

March 2000 Semi-Annual Report #6

Prepared by Pendleton PRP Group.

Distribution:

Mr. Daniel King, P. E. (3 copies)
Division of Environmental Remediation
New York State Department of Environmental Conversation
270 Michigan Avenue
Buffalo, New York 14203-2999

Mr. G. Anders Carlson, Ph. D., Director (2 copies) Bureau of Environmental Exposure Investigation New York State Department of Health 2 University Place, Room 205 Albany, New York 12203-3399

Mr. Gerald Rider (1 copy)
Division of Hazardous Waste Remediation
New York State Department of Environmental Conservation
50 Wolf Road
Albany, New York 12233

Mr. James Devald (1 copy) Niagara County Health Department Environmental Services Division 5460 Upper Mountain Road Lockport, New York 14094

Pendleton PRP Technical Committee

David Cook, Esq. Nixon, Hargrave, Devans & Doyle 900 Clinton Square P.O. Box 1051 Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis McCanna SIVACO New York P.O. Box 646 3937 River Road Tonawanda, NY 14151-0646

Brent Schindler, Esq. Dow Chemical Base of Loveridge Road P.O. Box 1398 Pittsburgh, CA 94565

April 1, 2000

VIA AIRBORNE EXPRESS

Mr. Daniel King, P. E. Division of Environmental Remediation New York State Department of Environmental Conversation 270 Michigan Avenue Buffalo, New York 14203-2999

Subject: Frontier Chemical - Pendleton Site, Pendleton, New York

Order on Consent (#B9-0270-89-05) March 2000, Semi-Annual Report #6

Post Closure Operation, Maintenance, and Monitoring Activities,

Dear Mr. King:

In accordance with the approved Pendleton O & M Manual, enclosed are three copies of the Semi-Annual Report on the Post-Closure Operation, Maintenance, and Monitoring of the Closure Components for the Frontier Chemical-Pendleton Site by the Pendleton PRP Group

If you have any questions regarding the above submittals, please contact me by telephone at 423-336-4057, by facsimile at 423-336-4166 or by e-mail at imburns@corp.olin.com.

Sincerely,

Rendleton PRP Group

John M. Burns

Chairman - Technical Committee for

Pendleton PRP Group

Table of Contents Semi-Annual Report #5 March 2000

Introduction		
Background		
Discussion		
Conclusion		

Attachments

- Attachment A Quarry Lake Level Plot versus Time
- Attachment B Niagara County Sewer District #1 Submittals and Operation, Maintenance and Monitoring Activities
- Attachment C Frontier Chemical Pendleton Site; Semi-Annual Ground Water Monitoring Report; March 2000; Frontier Chemical Pendleton Site; Town of Pendleton, Niagara County, NY, Water Samples Volume 1 of 3, February 7, 8, and 9, 2000
- Attachment D Field Observation Reports

Attachment A – Quarry Lake Level Plot versus Time Quarry Lake Level – March 7, 2000

Quarry Lake Level – February 7, 2000

- Table A-1 Quarry Lake Level
- Chart A-1 Quarry Lake Water Elevations

TABLE A-1 Quarry Lake Level

1

ATTACHMENT B –Niagara County Sewer District #1 Submittals and Operation, Maintenance and Monitoring Activities

- B-1 Niagara County Sewer District #1 Submittals
- B-2 Operation, Maintenance and Monitoring Activities

B-1 Niagara County Sewer District #1 Submittals

TABLE B-1

Niagara County Sewer District #1 Submittals

Submittal Date	Sampling Date
October 8, 1999	September 1, 1999
November 19, 1999	October 4, 1999
December 1, 1999	November 11, 1999
January 17, 2000	December 3, 1999
February 7, 2000	January 13, 2000
March 10, 2000	February 3, 2000

B-2 Operation, Maintenance and Monitoring Activities

Operation, Maintenance, and Monitoring Activities

Table B-3

Date	Event	Action Taken
September 11, 1999	Mid-joint of vault roof leaking	Evaluating alternatives for corrective action
October 4, 1999	Mid-joint of vault roof leaking	Evaluating alternatives for corrective action
November 11, 1999	Pressure Problems	Changed filter bags
February 26, 1999	Mid-joint of vault roof leaking	Evaluating alternatives for corrective action

ATTACHMENT C - Groundwater Data

- C-1 Frontier Chemical Pendleton Site Semi-Annual Ground Water Monitoring Report O'Brien & Gere March 2000
- C-2 Frontier Chemical Pendleton Site
 Town of Pendleton, Niagara County, NY Water Samples
 Volume 1 of 3
 O'Brien & Gere
 February 7, 8, and 9, 2000

C-1 Frontier Chemical – Pendleton Site Semi-Annual Ground Water Monitoring Report O'Brien & Gere March 2000 C-2 Frontier Chemical – Pendleton Site
Town of Pendleton, Niagara County, NY Water Samples
Volume 1 of 3
O'Brien & Gere
February 7, 8, and 9, 2000

Attachment D – Site Maintenance Work Items and Field Observation Reports

D-1 Field Observation Reports

Field Observation Reports

• February 7, 2000, Field Observation Report

Introduction

This sixth semi-annual report is submitted on behalf of the Frontier Chemical - Pendleton Site PRP Group (PRP Group) for the Frontier Chemical - Pendleton Site located in Pendleton, New York. This report summarizes the activities performed since September 1999 for Post-Closure Operation, Maintenance, and Monitoring of the Closure Components at the subject site.

Background

The Frontier Chemical-Pendleton Site is located on Town Line Road in the Town of Pendleton, Niagara County, New York. The total site comprises approximately 22 acres of the 75-acre Frontier Chemical property. Prior to remediation activities, Quarry Lake, a flooded quarry that resulted from the excavation of clay for use in clay brick and tile manufacturing at an on-site facility, occupied 15 acres of the 22-acre site. The remaining 7 acres, identified as the former Process Area, were utilized by Frontier Chemical Waste Process, Inc. (Frontier) when the site was operated as an industrial waste treatment facility from 1958 to 1974. Plating wastes, pickle liquors and other liquid acid wastes from plating and metal finishing industries were treated at the site, with residuals from the waste treatment process being discharged into Quarry Lake. Much of the former Process Area was filled and graded following termination of waste treatment operations.

The site remediation project with remedial designed by O'Brien & Gere Engineers, Inc. and remedial action by Sevenson Environmental Services, Inc. included the following major components:

- 1. Dewatering Quarry Lake to allow drying and consolidation of sediments;
- 2. Excavation and relocation of sediments from Quarry Lake after dewatering operations to within the limits of the capped area;
- 3. Excavation and relocation of surface soils, fill or debris to within the limits of the capped area:
- 4. Capping of consolidated sediments, previously dredged materials, and surface soils with a low-permeability cap;
- 5. Installation, in conjunction with a cap, of a low-permeability barrier to ground water flow;
- 6. Construction of a ground water collection trench along the eastern shore of Quarry Lake and the southern portion of the capped area;
- 7. Reconstruction of the berm around Quarry Lake and installation of a new outlet structure;
- 8. Construction of a ground water pumping station consisting of a wet well and dry vault;
- 9. Installation of a ground water pre-treatment system within the dry vault;
- 10. Conveyance of collected and pre-treated ground water to the local Publicly Owned Treatment Works (POTW);
- 11. Creation of new wetlands at the site;
- 12. Construction of a surface water swale adjacent to the cap access road to direct surface water away from the capped area;
- 13. Installation of piezometers inside and outside the capped area and a standpipe within the ground water collection trench; and
- 14. Installation of a chain link fence around the capped area and pump station to limit access.

Discussion

Post-closure operation, maintenance, and monitoring of the closure components of the Frontier Chemical-Pendleton Site are the responsibility of the Pendleton PRP Group. Operation, maintenance, and monitoring activities performed by the Pendleton PRP Group during this reporting period includes the following five elements:

1. Routine inspection and maintenance of constructed features, including the capped area, ground water collection and conveyance system, surface water runoff facilities, constructed wetlands, access road, perimeter and containment berms, and outlet weir,

The semi-annual site inspection was performed on February 7, 2000. The inspection report is included in this report as Attachment D.

Relocated wetlands inside the perimeter berm will be inspected and reported in the next semi-annual report. The PRP Group requested a formal wetland inspection on September 24, 1999.

The relocated wetlands inside the Quarry Lake levee have elevations of 574 feet for aquatic bed species (Zone A), 575 feet for non-persistent emergent species (Zone B), and 576 feet for persistent emergence species (Zone C). A water elevation chart is included as Attachment A-2. This water level chart shows the history of the lake elevation starting in April 1996 until present.

2. Operation and maintenance of the ground water pre-treatment system, as described in the Pre-Treatment System Operations Plan,

Regarding Operation and maintenance of the ground water pre-treatment system, the monthly submittals to the Niagara Country Sewer District #1 detailing analytical and discharge flow data for this reporting period are included in Attachment B. Six months (October 1999 through March 2000 1999) of submittals as shown in Table 2-1 are included with this report.

Table 2-1 Niagara County Sewer District #1 Submittals		
Submittal Date	Sampling Date	
October 8, 1999	September 1, 1999	
November 19, 1999	October 4, 1999	
December 1, 1999	November 11, 1999	
January 17, 2000	December 3, 1999	
February 7, 2000	January 13, 2000	
March 10, 2000	February 3, 2000	

Also included in Attachment B is Table 2-2, which summarizes Operation, Maintenance, and Monitoring Activities for the site during this reporting period.

3. Performance of a ground water monitoring program to monitor site ground water conditions and to verify the inward hydraulic gradient within the capped area,

Regarding performance of a ground water monitoring program, the report "Frontier Chemical - Pendleton Site, Semi-Annual Ground Water Monitoring Report" dated March 2000 is included as Attachment C-2.

4. Evaluation of operation, maintenance, and monitoring activities and identification of proposed changes to the O&M Manual or site procedures and policies which would provide a safer and/or more cost-effective operation, and

5. Recordkeeping

Records for site operation and maintenance activities are maintained at the site and Olin's Niagara Falls Plant. These records include daily and weekly logs and charts. Glynn Geotechnical provides assistance to the site caretaker and updates O&M documentation. O'Brien & Gere Engineers provide ground water level measurement, sampling, monitoring, and analytical field and office support. The PRP representative maintains analytical results and reports submitted to NCSD #1 and NYSDEC at the Olin's Charleston Plant. These records are available for your review and inspection.

Conclusions

The work performed during this reporting period, October 1999 to March 2000 was reviewed and found to be in accordance with the approved O&M Manual for the Site.

P.O. BOX 248, 1186 LOWER RIVER ROAD, NW, CHARLESTON, TN 37310-0248 (423) 336-4000 FAX: (423) 336-4183

October 8, 1999

VIA AIRBORNE EXPRESS

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (9/1/99 Monthly Sample) Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the September 1, 1999, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

For the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

cc: D. Kummer

Pendleton Site Technical Committee

David Cook, Esq. Nixon, Hargrave, Devans & Doyle 900 Clinton Square P.O. Box 1051 Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza
Elf AtoChem
2000 Market Street
Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis McCanna SIVACO P.O. Box 646 3937 River Road Tonawanda, NY 14151-0646

Brent Schindler, Esq.
Dow Chemical
Base of Loveridge Road
P.O. Box 1398
Pittsburgh, CA 94565

FRONTIER CHEMICAL PENDLETON DAILY FLOW DATA SEPTEMBER 1999

	TOTALIZER	DAILY	
DATE	READING	FLOW	COMMENTS
9/1/99		92	avg. flow & Sampling
9/2/99		92	avg. flow
9/3/99		92	avg. flow
9/4/99		92	avg. flow
9/5/99		92	avg. flow
9/6/99	•	92	avg. flow
9/7/99	343644	92	avg. flow
9/8/99	344180	536	
9/9/99	344235	55	
9/10/99	344499	264	
9/11/99		79	avg. flow
9/12/99	344657	79	a∨g. flow
9/13/99	344760	103	
9/14/99	344863	103	
9/15/99	344914	51	
9/16/99	345018	104	
9/17/99		85	avg. flow
9/18/99		85	avg. flow
9/19/99	345274	85	avg. flow
9/20/99	345377	103	
9/21/99	345429	52	
9/22/99	345533	104	
9/23/99		90	avg. flow
9/24/99		90	avg. flow
9/25/99		90	avg. flow
9/26/99	345891	90	avg. flow
9/27/99	345991	100	
9/28/99	346042	51	
9/29/99	346198	156	
9/30/99	346464	266	

Avg. Daily Flow (gal).	115.5	
= DRY VAL	JLT GROUNDWAT	ER RELIEF
		gallons
TOTAL GALLONS	0.0	

Avg. Flow = flow between data points divided by days of missing data

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

RECEIVED

SEP 27 1999

Analytical Data Report

Report Date: 09/17/99 Group Number: 9901-1355

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier - Pendleton

Field and Laboratory Information

Client ld	WST Lab#	Matrix	Date Sampled	Date Received	Time
GAC 2 Sample Port	WS56344	Aqueous	09/01/99	09/02/99	14:30
Sample Status Upon Receipt	: No irregulari	ities.			

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
Total Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	1	Standard
Pesticides	1	Standard
Volatile Organics	1	Standard

Report Released By :_

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

ORGANIC DATA QUALIFIERS

- U Indicates compound was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets identification criteria, but the result is less than the sample quantitation limit but greater than zero.
- **C** This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as the sample.
- **E** This flag identifies all compounds whose concentrations exceed the calibration range of the GC/MS instrument of that specific analysis.
- **D** This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- **G** Matrix spike recovery is greater than the expected upper limit of analytical performance.
- L Matrix spike recovery is less than the expected lower limit of analytical performance.
- # Indicates that a surrogate recovery was found to be outside the expected limits of analytical performance.
- **\$ -** Indicates that the surrogate compound was diluted out. The sample had to be diluted to obtain analytical results and a recovery could not be calculated.
- (%) Indicates that the compound is a surrogate and that the value reported for this compound is in percent recovery. The quality control recovery limits are indicated in the detection limit or QC limits column.

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier - Pendleton Date Sampled: 09/01/99 Date Received: 09/02/99 Group Number: 9901-1355

Units: mg/L Matrix: Aqueous

WST ID: WS56344

Client ID: GAC 2 Sample Port

Digestion Date: 09/15/99

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	09/16/99	EPA 200.9
Boron by ICP	0.012	0.646	09/16/99	EPA 200.7
Chromium by ICP	0.005	Not detected	09/16/99	EPA 200.7

Waste Stream Technology, Inc. Wet Chemistry Analyses

Site: Frontier - Pendleton Date Sampled: 09/01/99 Date Received: 09/02/99 Group Number: 9901-1355

Matrix: Aqueous

WST ID: WS56344

Client ID GAC 2 Sample Port

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Suspended Solids	EPA 160.2	4.0	Not detected	mg/L	09/03/99
Cyanide in Water	EPA 335.2	0.005	Not detected	mg/L	09/10/99
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	09/07/99

Waste Stream Technology, Inc. 40 CFR Part 136 Method 624 EPA 624

Site: Frontier - Pendleton Date Sampled: 09/01/99 Date Received: 09/02/99 Group Number: 9901-1355

Units: ug/L Matrix: Aqueous

WST ID: WS56344

Client ID: GAC 2 Sample Port

Extraction Date: NA
Date Analyzed: 09/07/99

Compound	Detection Limit	Result	QC Limits (%)	Qualifier
chloromethane	2.0	Not detected		U
vinyl chloride	2.0	Not detected		U
oromomethane	2.0	Not detected		U
chloroethane	2.0	Not detected		U
trichlorofluoromethane	2.0	Not detected		U
1,1-dichloroethene	1.0	Not detected		U
methylene chloride	2.8	Not detected		U
trans-1,2-dichloroethene	1.0	Not detected		U
1,1-dichloroethane	1.0	Not detected		U
chloroform	1.0	Not detected		U
1,1,1-trichloroethane	1.0	Not detected		U
carbon tetrachloride	1.0	Not detected		U
benzene	1.0	Not detected		U
1,2-dichloroethane	1.0	Not detected		U
trichloroethene	1.0	Not detected		Ū
1,2-dichloropropane	1.0	Not detected		U
romodichloromethane	1.0	Not detected		U
2-chloroethylvinyl ether	2.0	Not detected		U
cis-1,3-dichloropropene	1.0	Not detected		U
toluene	1.0	Not detected		U
trans-1,3-dichloropropene	1.0	Not detected		U
1,1,2-trichloroethane	1.0	Not detected		U
tetrachloroethene	1.2	Not detected		U
dibromochloromethane	1.0	Not detected		U
chlorobenzene	1.0	Not detected		U
ethylbenzene	1.0	Not detected		U
bromoform	1.0	Not detected		U
1,1,2,2-tetrachloroethane	1.0	Not detected		U
1,3-dichlorobenzene	1.0	Not detected		U
1,4-dichlorobenzene	1.0	Not detected		U
1,2-dichlorobenzene	1.0	Not detected		U
4-methyl-2-pentanone	10	Not detected		U
1,2-Dichloroethane-d4 (%)		105	76-114	
Toluene-d8 (%)		108	88-110	
Bromofluorobenzene (%)		100	86-115	

Dilution Factor

1

Waste Stream Technology, Inc. 40 CFR 136 Method 608 Pest-PCBs EPA 608

Site: Frontier - Pendleton Date Sampled: 09/01/99 Date Received: 09/02/99 Group Number: 9901-1355

Units: ug/L Matrix: Aqueous

WST ID: WS56344

Client ID: GAC 2 Sample Port

Extraction Date: 09/08/99 Date Analyzed: 09/14/99

Compound	Detection Limit	Result	QC Limits (%)	Qualifier
alpha-BHC	0.003	Not detected		U
beta-BHC	0.006	Not detected		U
gamma-BHC	0.003	Not detected		U
delta-BHC	0.009	Not detected		U
heptachlor	0.020	Not detected		U
aldrin	0.017	Not detected		U
heptachlor epoxide	0.008	Not detected		U
4,4-DDE	0.005	Not detected		U
methoxychlor	0.006	Not detected		U
Tetrachloro-m-xylene (%)		86	60-150	
Decachlorobiphenyl (%)		90	60-150	

Dilution Factor 1

Waste Stream Technology, Inc.

Method 608 Method Blank Results EPA 608

Site: Frontier - Pendleton

Date Sampled: NA Date Received: NA

Group Number: 9901-1355

Units: ug/L

WST ID MB99251

Client ID: NA Extraction Date: 09/08/99 Date Analyzed: 09/14/99

Compound	Detection Limit	Result	QC Limits (%)	Qualifier
alpha-BHC	0.003	Not detected		U
beta-BHC	0.006	Not detected		U
gamma-BHC	0.003	Not detected		U
delta-BHC	0.009	Not detected		U
heptachlor	0.020	Not detected		U
aldrin	0.017	0.026		
heptachlor epoxide	0.008	Not detected		U
4,4'-DDE	0.005	Not detected		U
methoxychlor	0.006	Not detected		U
Tetrachloro-m-xylene (%)		90	60-150	
Decachlorobiphenyl (%)		94	60-150	

Dilution Factor 1 MB denotes Method Blank

NA denotes Not Applicable

STREAM TECHNOLOGY

302 GROTE STREET BUFFALO, NY 14207 (716) 876-5290

9901-1355

CHAIN OF CUSTODY RECORD

PROJECT NO:	NO: 414		Tre	SITE NAME:		ende to		SIZE &	25	1/2/0	13	/85/	L	SINITI	
SAMPLERS	SAMPLERS (SIGNATURE):	8: BIB	aylan	ELI			-	NO. OF CON-	5	10 13 1	1/55/00 /07/50 10/50/00/50	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		YNYJSJ	/ REMARKS
SAMPLE	DATE TIME	COMP	GRAB N	мАт⋪их	SAMPL	SAMPLE LOCATION	·		0/19	うか	5/ /	1		\ \.	
	-419330p	, /		120	GIC O	GICZ Sample 1	Port	1					HNO3		MS56344
~~	7-01 330 p	7	<u> </u>	041	"	, 11	Ϊ		*******				1/2504	CA	
<u> </u>	908 100 PO	`,		1420	Ú	1)	7.	Tudos		~			NaOH	#	
İ	7-01 330p	7		Hz 0	11	11	J "	500 ml			*lame		93		
	9-01 330p	7		HZO	14	11	/~	7			C. Propher		03		
	Jase 10-6	7		Hzd	6	11) //	HOME					HeL		
	9-01 330	7		1/20	11	11	1.3	Twoth				The second secon	HeL		
ì	``														
												· ·**			
						Ž.									
	· •														, pe
-															
													! : :		~a.
RELINOI	ITSHED BXY	RELINGUISHED BY (SIGNATURE)	100	DATE/TIME	1	RECEIVED BY (SIGNATURE)	SIGNATUR	JRE)	RELINGUI	RELINQUISHED BY (SIGNATURE)	IGNATUR	Ì	DATE/TIME		RECEIVED BY (SIGNATURE)
RELING	UISHED BY (RELINQUISHED BY (SIGNATURE)		DATE/TIME		ED BY (S	SIGNATL	JRE)	RELINQUI	RELINQUISHED BY (SIGNATURE)	GNATUR		DATE/TIME		RECEIVED BY (SIGNATURE)
SPECIAL	SPECIAL INSTRUCTIONS:	TIONS:	-	_										_	

TURNAROUND TIME.

LAB USE: REFRIGERATOR #_

GROUP #_

SHELF #_

DUE DATE.

November 19, 1999

VIA AIRBORNE EXPRESS

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1

Subject:

Analytical Sampling Results (10/4/99 Monthly Sample) · .

Groundwater Discharge Through Pre-Treatment System

Pendleton (Fromen Chemical) Site was a constant of the constan

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the October 4, 1999, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

For the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

David Cook, Esq.
Nixon, Hargrave, Devans & Doyle
900 Clinton Square
P.O. Box 1051
Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Radian Radian West Wackerly St Midland, MI 48640

David Paley

Alfred Signal, fire.

