DuPont Corporate Remediation Group Buffalo Avenue & 26th Street Building 35 Niagara Falls, NY 14302 (716) 278-5100

June 19, 2009

Ms. Gloria Sosa Western New York Remediation Section New York Remediation Branch Emergency and Remediation Response Division U.S. EPA – Region II 290 Broadway, 20th Floor New York, NY 10007-1866

Dear Ms. Sosa:

NECCO PARK 2008 ANNUAL REPORT

Enclosed are four copies of the *Remedial Action Post-Construction Monitoring 2008 Annual Report* for the DuPont Necco Park Hydraulic Controls System (HCS), Groundwater Treatment Facility (GWTF), and landfill cap.

This fourth annual report for the Necco Park Remedy has been prepared pursuant to Administrative Order (AO) Index No. II CERCLA-98-0215 dated September 28, 1998, issued by United States Environmental Protection Agency (USEPA). This report describes hydraulic and chemistry monitoring conducted in 2008 as required by the *Long-Term Groundwater Monitoring Plan*, dated April 2005 for the DuPont Necco Park Site located in Niagara Falls, New York.

Construction and start-up of the HCS and GWTF was substantially complete on April 5, 2005. Thereafter, the systems have been operated in accordance with the Operations and Maintenance Plan (O&M Plan). System operation uptime for 2008 was 84.0 %. Most of the downtime occurred in August and September and is attributed primarily to hydraulic testing of newly installed recovery well RW-11. Improved hydraulic control in the upper bedrock in the western portion of the site began in 4Q08 when new B/C-Zone pumping well RW-11 was put into operation. Well RW-11 was installed to replace recovery well RW-10 that exhibited diminished hydraulic efficiency soon after startup in 2005.

Approximately 512 gallons of DNAPL was recovered in 2008. This Annual Report provides a detailed evaluation of system operation with respect to the Performance Standards presented in the Necco Park Statement of Work (SOW).

Please call me at (716) 278-5496 if you have any questions or comments regarding this submittal.

Sincerely,

CORPORATE REMEDIATION GROUP

Paul F. Mazierski Project Director

PFM/mac Enc. S:\URS\NECCO LONG-TERM MON - 7537\2008 Annual Report\2008 cvr ltr.doc cc: J. Kaczor/Earth Tech, M. Hinton/NYSDEC

REMEDIAL ACTION POST-CONSTRUCTION MONITORING 2008 ANNUAL REPORT DUPONT NECCO PARK NIAGARA FALLS, NY

Date: June 19, 2009

Project No.: 507537 18985651.09002

CORPORATE REMEDIATION GROUP An Alliance between DuPont and URS Diamond

> Barley Mill Plaza, Building 19 Wilmington, Delaware 19805

TABLE OF CONTENTS

Exec	cutive	Summary	V
1.0	Proj	ect Description	1
	1.1	Site Background	1
	1.2	Source Area Remedial Action Documentation and Reporting	1
2.0	HCS	S Operations Summary	2
	2.1	Operational Summary	2
	2.2	GWTF Process Sampling	3
	2.3	Process Sampling Summary	4
	2.4	Recovery Well RW-5 Rehabilitation	4
	2.5	Recovery Well RW-10 Replacement	4
3.0	HCS	S Performance	6
	3.1	Hydraulic Head Monitoring	6
	3.2	Hydraulic Control Assessment	6
		3.2.1 AT-Zone and A-Zone	6
		3.2.2 B and C Bedrock Water-Bearing Zones	8
		3.2.3 D, E and F Bedrock Water-Bearing Zones	9
	3.3	Groundwater Chemistry Monitoring	9
		3.3.1 Background	9
		3.3.2 Discussion of Results	.10
		3.3.3 Sample Collection and Analysis	.12
		3.3.4 A-Zone	.14
		3.3.5 B/C-Zone	.14
		3.3.6 D/E/F-Zone	.15
		3.3.7 G-Zone	.16
	3.4	Data Quality Control/Quality Assurance	.16
		3.4.1 Sample Collection	.16
		3.4.2 Independent Data Validation	.18
	3.5	Groundwater Chemistry Trends	.19
	3.6	Monitoring Natural Attenuation (MNA) Assessment	.21
		3.6.1 MNA Background	.21
		3.6.2 B/C Zone Results	.22
		3.6.3 D/E/F-Zone Results	.23
		3.6.4 MNA Recommendations	.25
	3.7	DNAPL Monitoring and Recovery	.26
	3.8	Previous Report Recommendations	.26
4.0	Cap	Maintenance	.28
5.0	Con	clusions and Recommendations	.29
-	5.1	Hydraulic Control Effectiveness	.29
		-	

		5.1.1	Conclusions	
		5.1.2	Recommendations	
	5.2	Groun	dwater Chemistry Monitoring	
		5.2.1	Conclusions	
		5.2.2	Recommendations	
	5.3	Monite	ored Natural Attenuation Assessment	
		5.3.1	Conclusions	
		5.3.2	Recommendations	
	5.4	DNAF	PL Monitoring and Recovery	
		5.4.1	Conclusions	
		5.4.2	Recommendations	
	5.5	Landfi	ill Cap	
		5.5.1	Conclusions and Recommendations	
6.0	Refe	erences.		

TABLES

Table 2-1	HCS Recovery Well Performance Summary
Table 2-2	2008 GWTF Process Sampling Results
Table 3-1	Hydraulic Monitoring Locations
Table 3-2	Select AT-Zone HCS Post-Startup Drawdowns
Table 3-3	Select A-Zone HCS Post-Startup Drawdowns
Table 3-4	Typical AT-Zone to A-Zone Vertical Gradients
Table 3-5	Typical A-Zone to B-Zone Vertical Gradients
Table 3-6	Select B-Zone HCS Post-Startup Drawdowns
Table 3-7	Select C-Zone HCS Post-Startup Drawdowns
Table 3-8	Select D/E/F-Zone HCS Post-Startup Drawdowns
Table 3-9	DNAPL Components and Solubility Criteria Values
Table 3-10	Effective Solubility Exceedances for DNAPL Compounds
Table 3-11	One Percent of Pure-Phase Solubility Exceedances for DNAPL Compounds
Table 3-12	Chemical Monitoring Locations
Table 3-13	Indicator Parameter List
Table 3-14	Monitored Natural Attenuation Parameters
Table 3-15	Summary of MNA Results in B/C-Zone Wells
Table 3-16	Summary of MNA Results in D/E/F-Zone Wells
Table 3-17	2008 DNAPL Recovery Summary

FIGURES

- Figure 1-1 Site Location Map
- Figure 2-1 BFBT Location Map
- Figure 3-1 Monitoring Well and Piezometer Locations
- Figure 3-2 Select AT-Zone Monitoring Wells: Groundwater Elevations 1Q05 1Q09
- Figure 3-3 Select A-Zone Monitoring Wells: Groundwater Elevations 1Q05 1Q09
- Figure 3-4 Select B-Zone Monitoring Wells: Groundwater Elevations 1Q05 1Q09
- Figure 3-5 Select C-Zone Monitoring Wells: Groundwater Elevations 1Q05 1Q09
- Figure 3-6 Select D-Zone Monitoring Wells: Groundwater Elevations 1Q05 1Q09
- Figure 3-7 Select E-Zone Monitoring Wells: Groundwater Elevations 1Q05 1Q09
- Figure 3-8 Select F-Zone Monitoring Wells: Groundwater Elevations 1Q05 1Q09
- Figure 3-9 Potentiometric Surface Map: AT-Zone, November 13, 2008
- Figure 3-10 Potentiometric Surface Map: A-Zone, November 13, 2008
- Figure 3-11 Drawdown Contour Map: AT-Zone
- Figure 3-12 Drawdown Contour Map: A-Zone
- Figure 3-13 AT-Zone to A-Zone Vertical Gradients, November 13, 2008
- Figure 3-14 A-Zone to B-Zone Vertical Gradients, November 13, 2008
- Figure 3-15 Potentiometric Surface Map: B-Zone, November 13, 2008
- Figure 3-16 Potentiometric Surface Map: C-Zone, November 13, 2008
- Figure 3-17 Potentiometric Surface Map: D-Zone, November 13, 2008
- Figure 3-18 Potentiometric Surface Map: E-Zone, November 13, 2008
- Figure 3-19 Potentiometric Surface Map: F-Zone, November 13, 2008
- Figure 3-20 Potentiometric Surface Map: A-Zone, February 19, 2009
- Figure 3-21 Potentiometric Surface Map: B-Zone, February 19, 2009
- Figure 3-22 Potentiometric Surface Map: C-Zone, February 19, 2009
- Figure 3-23 Effect of Different Transmissivities

APPENDICES

- Appendix A 2008 Semi-Annual Groundwater Sampling & Recovery Well Results
- Appendix B Recovery Well RW-10 Replacement
- Appendix C Data Validation Summary Laboratory Reports
- Appendix D TVOC Trend Plots
- Appendix E Chlorinated Ethenes & Ethene
- Appendix F 2008 Well Installation and Closure Logs
- Appendix G Landfill Cap Inspection Results

EXECUTIVE SUMMARY

This fourth Annual Report for the Necco Park Remedial Action has been prepared pursuant to Administrative Order (AO) Index No. II Comprehensive Environmental Response, Compensation and Liability Act (Superfund) (CERCLA)-98-0215 dated September 28, 1998, and issued by United States Environmental Protection Agency (USEPA). This report describes hydraulic and chemistry monitoring conducted in 2008 as required by the *Long-Term Groundwater Monitoring Plan*, dated April 2005 for the DuPont Necco Park Site located in Niagara Falls, New York.

The Necco Park Remedial Action consists of an upgraded cap over the landfill and a groundwater hydraulic control system (HCS). The HCS includes a network of five groundwater pumping wells and a groundwater treatment facility (GWTF). Construction and startup of the HCS and GWTF was substantially complete on April 5, 2005. Thereafter, the systems have been operated in accordance with the Operations and Maintenance Plan (O&M Plan). System operation uptime for 2008 was 84%. Discounting scheduled maintenance shutdowns, system uptime for 2008 was 85.4%. Summaries of system operations and hydraulic head data have been provided to the USEPA and the New York State Department of Environmental Conservation (NYSDEC) previously in the 2008 Quarterly Data Packages. This Annual Report provides a detailed evaluation of system effectiveness with respect to the Performance Standards presented in the Necco Park Statement of Work (SOW).

Hydraulic monitoring data from 2008 show that overall the HCS has maintained hydraulic control of the source area. Improved hydraulic control in the upper bedrock in the western portion of the site began in 4Q08 when new B/C-Zone pumping well RW-11 was put into operation. Well RW-11 was installed to replace recovery well RW-10 which had exhibited diminished hydraulic efficiency soon after startup in 2005. Well RW-11 includes a 170 ft section of blast fractured bedrock trench (BFBT) in the B-Zone and a bedrock open hole in the C-Zone.

