindler, Esq. Dow Chemical Base of Loveridge Road P.O. Box 1398 Pittsburgh, CA 94565

Table of Contents Semi-Annual Report #5 March 2000

Introduction		
Background		
Discussion		
Conclusion		

Attachments

- Attachment A Quarry Lake Level Plot versus Time
- Attachment B Niagara County Sewer District #1 Submittals and Operation, Maintenance and Monitoring Activities
- Attachment C Frontier Chemical Pendleton Site; Semi-Annual Ground Water Monitoring Report; March 2000; Frontier Chemical Pendleton Site; Town of Pendleton, Niagara County, NY, Water Samples Volume 1 of 3, February 7, 8, and 9, 2000
- Attachment D Field Observation Reports


Attachment A – Quarry Lake Level Plot versus Time Quarry Lake Level – March 7, 2000

Quarry Lake Level – February 7, 2000

- Table A-1 Quarry Lake Level
- Chart A-1 Quarry Lake Water Elevations

TABLE A-1 Quarry Lake Level

Date	Elevation
4/16/96	569.00
5/9/96	568.70
5/14/96	567.70
5/15/96	567.20
5/16/96	566.80
5/21/96	567.20
5/24/96	567.00
8/19/96	565.92
9/13/96	566.30
9/30/96	566.50
10/22/96	567.00
11/13/96	568.90
1/17/97	570.00
3/7/97	571.80
4/4/97	572.60
4/16/97	572.50
6/13/97	572.30
6/24/97	573.15
9/8/97	572.34
10/28/97	572.88
2/23/98	578.00
4/30/98	578.26
9/21/98	577.42
2/4/99	577.97
8/4/99	577.60
2/7/00	578.16

ATTACHMENT B -Niagara County Sewer District #1 Submittals and Operation, Maintenance and Monitoring Activities

- B-1 Niagara County Sewer District #1 Submittals
- B-2 Operation, Maintenance and Monitoring Activities

B-1 Niagara County Sewer District #1 Submittals

TABLE B-1

Niagara County Sewer District #1 Submittals

Submittal Date	Sampling Date		
October 8, 1999	September 1, 1999		
November 19, 1999	October 4, 1999		
December 1, 1999	November 11, 1999		
January 17, 2000	December 3, 1999		
February 7, 2000	January 13, 2000		
March 10, 2000	February 3, 2000		

B-2 Operation, Maintenance and Monitoring Activities

Operation, Maintenance, and Monitoring Activities

Table B-3

Date	Event	Action Taken
September 11, 1999	Mid-joint of vault roof leaking	Evaluating alternatives for corrective action
October 4, 1999	Mid-joint of vault roof leaking	Evaluating alternatives for corrective action
November 11, 1999	Pressure Problems	Changed filter bags
February 26, 1999	Mid-joint of vault roof leaking	Evaluating alternatives for corrective action

ATTACHMENT C - Groundwater Data

- C-1 Frontier Chemical Pendleton Site Semi-Annual Ground Water Monitoring Report O'Brien & Gere March 2000
- C-2 Frontier Chemical Pendleton Site
 Town of Pendleton, Niagara County, NY Water Samples
 Volume 1 of 3
 O'Brien & Gere
 February 7, 8, and 9, 2000

C-1 Frontier Chemical – Pendleton Site Semi-Annual Ground Water Monitoring Report O'Brien & Gere March 2000 C-2 Frontier Chemical – Pendleton Site
Town of Pendleton, Niagara County, NY Water Samples
Volume 1 of 3
O'Brien & Gere
February 7, 8, and 9, 2000

 $Attachment \ D-Site \ Maintenance \ Work \ Items \ and \ Field \ Observation \ Reports$

D-1 Field Observation Reports

Field Observation Reports

• February 7, 2000, Field Observation Report

• Introduction

This sixth semi-annual report is submitted on behalf of the Frontier Chemical - Pendleton Site PRP Group (PRP Group) for the Frontier Chemical - Pendleton Site located in Pendleton, New York. This report summarizes the activities performed since September 1999 for Post-Closure Operation, Maintenance, and Monitoring of the Closure Components at the subject site.

Background

The Frontier Chemical-Pendleton Site is located on Town Line Road in the Town of Pendleton, Niagara County, New York. The total site comprises approximately 22 acres of the 75-acre Frontier Chemical property. Prior to remediation activities, Quarry Lake, a flooded quarry that resulted from the excavation of clay for use in clay brick and tile manufacturing at an on-site facility, occupied 15 acres of the 22-acre site. The remaining 7 acres, identified as the former Process Area, were utilized by Frontier Chemical Waste Process, Inc. (Frontier) when the site was operated as an industrial waste treatment facility from 1958 to 1974. Plating wastes, pickle liquors and other liquid acid wastes from plating and metal finishing industries were treated at the site, with residuals from the waste treatment process being discharged into Quarry Lake. Much of the former Process Area was filled and graded following termination of waste treatment operations.

The site remediation project with remedial designed by O'Brien & Gere Engineers, Inc. and remedial action by Sevenson Environmental Services, Inc. included the following major components:

- 1. Dewatering Quarry Lake to allow drying and consolidation of sediments;
- 2. Excavation and relocation of sediments from Quarry Lake after dewatering operations to within the limits of the capped area;
- 3. Excavation and relocation of surface soils, fill or debris to within the limits of the capped area:
- 4. Capping of consolidated sediments, previously dredged materials, and surface soils with a low-permeability cap;
- 5. Installation, in conjunction with a cap, of a low-permeability barrier to ground water flow;
- 6. Construction of a ground water collection trench along the eastern shore of Quarry Lake and the southern portion of the capped area;
- 7. Reconstruction of the berm around Quarry Lake and installation of a new outlet structure;
- 8. Construction of a ground water pumping station consisting of a wet well and dry vault;
- 9. Installation of a ground water pre-treatment system within the dry vault;
- 10. Conveyance of collected and pre-treated ground water to the local Publicly Owned Treatment Works (POTW);
- 11. Creation of new wetlands at the site;
- 12. Construction of a surface water swale adjacent to the cap access road to direct surface water away from the capped area;
- 13. Installation of piezometers inside and outside the capped area and a standpipe within the ground water collection trench; and
- 14. Installation of a chain link fence around the capped area and pump station to limit access.

Discussion

Post-closure operation, maintenance, and monitoring of the closure components of the Frontier Chemical-Pendleton Site are the responsibility of the Pendleton PRP Group. Operation, maintenance, and monitoring activities performed by the Pendleton PRP Group during this reporting period includes the following five elements:

1. Routine inspection and maintenance of constructed features, including the capped area, ground water collection and conveyance system, surface water runoff facilities, constructed wetlands, access road, perimeter and containment berms, and outlet weir,

The semi-annual site inspection was performed on February 7, 2000. The inspection report is included in this report as Attachment D.

Relocated wetlands inside the perimeter berm will be inspected and reported in the next semi-annual report. The PRP Group requested a formal wetland inspection on September 24, 1999.

The relocated wetlands inside the Quarry Lake levee have elevations of 574 feet for aquatic bed species (Zone A), 575 feet for non-persistent emergent species (Zone B), and 576 feet for persistent emergence species (Zone C). A water elevation chart is included as Attachment A-2. This water level chart shows the history of the lake elevation starting in April 1996 until present.

2. Operation and maintenance of the ground water pre-treatment system, as described in the Pre-Treatment System Operations Plan,

Regarding Operation and maintenance of the ground water pre-treatment system, the monthly submittals to the Niagara Country Sewer District #1 detailing analytical and discharge flow data for this reporting period are included in Attachment B. Six months (October 1999 through March 2000 1999) of submittals as shown in Table 2-1 are included with this report.

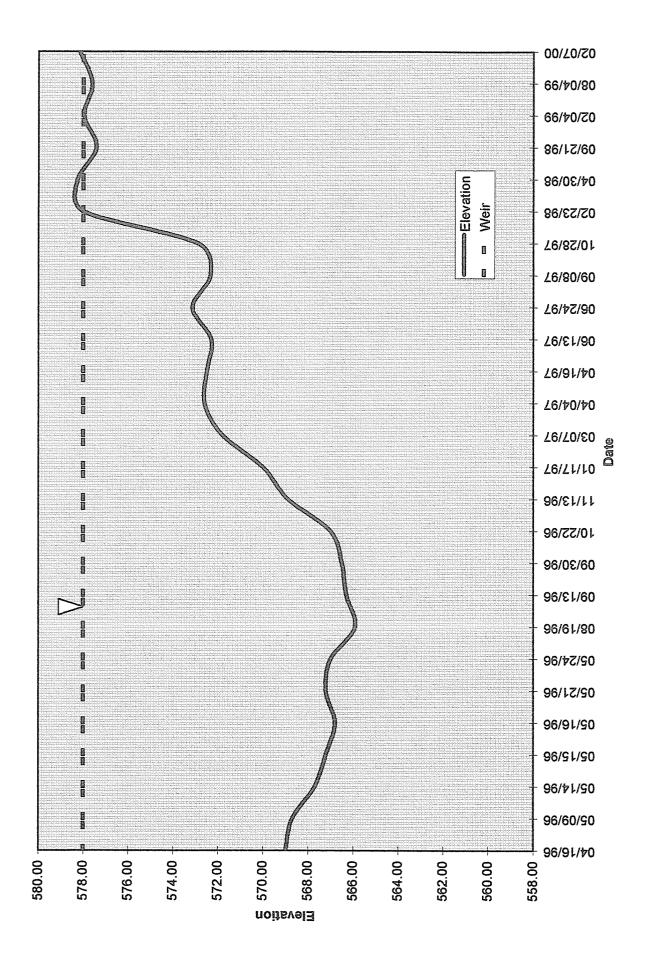
Table 2-1 Niagara County Sewer District #1 Submittals			
Submittal Date Sampling Date			
October 8, 1999	September 1, 1999		
November 19, 1999	October 4, 1999		
December 1, 1999	November 11, 1999		
January 17, 2000	December 3, 1999		
February 7, 2000	January 13, 2000		
March 10, 2000	February 3, 2000		

Also included in Attachment B is Table 2-2, which summarizes Operation, Maintenance, and Monitoring Activities for the site during this reporting period.

3. Performance of a ground water monitoring program to monitor site ground water conditions and to verify the inward hydraulic gradient within the capped area,

Regarding performance of a ground water monitoring program, the report "Frontier Chemical - Pendleton Site, Semi-Annual Ground Water Monitoring Report" dated March 2000 is included as Attachment C-2.

4. Evaluation of operation, maintenance, and monitoring activities and identification of proposed changes to the O&M Manual or site procedures and policies which would provide a safer and/or more cost-effective operation, and


5. Recordkeeping

Records for site operation and maintenance activities are maintained at the site and Olin's Niagara Falls Plant. These records include daily and weekly logs and charts. Glynn Geotechnical provides assistance to the site caretaker and updates O&M documentation. O'Brien & Gere Engineers provide ground water level measurement, sampling, monitoring, and analytical field and office support. The PRP representative maintains analytical results and reports submitted to NCSD #1 and NYSDEC at the Olin's Charleston Plant. These records are available for your review and inspection.

Conclusions

The work performed during this reporting period, October 1999 to March 2000 was reviewed and found to be in accordance with the approved O&M Manual for the Site.

P.O. BOX 248, 1186 LOWER RIVER ROAD, NW, CHARLESTON, TN 37310-0248 (423) 336-4000 FAX: (423) 336-4183

October 8, 1999

VIA AIRBORNE EXPRESS

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (9/1/99 Monthly Sample) Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the September 1, 1999, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

For the Frontier Chemical - Pendleton Site PRP Group

Ehclosures: as stated

cc: D. Kummer

Pendleton Site Technical Committee

David Cook, Esq. Nixon, Hargrave, Devans & Doyle 900 Clinton Square P.O. Box 1051 Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis McCanna SIVACO P.O. Box 646 3937 River Road Tonawanda, NY 14151-0646

Brent Schindler, Esq. Dow Chemical Base of Loveridge Road P.O. Box 1398 Pittsburgh, CA 94565

FRONTIER CHEMICAL PENDLETON DAILY FLOW DATA SEPTEMBER 1999

	TOTALIZER	DAILY	
DATE	READING	FLOW	COMMENTS
9/1/99		92	avg. flow & Sampling
9/2/99		92	avg. flow
9/3/99		92	avg. flow
9/4/99		92	avg. flow
9/5/99		92	avg. flow
9/6/99		92	avg. flow
9/7/99	343644	92	avg. flow
9/8/99	344180	536	
9/9/99	344235	55	
9/10/99	344499	264	
9/11/99		79	avg. flow
9/12/99	344657	79	avg. flow
9/13/99	344760	103	
9/14/99	344863	103	
9/15/99	344914	51	
9/16/99	345018	104	
9/17/99		85	avg. flow
9/18/99		85	avg. flow
9/19/99	345274	85	avg. flow
9/20/99	345377	103	
9/21/99	345429	52	
9/22/99	345533	104	
9/23/99		90	avg. flow
9/24/99		90	avg. flow
9/25/99		90	avg. flow
9/26/99	345891	90	avg. flow
9/27/99	345991	100	
9/28/99	346042	51	
9/29/99	346198	156	
9/30/99	346464	266	

Avg. Flow = flow between data points divided by days of missing data

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

RECEIVED

SEP 2 7 1999

Analytical Data Report

Report Date: 09/17/99 Group Number: 9901-1355

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier - Pendleton

Field and Laboratory Information

Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time	
GAC 2 Sample Port	WS56344	Aqueous	09/01/99	09/02/99	14:30	
Sample Status Upon Receipt : No irregularities.						

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
Total Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	1	Standard
Pesticides	1	Standard
Volatile Organics	1	Standard

Report Released By:

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

ORGANIC DATA QUALIFIERS

- **U** Indicates compound was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets identification criteria, but the result is less than the sample quantitation limit but greater than zero.
- **C** This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- **B** This flag is used when the analyte is found in the associated blank as well as the sample.
- **E** This flag identifies all compounds whose concentrations exceed the calibration range of the GC/MS instrument of that specific analysis.
- **D** This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- **G** Matrix spike recovery is greater than the expected upper limit of analytical performance.
- **L** Matrix spike recovery is less than the expected lower limit of analytical performance.
- # Indicates that a surrogate recovery was found to be outside the expected limits of analytical performance.
- **\$ -** Indicates that the surrogate compound was diluted out. The sample had to be diluted to obtain analytical results and a recovery could not be calculated.
- (%) Indicates that the compound is a surrogate and that the value reported for this compound is in percent recovery. The quality control recovery limits are indicated in the detection limit or QC limits column.

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier - Pendleton Date Sampled: 09/01/99 Date Received: 09/02/99 Group Number: 9901-1355

Units: mg/L Matrix: Aqueous

WST ID: WS56344

Client ID: GAC 2 Sample Port

Digestion Date: 09/15/99

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	09/16/99	EPA 200.9
Boron by ICP	0.012	0.646	09/16/99	EPA 200.7
Chromium by ICP	0.005	Not detected	09/16/99	EPA 200.7

Waste Stream Technology, Inc. Wet Chemistry Analyses

Site: Frontier - Pendleton Date Sampled: 09/01/99 Date Received: 09/02/99 Group Number: 9901-1355

Matrix: Aqueous

WST ID: WS56344

Client ID GAC 2 Sample Port

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Suspended Solids	EPA 160.2	4.0	Not detected	mg/L	09/03/99
Cyanide in Water	EPA 335.2	0.005	Not detected	mg/L	09/10/99
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	09/07/99

Waste Stream Technology, Inc. 40 CFR Part 136 Method 624 EPA 624

Site: Frontier - Pendleton Date Sampled: 09/01/99 Date Received: 09/02/99 Group Number: 9901-1355

Units: ug/L Matrix: Aqueous

WST ID: WS56344

Client ID: GAC 2 Sample Port

Extraction Date: NA
Date Analyzed: 09/07/99

Compound	Detection Limit	Result	QC Limits (%)	Qualifier
chloromethane	2.0	Not detected		U .
vinyl chloride	2.0	Not detected		U
promomethane	2.0	Not detected		U
chloroethane	2.0	Not detected		U
richlorofluoromethane	2.0	Not detected		U
1,1-dichloroethene	1.0	Not detected		U
methylene chloride	2.8	Not detected		U
rans-1,2-dichloroethene	1.0	Not detected		U
1,1-dichloroethane	1.0	Not detected		U
chloroform	1.0	Not detected		U
1,1,1-trichloroethane	1.0	Not detected		U
carbon tetrachloride	1.0	Not detected		U
benzene	1.0	Not detected		U
1,2-dichloroethane	1.0	Not detected		U
trichloroethene	1.0	Not detected		U
1,2-dichloropropane	1.0	Not detected		U
romodichloromethane	1.0	Not detected		U
2-chloroethylvinyl ether	2.0	Not detected		U
cis-1,3-dichloropropene	1.0	Not detected		U
toluene	1.0	Not detected		U
trans-1,3-dichloropropene	1.0	Not detected		U
1,1,2-trichloroethane	1.0	Not detected		U
tetrachloroethene	1.2	Not detected		U
dibromochloromethane	1.0	Not detected		U
chlorobenzene	1.0	Not detected		U
ethylbenzene	1.0	Not detected		U
bromoform	1.0	Not detected		U
1,1,2,2-tetrachloroethane	1.0	Not detected		U
1,3-dichlorobenzene	1.0	Not detected		U
1,4-dichlorobenzene	1.0	Not detected		U
1,2-dichlorobenzene	1.0	Not detected		U
4-methyl-2-pentanone	10	Not detected		U
1,2-Dichloroethane-d4 (%)		105	76-114	
Toluene-d8 (%)		108	88-110	
Bromofluorobenzene (%)		100	86-115	

Dilution Factor

1

Waste Stream Technology, Inc.

40 CFR 136 Method 608 Pest-PCBs **EPA 608**

Site: Frontier - Pendleton Date Sampled: 09/01/99 Date Received: 09/02/99

Group Number: 9901-1355 Units: ug/L Matrix: Aqueous

WST ID: WS56344

Client ID: GAC 2 Sample Port

Extraction Date: 09/08/99 Date Analyzed: 09/14/99

Compound	Detection Limit	Result	QC Limits (%)	Qualifier
alpha-BHC	0.003	Not detected		U
beta-BHC	0.006	Not detected		U
gamma-BHC	0.003	Not detected		U
delta-BHC	0.009	Not detected		U
heptachlor	0.020	Not detected		U
aldrin	0.017	Not detected		U
heptachlor epoxide	0.008	Not detected		U
4,4-DDE	0.005	Not detected		U
methoxychlor	0.006	Not detected		U
Tetrachloro-m-xylene (%)		86	60-150	
Decachlorobiphenyl (%)		90	60-150	

Dilution Factor 1

Waste Stream Technology, Inc.

Method 608 Method Blank Results EPA 608

Site: Frontier - Pendleton

Date Sampled: NA Date Received: NA

Group Number: 9901-1355

Units: ug/L

WST ID MB99251 Client ID: NA

Extraction Date: 09/08/99 Date Analyzed: 09/14/99

Compound	Detection Limit	Result	QC Limits (%)	Qualifier
alpha-BHC	0.003	Not detected		U
beta-BHC	0.006	Not detected		U
gamma-BHC	0.003	Not detected		U
delta-BHC	0.009	Not detected		U
heptachlor	0.020	Not detected		U
aldrin	0.017	0.026		
heptachlor epoxide	0.008	Not detected		U
4,4'-DDE	0.005	Not detected		U
methoxychlor	0.006	Not detected		U
Tetrachloro-m-xylene (%)		90	60-150	
Decachlorobiphenyl (%)		94	60-150	

Dilution Factor

MB denotes Method Blank

NA denotes Not Applicable

UAST STREAM 3

302 GROTE STREET BUFFALO, NY 14207 (716) 876-5290

9901-1355

CHAIN OF CUSTODY RECORD

PROJECT NO	Ö				SITE NAME:	de: 0 0.	,			/	/	-8 /	/	S;		
W	E414	سيمت		12	cather	c Pendleto	sto c	SIZE &	Q	10/95) J.	<u>\</u>	\	NT P	_	
SAMPLERS (SIGNATURE):	s (SIGN	(ATURE)	9119	Sast	asters			CON- TAINFES		100 M		10V/25	80	ESEBA	REMARKS	
SAMPLE	DATE	TIME	COMP	GRAB	мате́их	SAMPLE LOCATION	CATION		19	り〉	4	Y .		\ \\		
2000		2019 350p	>		1120	GICZ Sough Pot	my Port	1					11/10	HNO3	MS 56.34/4	
	100	3300	1		041	11 11	11		T-Dies.				72	12504		
l	100	3300	1		041	12 11	1	SOPMI		*****			NaOH			
	200	330p	1		140	11 11	fr	500 ml			*\tags		93	~^		
9750	10-6	330p	7		120	11 11					CORMONIES		6			
_	100	330	7		6211	11 6	181	10ML				767	HeL			
	9-01	15. S. S. O.	11		1/20	11 11	180	Twoh					HeL	7		
1																
							The state of the s		, , , , , , , , , , , , , , , , , , ,						184	
	·									-					1.	
															. 's	
	a, Ser,															
RELIN	SUISHEL	DBX (SIC	RELINQUÍSHED BY (SIGNATURE)	1	DATE/TIME	RECEIVED BY	ED BY (SIGNATURE)	TURE)	RELINQU	ISHED BY	RELINQUISHED BY (SIGNATURE)	RE)	DATE/TIME	TIME	RECEIVED BY (SIGNATURE)	() ()
RELIN	QUISHE	DBY (SI	RELINQUISHED BY (SIGNATURE)	<u>} </u>	DATE/TIME		RECEIVÉD BY (SIGNATURE)	TURE)	RELINGU	IISHED BY	RELINQUISHED BY (SIGNATURE)	RE)	DATE/TIME	IME		IRE)
SPECIA	IL INST	SPECIAL INSTRUCTIONS:	ONS:	٠												
TURNAROUND TIME	ROUNI	D TIME														
														And destruction of the factories from the factories and		

SHELF #___

GROUP #.