101 Columbia Road

P.O. Box 1139

Morristown, NJ 07962

Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis McCanna

P.O. Box 646 3937 River Road Tonawanda, NY 14151-0646

Brent Schindler, Esq.

Bow Chemical

Base of Loveridge Road

P.O. Box 1398

Pittsburgh, CA 94565

Frontier Chemical - Pendleton Site October 1999 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

346,972	Gallons Discharged Prior To	10/4/99
	Gallons Since Last Report	
120	Average Daily Flow Based on 33	days Between Samples

			10/4/99
<u> </u>	Permit	Detection	Sample
<u>Parameters</u>	Limit	Limits	Results
Freatment System Discharge	GPD		GPD
Discharge Rate (1)	662		
524 Analytes	ug/L	ug/L	ug/L
Toluene	10.0	1.0	< 1.0
1.2-Dichloroethane	10.0	1.0	< 1.0
4 Methyl-2-Pentanone	19:0	10.0	10.0
Wind Chiodeles	100	2.0	ALCON TO A STATE OF
Mattolene Colorides	100	30	
trans-1,2-Dichloroethene	10.0	4.0	< 1.0
1,1,1-Trichloroethane	10.0	1.0	< 1.0
Trichloroethene	10.0	1.0	< 1.0
Benzene	10.0	2.0	< 2.0
Chloromethane		2.0	< 2.0
Bromomethane		2.0	< 1.0
Chloroethane.	1. A. S.	* a * * 1 * 10	1. Ly 197 1 1 1 1 0 1 1 2 1 1 1 1
Carbon Tetrachloride		1.0	< 1.0
1.1-Dichloroethene		1.0	< 1.0
Trichlorofiuoromethane		2.0	
1,1-Dichloroethane	1	1.0	
1.2-Dichloropropane		1.0	
Bromodichioromethane		1.0	R
2-Chloroethylvinyl ether		2.0	N .
cis-1,3-Dichloropropene		1.0	¥
trans-1,3-Dichloropropene		1.0	8
1,1,2-Trichloroethane		1.0	
Tetrachloroethene		1.2	H
Dibromochloromethane	1	1.0	4
Chlorobenzene		1.0	1
Ethylbenezene	<u> </u>	1.0	
Bromoform		1.0	¥
1,1,2,2-Tetrachloroethane		1.0	P
1,3-Dichlorobenzene		1.0	D
1,4-Dichlorobezene		1.0	· N
1,2-Dichlorobenzene	-	100.0	
Sum of 624 Analytes	ug/L		
608 Pesticides (2)	10.0		
alpha BHC	20.0		
beta BHC	10.0	1	
detta BHC	10.0	1	
gamme BHC Heptachlor	8.0		
Aldrin	8.0		
Heptachlor Epoxide	9.0		I
4,4-DDE	20.		
Methoxychlor	18.	0	
Metals	mg/		
Antimony	0.	1	4
Boron	4.0	L	H
Chromium	5.3	- 1	U .
Cyanide(T)	2.		
Other	mg/		
Total Phenolics	N		· N
TSS	30	0 4.00	0 < 4.000

- Legend: (1) (2) (B) NA Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group. Detected in blank

- Not applicable

FRONTIER CHEMICAL PENDLETON DAILY FLOW SHEET OCTOBER 1999

DATE READING FLOW COMMENTS				
DATE READING 104 avg. flow 107/99 104 avg. flow 107/99 346776 104 avg. flow 107/99 346776 104 avg. flow 107/99 346974 198 Sampling 107/99 347024 50 107/99 347024 0 Investigate/Reset pump #2 107/99 347327 303 303 303 3047327 avg. flow 34737 avg. flow 349556 247.7 avg. flow 349556 247.7 avg. flow 349556 349716 160 107/19/9 349833 167 107/19/9 349833 167 107/20/99 350093 210 350093 210 350093 210 350093 210 350093 350093 210 350099 350093 350096 157 329.6 avg. flow 30728/99 350096 157 350001 305579 3050001 305579 3050001 305579 3050001 305579 3050001 305579 30500001 305579 3050000000000000000000000000000000000		TOTALIZER		
10/1/99 104 avg. flow 10/2/99 346776 104 avg. flow 10/3/99 346974 198 Sampling 10/5/99 347024 50 Investigate/Reset pump #2 10/6/99 347024 0 Investigate/Reset pump #2 10/8/99 347327 303 avg. flow 10/9/99 247.7 avg. flow 10/12/99 247.7 avg. flow 10/13/99 247.7 avg. flow 10/13/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 349556 247.7 avg. flow 10/18/99 349556 247.7 avg. flow 10/19/99 349883 167 avg. flow 10/20/99 350093 210 avg. flow 10/23/99 129.6 avg. flow 10/23/99 350576 129.6 avg. flow 10/28/99 350896 157	DATE	READING	FLOW.	
10/2/99 104 avg. flow 10/3/99 346776 104 avg. flow 10/4/99 346974 198 Sampling 10/5/99 347024 50 Investigate/Reset pump #2 10/6/99 347024 0 Investigate/Reset pump #2 10/8/99 347327 303 avg. flow 10/9/99 247.7 avg. flow 10/42/99 247.7 avg. flow 10/13/99 247.7 avg. flow 10/14/99 247.7 avg. flow 10/14/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/16/99 349556 247.7 avg. flow 10/17/99 349833 167 avg. flow 10/19/99 350093 210 avg. flow 10/21/99 350093 210 avg. flow 10/22/99 129.6 avg. flow 10/23/99 350576 129.6 avg. flow 10/28/99 350896 157			104	
10/3/99 346776 104 avg. flow 10/4/99 346974 198 Sampling 10/5/99 347024 50 10/6/99 347024 0 Investigate/Reset pump #2 10/8/99 347327 303 10/9/99 247.7 avg. flow 10/12/99 247.7 avg. flow 10/13/99 247.7 avg. flow 10/14/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 349556 247.7 avg. flow 10/17/99 349556 247.7 avg. flow 10/17/99 34983 167 10/19/99 34983 167 10/19/99 350093 210 10/21/99 350093 210 10/21/99 350093 129.6 avg. flow 10/22/99 129.6 avg. flow 10/23/99 10/25/99 350739 163 10/26/99 3500739 163 10/26/99 350093 157 10/26/99 350073 104 10/25/99 350073 163 10/26/99 350073 163 10/26/99 350073 163 10/26/99 350073 163 10/26/99 350073 1055 10/28/99 351057 56 10/28/99 351057 56 10/28/99 351057 56 10/28/99 351057 56 10/28/99 351057 56 10/28/99 351057 56 10/28/99 351057 56 10/28/99 351057 56			104	
10/4/99 346974 198 Sampling 10/5/99 347024 50 10/6/99 347024 0 Investigate/Reset pump #2 10/8/99 347024 10 Investigate/Reset pump #2 10/8/99 347327 303 10/9/99 247.7 303 10/9/99 247.7 303 10/12/99 247.7 303 10/14/99 247.7 303 10/14/99 247.7 303 10/14/99 247.7 303 10/14/99 349556 247.7 303 10/15/99 349556 247.7 309. flow 10/17/99 349556 247.7 309. flow 10/19/99 349883 167 10/19/99 349883 167 10/19/99 350093 210 10/21/99 350093 210 10/22/99 129.6 309. flow 10/23/99 129.6 309. flow 10/23/99 350739 163 10/25/99 350896 157 10/28/99 351001 105 10/28/99 351001 105 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 56 10/28/99 351007 105 10/28/99 351007 125 avg. flow 10/30/99 125 avg. flow		346776	104	
10/5/99 347024 50 10/6/99 347024 0 10/7/99 347024 0 10/8/99 347327 303 10/9/99 247.7 avg. flow 10/19/99 247.7 avg. flow 10/12/99 247.7 avg. flow 10/13/99 247.7 avg. flow 10/14/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 349556 247.7 avg. flow 10/18/99 349716 160 avg. flow 10/19/99 349883 167 avg. flow 10/21/99 350093 210 avg. flow 10/22/99 129.6 avg. flow 10/23/99 350576 129.6 avg. flow 10/26/99 350739 163 avg. flow 10/28/99 351001 105 avg. flow 10/28/99 351001 105 avg. flow		346974	198	Sampling
10/6/99 347024 0 Investigate/Reset pump #2 10/8/99 347327 303 10/9/99 247.7 avg. flow 10/1/99 247.7 avg. flow 10/1/3/99 247.7 avg. flow 10/1/3/99 247.7 avg. flow 10/1/3/99 247.7 avg. flow 10/14/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/17/99 349556 247.7 avg. flow 10/17/99 349716 160 10/18/99 349716 160 10/19/99 349883 167 10/18/99 349883 167 10/19/99 350093 210 10/21/99 350093 210 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/28/99 351057 56 10/28/99 351057 56 10/28/99 351057 56 10/29/99 1255 avg. flow 10/28/99 351057 56 10/28/99 351057 56		347024	50	
10/7/99 347024 0 Investigate/Reset pump #2 10/8/99 347327 303 10/9/99 247.7 avg. flow 10/12/99 247.7 avg. flow 10/12/99 247.7 avg. flow 10/13/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/17/99 349556 247.7 avg. flow 10/18/99 349716 160 349883 167 10/19/99 35093 210 35079 104 10/22/99 35093 210 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 avg. flow 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 avg. flow 10/29/99 351057 56 avg. flow 10/29/99		347024	· 0	
10/8/99 347327 303 10/9/99 247.7 avg. flow 10/189 247.7 avg. flow 10/12/99 247.7 avg. flow 10/14/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/16/99 247.7 avg. flow 10/17/99 349556 247.7 avg. flow 10/18/99 349716 160 10/19/99 349883 167 10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/26/99 350896 157 10/26/99 351001 105 10/28/99 351057 56 avg. flow 10/29/99 125 avg. flow 10/29/99 351057 56 10/29/99 351057 56 10/29/99 351057 25 avg. flow <t< td=""><td></td><td>347024</td><td>0</td><td>Investigate/Reset pump #2</td></t<>		347024	0	Investigate/Reset pump #2
10/9/99		347327	303	
10/12/99	40/0/00	_	247.7	
10/13/99 247.7 avg. flow 10/14/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 349556 247.7 avg. flow 10/17/99 349556 247.7 avg. flow 10/18/99 349716 160 10/19/99 349883 167 10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow 20/2 flow avg. flow	10H0499	The second secon	1. 作品: 247月 2. 5.12.5	The state of the s
10/13/99 247.7 avg. flow 10/14/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/15/99 349556 247.7 avg. flow 10/17/99 349556 247.7 avg. flow 10/18/99 349716 160 10/19/99 349883 167 10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow 20/2 flow avg. flow	उन्ति प्रकृष		7417 W	A STATE OF THE STA
10/13/99 247.7 avg. flow 10/14/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/16/99 349556 247.7 avg. flow 10/18/99 349716 160 10/19/99 349883 167 10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow	10/12/99		247.7	avg. flow
10/14/99 247.7 avg. flow 10/15/99 247.7 avg. flow 10/16/99 349556 247.7 avg. flow 10/18/99 349716 160 10/19/99 349883 167 10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			247.7	
10/15/99 247.7 avg. flow 10/16/99 247.7 avg. flow 10/17/99 349556 247.7 avg. flow 10/18/99 349716 160 10/19/99 349883 167 10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			247.7	
10/16/99 247.7 avg. flow 10/17/99 349556 247.7 avg. flow 10/18/99 349716 160 10/19/99 349883 167 10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 avg. flow 10/26/99 350896 157 105 10/27/99 351001 105 avg. flow 10/28/99 351057 56 avg. flow 10/29/99 125 avg. flow 10/30/99 125 avg. flow	10/15/99			
10/18/99 349716 160 10/19/99 349883 167 10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow	10/16/99	the things of the second second	247.7	avg. flow
10/18/99 349716 160 10/19/99 349883 167 10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow	10/17/99	349556	247.7	avg. flow
10/19/99 349883 167 10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			160	
10/20/99 350093 210 10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			167	
10/21/99 350197 104 10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			210	
10/22/99 129.6 avg. flow 10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			104	
10/23/99 129.6 avg. flow 10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			129.6	
10/24/99 350576 129.6 avg. flow 10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			129.6	
10/25/99 350739 163 10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			129.6	avg. flow
10/26/99 350896 157 10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			163	
10/27/99 351001 105 10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			157	
10/28/99 351057 56 10/29/99 125 avg. flow 10/30/99 125 avg. flow			105	
10/29/99 125 avg. flow 10/30/99 125 avg. flow			56	
10/30/99 125 avg. flow			125	
OVA FOW			125	
	10/31/99		125	avg. flow

Avg. Daily Flow (gal).	160.6	
] = DRY V	AULT GROUNDWATER	RELIEF
		gallons
TOTAL GALLONS	0.0	_

Avg. Flow = flow between data points divided by days of missing data

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 10/19/99 Group Number: 9901-1552 RECLIVED

OCT 26 1999

OLIN-ENVIRONMENTAL REMEDIATION GROUP

Prepared For: Mr. John Burns Olin Corporation P.O. Box 248

1186 Lower River Road NW

Oliver Dendleton

Site: Frontier - Pendleton

Field and Laboratory Information

Ł	AND TO CHENTIAL CONTROL	WST tab #4	, Matrix :	Date: Sampled	Date:Received	e une	,
1	GAC2 9J04 (671-677)	WS57463	Aqueous	10/04/99	10/05/99	12:30	
	Sample Status Upon Receipt	: No irregulari	ties.				

Analytical Services	
Number of Samples	Turnaround Time
1	Standard
	1 1 1

Report Released By: Daniel Vollmer, Laboratory QA/QC Office

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register 40-CFR Bart 136 Guidelines Establishing Test Fracedures for the Abaysis of Rollulanus Under the Clean Ward. Act

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods.
Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

ORGANIC DATA QUALIFIERS

- U Indicates compound was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets identification criteria, but the result is less than the sample quantitation limit but greater than zero.
- Confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as the sample.
- E This flag identifies all compounds whose concentrations exceed the calibration range of the GC/MS instrument of that specific analysis.
 - **D** This flag identifies all compounds identified in an analysis at a secondary dilution factor.
 - **G** Matrix spike recovery is greater than the expected upper limit of analytical performance.
 - L Matrix spike recovery is less than the expected lower limit of analytical performance.
 - # Indicates that a surrogate recovery was found to be outside the expected limits of analytical performance.
 - **\$ -** Indicates that the surrogate compound was diluted out. The sample had to be diluted to obtain analytical results and a recovery could not be calculated.
 - (%) Indicates that the compound is a surrogate and that the value reported for this compound is in percent recovery. The quality control recovery limits are indicated in the detection limit or QC limits column.

Waste Stream Technology, Inc. 40 CFR Part 136 Method 624 EPA 624

Site: Frontier - Pendleton Date Sampled: 10/04/99 Date Received: 10/05/99 Group Number: 9901-1552

Units: ug/L Matrix: Aqueous

WST ID: WS57463

Client ID: GAC2 9JO4 (671-677)

Extraction Date: NA Date Analyzed: 10/06/99

Compound	Detection Limit	Result	QC Limits (%)	Qualifier
chloromethane	2.0	Not detected		U
rinyl chloride	2.0	Not detected		U
promomethane	2.0	Not detected		U
hloroethane	2:0.	Not detected	an de la comita de la descripció de la comita	ل چمتر جموراها ورفع
achloroffuoromethanetex	enisse 20 ese	Not defected.	CONTRACT TO THE OWNER OF THE PARTY.	
T-dichloroethene	** ** * * 0 *****	(Not detected)		Service Design
nethylene chloride	2.8	Not detected		. U
rans-1,2-dichloroethene	1.0	Not detected	الأعاد الدوام المستحرين الأمراع والعنيا الاعرا	U Constante madair (constante)
Colonia Coloni	AMA THAT THE SAME	the blocks and degree	es electronic production and all	September 1
chloroform	1.0	Not detected	and a second control of the second control o	U .
1,1,1-trichloroethane	4.04	Not detected		O
carbon tetrachloride	1.0	Not detected		U
penzene	1.0	Not detected		U
1,2-dichloroethane	1.0	Not detected		U
richloroethene	1.0	Not detected		U
1,2-dichloropropane	1.0	Not detected		U
romodichloromethane	1.0	Not detected		U
2-chloroethylvinyl ether	2.0	Not detected		U
cis-1,3-dichloropropene	1.0	Not detected		U
oluene	1.0	Not detected		U
trans-1,3-dichloropropene	1.0	Not detected		U
1,1,2-trichloroethane	1.0	Not detected		U
etrachloroethene	1.2	Not detected		U
dibromochloromethane	1.0	Not detected		U
chlorobenzene	1.0	Not detected		U
ethylbenzene	1.0	Not detected		U
bromoform	1.0	Not detected		U
1,1,2,2-tetrachloroethane	1.0	Not detected		U
1,3-dichlorobenzene	1.0	Not detected		U
1,4-dichlorobenzene	1.0	Not detected		U
1,2-dichlorobenzene	1.0	Not detected		U
4-methyl-2-pentanone	10	Not detected		U
1,2-Dichloroethane-d4 (%)		101	76-114	
Toluene-d8 (%)		100	88-110	
Bromofluorobenzene (%)		102	86-115	

Dilution Factor

1

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier - Pendleton Date Sampled: 10/04/99 Date Received: 10/05/99 Group Number: 9901-1552

Units: mg/L Matrix: Aqueous

WST ID: WS57463

Client ID: GAC2 9JO4 (671-677)

Digestion Date: 10/15/99

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	10/19/99	EPA 200.9
Boron by ICP	0.012	0.689	10/18/99	EPA 200.7
Chromium by ICP	0.005	Not detected	10/18/99	EPA 200.7

Site: Frontier - Pendleton Date Sampled: 10/04/99 Date Received: 10/05/99

Group Number: 9901-1552

Matrix: Aqueous

WST ID: WS57463

Client ID GAC2 9JO4 (671-677)

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Cyanide in Water	EPA 335.2	0.005	Not detected	mg/L	10/13/99
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	10/11/99
Total Recoverable Phenol Total Suspended Solids	FPA 160 # 6		Not detected	z mod.	#15 201017e9

10	PECIAL DETECTION LIMITS	REQUIRED. YES NO If yes please attach requirements.	ls a QC Package required: YES NO If yes please attach requirements			OFFICE USE		SAR2 1055000	11					10000						E: TIME:	
PAGE	ARES	KEUU Y If yes p	Is a QC				TYPE OF CONTAINER/ COMMENTS:	JINO3 C	1/2504	NaoH	20%	1/62.	//cr-	:52						DATE	DATEI
SE ONLY		TURN AROUND TIME:	QUOTATION NUMBER:	ANALYSES TO BE PERFORMED	7/10	NO TO	<i>_</i>												Section of the sectio		Contraction of the second
OFFICE USE ONLY GROUP #	DUE DATE		SL SLUDGE SO SOIL S SOLID W WIPE OTHER	ANALYSES TO		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\														RECEIVED BY	RECEIVED BY
1. 66 4	gehrology Inc.	(X, (Zi6) 876-2412	OW DRINKING WATER GW GROUND WATER SW SURFACE WATER WAY WASTE WATER GOIL	SÄ	9	79 1997 5 190319 5 190319	6) /d /g/									• . •				TTIME:	TIME
N OFF	ım Techr					Id I BTON	NAS		Jung)	j dwo	0.40		dwg	3.0	37			649		N. C.	
3	Waste Street	(716) 276-5290 • E		34.24	DFING 6	E SAMPLE		dwy) 300 60/6/	19 16/16		500 m. 10/4,59 1801 Co.	10/4/1/10 10 1 1. (1.4	1) 10 100 100 100	6.14/9.7 100 F 8 Ca							
					En Olylor.			(111)	(11)	$\eta(n)$		(40 ME)	(yome	7 (40 ML) 16/4/97						di carpetti sed q fe t come fort t e	
CHAIN OF CUSTODY	27.5		ACT ()	, (),	19 Frentia	ESC / F I	SAMPLEID	4304 671	9504 672	7JOH 673	419 674	519 4266	924 6050	129 6050			10 REMARKS:		6.00	RELINQUISHED BY:	NUSIED F
SEPO SEPO			CONTACT PH. # ()	FAX # (BILL TO:	PO#	PROJEC	.	_	. 7	က	4	သ	9	7	8	6	10 REMA			RELII	RELI

December 1, 1999

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (11/5/99 Monthly Sample)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the November 5, 1999, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

In addition, enclosed is a revised Analytical Summary Report and a Laboratory Data Result Report for October 1999. Due to a typographical error the detection limit for 4-methyl-2-pentanone was initially reported as 10 ug/L. The detection limit has been corrected to 5.0 ug/L.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

ohn M. Burns

For the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

John M. Burns

David Cook, Esq. Nixon, Hargrave, Devans & Doyle 900 Clinton Square P.O. Box 1051 Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI .48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis McCanna SIVACO P.O. Box 646 3937 River Road Tonawanda, NY 14151-0646

Brent Schindler, Esq.
Dow Chemical
Base of Loveridge Road
P.O. Box 1398
Pittsburgh, CA 94565

Frontier Chemical - Pendleton Site November 1999 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

353,362	Gallons Discharged Prior To	11/5/99
	Gallons Since Last Report	
204	Average Daily Flow Based on 3	2 days Between Samples

