Frontier Chemical – Pendleton Site PRP Group c/o Olin Corporation 490 Stuart Road, NE Cleveland, TN 37312

SENT VIA OVERNIGHT CARRIER/EMAIL

September 30, 2021

Mr. Glenn May **Division of Environmental Remediation** New York State Department of Environmental Conservation 270 Michigan Avenue Niagara Falls, NY 14203-2999

Subject: Frontier Chemical – Pendleton Site, Pendleton, New York Order on Consent (#B9-0270-89-05) Annual Periodic Review Report - 2021 Post Closure Operation, Maintenance, and Monitoring Activities

Dear Mr. May:

On behalf of the Pendleton PRP Group, Olin hereby submits an email link containing a PDF of the 2021 Annual Periodic Review Report on the Post-Closure Operation, Maintenance, and Monitoring activities for the Frontier Chemical-Pendleton Site. The annual certification is attached as hard copy and as part of the PDF.

Please contact me with any questions at 423-508-2768 or by e-mail at abcarringer@olin.com.

Sincerely,

Pendleton PRP Group

'l'ings Adam B. Carringer Trustee

PERIODIC REVIEW REPORT FRONTIER CHEMICAL-PENDLETON SITE

Olin Corporation Frontier Pendleton PRP Group Frontier Chemical-Pendleton Site Pendleton, New York

Table of Contents

1	Intr	oduction	1
	1.1 1.2 1.3 1.4	Brief Summary, Nature and Extent, Remedial History Effectiveness of Remedial Program Compliance. Recommendation.	1 1
2	Site	e Overview	2
	2.1 2.2	Site Description and Nature/Extent Prior to Remediation.	2
3	Rer	medial Performance, Effectiveness, and Protectiveness	3
4	IC/E	EC Plan	3
	4.1 4.2	IC/EC Requirements Certification.	
5	Mo	nitoring Plan Compliance Report	4
	5.1 5.2 5.3 5.4	Components of Monitoring Plan Summary and Comparison to Remedial Objectives Deficiencies Recommendations for Changes.	5 6
6	Оре	eration and Maintenance (OM&M) Plan Compliance Report.	6
	6.1 6.2 6.3 6.4 6.5	Components of the O&M Plan. OM&M Summary. Evaluation of Remedial Systems. OM&M Deficiencies. Conclusion.	6 8 8
7	Ove	erall PRR Conclusions and Recommendations	8
	7.1 7.2 7.3	Compliance with SMP. Remedy Effectiveness. Future Submittals.	9

LIST OF ATTACHMENTS (Following Report)

ATTACHMENT A Site Feature Map **ATTACHMENT B** Piezometer Tables, Graphs, and Potentiometric Surface Maps Aerial Photograph **ATTACHMENT C** Analytical Data ATTACHMENT D Well Location Map and Groundwater Elevations Semi-Annual Field Observation Report and Inspection Checklist ATTACHMENT E ATTACHMENT F **Pre-Treatment Flows** ATTACHMENT G Industrial Wastewater Discharge Permit ATTACHMENT H Pre-Treatment Operator's Log

1 Introduction

1.1 Brief Summary, Nature and Extent, Remedial History.

The Frontier Chemical – Pendleton Site PRP Group is responsible for the operation, maintenance and monitoring of the closure components of the Site. The site is being maintained according to the approved O&M Plan. The Site occupies approximately 11 acres of the 75-acres operated by Frontier Chemical Waste Process, Inc. Frontier Chemical operated the site as an industrial waste treatment facility from 1958 to 1974. Plating wastes, pickle liquors and other liquid acid wastes from plating and metal finishing industries were treated at the site, with residuals from the waste treatment process being discharged into Quarry Lake. Much of the former Process Area was filled and graded following termination of waste treatment operations. In March 1994, the PRP Group entered into an Order on Consent (#B9-0270-89-05) with NYSDEC to implement the RD/RA Work Plan. Site remediation consisted of removal of lake sediments and placement in an onsite landfill. The site remediation project was designed in 1993 and 1994, the construction was completed in 1995 and 1996 by Sevenson Environmental Services, Inc., and O&M activities began in 1997.

1.2 Effectiveness of Remedial Program.

The isolation of ground water within the capped area has been established and is being maintained by current operation and maintenance activities. The ground water elevation data indicates that ground water within the capped area is migrating to the west toward the ground water collection trench. Review of the ground water elevation data indicates that inward hydraulic gradients were observed between piezometers within the capped area and piezometers outside of the capped area. The absence of carbon disulfide detected at concentrations above the New York State Class GA standards in the monitoring wells surrounding the capped area provide evidence that contaminants are not migrating from beneath the cap. The remedial program is achieving the objectives of containing groundwater flow and maintaining groundwater quality standards.

1.3 Compliance.

There are no areas of non-compliance.

1.4 Recommendations.

The Operation and Maintenance program data show conditions are stable, and the remedy remains effective. There are no recommendations at this time.

2 Site Overview

2.1 Site Description and Nature/Extent Prior to Remediation.

A map showing the site features is included in <u>Attachment A</u>. The Site occupies approximately 11 acres. The site consists of the capped landfill, with the adjacent quarry lake having been remediated. Plating wastes, pickle liquors and other liquid acid wastes from plating and metal finishing industries were treated at the site, with residuals from the waste treatment process being discharged into Quarry Lake which occupies approximately 15 acres of the Site. Much of the former Process Area was filled and graded following termination of waste treatment operations. Site remediation consisted of removal of lake sediments and placement in an onsite landfill.

2.2 Remediation Chronology.

In March 1994, the PRP Group entered into an Order on Consent (#B9-0270-89-05) with NYSDEC to implement the RD/RA Work Plan. Site remediation consisted of removal of lake sediments and placement in an onsite landfill. The site remediation project was designed in 1993 and 1994, the construction was completed in 1995 and 1996 by Sevenson Environmental Services, Inc., and O&M activities began in 1997.

Constructed features for the Site include the capped area, ground water collection and conveyance system, surface water runoff facilities, constructed wetlands, perimeter and containment berms, and outlet weir, ground water monitoring system, access road, and site security. Each of the construction features is described briefly in the following paragraphs.

The low-permeability capped system at the Site is a multi-component system designed to isolate the contaminants in the landfill. The 60-mil thick textured high-density polyethylene (HDPE) geomembrane is the component that covers and isolates the contaminants in the landfill. A 2-foot thick soil barrier layer was installed to protect the HPDE geomembrane cover. An 18-inch thick layer of soil barrier protection layer was placed over the HDPE geomembrane to protect the HDPE geomembrane from external forces. A 6-inch thick layer of topsoil was added to bring the soil barrier protection layer to a thickness of 2-feet. The soil barrier protection layer supports the vegetative cover that minimizes erosion.

The ground water collection system installed along the southern perimeter of the capped area and eastern edge of Quarry Lake is approximately 1,594 feet in length. The southern perimeter collection system is a perforated 6-inch diameter HDPE pipe approximately 420 feet in length sloped to discharge to manhole MH-1 of the eastern edge of Quarry Lake collection system. The collection system along the eastern edge of the Quarry Lake is a perforated 6-inch pipe approximately 1,174 feet in length.

The groundwater pre-treatment system consists of wet/dry well pump station designed for a maximum flow rate of 10 gallon per minute (gpm). A modified lead/lag sand/granular activated carbon (GAC) dual media system was installed in the dry well to treat water collected by the groundwater collection system.

The surface water runoff control facilities at the Site are designed to protect the toe of the capped area from run on and to convey runoff away from the capped area during a 25-year, 24-hour storm or a seasonal thaw event. Wetlands are constructed in Quarry Lake between the lake and the reconstructed perimeter berm, north of the capped area, and south of the capped area. The perimeter berm was constructed at a top elevation of approximately 580.5 feet and with a slope of 1V:3H provides containment for 25-year, 24-hour event while maintaining two feet of freeboard.

The access road from Townline Road allows access to the perimeter of the capped area and ground water collection, conveyance and pre-treatment system for inspection and maintenance purposes. Site access is controlled by a vehicle access gate at Town Line Road.

3 Remedial Performance, Effectiveness, and Protectiveness

3.1 Effectiveness of Remedial Goals.

The isolation of groundwater within the capped area has been established and is being maintained by current operation and maintenance activities. The ground water elevation data indicates that ground water within the capped area is migrating to the west toward the ground water collection trench. Review of the ground water elevation data indicate that acceptable hydraulic gradients were observed between piezometers within the capped area and piezometers outside of the capped area. <u>Attachment B</u> shows the most recent graphs and tables for piezometric data demonstrating inward gradient. <u>Attachment C</u> includes the analytical data from pre-treated water prior to discharge during this reporting period. The performance of the pre-treatment system has met the discharge criteria of the permit since startup in 1997.

4 IC/EC Plan (not applicable)

4.1 IC/EC Requirements.

A fence is in place around the landfill, effectively restricting access.

Clean soil cover is in place on the landfill, restricting infiltration and promoting runoff.

A water treatment system is in place, treating and discharging groundwater in accordance with a local discharge permit.

A vapor mitigation system is in place on the landfill, the exhaust fan from the treatment system vault effectively vents vapors.

A hydraulic control system is in place, effectively controlling groundwater flow direction.

4.2 Certification.

The certification is attached.

5 Monitoring Plan Compliance Report

5.1 Components of Monitoring Plan.

Operation, maintenance, and monitoring activities to be performed by the Group include:

In accordance with the Operation and Maintenance Manual NYSDEC approval dated March 17, 1997, during the first year of monitoring, groundwater samples were to be collected semi-annually for target compound list (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs)/pesticides, and target analyte list (TAL) metals during the second through fifth years of monitoring. After five years the sampling frequency was reduced to an annual basis while the SVOCs and PCBs were no longer required.

From 2003-2013 sampling was conducted on an annual basis. On January 9, 2014, NYSDEC approved a reduction in the sampling frequency from annually to biennially. In addition to the 2014 approved reduction in frequency, a reduction in parameters was also granted.

The TCL for VOCs went from the 34-parameter full suite to carbon disulfide.

The twenty-four compounds listed in the TAL for metals was reduced to arsenic, chromium, and potassium.

In 2019, NYSDEC requested we reinstate the chlorinated VOC sampling to the 34parameter full suite as was originally done prior to the 2014 reduction. In addition to this change, carbon disulfide would no longer be sampled.

In accordance with the NYSDEC approval dated January 9, 2014, groundwater analytical sampling is conducted on a bi-ennial basis. In 2021, groundwater sampling was not required to be performed. Groundwater sampling will occur again in 2022 in accordance with the approved schedule. Groundwater level measurements will continue to be obtained on a semi-annual basis.

The ground water monitoring system includes ten ground water monitoring wells (URS-14I, URS-14D, URS-9I, URS-9D, 85-5R, URS-5D, 85-7R, URS-7D, 88-12C, and 88-12D), eight piezometers (P-1 through P-8), and one standpipe (SP-1). The ground water monitoring wells are located outside the limits of the capped area and serve to monitor the elevation of the ground water table as well as to collect samples of ground water to be analyzed. Five piezometers are located within the capped area, and three piezometers are located outside the capped area. The standpipe is located within the ground water collection trench. The surface water elevation in Quarry Lake is measured along with water elevations from the eight piezometers, and the standpipe in the collection trench to monitor the establishment of an inward hydraulic gradient at the perimeter of the capped area.

5.2 Summary and Comparison to Remedial Objectives.

The isolation of ground water within the capped area has been established and is being maintained by current operation and maintenance activities. The ground water elevation data indicates that ground water within the capped area is migrating to the west toward the ground water collection trench. Review of the ground water elevation data indicate that acceptable hydraulic gradients were observed between piezometers within the capped area and piezometers outside of the capped area.

The performance of the pre-treatment system has met the discharge criteria of the permit since startup in 1997.

The water level in the wetlands to the north of Quarry Lake is higher than the Quarry Lake outlet weir, at 578.31 ft-msl. The spill level at the outlet weir for Quarry Lake is approximately 578 feet. The weir was constructed to maintain a design water level in Quarry Lake and to provide a discharge point for rainfall runoff from the capped area. The perimeter berm for Quarry Lake is approximately 580.50 feet. This elevated water level has not adversely impacted any components of the site. The surface control features function as designed and comply with the O&M Plan.

The water elevation data collected from the piezometers and ground water wells was used to determine whether an inward hydraulic gradient exists and was made by comparing water level measurements within the capped area to those measured outside the capped area.

An inward hydraulic gradient was established when water levels in piezometers outside of the capped area (P-1, P-5, P-8) and Quarry Lake are higher than water levels in piezometers within the capped area (P-2, P-3, P-4, P-6, P-7). There are four pairs of piezometer placed around the perimeter of the capped landfill to determine attainment of an inward gradient.

The ground water elevation in the standpipe (SP-1) in the ground water collection trench is dry, i.e. indicating that it is lower than the surface water elevation of Quarry Lake. This indicates that Quarry Lake is isolated from the capped area.

The ground water elevation data indicate that ground water within the capped area is migrating to the west toward the ground water collection trench. <u>Attachment D</u> contains a well location map and tabulated groundwater elevations for the April 2021 and September 2021 monitoring episodes.

5.3 Deficiencies.

There are no deficiencies.

5.4 Recommendations for Change.

There are no recommendations at this time.

6 Operation and Maintenance (OM&M) Plan Compliance Report

6.1 Components of the O&M Plan.

Routine inspection and maintenance of constructed features, including the capped area, groundwater collection and conveyance system, surface water runoff facilities, constructed wetlands, access road, perimeter and containment berms, and outlet weir.

Operation and maintenance of the ground water pre-treatment system.

Evaluation of operation, maintenance, and monitoring activities and identification of proposed changes to the O&M Manual or site procedures and policies which would provide a safer and/or more cost-effective operation.

6.2 OM&M Summary.

The ground water collection system is inspected semi-annually for the buildup of hard or soft scale-like deposits. The inspection is performed concurrently with inspection of the capped area. The dry vault and wet well components are visually inspected monthly for leakage or corrosion of valves, pipes and appurtenances, and for proper operation. A leak is repaired when found. If a component of the ground water collection, conveyance, or pre-treatment system is found to be damaged or malfunctioning, it is repaired or replaced. The semi-annual and monthly inspection checklist is contained in <u>Attachment E</u>.

Water from the pre-treatment system is discharged from the dry vault via a dual contained force main to the Niagara County Sewer District #1 interceptor system at manhole MH-16. The flow rate and volume of ground water pumped from the wet well is measured using a magnetic-type flowmeter. The flowmeter is the measurement device used in reporting discharge flow from the Site to MH-16. A sump is installed within the dry vault to recycle spills and leaks inside the dry vault back into the wet well. A sump pump with a float switch pumps spills and leaks from the floor of the dry vault back into the wet well for treatment.

The capped area was mowed on a regular basis to prevent establishment of woody vegetation during this reporting period. The capped area functions as designed and complies with the O&M Plan.

The pre-treatment system was designed for continuous operation capable of treating approximately 15,000 gallons per day at a rate of 10 gallons per minute. The water level sensor in the wet well can be set at various levels but is currently set to activate the pumping system when the wet well sump begins to back up water in the ground water collection piping.

PRE-TREATMENT PROCESSING, AVERAGE FLOW RATE						
PROCESS FLOW RATES	DESIGN	ACTUAL				
Gallons Per Day	15,000	365				
Gallons Per Minute	10	0.25				

Under current conditions, the pumping system is always on-line but normally operates six to eight times per 24-hour period. Each time a pump is activated by the level sensor, approximately 60 gallons of water is pumped into the pre-treatment system. Based upon the volume of the pre-treatment system, it takes at least a day for the ground water to pass through the pre-treatment system and be discharged to Manhole #16. A ten-year summary of the pre-treatment flow volume by year is shown in the table below.

PRE-TR	PRE-TREATMENT FLOW SUMMARY BY OPERATING YEAR						
DATE	GALLONS PER YEAR	GALLONS PER DAY					
2009	140,867	385					
2010	74,506	204					
2011	40,653	111					
2012	35,830	98					
2013	37,125	102					
2014	61,744	169					
2015	41,568	114					
2016	41,046	112					
2017	124,159	341					
2018	149,642	410					
2019	133,578	366					
2020	28,111	77					
2021 through August	29,685	153					

Calendar-year flows by day for October 2020 through August 2021 are presented in **Attachment F**.

The permit to discharge from the pre-treatment system to Manhole #16 of the Niagara County Sewer District #1 is currently granted by District Permit # 18-11. The permit was effective August 28, 2018 and expired August 28, 2021. A new Discharge Permit # 21-11

was issued for August 30, 2021 and expires August 30, 2024. Both permits are included in <u>Attachment G</u>. Semi-annual reporting to Niagara County Sewer District #1 includes the volume and chemical characteristics of the water being discharge from the Site.

Maintenance for the pre-treatment system is recorded in the Pre-Treatment System Operator Log. Information on the Pre-Treatment System Operator Log includes the purpose of the visit, local time and conditions, status of the process, details of the visit, planned action, and recommendations to prevent future problems. A log sheet is filled out during each visit to record site conditions and actions taken by the technician. Site visits are normally monthly unless alarm conditions, call by neighbors, data request, etc., require additional visits.

Regular inspections are currently conducted monthly. These inspections are a part of the pre-treatment systems operating log. The Pre-Treatment Operator's Logs for this reporting period are included in <u>Attachment H</u>.

Solids resulting from ground water collection system cleaning and equipment decontamination activities are stored, handled, and disposed of in accordance with the New York State Hazardous Waste Manifest System Regulations 6NYCRR Part 372 and any other applicable local, state, and federal regulations. No waste was disposed of during this reporting period.

The access road was inspected at the same frequency as inspection of the final cover for rutting, potholes or settlement. No repairs were needed. The access road functions as designed and complies with the O&M Plan.

6.3 Evaluation of Remedial Systems.

All components are performing as designed.

6.4 OM&M Deficiencies.

There are no deficiencies.

6.5 Conclusions.

The OM&M system is being run and maintained properly and does not require additions or modifications at this time.

7 Overall PRR Conclusions and Recommendations

7.1 Compliance with SMP.

Based on the operations and maintenance documentation listed above, the system requirements are being met. There are no new exposure pathways. Additional plans and modifications are not necessary.

7.2 Remedy Effectiveness.

Based on the data developed to date, the remedy has been effective in attaining the remedial objectives:

The isolation of ground water within the capped area has been established and is being maintained by current operation and maintenance activities.

The ground water elevation data indicates that ground water within the capped area is migrating to the west toward the ground water collection trench.

Review of the ground water elevation data indicate that inward hydraulic gradients were observed between piezometers within the capped area and piezometers outside of the capped area.

7.3 Future Submittals.

Future submittals of this report will be done on an annual basis.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	te No.	932043	Site Deta	ils		Box 1	•
Si	te Name Fro	ontier Chemical - I	Pendleton				
Ci Co			Zip Code: 14120) .			
Re	porting Peric	od: September 01,	2020 to Septembe	er 01, 2021			
-			·	 	· · · · · · · · · · · · · · · · · · · ·	YES	NO,
1.	Is the inform	mation above corre	ect?	· ·			.
	If NO, inclu	de handwritten abo	ove or on a separat	e sheet.			
2.			operty been sold, su his Reporting Period	ubdivided, merged, o d?	or undergone a		2
3.		been any change o RR 375-1.11(d))?	f use at the site du	ring this Reporting P	eriod	[]	
4.			or local permits (e.g his Reporting Period	g., building, discharge d?	e) been issued	8	
•	If you ans that docur	wered YES to que nentation has bee	stions 2 thru 4, in on previously sub	clude documentation mitted with this cer	on or evidence tification form.	!	· 7
5.	Is the site o	currently undergoin	ig development?				8
				•		•	
			•	· . ·		Box 2	
			•	· .		YES	NO
6.	Is the curre Closed Lar		ent with the use(s)	listed below?	• •	8	D
7.	Are all ICs	in place and functi	ioning as designed	?	Ľ	Ġ	
А		DO NOT COMPLE	ETE THE REST OF	6 OR 7 IS NO, sign a THIS FORM. Otherw ed along with this for	vise continue.		Jes.
		· ·	~ ~				
S	gnature of Ov	vner, Remedial Part	y or Designated Rei	oresentative	Date		

SITE NO. 932043	1		Box 3
Description of Ir	stitutional Controls	•	
Parcel 164.00-3-36	Owner Frontier Chem PRP Group, c/o Olin Co	Institutional Control	
		Monitoring Plan O&M Plan	
Record of Decision (R	OD); March 2, 1992.		
Order on Consent (#B	9-0270-89-05); March 1994.		·
	· · · · ·		Box 4
Description of E	ngineering Controls	· ·	
<u>Parcel</u> 164.00-3-36	Engineering Control		
1. Waste consolidation	Groundwater Treatment Syste Cover System Groundwater Containment Leachate Collection Fencing/Access Control Monitoring Wells and stabilization including contaminated sediment		_ake.
2. Capping of waste u	nder a low-permeability cap system.		
3. Installation of surface	ce water system.		,
4. Installation of a 60- water barrier from Qua	nil. HDPE geomembrane over the western side of arry Lake.	f the collection trench as a	9
5. Installation of a gro gradients.	undwater collection system within the contained a	rea to maintain inward	·
6. Onsite treatment of	groundwater collected with subsequent discharge	e to Municipal POTW.	
7. Creation of new we	tlands.		
8. Installation of a per	imeter berm, containment berm, and outlet weir.		·
9. Installation of a mo	nitoring system to monitor the effectiveness of the	remedy.	
	ain link fence around the capped area and pump		

.

.

.

Periodic Review Report (PRR) Certification Statements

1. I certify by checking "YES" below that:

a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;

 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

NO

YES

2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:

(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;

(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;

(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;

(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and

(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. 932043	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATED I certify that all information and statements in Boxes 1,2, and 3 are true. I under statement made herein is punishable as a Class "A" misdemeanor, pursuant to S Penal Law.	stand that a false
Adam B Carringer at Claveland, TN 37312 print name print business address	
	wner or Remedial Party)
for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	27/2021 ate

. .

EC CERTIFICATIONS

Box 7

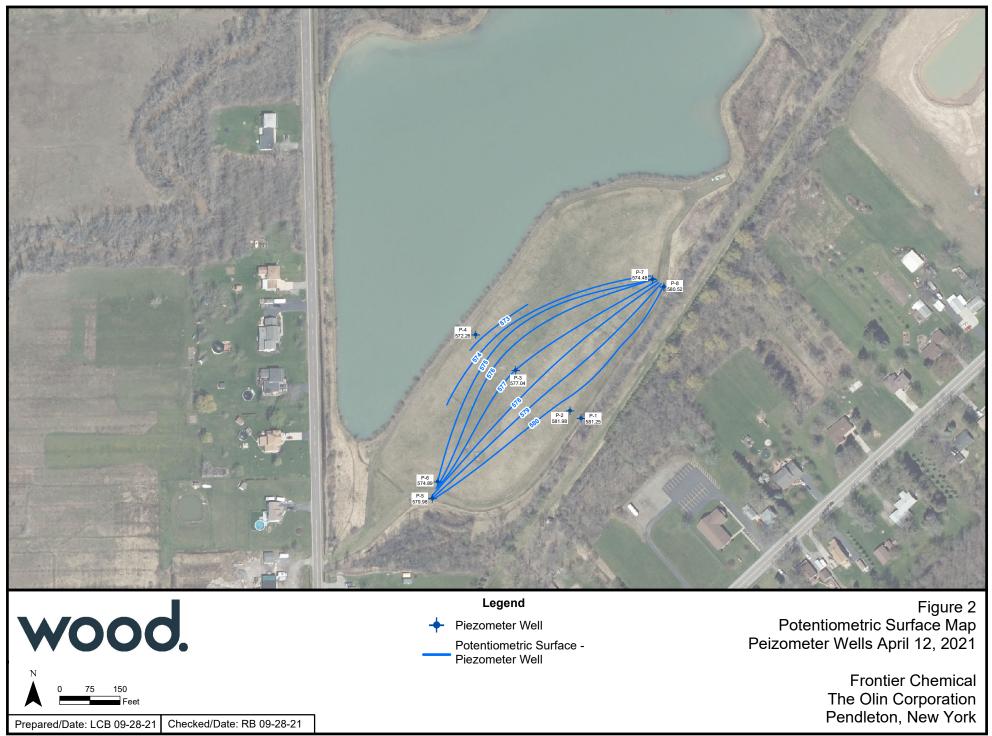
Professional Engineer Signature

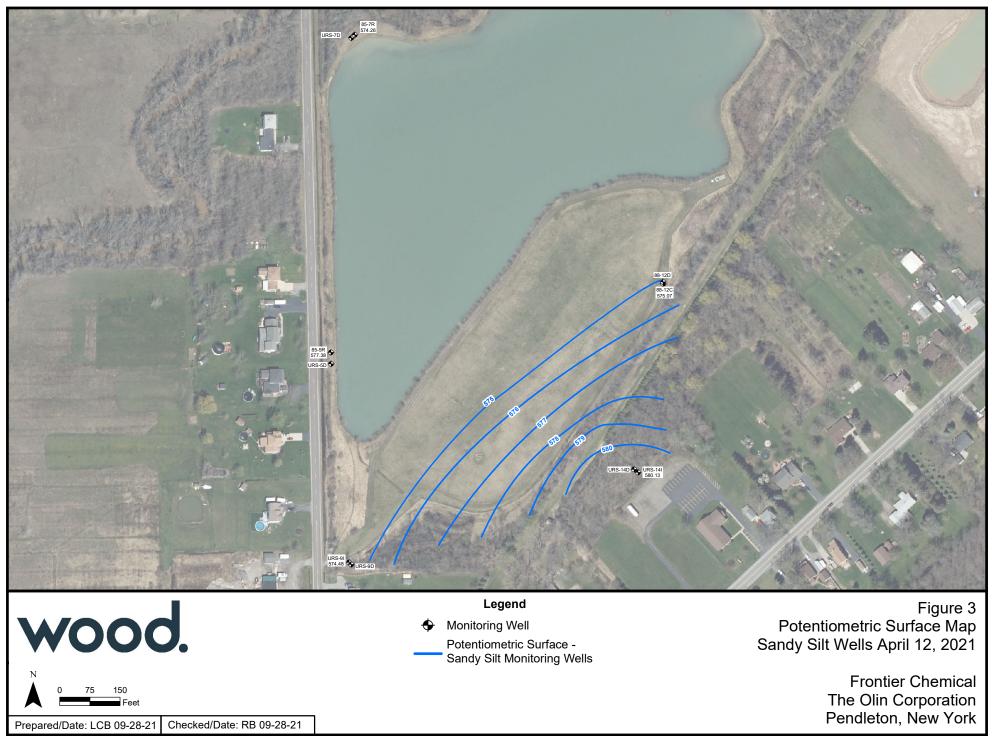
I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

E, CLEVELAND TN, 37312 STVALT RO N print business address L print name am certifying as a Professional Engineer for the OWNER'S REPRÉSENTIVE (Owner or Remedial Party) Stamp Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification (Required for PE)

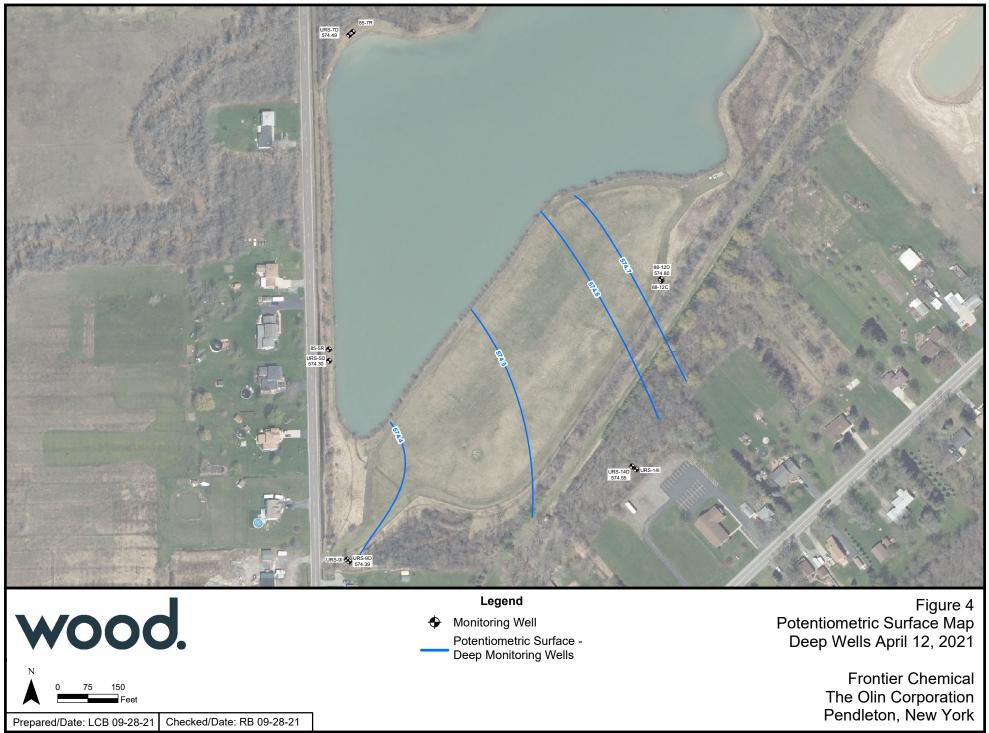
4

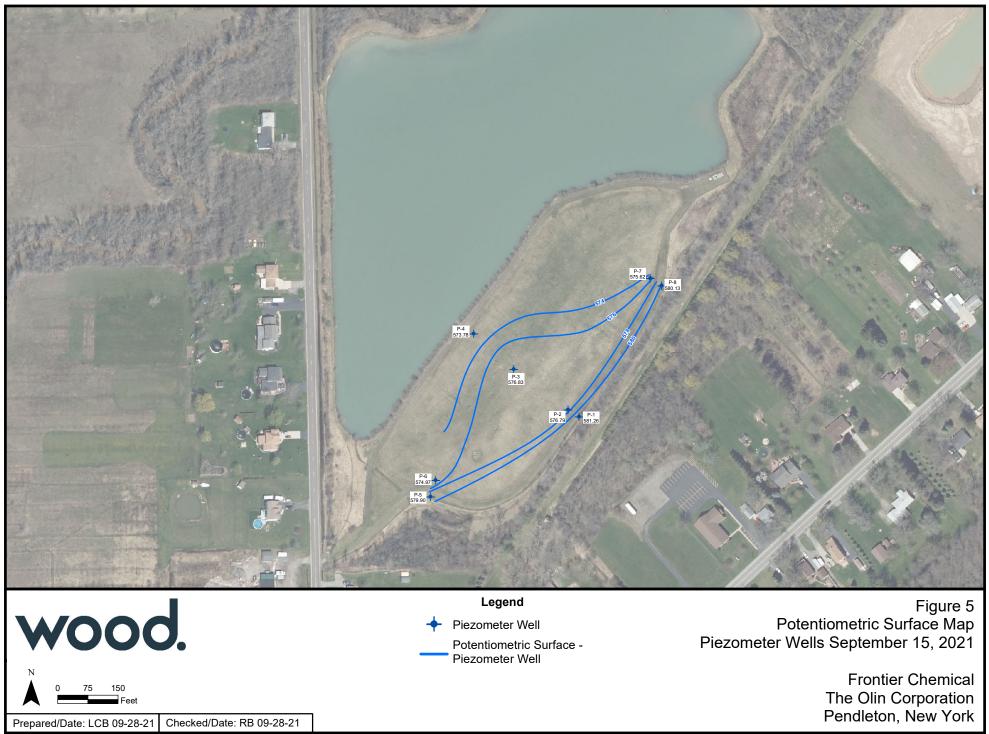
ATTACHMENT A

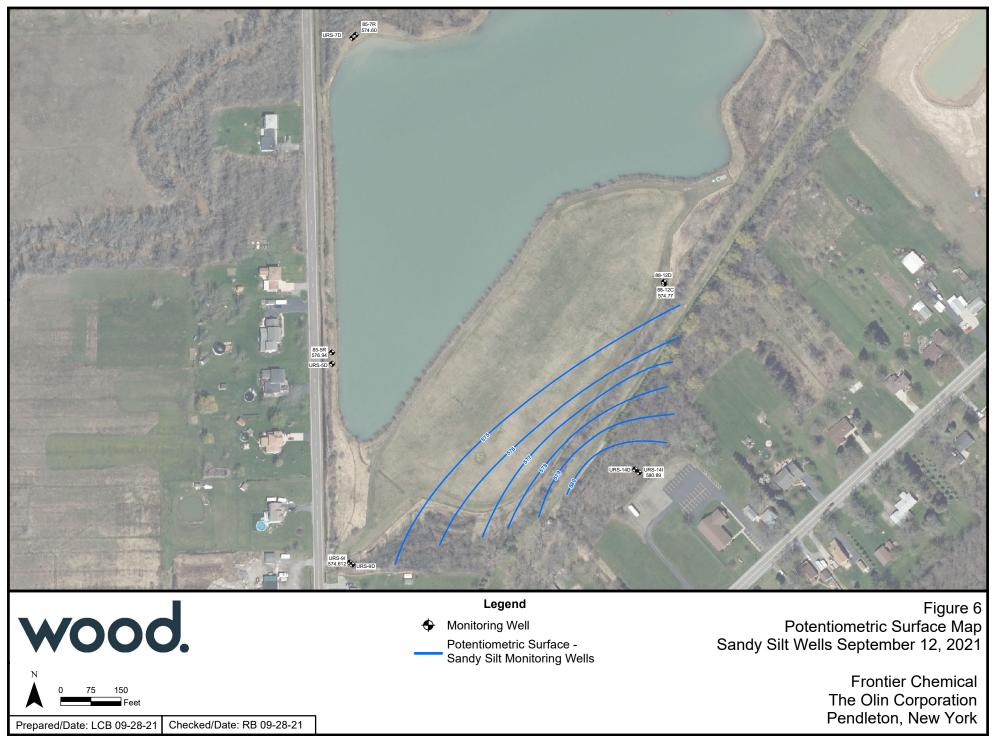

Site Features Map



ATTACHMENT B


Piezometer Tables, Graphs, and Potentiometric Surface Maps


Document: P:\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\MapDocuments\GW_2020\OLIN_PNDLTN_GW_CONT_09292020.mxd PDF: \PLD2-FS1\Project\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\PDFS\GW_2020\v1_09292020\Figure 2_P2.


Document: P:\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\MapDocuments\GW_2020\OLIN_PNDLTN_GW_CONT_09292020.mxd PDF: \\PLD2-FS1\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\PDFS\GW_2021\v1_09292020\Figure 3_SandySityation of the second of the

Document: P:\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\MapDocuments\GW_2020\OLIN_PNDLTN_GW_CONT_09292020.mxd PDF: \\PLD2-FS1\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\PDFS\GW_2021\v1_09292020\Figure 4_Deep.pdf
09-28-21 2:15 PM lindsey.belliveau

Document: P:\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\MapDocuments\GW_2020\OLIN_PNDLTN_GW_CONT_09292020.mxd PDF: \\PLD2-FS1\Project\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\PDFS\GW_2021\v1_09292020\Figure 7_Deep.pdf
09:28-21 6:15 PM indsey.belliveau
09:28-21 6:15 PM indsey.belliveau

Document: P:\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\MapDocuments\GW_2020\OLIN_PNDLTN_GW_CONT_09292020.mxd PDF: \\PLD2-FS1\Project\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\PDFS\GW_2021\v1_09292020\Figure 6_SandySiltyDirect\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\PDFS\GW_2021\v1_09292020\Figure 6_SandySiltyDirect\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\PDFS\GW_2021\v1_09292020\Figure 6_SandySiltyDirect\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\PDFS\GW_2021\v1_09292020\Figure 6_SandySiltyDirect\Proje

Document: P:\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\MapDocuments\GW_2020\OLIN_PNDLTN_GW_CONT_09292020.mxd PDF: \\PLD2-FS1\Project\Projects\Olin Frontier Chemical - Pendleton\4.0_Deliverables\4.5_Databases\GIS\PDFS\GW_2021\v1_09292020\Figure 7_Deep.pdf
09:28-21 6:15 PM indsey.belliveau
09:28-21 6:15 PM indsey.belliveau

ATTACHMENT B FRONTIER CHEMICAL - PENDLETON SITE PIEZOMETER GROUND WATER ELEVATION SUMMARY 2019-2020

			TOP OF RISER ELEVATION,	DEPTH TO	SCREENED ELEVATION,
PIEZOMETER	POSITION	LOCATION	FEET	WATER	FEET
P-1	(0)	EASTERN PORTION OF CAPPED	583.21	1.95	576.8 - 566.8
P-2			582.90	6.11	577.2 - 567.2
P-3			606.33	29.50	586.6 - 566.6
P-4	(I)		582.31	8.53	576.7 - 566.7
SP-1	(T)	ADJACENT TO QUARRY LAKE	579.86		BOP = 564.9
P-5	(0)	SOUTHERN PORTION OF	583.05	3.15	577.6 - 567.6
P-6	(I)	CAPPED AREA	584.45	9.48	578.3 - 568.3
P-7	(I)	NORTHERN PORTION OF	580.97	5.35	575.0 - 565.0
P-8	(0)	CAPPED AREA	582.83	2.70	575.5 - 565.5

Notes:

Elevation based on USGS Datum.

O = piezometer located outside of capped area.

I = piezometer located inside capped area.

T = standpipe located within the ground water collection trench.

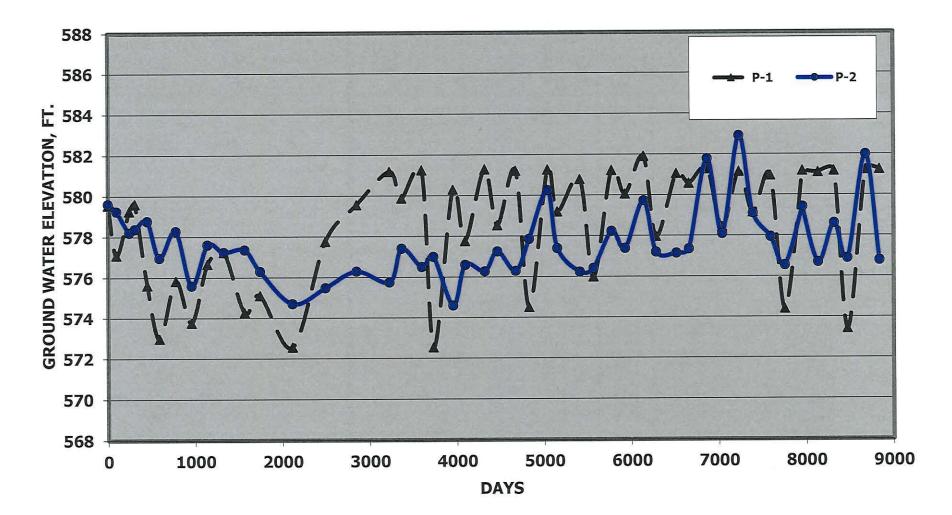
BOP= bottom of pipe

ATTACHMENT B FRONTIER CHEMICAL - PENDLETON SITE PIEZOMETER GROUND WATER ELEVATION SUMMARY 2019-2020

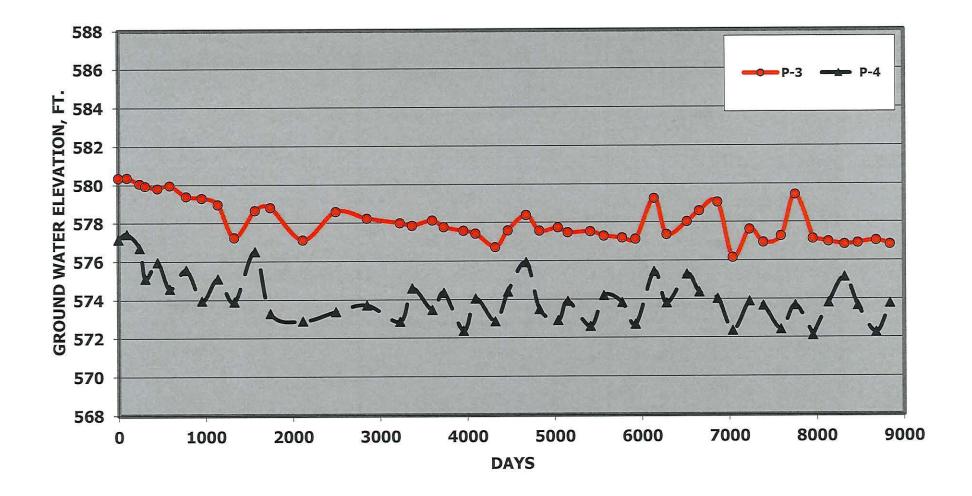
			TOP OF RISER				
			ELEVATION,	DEPTH TO	SCREENED ELEVATION,	8681	8839
PIEZOMETER	POSITION	LOCATION	FEET	WATER	FEET	4/12/21	9/17/21
P-1	(0)	EASTERN PORTION OF CAPPED	583.21	1.95	576.8 - 566.8	581.25	581.26
P-2	(I)	AREA	582.90	6.11	577.2 - 567.2	581.98	576.79
P-3	(I)	CENTER OF CAPPED AREA	606.33	29.50	586.6 - 566.6	577.04	576.83
P-4	(I)	ADJACENT TO QUARRY LAKE	582.31	8.53	576.7 - 566.7	572.26	573.78
SP-1	(T)		579.86		BOP = 564.9		
P-5	(0)	SOUTHERN PORTION OF	583.05	3.15	577.6 - 567.6	579.98	579.90
P-6	(I)	CAPPED AREA	584.45	9.48	578.3 - 568.3	574.89	574.97
P-7	(I)	NORTHERN PORTION OF	580.97	5.35	575.0 - 565.0	574.48	575.62
P-8	(0)	CAPPED AREA	582.83	2.70	575.5 - 565.5	580.52	580.13

Notes:

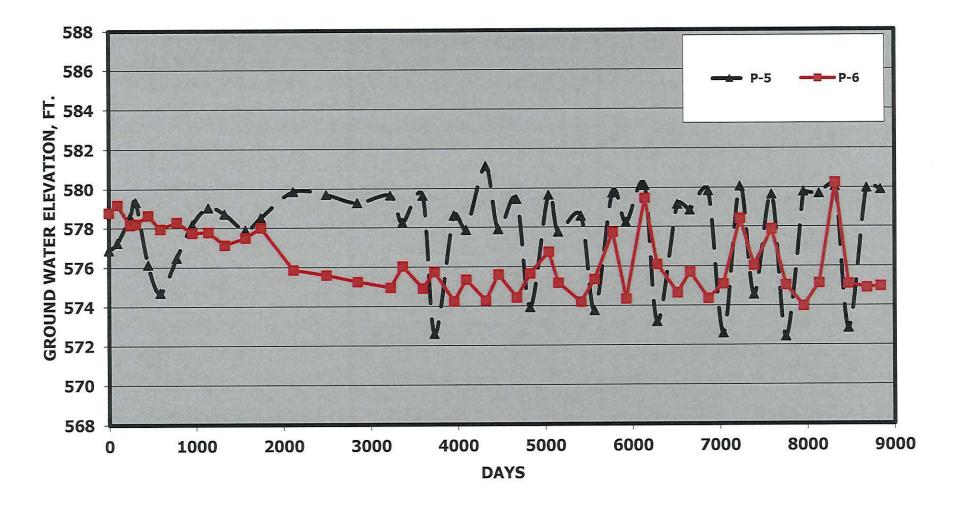
Elevation based on USGS Datum.