DUE DATE

LAB USE: REFRIGERATOR #_

November 19, 1999

VIA AIRBORNE EXPRESS

Mr. Frank Nerone
Chief Operator
Niagara County Sewer District #1
1346 Liberty Drivet

Subject:

Analytical Sampling Results (10/4/99 Monthly Sample)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the October 4, 1999, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

Por the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

John M. Burns

David Cook, Esq. Nixon, Hargrave, Devans & Doyle 900 Clinton Square P.O. Box 1051 Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Radian 304 West Wackerly Sta Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis McCanna

P.O. Box 646 3937 River Road Tonawanda, NY 14151-0646

Brent Schindler, Esq.
Dow-Chemical
Base of Loveridge Road
P.O. Box 1398
Pittsburgh, CA 94565

Frontier Chemical - Pendleton Site October 1999 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

346,972	Gallons Discharged Prior To	10/4/99
3,974	Gallons Since Last Report	\
120	Average Daily Flow Based on 3	3 days Between Samples

	i Tarania di		10/4/99	
Parameters	Permit	Detection	Sample	
Falameters	Limit	Limits	Results	
Treatment System Discharge	GPD	Littino	GPD	
Discharge Rate (1)	662			
624 Analytes	ug/L	ug/L	ug/L	
Toluene	10.0	1.0	< 1.0	
1.2-Dichloroethane	10.0	1.0	< 1.0	
4-Methyl-2-Pentanone	10.0	10.0		
Vinyi Citiatide	10.6	2.0	20.5	65.0
Metaylene Cition (de.	10.0	2.8	. 29	
trans-1,2-Dichlorpethene	10.0	1.6	Y.0"	
1,1,1-Trichloroethane	10.0	1.0	< 1.0	
Trichloroethene	10.0	1.0	< 1.0	
Benzene	10.0	1.0	< 1.0	
Chloromethane		2.0	< 20	
Bromomethane		2.0	< 2.0	
Chlorodihana	٠٠.	2.0	< 1.0	
Chloroform		1.0	< 1.0	
Carbon Tetrachloride		1.0	< 1.0	
1.1-Dichloroethene	1	1.0	< 1.0	
Trichlorofluoromethane		2.0	< 2.0	
1,1-Dichloroethane		1.0	< 1.0	
1,2-Dichloropropane	1	1.0	< 1.0	
Bromodichioromethane		1.0	< 1.0	
2-Chloroethylvinyl ether		2.0	< 1.0	
cis-1,3-Dichloropropene	l l	1.0	< 1.0	
trans-1,3-Dichloropropene		1.0	< 1.0	
1,1,2-Trichloroethane	·	1.0	< 1.0	
Tetrachloroethene		1.2	< 1.2	
Dibromochloromethane		1.0	< 1.0	
Chlorobenzene	1	1.0	< 1.0	
Ethylbenezene		1.0	< 1.0	
Bromoform		1.0	< 1.0	
1,1,2,2-Tetrachioroethane	1	1.0	< 1.0	
1,3-Dichlorobenzene		1.0	< 1.0	
1.4-Dichlorobezene		1.0	< 1.0	
1,2-Dichlorobenzene		1.0	< 1.0	
Sum of 624 Analytes	1	100.0	47.0	
608 Pesticides (2)	ug/L	ug/L	ug/L	
alpha BHC	10.0			
beta BHC	20.0	1		
delta BHC	10.0			
gamme BHC	10.0			
Heptachlor	8.0			
Aldrin	8.0			
Heptachlor Epoxide	9.0	E .	1	
4,4-DDE	20.0	1		
Methoxychlor	18.0	I		
Metals	mg/L	mg/L	mg/L	
Antimony	0.1		< 0.009	
Boron	4.00	3	N .	
Chromium	5.33	I .	P	
Cyanide(T)	2.0	3		
Other	mg/L	. mg/L	mg/L	
Total Phenolics	NA NA			
TSS	300	1		

- Legend: (1) (2) (B) NA Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group. Detected in blank Not applicable

FRONTIER CHEMICAL PENDLETON DAILY FLOW SHEET OCTOBER 1999

	TOTALIZER	DAILY	
DATE	READING	FLOW	COMMENTS
10/1/99		104	avg. flow
10/2/99		104	avg. flow
10/3/99	346776	104	avg. flow
10/4/99	346974	198	Sampling
10/5/99	347024	50	
10/6/99	347024	. 0	
10/7/99	347024	0	Investigate/Reset pump #2
10/8/99	347327	303	
10/9/99		247.7	avg. flow
10/10/99		2477	which care diava, flow are a market
10/11/98		247.7	avo flow
10/12/99		247.7	avg. flow
10/13/99		247.7	avg. flow
10/14/99		247.7	avg. flow
10/15/99		247.7	avg. flow
.10/16/99		247.7	avg. flow
10/17/99	349556	247.7	avg. flow
10/18/99	349716	160	
10/19/99	349883	167	
10/20/99	350093	210	
10/21/99	350197	104	
10/22/99		129.6	avg. flow
10/23/99		129.6	avg. flow
10/24/99	350576	129.6	avg. flow
10/25/99	350739	163	
10/26/99	350896	157	
10/27/99	351001	105	
10/28/99	351057	56	
10/29/99		125	avg. flow
10/30/99		125	avg. flow
10/31/99	351432	125	avg. flow

Avg. Daily Flow (gal). 160.6

= DRY VAULT GROUNDWATER RELIEF

gallons

gallons

gallons

gallons

TOTAL GALLONS

0.0

Avg. Flow = flow between data points divided by days of missing data

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 10/19/99 Group Number: 9901-1552 OCT 2 6 1999

OLIN-ENVIRONMENT (AL
REMEDIATION GROUP

Prepared For: Mr. John Burns Olin Corporation P.O. Box 248

1186 Lower River Road NW Charleston: TN 37310

Site: Frontier - Pendleton

Field and Laboratory Information

	i icia ana =	asoluto.j			
. Client Id	WST Lab #	Matrix	Date Sampled.	Date Received	T i me
GAC2 9J04 (671-677)	WS57463	Aqueous	10/04/99	10/05/99	12:30
Sample Status Upon Receip	t : No irregular	ities.			

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
624	1	Standard
Total Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	1	Standard

Report Released By:

Daniel Vollmer, Laboratory QA/QC Office

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register: 40 CFR Part 136: Guidelines Establishing Test.

Procedures for the Apaysis of Pollufants Under the Clean Water Act.

Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

ORGANIC DATA QUALIFIERS

- **U** Indicates compound was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets identification criteria, but the result is less than the sample quantitation limit but greater than zero.
- confirmed by GC/MS
- **B** This flag is used when the analyte is found in the associated blank as well as the sample.
- E This flag identifies all compounds whose concentrations exceed the calibration range of the GC/MS instrument of that specific analysis.
- **D** This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- **G** Matrix spike recovery is greater than the expected upper limit of analytical performance.
- L Matrix spike recovery is less than the expected lower limit of analytical performance.
- # Indicates that a surrogate recovery was found to be outside the expected limits of analytical performance.
- \$ Indicates that the surrogate compound was diluted out. The sample had to be diluted to obtain analytical results and a recovery could not be calculated.
- (%) Indicates that the compound is a surrogate and that the value reported for this compound is in percent recovery. The quality control recovery limits are indicated in the detection limit or QC limits column.

Waste Stream Technology, Inc. 40 CFR Part 136 Method 624 EPA 624

Site: Frontier - Pendleton Date Sampled: 10/04/99 Date Received: 10/05/99 Group Number: 9901-1552

Units: ug/L Matrix: Aqueous

WST ID: WS57463

Client ID: GAC2 9JO4 (671-677)

Extraction Date: NA Date Analyzed: 10/06/99

Compound	Detection Limit	Result	QC Limits (%)	Qualifier
chloromethane	2.0	Not detected		υ
vinyl chloride	2.0	Not detected		U
promomethane	2.0	Not detected		U
hloroethane.	2.0	Not detected	and the second of the second o	U.
richkroffgeromenhage	20	Not detected.		
1 1-dichloroethene	\$ 10 - 10 TO 10 10 10 10 10 10 10 10 10 10 10 10 10	Not detected:		
methylene chloride	2.8	Not detected		U
trans-1,2-dichloroethene	1.0	Not detected		U
1,1-dichloroethane	1.0 ·	Not detected		U
chloroform	1.0	Not detected		U
1,1,1-trichloroethane	1.0	Not detected		· · · · · · · · · · · · · · · · · · ·
carbon tetrachloride	1.0	Not detected		U
benzene	1.0	Not detected		U
1,2-dichloroethane	1.0	Not detected		U
trichloroethene	1.0	Not detected		U
1,2-dichloropropane	1.0	Not detected		U
romodichloromethane	1.0	Not detected		U
2-chloroethylvinyl ether	2.0	Not detected		U
cis-1,3-dichloropropene	1.0	Not detected		U
toluene	1.0	Not detected		U
trans-1,3-dichloropropene	1.0	Not detected		U
1,1,2-trichloroethane	1.0	Not detected		U
tetrachloroethene	1.2	Not detected		U
dibromochloromethane	1.0	Not detected		U
chlorobenzene	1.0	Not detected		U
ethylbenzene	1.0	Not detected		U
bromoform	1.0	Not detected		U
1,1,2,2-tetrachloroethane	1.0	Not detected		U
1,3-dichlorobenzene	1.0	Not detected		U
1,4-dichlorobenzene	1.0	Not detected		U
1,2-dichlorobenzene	1.0	Not detected		U
4-methyl-2-pentanone	10	Not detected		U
1,2-Dichloroethane-d4 (%)		101	76-114	
Toluene-d8 (%)		100	88-110	
Bromofluorobenzene (%)		102	86-115	

Dilution Factor

1

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier - Pendleton Date Sampled: 10/04/99 Date Received: 10/05/99 Group Number: 9901-1552

Units: mg/L Matrix: Aqueous

WST ID: WS57463

Client ID: GAC2 9JO4 (671-677)

Digestion Date: 10/15/99

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	10/19/99	EPA 200.9
• •	0.012	0.689	10/18/99	EPA 200.7
Boron by ICP Chromium by ICP	0.005	Not detected	10/18/99	EPA 200.7
	0.000			

Site: Frontier - Pendleton Date Sampled: 10/04/99 Date Received: 10/05/99 Group Number: 9901-1552

Matrix: Aqueous

WST ID: WS57463

Client ID GAC2 9JO4 (671-677)

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Cyanide in Water	EPA 335.2	0.005	Not detected	mg/L	10/13/99
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	10/11/99
Total Recoverable Phenol	EPA 3602		Not detected.	mg/L⊋ı	10/07/89

and the contract of the contract of

CHAIN OF CUSTODY	LASTES		į	PAGEOF	
(EPORT TO)	TECHNOLDGY	ν 5 α 10 l	GROUP#		
1227 8 1523	Waste Stream Technology Inc.	echnology Inc.	DUE DATE	ARE SPECIAL DETECTION	ON LIMITS
	(71th, 876-5290 • FAX (716) 876-241	VI (716) 876-2412	TURN AROUND TIME:	KEQUIRED: YES NO If yes please attach requirements.	irements.
		DW DRINKING WATER			
ONTACT		SW GROUND WATER SW SURFACE WATER WAY WASTE WATER	S SOLID QUOTATION NUMBER: W WIPE QUOTATION NUMBER:	Is a QC Package required:	ij
Н. #()		1	OTHER	If yes please attach requirements	rements
AX #()			ANALYSES TO BE PERFORMED	_	
IILL TO:		ERS		<u></u>	
	3	NIAT			
2414 Frontes Profitor	PNI7 _{dl}	19 Noo 3	700		
ROJECT DESCRIPTION	MAO T	10 ON	79 t 500		
AMPLER, SIGNATURE	ITAN	夢 /39/21/18	10/0/0/5	<u> </u>	OFFICE USE
	NA2	1) / / / / / / / / / / / / / / / / / / /		TYPE OF CONTAINER/ O COMMENTS: W	UNLY WST. I.D.
, 4704 671 (11)	104/09 100p (CM)			TINGS CIRZ W	WEST STATES
4504 672 (1L	July 199 199/1/20		///	1/2504 "	
9304 673 (11)	(0/4/5/1. 100 (comp		W	Nabel "	
9.504	10/4199 100 Car. D		20k	, ,	
9504 675 (40MC)	teleffet	••	//	//cr.	
5104 676 (40ML	10/4/9/0 10 6 Comp		11		シ
(moh) 229 poss	Jan 16/10/21	• .	1	W.	55 PH.
8		•			
. 01					
EMARKS:		٠.			
	i de	:	X 60		
Car Com		,	1. torn own 1/		
KELINODISHED BY: John John John John John John John John		TIME	'RECEIVED BY:	DATE:	::
RELINQUISHED F	DAM.	TIME	ED BY:	DATEI	
and a second			(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	· .	

December 1, 1999

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (11/5/99 Monthly Sample)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the November 5, 1999, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

In addition, enclosed is a revised Analytical Summary Report and a Laboratory Data Result Report for October 1999. Due to a typographical error the detection limit for 4-methyl-2-pentanone was initially reported as 10 ug/L. The detection limit has been corrected to 5.0 ug/L.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

ohn M. Burns

For the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

David Cook, Esq. Nixon, Hargrave, Devans & Doyle 900 Clinton Square P.O. Box 1051 Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis McCanna SIVACO P.O. Box 646 3937 River Road Tonawanda, NY 14151-0646

Brent Schindler, Esq. Dow Chemical Base of Loveridge Road P.O. Box 1398 Pittsburgh, CA 94565

Frontier Chemical - Pendleton Site November 1999 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

353,362	Gallons Discharged Prior To	<u>11/5/99</u>
	Gallons Since Last Report	
204	Average Daily Flow Based on 3	32 days Between Samples

	Permit	Detection	11/5/99 Sample
<u>Parameters</u>	Limit	Limits	Results
reatment System Discharge	GPD		GPD
Discharge Rate (1)	662		
24 Analytes	ug/L	ug/L	ug/L
Toluene	10.0	1.0	
1,2-Dichloroethane	10.0	1.0	
4-Methyl-2-Pentanone	10.0	5.0	
Vinyl Chloride	10.0	2.0	
Methylene Chloride	10.0	2.8	
trans-1,2-Dichloroethene	10.0	1.0	
1.1.1-Trichloroethane	10.0	1.0	
Trichloroethene	10.0	1.0	
Benzene	10.0	1.0	
Chloromethane		2.0	
Bromomethane	1 1	2.0	
Chloroethane	1 1	2.0	
Chloroform	1 1	1.0	
Carbon Tetrachloride		1.0	
1.1-Dichloroethene		1.0	
Trichlorofluoromethane	1	2.0	
1,1-Dichloroethane] [1.0	
1,2-Dichloropropane		1.0	
Bromodichloromethane	1 1	1.0	
2-Chloroethylvinyl ether	1	2.0	
cis-1,3-Dichloropropene	1 1	1.0	
trans-1,3-Dichloropropene	1 1	1.0	
1,1,2-Trichloroethane	1	1.0	
Tetrachloroethene		1.2	
Dibromochloromethane	1	1.0	
Chlorobenzene	1 1	1.0	
Ethylbenezene	1	1.0	
Bromoform		1.0	
1,1,2,2-Tetrachloroethane		1.0	
1,3-Dichlorobenzene	1	1.0	
•		1.0	
1,4-Dichlorobezene		1.0	
1,2-Dichlorobenzene		100.0	0.0
Sum of 624 Analytes	ug/L	ug/L	ug/L
608 Pesticides (2)	10.0		
alpha BHC beta BHC	20.0		
delta BHC	10.0		
	10.0		
gamme BHC	8.0		
Heptachlor	8.0		
Aldrin	9.0		
Heptachlor Epoxide	20.0		
4,4-DDE	18.0		
Methoxychlor :	mg/L	mg/L	mg/L
Metals	0.1		
Antimony	4.00		
Boron	5.33		1
Chromium	2.0		1
Cyanide(T)	mg/L		
Other			
Total Phenolics	NA 300	3	· G
TSS	300	4.000	7 7,000

Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group. Detected in blank

Legend: (1) (2) (B) NA

Not applicable

FRONTIER CHEMICAL PENDLETON DAILY FLOW SHEET NOVEMBER 1999

	TOTALIZER	DAILY	
DATE	READING	FLOW	COMMENTS
11/1/99	351535	103	
11/2/99	352817	1282	Significant Rain Event
11/3/99	353153	336	
11/4/99	353497	344	
11/5/99		109.3	Sampling/Inspection & avg. flow
11/6/99	`	109.3	avg. flow
11/7/99	353825	109.3	avg. flow
11/8/99	353929	104	
11/9/99	354089	160	
11/10/99	354305	216	
11/11/99	354410	105	
11/12/99		160.3	avg. flow
11/13/99		160.3	Site Inspection & avg. flow
11/14/99	354888	160.3	avg. flow
11/15/99		141.9	avg. flow
11/16/99		141.9	avg. flow
11/17/99		141.9	avg. flow
11/18/99		141.9	Changed filter bags BF1 & BF2 & avg. flow
11/19/99		141.9	avg. flow
11/20/99		141.9	avg. flow
11/21/99	355881	141.9	avg. flow
11/22/99	356040	159	
11/23/99	356146	106	
11/24/99		280	avg. flow
11/25/99		280	avg. flow
11/26/99		280	avg. flow
11/27/99		280	avg. flow
11/28/99	357546	280	avg, flow
11/29/99	357656	110	
11/30/99	357819	163	

Avg. Daily Flow (gal)	213.0		
= DRY VAL	JLT GROUNDWATER	RELIEF	
		gallons	
TOTAL GALLONS	0.0		

Avg. Flow = flow between data points divided by days of missing data

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

REMEDIATION GROUP

Report Date: 11/19/99 Group Number: 9901-1766

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier Pendleton

Field and Laboratory Information

Client ld	WST Lab #	Matrix	Date Sampled	Date Received	Time
9K05678	WS58798	Aqueous	11/05/99	11/05/99	14:00
9K05679	WS58799	Aqueous	11/05/99	11/05/99	14:00
9K05680	WS58800	Aqueous	11/05/99	11/05/99	14:00
9K05681	WS58801	Aqueous	11/05/99	11/05/99	14:00
Sample Status Upon Rec	eipt : No irregular	ities.			

Analytical Services

Analytical Parameters	Number of Samples	Turnaround Time
Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	1	Standard

Report Released By:

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier Pendleton Date Sampled: 11/05/99 Date Received: 11/05/99 Group Number: 9901-1766

Units: mg/L Matrix: Aqueous

WST ID: WS58798 Client ID: 9K05678 Digestion Date: 11/08/99

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	11/11/99	EPA 200.9
Boron by ICP	0.012	0.390	11/15/99	EPA 200.7
Chromium by ICP	0.005	Not detected	11/15/99	EPA 200.7

Site: Frontier Pendleton Tate Sampled: 11/05/99 Jate Received: 11/05/99 Group Number: 9901-1766

Matrix: Aqueous

WST ID: WS58799 Client ID 9K05679

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	11/12/99

Site: Frontier Pendleton Date Sampled: 11/05/99 Date Received: 11/05/99 Group Number: 9901-1766

Matrix: Aqueous

WST ID: WS58800 Client ID 9K05680

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Cyanide in Water	EPA 335.2	0.005	Not detected	mg/L	11/17/99
Cyanide in vvaler				•	

Site: Frontier Pendleton Date Sampled: 11/05/99 Date Received: 11/05/99 Group Number: 9901-1766 Matrix: Aqueous

WST ID: WS58801 Client ID 9K05681

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Suspended Solids	EPA 160.2	4.0	Not detected	mg/L	11/09/99

PAGE OF		ARE SPECIAL DETECTION LIMITS REQUIRED:			If yes please attach requirements						المال	TYPE OF CONTAINER/ ONLY COMMENTS:	Ť		16 A2504 July	1/L MAOH WS58800	101 pd 401							
OFFICE USE ONLY	GROUP # 7701-1 100	DUE DATE	TURN AROUND TIME	SO SOIL QUOTATION NUMBER:	HER	ANALYSES TO BE PERFORMED					55	<u></u>												
STRE4M	HNOLOGY	Waste Stream Technology Inc. 302 Grote Street, Buffalo, NY 14207	(716) 876-5290 • FAX (716) 876-2412	DW DRINKING WATER SIGN GWOND WATER. SC SW SURFACE WATER SWATER SW			ERS	NIVI	19 Nos	2/2/2/20/2		A101												
WASTESTI	TECHNOL	Waste Stream	(716) 876-5290							 µaMA	IMAS S 30	TAC TAME		1/5/29 (OM) 826	11/5/99 COND 8.20,	115/99 COMD 550	1/5/94 Comp 8 7							
CHAIN OF CUSTODY	REPORT TO: C//n SD///S			CONTACT	PH.#()	FAX #()	BILL TO:		PO#	PRO JECT DESCRIPTION	E414 Frontine Pendleton	SAMPLER SIGNATURE	SAMPLE 1.D.	JK04678			6	ļ) u	2 0	0	0 0	0 7	

REMARKS:

FAX LEAD SHEET

NOV 2 9 1999 OLINGHVING LINIAL

REMEDIATION GROUP

WASTE STREAM TECHNOLOGY

302 GROTE STREET BUFFALO, NY 14207 Phone (716)876-5290 Fax (716)876-2412

DATE: 11/22/99

NUMBER OF PAGES (including cover): 2

TO: Mr. John Burns

FROM: Dan Vollmer () \(\square\).

FAX NUMBER: 423-336-4166

MESSAGE:

Revised result report for the Method 624 analysis of the GAC 2 sample (WS57463) from the Frontier-Pendleton site collected 10/4/99. The detection limit reported for 4-methyl-2-pentanone has been corrected to 5.0 ug/L. The 10 ug/L detection limit initially reported was a typographical error.

Please contact me if you have any additional questions or comments regarding the result report for this sample. I apologize for the oversight. The original hard copy of the revised Method 624 result report will be in the mail to you tomorrow.

Waste Stream Technology, Inc. 40 CFR Part 136 Method 624 EPA 624

Site: Frontier - Pendleton Date Sampled: 10/4/99 Date Received: 10/5/99 Group Number: 9901-1552

Units: µg/L Matrix: Aqueous

WST ID: WS57463 lient ID: GAC 2 Extraction Date: NA Date Analyzed: 10/6/99

Compound	Detection Limit	Result	QC Limits (%)	Qualifier
chloromethane	2.0	Not detected		U
vinyl chloride	2.0	Not detected		U
bromomethane	2.0	Not detected		U
chloroethane	2.0	Not detected		U
trichlorofluoromethane	2.0	Not detected		U
1.1-dichloroethene	1.0	Not detected		U
methylene chloride	2.8	Not detected		U
trans-1,2-dichloroethene	1.0	Not detected		U
1,1-dichloroethane	1.0	Not detected		U
chloroform	1.0	Not detected		U
1,1,1-trichloroethane	1.0	Not detected		U
carbon tetrachloride	1.0	Not detected		U
benzene	1.0	Not detected		U
1,2-dichloroethane	1.0	Not detected	•	U
trichloroethene	1.0	Not detected		U
,2-dichloropropane	1.0	Not detected		U
bromodichloromethane	1.0	Not detected		U
2-chloroethylvinyl ether	2.0	Not detected		U
cis-1,3-dichloropropene	1.0	Not detected		U
toluene	1.0	Not detected		U
trans-1,3-dichloropropene	1.0	Not detected		U
1,1,2-trichloroethane	1.0	Not detected		U
tetrachloroethene	1.2	Not detected		U
dibromochloromethane	1.0	Not detected		U
chlorobenzene	1.0	Not detected		U
ethylbenzene	1.0	Not detected		U
bromoform	1.0	Not detected		U
1,1,2,2-tetrachloroethane	1.0	Not detected		U
1,3-dichlorobenzene	1.0	Not detected		U
1,4-dichlorobenzene	1.0	Not detected		U
1,2-dichlorobenzene	1.0	Not detected		U
4-methyl-2-pentanone	5.0	Not detected		U
1,2-Dichloroethane-d4 (%)		101	76-114	
Toluene-d8 (%)		100	88-110	
Bromofluorobenzene (%)		102	86-115	

Dilution Factor

1

Frontier Chemical - Pendleton Site October 1999 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

346,972	Gallons Discharged Prior To	<u>10/4/99</u>
3,974	Gallons Since Last Report	
120	Average Daily Flow Based on 3	3 days Between Samples

				404100
				10/4/99
<u>Parameters</u>	Permit	Detection		Sample
	Limit	Limits		Results
Treatment System Discharge	GPD			GPD
Discharge Rate (1)	662			
624 Analytes	ug/L	ug/L		ug/L
Toluene	10.0	1.0	<	1.0
1,2-Dichloroethane	10.0	1.0	<	1.0
4-Methyl-2-Pentanone	10.0	5.0	<	5.0
Vinyl Chloride	10.0	2.0	<	2.0
Methylene Chloride	10.0	2.8	<	2.8
trans-1,2-Dichloroethene	10.0	1.0	<	1.0
1,1,1-Trichloroethane	10.0	1.0	<	1.0
Trichloroethene	10.0	1.0	<	1.0
Benzene	10.0	1.0	·<	1.0
Chloromethane		2.0	~	2.0
Bromomethane	1	2.0	<	2.0
Chloroethane	I	20	· <	1.0
Chloroform	ł	1.0	~	1.0
Carbon Tetrachloride		1.0	~	1.0
	i i	1.0	~	1.0
1,1-Dichloroethene		1.0 2.0	2	2.0
Trichlorofluoromethane	I	1.0	~	1.0
1,1-Dichloroethane	l l		~	1.0
1,2-Dichloropropane	İ	1.0	· <	1.0
Bromodichloromethane		1.0		
2-Chloroethylvinyl ether		2.0	<	1.0
cis-1,3-Dichloropropene		1.0	<	1.0
trans-1,3-Dichloropropene		1.0	<	1.0
1,1,2-Trichloroethane		1.0	<	1.0
Tetrachloroethene		1.2	<	1.2
Dibromochloromethane	I	1.0	<	1.0
Chlorobenzene		1.0	<	1.0
Ethylbenezene		1.0	<	1.0
Bromoform	i	1.0	<	1.0
1,1,2,2-Tetrachloroethane	I	1.0	<	1.0
1,3-Dichlorobenzene		1.0	<	1.0
1,4-Dichlorobezene		1.0	<	1.0
1,2-Dichlorobenzene		1.0	<	1.0
Sum of 624 Analytes		100.0		42.0
608 Pesticides (2)	ug/L	ug/L		ug/L
alpha BHC	10.0			
beta BHC	20.0			
delta BHC	10.0			
gamme BHC	10.0			
Heptachlor	8.0			
Aldrin	8.0			
Heptachlor Epoxide	9.0		l	
4.4-DDE	20.0			
Methoxychlor	18.0			
Metals	mg/L	mg/L		mg/L
Antimony	0.1	0.009	<	0.009
Boron	4.00	0.012		0.069
Chromium	5.33	0.005	H	0.005
Cyanide(T)	2.0	0.005	8	0.005
Other	ma/L	mg/L		mg/L
Total Phenolics	NA.	0.005	~	0.005
TSS	300	4.000	Ð	4.000
			!	