			11/5/99
Parameters	Permit	Detection	Sample
	Limit	Limits	Results
eatment System Discharge	GPD		GPD
Discharge Rate (1)	662		
24 Analytes	ug/L	ug/L	ug/L
Toluene	10.0	1.0	
1,2-Dichloroethane	10.0	1.0	
4-Methyl-2-Pentanone	10.0	5.0	
Vinyl Chloride	10.0	2.0	
Methylene Chloride	10.0	2.8	
trans-1,2-Dichloroethene	10.0	1.0	
1,1,1-Trichloroethane	10.0	1.0	
Trichloroethene	10.0	1.0	
Benzene	10.0	1.0	
Chloromethane		2.0	
Bromomethane		2.0	
Chloroethane	[2.0	
Chloroform	1	1.0	
Carbon Tetrachloride	1	1.0	
1.1-Dichloroethene		1.0	
Trichlorofluoromethane	1 1	2.0	
		1.0	
1,1-Dichloroethane		1.0	
1,2-Dichloropropane	Į.	1.0	
Bromodichloromethane	1	2.0	
2-Chloroethylvinyl ether		1,0	
cis-1,3-Dichloropropene	1	1.0	
trans-1,3-Dichloropropene	1	1.0	
1,1,2-Trichloroethane		1.2	
Tetrachloroethene	i	1.0	
Dibromochloromethane	l l	1.0	
Chlorobenzene	i	1.0	
Ethylbenezene			
Bromoform		1.0	
1,1,2,2-Tetrachioroethane		1.0	
1,3-Dichlorobenzene		1.0	
1,4-Dichlorobezene]	1.0 1.0	
1,2-Dichlorobenzene			
Sum of 624 Analytes		100.0	0.0 ug/L
608 Pesticides (2)	ug/L 10.0	ug/L	ag/L
alpha BHC	20.0	B	
beta BHC	10.0		
delta BHC			
gamme BHC	10.0		
Heptachlor	8.0	4	
Aldrin	8.0	1	l .
Heptachlor Epoxide	9.0		
4,4-DDE	20.0		
Methoxychlor `	18.0		mg/L
Metals	mg/L		
Antimony	0.1	2	•
Boron	4.00		
Chromium	5.33		
Cyanide(T)	2.0		
Other	mg/L		
Total Phenolics	N/		
TSS	300	4.000	4.000

Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group. Detected in blank Not applicable

Legend: (1) (2) (B) NA

FRONTIER CHEMICAL PENDLETON DAILY FLOW SHEET NOVEMBER 1999

	TOTALIZER	DAILY	
DATE	READING	FLOW	COMMENTS
11/1/99	351535	103	
11/2/99	352817	1282	Significant Rain Event
11/3/99	353153	336	
11/4/99	353497	344	
11/5/99		109.3	Sampling/Inspection & avg. flow
11/6/99		109.3	avg. flow
11/7/99	353825	109.3	avg. flow
11/8/99	353929	104	
11/9/99	354089	160	
11/10/99	354305	216	
11/11/99	354410	105	
11/12/99		160.3	avg. flow
11/13/99		160.3	Site Inspection & avg. flow
11/14/99	354888	160.3	avg. flow
11/15/99		141.9	avg. flow
11/16/99		141.9	avg. flow
11/17/99		141.9	avg. flow
11/18/99		141.9	Changed filter bags BF1 & BF2 & avg. flow
11/19/99		141.9	avg. flow
11/20/99		141.9	avg. flow
11/21/99	355881	141.9	avg. flow
11/22/99	356040	159	
11/23/99	356146	106	
11/24/99		280	avg. flow
11/25/99		280	avg. flow
11/26/99		280	avg. flow
11/27/99		280	avg. flow
11/28/99	357546	280	avg. flow
11/29/99	357656	110	
11/30/99	357819	163	

Avg. Daily Flow (gal).	213.0	
 = DRY VA	AULT GROUNDWATER	RELIEF
		gallons
<u> </u>		
TOTAL GALLONS	0.0	

Avg. Flow = flow between data points divided by days of missing data

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Report Date: 11/19/99 Group Number: 9901-1766

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier Pendleton

Field and Laboratory Information

Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time							
9K05678	WS58798	Aqueous	11/05/99	11/05/99	14:00							
9K05679	WS58799	Aqueous	11/05/99	11/05/99	14:00							
9K05680	WS58800	Aqueous	11/05/99	11/05/99	14:00							
9K05681	WS58801	Aqueous	11/05/99	11/05/99	14:00							
Sample Status Upon Rec	eipt : No irregular	ities.			Sample Status Upon Receipt : No irregularities.							

Analytical Services

Analytical Parameters

Metals

Cyanide

Phenol

Total Suspended Solids

Analytical Services

Number of Samples

Turnaround Time

Standard

Standard

Standard

Standard

Standard

Report Released By : Van

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier Pendleton Date Sampled: 11/05/99 Date Received: 11/05/99 Group Number: 9901-1766

Units: mg/L Matrix: Aqueous

WST ID: WS58798 Client ID: 9K05678 Digestion Date: 11/08/99

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	11/11/99	EPA 200.9
Boron by ICP	0.012	0.390	11/15/99	EPA 200.7
Chromium by ICP	0.005	Not detected	11/15/99	EPA 200.7

Site: Frontier Pendleton Date Sampled: 11/05/99 Date Received: 11/05/99 Group Number: 9901-1766

Matrix: Aqueous

WST ID: WS58799 Client ID 9K05679

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	11/12/99

Site: Frontier Pendleton Pate Sampled: 11/05/99 Pate Received: 11/05/99 Group Number: 9901-1766

Matrix: Aqueous

WST ID: WS58800 Client ID 9K05680

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Cyanide in Water	EPA 335.2	0.005	Not detected	mg/L	11/17/99

Site: Frontier Pendleton Date Sampled: 11/05/99 Date Received: 11/05/99 Group Number: 9901-1766

Matrix: Aqueous

WST ID: WS58801 Client ID 9K05681

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Suspended Solids	EPA 160.2	4.0	Not detected	mg/L	11/09/99

OFFICE USE ONLY NS-28801 (C) → ARE SPECIAL DETECTION LIMITS REQUIRED: YES NO YES NO If yes please attach requirements. If yes please attach requirements WST. I.D. Is a QC Package required: YES NO Р H2504 TYPE OF CONTAINER/ COMMENTS: NAO H 9 PAGE 7W009 QUOTATION NUMBER: TURN AROUND TIME: ANALYSES TO BE PERFORMED OFFICE USE ONLY **DUE DATE** GROUP #_ SL SLUDGE SO SOIL S SOLID W WIPE OTHER DW DRINKING WATER GW GROUND WATER SW SURFACE WATER WW WASTE WATER O OIL 302 Grote Street, Buffalo, NY 14207 (716) 876-5290 • FAX (716) 876-2412 Waste Stream Technology Inc. **WASTE STREAT** TECHNOLOGY TOTAL NO. OF CONTAINERS SAMPLE TYPE "15/49 CONIN 520, 11/5/94 (COL) 8". "15/99 COMO DATE SAMPLED CHAIN OF CUSTODY 4K04678 G KO # 680 JK04679 KO#68 MULLICATION REPORT TO: COLLON FAX # (CONTACT PH. # (BILL TO: 9 2

RELINQUISHED, B

REMARKS:

9

ω

DATE:

RECEIVED BY:

多ではとびらずへく

FAX LEAD SHEET

RECLIVED

NOV 2 9 1999

OLINE REMEDIATION GROUP

WASTE STREAM TECHNOLOGY

302 GROTE STREET BUFFALO, NY 14207 Phone (716)876-5290 Fax (716)876-2412

DATE: 11/22/99

NUMBER OF PAGES (including cover): 2

TO: Mr. John Burns

FROM: Dan Vollmer () \(\square\).

FAX NUMBER: 423-336-4166

MESSAGE:

Revised result report for the Method 624 analysis of the GAC 2 sample (WS57463) from the Frontier-Pendleton site collected 10/4/99. The detection limit reported for 4-methyl-2-pentanone has been corrected to 5.0 ug/L. The 10 ug/L detection limit initially reported was a typographical error.

Please contact me if you have any additional questions or comments regarding the result report for this sample. I apologize for the oversight. The original hard copy of the revised Method 624 result report will be in the mail to you tomorrow.

Waste Stream Technology, Inc. 40 CFR Part 136 Method 624 EPA 624

Site: Frontier - Pendleton Date Sampled: 10/4/99 Date Received: 10/5/99 Group Number: 9901-1552

Units: µg/L Matrix: Aqueous

WST ID: WS57463 lient ID: GAC 2

Extraction Date: NA
Date Analyzed: 10/6/99

Compound	Detection Limit	Result	QC Limits (%)	Qualifier
chloromethane	2.0	Not detected		U
vinyl chloride	2.0	Not detected		U
bromomethane	2.0	Not detected		U
chloroethane	2.0	Not detected		U
trichlorofluoromethane	2.0	Not detected		U
1,1-dichloroethene	1.0	Not detected		U
methylene chloride	2.8	Not detected		U
trans-1,2-dichloroethene	1.0	Not detected		U
1,1-dichloroethane	1.0	Not detected		U
chloroform	1.0	Not detected		U
1.1,1-trichloroethane	1.0	Not detected		U
carbon tetrachloride	1.0	Not detected		U
benzene	1.0	Not detected		U
1,2-dichloroethane	1.0	Not detected		U
trichloroethene	1.0	Not detected		U
,2-dichloropropane	1.0	Not detected		U
bromodichloromethane	1.0	Not detected		U
2-chloroethylvinyl ether	2.0	Not detected		U
cis-1,3-dichloropropene	1.0	Not detected		U
toluene	1.0	Not detected		U
trans-1,3-dichloropropene	1.0	Not detected		U
1,1,2-trichloroethane	1.0	Not detected		U
tetrachloroethene	1.2	Not detected		U
dibromochloromethane	1.0	Not detected		U
chlorobenzene	1.0	Not detected		U
ethylbenzene	1.0	Not detected		U
bromoform	1.0	Not detected		U
1,1,2,2-tetrachloroethane	1.0	Not detected		U
1,3-dichlorobenzene	1.0	Not detected		U
1,4-dichlorobenzene	1.0	Not detected		U
1,2-dichlorobenzene	1.0	Not detected		U
4-methyl-2-pentanone	5.0	Not detected		U
1,2-Dichloroethane-d4 (%)	0.0	101	76-114	
		100	88-110	
Toluene-d8 (%)		102	86-115	
Bromofluorobenzene (%)		102		

Dilution Factor

1

Frontier Chemical - Pendleton Site October 1999 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

346,972	Gallons Discharged Prior To	10/4/99
	Gallons Since Last Report	
120	Average Daily Flow Based on 3	3 days Between Samples

		Da14	Detection		10/4/99 Sample
	<u>Parameters</u>	Permit	Limits		Results
	Out to Pinchare	Limit GPD	Limits		GPD
	System Discharge Discharge Rate (1)	662			
24 Analyte		ug/L	ug/L		ug/L
	Toluene	10.0	1.0	<	1.0
	,2-Dichloroethane	10.0	1.0	<	1.0
	-Methyl-2-Pentanone	10.0	5.0	<	5.0
	/inyl Chloride	10.0	2.0	<	2.0
	Methylene Chloride	10.0	2.8	<	2.8
	rans-1,2-Dichloroethene	10.0	1.0	<	1.0
,	I,1,1-Trichloroethane	10.0	1.0	<	1.0
	Frichloroethene	10.0	1.0	<	1.0
	Benzene	10.0	1.0	<	1.0
	Chloromethane	t	2.0	<	2.0
	Sromomethane		2.0	<	2.0
-	Chloroethane		2.0	<	1.0
	Chloroform	1	1.0	<	1.0
	Carbon Tetrachloride	1	1.0	<	1.0
	1.1-Dichloroethene		1.0	<	1.0
	Trichlorofluoromethane		20	<	2.0
	1.1-Dichloroethane	1	1.0	<	1.0
	1,7-Dichloropropane	1	1.0	<	1.0
	r,2-Dictioroptopane Bromodichloromethane	1	1.0	<	1.0
	2-Chloroethylvinyl ether	i i	2.0	<	1.0
			1.0	<	1.0
	cis-1,3-Dichloropropene trans-1,3-Dichloropropene		1.0	<	1.0
	1,1,2-Trichloroethane	1	1.0	<	1.0
	Tetrachloroethene		1,2	~	1,2
	Dibromochloromethane	1	1.0	u	1.0
	Chlorobenzene		1.0	8	1.0
	Ethylbenezene		1.0	<	1.0
			1.0	~	1.0
	Bromoform		1.0	¥	1.0
	1,1,2,2-Tetrachloroethane	1	1.0	R.	1.0
	1,3-Dichlorobenzene 1.4-Dichlorobezene		1.0	R	1.0
		1	1.0	H	1.0
	1,2-Dichlorobenzene		100.0		42.0
	Sum of 624 Analytes	ug/L	ug/L		ug/L
608 Pestic		10.0	ugra	1	
	alpha BHC	20.0			
	beta BHC	10.0			
	delta BHC	10.0			
	gamme BHC	8.0			
	Heptachlor	8.0			
	Aldrin	9.0		H	
	Heptachlor Epoxide	20.0			
	4,4-DDE	18.0			
	Methoxychlor	mg/L		1	mg/L
Metals					0.009
	Antimony	0.1 4.00		R	0.069
	Boron	****			0.005
	Chromlum	5.33		9	0.005
	Cyanide(T)	2.0			mg/L
Other		mg/L			0.005
	Total Phenolics	NA		8	4.000
l	TSS	300	4.000) <	4.000

- Legend: (1) (2) (B) NA Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group.
- Detected in blank
- Not applicable

January 17, 2000

VIA AIRBORNE EXPRESS

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (12/3/99 Monthly Sample) Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the December 3, 1999, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

Idhn M. Burns

For the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

David Cook, Esq.
Nixon, Hargrave, Devans & Doyle
900 Clinton Square
P.O. Box 1051
Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis P. Harkowitz. Esq. Jaecekle, Fleishman & Mugel Fleet Bank Building Twelve Fountain Plaza Buffalo, NY 14202-2292

Brent Schindler, Esq.
Dow Chemical
Base of Loveridge Road
P.O. Box 1398
Pittsburgh, CA 94565

FRONTIER CHEMICAL PENDLETON DAILY FLOW SHEET DECEMBER 1999

	TOTALIZER	DAILY	
DATE	READING	FLOW	COMMENTS
12/1/99	357930	111.0	
12/2/99	358087	157.0	
12/3/99		141.0	Sampling/Inspection & avg. flow
12/4/99		141.0	avg. flow
12/5/99	358510	141.0	avg. flow
12/6/99	358617	107.0	
12/7/99	358784	167.0	
12/8/99	358943	159.0	
12/9/99	359046	103.0	
12/10/99		248.3	avg. flow
12/11/99		248.3	avg. flow
12/12/99	359791	248.3	avg. flow
12/13/99	359948	157.0	
12/14/99	360492	544.0	
12/15/99	361041	549.0	
12/16/99		249.0	avg. flow
12/17/99		249.0	avg. flow
12/18/99		249.0	avg. flow
12/19/99	362037	249.0	avg. flow
12/20/99	362199	162.0	
12/21/99	362356	157.0	
12/22/99	362525	169.0	
12/23/99	362578	53.0	
12/24/99	362631	53.0	
12/25/99	362683	52.0	
12/26/99		123.7	avg. flow
12/27/99		123.7	avg. flow
12/28/99	362896	123.7	avg. flow
12/29/99		35.0	avg. flow
12/30/99		35.0	avg. flow
12/31/99	363001	35.0	avg. flow

	Avg. Daily Flow (gal).	172.3		
	= DRY VA	AULT GROUNDWATER	RELIEF	
L			gallons	
	TOTAL GALLONS	0.0		

Avg. Flow = flow between data points divided by days of missing data

Frontier Chemical - Pendleton Site November 1999 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

358,702	Gallons Discharged Prior To	<u>12/3/99</u>
5,340	Gallons Since Last Report	
172	Average Daily Flow Based on 28	days Between Samples

			12/3/99
•	n	Detection	
<u>Parameters</u>	Permit		Sample
	Limit	Limits	Results
Treatment System Discharge	GPD		GPD
Discharge Rate (1)	662		
624 Analytes	ug/L	ug/L	ug/L
Toluene	10.0	1.0	1
1,2-Dichloroethane	10.0	1.0	· ·
4-Methyl-2-Pentanone	10.0	5.0	į
Vinyl Chloride	10.0	2.0	i
Methylene Chloride	10.0	2.8	ŀ
trans-1,2-Dichloroethene	10.0	1.0	i
1,1,1-Trichloroethane	10.0	1.0	1
Trichloroethene	10.0	1.0	1
Benzene	10.0	1.0	
Chloromethane		2.0	
Bromomethane		2.0	1
Chloroethane		2.0	
Chloroform	į	1.0	1
Carbon Tetrachloride		1.0	i
1,1-Dichloroethene		1.0	
Trichlorofluoromethane		2.0	
1.1-Dichloroethane		1.0	
1,2-Dichloropropane		1.0	1
Bromodichloromethane		1.0	
2-Chloroethylvinyl ether		2.0	
cis-1,3-Dichloropropene		1.0	
trans-1,3-Dichloropropene		1.0	
1.1.2-Trichloroethane		1.0	
Tetrachloroethene		1.2	
Dibromochloromethane		1.0	
		1.0	
Chlorobenzene		1.0	
Ethylbenezene		1.0	
Bromoform		1.0	
1,1,2,2-Tetrachloroethane		1.0 1.0	
1,3-Dichlorobenzene		1.0	
1,4-Dichlorobezene		1.0	
1,2-Dichlorobenzene			
Sum of 624 Analytes		100.0	0.0
608 Pesticides (2)	ug/L	ug/L	ug/L
alpha BHC	10.0		
beta BHC	20.0		
delta BHC	10.0		
gamme BHC	10.0		
Heptachlor	8.0		
Aldrin	8.0		·
Heptachlor Epoxide	9.0		
4,4-DDE	20.0		
Methoxychlor	18.0		
Metals	mg/L	mg/L	mg/L
Antimony	0.1	0.009	< 0.009
Boron	4.00	0.012	
Chromium	5.33	0.005	
Cyanide(T)	2.0	0.005	< 0.005
Other	mg/L	mg/L	mg/L
Total Phenolics	NA.	0.005	< 0.005
TSS	300	4.000	< 4.000
Control of the second s			

Legend:

- Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group. (1) (2) (B) NA
- Detected in blank Not applicable

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

GLIN-EnvironmenTAL REMEDIATION GROUP

Analytical Data Report

Report Date: 12/17/99 Group Number: 9901-1930

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: E414 Frontier Pendleton

Field and Laboratory Information

Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time
9L03682	WS59621	Aqueous	12/03/99	12/03/99	16:00
9L03683	WS59622	Aqueous	12/03/99	12/03/99	16:00
9L03684	WS59623	Aqueous	12/03/99	12/03/99	16:00
9L03685	WS59624	Aqueous	12/03/99	12/03/99	16:00
Sample Status Upon Red	ceipt : No irregular	ities.			