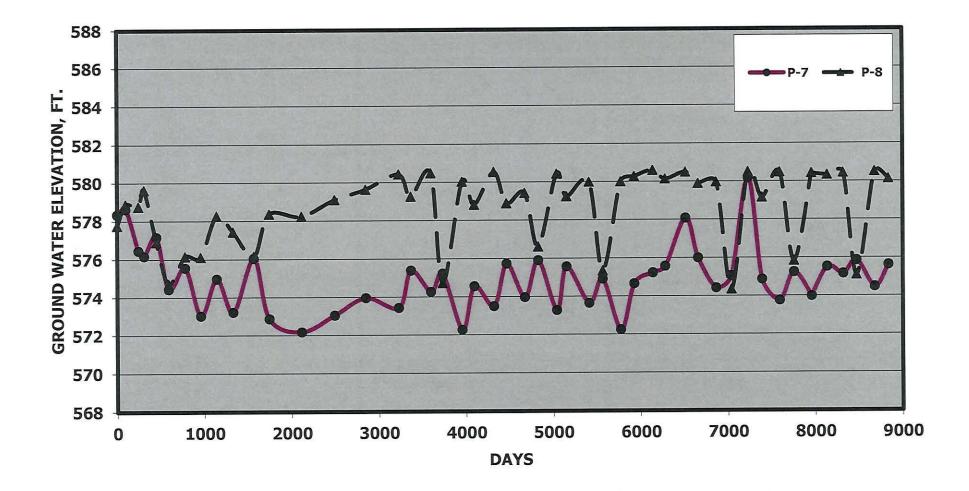

O = piezometer located outside of capped area.

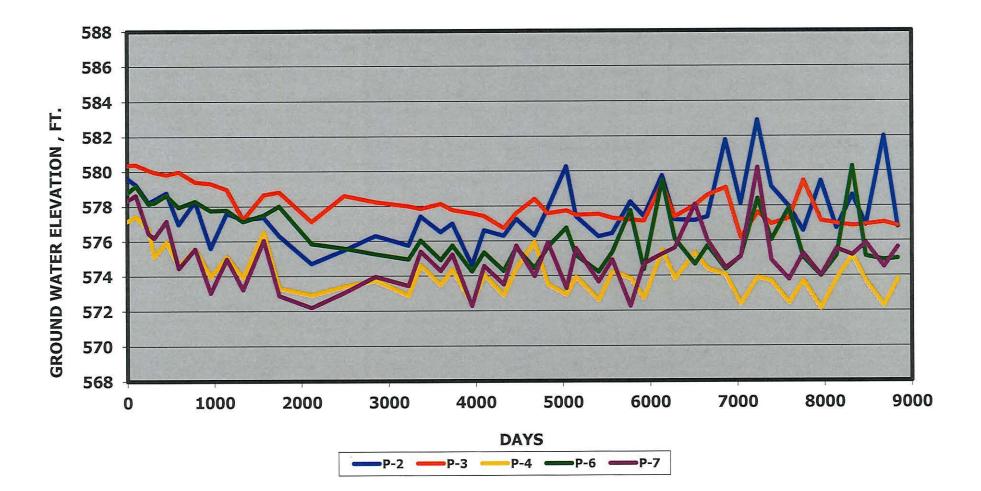
I = piezometer located inside capped area.

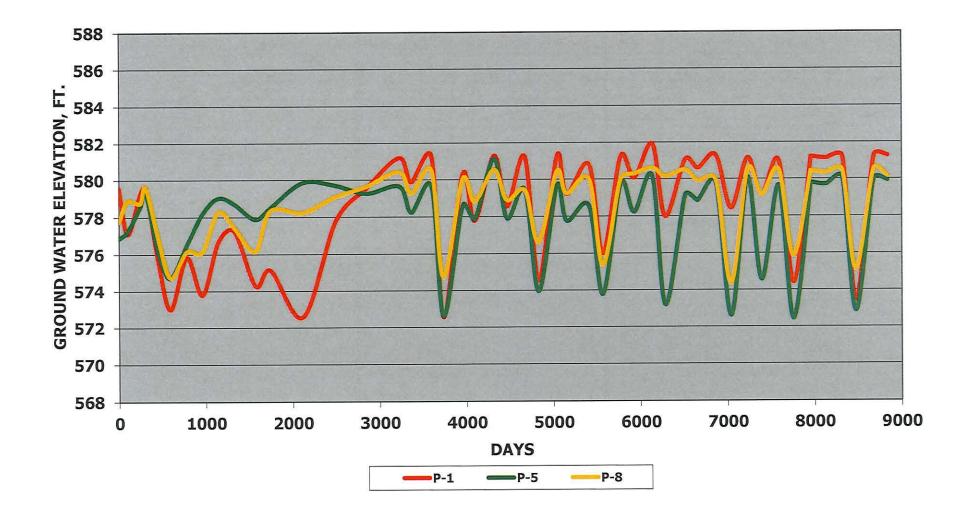

T = standpipe located within the ground water collection trench.

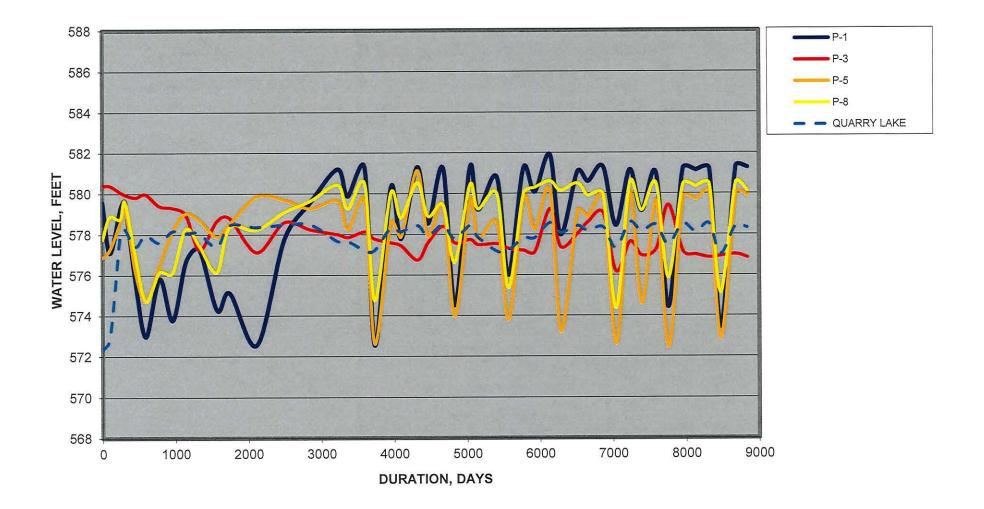
BOP= bottom of pipe

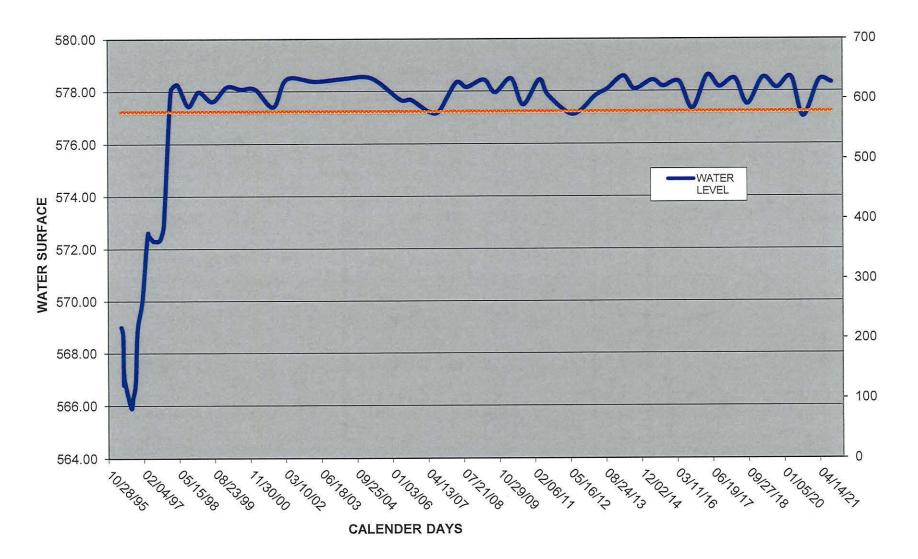

FRONTIER CHEMICAL - PENDLETON SITE EASTERN PORTION OF CAPPED AREA


FRONTIER CHEMICAL - PENDLETON SITE CENTER OF CAPPED AREA AND ADJACENT TO QUARRY LAKE


FRONTIER CHEMICAL - PENDLETON SITE SOUTHERN PORTION OF CAPPED AREA


FRONTIER CHEMICAL - PENDLETON SITE NORTHERN PORTION OF CAPPED AREA


FRONTIER CHEMICAL - PENDLETON SITE PIEZOMETERS - INSIDE CAPPED AREA


FRONTIER CHEMICAL - PENDLETON SITE PIEZOMETERS - OUTSIDE CAPPED AREA

FRONTIER CHEMICAL - PENDLETON SITE GROUND WATER GRADIENT

QUARRY LAKE WATER LEVEL VS. TIME

ATTACHMENT C

Analytical Data

Adam Carringer Olin Corporation 3855 North Ocoee Street Suite 200 Cleveland, TN 37312

Laboratory Results for: Olin - Pendleton Site

Dear Adam,

Enclosed are the results of the sample(s) submitted to our laboratory April 16, 2021 For your reference, these analyses have been assigned our service request number **R2103678**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Mighue Pedro

Meghan Pedro Project Manager

CC: Randy Morris

ADDRESS

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

1565 Jefferson Rd, Building 300, Rochester, NY 14623 | 585-288-5380 | www.alsglobal.com

Client:Olin CorporationProject:Olin - Pendleton SiteSample Matrix:Water

Service Request: R2103678 Date Received: 04/16/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level IV requested by the client.

Sample Receipt:

Three water samples were received for analysis at ALS Environmental on 04/16/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

No significant anomalies were noted with this analysis.

General Chemistry:

No significant anomalies were noted with this analysis.

Volatiles by GC/MS:

Method 624: One or more samples were received with insufficient hold time remaining to complete the analysis within the recommended limit. The analysis was performed as soon as possible after receipt by the laboratory. The data is flagged to indicate the holding time exceedance. *the only compound that is out of hold is Acrolein; all other targets are compliant as samples were analyzed within 7 days of sampling.

SMO:

No significant anomalies were noted with this analysis.

Approved by

Mighan Hedro

Date

04/30/2021

SAMPLE DETECTION SUMMARY

CLIENT ID: PS-TW-041421						
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1,1-Trichloroethane (TCA)	0.303	J	0.200	1.00	ug/L	624.1
1,1-Dichloroethane (1,1-DCA)	1.20		0.200	1.00	ug/L	624.1

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Service Request:R2103678

Client:Olin CorporationProject:Olin - Pendleton Site/1229

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	<u>TIME</u>
R2103678-001	PS-TW-041421	4/14/2021	1043
R2103678-002	PS-TW-041421 Dup	4/14/2021	0955
R2103678-003	Trip Blank	4/14/2021	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

004812

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF ____

Project Name Olin-Pendleton S	ite Project Hu	mber 229				ANALYSIS REQUESTED (Include Method Number and Container Preservative)															
Project Manager Adam Carringer	Second CC		001-0]	PRES	SERVA	TIVE	0					2		3	0	4	1			
Company/Address	<u> </u>	am Larr	nga - o									-7	-		-7		\vdash	+	/	/ Prese	rvativo Key ONE
Olin Corp					SE			/		/			1					£7		0. N	CL
3855 North Oco	ee Road	۱			NUMBER OF CONTAINERS			/	/	/	/	/ ;		•/	/		A.	;/	/	51-234	NO3 2SO4 8OH
Cleveland TN 37312					OF CC	Construction	2	2/	\$	/ /	METALS TON	र्षे हैं। इ. इ. ह			/ /	<u>-</u>		' /	/	/ 5. 21 6. M 7. N	n, Acetate lcOH aHSO4
423-336-4057	Email ABC	Carringer	Olm.co	n.	MBER		10,000 and 0	8/8	1.0 801	28/ 28/ 29/	88 × 1			To USA	2/3	Louide	$\frac{3}{2}$		/	8,0	
Sampler's Signature Maxwell Wifeton	Sampler's	Printed Name axwell Lift	iten		Ę	\ઙૺ૱	[/&&	/ઙ <u>ૼ</u> శ్రీ	Y/&§	?/2		193	[/ L	14	10	ר פיעו	7	/ /		ALTERNATE DE	
maxwee	FOR OFFICE USE	SAMP	LING	1									[Í		1					
CLIENT SAMPLE ID	ONLY LAB ID	DATE	TIME	MATRIX	<u> </u>											<u> </u>		┟╴╍╻┤			
PS-TW-041421		4/14/21	0952	GW	1								L	ļ		/				LL Hg	f . 1
105-TW-041421 DUP		4/14/21	0955	GW	1/	 							<u> </u>	<u> </u>		<u> </u>				LL Hg dup	
15-TW-041421	<u> </u>		1057	GW	1					-				ļ	<u> </u>	 		 		composited	
195-TW -041421	l	4/14/21	1056	GW	<u> /</u>	 							ļ	1	ļ	-				composited	
PS-TW-641421	l	4/14/21	1058	GW	1				ļ			ļ	ļ		<u> </u>	<u> </u>				composited	
PS-TW-041421		4/14/21	1000	GW	3	3			[<u> </u>			ļ	<u> </u>		<u> </u>				grab in ti	
45-TW-041421	l	4/14/21	1015	GW	3	3						<u> </u>	<u> </u>	<u> </u>	Į		ļ	<u> </u>		grab in fi	
195-TW-041421		4/14/21	1031	GW	3	3				ļ				<u> </u>	ļ	<u> </u>				girb in t	
PS-TW-041421		4/14/21	1046	GW	3	3			<u> </u>			ļ				<u> </u>	ļ			grabin t	
P5-TW-041421		4/14/20	0958	GW	1				ļ			ļ	ļ	ļ	/		ļ			* composite	
195-TW-041421		4/14/21	1013	GW	<u></u>						-		Ļ	<u> </u>	1					# composite	in lab
SPECIAL INSTRUCTIONS/COMMENTS							τυ	RNAR	IOUND	REQU	NAEME	INTS		REP	ORT R	EQUIF	REMEN	TS		INVOICE INFOR	MATION
Metals : Antimony, Boron, Cl	romium							RUS	H (SUR	HARGE	es appli	17		I. Res	uits Oni	y					
	a a carta	ماما مذ ال						1 da	v:	2 dav _				11. Re					PO	RELN OC	3
*CN somples to b	e compusite							4 da	y	5 day				•			as requir		811		_
See attached form	for samp	lina timeli	nl				<u> </u>	Stan	dard (10	baines	coys-No	Surchan	~ –		isulis + (meries	QC and	Calibrati	on		LTO: Olin Cay	<u></u>
Det automotion term	1	0							DREP		TE			•		etice Do	oort with	a Raw Dat			
							1-24	tam	davo	L				IV. C4	1102 9 60 104	autori ric	por t mita		<u> </u>		
See CAPP																			\vdash		·
STATE WHERE SAMPLES WERE COI							<u> </u>											_No		RECEIVED	- DV
RELINQUISHED BY	UPS	ED BY	AE	UNQUISHED	BY				RECE	ived e	IY				RELINC	DUISHE	D 81			HECEIVED	
Signature Maxwell Suffictor	Some The The	TAIN	Signature				Signatu	ine .					Sign	atura						naturo T	
· · · · · · · · · · · · · · · · · · ·	<u>- // ///</u>	omer (11)	Printed Mame	,			Printed	Name						ted Name	t			K21 Nin Corp	oration	8678 [:]	5
Firm SES	Firm Al	3	Flama				Firm						Firm	•			_' ĭ			an a	
	Date/Time 4627	0930	Date/Time				Date/1	ime					Date	-/Time			<u></u> 1				

© 2012 by ALS Group '

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _2____OF _2___

004812

Project Name Olin-Pendleton Site	Project Nu	mber 1229			ANALYSIS REQUESTED (Include Method Number and Container Preservativo)																	
Project Manager Adam Carringer	Report CC	Idam Carr	inger -0	lin	PRE	SERVA	TIVE	8				-					Ц					
Company/Address Olin Corp					ERS .		7	7	7		7	/	/	7	7	7	7	37	7	7	Preserv 0. NON 1. HCl	ative Key IE Og H
3855 North Oc	oee Roa	d			IAN					/		/ ,		F/	/	/	/২	<u>e</u> /	/		2. HNC 3. H2S 4. NaC)₃ O₄ H
Cleveland TN 37312				NUMBER OF CONTAINERS		60,000 CLO	2	\$			\$ \$ \$ \$	100 m	/_/	/ /	Le and	Level	/ /	/ /	' /	5. Zn. / 6. MeC 7. NaH	HCelale	
Phone # 423 336 4057	Email AB	Carringer	@ Olm.c	m	MBER		5 8 / 5 8 / 8		1000	8				1 rend	2/3	5	3/			/	8. Othe	A ICE
Sempler's Signature Masswell Inffito	Sampler's	Printed Name	ton		R	/8	////////	/ีรี่	¥/2 3		New York		r 1	Ýĸ	70	7.9	/				REMARKS	RIPTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMP DATE		MATRIX																		
PS-TW-041421		4/14/21	028	GW	1										1					¥ com	posite in	lab
PS-TW-041421		4/14/21	(043	SW	1										/						osite in	
Trip Blank					3	3							ļ	ļ			ļ	ļ		provid	led by	lab
					<u> </u>									_			ļ					
					ļ					<u> </u>	ļ	_	 	<u></u>			ļ	<u> </u>				··
										 	 		<u> </u>				 			ļ		
				-	. 	ļ			<u> </u>	<u> </u>	<u> </u>		╞						<u> </u>			
										<u> </u>	<u> </u>		+									
								<u> </u>	<u> </u>	<u> </u>	1			1			┢──					
							+			┢		ł	+	1							·····	
SPECIAL INSTRUCTIONS/COMMENTS Metals : Antimory, Boron, Cl	ny omi cong				╺┸╾╌╍╍┑	1	π				I HEME				ORT R ults Only		IEMEN	TS		INVOID	CE INFORM	ATION
# CN samples are f	s be comp	osited in li	4								3 dag	,	4		nits + O DUP, M		naries as requir	ପୌ	PO I	KEI	N 00	
See attached form f	sonale	Employ						4 da CStar	y <u> </u>	5 day I business	: daya-No	Surcher	ort	III, Re	suits + C	C and (Calibratik	n	8111	. TO: Ol,	n Corp	,
See attached form t	for source	Chine and								DRT DA				Sum	naries						دد	
								tand					_	IV. Da	ta Velida	nion Rej	port with	Raw Da	ta		<u></u>	
See CAPP																						
STATE WHERE SAMPLES WERE COL	LECTED NY																	_No				
RELINQUISHED BY	NECEIV		A	ELINQUISHED	BY				RECE	IVED B	IY .				RUNO	UISHE	DBY			F	IECEIVED BY	
Signature Maxwell Wifetos S	ignaty T	^a lla t	Signature				Signal	ure		<u></u>			Sigr	ature					Sign	ature		
Printed Name Maxwell Liftitan Printed North () F3mEnter (1) Printed North							Printo	d Name					Prin	ted Name	1	- F	221	03	678	ł	5	· ·
Form SES F			Firm				Firm						Fim	;			n Corpo n - Pene	03 pration diaton 6		•	v	;
	Date/Time / 11-21	09:30	Date/Time				Dete/1	Time					Date	s/Time		ןן ו						
Distribution: White - Lab Copy: Yellow - Return t		<u> </u>	•		Pa	ge 8	df 47										=)≭\i# [~~	≈41₩₽₽₿₿ ₩ ₩	•••••••			

AL	s)	Cooler in Corp		eipt :		• reservati		eck F	orm	R	210367 Corporation - Pandiston Bita	'8 //	5
Project/Cli	$ent _ 1 $	<u>n corp</u>	·	H-	Fo	der Number)))
Cooler receiv	ed on $\frac{9}{6}$	-dl	<u>by: </u>]	10	م	COURIE	R: ALS	UPS	FEDE	k vel	OCITY CLI	ENT	
1 Were Ca	istody seals or	a outside of coole	r?		YN	5a Per	chlorate	sample	have req	uired ho	adspace?	YN	NA
2 Custody	papers prope	rly completed (in	ık, sign	ied)?	NY	5b Die	VOA via	us Alk,	or Sulfide	have si	g* bubbles?	YA	NA
3 Did all b	ottles arrive in	good condition	(unbro	ken)?	N N	6 WI	ere did the	e bottle	s originat	e?	ALS/ROC	CLIE	T
4 Circle:	Wet Ice Dry	Ice Gel packs	pre	sent?	N N	7 Soi	1 VOA rec	cived a	s: Bu	lk E	ncore 503:	Sset N	
8. Temperatu	re Readings	Date: 4/6	q1	Time	:10/3	<u> </u>	D: IR#7	1R#11	>	Fron	Temp Blank) Samp	le Bottle
Observed Te		al											
Within 0-6%		ØN ØN	·	Y	N	Y N	<u>Y</u>	<u>N</u>		N	<u>Y N</u>	Y	N
	re samples froz	note packing/ic		<u>Y</u>	N	<u>Y N</u>	Y	N	Y acked (de	N	YN	Y Same D	N
5035 sample Cooler Bro 9.	eakdown/Prese Were all bottle	orage location: ervation Check** labels complete	(<i>i.e</i> , and	e :		ation, etc.)?	<u>bra]</u> at at e:75			S∰w NO	of sampling?	Y]	N
		bels and tags agr intainers used for				XIS?	•	¥ ک	ES ES	NO NO			
12. V	Vere 5035 vial	s acceptable (no	extra la	abels,	not leak			_	ES	NO		N A	
Contraction of the local division of the loc	Lot of test	assettes / Tubes	Intact Prese			<u>SY/N</u> Cau eceived	nisters Pre	T		dlar® B Vol.	ags Inflated	N/A	Final
рН	paper	Reagent	Yes	No		eceived	Exp	Samp Adjus		Added	1		pH
≥12	223419	NaOH	V		2125								
		HNO3	r	<u> </u>		2902	<u>.</u>	 					
2	<u> </u>	H ₂ SO ₄		L	+	1-25-21129	<u>}-</u>	 					
<4		NaHSO4	ļ	<u> </u>		4/14/21		ļ					
5-9		For 608pest		┣		otify for 3day	, 	<u> </u>				ŀ	{
Residual Chlorine (-)		For CN, Phenol, 625, 608pest, 522	r		Na2Sz	Sintact PM to add D3 (625, 608, scorbic (phenol)							
L	L	Na ₂ S ₂ O ₃		<u> </u>	1	- 		<u> </u>			<u></u>	<u> </u>	
		ZnAcetate HCI	-	 **		<u> </u>		Otherw		les of all	e tested before an samples with che entatives).		ervatives
Bottle lot	numbers: <u>O</u>	-283-070,	(।।उङ	ЧС,	8072	1-07, 9017	L-04						

Explain all Discrepancies/ Other Comments:

HPROD	BULK
HTR	FLDT
SUB	AGEA
ALS	LL3541

Labels secondary reviewed by: _____ PC Secondary Review: _____

*significant air bubbles: VOA > 5-6 mm : WC >1 in, diameter

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r19.doc

03/02/2021

Internal Chain of Custody Report

Service Request: R2103678

Client:Olin CorporationProject:Olin - Pendleton Site/1229

Bottle ID	Methods	Date	Time	Sample Location / User	Disposed On
R2103678-001.01	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	SM 2540 D-1997(20	11)			
		4/16/2021	1730	SMO / DWARD	
		4/22/2021	0509	R-Dumpster / KAWONG	
R2103678-001.02	······				
	420.4				
		4/16/2021	1730	SMO / DWARD	
		4/16/2021	1753	RT000039 / DWARD	
		4/16/2021	1758	R-015 / DWARD	
R2103678-001.03					
	Kelada-01				
		4/16/2021	1730	SMO / DWARD	
		4/20/2021	2101	R-015 / GLAFORCE RT000767 / GLAFORCE	
		4/20/2021	2103	KIUUU/0// GLAFORCE	
R2103678-001.04					
		4/16/2021	1730	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.05					· · · · · · · · · · · · · · · · · · ·
R2103078-001.03					
		4/16/2021	1730	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.06				· · · · · · · · · · · · · · · · · · ·	
		4/16/2021	1730	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.07					
	1631E				
		4/16/2021	1730	SMO / DWARD	
		4/16/2021	1734	R-A01 / DWARD	
R2103678-001.08					
	200.7,200.7,200.7				
		4/16/2021	1730	SMO / DWARD	
		4/16/2021	1734	R-A01 / DWARD	
		4/19/2021	0913	In Lab / AKONZEL	
	·	4/21/2021	1625	R-A01 / AKONZEL	
R2103678-001.09					
		4/16/2021	1730	SMO / DWARD	
		4/16/2021	1750		

R2103678-001.10

Internal Chain of Custody Report

Service Request: R2103678

Client:Olin CorporationProject:Olin - Pendleton Site/1229

Bottle ID	Methods	Date	Time	Sample Location / User	Disposed On
		4/16/2021	1733	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.11	· · · · · · · · · · · · · · · · · · ·				
		4/16/2021	1733	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.12).			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
		4/16/2021	1733	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.13	}		<u></u>		
		4/16/2021	1733	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.14	1			······································	****
		4/16/2021	1733	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.15	5				4477
		4/16/2021	1733	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.10	6				
		4/16/2021	1733	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.1	7			ант, — — — — — — — — — — — — — — — — — — —	
		4/16/2021	1733	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-001.1				······································	
	624	4460001	1777	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
		4/16/2021	1733	In Lab / KRUEST	
		4/18/2021 4/18/2021	1153 1214	R-001-S12 / KRUEST	
		4 /10/2021	1414		
R2103678-002.0					
	1631E	4/16/2021	1730	SMO / DWARD	

Internal Chain of Custody Report

Client:Olin CorporationProject:Olin - Pendleton Site/1229

Service Request: R2103678

Bottle ID	Methods	Date	Time	Sample Location / User	Disposed On
	1631E				
		4/16/2021	1734	R-A01 / DWARD	
R2103678-003.01					
	624				
		4/16/2021	1730	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
		4/18/2021	1153	In Lab / KRUEST	
		4/18/2021	1213	R-001-S12 / KRUEST	
R2103678-003.02				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		4/16/2021	1730	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	
R2103678-003.03					
		4/16/2021	1730	SMO / DWARD	
		4/16/2021	1733	R-001 / DWARD	

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 13 of 47

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	Pennsylvania ID# 68-786
Delaware Approved	New Hampshire ID # 2941	Rhode Island ID # 158
DoD ELAP #65817	New York ID # 10145	Virginia #460167
Florida ID # E87674	North Carolina #676	

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Analyst Summary report

Client:	Olin Corporation	Service Request: R2103678
Project:	Olin - Pendleton Site/1229	

Sample Name:	PS-TW-041421	Date Collected: 04/14/21
Lab Code:	R2103678-001	Date Received: 04/16/21
Sample Matrix:	Water	

Analysis Method	Extracted/Digested By	Analyzed By
1631E		KMCLAEN
200.7	AKONZEL	KMCLAEN
420.4		CWOODS
624		KRUEST
Kelada-01		CWOODS
SM 2540 D-1997(2011)		KAWONG

Analysis Method		Extracted/Digested By	Analyzed By
Sample Matrix:	Water		
Lab Code:	R2103678-002		Date Received: 04/16/21
Sample Name:	PS-TW-041421 Dup		Date Collected: 04/14/21

Sample Name:Trip BlankDate Collected: 04/14/21Lab Code:R2103678-003Date Received: 04/16/21Sample Matrix:Water

Analysis Method 624

1631E

Extracted/Digested By

Analyzed By KRUEST

KMCLAEN

Printed 4/30/2021 12:36:53 PM

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual Cyanide	SM 4500-CN-G
SM 4500-CN-E WAD Cyanide	SM 4500-CN-I

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7199	3060A
300.0 Anions/ 350.1/ 353.2/ SM 2320B/ SM 5210B/ 9056A Anions	DI extraction
For analytical methods not listed, method is the same as the analyt reference.	

RIGHT SOLUTIONS | RIGHT PARTNER

P:\INTRANET\QAQC\Forms Controlled\Prep Methods Inorganic rev 2.doc 12/20/19

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 18 of 47

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Olin Corporation	Service Request:	
Project:	Olin - Pendleton Site/1229	Date Collected:	04/14/21 10:43
Sample Matrix:	Water	Date Received:	04/16/21 09:30
	DC 7752 041421	Units:	nσ/I.
Sample Name:	PS-TW-041421		0
Lab Code:	R2103678-001	Basis:	NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.303 J	1.00	0.200	1	04/18/21 13:50	*
1,1,2,2-Tetrachloroethane	ND U	1.00	0.200	1	04/18/21 13:50	*
1,1,2-Trichloroethane	ND U	1,00	0.200	1	04/18/21 13:50	*
1,1-Dichloroethane (1,1-DCA)	1.20	1.00	0.200	1	04/18/21 13:50	*
1,1-Dichloroethene (1,1-DCE)	ND U	1,00	0.200	1	04/18/21 13:50	*
1,2-Dichloroethane	ND U	1.00	0.200	1	04/18/21 13:50	*
1,2-Dichloropropane	ND U	1.00	0.200	1	04/18/21 13:50	*
2-Butanone (MEK)	ND U	5.00	0.780	1	04/18/21 13:50	*
2-Hexanone	ND U	5.00	0.200	1	04/18/21 13:50	*
4-Methyl-2-pentanone (MIBK)	ND U	5.00	0.200	1	04/18/21 13:50	*
Acetone	ND U	5.00	2.10	1	04/18/21 13:50	*
Acrolein	ND U	10.0	0.900	1	04/18/21 13:50	*
Acrylonitrile	ND U	10.0	0.900	1	04/18/21 13:50	*
Benzene	ND U	1.00	0.200	1	04/18/21 13:50	*
Bromodichloromethane	ND U	1.00	0.200	1	04/18/21 13:50	*
Bromoform	ND U	1.00	0.250	1	04/18/21 13:50	*
Bromomethane	ND U	1.00	0.700	1	04/18/21 13:50	*
Carbon Disulfide	ND U	10.0	0.420	1	04/18/21 13:50	*
Carbon Tetrachloride	ND U	1.00	0.340	1	04/18/21 13:50	*
	ND U	1.00	0.200	1	04/18/21 13:50	*
Chlorobenzene	ND U	1.00	0.230		04/18/21 13:50	*
Chloroethane	ND U	1.00	0.240	1	04/18/21 13:50	*
Chloroform Chloromethane	ND U	1.00	0.280	1	04/18/21 13:50	*
	ND U	1.00	0.200	1	04/18/21 13:50	*
Dibromochloromethane	ND U	1.00	0.650	1	04/18/21 13:50	*
Methylene Chloride	ND U	1.00	0.200	Î	04/18/21 13:50	*
Ethylbenzene	ND U	1.00	0.200	ĩ	04/18/21 13:50	*
Styrene	ND U	1.00	0.210	1	04/18/21 13:50	*
Tetrachloroethene (PCE)	ND U	1.00	0.200	1	04/18/21 13:50	*
Toluene	ND U	1.00	0.200	1	04/18/21 13:50	*
Trichloroethene (TCE)	ND U	1.00	0.200	1	04/18/21 13:50	*
Vinyl Chloride	ND U	1.00	0.230	1	04/18/21 13:50	*
cis-1,2-Dichloroethene	ND U	1.00	0.200	1	04/18/21 13:50	*
cis-1,3-Dichloropropene		2.00	0.200	1	04/18/21 13:50	*
m,p-Xylenes	ND U ND U	1.00	0.200	1	04/18/21 13:50	*
o-Xylene		1.00	0.200	1	04/18/21 13:50	*
trans-1,2-Dichloroethene	ND U	1,00	0.200	1	04/18/21 13:50	*
trans-1,3-Dichloropropene	ND U	1.00	0.250	1	04/10/21 15,50	

Analytical Report

Client:	Olin Corporation	Service Request: R2103678
Project:	Olin - Pendleton Site/1229	Date Collected: 04/14/21 10:43
Sample Matrix:	Water	Date Received: 04/16/21 09:30
Sample Name: Lab Code:	PS-TW-041421 R2103678-001	Units: ug/L Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1.2-Dichloroethane-d4	92	73 - 125	04/18/21 13:50	
4-Bromofluorobenzene	89	85 - 122	04/18/21 13:50	
Toluene-d8	94	87 - 121	04/18/21 13:50	

Analytical Report

Client:	Olin Corporation	Service Request: R2103678
Project:	Olin - Pendleton Site/1229	Date Collected: 04/14/21
Sample Matrix:	Water	Date Received: 04/16/21 09:30
Sample Name:	Trip Blank	Units: ug/L
Lab Code:	R2103678-003	Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.200	1	04/18/21 13:28	*
1,1,2,2-Tetrachloroethane	ND U	1.00	0.200	1	04/18/21 13:28	*
1,1,2-Trichloroethane	ND U	1.00	0.200	1	04/18/21 13:28	*
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.200	1	04/18/21 13:28	*
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.200	1	04/18/21 13:28	*
1,2-Dichloroethane	ND U	1.00	0.200	1	04/18/21 13:28	*
1,2-Dichloropropane	ND U	1.00	0.200	1	04/18/21 13:28	*
2-Butanone (MEK)	ND U	5.00	0.780	1	04/18/21 13:28	*
2-Hexanone	ND U	5.00	0.200	1	04/18/21 13:28	*
4-Methyl-2-pentanone (MIBK)	ND U	5.00	0.200	1	04/18/21 13:28	*
Acetone	ND U	5.00	2.10	1	04/18/21 13:28	*
Acrolein	ND U	10.0	0.900	1	04/18/21 13:28	*
Acrylonitrile	ND U	10.0	0.900	1	04/18/21 13:28	*
Benzene	ND U	1.00	0.200	1	04/18/21 13:28	*
Bromodichloromethane	ND U	1.00	0.200	1	04/18/21 13:28	*
Bromoform	ND U	1.00	0.250	1	04/18/21 13:28	*
Bromomethane	ND U	1.00	0.700	1	04/18/21 13:28	*
Carbon Disulfide	ND U	10.0	0.420	1	04/18/21 13:28	*
Carbon Tetrachloride	ND U	1.00	0.340	1	04/18/21 13:28	*
Chlorobenzene	ND U	1.00	0.200	1	04/18/21 13:28	*
Chloroethane	ND U	1.00	0.230	1	04/18/21 13:28	*
Chloroform	ND U	1.00	0,240	1	04/18/21 13:28	*
Chloromethane	ND U	1.00	0.280	1	04/18/21 13:28	*
Dibromochloromethane	ND U	1.00	0.200	1	04/18/21 13:28	*
Methylene Chloride	ND U	1.00	0.650	1	04/18/21 13:28	*
Ethylbenzene	ND U	1.00	0.200	1	04/18/21 13:28	*
Styrene	ND U	1.00	0.200	1	04/18/21 13:28	*
Tetrachloroethene (PCE)	ND U	1.00	0.210	1	04/18/21 13:28	*
Toluene	ND U	1.00	0.200	1	04/18/21 13:28	*
Trichloroethene (TCE)	ND U	1.00	0.200	1	04/18/21 13:28	*
Vinyl Chloride	ND U	1.00	0.200	1	04/18/21 13:28	*
cis-1,2-Dichloroethene	ND U	1.00	0.230	1	04/18/21 13:28	*
cis-1,3-Dichloropropene	ND U	1.00	0.200	1	04/18/21 13:28	*
	ND U	2.00	0.200	1	04/18/21 13:28	*
m,p-Xylenes	ND U	1.00	0.200	1	04/18/21 13:28	*
o-Xylene trans-1,2-Dichloroethene	ND U	1.00	0.200	1	04/18/21 13:28	*
trans-1,2-Dichloropropene	ND U	1.00	0.230	1	04/18/21 13:28	*

Analytical Report

Client:	Olin Corporation	Service Request: R2103678
Project:	Olin - Pendleton Site/1229	Date Collected: 04/14/21
Sample Matrix:	Water	Date Received: 04/16/21 09:30
Sample Name:	Trip Blank	Units: ug/L
Lab Cođe:	R2103678-003	Basis: NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Surrogate Name	,	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4 4-Bromofluorobenzene		94 92 97	73 - 125 85 - 122 87 - 121	04/18/21 13:28 04/18/21 13:28 04/18/21 13:28	
Toluene-d8		97	87 - 121	04/18/21 13:28	

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

METALS -1-INORGANIC ANALYSIS DATA PACKAGE

Client:	Olin Corporation	Service Request:	PS-TW-041421
Project No.:	R2103678	Date Collected:	4/14/2021
Project Name:		Date Received:	4/16/2021
Matrix:	WATER	Units:	ug/L
		Basis:	

Sample Name: PS-TW-041421

Lab Code: R2103678-001

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	с	Q
Antimony	200.7	10.0	5.4	1.0	10.0	U	
Boron	200.7	200	5.8	1.0	76.1	J	
Chromium	200.7	10.0	0.910	1.0	10.0	ប	

% Solids: 0.0

Comments:

Analytical Report

Client:	Olin Corporation	Service Request: R2103678
Project:	Olin - Pendleton Site/1229	Date Collected: 04/14/21 10:43
Sample Matrix:	Water	Date Received: 04/16/21 09:30
Sample Name: Lab Code:	PS-TW-041421 R2103678-001	Basis: NA

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Mercury, Total	1631E	ND U	ng/L	1.0	0.3	1	04/20/21 13:19	

i

Analytical Report

Client:	Olin Corporation	Service Request:	R2103678
Project:	Olin - Pendleton Site/1229	Date Collected:	04/14/21 09:55
Sample Matrix:	Water	Date Received:	04/16/21 09:30
Sample Name: Lab Code:	PS-TW-041421 Dup R2103678-002	Basis:	NA