- Legend: (1) (2) (B) NA Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group.
- Detected in blank
- Not applicable

January 17, 2000

VIA AIRBORNE EXPRESS

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (12/3/99 Monthly Sample)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the December 3, 1999, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

For the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

David Cook, Esq. Nixon, Hargrave, Devans & Doyle 900 Clinton Square P.O. Box 1051 Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis P. Harkowitz. Esq. Jaecekle, Fleishman & Mugel Fleet Bank Building Twelve Fountain Plaza Buffalo, NY 14202-2292

Brent Schindler, Esq.
Dow Chemical
Base of Loveridge Road
P.O. Box 1398
Pittsburgh, CA 94565

FRONTIER CHEMICAL PENDLETON DAILY FLOW SHEET DECEMBER 1999

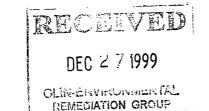
	TOTALIZER	DAILY	
DATE	READING	FLOW	COMMENTS
12/1/99	357930	111.0	
12/2/99	358087	157.0	
12/3/99		141.0	Sampling/Inspection & avg. flow
12/4/99		141.0	avg. flow
12/5/99	358510	141.0	avg. flow
12/6/99	358617	107.0	
12/7/99	358784	167.0	
12/8/99	358943	159.0	
12/9/99	359046	103.0	
12/10/99		248.3	avg. flow
12/11/99		248.3	avg. flow
12/12/99	359791	248.3	avg. flow
12/13/99	359948	157.0	
12/14/99	360492	544.0	
12/15/99	361041	549.0	
12/16/99		249.0	avg. flow
12/17/99		249.0	avg. flow
12/18/99		249.0	avg. flow
12/19/99	362037	249.0	avg. flow
12/20/99	362199	162.0	
12/21/99	362356	157.0	
12/22/99	362525	169.0	
12/23/99	362578	53.0	
12/24/99	362631	53.0	
12/25/99	362683	52.0	
12/26/99		123.7	avg. flow
12/27/99		123.7	avg. flow
12/28/99	362896	123.7	avg. flow
12/29/99		35.0	avg. flow
12/30/99		35.0	avg. flow
12/31/99	363001	35.0	avg. flow

	Avg. Daily Flow (gal).	172.3	
	= DRY V	AULT GROUNDWATER	RELIEF
<u> </u>			gallons
	TOTAL GALLONS	0.0	

Avg. Flow = flow between data points divided by days of missing data

Frontier Chemical - Pendleton Site November 1999 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002


358,702	Gallons Discharged Prior To	<u>12/3/99</u>
5,340	Gallons Since Last Report	
172	Average Daily Flow Based on 2	8 days Between Samples

Treatment System Discharge Discharge Rate (1 524 Analytes Toluene 1,2-Dichloroethan 4-Methyl-2-Pentar Vinyl Chloride Methylene Chloric trans-1,2-Dichloroethane Chloroethane Benzene Chloroethane Chloroethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichloroether Trichlorofluorom 1,1-Dichloroethan 1,2-Dichloroprop Bromodichlorom 2-Chloroethyliviny cis-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2-Trichloroberz 1,2-Dichloroberz 1,2-Dich	<u>neters</u>	l Permit	Detection	Sample
Discharge Rate (1) 224 Analytes Toluene 1,2-Dichloroethan 4-Methyl-2-Pentar Vinyl Chloride Methylene Chloride trans-1,2-Dichloroethane Chloroethane Benzene Chloromethane Bromomethane Chloroform Carbon Tetrachlo 1,1-Dichloroethar Trichlorofthane Chloroethane Chloroethane Chloroethane 1,2-Dichloroperopi Bromodichlorome 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichloroethane Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		Limit	Limits	Results
Discharge Rate (1) 224 Analytes Toluene 1,2-Dichloroethan 4-Methyl-2-Pentar Vinyl Chloride Methylene Chloride trans-1,2-Dichloroethane Chloroethane Benzene Chloromethane Bromomethane Chloroform Carbon Tetrachlo 1,1-Dichloroethar Trichlorofthane Chloroethane Chloroethane Chloroethane 1,2-Dichloroperopi Bromodichlorome 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichloroethane Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron	e	GPD		GPD
Toluene 1,2-Dichloroethan 4-Methyl-2-Pentar Vinyl Chloride Methylene Chloride Methylene Chloride trans-1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Chloromethane Bromomethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluorom 1,1-Dichloroether Trichlorofluorom 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichloroethr Tetrachloroether Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2-Trethachlor 1,3-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC delta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron		662		
Toluene 1,2-Dichloroethan 4-Methyl-2-Pentar Vinyl Chloride Methylene Chloride itrans-1,2-Dichloroethane 1,1-1-Trichloroethane Benzene Chloromethane Bromomethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluorom 1,1-Dichloroethar 1,2-Dichloropropp Bromodichlorom 2-Chloroethylviny cis-1,3-Dichloroptrans-1,3-Dichloroptrans-1,3-Dichloroethar Tetrachloroether Tetrachloroether Tetrachloroether Tetrachloroether Tetrachloroether 1,1,2-Trichloroether Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobeze 1,2-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron		ug/L	ug/L	ug/L
4-Methyl-2-Pentar Vinyl Chloride Methylene Chloric trans-1,2-Dichloro 1,1,1-Trichloroethene Benzene Chloromethane Bromomethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluorom 1,1-Dichloroethar 1,2-Dichloropropo Bromodichlorom 2-Chloroethylviny cis-1,3-Dichloroptrans-1,3-Dichloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2-Trichlorobetra Tetrachlorobetrane Ethylbenezene Bromoform 1,1,2-Tetrachlor 1,3-Dichlorobezene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobeze 1,2-Dichlorobenz 1,4-Dichlorobeze 1,2-Dichlorobenz 1,4-Dichlorobeze 1,2-Dichlorobenz 1,4-Dichlorobeze 1,2-Dichlorobenz Methoxychlor Metals Antimony Boron		10.0	1.0	
Vinyl Chloride Methylene Chloride trans-1,2-Dichloro 1,1,1-Trichloroeth Trichloroethene Benzene Chloromethane Bromomethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluorom 1,1-Dichloroether Trichlorofluorom 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz 3um of 624 Analy 608 Pesticides (2) alpha BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron	e	10.0	1.0	
Methylene Chloric trans-1,2-Dichloroct 1,1,1-Trichloroeth Trichloroethene Benzene Chloromethane Bromomethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluoromm 1,1-Dichloroethane 1,2-Dichloroptopis Bromodichloromm 2-Chloroethyliviny cis-1,3-Dichloroptrans-1,3-Dichloroptrans-1,3-Dichlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2-Trichloroethen Dibromochlorom 1,1,2-Tetrachlor 1,3-Dichlorobenzene Ethylbenezene Bromoform 1,1,2-Tetrachlorobenzene 1,2-Dichlorobenz 1,4-Dichlorobenz 3um of 624 Analy 608 Pesticides (2) alpha BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxid,4-DDE Methoxychlor Metals Antimony Boron	ione	10.0	5.0	
trans-1,2-Dichloroc 1,1,1-Trichloroeth Trichloroethene Benzene Chloromethane Bromomethane Chloroethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofloromethane 1,2-Dichloropethane 1,2-Dichloropethane 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichloromethane Dibromochloromethane Chlorobenzene Ethylbenezene Bromoform 1,1,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobeze 1,2-Dichlorobenz Sum of 624 Analy 608 Pesticides (2) aipha BHC delta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DE Methoxychlor Metals Antimony Boron		10.0	2.0	
1,1,1-Trichloroeth Trichloroethene Benzene Chloromethane Bromomethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluorom 1,1-Dichloroethar 1,2-Dichloropropp Bromodichlorom 2-Chloroethylviny cis-1,3-Dichloroptrans-1,3-Dichloroether Tetrachloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2-Tretrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC delta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron	ie	10.0	2.8	
Trichloroethene Benzene Chloromethane Bromomethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluorom 1,1-Dichloroethar 1,2-Dichloropropa Bromodichlorom 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichloroethr Tetrachloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz 2-Dichlorobenz Sum of 624 Analy 608 Pesticides (2) alpha BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron	ethene	10.0	1.0	
Benzene Chloromethane Bromomethane Chloroethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluoromethane 1,2-Dichloropethane 2-Chloroethylviny cls-1,3-Dichloroptrans-1,3-Dichloroptrans-1,3-Dichloroptrans-1,2-Trichloroethen Dibromochloromethylviny Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz 2-Dichlorobenz 3-Unichlorobenz 3-Unichlorobenz 3-Unichlorobenz 4-Dichlorobenz 3-Unichlorobenz 4-Dichlorobenz 4-Dichlorobenz Methoxychlor Metals Antimony Boron	ane	10.0	1.0	
Chloromethane Bromomethane Chloroethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluorom 1,1-Dichloroethar 1,2-Dichloroprope Bromodichlorom 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichloro 1,1,2-Trichloroeth Tetrachloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron		10.0	1.0	
Bromomethane Chloroethane Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluorome 1,1-Dichloroethar 1,2-Dichloroprope Bromodichlorome 2-Chloroethylviny cls-1,3-Dichlorop trans-1,3-Dichloroeth Tetrachloroethen Dibromochlorome Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC delta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		10.0	1.0	
Chloroethane Chloroform Carbon Tetrachio 1,1-Dichloroether Trichlorofluoromm 1,1-Dichloroethan 1,2-Dichloropropa Bromodichloromm 2-Chloroethylviny cis-1,3-Dichloroptrans-1,3-Dichloroethen Dibromochloromm Chlorobenzene Ethylbenezene Bromoform 1,1,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC delta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		, , , , , , , , , , , , , , , , , , , ,	2.0	
Chloroform Carbon Tetrachlo 1,1-Dichloroether Trichlorofluorom 1,1-Dichloroethar 1,2-Dichloropropa Bromodichlorom 2-Chloroethylviny cis-1,3-Dichloroptrans-1,3-Dichloroethr Tetrachloroether Tetrachloroether Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2-Trichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC delta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron			2.0	
Carbon Tetrachio 1,1-Dichloroether Trichloroffluorom 1,1-Dichloroethar 1,2-Dichloropethar 1,2-Dichloropethar 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2-Tetrachlorobeze 1,2-Dichlorobeze 1,2-Dichlorobeze 1,2-Dichlorobeze 1,2-Dichlorobeze 1,2-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DE Methoxychlor Metals Antimony Boron			2.0	
1,1-Dichloroether Trichlorofluorome 1,1-Dichloroethar 1,2-Dichloropropic Bromodichlorome 2-Chloroethylviny cls-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichlorother Tetrachloroethen Dibromochlorome Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC Heptachlor Aldrin Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron		1	1.0	
Trichlorofluoromi 1,1-Dichloroethar 1,2-Dichloropropa Bromodichloromi 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichloro 1,1,2-Trichloroeth Tetrachloroethen Dibromochloromi Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron	ride		1.0	
1,1-Dichloroethar 1,2-Dichloroprops Bromodichlorom 2-Chloroethylviny cls-1,3-Dichlorop trans-1,3-Dichloro 1,1,2-Trichloroeth Tetrachloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron	e		1.0	
1,2-Dichloropropa Bromodichlorome 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichlorof Tetrachloroethen Dibromochlorome Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC delta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron			2.0	
Bromodichlorome 2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichlorot 1,1,2-Trichloroeth Tetrachloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobeze 1,2-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron			1.0	
2-Chloroethylviny cis-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichloroeth Tetrachloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 2,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC delta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron			1.0	
cis-1,3-Dichlorop trans-1,3-Dichlorop trans-1,3-Dichloro 1,1,2-Trichloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 2,2-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron			1.0	
trans-1,3-Dichlord 1,1,2-Trichloroeth Tetrachloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron			2.0	
1,1,2-Trichloroeth Tetrachloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron			1.0	
Tetrachloroethen Dibromochlorom Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron			1.0	
Dibromochlorom- Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,2-Dichlorobenz Sum of 624 Analy 608 Pesticides (2) aipha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron			1.0	
Chlorobenzene Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,2-Dichlorobenz Sum of 624 Analy 608 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		1	1.2	
Ethylbenezene Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobeze 1,2-Dichlorobeze 1,2-Dichlorobenz Sum of 624 Analy 608 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron	ethane e		1.0	
Bromoform 1,1,2,2-Tetrachlor 1,3-Dichlorobezer 1,4-Dichlorobezer 1,2-Dichlorobezer 1,2-Dichlorobenz Sum of 624 Analy 608 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		j	1.0	
1,1,2,2-Tetrachlor 1,3-Dichlorobenz 1,4-Dichlorobenz 1,2-Dichlorobenz Sum of 624 Analy 608 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron			1.0	
1,3-Dichlorobenz 1,4-Dichlorobeze 1,2-Dichlorobenz Sum of 624 Analy 608 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron			1.0	
1,4-Dichlorobezei 1,2-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron			1.0	
1,2-Dichlorobenz Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epox 4,4-DDE Methoxychlor Metals Antimony Boron		1	1.0	
Sum of 624 Analy 508 Pesticides (2) alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		•	1.0	
alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron			1.0	
alpha BHC beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron	tes		100.0	0.0
beta BHC delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		ug/L		ug/L
delta BHC gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		10.0		
gamme BHC Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		20.0	1	
Heptachlor Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		10.0		
Aldrin Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		10.0	1	
Heptachlor Epoxi 4,4-DDE Methoxychlor Metals Antimony Boron		8.0		
4,4-DDE Methoxychlor Metals Antimony Boron		8.0		
Methoxychlor Metals Antimony Boron	ae	9.0		
Metals Antimony Boron		20.0		
Antimony Boron		18.0		
Boron		mg/L		mg/L
		0.1		SI .
		4.00		
Chromium		5.33		1
Cyanide(T)		2.0		
Other		mg/L		mg/L
Total Phenolics TSS		NA 300		

- Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group.
- Legend: (1) (2) (B) NA Detected in blank Not applicable

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 12/17/99 Group Number: 9901-1930

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: E414 Frontier Pendleton

Field and Laboratory Information

Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time
9L03682	WS59621	Aqueous	12/03/99	12/03/99	16:00
9L03683	WS59622	Aqueous	12/03/99	12/03/99	16:00
9L03684	WS59623	Aqueous	12/03/99	12/03/99	16:00
9L03685	WS59624	Aqueous	12/03/99	12/03/99	16:00
Sample Status Upon Rece	eipt : No irregular	ities.			

Analytical Services Turnaround Time Number of Samples Analytical Parameters Standard 1 Metals Standard 1 Cyanide Standard 1 Phenol Standard 1 Total Suspended Solids

Report Released By: <u>Daniel W. Voee</u>

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: E414 Frontier Pendleton

Date Sampled: 12/03/99
Date Received: 12/03/99

Group Number: 9901-1930

Units: mg/L Matrix: Aquecus

WST ID: WS59621 Client ID: 9L03682 Digestion Date: 12/07/99

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	12/15/99	EPA 200.9
Boron by ICP	0.012	0.422	12/08/99	EPA 200.7
Chromium by ICP	0.005	Not detected	12/08/99	EPA 200.7

Site: E414 Frontier Pendleton

Date Sampled: 12/03/99 Date Received: 12/03/99 Group Number: 9901-1930

Matrix: Aqueous

WST ID: WS59622 Client ID 9L03683

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	12/10/99

Site: E414 Frontier Pendleton

Date Sampled: 12/03/99
Date Received: 12/03/99

Group Number: 9901-1930

Matrix: Aqueous

WST ID: WS59623 Client ID 9L03684

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Cyanide in Water	EPA 335.2	0.005	Not detected	mg/L	12/08/99
Cyanide in Water	EPA 330.2	0.003	NOT actedica	mg/ L	12.00.0

Site: E414 Frontier Pendleton

Date Sampled: 12/03/99 Date Received: 12/03/99 Group Number: 9901-1930

Matrix: Aqueous

WST ID: WS59624 Client ID 9L03685

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Suspended Solids	EPA 160.2	4.0	Not detected	mg/L	12/07/99

CHAIN OF CUSTODY	WASTESTR	REAM	OFFICE USE	OFFICE USE ONLY 102	PAGEOF	
REPORT TO: Charles	TECHNOL	L0GY	GROUP #	00 N -1014	·	
	Waste Stream Technology Inc.	nnology Inc.	DUE DATE		ARE SPECIAL DETECTION LIMITS REQUIRED:	LIMITS
	(716) 876-5290 • FAX (716) 876-2412	(716) 876-2412		TURN AROUND TIME:	YES NO If yes please attach requirements	nents.
		DW DRINKING WATER	SL SLUDGE	10 BD (2/4/3		
CONTACT			S SOLID W WIPE	OUOTATION NUMBER:	Is a QC Package required:	
PH.#()			отнек		If yes please attach requirements	rents
FAX #()			ANALYSES TO BE PERFORMED	SE PERFORMED		
BILL TO:		ERS				
	_	NIAT				
#Od	E DNI7dl	Soon a				
PROJECT DESCRIPTION	IGYT ?	5/pi	300			
ETTY Transfer (MICHELLA)	37d	0 /3 /0 / 10	 52		-ــــــ	OFFICE USE
SAMPLER SIGNATURE	MAS	D/V/19/101			.E.	ONLY WST. I.D.
10	12/2/99 1/24 10MO				SM = 80MH = 7	W554621
1	120/1				12504	22
9163	1204			26	GOOM NIOH	N
	12/3/9/ 1120 (CMP)			5	500ML 40C	424
						·
9 1						
0 (
D (
101						
REMARKS:						

RELINQUISH

February 7, 2000

VIA AIRBORNE EXPRESS

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (1/13/2000 Monthly Sample)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the January 13, 2000, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

For the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

David Cook, Esq. Nixon, Hargrave, Devans & Doyle 900 Clinton Square P.O. Box 1051 Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis P. Harkowitz. Esq. Jaecekle, Fleishman & Mugel Fleet Bank Building Twelve Fountain Plaza Buffalo, NY 14202-2292

Brent Schindler, Esq.
Dow Chemical
Base of Loveridge Road
P.O. Box 1398
Pittsburgh, CA 94565

Frontier Chemical - Pendleton Site November 1999 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

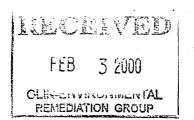
364,042	Gallons Discharged Prior To	1/13/00
6,111	Gallons Since Last Report	
149	Average Daily Flow Based on 4	l days Between Samples

			Datastian	1/13/00	
	<u>Parameters</u>	Permit	Detection	Sample	
		Limit	Limits	Results GPD	
reatmer	t System Discharge	GPD		GPU	
04 A	Discharge Rate (1)	662 ug/L	ug/L	ug/L	
24 Analy		10.0	1.0	ug/L	
	Toluene 1.2-Dichloroethane	10.0	1.0		
		10.0	5.0		
	4-Methyl-2-Pentanone	10.0	2.0		
	Vinyi Chloride	10.0	2.8		
	Methylene Chloride	10.0	1.0		
	trans-1,2-Dichloroethene		t t		
	1,1,1-Trichloroethane	10.0	1.0		
	Trichloroethene	10.0	1.0 1.0		
	Benzene	10.0			
	Chloromethane		2.0		
	Bromomethane		2.0		
	Chloroethane		2.0		
	Chloroform		1.0		
	Carbon Tetrachloride		1.0		
	1,1-Dichloroethene		1.0		
	Trichlorofluoromethane		2.0		
	1,1-Dichloroethane		1.0		
	1,2-Dichloropropane		1.0		
	Bromodichloromethane		1.0		
	2-Chloroethylvinyl ether		2.0		
	cis-1,3-Dichloropropene	1	1.0		
	trans-1,3-Dichloropropene		1.0		
	1,1,2-Trichloroethane		1.0		
	Tetrachloroethene		1.2		
	Dibromochloromethane	ŧ i	1.0		
	Chlorobenzene	l i	1.0		
	Ethylbenezene		1.0		
	Bromoform		1.0		
	1,1,2,2-Tetrachloroethane		1.0		
	1.3-Dichlorobenzene		1.0		
	1,4-Dichlorobezene		1.0		
	1,2-Dichlorobenzene	1	1.0		
	Sum of 624 Analytes		100.0	0.0	
SOR Pact	icides (2)	ug/L	ug/L	ug/L	
300 F E30	alpha BHC	10.0			
	beta BHC	20.0			
	delta BHC	10.0	•		
		10.0			
	gamme BHC	8.0			
	Heptachlor	8.0			
	Aldrin	9.0	3		
	Heptachlor Epoxide	20.0	B :		
	4,4-DDE	18.0			
	Methoxychlor			mg/L	
Metals		mg/L		< 0.009	
	Antimony	0.1			
	Boron	4.00		1	
	Chromium	5.33			
	Cyanide(T)	2.0		< 0.005	
Other		mg/L		mg/L	
	Total Phenolics	N.A			
	TSS	300	4,000	< 4.000	

Legend:

- (1) (2) (B) NA Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group.
- Detected in blank Not applicable

FRONTIER CHEMICAL PENDLETON DAILY FLOW SHEET JANUARY 2000


	TOTALIZER	DAILY	
DATE	READING	FLOW	COMMENTS
1/1/00	363001	35.0	avg. flow
1/2/00	363173	172.0	
1/3/00		81.0	avg. flow
1/4/00		81.0	avg. flow
1/5/00		81.0	avg. flow
1/6/00		81.0	avg. flow
1/7/00		81.0	avg. flow
1/8/00		81.0	avg. flow
1/9/00	363821	81.0	avg. flow
1/10/00	363872	51.0	
1/11/00	363924	52.0	
1/12/00	363977	53.0	
1/13/00	364271	25.5	Sampling/Inspection & avg. flow
1/14/00		25.5	avg. flow
1/15/00		25.5	avg. flow
1/16/00	364373	25.5	avg. flow
1/17/00	364426	53.0	
1/18/00	364478	52.0	Inspection
1/19/00	364530	52.0	
1/20/00	364581	52.0	avg. flow
1/21/00		52.0	avg. flow
1/22/00		52.0	avg. flow
1/23/00	364789	52.0	avg. flow
1/24/00	364840	51.0	
1/25/00	364892	52.0	
1/26/00	364944	52.0	avg. flow
1/27/00	364996	51.8	avg. flow
1/28/00		51.8	avg. flow
1/29/00		51.8	avg. flow
1/30/00	365203	51.8	avg. flow
1/31/00	365254	51.0	

Avg. Daily Flow (gal).	58.4	
] = DRY V	AULT GROUNDWATER	RELIEF
		gallons
TOTAL GALLONS	0.0	

Avg. Flow = flow between data points divided by days of missing data

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 01/28/00 Group Number: 2001-094

Prepared For: Mr. John Burns Olin Corporation P.O. Box 248 1186 Lower River Road NW Charleston, TN 37310

Site: Frontier - Pendleton

Field and Laboratory Information

Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time
0A13686	WS60871	Aqueous	01/13/00	01/14/00	12:30
0A13687	WS60872	Aqueous	01/13/00	01/14/00	12:30
0A13688	WS60873	Aqueous	01/13/00	01/14/00	12:30
0A13689	WS60874	Aqueous	01/13/00	01/14/00	12:30

1. .