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	1	Standard

Report Released By : 1

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: E414 Frontier Pendleton

Date Sampled: 12/03/99 Date Received: 12/03/99 Group Number: 9901-1930

Units: mg/L Matrix: Aqueous

WST ID: WS59621 Client ID: 9L03682 Digestion Date: 12/07/99

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	12/15/99	EPA 200.9
Boron by ICP	0.012	0.422	12/08/99	EPA 200.7
Chromium by ICP	0.005	Not detected	12/08/99	EPA 200.7

Site: E414 Frontier Pendleton Date Sampled: 12/03/99

Date Received: 12/03/99

Group Number: 9901-1930

Matrix: Aqueous

WST ID: WS59622 Client ID 9L03683

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Recoverable Phenol	EPA 420.1	0.005	Not detected	mg/L	12/10/99

Site: E414 Frontier Pendleton Date Sampled: 12/03/99 Date Received: 12/03/99 Group Number: 9901-1930

Matrix: Aqueous

WST ID: WS59623 Client ID 9L03684

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Cyanide in Water	EPA 335.2	0.005	Not detected	mg/L	12/08/99

Site: E414 Frontier Pendleton

Date Sampled: 12/03/99 Date Received: 12/03/99 Group Number: 9901-1930

Matrix: Aqueous

WST ID: WS59624 Client ID 9L03685

Analysis	Method Reference	Detection Limit	Result	Units	Date Analyzed
Total Suspended Solids	EPA 160.2	4.0	Not detected	mg/L	12/07/99

む	CHAIN OF CUSTODY				OFFICE US	E ONLY	(PAGE	ام! ا
REPORT TO:	RT TO: Chin (Old)	TECHNO	10 L 0 G Y		GROUP#_	GROUP # (-/(/)/-//			
		Waste Stream Technology Inc.	chnology Inc.		DUE DATE			ARE SPECIAL DETECTION LIMITS	ECTION LIMITS
		(716) 876-5290 • FAX (716) 876-2412	X (716) 876-241	01		TURN AROUND	TIME:	KECUIKED: YES NO If ves please attach requirements.	requirements.
			DW DRINKING		SL SLUDGE	1080 1013	2/3		
CONTACT	ACT		SW SURFACE WATER		oll.	QUOTATION NUMBER:	MBER:	Is a QC Package required:	quired:
PH. # (WWW WASTE W/O		w wire OTHER			YES NO If yes please attach requirements	equirements
FAX # (()			ANA	I YSES TO	ANA! YSES TO BE PERFORMED			
BILL TO	.o		ERS				,		
		_	NIAT	_	_				
#Od		ĐNI7a	Noo.	<u></u>					
PROJE	PROJECT DESCRIPTION OF 1414 TONIETO	AMPLE P SAMI	10 ON	3piv 5/00		_			
SAMPI	1	NAMPLI	13 HO TO	27 VV		<u></u>		TYPE OF CONTAINER/	OFFICE USE ONLY
7	SAMPLE I.D.) o) _	/ /9/	/ /) /		00 /	MMENTS:	WST. I.D.
Ŀ	13682	184/99 (PMP) (OMP)					7/	HN03	1055/1621
2	9663683	0 mg) Worl 1 66/5/c/				-	7/	112504	77
8	3 684	12/3/89 112°A COMP					W BOG	HOVN TURBLE	2
4	37 685 649	12/3/9/ 1120 (cmp		-			714005	Job 71	424
2									
9									
7	-				•				
ω						-			
6									
10				,		-			
REMARKS:	KS:								

DATE: TIME:	12/03/99 150
REGENED BY	REGEIVED BY:
1213199 TIME 3 25 PM	DATE: 199 // 100
RELINGUISHED BY MAY CO.	RELINQUISHE LOND

February 7, 2000

VIA AIRBORNE EXPRESS

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject:

Analytical Sampling Results (1/13/2000 Monthly Sample)

Groundwater Discharge Through Pre-Treatment System

Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the January 13, 2000, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

kor the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

David Cook, Esq.
Nixon, Hargrave, Devans & Doyle
900 Clinton Square
P.O. Box 1051
Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley
Allied Signal, Inc.
101 Columbia Road
P.O. Box 1139
Morristown, NJ 07962

Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Jennifer Sargent, Esq. Key Center Suite 1230 50 Fountain Plaza Buffalo, NY 14202-2212

Dennis P. Harkowitz. Esq. Jaecekle, Fleishman & Mugel Fleet Bank Building Twelve Fountain Plaza Buffalo, NY 14202-2292

Brent Schindler, Esq. Dow Chemical Base of Loveridge Road P.O. Box 1398 Pittsburgh, CA 94565

Frontier Chemical - Pendleton Site November 1999 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

364,042	Gallons Discharged Prior To	1/13/00
6,111	Gallons Since Last Report	
149	Average Daily Flow Based on 41	days Between Samples

			1/13/00
B	Permit	Detection	
<u>Parameters</u>		R	Sample
	Limit GPD	Limits	Results GPD
Treatment System Discharge	662		GFD
Discharge Rate (1)		ug/L	ug/L
624 Analytes	ug/L 10.0	1.0	ug/L
Toluene			
1,2-Dichloroethane	10.0	1.0	1
4-Methyl-2-Pentanone	10.0	5.0	
Vinyl Chloride	10.0	2.0	
Methylene Chloride	10.0	2.8	
trans-1,2-Dichloroethene	10.0	1.0	
1,1,1-Trichloroethane	10.0	1.0	
Trichloroethene	10.0	1.0	
Benzene	10.0	1.0	
Chloromethane		2.0	
Bromomethane		2.0	
Chloroethane		2.0	
Chloroform	1	1.0	
Carbon Tetrachloride		1.0	
1,1-Dichloroethene		1.0	
Trichlorofluoromethane		2.0	
1,1-Dichloroethane		1.0	
1,2-Dichloropropane	I	1.0	
Bromodichloromethane		1.0	
2-Chloroethylvinyl ether		2.0	
cis-1,3-Dichloropropene		1.0	
trans-1,3-Dichloropropene	1	1.0	
1,1,2-Trichloroethane	1	1.0	
Tetrachloroethene		1.2	
Dibromochloromethane	l l	1.0	
Chlorobenzene		1.0	
Ethylbenezene		1.0	
Bromoform		1.0	
1.1.2.2-Tetrachloroethane	1	1.0	
1,3-Dichlorobenzene		1.0	
1,4-Dichlorobezene		1.0	
1,2-Dichlorobenzene		1.0	
Sum of 624 Analytes		100.0	0.0
608 Pesticides (2)	ug/L	ug/L	ug/L
alpha BHC	10.0	Ť	The state of the s
beta BHC	20.0	1	
delta BHC	10.0	1	
gamme BHC	10.0	· .	
Heptachlor	8.0	ı	
Aldrin	8.0	ı	
Heptachlor Epoxide	9.0		
4.4-DDE	20.0	ĺ	
Methoxychlor	18.0		
Metals	mg/L	mg/L	mg/L
Antimony	0.1	0.009	< 0.009
Boron	4.00	0.012	0.610
Chromium	5.33	0.005	< 0.005
Cyanide(T)	2.0	0.005	< 0.005
Other	mg/L	mg/L	mg/L
Total Phenolics	NA NA	0.005	< 0.005
TSS	300	4.000	< 4.000
t			

Legend:

- Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group. Detected in blank (1) (2) (B) NA

- Not applicable

FRONTIER CHEMICAL PENDLETON DAILY FLOW SHEET JANUARY 2000

	TOTALIZER	DAILY	
DATE	READING	FLOW	COMMENTS
1/1/00	363001	35.0	avg. flow
1/2/00	363173	172.0	
1/3/00		81.0	avg. flow
1/4/00		81.0	avg. flow
1/5/00		81.0	avg. flow
1/6/00		81.0	avg. flow
1/7/00		81.0	avg. flow
1/8/00		81.0	avg. flow
1/9/00	363821	81.0	avg. flow
1/10/00	363872	51.0	
1/11/00	363924	52.0	
1/12/00	363977	53.0	
1/13/00	364271	25.5	Sampling/Inspection & avg. flow
1/14/00		25.5	avg. flow
1/15/00		25.5	avg. flow
1/16/00	364373	25.5	avg. flow
1/17/00	364426	53.0	
1/18/00	364478	52.0	Inspection
1/19/00	364530	52.0	
1/20/00	364581	52.0	avg. flow
1/21/00		52.0	avg. flow
1/22/00		52.0	avg. flow
1/23/00	364789	52.0	avg. flow
1/24/00	364840	51.0	
1/25/00	364892	52.0	
1/26/00	364944	52.0	avg. flow
1/27/00	364996	51.8	avg. flow
1/28/00		51.8	avg. flow
1/29/00		51.8	avg. flow
1/30/00	365203	51.8	avg. flow
1/31/00	365254	51.0	

	Avg. Daily Flow (gal)	58.4		
	= DRY VA	ULT GROUNDWATER	RELIEF	
L			gallons	
	TOTAL GALLONS	0.0		

Avg. Flow = flow between data points divided by days of missing data

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 01/28/00 Group Number: 2001-094

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier - Pendleton

Field and Laboratory Information

	i ioia aira	aso.aco.j			
Client Id	WST Lab #	Matrix	Date Sampled	Date Received	Time
0A13686	WS60871	Aqueous	01/13/00	01/14/00	12:30
0A13687	WS60872	Aqueous	01/13/00	01/14/00	12:30
0A13688	WS60873	Aqueous	01/13/00	01/14/00	12:30
0A13689	WS60874	Aqueous	01/13/00	01/14/00	12:30
Sample Status Upon Rec	eipt : No irregular	ities.			

Analytical Services	
Number of Samples	Turnaround Time
1	Standard
	Analytical Services Number of Samples 1 1 1 1

Report Released By:

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

ORGANIC DATA QUALIFIERS

- U Indicates compound was analyzed for but not detected.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets identification criteria, but the result is less than the sample quantitation limit but greater than zero.
- **C** This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- **B** This flag is used when the analyte is found in the associated blank as well as the sample.
- **E** This flag identifies all compounds whose concentrations exceed the calibration range of the GC/MS instrument of that specific analysis.
- **D** This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- **G** Matrix spike recovery is greater than the expected upper limit of analytical performance.
- L Matrix spike recovery is less than the expected lower limit of analytical performance.
- # Indicates that a surrogate recovery was found to be outside the expected limits of analytical performance.
- **\$ -** Indicates that the surrogate compound was diluted out. The sample had to be diluted to obtain analytical results and a recovery could not be calculated.
- (%) Indicates that the compound is a surrogate and that the value reported for this compound is in percent recovery. The quality control recovery limits are indicated in the detection limit or QC limits column.

Waste Stream Technology, Inc. Metals Method Blank Analysis

Site: Frontier Pendleton Date Sampled: NA Date Received: NA Group Number: 2001-094

Units: mg/L

WST ID MB012100 Client ID: NA Digestion Date: 01/21/00

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Cr Method Blank	0.005	Not detected	01/25/00	EPA 200.7
Sb Method Blank	0.009	Not detected	01/27/00	EPA 200.9

MB denotes Method Blank NA denotes Not Applicable

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier Pendleton Date Sampled: 01/13/00 Date Received: 01/14/00 Group Number: 2001-094

Units: mg/L Matrix: Aqueous

WST ID: WS60871 Client ID: 0A13686 Digestion Date: 01/21/00

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	01/27/00	EPA 200.9
Boron by ICP	0.012	0.610	01/25/00	EPA 200.7
Chromium by ICP	0.005	Not detected	01/25/00	EPA 200.7

Waste Stream Technology, Inc. Total Recoverable Phenol EPA 420.1

Site: Frontier Pendleton Date Sampled: 01/13/00 Date Received: 01/14/00 Group Number: 2001-094

Matrix: Aqueous Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS60872	0A13687	0.005	Not detected	01/20/00

Waste Stream Technology, Inc. Cyanide in Water EPA 335.2

Site: Frontier Pendleton Date Sampled: 01/13/00 Date Received: 01/14/00 Group Number: 2001-094 Matrix: Aqueous

Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS60873	0A13688	0.005	Not detected	01/18/00

Waste Stream Technology, Inc. Total Suspended Solids EPA 160.2

Site: Frontier Pendleton Date Sampled: 01/13/00 Date Received: 01/14/00 Group Number: 2001-094

Matrix: Aqueous Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS60874	0A13689	4.0	Not detected	01/19/00

כֿ	VUAIN OF CHATON	WASTESTE	5	Edm		- OFI	FICE US	OFFICE USE ONLY	est e			PAGE	_OF	
ZEPO	REPORT TO:	TECHNOL	HNOLC	୍ ୦୦ ୪ ୦୦ ୪		GR	GROUP#_	700	2001-094	4 6		·		
		Waste Stream Technology Inc.	n Techno	ology Inc.	45	DO	DUE DATE					ARE SPECIAL DETECTION LIMITS	ECTION LIMITS	1
		(716) 876-5290 • FAX (716) 876-2412	ii, Dullalo • FAX (71	6) 876-24	112			TURN A	TURN AROUND TIME:	IME:	-	RECOURED: YES NO If yes please attach requirements.	requirements.	
CONTACT	ACT	٠.		DW DRINKING WATER GW GROUND WATER SW SURFACE WATER	S WATER WATER E WATER	SL SLUDGE SO SOIL S SOLID	ш с	QUOTA	QUOTATION NUMBER:	ABER:	·	Is a QC Package required:	equired:	1
PH. # (≥ 0	W WAS IE OIL	WAIEK	W WIFE OTHER						YES NO If yes please attach requirements) requirements	1
FAX # (į ()		_			ANA! YS	SES TO	ANALYSES TO BE PERFORMED	ORMED	٠				
BILL TO:	.0:	_	_	SHE) - 	; j						
				NIAT	(b	7	_		_	<u> </u>				
PO# 100	Fortise Pendleton		CON	NOO	クラ	1001	<u> </u>		_	<u> </u>	· ·	•		
PROJEC	ECT DESCRIPTION	WAS F	E TYP!	//a	775	Eg	<u></u>	_	_	_	_			
SAMP	SAMPLER/SIGNATURE	NE O	JATO	~/·	0143) 1943)) 22 ///	<u> </u>	·	<u></u>	_	TYPE	TYPE OF CONTAINER/	OFFICE USE ONLY	
	SAMPLETD	1 .	л 	-	() V)	<u> </u>	_	_			COMIN	ENTS:	WST. I.D.	
Ŀ		1/3/20 1/30/k		_							71		1660871	
~		113/60 1139									71		7.5	্ৰ
Γ		113601130A	_			-			-		7/		-73	~~-1
		113/0c 1139/h								·	500M	ML	7 7	
5			-						·		-			
9						·								
7				•		•					·			
- 8														
6										_				
9														
REMARKS:	RKS:		÷		•							•		

DATE: RELINQUISHED BY,
RELINQUISHE March 10, 2000

VIA AIRBORNE EXPRESS

Mr. Frank Nerone Chief Operator Niagara County Sewer District #1 7346 Liberty Drive Niagara Falls, NY 14304

Subject: Analytical Sampling Results (2/3/2000 Monthly Sample)
Groundwater Discharge Through Pre-Treatment System
Pendleton (Frontier Chemical) Site

Dear Mr. Nerone:

Enclosed for your review are the analytical results from the February 3, 2000, sampling event for discharge of collected groundwater from the pre-treatment system at the Pendleton Site. Analytical results for this sampling event are compared against the Permit (#98-11) requirements on the attached Analytical Summary and Daily Flow sheets.

A review of the analytical and flow data shows that all permit parameters are significantly below the permit discharge requirements.

This data is being provided for your review and concurrence that all permit parameters are well within their limits. If, following review of the enclosed information, you are not in agreement with the above stated conclusion, please contact me at 423-336-4057 as soon as possible so we may discuss any future monitoring requirements.

Sincerely,

John M. Burns

For the Frontier Chemical - Pendleton Site PRP Group

Enclosures: as stated

John Bu

David Cook, Esq.
Nixon, Hargrave, Devans & Doyle
900 Clinton Square
P.O. Box 1051
Rochester, NY 14604

Dave Moreira
Waste Management – Closed Sites
Department
4 Liberty Lane West
Hampton, New Jersey 03842

Bill Witt Radian 304 West Wackerly St. Midland, MI 48640

David Paley Allied Signal, Inc. 101 Columbia Road P.O. Box 1139 Morristown, NJ 07962 Mark Piazza Elf AtoChem 2000 Market Street Philadelphia, PA 19103

Colleen K. Sanson, Esq.
Law Offices of Ted Hadzi-Antich
Key Center
Suite 1230
50 Fountain Plaza
Buffalo, NY 14202-2212

Dennis P. Harkowitz. Esq. Jaecekle, Fleishman & Mugel Fleet Bank Building Twelve Fountain Plaza Buffalo, NY 14202-2292

Brent Schindler, Esq. Dow Chemical Base of Loveridge Road P.O. Box 1398 Pittsburgh, CA 94565

Frontier Chemical - Pendleton Site February 2000 Analytical Summary for WS 001 Permit # 98-11

Groundwater Discharge Point: D 002

371,116 Gallons Discharged Prior To	2/3/00
7,074 Gallons Since Last Report	
244 Average Daily Flow Based on 21 day	s Between Samples

		Permit	Detection	2/3/00 Sample
	<u>Parameters</u>	Limit	Limits	Results
	-to- Dincharge	GPD	Cinno I	GPD
	stem Discharge charge Rate (1)	662		
4 Analytes	charge race (7)	ug/L	ug/L	ug/L
	uene	10.0	1.0	
1,2	-Dichloroethane	10.0	1.0	
4-N	lethyl-2-Pentanone	10.0	5.0	
Vin	yl Chloride	10.0	2.0	
Me	thylene Chloride	10.0	2.8	
trai	ns-1,2-Dichloroethene	10.0	1.0	
	,1-Trichloroethane	10.0	1.0	
	chloroethene	10.0	1.0	
	nzene	10.0	1.0 2.0	
	loromethane		2.0	
	omomethane		2.0	
	loroethane		1.0	
	loroform rbon Tetrachloride		1.0	
	-Dichloroethene		1.0	
	-Dichloroethene chlorofluoromethane		2.0	
	-Dichloroethane		1.0	
	2-Dichloropropane		1.0	
	omodichloromethane		1.0	
	Chloroethylvinyl ether		2.0	
	3-1,3-Dichloropropene		1.0	
	ins-1,3-Dichloropropene		1.0	
	1,2-Trichloroethane		1.0	
	trachloroethene		1.2	
	bromochloromethane		1.0	
	nlorobenzene		1.0	
Et	hylbenezene		1.0	
	omoform		, 1.0	-
1,1	1,2,2-Tetrachloroethane		1.0	
	3-Dichlorobenzene		1.0	
	4-Dichlorobezene		1.0	
	2-Dichlorobenzene		1.0	0.0
	ım of 624 Analytes		ug/L	ug/L
08 Pesticide		ug/L 10.0	uy/L	~y-
	pha BHC	20.0]	
	eta BHC	10.0		
	elta BHC	10.0		
	amme BHC	8,0		
	eptachlor Idrin	8.0	1	
	eptachlor Epoxide	9.0		
	4-DDE	20.0		
	ethoxychlor	18.0		
Metals		mg/L	mg/L	mg/L
	ntimony	0.1	0,009	< 0.009
	oron	4.00	0.012	0.610
	hromium	5.33	0.005	< 0.005
	yanide(T)	2.0	0.005	< 0.005
Other		mg/L	mg/L	mg/L
	otal Phenolics	NA	0.005	< 0.005
	SS	300	4.000	< 4.000

Legend:

Permit limit @ 662 GPD with maximum daily discharged @ 2500 GPD Discontinued per April 14, 1997 Letter from F. Narrone to PRP Group. (1) (2) (B) NA

Detected in blank Not applicable

DAILY FLOW DATA - PENDLETON SITE FEBRUARY 2000

	TOTALIZER	DAILY FLOW	COMMENTS
DATE	READING		COMMENTS
2/1/00	365305	51.0	
2/2/00	365457	152.0	Fig. 0. Oceanities
2/3/00		42.5	Average Flow & Sampling
2/4/00		42.5	Average Flow
2/5/00		42.5	Average Flow
2/6/00	365627	42.5	Average Flow
2/7/00	365679	52.0	
2/8/00	365782	103.0	
2/9/00	365883	101.0	
2/10/00	365985	102.0	
2/11/00		87.7	Average Flow
2/12/00		87.7	Average Flow
2/13/00	366248	87.7	Average Flow
2/14/00	366299	51.0	
2/15/00	366456	157.0	
2/16/00	366507	51.0	
2/17/00	366609	102.0	
2/18/00		124.0	Average Flow
2/19/00		124.0	Average Flow
2/20/00	366980	123.7	Average Flow
2/21/00	367081	101.0	
2/22/00	367343	262.0	
2/23/00	368279	936.0	Surface water leaking into vault
2/24/00	369169	890.0	Surface water leaking into vault
2/25/00		423.0	Average Flow
2/26/00		423.0	Average Flow
2/27/00	370438	423.0	Surface water leaking into vault & avg flo
2/28/00	370795	357.0	
2/29/00	372327	1532.0	Groundwater relief into sump

AVERAGE DAIL	FLOW IN GALLONS	243.9		
	= DRY VAULT GROU	JNDWATER RELI	EF	
			gallons	
			gallons	
		The second secon	gallons	
			gallons	
	TOTAL GALLONS	0	<u> </u>	

avg =flow between data points divided by days of missing data

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 02/17/00 Group Number: 2001-208

Prepared For:
Mr. John Burns
Olin Corporation
P.O. Box 248
1186 Lower River Road NW
Charleston, TN 37310

Site: Frontier - Pendleton

Field and Laboratory Information

Client Id	WST Lab#	Matrix	Date Sampled	Date Received	Time
00B03686	WS61492	Aqueous	02/03/00	02/03/00	12:50
00B03687	WS61493	Aqueous	02/03/00	02/03/00	12:50
00B03688	WS61494	Aqueous	02/03/00	02/03/00	12:50
00B03689	WS61495	Aqueous	02/03/00	02/03/00	12:50
Sample Status Upon Rec	eipt : No irregular	ities.			

	Analytical Services	
Analytical Parameters	Number of Samples	Turnaround Time
Total Metals	1	Standard
Cyanide	1	Standard
Phenol	1	Standard
Total Suspended Solids	1	Standard
Total Metals Cyanide Phenol	1 1 1 1	Standard Standard

Report Released By:

Daniel Vollmer, Laboratory QA/QC Officer

METHODOLOGIES

The specific methodologies employed in obtaining the analytical data reported are indicated on each of the result forms. The method numbers shown refer to the following U.S. Environmental Protection Agency Reference:

Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020, March 1979, Revised 1983, U.S. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio 45268.

Federal Register, 40 CFR Part 136: Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act. Revised July 1992.

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. Third Edition, Revised December 1996, U.S. EPA SW-846.

Annual Book of ASTM Standards, Volume II. ASTM, 100 Harbor Drive, West Conshohocken, PA 19428-2959.

Standard Methods for the Examination of Water and Wastewater. (20th Edition). American Public Health Association, 1105 18th Street, NW, Washington, D.C. 20036.