Inorganic Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil	Date Analyzed	Q
Mercury, Total	1631E	ND U	ng/L	1.0	0.3	1	04/20/21 13:27	

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Olin Corporation	Service Request: R2103678
Project:	Olin - Pendleton Site/1229	Date Collected: 04/14/21 10:43
Sample Matrix:	Water	Date Received: 04/16/21 09:30
Sample Name: Lab Code:	PS-TW-041421 R2103678-001	Basis: NA

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	<u>Q</u>
Cyanide, Total	Kelada-01	ND U	mg/L	0.0050	1	04/24/21 14:11	
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	04/22/21 18:50	
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	ND U	mg/L	1.0	1	04/21/21 17:25	

-

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

QA/QC Report

Service Request: R2103678

Client:Olin CorporationProject:Olin - Pendleton Site/1229

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

		1,2-Dichloroethane-d4	4-Bromofluorobenzene	Toluene-d8
Sample Name	Lab Code	73-125	85-122	87-121
PS-TW-041421	R2103678-001	92	89	94
Trip Blank	R2103678-003	94	92	97
Method Blank	RQ2104140-04	94	92	96
Lab Control Sample	RQ2104140-03	93	95	98
PS-TW-041421 MS	RQ2104140-06	95	96	98
PS-TW-041421 DMS	RQ2104140-07	96	96	98

QA/QC Report

Client:	Olin Corporation	Service Request:	R2103678
Project:	Olin - Pendleton Site/1229	Date Collected:	04/14/21
Sample Matrix:	Water	Date Received:	04/16/21
▲ 		Date Analyzed:	04/18/21

Duplicate Matrix Spike Summary

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Sample Name:	PS-TW-041421	Units:	ug/L
Lab Code:	R2103678-001	Basis:	NA
Analysis Method:	624.1		

		Matrix Spike RQ2104140-06			•	icate Matrix RQ2104140-	-			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1-Trichloroethane (TCA)	0.303 J	49.2	50.0	98	49.6	50.0	99	52-162	<1	36
1,1,2,2-Tetrachloroethane	ND U	46.3	50.0	93	48.0	50.0	96	46-157	4	61
1,1,2-Trichloroethane	ND U	46.7	50.0	93	47.1	50.0	94	52-150	1	45
1,1-Dichloroethane (1,1-DCA)	1.20	51.3	50.0	100	50.7	50.0	99	59-155	1	40
1,1-Dichloroethene (1,1-DCE)	ND U	61.6	50.0	123	61.3	50.0	123	1-234	<1	32
1,2-Dichloroethane	ND U	47.7	50.0	95	48.8	50.0	98	49-155	2	49
1,2-Dichloropropane	ND U	50.0	50.0	100	50.5	50.0	101	1-210	<1	55
2-Butanone (MEK)	ND U	46.3	50.0	93	50.3	50.0	101	61-137	8	30
2-Hexanone	ND U	46.7	50.0	93	51.5	50.0	103	56-132	10	30
4-Methyl-2-pentanone (MIBK)	ND U	48.6	50.0	97	51.2	50.0	102	60-141	5	30
Acetone	ND U	48.6	50.0	97	50.0	50.0	100	35-183	3	30
Acrolein	ND U	81.0	100	81	85.9	100	86	40-160	6	60
Acrylonitrile	ND U	259	250	104	261	250	105	40-160	<1	60
Benzene	ND U	50.4	50.0	101	50.8	50.0	102	37-151	<1	61
Bromodichloromethane	ND U	48.5	50.0	97	48.8	50.0	98	35-155	<1	56
Bromoform	ND U	46.7	50.0	93	47.9	50.0	96	45-169	3	42
Bromomethane	ND U	40.6	50.0	81	41.8	50.0	84	1-242	3	61
Carbon Disulfide	ND U	47.8	50.0	96	50.4	50.0	101	59-140	5	30
Carbon Tetrachloride	ND U	48,4	50.0	97	49.5	50.0	99	70-140	2	41
Chlorobenzene	ND U	46.6	50.0	93	47.6	50.0	95	37-160	2	53
Chloroethane	ND U	52.8	50.0	106	52.7	50.0	105	14-230	<1	78
Chloroform	ND U	45.3	50.0	91	45.0	50.0	90	51-138	<1	54
Chloromethane	ND U	58.5	50.0	117	57.3	50.0	115	1-273	2	60
Dibromochloromethane	ND U	44.5	50.0	89	47.0	50.0	94	53-149	5	50
Methylene Chloride	ND U	48.5	50.0	97	49.1	50.0	98	1-221	1	28
Ethylbenzene	ND U	49.2	50.0	98	49.4	50.0	99	37-162	<1	63
Styrene	ND U	49.6	50.0	99	50.9	50.0	102	74-136	3	30
Tetrachloroethene (PCE)	ND U	47.2	50.0	94	49.3	50.0	99	64-148	4	39
Toluene	ND U	50.0	50.0	100	50.4	50.0	101	47-150	<1	41
Trichloroethene (TCE)	ND U	47.5	50.0	95	47.8	50.0	96	70-157	<1	48
Vinyl Chloride	ND U	50.0	50.0	100	48.9	50.0	98	1-251	2	60
cis-1,2-Dichloroethene	ND U	50.7	50.0	101	51.2	50.0	102	77-127	<1	30
cis-1,3-Dichloropropene	ND U	49.8	50.0	100	50.7	50.0	101	1-227	2	58

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client:	Olin Corporation	Service Request:	R2103678						
Project:	Olin - Pendleton Site/1229	Date Collected:	04/14/21						
Sample Matrix:	Water	Date Received:							
~ <u>F</u>		Date Analyzed:	04/18/21						
	Duplicate Matrix S	pike Summary							
	Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved								
Sample Name:	PS-TW-041421	Units:	ug/L						

		Matrix Spike RQ2104140-06			Dupl					
Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
m,p-Xylenes	ND U	101	100	101	101	100	101	80-126	<1	30
o-Xylene	ND U	48,4	50.0	97	49.9	50.0	100	79-123	3	30
trans-1,2-Dichloroethene	ND U	55.9	50.0	112	54.9	50.0	110	54-156	2	45
trans-1,3-Dichloropropene	ND U	48.6	50.0	97	48.4	50.0	97	17-183	<1	86

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Lab Code:

Analysis Method:

R2103678-001

624.1

NA

Basis:

Analytical Report

Client:	Olin Corporation	Service Request:	R2103678
Project:	Olin - Pendleton Site/1229	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank RQ2104140-04	Units: Basis:	-

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.200	1	04/18/21 12:22	
1,1,2,2-Tetrachloroethane	ND U	1.00	0.200	1	04/18/21 12:22	
1,1,2-Trichloroethane	ND U	1.00	0.200	1	04/18/21 12:22	
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.200	1	04/18/21 12:22	
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.200	1	04/18/21 12:22	
1,2-Dichloroethane	ND U	1.00	0.200	1	04/18/21 12:22	
1,2-Dichloropropane	ND U	1.00	0.200	1	04/18/21 12:22	
2-Butanone (MEK)	ND U	5.00	0.780	1	04/18/21 12:22	
2-Hexanone	ND U	5.00	0.200	1	04/18/21 12:22	
4-Methyl-2-pentanone (MIBK)	ND U	5.00	0.200	1	04/18/21 12:22	
Acetone	ND U	5.00	2.10	1	04/18/21 12:22	
Acrolein	ND U	10.0	0.900	1	04/18/21 12:22	
Acrylonitrile	ND U	10.0	0.900	1	04/18/21 12:22	
Benzene	ND U	1.00	0.200	1	04/18/21 12:22	
Bromodichloromethane	ND U	1.00	0.200	1	04/18/21 12:22	
Bromoform	ND U	1.00	0.250	1	04/18/21 12:22	
Bromomethane	ND U	1.00	0.700	1	04/18/21 12:22	
Carbon Disulfide	ND U	10.0	0.420	1	04/18/21 12:22	
Carbon Tetrachloride	ND U	1.00	0.340	1	04/18/21 12:22	
Chlorobenzene	ND U	1.00	0.200	1	04/18/21 12:22	
Chloroethane	ND U	1.00	0.230	1	04/18/21 12:22	
Chloroform	ND U	1.00	0.240	1	04/18/21 12:22	
Chloromethane	ND U	1.00	0.280	1	04/18/21 12:22	
Dibromochloromethane	ND U	1.00	0.200	1	04/18/21 12:22	
Methylene Chloride	ND U	1.00	0.650	1	04/18/21 12:22	
Ethylbenzene	ND U	1.00	0.200	1	04/18/21 12:22	
•	ND U	1.00	0.200	1	04/18/21 12:22	
Styrene Tetrachloroethene (PCE)	ND U	1.00	0.210	1	04/18/21 12:22	
Toluene	ND U	1.00	0.200	1	04/18/21 12:22	
Trichloroethene (TCE)	ND U	1.00	0.200	1	04/18/21 12:22	
Vinyl Chloride	ND U	1.00	0.200	1	04/18/21 12:22	
	ND U	1.00	0.230	1	04/18/21 12:22	
cis-1,2-Dichloroethene	ND U	1.00	0.200	1	04/18/21 12:22	
cis-1,3-Dichloropropene	ND U	2.00	0.200	î	04/18/21 12:22	
m,p-Xylenes	ND U	1.00	0.200	Î	04/18/21 12:22	
o-Xylene	ND U ND U	1.00	0.200	1	04/18/21 12:22	a
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ND U	1.00	0.230	1	04/18/21 12:22	

Analytical Report

Client:	Olin Corporation	Service Request:	R2103678
Project:	Olin - Pendleton Site/1229	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank RQ2104140-04	Units: Basis:	0

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1.2-Dichloroethane-d4	94	73 - 125	04/18/21 12:22	
4-Bromofluorobenzene	92	85 - 122	04/18/21 12:22	
Toluene-d8	96	87 - 121	04/18/21 12:22	

QA/QC Report

Client:Olin CorporationProject:Olin - Pendleton Site/1229Sample Matrix:Water

ration lleton Site/1229

Service Request: R2103678 Date Analyzed: 04/18/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Units:ug/L Basis:NA

Lab Control Sample RQ2104140-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	624.1	18.7	20.0	93	70-130
1,1,2,2-Tetrachloroethane	624.1	17.8	20.0	89	60-140
1,1,2-Trichloroethane	624.1	19.3	20.0	97	70-130
1,1-Dichloroethane (1,1-DCA)	624.1	18.9	20.0	95	70-130
1,1-Dichloroethene (1,1-DCE)	624.1	23.1	20.0	115	50-150
1,2-Dichloroethane	624.1	19.7	20.0	98	70-130
1,2-Dichloropropane	624.1	19.5	20.0	98	35-165
2-Butanone (MEK)	624.1	20.0	20.0	100	61-137
2-Hexanone	624.1	19.1	20.0	95	63-124
4-Methyl-2-pentanone (MIBK)	624.1	20.1	20.0	101	66-124
Acetone	624.1	19.5	20.0	97	40-161
Acrolein	624.1	38.5	40.0	96	60-140
Acrylonitrile	624.1	105	100	105	60-140
Benzene	624.1	19.5	20.0	97	65-135
Bromodichloromethane	624.1	18.9	20.0	95	65-135
Bromoform	624.1	17.1	20.0	86	70-130
Bromomethane	624.1	13.2	20.0	66	15-185
Carbon Disulfide	624.1	20.1	20.0	100	66-128
Carbon Tetrachloride	624.1	17.9	20.0	89	70-130
Chlorobenzene	624.1	18.0	20.0	90	65-135
Chloroethane	624.1	19.6	20.0	98	40-160
Chloroform	624.1	17.6	20.0	88	70-135
Chloromethane	624.1	22.0	20.0	110	1-205
Dibromochloromethane	624.1	18.4	20.0	92	70-135
Methylene Chloride	624.1	19.1	20.0	95	60-140
Ethylbenzene	624.1	17.9	20.0	89	60-140
Styrene	624.1	19.0	20.0	95	80-124
Tetrachloroethene (PCE)	624.1	18.1	20.0	91	70-130
Toluene	624.1	19.3	20.0	96	70-130
Trichloroethene (TCE)	624.1	18.7	20.0	94	65-135
Vinyl Chloride	624.1	18.3	20.0	92	5-195
cis-1,2-Dichloroethene	624.1	19.7	20.0	99	80-117
cis-1,3-Dichloropropene	624.1	19.8	20.0	99	25-175
Printed 4/30/2021 12:36:54 PM			Supers	et Reference:21-00	00586798 rev 00

QA/QC Report

Client:Olin CorporationProject:Olin - Pendleton Site/1229Sample Matrix:Water

Service Request: R2103678 Date Analyzed: 04/18/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Units:ug/L Basis:NA

Lab Control Sample RQ2104140-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
m,p-Xylenes	624.1	37.5	40.0	94	80-126
o-Xylene	624.1	18.5	20.0	93	79-123
trans-1,2-Dichloroethene	624.1	21.2	20.0	106	70-130
trans-1,3-Dichloropropene	624.1	19.2	20.0	96	50-150

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS Environmental

METALS

-3-

BLANKS

 Contract:
 R2103678

 Lab Code:
 Case No.:
 SAS No.:
 SDG NO.:
 PS-TW-041421

 Preparation Blank Matrix (soil/water):
 WATER
 WATER
 VATER

Preparation Blank Concentration Units (ug/L, ppt, or mg/kg): UG/L

Initial Calib. Blank		Continuing Calibration Blank ug/L					- Preparation Blank			-		
Analyte	ug/L	с	1	с	2	с	3	с		С		м
Antimony	5.40	σ	5.40	υ	5.40	υ	5.40	υ	5.400	U		P
Boron	33.60	J	27.00	JJ	34.40	J	31.70	J	5.800	U	Ш	₽
Chromium	0.91	σ	0.91	σ	0.91	U	0.91	ប	0.910	U	ĨÌ	₽

ALS Environmental

METALS

-3-

BLANKS

 Contract:
 R2103678

 Lab Code:
 Case No.:
 SAS No.:
 SDG NO.:
 PS-TW-041421

 Preparation Blank Matrix (soil/water):
 WATER
 WATER
 VATER

Preparation Blank Concentration Units (ug/L, ppt, or mg/kg): UG/L

Initial Calib. Blank			Continuing Calibration Blank ug/L						Preparation Blank		
Analyte	ug/L	c	1	С	2	С	3	С		С	[м
Antimony	1		5.40	וסן	5.40	ប	5.40	ប	1	1	
Boron			35.20	JJ	23.80	J	44.40	J]	P
Chromium			0.91	U	0.91	υ	0.91	σ		1	P

METALS

-7-

LABORATORY CONTROL SAMPLE

Contract:	R2103678				
Lab Code:		Case No.:	SAS No.:	SDG NO.: PS-TW-0414	21
Solid LCS	Source:				
Aqueous LC	S Source:	CPI			

	Aqueous	(ug/L				Solid	(mg/K	
Analyte	True	Found	%R	True	Found	с	Limits	%R
Antimony	500	472	94					
Boron	1000	948	95		1			
Chromium	200	203	102					

Analytical Report

Client:	Olin Corporation	Service Request:	
Project:	Olin - Pendleton Site/1229	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank R2103678-MB	Basis:	NA

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Mercury, Total	1631E	ND U	ng/L	1.0	0.3	1	04/20/21 11:36	

7

QA/QC Report

Client:Olin CorporationProject:Olin - Pendleton Site/1229Sample Matrix:Water

Service Request: R2103678 Date Analyzed: 04/20/21

Lab Control Sample Summary Inorganic Parameters

Units:ng/L Basis:NA

Lab Control Sample

R2103678-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury, Total	1631E	5.02	5.0	100	77-128

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

	11	underen scopere
Client:	Olin Corporation	Service Request: R2103678
Project:	Olin - Pendleton Site/1229	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	Method Blank R2103678-MB	Basis: NA

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed Q
Cyanide, Total	Kelada-01	ND U	mg/L	0.0050	1	04/24/21 12:43
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	04/22/21 17:30
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	ND U	mg/L	1.0	1	04/21/21 17:25

5

QA/QC Report

Client:Olin CorporationProject:Olin - Pendleton Site/1229Sample Matrix:Water

Service Request: R2103678 Date Analyzed: 04/21/21 - 04/24/21

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample R2103678-LCS

% Rec Limits **Spike Amount** % Rec **Analytical Method** Result Analyte Name 0.100 90-110 Kelada-01 0.0955 95 Cyanide, Total 94 90-110 0.0377 0.0400 420.4 Phenolics, Total Recoverable 214 86 80-120 Solids, Total Suspended (TSS) SM 2540 D-1997(2011) 184

Service Request No:R2103679

Adam Carringer Olin Corporation 3855 North Ocoee Street Suite 200 Cleveland, TN 37312

Laboratory Results for: Olin - Pendleton Site

Dear Adam,

Enclosed are the results of the sample(s) submitted to our laboratory April 16, 2021 For your reference, these analyses have been assigned our service request number **R2103679**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Mignue Pedio

Meghan Pedro Project Manager

CC: Randy Morris

ADDRESS 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 PHONE +1 585 288 5380 | FAX +1 585 288 8475 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

1565 Jefferson Rd, Building 300, Rochester, NY 14623 | 585-288-5380 | www.alsglobal.com

Client:Olin CorporationProject:Olin - Pendleton SiteSample Matrix:Water

Service Request: R2103679 Date Received: 04/16/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level IV requested by the client.

Sample Receipt:

Four water samples were received for analysis at ALS Environmental on 04/16/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

No significant anomalies were noted with this analysis.

General Chemistry:

No significant anomalies were noted with this analysis.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

SMO:

No significant anomalies were noted with this analysis.

Approved by

Mighran Pedro

Date

04/30/2021

SAMPLE DETECTION SUMMARY

CLIENT ID: PS-INF-041421	and the second second	Lab	DID: R2103	679-001		and the second second
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane (1,1-DCA)	0.291	J	0.200	1.00	ug/L	624.1
Trichloroethene (TCE)	0.246	J	0.200	1.00	ug/L	624.1
CLIENT ID: PS-INF-041421 Dup		Lat	DID: R2103	679-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Mercury, Total	0.3	J	0.3	1.0	ng/L	1631E

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Service Request:R2103679

Client:Olin CorporationProject:Olin - Pendleton Site/1229

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
R2103679-001	PS-INF-041421	4/14/2021	1045
R2103679-002	PS-INF-041421 Dup	4/14/2021	0948
R2103679-003	Field Blank	4/14/2021	0935
R2103679-004	Trip Blank	4/14/2021	

CHAIN OF CUSTODY/LABORATORY A	ANALYSIS REQUEST FORM
-------------------------------	-----------------------

LS)

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE / OF ____

004812

1

Dlin-Pendleton Sit	Project N	umber 1229						At	VALYS	IS RE	QUEST	red (i	ncludi	e Meth	od Nu	mber	and Co	ontain	er Pre:	servative)		
fort Manager	Becort C				PRE	SERVA		0					2		3	0	Ч					
Adam Carringer Company/Address Olin Corp	<i>I/</i>	Adam Ca	rringer	-01.0		ŀ	\neg	7	\neg	7	\neg	/	7		7	/		<u>بر</u> جړ	7	77	Preservat 0. NONE 1. HCL	
3855 North Occ	see Road	۶			CONTAINERS			/	/	/		_			/		Ker		/		2. HNOg 3. H2SO 4. NaOH 5. Zл. A	4
Cleveland TN 3	7312				5		2	, 	\$. /		3 3 3 1 1 1		_/		(v)	Level 1	' /	' /	'/	6. MeOH 7. NaHS	(
423-336-4057	Email AB	Carringer@	POlin.co	~	NUMBER		60115 900 000	3/3	1000		METALS TON	8 9	8		3/.5	57	3/			/	8. Other	
Sampler's Signature Maywell Intertos	Sampler	s Printed Northe Laxwell Liff;	ton		R	/&	<i>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</i>	୵ୖୄୡୢୄୢୄ	<u>/</u>	૾ૺૺૺૺૺ૿ૢૼૺ૿૾ૢ	143	142	1	<u> </u> 	/0	7.5	1			ALTER	REMARKS/	IPTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMF DATE	LING	MATRIX																		
PS-1NF-041421		04/14/21	0946	GW	(1				LL He		
PS-INF-041421 DUP		04/14/21	0948	GW	1											1				LL Ho	duplic	ate
PJ-1NF-041421		4/14/21	1053	GW	1								1							Compo	ited in f	:eld
PS-INF-041421		4/14/21	1052	GW	1									1						compos	.ted in f	idd _
PS-1NE-041421		4/14/21	1055	GW	1						1				_					compos	ited in f	:eld
PS-INF-041421		4/14/21	1000	GW	3	3														9126	<u>n field</u>	<u> </u>
45-1NF-041421		4/14/21	1016	660	3	3															<u>n field</u>	
P5-1NF-041421		4/14/24	1033	GW	3	3															n field	<u> </u>
P5-INF-041421		4/14/21	1048	GW	3	3															<u>r field</u>	
45-INF-041421		4/14/21	0958	GW	1				1						1					* com	<u>posite in</u>	<u>lot</u>
45-INF-041421		4/14/21	1015	GW	1										1			<u> </u>		+ comp	osite in	100
SPECIAL INSTRUCTIONS/COMMENTS Metals: Antimony, Borm,	, Chromium						τυ				IIREME ES APPLI		_	_1. Res	ults Only	Y	REMEN	TS			INFORMAT	10N
* CN samples are	to be c	mposited	in lab					4 da	y	5 day				(1), Re	DUP, M suits + (SMSD	marles as requin Calibratic	-		REIN		
See attached form	n for sa	mple timel	ne					UESTE tond	D REP(ORT DA	TE			Sunn IV. Da		ation Re	port with) Raw Da			\	
See QAPP							_					<u></u>	_	-								
STATE WHERE SAMPLES WERE COL							_							Eda				_110	—		CEIVED BY	
RELINGUISHED BY	UPS	VED BY	RE	UNOUISHED) BY				RECE	IVED 8	Y			Þ	TELINO		-0 BY				CEIVED BT	
Signature Maxwell hefte	Squelt	I Jupper	Signature				Signat	ure					Sign	ðiurð					Sign	ามในาจ		
Marwell Liffiton	G1290.10.	Esmerry	Printed Name Firm				Printo Firm	d Name	_				Print Firm	ed Name				103	67	· <u>···</u>	5	· <u>}</u>
5E3	Hr.) 10000				_								/Gma			010n - Pe	ngieton	1 8K e		-	<u>+</u>
47:421 - 41	F[GA]	0931)	Date/Time				Date/T	2512	<u> </u>			•	Unite			-						
Distribution: White - Lab Copy; Yellow - Return	to Originator				Pa	age 7	of 46									C		• • # 112 .	• • • • • • • • • • • • • • • • • • • •	■201.# 11419 #III 	unina 1811 1888 ⊸	<u> </u>

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

0	0	4	8	1	2
		•	-	•	_

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 2 OF 2

Project Name Olin-Rendleton Site	Project Nun	1229						A	NALYS	IS RE	QUESI	ΓΕ̈́Ρ́ (Incluc	le Math	od NL	umber	and C	ontaine	er Pros	servative)		
Project Manager Adam Carringer	Report CC	Adam Car	vinger -	01:-	PRE	SERVA	TIVE	8				÷					н	0				
Company/Address Olin Corp			<u></u>		SH		7	7	,	-/	\neg	./		\uparrow	/		, ,	7	7	7,	Preservat 0. NONE 1. HCL	ve Key
3855 North Ocoes	e Road				NTANE		/	/	/	/	/	/,		.	/		1	<u></u>	/		2. HNO3 3. H2SO 4. NaOH	4
Cleveland TN 373					NUMBER OF CONTAINERS		8	 ₹	 §	. /	MERICS TO	MEDICE AND DESCRIPTION		!/	/ /	Laniek Laniek	Level Mar	/ /	/ /	' /	 5. Zn. Ac 6. MeOF 7. NaHS 	xetate I
423-336-4057	Email AB	Carringer	@Olin.c	om	MBER	Conse vo.	0CMS Sho			88/ 2/22				L Chol		5	<u>\$</u> /		/	/	8. Other	ice
Sampher's Signature	Sampler's	rwell Liff	iton	T -	2 2	\ઙૢ૾૾	/3.5	/8	<u>}/</u>	<u>}/ဦ </u>	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	19.3	2	7	10		/	<u> </u>	<u>/</u>		REMARKS/	IPTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB 1D	SAMP DATE	TIME	MATRIX									ļ			<u> </u>	<u> </u>			·		
P3-INF-041421		4/14/21	1030	GW	1					<u> </u>			ļ	<u> </u>	/	ļ	<u> </u>				<u>isite in l</u>	
PS-INF-041421		4/14/21	1045	GW	1				<u> </u>	<u> </u>	ļ	Ŀ		<u> </u>	1		<u> </u>				site in l	
LL Ha Field Blank		4/14/21	0935	GW	1			ļ		1	ļ			ļ	<u> </u>	1					led by l	
Trip Blank		_			3	3		ļ				<u> </u>				<u> </u>	_				ed by la	
Temp Blank					1	<u> </u>		ļ	<u> </u>				Ļ			<u> </u>	<u> </u>			Provide	d by Ial	3
									ļ		<u> </u>	·	1		ļ		<u> </u>	<u> </u>				
							<u> </u>			<u> </u>			<u> </u>			ļ						
											<u> </u>					<u> </u>	<u> </u>					
									Ì			·										
																				<u> </u>		
		1			Τ					-											•	
SPECIAL INSTRUCTIONS/COMMENTS Metals: Antimory , Boron,	Chromium	5			<u> </u>		T.				JIREME ES APPL				ORT F	REQUIF	REMEN	TS		INVOIC	e informat	TION
* CN samples are t		osited in l	ab								3 da	y	0	<u>د (</u> ۱. Re (LCS)		OC Sum AS/MSD		reci)	P0 4	REIN	003	
1									hy		s daya-No	Surchér	pe)	18, R	suits +	QC and	Calibrat	on	eiu	L TO: OIN	- Corp	
See attached form	tor sample	e <i>timeline</i>	•				BEO	UESTE	IN REP	ORT DA	TE	:		Sum	naries						<u>_</u>	
	•								davo				-	IV. D:	nta Valid	istion Re	port will	n Raw Oa	ta			
See QAPP												•								<u></u>		
STATE WHERE SAMPLES WERE COL	· · · ·						ļ					,			_	Yes		_No				
RELINQUISHED BY	RECEIVE	ED BY	RE	Linquished	BY				RECE	eved e	IY			1	RELINK	OUISHE	ED BY			R	ECEIVED BY	
Signature Maxwell Inffeto	Sec. 17/	The second	Signature				Signat	ture					Sig	naturo			7		_ cm			
Printed Name Maxuel Littiton	CREWON USE	Sorthan	Printed Name				Printo	d Name					Prts	nted Nam	9		- F	K21		679	5	
Firm SES	A	<u>, , , , , , , , , , , , , , , , , , , </u>	Firm				Firm					······································	Firr	n			-	tri • Peru	dieton 6	;it• → 		n n 1
	Date/Time/16-21	09:30	Date/Time			<u></u>	Date/1	Thne					Dat	e/Time			-(H III J
Distribution: White - Lab Copy; Yellow - Return	to Originator		-		Pag	e 8 o:	f 46			-										Ø	2012 by ALS (์การอ

(AL	s)	Cooler		ipt :	and P	reser	vatio	n Che	ck F	orm	Olin	210 Corport Pondle)367	'9	5
roject/Cli	ent	in Corp) b	Ŋ.	Fold	der Nur	nber	<u> </u>	<u>.</u>		[III				
oler receiv	red on 46	ra]	њу:_]	Ľ		COU	RIER:	ALS	UPS	DEDE	EX VEL	OCITY	CLI	INT	
Were Cr	istody seals of	n outside of coole	म? व?		YN	5a	Perch	lorate s	amples	have re	squired he	adspac	*?	YN	INA
Custody	papers prope	rly.completed (ir	ık, sign	ed)?	N (Y)	Sb	DiaV	OA vial	s, Alk,	or Sulfi	de have si	g* bub	bles?	YC	NA
Did all b	ottles arrive in	good condition	(unbrol	ken)?	N N	6	When	did the	bottles	origina	ute? (ALS/	ROC	CLIE	NT
Circle:	Wet Ice) Dry	Ice Gel packs	pres	ent?	N	7	Soil V	OA rece	eived a	s: E	Julk Er	ncore	5035	set N	NA)
Temperatu	re Readings	Date: 4/6	a]	Time	103	1 <u> </u>	ID:	IR#7	IR#LL	>	From:	Тет	Blank		ple Bottle
bserved Te	emp (°C)	dal					T		7	· · · ·					
Vithin 0-6°	C?	ØN N		Y	N	Ý	N	Y	N	Y	N	Y	N	Y	Ň
€<0°C, we	re samples froz	zen? Y N		Y	N	Y	N	Y	N	Y	N	_ <u>Y</u>	N	Y	N
035 sample		orage location:	Rov	(01		at			48 hours o	fsam	pling?	Ŷ	N
Cooler Br 9. V 10. I 11. V	es placed in st eakdown/Press Vere all bottle Did all bottle la Vere correct co	orage location: rvation Check*4 labels complete bels and tags agrontainers used for	*: Date (<i>i.e.</i> ana ree with r the tes	e: ulysis, a custo sts ind	preservition of the preser	((ation, etc ars?	1 	n 15			NO NO NO NO NO NO NO	f samp	pling?	Y	N
Cooler Br 9. V 10. I 11. V 12. V 13. A	es placed in st eakdown/Press Vere all bottle la Vere correct co Vere 5035 vial Air Samples: C	orage location: rvation Check*4 labels complete bels and tags agr	*: Date (<i>i.e.</i> ana ree with r the tes extra la Intact Y	e: llysis, i custo sts ind ibels, i (/N	y preserve ody paper icated? not leaki	(ation, etc ars? ing)? S Y / N	Time:	at 1735	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	by ES ES ES ES	NO NO NO NO NO	ags Inf	flated		·
Cooler Br 9. V 10. I 11. V 12. V 13. A	es placed in st eakdown/Prese Vere all bottle Did all bottle la Vere correct ca Vere 5035 vial Air Samples: C Lot of test	orage location: ervation Check** labels complete bels and tags agrontainers used for s acceptable (no	*: Date (i.e. ana ree with r the tes extra la Intact Y Preser	e: llysis, i custo sts ind ibels, (/N ved?	y preserve ody paper icated? not leaki	on (ation, etc ats? ing)?	Time:	ters Pres	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	by ES ES ES I I Ie ID	NO NO NO NO Cedlar® B: Vol.	ags Inf			Final
035 sample Cooler Br 9. V 10. I 11. V 12. V 13. A pH	es placed in st eakdown/Prese Vere all bottle Did all bottle la Vere correct co Vere 5035 vial Air Samples: C Lot of test paper	ervation Check*1 labels complete bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent	*: Date (<i>i.e.</i> ana ree with r the tes extra la Intact Y	e: llysis, i custo sts ind ibels, i (/N	y lorz preserva dy pape icated? not leaki with MS Lot Re	on (ation, etc ars? ing)? S Y / N eccived	Time:	ters Pres	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	by ES ES ES I I Ie ID	NO NO NO NO NO	ags Inf	flated		·
035 sample Cooler Br 9. V 10. I 11. V 12. V 13. A pH ≥12 ≤2	es placed in st eakdown/Prese Vere all bottle Did all bottle la Vere correct co Vere 5035 vial Air Samples: C Lot of test	orage location: ervation Check** labels complete bels and tags agr ontainers used for is acceptable (no cassettes / Tubes	: Date (i.e. anaree with r the tes extra la Intact Y Preser Yes	e: llysis, i custo sts ind ibels, (/N ved?	y //(U/Z) preserve dy pape icated? not leaki with MS Lot Ri 21755 [170	or (attion, etc ats? ing)? SY/N eccived 37	1 _Time: 	ters Pres	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	by ES ES ES I I Ie ID	NO NO NO NO Cedlar® B: Vol.	ags Inf	flated		Final
035 sample Cooler Br 9. V 10. I 11. V 13. A pH ≥12 ≤2 ≤2	es placed in st eakdown/Prese Vere all bottle Did all bottle la Vere correct co Vere 5035 vial Air Samples: C Lot of test paper	orage location: ervation Check*1 labels complete bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH	t: Date (<i>i.e.</i> anaree with r the tess extra la Intact Y Preser Yes	e: llysis, i custo sts ind ibels, (/N ved?	y //(U/Z) preserve dy pape icated? not leaki with MS Lot Ri 21755 [170	or (attion, etc ats? ing)? S Y / N ecceived 3 7	1 _Time: 	ters Pres	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	by ES ES ES I I Ie ID	NO NO NO NO Cedlar® B: Vol.	ags Inf	flated		Final
035 sample Cooler Br 9. V 10. I 11. V 13. A pH ≥12 ≤2 ≤2 <4	es placed in st eakdown/Prese Vere all bottle Did all bottle la Vere correct co Vere 5035 vial Air Samples: C Lot of test paper	ervation Check*4 labels complete bels and tags agrontainers used for s acceptable (no assettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄	*: Date (<i>i.e.</i> and ree with r the tese extra la Intact Y Preser Yes	e: llysis, i custo sts ind ibels, (/N ved?	y lorz preserva dy pape icated? not leaki with MS Lot R Lot R [170 [170	or (attion, etc ats? ing)? SY/N eccived 37 SY/N eccived 37 SY/N eccived	1 _Time:)? 	ters Pres	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	by ES ES ES I I Ie ID	NO NO NO NO Cedlar® B: Vol.	ags Inf	flated		Final
035 sample Cooler Br 9. V 10. I 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9	es placed in st eakdown/Prese Vere all bottle Did all bottle la Vere correct co Vere 5035 vial Air Samples: C Lot of test paper	ervation Check*4 labels complete bels and tags agrontainers used for s acceptable (no assettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest	*: Date (<i>i.e.</i> and ree with r the tese extra la Intact Y Preser Yes	e: 4 dysis, custo sts ind ibels, (/N ved?	y lorz preserva dy pape icated? not leaki with MS Lot R Lot R [170 [170	or ation, etc ation, etc as? ing)? SY/N eccived 37 SY/N eccived 37 SY/N eccived	1 _Time:)? Caniss Zu 247	ters Pres	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	by ES ES ES I I Ie ID	NO NO NO NO Cedlar® B: Vol.	ags Inf	flated		Final
035 sample Cooler Br 9. V 10. I 11. V 13. A pH ≥12 ≤2 ≤2 <4	es placed in st eakdown/Prese Vere all bottle Did all bottle la Vere correct co Vere 5035 vial Air Samples: C Lot of test paper	orage location: ervation Check*4 labels complete bels and tags agrontainers used for s acceptable (no assettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,	*: Date (<i>i.e.</i> and ree with r the tese extra la Intact Y Preser Yes	e: 4 dysis, custo sts ind ibels, (/N ved?	y //U/2 preserve dy pape icated? not leaki with MS Lot R Lot R {705 {705 {705 {705 {705 {705 {705 {705	or (attion, etc ats? ing)? SY/N eccived 37 SY/N eccived 37 SY/N eccived	1 	ters Pres	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	by ES ES ES I I Ie ID	NO NO NO NO Cedlar® B: Vol.	ags Inf	flated		Final
035 sample Cooler Br 9. V 10. I 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	es placed in st eakdown/Prese Vere all bottle Did all bottle la Vere correct co Vere 5035 vial Air Samples: C Lot of test paper	orage location: rvation Check*4 labels complete bels and tags agnonianers used for s acceptable (no assettes / Tubes Reagent NaOH HNO3 H2SO4 For 608pest For CN,	: Date (i.e. ana ree with r the tes extra la Intact Y Yes V	e: 4 dysis, custo sts ind ibels, (/N ved?	y //U/2 preserve dy pape icated? not leaki with MS Lot R Lot R {705 {705 {705 {705 {705 {705 {705 {705	or (ation, etc ation, etc	1 	ters Pres	surizex Samp Adjus	by ES ES I I le ID ted	NO NO NO NO Cedlar® B: Vol. Added	ags Inf	lated ot Adde	d	Final
035 sample Cooler Br 9. V 10. I 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	es placed in st eakdown/Prese Vere all bottle Did all bottle la Vere correct co Vere 5035 vial Air Samples: C Lot of test paper	orage location: rvation Check*4 labels complete bels and tags agno patients used for s acceptable (no assettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	Date (<i>i.e.</i> ana ree with r the tes extra la Intact Y Preser Yes V V V V	2 : _L lysis, a custo sts ind bels, i //N ved? No	y //U/2 preserve dy pape icated? not leaki with MS Lot R Lot R {705 {705 {705 {705 {705 {705 {705 {705	or (ation, etc ation, etc	1 	ters Pres	Surizex Samp Adjus	by ES ES I I le ID ted	NO NO NO NO Cedlar® B: Vol. Added	ags Inf	flated ot Adde	kysis.	Final pH
035 sample Cooler Br 9. V 10. I 11. V 12. V 13. A pH ≥12 ≤2 ≤2 <4 5-9 Residual Chlorine	es placed in st eakdown/Prese Vere all bottle Did all bottle la Vere correct co Vere 5035 vial Air Samples: C Lot of test paper	orage location: rvation Check*4 labels complete bels and tags agno patients used for s acceptable (no assettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	: Date (i.e. ana ree with r the tes extra la Intact Y Yes V	2 : L Lysis, a custo sts ind bels, (/ N ved? No	y //U/2 preserve dy pape icated? not leaki with MS Lot R Lot R {705 {705 {705 {705 {705 {705 {705 {705	or (ation, etc ation, etc	1 	ters Pres	Surizec Samp Adjus	by ES ES I I le ID ted	NO NO NO NO Cedlar® B: Vol. Added	ags Inf	flated ot Adde	kysis.	Final pH

HPROD	BULK	
HTR	FLDT	l
SUB	HGFB	
ALS	LL3541	

Labels secondary reviewed by: ______ PC Secondary Review: _____

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

03/02/2021

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r19.doc

Page 9 of 46

Internal Chain of Custody Report

Service Request: R2103679

Olin Corporation **Project:** Olin - Pendleton Site/1229

Client:

Bottle ID	Methods	Date	Time	Sample Location / User	Disposed On
R2103679-001.01					
	SM 2540 D-1997(20		(# 2 5		
		4/16/2021	1732	SMO / DWARD	
		4/22/2021	0507	R-Dumpster / KAWONG	
R2103679-001.02					
	420.4				
		4/16/2021	1732	SMO / DWARD RT000039 / DWARD	
		4/16/2021 4/16/2021	1755 1758	R-015 / DWARD	
		4/10/2021	1738	R-0137 DWARD	
R2103679-001.03	77 1 1 01				
	Kelada-01	4/16/2021	1732	SMO / DWARD	
		4/16/2021 4/20/2021	2101	R-015 / GLAFORCE	
		4/20/2021	2101	RT000767 / GLAFORCE	
Da103/70 001 04					
R2103679-001.04					
		4/16/2021	1732	SMO / DWARD	
		4/16/2021	1735	R-001 / DWARD	
R2103679-001.05					
K21030/9-001.03					
		4/16/2021	1732	SMO / DWARD	
		4/16/2021	1735	R-001 / DWARD	
R2103679-001.06					
K2103072-001.00					
		4/16/2021	1732	SMO / DWARD	
		4/16/2021	1735	R-001 / DWARD	
R2103679-001.07					
	1631E				
		4/16/2021	1732	SMO / DWARD	
		4/16/2021	1735	R-A01 / DWARD	
R2103679-001.08					······
	200.7,200.7,200.7				
		4/16/2021	1732	SMO / DWARD	
		4/16/2021	1735	R-A01 / DWARD	
		4/19/2021	0913	In Lab / AKONZEL	
		4/21/2021	1625	R-A01 / AKONZEL	
R2103679-001.09				Construction Construction Construction	
		4/16/2021	1732	SMO / DWARD	

R2103679-001.10

Internal Chain of Custody Report

Service Request: R2103679

Client:Olin CorporationProject:Olin - Pendleton Site/1229

Bottle ID	Methods	Date	Time	Sample Location / User	Disposed On
		4/16/2021	1735	SMO / DWARD	
R2103679-001.11	····			t aparatina tomore terranye	
		4/16/2021	1735	SMO / DWARD	
R2103679-001.12					
		4/16/2021	1735	SMO / DWARD	
R2103679-001.13					<u></u>
		4/16/2021	1735	SMO / DWARD	
R2103679-001.14		·····			······
		4/16/2021	1735	SMO / DWARD	
R2103679-001.15		······································	· · · · · · · · · · · · · · · · · · ·		
		4/16/2021	1735	SMO / DWARD	
R2103679-001.16		new,			
		4/16/2021	1735	SMO / DWARD	
R2103679-001.17					2000M/17 ,
		4/16/2021	1735	SMO / DWARD	
R2103679-001.18					
	624	4/16/2021	1735	SMO / DWARD	
		4/18/2021	1153	In Lab / KRUEST	
		4/18/2021	1214	R-001-S12 / KRUEST	
R2103679-002.01			······		
	1631E				
		4/16/2021	1732	SMO / DWARD	
······		4/16/2021	1735	R-A01 / DWARD	
R2103679-003.01					
	1631E	4/16/0001	1732	SMO / DWARD	
		4/16/2021 4/16/2021	1732	R-A01 / DWARD	
R2103679-004.01		······································			
	624				
		4/16/2021	1732	SMO / DWARD	
		4/16/2021	1735	R-001 / DWARD	

Internal Chain of Custody Report

Service Request: R2103679

Client:Olin CorporationProject:Olin - Pendleton Site/1229

Bottle ID	Methods	Date	Time	Sample Location / User	Disposed On
	624				
		4/18/2021	1153	In Lab / KRUEST	
		4/18/2021	1214	R-001-S12 / KRUEST	
R2103679-004.02	an	······	· · · · · · · · · · · · · · · · · · ·		
		4/16/2021	1732	SMO / DWARD	
		4/16/2021	1735	R-001 / DWARD	
R2103679-004.03					
		4/16/2021	1732	SMO / DWARD	
		4/16/2021	1735	R-001 / DWARD	

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 13 of 46

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	Pennsylvania ID# 68-786
Delaware Approved	New Hampshire ID # 2941	Rhode Island ID # 158
DoD ELAP #65817	New York ID # 10145	Virginia #460167
Florida ID # E87674	North Carolina #676	

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

9/28/18

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Analyst Summary report

Client: Project:	Olin Corporation Olin - Pendleton Site/1229		Service Request: R2103679
Sample Name: Lab Code: Sample Matrix:	PS-INF-041421 R2103679-001 Water		Date Collected: 04/14/21 Date Received: 04/16/21
Analysis Method		Extracted/Digested By	Analyzed By
1631E 200.7 420.4 624		AKONZEL	KMCLAEN KMCLAEN CWOODS KRUEST
<u>Kelada-01</u> SM 2540 D-1997(20	011)		CWOODS
Sample Name: Lab Code: Sample Matrix:	PS-INF-041421 Dup R2103679-002 Water		Date Collected: 04/14/21 Date Received: 04/16/21
Analysis Method 1631E		Extracted/Digested By	Analyzed By KMCLAEN
Sample Name: Lab Code: Sample Matrix:	Field Blank R2103679-003 Water		Date Collected: 04/14/21 Date Received: 04/16/21
Analysis Method 1631E		Extracted/Digested By	Analyzed By KMCLAEN
Sample Name: Lab Code: Sample Matrix:	Trip Blank R2103679-004 Water		Date Collected: 04/14/21 Date Received: 04/16/21
Analysis Method 624		Extracted/Digested By	Analyzed By KRUEST

.