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
Metals	1	Standard
Cyanide	1	Standard
Phenol	1 .	Standard
Total Suspended Solids	1	Standard

Report Released By:

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

ORGANIC DATA QUALIFIERS

- **U** Indicates compound was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets identification criteria, but the result is less than the sample quantitation limit but greater than zero.
- **C** This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- **B** This flag is used when the analyte is found in the associated blank as well as the sample.
- **E** This flag identifies all compounds whose concentrations exceed the calibration range of the GC/MS instrument of that specific analysis.
- **D** This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- **G** Matrix spike recovery is greater than the expected upper limit of analytical performance.
- L Matrix spike recovery is less than the expected lower limit of analytical performance.
- # Indicates that a surrogate recovery was found to be outside the expected limits of analytical performance.
- **\$ -** Indicates that the surrogate compound was diluted out. The sample had to be diluted to obtain analytical results and a recovery could not be calculated.
- (%) Indicates that the compound is a surrogate and that the value reported for this compound is in percent recovery. The quality control recovery limits are indicated in the detection limit or QC limits column.

Waste Stream Technology, Inc. Metals Method Blank Analysis

Site: Frontier Pendleton Date Sampled: NA Date Received: NA Group Number: 2001-094

Units: mg/L

WST ID MB012100

Client ID: NA

Digestion Date: 01/21/00

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Cr Method Blank	0.005	Not detected	01/25/00	EPA 200.7
Sb Method Blank	0.009	Not detected	01/27/00	EPA 200.9

MB denotes Method Blank NA denotes Not Applicable

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier Pendleton Date Sampled: 01/13/00 Date Received: 01/14/00

Group Number: 2001-094 Units: mg/L Matrix: Aqueous

WST ID: WS60871 Client ID: 0A13686 Digestion Date: 01/21/00

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	01/27/00	EPA 200.9
Boron by ICP	0.012	0.610	01/25/00	EPA 200.7
Chromium by ICP	0.005	Not detected	01/25/00	EPA 200.7

Waste Stream Technology, Inc. **Total Recoverable Phenol** EPA 420.1

Site: Frontier Pendleton Date Sampled: 01/13/00 Date Received: 01/14/00

Group Number: 2001-094 Matrix: Aqueous Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS60872	0A13687	0.005	Not detected	01/20/00

Waste Stream Technology, Inc. Cyanide in Water EPA 335.2

Site: Frontier Pendleton Date Sampled: 01/13/00 Date Received: 01/14/00

Group Number: 2001-094 Matrix: Aqueous Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS60873	0A13688	0.005	Not detected	01/18/00

Waste Stream Technology, Inc. **Total Suspended Solids** EPA 160.2

Site: Frontier Pendleton Date Sampled: 01/13/00 Date Received: 01/14/00

Group Number: 2001-094 Matrix: Aqueous Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS60874	0A13689	4.0	Not detected	01/19/00

RELINQUISHE! RELINQUISHED BY REMARKS: SAMPLER SIGNATURE PROJECT DESCRIPTION BILL TO: PH. # () CONTACT မ σ Frentier Frodleton CHAIN OF CUSTODY WA13688 10 M3 689 @A13687 ØA13686 SAMPLE I.D. 113/00 113/00 113601130 DATE SAMPLED Waste Stream Technology Inc. 302 Grote Street, Buffalo, NY 14207 (716) 876-5290 • FAX (716) 876-2412 1/150/ **WASIESIREAM** DATE: 130 TIME OF SAMPLING TECHNOLOGY SAMPLE TYPE TOTAL NO. OF CONTAINERS DW DRINKING WATER
GW GROUND WATER
SW SURFACE WATER
WW WASTE WATER
O OIL SL SLUDGE SO SOIL S SOLID W WIPE OTHER ANALYSES TO BE PERFORMED RECEIVED BY: OFFICE USE ONLY DUE DATE GROUP #_ QUOTATION NUMBER: 2001-094 TURN AROUND TIME: BOOML TYPE OF CONTAINER/COMMENTS: 1 -1 PAGE YES NO
If yes please attach requirements. ARE SPECIAL DETECTION LIMITS REQUIRED:
YES NO Is a QC Package required: YES NO If yes please attach requirements ဗူ OFFICE USE WST. I.D.

March 10, 2000

VIA AIRBORNE EXPRESS

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject: Analytical Sampling Results (2/3/2000 Monthly Sample)
Groundwater Discharge Through Pre-Treatment System
Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the February 3, 2000, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

For the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

John Bun

David Cook, Esq.
Nixon, Hargrave, Devans & Doyle
900 Clinton Square
P.O. Box 1051
Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Colleen K. Sanson, Esq. Law Offices of Ted Hadzi-Antich Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis P. Harkowitz. Esq. Jaecekle, Fleishman & Mugel Fleet Bank Building Twelve Fountain Plaza Buffalo, NY 14202-2292

Brent Schindler, Esq. Dow Chemical Base of Loveridge Road P.O. Box 1398 Pittsburgh, CA 94565

Frontier Chemical - Pendleton Site February 2000 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

371,116 Gallons Discharged Prior To	2/3/00
7,074 Gallons Since Last Report	
244 Average Daily Flow Based on 21 day	s Between Samples

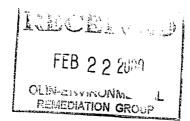
Parameters	Permit	Detection	2/3/00 Sample
<u>raiameters</u>	Limit	Limits	Results
reatment System Discharge	GPD		GPD
Discharge Rate (1)	662		
24 Analytes	ug/L	ug/L	ug/L
Toluene	10.0	1.0	
1,2-Dichloroethane	10.0	1.0	
4-Methyl-2-Pentanone	10.0	5.0	
Vinyl Chloride	10.0	2.0	
Methylene Chloride	10.0	2.8	
trans-1,2-Dichloroethene	10.0	1.0	
1.1.1-Trichloroethane	10.0	1.0	
Trichloroethene	10.0	1.0	
Benzene	10.0	1.0	
Chloromethane		2.0	
Bromomethane		2.0	
Chloroethane	1	2.0	
Chloroform	1	1.0	
Carbon Tetrachloride	1	1.0	
1.1-Dichloroethene		1.0	
Trichlorofluoromethane	1	2.0	
1,1-Dichloroethane	1	1.0	
1,2-Dichloropropane		1.0	
Bromodichloromethane		1.0	
2-Chloroethylvinyl ether		2.0	
cis-1,3-Dichloropropene		1.0	
trans-1,3-Dichloropropene		1.0	
1,1,2-Trichloroethane		1.0	
Tetrachloroethene		1.2	
Dibromochloromethane	1	1.0	
Chlorobenzene	I	1.0	
Ethylbenezene		1.0	•
Bromoform		1.0	
1,1,2,2-Tetrachloroethane	1	1.0	
1,3-Dichlorobenzene	1	1.0	
1,4-Dichlorobezene	1	1.0	
1,2-Dichlorobenzene		1.0	
Sum of 624 Analytes		100.0	0.0
	ug/L	ug/L	ug/L
508 Pesticides (2)	10.0		
alpha BHC	20.0		
beta BHC	10.0	1	
delta BHC	10.0		
gamme BHC	8.0	1	
Heptachlor	8.0		
Aldrin	9.0		
Heptachlor Epoxide	20.0		
4,4-DDE	18.0		
Methoxychlor		mg/L	mg/L
Metals	mg/L	0.009	< 0.009
Antimony	0.1		0.610
Boron	4.00	0.012	< 0.005
Chromium	5.33	0.005	< 0.00 5 < 0.005
Cyanide(T)	2.0	0.005	
Other	mg/L	mg/L	mg/L
Total Phenolics	NA	0.005	< 0.005
TSS	300	4.000	< 4.000

Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group.

Legend: (1) (2) (B) NA Detected in blank

Not applicable

DAILY FLOW DATA - PENDLETON SITE FEBRUARY 2000


DATE	TOTALIZER READING	DAILY FLOW	COMMENTS
2/1/00	365305	51.0	
2/2/00	365457	152.0	
2/3/00	000101	42.5	Average Flow & Sampling
2/4/00		42.5	Average Flow
2/5/00		42.5	Average Flow
2/6/00	365627	42.5	Average Flow
2/7/00	365679	52.0	
2/8/00	365782	103.0	
2/9/00	365883	101.0	
2/10/00	365985	102.0	
2/11/00		87.7	Average Flow
2/12/00		87.7	Average Flow
2/13/00	366248	87.7	Average Flow
2/14/00	366299	51.0	
2/15/00	366456	157.0	
2/16/00	366507	51.0	
2/17/00	366609	102.0	
2/18/00		124.0	Average Flow
2/19/00		124.0	Average Flow
2/20/00	366980	123.7	Average Flow
2/21/00	367081	101.0	
2/22/00	367343	262.0	
2/23/00	368279	936.0	Surface water leaking into vault
2/24/00	369169	890.0	Surface water leaking into vault
2/25/00		423.0	Average Flow
2/26/00		423.0	Average Flow
2/27/00	370438	423.0	Surface water leaking into vault & avg flow
2/28/00	370795	357.0	
2/29/00	372327	1532.0	Groundwater relief into sump

AVERAGE DAILY	FLOW IN GALLONS	243.9	
	= DRY VAULT GRO	OUNDWATER RELI	EF
			gallons
			gallons
			gallons
	,		gallons
	TOTAL GALLONS	0	

avg =flow between data points divided by days of missing data

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 02/17/00 Group Number: 2001-208

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier - Pendleton

Field and Laboratory Information

Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time
00B03686	WS61492	Aqueous	02/03/00	02/03/00	12:50
00B03687	WS61493	Aqueous	02/03/00	02/03/00	12:50
00B03688	WS61494	Aqueous	02/03/00	02/03/00	12:50
00B03689	WS61495	Aqueous	02/03/00	02/03/00	12:50
Sample Status Upon Rece	eipt : No irregular	ities.			

Analytical Services

Analytical Parameters Number of Samples Turnaround Time

Total Metals 1 Standard

Cyanide 1 Standard

Phenol 1 Standard

Total Suspended Solids 1 Standard

Report Released By: Daniel W.

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier Pendleton Pate Sampled: 02/03/00 Pate Received: 02/03/00 Group Number: 2001-208

Units: mg/L Matrix: Aqueous

WST ID: WS61492 Client ID: 00B03686 Digestion Date: 02/15/00

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	02/15/00	EPA 200.9
Boron by ICP	0.012	Not detected	02/15/00	EPA 200.7
Chromium by ICP	0.005	Not detected	02/15/00	EPA 200.7

Waste Stream Technology, Inc. **Total Recoverable Phenol** EPA 420.1

Rite: Frontier Pendleton Jate Sampled: 02/03/00 Date Received: 02/03/00

Group Number: 2001-208 Matrix: Aqueous Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS61493	00B03687	0.005	Not detected	02/08/00

Waste Stream Technology, Inc. Cyanide in Water EPA 335.2

Rite: Frontier Pendleton _ate Sampled: 02/03/00 Date Received: 02/03/00

Group Number: 2001-208 Matrix: Aqueous Units: mg/L

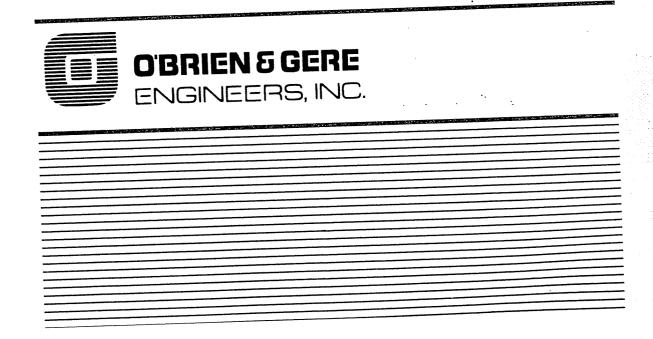
WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS61494	00B03688	0.005	Not detected	02/08/00

Waste Stream Technology, Inc. **Total Suspended Solids** EPA 160.2

Rite: Frontier Pendleton Jate Sampled: 02/03/00 Date Received: 02/03/00

Group Number: 2001-208 Matrix: Aqueous Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS61495	00B03689	4.0	7.2	02/04/00



4.		FECTION LIMITS) requirements		required: NO threatifrements								ONLY	WST. I.D.	W5611193.	2000	10/11	500								TIME	TIME	8 N	
PAGE		ARE SPECIAL DE	KEQUIKED: YES NO YES SI It was please attach requirements.		Is a QC Package required: YES NO If yes please attach requirements	, yes prease area	_						TYPE OF CONTAINER/ COMMENTS:	Ċ.	(H20)	(1120)	(DD)	11- (1120)	of the state of th		-		,			DATE: 3 10	DATE	12/2/0	
208 (2/2/3			UND TIME:	10806/213	QUOTATION NUMBER:		MED						AYT /		11	7/	7/	MODS .				-	-					The state of the s	
SE ONLY	7	DUE DATE	TURN ARO				ANALYSES TO BE PERFORMED		<u> </u>			_		/ /					•							REGENVED BY;	RECEIVED BY:	Sometha K	
			112		EWATER S SOLID NATER W WIPE OTHER	1	ANALYSI				30	TV.	SIX W	1 /												REGED N	REC		
	TECHNOLOGI	Waste Stream Technology Inc. 302 Grote Street Buffalo NY 14207	• FAX (716) 876-2412	DW DRINKING	SW SURFACE WATER WW WASTE WATER O OIL		<i>s</i>	VER.	NAT	. cov	75 10 01	ر: ام ام N	37))										MTIME:	TIME: (
	TEC	Waste Strear	(716) 876-5290 • FAX		10	/ /	_	_		PNI7 _d	MAS:	10	TIME	7	1mg) 1/008 00/8/8	2/3/00 300p Comp	1905 00/81	3/3/60/300ACou			-				- Silver	DATE: 3	DATE:	01812	
V OF CUSTODY	(1.10.		and the second s	100						nonthis Post Retor	DESCRIPTION	Monday	ER-SIGNATURE	SAMPLE 1.D.	00000 586 686 6	00603687	40 BU3688 A	09 603689							ĶS:	RELINQUISHED BY:	RELINQUISHED BY:	Town In	
CHV	KEPOKI 10			LO VE	PH. #	FAX # (BILL TO:			#Od	PROJECT	7	SAMPL			2 6	1		2	9	7	8	6	. 10	REMARKS	RELINO	RELING		

Frontier Chemical - Pendleton Site Semi-Annual Ground Water Monitoring Report

Pendleton Site PRP Group

March 2000

REPORT

Frontier Chemical - Pendleton Site Semi-Annual Ground Water Monitoring Report

Pendleton Site PRP Group

James R. Heckathorne, P.E. Vice President

March 2000

5000 Brittonfield Parkway Syracuse, New York 13221

Contents

Introduction	2
2. Conclusions	
References	9

List of Tables

- 1-1 Ground water analytical methods
- 1-2 Results of the t-test analysis

Tables located at end of report

- 1 Piezometer ground water elevation summary table
- 2 Monitoring well ground water elevation summary table
- 3 Quarry Lake surface water elevation summary table
- 4 Summary of ground water analytical data

List of Figures

1 Hydraulic potential map

List of Appendices

- A Piezometer/monitoring well inspection forms
- B Ground water sampling logs
- C Data validation report (Volume 1 of 3 of the validated analytical dataseparately bound)

1. Introduction

This document is the second 1999/2000 Semi-Annual Ground Water Monitoring Report for the Frontier Chemical - Pendleton Site (Site), located on Town Line Road in the Town of Pendleton, Niagara County, New York. This report is prepared based on the New York State Department of Environmental Conservation (NYSDEC)-approved Operation & Maintenance (O&M) Manual (O'Brien & Gere Engineers, 1997) for the Site, which addresses, among other items, long-term ground water monitoring at the Site. This Semi-Annual Ground Water Monitoring Report presents a discussion of the following:

- Piezometer/monitoring well inspection
- Hydraulic evaluation of the capped area and collection trench
- Evaluation of ground water chemistry in the intermediate and deep ground water zones.

These items are described in the following sections.

1.1. Piezometer/monitoring well inspection

The piezometer/monitoring well inspection was conducted on February 7, 2000, and included the piezometers (P-1 through P-8), standpipe (SP-1), and ground water monitoring wells (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D) identified as the Site monitoring network in the O&M Manual for the Site.

Results of the inspection indicated that each piezometer and monitoring well was in an acceptable condition for collecting water elevation measurements and sampling. Similar maintenance issues to those identified in previous inspection reports were noted at the Site:

- Piezometer P-6 is currently angled 20 to 30 degrees from vertical.
- Monitoring wells URS-14I and URS-14D should have fill material installed around the concrete pads.
- Water (in the form of ice) was observed in the annular space of monitoring well URS-14I.

It should be noted that, at this time, these issues are not affecting the integrity of the piezometers or monitoring wells. February 2000 inspection forms are included in Appendix A.

1.2. Hydraulic evaluation of capped area and collection trench

In accordance with the O&M Manual, a complete round of static ground water elevations was collected from the piezometers (P-1 through P-8), standpipe (SP-1), and ground water monitoring wells (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D). The ground water elevation measurements were collected on February 7, 2000. Glynn Geotechnical Engineering, Inc. attempted to measure the surface water elevation of Quarry Lake on February 7, 2000. Since the lake was ice covered and could not be penetrated, the ice surface elevation was measured. The ground water elevations measured in the piezometers and standpipe, and in the monitoring wells, are summarized on Tables 1 and 2, respectively. Quarry Lake elevations are summarized on Table 3. As shown on Table 3, the February 7, 2000 ice surface elevation of Quarry Lake is slightly above the outlet weir elevation of 577.2 ft.

The water level measurements collected on February 7, 2000 are illustrated on Figure 1. These measurements are the eighth round collected since remedial construction was substantially completed in August 1996. The water elevation data was used to evaluate the following:

- Whether an inward hydraulic gradient exists at the site by comparing water level measurements within the capped area (P-2, P-3, P-4, P-6, and P-7) to those measured outside the capped area (P-1, P-5, P-8, SP-1, and Quarry Lake)
- The ground water flow potential inside the capped area
- Whether the ground water collection trench is effectively controlling ground water migration away from the capped area.

The data indicates that an inward hydraulic gradient exists at the site, except in the eastern portion of the capped area, where the data indicates a slight outward hydraulic gradient. The ground water elevation in piezometer P-2, located inside the capped area, is higher than the ground water elevation in piezometer P-1, installed outside the capped area. An inward hydraulic gradient exists in the northern and southern portions of the capped area, as the ground water elevations inside the capped area (P-6 and P-7) are less than the ground water elevations outside the capped area (P-5 and P-8, respectively). Along the western portion of the site, the ground water elevation at P-4 is higher than the elevation in

the ground water collection trench (SP-1). The ground water elevation inpiezometer P-3, installed within the center of the capped area, is greater than ground water elevations measured in piezometers P-1, P-5, and P-8, installed outside the capped area.

Although the data indicates an outward hydraulic gradient within the eastern portion of the capped area, the ground water elevations collected in the piezometers installed within the capped area (P-2, P-3, P-4, P-6, and P-7) are lower than originally measured in June 1997. The slight fluctuations in water elevations in the piezometers located within the capped area (P-2, P-3, P-4, P-6, and P-7) may be attributed to differences in: barometric pressure during sampling events; the movement of water within the capped area; and/or the low permeability of the materials. The fluctuations in water elevations in the piezometers located outside the capped area (P-1, P-5, and P-8) may be attributed to seasonal variations.

The contrasting fluctuations of ground water levels within and outside the capped area demonstrate that ground water within the capped area has been isolated. In addition, the ground water elevation in the standpipe (SP-1) in the ground water collection trench is less than the ice surface elevation of Quarry Lake, indicating that Quarry Lake is isolated from the capped area.

Ground water elevations of piezometers installed within the capped area along the northern (P-7), western (P-4), eastern (P-2), and southern (P-6) portions of the Site are higher than the invert elevations (bottom) of the ground water collection trench. The invert elevations of the ground water collection trench vary from 568.80 ft to 563.37 ft. This information indicates that the overall hydraulic gradient is to the west towards the ground water collection trench. In summary, the data indicates that the ground water collection trench is effectively removing shallow ground water from within the capped area.

As discussed in the March 1998 monitoring report (O'Brien & Gere Engineers, 1998), based on an average daily flow rate to the ground water collection trench of 170 gallons/day and a hydraulic conductivity adjacent to the ground water collection trench of 3.3 x 10⁻⁶ cm/sec, it is estimated that approximately 110 years will be required to dewater the containment area. However, the amount of water present within the capped area and the time to dewater beneath the capped area has minimal impact on the effectiveness of the containment, since hydraulic isolation within the capped area has been established and ground water beneath the capped area is migrating towards the ground water collection trench.

1.3. Ground water sampling and chemistry

Between February 7 and 9, 2000, the sixth round of post-closure ground water samples was collected in accordance with the protocols presented in the O&M Manual. Ground water samples were obtained from the ten ground water monitoring wells identified for sampling in the O&M Manual (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D).

Following sample collection, the ground water samples were submitted to O'Brien & Gere Laboratories, Inc., for analysis of the parameters shown in Table 1-1.

Table 1-1. Ground water analytical methods.

Parameter	Method
VOCs	USEPA Method 8260B
Inorganics	USEPA Methods 6010B/7470A/7841
Cyanide	USEPA Method 9010B/9014

Ground water sampling logs and chain of custody forms are included in Appendix B.