Waste Stream Technology, Inc. Metals Analysis Result Report

Site: Frontier Pendleton Pate Sampled: 02/03/00 Jate Received: 02/03/00 Group Number: 2001-208

Units: mg/L Matrix: Aqueous

WST ID: WS61492 Client ID: 00B03686 Digestion Date: 02/15/00

Analyte	Detection Limit	Result	Date Analyzed	Analysis Method
Antimony by GFAA	0.009	Not detected	02/15/00	EPA 200.9
Boron by ICP	0.012	Not detected	02/15/00	EPA 200.7
Chromium by ICP	0.005	Not detected	02/15/00	EPA 200.7

Waste Stream Technology, Inc. Total Recoverable Phenol EPA 420.1

Rite: Frontier Pendleton Jate Sampled: 02/03/00 Date Received: 02/03/00 Group Number: 2001-208 Matrix: Aqueous

Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS61493	00B03687	0.005	Not detected	02/08/00

Waste Stream Technology, Inc. Cyanide in Water EPA 335.2

Rite: Frontier Pendleton Jate Sampled: 02/03/00 Date Received: 02/03/00

Group Number: 2001-208

Matrix: Aqueous

Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed			
WS61494	00B03688	0.005	Not detected	02/08/00			

Waste Stream Technology, Inc. Total Suspended Solids EPA 160.2

Site: Frontier Pendleton Jate Sampled: 02/03/00 Date Received: 02/03/00

Group Number: 2001-208

Matrix: Aqueous Units: mg/L

WST ID	Client ID	Detection Limit	Result	Date Analyzed
WS61495	00B03689	4.0	7.2	02/04/00

PAGEF		ARE SPECIAL DETECTION LIMITS REQUIRED: YES NO If wes please attach requirements.	Is a QC Package required: YES NO If yes please attach requirements			TYPE OF CONTAINER/ ONLY COMMENTS: WST. I.D.	12 (H20) WSICHIGA.		lo o	500ML- (1120) 445		·							DATE: SICO IDAM
OFFICE USE ONLY 208 (2/3	1000	1] .	16 BD (2/2/3) QUOTATION NUMBER:	ANALYSES TO BE PERFORMED						3C)				-					Ten Short
E		NY 14207 6) 876-2412	DW DRINKING WATER SO SOIL GW GROUND WATER SO SOIL SW SURFACE WATER S SOLID WWW WASTE WATER W WIPE O OIL		3p, 51, 95	Be, Charles													RECEIVED BY
	Waste Stream Technolo	302 Grote Street, Buffalo, NY 14207 (716) 876-5290 • FAX (716) 876-241	o man		- SAMPLING	EJAMA6 A JATOT	3/3/co 300/ (Cmg 1	13/00 300p Camp 1	1 3006 Cm 1	13/60300HCAL							- A - A - Y		BATE: 3 MTIME:
CH/ OF CUSTODY	REPORT TO		CONTACT PH. # ()	FAX #() BILL TO:	PO# Thought Pand Retor	SAMPLER SIGNATURE		2 06603687 34	Q01843688 A	00 603689 31	2	9	7	8	o	10	REMARKS:		RELINQUISHED BY TO

DATE: RELINGUISHED BY

REPORT

Frontier Chemical - Pendleton Site Semi-Annual Ground Water Monitoring Report

Pendleton Site PRP Group

March 2000

REPORT

Frontier Chemical - Pendleton Site Semi-Annual Ground Water Monitoring Report

Pendleton Site PRP Group

James R. Heckathorne, P.E. Vice President

March 2000

5000 Brittonfield Parkway Syracuse, New York 13221

Contents

1. Introduction	1
1.1. Piezometer/monitoring well inspection	1
1.2. Hydraulic evaluation of capped area and collection	trench 2
1.3. Ground water sampling and chemistry	4
2. Conclusions	

List of Tables

- 1-1 Ground water analytical methods
- 1-2 Results of the t-test analysis

Tables located at end of report

- 1 Piezometer ground water elevation summary table
- 2 Monitoring well ground water elevation summary table
- 3 Quarry Lake surface water elevation summary table
- 4 Summary of ground water analytical data

List of Figures

1 Hydraulic potential map

List of Appendices

- A Piezometer/monitoring well inspection forms
- B Ground water sampling logs
- C Data validation report (Volume 1 of 3 of the validated analytical dataseparately bound)

1. Introduction

This document is the second 1999/2000 Semi-Annual Ground Water Monitoring Report for the Frontier Chemical - Pendleton Site (Site), located on Town Line Road in the Town of Pendleton, Niagara County, New York. This report is prepared based on the New York State Department of Environmental Conservation (NYSDEC)-approved Operation & Maintenance (O&M) Manual (O'Brien & Gere Engineers, 1997) for the Site, which addresses, among other items, long-term ground water monitoring at the Site. This Semi-Annual Ground Water Monitoring Report presents a discussion of the following:

- Piezometer/monitoring well inspection
- Hydraulic evaluation of the capped area and collection trench
- Evaluation of ground water chemistry in the intermediate and deep ground water zones.

These items are described in the following sections.

1.1. Piezometer/monitoring well inspection

The piezometer/monitoring well inspection was conducted on February 7, 2000, and included the piezometers (P-1 through P-8), standpipe (SP-1), and ground water monitoring wells (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D) identified as the Site monitoring network in the O&M Manual for the Site.

Results of the inspection indicated that each piezometer and monitoring well was in an acceptable condition for collecting water elevation measurements and sampling. Similar maintenance issues to those identified in previous inspection reports were noted at the Site:

- Piezometer P-6 is currently angled 20 to 30 degrees from vertical.
- Monitoring wells URS-14I and URS-14D should have fill material installed around the concrete pads.
- Water (in the form of ice) was observed in the annular space of monitoring well URS-14I.

It should be noted that, at this time, these issues are not affecting the integrity of the piezometers or monitoring wells. February 2000 inspection forms are included in Appendix A.

1.2. Hydraulic evaluation of capped area and collection trench

In accordance with the O&M Manual, a complete round of static ground water elevations was collected from the piezometers (P-1 through P-8), standpipe (SP-1), and ground water monitoring wells (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D). The ground water elevation measurements were collected on February 7, 2000. Glynn Geotechnical Engineering, Inc. attempted to measure the surface water elevation of Quarry Lake on February 7, 2000. Since the lake was ice covered and could not be penetrated, the ice surface elevation was measured. The ground water elevations measured in the piezometers and standpipe, and in the monitoring wells, are summarized on Tables 1 and 2, respectively. Quarry Lake elevations are summarized on Table 3. As shown on Table 3, the February 7, 2000 ice surface elevation of Quarry Lake is slightly above the outlet weir elevation of 577.2 ft.

The water level measurements collected on February 7, 2000 are illustrated on Figure 1. These measurements are the eighth round collected since remedial construction was substantially completed in August 1996. The water elevation data was used to evaluate the following:

- Whether an inward hydraulic gradient exists at the site by comparing water level measurements within the capped area (P-2, P-3, P-4, P-6, and P-7) to those measured outside the capped area (P-1, P-5, P-8, SP-1, and Quarry Lake)
- The ground water flow potential inside the capped area
- Whether the ground water collection trench is effectively controlling ground water migration away from the capped area.

The data indicates that an inward hydraulic gradient exists at the site, except in the eastern portion of the capped area, where the data indicates a slight outward hydraulic gradient. The ground water elevation in piezometer P-2, located inside the capped area, is higher than the ground water elevation in piezometer P-1, installed outside the capped area. An inward hydraulic gradient exists in the northern and southern portions of the capped area, as the ground water elevations inside the capped area (P-6 and P-7) are less than the ground water elevations outside the capped area (P-5 and P-8, respectively). Along the western portion of the site, the ground water elevation at P-4 is higher than the elevation in

the ground water collection trench (SP-1). The ground water elevation in piezometer P-3, installed within the center of the capped area, is greater than ground water elevations measured in piezometers P-1, P-5, and P-8, installed outside the capped area.

Although the data indicates an outward hydraulic gradient within the eastern portion of the capped area, the ground water elevations collected in the piezometers installed within the capped area (P-2, P-3, P-4, P-6, and P-7) are lower than originally measured in June 1997. The slight fluctuations in water elevations in the piezometers located within the capped area (P-2, P-3, P-4, P-6, and P-7) may be attributed to differences in: barometric pressure during sampling events; the movement of water within the capped area; and/or the low permeability of the materials. The fluctuations in water elevations in the piezometers located outside the capped area (P-1, P-5, and P-8) may be attributed to seasonal variations.

The contrasting fluctuations of ground water levels within and outside the capped area demonstrate that ground water within the capped area has been isolated. In addition, the ground water elevation in the standpipe (SP-1) in the ground water collection trench is less than the ice surface elevation of Quarry Lake, indicating that Quarry Lake is isolated from the capped area.

Ground water elevations of piezometers installed within the capped area along the northern (P-7), western (P-4), eastern (P-2), and southern (P-6) portions of the Site are higher than the invert elevations (bottom) of the ground water collection trench. The invert elevations of the ground water collection trench vary from 568.80 ft to 563.37 ft. This information indicates that the overall hydraulic gradient is to the west towards the ground water collection trench. In summary, the data indicates that the ground water collection trench is effectively removing shallow ground water from within the capped area.

As discussed in the March 1998 monitoring report (O'Brien & Gere Engineers, 1998), based on an average daily flow rate to the ground water collection trench of 170 gallons/day and a hydraulic conductivity adjacent to the ground water collection trench of 3.3 x 10⁻⁶ cm/sec, it is estimated that approximately 110 years will be required to dewater the containment area. However, the amount of water present within the capped area and the time to dewater beneath the capped area has minimal impact on the effectiveness of the containment, since hydraulic isolation within the capped area has been established and ground water beneath the capped area is migrating towards the ground water collection trench.

1.3. Ground water sampling and chemistry

Between February 7 and 9, 2000, the sixth round of post-closure ground water samples was collected in accordance with the protocols presented in the O&M Manual. Ground water samples were obtained from the ten ground water monitoring wells identified for sampling in the O&M Manual (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D).

Following sample collection, the ground water samples were submitted to O'Brien & Gere Laboratories, Inc., for analysis of the parameters shown in Table 1-1.

Table 1-1. Ground water analytical methods.

Parameter	Method
VOCs	USEPA Method 8260B
Inorganics	USEPA Methods 6010B/7470A/7841
Cyanide	USEPA Method 9010B/9014

Ground water sampling logs and chain of custody forms are included in Appendix B.

In accordance with the O&M Manual and as approved by the NYSDEC, sampling and analysis for target compound list (TCL) semi-volatile organic compounds (SVOCs) and polychlorinated biphenyls (PCBs)/pesticides were discontinued for the second through fifth years of monitoring. In accordance with the O&M Manual, sampling is to be continued semi-annually for TCL volatile organic compounds (VOCs) and target analyte list (TAL) metals during the second through fifth years of monitoring. In accordance with the NYSDEC-approved O&M Manual, the required sampling frequency will be re-evaluated after the fifth year of monitoring.

Purge water generated during sampling was contained, passed through a 25-micron bag filter, and discharged to manhole MH-3. The water in manhole MH-3 was conveyed through the pre-treatment system prior to discharge to the Niagara County Sewer District (NCSD) interceptor system at manhole MH-16.

The laboratory analytical data was validated by Data Validation Services of North Creek, New York. The validation was performed in accordance with guidance from the most current editions of the United States Environmental Protection Agency (USEPA) Contract Laboratory Procedures (CLP) National Functional Guidelines for Organic and

Final: March 24, 2000

Inorganic Data Review, and the USEPA Standard Operating Procedures (SOPs) HW-2 and HW-6. Results of the validation indicated that the samples were processed and analyzed in compliance with protocol requirements, and with adherence to quality criteria. All of the analytical results are useable, although minor qualifications are needed for some of the results. A copy of the data validation report is included in Appendix C.

Results of the ground water analyses, along with a comparison of the results with New York State Class GA Standards, are summarized on Table 4. The New York State Class GA Standards presented on Table 4 have been revised to reflect revisions to the New York State water quality standards (NYSDEC, 1999). In general, the February 2000 ground water chemistry is similar to previous sampling events.

Detected constituents exceeding New York State Class GA Standards included iron at one location (URS-9I) and sodium at ten locations (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, URS-9D, 88-12C, 88-12D, URS-14I, and URS-14D). Concentrations of iron have previously been detected in background wells URS-14I and URS-14D at similar concentrations. Concentrations of sodium have also been detected above the New York State Class GA Standards in background wells URS-14I and URS-14D at similar concentrations. It is likely that the elevated concentrations of sodium are naturally occurring and are not related to previous site activities. VOCs were not detected above the New York State Class GA Standards. The database will be updated with data from future sampling events, and ground water standards will be reviewed annually to evaluate whether standards have been revised.

As specified in the O&M Manual, statistical analyses of the ground water chemistry data have been completed. A preliminary exploratory data analysis, using univariate statistics in SAS®, was performed for fifteen analytes that have been detected a total of nine or more times in various monitoring wells since the initial post-construction sampling event in June 1997. Based on the results of the preliminary exploratory data analysis, concentrations for thirteen analytes (at $\alpha = 0.10$) do not appear to be normally distributed. Magnesium and 1,2-dichloroethene appear to be normally distributed.

The February 2000 data represents the results of the sixth baseline data collection effort. A t-test analysis was conducted based on the data collected from the post-construction sampling events, between June 1997 and February 2000, to evaluate whether downgradient concentrations exceed upgradient concentrations, based on a comparison of downgradient wells with the appropriate upgradient wells, URS-14I or URS-14D. Based on the results of the t-test, Table 1-2 presents a summary of locations where constituent concentrations in downgradient wells exceeded concentrations at the appropriate upgradient comparison well, at a confidence level (α) equal to 0.05.

Table 1-2. Results of the t-test analysis.

85-5R Calcium, Magnesium URS-5D Calcium, Manganese, Sodium 85-7R Calcium, Magnesium, Sodium URS-7D Calcium, Magnesium, Manganese, Sodium URS-9I Calcium, Magnesium 88-12C Calcium, Magnesium, Arsenic 88-12D Calcium, Magnesium, Manganese, Potassium, Sodium	Monitoring Well	Analytes with Higher Concentrations than in Upgradient Wells
85-7R Calcium, Magnesium, Sodium URS-7D Calcium, Magnesium, Manganese, Sodium URS-9I Calcium, Magnesium 88-12C Calcium, Magnesium, Arsenic	85-5R	Calcium, Magnesium
URS-7D Calcium, Magnesium, Manganese, Sodium URS-9I Calcium, Magnesium 88-12C Calcium, Magnesium, Arsenic	URS-5D	Calcium, Manganese, Sodium
URS-9I Calcium, Magnesium 88-12C Calcium, Magnesium, Arsenic	85-7R	Calcium, Magnesium, Sodium
88-12C Calcium, Magnesium, Arsenic	URS-7D	Calcium, Magnesium, Manganese, Sodium
	URS-9I	Calcium, Magnesium
88-12D Calcium, Magnesium, Manganese, Potassium, Sodium	88-12C	Calcium, Magnesium, Arsenic
	88-12D	Calcium, Magnesium, Manganese, Potassium, Sodium

Source: O'Brien & Gere Engineers, Inc.

It should be noted that there are currently no New York State Class GA Standards for calcium, magnesium, or potassium. Concentrations of arsenic and manganese have not been detected above the New York State Class GA Standards during the post-construction sampling. In addition, it is likely that elevated concentrations of calcium, magnesium, manganese, potassium, and sodium are naturally occurring and are not related to previous site activities.

Results of the t-test analysis also indicate that barium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, and greater in upgradient well URS-14D than in corresponding downgradient well 88-12D, at a confidence level of α =0.05. T-test analysis results also indicate that sodium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, at a confidence level of α =0.05. Concentrations of barium in URS-9I, 88-12C, 88-12D, URS-14I, and URS-14D are below the New York State Class GA Standard.

Although carbon disulfide was detected in some of the samples at levels above typical laboratory contamination, many samples show evidence of sulfur dioxide, based on a review of the analytical spectrum by the data validator, which may be related to the detection of carbon disulfide. There are currently no New York State Standards for carbon disulfide. In addition, carbon disulfide has been detected in the background wells.

2. Conclusions

Based on the data contained in this semi-annual report, the following conclusions are presented:

- The isolation of ground water within the capped area has been established.
- The ground water elevation data indicates that ground water within the capped area is migrating to the west toward the ground water collection trench.
- The ground water elevation data indicates that the ground water collection trench is effectively removing shallow ground water from within the capped area.
- The February 2000 ground water chemistry is similar to previous sampling events.
- Results of the t-test analysis indicate that concentrations of arsenic (88-12C), calcium (85-5R, URS-5D, 85-7R, URS-7D, URS-9I, 88-12C, and 88-12D), magnesium (85-5R, 85-7R, URS-7D, URS-9I, 88-12C, and 88-12D), manganese (URS-5D, URS-7D, and 88-12D), potassium (88-12D), and sodium (URS-5D, 85-7R, URS-7D, and 88-12D) exceed upgradient concentrations, based on a comparison of downgradient wells with the appropriate upgradient wells, URS-14I or URS-14D. There are currently no New York State Class GA Standards for calcium, magnesium, or potassium. Concentrations of arsenic and manganese have not been detected above the New York State Class GA Standards during the post-construction sampling. It is likely that elevated concentrations of calcium, magnesium, manganese, potassium, and sodium are naturally occurring and are not related to previous site activities.
- Results of the t-test analysis indicate that barium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, and greater in upgradient well URS-14D than in corresponding downgradient well 88-12D, at a confidence level of α=0.05. Concentrations of barium in URS-9I, 88-12C, 88-12D, URS-14I, and URS-14D are below the New York State Class GA Standard.

- T-test analysis results indicate that sodium concentrations are greater in upgradient well URS-14I than in corresponding downgradient wells URS-9I and 88-12C, at a confidence level of α=0.05.
- Iron was detected in one monitoring well at a concentration above New York State Class GA Standards. Concentrations of iron have previously been detected in the background wells at similar concentrations. In addition, results of the t-test analysis indicate that concentrations of iron are not statistically higher downgradient than upgradient at the Site, indicating that the capped area is not impacting ground water.
- Sodium was detected in ten monitoring wells at concentrations above New York State Class GA Standards. It is likely that this element is naturally occurring and is not related to previous site activities.
- Although carbon disulfide was detected in some of the samples at levels above typical laboratory contamination, many samples show evidence of sulfur dioxide, based on a review of the analytical spectrum by the data validator, which may be related to the detection of carbon disulfide. There are currently no New York State Standards for carbon disulfide. In addition, carbon disulfide was detected in the background wells.

References

- New York State Department of Environmental Conservation, 1999. Title 6, Chapter X, Subchapter A, Article 2, Part 703.5, Table 1, Water Quality Standards Surface Waters and Groundwater, Effective August 4, 1999.
- O'Brien & Gere Engineers, 1997. Operation and Maintenance Manual, Frontier Chemical Pendleton Site, Town of Pendleton, Niagara County, New York, Pendleton Site PRP Group, March 1997.
- O'Brien & Gere Engineers, 1998. Frontier Chemical Pendleton Site, Semi-Annual Ground Water Monitoring Report, Pendleton Site PRP Group, March 1998.

Plezometer Ground Water Elevation Summary Table Frontier Chemical - Pendleton Site Table 1

				Doneth /ft	Coronad				Sround wat	Ground water elevation (ft)	£		
		10p of Riser	lop of cover	וואלווו (וור	20100							2017110	0010
Piezometer	Location	Elev. (ft)	Elev. (ft)	below riser)	Elev. (ft)	6/24/97	9/30/97	2/23/98	4/28/98	9/17/98	2/3/99	8/11/8	2///00
P-1	(O) Eastern portion	583.21	583.30	16.4	576.8 - 566.8	579.54	60'22'	579.25	976.60	575.62	572.97	575.83	573.76
- 0	(b) of cannod area		583.20	15.7	577.2 - 567.2	579.60	579.24	578.20	578.37	578.76	576.96	578.27	575.59
P-3	(I) Center of capped		606.64	39.7	586.6 - 566.6	580.36	580.38	580.06	579.94	579.80	579.96	579.38	579.29
	area												
P-4	(I) Adjacent to	582.31	583.85	15.6	576.7 - 566.7	577.15	577.43	576.70	575.11	575.96	574.58	575.56	573.96
- 0	(T) Ouzerny Lake	579 86	580.07	15.0	bop = 564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9	<564.9
1-70 7-0	(1) Gually Lake		583.55	15.5		576.87	577.25	578.57	579.31	576.13	574.70	576.48	578.16
, c	(c) ocamem (c)		584 60	16.2	578.3 - 568.3	578.77	579.17	578.14	578.20	578.63	577.94	578.28	577.74
F-0	(I) Northern nortion	 	582.00	15.9	575.0 - 565.0	578.33	578.62	576.45	576.17	577.15	574.43	575.55	573.02
, «,	(i) of capped area	•	583.00	17.3	575.5 - 565.5	577.76	578.87	578.75	579.61	576.90	574.72	576.15	576.12

- 1. Elevation based on USGS Datum.
- bop = bottom of pipe.
- 3. O = piezometer located outside of capped area.
 - 4. I = piezometer located inside capped area.
- 5. T = standpipe located within the ground water collection trench.
- 6. The top of riser of piezometer P-4 was modified on 4/28/98 from 583.68 ft to 582.31 ft to allow clearance for the installation of a locking expansion plug beneath the flush-mounted cover.
- 7. The top of riser of piezometer P-7 was modified on 4/28/98 from 581.84 ft to 580.97 ft to allow clearance for the installation of a locking expansion plug beneath the flush-mounted cover.

Table 2
Frontier Chemical - Pendieton Site
Monitoring Well Ground Water Elevation Summary Table

		Ton of Riser	Ground	Depth (ft	Screened			-E	Ground water elevation (ft)	evation (ft)			
Monitoring	1000	Elov (#)		helow riser)	Elev. (ff)	6/24/97	9/30/97	2/23/98	4/28/98	9/17/98	2/3/99	8/11/99	2/7/00
Well	Location	501.14	580 84	340	550.1 - 555.1	577.15	578.77	580.24	580.14	574.76	577.35	575.42	577.68
URS-141	URS-14I Opgradient weil nest	580.74	580.85	415	539.2 - 544.2	575.50	574.28	575.87	576.05	573.94	572.89	571.92	571.87
URS-14D	URS-14D In church parking for	2000.	20000	78.0	535 B - 540 B	575 38	574.22	575.69	575.91	573.76	572.67	571.82	571.78
URS-9	URS-9I Southern well nest	281.00	27 9.90	40.0	534 3 - 539 3	575.36	574.21	575.68	575.89	573.64	572.66	571.24	571.66
URS-9D	URS-9D along Town Line Road	280.80	3/3.00	46.5	2000						91.0	00,722	674 40
85-5R	Middle well nest	580.84	578.70	40.0	540.9 - 542.9	574.70	573.97	575.39	575.70	574.98	5/2.78	26.17¢	01.176
	along Town Line Road	580.60	578.00	49.9	530.8 - 535.8	574.73	574.02	575.42	575.74	573.80	572.12	571.97	571.39
05-500 E 26	Modb wall part	577 90	576.60	27.8	550.2 - 552.2	575.09	574.21	575.53	575.87	573.74	572.30	572.04	571.52
7)-09 GF 001	Ivoluti well nest	579.35	576 50	39.9	539.5 - 544.5	575.15	574.35	575.60	575.99	573.75	572.40	571.99	571.57
	Moll port puteide portheaet	583 12	583.70	31.3	551.8 - 553.8	576.60	574.03	578.53	577.06	572.79	571.72	571.26	571.12
00-120		582.87	583.28	54.5	528.4 - 533.4	575.72	574.54	576.17	576.33	574.00	572.97	572.36	572.33
00-170	politon of capped dica												

1. Elevation based on USGS Datum.

Table 3
Frontier Chemical - Pendleton Site
Quarry Lake Surface Water Elevation Summary Table

	Ouerry Lake
Date	Surface Water Elevation (ft) (1)
79/8/97	572.3
2/23/98	578.0
4/30/98	578.26
9/21/98	577.42
2/4/99	577.97
8/4/99	577.60
2/7/00	578.16 (2)
70/1/7	010.10 (2)

- Elevation based on USGS Datum.
 Ice surface elevation.