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Solid/Soil/Non-Aqueous Matrix	Solid	us Matri	Non-Aqueous	(
-------------------------------	-------	----------	-------------	---

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual Cyanide	SM 4500-CN-G
SM 4500-CN-E WAD Cyanide	SM 4500-CN-I

Analytical Method	Preparation Method
6010C	3050B
6020A	3050B
6010C TCLP (1311) extract	3005A/3010A
6010 SPLP (1312) extract	3005A/3010A
7199	3060A
300.0 Anions/ 350.1/ 353.2/ SM 2320B/ SM 5210B/ 9056A Anions	DI extraction
For analytical methods not listed, method is the same as the analyt reference.	, the preparation ical method

RIGHT SOLUTIONS | RIGHT PARTNER

P:\INTRANET\QAQC\Forms Controlled\Prep Methods Inorganic rev 2.doc 12/20/19

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 18 of 46

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Olin Corporation	Service Request:	
Project:	Olin - Pendleton Site/1229	Date Collected:	04/14/21 10:45
Sample Matrix:	Water	Date Received:	04/16/21 09:30
Sample Name:	PS-INF-041421	Units:	0
Lab Code:	R2103679-001	Basis:	NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.200	1	04/18/21 14:34	*
1,1,2,2-Tetrachloroethane	ND U	1.00	0.200	1	04/18/21 14:34	*
1,1,2-Trichloroethane	ND U	1.00	0.200	1	04/18/21 14:34	*
1,1-Dichloroethane (1,1-DCA)	0.291 J	1.00	0.200	1	04/18/21 14:34	*
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.200	1	04/18/21 14:34	*
1,2-Dichloroethane	ND U	1.00	0.200	1	04/18/21 14:34	*
1,2-Dichloropropane	ND U	1.00	0.200	1	04/18/21 14:34	*
2-Butanone (MEK)	ND U	5.00	0.780	1	04/18/21 14:34	*
2-Hexanone	ND U	5.00	0.200	1	04/18/21 14:34	*
4-Methyl-2-pentanone (MIBK)	ND U	5.00	0.200	1	04/18/21 14:34	*
Acetone	ND U	5.00	2.10	1	04/18/21 14:34	*
Acrolein	ND U	10.0	0.900	1	04/18/21 14:34	*
Acrylonitrile	ND U	10.0	0.900	1	04/18/21 14:34	*
Benzene	ND U	1.00	0.200	1	04/18/21 14:34	*
Bromodichloromethane	ND U	1.00	0.200	1	04/18/21 14:34	*
Bromoform	ND U	1.00	0.250	1	04/18/21 14:34	*
Bromomethane	ND U	1.00	0.700	1	04/18/21 14:34	*
Carbon Disulfide	ND U	10.0	0.420	1	04/18/21 14:34	*
Carbon Tetrachloride	ND U	1.00	0.340	1	04/18/21 14:34	*
Chlorobenzene	ND U	1.00	0.200	1	04/18/21 14:34	*
Chloroethane	ND U	1.00	0.230	1	04/18/21 14:34	*
Chloroform	ND U	1.00	0.240	1	04/18/21 14:34	*
Chloromethane	ND U	1.00	0.280	1	04/18/21 14:34	*
Dibromochloromethane	ND U	1.00	0.200	1	04/18/21 14:34	*
Methylene Chloride	ND U	1.00	0.650	1	04/18/21 14:34	*
Ethylbenzene	ND U	1.00	0.200	1	04/18/21 14:34	*
•	ND U	1.00	0.200	1	04/18/21 14:34	*
Styrene Tetrachloroethene (PCE)	ND U	1.00	0.210	1	04/18/21 14:34	*
Toluene	ND U	1.00	0.200	1	04/18/21 14:34	*
Trichloroethene (TCE)	0.246 J	1.00	0.200	1	04/18/21 14:34	*
Vinyl Chloride	ND U	1.00	0.200	1	04/18/21 14:34	*
	ND U	1.00	0.230	1	04/18/21 14:34	*
cis-1,2-Dichloroethene	ND U	1.00	0.200	1	04/18/21 14:34	*
cis-1,3-Dichloropropene	ND U	2.00	0.200	1	04/18/21 14:34	*
m,p-Xylenes	ND U	1.00	0.200	1	04/18/21 14:34	*
o-Xylene	ND U	1.00	0.200	Î	04/18/21 14:34	*
trans-1,2-Dichloroethene	ND U	1.00	0.230	1	04/18/21 14:34	*
trans-1,3-Dichloropropene		1.00	0.200	^	• • • • • • • • • • • •	

Analytical Report

Client:	Olin Corporation	Service Request: R2103679
Project:	Olin - Pendleton Site/1229	Date Collected: 04/14/21 10:45
Sample Matrix:	Water	Date Received: 04/16/21 09:30
Sample Name:	PS-INF-041421	Units: ug/L
Lab Code:	R2103679-001	Basis: NA
	14105075 001	

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	96	73 - 125	04/18/21 14:34	
4-Bromofluorobenzene	93	85 - 122	04/18/21 14:34	
Toluene-d8	97	87 - 121	04/18/21 14:34	

Analytical Report

Client:	Olin Corporation	Service Request:]	
Project:	Olin - Pendleton Site/1229	Date Collected:	04/14/21
Sample Matrix:	Water	Date Received:	04/16/21 09:30
-		Theten	
Sample Name:	Trip Blank	Units:	-
Lab Code:	R2103679-004	Basis:	NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.200	1	04/18/21 14:12	*
1,1,2,2-Tetrachloroethane	ND U	1.00	0.200	1	04/18/21 14:12	*
1,1,2-Trichloroethane	ND U	1.00	0.200	1	04/18/21 14:12	*
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.200	1	04/18/21 14:12	*
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.200	1	04/18/21 14:12	*
1,2-Dichloroethane	ND U	1.00	0.200	1	04/18/21 14:12	*
1,2-Dichloropropane	ND U	1.00	0.200	1	04/18/21 14:12	*
2-Butanone (MEK)	ND U	5.00	0.780	1	04/18/21 14:12	*
2-Hexanone	ND U	5.00	0.200	1	04/18/21 14:12	*
4-Methyl-2-pentanone (MIBK)	ND U	5.00	0.200	1	04/18/21 14:12	*
Acetone	ND U	5.00	2.10	1	04/18/21 14:12	*
Acrolein	ND U	10.0	0.900	1	04/18/21 14:12	*
Acrylonitrile	ND U	10.0	0.900	1	04/18/21 14:12	*
Benzene	ND U	1.00	0.200	1	04/18/21 14:12	*
Bromodichloromethane	ND U	1.00	0.200	1	04/18/21 14:12	*
Bromoform	ND U	1.00	0.250	1	04/18/21 14:12	*
Bromomethane	ND U	1.00	0.700	1	04/18/21 14:12	*
	ND U	10.0	0.420	1	04/18/21 14:12	*
Carbon Disulfide	ND U	1.00	0.340	ĩ	04/18/21 14:12	*
Carbon Tetrachloride	ND U	1.00	0.200	î	04/18/21 14:12	*
Chlorobenzene	ND U	1.00	0.230	1	04/18/21 14:12	*
Chloroethane	ND U	1.00	0.240	1	04/18/21 14:12	*
Chloroform	ND U	1.00	0.280	1	04/18/21 14:12	*
Chloromethane	ND U	1.00	0.200	1	04/18/21 14:12	*
Dibromochloromethane	ND U	1.00	0.650	1	04/18/21 14:12	*
Methylene Chloride	ND U	1.00	0.200	1	04/18/21 14:12	*
Ethylbenzene	ND U	1.00	0.200	1	04/18/21 14:12	*
Styrene	ND U ND U	1.00	0.210	1	04/18/21 14:12	*
Tetrachloroethene (PCE)	ND U	1.00	0.200	1	04/18/21 14:12	*
Toluene	_	1.00	0.200	1	04/18/21 14:12	*
Trichloroethene (TCE)	ND U	1.00	0.200	1	04/18/21 14:12	*
Vinyl Chloride	ND U	1.00	0.230	1	04/18/21 14:12	*
cis-1,2-Dichloroethene	ND U	1.00	0.230	1	04/18/21 14:12	*
cis-1,3-Dichloropropene	ND U			-	04/18/21 14:12	*
m,p-Xylenes	ND U	2.00	0.200	1	04/18/21 14:12	*
o-Xylene	ND U	1.00	0.200	1	04/18/21 14:12	*
trans-1,2-Dichloroethene	ND U	1.00	0.200	1		*
trans-1,3-Dichloropropene	ND U	1.00	0.230	1	04/18/21 14:12	·•-

Analytical Report

		· maily near see Part
Client: Project:	Olin Corporation Olin - Pendleton Site/1229	Service Request: R2103679 Date Collected: 04/14/21
Sample Matrix:	Water	Date Received: 04/16/21 09:30
Sample Name:	Trip Blank	Units: ug/L Basis: NA
Lab Code:	R2103679-004	Dasis. NA

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	96	73 - 125	04/18/21 14:12	
4-Bromofluorobenzene	94	85 - 122	04/18/21 14:12	
Toluene-d8	98	87 - 121	04/18/21 14:12	

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

METALS - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	Olin Corporation	Service Request:	PS-INF-041421
Project No.:	R2103679	Date Collected:	4/14/2021
Project Name:		Date Received:	4/16/2021
Matrix:	WATER	Units:	ug/L
		Basis:	

Sample Name: PS-INF-041421

Lab Code: R2103679-001

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	с	Q
Antimony	200.7	10.0	5.4	1.0	10.0	υ	
Boron	200.7	200	5.8	1.0	42.0	J	
Chromium	200.7	10.0	0.910	1.0	10.0	υ	

% Solids: 0.0

Comments:

Analytical Report

Client:	Olin Corporation	Service Request: R2103679
Project:	Olin - Pendleton Site/1229	Date Collected: 04/14/21 10:45
Sample Matrix:	Water	Date Received: 04/16/21 09:30
Sample Name:	PS-INF-041421	Basis: NA
Lab Code:	R2103679-001	

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Mercury, Total	1631E	ND U	ng/L	1.0	0.3	1	04/20/21 13:59	

Analytical Report

Client:	Olin Corporation	Service Request: R2103679						
Project:	Olin - Pendleton Site/1229	Date Collected: 04/14/21 09:48						
Sample Matrix:	Water	Date Received: 04/16/21 09:30						
Sample Name: Lab Code:	PS-INF-041421 Dup R2103679-002	Basis: NA						

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Mercury, Total	1631E	0.3 J	ng/L	1.0	0.3	1	04/20/21 14:07	

Analytical Report

Client:	Olin Corporation	Service Request: R2103679	
Project:	Olin - Pendleton Site/1229	Date Collected: 04/14/21 09:35	
Sample Matrix:	Water	Date Received: 04/16/21 09:30	
Sample Name: Lab Code:	Field Blank R2103679-003	Basis: NA	

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Mercury, Total	1631E	ND U	ng/L	1.0	0.3	1	04/20/21 14:15	

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

	1 1101 / 1101	
Client: Project:	Olin Corporation Olin - Pendleton Site/1229	Service Request: R2103679 Date Collected: 04/14/21 10:45
Sample Matrix:	Water	Date Received: 04/16/21 09:30
Sample Name: Lab Code:	PS-INF-041421 R2103679-001	Basis: NA
Lab Couc.		

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed Q
Cyanide, Total	Kelada-01	ND U	mg/L	0.0050	1	04/24/21 14:15
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	04/22/21 18:38
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	ND U	mg/L	1.0	1	04/21/21 17:25

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

١

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

QA/QC Report

Service Request: R2103679

Client:Olin CorporationProject:Olin - Pendleton Site/1229

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analysis Method: 624.1

		1,2-Dichloroethane-d4	4-Bromofluorobenzene	Toluene-d8
Sample Name	Lab Code	73-125	85-122	87-121
PS-INF-041421	R2103679-001	96	93	97
Trip Blank	R2103679-004	96	94	98
Method Blank	RQ2104140-04	94	92	96
Lab Control Sample	RQ2104140-03	93	95	98

Analytical Report

Client:	Olin Corporation	Service Request:	
Project:	Olin - Pendleton Site/1229	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank RQ2104140-04	Units: Basis:	÷

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	ND U	1.00	0.200	1	04/18/21 12:22	
1,1,2,2-Tetrachloroethane	ND U	1.00	0.200	1	04/18/21 12:22	
1,1,2-Trichloroethane	ND U	1.00	0.200	1	04/18/21 12:22	
1,1-Dichloroethane (1,1-DCA)	ND U	1.00	0.200	1	04/18/21 12:22	
1,1-Dichloroethene (1,1-DCE)	ND U	1.00	0.200	1	04/18/21 12:22	
1,2-Dichloroethane	ND U	1.00	0.200	1	04/18/21 12:22	
1,2-Dichloropropane	ND U	1.00	0.200	1	04/18/21 12:22	
2-Butanone (MEK)	ND U	5.00	0.780	1	04/18/21 12:22	
2-Hexanone	ND U	5.00	0.200	1	04/18/21 12:22	
4-Methyl-2-pentanone (MIBK)	ND U	5.00	0.200	1	04/18/21 12:22	
Acetone	ND U	5.00	2.10	1	04/18/21 12:22	
Acrolein	ND U	10.0	0.900	1	04/18/21 12:22	
Acrylonitrile	ND U	10.0	0.900	1	04/18/21 12:22	
Benzene	ND U	1.00	0.200	1	04/18/21 12:22	
Bromodichloromethane	ND U	1.00	0.200	1	04/18/21 12:22	
Bromoform	ND U	1.00	0.250	1	04/18/21 12:22	
Bromomethane	ND U	1.00	0.700	1	04/18/21 12:22	
Carbon Disulfide	ND U	10.0	0.420	1	04/18/21 12:22	
Carbon Tetrachloride	ND U	1.00	0.340	1	04/18/21 12:22	
Chlorobenzene	ND U	1.00	0.200	1	04/18/21 12:22	
Chloroethane	ND U	1.00	0.230	1	04/18/21 12:22	
Chloroform	ND U	1.00	0.240	1	04/18/21 12:22	
Chloromethane	ND U	1.00	0.280	1	04/18/21 12:22	
Dibromochloromethane	ND U	1.00	0.200	1	04/18/21 12:22	
Methylene Chloride	ND U	1.00	0.650	1	04/18/21 12:22	
Ethylbenzene	ND U	1.00	0.200	1	04/18/21 12:22	
	ND U	1.00	0.200	1	04/18/21 12:22	
Styrene Tetrachloroethene (PCE)	ND U	1.00	0.210	1	04/18/21 12:22	
Toluene	ND U	1.00	0.200	1	04/18/21 12:22	
Trichloroethene (TCE)	ND U	1.00	0.200	1	04/18/21 12:22	
Vinyl Chloride	ND U	1.00	0.200	1	04/18/21 12:22	
	ND U	1.00	0.230	1	04/18/21 12:22	
cis-1,2-Dichloroethene	ND U	1.00	0.200	1	04/18/21 12:22	
cis-1,3-Dichloropropene	ND U	2.00	0.200	1	04/18/21 12:22	
m,p-Xylenes	ND U	1.00	0.200	î	04/18/21 12:22	
o-Xylene	ND U	1.00	0.200	1	04/18/21 12:22	
trans-1,2-Dichloroethene	ND U	1.00	0.230	1	04/18/21 12:22	
trans-1,3-Dichloropropene		1.00	0.200		5 W 10/21 12/22	

Analytical Report

Client:	Olin Corporation	Service Request:	R2103679
Project:	Olin - Pendleton Site/1229	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank RQ2104140-04	Units: Basis:	<i>•</i>

Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Analysis Method: 624.1

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	94	73 - 125	04/18/21 12:22	
4-Bromofluorobenzene	92	85 - 122	04/18/21 12:22	
Toluene-d8	96	87 - 121	04/18/21 12:22	

QA/QC Report

Client:Olin CorporationProject:Olin - Pendleton Site/1229Sample Matrix:Water

Service Request: R2103679 Date Analyzed: 04/18/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Units:ug/L Basis:NA

Lab Control Sample RQ2104140-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	624.1	18.7	20.0	93	70-130
1,1,2,2-Tetrachloroethane	624.1	17.8	20.0	89	60-140
1,1,2-Trichloroethane	624.1	19.3	20.0	97	70-130
1,1-Dichloroethane (1,1-DCA)	624.1	18.9	20.0	95	70-130
1,1-Dichloroethene (1,1-DCE)	624.1	23.1	20.0	115	50-150
1,2-Dichloroethane	624.1	19.7	20.0	98	70-130
1,2-Dichloropropane	624.1	19.5	20.0	98	35-165
2-Butanone (MEK)	624.1	20.0	20.0	100	61-137
2-Hexanone	624.1	19.1	20.0	95	63-124
4-Methyl-2-pentanone (MIBK)	624.1	20.1	20.0	101	66-124
Acetone	624.1	19.5	20.0	97	40-161
Acrolein	624.1	38.5	40.0	96	60-140
Acrylonitrile	624.1	105	100	105	60-140
Benzene	624.1	19.5	20.0	97	65-135
Bromodichloromethane	624.1	18.9	20.0	95	65-135
Bromoform	624.1	17.1	20.0	86	70-130
Bromomethane	624.1	13.2	20.0	66	15-185
Carbon Disulfide	624.1	20.1	20.0	100	66-128
Carbon Tetrachloride	624.1	17.9	20.0	89	70-130
Chlorobenzene	624.1	18.0	20.0	90	65-135
Chloroethane	624.1	19.6	20.0	98	40-160
Chloroform	624.1	17.6	20.0	88	70-135
Chloromethane	624.1	22.0	20.0	110	1-205
Dibromochloromethane	624.1	18.4	20.0	92	70-135
Methylene Chloride	624.1	19.1	20.0	95	60-140
Ethylbenzene	624.1	17.9	20.0	89	60-140
Styrene	624.1	19.0	20.0	95	80-124
Tetrachloroethene (PCE)	624.1	18.1	20.0	91	70-130
Toluene	624.1	19.3	20.0	96	70-130
Trichloroethene (TCE)	624.1	18.7	20.0	94	65-135
Vinyl Chloride	` 624.1	18.3	20.0	92	5-195
cis-1,2-Dichloroethene	624.1	19.7	20.0	99	80-117
cis-1,3-Dichloropropene	624.1	19.8	20.0	99	25-175
Printed 4/30/2021 12:39:54 PM			Supers	et Reference:21-00	00586799 rev 00

QA/QC Report

Client:Olin CorporationProject:Olin - Pendleton Site/1229Sample Matrix:Water

Service Request: R2103679 Date Analyzed: 04/18/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS with 3 Day Holding Time for Acrolein, Unpreserved

Units:ug/L Basis:NA

Lab Control Sample RQ2104140-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
m,p-Xylenes	624.1	37.5	40.0	94	80-126
o-Xylene	624.1	18.5	20.0	93	79-123
trans-1,2-Dichloroethene	624,1	21.2	20.0	106	70-130
trans-1,3-Dichloropropene	624.1	19.2	20.0	96	50-150

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS Environmental

METALS

-3-

BLANKS

1

 Contract:
 R2103679

 Lab Code:
 Case No.:

 SAS No.:
 SDG NO.:

 Preparation Blank Matrix (soil/water):
 WATER

Preparation Blank Concentration Units (ug/L, ppt, or mg/kg): UG/L

	Initial Calib. Blank		Continuing Calibration Blank ug/L				Preparation Blank				
Analyte	ug/L	с	1	С	2	С	3	c		С	M
Antimony	5.40	σ	5.40	U	5.40	υ	5.40	ע	5.400	ע ן	P
Boron	33.60	JJ	27.00	J	34.40	J	31.70	J	5.800	ប	P
Chromium	0.91	UU	0.91	U	0.91	υ	0.91	U	0.910	U	P

ALS Environmental

METALS

-3-

BLANKS

Contract: R2103679

 Lab Code:
 Case No.:
 SAS No.:
 SDG NO.:
 PS-INF-04142

 Preparation Blank Matrix (soil/water):
 WATER

Preparation Blank Concentration Units (ug/L, ppt, or mg/kg): UG/L

Uuuumin,	Initial Calib. Blank		Cont:	inuin	g Calibrat	Lon	Blank ug/L		Preparation Blank		
Analyte	ug/L	с	1	с	2	С	3	с		С	м
Antimony			5.40	ם	5.40	U	5.40	ប		1	P
Boron	1		35.20	JJ	23.80	J	44.40	J			P
Chromium			0.91	U	0.91	U	0.91	ט			P

METALS

-7-

LABORATORY CONTROL SAMPLE

Contract:	R2103679				
Lab Code:		Case No.:	SAS No.:	SDG NO.:	PS-INF-04142
Solid LCS	Source:				
Aqueous LC	S Source:	CPI	·		

······	Aqueous	(ug/L				Solid	(mg/K	
Analyte	True	Found	%R	True	Found	с	Limits	ŧR
Antimony	500	472	94		1			<u> </u>
Boron	1000	948	95					
Chromium	200	203	102				1	

Analytical Report

Client:	Olin Corporation	Service Request:	R2103679
Project:	Olin - Pendleton Site/1229	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank R2103679-MB	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Mercury, Total	1631E	ND U	ng/L	1.0	0.3	1	04/20/21 11:36	

QA/QC Report

Client:Olin CorporationProject:Olin - Pendleton Site/1229Sample Matrix:Water

Service Request: R2103679 Date Analyzed: 04/20/21

Lab Control Sample Summary Inorganic Parameters

> Units:ng/L Basis:NA

Lab Control Sample R2103679-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury, Total	1631E	5.02	5.0	100	77-128

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Olin Corporation	Service Request: R2103679
Project:	Olin - Pendleton Site/1229	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	R2103679-MB	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed Q
Cyanide, Total	Kelada-01	ND U	mg/L	0.0050	1	04/24/21 12:43
Phenolics, Total Recoverable	420.4	ND U	mg/L	0.0050	1	04/22/21 17:30
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	ND U	mg/L	1.0	1	04/21/21 17:25

QA/QC Report

Client:Olin CorporationProject:Olin - Pendleton Site/1229Sample Matrix:Water

Service Request: R2103679 Date Analyzed: 04/21/21 - 04/24/21

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample R2103679-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cyanide, Total	Kelada-01	0.0955	0.100	95	90-110
Phenolics, Total Recoverable	420.4	0.0377	0.0400	94	90-110
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	184	214	86	80-120

Pendleton Sampling Timeline

For Influent (PSINF)

4/12/21

1000- Sevenson shut down system in preparation for sample event

4/14/21

0935- Low level mercury field blank was taken

0943- Sevenson restarted system

0946- Low level mercury sample was taken

0948- Low level mercury duplicate was taken

0957-1 composite jar was started for the collection of TSS, phenols, and metals

0958-1 grab sample was taken for CN (to be composited by lab)

1000-1 grab sample was taken for VOCs

1014- water was collected into composite jar

1015-1 grab sample was taken for CN (to be composited by lab)

1016-1 grab sample was taken for VOCs

1029- water was collected into composite jar

1030-1 grab sample was taken for CN (to be composited by lab)

1033-1 grab sample was taken for VOCs

1044- water was collected into composite jar

1045-1 grab sample was taken for CN (to be composited by lab)

1048-1 grab sample was taken for VOCs

1052- sample for TSS was taken from composite jar


1053- sample for phenols was taken from composite jar

1055- sample for metals was taken from composite jar

ATTACHMENT D

Well Location Map and Groundwater Elevations

Summary of Groundwater Elevations Summer 2021 through Fall 2021 Pendleton Site

			Top of Riser Elevation	Depth to Water	Water E FT-	levation MSL
					8681	8839
	POSITION	LOCATION	FT	FT	4/12/2021	9/17/2021
P-1	(0)	EASTERN PORTION OF	583.21	1.95	581.3	581.26
P-2	(I)	CAPPED AREA	582.90	6.11	582	576.79
P-3	(I)	CENTER OF CAPPED AREA	606.33	29.50	577	576.83
P-4	(I)	ADJACENT TO QUARRY	582.31	8.53	572.3	573.78
SP-1) (T)		579.86		564.9	564.9
P-5	(0)	SOUTHERN PORTION OF	583.05	3.15	580	579.9
P-6	(I)	CAPPED AREA	584.45	9.48	574.89	574.97
P-7	(I)	NORTHERN PORTION OF	580.97	5.35	574.48	575.62
P-8	(Ŏ)	CAPPED AREA	582.83	2.70	580.52	580.13
URS-14I	· · · · · · · · · · · · · · · · · · ·	UPGRADIENT WELL NEST	581.14	0.25	580.13	580.89
URS-14D		IN CHURCH PARKING LOT	580.71	6.10	574.55	574.61
URS-9I		SOUTHERN WELL NEST	581.68	7.06	574.48	574.62
URS-9D		ALONG TOWN LINE ROAD	580.80	6.25	574.39	574.55
85-5R		MIDDLE WELL NEST ALONG	580.84	3.90	577.38	576.94
URS-5D		TOWN LINE ROAD	580.60	6.00	574.3	574.6
85-7R		NORTH WELL NEST ALONG	577.90	3.30	574.26	574.6
URS-7D		TOWN LINE ROAD	579.35	4.60	574.49	574.75
88-12C		WELL NEST OUTSIDE	583.12	8,35	575.07	574.77
88-12D		NORTHEAST PORTION OF	582.87	8.00	574.8	574.87
QUARRY LAKE					578.4	578.31

Notes:

Elevation based on USGS Datum.

O = piezometer located outside of capped area.

I = piezometer located inside capped area.

T = standpipe located within the ground water collection trench.

ATTACHMENT E

Semi-Annual Field Observation Report and Monthly Inspection Checklist

FIELD OBSERVATION REPORT

PROJECT 1	NO.:	94-1014-0	REPORT NO.:	21-01
PROJECT:	Penc	dleton – Fron	tier Chemical Si	te
SUBJECT:	Lake	Level Survey,	Semi-Annual Insp	•
CLIENT:	Seve	enson Enviror	nmental Services	, Inc.

4.14.21 Site Photos:

DATE:	4/14/21	PAGE:	2	OF	2
DAY:	Wednesday	9			
PRO.	JECT TIME:	10:00 a	m –	12:00) pm
	SITE TIME:	10:30 a	ım -	- 11:45	5 am

Inundated Overflow Weir

Lakeside Cap Slope

Rodent Burrow at East end of Cap

FIELD OBSERVATION REPORT

PROJECT N	IO.: 94-1014-O REPORT NO.: 21-01	DATE: 4/14/21	PAGE: 1 OF 2
PROJECT:	Pendleton – Frontier Chemical Site	DAY: Wednesday	
SUBJECT:	Lake Level Survey, Semi-Annual Insp.	PROJECT TIME:	10:00 am – 12:00 pm
CLIENT:	Sevenson Environmental Services, Inc.	SITE TIME:	10:30 am – 11:45 am
WEATHER:	Mild, Mostly Sunny (60°F)	PHOTOS:	Yes X No

- As notified by Mike Walker (Sevenson Environmental), visit the Pendleton site to record the surface water elevation of the lake to coincide with the semi-annual site inspection event.
- The Quarry Lake surface water level near the pre-treatment vault is recorded by level survey using the top of the pre-treatment vault benchmark El. 580.50'. The lake water elevation is recorded at El. 578.40'.
- Mike Walker and Max (SES) are on site for the semi-annual inspection and to provide site access.
- Following are cursory observations made while on site:
 - The capped area is noted to be in generally good condition. An active rodent burrow is noted at the east end of the capped area just above P-7. SES is notified of the active burrow.
 - The overflow weir is inundated with approx. 1.2' of water.
 - There is standing water in the Zone "D" wetlands along the northeast side of the site.
 - The site access roads are generally in good condition, though wet and with some localized rutting.
 - SES notes that other annual inspection items (pinch valve operation, cleanout riser inspections, etc.) will be completed as part of this inspection event.
- Leave site at approx. 11:45 pm, returning to GGE's Lockport office to prepare this report.

PERSONNEL ON SITE / CONTACTED:

Mike Walker, Max - Sevenson

Jesse E. Grossman, P.E. - Engineering Manager

DISTRIBUTION:

Mike Walker – Sevenson

David Share, P.E. – Pendleton PRP Group Adam Carringer - Pendleton PRP Grp DAILY MANHOURS: 2.0 + report

Slynn, P.E. Mark

DOCFILE:21FOR

Frontier Chemical – Pendleton Site No. 932043 Semi-Annual Inspection Checklist

Date: 4/12/21 Time In: 0830 Time Out: 1500

Inspector: Maxwell Liffiton, Mike Walker Inspector Signature Marwell toffth

Weather: cloudy, intermittent showers (55°F)

ltern	Task	Resp	onse	Comments
		Yes	No	
Low-Permeability Cover:	Visually Inspect Surface Conditions			
	1. Erosion problem?		\checkmark	
	2. Lack or thinning of vegetation?		5	
	3. Mowing required?		\checkmark	
	4. Drainage problems?		\checkmark	
	5. Areas of settlement?			
	6. Areas of slope instability?			
	7. Areas of damage?			
Ground Water Collection and Conveyance System:	Visually Inspect Manholes and Cleanouts			
	1. Buildup of solids/precipitates to the extent that the flow of groundwater is affected?		\checkmark	
	 2. Measure water levels in manholes and Quarry Lake a. MH-1? DRY (well depth 12.69') b. MH-2 DRY (well depth 16.62') c. MH-3? 16.63' (well depth 19.40') d. Quarry Lake? 578.40' 	\checkmark		Quarry lake level provided by Glynn Geotechnical on 4/14/21. Measured as 578.4 The previous lake level taken by Glynn was 577.02' on 9/15/20.
	3. Closed and opened pinch valve?	\checkmark		Pertormed 4/14/21

Frontier Chemical – Pendleton Site No. 932043 <u>Semi-Annual Inspection Checklist</u>

Maxwell Inffito

ltem	Task	Response		Comments
		Yes	No	
	4. Leakage, degradation or corrosion of valves, pipes or appurtenances?		\checkmark	
	5. Areas of damage?		\checkmark	
Ground Water Pre-Treatment System	Perform Inspection in accordance with Pre-	\checkmark		
(including Dry Vault and Wet Well):	Treatment System Operations Plan	Y		
Surface Water Runoff Facilities:	Visually Inspect Ditches and Culverts			
	1. Accumulation of debris?		\checkmark	
	2. Excessive scouring?		\checkmark	
	3. Areas of damage?		\checkmark	
		1		
Perimeter Berm, Containment Berm, and Outlet Weir:	Visually Inspect Condition			
	1. Erosion problems?		\checkmark	
	2. Areas of settlement?		\checkmark	
	3. Areas of slope instability?		\checkmark	
	4. Areas of damage?			
Ground Water Monitoring Wells and Piezometers:	Visually Inspect Condition			
	1. Casings secured and locked?			
	2. Areas of damage?	\checkmark		As noted in Monitoring Well Integrity Checklists
Access Road:	Visually Inspect Surface Condition		<u> </u>	
	1. Rutting?			Some minor rutting south of landfill
	2. Potholes?		<u> </u>	
	3. Settlement?		<u> </u>	
	4. Areas of damage?		$ $ \checkmark	

Maxwell Infito

Frontier Chemical – Pendleton Site No. 932043 Semi-Annual Inspection Checklist

ltem	Task	Resp	oonse	Comments
		Yes	No	
Physical Site Security:	Visually Inspect Fences and Gates			
	1. Signs intact?	\checkmark		
	2. Fence breached?		\checkmark	
	3. Access gates locked?	\checkmark		
	4. Areas of damage?		J	
Note any additional commants:				
Site inspection was pe	rtormed by SES on 4/12/21.			
JESSE E. Grossman P.E. (C	olynn Geotechnical) performed fiel	d observation	s and w	measured Quarry Lake level on 4/14/21.
· · · · · · · · · · · · · · · · · · ·	na na hina na h		,	
SES performed pinch value	inspections and alarm system te	esting on 6	1/14/21.	а, <u></u>
		0	1 1	

Frontier Chemical – Pendleton Site No. 932043 Monitoring Well Integrity Checklist

Date: 4/12/21

Inspector: Max Liffiton Inspector Signature Marwell Affilo

Well Identification: γ -1

WELL SPECIFICATIONS:

Protective Casing		Above Ground	Flush Mounted
Well Construction		PVC	Stainless Steel
Well Diameter		2-Inch	- 4-Inch
Depth to Ground Water	1.96		
Well Depth	16.42	FT	

WELL INTEGRITY

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?	J	
3.	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		\checkmark
6.	Is the well casing in good condition?		
7.	Is the measuring point on casing well marked?		
8.	Is there standing water in the annular space?		
9.	Is the stand pipe vented at the base to allow drainage?	J	
10	. Does the total sounded depth correspond to the original well completion depth?		
11.	Is the access down the well impeded or blocked?		\bigvee
	Explain:		

COMMENTS/RECOMMENDATIONS: There is a large hole in the well casing near ground level.

Frontier Chemical – Pendleton Site No. 932043 Monitoring Well Integrity Checklist

Date: 4/12/21

Inspector: Maxwell Liffiton Inspector Signature Maxwell Afflo

Well Identification: P_2

WELL SPECIFICATIONS:

Protective Casing		Above Ground	\checkmark	Flush Mounted
Well Construction		PVC		Stainless Steel
Well Diameter		2-Inch	······································	4-Inch
Depth to Ground Water	0.92	FT		
Well Depth	15.73	FT		

WELL INTEGRITY

Yes	No
	1
V	
	~
	1
	<u> </u>

All about. There is standing nater in the annular space. COMMENTS / RECOMMENDATIONS:

Frontier Chemical – Pendleton Site No. 932043 Monitoring Well Integrity Checklist

Date: 4/12/21

Inspector: Max Liffiton Inspector Signature Maxwell Mytos

Well Identification: P-3

WELL SPECIFICATIONS:

Protective Casing		Above Ground	\checkmark	Flush Mounted
Well Construction	\sim	PVC		Stainless Steel
Well Diameter	1	2-Inch		- 4-Inch
Depth to Ground Water	29.29	FT		~
Well Depth	39.80	FT		

WELL INTEGRITY

_	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?	V	
3. Is the well stand pipe vertically aligned and secure?	J	
4. Is the concrete pad and surface seal in good condition?		
5. Are soils surrounding the well pad eroded?		\mathbf{V}
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?		
8. Is there standing water in the annular space?		J
9. Is the stand pipe vented at the base to allow drainage?		
10. Does the total sounded depth correspond to the original well completion de	pth?	
11. Is the access down the well impeded or blocked?		
Explain:		•

COMMENTS / RECOMMENDATIONS:

All Okay.

Date: 4/12/21

Inspector: Maxwell Liffiton Inspector Signature Maxwell Affeton

Well Identification: P-4

WELL SPECIFICATIONS:

Protective Casing		Above Ground	\checkmark	Flush Mounted
Well Construction		PVC		Stainless Steel
Well Diameter		2-Inch		4-Inch
Depth to Ground Water	10.05	FT		
Well Depth	16.94	FT		

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?		
3.	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		\checkmark
6.	Is the well casing in good condition?	\checkmark	
7.	Is the measuring point on casing well marked?	\checkmark	
8.	Is there standing water in the annular space?		
9.	Is the stand pipe vented at the base to allow drainage?		\checkmark
10	. Does the total sounded depth correspond to the original well completion depth?		
11	. Is the access down the well impeded or blocked?		\bigvee
<u> </u>	Explain:		

All Oleany. There is standing water in the annular space. COMMENTS / RECOMMENDATIONS:

Date: 4/12/21

Inspector: Max Liftiton Inspector Signature Maxwell Toffice

Well Identification: P_{-5}

WELL SPECIFICATIONS:

Flush Mounted Above Ground **Protective Casing** ______ PVC **Stainless Steel** Well Construction J 4-Inch 2-Inch Well Diameter Depth to Ground Water 3.07 FT FT 15.55 Well Depth

WELL INTEGRITY

1. Well identification clearly marked?		T
T, Well luchthication clearly marked:		
2. Well covers and locks in good condition and secure?		
3. Is the well stand pipe vertically aligned and secure?		
4. Is the concrete pad and surface seal in good condition?		
5. Are soils surrounding the well pad eroded?		
6. Is the well casing in good condition?	✓ ✓	
7. Is the measuring point on casing well marked?	V	
8. Is there standing water in the annular space?		11
9. Is the stand pipe vented at the base to allow drainage?		1
10. Does the total sounded depth correspond to the original well completion depth?		
11. Is the access down the well impeded or blocked?		
Explain:		

COMMENTS/RECOMMENDATIONS: Stand pipe has no visible above-ground vent to allow for drainage.

Date: 4/12/21

Inspector: Max Liffiton Inspector Signature Maxwell Aftor

Well Identification: γ -6

WELL SPECIFICATIONS:

Protective Casing		Above Ground	\int	Flush Mounted
Well Construction		PVC		Stainless Steel
Well Diameter		2-Inch		4-Inch
Depth to Ground Water	2.56	FT		
Well Depth	16.18	FT		

WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?	J	
3. Is the well stand pipe vertically aligned and secure?		\checkmark
4. Is the concrete pad and surface seal in good condition?	√	
5. Are soils surrounding the well pad eroded?		J
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?	\checkmark	
8. Is there standing water in the annular space?		1
9. Is the stand pipe vented at the base to allow drainage?		\checkmark
10. Does the total sounded depth correspond to the original well completion depth?		
11. Is the access down the well impeded or blocked?		V
Explain:		

COMMENTS / RECOMMENDATIONS:

The well standpipe has shifted and is no longer vertical. Access down the well is still possible.