In accordance with the Long-Term Groundwater Monitoring Plan (LGMP), annual groundwater sampling began in 2008 after three years of biannual sampling. Groundwater sampling results from 2008 continue to show an overall decrease in concentrations of total volatile organic compounds (TVOCs) for all flow zones compared to historical results. The 2008 results indicate:

- □ With the exception of two source area limit wells, TVOC concentrations for the A-Zone were below 10 µg/l
- □ TVOC concentrations at key source area limit wells, such as 150B and 172B, continue to decline
- □ Similar decreasing or stable TVOC concentrations are apparent in the deeper bedrock zones and at key source area limit wells such as 146E

The 2008 results were compared to the zone-specific source area limits provided in the 100% design submittal for overburden and bedrock hydraulic controls. Compared to the first year of long term monitoring in 2005, the 2008 results for the respective

groundwater flow zones indicate a general reduction in the number of wells where solubility criteria (1% of pure-phase and effective) are met. Groundwater chemistry results compiled since the HCS has been operational indicate declining TVOC trends at many of the monitoring locations and support modifications to chemical monitoring program starting in 2010.

Hydraulic monitoring completed in 4Q08 indicates operation of new recovery well RW-11 has greatly enhanced the hydraulic control of the A-Zone and C-Zone in the west portion of the site. Results from continued monitoring are expected to show enhanced control of the B-Zone. Continued efforts will be made in 2009 to improve the hydraulic efficiency of recovery well RW-5 including evaluations to improve the long-term groundwater recovery at this location.

Results of the 2008 monitored natural attenuation (MNA) evaluation are consistent with the long term monitoring and previous findings indicating natural attenuation of site constituents is occurring under anaerobic degradation processes. Concentrations of site constituents have decreased in the majority of downgradient wells monitoring the B-through F-Zones. The presence of biochemical reaction products and microbial populations capable of degrading site constituents confirms MNA is providing beneficial groundwater remediation. Sampling for natural attenuation parameters (groundwater geochemistry and COC's) will be continued at the frequency described in the LGMP with the last year of assessment in 2009. Results of the MNA evaluation support discontinuing monitoring of some downgradient and sidegradient wells where contamination is not present or just marginally above detection limits.

Approximately 512 gallons of dense nonaqueous-phase liquid (DNAPL) was recovered in 2008. All of the DNAPL was recovered from B/C-Zone Recovery Well RW-5. Routine monitoring completed in 2008 show that DNAPL was only observed at well RW-5. A total of 8,335 gallons of DNAPL has been removed since initiation of the recovery program in 1989.

1.0 PROJECT DESCRIPTION

1.1 Site Background

The DuPont Necco Park site is located approximately 1.5 miles north of the Niagara River in a predominantly industrial area of Niagara Falls, New York (see Figure 1-1). Necco Park is a 24-acre inactive industrial waste disposal site. Detailed site background including operational history, regulatory background, and site geology and hydrogeology are provided in numerous site documents including the previous Annual Reports.

1.2 Source Area Remedial Action Documentation and Reporting

The approved remedy includes construction of the Overburden and Bedrock Source Area Hydraulic Controls and the Landfill Cap Upgrade. Completion of the remedy and compliance with the Performance Standards described in the SOW are documented in the Remedial Action Report (RAR). This 2008 Annual Report presents hydraulic and chemical monitoring results from the third complete year of operation of the hydraulic controls. In addition, the Annual Report includes historical groundwater chemistry results for assessment of trends in groundwater quality.

The following documents are applicable to the Necco Park long-term monitoring program and this report:

- □ Long-Term Groundwater Monitoring Plan (LGMP)
- **Cap Maintenance and Monitoring Plan (CMMP)**
- □ Sampling, Analysis, and Monitoring Plan (SAMP)
- □ Quality Assurance Project Plan (QAPP)
- DNAPL Monitoring and Recovery Plan
- □ Necco Park Source Area Report

With the exception of the Necco Park Source Area Report, these documents are included in the Necco Park Operations & Maintenance (O&M) Plan [DuPont Corporate Remediation Group (CRG), 2005]. The draft O&M Plan was submitted to USEPA in April 2005. A revised plan, which addresses Agency comments on the April 2005 submittal, was sent to USEPA and NYSDEC in November 2005. DuPont responded to additional EPA comments on the O&M Plan in September 2006. USEPA approved the O&M Plan on September 19, 2007. The Necco Park Source Area Report was submitted to the USEPA and NYSDEC in April 2001.

2.0 HCS OPERATIONS SUMMARY

The O&M Manual for the hydraulic control system (HCS) is provided as Appendix C in the O&M Plan. The O&M Manual has been prepared in accordance with DuPont Process Safety Management (PSM) guidelines and includes a technology description and standard operating procedures for the groundwater recovery and treatment system. The groundwater O&M Manual, in conjunction with vendor O&M Manuals, describes normal operation and shutdown procedures, emergency shutdown procedures, alarm conditions, and trouble-shooting and preventative maintenance procedures for the treatment system and hydraulic controls.

2.1 Operational Summary

Operational information for the HCS is provided in the 2008 Quarterly Data Packages (DuPont CRG 2009, 2008, 2008a, 2008b). A summary of system operations for 2008 follows:

	HCS Uptime (%)	HCS Uptime [excluding scheduled maintenance downtime] (%)	Groundwater Treated (Gallons)	DNAPL Removed (Gallons)
1Q08	92.6	93.5	2,761674	65
2Q08	95.9	95.9	2,902,261	279
3Q08	77.2	80.0	3,112,202	124
4QQ8	70.3	72.2	3,468,710	44
2008 Total	84.0	85.4	12,244,847	512

A summary of monthly groundwater quantities and uptime for each recovery well is provided in Table 2-1.

The HCS remained fully operational throughout 2008, averaging 84% total system uptime through December 31, 2008. The groundwater treatment facility (GWTF) downtime has been minimized by continuously monitoring operating conditions and implementing mechanical and procedural changes to the process equipment and the Honeywell Experion[™] PKS operating system. Excluding downtime incurred due to planned maintenance, total system uptime for 2008 was 85.4%.

HCS downtime was a result of unexpected mechanical and process-related malfunctions, scheduled maintenance, power failures, and hydraulic testing of new B/C-Zone recovery well RW-11. The following table summarizes HCS downtime in 2008:

Reason	Contributing Downtime %	Comments
Process Component Malfunction	14%	Unexpected process-related downtime as a result of mechanical component failure.
Scheduled Maintenance shutdowns and system upgrades/inspections	1.4%	Routine inspections, interlock verification, preventative maintenance, pump test, and mechanical upgrades to process-related infrastructure.
Power service disruption	0.6%	Primarily due to inclement weather

Scheduled maintenance shutdowns are based on operating conditions and the necessity to take corrective or preventative action to mitigate the need for future, larger scale maintenance. These shutdowns occur routinely to inspect, repair, and/or upgrade process-related components to ensure long-term operational success. Efforts to minimize downtime during planned maintenance shutdowns are employed. Influent tank capacity is utilized while maintenance occurs to minimize recovery well downtime. System enhancements and inspections to the GWTF contributing to operational downtime were primarily associated with the scheduled annual maintenance shutdown. The shutdown, completed from December 17th to December 19th, included cleaning of effluent lines, process-related lines, air strippers, and tanks. In addition to these measures, all pumps and process-related infrastructure were inspected and maintained as necessary.

Downtime associated with 3Q08 was attributed primarily to the hydraulic testing of the newly installed recovery well RW-11. Downtime during 4Q08 occurred mostly in December and was attributed to equipment malfunctions and failures associated with RW-5 in addition to the scheduled maintenance shut down. Additionally, the entire system was not operational from December 28th through December 30th due to a failure of the process control system module.

2.2 GWTF Process Sampling

In accordance with the SAMP, quarterly process sampling is conducted to assess the effectiveness of the treatment system in removing volatile organic compounds (VOCs) from groundwater. Two influent samples (one from the B/C-Zone influent tank and one from the D/E/F-Zone influent tank) are collected. One effluent sample is collected from the combined effluent tank. The samples are analyzed for VOCs, semi-volatile organic compounds (SVOCs), total barium, dissolved barium, and sulfate. A summary of results for the process sampling conducted in 2008 is provided in Table 2-2.

In addition to the quarterly process sampling, groundwater samples were collected from four of the five recovery wells in August 2008. The results were originally submitted in the 3Q08 Quarterly Data Package and are also included in Appendix A of this report. Well RW-10 was not operating at the time of the recovery well sampling event therefore a sample was not completed at this location. Groundwater samples were collected from new replacement well RW-11 during the pumping tests. Results for those samples are provided in Appendix B.

2.3 Process Sampling Summary

A Significant Industrial User (SIU) permit with the Niagara Falls publicly-owned treatment works (POTW) regulates the treated groundwater effluent discharged from the site. Quarterly sampling conducted at the permitted discharge point (MS#1) demonstrates that the GWTF is operating as designed. The Wastewater Discharge Permit (Permit No. 64) is due to expire on May 1, 2009. A required application and applicable documentation will be submitted to Niagara Falls POTW by April 3, 2009.

Throughout 2008, the GWTF remained in compliance and is in good standing with the Niagara Falls POTW regarding the Wastewater Discharge Permit (SIU #64), with the exception of a daily maximum exceedance for hexachlorobutadiene and an annual average exceedance of hexachloroethane in 3Q08. Calculated loading for hexachlorobutadiene and hexachloroethane exceeded the daily maximum and annual average limits, respectively, for the 3Q08 sample collected on June 10, 2008. In accordance with our discharge permit, two additional samples were collected (September 4th and 5th) and reported in the 4Q08 report. The additional sampling results for hexachlorobutadiene indicate that the current daily maximum limit for this compound is adequate. However, an increase in the annual average maximum limit for hexachloroethane from the current 0.015 lb/day up to 0.025 lb/day was requested.

Subsequent correspondence with the Niagara Falls POTW indicated that the anomalous sample for hexachloroethane (3Q08) be removed from the calculated annual average versus raising the annual average limit for that compound.

2.4 Recovery Well RW-5 Rehabilitation

Recovery well RW-5 was not operational from March 18th to March 21st and November 1st to November 7th due to scheduled well rehabilitation. The bottom of the open-hole well was cleaned of sediment via air lifting methods. Using a drill rig and length of drill rod fitted with ½-inch diameter steel cable secured perpendicular to the drill rod, the open rock hole portion of the well was then scrubbed by rotating the drill string. Scrubbing of the rock hole was concentrated on the depth of the water-bearing fractures. After the well scrubbing, solids were removed from the well using air lift methods. Additionally, 32% HCL was added to the well as part of the cleaning process. After a period of short-term well yield increase for both cleaning events, well yield returned to pre-cleaning levels. Subsequent well fouling has continued and further analysis to alleviate the problem will be completed in 2009. Following the March well cleaning, modifications were made to the overhead electrical service at well RW-5 so that future well cleaning can be completed without extended periods of electrical outage.

2.5 Recovery Well RW-10 Replacement

As discussed in the previous Annual Reports, hydraulic control efficiency of recovery well RW-10 has decreased since startup thereby reducing the overall effectiveness of the HCS in the B/C-Zone in the western portion of the site. Conventional rehabilitation methods to improve well efficiency had limited success. A new B/C-Zone recovery well

(RW-11) was installed in 2008 to replace well RW-10. A summary of the well installation is provided in Appendix B.