In accordance with the O&M Manual and as approved by the NYSDEC, sampling and analysis for target compound list (TCL) semi-volatile polychlorinated biphenyls compounds (SVOCs) and organic (PCBs)/pesticides were discontinued for the second through fifth years of monitoring. In accordance with the O&M Manual, sampling is to be continued semi-annually for TCL volatile organic compounds (VOCs) and target analyte list (TAL) metals during the second through fifth years In accordance with the NYSDEC-approved O&M of monitoring. Manual, the required sampling frequency will be re-evaluated after the fifth year of monitoring.

Purge water generated during sampling was contained, passed through a 25-micron bag filter, and discharged to manhole MH-3. The water in manhole MH-3 was conveyed through the pre-treatment system prior to discharge to the Niagara County Sewer District (NCSD) interceptor system at manhole MH-16.

The laboratory analytical data was validated by Data Validation Services of North Creek, New York. The validation was performed in accordance with guidance from the most current editions of the United States Environmental Protection Agency (USEPA) Contract Laboratory Procedures (CLP) National Functional Guidelines for Organic and

Inorganic Data Review, and the USEPA Standard Operating Procedures (SOPs) HW-2 and HW-6. Results of the validation indicated that the samples were processed and analyzed in compliance with protocol requirements, and with adherence to quality criteria. All of the analytical results are useable, although minor qualifications are needed for some of the results. A copy of the data validation report is included in Appendix C.

Results of the ground water analyses, along with a comparison of the results with New York State Class GA Standards, are summarized on Table 4. The New York State Class GA Standards presented on Table 4 have been revised to reflect revisions to the New York State water quality standards (NYSDEC, 1999). In general, the February 2000 ground water chemistry is similar to previous sampling events.

Detected constituents exceeding New York State Class GA Standards included iron at one location (URS-9I) and sodium at ten locations (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D). Concentrations of iron have previously been detected in background wells URS-14I and URS-14D at similar concentrations. Concentrations of sodium have also been detected above the New York State Class GA Standards in background wells URS-14I and URS-14D at similar concentrations. It is likely that the elevated concentrations of sodium are naturally occurring and are not related to previous site activities. VOCs were not detected above the New York State Class GA Standards. The database will be updated with data from future sampling events, and ground water standards will be reviewed annually to evaluate whether standards have been revised.

As specified in the O&M Manual, statistical analyses of the ground water chemistry data have been completed. A preliminary exploratory data analysis, using univariate statistics in SAS®, was performed for fifteen analytes that have been detected a total of nine or more times in various monitoring wells since the initial post-construction sampling event in June 1997. Based on the results of the preliminary exploratory data analysis, concentrations for thirteen analytes (at $\alpha = 0.10$) do not appear to be normally distributed. Magnesium and 1,2-dichloroethene appear to be normally distributed.

The February 2000 data represents the results of the sixth baseline data collection effort. A t-test analysis was conducted based on the data collected from the post-construction sampling events, between June 1997 and February 2000, to evaluate whether downgradient concentrations exceed upgradient concentrations, based on a comparison of downgradient wells with the appropriate upgradient wells, URS-14I or URS-14D. Based on the results of the t-test, Table 1-2 presents a summary of locations where constituent concentrations in downgradient wells exceeded concentrations at the appropriate upgradient comparison well, at a confidence level (α) equal to 0.05.

Table 1-2. Results of the t-test analysis.

Monitoring Well	Analytes with Higher Concentrations than in Upgradient Wells
85-5R	Calcium, Magnesium
URS-5D	Calcium, Manganese, Sodium
85-7R	Calcium, Magnesium, Sodium
URS-7D	Calcium, Magnesium, Manganese, Sodium
URS-9I	Calcium, Magnesium
88-12C	Calcium, Magnesium, Arsenic
88-12D	Calcium, Magnesium, Manganese, Potassium, Sodium

Source: O'Brien & Gere Engineers, Inc.

It should be noted that there are currently no New York State Class GA Standards for calcium, magnesium, or potassium. Concentrations of arsenic and manganese have not been detected above the New York State Class GA Standards during the post-construction sampling. In addition, it is likely that elevated concentrations of calcium, magnesium, manganese, potassium, and sodium are naturally occurring and are not related to previous site activities.

Results of the t-test analysis also indicate that barium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, and greater in upgradient well URS-14D than in corresponding downgradient well 88-12D, at a confidence level of α =0.05. T-test analysis results also indicate that sodium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, at a confidence level of α =0.05. Concentrations of barium in URS-9I, 88-12C, 88-12D, URS-14I, and URS-14D are below the New York State Class GA Standard.

Although carbon disulfide was detected in some of the samples at levels above typical laboratory contamination, many samples show evidence of sulfur dioxide, based on a review of the analytical spectrum by the data validator, which may be related to the detection of carbon disulfide. There are currently no New York State Standards for carbon disulfide. In addition, carbon disulfide has been detected in the background wells.

2. Conclusions

Based on the data contained in this semi-annual report, the following conclusions are presented:

- The isolation of ground water within the capped area has been established.
- The ground water elevation data indicates that ground water within the capped area is migrating to the west toward the ground water collection trench.
- The ground water elevation data indicates that the ground water collection trench is effectively removing shallow ground water from within the capped area.
- The February 2000 ground water chemistry is similar to previous sampling events.
- Results of the t-test analysis indicate that concentrations of arsenic (88-12C), calcium (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, 88-12C, and 88-12D), magnesium (85-5R, 85-7R, URS-7D, URS-9I, 88-12C, and 88-12D), manganese (URS-5D, URS-7D, and 88-12D), potassium (88-12D), and sodium (URS-5D, 85-7R, URS-7D, and 88-12D) exceed upgradient concentrations, based on a comparison of downgradient wells with the appropriate upgradient wells, URS-14I or URS-14D. There are currently no New York State Class GA Standards for calcium, magnesium, or potassium. Concentrations of arsenic and manganese have not been detected above the New York State Class GA Standards during the post-construction sampling. It is likely that elevated concentrations of calcium, magnesium, manganese, potassium, and sodium are naturally occurring and are not related to previous site activities.
- Results of the t-test analysis indicate that barium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, and greater in upgradient well URS-14D than in corresponding downgradient well 88-12D, at a confidence level of α=0.05. Concentrations of barium in URS-9I, 88-12C, 88-12D, URS-14I, and URS-14D are below the New York State Class GA Standard.

- T-test analysis results indicate that sodium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, at a confidence level of α =0.05.
- Iron was detected in one monitoring well at a concentration above New York State Class GA Standards. Concentrations of iron have previously been detected in the background wells at similar concentrations. In addition, results of the t-test analysis indicate that concentrations of iron are not statistically higher downgradient than upgradient at the Site, indicating that the capped area is not impacting ground water.
- Sodium was detected in ten monitoring wells at concentrations above New York State Class GA Standards. It is likely that this element is naturally occurring and is not related to previous site activities.
- Although carbon disulfide was detected in some of the samples at levels above typical laboratory contamination, many samples show evidence of sulfur dioxide, based on a review of the analytical spectrum by the data validator, which may be related to the detection of carbon disulfide. There are currently no New York State Standards for carbon disulfide. In addition, carbon disulfide was detected in the background wells.

References

- New York State Department of Environmental Conservation, 1999. Title 6, Chapter X, Subchapter A, Article 2, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater, Effective August 4, 1999.
- O'Brien & Gere Engineers, 1997. Operation and Maintenance Manual, Frontier Chemical Pendleton Site, Town of Pendleton, Niagara County, New York, Pendleton Site PRP Group, March 1997.
- O'Brien & Gere Engineers, 1998. Frontier Chemical Pendleton Site, Semi-Annual Ground Water Monitoring Report, Pendleton Site PRP Group, March 1998.

Table 1

Frontier Chemical - Pendleton Site
Piezometer Ground Water Elevation Summary Table

		Top of Riser	Top of Riser Top of Cover	Depth (ft	Screened				round wat	Ground water elevation (ft)	(ft)		
Piezometer	Location	Elev. (ft)	Elev. (ft)	below riser)	Elev. (ft)	6/24/97	9/30/97	2/23/98	4/28/98	9/17/98	2/3/99	8/11/99	2/7/00
P-1	(O) Eastern portion	583.21	583.30	16.4	576.8 - 566.8	579.54	577.09	579.25	579.60	575.62	572.97	575.83	573.76
P-2	(l) of capped area	582.90	583.20	15.7	577.2 - 567.2	579.60	579.24	578.20	578.37	578.76	576.96	578.27	575.59
P-3	(I) Center of capped	606.33	606.64	39.7	586.6 - 566.6	580.36	580.38	580.06	579.94	579.80	579.96	579.38	579.29
	area												
P-4	(I) Adjacent to	582.31	583.85	15.6	576.7 - 566.7	577.15	577.43	576.70	575.11	575.96	574.58	575.56	573.96
SP-1	(T) Quarry Lake	579.86	580.07	15.0	bop = 564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9
	(O) Southern portion	583.05	583.55	15.5	577.6 - 567.6	576.87	577.25	578.57	579.31	576.13	574.70	576.48	578.16
P-6	(I) of capped area	584.45	584.60	16.2	578.3 - 568.3	578.77	579.17	578.14	578.20	578.63	577.94	578.28	577.74
P-7	(I) Northern portion	580.97	582.00	15.9	575.0 - 565.0	578.33	578.62	576.45	576.17	577.15	574.43	575.55	573.02
P-8	(O) of capped area	582.83	583.00	17.3	575.5 - 565.5	577.76	578.87	578.75	579.61	576.90	574.72	576.15	576.12

lotoc.

- 1. Elevation based on USGS Datum.
- 2. 'bop = bottom of pipe.
- 3. O = piezometer located outside of capped area.
- 4. I = piezometer located inside capped area.
- 5. T = standpipe located within the ground water collection trench.
- 6. The top of riser of piezometer P-4 was modified on 4/28/98 from 583.68 ft to 582.31 ft to allow clearance for the installation of a locking expansion plug beneath the flush-mounted cover.
 - 7. The top of riser of piezometer P-7 was modified on 4/28/98 from 581.84 ft to 580.97 ft to allow clearance for the installation of a locking expansion plug beneath the flush-mounted cover.

Table 2
Frontier Chemical - Pendleton Site
Monitoring Well Ground Water Elevation Summary Table

Monitoring		Top of Riser	Ground	Depth (ft	Screened			SF	Ground water elevation (ft)	evation (ft)			
Well	Location	Elev. (ft)	Elev. (ft)	below riser)	Elev. (ft)	6/24/97	9/30/97	2/23/98	4/28/98	9/17/98	2/3/99	8/11/99	2/7/00
11RS-14I	IRS-14I (Ingradient well nest	581.14	580.84	31.0	550.1 - 555.1	577.15	578.77	580.24	580.14	574.76	577.35	575.42	89'.22
11BS-14D	IRS-14D in church parking lot	580.71	580.85	41.5	539.2 - 544.2	575.50	574.28	575.87	578.05	573.94	572.89	571.92	571.87
URS-91	Southern well nest	581.68	579.90	46.0	535.6 - 540.6	575.38	574.22	69.579	575.91	573.76	572.67	571.82	571.78
		580.80	579.00	46.5	534.3 - 539.3	575.36	574.21	575.68	575.89	573.64	572.66	571.24	571.66
		580.84	578.70	40.0	540.9 - 542.9	574.70	573.97	575.39	575.70	574.98	572.78	571.92	571.10
		580.60	578.00	49.9	530.8 - 535.8	574.73	574.02	575.42	575.74	573.80	572.12	571.97	571.39
85-7R	North well nest	577.90	576.60	27.8	550.2 - 552.2	675.09	574.21	575.53	575.87	573.74	572.30	572.04	571.52
URS-7D	IIRS-7D along Town Line Road	579.35	576.50	39.9	539.5 - 544.5	575.15	574.35	575.60	575.99	573.75	572.40	571.99	571.57
88-12C	Well nest outside northeast	583.12	583.70	31.3	551.8 - 553.8	576.60	574.03	576.53	90'22'	572.79	571.72	571.26	571.12
88-12D		582.87	583.28	54.5	528.4 - 533.4	575.72	574.54	576.17	576.33	574.00	572.97	572.36	572.33

Notes:

1. Elevation based on USGS Datum.

Frontier Chemical - Pendleton Site Quarry Lake Surface Water Elevation Summary Table Table 3

	Quarry Lake
Date	Surface Water Elevation (ft) (1)
26/8/6	572.3
2/23/98	578.0
4/30/98	578.26
9/21/98	577.42
2/4/99	26.773
8/4/99	9277.60
2/7/00	578.16 (2)

Notes:

Elevation based on USGS Datum.
 Ice surface elevation.

	Standard					85-5R					
Parameter	ug/L (ppb)	7/86	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)								wiki iniwiski.	gyddi cyfgli		
Acetone		NA	R	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	15	ND	ND	ND	0.34 J	ND	ND	0.10 J	ND
2-Butanone		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		NA	ND	ND	ND	ND	ND	ND	ND	ND	18
Chlorobenzene	5	ND	NA	NA	NA	ND	0.28 J	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	NA NA	ND	ND	ND	ND	ND	ND	ND	0.17 J	0.10 J
	5	ND ND	ND	ND	ND	ND	0.24 J	ND	ND	ND	ND
Ethylbenzene Methylpen Chloride	5	ND ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND
Methylene Chloride 4-Methyl-2-Pentanone		NA NA	2J	ND	ND	ND I	ND	ND	ND	ND	ND
1.1.2.2Tetrachioroethane	5	ND ND	2J	ND	ND	ND	ND	ND	ND	ND	ND
	5	ND	ND ND	ND	ND	ND	0.14 J	ND	ND	ND	ND
Toluene	5	NA NA	ND	ND	ND	ND	0.96	ND	ND	ND	ND
Total Xylenes	5	ND ND	ND ND	ND	· ND	ND	ND	ND	ND	ND	ND
Trichloroethene	2	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride		I ND I	······	ND	140						
Metals (ppb)		1,060	214	37.8B	153	ND	300	ND	ND	ND	ND
Aluminum	<u> </u>	1,060 NA	ND	42.4B	ND	ND	ND	ND	ND	ND	ND
Antimony	3 25	NA NA	1B	42.46 ND	ND	ND	ND	ND	ND	ND	ND
Arsenic			73.5B	23.4B	15	40	80	50J	ND	60	60
Barium	1000	20		ND ND	ND	ND	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Cadmium	5	5	ND 355,000	378,000	321,000	270,000	220,000	220,000	130,000	220,000	200,000
Calcium		380,000			321,000 ND	270,000 ND	30	10	ND	ND	ND
Chromium	50	40	7.5B	ND	ND ND	ND	ND	ND ND	ND	ND	ND
Cobalt		20	ND	ND		ND	ND	ND	ND	ND	ND
Copper	200	10	ND	ND	11 ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	419	140	2.300	190	ND	100	ND
Iron	300	1,020	669	915		ND ND	2,300 ND	ND ND	ND	ND	ND
Lead	25	150	ND	1.2B	ND				59,000	99,000	90,000
Magnesium		179,000	106,000	170,000	139,000	130,000	85,000	110,000	ND	80	110
Manganese	300	100	40	57.5	42	50	260	40	ND ND	ND	ND
Mercury	0.7	NA	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND
Nickel	100	10	48.1	ND	ND	ND	ND	ND			ND ND
Potassium	<u> </u>	9,500	60,700	6,280	6,400	ND	ND	ND	ND	5,000	ND ND
Selenium	10	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Silver	50	30	ND	ND	ND	ND	ND	ND	ND	ND	1
Sodium	20,000	126,000	132,000	120,000	100,000	93,000 J	58,000	87,000	52,000	96,000	67,000
Thallium		NA	ND	ND	ND	ND	8	ND	ND	ND	ND ND
Vanadium		35	4B	ND	ND	ND	ND	ND	ND	ND	ND
Zinc		75	12.9B	17.6B	ND	ND	ND	ND	ND	10 J	10

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard				URS-	5D				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)									A CONTRACTOR	
Acetone		250	R	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	1	ND	0.25 J	0.11 J	ND	0.16 J	ND
2-Butanone		ND	R	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	, ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	4.2
Chlorobenzene	5	NA	NA	NA	ND	0.31 J	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	0.32 J	ND	ND	ND	ND
Methylene Chloride	5	ND	R	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	·	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	1J	ND	ND	0.19 J	ND	ND	ND	ND
Total Xylenes	5	ND	0.5J	ND	ND	1.5	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND I	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)	-	.,						i governos de la composición dela composición de la composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición de la composición de la composición dela composición de la composición de la composición dela composición dela composición dela composición dela composición dela compo		
Aluminum	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony	3	ND	31.5B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	1.3B	1B	ND	ND	ND	ND	ND	ND	ND
Barium	1000	224	71.7B	32	20	ND	ND	ND	20	ND
	7000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beryllium Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
	 	378,000	407,000	387,000	440,000	300,000	490,000	510,000	490,000	500,000
Calcium Chromium	50	3B	ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	61	210	850	350	59
Cobalt	200	ND	ND	8	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	300	188	143	25	ND	120	ND	ND	ND	ND
Iron	25	ND	1.3B	12	ND	ND	ND	ND	ND	ND
Lead	25	33,300	2450B	570,000	100,000	24,000	87,000	76,000	93,000	97,000
Magnesium	300	8.8B	3.5B	ND	50	10	70	70	50	60
Manganese		ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	0.7	11.4B	ND	ND	90	ND	180	90	80	50
Nickel	100	22,700	16,900	8,500	ND	ND ND	ND	5,000	ND	ND
Potassium		22,700 ND	16,900 ND	ND	ND	ND	ND	ND	ND	ND
Selenium	10	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND
Silver	50			114,000	88,000	93,000	94,000	120,000	110,000	120,000
Sodium	20,000	192,000	194,000	ND	ND	93,000 ND	ND	ND	ND	ND
Thallium		ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND
Vanadium		3.8B	ND 14.7D	ND ND	ND ND	10	ND ND	ND	10 J	10
Zinc		19.9B	14.7B	עא ן	טאו ן	1 10	T ND	1 170	00	<u> </u>

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 2000

	Standard					85-7R					
Parameter	ug/L (ppb)	7/86	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)	3 77 7								jajida d	ود المديد	
Acetone		NA	ND	R	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	6	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		71	ND	ND	ND	ND	ND	ND	0.93 J	ND	32
Chlorobenzene	5	ND	NA NA	NA NA	NA	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	 	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethene	5	NA NA	ND	ND	ND	0.14J	0.19 J	0.14 J	0.21 J	0.40 J	0.11 J
Ethylbenzene	5	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		NA NA	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	5	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	1J	ND	ND I	ND ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
Trichloroethene	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	 	טא	עא	IND	ND	NO 1	ן שוו	26.27606000000			
Metals (ppb)		4.000	077	265	249	ND	ND	ND	ND	ND	ND
Aluminum	<u> </u>	1,200	277	∠65 ND	ND	ND	ND	ND	ND	ND	ND
Antimony	3	NA .	28.3B			ND	ND	ND	ND	ND	ND
Arsenic	25	NA	1.4B	1.7B	ND			50J	ND	40	40
Barium	1000	30	91B	143B	106	100	80	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND		ND ND	ND	ND
Cadmium	5	5	ND	ND	ND	ND	ND	ND			410,000
Calcium		490,000	354,000	298,000	389,000	350,000	350,000	420,000	400,000	440,000	
Chromium	50	20	ND	ND	ND	ND	ND	ND	10	ND	ND ND
Cobalt		20	ND	ND	ND	ND	ND	ND	ND	ND	ND
Соррег	200	10	ND	ND	8	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	920	586	820	435	190	310	270	170	90	70
Lead	25	120	ND	2.6B	ND	ND	ND	ND	ND	ND	ND
Magnesium	_	131,000	119,000	42,600	124,000	120,000	120,000	140,000	140,000	130,000	130,000
Manganese	300	110	40.5	31.5	30	70	80	90	80	40	40
Mercury	0.7	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	ND	7.4B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium	T	28,000	5,540	5,770	6,700	5,000	5,000	6,000	6,000	7,000	6,000
Selenium	10	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	107,000	67,900	38,900	73,100	66,000 J	67,000	75,000	74,000	85,000	72,000
Thallium		NA	ND	ND	ND	ND	6	ND	ND	ND	ND
Vanadium	1	35	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc		65	ND	21.5	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard				URS-	7D				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)	<u> </u>				(10x1)2x192x1			ar 1988年1986年1	18 4 BK 11	
Acetone		120	R	ND	ND	ND	61	6.0 J	ND	ND
Benzene	1	ND	ND	ND	ND	0.11 J	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		0.5J	ND	ND	ND	ND	ND	1.3 J	ND	5.2
Chlorobenzene	5	NA	NA	NA	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND :	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	0.37 J	ND	ND :	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)										
Aluminum		167B	52.5B	ND	ND	ND	ND	ND	ND	100
Antimony	3	20.5B	36.3B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	20.3B	47.2B	29	30	40	ND	ND	30	30
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND .
Calcium		277,000	333,000	403,000	360,000	300,000	480,000	400,000	470,000	420,000
Chromium	50	ND	ND	ND	ND	ND	10	10	ND	10
Cobalt	-	ND	ND	ND	ND	ND	ND .	ND	ND	ND
Copper	200	ND	ND	8	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	387	283	63	ND	70	ND	100	ND	180
Lead	25	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium		96,200	115,000	140,000	120,000	89,000	140,000	130,000	140,000	140,000
Manganese	300	71.2	140	86	40	30	40	50	50	70
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	23.5B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		5,990	8,550	8,300	5,000	ND	6,000	ND	6,000	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	82,700	68,900	78,900	66,000 J	54,000	79,000	74,000	81,000	68,000
Thallium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium		4.2B	6.7B	ND	ND	ND	ND	ND	ND	ND
Zinc	—	5.6B	12.2B	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard				URS-	·91				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)	-3 (FF-)				//www.com/com/com/com/com/com/com/com/com/com/		AANTigori 1999	r Bigita		
Acetone		R	R I	ND I	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	0.12J	0.29 J	ND	ND	ND	ND
2-Butanone		ND	2J	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	0.13 J	ND	ND	8.5
Chlorobenzene	5	NA NA	NA NA	NA	ND	0.20 J	ND	ND	ND	ND
Chloroform	7	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	<u> </u>	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND ND	ND	ND	0.14 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5	0.7J	ND	ND	ND	0.11 J	ND	ND	0.16 J	ND
Toluene	5	ND	ND	ND	0.29J	0.54	ND	ND	ND	ND
Total Xylenes Trichloroethene	5	ND	ND	ND	ND	.ND	ND	ND	ND	ND
	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	140	NO	110						7 (8) (8)
Metals (ppb)		221	197	110	ND	ND	ND	200	ND	200
Aluminum	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony	25	1.7B	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	1000	30.1B	22.8B	14	30	ND	ND	ND	ND	ND
Barium	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beryllium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	1 -	106,000	143,000	123	170,000	150,000	160,000	160,000	160,000	170,000
Calcium	1	8.6B	10.1	ND	170,000 ND	ND	10	10	ND	ND
Chromium	50	1	ND	ND	ND	ND	ND	ND	ND	ND
Cobalt		ND 12.7B	ND ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	12.7B ND	ND ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	200		1,170	808	460	440	290	590	240	520
Iron	300	1,020 ND	1,170 1B	ND	ND	ND	ND ND	ND	ND	ND
Lead	25		71,300	63,500	70,000	69,000	77,000	70,000	75,000	76,000
Magnesium		54,500	71,300 <u> </u>	75	50	30	40	50	40	50
Manganese	300	67.5	1	ND	ND	ND	ND	ND	ND	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
Nickel	100	7.6B	ND 1 0 F 0 F			ND	ND	ND	ND	ND
Potassium		3,910B	4,250B	2,900	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND
Silver	50	ND	ND	ND				39,000	54,000	48,000
Sodium	20,000	34,500	54,000	52,400	43,000 J	45,000	49,000	39,000 ND	94,000 ND	48,000 ND
Thallium		ND	ND	ND	ND	11	ND			ND
Vanadium		ND	9.6B	ND	ND	ND	ND 00	ND	10 J	ND
Zinc		19.3B	34.6	ND	ND	ND	20	ND	1 103	ראם