Date: 4/12/21

Inspector: Maxwell Liffiton Inspector Signature Maxwell Mpton

Well Identification: P-7

WELL SPECIFICATIONS:

Protective Casing		Above Ground	\checkmark	Flush Mounted
Well Construction	\checkmark	PVC	-	Stainless Steel
Well Diameter	$\overline{}$	2-Inch		4-Inch
Depth to Ground Water	6.49	FT		
Well Depth	16.73	FT		

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?		
3. Is the well stand pipe vertically aligned and secure?		
4. Is the concrete pad and surface seal in good condition?	\checkmark	
5. Are soils surrounding the well pad eroded?		\checkmark
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?		
8. Is there standing water in the annular space?	\checkmark	
9. Is the stand pipe vented at the base to allow drainage?		
10. Does the total sounded depth correspond to the original well completion depth	? 🗸	
11. Is the access down the well impeded or blocked?		\checkmark
Explain:		

COMMENTS / RECOMMENDATIONS: All -Okay. There is standing water in the annular space.

Date: 4/12/21

Inspector: Maxwell Littito Inspector Signature Marwell offices

Well Identification: P-8

WELL SPECIFICATIONS:

Protective Casing		Above Ground	Flush Mounted
Well Construction	V	PVC	Stainless Steel
Well Diameter		2-Inch	4-Inch
Depth to Ground Water	2.31	FT	
Well Depth	17.22	FT	

WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?		
3. Is the well stand pipe vertically aligned and secure?	✓	
4. Is the concrete pad and surface seal in good condition?		
5. Are soils surrounding the well pad eroded?		\checkmark
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?		
8. Is there standing water in the annular space?		\checkmark
9. Is the stand pipe vented at the base to allow drainage?		
10. Does the total sounded depth correspond to the original well completion	on depth? 🗸 🗸	
11. Is the access down the well impeded or blocked?		\bigvee
Explain:		

2

COMMENTS / RECOMMENDATIONS:

All OKay.

Date: 4/12/21

Inspector: Maxwell Liffiton Inspector Signature Maxwell Affiton

Well Identification: URS - 5D

WELL SPECIFICATIONS:

Protective Casing	\int	Above Ground	Flush Mounted
Well Construction		PVC	Stainless Steel
Well Diameter	J	2-Inch	 _ 4-Inch
Depth to Ground Water	6.30	FT	
Well Depth	49.78	FT	

WELL INTEGRITY

		Yes	No
1. V	Nell identification clearly marked?		l.
2. V	Nell covers and locks in good condition and secure?		
3. I	s the well stand pipe vertically aligned and secure?	V	
4. 1	s the concrete pad and surface seal in good condition?		
5. A	Are soils surrounding the well pad eroded?		1
6. I	s the well casing in good condition?	✓	
7. I	s the measuring point on casing well marked?	\checkmark	
8. I	s there standing water in the annular space?		
9. 1	s the stand pipe vented at the base to allow drainage?		
10. [Does the total sounded depth correspond to the original well completion depth?	\checkmark	
11. I	s the access down the well impeded or blocked?		
	Explain:		

COMMENTS / RECOMMENDATIONS:

All Okay.

Date: 4/12/21

Inspector: Max Liffiton Inspector Signature Maxwell biffito

Well Identification: URS -7D

WELL SPECIFICATIONS:

Protective Casing	1	Above Ground		Flush Mounted
Well Construction		PVC	/	Stainless Steel
Well Diameter		2-Inch		4-Inch
Depth to Ground Water	4.86	FT		
Well Depth	39.91	FT		

WELL INTEGRITY

		Yes	No
1.	Well identification clearly marked?	\checkmark	
2.	Well covers and locks in good condition and secure?	\checkmark	
3.	Is the well stand pipe vertically aligned and secure?	\checkmark	
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		
6.	Is the well casing in good condition?		
7.	Is the measuring point on casing well marked?		
8.	Is there standing water in the annular space?		
9,	Is the stand pipe vented at the base to allow drainage?		
10.	Does the total sounded depth correspond to the original well completion depth?		
11.	. Is the access down the well impeded or blocked?		∇
	Explain:		

COMMENTS / RECOMMENDATIONS:

There is no visible above-ground vent in the well casing to allow for drainage.

Date: 4/12/21

Inspector: Max Liffiton Inspector Signature Maxwell hypoto

Well Identification: URS-9D

WELL SPECIFICATIONS:

Protective Casing Well Construction		Above Ground PVC	 Flush Mounted Stainless Steel
Well Diameter		2-Inch	 4-Inch
Depth to Ground Water	6.41	FT	 •
Well Depth	50.98	FT	

WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?		
3. Is the well stand pipe vertically aligned and secure?	\checkmark	
4. Is the concrete pad and surface seal in good condition?		
5. Are soils surrounding the well pad eroded?		$\overline{\checkmark}$
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?		
8. Is there standing water in the annular space?		\checkmark
9. Is the stand pipe vented at the base to allow drainage?		
10. Does the total sounded depth correspond to the original well completion depth?		
11. Is the access down the well impeded or blocked?		
Explain:		

COMMENTS / RECOMMENDATIONS:

All Okay.

Date: 4/12/21

Inspector: Max Liftiton Inspector Signature Maxwell Wiffto

Well Identification: URS -91

WELL SPECIFICATIONS:

Protective Casing Well Construction	/	Above Ground PVC	 Flush Mounted Stainless Steel
Well Diameter		2-Inch	 _ 4-Inch
Depth to Ground Water	7.20	FT	
Well Depth	45.95	FT	

WELL INTEGRITY

Yes	No
	1
<i>✓</i>	
~	
	1
:h? 🗸 🗸	

COMMENTS / RECOMMENDATIONS:

There is no visible above - ground vent in the well casing to allow for drainage.

Date: 4/12/21

Inspector: Maxwell Liftiton Inspector Signature Maxwell http://

Well Identification: URS-140

WELL SPECIFICATIONS:

Protective Casing Well Construction		Above Ground PVC	<u>√</u>	Flush Mounted Stainless Steel
Well Diameter		2-Inch		4-Inch
Depth to Ground Water	6.16	FT FT		
Well Depth	41.60	FT		

		Yes	No
1. Well identification clearly mar	ked?		
2. Well covers and locks in good	condition and secure?	✓	
3. Is the well stand pipe vertical	/ aligned and secure?	<u> </u>	
4. Is the concrete pad and surfac		/	ļ
5. Are soils surrounding the well	pad eroded?		
6. Is the well casing in good cond	ition?	<u> </u>	
7. Is the measuring point on casi			
8. Is there standing water in the			
9. Is the stand pipe vented at the	base to allow drainage?		
10. Does the total sounded depth	correspond to the original well completion depth?		
11. Is the access down the well im			
Explain:			

CON	MMENTS	/ RE	COMMENDA	TIONS:							
	Ther	e is	standing	nater	ìn	the	annular	space.			

Date: 4/12/21

Inspector: Maxwell Liftiton Inspector Signature Markvell Mitter

Well Identification: URS-14I

WELL SPECIFICATIONS:

Protective Casing Well Construction	<u></u>	Above Ground PVC	<u></u>	Flush Mounted Stainless Steel
Well Diameter	$\overline{}$	2-Inch		4-Inch
Depth to Ground Water	1.01	FT		
Well Depth	31.10	FT		

WELL INTEGRITY

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?		
3.	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		
6.	Is the well casing in good condition?		
7.	Is the measuring point on casing well marked?		
8.	Is there standing water in the annular space?		
9.	Is the stand pipe vented at the base to allow drainage?		
10	Does the total sounded depth correspond to the original well completion depth?		
11	. Is the access down the well impeded or blocked?		
	Explain:		

COMMENTS / RECOMMENDATIONS:

Water is present in annular space

Date: 4/12/21

Inspector: Maxwell Liffiton Inspector Signature Maxwell Wiffiton

Well Identification: 85-5R

WELL SPECIFICATIONS:

Protective Casing	\checkmark	Above Ground	Flush Mounted
Well Construction		PVC	 Stainless Steel
Well Diameter		2-Inch	4-Inch
Depth to Ground Water	3.46	FT	
Well Depth	38.05	FT	

WELL INTEGRITY

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?		
3.	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		\checkmark
6.	Is the well casing in good condition?		
7.	Is the measuring point on casing well marked?	J	
8.	Is there standing water in the annular space?		V
9.	Is the stand pipe vented at the base to allow drainage?		
10	. Does the total sounded depth correspond to the original well completion depth?		
	. Is the access down the well impeded or blocked?		\checkmark
	Explain:		

COMMENTS / RECOMMENDATIONS:

All Okay.

.

÷

Date: 4/12/21

Inspector: Maxwell Liffiton Inspector Signature Maxwell approx

Well Identification: 85-7R

WELL SPECIFICATIONS:

Protective Casing	\checkmark	Above Ground	 Flush Mounted
Well Construction			Stainless Steel
Well Diameter	/	2-Inch	 4-Inch
Depth to Ground Water	3.64	FT	
Well Depth	27.70	FT	

WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?		
3. Is the well stand pipe vertically aligned and secure?	/,	
4. Is the concrete pad and surface seal in good condition?	\checkmark	
5. Are soils surrounding the well pad eroded?		
6. Is the well casing in good condition?]
7. Is the measuring point on casing well marked?		
8. Is there standing water in the annular space?		
9. Is the stand pipe vented at the base to allow drainage?		
10. Does the total sounded depth correspond to the original well completion depth?		
11. Is the access down the well impeded or blocked?		
Explain:		

COMMENTS / RECOMMENDATIONS:

All Okart.

Date: 4/12/21

Inspector: Max Liffiton Inspector Signature Maxwell With

Well Identification: 88-12C

WELL SPECIFICATIONS:

Protective Casing Well Construction		Above Ground PVC	 Flush Mounted Stainless Steel
Well Diameter		2-Inch	 4-Inch
Depth to Ground Water	8.05	FT	
Well Depth	31.20	FT	

WELL INTEGRITY

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?		
3.	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		
6.	is the well casing in good condition?		
7.	Is the measuring point on casing well marked?		
8.	is there standing water in the annular space?		\checkmark
9.	Is the stand pipe vented at the base to allow drainage?	\checkmark	
10	Does the total sounded depth correspond to the original well completion depth?	\checkmark	
	Is the access down the well impeded or blocked?		\checkmark
	Explain:		

...

...

COMMENTS / RECOMMENDATIONS:

All OKay.

Date: 4/12/21

Inspector: Max Liffiton Inspector Signature Maxwell withto

Well Identification: 88-12 D

WELL SPECIFICATIONS:

Protective Casing Well Construction	<u> </u>	Above Ground PVC	 Flush Mounted Stainless Steel
Well Diameter	$\overline{}$	2-Inch	 4-Inch
Depth to Ground Water	8.07	FT	
Well Depth	48.91	FT	

WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?	\checkmark	
3. Is the well stand pipe vertically aligned and secure?	\checkmark	
4. Is the concrete pad and surface seal in good condition?	\checkmark	
5. Are soils surrounding the well pad eroded?		\checkmark
6. Is the well casing in good condition?		\checkmark
7. Is the measuring point on casing well marked?		
8. Is there standing water in the annular space?		\checkmark
9. Is the stand pipe vented at the base to allow drainage?	\checkmark	
10. Does the total sounded depth correspond to the original well completion depth?		
11. Is the access down the well impeded or blocked?		$\overline{\mathbf{V}}$
Explain:		

COMMENTS / RECOMMENDATIONS:

The well casing has significant rust damage.

Date: 4/12/21

Inspector: Max Liffiton Inspector Signature Maxwell withto

Well Identification: SP-1

WELL SPECIFICATIONS:

Protective Casing		Above Ground	Flush Mounted
Well Construction	\checkmark	PVC	Stainless Steel
Well Diameter		2-Inch	4-Inch
Depth to Ground Water	•	- FT (Not taker)	
Well Depth		_ FT ⁽ⁱ	

WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?		\bigvee
3. Is the well stand pipe vertically aligned and secure?		
4. Is the concrete pad and surface seal in good condition?		
5. Are soils surrounding the well pad eroded?		
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?	\checkmark	
8. Is there standing water in the annular space?		
9. Is the stand pipe vented at the base to allow drainage?		\checkmark
10. Does the total sounded depth correspond to the original well completion depth?		
11. Is the access down the well impeded or blocked?		
Explain: See below		

COMMENTS / RECOMMENDATIONS:

The bolts seaving the well pad have been snapped off. Access to the well is not seave. The stand pipe has shifted and is no longer vertical. The top of the stand pipe has shifted under the lip of the well casing. The well plug is not able to be removed, and thus well access is obstructed.

Civil • Geotechnical FIELD OBSERVATION REPORT Material Testing • Consulting

ENGINEERING & ARCHITECTURE, PLLC

PROJECT N	O.: <u>94-1014-O</u> REPORT NO.: <u>21-02</u>	DATE: 9/17/21	PAGE: 1 OF 2
PROJECT:	Pendleton – Frontier Chemical Site	DAY: Friday	
SUBJECT:	Lake Level Survey, Semi-Annual Insp.	PROJECT TIME:	10:00 am – 11:30 am
CLIENT:	Sevenson Environmental Services, Inc.	SITE TIME:	9:30 am – 12:00 pm
WEATHER:	Partly Cloudy, Warm (75°F)	PHOTOS:	Yes X No

- As notified by Mike Walker (Sevenson Environmental), visit the Pendleton site to record the surface water elevation of the lake to coincide with the semi-annual site inspection event.
- Mike Walker (SES) is on site for inspection/maintenance and to provide site access. SES is completing monitoring well sampling and other semi-annual inspection items.
- The Quarry Lake surface water level near the pre-treatment vault is recorded by level survey using the top of the pre-treatment vault benchmark El. 580.50'. The lake water elevation is recorded at El. 578.31'.
- Following are cursory observations made while on site:
 - The capped area is noted to be in good condition.
 - The weir is inundated with approx. 0.5' of water
 - Site conditions are relatively dry with the lake level approx. 0.1' lower than recorded in April.
 - Note heavy brush/vegetative growth in areas outside of perimeter fence
 - Site access roads are in fair condition with some rutting.
- Leave site at approx. 11:30 pm, returning to GGEA's Lockport office to prepare this report.

PERSONNEL ON SITE / CONTACTED: Mike Walker – Sevenson

Jesse E. Grossman, P. Engineering Manager

DISTRIBUTION: Mike Walker – Sevenson Environmental David Share, P.E., Adam Carringer – Pendleton PRP Group

DAILY MANHOURS: 1.5 + report

GLYNN GROUP ENGINEERING & ARCHITECTURE, PLLC

415 South Transit Street, Lockport, New York 14094 voice 716.625.6933 / fax 716.625.6983 www.glynngroup.com

DOCFILE:21FOR

FIELD OBSERVATION REPORT

PROJECT NO.: 94-1014-O REPORT NO.:

PROJECT: Pendleton – Frontier Chemical Site

SUBJECT: Lake Level Survey, Semi-Annual Insp.

CLIENT: Sevenson Environmental Services, Inc.

DATE:	10/09/19	PAGE:	2	OF	2
DAY:	Wednesday				
PRO.	DECT TIME:	11:00 a	m –	12:30) pm
	SITE TIME:	11:15 a	m	12:15	pm

Site Photos:

19-02

Inundated Overflow Weir

DOCFILE:19FOR

Frontier Chemical – Pendleton Site No. 932043 <u>Semi-Annual Inspection Checklist</u>

Date: 9/15/21

Time In: 1045

Time Out: 1400

Inspector: Mike Walker, Max Liffiton Inspector Signature Max hifto

Weather: Cloudy 76°F

Item	Task	Resp	ionse	Comments
		Yes	No	
Low-Permeability Cover:	Visually Inspect Surface Conditions			
	1. Erosion problem?		N	
	2. Lack or thinning of vegetation?		\checkmark	
	3. Mowing required?		V	
	4. Drainage problems?		J	
	5. Areas of settlement?		V	
	6. Areas of slope instability?		V	· · · · ·
	7. Areas of damage?		\checkmark	
Ground Water Collection and Conveyance System:	Visually Inspect Manholes and Cleanouts			
	1. Buildup of solids/precipitates to the extent that the flow of groundwater is affected?		\checkmark	
	2. Measure water levels in manholes and Quarry Lake a. MH-1? ^{ORY} b. MH-2 DRY c. MH-3? 15' (1、5" d. Quarry Lake? 578.31'	\checkmark		MHI is dy and clean MH2 is dry (no vater) with some mud in bottom MH3 water is 15' (1.5" to vater. Glynn Geotedniech measured Quary Lake at 578.10" on 9/17/21. Previous level 578.40" on 4/12/21.
	3. Closed and opened pinch valve?	\checkmark		

Frontier Chemical – Pendleton Site No. 932043 <u>Semi-Annual Inspection Checklist</u>

max lift

ltem	Task	Response		Comments
		Yes	No	
	4. Leakage, degradation or corrosion of		1	
	valves, pipes or appurtenances?			
	5. Areas of damage?			
				I
Ground Water Pre-Treatment System	Perform Inspection in accordance with Pre-			
(including Dry Vault and Wet Well):	Treatment System Operations Plan	<u> </u>]
Surface Water Runoff Facilities:	Visually Inspect Ditches and Culverts			
	1. Accumulation of debris?			
	2. Excessive scouring?			
	3. Areas of damage?			
Perimeter Berm, Containment Berm, and Outlet Weir:	Visually Inspect Condition			
	1. Erosion problems?		1/	
	2. Areas of settlement?		1	
	3. Areas of slope instability?		V	
	4. Areas of damage?			
Ground Water Monitoring Wells and Piezometers:	Visually Inspect Condition			
	1. Casings secured and locked?	\checkmark		
······	2. Areas of damage?		/	
Access Road:	Visually Inspect Surface Condition			
	1. Rutting?	\checkmark		Some rutting around landfill
	2. Potholes?		\checkmark	
	3. Settlement?		- V	
	4. Areas of damage?			

Frontier Chemical – Pendleton Site No. 932043 Semi-Annual Inspection Checklist

Item	W tiffta Task	Resp	onse	Comments
			No	
Physical Site Security:	Visually Inspect Fences and Gates			
	1. Signs intact?			
	2. Fence breached?		\checkmark	
	3. Access gates locked?			
- · · · · · · · · · · · · · · · · · · ·	4. Areas of damage?			
Jesse E. Grossman	P.E. (Glynn Geotednnical) perform	ed field obs	erustions	and measured Quarry Lake
Note Enyectetitionelleommenter Jesse E. Grossman level on 9/17/21.		ed field obs	erustions	and measured Quarry Lake
Jesse E. Grossman		ed field obs	erustions	and measured Quarry Lake
Jesse E. Grossman		ed field obs	erustions	and measured Quarry Labe
Jesse E. Grossman		ed field obs	erustions	and measured Quarry Lake
Jesse E. Grossman		ed field obs	erustions	and measured Quarry Lake
Jesse E. Grossman		ed field obs	erustions	and measured Quarry Lake
Jesse E. Grossman		ed field obs	erustions	and measured Quarry Lake

Date: 9/15/21

Inspector: Max Little Inspector Signature May tiffe

Well Identification: P_{-}

WELL SPECIFICATIONS:

Protective Casing	\checkmark	Above Ground	Flush Mounted
Well Construction	\checkmark	PVC	Stainless Steel
Well Diameter	V	2-Inch	 4-Inch
Depth to Ground Water	1.95	FT	
Well Depth	16.50	FT	

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?		
3. Is the well stand pipe vertically aligned and secure?	V	
4. Is the concrete pad and surface seal in good condition?		V
5. Are soils surrounding the well pad eroded?		V
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?		
8. Is there standing water in the annular space?		V
9. Is the stand pipe vented at the base to allow drainage?		
10. Does the total sounded depth correspond to the original well completion depth?	V	
11. Is the access down the well impeded or blocked?		
Explain:		

COMMENTS / RECOMMENDATIONS:	1 1 Part who have made
Concrete pod has been	covered by soil. Recent rains have made
the area a bit suampy,	with standing water around the vent. well casing.
	·

Date: 9/15/21

Inspector: Max Liffiton Inspector Signature Max Math

Well Identification: 1-2

WELL SPECIFICATIONS:

Protective Casing		Above Ground	· · · ·	Flush Mounted
Well Construction		PVC		Stainless Steel
Well Diameter		2-Inch		4-Inch
Depth to Ground Water	6.11	FT		
Well Depth	15.82	FT		

WELL INTEGRITY

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?		
3.	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?	\checkmark	
5.	Are soils surrounding the well pad eroded?		
6.	Is the well casing in good condition?		
7.	Is the measuring point on casing well marked?		
8.	Is there standing water in the annular space?		
9.	Is the stand pipe vented at the base to allow drainage?		\vee
10	Does the total sounded depth correspond to the original well completion depth?		
11.	. Is the access down the well impeded or blocked?		
	Explain:		

COMMENTS/RECOMMENDATIONS: No visible venting in well casing.

Date: 9/15/21

Inspector: Max Uffilm Inspector Signature May MMS

Well Identification: P-3

WELL SPECIFICATIONS:

Protective Casing		Above Ground	Flush Mounted
Well Construction	V	PVC	 Stainless Steel
Well Diameter		2-Inch	 4-Inch
Depth to Ground Water	29.50	FT	
Well Depth	39.85	FT	
Depth to Ground Water		FT	 4-111011

WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?		
3. Is the well stand pipe vertically aligned and secure?	 ✓ 	
4. Is the concrete pad and surface seal in good condition?	 ✓ 	
5. Are soils surrounding the well pad eroded?		
6. Is the well casing in good condition?	V	
7. Is the measuring point on casing well marked?	V	
8. Is there standing water in the annular space?		
9. Is the stand pipe vented at the base to allow drainage?		V
10. Does the total sounded depth correspond to the original well completion depth?		
11. Is the access down the well impeded or blocked?		V
, Explain:		

COMMENTS / RECOMMENDATIONS:

All good.

Date: 9/15/21

Inspector: Max Liftiton Inspector Signature Mars Liftito

Well Identification: γ -4

WELL SPECIFICATIONS:

Protective Casing		Above Ground	Flush Mounted
Well Construction		PVC	 Stainless Steel
Well Diameter	$\overline{}$	2-Inch	 4-Inch
Depth to Ground Water	8.53	FT	
Well Depth	17.00	FT	

WELL INTEGRITY

		Yes,	Na
1.	Well identification clearly marked?		Ι.
2.	Well covers and locks in good condition and secure?		
3.	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		\checkmark
6.	Is the well casing in good condition?		
7.	Is the measuring point on casing well marked?		
8.	Is there standing water in the annular space?		
9.	Is the stand pipe vented at the base to allow drainage?		\checkmark
10.	Does the total sounded depth correspond to the original well completion depth?	1	
11.	Is the access down the well impeded or blocked?		1
	Explain:		

COMMENTS / RECOMMENDATIONS:

Some nater in annular space.

Date: 9/15/21

Inspector: Max UHAM Inspector Signature Max Mft

Well Identification: P-5

WELL SPECIFICATIONS:

Protective Casing Well Construction		Above Ground PVC	 Flush Mounted Stainless Steel
Well Diameter	~	2-Inch	 4-Inch
Depth to Ground Water	3.15	FT	 •
Well Depth	15.65	FT	

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?	~	
3,	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		1
6.	Is the well casing in good condition?		
7.	Is the measuring point on casing well marked?	~	
8.	Is there standing water in the annular space?		
9.	Is the stand pipe vented at the base to allow drainage?		~
10	. Does the total sounded depth correspond to the original well completion depth?		
11	. Is the access down the well impeded or blocked?		1
	Explain:		

COMMENTS/RECOMMENDATIONS: No visible venting in stand pipe to allow for drawing .

Date: 9/15/21

Inspector: Max Liftton Inspector Signature Max Mft

Well Identification: P-6

WELL SPECIFICATIONS:

Protective Casing		Above Ground	Flush Mounted
Well Construction	/	PVC	 Stainless Steel
Well Diameter	<i>✓</i>	2-Inch	 4-Inch
Depth to Ground Water	9.48	FT	 -
Well Depth	16.25	FT	

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?		
3.	Is the well stand pipe vertically aligned and secure?		~
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		\checkmark
6.	Is the well casing in good condition?	\checkmark	
7.	Is the measuring point on casing well marked?		
8.	Is there standing water in the annular space?		V
9.	Is the stand pipe vented at the base to allow drainage?		\bigvee
10.	Does the total sounded depth correspond to the original well completion depth?	~	
11.	Is the access down the well impeded or blocked?		~
	Explain:		

COMMENTS/RECOMMENDATIONS: The well pipe is significantly slanted.

Date: 9/15/21

Inspector: Max Liffiton Inspector Signature Max Tiffton

Well Identification: P_{-7}

WELL SPECIFICATIONS:

Protective Casing Well Construction Well Diameter Depth to Ground Water Well Depth	5,35 16,80	Above Ground PVC 2-Inch FT FT		Flush Mounted Stainless Steel 4-Inch
--	---------------	---	--	--

Yes	No
\checkmark	
\checkmark	
	V
\checkmark	
V	
	Yes V V V V V V V V V

COMMENTS/RECOMMENDATIONS: Standoz nater in annular space.

Date: 9/15/21

Inspector: Max Liff.for Inspector Signature Maxwell Affitos

Well Identification: P-8

WELL SPECIFICATIONS:

Protective Casing	/	_ Above Ground	 Flush Mounted
Well Construction	/	_ PVC	 Stainless Steel
Well Diameter	/	_ 2-Inch	4-Inch
Depth to Ground Water	2.70	FT	
Well Depth	17.33	_ FT	

WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?		
3. Is the well stand pipe vertically aligned and secure?		
4. Is the concrete pad and surface seal in good condition?	V	
5. Are soils surrounding the well pad eroded?		\checkmark
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?	1	
8. Is there standing water in the annular space?		\vee
9. Is the stand pipe vented at the base to allow drainage?	V	
10. Does the total sounded depth correspond to the original well completion depth?		
11. Is the access down the well impeded or blocked?		
Explain:		

COMMENTS / RECOMMENDATIONS:

All good.

Date: 9/15/21

Inspector: Max Uthton Inspector Signature Max Mft

Well Identification: URS -5P

WELL SPECIFICATIONS:

Protective Casing		Above Ground		Flush Mounted
Well Construction		PVC	\checkmark	Stainless Steel
Well Diameter		2-Inch		4-Inch
Depth to Ground Water	6,00	FT		
Well Depth	49.88	FT		

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?	· · · · · · · · · · · · · · · · · · ·	
3. Is the well stand pipe vertically aligned and secure?	V	
4. Is the concrete pad and surface seal in good condition?	V	
5. Are soils surrounding the well pad eroded?		V
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?	\checkmark	
8. Is there standing water in the annular space?		
9. Is the stand pipe vented at the base to allow drainage?		S
10. Does the total sounded depth correspond to the original well completion d	epth?	
11. is the access down the well impeded or blocked?		∇
Explain:		

COMMENTS / RECOMMENDATIONS: Standing water in annular space.

Date: 9/15/21

Inspector: Max Liffiton Inspector Signature Max MAT

Well Identification: URS-7D

WELL SPECIFICATIONS:

Protective Casing Well Construction Well Diameter Depth to Ground Water Well Depth

 ✓ 	Above Ground PVC
	2-Inch
4.60	 FT
39.92	FT

...

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?		V
3.	Is the well stand pipe vertically aligned and secure?	V	
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		1
6.	Is the well casing in good condition?		
7.	Is the measuring point on casing well marked?		
8,	Is there standing water in the annular space?		1
9.	Is the stand pipe vented at the base to allow drainage?		
10.	Does the total sounded depth correspond to the original well completion depth?	V	
	Is the access down the well impeded or blocked?		V
	Explain:		

COMMENTS /	RECO	MMEN	IDATI	DNS:			0	· .	
	Lid	øM	has	rusted	anay	and	needs	replacement.	
	- •	ι							

Date: 9/15/21

Inspector: Max Liffiton Inspector Signature Man Matha

Well Identification: UPS-9D

WELL SPECIFICATIONS:

Protective Casing		Above Ground	 Flush Mounted
Well Construction		PVC	 Stainless Steel
Well Diameter		2-Inch	4-Inch
Depth to Ground Water	6.25	FT	_
Well Depth	51.05	FT	

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?		
3.	Is the well stand pipe vertically aligned and secure?	1	
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		~
6.	Is the well casing in good condition?	V	
7.	Is the measuring point on casing well marked?		
8.	Is there standing water in the annular space?		~
9.	Is the stand pipe vented at the base to allow drainage?		
10	. Does the total sounded depth correspond to the original well completion depth?		
11	. Is the access down the well impeded or blocked?		V
	Explain:		

COMMEN Sa	TS / Տ՝Ղ	reco has	MMENDATION overtaken	IS: concrete	pad.	well	19	İn	alow	биатру	avea.
5											

Date: 9/15/21

Inspector: Max Lift.ton Inspector Signature Max Math

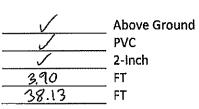
Well Identification: URS-91

WELL SPECIFICATIONS:

Protective Casing		Above Ground	 Flush Mounted
Well Construction		PVC	Stainless Steel
Well Diameter	· · ·	2-Inch	4-Inch
Depth to Ground Water	7.06	FT	
Well Depth	46.10	FT	

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?		V
3.	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?		V
5.	Are soils surrounding the well pad eroded?		
6.	Is the well casing in good condition?	V	
7.	Is the measuring point on casing well marked?	1	
8.	Is there standing water in the annular space?		V
9.	Is the stand pipe vented at the base to allow drainage?		
10.	Does the total sounded depth correspond to the original well completion depth?	V	
11.	is the access down the well impeded or blocked?		V
	Explain:		

COMMENTS/RECOMMENDA Growth + Soil a	TIONS:	base	of	well	COVENS	concrete.


Date: 9/15/21

Inspector: Max Liffiton Inspector Signature Max Mft

Well Identification: 85-5R

WELL SPECIFICATIONS:

Protective Casing Well Construction Well Diameter Depth to Ground Water Well Depth

Flush Mounted
Flush Mounted
Stainless Steel
4-Inch

WELL INTEGRITY

		Yes	No
1.	Well identification clearly marked?		T
2.	Well covers and locks in good condition and secure?		
3.	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		~
6.	Is the well casing in good condition?		
7.	Is the measuring point on casing well marked?		
8.	Is there standing water in the annular space?		V
9.	Is the stand pipe vented at the base to allow drainage?		
10	Does the total sounded depth correspond to the original well completion depth?		
11	Is the access down the well impeded or blocked?		
	Explain:		

COMMENTS / RECOMMENDATIONS:

All good.

Date: 9/15/21

Inspector: Max Liffiton Inspector Signature Max Tiffton

Well Identification: 85-7R

WELL SPECIFICATIONS:

Protective Casing		Above Ground	 Flush Mounted
Well Construction	V.,	PVC	 Stainless Steel
Well Diameter		2-Inch	 4-Inch
Depth to Ground Water	3.30	FT	
Well Depth	27.80	FT	

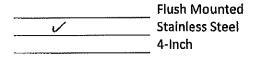
WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		
2. Well covers and locks in good condition and secure?	V	
3. Is the well stand pipe vertically aligned and secure?		
4. Is the concrete pad and surface seal in good condition?		1
5. Are soils surrounding the well pad eroded?		レ
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?	J,	
8. Is there standing water in the annular space?	V	
9. Is the stand pipe vented at the base to allow drainage?		
10. Does the total sounded depth correspond to the original well completion depth?		
11. Is the access down the well impeded or blocked?		V
Explain:		

COMMENTS / RECOMMENDATIONS:

Soil has overtaken concrete pad.

Date: 9/15/21


Inspector: Max Liff.ton Inspector Signature Maxwell With

Well Identification: 88-12C

WELL SPECIFICATIONS:

Protective Casing Well Construction Well Diameter Depth to Ground Water Well Depth

<u> </u>	Above Ground PVC 2-Inch
8.35 31.01	FT FT

WELL INTEGRITY

		Yes	No
1.	Well identification clearly marked?		
2.	Well covers and locks in good condition and secure?		
3.	Is the well stand pipe vertically aligned and secure?		
4.	Is the concrete pad and surface seal in good condition?		
5.	Are soils surrounding the well pad eroded?		
6.	Is the well casing in good condition?		
7.	Is the measuring point on casing well marked?	V	
8,	Is there standing water in the annular space?		1
9.	Is the stand pipe vented at the base to allow drainage?		
10.	. Does the total sounded depth correspond to the original well completion depth?	~	
	. Is the access down the well impeded or blocked?		\bigvee
	Explain:		

COMMENTS / RECOMMENDATIONS: All good.

Date: 9/15/21

Inspector: Max Liffiton Inspector Signature Max MAS

Well Identification: -88-12D

WELL SPECIFICATIONS:

Protective Casing	\checkmark	Above Ground		Flush Mounted
Well Construction		PVC	V	Stainless Steel
Well Diameter	\sim	2-Inch		4-Inch
Depth to Ground Water	8.00	FT		
Well Depth	48.60	FT		

WELL INTEGRITY

		Yes	No
1. Well identification clearly marked?			
2. Well covers and locks in good condition and secure	?		
3. Is the well stand pipe vertically aligned and secure	>		
4. Is the concrete pad and surface seal in good condit	ion?		
5. Are soils surrounding the well pad eroded?			
6. Is the well casing in good condition?			\checkmark
7. Is the measuring point on casing well marked?		V	
8. Is there standing water in the annular space?			1
9. Is the stand pipe vented at the base to allow drain:			<u> </u>
10. Does the total sounded depth correspond to the o	riginal well completion depth?		
11. Is the access down the well impeded or blocked?			
Explain:			

COMMENTS / RECOMMENDATIONS:

In the well casing, the olrainge vent has corroded shut, and there is some rust damage to the well casing.

Date: 9/15/21

Inspector: Max Liff, for Inspector Signature May Hitto

Well Identification: SY-1

WELL SPECIFICATIONS:

Protective Casing		Above Ground	Flush Mounted
Well Construction		PVC	 Stainless Steel
Well Diameter		2-inch	4-Inch
Depth to Ground Water	Not taken	FT	
Well Depth	Not taken	FT	

WELL INTEGRITY

		Yes	No
1. We	Il identification clearly marked?		
2. We	Il covers and locks in good condition and secure?		V
3. ls t	he well stand pipe vertically aligned and secure?		V
4. Is t	he concrete pad and surface seal in good condition?		
5. Are	soils surrounding the well pad eroded?		V
6, 1s t	he well casing in good condition?		
7. lst	ne measuring point on casing well marked?		
8. ls t	here standing water in the annular space?		
9. ls t	he stand pipe vented at the base to allow drainage?		V
10. Do	es the total sounded depth correspond to the original well completion depth?		
11. ls t	he access down the well impeded or blocked?		
	Explain:		

COMMENTS/RECOMMENDATIONS: Bolts securing well have been snapped off. The top of the stand pipe has shifted under the lip of the well casings and the well plug is not able to be removed.

Date: 9/16/21

Inspector: Max Liffiton Inspector Signature Max MMD

Well Identification: URS-14D

WELL SPECIFICATIONS:

Protective Casing		Above Ground	V	Flush Mounted
Well Construction		PVC	V	Stainless Steel
Well Diameter	<u> </u>	2-Inch	····	4-Inch
Depth to Ground Water	6,10	FT		
Well Depth	41.70	FT		

WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		1
2. Well covers and locks in good condition and secure?	V	
3. Is the well stand pipe vertically aligned and secure?		
4. Is the concrete pad and surface seal in good condition?		\checkmark
5. Are soils surrounding the well pad eroded?		V
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?		
8. Is there standing water in the annular space?		\vee
9. Is the stand pipe vented at the base to allow drainage?		V
10. Does the total sounded depth correspond to the original well completion depth?		
11. Is the access down the well impeded or blocked?		V
Explain:		

COMMENTS / RECOMMENDATIONS:

No visible concrete pad.

Date: 9/16/21

Inspector: Max Liffiton Inspector Signature Max With

Well Identification: URS-141

WELL SPECIFICATIONS:

Protective Casing		Above Ground	Flush Mounted
Well Construction		PVC	Stainless Steel
Well Diameter		2-Inch	 4-Inch
Depth to Ground Water	0.25	FT	
Well Depth	31.20	FT	

WELL INTEGRITY

	Yes	No
1. Well identification clearly marked?		[
2. Well covers and locks in good condition and secure?		
3. Is the well stand pipe vertically aligned and secure?	V	
4. Is the concrete pad and surface seal in good condition?		\checkmark
5. Are soils surrounding the well pad eroded?		V
6. Is the well casing in good condition?		
7. Is the measuring point on casing well marked?		
8. Is there standing water in the annular space?		
9. Is the stand pipe vented at the base to allow drainage?		
10. Does the total sounded depth correspond to the original well completion depth?	~	
11. Is the access down the well impeded or blocked?		V
Explain:		

COMMENTS/RECOMMENDATIONS: Standing water, no visible concrete pad.

ATTACHMENT F

Pre-Treatment Flows

Pendleton Site Flow Summary January 2020 - August 2021

			Monthly		
	Month	Year	Flow (gal)	Avg gal/day	Days/month
	January	2020	4,025	130	31
	February	2020	3,276	113	29
	March	2020	3,962	128	31
	April	2020	3,639	121	30
	May	2020	4,168	134	31
	June	2020	3,765	126	30
	July	2020	2,922	94	31
	August	2020	2,313	75	31
	September	2020	1,615	54	
	October	2020	2,121	68	31
Current	November	2020	2,214	74	30
Report	December*	2020	-5,909	-191	31
	January*	2021	-16,516	-533	31
	February	2021	7,972	285	28
	March	2021	22,951	740	31
	April	2021	3,869	129	30
	Мау	2021	7,548	243	31
	June	2021	3,502	117	30
	July	2021	5,271	170	31
	August	2021	2,563	83	31
lotal					
Current					
Report			35,586	106	335

*Sump reading is not accurate due to flow meter being submerged during the flood event. Instrumentation sub recalbrated during start up.

Pendleton Site October 2020 Flows

1" Discharge Flow Meter	3,692	Gallons
1/2" Vault Sump Flow Meter	<u>1,571</u>	<u>Gallons</u>
Actual Treated Leachate	2,121	Gallons

Date	<u>Time</u>	<u>1" Discharge Flow Meter</u>	1/2" Vault Sump Flow Meter
10/1/2020	4:05:49	99	22
10/2/2020	4:04:54	142	23
10/3/2020	4:05:42	91	0
10/4/2020	4:04:54	50	0
10/5/2020	4:06:54	46	0
10/6/2020	4:04:53	45	1
10/7/2020	4:04:55	95	0
10/8/2020	4:04:48	47	0
10/9/2020	4:04:49	50	3
10/10/2020	4:05:02	47	1
10/11/2020	4:04:54	45	2
10/12/2020	4:04:54	46	3
10/13/2020	4:05:53	49	2
10/14/2020	4:04:57	46	1
10/15/2020	4:05:02	46	1
10/16/2020	4:04:55	47	0
10/17/2020	4:04:54	45	0
10/18/2020	4:06:53	47	0
10/19/2020	4:04:54	48	0
10/20/2020	4:04:49	189	71
10/21/2020	4:04:51	145	64
10/22/2020	4:04:54	193	105
10/23/2020	4:04:53	196	97
10/24/2020	4:04:57	394	317
10/25/2020	4:13:57	385	265
10/26/2020	4:04:54	76	22
10/27/2020	4:05:45	48	19
10/28/2020	4:04:54	192	85
10/29/2020	4:05:48	201	118
10/30/2020	4:04:54	245	161
10/31/2020	4:05:45	<u>297</u>	<u>188</u>
Total Discharge for October 2020		3,692	
Groundwater through the sump			1,571

Pendleton Site November 2021 Flows

1" Discharge Flow Meter	7,978	Gallons
1/2" Vault Sump Flow Meter	<u>5,764</u>	<u>Gallons</u>
Actual Treated Leachate	2,214	Gallons

Date	<u>Time</u>	1" Discharge Flow Meter	1/2" Vault Sump Flow Meter
11/1/2020	4:04:56	254	146
11/2/2020	4:04:59	206	125
11/3/2020	4:04:54	203	118
11/4/2020	4:04:55	201	104
11/5/2020	4:05:02	149	87
11/6/2020	4:05:45	187	60
11/7/2020	4:04:53	95	29
11/8/2020	4:04:53	48	2
11/9/2020	4:04:53	46	1
11/10/2020	4:05:45	46	3
11/11/2020	4:05:45	0	0
11/12/2020	4:04:53	144	45
11/13/2020	4:04:54	201	112
11/14/2020	4:04:54	305	252
11/15/2020	4:04:56	208	143
11/16/2020	4:04:53	92	29
11/17/2020	4:06:55	408	319
11/18/2020	4:05:41	203	167
11/19/2020	4:04:54	47	0
11/20/2020	4:04:53	147	53
11/21/2020	4:04:55	145	92
11/22/2020	4:04:48	452	338
11/23/2020	4:04:48	465	415
11/24/2020	4:04:55	506	396
11/25/2020	4:05:46	503	427
11/26/2020	4:04:48	500	453
11/27/2020	4:04:56	583	478
11/28/2020	4:04:54	543	439
11/29/2020	4:05:00	491	424
11/30/2020	4:04:59	<u>600</u>	507
Total Discharge for November 2020		7,978	
Groundwater through the sump			5,764

Pendleton Site December 2020 Flows

Olin/PRP Group Pendleton Site

1" Discharge Flow Meter	7,569	Gallons
1/2" Vault Sump Flow Meter	<u>13,478</u>	<u>Gallons</u>
Actual Treated Leachate	-5,909	Gallons

Date	Time	1" Discharge Flow Meter	1/2" Vault Sump Flow Meter
12/1/2020	4:05:47	876	765
12/2/2020	4:05:01	769	688
12/3/2020	4:06:46	707	608
12/5/2020	4:04:48	1315	1103
12/6/2020	4:32:27	624	515
12/7/2020	4:13:31	582	483
12/8/2020	4:06:51	601	487
12/9/2020	4:58:41	629	505
12/10/2020	4:19:37	673	557
12/11/2020	4:13:38	646	525
12/12/2020	4:04:55	97	384
12/13/2020	4:37:24	50	487
12/14/2020	4:04:55	0	742
12/15/2020	4:13:11	0	403
12/16/2020	4:37:14	0	284
12/17/2020	2:06:49	0	435
12/18/2020	4:11:09	0	341
12/19/2020	4:13:36	0	304
12/20/2020	4:18:43	0	308
12/21/2020	4:10:57	0	369
12/22/2020	4:11:04	0	324
12/25/2020	6:20:55	0	1313
12/26/2020	4:04:54	0	371
12/27/2020	4:29:40	0	338
12/28/2020	4:52:41	0	345
12/29/2020	4:25:38	0	107
12/30/2020	4:24:31	0	160
12/31/2020	4:48:17	<u>0</u>	227
Total Discharge for December 2020		7,569	
Groundwater through the sump			13,478

Groundwater through the sump

* sump reading is not accurate due to flow meter being submerged during the flood event.