3.0 HCS PERFORMANCE

3.1 Hydraulic Head Monitoring

Groundwater hydraulic head measurements are the basis for determining control of groundwater flow in the overburden and bedrock groundwater flow zones by the HCS at Necco Park. Depth-to-water measurements and measuring point elevation data are used to calculate the elevation of groundwater and to generate hydrographs which show groundwater elevation trends in individual monitoring wells. These measurements are also used to generate potentiometric surface-contour maps, which depict groundwater elevation for assessing flow directions and hydraulic gradients. Together, these data presentations are used to determine the extent and effectiveness of hydraulic control effect by the HCS at Necco Park. Potentiometric surface contour maps for the A-Zone through F-Zone include the zone-specific source area limits.

Quarterly groundwater level measurements collected during 2008 were presented in the Quarterly Data Packages (DuPont CRG 2009, 2008, 2008a, 2008b). Potentiometric surface-contour maps for the AT-Zone (top-of-clay), A-Zone (overburden), and bedrock zones B, C, D, E and F were also presented in the 2008 Quarterly Data Packages and are used in this report to assess effectiveness of hydraulic control of the HCS. Monitoring and recovery well locations are shown in Figure 3-1. A list of groundwater monitoring locations is provided in Table 3-1.

Long-term hydrographs for select wells and piezometers within each water-bearing zone are presented in Figures 3-2 through Figure 3-8. The hydrographs depict long-term groundwater hydraulic responses to startup and operation of the HCS.

Potentiometric surface-contour maps included in this report were selected from maps prepared and presented in the 2008 Quarterly Data Packages. Golden Software's SURFERTM program was used to interpolate water level data, develop potentiometric surface contours, and plot groundwater flow directions. A Kriging algorithm with a linear semi-variogram model and a slope of 1 was used as the standard method to interpolate groundwater elevations between wells, unless otherwise noted.

3.2 Hydraulic Control Assessment

As described in Section 2.5, measures were taken in 2008 to improve B/C-Zone hydraulic control in the western portion of the site by installing a recovery well in a blast fractured bedrock trench (BFBT). The new recovery well, RW-11, replaces existing well RW-10. Short-term assessment results indicate improved hydraulic control through the operation of recovery well RW-11. A detailed discussion of the hydraulic influence of well RW-11 is provided in Appendix B.

3.2.1 AT-Zone and A-Zone

The overburden materials comprising the A-Zone are generally characterized by high clay content and low hydraulic conductivity. Groundwater flow in the A-Zone is

primarily downward to the more transmissive fractured bedrock. The AT-Zone (also known as the top-of-clay zone) is a thin presumably perched zone of saturation above the A-Zone. It is not a continuous zone and is absent in the western portion of the site where the overburden thickness diminishes and within portions of the Necco property footprint where excavation/landfilling activities have eliminated any AT/A-Zone distinction.

Figures 3-9 and 3-10 present typical AT-Zone and A-Zone potentiometric surface contours (November 13, 2008) resulting from continuous operation of the HCS.

Long-Term Response to HCS Operation

Long-term AT and A-Zone baseline (non-pumping) hydraulic conditions were established on April 5, 2005, after the shutdown of the former pumping well network and Interim Treatment System on April 1, 2005 and prior to the startup of the HCS. Calculated AT-Zone and A-Zone long-term drawdowns (expressed as positive numbers) are presented in Tables 3-2 and 3-3, respectively. The tables indicate that the HCS has maintained drawdowns in 2008 in both the AT-Zone and A-Zone.

As can be seen in Table 3-2, AT-Zone long-term 2008 drawdowns for selected piezometers ranged between 0.99 and 6.55 feet. All of the calculated responses are consistently positive (i.e. true drawdown) with an average of 4.48 ft of drawdown for the year. This indicates substantial dewatering of the AT-Zone has been maintained by the continued operation of the HCS. All of the selected AT-Zone piezometers remained below their pre-startup elevations for all of 2008. A plot of November 13, 2008, AT-Zone drawdowns is presented in Figure 3-11.

As can be seen in Table 3-3, A-Zone long term drawdowns for selected wells during 2008 ranged between 0.03 and 9.24 feet. All drawdowns are consistently positive. This indicates that substantial dewatering of the A-Zone has been maintained by the continued operation of the HCS. Drawdowns for the selected A-Zone piezometers remained below their pre-startup elevations in 2008 with an average of 3.29 ft of drawdown for the monitored locations. A plot of May 15, 2008, A-Zone drawdowns is presented in Figure 3-12.

AT and A-Zone Hydraulic Control

In both the AT-Zone and A-Zone, rapid responses to the short-term changes in groundwater levels in the HCS recovery wells were observed and presented in the 2005 Annual Report. The magnitude of observed drawdowns and the rapidity of responses provide additional evidence that the AT and A-Zones are vertically dominated flow regimes.

Vertical gradients are generally downward (negative) between both the AT/A-Zones and A/B-Zones as presented in Tables 3-4 and 3-5 (2008 average gradients) and shown in Figures 3-13 and 3-14 (November 13, 2008 gradients). In Table 3-4, the upward gradients at the 184AT/A and 185AT/A well pairs are likely the result of slightly overlapping well screens or a result of the absence of any appreciable A-Zone thickness below the clay layer. Also, the average upward and flat gradients at the 119AT/A and 129AT/A well pairs are likely due to structural effects within the landfill. The upward gradients indicated in Figure 3-13 are attributed to the temporary shut-down prior to the start-up of recovery well RW-11.

3.2.2 B and C Bedrock Water-Bearing Zones

Groundwater flow directions in the B-Zone were generally consistent throughout the 2008 period of HCS operation with the exception of the March 17, 2008 event, which exhibited a loss of control due to the reduced efficiency of RW-5 prior to rehabilitation (see Table 3-6 and Figures 3-15 and 3-16). Hydraulic control in the B-Zone was generally maintained even with the reduced efficiency of RW-5 and occasional shut downs of RW-10.

Hydraulic heads in the C-Zone were generally higher throughout the 2008 period of HCS operation with the exception of the November 13, 2008, event, which exhibited a response to the two rehabilitation events in RW-5 and the initial operation of RW-11 (see Table 3-7). Typical 2008 C-Zone potentiometric contours are presented in Figure 3-16.

B-Zone

Groundwater elevation hydrographs, along with potentiometric surface-contour maps, illustrate the hydraulic effects of the HCS in the B-Zone. RW-4, RW-5 and (as of November 16, 2008) RW-11 have induced inward (toward the recovery wells) hydraulic gradients over a large area (see Figures 3-4 and 3-15). B-Zone influence attributed to RW-4, RW-5, and RW-11 extends north to 120B, 123B, and 159B; west to 116B and 136B; and south to 137B and 168B.

The hydraulic depression in the vicinity of RW-11 was limited due to only 24-hours of operation prior to the water level measurement event.

B-Zone net drawdowns from static are presented in Table 3-6 and are calculated from May 4, 2004 static conditions. Drawdowns indicate that monitoring wells D-14, 146B, 149B, 151B and 163B exhibited reversals from static. Wells 146B, 149B, 151B and 163B are outside the designated source area. The August 13, 2008, reversal of D-14 (a B/C-Zone well) elevation above it's April 2005 baseline elevation is attributed to the shut down of RW-10.

C-Zone

Groundwater elevation hydrographs, along with potentiometric surface-contour maps, illustrate the hydraulic effects of the HCS in the C-Zone. The C-Zone influence attributed to RW-4, RW-5 and (as of November 16, 2008) RW-11 extends north to 115C, 123C, and 159C, west to 136C. The south extent of influence extends to 137C and is obscured by the CECOS landfill between the recovery wells and monitoring wells 150C, 160C and 168C (see Table 3-7 and Figures 3-5 and 3-16). The hydraulic control in the C-Zone is improved significantly in the 4Q08 event with the early November rehabilitation of RW-5 and start-up of replacement well RW-11.

Similar to the B-Zone, C-Zone baseline hydraulic heads for comparison are from May 4, 2004. Generally, in 1Q08 and 2Q08 water levels remained only slightly below their baseline and the drawdown averages, of all the monitoring wells, were less then 1-foot and many locations were above the May 4, 2004, baseline (see Table 3-7). Additionally, 12 of 20 of the 3Q08 water levels were above baseline and the average drawdown was slightly negative. The loss of C-Zone hydraulic control in 3Q08 is attributed to the RW-10 shutdown and the continual loss of efficiency at RW-5. However, 4Q08 water levels

indicate greatly improved control with water levels at only three wells above their baseline levels and the average drawdown of all monitoring wells improved to 1.29 feet. The well locations above baseline in 4Q08 were off site (and outside source area limits) wells 146C, 150C and 151C (see Table 3-7).

3.2.3 D, E and F Bedrock Water-Bearing Zones

Groundwater elevation hydrographs, along with potentiometric surface-contour maps, illustrate the effectiveness of the HCS in maintaining hydraulic control in the D, E and F-Zones (see Table 3-8, Figures 3-6 through 3-8 and 3-17 through 3-19).

In general, for 2008 all D/E/F-Zone groundwater hydraulic heads remained below the May 4, 2004 baseline for the entire reporting. Hydraulic gradients were toward the recovery wells throughout 2008 indicating the HCS is performing as designed.

3.3 Groundwater Chemistry Monitoring

3.3.1 Background

Extensive monitoring has been conducted at Necco Park dating back to the early 1980s when groundwater investigations pursuant to the 1986 Consent Decree and the 1989 Administrative Consent Order (ACO) were completed. Pre-Design investigations in the early 2000s enhanced our knowledge of conductivity variations within the flow zones and assisted in the initial estimation of source area extents as introduced in the Analysis of Alternatives (AOA) and negotiated Statement of Work (SOW). Groundwater monitoring will continue per the LGMP to meet the following objectives as defined in the SOW:

- □ Monitor the effectiveness of the recovery wells in reducing chemical concentrations in the zone-specific source areas.
- Monitor the far-field groundwater chemistry to determine if the recovery system is controlling off-site migration of chemical constituents associated with the Necco Park site.
- □ Monitor the presence of DNAPL.
- □ Monitor natural attenuation and intrinsic bioremediation in the source area and far-field.
- □ Continue to evaluate the effectiveness of the remedial action.

The 2005 Annual Report, the first annual status report following completion of hydraulic control elements of the Necco Park remedy, included an extensive discussion of the first monitoring results and how these results compared to source area criteria introduced in the AOA report. This 2008 report provides an update of groundwater chemistry trends, MNA evaluation, and, as appropriate, an update of source area limits.

The list of wells used for long-term monitoring was prepared and is included in the LGMP. In accordance with the LGMP, chemical monitoring is conducted on a semiannual basis during the first three years of system operation. Sampling frequency thereafter will be annual. Monitoring completed in 2008 represents the first year of annual sampling following three years of semi-annual sampling. Locations of monitoring wells to be used for long-term monitoring are shown in Figure 3-1. Implementation of the long-term chemistry monitoring is discussed in Section 3.3.3. As discussed in Section 3.3.3, groundwater sample results from 2005 to 2008 support modification of the existing chemical monitoring program.