Table 4
Frontier Chemical-Pendieton Site
Summary of Ground Water Analytical Data
February 2000

	Standard					85-5R					
Parameter	ug/L (ppb)	7/86	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)							7. 88 W. 7.	anti Milwiye	10 m - 120 m		
Acetone	_	NA	R	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	15	ND	ND	ND	0.34 J	ND	ND	0.10 J	ND
2-Butanone		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		NA	ND	ND	ND	ND	ND	ND	ND	ND	18
Chlorobenzene	5	ND	NA	NA	NA	ND	0.28 J	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	NA	ND	ND	ND	ND	ND	ND	ND	0.17 J	0.10 J
Ethylbenzene	5	ND	ND	ND	ND	ND	0.24 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		NA	2J	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	2J	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	0.14 J	ND	ND	ND	ND
Total Xvlenes	5	NA	DA	ND	ND	ND	0.96	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)											Augusta (
Aluminum		1,060	214	37.8B	153	ND	300	ND	ND	ND	ND
Antimony	3	NA	ND	42.4B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	NA	1B	ND	ND	ND	ND	ND	ND	ND :	ND
Barium	1000	20	73.5B	23.4B	15	40	80	50J	ND	60	60
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		380,000	355,000	378,000	321,000	270,000	220,000	220,000	130,000	220,000	200,000
Chromium	50	40	7.5B	ND	ND	ND	30	10	ND	ND	ND
Cobalt	l –	20	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	10	ND	ND	11	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	1,020	669	915	419	140	2,300	190	ND	100	ND
Lead	25	150	ND	1.2B	ND	ND	ND	ND	ND	ND	ND
Magnesium		179,000	106,000	170,000	139,000	130,000	85,000	110,000	59,000	99,000	90,000
Manganese	300	100	40	57.5	42	50	260	40	ND	80	110
Mercury	0.7	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	10	48.1	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		9,500	60,700	6,280	6,400	ND	ND	ND	ND	5,000	ND
Selenium	10	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	30	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	126,000	132,000	120,000	100,000	93,000 J	58,000	87,000	52,000	96,000	67,000
Thallium		NA	ND	ND	ND	ND	8	ND	ND	ND	ND
Vanadium	-	35	4B	ND	ND	ND	ND	ND	ND	ND	ND
Zinc		75	12.9B	17.6B	ND	ND	ND	ND	ND	10 J	10

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 2000

	Standard				URS-	5D				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)									1994	
Acetone		250	R	ND						
Benzene	1	ND	ND	1	ND	0.25 J	0.11 J	ND	0.16 J	ND
2-Butanone		ND	R	ND						
Bromodichloromethane		ND	, ND							
Carbon Disulfide		ND	4.2							
Chlorobenzene	5	NA	NA	NA	ND	0.31 J	ND	ND	ND	ND
Chloroform	7	ND								
Dibromochloromethane		ND								
1.1-Dichloroethane	5	ND								
1.2-Dichloroethene	5	ND								
Ethylbenzene	5	ND	ND	ND	ND	0.32 J	ND	ND	ND	ND
Methylene Chloride	5	ND	R	ND						
4-Methyl-2-Pentanone		ND								
1,1,2,2,-Tetrachloroethane	5	ND								
Toluene	5	ND	1J	ND	ND	0.19 J	ND	ND	ND	ND
Total Xylenes	5	ND	0.5J	ND	ND	1.5	D	ND	ND	ND
Trichloroethene	5	ND								
Vinvl Chloride	2	ND								
Metals (ppb)										
Aluminum		ND								
Antimony	3	ND	31.5B	ND						
Arsenic	25	1.3B	1B	ND						
Barium	1000	224	71.7B	32	20	ND	ND	ND	20	ND
Bervllium		ND								
Cadmium	5	ND								
Calcium		378,000	407,000	387,000	440,000	300,000	490,000	510,000	490,000	500,000
Chromium	50	3B	ND							
Cobalt		ND	ND	ND	ND	61	210	850	350	59
Copper	200	ND	ND	8	ND	ND	ND	ND	ND	ND
Cyanide	200	ND								
Iron	300	188	143	25	ND	120	ND	ND	ND	ND
Lead	25	ND	1.3B	12	ND	ND	ND	ND	ND	ND
Magnesium		33,300	2450B	570,000	100,000	24,000	87,000	76,000	93,000	97,000
Manganese	300	8.8B	3.5B	ND	50	10	70	70	50	60
Mercury	0.7	ND								
Nickel	100	11.4B	ND	ND	90	ND	180	90	80	50
Potassium		22,700	16,900	8,500	ND	ND	ND	5,000	ND	ND
Selenium	10	ND								
Silver	50	ND								
Sodium	20,000	192,000	194,000	114,000	88,000	93,000	94,000	120,000	110,000	120,000
Thallium		ND								
Vanadium		3.8B	ND							
Zinc		19.9B	14.7B	ND	ND	10	ND	ND	10 J	10

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4 Frontier Chemical-Pendleton Site Summary of Ground Water Analytical Data February 2000

	Standard					85-7R					
Parameter	ug/L (ppb)	7/86	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOGs (ppb)				99 848 858 85 13			New Justines	880 ys (1801 A.)		y phylod i s	
Acetone		NA	ND	R	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	6	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		71	ND	ND	ND	ND	ND	ND	0.93 J	ND	32
Chlorobenzene	5	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	NA	ND	ND	ND	0.14J	0.19 J	0.14 J	0.21 J	0.40 J	0.11 J
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	1J	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)									**************************************		
Aluminum		1,200	277	265	249	ND	ND	ND	ND	ND	ND
Antimony	3	NA	28.3B	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	NA	1.4B	1.7B	ND	ND	ND	ND	ND	ND	ND
Barium	1000	30	91B	143B	106	100	80	50J	ND	40	40
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Cadmium	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		490,000	354,000	298,000	389,000	350,000	350,000	420,000	400,000	440,000	410,000
Chromium	50	20	ND	ND	ND	ND	ND	ND	10	ND	ND
Cobalt		20	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	10	ND	ND	8	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	920	586	820	435	190	310	270	170	90	70
Lead	25	120	ND	2.6B	ND	ND	ND	ND	ND	ND	ND
Magnesium		131,000	119,000	42,600	124,000	120,000	120,000	140,000	140,000	130,000	130,000
Manganese	300	110	40.5	31.5	30	70	80	90	80	40	40
Mercury	0.7	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	ND	7.4B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		28,000	5,540	5,770	6.700	5,000	5,000	6,000	6,000	7,000	6,000
Selenium	10	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	107,000	67,900	38,900	73,100	66,000 J	67,000	75,000	74,000	85,000	72.000
Thallium		NA	ND	ND	ND	ND	6	ND	ND	ND	72,000 ND
Vanadium		35	ND	ND	ND	ND	ND	ND	ND	ND	ND ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4 Frontier Chemical-Pendleton Site Summary of Ground Water Analytical Data February 2000

	Standard			······································	URS-	7D				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)								aride.a.j	X440	
Acetone		120	R	ND	ND	ND	61	6.0 J	ND	ND
Benzene	1	ND	ND	ND	ND	0.11 J	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		0.5J	ND	ND	ND	ND	ND	1.3 J	ND	5.2
Chlorobenzene	5	NA NA	NA	NA	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	DN	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	0.37 J	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)										\$50,000 B
Aluminum		167B	52.5B	ND	ND	ND	ND	ND	ND	100
Antimony	3	20.5B	36.3B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	20.3B	47.2B	29	30	40	DN	ND	30	30
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND .
Calcium		277,000	333,000	403,000	360,000	300,000	480,000	400,000	470,000	
Chromium	50	ND	ND	ND	ND	ND	10	10	ND	10
Cobalt	-	ND	ND	ND	ND	ND	ND .	ND	ND	ND
Copper	200	ND	ND	8	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	387	283	63	ND	70	ND	100	ND	180
Lead	25	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium		96,200	115,000	140,000	120,000	89,000	140,000	130,000	140,000	140,000
Manganese	300	71.2	140	86	40	30	40	50	50	70
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	23.5B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		5,990	8,550	8,300	5,000	ND	6,000	ND	6,000	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	82,700	68,900	78,900	66,000 J	54,000	79,000	74,000	81,000	68,000
Thallium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium		4.2B	6.7B	ND	ND	ND	ND	ND	ND	ND
Zinc	—	5.6B	12.2B	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 2000

	Standard				URS	·9i				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)								<u> Pirkius</u>		
Acetone		R	R	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	0.12J	0.29 J	ND	ND	ND	ND
2-Butanone		ND	2J	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	0.13 J	ND	ND	8.5
Chlorobenzene	5	NA	NA	NA	ND	0.20 J	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	0.14 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND -	ND	ND	ND	ND
Toluene	5	0.7J	ND	ND	ND	0.11 J	ND	ND	0.16 J	ND
Total Xylenes	5	ND	ND	ND	0.29J	0.54	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	.ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)										
Aluminum		221	197	110	ND	ND	ND	200	ND	200
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	1.7B	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	30.1B	22.8B	14	30	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	DA	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		106,000	143,000	123	170,000	150,000	160,000	160,000	160,000	170,000
Chromium	50	8.6B	10.1	ND	ND	ND	10	10	ND	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	12.7B	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	1,020	1,170	808	460	440	290	590	240	520
Lead	25	ND	1B	ND	ND	ND	ND	ND	ND	ND
Magnesium		54,500	71,300	63,500	70,000	69,000	77,000	70,000	75,000	76,000
Manganese	300	67.5	80	75	50	30	40	50	40	50
Mercury	0.7	ND .	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	7.6B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		3,910B	4,250B	2,900	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	34,500	54,000	52,400	43,000 J	45,000	49,000	39,000	54,000	48,000
Thallium	1	ND	ND	ND	ND	11	ND	ND	ND	ND
Vanadium	 	ND	9.6B	ND	ND	ND	ND	ND	ND	ND
Zinc	1	19.3B	34.6	ND	ND	ND	20	ND	10 J	ND

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4 Frontier Chemical-Pendleton Site Summary of Ground Water Analytical Data February 2000

	Standard				URS-	-9D				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)		-2007/2007/2003				myselek		May May ?		V 1. 1979
Acetone		R	R	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	1.9	ND	ND	ND	ND
2-Butanone		ND	6J	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		4J	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	16
Chlorobenzene	5	NA	NA	NA	ND	0.79	ND	ND	ND	ND
Chloroform	7	8	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		1J	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	0.7	0.37J	0.34 J	0.17 J	0.16 JN	0.15 J	0.14 J
1.2-Dichloroethene	5	ND	ND	1	0.66	0.59	0.33 J	0.35 J	0.29 J	0.25 J
Ethylbenzene	5	ND	ND	ND	ND	0.44 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	2	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1.2.2Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	0.6J	ND	ND	ND	0.51	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	1.8	ND	ND	ND	ND
Trichloroethene	5	ND	ND	0.6	0.36J	0.24 J	0.20 J	0.21 J	0.14 J	ND
Vinyl Chloride	2	ND	ND	ND	0.26J	0.44 J	0.11 JN	ND	ND	ND
Metals (ppb)										
Aluminum		128	64.2B	ND	ND	ND	ND	ND	ND	ND
Antimony	3	ND	28B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	1.6B	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1000	110B	38.2B	23	ND	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		56,500	146,000	120,000	200,000	190,000	190,000	200,000	210,000	220,000
Chromium	50	ND	ND	ND	ND	ND	10	ND	ND	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	5.2B	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	11.1B	ND	ND	ND	ND	ND	ND	ND
Iron	300	127	506	252	ND	70	80	70	60	50
Lead	25	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium	-	29,900	70,200	60,000	58,000	73,000	71,000	72,000	77,000	78,000
Manganese	300	20.1	25.5	9	ND	ND	10	10	10	-10
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	15.3B	ND	ND	ND	ND	ND	· ND	ND	ND
Potassium		9,880	4,170B	3,600	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	27,400	37,000	42,800	48,000 J	52,000	41,000	38,000	52,000	48,000
Thallium		ND	ND	ND	ND	14	ND	ND	ND	ND
Vanadium		10.7B	ND	ND	ND	ND	ND	ND	ND	ND
Zinc		50.5	16.7B	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.

Page 6 of 10

- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendleton Site
Summary of Ground Water Analytical Data
February 2000

	Standard				88-12	2C				
Parameter	ug/L (ppb)	8/90	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)						7 . Y. XX 7				
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	0.84
Chlorobenzene	5	NA	NA	NA	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	0.19 J
Total Xylenes	5	ND	ND	ND	ND	ND	ND ·	ND	ND	0.15 J
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)										
Aluminum		481	187B	453	ND	900	ND	600	ND	ND
Antimony	3	19.2B	28B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	10	12.3B	14	9	7	10	12	11 J	12
Barium	1000	11.4B	17.3	14	ND	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		62,600	68,500	68,900	73,000	70,000	71,000	76,000	80,000	78,000
Chromium	50	21	4.6B	ND	ND	10	10	20	ND	ND
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	4.2B	ND	5	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	1,530	1,040	1,560	ND	2,200	330	1,600	100	200
Lead	25	1.5B	1.2B	ND	ND	ND	ND	ND	ND	ND
Magnesium		88,500	103,000	92,500	110,000	98,000	110,000	100,000	110,000	110,000
Manganese	300	45.4	37.8	54	10	70	10	40	20	20
Mercury	0.7	ND	ND	NA	ND	ND	ND	ND	ND	ND
Nickel	100	14.6B	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		2,520B	3,200B	3,000	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	34,600	41,100	41,300	47,000 J	43,000	40,000	42,000	50,000	47,000
Thallium		ND	ND	ND	ND	13	ND	ND	ND	ND
Vanadium		22.1B	10B	ND	ND	ND	ND	ND	ND	ND
Zinc	_	10.1B	15.7B	ND	20	20	ND	ND	20 J	20

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4
Frontier Chemical-Pendieton Site
Summary of Ground Water Analytical Data
February 2000

	Standard				88-12D				
Parameter	ug/L (ppb)	8/90	2/91	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)		i Grandelano.	2 A.O. (15 J.A.)	\$ e 5 de co. (e 5 de c. 15 d		A 100 C			2.00
Acetone		ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	1J	0.9J	ND	0.13 J	0.13 J	ND	0.16 J	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	6	ND	ND	0.56	0.70 J	ND	77
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	2J	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	0.11 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	R	13	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	0.48 J	ND	ND	ND	ND
Trichloroethene	5	ND	6	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)	-		1 110		100				עאו
Aluminum		ND	172B	ND	ND	ND	ND	ND	ND
Antimony	3	50.7B	56.1B	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	1.3BW	ND	ND	ND	ND	ND	6
Barium	1000	2.9B	7.9B	ND	ND	ND	ND	ND	ND
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		464,000	623.000E	490,000	480,000	630,000	630,000	670,000	720,000
Chromium	50	7.6B	27.8E	10	30	30	90	ND	20
Cobalt		ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	12	ND
Iron	300	168	250	180	480	110	650	90	70
Lead	25	ND	1.8BW	ND	ND	ND	ND	ND	ND
Magnesium		109,000	199,000E	130,000	110.000	180,000	160,000	180.000	210.000
Manganese	300	33.9	696	90	60	40	50	30	30
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	0.2 J
Nickel	100	11.5B	25.5B	ND	ND	ND	70	ND	ND
Potassium		5,310	12,000E	600	6,000	10,000	9,000	9,000	11,000
Selenium	10	ND	ND	ND	ND	6	ND	ND	ND ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	66,400	474,000	140,000 J	100.000	330,000	250,000	330,000	450,000
Thallium		ND	ND	ND	ND	ND	ND	ND	ND
Vanadium		51.6	2.4B	ND	ND	ND	ND	ND	ND
Zinc		7.9B	ND	ND	10	ND	ND	10 J	10
	<u> </u>							1.00	- '

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4 Frontier Chemical-Pendleton Site Summary of Ground Water Analytical Data February 2000

ſ	Standard				URS-14I				1
Parameter	ug/L (ppb)	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)		500000000000000000000000000000000000000					2731251275513		2,00
Acetone		ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	1	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	1.2
Chlorobenzene	5	NA	NA	ND	0.81	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	0.13 J	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	0.17 J
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	- 5	ND	ND	ND:	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	0.15 J	ND	ND	ND	ND
Total Xylenes	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)									88.3-18-88.00
Aluminum		7,140	1,170	1300	400	ND	300	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	7.2B	ND	ND	ND	ND	5	ND	6
Barium	1000	115B	47	50	40	40J	40	50	50
Beryllium		1.2B	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	1	ND	ND	ND	2
Calcium		73,900	35,200	28,000 J	21,000	23,000	26,000	30,000	34,000
Chromium	50	30.9	ND	ND	160	ND	ND	ND	10
Cobalt		5.8B	ND	ND	ND	ND	ND.	ND	ND
Copper	200	18.5B	8	ND	10	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	ND	ND	ND	ND	ND
Iron	300	10,400	2,060	1,800	2,300	ND	320	ND	ND
Lead	25	7.5	ND	ND	ND	ND	ND	ND	ND
Magnesium		32,800	22,300	21,000	17,000	21,000	23,000	25,000	29,000
Manganese	300	484	145	70	60	ND	ND	ND	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	30.4B	ND	ND	170	ND	ND	ND	ND
Potassium		17,100	5,500	ND	25,000	8,000	6,000	6,000	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	44,700	42,500	58,000 J	48,000	48,000	54,000	62,000	67,000
Thallium		ND	ND	ND	6	ND	ND	ND	ND
Vanadium		16.1B	ND	ND	ND	ND	ND	ND	. ND
Zinc		52.3	ND	10	30	ND	ND	30 J	20

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

Table 4 Frontier Chemical-Pendleton Site Summary of Ground Water Analytical Data February 2000

	Standard	rd URS-14D							
Parameter	ug/L (ppb)	2/91	10/92	6/97	2/98	9/98	2/99	8/99	2/00
VOCs (ppb)						dada wan As	. Att Salter	19-16-1000-a	at and the six
Acetone		ND I	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	0.47 J	1.1 J	ND	6.7
Chlorobenzene	5	NA	NA	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	R	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2,-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	5	ND	ND	0.11J	0.21 J	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Metals (ppb)									
Aluminum		99.8	ND	ND	ND	ND	ND	ND	ND
Antimony	3	32.1B	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	2B	ND	ND	ND	ND	ND	ND	ND
Barium	1000	25.5B	23	20	ND	ND	40	30	30
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND
Calcium		255,000	292,000	210,000	250,000	310,000	280,000	360,000	310,000
Chromium	50	10.3	7	ND	ND	10	ND	ND	ND
Cobalt	-	ND	ND	ND	ND	ND	ND	ND	ND
Copper	200	ND	8	ND	ND	ND	ND	ND	ND
Cyanide	200	ND	ND	ND	10	10	ND	ND	ND
Iron	300	357	193	ND	ND	ND	80	ND	ND
Lead	25	1.1B	ND	ND	ND	ND	ND	ND	ND
Magnesium		75,200	78,000	61,000	66,000	81,000	71,000	91,000	83,000
Manganese	300	30.8	27	ND	ND	ND	ND	10	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	ND	ND	ND	ND	ND	ND	ND	ND
Potassium		4,250B	3,700	ND	ND	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	40,700	38,700	52,000 J	49,000	50,000	48,000	58,000	47,000
Thallium		ND	ND	ND	ND	ND	ND	ND	ND
Vanadium		ND	ND	ND	ND	ND	ND	ND	ND
Zinc	T	26.8	ND	ND	10	10	ND	ND	ND

Notes:

- 1. R = Indicates compound rejected due to blank contamination.
- 2. J = Indicates result is less than sample quantitation limit but greater than zero.
- 3. B = Indicates compound is less than quantitation limits but greater than or equal to instrument detection limits.
- 4. E = Estimated value due to interferences.
- 5. W = Post-digestion spike is out of control limits.
- 6. Sample data presented for 6/97, 2/98, 9/98, 2/99, 8/99, and 2/00 sampling events is for cis-1,2-dichloroethene.
- 7. NA = Not analyzed; ND = Not detected; N = Tentative.
- 8. Data validation was performed in accordance with USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review, and the USEPA SOPs HW-2 and HW-6.

GRADE ELEVATION CONTOUR GROUND WATER COLLECTION TRENCH & CLEAN OUT 6' HIGH CHAIN LINK FENCE

FILE NO. 5829.24532.002 DATE: MARCH 2000

Piezometer/monitoring well inspection forms

Bite Name: Fronther Chem.