Intrumentation sub will recalibrate during start up.

Pendleton Site January 2021 Flows

Olin/PRP Group Pendleton Site

1" Discharge Flow Meter	0	Gallons
1/2" Vault Sump Flow Meter	<u>16,516</u>	<u>Gallons*</u>
Actual Treated Leachate	-16,516	Gallons

Date	<u>Time</u>	<u>1" Discharge Flow Meter</u>	1/2" Vault Sump Flow Meter
1/1/2021	4:13:41	0	161
1/2/2021	5:11:08	0	288
1/3/2021	4:14:42	0	145
1/4/2021	4:13:41	0	143
1/5/2021	4:50:15	0	1320
1/6/2021	4:24:48	0	1074
1/7/2021	4:10:57	0	379
1/8/2021	4:45:02	0	796
1/9/2021	4:06:46	0	537
1/10/2021	4:18:42	0	539
1/11/2021	4:50:43	0	658
1/12/2021	4:43:59	0	532
1/13/2021	4:17:12	0	127
1/14/2021	0:31:35	0	934
1/15/2021	4:31:05	0	524
1/16/2021	4:04:48	0	579
1/17/2021	4:11:08	0	292
1/18/2021	6:13:37	0	852
1/19/2021	4:13:20	0	541
1/20/2021	4:34:53	0	540
1/21/2021	4:16:57	0	494
1/23/2021	4:19:41	0	1060
1/24/2021	4:42:42	0	506
1/25/2021	4:49:11	0	484
1/26/2021	4:52:25	0	496
1/27/2021	4:05:39	0	121
1/28/2021	1:30:09	0	885
1/29/2021	4:05:45	0	503
1/30/2021	4:19:00	0	499
1/31/2021	4:06:58	<u>0</u>	<u>507</u>
Total Discharge for January 2021		0	

Groundwater through the sump

16,516

* sump reading is not accurate due to flow meter being submerged during the flood event. Intrumentation sub will recalibrate during start up.

Pendleton Site February 2021 Flows

1" Discharge Flow Meter	23,951	Gallons
1/2" Sump Flow Meter	<u>15,979</u>	<u>Gallons</u>
Actual Treated Leachate	7,972	Gallons

Date	<u>Time</u>	<u>1" Discharge Flow Meter</u>	1/2" Vault Sump Flow Meter
2/1/2021	4:31:14	0	512
2/2/2021	4:27:56	0	481
2/3/2021	4:04:49	0	500
2/4/2021	5:11:00	0	260
2/5/2021	2:08:30	0	739
2/6/2021	4:04:54	0	525
2/7/2021	4:08:23	0	519
2/8/2021	4:21:28	0	512
2/9/2021	4:13:26	0	523
2/10/2021	5:09:15	0	534
2/11/2021	4:04:54	0	505
2/12/2021	4:31:31	0	508
2/13/2021	4:04:53	0	519
2/14/2021	4:32:22	0	504
2/15/2021	4:57:27	0	253
2/16/2021	6:05:44	0	799
2/17/2021	4:18:50	1998	374
2/18/2021	3:48:01	1997	664
2/19/2021	4:31:12	1991	235
2/20/2021	6:06:44	2058	755
2/21/2021	5:05:01	1968	520
2/22/2021	5:34:09	2100	523
2/23/2021	4:06:51	1992	598
2/24/2021	4:04:48	1072	336
2/25/2021	7:11:10	2841	1469
2/26/2021	4:16:06	1961	673
2/27/2021	4:30:30	1986	784
2/28/2021	4:14:12	<u>1987</u>	<u>855</u>
Total Discharge for February 2021		23,951	
Groundwater through the sump			15,979

Pendleton Site March 2021 Flows

Olin/PRP Group Pendleton Site

1" Discharge Flow Meter	40,196	Gallons
1/2" Vault Sump Flow Meter	<u>17,245</u>	Gallons
Actual Treated Leachate	22,951	Gallons

Date	<u>Time</u>	<u>1" Discharge Flow Meter</u>	1/2" Vault Sump Flow Meter
3/1/2021	4:41:57	485	191
3/2/2021	10:10:53	1509	1262
3/3/2021	4:05:46	1992	588
3/4/2021	4:21:16	633	381
3/5/2021	0:53:52	1998	581
3/6/2021	0:53:54	1989	532
3/7/2021	0:53:56	1979	504
3/8/2021	0:53:53	2045	492
3/9/2021	0:53:50	1921	481
3/10/2021	0:53:52	1952	505
3/11/2021	0:53:53	1979	515
3/12/2021	0:53:50	1933	517
3/13/2021	0:53:55	1996	506
3/14/2021	0:53:51	1988	482
3/15/2021	1:53 : 42	1994	490
3/16/2021	0:53:51	1985	513
3/17/2021	0:53:53	1315	505
3/18/2021	0:53:52	0	493
3/19/2021	0:53:51	75	484
3/20/2021	0:53:55	0	488
3/21/2021	0:53:53	0	491
3/22/2021	0:53:54	0	499
3/23/2021	0:53:54	1952	501
3/24/2021	0:53:49	2012	493
3/25/2021	0:53:51	1292	486
3/26/2021	0:53:53	732	546
3/27/2021	0:53:51	1009	839
3/28/2021	0:53:54	850	712
3/29/2021	0:53:51	981	854
3/30/2021	0:53:50	835	698
3/31/2021	0:53:48	<u>765</u>	<u>616</u>
Total Discharge for March 2021		40,196	
Groundwater through the sump			17,245

Pendleton Site April 2021 Flows

1" Discharge Flow Meter	22,717	Gallons
1/2" Vault Sump Flow Meter	<u>18,848</u>	<u>Gallons</u>
Actual Treated Leachate	3,869	Gallons

<u>Date</u>	<u>Time</u>	<u>1" Discharge Flow Meter</u>	1/2" Vault Sump Flow Meter
4/1/2021	0:53:51	718	599
4/2/2021	0:53:53	724	588
4/3/2021	0:53:55	683	585
4/4/2021	0:53:51	728	571
4/5/2021	0:53:49	672	568
4/6/2021	0:53:48	731	566
4/7/2021	0:53:51	690	558
4/8/2021	0:53:50	664	552
4/9/2021	0:53:50	683	550
4/10/2021	0:53:53	676	555
4/11/2021	0:53:51	781	615
4/12/2021	0:53:49	595	775
4/13/2021	0:53:52	0	725
4/14/2021	0:53:54	1841	665
4/15/2021	0:55:15	824	645
4/16/2021	0:53:51	834	676
4/17/2021	0:53:51	847	707
4/18/2021	0:53:53	777	679
4/19/2021	0:53:54	819	648
4/20/2021	0:53:51	729	632
4/21/2021	0:53:54	787	636
4/22/2021	0:53:55	854	738
4/23/2021	0:53:52	843	701
4/24/2021	0:53:54	776	656
4/25/2021	0:53:51	771	634
4/26/2021	0:53:49	726	618
4/27/2021	0:53:54	774	600
4/28/2021	0:53:53	728	593
4/29/2021	0:53:48	722	591
4/30/2021	0:53:53	<u>720</u>	<u>622</u>
Total Discharge for April 2021		22,717	
Groundwater through the sump			18,848

Pendleton Site May 2021 Flows

1" Discharge Flow Meter	22,987	Gallons
1/2" Vault Sump Flow Meter	<u>15,439</u>	<u>Gallons</u>
Actual Treated Leachate	7,548	Gallons

Date	<u>Time</u>	<u>1" Discharge Flow Meter</u>	1/2" Vault Sump Flow Meter
5/1/2021	0:53:52	768	634
5/2/2021	0:53:53	731	618
5/3/2021	0:53:55	723	600
5/4/2021	0:53:51	773	604
5/5/2021	0:53:51	721	596
5/6/2021	0:54:10	727	604
5/7/2021	0:54:10	727	621
5/8/2021	0:54:13	1040	884
5/9/2021	0:54:08	872	799
5/10/2021	0:54:13	868	728
5/11/2021	0:54:09	817	685
5/12/2021	0:54:14	771	662
5/13/2021	0:54:14	797	477
5/14/2021	0:54:10	1055	0
5/15/2021	0:54:11	865	0
5/16/2021	0:54:13	764	0
5/17/2021	0:54:13	782	0
5/18/2021	0:54:11	731	294
5/19/2021	0:54:13	729	586
5/20/2021	0:54:17	725	576
5/21/2021	0:54:12	687	566
5/22/2021	0:54:11	730	561
5/23/2021	0:54:10	673	560
5/24/2021	0:54:10	695	538
5/25/2021	0:54:13	666	518
5/26/2021	0:54:13	644	493
5/27/2021	0:54:10	593	470
5/28/2021	0:54:10	587	452
5/29/2021	0:54:17	585	444
5/30/2021	0:54:12	596	442
5/31/2021	0:54:10	545	<u>427</u>
Total Discharge for May 2021		22,987	
Groundwater through the sump			15,439

Pendleton Site June 2021 Flows

1" Discharge Flow Meter	10,154	Gallons
1/2" Vault Sump Flow Meter	<u>6,652</u>	<u>Gallons</u>
Actual Treated Leachate	3,502	Gallons

Date	<u>Time</u>	1" Discharge Flow Meter	1/2" Vault Sump Flow Meter
6/1/2021	0:54:12	529	404
6/2/2021	0:54:10	488	384
6/3/2021	0:54:13	526	380
6/4/2021	0:54:11	529	372
6/5/2021	0:54:11	478	353
6/6/2021	0:54:10	480	367
6/7/2021	0:54:15	510	406
6/8/2021	0:54:10	478	343
6/9/2021	0:54:12	475	358
6/10/2021	0:53:52	479	340
6/11/2021	0:53:50	431	336
6/12/2021	0:53:55	433	314
6/13/2021	0:53:50	430	300
6/14/2021	0:53:54	453	355
6/15/2021	0:53:53	291	191
6/16/2021	0:53:50	290	179
6/17/2021	0:53:53	193	57
6/18/2021	0:53:48	188	35
6/19/2021	0:53:53	189	82
6/20/2021	0:53:55	243	90
6/21/2021	0:53:50	239	109
6/22/2021	0:53:50	197	110
6/23/2021	0:53:52	244	104
6/24/2021	0:53:50	196	89
6/25/2021	0:53:54	194	97
6/26/2021	0:53:53	242	69
6/27/2021	0:53:52	301	226
6/28/2021	0:53:50	47	13
6/29/2021	0:53:48	188	97
6/30/2021	0:53:52	<u>193</u>	<u>92</u>
Total Discharge for June 2021		10,154	
Groundwater throught the sump			6,652

Pendleton Site July 2021 Flows

1" Discharge Flow Meter	23,063	Gallons	
1/2" Vault Sump Flow Meter	<u>17,792</u>	<u>Gallons</u>	
Actual Treated Leachate	5,271	Gallons	
Date	<u>Time</u>	<u>1" Discharge Flow Meter</u>	<u>1/2" Vault Sump Flow Meter</u>
7/1/2021	0:53:50	190	80
7/2/2021	0:53:51	143	65
7/3/2021	0:53:52	149	65
7/4/2021	0:53:59	143	23
7/5/2021	0:53:50	145	4
7/6/2021	0:53:53	241	173
7/7/2021	0:53:56	46	0
7/8/2021	0:53:55	204	127
7/9/2021	0:53:51	1131	956
7/10/2021	0:53:52	790	641
7/11/2021	0:53:51	627	486
7/12/2021	0:53:50	625	469
7/13/2021	0:53:52	582	449
7/14/2021	0:53:54	783	638
7/15/2021	0:53:51	1199	1012
7/16/2021	0:53:50	685	553
7/17/2021	0:53:54	2039	1441
7/18/2021	0:53:52	2135	1879
7/19/2021	0:53:52	1720	1141
7/20/2021	0:53:49	878	668
7/21/2021	0:53:50	1120	896
7/22/2021	0:53:55	1225	1022
7/23/2021	0:53:52	987	843
7/24/2021	0:53:53	787	628
7/25/2021	0:53:54	646	522
7/26/2021	0:53:59	599	475
7/27/2021	0:53:53	694	510
7/28/2021	0:53:49	647	532
7/29/2021	0:53:54	542	390
7/30/2021	0:53:55	540	393
7/31/2021	0:53:52	<u>821</u>	<u>711</u>
Total Discharge for July 2021		23,063	
Groundwater through the sump			17,792

Pendleton Site August 2021 Flows

1" Discharge Flow Meter <u>1/2" Sump Flow Meter</u> Actual Treated Leachate	14,033 <u>11,470</u> 2,563	Gallons <u>Gallons</u> Gallons	
Date	<u>Time</u>	<u>1" Discharge Flow Meter</u>	1/2" Sump Flow Meter
8/1/2021	0:53:51	444	314
8/2/2021	0:53:54	590	437
8/3/2021	0:53:55	644	514
8/4/2021	0:53:50	646	508
8/5/2021	0:53:51	640	493
8/6/2021	0:53:49	703	566
8/7/2021	0:53:53	662	539
8/8/2021	0:53:49	433	334
8/9/2021	0:53:54	597	467
8/10/2021	0:53:50	809	667
8/11/2021	0:53:50	583	457
8/12/2021	0:53:50	536	387
8/13/2021	0:53:53	616	506
8/14/2021	0:53:54	628	496
8/15/2021	0:53:51	392	285
8/16/2021	0:53:54	776	621
8/17/2021	0:53:48		390
8/18/2021	0:53:50		333
8/19/2021	0:53:53		525
8/20/2021	0:53:54		432
8/21/2021	0:53:52		398
8/22/2021	0:53:53		461
8/23/2021	0:53:52		369
8/24/2021	1:03:35	190	86
8/25/2021	0:53:49	283	162
8/26/2021	0:53:54		48
8/27/2021	0:53:52	0	177
8/28/2021	0:53:50		121
8/29/2021	0:53:50		66
8/30/2021	0:53:48		157
8/31/2021	0:53:49		<u>154</u>
Total Discharge for August 2021		14,033	
Groundwater through the sump			11,470

ATTACHMENT G

Industrial Wastewater Discharge Permit

WRIGHT H. ELLIS Chairman

MARK C. CROCKER Vice-Chairman

THOMAS W. BLODGETT, P.E. Administrative Director

AARON T. EARSING Chief Operator

May 21, 2019

Pendleton Site PRP Group c/o Olin Corp. 3855 Ocoee Street, Suite 200 Cleveland, TN 37312

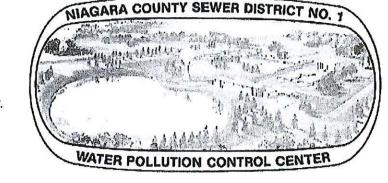
clizaboth. lesold @ niagara county. com

Re: Corrective Action Required and Assessment of Penalty

Gentlemen:

The sampling requirements in Part I and the Sampling Measurement and Analytical Guidelines sections of the Industrial Waste Permit issued to Pendleton Site PRP Group were not followed during the first semi-annual monitoring period of 2019. Improper sample collection and documentation has been ongoing since 2017.

Three grab samples were collected for EPA 624 and Cyanide instead of the required 4 grab samples. Additionally, the chain of custody states that metals, phenol, and TSS samples were collected as "Comped in Field", but there is a single sample collection time for these analytes. Composite samples need to be collected for the duration of the 24 hour sampling period, with the chain of custody and submitted self-monitoring report clearly defining the sampling period and collection times for all samples collected.


The 2019 semiannual self-monitoring report has errors. The permit limits for EPA 624 analytes are incorrectly reported in ug/L and must be reported in mg/L. According to the submitted Analytical Summary, MQLs are used for detection limits for all analytes, but the laboratory report does not contain any MQL data. The reported result for mercury is also incorrect. Please make corrections to this report and resubmit the affected pages within 15 days of the date on this letter as these are repeat errors.

Pendleton Site PRP Group's penalty for repeated incorrect sampling is two hundred fifty dollars (\$250). Please submit \$250 to Niagara County Sewer District #1 within thirty (30) days of the date on this letter, to avoid additional legal action by the District. Additionally, please repeat the first semiannual sampling event for 2019, collecting all samples as required in District Permit No. 18-11, within 30 days of the date on this letter. Low Level Mercury was collected properly and does not need to be resampled. Please assure all future sampling events are performed according to the required protocol to prevent an increased level of enforcement by NCSD #1.

RECEIVE TI COMMON

MAY 23 2019

ENVRONM 7346 Liberty Drive Niagara Falls, NY 14304-3762 Phone: 716-693-0001 Fax: 716-693-8759

Pendleton Site PRP Group c/o Olin Corp. May 21, 2019 Page 2

If there are any questions on the above, please feel free to contact Elizabeth Lesold, Sanitary Chemist, at this office.

Best regards,

NIAGARA COUNTY SEWER DISTRICT#1

Ċ uper Aaron T. Earsing

Aaron I. Earsing Chief Operator

NIAGARA COUNTY SEWER DISTRICT #1

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES

- 1. Prior to implementing the self-monitoring sampling and analyses, the Industrial User must submit the following information to the District.
 - a. The name(s) and address(cs) of the laboratory or laboratories proposed to perform each of the chemical analyses.
 - A description of the equipment and test methods proposed for the chemical analyses for each parameter,
 - A list of the lower level of detectability expected for each parameter.
 - d. A description of the overall recovery efficiency of the prepared sample, where applicable.
 - A description of the quality control procedures used by the laboratory or laboratories to ensure reliable test results.
 - f. A description of the sample collection point and sample collection procedures.
 - g. A description of the compositing technique and equipment.
 - h. A description of the sample preservation methods used for each parameter,
- 2. At the discretion of the District, Permittee may be required to notify the Niagara County Sewer District #1 Water Pollution Control Center before commencement of any sampling or flow monitoring. When directed by the District, the Permittee or Designee shall notify Niagara County Sewer District #1 Water Pollution Control Center, in writing, at least seventy-two (72) hours in advance. The District will then give a twenty-four (24) hour verbal notification to the firm or designee of whether split sampling will be initiated.
- 3. Before sampling is done, the sample points must be approved by the District.
- 4. All discharge lines from one (1) building, or all discharge lines from only one (1) single process must be sampled at the same time.
- Sampling record must be used and submitted with monitoring reports. The sampling report shall contain the following minimum information:
 - a. Date of each sample day.
 - b. Exact location of sampling points <u>attach drawing for reference.</u>
 - c. If done manually, time of each grab sample with sampler's initials each time.
 - d. Type of auto-sampler used. Size and type of tubing and sampling interval.
 - Record all physical observation (sight, smell etc.) of the discharge at start-up, during inspections and changing samples.
 - f. Note weather conditions.
 - g. Signature of immediate sampling supervisor at the bottom of page.
- 6. If an auto-sampler is used, new tubing must be at least ¼ I.D. If visibly contaminated after sampling, it must be cleaned with detergent or methanol and deionized water each day. Proper refrigeration of the sample must be maintained during entire sampling period, when necessary. The intake hose velocity must be at least 2.0 f.p.s. with a maximum lift of twenty (20) feet.
- 7. All sampling shall be taken at the highest velocity, greatest turbulence and center of flow.
- All sampling must be done on <u>normal</u> work days. If there is a process discharge after normal working hours, sampling must continue until no further discharge.
- 9. "COMPOSITE SAMPLE" "Composite" shall mean a combination of individual (or continuously taken) samples obtained at regular intervals over the entire discharge day. The volume of each sample shall be proportional to the discharge flow rate, when possible. For a continuous discharge, a minimum of forty-eight (48) individual grab samples (at half hour intervals shall be collected and combined to constitute a twenty-four (24) hour composite sample. For intermittent discharges of less than four hours duration, but greater than one hour, grab samples shall be taken at a minimum of fifteen (15) minute intervals.

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES (cont'd.)

Composite samples for purgeable halocarbons (Method 601/8010), purgeable aromatics (Method 602/8020), aerolein/aerylonitrile (Method 603), volatile organics (Method 624/8240), or cyanide shall be lab composited from grab samples taken at regular intervals over the entire discharge day utilizing the appropriate special sample containers, preservatives and collection techniques. The number of grabs collected is dependent on the length of the sampling period, and shall be determined the following:

For a discharge period of one hour or less, a single grab sample may be collected for analysis of the above parameters.

For a discharge period between one and 24 hours, a minimum of four (4) grabs will be taken at regular intervals and lab composited for analysis of the above parameters.

Proper sample collection containers and techniques must be used.

"SPLIT SAMPLE" - must be done on site with both parties present before preservatives are added.

"DAILY" - each operating day

"DAILY MAXIMUM" - shall mean the highest allowable discharge of a pollutant and/or flow measured during any twenty-four (24) hour sampling period. For pollutants with limitations expressed in units of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurements, the daily discharge measurement of the pollutant over the day.

"GRAB" - shall mean an individual sample which is taken from a wastestream on a one (1) time basis with no regard to the flow in the wastestream and without consideration of time.

"MONTHLY" on day each month (the same day each month) and a normal operating day (i.e. the 2nd Tuesday of each month).

"MONTILLY AVERAGE" - discharge limitation means the highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month, divided by the number of daily discharges measured during that month.

"WEEKLY" - every seventh day (the same day each week) and a normal operating day.

- Total water consumption shall be recorded for each day's composite using the water meters. Water consumption method must be explained in report.
- 11. All discharges shall be flow-monitored whenever possible. If flow monitoring cannot be done, flow determination should be a best practical engineering estimate without being economically burdensome to the firm involved. Results and procedure used to determine flow must be included with the analysis report.

12. Sample Collection Techniques for Single Discharge Lines

On single discharge lines (all regulated wastes discharge through one outlet), sample collection for the required parameters will be collected according to the following:

a. The following parameters should only be analyzed on manually taken grab samples:

pH Temperature Chlorine Residual Dissolved Oxygen Feeal Coliforms Oil and Grease

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES (contd.)

Sample Collection Techniques for Single Discharge Lines (cont'd.)

b. The following parameters should only be analyzed on composite samples made from manually collected grab samples:

> Purgeable Halocarbons (EPA 601) Purgeable Aromatics (EPA 602) Acrolein/Acrylonitrile (EPA 603) Purgeables (EPA 624) Cyanide

For a discharge period of one hour or less, a single grab sample may be collected for analysis of the above parameters.

For a discharge period between one and 24 hours, a minimum of four (4) grabs will be taken at regular intervals and lab composited for analysis of the above parameters.

Proper sample collection containers and techniques must be used

- The following parameters should be analyzed on an automatically collected composite sample or, if an auto sampler is unavailable, a manually collected composite sample:
 - Metals Phenol-4AAP BOD Total Suspended Solids Total Phosphorus TKN/Animonia Base/Neutral Acids (EPA 625) EPA Methods 604-614

(For a continuous discharge, a minimum of forty-eight (48) individual grab samples (at half-hour intervals) shall be collected and combined to constitute a twenty-four (24) hour composite sample. For intermittent discharges of less than four (4) hours duration, grab samples shall be taken at a minimum of fifteen (15) minute intervals.)

13. Sample Collection Techniques for Multiple Discharge Lines

For multiple discharge lines (all regulated wastes discharge through more than one outlet), sample collection for the required parameters will be collected according to the following:

- a. The following parameters must be analyzed separately from each discharge line's individual grab samples:
 - pH Temperature Chlorine Residual Dissolved Oxygen Fecal Coliforms Oil and Grease
- b. For the following parameters, a composite made from manually collected grab samples must be used. A separate composite must be made from each discharge line. The composites from the different discharge lines cannot be combined for analysis.

Purgeable Halocarbous (EPA 601) Purgeable Aromatics (EPA 602) Aerolein/Aerylonitrile (EPA 603) Purgeables (EPA 624) Cyanide

For a discharge period of one hour or less, a single grab sample may be collected for analysis of the above parameters.

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES (confd.)

Sample Collection Techniques for Multiple Discharge Lines (cont'd.)

For a discharge period between one hour and 24 hours, a minimum of four (4) grabs will be taken at regular intervals and lab composed for analysis of the above parameters.

Proper sample collection containers and techniques must be used.

- For the following parameters, composites from each discharge line may be combined proportional to their flow only if physical flow measurement can be done.
 - Metals Phenol-4AAP BOD Total Suspended Solids Total Phosphorus TKN/Ammonia Base/Neutral Acids (EPA 625) EPA Methods 604-613

(For a continuous discharge, a minimum of forty-eight (48) individual grab samples (at half-hour intervals) shall be collected from each discharge line and combined to constitute a twenty-four (24) hour composite sample. For intermittent discharges of less than four (4) hours duration, grab samples shall be taken at a minimum of fifteen (15) minute intervals.)

- 14. A chain of custody log sheet is required to be used for all sampling and analysis of each sample and attached to the report.
- The handling, storage preservation and analytical procedures for each parameter shall follow Environmental Protection Agency Guidelines published in the Federal Register, pursuant to 40 CFR 136, dated October 26, 1984, or as subsequently revised.
- 16. The monitoring results report, sampling record(s), and chain of custody log sheet must be sent by the industry to the District and not by the consulting firm.
- 17. If any exemptions or changes have to be made due to unique situations, the District must be notified immediately for approval. When approved, a written explanation of the change must accompany the analysis sheet.
- 18. Any split samples that indicate a discrepancy of greater than 20% may be grounds for requiring resampling and analyses.
- 19. "QUALITY CONTROL" All additional analyses which were run along with self-monitoring samples as a quality control measure, such as field blanks, duplicates or matrix spikes, etc., must be included in the self-monitoring report submitted to the District. Applicable quality control is mandatory in cases where the industrial user is conducting additional self-monitoring as a result of non-compliance.
- All applicable analyses of NYSDOII certifiable parameters conducted pursuant to this permit shall be performed by a laboratory certified for said parameters by the New York State Department of Health.

PART IV - STANDARD CONDITIONS (cont'd.)

5. <u>DILUTION</u>

No industrial User shall increase the use of potable or process water or, in any way, attempt to dilute a discharge as a partial or complete substitute for adequate treatment to achieve compliance with the limitations contained in this permit.

6. PROPER DISPOSAL OF PRETREATMENT SLUDGES AND SPENT CHEMICALS

The disposal of sludges and spent chemicals generated shall be done in a manner such as to prevent the pollutants from such material from entering the NCSD #1 sewer system. Said disposal shall also conform to all applicable State/Federal regulations.

7. <u>REVOCATION OF PERMIT</u>

The permit issued to the Industrial User by the District may be revoked when after inspection, monitoring or analysis, it is determined that the discharge of wastewater to the sanitary sewer is in violation of Federal, State, or local laws, ordinances, or regulations. Additionally, falsification or intentional misrepresentation of data or statements pertaining to the permit application or any other required reporting form, shall be cause for permit revocation, revocation of sewer discharges privileges, and/or imposition of criminal penalties.

8. LIMITATION ON PERMIT TRANSFER

Wastewater discharge permits are issued to a specific user for a specific operation and are not assignable to another user or transferrable to any other location without the prior written approval of the District. Sale of a facility by a User shall obligate the purchaser to seek prior written approval of the District for continued discharge to the sewerage system.

9. PERMIT AVAILABILITY

The original signed permit must be available upon request at all times for review at the Industrial User's address stated on the first page of this permit.

10. MODIFICATION OR REVISION OF THE PERMIT

- a. The terms and conditions of this permit may be subject to modification by the District at any time as limitations or requirements, as identified in the District Sewer Use Law, are modified or other just cause exists.
- b. This permit may also be modified to incorporate special conditions resulting from the issuance of a special order by NYSDEC or EPA.
- c. The terms and conditions may be modified as a result of EPA promulgating a new federal pretreatment standard. If a pretreatment standard or prohibition (including Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 807 (b) of the Act for a pollutant which is present, the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.
- d. The torms and conditions of this permit shall remain in effect until the permit is terminated or replaced by a subsequent permit.

11. DUTY TO REAPPLY

Nincty (90) days prior to expiration, the User shall reapply for reissuance of the permit. Application forms are available from the District upon request.

12. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

PART IV - STANDARD CONDITIONS (cont'd).

13. ENFORCEMENT AND PENALTIES

Any violation of Section 2 or 3 of the Niagara County Sewer Use Law (adopted January 18, 1994) is declared a violation except as otherwise provided by law. Any violation of Section 4, 5 or 6 of the Niagara County Sewer Use Law is thereby a misdemeanor except as otherwise provided by law. A User who is found to have violated any provision of the Niagara County Sewer Use Law (or permits and orders issued thereunder) and/or applicable pretreatment standards and requirements, shall be subject to applicable civil and eriminal penalties including but not limited to fines not to exceed five thousand dollars (\$5,000) per violation per day for each day on which non-compliance shall occur or continue.

14. CLARIFICATION OF TERMS: SAMPLING/REPORTING INTERVALS

Monthly-unless otherwise stated, monthly means each calendar month.

Quarterly-unless otherwise stated, quarterly means occurring in each quarter of a calendar year.

Each quarter of a calendar year is defined as follows:

1st quarter-January through March; 2nd quarter-April through June; 3rd quarter-July through September; 4th quarter-October through December;

Semi-annual-unless otherwise stated, semi-annual means twice per calendar year.

Anunal or Annually-unless otherwise stated, annual and/or annually means each calendar year.

15. CLARIFICATION OF 24-HOUR COMPOSITING PERIOD

24 hour compositing period (24C period)- The collection of a 24-hour composite does not necessarily have to begin at 12 midnight. It may be collected over any 24-hour interval over which a true and representative sample can be collected, in conjunction with the requirements of this permit. For example, the compositing period may begin at 10:00 AM on Tuesday and end on 10:00 AM Wednesday. Please see the "SAMPLING MEASUREMENT ANDANALYTICAL GUIDELINES" section of this permit for a definition of a composite and additional information.

PART V - SPECIFIC CONDITIONS NONE

PART III - REPORTING REQUIREMENTS (cont'd)

6. All self-monitoring reports prepared shall be submitted to:

Chief Operator Niagara County Sewer District #1 Water Pollution Control Center 7346 Liberty Drive Niagara Falls, New York 14304

- Signatory Requirements All reports required by this permit shall be signed by an authorized representative of the Industrial User.
- 8. If sampling performed by the Industrial User indicates a violation, the Industrial User is required to repeat the sampling and analysis and submit the results to the District within thirty (30) days after becoming aware of the violation.

Additionally, applicable quality control is mandatory in cases where the Industrial User is conducting additional self-monitoring as a result of non-compliance. (See Sampling Measurement and Analytical Guidelines, Item #19 "Quality Control.")

9. Toxic Organic Management Plan - For Industrial Users who are required to monitor for Total Toxic Organics (TTO), and who are implementing a District-Approved, Toxic Organic Management Plan in lien of this monitoring, the following certification shall be included with each self-monitoring report:

> "Based on my inquiry of the person or persons directly responsible for managing compliance with the permit limitation for total toxic organics, I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewaters has occurred since filing of the last discharge monitoring report. I further certify that this facility is implementing the toxic organic management plan submitted to the control authority."

PART IV - STANDARD CONDITIONS

1. PROHIBITED DISCHARGES

The Industrial User shall comply with all the general prohibitive discharge standards.

2. INSPECTION/RIGHT-OF-ENTRY

The administrator and/or other duly authorized employees of the District, NYSDEC and/or USEPA, bearing proper credentials and identification, shall be permitted to enter all industrial properties without advance notice for the purpose of inspection, observation, measurement, sampling, monitoring, and testing in accordance with the provisions of its Sewer Use Law. The District shall also have the right to inspect and copy records pertaining to the Industry's self-monitoring procedures.

3. RECORDS RETENTION

The Industrial User shall retain and preserve for no less than (3) years any records, books, documents, memoranda, reports, correspondence, records of calibration and maintenance of instrumentation, recordings from continuous monitoring instrumentation, and any summaries thereof, relating to monitoring, sampling and chemical analysis made by or in behalf of the user in connection with its discharge. All records that pertain to matters that are the subject of special orders, or any other enforcement or litigation activities brought by the District, shall be retained and observed by the Industrial User until all enforcement activities have concluded and all periods of limitation with respect to any and all appeals have expired.

4. CONFIDENTIAL INFORMATION

Except for data determined to be confidential under Section 5.15 of the District's Sewer Use Law, all reports required by this permit shall be available for public inspection at the office of the Pretreatment Administrator, 7346 Liberty Drive, Niagara Falls, New York 14304.

Niagara County Sewer District #1

Industrial Waste Permit

Industrial User:

Division Name (if Applicable):

Mailing Address:

Pendleton Site PRP Group (Permittee)

3855 Ococe Street, Suite 200

Street or P.O. Box

Cloveland, TN 37312 City, State and Zip Code

c/o Olin Corporation

Site Address:

Pendleton Site, Townline Road Street Address

Pendleton, New York City, State

The above Industrial User is authorized to discharge contaminated groundwater to the Niagara County Sewer District #1 sewer system in compliance with the District's Sewer Use Law, Local Law No. 1, Resolution No. 7-94, any applicable provisions of Pederal or State law or regulation, and in accordance with discharge points(s), effluent limitations, monitoring requirements, and other conditions set forth herein.

Effective Date: August 28, 2018

Expiration Date: August 28, 2021

(Application for renewal shall be submitted 90 days prior to expiration)

District Permit No. 18-11

Date: 4/12/18

Signed:

(Direct discharge to Niagara County Sewer District #1 manhole. Discharge does not enter Town of Pendleton sewer system.)

Schedule A - Listing of Discharged Wastestreams

Industry Name:	Pendleton ((Frontier Chemical) Site
----------------	-------------	--------------------------

__Groundwater Remediation_____

The following wastestreams are discharged to sanitary sewer system tributary of Ningara County Sewer District #1.

Waste-	Nature of Waste	Volume	Discharge
<u>Streams</u>		gallons per day	<u>Point</u>
WS_001	Groundwater Remodiation	376 (Луд.)	D 002

PART L – WASTEWATER DISCHARGE LIMITATIONS AND MONITORING REQUIREMENTS

Industry Name:	Pendleton (Frontier Chemical) Site Sample Point A:			
Sample Point: Description:	Groundwater Pump Station Discharge			
Desemption.	East of Site			
Classification:	Non-StU			
		Monitoring Require	ments	
	as a constant de	Sampling	Sample	
Parameter	Discharge Limitations ⁽¹⁾	Frequency	Type	
Flow		Continuous		
a.) Groundwater Remediation	2500 GPD, Daily Maximum			
Pollutants	Discharge Limit			
624	0.100 mg/L (Sum of all EPA 624 cmpds.)	Semi-Annual	24C ⁽²⁾	
Antimony	0.1 mg/L	Semi-Annual	24C	
Boron	4.0 mg/L	Semi-Annual	24C	
Chromium	5.33 mg/L	Semi-Amual	24C	
Cyanide (T)	2.0 mg/L	Semi-Annual	4 Grabs ⁽³⁾	
Total Phonolics (4AAP)	Surveillance Only	Semi-Annual		
Total Suspended Solids	300 mg/L	Semi-Annual	24C	
Low Level Mercury by USEPA method 1631	0.001 mg/L	Once annually, no later than Sept 30 of each year	Grab	

These Limitations shall be effective immediately.

Notes:

- (1) All other limitations as set forth in the District's Sewer Use Law shall also apply.
- (2) 24-hour composite samples for volatile (624) organics to consist of a minimum of four
 (4) grabs within a 24-hour period. (See Sampling Measurement & Analytical Guidelines, Section 9, Paragraph 2.)
- (3) Cyanide will be analyzed from 4 grabs collected over the 24 hour period using the appropriate containers/preservatives and lab composited.

PART II - SPECIAL CONDITIONS/COMPLIANCE SCHEDULE

 Compliance Schedules: If additional pretreatment and/or operation and maintenance are required to meet discharge limitation and/or Pretreatment Regulations, the User will immediately advise District of the shortest schedule by which the User provide such additional pretreatment or reduction in flow discharged. The completion date in this schedule shall not be later than the compliance date established for any applicable Pretreatment Regulations.

PART III - REPORTING REQUIREMENTS

- 1. The Industrial User shall notify the District immediately upon any accidental or slug discharge to the sanitary sewer system. Formal written notification discussing circumstances of the event and remedies to prevent recurrence shall be submitted to the District within 3 days of occurrence.
- The Industrial User shall notify the District and apply for a revised permit 30 days prior to the introduction of new wastewater or pollutants or any substantial change in the volume or characteristics of the wastewater being introduced into the POTW from the User's industrial processes.
- 3. Any upset experienced by the Industrial User of its treatment that places it in a temporary state of non-compliance with wastewater discharge limitations contained in this permit or other limitations specified in the District's Sewer Use Law shall be reported to the District within 24 hours of first awareness of the commencement of the upset. A detailed report shall be filed within 5 days.
- Self-monitoring reports are due at the NCSD #1 office no greater than 60 days after the date of sampling. When reporting results, the following information shall be provided;
 - a.) 1. The date, exact place, and time of sampling or measurements;
 - 2. The individual(s) who performed the sampling or measurements;
 - 3. The date(s) analyses were performed;
 - 4. The individual(s) who performed the analyses;
 - 5. The analytical techniques or methods used;
 - 6. The results of such analyses
 - b.) A copy of the original lab report(s) as provided by the certified tosting lab(s), including properly completed chain(s) of custody.
 - c.) The original data from the lab report shall be transcribed into a table comparing the permit requirements to the obtained results. In cases where the permit contains requirements for daily maximum and maximum monthly average, columns for both of these shall be included in the table. When a single value applies to both daily max, and max, mo, avg. (because monitoring was only performed once during a month), separate columns shall still be included in the table, clearly indicating that the value is both the daily maximum and the monthly average.
 - d.) All daily flows obtained since the previous reporting period, as well as the maximum and average daily flow for each month.
 - c.) A certification statement as to whether the industrial User is in compliance with the permit limitations. If the permit contains limitations for both daily max, and max, mo, avg., the statement must specify whether the User is in compliance with both limitations.
 - f.) A certification statement that all normally operated (applicable) processes were operating (and discharging) during the monitoring period. Any processes not in operation shall be eited together with a listing of pollutants which might normally be present in said process discharge.
- 5. Additional Monitoring by Permittee If the permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified herein, the results of such monitoring shall be included in the calculation and reporting of values required under Part I. Such increased frequency shall also be indicated.

WRIGHT H. ELLIS Chairman

MARK C. CROCKER Vice-Chairman

THOMAS W. BLODGETT, P.E. Administrative Director

AARON T. EARSING Chief Operator

August 30, 2021

Pendleton Site PRP Group c/o Olin Corporation 490 Stuart Rd. N.E. Cleveland, TN 37312

ATTN: Mr. Dave Share Vice President, Environmental Remediation

Re: Pendleton Site PRP Group Industrial Waste Permit

Mr. Share:

Please find enclosed District Permit No. 21-11, issued by Niagara County Sewer District #1 to Pendleton Site PRP Group, c/o Olin Corporation. This permit is effective August 30, 2021 for the discharge of contaminated groundwater.