3.3.2 Discussion of Results

Original source area limits were provided in the AOA report. As described in the Final (100%) Design Report for Bedrock and Overburden Source Area Hydraulic Controls (CRG, 2003), source area limits for the A-Zone, B/C-Zones, and D/E/F-Zones were reassessed using results from 2000 baseline groundwater sampling event. Sample results from the baseline event, in conjunction with historical DNAPL observations, were used to estimate source area limits as provided in the Source Area Report (SAR) (CRG, 2001). Source area limits presented in the report were used to determine Pre-Design Investigation (PDI) groundwater pumping well locations.

For the purposes of remedial design, the 2000 baseline and Phase 2 PDI groundwater sampling results were used to interpolate source area limits. One of the objectives of the Phase 2 PDI was to refine the southeast limits of the B/C-Zone source area based on Phase 1 PDI observations. Because refinement of the B/C-Zone source area required additional groundwater sampling and analysis, DuPont elected to include sampling of the lower bedrock to also refine the D/E/F-Zone source area limits. Pumping tests conducted during the PDIs and subsequent full-scale operation have shown that the HCS will achieve and maintain hydraulic control of flow-zone specific source areas defined in the 100% design submittal.

Results from the 2008 groundwater sampling have been compared to the same historically employed criterion to evaluate source area limits. Consistent with the AOA, any location where DNAPL was observed at least once was included in the source area. Groundwater chemistry data for the 2008 sampling events was also compared to solubility criteria to evaluate source area extent. Consistent with previous assessments, these included effective solubility for a given compound and one percent of a given compounds' pure-phase solubility.

Effective solubility is defined as the theoretical upper-level aqueous concentration of a constituent in groundwater in equilibrium with a mixed DNAPL. Effective solubility is equal to pure-phase solubility of a given constituent multiplied by the mole fraction of that component in DNAPL. Use of effective solubility criteria is believed to be more representative of sites with DNAPL that consist of relatively complex mixtures of organic compounds (Feenstra et al., 1991), such as those are found at Necco Park site. Calculated solubility criteria for DNAPL compounds evaluated during this study are presented in Table 3-9. A comparison of 2005 through 2008 data to the effective solubility and one percent of pure-phase solubility criteria are provided in Tables 3-10 and 3-11, respectively. A discussion of the results by flow zone is provided below.

A-Zone

The A-Zone source area has been defined as the Necco Park property and a limited area south of the property line. The A-Zone source limits have not changed from those

provided with the 100% design submittal. The 2008 sample results indicate no exceedances of the solubility criteria. There has been only one exceedance of the solubility criteria since long term monitoring began. The 2005 first round results for well D-11 reported hexachlorobutadiene above the one percent of solubility criteria.

Monthly DNAPL observations conducted at A-Zone well locations in 2008 indicated no DNAPL present at the monitoring locations. The most recent DNAPL observation at an A-Zone well was at well 131A in May 2006. This well is located on the landfill.

Groundwater flow in the A-Zone is predominantly downward. Therefore, hydraulic control of the upper bedrock groundwater flow will capture flow from the A-Zone. As discussed in Section 3.3, hydraulic monitoring completed with new recovery well RW-11 in operation indicate an enhanced degree of A-Zone hydraulic control. Based on the results of the 2008 HCS monitoring, the system is effective in controlling the A-Zone source area.

B/C-Zone

The B-Zone source limits have not changed from those provided with the 100% design submittal. Results for the B-Zone wells indicated no exceedances of the effective solubility criteria. The 2008 sample results from wells 145C and 168C support the 2005 Annual Report conclusion of a less extensive C-Zone source area.

Exceedances of the more conservative one percent solubility criteria at well location 172B for hexachlorobutadiene (HCBD) represent the limit of the B-Zone source area. As discussed in Section 3.5, TVOC concentrations continue to decrease at this location. Hydraulic control extends to this location. B/C-Zone wells that exceeded the one percent criteria include 139B, 172B, 105C, 136C, and 137C.

DNAPL observations at B and C-Zone well locations in 2008 indicate DNAPL in the upper bedrock is limited to the southeast portion of the site and was only observed at recovery well RW-5. As discussed in Section 3.7, the frequency of DNAPL observations at this location was increased.

Well 105C, located on the landfill near known disposal areas, reported exceedances of the effective solubility and one percent pure phase solubility for a number of compounds. This well is used to monitor MNA in the source area.

Operation of recovery wells RW-4, RW-5, and RW-10 have achieved and maintained hydraulic control of the B/C-Zone source area. As discussed in Section 3.3, improved B/C-Zone hydraulic control in the western portion of the site from the operation of recovery well RW-11 is apparent. Cleaning of recovery well RW-5 in March and November 2008 improved short-term well yield. More aggressive well rehabilitation methods are planned in 2009 to improve yield that will enhance the overall effectiveness of the B/C-Zone HCS.

D/E/F-Zone

Analytical results from well 146E indicate no exceedances for either solubility criteria since long term chemistry monitored began in April 2005. The 2002 sample results for this location reported TCE above the more conservative one percent solubility criterion.

As such, previously reported constituent concentrations at this location appear to be more indicative of aqueous constituents than the presence of DNAPL.

Based on an exceedance of the more conservative one percent of pure phase solubility criteria for HCBD at well location 165E, the southwest limit of the D/E/F-Zone source area limit lies between well locations 165 and 137, which is consistent with the previous sampling results.

Well 105D, located on the landfill near known disposal areas, reported exceedances of the effective solubility and one percent pure phase solubility for a number of compounds. This well is used to monitor MNA in the source area.

Monitoring conducted during 2008 confirms that the operation of recovery wells RW-8 and RW-9 has achieved and maintained hydraulic control of the D/E/F-Zone.

3.3.3 Sample Collection and Analysis

In accordance with the LGMP, annual groundwater sampling following three years of semi-annual sampling began in 2008. The annual sampling event was completed between June 10 and June 20, 2008. TestAmerica of Amherst, New York completed sampling with oversight by URS Diamond for DuPont CRG. Samples and associated quality assurance/quality control (QA/QC) samples were analyzed by TestAmerica located in North Canton, Ohio.

As described in the Necco Park SAMP, groundwater sampling was conducted using USEPA low-flow sampling methodology. Air-driven bladder pumps equipped with disposable Teflon bladders were used for sample collection. The pumps were fitted with dedicated Teflon-lined high-density polyethylene (HDPE) tubing. All monitoring wells were purged and sampled at flow rates between 100 and 600 milliliters per minute to reduce potential sample volatilization. Geochemical parameters (pH, temperature, dissolved oxygen, oxidation/reduction potential, specific conductivity, and turbidity) were recorded at 5-minute intervals throughout the entire purging period to determine when stabilization was achieved. Geochemical parameters were considered stable when all parameter values were within 10 percent of the previously recorded value with the exception of plus or minus 0.2 units for pH.

A review of field pH measurements from selected A-Zone, B-Zone and C-Zone monitoring wells indicates significant increases during the June 2008 sampling event as compared to the previous six sampling vents from the time of system start-up (2Q05). The pH levels from A-Zone overburden wells D-11, 137A, and 146A exhibited an increase of 2 or more standard units greater than previous levels.

	Sample Event						
Location	2Q05	4Q05	2Q06	4Q06	2Q07	4Q07	3Q08
D-11	8.77	9.98	8.16	8.92	7.46	7.56	12.16
137A	8.99	9.20	8.01	10.16	7.72	9.07	12.69
146A	8.46	7.66	7.58	7.55	7.48	7.48	9.48

Select A-Zone Field pH Measurements

Similar magnitude increases were observed at B-Zone bedrock wells at locations 136, 137, 141, 145, 146, 149, and 151.

	Sample Event						
Location	2Q05	4Q05	2Q06	4Q06	2Q07	4Q07	3Q08
136B	8.65	8.49	7.9	7.33	7.37	7.28	9.49
137A	9.96	9.60	8.20	8.95	7.69	8.16	12.96
141B	9.54	7.88		7.48		7.51	10.65
145B	9.40	7.96	7.73	7.31	7.34	7.63	10.00
146B	9.39	8.79	8.07	8.17	7.60	7.84	11.90
149B	8.20	7.76	7.96	8.12	7.45	7.73	10.54
151B	9.65	7.48	8.05	8.73	8.02	7.85	12.5

Select B-Zone Field pH Measurements

Select C-Zone Field pH Measurements

	Sample Event						
Location	2Q05	4Q05	2Q06	4Q06	2Q07	4Q07	3Q08
136C	11.52	8.84	8.17	7.84	7.77	7.87	12.32
137C	11.16	8.85	-	7.40		7.61	10.44
141C	8.34	7.82		7.52		7.16	10.07
146C	8.59	8.57	8.07	7.58	7.50	7.71	9.69

One deeper zone bedrock well, 148D, reported an elevated pH level in 2008.

Given the wide distribution of wells both horizontally and vertically, and the absence of more than a single round of data with elevated levels, no conclusions to the cause of the rise in pH is proposed at this time.

Samples were collected at 56 monitoring well locations during the annual event and included sampling at well locations used for the MNA evaluation. The well locations are listed in Table 3-12. Analytical indicator parameters and MNA parameters are listed in Tables 3-13 and 3-14, respectively. Analytical results for the sampling event conducted

in 2008 are provided as Appendix B. For reporting purposes, the results are discussed as TVOCs. This is consistent with historic reporting where TVOCs are indicator compounds used to assess groundwater contamination and trends over time. Results for the respective flow zones are discussed below.

The current list of wells used for chemical monitoring was prepared for the LGMP before the HSC was operational. As described in previous annual reports, TVOC concentrations at many monitoring locations are either very low or are decreasing. This is especially true for the far-field wells. In accordance with Section 5.2 of the LGMP modification of the chemical monitoring program during remedial action is acceptable. A proposed list of wells to be used for modified chemical monitoring starting in 2010 is included on Table 3-12.

3.3.4 A-Zone

Results from the seven LGMP A-Zone wells indicate TVOC concentrations all below 400 μ g/l. Sampling results for well 137A (300 μ g/l) represents the location of the highest reported A-Zone TVOCs. With the exception of well 137A and another near source well D-11, TVOC concentrations were below 10 μ g/l. The overall low TVOC concentrations are consistent with the negligible horizontal gradient and the predominant downward gradient from the A-Zone to the B-Zone that has been enhanced by the HCS. A-Zone TVOC concentrations are 1 to 2 orders of magnitude less than nearby B-Zone monitoring locations. The 2008 results are consistent with historical results in that they show no significant off-site horizontal chemical migration in the overburden.

Compared to historical sample results, TVOC results at source area well D-9 and D-13 have decreased by an order of magnitude. Further discussion of groundwater chemistry trends for all flow zones is provided in Section 3.6.

3.3.5 B/C-Zone

B-Zone

Results from the fourteen LGMP B-Zone wells indicate TVOC concentrations generally below 10,000 μ g/l. TVOC concentrations at six of the locations were below 100 μ g/l. TVOC concentrations for wells near the B/C-Zone source area limits ranged from 1,900 to 36,000 μ g/l. Similar to previous years, the highest TVOC concentration (75,235 μ g/l) was reported for the sample collected at well 139B. This well is used for the MNA program. This well is located very close to the landfill and is well within the area of hydraulic control.