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 2000

I II I	Standard g/L (ppb) 1 5 7 5	8/90 R ND ND ND ND NA 8 1J	R ND 6J ND ND NA	ND ND ND ND ND ND	ND ND ND ND ND	2/98 ND 1.9 ND	9/98 ND ND ND	ND ND ND	8/99 ND ND	2/00 ND ND
VOCs (ppb) Acetone Benzene 2-Butanone Bromodichloromethane Carbon Disulfide Chlorobenzene Chloroform Dibromochloromethane 1,1-Dichloroethane	 1 5 7	ND ND 4J ND NA 8	ND 6J ND ND	ND ND ND	ND ND	1.9 ND	ND	ND	ND	
Acetone Benzene 2-Butanone Bromodichloromethane Carbon Disulfide Chlorobenzene Chloroform Dibromochloromethane 1,1-Dichloroethane	 5 7	ND ND 4J ND NA 8	ND 6J ND ND	ND ND ND	ND ND	1.9 ND	ND	ND	ND	
Benzene 2-Butanone Bromodichloromethane Carbon Disulfide Chlorobenzene Chloroform Dibromochloromethane 1,1-Dichloroethane	 5 7	ND 4J ND NA 8	6J ND ND	ND ND	ND	ND				ND
2-Butanone Bromodichloromethane Carbon Disulfide Chlorobenzene Chloroform Dibromochloromethane 1,1-Dichloroethane	5 7	ND 4J ND NA 8	6J ND ND	ND			ND	ND		
Bromodichloromethane Carbon Disulfide Chlorobenzene Chloroform Dibromochloromethane 1,1-Dichloroethane	5 7	ND NA 8	ND		ND			140	ND	ND
Carbon Disulfide Chlorobenzene Chloroform Dibromochloromethane 1,1-Dichloroethane	5 7 	ND NA 8	ND	ND		ND	ND	ND	ND	ND
Chlorobenzene Chloroform Dibromochloromethane 1,1-Dichloroethane	7	NA 8	NA		ND	ND	ND	ND	ND	16
Chloroform Dibromochloromethane 1,1-Dichloroethane				NA	ND	0.79	ND	ND	ND	ND
Dibromochloromethane 1,1-Dichloroethane			ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	1J 1	ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	0.7	0.37J	0.34 J	0.17 J	0.16 JN	0.15 J	0.14 J
11,22 21011101001110110	5	ND	ND	1	0.66	0.59	0.33 J	0.35 J	0.29 J	0.25 J
Ethylbenzene	5	ND	ND	ND	ND	0.44 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	2	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	0.6J	ND	ND	ND	0.51	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	1.8	ND	ND	ND	ND
Trichloroethene	5	ND	ND	0.6	0.36J	0.24 J	0.20 J	0.21 J	0.14 J	ND
Vinyl Chloride	2	ND	ND	ND	0.26J	0.44 J	0.11 JN	ND	ND	ND
Metals (ppb)										
Aluminum		128	64.2B	ND	ND	ND	ND	ND	ND	ND
Antimony	3	ND	28B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	1.6B	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	110B	38.2B	23	ND	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		56,500	146,000	120,000	200,000	190,000	190,000	200,000	210,000	220,000
Chromium	50	ND	ND	ND	ND	ND	10	ND	ND	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	5.2B	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	11.1B	ND	ND	DN	ND	ND	ND	ND
Iron	300	127	506	252	ND	70	80	70	60	50
Lead	25	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium	-	29,900	70,200	60,000	58,000	73,000	71,000	72,000	77,000	78,000
Manganese	300	20.1	25.5	9	ND	ND	10	10	10	10
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	15.3B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		9,880	4,170B	3,600	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	27,400	37,000	42,800	48,000 J	52,000	41,000	38,000	52,000	48,000
Thallium		ND	ND	ND	ND	14	ND	ND	ND	ND
Vanadium		10.7B	ND	ND	ND	ND	ND	ND	ND	ND
Zinc		50.5	16.7B	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard				88-12	2C				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)		32.1939 DA				21854374	(3. versen) (4.		1484 P. J	
Acetone		ND	ND	ND	ND I	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	0.84
Chlorobenzene	5	NA	NA	NA	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	0.19 J
Total Xylenes	5	ND	ND	ND	ND	ND	ND ·	ND	ND	0.15 J
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)										
Aluminum		481	187B	453	ND I	900	ND	600	ND	ND
Antimony	3	19.2B	28B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	10	12.3B	14	9	7	10	12	11 J	12
Barium	1000	11.4B	17.3	14	ND	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		62,600	68,500	68,900	73,000	70,000	71,000	76,000	80,000	78,000
Chromium	50	21	4.6B	ND	ND	10	10	20	ND	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	4.2B	ND	5	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	1,530	1,040	1,560	ND	2,200	330	1,600	100	200
Lead	25	1.5B	1.2B	ND	ND	ND	ND	ND	ND	ND
Magnesium		88,500	103.000	92,500	110,000	98,000	110,000	100,000	110,000	110,000
Manganese	300	45.4	37.8	54	10	70	10	40	20	20
Mercury	0.7	ND	ND	NA	ND	ND	ND	ND	ND:	ND
Nickel	100	14.6B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium	1 ===	2.520B	3.200B	3.000	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	34,600	41,100	41,300	47,000 J	43,000	40,000	42,000	50,000	47,000
Thallium	1 = ===	ND	ND	ND	ND	13	ND	ND	ND	ND
Vanadium	+	22.1B	10B	ND	ND	ND	ND	ND	ND	ND
Zinc	 	10.1B	15.7B	ND	20	20	ND	ND	20 J	20
		<u> </u>	1			<u> </u>		<u> </u>		

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard				88-12D				
Parameter	ug/L (ppb)	8/90	2/91	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)								Januara na	1.1.1
Acetone		ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	1J	0.9J	ND	0.13 J	0.13 J	ND	0.16 J	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	6	ND	ND	0.56	0.70 J	ND	77
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethene	5	ND	2J	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	0.11 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5.	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	R	13	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	0.48 J	ND	ND	ND	ND
Trichloroethene	5	ND	6	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)						A 500 A 500 A 500 A 500		\$4.04.00m(2.46)	
Aluminum		ND	172B	ND	ND	ND	ND	ND	ND
Antimony	3	50.7B	56.1B	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	1.3BW	ND	ND	ND	ND	ND	6
Barium	1000	2.9B	7.9B	ND	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		464,000	623,000E	490,000	480,000	630,000	630,000	670,000	720,000
Chromium	50	7.6B	27.8E	10	30	30	90	ND	20
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	12	ND
Iron	300	168	250	180	480	110	650	90	70
Lead	25	ND	1.8BW	ND	ND	ND	ND	ND	ND
Magnesium		109.000	199,000E	130,000	110,000	180,000	160,000	180,000	210,000
Manganese	300	33.9	696	90	60	40	50	30	30
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	0.2 J
Nickel	100	11.5B	25.5B	ND	ND	ND	70	ND	ND
Potassium		5,310	12.000E	600	6,000	10,000	9,000	9,000	11,000
Selenium	10	ND	ND	ND	ND	6	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	66,400	474,000	140,000 J	100,000	330,000	250,000	330,000	450,000
Thallium		ND	ND	ND	ND	ND	ND	ND	ND
Vanadium		51.6	2.4B	ND	ND	ND	ND	ND	ND
Zinc		7.9B	ND	ND	10	ND	ND	10 J	10
Notes:	<u> </u>	L					<u> </u>		

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

	Standard				URS-141				
Parameter	ug/L (ppb)	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)								第二个时间	tyt siggi
Acetone		ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	1	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	1.2
Chlorobenzene	5	NA	NA	ND	0.81	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	0.13 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	0.17 J
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	. 5	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	0.15 J	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)									
Aluminum	 	7,140	1,170	1300	400	ND	300	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	7.2B	ND	ND	ND	ND	5	ND	6
Barium	1000	115B	47	50	40	40J	40	50	50
Beryllium		1.2B	ND	ND	DИ	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	1	ND	ND	ND	2
Calcium		73,900	35,200	28,000 J	21,000	23,000	26,000	30,000	34,000
Chromium	50	30.9	ND	ND	160	ND	ND	ND	10
Cobalt		5.8B	ND	ND	ND	ND	ND	ND	ND
Copper	200	18.5B	8	ND	10	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	10,400	2,060	1,800	2,300	ND	320	ND	ND
Lead	25	7.5	ND	ND	ND	ND	ND	ND	ND
Magnesium		32,800	22,300	21,000	17,000	21,000	23,000	25,000	29,000
Manganese	300	484	145	70	60	ND	ND	ND	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	30.4B	ND	ND	170	ND	ND	ND	ND
Potassium		17,100	5,500	ND	25,000	8,000	6,000	6,000	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	44,700	42,500	58,000 J	48,000	48,000	54,000	62,000	67,000
Thallium		ND	ND	ND	6	ND	ND	ND	ND
Vanadium	—	16.1B	ND	ND	ND	ND	ND	ND	ND
Zinc ·		52.3	ND	10	30	ND	ND	30 J	20

Notes:

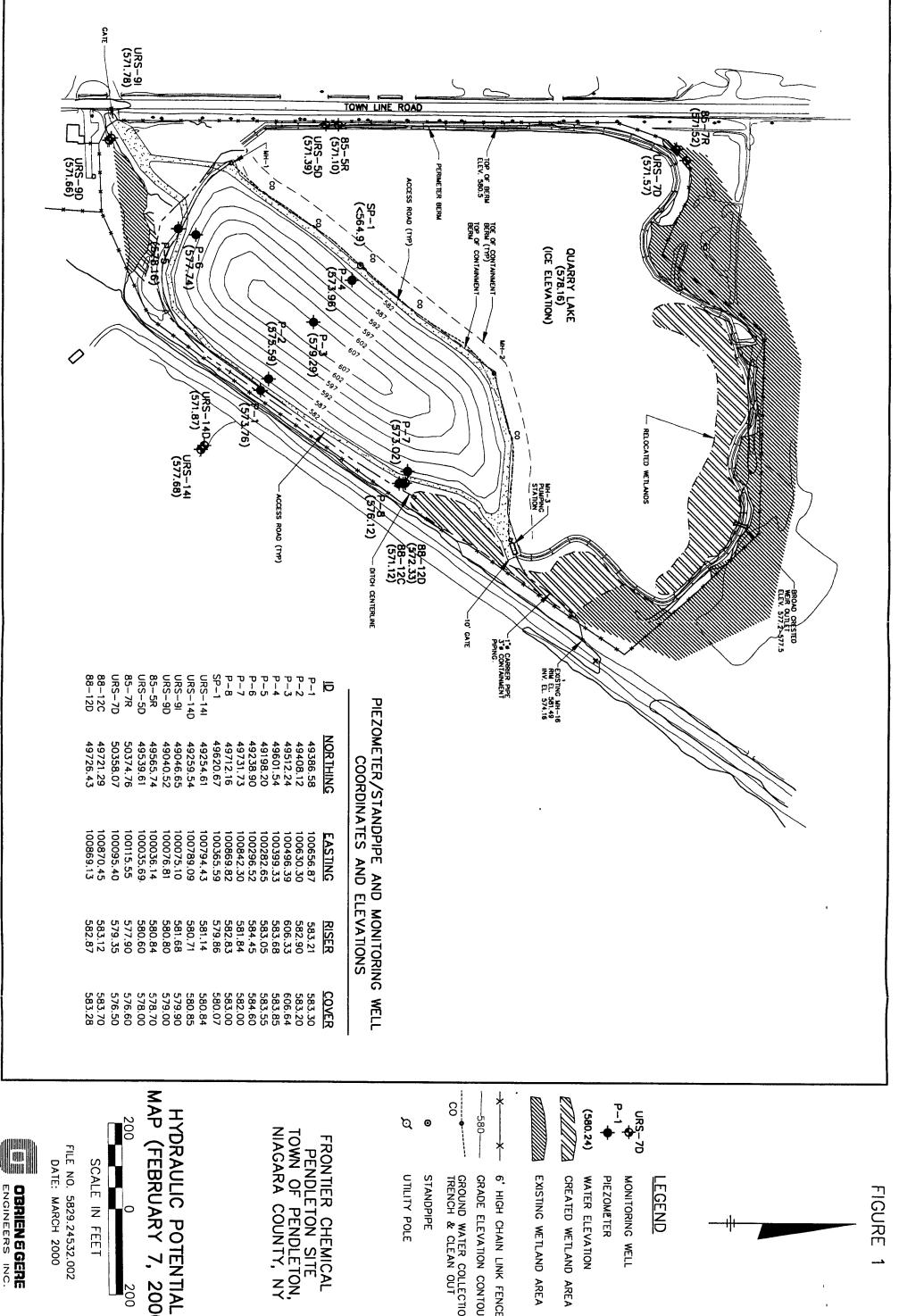

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 2000

	Standard	undard URS-14D°							
Parameter	ug/L (ppb)	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)						SAR PROPERTY			ata 42 t
Acetone:		ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	0.47 J	1.1 J	ND	6.7
Chlorobenzene	5	NA	NA	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	· ND	ND	ND
Methylene Chloride	5	R	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	0.11J	0.21 J	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)									44000000
Aluminum		99.8	ND	ND	ND	ND	ND	ND	ND
Antimony	3	32.1B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	2B	ND	ND	ND	ND	ND	ND	ND
Barium	1000	25.5B	23	20	ND	ND	40	30	30
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		255,000	292,000	210,000	250,000	310,000	280,000	360,000	310,000
Chromium	50	10.3	7	ND	ND	10	ND	ND	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	ND	8	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	10	10	ND	ND	ND
Iron	300	357	193	ND	ND	ND	80	ND	ND
Lead	25	1.1B	ND	ND	ND	ND	ND	ND	ND
Magnesium		75,200	78,000	61,000	66,000	81,000	71,000	91,000	83,000
Manganese	300	30.8	27	ND	ND	ND	ND	10	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	ND	ND	ND	ND	ND	ND	ND	ND
Potassium	 	4,250B	3,700	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	40,700	38,700	52,000 J	49,000	50,000	48,000	58,000	47,000
Thallium		ND	ND	ND	ND	ND	ND	ND	ND
Vanadium		ND	ND	ND	ND	ND	ND	ND	ND
Zinc	 	26.8	ND	ND	10	10	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

EXISTING WETLAND AREA

6' HIGH CHAIN LINK FENCE

GRADE ELEVATION CONTOUR

GROUND WATER COLLECTION TRENCH & CLEAN OUT

UTILITY POLE STANDPIPE CREATED WETLAND AREA

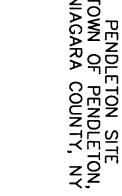
PIEZOMETER

WATER ELEVATION

MONITORING WELL

EGEND

FIGURE 1


OBRIENE GERE ENGINEERS INC.

FILE NO. 5829.24532.002 DATE: MARCH 2000

SCALE IN FEET

2000)

FRONTIER CHEMICAL PENDLETON SITE TOWN OF PENDLETON, NIAGARA COUNTY, NY

Piezometer/monitoring well inspection forms

ite Name: Frontier Chem.

Well Identification: P-\

ersonnel: TPP/DEZ

Date: $z/\tau/\infty$

/ELL SPECIFICATIONS

rotective Casing

Above Ground

Flush Mounted

/ell Construction

PVC

Stainless Steel

Vell Diameter

2-Inch

4-inch

epth to Ground Water:

9.45

Vell Depth:

16.43

VELL INTEGRITY

. Well identification clearly marked?

yes

no

. Well covers and locks in good condition and secure ?

(PES

no

. Is the well stand pipe vertically aligned and secure ?

Tes

no

Is the concrete pad and surface seal in good condition?

yes

no

i. Are soils surrounding the well pad eroded?

yes

10

i. Is the well casing in good condition?

ves

no

'. Is the measuring point on casing well marked?

yes

no

3. Is there standing water in the annular space?

yes

). Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Frontier Chem

Well Identification: P-Z

Personnel: TPP/DEC

Date: 2/7/00

NELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Nell Construction

Stainless Steel

Nell Diameter

2-inch

4-inch

Depth to Ground Water:

Well Depth:

15,73

WELL INTEGRITY

 Well identification clearly mark 	ed ?
--	------

yes

no

2. Well covers and locks in good condition and secure ?

no

3. Is the well stand pipe vertically aligned and secure?

no

4. Is the concrete pad and surface seal in good condition?

(yes

no

5. Are soils surrounding the well pad eroded?

yes

(no)

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

Ves

no

8. Is there standing water in the annular space?

yes

(110)

9. Is the stand pipe vented at the base to allow drainage?

yes

no 4/4

ite Name:

Frontier Chemical

Well Identification:

ersonnel: TPP/DEL

Date:

2/7/00

VELL SPECIFICATIONS

rotective Casing

Above Ground

Flush Mounted

Vell Construction

PVC

Stainless Steel

Vell Diameter

2-inch

4-inch

)epth to Ground Water: The 3977 2704

Vell Depth:

3977

VELL INTEGRITY

Well identification clearly marked

(Ves)

no

!. Well covers and locks in good condition and secure ?

Ves

no

3. Is the well stand pipe vertically aligned and secure ?

Hes

no

I. Is the concrete pad and surface seal in good condition?

yes

no

i. Are soils surrounding the well pad eroded?

yes

(TO)

3. Is the well casing in good condition?

ges)

no

7. Is the measuring point on casing well marked?

XES)

no

3. Is there standing water in the annular space?

yes

(10)

). Is the stand pipe vented at the base to allow drainage?

yes

no N/A

Site Name: Frontier Chemical

Well Identification: P-4

Personnel: TPP/DEL

Date:

2/2/00

NELL SPECIFICATIONS

Protective Casing

Above Ground

Flush-Mounted

Nell Construction

BHO:

Stainless Steel

YES

yes

yes

Nell Diameter

2-Inch

4-inch

Depth to Ground Water:

I. Well identification clearly marked?

3. Is there standing water in the annular space?

3. Is the stand pipe vented at the base to allow drainage?

8,35

Well Depth:

1692

NELL INTEGRITY

2.	Well covers and locks in good condition and secure ?	yes	no
3.	Is the well stand pipe vertically aligned and secure?	yes)	no
4	Is the concrete pad and surface seal in good condition?	ves)	no
5.	Are soils surrounding the well pad eroded?	yes	TO
5.	Is the well casing in good condition?	Yes .	no
7.	Is the measuring point on casing well marked?	Yes	no

Site Name: Frontier Chemical

Well Identification:

Personnel: TPP/DEL

Date: 2

2/7/00

NELL SPECIFICATIONS

Protective Casing

Abeve Ground

Flush Mounted

Nell Construction

PVC

Stainless Steel

Well Diameter

2dnch

4-inch

Depth to Ground Water:

4.891

Well Depth:

15,58

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

ges

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

40

6. Is the well casing in good condition?

ves

no

7. Is the measuring point on casing well marked?

ges)

no

8. Is there standing water in the annular space?

yes

(10)

9. Is the stand pipe vented at the base to allow drainage?

yes

no

lite Name: Frontier Chemical

Well Identification:

'ersonnel: TPP/DEL

Date:

2/7/00

VELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Nell Construction

PVC

Stainless Steel

Nell Diameter

2-Ineh

4-inch

Depth to Ground Water:

Nell Depth:

NELL INTEGRITY

Well identification clearly marked?

(Yes)

no

2. Well covers and locks in good condition and secure?

ES

no

3. Is the well stand pipe vertically aligned and secure?

yes

 $\overline{0}$

4. Is the concrete pad and surface seal in good condition?

ves

no

5. Are soils surrounding the well pad eroded?

yes

(no)

6. Is the well casing in good condition?

Yes

7. Is the measuring point on casing well marked?

YES

no

8. Is there standing water in the annular space?

yes

MO

9. Is the stand pipe vented at the base to allow drainage?

yes

no

COMMENTS:

Standpipe leaning 20°-30° at surface.

Site Name: Fronter Chemical

Well Identification:

Personnel: TPP/DEL

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-ineh

4-inch

Depth to Ground Water:

7.95

Well Depth:

16,65

WELL INTEGRITY

1. Well identification clearly marked?

yes)

no

2. Well covers and locks in good condition and secure?

Ves

no

3. Is the well stand pipe vertically aligned and secure?

ves

no

4. Is the concrete pad and surface seal in good condition?

(Jes)

no

5. Are soils surrounding the well pad eroded?

yes

10

6. Is the well casing in good condition?

VES

no

7. Is the measuring point on casing well marked?

yes)

no

8. Is there standing water in the annular space?

yes

(110)

9. Is the stand pipe vented at the base to allow drainage?

yes

no N/A

Site Name: Fontier Chemical

Well Identification: P-8

Personnel: TPP/DEC

Date:

2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

G.71

Well Depth:

17.22

WELL INTEGRITY

1. Well identification clearly marked?

yes no

2. Well covers and locks in good condition and secure ?

ýeš no

3. Is the well stand pipe vertically aligned and secure?

yes no

4. Is the concrete pad and surface seal in good condition?

yes no

5. Are soils surrounding the well pad eroded?

yes (no-

6. Is the well casing in good condition?

yes

7. Is the measuring point on casing well marked?

yes

8. Is there standing water in the annular space?

yes

no

no

no

9. Is the stand pipe vented at the base to allow drainage?

yes no

Site Name: Frontier Chemical

Well Identification: SP - 1

Personnel: TPP/DEL

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

DAC:

Stainless Steel

HOPE

Well Diameter

2-inetr

4-jactī

6" Ø

yes

Depth to Ground Water:

Dry

Well Depth:

14.9

9. Is the stand pipe vented at the base to allow drainage?

WELL INTEGRITY

1	Well identification clearly marked?	TES	no
2.	Well covers and locks in good condition and secure ?	yes	no
3.	Is the well stand pipe vertically aligned and secure?	YES	no
4.	Is the concrete pad and surface seal in good condition?	(Yes	no
5.	Are soils surrounding the well pad eroded?	yes	10
6.	Is the well casing in good condition?	YES	no
7.	Is the measuring point on casing well marked?	VES	no
8.	Is there standing water in the annular space ?	yes	10

Site Name: Frontier Chemical

Well Identification: 85-512

Personnel: TPP/DEC

Date: 2/1/00

NELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Nell Construction

PVC

Stainless Steel

Nell Diameter

2-Inch

4-inch

Depth to Ground Water:

9,74

Well Depth:

38.02

NELL INTEGRITY

 Well identification clearly market 	d ?
--	------------

ves

no

2. Well covers and locks in good condition and secure ?

ves

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

100

5. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

FES

no

8. Is there standing water in the annular space?

yes

(TO)

9. Is the stand pipe vented at the base to allow drainage?

yeş

no

Site Name: Frontier Chemical

Well Identification: UES -50

Personnel: TPP/Da

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

9.21

Well Depth:

49.84

WELL INTEGRITY

 Well identification clearly marked 	?	
--	---	--

(yes)

0

2. Well covers and locks in good condition and secure ?

yes

no

3. Is the well stand pipe vertically aligned and secure?

(Ve)s

no

4. Is the concrete pad and surface seal in good condition?

(yes)

no

5. Are soils surrounding the well pad eroded?

yes

(no

6. Is the well casing in good condition?

yes)

no

7. Is the measuring point on casing well marked?

ves

no

8. Is there standing water in the annular space?

yes

(TO)

9. Is the stand pipe vented at the base to allow drainage?

(yes)

no

Site Name: Frontier Chemical

Well Identification: 85-7R

personnel: TPP/DEL

Date: 2/1/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

yes

no

Well Diameter

2-Ach

4-inch

Depth to Ground Water:

6.38

Well Depth:

27,71

9. Is the stand pipe vented at the base to allow drainage?

WELL INTEGRITY

1.	Well identification clearly marked?	ves	no
2.	Well covers and locks in good condition and secure ?	yes	no
3.	Is the well stand pipe vertically aligned and secure?	yes	no
4.	Is the concrete pad and surface seal in good condition?	yes	no
5.	Are soils surrounding the well pad eroded?	yes	(RO)
6.	Is the well casing in good condition?	yes	no
7.	Is the measuring point on casing well marked?	yes	no
8.	Is there standing water in the annular space ?	yes	10

Site Name: Frontier Chemical

Well Identification: URS-70

Personnel: TPP/DEL

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

7,78

Well Depth:

39.84

WELL INTEGRITY

1.	Well identification	n clearly marked?	
----	---------------------	-------------------	--

yes no

2. Well covers and locks in good condition and secure?

ves no

3. 's the well stand pipe vertically aligned and secure?

res no

4. Is the concrete pad and surface seal in good condition?

∮€ no

5. Are soils surrounding the well pad eroded?

yes

f0

no

6. Is the well casing in good condition?

yes .