Please note the following changes have been made:

- Part 1 (Wastewater Discharge Limitations and Monitoring Requirements) was updated to include CBOD₅ and Total Phosphorous monitoring semi-annually. These analytes do not have discharge limitations but will be surcharged in the instance(s) of abnormal strength waste. See Part 1.
- Updated average daily discharge volume in Schedule A.
- Clarified discharge limitations and sampling requirements in Part I.
- Added Chief Operator's name to Part III.6, self-monitoring report submission.
- Minor changes to Sampling Measurement and Analytical Guidelines language.

Additionally, per Part IV.11., Pendleton Site PRP Group has the duty to reapply for reissuance of their permit ninety (90) days prior to expiration. The District Permit No. 18-11, issued to Pendleton Site PRP Group, expired August 28, 2021. NCSD #1 received the Industrial Wastewater Renewal Form on August 24, 2021. Please be aware that enforcement may follow should review of the daily flow for August 29, 2021 indicate that Pendleton Site PRP Group discharged to the sanitary sewer when Pendleton Site PRP Group did not have an Industrial Waste Permit.

If there are any questions, please feel free to contact Elizabeth Lesold, Sanitary Chemist, at this office.

Best regards,

NIAGARA COUNTY SEWER DISTRICT #1

Aaron T. Earsing Chief Operator

Enclosure

cc: Adam Carringer

7346 Liberty Drive Niagara Falls, NY 14304-3762 Phone: 716-693-0001 Fax: 716-693-8759

Niagara County Sewer District #1

Industrial Waste Permit

Industrial User:

Pendleton Site PRP Group (Permittee)

Division Name (if Applicable):

c/o Olin Corporation

Mailing Address:

3855 Ocoee Street, Suite 200 Street or P.O. Box

Cleveland, TN 37312 City, State and Zip Code

Site Address:

Pendleton Site, Townline Road Street Address

Pendleton, New York City, State

The above Industrial User is authorized to discharge contaminated groundwater to the Niagara County Sewer District #1 sewer system in compliance with the District's Sewer Use Law, Local Law No. 1, Revision 1, April 4, 2017, any applicable provisions of Federal or State law or regulation, and in accordance with discharge points(s), effluent limitations, monitoring requirements, and other conditions set forth herein.

Effective Date: August 30, 2021

Expiration Date: August 30, 2024

(Application for renewal shall be submitted 90 days prior to expiration)

District Permit No. 21-11

Date: 202 Signed:

(Direct discharge to Niagara County Sewer District #1 manhole. Discharge does not enter Town of Pendleton sewer system.)

Schedule A - Listing of Discharged Wastestreams

Industry Name: Pendleton (Frontier Chemical) Site

Groundwater Remediation

The following wastestreams are discharged to sanitary sewer system tributary of Niagara County Sewer District #1.

Waste-	Nature of Waste	Volume	Discharge
<u>Streams</u>		gallons per day	<u>Point</u>
<u>WS 001</u>	Groundwater Remediation	103 (Avg.)	D 002

PART I – WASTEWATER DISCHARGE LIMITATIONS AND MONITORING REQUIREMENTS

Industry Name: Sample Point:	Pendleton (Frontier Chemical) Site Sample Point A: Groundwater Pump Station Discharge				
Description:		Contaminated Groundwater Discharge to NCSD #1 Manhole			
Classification:	Non-SIU				
		Monitoring Re	equirements		
Parameter	Discharge Limitations ⁽¹⁾	Sampling Frequency	Sample Type		
Flow		Contin	uous		
a.) Groundwater Remediation	2500 GPD, Daily Maximum				
Pollutants	Discharge <u>Limit</u>				
Volitile Organics by EPA 624	0.100 mg/L (Sum of all EPA 624 analyte values 0.01mg/L or greater)	Semi-Annual	24 hour composite ⁽²⁾⁽³⁾		
Antimony	0.1 mg/L	Semi-Annual	24 hour composite ⁽²⁾		
Boron	4.0 mg/L	Semi-Annual	24 hour composite ⁽²⁾		
Chromium	5.33 mg/L	Semi-Annual	24 hour composite ⁽²⁾		
Cyanide (T)	2.0 mg/L	Semi-Annual	24 hour composite ⁽²⁾⁽³⁾		
Total Phenolics (4AAP)	Surveillance Only	Semi-Annual	24 hour composite ⁽²⁾		
Total Suspended Solids	300 mg/L	Semi-Annual	24 hour composite ⁽²⁾		
Low Level Mercury by	0.001 mg/L	Once annually, no later	Grab		
USEPA method 1631	•	than Sept 30 of each year			
CBODs	See (4) below	Semi-Annual	24 hour composite ⁽²⁾		
Total Phosphorous	See (5) below	Semi-Annual	24 hour composite ⁽²⁾		

These Limitations shall be effective immediately.

Notes:

- (1) All other limitations as set forth in the District's Sewer Use Law shall also apply.
- (2) If period of normal operations on day of monitoring is less than 24 hours, the composite shall cover the period of normal operation only.

PART I WASTEWATER DISCHARGE LIMITATIONS AND MONITORING REQUIREMENTS (cont'd)

- (3) See Sampling Measurement & Analytical Guidelines, to determine the number of grab samples required for laboratory composite.
- CBOD₅ will be surcharged when the concentration exceeds 300 mg/L per the Niagara County Sewer District #1 Rules and Regulations Governing Abnormal Pollution Surcharges.
- (5) Total Phosphorous will be surcharged when the concentration exceeds 10 mg/L per the Niagara County Sewer District #1 Rules and Regulations Governing Abnormal Pollution Surcharges.

PART II - SPECIAL CONDITIONS/COMPLIANCE SCHEDULE

1. Compliance Schedules: If additional pretreatment and/or operation and maintenance are required to meet discharge limitation and/or Pretreatment Regulations, the User will immediately advise District of the shortest schedule by which the User provide such additional pretreatment or reduction in flow discharged. The completion date in this schedule shall not be later than the compliance date established for any applicable Pretreatment Regulations.

PART III - REPORTING REQUIREMENTS

- 1. The Industrial User shall notify the District immediately upon any accidental or slug discharge to the sanitary sewer system. Formal written notification discussing circumstances of the event and remedies to prevent recurrence shall be submitted to the District within 3 days of occurrence.
- 2. The Industrial User shall notify the District and apply for a revised permit 30 days prior to the introduction of new wastewater or pollutants or any substantial change in the volume or characteristics of the wastewater being introduced into the POTW from the User's industrial processes.
- 3. Any upset experienced by the Industrial User of its treatment that places it in a temporary state of non-compliance with wastewater discharge limitations contained in this permit or other limitations specified in the District's Sewer Use Law shall be reported to the District within 24 hours of first awareness of the commencement of the upset. A detailed report shall be filed within 5 days.
- 4. Self-monitoring reports are due at the NCSD #1 office no greater than 60 days after the date of sampling. When reporting results, the following information shall be provided:
 - a.) 1. The date, exact place, and time of sampling or measurements;
 - 2. The individual(s) who performed the sampling or measurements;
 - 3. The date(s) analyses were performed;
 - 4. The individual(s) who performed the analyses;
 - 5. The analytical techniques or methods used;
 - 6. The results of such analyses
 - b.) A copy of the original lab report(s) as provided by the certified testing lab(s), including properly completed chain(s) of custody.
 - c.) The original data from the lab report shall be transcribed into a table comparing the permit requirements to the obtained results. In cases where the permit contains requirements for daily maximum and maximum monthly average, columns for both of these shall be included in the table. When a single value applies to both daily max. and max. mo. avg. (because monitoring was only performed once during a month), separate columns shall still be included in the table, clearly indicating that the value is both the daily maximum and the monthly average.
 - d.) All daily flows obtained since the previous reporting period, as well as the maximum and average daily flow for each month.
 - e.) A certification statement as to whether the Industrial User is in compliance with the permit limitations. If the permit contains limitations for both daily max. and max. mo. avg., the statement must specify whether the User is in compliance with both limitations.

PART III - REPORTING REQUIREMENTS (cont'd)

- f.) A certification statement that all normally operated (applicable) processes were operating (and discharging) during the monitoring period. Any processes not in operation shall be cited together with a listing of pollutants which might normally be present in said process discharge.
- 5. Additional Monitoring by Permittee If the permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified herein, the results of such monitoring shall be included in the calculation and reporting of values required under Part I. Such increased frequency shall also be indicated.
- 6. All self-monitoring reports prepared shall be submitted to:

Aaron T. Earsing, Chief Operator Niagara County Sewer District #1 Water Pollution Control Center 7346 Liberty Drive Niagara Falls, New York 14304

- 7. Signatory Requirements All reports required by this permit shall be signed by an authorized representative of the Industrial User.
- 8. If sampling performed by the Industrial User indicates a violation, the Industrial User is required to repeat the sampling and analysis and submit the results to the District within thirty (30) days after becoming aware of the violation.

Additionally, applicable quality control is mandatory in cases where the Industrial User is conducting additional self-monitoring as a result of non-compliance. (See Sampling Measurement and Analytical Guidelines, Item #19 "Quality Control.")

9. Toxic Organic Management Plan - For Industrial Users who are required to monitor for Total Toxic Organics (TTO), and who are implementing a District-Approved, Toxic Organic Management Plan in lieu of this monitoring, the following certification shall be included with each self-monitoring report:

> "Based on my inquiry of the person or persons directly responsible for managing compliance with the permit limitation for total toxic organics. I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewaters has occurred since filing of the last discharge monitoring report. I further certify that this facility is implementing the toxic organic management plan submitted to the control authority."

PART IV - STANDARD CONDITIONS

1. PROHIBITED DISCHARGES

The Industrial User shall comply with all the general prohibitive discharge standards.

2. INSPECTION/RIGHT-OF-ENTRY

The administrator and/or other duly authorized employees of the District, NYSDEC and/or USEPA, bearing proper credentials and identification, shall be permitted to enter all industrial properties without advance notice for the purpose of inspection, observation, measurement, sampling, monitoring, and testing in accordance with the provisions of its Sewer Use Law. The District shall also have the right to inspect and copy records pertaining to the Industry's self-monitoring procedures.

3. <u>RECORDS RETENTION</u>

The Industrial User shall retain and preserve for no less than (3) years any records, books, documents, memoranda, reports, correspondence, records of calibration and maintenance of instrumentation, recordings from continuous monitoring instrumentation, and any summaries thereof, relating to monitoring, sampling and chemical analysis made by or in behalf of the user in connection with its discharge. All records that pertain to matters that are the subject of special orders, or any other enforcement or litigation activities brought by the District, shall be retained and observed by the Industrial User until all enforcement activities have concluded and all periods of limitation with respect to any and all appeals have expired.

PART IV - STANDARD CONDITIONS (cont'd.)

4. <u>CONFIDENTIAL INFORMATION</u>

Except for data determined to be confidential under Section 5.15 of the District's Sewer Use Law, all reports required by this permit shall be available for public inspection at the office of the Pretreatment Administrator, 7346 Liberty Drive, Niagara Falls, New York 14304.

5. <u>DILUTION</u>

No Industrial User shall increase the use of potable or process water or, in any way, attempt to dilute a discharge as a partial or complete substitute for adequate treatment to achieve compliance with the limitations contained in this permit.

6. PROPER DISPOSAL OF PRETREATMENT SLUDGES AND SPENT CHEMICALS

The disposal of sludges and spent chemicals generated shall be done in a manner such as to prevent the pollutants from such material from entering the NCSD #1 sewer system. Said disposal shall also conform to all applicable State/Federal regulations.

7. <u>REVOCATION OF PERMIT</u>

The permit issued to the Industrial User by the District may be revoked when after inspection, monitoring or analysis, it is determined that the discharge of wastewater to the sanitary sewer is in violation of Federal, State, or local laws, ordinances, or regulations. Additionally, falsification or intentional misrepresentation of data or statements pertaining to the permit application or any other required reporting form, shall be cause for permit revocation, revocation of sewer discharges privileges, and/or imposition of criminal penalties.

8. LIMITATION ON PERMIT TRANSFER

Wastewater discharge permits are issued to a specific user for a specific operation and are not assignable to another user or transferrable to any other location without the prior written approval of the District. Sale of a facility by a User shall obligate the purchaser to seek prior written approval of the District for continued discharge to the sewerage system.

9. PERMIT AVAILABILITY

The original signed permit must be available upon request at all times for review at the Industrial User's address stated on the first page of this permit.

10. MODIFICATION OR REVISION OF THE PERMIT

- a. The terms and conditions of this permit may be subject to modification by the District at any time as limitations or requirements, as identified in the District Sewer Use Law, are modified or other just cause exists.
- b. This permit may also be modified to incorporate special conditions resulting from the issuance of a special order by NYSDEC or EPA.
- c. The terms and conditions may be modified as a result of BPA promulgating a new federal pretreatment standard. If a pretreatment standard or prohibition (including Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 807 (b) of the Act for a pollutant which is present, the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.
- d. The terms and conditions of this permit shall remain in effect until the permit is terminated or replaced by a subsequent permit.

11. DUTY TO REAPPLY

Ninety (90) days prior to expiration, the User shall reapply for reissuance of the permit. Application forms are available from the District upon request.

PART IV - STANDARD CONDITIONS (cont'd).

12. SEVERABILITY

13.

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby. **ENFORCEMENT AND PENALTIES**

Any violation of Section 2 or 3 of the Niagara County Sewer Use Law (adopted January 18, 1994) is declared a violation except as otherwise provided by law. Any violation of Section 4, 5 or 6 of the Niagara County Sewer Use Law is thereby a misdemeanor except as otherwise provided by law. A User who is found to have violated any provision of the Niagara County Sewer Use Law (or permits and orders issued thereunder) and/or applicable pretreatment standards and requirements, shall be subject to applicable civil and criminal penalties including but not limited to fines not to exceed five thousand dollars (\$5,000) per violation per day for each day on which non-compliance shall occur or continue.

14. CLARIFICATION OF TERMS: SAMPLING/REPORTING INTERVALS

Monthly-unless otherwise stated, monthly means each calendar month.

<u>Ouarterly</u>-unless otherwise stated, quarterly means occurring in each quarter of a calendar year.

Each quarter of a calendar year is defined as follows:

1st quarter-January through March; 2nd quarter-April through June; 3rd quarter-July through September; 4th quarter-October through December;

Semi-annual-unless otherwise stated, semi-annual means twice per calendar year.

Annual or Annually-unless otherwise stated, annual and/or annually means each calendar year.

15. CLARIFICATION OF 24-HOUR COMPOSITING PERIOD

24 hour compositing period (24C period)- The collection of a 24-hour composite does not necessarily have to begin at 12 midnight. It may be collected over any 24-hour interval over which a true and representative sample can be collected, in conjunction with the requirements of this permit. For example, the compositing period may begin at 10:00 AM on Tuesday and end on 10:00 AM Wednesday. Please see the "SAMPLING MEASUREMENT ANDANALYTICAL GUIDELINES" section of this permit for a definition of a composite and additional information.

PART V - SPECIFIC CONDITIONS NONE

NIAGARA COUNTY SEWER DISTRICT #1

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES

- 1. Prior to implementing the self-monitoring sampling and analyses, the Industrial User must submit the following information to the District.
 - The name(s) and address(es) of the laboratory or laboratories proposed to perform each of the chemical analyses.
 - b. A description of the equipment and test methods proposed for the chemical analyses for each parameter.
 - A list of the lower level of detectability expected for each parameter.
 - d. A description of the overall recovery efficiency of the prepared sample, where applicable.
 - A description of the quality control procedures used by the laboratory or laboratories to ensure reliable test results.
 - f. A description of the sample collection point and sample collection procedures.
 - g. A description of the compositing technique and equipment.
 - h. A description of the sample preservation methods used for each parameter.

2. Before commencement of any sampling or flow monitoring, Niagara County Sewer District #1 Water Pollution Control Center shall be notified in writing at least seventy-two (72) hours in advance by the firm or designee. The District will give a twenty-four (24) hour verbal notification to the firm or District designee of whether split sampling will be initiated.

- 3. Before sampling is done, the sample points must be approved by the District.
- 4. All discharge lines from one (1) building, or all discharge lines from only one (1) single process must be sampled at the same time.
- 5. Sampling record must be used and submitted with monitoring reports. The sampling report shall contain the following minimum information:
 - Date of each sample day.
 - b. Exact location of sampling points attach drawing for reference.
 - c. If done manually, time of each grab sample with sampler's initials each time.
 - d. Type of auto-sampler used. Size and type of tubing and sampling interval.
 - e. Record all physical observation (sight, smell etc.) of the discharge at start-up, during inspections and changing of samples.
 - f. Note weather conditions.
 - g. Signature of immediate sampling supervisor at the bottom of page.
- 6. If an auto-sampler is used, new tubing must be at least 1/4 I.D. If visibly contaminated after sampling, it must be cleaned with detergent or methanol and deionized water each day. Proper refrigeration of the sample must be maintained during entire sampling period, when necessary. The intake hose velocity must be at least 2.0 f.p.s. with a maximum lift of twenty (20) feet.
- 7. All sampling shall be taken at the highest velocity, greatest turbulence and center of flow.
- All sampling must be done on <u>normal</u> work days. If there is a process discharge after normal working hours, sampling must continue until no further discharge.
- 9. "COMPOSITE SAMPLE" "Composite" shall mean a combination of individual (or continuously taken) samples obtained at regular intervals over the entire discharge day. The volume of each sample shall be proportional to the discharge flow rate, when possible. For a continuous discharge, a minimum of forty-eight (48) individual grab samples (at half hour intervals shall be collected and combined to constitute a twenty-four (24) hour composite sample. For intermittent discharges of less than four hours duration equal to or greater than one hour, grab samples shall be taken at a minimum of fifteen (15) minute intervals. A batch discharge less than one hour can be sampled with a single grab when the batch is continuously stirred or well mixed and the pollutants can be assumed to be uniformly dispersed.

Composite samples for purgeable halocarbons (Method 601/8010), purgeable aromatics (Method 602/8020), acrolein/acrylonitrile (Method 603), volatile organics (Method 624/8240), or cyanide shall be lab composited from grab samples taken at regular intervals over the entire discharge day utilizing the appropriate special sample containers, preservatives and collection techniques. The number of grabs collected is dependent on the length of the sampling period, and shall be determined the following:

For a discharge period of less than one hour, a single grab sample may be collected for analysis of the above parameters.

For a discharge period between one and 24 hours, a minimum of four (4) grabs will be taken at regular intervals and lab composited for analysis of the above parameters.

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES (cont'd.)

Proper sample collection containers and techniques must be used.

"SPLIT SAMPLE" - must be done on site with both parties present before preservatives are added.

"DAILY" - each operating day

"DAILY MAXIMUM" - shall mean the highest allowable discharge of a pollutant and/or flow measured during any twenty-four (24) hour sampling period. For pollutants with limitations expressed in units of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurements, the daily discharge is calculated as the average measurement of the pollutant over the day.

"GRAB" - shall mean an individual sample which is taken from a wastestream on a one (1) time basis with no regard to the flow in the wastestream and without consideration of time.

"MONTHLY" on day each month (the same day each month) and a normal operating day (i.e. the 2nd Tuesday of each month).

"MONTHLY AVERAGE" - discharge limitation means the highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month, divided by the number of daily discharges measured during that month.

"WEEKLY" - every seventh day (the same day each week) and a normal operating day.

- 10. Total water consumption shall be recorded for each day's composite using the water meters. Water consumption method must be explained in report.
- 11. All discharges shall be flow-monitored whenever possible. If flow monitoring cannot be done, flow determination should be a best practical engineering estimate without being economically burdensome to the firm involved. Results and procedure used to determine flow must be included with the analysis report.

12. Sample Collection Techniques for Single Discharge Lines

b.

On single discharge lines (all regulated wastes discharge through one outlet), sample collection for the required parameters will be collected according to the following:

a. The following parameters should only be analyzed on manually taken grab samples:

pH	
Temperature	
Chlorine Residua	l
Dissolved Oxyger	n

The following parameters should only be analyzed on composite samples made from manually collected grab samples:

Fecal Coliforms Oil and Grease Low Level Mercury

Purgeable Halocarbons (EPA 601) Purgeable Aromatics (EPA 602) Acrolein/Acrylonitrile (EPA 603) Purgeables (EPA 624) Cyanide

For a discharge period of less than one hour, a single grab sample may be collected for analysis of the above parameters.

For a discharge period between one and 24 hours, a minimum of four (4) grabs will be taken at regular intervals and lab composited for analysis of the above parameters.

Proper sample collection containers and techniques must be used.

c. The following parameters should be analyzed on an automatically collected composite sample or, if an auto sampler is unavailable, a manually collected composite sample:

Metals (except Low Level Mercury)	Total Phosphorus
Phenol-4AAP	TKN/Ammonia
BOD	Base/Neutral Acids (EPA 625)
Total Suspended Solids	EPA Methods 604-614

(For a continuous discharge, a minimum of forty-eight (48) individual grab samples (at half-hour intervals) shall be collected and combined to constitute a twenty-four (24) hour composite sample. For intermittent discharges of less than four (4) hours duration, grab samples shall be taken at a minimum of fifteen (15) minute intervals.)

SAMPLING MEASUREMENT AND ANALYTICAL GUIDELINES (cont'd.)

13. Sample Collection Techniques for Multiple Discharge Lines

For multiple discharge lines (all regulated wastes discharge through more than one outlet), sample collection for the required parameters will be collected according to the following:

a. The following parameters must be analyzed separately from each discharge line's individual grab samples:

pH	Fecal Coliforms
Temperature	Oil and Grease
Chlorine Residual	Low Level Mercury
Dissolved Oxygen	

b. For the following parameters, a composite made from manually collected grab samples must be used. A separate composite must be made from each discharge line. The composites from the different discharge lines cannot be combined for analysis.

Purgeable Halocarbons (EPA 601) Purgeable Aromatics (EPA 602) Acrolein/Acrylonitrile (EPA 603) Purgeables (EPA 624) Cyanide

For a discharge period of less than one hour, a single grab sample may be collected for analysis of the above parameters.

For a discharge period between one and 24 hours, a minimum of four (4) grabs will be taken at regular intervals and lab composited for analysis of the above parameters.

Proper sample collection containers and techniques must be used.

c. For the following parameters, composites from each discharge line may be combined proportional to their flow only if physical flow measurement can be done.

Metals (except Low Level Mercury) Phenol-4AAP BOD Total Suspended Solids Total Phosphorus TKN/Ammonia Base/Neutral Acids (EPA 625) EPA Methods 604-613

(For a continuous discharge, a minimum of forty-eight (48) individual grab samples (at half-hour intervals) shall be collected from each discharge line and combined to constitute a twenty-four (24) hour composite sample. For intermittent discharges of less than four (4) hours duration, grab samples shall be taken at a minimum of fifteen (15) minute intervals.)

- 14. A chain of custody log sheet is required to be used for all sampling and analysis of each sample and attached to the report.
- 15. The handling, storage preservation and analytical procedures for each parameter shall follow Environmental Protection Agency Guidelines published in the Federal Register, pursuant to 40 CFR 136, dated October 26, 1984, or as subsequently revised.
- 16. The monitoring results report, sampling record(s), and chain of custody log sheet must be sent by the industry to the District and not by the consulting firm.
- 17. If any exemptions or changes have to be made due to unique situations, the District must be notified immediately for approval. When approved, a written explanation of the change must accompany the analysis sheet.
- Any split samples that indicate a discrepancy of greater than 20% may be grounds for requiring re-sampling and analyses.
- 19. "QUALITY CONTROL" All additional analyses which were run along with self-monitoring samples as a quality control measure, such as field blanks, duplicates or matrix spikes, etc., must be included in the self-monitoring report submitted to the District. Applicable quality control is mandatory in cases where the industrial user is conducting additional self-monitoring as a result of non-compliance.
- All analyses of NYSDOH certifiable parameters conducted pursuant to this permit shall be performed by a laboratory certified for said parameters by the New York State Department of Health.

ATTACHMENT H

Pre-Treatment Operator's Logs

Time Out: 4:00 PA Date: 11-25-20 Time In: 12.60 N

Operator: MICHAEL WALKER Operator Signature

Weather:	CLOUDY
Precipitation, Inches:	0
Temperature, ^o F:	53° F
Purpose for Visit:	MONTHLY LUSPECTION November 2020

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2786466	GAL	17:30
½" Sump Flow Meter Totalizer Reading:	1552173	GAL	12:30
Flow Rate (during testing) P-1:	7.87	GPM	3:30
Flow Rate (during testing) P-2:	7.04	GPM	3:30
Pump Hour Meter Readings: Pump #1:	3728.6	HOURS	12:30
Pump Hour Meter Readings: Pump #2:	3624.0	HOURS	12:30
Wet Well Level:	42'	FT	12:30
Pressure Sensor Reading (Bar Graph) (during test):	44	PSI	3:30

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	43	43	\mathcal{O}
Bag Filter #2:	43	35	Q
Carbon Vessel #1:	22	20	20
Carbon Vessel #2:	20	14	6

Changed Filter Bags (Check ✓ One):	YES	×	TIME	
	NO	τ.		

Notes From Inspection: SITE WAS SECURE UPON LARIVAL. ALL GATES + LOCKED, GAD LOOKED GOOD, NO ISSUES WITH COVER. PERFORMED MONTHLY IN SARTION TASKS CHANGED CHART IN , CHANGED BAG F. HORLS, TESTED VALUES TESTED RECORDER OIC #1 1P Down . to KEIERO LA PRESSURE GAILLAR to sit Decurse

Chlesuse

Planned Action Items:	Ø		
	1		
•			
Recommended Actions to	Prevent Future Proble	ms: 💋	

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:		V .
#2 Panel Door:		
#3 Vault Sump High Alarm:	N	
#4 Containment Pipe Alarm:	1	1
#5 High Wet Well Alarm:		
#6 Pump #1 Fail (Yes/No):	No	20
#7 Pump # 2 Fail (Yes/No):	NO	NON
#8 Bag Filter Differential Pressure High Alarm:	V	
#9 Wet Well Level (Actual Measure Spoken):	-	(
#10 Flow Rate:	-	-

Cliffende

Date: 12-11-20 Time In: 1200 N Time Out: 4 00 p

Operator: Mike Worken Operator Signature

٠.,

Weather:	SUMAN RAEFERY	
Precipitation, Inches:	B	
Temperature, ºF:	65°F	
Purpose for Visit:	MONTHLY INSSELTION	DECEMBER 2020

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2796583	GAL	12:30
½" Sump Flow Meter Totalizer Reading:	1560679	GAL	12:30
Flow Rate (during testing) P-1:	7.92	GPM	3:20
Flow Rate (during testing) P-2:	6.24	GPM	3:20
Pump Hour Meter Readings: Pump #1:	3739.7	HOURS	12:308
Pump Hour Meter Readings: Pump #2:	3636.6	HOURS	12:30
Wet Well Level:	< 21	FT	12:30
Pressure Sensor Reading (Bar Graph) (during test):	46	PSI	3200

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	LIC	45	Ð
Bag Filter #2: `^	45	38	7
Carbon Vessel #1:	23	19	4
Carbon Vessel #2:	լօլ	14.	5

Changed Filter Bags (Check ✓ One):	YES	V	TIME	2500
·	NO			

Notes From Inspection: 5the was SEEVAL upon ARRIVAL	➡ •
CHO WAS GLEEN, CUT & LOOKED GOOD! NO DAMAGE	TO CAN OR GUILMENT.
CHANGERS CHART IN RECORDER, CHANGER A. HER-BASS,	TIGATED SUMP PUMPS.
Aut of	· · ·
· · ·	

Planned Action Items: Ø

Recommended Actions to Prevent Future Problems:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:		~ ~
#2 Panel Door:	V	
#3 Vault Sump High Alarm:		1
#4 Containment Pipe Alarm:		
#5 High Wet Well Alarm:	~	
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	, an
#8 Bag Filter Differential Pressure High Alarm:	~	~~~~
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:	/ /	

llervel

Date: 1/5/21 Time In: 7:00 am Time Out: 1:00 pm

Operator: Mike Walker Operator Signature

Weather:	Cloudy
Precipitation, Inches:	0
Temperature, ºF:	34 F
Purpose for Visit:	Noticed an irregularity on the RACO report

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2796955	GAL	8:00
½" Sump Flow Meter Totalizer Reading:	1568590	GAL	8:00
Flow Rate (during testing) P-1:		GPM	
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:	3740.8	HOURS	8:00
Pump Hour Meter Readings: Pump #2:	3637.0	HOURS	8:00
Wet Well Level:	<2'	FT	8:00
Pressure Sensor Reading (Bar Graph) (during test):	0	PSI	8:00

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	0	0	
Bag Filter #2:	0	0	
Carbon Vessel #1:	0	0	
Carbon Vessel #2:	0	0	

Changed Filter Bags (Check ✓ One):	YES	1	TIME	
	NO	Х		

Notes From Inspection: Last night, I noticed on the RACO Alarm Agent that the discharge pump had Read "0" from 12/15/20, while the sump flow meter was continuing to work. Either there was a flow Meter malfunction or the vault was taking in water but not discharging. Went to the site first thing this Morning. When I opened the vault door, I discovered that the vault had water in it approx. 7' deep, Submerging all equipment in the vault. I went back to the shop and grabbed a couple of submersible Pumps and hoses. Called Adam Carringer to notify him of the situation , and went back to the site to Start dewatering the vault.

The electricity that was in the upper control panel was still operational, so I plugged the pump in there. I pumped the water from the vault into the wet well that collects the landfill leachate in case the water In the vault was contaminated (wasn't sure). After about after 5 hours or so, the vault was dewatered.

I cleaned up the area as best I could and started checking breakers and circuits to assess any damage And make the area safe. Discovered the lights and the exhaust fan are still functioning.

Future Plans:

Return tomorrow to continue damage assessment and move forward toward rebuilding WTS.

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	X
#2 Panel Door:	X	X
#3 Vault Sump High Alarm:	X	X
#4 Containment Pipe Alarm:	X	Х
#5 High Wet Well Alarm:	X	Х
#6 Pump #1 Fail (Yes/No):	Y	N
#7 Pump # 2 Fail (Yes/No):	N	N
#8 Bag Filter Differential Pressure High Alarm:	X	Х
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		

Lesud

Date: 01/06/21

Time In:

7:00 am

Time Out: 9:00 am

Operator: Mike Walker Operator Signature

Weather:	Cloudy
Precipitation, Inches:	0
Temperature, ºF:	35 F
Purpose for Visit:	Check on the vault- dewatering the area.

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:		GAL	
½" Sump Flow Meter Totalizer Reading:		GAL	
Flow Rate (during testing) P-1:		GPM	
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:		HOURS	
Pump Hour Meter Readings: Pump #2:		HOURS	
Wet Well Level:		FT	
Pressure Sensor Reading (Bar Graph) (during test):		PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:			
Bag Filter #2:			
Carbon Vessel #1:			
Carbon Vessel #2:			

Changed Filter Bags (Check ✓ One):	YES	TIME	
	NO		

I purchase a new sump pump and reinstalled 2 functioning pumps in the sump to quell anymore Incoming water overnight.

I then realized that the piping from sump pump #2 to the wet well was plugged with something. .I will bring a small compressor tomorrow and try to clear it.

Recommended Actions to Prevent Future Problems:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:		
#2 Panel Door:		
#3 Vault Sump High Alarm:		
#4 Containment Pipe Alarm:		
#5 High Wet Well Alarm:		
#6 Pump #1 Fail (Yes/No):		
#7 Pump # 2 Fail (Yes/No):		
#8 Bag Filter Differential Pressure High Alarm:		
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		

Wellad

Date:

01/07/21

Time In: 7:00 am

Time Out: 10:00 am

Operator: Mike Walker Operator Signature

Weather:	Cloudy	
Precipitation, Inches:	0	
Temperature, ^o F:	32 F	
Purpose for Visit:	Continue working on vault issues	

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:		GAL	
½" Sump Flow Meter Totalizer Reading:		GAL	
Flow Rate (during testing) P-1:		GPM	
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:		HOURS	
Pump Hour Meter Readings: Pump #2:		HOURS	
Wet Well Level:		FT	
Pressure Sensor Reading (Bar Graph) (during test):		PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:			
Bag Filter #2:			
Carbon Vessel #1:			
Carbon Vessel #2:			

Changed Filter Bags (Check ✓ One):	YES	TIME	
¢.	NO		

Notes From Inspection:
Arrived on site to a dry vault. Sump pump #1 works. I took apart the piping that went from sump
Pump #2 and cleaned it out, then blew air thru all of it clear back to the wet well to make sure it was no
Longer plugged. Reinstalled sump pump #2 and tested. It worked.
I called the guys at Temp Press to see when they can come out and assess the instrumentation damage, He said that he can come out on Friday.

Planned Action Items:

Recommended Actions to Prevent Future Problems:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:		
#2 Panel Door:		
#3 Vault Sump High Alarm:		
#4 Containment Pipe Alarm:		
#5 High Wet Well Alarm:		
#6 Pump #1 Fail (Yes/No):		
#7 Pump # 2 Fail (Yes/No):		
#8 Bag Filter Differential Pressure High Alarm:		
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		

Und Elle

Date: 01/08/21

Time In: 8:00 am

Time Out: 12:00 N

Operator: Mike Walker Operator Signature :

Weather:	Partly Sunny
Precipitation, Inches:	0
Temperature, ºF:	33 F
Purpose for Visit:	Meet with Instrumentation guys

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:		GAL	
½" Sump Flow Meter Totalizer Reading:	_	GAL	
Flow Rate (during testing) P-1:		GPM	
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:		HOURS	
Pump Hour Meter Readings: Pump #2:		HOURS	
Wet Well Level:		FT	
Pressure Sensor Reading (Bar Graph) (during test):		PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:			
Bag Filter #2:			And
Carbon Vessel #1:			
Carbon Vessel #2:			

Changed Filter Bags (Check ✓ One):	YES	TIME	
	NO		

Notes From Inspection:
Met on site with the guys from Temp Press to get them on board with repairing the WTS.
They checked all the circuits they could and established power to the overhead heater. Ordered a new
alternating block to reestablish the vault sump pumps to their original wiring. (I just had 1 pump
Plugged into a GFI to keep the vault dry until they came out. Tested some of the level and pressure
Circuits to see if they need repair or replace. Ordered a new pressure transmitter to indicate system
Pressure. They will be back when the ordered parts arrive.
Meanwhile Craig Bove and I kept cleaning out the vault of manuals, papers spare PVC parts etc.

We also got a drum to put all of the spent bag filters into.

Planned Action Items:

Recommended Actions to Prevent Future Problems:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:		
#2 Panel Door:		
#3 Vault Sump High Alarm:		
#4 Containment Pipe Alarm:		
#5 High Wet Well Alarm:		
#6 Pump #1 Fail (Yes/No):		
#7 Pump # 2 Fail (Yes/No):		
#8 Bag Filter Differential Pressure High Alarm:		
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		

alleast

Date: 01/11/21

Time In: 8:30 am

Time Out: 2:30 pm

Operator: Mike Walke	r,
Operator Signature	L

all such

	,
Weather:	Cloudy
Precipitation, Inches:	0
Temperature, ºF:	29 F
Purpose for Visit:	Continue cleaning out the vault.

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:		GAL	
½" Sump Flow Meter Totalizer Reading:		GAL	
Flow Rate (during testing) P-1:		GPM	
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:		HOURS	
Pump Hour Meter Readings: Pump #2:		HOURS	
Wet Well Level:		FT	
Pressure Sensor Reading (Bar Graph) (during test):		PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:			
Bag Filter #2:			
Carbon Vessel #1:			
Carbon Vessel #2:			

Changed Filter Bags (Check ✓ One):	YES	TIME	
	NO		

Notes From Inspection:
Arrived on site at 8:30 am. Confirmed power to the filter feed pumps was locked out. Disconnected
Wiring and piping to the filter feed pumps, carried them out to the truck for delivery to Moley
Magnetics for inspection and repair or replacement.
Made the site ready for Sevenson's pressure wash crew to come tomorrow and wash down all the walls
Floor and all the equipment in the vault to get the layer of orange silt from everything.

Planned Action Items:

Recommended Actions to Prevent Future Problems:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:		
#2 Panel Door:		
#3 Vault Sump High Alarm:		
#4 Containment Pipe Alarm:	1	
#5 High Wet Well Alarm:		
#6 Pump #1 Fail (Yes/No):		
#7 Pump # 2 Fail (Yes/No):		
#8 Bag Filter Differential Pressure High Alarm:		
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		

had fught

Date:

01/12/21

Time In: 8:00 am

Time Out: 4:00 pm

Operator: Mike Walker Operator Signature

Weather:	Cloudy. Flurries	
Precipitation, Inches:	Trace snow	
Temperature, ºF:	27 F	
Purpose for Visit:	Power wash the vault and WTS equipment.	

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:		GAL	
½" Sump Flow Meter Totalizer Reading:		GAL	
Flow Rate (during testing) P-1:		GPM	
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:		HOURS	
Pump Hour Meter Readings: Pump #2:		HOURS	
Wet Well Level:		FT	
Pressure Sensor Reading (Bar Graph) (during test):		PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:			
Bag Filter #2:			
Carbon Vessel #1:			
Carbon Vessel #2:			

Changed Filter Bags (Check ✓ One):	YES	TIME	
	NO		

Notes From Inspection:
Onsite at 0800. Opened vault, all looked good. SES delivered the power washer, then went to get the
Water tank trailer. Jones continued to remove things from the vault that would be in their way.
Upon their return they power washed all of the walls and the WWTP equipment and the file cabinet and
Cleaned out all of the accumulated grit and sludge that was in the vault, then they helped Chris put all
Of the spare parts, piping and tools, etc. back in their proper places in the vault.
Now we can work cleanly in there.

Planned Action Items:

Reestablish all instrumentation and controls for the system.

Reinstall the filter feed pumps when they are done.

Test and calibrate system.

Deliver more filter bags to the site. Old ones are not useable and had to be disposed of.

Recommended Actions to Prevent Future Problems:

Purchase and install the upgrades RACO alarm Agent that utilizes new 5G technology.

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:		
#2 Panel Door:		
#3 Vault Sump High Alarm:		
#4 Containment Pipe Alarm:		
#5 High Wet Well Alarm:		
#6 Pump #1 Fail (Yes/No):		
#7 Pump # 2 Fail (Yes/No):		
#8 Bag Filter Differential Pressure High Alarm:		
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		

Ull suga

Date:

1/21/21

Time In:

0800 Time Out: 1300

Operator: Jones Operator Signature

Weather:	Cloudy, windy
Precipitation, Inches:	NA
Temperature, ºF:	33
	Assist Temp Press

Pre-Treatment Process Information	Reading	Units	Time
47 Singl Discharge Flow Motor Totolizon Booding:		GAL	
1" Final Discharge Flow Meter Totalizer Reading: ½" Sump Flow Meter Totalizer Reading:		GAL	
Flow Rate (during testing) P-1:		GPM	
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:		HOURS	
Pump Hour Meter Readings: Pump #2:		HOURS	
Wet Well Level:		FT	
Pressure Sensor Reading (Bar Graph) (during test):		PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:			
Bag Filter #2:			
Carbon Vessel #1:			
Carbon Vessel #2:			

Changed Filter Bags (Check ✔ One):	YES	TIME	
	NO		

Notes From Inspection:	
TEMP PRESS was onsite to continue work on pla	nt controls after the plant was flooded.
The discharge pressure display was installed. Al were replaced.	so the pressure differential alarms for the bag filters

Planned Action Items: Install discharge pressure display

Replace differential pressure alarms for bag filters

Recommended Actions to Prevent Future Problems:

Other Relevant Information: TEMP PRESS is planning on returning after the pumps have been reinstalled. A crew of 2 men from TEMP PRESS were onsite from 8am to 1pm along with Jones from Sevenson.

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:		
#2 Panel Door:		
#3 Vault Sump High Alarm:		
#4 Containment Pipe Alarm:		
#5 High Wet Well Alarm:		
#6 Pump #1 Fail (Yes/No):		
#7 Pump # 2 Fail (Yes/No):		
#8 Bag Filter Differential Pressure High Alarm:		
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		

Date:

1/25/21

Time In: 1000

Time Out: 1400

Operator: Jones Operator Signature

Weather:	Partly cloudy calm
Precipitation, Inches:	NA
Temperature, ºF:	32
Purpose for Visit:	maintenance

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:		GAL	
½" Sump Flow Meter Totalizer Reading:		GAL	
Flow Rate (during testing) P-1:		GPM	
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:	·····	HOURS	
Pump Hour Meter Readings: Pump #2:		HOURS	
Wet Well Level:		FT	
Pressure Sensor Reading (Bar Graph) (during test):		PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:			
Bag Filter #2:			
Carbon Vessel #1:			
Carbon Vessel #2:			

Changed Filter Bags (Check ✓ One):	YES	TIME	
	NO		

Notes From Inspection:	
Temp Press was onsite to continue installations and calibrations on meters and alarms.	