Key source area limit wells 171B and 172B show a continued TVOC decline in 2008. Biogenic daughter compounds including cis-1,2-dichloroethene and vinyl chloride dominate TVOC results at these well locations. The trend towards increased daughter compounds coupled with a near absence of source area constituents is evident at well location 171B based on the 2007 and 2008 VOC results. The 2007 sample results reported hexachlorobenzene at 1.4 μ g/l; no source area constituents were reported in the sample collected in 2008.

Compared to historical sample results, TVOC results at source area well 111B have decreased by two orders of magnitude. Far-field well 150B has decreased by an order of magnitude.

C-Zone

Results from the ten LGMP C-Zone wells indicate TVOC concentrations generally below 10,000 μ g/l. This includes wells within the source area such as 136C. Consistent with previous long term monitoring results, TVOC concentrations at well locations outside the source area limits were less than 100 μ g/l and ranged from 8 μ g/l to 32 μ g/l.

Compared to historical results, source area well 145C continues to show a significant decrease in TVOC concentrations. As discussed in Section 3.6.2, in spite of the TVOC increase, natural anaerobic biodegradation of chlorinated solvent compounds in groundwater continues.

3.3.6 D/E/F-Zone

D-Zone

Results from the eleven LGMP D-Zone wells indicate TVOC concentrations generally below 2,000 μ g/l. This includes wells within the source area such as 139D and 165D. Consistent with previous long-term monitoring results, biogenic daughter compounds including cis-1,2-dichloroethene and vinyl chloride dominate TVOC results for wells 136D, 145D, 147D, and 165D. With the exception of wells 136D and 145D, TVOC concentrations at well locations outside the source area limits were less than 200 μ g/l and ranged from 1.4 μ g/l to 172 μ g/l. TVOC concentrations at well 136D have decreased by an order of magnitude since the 2000 baseline sampling and have steadily declined over the from 2006 to the end of 2007. The 2008 sample results indicate a short-term increase though the TVOC concentration is an order of magnitude less than the concentration reported in 2000. Monitoring has shown hydraulic control from the HCS extends beyond the D/E/F-Zone source area limits.

Compared to historical sample results, TVOC results at source area well 139D have decreased by an order of magnitude. The decreased TVOC at well 139D is significant considering DNAPL was observed in the well in the past.

TVOC results for well 145D, located outside the source area limits, are stable discounting the low TVOC concentration for the 2005 second round event. TVOC concentrations at near source area well 165D indicate a return to historically lower TVOC levels.

E-Zone

Results from the six LGMP E-Zone wells indicate TVOC concentrations generally below 15,000 μ g/l. TVOC results for well 136E, the closest E-Zone well to the landfill, were under 100 μ g/l. Biogenic daughter compounds including cis-1,2-dichloroethene and vinyl chloride dominate TVOC results for all the E-Zone wells. With the exception of wells 145E, 146E, and 150E, TVOC concentrations at well locations outside the source area limits were less than 100 μ g/l and ranged from 1 to 27 μ g/l.

TVOC results for wells 146E and 150E located outside the source area limits have returned to relatively lower concentrations following increases in 2005 and 2006.

Biogenic daughter compounds including cis-1,2-dichloroethene and vinyl chloride dominate TVOC results at these well locations. As discussed in Section 3.6, the presence of these biogenic daughter compounds is a clear indication that natural attenuation processes are occurring in the far-field.

F-Zone

Results from the five LGMP F-Zone wells indicate TVOC concentrations generally below 1,300 μ g/l, which is consistent with the 2007 results. Similar to the results from the E-Zone wells TVOC results for all the F-Zone wells are dominated by biogenic daughter compounds cis-1,2-dichloroethene and vinyl chloride. TVOC concentrations at well locations outside the source area limits (147F and 156F) were less than 100 μ g/l and ranged from 2 μ g/l to 25 μ g/l. TVOC concentrations at near source well 136F have steadily declined since HCS startup from 8,458 μ g/l in 2005 to 239 μ g/l. A similar decline in TVOC is apparent at well 136E.

Compared to historical sample results, TVOC results at far-field well 156F have decreased by two orders of magnitude. TVOC results at far-field well 147F have decreased by an order of magnitude.

3.3.7 G-Zone

Though not included in the SOW as a groundwater flow zone requiring hydraulic control, far-field wells 147G1, 147G2, and 147G3 are included in the long-term chemical monitoring program. TVOC concentrations from these well locations range from 1,353 μ g/l to less than 8,000 μ g/l. TVOC results continue to be dominated by biogenic daughter compounds including cis-1,2-dichloroethene and at greater concentrations, vinyl chloride.

3.4 Data Quality Control/Quality Assurance

The 2008 annual groundwater samples were submitted to TestAmerica Laboratories in North Canton, Ohio for all chemical analyses except gas phase hydrocarbons, which were analyzed at the TestAmerica Austin, Texas facility, and the Gene-Trac Dehalococcoides DNA assay, which was performed by SiRem Laboratories, Ontario, Canada.

3.4.1 Sample Collection

The samples were collected in accordance with the scope and technical requirements defined in the project Work Plan and Quality Assurance Project Plan (QAPP) (CRG, 2005). Samples were submitted in10 delivery groups received at the laboratories between June 11, 2008 and June 25, 2008. Based on laboratory receipt records, all samples were received in satisfactory condition, and within EPA holding time and temperature requirements (<6 degrees C). Field QC samples collected during the sampling round included 3 field duplicate pairs, 9 daily equipment blank samples, and 8 trip blanks (volatile organics).

In addition to the routine monitoring program analyses, the June 2008 sampling round included the collection of samples for gas phase hydrocarbons, natural attenuation/water

quality parameters, and the DNA assay. Due to a scheduling error, sample aliquots for the DNA assay were collected at just 8 of the 16 wells included in the June, 2005 sampling round (3 additional well locations were included in 2008 that were not included in 2005). If it is determined that data for the missed well locations is needed, these samples will be collected during the next scheduled sampling round in June 2009.

In-House Data Evaluation

The quality of the data set was evaluated by the DuPont CRG / URS Diamond ADQM Group, using the analytical results provided in hard-copy CLP-type data packages in conjunction with an automated data evaluation of the electronic data deliverables (the DuPont DDR process described below). The laboratory data packages presented a review of the QA/QC procedures conducted by the laboratory and included case narratives identifying any significant issues associated with sample receipt, preparation, and analysis.

The electronic data was processed through an automated program developed by DuPont, referred to as the DDR, where a series of checks were performed on the data, resulting in essentially a summary level validation. The data were evaluated against holding time criteria, checked for laboratory blank, equipment blank , and trip blank contamination, and assessed against the following:

- □ Matrix spike(MS)/matrix spike duplicate (MSD) recoveries
- □ Relative percent differences (RPDs) between MS/MSD samples
- □ Laboratory control sample(LCS)/control sample duplicate (LCSD) recoveries
- □ RPDs between LCS/LCSD
- **□** RPDs between laboratory replicates
- □ Surrogate spike recoveries
- □ RPDs between field duplicate samples

The DDR also applied the following data qualifiers to analysis results, as warranted:

Qualifier	Definition						
В	Not detected substantially above the level reported in the laboratory or field blanks.						
R	Unusable result. Analyte may or may not be present in the sample.						
J	Analyte present. Reported value may not be accurate or precise.						
UJ	Not detected. Reporting limit may not be accurate or precise.						

Default qualifiers

It was noted that some method detection limits (MDL) and/or quantitation limits (PQL) reported by the laboratory for the inorganic and wet chemistry analyses differed from those specified in the project QAPP. In addition, some acceptance limits for laboratory control spikes and matrix spikes have been updated by the laboratory since the QAPP

was written. The laboratories used their most recent statistically derived limits to report the data, therefore these limits were also used to evaluate data quality.

The precision between the three sets of field duplicate pairs was generally very good (see further discussion in the following paragraph). Dilutions required due to matrix interferences and/or high levels of target compounds affected a number of volatile and semi-volatile matrix spike and surrogate recoveries. In all cases, except as noted below, the results were qualified J or UJ, but were determined to be usable.

Elevated reporting limits were noted for a number of organic and inorganic target analytes. Based on the laboratory case narratives, matrix interferences were a significant factor in the analysis of these samples.

A number of the inorganic / wet chemistry target analytes, including chloride, sulfate, alkalinity, nitrate-nitrite, and total organic carbon, and the metals iron, manganese, and barium, were detected at trace levels in the equipment blanks. The results for the associated well samples that were reported in the same concentration range as the blanks were qualified with a B flag. Total sulfide and manganese were detected in the laboratory method blanks above the analyte reporting limits.

All analytes reported between the MDL and PQL were J qualified as estimated concentrations. The site-specific, non-target semi-volatile reported as TIC 01 was also J-qualified as an estimated concentration.

Due to the experimental nature of the SiRem Gene-Trac assay, these results were not included in the automated in-house review process or submitted for independent data validation.

3.4.2 Independent Data Validation

In addition to the in-house evaluation, approximately 10% of the sample locations, plus the associated field and laboratory QC samples were submitted for independent data validation by Environmental Standards, Inc., Valley Forge, PA. The wells were selected for validation based on importance to the program (key perimeter wells), and include well locations VH-136D (plus its field duplicate), VH-145C, VH-146E, VH-172B, VH-123D, and VH-D-11. The complete Quality Assurance report is included in the report appendix.

There were a number of validation qualifiers applied to the samples due to non-compliant QC checks, spike recoveries, or blanks contamination, however only the nitrate-nitrite results (all non-detects) for samples VH-136D and its field duplicate, VH-146E, and VH-145C were qualified as unusable (R) due to very low matrix QC spike recoveries.

It was noted that the validator applied stricter precision and sample representativeness criteria to the data set than specified in the project QAPP (both results were >5x the PQL, and the RPD was <20%, or at least one result was <5x the PQL and the difference between the results was less than +/- the PQL). As a result, several analytes were J qualified as estimated concentrations. The reported positive results for total sulfide in sample VH-136D and its field duplicate were qualified as estimated concentrations because they exceeded the precision criteria.

3.5 Groundwater Chemistry Trends

An analysis of short-term and long-term groundwater chemistry trends has been completed to assess the effectiveness of the HCS and the former extraction system in reducing organic compound concentrations in groundwater. This analysis utilized TVOC concentration data from monitoring wells to identify chemistry trends in the flow zone units. The evaluation also serves to identify locations where TVOC concentrations exhibit significant changes (generally, changes greater than an order of magnitude). Historical TVOC data have been used to assess long-term chemistry trends, where applicable. TVOC concentration versus time plots for A-Zone overburden and bedrock B- through F-Zone monitoring wells are presented in Appendix D.

In general, operation of the HCS and the former groundwater recovery system, combined with the presence of the Subsurface Formation Repair (SFR), has contributed to an overall trend of declining TVOC concentrations in the A-Zone overburden and bedrock fractures zones. More recently, TVOC concentration decreases at several near source area and far-field wells are significant and coincide strongly with the onset of HCS operations in April 2005. Natural attenuation processes, as discussed in Section 3.6, are also contributing to the reduction in chemical mass in the bedrock fracture zones.

A-Zone Overburden

Four of the seven wells used to monitor A-Zone chemistry, D-9, D-11, D-13, and 137A exhibit a decreasing TVOC trend. These wells are located directly south of the landfill. The greatest TVOC decline is at well 137A where concentrations have decreased by an order of magnitude since 2005. TVOC results for the remaining A-Zone wells show no discernable trends. TVOC concentrations at these four wells: 145A, 146AR, and 150A have been less than 200 μ g/l since the 2000 baseline sampling event.