7. Is the measuring point on casing well marked?

(res

no

8. Is there standing water in the annular space?

yes

6

9. Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Frontier Chemical

Well Identification: URS. 9 I

Personnel: TPP/DEC

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

24neh

4-inch

Depth to Ground Water:

9,00

Well Depth:

46.18

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure ?

VES

no

3. Is the well stand pipe vertically aligned and secure?

ves

no

4. Is the concrete pad and surface seal in good condition?

Tes

no

5. Are soils surrounding the well pad eroded?

yes

™

6. Is the well casing in good condition?

ves

no

7. Is the measuring point on casing well marked?

ves

no

8. Is there standing water in the annular space?

yes

(D)

9. Is the stand pipe vented at the base to allow drainage?

ves

no

site Name: Frontier Chemical

Well Identification: URS - 97 D

'ersonnel: TPP/DEZ

Date: 2/1/00

NELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Nell Construction

PVC

Stainless Steel

Nell Diameter

2-inch

4-inch

Depth to Ground Water:

a14

Nell Depth:

50,89

NELL INTEGRITY

 Well identification clearly mark 	(ed '	?
--	-------	---

yes

no

2. Well covers and locks in good condition and secure ?

yes

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

no

3. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

3. Is there standing water in the annular space?

yes

no

3. Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Fronther Chemical

Well Identification:

Personnel: TPP/DR

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Abeve Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

e-inch

4-inch

Depth to Ground Water:

12.00

Well Depth:

31,31

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

ves

no

4. Is the concrete pad and surface seal in good condition?

(Ves

no

5. Are soils surrounding the well pad eroded?

yes

(no

6. Is the well casing in good condition?

Ves

no

7. Is the measuring point on casing well marked?

(Ves

no

8. Is there standing water in the annular space?

yes

(no)

9. Is the stand pipe vented at the base to allow drainage?

yes

no

COMMENTS:

Concrete pad under gravel.

Bite Name: Fronter Chemical

Well Identification: 80 12D

Personnel: TPP/DE

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

10,54

Well Depth:

52,38

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

(yes)

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

(yes

no

5. Are soils surrounding the well pad eroded?

yes

10

5. Is the well casing in good condition?

ves

no

7. Is the measuring point on casing well marked?

(yes

no

B. Is there standing water in the annular space?

yes

(nb)

9. Is the stand pipe vented at the base to allow drainage?

ves

no

COMMENTS:

Concrete pad under gravel.

Site Name:

Frontier Chemical

Well Identification: URS - 14 I

Personnel: TPP/DEC

Date:

2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

4-inch

Depth to Ground Water:

Well Depth:

WELL INTEGRITY

1. Well identification clearly marked?

no

2. Well covers and locks in good condition and secure?

no

3. Is the well stand pipe vertically aligned and secure?

yeş

no

4. Is the concrete pad and surface seal in good condition?

no

5. Are soils surrounding the well pad eroded?

yes

no

5. Is the well casing in good condition?

(ves)

no

7. Is the measuring point on casing well marked?

yes

no

B. Is there standing water in the annular space?

yes

ng

9. Is the stand pipe vented at the base to allow drainage?

MA no

Site Name:

Frontier Chemical

Well Identification:

URS-14D

Personnel: TPP/DEC

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

8.84

Well Depth:

41.61

WELL INTEGRITY

1.	Well	identification	clearly	marked	?

yes

no

2. Well covers and locks in good condition and secure ?

yes

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

no

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

no)

9. Is the stand pipe vented at the base to allow drainage?

Ves

no

NA

Appendix B

Ground water sampling logs

O'Brien & Gere Engir	neers, Inc.		Standard Groun	nd Water Samp	ling Log
O'Brien & Gere Engir Date 2 8 00 Site Name Frontie (Chem) Location Project No. 24532 Personnel TPP / DEC Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well		Volume	Weather Well # Evacuation Method Sampling Method /olume /ft. for: 2" Diameter Well = 0.1 4" Diameter Well = 1.4 removed before sampling odry?	85-5R 55 Bailer 55 Bailer 163 X LWC 163 X LWC 169 X LWC	gal.(s)
* Measurements taken from	Well C	Casing	Protective Ca	sing	(Other, Specify)
Instrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard 10.0 Standard 10.0 Standard	01 01	Conductivity Standard 84 S Standard 1413 S Standard		
Water parameters:					
initial 0,5	Temperature Readings initial S.5 S.2 7.5 7.4	<u> </u>		nductivity adings uS/cm 959 1148 1142	
Water Sample: Time Collected	Clear	-	Physical App Color Odor	earance at Samplin	est pine 86
Turbidity (> 100 NTU)	91	- -	Turbidity (> 1 Sheen/Free I		SG None
Sheen/Free Product	_ More	-	Sheel/Fiee I		<i>////</i>
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
40 m	6/ass	7	No	1:1HCl	<2
1 life	plashc	l	405	HN03	< 2
1-1.ter	plasho	<u> </u>	No	NOH-	> 10
Notes: PID - SPPN	1		-		And 25

O'Brien & Gere Engin	eers, Inc.	Standard Ground Water Sampling Log
Date 2 8 00 Site Name Frontier Chemi Location Pendle fon Project No. 24537 Personnel TPP / DEC	<u></u>	Weather Symy 3° Well # UR5-5D Evacuation Method SS Bailer Sampling Method SS Bailer
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well * Measurements taken from	49.84 ft. 9,21 ft. 40.63 ft. 6.6 gal.(s) 79.8 gal (s) Well Casin	Water Volume /ft. for: ∠ 2" Diameter Well = 0.163 X LWC 4" Diameter Well = 0.653 X LWC 6" Diameter Well = 1.469 X LWC Volume removed before sampling i3 gal.(s) Did well go dry? (Other, Specify)
Instrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard 10.0 Standard 10.0 Standard	Conductivity Standard Readings 84 S Standard 1413 S Standard
Gallons Removed initial	initial 1.2 ini	pH Readings Conductivity Readings uS/cm itial 7.59 initial 1747
Physical Appearance at Star Color Odor Turbidity (> 100 NTU) Sheen/Free Product	Chear Chear Slight 10 None	Physical Appearance at Sampling Color Odor Turbidity (> 100 NTU) Sheen/Free Product Physical Appearance at Sampling Agricular Ag
Samples collected: Container Size Yo m Life Unfer	Glass Plashe Plashe	Collected Field Filtered Preservative Container pH 2 No 1:1HC <2 1 Yes HND3 <2 No No No HND3 >10 3 1090 Sample C 13
PID - Ø	Pril Dy G	2 10 god Sample C 12

O'Brien & Gere Engir	eers, Inc.		Standard Groun	d Water Sampli	ng Log
Date 2/9/00					
Site Name Fronter Ci	.am.ral		Weather _5	unny 44°t	
Location Pendletur				85-7R	
Project No. 24532			Evacuation Method	55 Pailer	
		·	Sampling Method	55 Bailer	
Personnel TPD / DEC			Camping Wester		
Well Information:					
Depth of Well *	2771 ft	Water \	/olume /ft. for:		
Depth to Water *	ft.	<u> </u>	2" Diameter Well = 0.1	63 X LWC	
Length of Water Column	2 1 33 ft.		4" Diameter Well = 0.6	553 X LWC	
Volume of Water in Well	3.48 gal.(s)	6" Diameter Well = 1.4	69 X LWC	
3X Volume of Water in Well	10.4 gal.(s	3)		1	
•			removed before samp	ling (1	gal.(s)
		Dia wei	r go dry :		
	\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Cocina	Protoctive Co.	sina F	(Other, Specify)
* Measurements taken from		Casing	Protective Ca	ouig	
Instrument Calibration:					
	pH Buffer Readings		Conductivity Standard		
	4.0 Standard	, dO	84 S Standard		
		7′ _{8Ω}	1413 5 Standard		
	10.0 01.11.0010				
Water parameters:					
Gallons	Temperature of	рН	Co	nductivity	
Removed	Readings	Readin	gs Re:	adings uS/cm	
	-				
;iv:_1	initial 4.1	initial ((94 initial	2790	
initial ϕ	9 0		73	1896	
7.0	10,2			1772	
	9.9		46	1799	
	-()				
Water Sample:	15				
Time Collected					
Physical Appearance at Start]		Physical App	earance at Sampling	
Color	clear		Color	<u> </u>	- Brown
Odor	Now		Odor		None
Turbidity (> 100 NTU)	20		Turbidity (> 1	00 NTU)	,54
Sheen/Free Product	None		Sheen/Free F	Product	Vone.
Samples collected:				I December 1	Container nu
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
40 ml	Glass	2	No.	1. 1 HC2 HNO3	72
1 liter	Plastic Plastic		Yes	NOH	>10
1 1,ter	I (as no		*		
Notes:					
PID - ØPP	γγ.				

O'Brien & Gere Engin	eers, Inc.		Standard Ground	i Water Samplir	ig Log
Date 2/4/00					
Site Name Fruiter	Chemical		Weather Sur	inu 44°±	
Location Pendleton				RS JD	
			····	s. Bailer	annamae
Project No. 24532				4.	
Personnel TPP/DEL	- Committee of the comm		Sampling Method	5 Builer	
Well Information:	عه کیا ،				
Depth of Well * 39.8	14 49 89 ft.	Water \	/olume /ft. for:	1	
Depth to Water * 7.1	18 3927 ft.	X	2" Diameter Well = 0.16	3 X LWC	
Length of Water Column 32.6	14.	,	4" Diameter Well = 0.65	3 X LWC	
Volume of Water in Well 5.0		,	6" Diameter Well = 1.46	9 X LWC	
3X Volume of Water in Well 19					
o, Condition of Condition		Volume	removed before sampling	1g 720 NO	gal.(s)
		Dia wei	I go dry?		mail
					(Other, Specify)
* Measurements taken from	Well C	Casing	Protective Casi	ng	
Instrument Calibration:					
	pH Buffer Readings		Conductivity Standard F	Readings	
	4.0 Standard	n.a	84 S Standard		
		<u>, 00</u>	1413 S Standard		
	10.0 Standard 10.				
Water parameters:		•			
Gallons	Temperature P	рН	Con	ductivity	
Removed	Readings	Readin		lings uS/cm	
A		initial 7.	(a initial	1295	!
initial \mathcal{D}	initial 8.6	initial 7.5		_	
	<u>9.8</u>			1435	
<u></u>	9.0		$\frac{c2}{d}$	1.7/	
20	9.0		<u> </u>	676	

	/				
Water Sample: ;くび					
Time Collected					
Physical Appearance at Start	1		Physical Appea	rance at Sampling	
	_	•	0-1		earlist cloudy
Color	Clear	•	Color Odor		light Sulfur
Odor	Slight Sulphur	•	Turbidity (> 100		34
Turbidity (> 100 NTU)	None	•	Sheen/Free Pr		None
Sheen/Free Product	10000	-	Oncom rectify		
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
40 ml	6 less	7	No	1:1 HCl	<u> </u>
11.10	flashe	1	YRS	H N 03	22
_ 1 1, ter	Plaste		No .	MOH	>10
Notes:				<u> </u>	
l e					
PID - Oppm					April 25, 10

O'Brien & Gere Engir	neers, Inc.		Standard Ground	d Water Sampling	Log
Date 2/8/00					
Site Name Fronter Che	mical		WeatherS	unny 3° =	-
Location Pendle for			Well#	1R5 - 9I	•
Project No. 24532			Evacuation Method	55 Bailer	
Personnel TPPIDE			Sampling Method		
Well Information:					
Depth of Well *	46.18 ft	Water V	olume /ft. for:		
Depth to Water *	9,90 ft.	× .	2" Diameter Well = 0.16	33 X LWC	
Length of Water Column	36.28 ft.		4" Diameter Well = 0.65	53 X LWC	
/olume of Water in Well	5.91 gal.(s)		6" Diameter Well = 1.46	59 X LWC	
3X Volume of Water in Well	17.7 gal.(s)	<u> </u>			
3X Volume of Water in Wei	34.(6)		removed before sampli go dry?	ing	gal.(s) -
* Measurements taken from	Well C	asing	Protective Cas	ing	(Other, Specify)
Instrument Calibration:		I		Doodings	
	pH Buffer Readings 4.0 Standard		Conductivity Standard 84 S Standard		
		ठर	1413 S Standard		
	10.0 Standard	,01			
Water parameters:					
Gallons	Temperature Readings	рН		ductivity	
Removed	Readings	Readin	gs Rea	dings uS/cm	
initial (initial 8.3	initial 7.9	initial	1255	
10	8.8	٦,	82	1289	
12	8.3	7	.45	1224	
18	9.5	7	,35	1233	

Annual Control of the					
Water Sample:					
Time Collected 13	. w				
Physical Appearance at Star	Ū		Physical Appe	arance at Sampling	<u>.</u>
Color	- CT Greg		Color	Milke	
Odor	- slowet		Odor	<u>Sligh</u>	
Turbidity (> 100 NTU)	<u> </u>		Turbidity (> 10		
Sheen/Free Product	_ Kine		Sheen/Free P	roduct <u>Je</u>	<u> </u>
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
40 ~1	Glass		No	1:1 HCl HNO3	22
1 liter	Plastic		No	Na DH	710
1 liter	Plastic	<u> </u>	1 100	THE DIT IS A SECOND	-
Notes:			1		
PID- OPPM	\				

O'Brien & Gere Engine	ers, Inc.	Standard Ground Water Sampling Log
Date 2/8/66 Site Name Francis Chank Location Pendleton Project No. 24532 Personnel TPP/DCC		Weather Sony 3° Well # URS - 9D Evacuation Method 55 Bailer Sampling Method 55 Bailer
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well * Measurements taken from	50.89 ft. 9.14 ft. 41.75 ft. 6.8 gal.(s) 20.4 gal.(s) Well Cas	Water Volume /ft. for: 2" Diameter Well = 0.163 X LWC 4" Diameter Well = 0.653 X LWC 6" Diameter Well = 1.469 X LWC Volume removed before sampling Did well go dry? (Other, Specify)
Instrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard 10.0 Standard /v.0	
Water parameters: Gallons Removed initial 0.5 (in 5) 13 20,5	Temperature Readings initial 7.7 i 8.5 7.6	pH Readings
Physical Appearance at Start Color Odor Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size	Clear None None	Physical Appearance at Sampling Color Odor None Turbidity (> 100 NTU) Sheen/Free Product # Collected Field Filtered Preservative Container pH Z No 1:1 HCQ 22 I No
Notes: PD - & PP JAM:ers/div76/admin/4_notes/stad9log	M J BLIND	11 1 1 2

O'Brien & Gere Engir	eers, Inc.		Standard Ground	l Water Samplin	g Log
Date 2/7/00 Site Name Frontier Che Location Penaleton, N Project No. 24532 Personnel TPP, DEC Well Information:	mic_1 1		Weather <u>کن</u> Well# <i>B</i>	nny 250± 8-12 & C and Bail	g 10g
Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	31.31 ft. 12.00 ft. 19.31 ft. 3.15 gal.(s) 9.45 gal.(s)	Volume	olume /ft. for: 2" Diameter Well = 0.16: 4" Diameter Well = 0.65: 6" Diameter Well = 1.46: removed before sampling odry?	3 X LWC	_gal.(s) _(Other, Specify)
* Measurements taken from	Well Ca	asing [Protective Casi	ng	
Instrument Calibration:			Conductivity Standard R 84 S Standard 1413 S Standard		
Water parameters:					
Gallons Removed	Temperature Readings	pH Readin		ductivity lings uS/cm	
initial <u>Ø</u>	9.3 9.5 8.8 9.9	initial 8 , 7, 7, 4	01 initial 1 71 / 43 / 16	158 130 108 127	
Water Sample: Time Collected	-18				
Physical Appearance at Star Color Odor Turbidity (> 100 NTU) Sheen/Free Product	t 		Physical Appea Color Odor Turbidity (> 100 Sheen/Free Pro) NTU) 71000	Brownish Sulfur - or Turkness Ine
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
40 ml	Glass	2	No	1:1 HCl	62
11.10	Plashe		Yes No	Na OH	>10
Notes:	plasho		N.	THE OF L.	
DID Gbbw					

O'Brien & Gere Engi	neers, Inc.		Standard Groun	d Water Samplii	ng Log
Date 2/7/00					
Site Name Frontier C	henikal		Weather	inny 25° t	
Location Pendleton, A			Well#	88-12&D	
Project No. 24532	7		Evacuation Method	Hand Bail	
Personnel TPP, DEC			Sampling Method	55 Bailer	
Well Information:					
Depth of Well *	<u>52,38</u> ft.	Water V	olume /ft. for:		
Depth to Water *	10.54 ft	X	2" Diameter Well = 0.16	63 X LWC	
Length of Water Column	41,84 n.		4" Diameter Well = 0.6	53 X LWC	
Volume of Water in Well	6,82 gal.(s)		6" Diameter Well = 1.46	69 X LWC	
3X Volume of Water in Well	<u>20.5</u> gal.(s)		removed before sampli go dry?	ing zo	
* Measurements taken from	Well Ca	asing	Protective Cas	sing	(Other, Specify)
Instrument Calibration:				Dandings 1	•
	pH Buffer Readings 4.0 Standard		Conductivity Standard 84 S Standard	Readings	
		७ ०	1413 S Standard		
	10.0 Standard U.	30			
Water parameters:					
Gallons Removed	Temperature Readings	pH Readin		nductivity idings uS/cm	
initial	initial 9.1 9.4 9.3 8.9 9.0		1.31 initial	4130 41530 4180 4760	·
Water Sample: Time Collected	1555				
Physical Appearance at Star	1		Physical Appe	arance at Sampling	_ .
Color	Chew		Color		Car
Odor	- Slight Sulphur		Odor		ht sulfor
Turbidity (> 100 NTU)	17.7		Turbidity (> 10		109
Sheen/Free Product	None		Sheen/Free P	roduct Non	
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
40 ~	Glass	2	N _o	1:1 HC	22
1 1140	Plas tc	!	No	HN03	22
1 liter	Plastic		. 100	Na OH	>10
Notes:	W				

O'Brien & Gere Engir	neers, Inc.	Standard Ground Water Sampling Log
Date 2/8/00		
Site Name Franches (Chamical	Weather Sunny 301
Location Pendleter		Well# URS ILT
Project No. 24532		Evacuation Method S.S. Bailer
Personnel TPP/DEZ		Sampling Method S & Bailer
Well Information:		
Depth of Well *	31.08ft.	Water Volume /ft. for:
Depth to Water *	344 ft.	2" Diameter Well = 0.163 X LWC
Length of Water Column	27.62 ft.	4" Diameter Well = 0.653 X LWC
Volume of Water in Well	gal.(s)	6" Diameter Well = 1.469 X LWC
3X Volume of Water in Well	(3.5gal.(s)	Volume removed before sampling Did well go dry? Did well go dry? Did well go dry? Did well go dry?
* Measurements taken from	Well Casing	g (Other, Specify)
Instrument Calibration:	pH Buffer Readings	Conductivity Standard Readings
	4.0 Standard 7.0 Standard	84 S Standard 1413 S Standard
	10.0 Standard	
Water parameters:		
Gallons Removed	Temperature Readings	pH Conductivity Readings uS/cm
initial <u>0.5</u> <u>4.5</u> <u>9.5</u>	initial 6.8 initial 8.5	al 9.04 initial 460 9.03 515 7.87 605
Water Sample: Time Collected	15 ×2/4/00	
Physical Appearance at Star	Ī	Physical Appearance at Sampling
Color	CIRCUT	Color clear/milky
Odor	None	Odor None
Turbidity (> 100 NTU)	<u>25</u>	Turbidity (> 100 NTU) 277
Sheen/Free Product	lojhe	Sheen/Free Product Vue
Samples collected:		
Container Size		ollected Field Filtered Preservative Container pH
40 m/	Glass	2 No 1:1 HC <2 1 Yes HNO3 <2
1 1,to	Plate	1 Yes HNO3 22 1 NO NOH >10
1 1, ter	Plastic	1 100
Notes:	M Dry C	10 gals

O'Brien & Gere Engir	neers, Inc.	Standard Ground Water Sampling Log
Date 2/8/00		
Site Name Franke a		Weather Sunny 3° ±
Location Rendleton		Well# URS 14D
Project No. 24537		Evacuation Method SS Bailer
Personnel TPP/DEZ		Sampling Method S. S. Bariler
Well Information:	.11 ()	Water Volume /ft. for:
Depth of Well *	41.61 ft.	
Depth to Water *	ft.	2" Diameter Well = 0.163 X LWC
Length of Water Column	32.77 ft.	4" Diameter Well = 0.653 X LWC
Volume of Water in Well		6" Diameter Well = 1.469 X LWC
3X Volume of Water in Well	1し.0フgal.(s)	Volume removed before sampling \(\phi \) gal.(s)
		Did well go dry?
		(Other, Specify)
* Measurements taken from	Well Casing	Protective Casing
Instrument Calibration:		
In-ad annum Vallendann	pH Buffer Readings	Conductivity Standard Readings
	4.0 Standard	84 S Standard
	7.0 Standard 7.01 10.0 Standard (0.0)	1415 5 Stalidard
Water parameters:		
Gallons	Temperature 0.	pH Conductivity
Removed	Readings	Readings uS/cm
initial 🕁	initial 9.4 initia	
5	8.6	9.04 1128
10	3.4	697 1690
16_	8.4	<u> </u>
	*	
Water Sample: Time Collected	03	
	_	Physical Appearance at Sampling
Physical Appearance at Start	- 	
Color	_ Chear / G Great Sect	
Odor	- stight lityshur	Odor Staht
Turbidity (> 100 NTU)	<u> </u>	Turbidity (> 100 NTU) Sheen/Free Product
Sheen/Free Product	Nive	SiteetivFiee Floduct Co-
Samples collected:		
Container Size		lected Field Filtered Preservative Container pH
40 m l	<u> </u>	2 No 1:1 HCl <2
11.40	Plashe	1 Yes HNO3 22 1 NO NaOH 710
The state of the s	Plaste	
Notes:	10 / 10 - 21 0 0	40000
# Collect ()	MS/MSD D PLO	$3 - \varphi \gamma \gamma \gamma$
JAM:ers/ov/76/admin/4_motes/stad9log	الوار ا	April 25, 19

O'Brien & Gere Laboratories, Inc.