Planned Action Items:

Temp Press installed brackets for the high sump level. They also confirmed the sump pumps are cycling from one to the other. Also confirmed was the hi hi level which ensures both pumps kick on in case one is shot. Rich from Temp Press is taking the cover plate for the discharge pressure display back to his shop to file to correct size.

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

Rich from Temp Press will return after SES has installed pumps to make final adjustments . HOURS- Temp Press 1 man 4 hr. SES 1 man 4 hr.

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:		
#2 Panel Door:		
#3 Vault Sump High Alarm:		
#4 Containment Pipe Alarm:		
#5 High Wet Well Alarm:		
#6 Pump #1 Fail (Yes/No):		
#7 Pump # 2 Fail (Yes/No):		
#8 Bag Filter Differential Pressure High Alarm:		
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		

Date: 2/12/21

Time In:

10am Time Out: 12 pm

Operator: Craig Bove **Operator Signature:**

Weather:	Cloudy
Precipitation, Inches:	0
Temperature, ºF:	21 F
Purpose for Visit:	Continue with filter feed pump installation.

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:		GAL	
1/2" Sump Flow Meter Totalizer Reading:		GAL	
Flow Rate (during testing) P-1:		GPM	
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:		HOURS	
Pump Hour Meter Readings: Pump #2:		HOURS	· ·
Wet Well Level:		FT	
Pressure Sensor Reading (Bar Graph) (during test):		PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:			
Bag Filter #2:			
Carbon Vessel #1:			
Carbon Vessel #2:			

Changed Filter Bags (Check ✓ One):	YES	TIME	
	NO		

Notes From Inspection: Site was secure upon arrival. Continued with installation of filter feed pumps (P-1 and P-2).
Installed new pressure gauges in the system.
Worked on replacing PVC piping where needed and cleaning out piping where I could.

Planned Action Items: Continue with pump installation and wiring. Clean and test flow meters that had been submerged. Test all alarm circuits, etc.

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	X
#2 Panel Door:	Х	X
#3 Vault Sump High Alarm:	X	X
#4 Containment Pipe Alarm:	X	X
#5 High Wet Well Alarm:	Х	Х
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	X	X
#9 Wet Well Level (Actual Measure Spoken):	****	54 60 FF
#10 Flow Rate:		

Craig Bove

Date: 02/12/21

Time In: 11:00 am

Time Out: 1:00 pm

Operator: Craig Bove Operator Signature: Craig Bove

Weather:	cloudy
Precipitation, Inches:	0
Temperature, ºF:	15 F
Purpose for Visit:	Continue P-1 and P-2 installation

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2830418	GAL	11:30
½" Sump Flow Meter Totalizer Reading:	1590081	GAL	11:30
Flow Rate (during testing) P-1:	5.6 / 8.0	GPM	12:30
Flow Rate (during testing) P-2:	8.0	GPM	12:30
Pump Hour Meter Readings: Pump #1:		HOURS	
Pump Hour Meter Readings: Pump #2:		HOURS	
Wet Well Level:		FT	
Pressure Sensor Reading (Bar Graph) (during test):	Not installed yet	PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	42	40	2
Bag Filter #2:	38	35	3
Carbon Vessel #1:	24	20	4
Carbon Vessel #2:	13	13	0

Changed Filter Bags (Check ✓ One):	YES	Х	TIME	12:00
	NO			

Notes From Inspection: Installed fresh filter bags, tested pumps after wiring completed
Pump P-1 was initially running slower, I cleaned out the piping and fixed a leak , then the rate picked up
to 8 gpm like pump P-2.

Tested the pumps in "hand' and "auto", all seems OK.

Sump pump tested OK . Need to calibrate the flow meters and clean them out next.

Planned Action Items: Finish purging system piping and cleaning out the flow tubes on the meters. Need to run a final test of system alarms (with Temp Press) before we allow to run unattended.

Recommended Actions to Prevent Future Problems:

Other Relevant Information: Meeting on Tuesday 2/16 onsite with Temp press to continue de-bugging And start up of the system.

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	Х	X
#2 Panel Door:	Х	X
#3 Vault Sump High Alarm:	X	Х
#4 Containment Pipe Alarm:	X	X
#5 High Wet Well Alarm:	X	X
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	X	X
#9 Wet Well Level (Actual Measure Spoken):	······	
#10 Flow Rate:		

Craig Bove

Date:

02/15/21

Time In: 0800

Time Out: 1000

Operator: Craig Bove Operator Signature: Craig Bove

Weather:	Cloudy, Light Snow
Precipitation, Inches:	Trace of snow
Temperature, ºF:	20 F
Purpose for Visit:	Installing pumps, prepping system for start up

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2830460	GAL	0900
½" Sump Flow Meter Totalizer Reading:	1591528	GAL	0900
Flow Rate (during testing) P-1:	8	GPM	1200
Flow Rate (during testing) P-2:	8	GPM	1200
Pump Hour Meter Readings: Pump #1:	3741.2	HOURS	0900
Pump Hour Meter Readings: Pump #2:	3639.7	HOURS	0900
Wet Well Level:	12' 8"	FT	0900
Pressure Sensor Reading (Bar Graph) (during test):	Not installed yet	PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	42	40	2
Bag Filter #2:	38	35	3
Carbon Vessel #1:	24	20	4
Carbon Vessel #2:	20	13	7

Changed Filter Bags (Check ✓ One):	YES		TIME	
	NO	Х		

Notes from Inspection: During run test, the belt and pulley came off of Pump P-2. Had to remove belt Guard and reinstall pulley and belt then guard.

Tested both pumps again and put system in "auto" to run while I was on site doing other tasks.

System should pump 2000 gallons and shut down automatically as planned. (limit switch only allows 2000 gallons to discharge per day, resets and restarts at midnight).

Secured site and left.

Planned Action Items:

Meeting with Temp Press on site tomorrow to install system pressure display and test other alarm switched and telemetry systems.

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	X
#2 Panel Door:	Х	X
#3 Vault Sump High Alarm:	Х	Х
#4 Containment Pipe Alarm:	Х	Х
#5 High Wet Well Alarm:	X	Х
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	X	X
#9 Wet Well Level (Actual Measure Spoken):		PT (** T4
#10 Flow Rate:		

Craig Bove

Date: 02/16/21

Time In: 0700

Time Out: 1100

Operator: Craig Bove Operator Signature: Craig Bove

Weather:	Snow
Precipitation, Inches:	8" fell overnight, still coming down
Temperature, ºF:	22 F
Purpose for Visit:	Meet with Temp Press to install instruments and test system controls

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2834520	GAL	0800
½" Sump Flow Meter Totalizer Reading:	1592137	GAL	0800
Flow Rate (during testing) P-1:	7.8	GPM	1100
Flow Rate (during testing) P-2:	7.8	GPM	1100
Pump Hour Meter Readings: Pump #1:	3745.5	HOURS	1100
Pump Hour Meter Readings: Pump #2:	3643.8	HOURS	1100
Wet Well Level:		FT	
Pressure Sensor Reading (Bar Graph) (during test):	42.	PSI	1100

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	44	37	7
Bag Filter #2:	37	34	3
Carbon Vessel #1:	22	12	10
Carbon Vessel #2:	12	12	0

Changed Filter Bags (Check ✓ One):	YES		TIME	
<u> </u>	NO	Х		

Notes From Inspection:	
Plowed the entrance and sit road with site truck to get back to the vault.	
Temp Press installed the differential pressure switches for the bag filters, calibrated and te	ested.
Installed the new system pressure display in the control panel on top. Installed the bag filt	
Sensors. Tested alarm switches, all ok.	
Craig installed a rubber flap near the sump pumps to prevent overspray on equipment.	
Set system on Auto to run overnight and see how it all work out.	
Secured and left the site.	

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

Planned Action Items:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	X
#2 Panel Door:	X	Х
#3 Vault Sump High Alarm:	X	X
#4 Containment Pipe Alarm:	X	X
#5 High Wet Well Alarm:	X	Х
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	X	Х
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		

Craig Bove

Date: 02/18/21

Time In: 0830

Time Out: 1030

Operator: Craig Bove Operator Signature: Craig Bove

Weather:	Cloudy
Precipitation, Inches:	0
Temperature, ºF:	21 F
Purpose for Visit:	Check on system, Plow driveway for access.

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2838517	GAL	0950
½" Sump Flow Meter Totalizer Reading:	1593076	GAL	0950
Flow Rate (during testing) P-1:	0	GPM	0950
Flow Rate (during testing) P-2:	8.0	GPM	0950
Pump Hour Meter Readings: Pump #1:	3749.9	HOURS	0950
Pump Hour Meter Readings: Pump #2:	3648.2	HOURS	0950
Wet Well Level:	13'11"	FT	0950
Pressure Sensor Reading (Bar Graph) (during test):	45	PSI	0950

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	45	38	7
Bag Filter #2:	38	36	2
Carbon Vessel #1:	25	22	3
Carbon Vessel #2:	22	13	9

Changed Filter Bags (Check ✓ One):	YES		TIME	
	NO	Х		

Notes From Inspection:

Site was secure upon arrival. Plowed the access road from front to back. Operated pump 2 in hand mode to check on system pressures. A-OK.

Last night the system shut itself down after pumping (discharge 2004 gallons, as it should. (permit required a 2500 gpd discharge limit). We set the auto shut down limit at 2000 to be safe. It works. Switched pump 2 back to auto.

Tested High sump alarm function-OK. Tested Sump Pump level controls-OK. At "High- High" level, the second pump also kicks on as planned.

Planned Action Items:

Walker ordered a new ½ flow meter to measure the infiltration of outside water into the sump through cracks in the walls. The meter presently in use is not responding properly after being submerged.

Recommended Actions to Prevent Future Problems:

RACO has notified me that the new Alarm Agent unit for the site will ship on 2/19/21. We expect to Receive it at Sevenson mid to late next week. We will get it installed ASAP after receipt of the unit. This will function better with the new 5G cell towers locally and result in less watchdog alarm calls.

Other Relevant Information:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	X
#2 Panel Door:	X	X
#3 Vault Sump High Alarm:	Х	Х
#4 Containment Pipe Alarm:	X	Х
#5 High Wet Well Alarm:	X	Х
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	X	X
#9 Wet Well Level (Actual Measure Spoken):	13′ 11″	
#10 Flow Rate:	0	

Craig Bove

Date: 02/19/21

Time In:

11:30am

Time Out: 12:30 am

Operator: Craig Bove Operator Signature: Craig Bove

Weather:	Cloudy
Precipitation, Inches:	Light Snow Flurries
Temperature, ºF:	25 F
Purpose for Visit:	Alarm call response, Bag Filter Pressure High, install grounding lugs on new
	pumps.

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2840584	GAL	1220
1/2" Sump Flow Meter Totalizer Reading:	1593597	GAL	1220
Flow Rate (during testing) P-1:	7.9	GPM	1220
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:	3750.0	HOURS	1220
Pump Hour Meter Readings: Pump #2:	3652.7	HOURS	1220
Wet Well Level:	14'	FT	1220
Pressure Sensor Reading (Bar Graph) (during test):	44	PSI	1220

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	44	42	2
Bag Filter #2:	40	37	3
Carbon Vessel #1:	25	21	4
Carbon Vessel #2:	21	14	7

Changed Filter Bags (Check ✓ One):	YES	Х	TIME	1200
1	NO			

ed both bag filters (10m and 5m). ran system manually to bleed air from vessels and verify
ks had developed. Installed grounding lugs on the frame of the new filter feed pumps.

Planned Action Items:

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

It looks like the wet well level has increased from 13'11" yesterday to 14'0" today, seems odd, Particularly since we have pumped 2004 gallons out yesterday. Maybe more is infiltrating due to snow melt.

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	Х
#2 Panel Door:	X	Х
#3 Vault Sump High Alarm:	X	Х
#4 Containment Pipe Alarm:	X	Х
#5 High Wet Well Alarm:	X	Х
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	YES	X
#9 Wet Well Level (Actual Measure Spoken):	14'	14
#10 Flow Rate:		

Date: 02/22/21 Time In: 0900 Time Out: 1300

Operator: Craig Bove Operator Signature: Craig Bove

Weather:	Windy 20 mph, Cloudy
 Precipitation, Inches:	Snow 4" overnight
 Temperature, ºF:	31 F
Purpose for Visit:	Alarm call bag filter pressure

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2846637	GAL	0930
1/2" Sump Flow Meter Totalizer Reading:	1595295	GAL	0930
Flow Rate (during testing) P-1:	7.83	GPM	
Flow Rate (during testing) P-2:	7.85	GPM	
Pump Hour Meter Readings: Pump #1:	3758.7	HOURS	0930
Pump Hour Meter Readings: Pump #2:	3657.1	HOURS	0930
Wet Well Level:	4'10"	FT	0930
Pressure Sensor Reading (Bar Graph) (during test):	38	PSI	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	38	37	1
Bag Filter #2:	37	36	1
Carbon Vessel #1:	27	23	4
Carbon Vessel #2:	23	15	8

Changed Filter Bags (Check ✓ One):	YES		TIME	
	NO	Х		

Notes From Inspection:	
Bottom of wet well: 19'1"	
Water to TOC:14'2.5"	
Water depth: 4'10.5"	

Planned Action Items:

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	X
#2 Panel Door:	X	Х
#3 Vault Sump High Alarm:	Х	Х
#4 Containment Pipe Alarm:	X	Х
#5 High Wet Well Alarm:	X	Х
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	YES	Х
#9 Wet Well Level (Actual Measure Spoken):	===	
#10 Flow Rate:		

Date: 02/19/21

Time In:

11:30am

Time Out: 12:30 am

Operator: Craig Bove Operator Signature: Craig Bove

Weather:	Cloudy
Precipitation, Inches:	Light Snow Flurries
Temperature, ºF:	25 F
Purpose for Visit:	Alarm call response, Bag Filter Pressure High, install grounding lugs on new
	pumps.

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2840584	GAL	1220
½" Sump Flow Meter Totalizer Reading:	1593597	GAL	1220
Flow Rate (during testing) P-1:	7.9	GPM	1220
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:	3750.0	HOURS	1220
Pump Hour Meter Readings: Pump #2:	3652.7	HOURS	1220
Wet Well Level:	14'	FT	1220
Pressure Sensor Reading (Bar Graph) (during test):	44	PSI	1220

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	44	42	2
Bag Filter #2:	40	37	3
Carbon Vessel #1:	25	21	4
Carbon Vessel #2:	21	14	7

Changed Filter Bags (Check ✓ One):	YES	Х	TIME	1200
·····	NO			

Arrived on site, everything was secure. Ran pump1 to verify pressures from alarm call.
Changed both bag filters (10m and 5m). ran system manually to bleed air from vessels and veri
No leaks had developed. Installed grounding lugs on the frame of the new filter feed pumps.

Planned Action Items:

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

It looks like the wet well level has increased from 13'11" yesterday to 14'0" today, seems odd, Particularly since we have pumped 2004 gallons out yesterday. Maybe more is infiltrating due to snow melt.

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	Х	X
#2 Panel Door:	X	X
#3 Vault Sump High Alarm:	X	Х
#4 Containment Pipe Alarm:	X	X
#5 High Wet Well Alarm:	X	Х
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	YES	X
#9 Wet Well Level (Actual Measure Spoken):	14'	14
#10 Flow Rate:		===

Date: 02/23/21 Time In: 0755 Time Out: 1630

Operator: Craig Bove Operator Signature: Craig Bove

Weather:	Light Snow
Precipitation, Inches:	2"
Temperature, ºF:	31 F
Purpose for Visit:	Check on system, Bag filter pressure High Alarm

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2848630	GAL	0755
½" Sump Flow Meter Totalizer Reading:	1595657	GAL	0755
Flow Rate (during testing) P-1:		GPM	
Flow Rate (during testing) P-2:	7.7	GPM	0755
Pump Hour Meter Readings: Pump #1:	3758.7	HOURS	0755
Pump Hour Meter Readings: Pump #2:	3661.5	HOURS	0755
Wet Well Level:	1.4'3.5"	FT	0755
Pressure Sensor Reading (Bar Graph) (during test):	38	PSI	0755

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	37	37	0
Bag Filter #2:	37	34	3
Carbon Vessel #1:	26.5	22	4.5
Carbon Vessel #2:	22	14	8

Changed Filter Bags (Check ✓ One):	YES		TIME	
	NO	Х		

Notes from Inspection: Wet well water depth: 4'11.5" Removed PVC piping from effluent of bag filter#1 to Influent of bag filter#2 and effluent of bag filter#2 To influent of GAC filter#1, and the 3 stainless braided hoses from the bag filter differential pressure Switch system. Took back to Sevenson shop for cleaning and restoration/replacement. Power washed Orange/clay/iron type residue from piping and hoses/fittings. Back to site to reassemble and backwash GAC unit #1.

Planned Action Items: After back washing GAC #1 . shut down the system to let the wet well settle over night. Will return in the morning to restart system.

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	Х
#2 Panel Door:	X	Х
#3 Vault Sump High Alarm:	Х	Х
#4 Containment Pipe Alarm:	X	Х
#5 High Wet Well Alarm:	X	Х
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	X	· X
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		

Date: 02/24/21

Time In: 0730

Time Out: 1030

Operator: Craig Bove Operator Signature: Craig Bove

Weather:	Cloudy
Precipitation, Inches:	0
Temperature, ºF:	31 F
Purpose for Visit:	Restart System, tar joint on top of vault

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:		GAL	
½" Sump Flow Meter Totalizer Reading:		GAL	
Flow Rate (during testing) P-1:	7.86	GPM	0730
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:		HOURS	
Pump Hour Meter Readings: Pump #2:		HOURS	
Wet Well Level:	4'9"	FT	0730
Pressure Sensor Reading (Bar Graph) (during test):	36	PSI	0730

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	36	35.5	0.5
Bag Filter #2:	35.5	34	1.5
Carbon Vessel #1:	25	22.5	2.5
Carbon Vessel #2:	22.5	14	8.5

Changed Filter Bags (Check ✓ One):	YES		TIME	
	NO	Х		

Notes From Inspection:
Checked clarity of water in the wet well-OK. Started the system . Replaced 1/2" nipple and ball valve on
The pressure switch for the bag filter.

System running well.

Cleaned the tar seam in the concrete on the top of the outside of the vault, heated it up and applied a New seal with more tar.

Tested the sump Hi and HH alarm, and also the leak containment alarm on the effluent piping-OK.

Planned Action Items: SS bag filter housing #2 has a welded seam that looks suspect. It may need some repair in the future for a possible leak.

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	X
#2 Panel Door:	X	Х
#3 Vault Sump High Alarm:	X	X
#4 Containment Pipe Alarm:	X	Х
#5 High Wet Well Alarm:	X	Х
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	Х	X
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:	5.4 States	

Date:

02/26/21

Time In: 0800

Time Out: 1000

Operator: Craig Bove Operator Signature: Craig Bove

Weather:	Sunny
Precipitation, Inches:	0
Temperature, ^o F:	31 F
Purpose for Visit:	Alarm Call BFP High. Install Supports for PRV and test PRV.

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2852759	GAL	0830
½" Sump Flow Meter Totalizer Reading:	1598127	GAL	0830
Flow Rate (during testing) P-1:	7.76	GPM	0900
Flow Rate (during testing) P-2:		GPM	
Pump Hour Meter Readings: Pump #1:	3763.2	HOURS	0830
Pump Hour Meter Readings: Pump #2:	3666.0	HOURS	0830
Wet Well Level:	4' 9"	FT	0830
Pressure Sensor Reading (Bar Graph) (during test):	39	PSI	0900

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	39	37	2
Bag Filter #2:	37	34	3
Carbon Vessel #1:	27	23	4
Carbon Vessel #2:	23	15	8

Changed Filter Bags (Check ✓ One):	YES		TIME	
	NO	Х		

Notes From Inspection:

Tested relief valve on P-1, Installed support brackets under both pressure relief valves.

Planned Action Items:

The new Alarm Agent unit has arrived. Walker will set up a time for Temp Press to come out and install And program the unit. This should eliminate the random watchdog alarm calls we have been getting .

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	X
#2 Panel Door:	X	X
#3 Vault Sump High Alarm:	X	X
#4 Containment Pipe Alarm:	X	Х
#5 High Wet Well Alarm:	X	X
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	X	Х
#9 Wet Well Level (Actual Measure Spoken):	*****	
#10 Flow Rate:	** ** **	

Date:

03/04/21

Time In: 0800

Time Out: 1300

Operator: Operator Signature

Weather:	Sunny, windy
Precipitation, Inches:	AM Flurries
Temperature, ºF:	28 F
Purpose for Visit:	Meet on site with Temp Press to install new Alarm Agent and Calibrate.

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2864758	GAL	0830
½" Sump Flow Meter Totalizer Reading:	1602581	GAL	0830
Flow Rate (during testing) P-1:	7.97	GPM	1230
Flow Rate (during testing) P-2:	7.57	GPM	1230
Pump Hour Meter Readings: Pump #1:	3776.4	HOURS	1230
Pump Hour Meter Readings: Pump #2:	3679.7	HOURS	1230
Wet Well Level: DTW	14'9"	FT	1230
Pressure Sensor Reading (Bar Graph) (during test):	37	PSI	1230

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	37	37	0
Bag Filter #2:	37	35	2
Carbon Vessel #1:	27	24	3
Carbon Vessel #2:	24	13	11

Changed Filter Bags (Check ✓ One):	YES	Х	TIME	1130
	NO			

Notes From Inspection:

Met on site with Temp Press to install the new Alarm Agent autodialer system. Site was secure on arrival After the new autodialer was installed, we triggered all alarms to test. All OK. Also copied the pumping Date from 3/1/21 to 3/4/21 in case we lose it when doing the change over on the website.

Discovered a cracked PVC fitting in the effluent piping from BF #to that piping apart and repaired that Leg of the system.

Secured site and set the system to Auto for the evening.

Planned Action Items:

I will check the performance of he new auto dialer for the next few says to make sure that it is recording Data and operating properly.

Recommended Actions to Prevent Future Problems:

We are expecting the arrival of a new totalizing flow meter for the sump in the vault in 3-4 weeks.

Other Relevant Information:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	Х	X
#2 Panel Door:	X	Х
#3 Vault Sump High Alarm:	X	Х
#4 Containment Pipe Alarm:	X	X
#5 High Wet Well Alarm:	X	Х
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:	X	X
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:		جن پنج مع

Mike Walker

Date: 03/23/21

Time In: 1100 Time Out: 1430

Operator: Maxwell Liffiton Operator Signature: Maywell http://

Weather:	Sunny
Precipitation, Inches:	0.0
Temperature, ºF:	55 F
Purpose for Visit:	Monthly inspection of site (March 2021)

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2889940	GAL	1100
½" Sump Flow Meter Totalizer Reading:	1612134	GAL	1100
Flow Rate (during testing) P-1:	6.9	GPM	1130
Flow Rate (during testing) P-2:	7.7	GPM	1130
Pump Hour Meter Readings: Pump #1:	38145	HOURS	1110
Pump Hour Meter Readings: Pump #2:	37063	HOURS	1110
Wet Well Level:	15 ft 8.5 in	FT	1110
Pressure Sensor Reading (Bar Graph) (during test):	42 / *27.2	P\$I	1130

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	41 / *26	40 / *25	1/*1
Bag Filter #2:	40 / *25	39 / *23	1/*2
Carbon Vessel #1:	31 / *16	28 / *13	3 / *3
Carbon Vessel #2:	28/*13	10 / *12	18 / *1

Changed Filter Bags (Check ✓ One):	YES	✓	TIME	1120
	NO			

Notes from Inspection: The Pump #1 pressure release valve is leaking below design pressure. Leaks were observed at 30 PSI and 40 PSI. This causes a portion of the pump discharge to be recycled to the sump area. The valve will need to be recalibrated or replaced.

A backwash operation was performed on both carbon vessels. Both bag filters were replaced. After the backwash operation, the pressure differential of carbon vessel #2 greatly decreased.

Planned Action Items:

The Pump #1 pressure release valve will be sent for calibration.

Recommended Actions to Prevent Future Problems: Bring a clean glass jar to aid in visually checking for solids in backwash flow.

Other Relevant Information:

Values marked with a * indicate readings taken after backwash and filter change procedures.

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:		✓
#2 Panel Door:	✓	
#3 Vault Sump High Alarm:	1	✓
#4 Containment Pipe Alarm:	1	1
#5 High Wet Well Alarm:	 ✓ 	~
#6 Pump #1 Fail (Yes/No):	No	No
#7 Pump # 2 Fall (Yes/No):	No	No
#8 Bag Filter Differential Pressure High Alarm:	✓	✓
#9 Wet Well Level (Actual Measure Spoken):		
#10 Flow Rate:	0.0	7.79

Maywell jufter

Date: 5-13-2(

Time In: $0 \notin 0$ Time Out: 1600

Operator: M. LOALFER Operator Signature

Operator Signature Weather: Survey

Treatitett	JUNNU						
Precipitation, Inches:	0 (
Temperature, ºF:	52F	1					
Purpose for Visit:	MONTHLY	IN-SO ECTION	For MALL 20	21 +	INSTALL	when Surg	Flasnetzz
	1					Ū-	

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2933058	GAL	0900
1/2" Sump Flow Meter Totalizer Reading: NEW WITH INTALLE	000	GAL	0900
Flow Rate (during testing) P-1:	8.19	GPM	11:10
Flow Rate (during testing) P-2:	7,98	GPM	11:10
Pump Hour Meter Readings: Pump #1:	3861.2	HOURS	0900
Pump Hour Meter Readings: Pump #2:	3755.4	HOURS	0900
Wet Well Level:	22	FT	0900
Pressure Sensor Reading (Bar Graph) (during test):	31	PSI	1100

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	30	29	
Bag Filter #2:	29	29'	
Carbon Vessel #1:	18	15	
Carbon Vessel #2:	17	14	

Changed Filter Bags (Check ✓ One):	YES	X	TIME	11:00
	NO			

Notes From Inspe	
ARRIVED ON	site @0830, site was laded AND Second, No damage
TO CAR CAL	Equipment Evident.
Mat onsita	6 Juith Joseny K FROM TEMPPRESS INC. TO INSTAll the
NEW Flow 1	15/50 FOR the worth somp. ALSO Pratines the MONTHLY
	on May 2021. CHANGED F. Its BASS CHANGED RECORDON CHART
TESTED System	
Sarson,	1

.

Planned Action Items: 🧭	
1	
Recommended Actions to Prevent Future Problems:	

Other Rele	evant Info	orma	tion:	BUSHE	5 4	BRUSH	GROWING	the	PERINETCH	VENE	
will	LUCED	to	cut	BACK	1		ц.				

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure	
#1 Vault Door:	~	V	
#2 Panel Door:	V		
#3 Vault Sump High Alarm:	V	1	
#4 Containment Pipe Alarm:	V,	V	
#5 High Wet Well Alarm:		V	
#6 Pump #1 Fail (Yes/No):	NO	NO	
#7 Pump # 2 Fail (Yes/No):	NO	NO	
#8 Bag Filter Differential Pressure High Alarm:			
#9 Wet Well Level (Actual Measure Spoken):	~	-	
#10 Flow Rate:	-	1	

Date: 5-13-2(

Time In: (160) Time Out: (60)

Operator: M. WALKER Operator Signature A A A CLORD

Weather:	SUNNU
Precipitation, Inches:	0 (
Temperature, ^o F:	52F
Purpose for Visit:	MONTHLY INSPECTION FOR MAN 2021 + INSTALL NEW SUNg FI

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2933058	GAL	0900
1/2" Sump Flow Meter Totalizer Reading: NEW WITH WITH WATH	000	GAL	0900
Flow Rate (during testing) P-1:	8.19	GPM	11:10
Flow Rate (during testing) P-2:	7,98	GPM	11:10
Pump Hour Meter Readings: Pump #1:	3861.2	HOURS	0900
Pump Hour Meter Readings: Pump #2:	3755.4	HOURS	0900
Wet Well Level:	22	FT	0900
Pressure Sensor Reading (Bar Graph) (during test):	31	PSI	1100

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	30	29	
Bag Filter #2:	29	29'	
Carbon Vessel #1:	18	15	
Carbon Vessel #2:	115	14	

Changed Filter Bags (Check ✓ One):	YES	X	TIME	11:00
	NO			

Notes From I		
ARRIVED	Maita @0830, sita was laded AND Second, NO.	dauage
TO CAD O	on Frienduct Evident.	
Mat ous	its bruith Joseny K FROM TENPPRESS INC. TO INSTA	11 the
	- ustar For the valit sump. ALSO Pratounes the House	
	, for may 2021. CHANGED F. Its BASS, CHANGED RECOLDER O	
TESTED SUS		
SERSON		

Planned Action Items:	
Recommended Actions to Prevent Future Problems:	
Recommended Actions to Prevent Future Problems:	
Recommended Actions to Prevent Future Problems:	

Other Rel	Other Relevant Information:	BUSHES	4	BRUSH	Geowing	the	PERINETON	VENCE		
w,ll	LUCED	to	cut	BACK .	NEXT	HON	4.			

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	~	V
#2 Panel Door:	V	V
#3 Vault Sump High Alarm:	V	1
#4 Containment Pipe Alarm:	V,	V
#5 High Wet Well Alarm:		V
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:		
#9 Wet Well Level (Actual Measure Spoken):	~	-
#10 Flow Rate:	-	1

Ullip

Date: 5-18-21 Time In: 8830 Time Out: 1(3D

Operator: MILE WALKER Operator Signature 0,001100

Y wry			
0			
76°F			/
TROUBLESHONT	REHDOUT ON	SUNP	Flaw Mistic
-	0 76°F	0 76°F	0 76°F

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2937321	GAL	Q 15
½" Sump Flow Meter Totalizer Reading:	3329.0	GAL	915
Flow Rate (during testing) P-1:	8:02	GPM	0930
Flow Rate (during testing) P-2:		GPM	0930
Pump Hour Meter Readings: Pump #1:	38654	HOURS	0915
Pump Hour Meter Readings: Pump #2:	37597	HOURS	0920
Wet Well Level:	22	FT	0915
Pressure Sensor Reading (Bar Graph) (during test):	27	PSI	0930

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	27	25	
Bag Filter #2:	25	25	•
Carbon Vessel #1:		م ا	
Carbon Vessel #2:	13	টে	

Changed Filter Bags (Check ✓ One):	YES		TIME
·····	NO	Ý	

Notes From Inspection: WALKOL ONDITE TO MIST WITH TEMP PLESS to
TROUBLE SHOOT THE VALIT SLOW & FLOWS METER - THE LOCAL READ GET WAS
Furthering But it was not communitating with the substitute.
Functioning But it uses not communication with the putediater.
NAS UZSCHOTTE.
Subcontraction Colleb TIELU Suggest and RE WINED + RESET the
Mutants was it seems OK,
I checked hat system pressures + preformance - All ok

anned Action Items:	6	 	 	
······································	7	 		

(
	· · · · · · · · · · · · · · · · · · ·

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	v	V
#2 Panel Door:	/	/
#3 Vault Sump High Alarm:	V	~
#4 Containment Pipe Alarm:	V	~
#5 High Wet Well Alarm:		
#6 Pump #1 Fall (Yes/No):	NOJ	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:		/
#9 Wet Well Level (Actual Measure Spoken):	^	
#10 Flow Rate:	<u> </u>	

Jublewith

Date: 6-17-21

Time In: 0900

Time Out: 1300

Operator: MWMMM Operator Signature

Weather:69° ClaudyPrecipitation, Inches:0Temperature, ºF:69 FPurpose for Visit:Wa write In

Ullerfet

Monsilved Inst Jars Jost

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	295366 2	GAL	0930
½" Sump Flow Meter Totalizer Reading:	15 655	GAL	0930
Flow Rate (during testing) P-1:	Q.14	GPM	10:45
Flow Rate (during testing) P-2:	785	GPM	10:45
Pump Hour Meter Readings: Pump #1:	3882.1	HOURS	0930
Pump Hour Meter Readings: Pump #2:	3777.2	HOURS	0930
Wet Well Level:	22	FT	0930
Pressure Sensor Reading (Bar Graph) (during test):	32	PSI	10:30

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	31	30	N .
Bag Filter #2:	30	la	
Carbon Vessel #1:	19	15	Y
Carbon Vessel #2:	15	N	۱. `

Changed Filter Bags (Check ✓ One):	YES	X	TIME	10:30
	NO	1	-	

Notes From Inspection: Site was Secure upon Apenne, the gates Locked. No sige of Dange on pandalism. Psetomial plantily inspection includings: CHANGE CHART in Peronoal, Change Film Bags, Tiester Supplungs - ok. I gale chack on system - ok GRASS cause on cap is 18" The family of for now prosent at site. All system's chack ok.

-	•	
anned Action Items:		
l		

Recommended Actions to Prevent Future Problems: 💋			
	1		
Other Relevant Information:			

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	V	
#2 Panel Door:	V	V.
#3 Vault Sump High Alarm:	~	
#4 Containment Pipe Alarm:		
#5 High Wet Well Alarm:		
#6 Pump #1 Fail (Yes/No):	NO	NO
#7 Pump # 2 Fail (Yes/No):	NO	NO
#8 Bag Filter Differential Pressure High Alarm:		
#9 Wet Well Level (Actual Measure Spoken):	5	-
#10 Flow Rate:	-	-

Chillstude

Date: 7-14-2(Time In:	11:30,44	Time Out: 330	
Operator: Wike Wilken Operator Signature	120			
Weather:	Pratly CI.	undy		
Precipitation, Inches:	1" ONER	NIGHT		

۴

81"

Temperature, ºF:

Purpose for Visit: MONTHLY INSPECTION For July 2021				
Pre-Treatment Process Information	Reading	Units	Time	
1" Final Discharge Flow Meter Totalizer Reading:	2961722	GAL	12:15	
½" Sump Flow Meter Totalizer Reading:	20785	GAL	12:15	
Flow Rate (during testing) P-1:	8.08	GPM	12:55	
Flow Rate (during testing) P-2:	7.95	GPM	1:10	
Pump Hour Meter Readings: Pump #1:	3890.4	HOURS	12:15	
Pump Hour Meter Readings: Pump #2:	3785.7	HOURS	12:15	
Wet Well Level:	٢٦'	FT	12:15	
Pressure Sensor Reading (Bar Graph) (during test):	31.9	PSI	12:55	

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	31	30	
Bag Filter #2:	30	28	2
Carbon Vessel #1:	19	15	4
Carbon Vessel #2:	15	14	· · · · ·

Changed Filter Bags (Check ✓ One):	YES	X	TIME	12:45
	NO			

Notes From Inspec	tion:
Ste LookeD	+ SECOLE WOON ADDIVAL ALL GATES LOCKED + WELLS STANDE.
Retrues ino	NTULY IN SAFETION of WITCH TREATMENT System. Changed ADER, CHANGES FILTER DASS, TESTED System For LEAKS - OK.
CHART IN DECO	ADER CHANGES Filton bacs, TESTED System For Laks - ok.
TESTED SULL	PUMPS-OK.
GEONDED	Deta Decré Site LEFT.
	· /
-,	

	¢	
Planned Action Ite	ms: X	
ecommended Ac	ions to Prevent Future Problems:	5
ecommended Ac	ions to Prevent Future Problems:	\$
ecommended Ac	ions to Prevent Future Problems:	\$
ecommended Ac	ions to Prevent Future Problems:	\$
ecommended Ac	ions to Prevent Future Problems:	\$
ecommended Ac	· · · · · · · · · · · · · · · · · · ·	\$

V	$\overline{}$
	\sim
V	
	\sim
NO.	NO
NO	ND,
	$\overline{}$
	\sim
	~
	V V V V V V V V V V V V V V V V V V V

Walker

Date: 08/18/21

Time In: 1:00 p Time Out: 5:00p

Operator: Mike Walker Operator Signature:

Weather:	Rain
Precipitation, Inches:	0.25″
Temperature, ºF:	74 F
Purpose for Visit:	Monthly Inspection- August 2021

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2,989,849	GAL	1:30
½" Sump Flow Meter Totalizer Reading:	42,898	GAL	1:30
Flow Rate (during testing) P-1:	7.95	GPM	4:00
Flow Rate (during testing) P-2:	7.62	GPM	4:00
Pump Hour Meter Readings: Pump #1:	3918.9	HOURS	1:30
Pump Hour Meter Readings: Pump #2:	3875.8	HOURS	1:30
Wet Well Level:	< 2'	FT	1:30
Pressure Sensor Reading (Bar Graph) (during test):	31	PSI	4:15

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	30	30	0
Bag Filter #2:	30	28	2
Carbon Vessel #1:	19	14	5
Carbon Vessel #2:	14	12	2

Changed Filter Bags (Check ✓ One):	YES	Х	TIME	3:30
	NO			

Notes From Inspection: Site was secure upon arrival. Not evidence of any damage to the System or Equipment from either vandals or animals.

Performed monthly inspection tasks including, changed chart on recorder, changed filter bags,

Tested sump pumps for alternating operation (OK). Tested level alarms (OK). Bled the lines to the digital Pressure gauge. Installed new seals on the bag filter rings.

The landscape crew had been onsite to mow the grass cover on the cap, it looks good. No evidence of Any varmint burrows.

Planned Action Items: none

Recommended Actions to Prevent Future Problems:

Other Relevant Information: May need to cut down some of the growth along the lakeside fenceline this fall.

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	X	X
#2 Panel Door:	X	Х
#3 Vault Sump High Alarm:	X	X
#4 Containment Pipe Alarm:	X	X
#5 High Wet Well Alarm:	X	X
#6 Pump #1 Fail (Yes/No):	No	NO
#7 Pump # 2 Fail (Yes/No):	No	NO
#8 Bag Filter Differential Pressure High Alarm:	X	X
#9 Wet Well Level (Actual Measure Spoken):	ten bei ve	4.14.14.14
#10 Flow Rate:	X	X

Date: 9/15/21

Time In: 1045 Time Out: 1400

Operator: Mike Walker / Max Liffiton

ator Signature: Mar	Typto
Weather:	Cloudy
Precipitation, Inches:	0.0
Temperature, ºF:	69 F
Purpose for Visit:	Monthly inspection of site, semiannual inspection and sample event
	(September 2021)

Pre-Treatment Process Information	Reading	Units	Time
1" Final Discharge Flow Meter Totalizer Reading:	2999489	GAL	1100
½" Sump Flow Meter Totalizer Reading:	50711	GAL	1100
Flow Rate (during testing) P-1:	7.56	GPM	1530
Flow Rate (during testing) P-2:	7.81	GPM	1530
Pump Hour Meter Readings: Pump #1:	3928.4	HOURS	1110
Pump Hour Meter Readings: Pump #2:	3828.2	HOURS	1110
Wet Weil Level:	15 ft 11.5 in	FT	1110
Pressure Sensor Reading (Bar Graph) (during test):	42	PSI	1140

	Influent Gauge, PSI	Effluent Gauge, PSI	Differential
Bag Filter #1:	42	36	6
Bag Filter #2:	36	28	8
Carbon Vessel #1:	18	12	6
Carbon Vessel #2:	12	12	0

Changed Filter Bags (Check ✓ One):	YES	_ ✓	TIME	1600
	NO			

Notes from Inspection: Arrived on site at 1045. Site was secure, all gates and panels locked, no evidence Of damage to anything. Set up to sample influent water and treated water. Began sampling at 1133. Samples were taken every 20 minutes until complete at 1300. Performed semi annual site inspection and documentation. Changed bag filters and the chart in the recorder, tested pressures and level alarms, tested sumps.

Planned Action Items:

Recommended Actions to Prevent Future Problems:

Other Relevant Information:

SYSTEM CHECK LIST (Check ✓ if OK)	Arrival	Departure
#1 Vault Door:	✓	✓
#2 Panel Door:		✓
#3 Vault Sump High Alarm:	✓	✓
#4 Containment Pipe Alarm:		✓
#5 High Wet Well Alarm:	✓	✓
#6 Pump #1 Fail (Yes/No):	No	No
#7 Pump # 2 Fail (Yes/No):	No	No
#8 Bag Filter Differential Pressure High Alarm:		 ✓
#9 Wet Well Level (Actual Measure Spoken):	****	······
#10 Flow Rate:	0.0	7.56`

.