The 2008 results are consistent with historical results in that they show that there is not a significant downgradient plume in the overburden.

B/C-Zone

B-Zone monitoring wells 111B, 150B, 171B, and 172B show a trend of decreasing TVOC concentrations. At source area well location 111B, TVOC concentrations have decreased by an order of magnitude since 1996. A long-term trend of decreasing TVOC is also observed at far-field well 150B, where TVOC concentrations have decreased by two orders of magnitude since 1998.

Continuing TVOC decreases have occurred at key wells used to define source area limits including 171B and 172B. TVOC concentrations at these monitoring locations have decreased by an order of magnitude between the 2005 and 2008 sampling events. These TVOC decreases coincident with the HCS startup demonstrate the effectiveness of the B/C-Zone extraction wells in hydraulically controlling the source area.

Similarly, historical C-Zone chemical results indicate a decrease in TVOC at source area well 145C. This well has been historically used to define the C-Zone source area limit. The long-term decreasing TVOC trend may be associated with the long term reduction in off-site migration resulting from hydraulic gradient reversal across the source area limits

(as described above for the B-Zone). In spite of a few anonymously high TVOC concentrations, an overall trend of decreasing TVOC since HCS startup is evident.

A marked decrease in TVOC concentration at well locations 145C and 146C was observed shortly after completion of the Subsurface Formation Repair (SFR) in 1989. The SFR increased the capture zones of the former groundwater recovery wells and reduced off-site chemical migration. Based on the widespread drawdown observed since it began operation, it is expected that the HCS will further enhance the C-Zone capture zone.

Another notable C-Zone trend is the decline in TVOC concentrations for far-field well 151C by an order of magnitude since 2000. From a historical perspective, TVOC concentrations have decreased three orders of magnitude. With the exception of the 2005 second biannual results of 223 μ g/l, TVOC concentrations at well 151C have been less than 25 μ g/l since long term monitoring began. TVOC concentrations are stable at source area well 168C following a declining TVOC trend in 2006. The TVOC decline is significant considering the observation of DNAPL in the well shortly after installation of well in 2002.

TVOC trend plots for the declining B-Zone and C-Zone wells show a direct correlation between HCS startup and decreasing TVOC concentrations. TVOC results for near source area wells including 171B, 172B, 150C and 168C illustrate that the hydraulic effects of the HCS extend to the southeastern portions of the B/C source limits.

D/E/F-Zone

Historical TVOC results for the D/E/F-Zone indicate an overall pattern of decreasing or stable chemistry trends. TVOC concentrations at far-field wells 147F and 156F have decreased by two orders of magnitude since 1996. The 2008 results support this significant trend of decreasing TVOCs in the far-field.

TVOC results for source area well 139D have shown a significant decease since 2000 and show a pattern of continuing TVOC reduction. TVOC concentrations have decreased by an order of magnitude at this location since startup of the HSC. With the exception of the 2008 results indicating short-term increase, results for near source area well 136D show a trend towards TVOC concentrations to below 500 μ g/l that were reported for this well in the 1990s. A similar decreasing trend is occurring in the F-Zone at this location where TVOC concentrations have declined from 8,458 μ g/l in 2005 to 239 μ g/l in 2008 at well 136F. TVOC results for near source limit well 165D indicate decreasing trend after a short-term TVOC increase in 2006.

TVOC trend plots for far-field wells 146E and 146F show an overall decrease in TVOCs. The recent short-term TVOC increases at these locations (post-HCS start-up results) are attributed to the increased concentrations of cis-1,2-dichloroethene and vinyl chloride.

TVOC concentration trends for the D/E/F-Zone wells also correlate to the startup of the HCS. As illustrated on the trend plots for wells 136D, 139D, 145E, 136F, 150F and 156F. TVOC concentrations have apparently decreased at these locations in response to the startup of the HCS. The TVOC decline at far-field well 156F is significant considering its location in the distant far field.

G-Zone

Results for wells 147G1, 147G2, and 147G3 indicate an overall trend of declining TVOC since 2005. Biodegradation daughter compounds dominate TVOCs reported at these locations. A short-term increase at these locations in 2005 was followed by declining TVOC concentrations in 2006 and 2007. The 2008 TVOC results for wells 147G1 and 147G2 indicate a modest short-term increase.

3.6 Monitoring Natural Attenuation (MNA) Assessment

This section focuses on the natural attenuation via anaerobic biodegradation of chlorinated solvent ethenes in groundwater at the Necco Park Site. Primary constituents of concern are the PCE and TCE. Degradation products, including three isomers of dichloroethene (DCE) - cis-1,2-DCE, trans-1,2-DCE, and 1,1-DCE – and vinyl chloride are also present in the groundwater. The biodegradation of PCE and TCE occurs through a process called reductive dechlorination, a sequential removal of chlorines ending in the harmless product ethene. Reductive dechlorination is a biological process dependent on conditions of low redox potential (ORP), sufficient electron donor and competent microorganisms and is carried out by a number of bacteria. However, only one organism, *Dehalococcoides ethenogenes*, has been shown to be capable of complete dechlorination of chlorinated ethenes to ethene. Low ORP, presence of dechlorination daughter products (cis DCE, VC and ethene) and presence of *Dehalococcoides sp*. are indicators of active natural attenuation of PCE and or TCE via reductive dechlorination.

3.6.1 MNA Background

One of the requirements of the Record of Decision (ROD) for the Necco Park Source Area Operable Unit is to further characterize groundwater in the far-field area. As defined in the ROD, the far-field is the area outside the source area where chemical constituents attributable to the Necco Park site have been found to have contaminated groundwater. The far-field aqueous plume is defined as the plume of dissolved contaminants down gradient of the source area. The 2005, 2006, and 2007 reports confirmed that concentrations of the target constituents (PCE, TCE and reduced by products) decrease as groundwater flows south and west away from the Necco Park site. Additionally, in many wells, historic TVOC results showed significant reduction in target constituents over time. These results are consistent with a published reference showing active anaerobic microbial degradation transforming PCE and TCE to cDCE, VC and ultimately ethene in all zones (Lee et al, 1993)

The initial MNA assessment for this site is contained in the 2005 Annual Report where data on the concentrations of chlorinated solvents in the groundwater and DNA results indicating the presence of a microbial population competent for degrading chlorinated ethenes was presented. This report on 2008 groundwater conditions at Necco Park is intended as an update to the 2006 and 2007 reports and the comprehensive 2005 report. The three recognized lines of evidence for monitored natural attenuation of contaminants are as follows (USEPA, Monitored Natural Attenuation Directive, 1999):

D Reduction of contaminant concentrations over time or distance,

- Geochemical data that demonstrate conditions favorable for contaminant destruction, and
- Microbiological data from field or microcosm studies that directly demonstrate the occurrence of a natural attenuation process and its ability to degrade contaminants of concern.

Based on *Dehalococcoides* analyses conducted and the conditions observed in the groundwater, all three of these lines of evidence are observable at Necco Park. Details of the Necco Park MNA monitoring program are presented in the *Long Term Groundwater Monitoring Plan* (CRG, 2005a). The MNA monitoring wells were sampled for a full suite of MNA parameters in 2000 and more recently during the 2005, 2006, 2007, and 2008 sampling events. The resultant data are discussed in the following sections for the B/C-Zone and the D/E/F-Zone.

3.6.2 B/C Zone Results

The results of the MNA monitoring program for the 13 B/C-Zone wells are shown in the figures in Appendix E. For each of the B/C-Zone wells, the data from the five sampling events are plotted as a function of time so that concentration trends are apparent. Concentrations are plotted in millimoles (molar equivalents) so that the relationships between parent compounds and daughter compounds (degradation products) are comparable on a molar basis. Observations of data trends, along with select data from the most recent sampling event in parts per billion (ppb), are posted on the figures. A summary of the MNA results in all of the B/C-Zone wells is presented in Table 3-15. The wells listed on each of these tables are arranged in the order of Upgradient, Source Area then Downgradient/Sidegradient. They are discussed below in that order. Geochemical parameters that help evaluate the degree to which biological reductive dechlorination is occurring are presented in Appendix B.

Upgradient B/C-Zone Wells

Both upgradient B/C-Zone wells, 141B and 141C are essentially uncontaminated. Only trace levels of PCE, TCE, and VC (all below $1 \mu g/L$) were detected in 141C.

Source Area B/C-Zone Wells

All source area wells, except 111B demonstrated declining chlorinated ethene levels in 2008 compared to 2007. In the other source area B/C-Zone wells, total chlorinated ethene levels decreased on average by about one-third. In all B/C-Zone source wells except the most contaminated (105C), the predominant chlorinated ethene species are the daughter products cis DCE and VC. All wells, except 105C, exhibited sharp rises in the ultimate daughter product, ethene. The rise in total chlorinated ethenes observed in well 111B (from 746 μ g/L to 1,657 μ g/L), was entirely due to increases in the daughter products cisDCE and VC. The results in 111B, (increasing dechlorinated daughter products, ethene production) are similar to the other source area wells (137B, 139B, 105C, and 137C) and are strongly indicative of active natural attenuation of chlorinated solvents via reductive dechlorination. Geochemical data indicating low ORP conditions conducive to reductive dechlorination are supportive of this interpretation. Ferrous iron and methane are reduced products demonstrating that the biological processes of iron

reduction and methanogenesis (both processes occurring under low redox conditions) are active. Similarly, the depression in sulfate concentrations and elevated sulfide in these wells indicates that sulfate reduction (also a biological process that occurs at low redox potential) is active. The process of sulfate reduction may compete with reductive dechlorination processes for electron donor (e.g. TOC) so decreased levels of sulfate may result in additional electron donor available to drive reductive dechlorination. All of the wells in the B/C zone have negative ORP values indicating anoxic and reducing conditions. In addition, 111B and 139B show elevated dissolved iron concentrations relative to upgradient wells and the two highest methane levels detected in the B/C-Zone. Wells 111B, 137B, 139B, and 137C are depleted in sulfate relative to other wells in the B/C zone. The source wells 137C, 111B, 105C and 137C were positive for *Dehalococcoides sp.* indicating that the key microbes for complete degradation of chlorinated ethenes are present at elevated population levels.

Downgradient/Sidegradient B/C-Zone Wells

There are five downgradient wells (145B, 145C, 149C, 151B, and 151C) and one sidegradient well (153B) in the B/C zone. The sidegradient well is uncontaminated. Of the downgradient wells, two – 149C and 151C – are only marginally above groundwater standards of 2 μ g/L to 5 μ g/L (e.g. VC at 6 and 7.8 μ g/L, respectively) and are characterized exclusively by reductive dechlorination daughter products cis and trans DCE and VC and contain ethene Well 151C had earlier been more contaminated, but concentrations dropped dramatically between 2005 and 2006.