Well Identification: P-1

Personnel: TPP/DEC

Date: 2/7/∞

NELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-117ch

4-inch

Depth to Ground Water:

9.45

Well Depth:

16.43

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

₹ES

no

3. Is the well stand pipe vertically aligned and secure?

F

no

4. Is the concrete pad and surface seal in good condition?

Ves

no

5. Are soils surrounding the well pad eroded?

yes

10

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

ng

9. Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Frontier Chem

Well Identification: P-Z

Personnel: TPP/DEC

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mountee

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

7,31

Well Depth:

15,73

WELL INTEGRITY

1. Well identification clearly marked?

yes

no ·

2. Well covers and locks in good condition and secure ?

yes

no

3. Is the well stand pipe vertically aligned and secure?

Ves

no

4. Is the concrete pad and surface seal in good condition?

Ves

no

5. Are soils surrounding the well pad eroded?

yes

(no)

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

Ves

no

8. Is there standing water in the annular space?

yes

(10)

9. Is the stand pipe vented at the base to allow drainage?

yes

no _{u/A}

Site Name: Frontier Chemical

Well Identification:

(Ves)

no

no

no

Personnel: TPP/DEL

Date:

2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water: The 3977 2704

Well Depth:

39,77

WELL INTEGRITY

1. Well identification clearly marked?	(Yes)
2. Well covers and locks in good condition and secure ?	Ves
3. Is the well stand pipe vertically aligned and secure ?	FES

4. Is the concrete pad and surface seal in good condition? no yes.

5. Are soils surrounding the well pad eroded? 773 yes

no 3. Is the well casing in good condition? Wes)

7. Is the measuring point on casing well marked? no XES)

3. Is there standing water in the annular space? (10) yes

3. Is the stand pipe vented at the base to allow drainage? no N/A yes

Site Name: Frontier Chemical

Well Identification: P-4

Personnel: TPP/DEL

Date: 2/1/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush-Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-Inch

4-inch

Depth to Ground Water:

8,35

Well Depth:

1692

WELL INTEGRITY

1.	Well identification clearly marked?	yes .	no
2.	Well covers and locks in good condition and secure?	yes	no
3.	Is the well stand pipe vertically aligned and secure?	yes)	no
4.	Is the concrete pad and surface seal in good condition?	ves	no
5.	Are soils surrounding the well pad eroded?	yes	MO
6.	Is the well casing in good condition?	Yes	no
7.	Is the measuring point on casing well marked?	Fes	no
8.	Is there standing water in the annular space?	yes	no
9.	Is the stand pipe vented at the base to allow drainage?	yes	no

Site Name: Frontier Chemical

Well Identification:

Personnel: TPP/DEL

Date:

2/7/00

WELL SPECIFICATIONS

Protective Casing

Abeve Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2dinch

4-inch

Depth to Ground Water:

Well Depth:

15,58

WELL INTEGRITY

1. Well identification clearly marked?

yes

2. Well covers and locks in good condition and secure?

ves

3. Is the well stand pipe vertically aligned and secure?

yes

4. Is the concrete pad and surface seal in good condition?

XES

no

5. Are soils surrounding the well pad eroded?

yes

(10)

no

no

no

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

øes)

no

8. Is there standing water in the annular space?

yes

9. Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Frontier Chemical

Well Identification : $\rho - \omega$

Personnel: TPP/DEL

Date:

2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-Ineh

4-inch

Depth to Ground Water:

Well Depth:

ا ۱۹۰۱ع

WELL INTEGRITY

1. Well identification clearly marked?

(ES)

no

2. Well covers and locks in good condition and secure ?

ES

no

3. Is the well stand pipe vertically aligned and secure ?

yes

(no)

4. Is the concrete pad and surface seal in good condition?

VES

no

5. Are soils surrounding the well pad eroded?

yes

(no)

6. Is the well casing in good condition?

Yes

no

7. Is the measuring point on casing well marked?

res

no

8. Is there standing water in the annular space?

yes

10

9. Is the stand pipe vented at the base to allow drainage?

yes

N/A

COMMENTS:

Standpipe leaning 20°-30° at surface.

Site Name: Fronter Chemcal

Well Identification:

Personnel: TPP/DEL

Date: 2/1/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

no

Well Diameter

2-inen

4-inch

Depth to Ground Water:

7.95

Well Depth:

16.65

WELL INTEGRITY

1. Well identification clearly marked?

2. Well covers and locks in good condition and secure?

4. Is the concrete pad and surface seal in good condition?

ves no

5. Are soils surrounding the well pad eroded? yes

6. Is the well casing in good condition?

7. Is the measuring point on casing well marked?

8. Is there standing water in the annular space?

yes

100

9. Is the stand pipe vented at the base to allow drainage? yes no ν/Δ

Site Name: Fontier Chemical

Well Identification: P-8

Personnel: TPP/DEC

Date:

2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

6.71

Well Depth:

17.22

WELL INTEGRITY

1. Well identification clearly marked?

yes no

2. Well covers and locks in good condition and secure ?

yes no

3. Is the well stand pipe vertically aligned and secure?

yes no

4. Is the concrete pad and surface seal in good condition?

yes no

5. Are soils surrounding the well pad eroded?

yes (no

6. Is the well casing in good condition?

yes

7. Is the measuring point on casing well marked?

ves no

8. Is there standing water in the annular space?

yes

no /

no

9. Is the stand pipe vented at the base to allow drainage?

yes no

Site Name: Frontier Chemical

Well Identification: SP - 1

Date:

Personnel: TPP/DRL

2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

Stainless Steel

Well Diameter

2-ineh

4-inch

Depth to Ground Water:

Well Depth:

WELL INTEGRITY

1. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure ?

MES

no

4. Is the concrete pad and surface seal in good condition?

(yes)

no

5. Are soils surrounding the well pad eroded?

yes

MO

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

VES

no

8. Is there standing water in the annular space?

yes

110

9. Is the stand pipe vented at the base to allow drainage?

yes

Site Name: Frontier Chemical

Well Identification: 85-512

Personnel: TPP/DEL

Date: 2/1/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

Stainless Steel

Well Diameter

24nch

4-inch

Depth to Ground Water:

Well Depth:

WELL INTEGRITY

1. Well identification clearly marked?

ves

no

2. Well covers and locks in good condition and secure ?

ves)

no

3. Is the well stand pipe vertically aligned and secure?

yes)

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

100

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

Ves

no

8. Is there standing water in the annular space?

yes

(no)

9. Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Frontier Chemical

Well Identification: UES -50

Personnel:

TPP/DR

Date: 2/7/∞

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

9.21

Well Depth:

49.84

WELL INTEGRITY

Well identification clearly marked?

yes)

no

2. Well covers and locks in good condition and secure ?

yes

no

3. Is the well stand pipe vertically aligned and secure?

√es

no

4. Is the concrete pad and surface seal in good condition?

ves

no

5. Are soils surrounding the well pad eroded?

yes

no

6. Is the well casing in good condition?

ves

no

7. Is the measuring point on casing well marked?

ves

no

8. Is there standing water in the annular space?

yes

(TO)

9. Is the stand pipe vented at the base to allow drainage?

(yes)

no

Site Name: Frontier Chemical

Well Identification: 85-72

Personnel: TPP/DEL

Date: 2/1/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-iAch

4-inch

Depth to Ground Water:

6.38

Well Depth:

27,71

WELL INTEGRITY

1. Well identification clearly marked?

yes >

no

2. Well covers and locks in good condition and secure ?

yes

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

100

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

10

9. Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Frontier Chemical

Well Identification: URS-70

Personnel: TPP/DEL

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

7,78

Well Depth:

59.84

WELL INTEGRITY

 Well identification clearly marked? 	

yes no

2. Well covers and locks in good condition and secure?

Ves

no

3. 's the well stand pipe vertically aligned and secure?

Yes

no

4. Is the concrete pad and surface seal in good condition?

ges

no

5. Are soils surrounding the well pad eroded?

yes

(10

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

Ves

no

8. Is there standing water in the annular space?

yes

6

9. Is the stand pipe vented at the base to allow drainage?

YES

no

Site Name: Frontier Chemical

Well Identification: URS. 9 I

Personnel: TPP/DEC

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Staintess Steel

Well Diameter

24neh

4-inch

Depth to Ground Water:

9,00

Well Depth:

46.18

WELL INTEGRITY

1. Well identification clearly marked?

(yes)

no

2. Well covers and locks in good condition and secure ?

(VES)

no

3. Is the well stand pipe vertically aligned and secure?

ves

no

4. Is the concrete pad and surface seal in good condition?

Ves

no

5. Are soils surrounding the well pad eroded?

yes

(no)

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

ves)

no

8. Is there standing water in the annular space?

yes

(00)

9. Is the stand pipe vented at the base to allow drainage?

(yes)

no

Site Name: Frontier Chemical

Well Identification: URS - のD

Personnel: TPP/DEZ

Date: 2/1/00

NELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Nell Construction

PVC

Stainless Steel

Nell Diameter

2-inch

4-inch

Depth to Ground Water:

art

Nell Depth:

50,89

NELL INTEGRITY

I. Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure?

yes

no

3. Is the well stand pipe vertically aligned and secure?

yes

no

4. Is the concrete pad and surface seal in good condition?

yes

no

5. Are soils surrounding the well pad eroded?

yes

no

6. Is the well casing in good condition?

yes

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

no

9. Is the stand pipe vented at the base to allow drainage?

yes

no

Site Name: Fronther Chemical

Well Identification: 88-12C

Personnel: TPP/DR

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

@-inch

4-inch

Depth to Ground Water:

12.00

Well Depth:

31,31

WELL INTEGRITY

Well identification clearly marked?

yes

no

2. Well covers and locks in good condition and secure ?

yes

no

3. Is the well stand pipe vertically aligned and secure?

VES

no

4. Is the concrete pad and surface seal in good condition?

(Ves

no

5. Are soils surrounding the well pad eroded?

yes

(no)

6. Is the well casing in good condition?

Ves

no

7. Is the measuring point on casing well marked?

(yes

no

8. Is there standing water in the annular space?

yes

(II)

9. Is the stand pipe vented at the base to allow drainage?

yes

no

COMMENTS:

Concrete pad under gravel.

Site Name: Fronter Chemical

Well Identification: 80 120

Personnel: TPP/DR

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

Well Depth:

WELL INTEGRITY

Well identification clearly marked?	(yes)	no
2. Well covers and locks in good condition and secure?	yes	no
3. Is the well stand pipe vertically aligned and secure?	yes	no
4. Is the concrete pad and surface seal in good condition?	yes	no
5. Are soils surrounding the well pad eroded?	yes	10
6. Is the well casing in good condition?	yes	no
7. Is the measuring point on casing well marked?	yes	no
8. Is there standing water in the annular space?	yes	nb
9. Is the stand pipe vented at the base to allow drainage?	ves	no

COMMENTS:

Concrete pad under gravel.

lite Name: Frontier Chemical

Well Identification: URS - 14 I

'ersonnel: TPP/DEC

Date:

2/7/00

VELL SPECIFICATIONS

³rotective Casing

Above Ground

Flush Mounted

Nell Construction

PVC

Stainless Steel

Vell Diameter

4-inch

)epth to Ground Water:

Nell Depth:

31.08

NELL INTEGRITY

Well identification clearly marked ?

no

2. Well covers and locks in good condition and secure?

no

3. Is the well stand pipe vertically aligned and secure?

no

4. Is the concrete pad and surface seal in good condition?

no

5. Are soils surrounding the well pad eroded?

yes

no

6. Is the well casing in good condition?

(yes)

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

no

9. Is the stand pipe vented at the base to allow drainage?

N/A no

Site Name: Frontier Chemical

Well Identification: UPS-14D

Personnel: TPP/DEL

Date: 2/7/00

WELL SPECIFICATIONS

Protective Casing

Above Ground

Flush Mounted

Well Construction

PVC

Stainless Steel

Well Diameter

2-inch

4-inch

Depth to Ground Water:

Well Depth:

41.61

WELL INTEGRITY

1. Well identification clearly marked?

yes no

2. Well covers and locks in good condition and secure ?

yes

3. Is the well stand pipe vertically aligned and secure?

yes ПО

4. Is the concrete pad and surface seal in good condition?

yes no

5. Are soils surrounding the well pad eroded?

yes no

6. Is the well casing in good condition?

yes

no

no

7. Is the measuring point on casing well marked?

yes

no

8. Is there standing water in the annular space?

yes

no

9. Is the stand pipe vented at the base to allow drainage?

Ground water sampling logs

O'Brien & Gere Engi	neers, Inc.	Standard Ground Water Sampling Log			
Date 2800 Site Name Frontier Chem Location Pendle fon Project No. 24532 Personnel TPP/DEC			Weather Well # Evacuation Method Sampling Method		
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	$ \begin{array}{c cccc} 38.02 & \text{ft.} \\ \hline 9.74 & \text{ft.} \\ \hline 28.28 & \text{ft.} \\ \hline 4.6 & \text{gal.(s)} \\ \hline /3,8 & \text{gal.(s)} \end{array} $	Volume	/olume /ft. for: 2" Diameter Well = 0.1 4" Diameter Well = 0.6 6" Diameter Well = 1.4 removed before sampling dry?	653 X LWC 469 X LWC	geil.(s)
* Measurements taken from	Well C	asing	Protective Ca	sing	(Other, Specify)
Instrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard 70.0 Standard 10.0 Standard		Conductivity Standard 84 S Standard 1413 S Standard		
Water parameters: Gallons Removed initial 0,5 4,5 8,0 10.0	Temperature Readings initial SS	8.4	gs Re	nductivity adings uS/cm 959 1148 1142	
Water Sample: Time Collected	5-45 t		Physical App	earance at Sampling	
Color Odor Turbidity (> 100 NTU) Sheen/Free Product	Clear None 91 None		Color Odor Turbidity (> 1 Sheen/Free F	00 NTU)	sine Sig
Samples collected:					
Container Size #O m 1.te	Container Type Glass plash plash plash	# Collected Z	Field Filtered No Yes No	Preservative 1:1HCl HN03 NoOH	Container pH < 2 < 7 > 10
Notes: PID - SPPN	1				

O'Brien & Gere Engi	neers, Inc.		Standard Grou	und Water Samplin	g Log
Date 2 8 00					
Site Name Frontier Chen	ical		Weather _	Summer 3°	
Location Pendleton			Well#	U R5-5D	
Project No. 24532			Evacuation Method	55 Bailer	
Personnel TPP / DEC			Sampling Method _		******
Well Information:					
Depth of Well *	<u>49.84</u> ft.	Water \	Volume /ft. for:		
Depth to Water *	9,21 ft.	×	_2" Diameter Well = 0).163 X LWC	
Length of Water Column	40,63 ft.		_4" Diameter Well = 0).653 X LWC	
Volume of Water in Well	gal.(s)		- 6" Diameter Well = 1	1.469 X LWC	
3X Volume of Water in Well	/9.8 gal (s)		e removed before san Il go dry?	npling 13	gal.(s)
* Measurements taken from	Well Cas	sing	Protective C	Casing	(Other, Specify)
Instrument Calibration:					
	pH Buffer Readings 4.0 Standard		Conductivity Standard 84 S Standard		
	7.0 Standard 7.01	······································	1413 S Standard		
	10.0 Standard (0.0		-		
Water parameters:					
Gallons	Temperature of	рН		onductivity	
Removed	Readings	Readin	ngs R	eadings uS/cm	
initial	initial $q_{\mathcal{J}}$ in	nitial 1.	. ડેળ initial	1747	
	3.0	9	.31	2160	
13	9,1		70	2680	
Water Sample:	. 7				
Time Collected 1	L ⁶³				
Physical Appearance at Start	Ū		Physical Ap	pearance at Sampling	
Color	Clear		Color	16,7	grey
Odor	slight		Odor		<u>he /</u>
Turbidity (> 100 NTU)	10		Turbidity (>		
Sheen/Free Product	None		Sheen/Free	Product Non	X
Samples collected:					
Container Size		Collected	Field Filtered	Preservative	Container pH
Yoml	Glass	7	No	1:1HCl	< 2
1 life	Plashc Plashc	- 	Ves No	HNO3 Na OH	> 10
1 Liter	INSTIC			130.5/1	
Notes:	OPM D	5 10 2 cs	Sanor	C 13	
Γ	11.11 NAGE	- 12 7 cg	- / Y		

O'Brien & Gere Engir	neers, Inc.		Standard Grou	nd Water Samp	oling Log
Date 2/9/00					
Site Name Frontier C	Lemeal		Weather 5	Sunny 44°+	:
Location Pendletur			Well#	85-7R	
Project No. 2453Z			Evacuation Method	55 Pailer	
Personnel TPD / DEC		•	Sampling Method	SS Bailer	
reisolillei 177 Des			Camping Meaner		
Well Information:	- 1 - ·	<u> </u>			
Depth of Well *	2771 ft	Water	Volume /ft. for:		
Depth to Water *	638 ft.	X	_2" Diameter Well = 0.	i	
Length of Water Column	2 1 33 ft.		_4" Diameter Well = 0.	j	
Volume of Water in Well	gal.(s		6" Diameter Well = 1.	469 X LWC	
3X Volume of Water in Well	gal.(s	Volum	e removed before sam ell go dry?	-	gal.(s)
* Measurements taken from	Well (Casing	Protective Ca	asing	(Other, Specify)
Instrument Calibration:		er (da.) Tr. Salar challengt destruction can companie . W			
	pH Buffer Readings		Conductivity Standard		
	4.0 Standard 7.0 Standard 7.0	, d o	84 S Standard 1413 S Standard		
		(60)	1410 0 Otanidard		
Water parameters:					
Gallons Removed	Temperature Readings	pH Readi		onductivity eadings uS/cm	
initial	initial 8.7 9.8 10.2 9.9		,94 initial	2790 1896 1772 1799	
Water Sample: Time Collected	15				
Physical Appearance at Start]		Physical App	earance at Sampling	
Color	clear		Color	+	+ Brown
Odor	Now	-	Odor	_ _	None
Turbidity (> 100 NTU)	20	-	Turbidity (> 1	100 NTU)	654
Sheen/Free Product	- Done	-	Sheen/Free I		None
		-			
Samples collected:					
Container Size	Container Type	# Collected	Field Filtered	Preservative	Container pH
Yoml	Glass	2	No): 1 HCl	22 22
1 life	1/astu	 	Yes	HNO3	>10
1 liter	Plastic	<u> </u>	No	NOH	710
Notes:					
PID - ØPP	m				

O'Brien & Gere Engineers, Inc.	Standard Ground Water Sampling Log
Date 2/9/00	
Site Name Fronter Chemical	Weather Sunny 44°+
	Well# URS ID
Location <u>Pendletur</u>	Evacuation Method SS Bacles
Project No. 24532	
Personnel TPP / DEL	Sampling Method 55 Builer
Well Information:	
	Water Volume /ft. for.
165	2" Diameter Well = 0.163 X LWC
10	4" Diameter Well = 0.653 X LWC
Longin or trailer column July	
Volume of Water in Well 5,23 January gal.(s)	6" Diameter Well = 1.469 X LWC
3X Volume of Water in Well 15.17 -49-07 gal.(s)	Volume removed before sampling gal.(s)
	Did well go dry?
	(Other, Specify)
* Measurements taken from Well Casing	Protective Casing
Weastrents taken nom	
Instrument Calibration:	
pH Buffer Readings	Conductivity Standard Readings
4.0 Standard 7.0 S	84 S Standard
7.0 Standard 7.00 10.0 Standard 10.00	1413 5 Staildaid
10.0 Standard 10.1	
Water parameters:	
	pH Conductivity
	pH Conductivity Readings Readings uS/cm
Removed	i touringo
initial ϕ initial 8.6 initial	
17.0 9.8	<u>7.74</u> <u>1435</u>
14 9.0	7.62 1689
20 9.0	7.06 676
-	
/	
Water Sample:	
Time Collected	
Physical Appearance at Start	Physical Appearance at Sampling
	al - tal dal
Color	Color <u>clear st cloudy</u>
Odor <u>Slight Sulphur</u>	Odor Shuht Sulfur Turbidity (> 100 NTU)
Turbidity (> 100 NTU)	
Sheen/Free Product N we	Sheen/Free Product None
Samples collected:	
	ected Field Filtered Preservative Container pH
Container Size Container Type # Colle	1100 1 1100
	$ \begin{array}{c ccccc} $
1 1.te Plaste	1 No NoH >10
- 11,70	
Notes:	
PID - GPPM	

O'Brien & Gere Engil	neers, Inc.		Standard Gro	und Water Sa	mpling L	.og
Date 2/8/00 Site Name Fronter Che Location Pendle for Project No. 24532 Personnel TPPIDEC		,	Weather _ Well # _ Evacuation Method Sampling Method _		v_	
Well Information: Depth of Well * Depth to Water * Length of Water Column Yolume of Water in Well 3X Volume of Water in Well	46.18 ft. 9.90 ft. 36.28 ft. 5.91 gal.(s)		olume /ft. for: 2" Diameter Well = 4" Diameter Well = 6" Diameter Well = removed before sar go dry?	0.653 X LWC 1.469 X LWC	No	al.(s) Other, Specify)
* Measurements taken from Instrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard 10.0 Standard	<u> </u>	Conductivity Standa 84 S Standard _ 1413 S Standard _			
Water parameters: Gallons Removed initial [0 12 18	Temperature Readings initial 8.3 8.8 8.3 9.5		gs [Conductivity Readings uS/cm 1255 1289 1224 1233		
Physical Appearance at Star Color Odor Turbidity (> 100 NTU) Sheen/Free Product	1] - 1 Greg - Slight - 270 - None		Color Odor	ppearance at Sam	pling Milky Slight 7100	
Samples collected: Container Size YO m I liter Notes: PID - DIDIN	Glass Plashe Plashe	# Collected Z I	Field Filtered No YCS No	Preservative 1:1 HC HN03	l	ontainer pH