5000 Brittonfield Parkway
Fast Syraciise New York 13057

Chain of Custody

East Syracuse, New York 13057 (315) 437-0200

Client: ocเป								An	alysis/	Analysis/Method	
1CPL	Pendleton	V at	New/ork	1/ork				7 /			
705	trari							S.	\ \d	\	\ \ \
Client Contact: 24532		Ph	Phone #				\			\	\
Sample Description	cription					/	5.20) 5/ By			<u>\</u>
Sample Location	Date Collected	Date Time Collected Collected	Sample Matrix	Comp. or Grab	No. of Containers		*/>			\	Comments
85-5K	4400	st 51	Waster	Grab	5	и	_				
URS - 5D	2/3/2	وم <u>ا</u>	water	Grab	. 5	3	1				
EQUIP. BLANK		1355	WATER	6293	5	3	1				
URS - 14 I	2/8/20	51 मे।		Grab	5	8	_				
85-72	2/4/0	1515	uede	Grab	5	W	_				
URS-10	2/9/0		Water	Gab	5	લ	-		-		
	`		,	-							
								•			
			•								
TRIP BLANKS	2900		Water	١	×	8					
							•				
Relinquished by:	Da	Date:	Time:	••	Received by:	by:				Date:	Time:
Relinquished by:		Date:	Time:		Received by:	by:				Date:	Time:
Relinquished by: Jone Les E. Court Lan		Date: 2 9	q bo Time	Time: 1620	Received by Lab:	by Lab:				Date:	Time.
Shipment Method: FED でX					Airbill Number:	nber: 33	2184	3006		0964	
											THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.

ä	
2	
Ξ	
2	
<u></u>	
Ĕ	
F	
ā	
Ĭ	į
2	
Ë	
Ē	

Comments:

Routine Rush (Specify)

Cooler Temperature:

Original-Laboratory Copy-Client

Conen & Gere Laboratories, Inc.

13057 East Syracuse, New York (315) 437-0200 5000 Brittonfield Parkway

Chain of Custody

Client: Octo								,	Analys	Analysis/Method	F	
Project: Frontier CHEMICAL P	TOTATON	7,0			•				(Q)			
Sampled by: T. Prawe (200	Jra,						1,5	E.	\	\	
Client Contact: 24532		H.	Phone #				\	ジ シ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	\	\ \
Sample Description	cription						25	25743				
Sample Location	Date Time Collected Collected	Time Collected	Sample Matrix	Comp. or Grab	No. of Containers	N)	公 、	<u>}</u>			\	Comments
88-12C	2/1/00	1518	WAC	Grab	N	3	-	_				
88-120	2/1/00	5651	work	Grap	N	3						
1125-140 ms/msp	2/8/2	8001	water	Gab	15	6	3	2				
765-91	2/9/0	æ हो	water	dans	S	3						
a 6- 510		1215	Whater	d pr.	ñ	8				6		
										·		
	-											
			•									
	`								· .			
Blind Dupe	•	1	Water	طهدع	S	5						
Truo Blank	١		water Gab	dar)		7	•					
Relinquished by:	Da	Date:	Time:		Received by:	by:				Date:	k K	TIme:
Relinquished by:	Da	Date:	Time:		Received by:	by:				Date:		Time:
Relinquished by: / July 9. (my hand)		Date: 3 /8 /	onit o	Time:// 30	Received by Lab:	by Lab:				Date:		Time.
Shipment Method: FED EX		,			Airbill Number:	·	7818		364 9008	1861		4

Ā	
2	
불	
ᇹ	
ž	
E	
F	1
B	-
Ē	
5	ŧ
2	
Ĕ	
5	

Routine Rush (Specify)

Cooler Temperature:___

	:

Comments:

Original-Laboratory Copy-Client

Appendix C

Data validation report

Data Validation Services

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

March 21, 2000

Jennifer Smith O'Brien & Gere Engineers 5000 Brittonfield Parkway P. O. Box 4873 Syracuse, NY 13221

RE: Validation of Frontier Chemical Site Data Packages

OBG Labs Report for Samples Collected 2/07/00 through 2/09/00

Dear Ms. Smith:

Review has been completed for the data package generated by OBG Laboratories, pertaining to samples collected at the Frontier Chemical Site on February 7 through February 9, 2000. Eleven aqueous samples were analysed for TCL volatiles and TAL filtered metals/cyanide parameters. Matrix spikes/duplicates, and equipment and trip blanks were also processed. Methodologies utilized are those of the USEPA SW846.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA SOPs HW-2 and HW-6. The following items were reviewed:

- * Data Completeness
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, sample processing was primarily conducted with compliance to protocol requirements and with adherance to quality criteria, and most reported results are usable as reported, or with minor qualification as estimated. Certain edits to, and qualification of, reported results are indicated. These issues are discussed in the following analytical sections.

The laboratory summary data package, with recommended qualifiers applied in red ink to the sample result forms is attached to this narrative, and should be reviewed in conjunction with this text.

Data Completeness

The laboratory data packages were not directly in compliance with the required NYSDEC ASP Category B deliverables, but the information needed for validation of the data was present. Volatile summary forms 2, 4, and 5 were not present, the laboratory NYSDEC Sample Preparation and Analysis Summary Forms were not provided, and no verbatim certification statement was made in the case narrative.

Volatile Analyses

Carbon disulfide was detected in some of the project samples, at levels above typical laboratory contamination. None was detected in the associated blanks, and no qualification to the reported results is made. Many samples also showed evidence of sulfur dioxide, which may be related to the detection of carbon disulfide.

The reported value for carbon disulfide in the sample 88-12D should be derived from the dilution analysis. All other analyte values can be used from the initial analysis.

Due to low response factors in the calibration standards, results for acetone, 2-butanone, 2-hexanone, and 4-methyl-2-pentanone should be considered estimated in the project samples

Matrix spikes of URS-14D involved evaluation of recoveries of all target analytes. Chloroethane produced an elevated recovery (960%) in one of the matrix spikes due to contribution to the mass fragment response from sulfur dioxide in the spiked sample. Sample reported results are unaffected. All other accuracy and precision values, and control spiked recoveries, were acceptable.

The Tentatively Identified Compounds should be qualified as estimated in value, and should be reported to one significant figure. Those identified as "solvent" or "column bleed" are analysis artifacts and should be disregarded as sample components.

Field duplicate correlation of URS-9D and X-1 was acceptable.

Metals/CN Analyses

Accuracy and precision evaluations for URS-14D were acceptable, with the exception of the recovery of selenium, which was 70%. Therefore the sample selenium results should be considered estimated ("J") in all project samples. This element also produced a low recovery in the low concentration standard (CRI) (57%). No corrective action was required of the laboratory.

Due to elevated recovery of the mercury CRI (130%), the detected value reported in sample 88-12D, which was at a concentration equal to that of the CRDL, should be regarded as estimated, possibly biased high.

The serial dilution determinations for URS-14D produced acceptable correlations.

Field duplicate correlation between URS-9D and X-1 was acceptable.

Reported results are substantiated by the raw data.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

July 11

Judy Harry

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 Facsimile (518) 251-4428

Facsimile Transmission

TO:

Jen Smith

COMPANY:

OBG Engineers

FAX NUMBER:

315 463 7554

FROM:

Judy Harry

DATE:

03-20-00

No. of pages (including cover):

1

COMMENTS:

RE: Frontier Chemical data packages

The spectrum that I would like to review is that pertaining to the broad peak present around retention time 3.5-4.0' in sample N9181-DL (file G7775 on 2/17). They may need to do a manual subtract of background from about 3', or after 4.5'. The early part of the response is likely due to moisture, but the latter may be the sulfur dioxide.

Hope this helps.

Thanks.

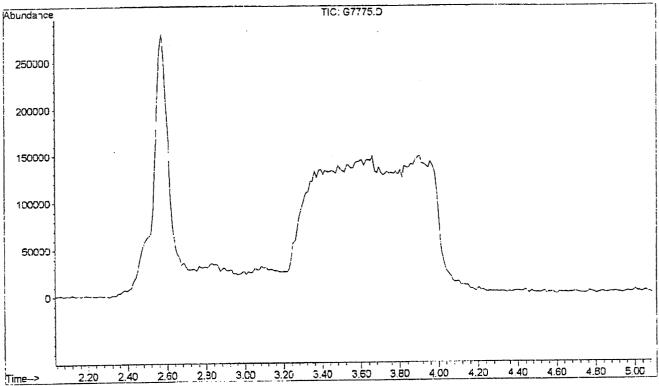
Hardcopy to follow

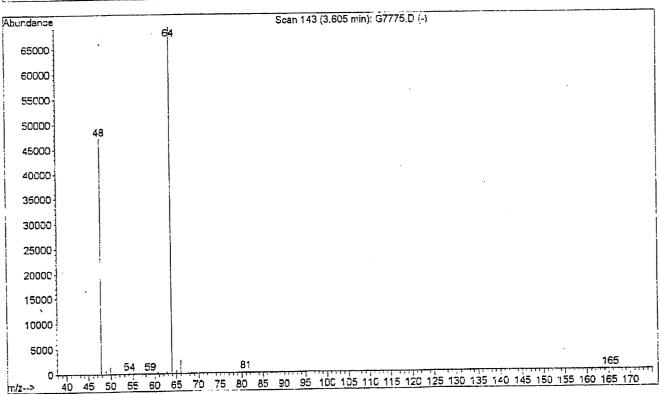
X Hardcopy not to follow

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the individual or entity to which it is addressed, and may contain confidential information belonging to the sender. If you are not the intended recipient, you are hereby notified that any disciosure, copying, distribution, or the taking of any action in reliance on the contents of this information is strictly prohibited. If you have received this transmission in error, please immediately notify us by telephone to arrange for the return of these documents.

	Job	Number:	5829/24532
Number of Pa	ges: (including cover shee	et) Date:	March 21, 2000
If pages are mile at (315) 437-19	ssing or illegible, please contact telefax opera 90, ext. 2593, as scon as possible. Thank yo	tor ou.	
To:	Judy Harry		
COMPANY:	Data Validation Services		
Fax No:	518-251-4428		
FROM:	Jennifer Smith		
ORIGINAL — will follow	v via regular mail will follow via ove	ernight delivery	x will not follow
MESSAGE:			
	ttached is the spectrum for the N9181-DL ed additional information.	sample. Please fee	l free to call me if you have any
Thank you, Jen			


File : J:\MS2\G7775.D


Operator : MSV

Acquired : 17 Feb 00 11:37 am using AcqMethod G215VOCW

Instrument: #2MS12 Sample Name: N9181DL 5x

Misc Info : Vial Number: 6

NARRATIVE

INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for samples from Frontier Chemical - Pendleton Site, Town of Pendleton, Niagara County, NY. Immediately following the narrative is the Cross Reference Table that lists the site descriptions, sample numbers, dates collected, dates received and package numbers.

CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The coolers were received intact. When the coolers were received by the laboratory, the sample custodian(s) opened and inspected the shipments for damage, custody inconsistencies and proper preservation. The chain of custody forms documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

No discrepancies were noted upon receipt. The cooler temperatures upon receipt were 3 and 4°C.

METHODOLOGY

The following methods were used to perform the analyses:

PARAMETER	METHOD	REFERENCE
Volatile Organics	8260B	1
ICP Metals	6010B	1
Mercury	7470A	1
Thallium	7841	1
Cyanide	9010B/9014	1

1) Test Methods for Evaluating Solid Wastes, S'V-846 Third Edition, Final Update III, December 1996.

QUALITY CONTROL

The quality control for this program includes internal standards, surrogates, matrix spike (MS), matrix spike duplicate (MSD), laboratory duplicate (D), equipment blank, laboratory control sample (LCS), prep blank and QC trip blank samples. QA/QC results are summarized in the Sample Data Summary Package and are also included in the raw data.

RAW DATA

The raw data is organized in a format similar to the US EPA Contract Laboratory Program order of data requirements.

GC/MS Volatile Organics Case Narrative

Client:

Frontier Chemical

Job Number:

5829.001.517

Package #:

4663, 4671

Methodology:

8260B

Analyzed/Reviewed by (Date/Initials):

Supervisor/Reviewed by (Date/Initials):

QA/QC Review (Date/Initials):

File Name in G/ Drive:

C:\WPWIN60\WPDOCS\V4663.NAR

GC/MS Volatile Organics

The GC/MS Volatile instruments used a J&W DB-VRX, 75 m x 0.45 mm ID capillary column and a Vocarb 3000 trap.

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements. Samples had a pH of less than 2.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

The following compound(s) did not meet matrix spike/matrix spike duplicate percent recovery and/or RPD criteria:

KI D Gritoria					Corrective
Sample Description URS-14D	Sample # N9182	Compound Chloroethane	% REC X	RPD X	Action 1

Due to high level sulfur dioxide in the sample N9182MSD. Ion 64 of chloroethane was coeluted with sulfur dioxide. LCS passed for this compound. No corrective action was taken.

All surrogate recoveries met method and/or project specific QC criteria.

Internal Standards

All internal standard areas met method and/or project specific QC criteria.

For calibration check standard compounds that had a linear regression performed, a percent drift was calculated between the true value of the calibration check standard and the calculated value. For compounds using an average response factor, the percent difference between the average response factor and the daily response factor was calculated. Summary sheets for both calculations are included in the raw data section.

GC/MS Volatile Organics Case Narrative - Page 2

Client:

Frontier Chemical

Job Number:

5829.001.517

Package #:

4663, 4671

Methodology:

8260B

The following continuing calibration compound(s) exceeded method percent drift and/or RRF criteria:

Calibration Date 2/17/00	Instrument MS2	Compound 1,1-Dichloroethene	% D -20.5	RRF	Corrective Action
2/1/100	1,10-				

The compound failed high. There were no positive hits for the compound in associated samples. The associated LCS met criteria. No corrective action was taken. 1.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Trace Metals Case Narrative

Client:

Frontier Chemical

Job Number:

5829.001.517

Package #:

4663,4671

Methodology:

ICP metals - 6010B

Analyzed/Reviewed by (Date/Initials):

3-2-00 MT

Supervisor/Reviewed by (Date/Initials):

QA/QC Review (Date/Initials):

File Name in G/ Drive:

G:\NARRATIV\4663FRON.ICP

Trace Metals

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

MS/MSD AND MS/MSD RPD

The following analytes did not meet matrix spike/matrix spike duplicate percent recovery and/or MS/MSD RPD criteria:

	·····	***************************************	1		Corrective
Sample Description	Sample#	Analyte	% REC	RPD	Action
Description (Filtered)	N9189	Calcium	X		2
UPS-14D (Field Filtered)	1177107	Magnesium	X		2
***************************************	***************************************	Selenium	X		1
		Potassium		<u>X</u>	<u>i</u>
		: I Utassium			4

- A post-digestion spike was performed as required. No further corrective action was taken. 1.
- The concentration of the analyte in the sample was much greater than the concentration of the spike added. A post-digestion spike was performed as required. No further corrective 2. action was taken.
- The RPD for the sample and duplicate was within control limits. No further corrective 3. action was taken.

Sample Duplicate

All sample duplicate RPD data met method and/or project specific QC criteria.

Trace Metals Case Narrative - Page 2

Client:

Frontier Chemical

Job Number:

5829.001.517

Package #:

4663,4671

Methodology:

ICP metals - 6010B

ICP Serial Dilution

All percent differences met method and/or project specific QC criteria.

.Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Trace Metals Case Narrative

Client:

Job Number:

Package #:

Methodology:

Analyzed/Reviewed by (Date/Initials):

Supervisor/Reviewed by (Date/Initials):

QA/QC Review (Date/Initials):

File Name in G/ Drive:

Frontier Chemical 5829.001.517

4663,4671

Mercury - 7470A

3-2-00 --

3-2-00 mT

Ju 3/7/00

G:\NARRATIV\4663FRON.HG

Trace Metals

There were no excursions to note. All QC results were within established control limits.

Trace Metals Case Narrative

Client:

Frontier Chemical

Job Number:

5829.001.517

Package #:

4663,4671

Methodology:

Thallium - 7841

Analyzed/Reviewed by (Date/Initials):

3-2-00 mg

Supervisor/Reviewed by (Date/Initials):

5-2-00 m

QA/QC Review (Date/Initials):

JAN 3/7/00

File Name in G/ Drive:

G:\NARRATIV\4663FRON.TL

Trace Metals

There were no excursions to note. All QC results were within established control limits.

Wet Chemistry Case Narrative

Client:

Frontier Chemical

Job Number:

5829.001.517

Package #:

4663,4671

Methodology:

Total cyanide - 9010B/9014

Analyzed/Reviewed by (Date/Initials):

3-2-00 mg

Supervisor/Reviewed by (Date/Initials):

3-2-60 mg

QA/QC Review (Date/Initials):

3/4/00

File Name in G/ Drive:

G:\NARRATIV\4663FRON.WC

Wet Chemistry

There were no excursions to note. All QC results were within established control limits.

CROSS REFERENCE TABLE

Site	Sample Number	Date Collected	Date Received	Pkg
88-12C	N9180	02/07/00	02/09/00	4663
88-12D	N9181	02/07/00	02/09/00	4663
URS-14D	N9182	02/08/00	02/09/00	4663
URS-14D	N9182MS	02/08/00	02/09/00	4663
URS-14D	N9182MSD	02/08/00	02/09/00	4663
URS-14D	N9182D	02/08/00	02/09/00	4663
URS-9I	N9183	02/08/00	02/09/00	4663
URS-9D	N9184	.02/08/00	02/09/00	4663
Blind Dup	N9185	02/08/00	02/09/00	4663
QC Trip Blank	N9186	02/07/00	02/09/00	4663
88-12C (Field Filtered)	N9187	02/07/00	02/09/00	4663
88-12D (Field Filtered)	N9188	02/07/00	02/09/00	4663
URS-14D (Field Filtered)	N9189	02/08/00	02/09/00	4663
URS-14D (Field Filtered)	N9189MS	02/08/00	02/09/00	4663
URS-14D (Field Filtered)	N9189MSD	02/08/00	02/09/00	4663
URS-14D (Field Filtered)	N9189D	02/08/00	02/09/00	4663
URS-9I (Field Filtered)	N9190	02/08/00	02/09/00	4663
URS-9D (Field Filtered)	N9191	02/08/00	02/09/00	4663
Blind Dup (Field Filtered)	N9192	02/08/00	02/09/00	4663
85-5R	N9219	02/08/00	02/10/00	4671
URS-5D	N9220	02/08/00	02/10/00	4671
Equip. Blank	N9221	02/09/00	02/10/00	4671
URS-14I	N9222	02/09/00	02/10/00	4671
85-7R	N9223	02/09/00	02/10/00	4671
URS-7D	N9224	02/09/00	02/10/00	4671
QC Trip Blank	N9225	02/08/00	02/10/00	4671
85-5R (Field Filtered)	N9226	02/08/00	02/10/00	4671
URS-5D (Field Filtered)	N9227	02/08/00	02/10/00	4671
Equip. Blank (Field Filtered)	N9228	02/09/00	02/10/00	4671

		00/00/00	02/10/00	4671
URS-14I (Field Filtered)	N9229	02/09/00 02/09/00	02/10/00	4671
85-7R (Field Filtered)	N9230	02/09/00	02/10/00	4671
URS-7D (Field Filtered)	N9231	02,05,00		

Volume 1 of 3 of the validated analytical data is separately bound.

RECEIVED

LETTER OF TRANSMITTALINTAL REMEDIATION GROUP

TO:				DATE:	February 8, 2000	
				ATTENTION:	Mr. John Rurns	
1	dleton PRP Grou	ıp	1	SUBJECT:	. JAMES	Younh
1). Box 248 5 Lower River Ro	ال		1	ndleton (Frontier	
1	rleston, Tenness			Chemi	cal) Site Remediation	
Cha	rieston, Tenness	se 3/310		GGE PROJECT	NO: 94-1014-0	
<u></u>				OUETROJECT	110: 37:10:170	
WE A	RE SENDING	ATTACHED:				·
LAI	BORATORY TE	ST DATA	FIELD	TEST DATA	X REPORT	
EN(GINEERING DE	RAWINGS				
CODIEC	TO LATE	PERODELLO	DECORIO	77.0.1		
COPIES:	DATE	102/02(3/1/0)	DESCRIP			
1	2.8.00	00-01	Field Obse	rvation Report		
THESE	ARE BEING SI	ENT:				
X FOR	YOUR USE		PER YC	UR REQUEST		â

						-
SINCERELY,					ADISTRIBUTION (SEE	
	OTECHNICAL	ENGINEERING				
				Jen Smith - O'Brie	n & Cere	
1/_	4					-
Jese E. C	Grossman, P.E.					
Toject M	lanadr					

415 South Transit Street, Lockport, New York 14094 voice: 716.625.6933 / fax: 716.625.6983

FIELD OBSERVATION REPORT

PROJECT NO.:	94-1014-0	_ REPORT NO.:	00-01	DATE:	07-Feb-00	PAGE	:1		OF	1	
PROJECT :	Pendleton (Fron	itier Chemical) Site Rem	ediation	ı	DAY:	Moi	nday			
SUBJECT:	Semi-Annual Sampling, Lake Level Survey				PROJECT TIME:	10:00	am)	- 12:	00 pm		
CLIENT:	Pendleton Site PRP Group					SITE TIME:	10:45	am	- 11:	30 am	
WEATHER:	Cold, Partly Cloudy (25° F)				PHOTOS:	YES	×	N	0		
											_

- On site per O'Brien & Gere notification to record lake water elevation coincidental with semi-annual groundwater sampling event.
- Record Quarry Lake water surface elevation via level survey. Lake is ice covered. The ice surface elevation is 578.16'. Attempt to break through the ice to record free water elevation. The ice cannot be penetrated and the free water surface is not measured.
- The O'Brien & Gere sampling team is also on site for sample collection. O'B&G team is clearing the interior sample locations of snow and recording water elevations.
- Site accessibility is limited due to drifted snow on the perimeter access road.
- Observe general site conditions and no major problems are noted. The pump vault is not accessed.

PERSONNEL ON SITE / CONTACTED:	DISTRIBUTION: John Burns - PPRP
Tim Prawel, Don Canastrari - O'B&G	Jen Smith - O'B&G
	Man-hours: 2.0
REPORTED BY: Jessey E. Grossman, P. J., Project Manager	REVIEWED BY: Mark W. Styrm, V.E.
415 South Trans voice: 716.	sit Street, Lockport, New York 14094 .625.6933 / fax: 716.625.6983