Total chlorinated ethenes in 145B, 145C, and 151B declined by half or more from the 2007 sampling, although 145B and 151B are still above levels seen in 2005. However, all VOC compounds in 151B are only marginally above the detection limit and less than 1 μ g/L, compared to groundwater standards of 2 μ g/L to 5 μ g/L. In these wells, the dominant chlorinated ethene species are cisDCE and VC. Moderate to high ethene levels were also observed in these wells. The only exception being 151B, which is essentially free of VOCs. All three wells had negative ORP levels and contained methane, and the highest levels of dissolved iron and sulfide in the B/C zone were found in 145C. As noted above, these compounds are indicative of microbial processes that occur in low ORP environments, indicating conditions that are supportive of reductive dechlorination and consistent with the observation dechlorinated daughter products.

This overall downward trend in the downgradient wells continues to support the site conceptual model of a shrinking chlorinated ethene plume in the downgradient B/C-Zone

3.6.3 D/E/F-Zone Results

The results of the MNA monitoring program for the 14 D/E/F-Zone wells are shown in the figures in Appendix E. For each of the D/E/F-Zone wells, the data from the five sampling events are plotted as a function of time so that concentration trends are apparent. Concentrations are plotted in millimoles (molar equivalents) so that the relationships between parent compounds and daughter compounds (degradation products) are comparative on a molar basis. Observations of data trends, along with select data from the most recent sampling event in parts per billion (ppb), are posted on the figures. A summary of the MNA results in all of the D/E/F-Zone wells is presented in Table 3-16.

The wells listed on each of these tables are arranged in the order of Source Area then Downgradient/Sidegradient. They are discussed below in that order. Geochemical parameters that help evaluate the degree to which biological reductive dechlorination is occurring are presented in Appendix B.

Source Area D/E/F-Zone Wells

Total chlorinated ethene concentrations decreased in all three of the source area D/E/F-Zone wells 137D, 139D, and 165D. Although concentrations in 137D are still elevated compared to historical results, MNA processes appear to have been very active in 165D where concentrations have dropped below groundwater standards for all chlorinated ethenes except for the reductive dechlorination daughter product, VC (18 μ g/L). Low redox conditions supportive of natural attenuation via reductive dechlorination are present in these wells as indicated by the elevated methane, elevated dissolved iron (in wells 137D and 139D) and low ORP values.

In contrast to the B/C-Zone wells, a parent compound, TCE, is the dominant chlorinated ethene species in the two source area wells 137D and 139D, and ethene concentrations are much lower. For example, the ratio of ethene to total chlorinated ethenes is on a molar basis are 0.007 and 0.12 in these two wells compared to 0.48 in 137C and 0.28 in 139B. However, the presence of ethene in these wells is indicative of ongoing natural attenuation processes.

Concentration trends in the source area wells are also difficult to interpret because they are within the hydraulic capture zone of the pumping system and do not represent consistent flow conditions. Regardless of the difficulties in interpretation of the flow paths, the molar proportion of degradation products is 25% to 30% in wells 137D and 139D, supporting the interpretation that degradation is occurring. Additionally 16SrDNA tests were positive for *Dehalococcoides sp.* in well 139D.

Downgradient D/E/F-Zone Wells

As shown on Table 3-16, concentrations of total chlorinated ethenes are decreasing in three of the eight downgradient D/E/F-zone wells (156D, 156E, and 146F), and essentially flat in four of the eight wells (136D, 136E, 147D, and 148D). Although the concentration of chlorinated ethenes in 136D doubled compared to the previous year (520 to 1,011 μ g/L), it is still below the results observed in 2005 and 2006 and consists predominantly of dechlorinated daughter products cisDCE and VC. Additionally, ethene has increased steadily in this well since 2002. Chloroethenes in four (148D, 156D, 156E, and 136E) of the eight wells were reported at very low concentrations.

The only well that showed an increase in total chlorinated ethenes was 146E. Closer inspection of the individual compounds shows that this result was largely due to a more than doubling of cis-1,2 DCE, a degradation product. This increase in cis DCE was accompanied by stable vinyl chloride and increased ethene relative to 2007. This well, though designated a downgradient well, is located only about 200 feet south of source well cluster 165. The increase can most likely be attributed to an influx of contamination from the source area, which in turn is rapidly degrading to daughter products, as evidenced by the increased cis-1,2-DCE levels. This well exhibited the lowest ORP

(-452mV), elevated methane and the highest sulfide levels of all the D/E/F-Zone wells, indicating an environment conducive to natural attenuation via reductive dechlorination.

Well 146F had previously exhibited the highest chlorinated ethene levels among the downgradient D/E/F-Zone wells. However, its concentration has dropped by about 25% in the 2008 sampling. Furthermore, degradation products DCE and VC represent 99% of the chlorinated ethenes on a molar basis indicating natural attenuation processes have been active. The ORP at this well was strongly negative at -353 mV and the presence of dissolved iron, sulfide, and methane are indicative of a low redox potential environment consistent with natural attenuation of chlorinated ethenes via reductive dechlorination.

The two other downgradient wells exhibiting elevated levels of chlorinated ethenes were 136D and 147D. Whereas both of these wells exhibit a rather flat concentration history, both increased in 2008 compared to the 2007 sampling. Although chlorinated ethenes in 136D increased, there was more than five times as much ethene present than total chlorinated ethenes (on a molar basis), suggesting that the almost all the contaminants in this region are being completed dechlorinated. The low ORP (-378 mV) and elevated dissolved iron, sulfide and methane are important indicators of conditions supportive of reductive dechlorination in this area. At 147D, the low TOC (electron donor) and relatively elevated ORP (-172 mV) and indicate conditions less supportive for reductive dechlorination. At this well the total chlorinated ethenes level has remained constant at a relatively low concentration, albeit completely comprised of the daughter products DCE and VC suggesting that reductive dechlorination does occur in this area.

The overall downward trend in the downgradient wells continues to support the site conceptual model of a active natural attenuation processes resulting in a shrinking chlorinated ethene plume in the downgradient D/E/F-Zone.

Sidegradient D/E/F-Zone Wells

There are three sidegradient D/E/F-Zone wells: 149D, 145E, and 150F. 149D, while technically increasing in concentration, is essentially uncontaminated with all chlorinated ethene levels below groundwater standards and a steady trend of increasing ethene. The other two wells exhibit slightly decreasing chlorinated ethene concentrations consisting almost entirely of the daughter products DCE and VC. Both wells also contain the completely dechlorinated end-product ethene. Conditions in these two wells (145E and 150F) consist of low ORP levels and elevated dissolved iron, sulfide, and methane concentrations, and are consistent with natural attenuation of chlorinated ethenes via reductive dechlorination.

3.6.4 MNA Recommendations

The review of MNA parameters presented in this section demonstrates that biological activity continues to actively reduce concentrations of chlorinated ethenes in groundwater and contribute to the prevention of groundwater plume expansion. In accordance with the recommendations in the 2007 report, consideration was given to discontinuing monitoring of some downgradient and sidegradient wells where contamination is not present or just marginally above detection limits.

In the B/C-Zone, downgradient wells 151B and 151C and sidegradient well 153B contain little to no contamination, and have remained this way for the past three years. We recommend discontinuing sampling of these wells in future MNA assessment.

In the D/E/F-Zone, downgradient well 148D is consistently clean, but should continue to be monitored as farther downgradient well 147D continues to show contamination. However, downgradient wells 156D and 156E are recommended to be eliminated from future annual sampling.

3.7 DNAPL Monitoring and Recovery

As described in the LGMP and the DNAPL Monitoring and Recovery Plan, monitoring for the occurrence of DNAPL has been conducted routinely at the Necco Park site since the early 1980s. A monitoring and recovery program was instituted in 1989 to remove free-phase DNAPL from monitoring and groundwater recovery wells. The historically established monitoring program was modified based on results of the PDIs. The 2008 monthly DNAPL monitoring results are summarized in Table 3-17.

Consistent with the 2007 observations, the only recovery well that has accumulated DNAPL in recoverable quantities was RW-5. This well and B/C-Zone recovery well RW-4 are equipped with dedicated air-driven pumps for DNAPL recovery. DNAPL recovery is accomplished by groundwater pumping, which entrains DNAPL droplets and draws them into the well where they settle, coalesce, and accumulate. Routine monitoring completed in 2008 show that DNAPL was only observed at well RW-5. Beginning in April 2008, DNAPL observations were completed weekly at recovery well RW-5 to ensure that DNAPL did not rise to the level of the groundwater pump intake. The increased observations resulted in more frequent DNAPL removal event.

Approximately 512 gallons of DNAPL was recovered in 2008, all of which was recovered from well RW-5. A large portion of the DNAPL, 331 gallons, was recovered between April and July. The last observation of DNAPL in well RW-5 was made in October 2008. The total quantity of DNAPL recovered since the program has been in place is approximately 8,335 gallons.

3.8 **Previous Report Recommendations**

The following recommendations of 2007 Annual Report were completed in 2008:

- □ Replacement of B/C-Zone recovery well RW-10 with a new B/C-Zone recovery well installed in a BFBT.
- □ Replacement of compromised well 112C to continue C-Zone hydraulic monitoring in this portion of the site.
- □ Closure of former recovery wells RW-1 and RW-2.
- □ Installation of an A-Zone piezometer south of the CECOS secure cells at existing DuPont well location 168.

Numerous investigations conducted at Necco Park have shown that the B-Zone conductivity generally decreases moving east to west across the southern boundary of the

site that has made selection of suitable location for a conventional vertical recovery challenging. The ineffectiveness of recovery well RW-10 in maintaining B/C-Zone hydraulic control in the western portion of the site corroborates this observation. To address the reduced efficiency of the HCS in maintaining hydraulic control of the B/C-Zone in the western portion of the Site, recovery well RW-10 was replaced with a new recovery well (RW-11) screened within a B-Zone blast-fractured bedrock trench (BFBT) and as a bedrock open-hole in the C-Zone.

Well 112C was installed in 1983 in the southeast corner of the landfill. Water levels recorded during the 4Q06 monitoring event indicate that the casing at well 112C had failed. As to not disrupt the landfill cap materials, a location south of well 112C was selected to install replacement C-Zone well 204C. Using the boring log from 112C and other C-Zone wells in the area, the well was completed in November 2008. The well completion log is provided in Appendix F. Well 204C will be used as a hydraulic monitor.

During mobilization for the BFBT installation, former B/C-Zone recovery wells RW-1 and RW-2 were closed by filling the bedrock hole with bentonite chips. Following hydration of the bentonite, the well casing was filled with a cement/bentonite grout. Before closure, tubing and DNAPL pumps were removed from the wells. Well closures records are provided in Appendix F.

In response to a USEPA comments on the 2Q06 Data Package (USEPA April 2007), the 2006 Annual Report included a recommendation to install an A-Zone piezometer at existing well location 168. An A-Zone piezometer, designated 168A, was installed during the BFBT mobilization. Piezometer construction details are provided in Appendix A. Use of groundwater elevations to prepare potentiometric surface maps began in 4Q08.