O'Brien & Gere Engir	neers, Inc.	Standard Ground Water Sampling Log
- 101.		
Date 2/8/66 Site Name France Chem	F.C.	Weather Song 3°
		Weather <u>Sunny</u> 3° Well# UR5 - 9D
Location Penaleton		Evacuation Method 55 Bailer
Project No. 24532		Sampling Method 55 Bailer
Personnel TPP/DC		
Well Information:	<i>-</i>	
Depth of Well *	50.89 ft.	Water Volume /ft. for:
Depth to Water *	<u>9,14</u> ft.	2" Diameter Well = 0.163 X LWC
Length of Water Column	<u>41.75</u> ft.	4" Diameter Well = 0.653 X LWC
Volume of Water in Well	gal.(s)	6" Diameter Well = 1.469 X LWC
3X Volume of Water in Well	20, 4 gal.(s)	Volume removed before sampling 20.5 gal.(s)
•		Did well go dry?
·		(Other, Specify)
* Measurements taken from	Well Casir	
Instrument Calibration:	pH Buffer Readings	Conductivity Standard Readings
	4.0 Standard	84 S Standard
	7.0 Standard 7. 6 /	1413 S Standard
	10.0 Standard /v.oi	
Water parameters:		
	() () () () () () () () () ()	pH Conductivity
Gallons Removed	Temperature Readings	pH Conductivity Readings Readings uS/cm
Kemoveu		
A F		tial 7.87 initial 1436
initial 0.5	initial 7.7 init	7.94 /4/30
<u>(0.5</u>	8,5	7.48 1458
13	<i>t</i>	7.31 /395
20,5	1.6	
Water Sample:	315	
Time Collected	<u>, </u>	Discipal Assessment Complian
Physical Appearance at Star	t	Physical Appearance at Sampling
Color	Clear	Color <u>clear</u>
Odor	Now	Odor <u>Non</u>
Turbidity (> 100 NTU)	30	Turbidity (> 100 NTU)
Sheen/Free Product	None	Sheen/Free Product Vonc
Samples collected:		
	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Collected Field Filtered Preservative Container pH
Container Size	Container Type # C	7 Ala 1:1 HC2 - 22
40 ml	Plastic	1 Ves HNO3 22
lite	Plastic	No MOH >10
Notes:		rupe and 10
PID-OP	DW JEBTIND	DUPE collected) April 25.
	(April 25,

JAM:ers/div76/admin/4_notes/stad9log

O'Brien & Gere Engir	eers, Inc.		Standard Groun	d Water Samplin	g Log
Date 2/7/00 Site Name Frontier Che Location Penale on, N Project No. 24532 Personnel TPP, DEC	1		Well#	inny 25°± 188-1218 C Hand Bail 15 Bailer	
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Well	31.31 ft. 12.00 ft. 19.31 ft. 3,15 gal.(s) 9.45 gal.(s)	Volume	/olume /ft. for: 2" Diameter Well = 0.10 4" Diameter Well = 0.60 6" Diameter Well = 1.40 removed before sampling of dry?	53 X LWC 69 X LWC	_gal.(s) _ (Others Specify)
* Measurements taken from	Well C	asing	Protective Cas	sing	(Other, Specify)
Instrument Calibration: Water parameters: Gallons Removed initial 3,5		pH Readin		Readings ILSB 130 1108	
Water Sample:	-18				
Physical Appearance at Start			Physical Appe	arance at Sampling]
Color Odor Turbidity (> 100 NTU) Sheen/Free Product	Clear Sulfur 55.4 No.76		Color Odor Turbidity (> 10 Sheen/Free P	0 NTU) 71000	Brownish Sulfur - our result
Samples collected:					
Container Size 40 ml 1 1. Le Notes:	Container Type Glass Plas hc Plas hc	# Collected 2	Field Filtered No Yes No	Preservative 1:1 H Cl HDD3 Na OH	Container pH CZ ZZ >D
PID G POM					

O'Brien & Gere Engi	neers, Inc.		Standard Groun	d Water Sa	ampling	Log
Date 2/7/00 Site Name Frontier C Location Rendicton, A Project No. 24532 Personnel TPP, DEC	henical Y				D L	
Well Information: Depth of Well * Depth to Water * Length of Water Column Volume of Water in Well 3X Volume of Water in Vell	52,38 ft. 10,54 ft. 41,84 ft. 6,87 gal.(s) 20,5 gal.(s)	<u> </u>	olume /ft. for: 2" Diameter Well = 0.1 4" Diameter Well = 0.6 6" Diameter Well = 1.4 removed before sampl go dry?	53 X LWC 69 X LWC	7.0 No	gal.(s) (Other, Specify)
* Measurements taken from	Well Cas	sing [Protective Cas	sing		
Instrument Calibration:	pH Buffer Readings 4.0 Standard 7.0 Standard 10.0 Standard U.S	<u>o</u>	Conductivity Standard 84 S Standard 1413 S Standard			
Water parameters: Gallons Removed initial L 15 20	initial 9.4 in 3.4 in 3.4 S.0	(2 (2	1 1	HI30 HI30 HISD HISD HIGO		
Water Sample: Time Collected Physical Appearance at Star Color Odor Turbidity (> 100 NTU) Sheen/Free Product	1555 Clear Stight Suipher 17.7 None		Physical Appe Color Odor Turbidity (> 10 Sheen/Free P		C IRa	r Isulfor 109
Samples collected:						
Container Size Yo ~ 11der 11der	Container Type # Glass Plas to Plas to	Collected Z I	Field Filtered No	Preservative 1:1 HC HN03 Na 0H		Container pH
Notes:	m					

O'Brien & Gere Engir	neers, Inc.		Standard Gro	und Water S	Sampling	Log
, ,						
Date 2/8/00			Weather	Sunny	301	
Site Name Frantice	Chemical		•	1	<u></u>	
Location <u>fendleter</u>			Well#		14 I	
Project No. 24532			Evacuation Method	1 5.5 Pai	Levr_	
Personnel TPP/DEZ			Sampling Method	5.5. Bai	lev	
•						
Well Information: Depth of Well *	31.08 ft.	Water V	olume /ft. for:		7	
·	344 ft.		2" Diameter Well =	0.163 X LWC		
Depth to Water *	27.62 ft		4" Diameter Well =			
Length of Water Column Volume of Water in Well	4.50 gal.(s)		6" Diameter Well =			
	13.5 gal.(s)	<u> </u>				
3X Volume of Water in Well	yai.(a)		removed before sa	ımpling	10	gal.(s)
	•	Did well	go dry?		yes_	
	. ,				•	(Other, Specify)
* Measurements taken from	Well Casing	g [Protective	Casing		
Instrument Calibration:						
instrument Campradon:	pH Buffer Readings		Conductivity Stand			
	4.0 Standard					
	7.0 Standard 7.01		1413 S Standard			
	10.0 Standard (0.0)				•	
Water parameters:						
Callana	Temperature	рН		Conductivity	7	
Gallons Removed	Temperature Readings	Readin		Readings uS/ci	m	
Removed		I 				
	initial ω $\%$ initi	al 9 ^	4 initial	460		
initial 0.5	initial 6.8 initi		3	515		
4.5	0.5	<u> </u>	<u>:ノ</u> .フ	605		
<u>9.5</u>	<u> </u>	_/,>	<u>' </u>			
	•					

Water Sample:	· · < \/ / 2					
Time Collected 19	t15 * 2/9/00					
Physical Appearance at Star	t		Physical A	Appearance at S	ampling	
0-1			Color		مك	car/milky
Color	None		Odor			one
Odor	25			(> 100 NTU)	2-	
Turbidity (> 100 NTU)	1010		·	ee Product	Non	
Sheen/Free Product						
Samples collected:						
Container Size	Container Type # C	ollected	Field Filtered	Preservat		Container pH
40 m	Glass	<u>Z</u>	No		HQ	22
1 1,to	Plastic	<u> </u>	Yes		01 01	
	Plastic	1	No	Na:	<u>υη</u>	>/ਹ
Notes:						
PID-PP	m Dry C	10 ga	Ls		•	
TIT TIT						A - 21 05 ·

Tele Name Frout. Clause Frout. Cla	O'Brien & Gere Engir	neers, Inc.		Standard Ground	d Water Samplin	g Log
Weather Sunnay 3° to Weather Sunnay 3° to Well ## Well ## URS 144 DEVELOPED Franch No. 245372 Evacuation Method 5.5 Sundament PPO/DEC Sampling Method 5.5 Sundament PPO/DEC Septit to Water 1790/DEC Septit to Water 2 Sundament PPO/DEC Septit to Water 3 Sundament PPO/DEC Septit to Water 3 Sundament PPO/DEC Septit to Water 4 Sundament PPO/DEC Septit to Water 5 Sundament PPO/DEC Septit to Water 6 Sundament PPO/DEC Sundamen						
Well # URA HP Evacuation Method S.5 Bauler Sampling Method S.5 Bauler Method Sampling Method S.5 Bauler Method Sampling Method		م_ارما		WeatherS	mny 3°±	-
Evacuation Method S.S. San June				Well#	URS 14D	
Vell Information: lepth of Welt* Septh to Water * Septh to Water Column Solume of Water in Well Solution of Solution				Evacuation Method	S Bailer	
Water Volume / The for: Water Volume / The for: Yeight to Water Start The factor of Water The factor of Wate		₩/// 5 5 5			_	
Septin of Well * Septin of W	Personner TYP/DEC					
Septin to Water Gallons Gallon	Well Information:	.() () =	Mator	/aluma /ft for		
ength of Water Column Colume of Water in Well Solution of Water Sampling Solution of Water in Well Solution of Water Sample Solution of Water in Well Solution of Water in Well Solution of Water Sampling Solution of Water in Well Solution of Water in We		•				•
Solume of Water in Well Solution Solut	Depth to Water *		X	•	1	
Volume of Water in Well 16.02 gal.(s) Volume removed before sampling Lo gal.(s) Did well go dry? Lo gal.(s) Did well go dry? Lo gal.(s) Lo gal.(s) Did well go dry? Lo gal.(s) Lo gal.(s) Did well go dry? Did well go	Length of Water Column			•	· I	
Volume removed before sampling Q gal.(s) Did well go dry? Well Casing Protective Casing (Other, Specify) Measurements taken from Well Casing Protective Casing (Other, Specify) Physical Appearance at Start Color Odor Struck Gales (Specify) Vater Sample: Initial Gales (Gales Seds Odor Struck Gales Seds Odor Struck Gales (Gales Gales Gales (Gales Gales Gales (Gales Gales Gales Gales (Gales Gales Gales Gales Gales Gales Gales Gales (Gales Gales (Gales Gales	Volume of Water in Well			6" Diameter Well = 1.46	S9 X LWC	
Did well go dry? Container Did well go dry? Color container Did well go dry? Color container Did well go dry? Color container Did well go dry? Container Did well go dry? Container Did well go dry? Color container Di	3X Volume of Water in Well	gal.(s)	Volume	removed before campli	na II.a	nal (s)
Measurements taken from Well Casing Protective Casing Instrument Calibration: PH Buffer Readings					-	ga(0)
Measurements taken from Well Casing Protective Casing Instrument Calibration: PH Buffer Readings				•		(Other Specify)
PH Buffer Readings	* Measurements taken from	Well Ca	sina	Protective Cas	ing	
PH Buffer Readings	Weastrements taken from					
A O Standard 7.0	Instrument Calibration:	LI D. #ss Doodings		Conductivity Standard	Peadings	
Vater parameters: Gallons Removed Readings Readings Readings Readings Readings us/cm Readings us/cm					reauriys	
Vater parameters: Gallons Temperature Readings Readings Readings uS/cm			01			
Conductivity Readings Conductivity Conductivi						
Conductivity Readings Conductivity Conductivi	V-1					
initial 3 initial 9.4 initial 10.99 initial 10.49 S.4 C.97 il.490 I.C. B.4 C.97 il.490 Physical Appearance at Sampling Color Odor Stright influer Odor Odor Stright influer Odor Turbidity (> 100 NTU) Sheen/Free Product No. Sh			,			
initial 3 initial 9.4 initial 10.99 initial 10.49 S.4 C.97 il.490 I.C. B.4 C.97 il.490 Physical Appearance at Sampling Color Odor Stright influer Odor Odor Stright influer Odor Turbidity (> 100 NTU) Sheen/Free Product No. Sh	1 1	Temperature of				
Vater Sample: In	Removed	Readings	Reaum	gs inca	unigs uo/cin	
Vater Sample: In					•	
Vater Sample: I	initial <u></u>	initial 3.4			•	
Vater Sample: Time Collected Physical Appearance at Start Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Samples collected: Container Size Container Type Field Filtered Field Filtered Freservative Container pH Om Olass Z Odor Sheen/Free Product Sheen/Free Product Container Size Container Type Field Filtered Freservative Container pH Om Olass Z No Odor Sheen/Free Product Container Size Container Type Field Filtered Freservative Container pH Om Odor No Odor Sheen/Free Product Container Size Container Type Field Filtered Freservative Container pH Om Odor Odor Sheen/Free Product Odor Sheen/Free Product Odor O	5	8.6				•
Vater Sample: Time Collected Physical Appearance at Start Color Odor Odor Odor Odor Odor Odor Odor Od	10					
Physical Appearance at Start Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Container Type Container Size Container Type Container Type Container Type Container Type Container Type Container Type Container Size Container Type Container Type Container Type Container Size Container Type Contai		<u> </u>		<u> ۹(ر. </u>	1609	
Physical Appearance at Start Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Container Type Container Size Container Type Container Type Container Type Container Type Container Type Container Type Container Size Container Type Container Type Container Type Container Size Container Type Contai						
Physical Appearance at Start Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Container Type Container Size Container Type Container Type Container Type Container Type Container Type Container Type Container Size Container Type Container Type Container Type Container Size Container Type Contai						
Physical Appearance at Start Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Container Type Container Size Container Type Container Type Container Type Container Type Container Type Container Type Container Size Container Type Container Type Container Type Container Size Container Type Contai						
Physical Appearance at Start Color Odor Odor Turbidity (> 100 NTU) Sheen/Free Product Container Type Container Size Container Type Container Type Container Type Container Type Container Type Container Type Container Size Container Type Container Type Container Type Container Size Container Type Contai	Vater Sample:	03				
Color Odor Odor Stratt inhum Odor Turbidity (> 100 NTU) Sheen/Free Product Container Size Container Type Glass Container Size Container Type Glass Container Size Container Type Glass Container Size Container Size Container Type Glass Container Size Container Size Container Type Glass Container Type Container DH Container Size Container Type Glass Container Type Container Type Container Type Container DH Container Size Container Type Container DH Container Type Container DH Container Type Container DH Container	ime Collected 10					
Odor Furbidity (> 100 NTU) Sheen/Free Product Sheen/Free Product Container Size Container Type Glass Container DH Conta	Physical Appearance at Start]		Physical Appe	arance at Sampling	
Odor Furbidity (> 100 NTU) Sheen/Free Product Sheen/Free Product Container Size Container Type Glass Container DH Conta	Color	Chew/ 14 Great	seds	Color		hear
Turbidity (> 100 NTU) Sheen/Free Product Shee		1/ 1		Odor	30	abit
Sheen/Free Product Preservative Container pH You You Plant Plant No Na OH Plant April 26 April				Turbidity (> 10	0 NTU) 14	<u> </u>
Container Size Container Type # Collected Field Filtered Preservative Container pH Yom Glass Z No 1: HCL <2 1 Le Plashc 1 Ycs HNO3 ZZ Notes: Collect MS/MSD PIO - PMM	Sheen/Free Product			Sheen/Free Pr	roduct <u>N</u> e	ne
Container Size Container Type # Collected Field Filtered Preservative Container pH You You Plast Plast No NaOH 710						
Yo m Glass Z No 1: HCL <2 1 Lev Pleshc 1 Ycs HNO3 &ZZ CZ CZ CZ CZ CZ CZ		10	4 Callanta	Field Filtered	Preservative	Container nH
Notes: Collect MS/MSD D PLD - PPM	Container Size					
Notes: Collect MS/MSD J) PID - PPM	. 1 1	Dish	1			
votes: Collect MS/MSD JU PID - PPM	1100	Alasti.	Ì			
allect MS/MSD 37 PID - PPM	78	10-46		1		
April 25, April 25,	Notes: Collect ()	NS/MSD J) P	10 -	ØPPM		
	AM:ers/div/76/admin/4_inytes/atad9log	الرزيم ا		ī		April 25,

O'Brien & Gere Laboratories, Inc.

5000 Brittonfield Parkway

Chain of Custody

East Syracuse, New York 13057 (315) 437-0200

Client: OLIA								A	nalysi	Analysis/Method		
ONTIER CHEMICAL	Pendle ton	to V	New/ork	Vork				/				
005	frari							S	À	\ \		\
			Phone #				\		\		\	<u> </u>
Sample Description	cription						2.30) S & S				
Sample Location	Date Time Collected Collect	Time Collected	Sample Matrix	Comp. or Grab	No. of Containers		*/ */					Comments
85-5K	4000	9451	Waster	Grab	5	и		_				
URS - 50	2/3/2	مهما	water	de lab	. 5	3)				
-ANK	2/4/00	1355	WATER	6 893	5	3	1	1				
URS - IJ I	2/8/2	1415		Grab	5	3	_			·		
•	2/4/0		weder	(srab	5	3	_	. .				
URS-70	2/4/0			Grab	72	Ġ	-					
·	,											·
								•				
			·									
									·			
TRIP BLANKS	2900	1	Water	1	N	7						
							•					
Relinquished by:	Da	Date:	Time:		Received by:	by:				Date:		Time:
Relinquished by:		Date:	Time:		Received by:	by:	•			Date:		Time:
Relinquished by: Jone 26 F. Court Law		Date: ২ વ	9 to Time	1620	Time: 1620 Received by Lab:	by Lab:			-	Date:		Time.
Shipment Method: FED 石木					Airbill Number:		2184	2006		0964		

Comments:

Cooler Temperature:_

Original-Laboratory Copy-Client

U Brien & Gere Laboratorica, ilic.

5000 Brittonfield Parkway

Chain of Custody

East Syracuse, New York 13057 (315) 437-0200

Client:								A A	A Sign	100		
CICIN CLIN								ZIZ	Allalysis/Melilou	nome		
Project: Fronthee CHEMICAL P	RADIETON	7							(Q)	/		
<i> </i> -	0	softer.	· (~				\	() () () () () () () () () ()				
Client Contact: 24532		품	Phone #				6	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\	\ \		
Sample Description	scription						12/2/20	57 ₄				
Sample Location	Date Time	Time	Sample Matrix	Comp.	No. of Containers	\ \	No.	3			Comments	
88-12C	2/1/20	15.8	W.A.		N	3	-		-			
88-12D	2/1/20	1595	wester	Gab	N	20	-		<u> </u>			
1125-140 ms/msD	2/8/2	10.03		4mb	5	6	3 3					
UPS-9I	2/3/0	•		Gast	v	7						
URS -9 D	4/8/0	1215		9000	Ñ	W	_	·	5			i
									·			
								•				
	-											
Blind Dupe		1	Water	dan)	S	5	1					
Tro Blank		-	water Gab	طهد	2	7	•) :
Relinquished by:	Da	Date:	Time:		Received by:	py:				Date:	Time:	
Reilinquished by:	Da	Date:	Time:		Received by:	by:				Date:	Time:	i
Relinquished by: 1. months		Date: 2 /8 /	رو رو	CE Mount	Received by Lab:	by Lab:				Date:	Time.	
Shipment Method: FED EX		,			Airbill Number:	ber:	17818	9066	86h '	દે	6	
The Desire of The Control of the Con											1)	

Required:	
Time	
urnaround	•

Routine Rush (Specify)_

Cooler Temperature:__

Comments:

Original-Laboratory Copy-Client

Data validation report

Data Validation Services

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

March 21, 2000

Jennifer Smith O'Brien & Gere Engineers 5000 Brittonfield Parkway P. O. Box 4873 Syracuse, NY 13221

RE: Validation of Frontier Chemical Site Data Packages
OBG Labs Report for Samples Collected 2/07/00 through 2/09/00

Dear Ms. Smith:

Review has been completed for the data package generated by OBG Laboratories, pertaining to samples collected at the Frontier Chemical Site on February 7 through February 9, 2000. Eleven aqueous samples were analysed for TCL volatiles and TAL filtered metals/cyanide parameters. Matrix spikes/duplicates, and equipment and trip blanks were also processed. Methodologies utilized are those of the USEPA SW846.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA SOPs HW-2 and HW-6. The following items were reviewed:

- * Data Completeness
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, sample processing was primarily conducted with compliance to protocol requirements and with adherance to quality criteria, and most reported results are usable as reported, or with minor qualification as estimated. Certain edits to, and qualification of, reported results are indicated. These issues are discussed in the following analytical sections.

The laboratory summary data package, with recommended qualifiers applied in red ink to the sample result forms is attached to this narrative, and should be reviewed in conjunction with this text.

Data Completeness

The laboratory data packages were not directly in compliance with the required NYSDEC ASP Category B deliverables, but the information needed for validation of the data was present. Volatile summary forms 2, 4, and 5 were not present, the laboratory NYSDEC Sample Preparation and Analysis Summary Forms were not provided, and no verbatim certification statement was made in the case narrative.

Volatile Analyses

Carbon disulfide was detected in some of the project samples, at levels above typical laboratory contamination. None was detected in the associated blanks, and no qualification to the reported results is made. Many samples also showed evidence of sulfur dioxide, which may be related to the detection of carbon disulfide.

The reported value for carbon disulfide in the sample 88-12D should be derived from the dilution analysis. All other analyte values can be used from the initial analysis.

Due to low response factors in the calibration standards, results for acetone, 2-butanone, 2-hexanone, and 4-methyl-2-pentanone should be considered estimated in the project samples

Matrix spikes of URS-14D involved evaluation of recoveries of all target analytes. Chloroethane produced an elevated recovery (960%) in one of the matrix spikes due to contribution to the mass fragment response from sulfur dioxide in the spiked sample. Sample reported results are unaffected. All other accuracy and precision values, and control spiked recoveries, were acceptable.

The Tentatively Identified Compounds should be qualified as estimated in value, and should be reported to one significant figure. Those identified as "solvent" or "column bleed" are analysis artifacts and should be disregarded as sample components.

Field duplicate correlation of URS-9D and X-1 was acceptable.