4.0 CAP MAINTENANCE

Remaining punch list items for the 2005 landfill cap construction activities were completed in June and August 2006. The August 2006 overseeding event has been successful as permanent vegetation is established across the entire site, including the slopes. A lawn maintenance contractor maintains both the landfill cap and ditch vegetation. Landfill cap maintenance activities are conducted in accordance with the CMMP. Results of the landfill cap maintenance inspection conducted in October 2008 are provided in Appendix G.
5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Hydraulic Control Effectiveness

5.1.1 Conclusions

Groundwater elevation hydrographs along with potentiometric surface-contour maps, calculated drawdowns, and calculated horizontal hydraulic gradients illustrate the effectiveness of the HCS in creating source area hydraulic control in the AT, A, B, C, D, E and F-Zones at the DuPont Necco Park site. A qualitative summary of the 2008 effectiveness of the HCS on each zone is presented below as determined by a review of drawdowns, potentiometric contours, system pumping rates, and previous extents of hydraulic control effectiveness:

- □ AT-Zone: HCS was effective for the entire zone for 2008.
- □ A-Zone: HCS was effective for the entire zone for 2008.
- □ B-Zone: HCS was generally effective for 2008:
 - RW-5: limited to moderate hydraulic control for 1Q08, and good for 2Q08, 3Q08 and 4Q08 (after rehabilitation events).
 - RW-10: limited to moderate hydraulic control for 1Q08 and 2Q08, zero for 3Q08 (offline) and not applicable for 4Q08.
 - RW-11: limited to moderate hydraulic control for 4Q08 (with only 24-hours of operation).
- □ C-Zone: HCS was moderately effective for 2008:
 - RW-4: good hydraulic control for all of 2008.
 - RW-5: limited hydraulic control for 1Q08, good for 2Q08, moderate for 3Q08 and 4Q08.
 - RW-10: moderate hydraulic control for 1Q08 and 2Q08, zero for 3Q08 (offline) and not applicable for 4Q08.
 - RW-11: limited to moderate hydraulic control for 4Q08 (however, with only 24-hours of operation).
- **D**-Zone: HCS is effective for the entire zone.
- **□** E-Zone: HCS is effective for the entire zone.
- □ F-Zone: HCS is effective for the entire zone.

The effect of RW-11 on hydraulic control was not fully evaluated with only 24-hours of operation prior to the 4Q08 water level event on November 13, 2008. Therefore, a preview of the improved hydraulic responses in the A-Zone, B-Zone and C-Zone are presented in Figures 3-20, 3-21 and 3-23, respectively, as derived from 1Q09 water levels

collected on February 19, 2009. A summary of HCS 1Q09 hydraulic control is presented below:

- □ A-Zone: good hydraulic control for RW-5 and RW-11.
- □ B-Zone: good hydraulic control for RW-5 and RW-11.
- C-Zone: moderate hydraulic control at RW-5 and poor at RW-11 (but significantly improved from RW-10) as indicated by the responses at 105C (Figure 3-5).

The observed changes in recovery well pumping rates and reduced drawdown responses in monitoring wells were not unexpected with the installation of the BFBT (see Figure 3-23). The increases in flow zone transmissivities have resulted in an increase in the recovery well pumping rate, an increase in the extent of hydraulic influence and measureable drawdowns in distant wells (e.g. 150B [see Appendix A]). Additionally, there was significant improvement in the hydraulic control of the A-Zone as shown in the A-Zone 1Q09 potentiometric contours (Figure 3-20) as compared to previous A-Zone contours (Figure 3-10).

The installation of the BFBT and RW-11 have greatly enhanced the hydraulic control of the A-Zone and C-Zone in the west portion of the site as compared to RW-10 and are expected to have corrected the cause of RW-10 efficiency losses.

5.1.2 Recommendations

- □ Prepare a plan for routine rehabilitation of RW-5.
- □ Review and present options for continual or permanent rehabilitation or modification of RW-5.

5.2 Groundwater Chemistry Monitoring

5.2.1 Conclusions

The 2008 and historical chemistry monitoring results indicate the following:

- □ An overall decrease in TVOC concentrations for all groundwater flow zones in the source area and far-field.
- □ A-Zone chemistry results are consistent with historical results in that they show no significant off-site horizontal chemical migration in the overburden.
- □ TVOC decreases have occurred at key B/C-Zone source area limit wells including 171B and 172B.
- □ TVOC concentrations in the D/E/F-Zone are either stable or decreasing. TVOC concentrations at far-field wells 147F and 156F have decreased by two orders of magnitude since 1996.
- □ Analytical results for 2008 would not significantly change the A-Zone and B/C-Zone source area limits as delineated in the SAR.

- □ Analytical results for 2008 support the 2005 Annual Report conclusion of a reduced source area limit for the D/E/F-Zone as delineated in the SAR based on the analytical results from well 146E.
- □ The 2008 sample results indicate a short-term increase in groundwater pH at select overburden and upper bedrock monitoring locations that requires further monitoring to determine it's significance.
- □ Results from groundwater sampling events completed since the startup of the HCS show the effectiveness of the HCS in controlling zone-specific source areas.
- □ Groundwater chemistry results from 2005 to 2008 support modification of the existing chemical monitoring well network.

5.2.2 Recommendations

The 2008 sampling program represents the seventh groundwater sampling event of the long term monitoring program. An assessment of the groundwater sample results compiled to date support a reduction of the number of monitoring locations as presented in this report. With Agency approval of the modifications to the chemical monitoring program implementation of the proposed changes will begin in 2010.

5.3 Monitored Natural Attenuation Assessment

5.3.1 Conclusions

Data on chlorinated ethenes in Necco Park is consistent with lines of evidence required for natural attenuation of contaminants (USEPA, Monitored Natural Attenuation Directive, 1999). Specifically, the results summarized above and in the 2008 report continue to show the following:

- contaminants in groundwater decrease along flowpaths from the source area to the down gradient zone,
- geochemical conditions are indicative of low redox conditions required for reductive dechlorination
- Previous results (2005) have confirmed the presence of bacteria competent for the complete dechlorination of chlorinated ethenes to ethane. The continued evidence of natural attenuation of chlorinated solvents is consistent with the presence of these organisms.

Overall, the generally observed stable to decreasing trends in total chlorinated solvents in both source area and downgradient wells and the presence of dechlorinated intermediates (cDCE, VC and ethene) strongly supports the interpretation that natural attenuation of chlorinated ethenes continues to occur at this site through bacterially mediated sequential reductive dechlorination.

5.3.2 Recommendations

In accordance with the recommendations in the 2007 report, consideration was given to discontinuing monitoring of some downgradient and sidegradient wells where contamination is not present or just marginally above detection limits.

In the B/C-Zone, downgradient wells 151B and 151C and sidegradient well 153B contain little to no contamination, and have remained this way for the past three years. We recommend discontinuing sampling of these wells in future MNA assessment.

In the D/E/F-Zone, downgradient well 148D is consistently clean, but should continue to be monitored as farther downgradient well 147D continues to show contamination. However, downgradient wells 156D and 156E are recommended to be eliminated from future annual sampling.

5.4 DNAPL Monitoring and Recovery

5.4.1 Conclusions

Results of the 2008 DNAPL monitoring and historical recovery efforts indicate the following:

- DNAPL was observed in only one of the 30 locations used for DNAPL monitoring
- □ Observations were limited to B/C-Zone recovery well RW-5
- □ 512 gallons of DNAPL recovered in 2008
- □ Approximately 8,335 gallons of DNAPL has been recovered since the recovery program was initiated in 1989.

5.4.2 Recommendations

Continue DNAPL monitoring and recover DNAPL where encountered.

5.5 Landfill Cap

5.5.1 Conclusions and Recommendations

With establishment of a continuous vegetative cover the landfill cap construction is complete and will be now be maintained in accordance with the CMMP.

6.0 REFERENCES

- DuPont Corporate Remediation Group (CRG). 2009. DuPont Necco Park Source Area Hydraulic Control System Fourth Quarter Monitoring Data Package 2008. February 4, 2009.
- _____. 2008c. Necco Park Recovery Well RW-10 Replacement Work Plan. March 14, 2008
- _____. 2008. DuPont Necco Park Source Area Hydraulic Control System First Quarter Monitoring Data Package 2008. May 5, 2008.
- _____. 2008a. DuPont Necco Park Source Area Hydraulic Control System Second Quarter Monitoring Data Package 2008. August 4, 2008.
- _____. 2008b. DuPont Necco Park Source Area Hydraulic Control System Third Quarter Monitoring Data Package 2008. October 31, 2008.
- _____. 2005. DuPont Necco Park *Operations and Maintenance Plan*. November 11, 2005.
- _____. 2005a. *Initial Testing Program Plan*, Necco Park, Niagara Falls, New York. January 21, 2005.
- _____. 2003. DuPont Necco Park, Final (100%) Design Report. Necco Park, Niagara Falls, New York. December 19 2003.
- _____. 2001. DuPont Necco Park Source Area Report. Necco Park, Niagara Falls, New York. April 2001
- .____. 2000. Remedial Design Work Plan, Necco Park, Niagara Falls, New York.
- Feenstra, S., D.M. MacKay, and J.A. Cherry. 1991. "A method for assessing residual NAPL based on organic chemical concentrations in soil samples," in *Groundwater Monitoring Review*. Vol. 11, No. 2.
- Lee, M.D., P. F. Mazierski, R.J. Buchanan, D.E. Ellis, L.S. Sehayek, 1993. *Intrinsic In Situ Anaerobic Biodegration of Chlorinated Solvents at an Industrial Landfill.* Intrinsic Bioremediation.

TABLES

Table 2-1 HCS Recovery Well Performance Summary* 2008 DuPont Necco Park

	B/C-ZONE									D/E/F-	ZONE	
	RW-4		RW-5		RW-	10	RW	-11	RW-	В	RW-9	Ð
	Total Gallons Pumped	Uptime	Total Gallons Pumped	Uptime	Total Gallons Pumped	Uptime	Total Gallons Pumped	Uptime	Total Gallons Pumped	Uptime	Total Gallons Pumped	Uptime
JANUARY	10,269	90.8%	86,064	85.8%	21,704	100.0%	NA	NA	287,729	100.0%	524,275	100.0%
FEBRUARY	7,227	97.4%	48,613	45.4%	18,976	97.4%	NA	NA	244,081	95.0%	614,731	94.8%
MARCH	9,696	98.3%	90,044	82.4%	8,935	100.0%	NA	NA	264,443	100.0%	526,251	100.0%
APRIL	15,427	98.7%	94,356	90.1%	17,335	100.0%	NA	NA	246,372	100.0%	594,559	100.0%
MAY	8,465	97.5%	91,118	61.1%	29,044	97.5%	NA	NA	240,575	100.0%	607,070	100.0%
JUNE	10,416	100.0%	120,306	95.6%	25,567	100.0%	NA	NA	261,485	99.3%	540,166	99.7%
JULY	7,287	87.4%	89,452	83.7%	19,850	95.4%	NA	NA	343,764	99.9%	505,032	99.9%
AUGUST	6,704	58.7%	93,309	60.8%	45,525	0.0%	NA	NA	368,531	98.2%	551,197	98.2%
SEPTEMBER	6,930	89.3%	131,959	86.3%	0	0.0%	NA	NA	390,929	99.7%	551,733	99.7%
OCTOBER	8,382	99.9%	133,349	80.6%	0	0.0%	NA	NA	414,485	99.9%	512,314	91.6%
NOVEMBER	7,786	99.9%	77,854	55.9%	NA	NA	415,735	93.6%	340,180	96.9%	383,632	96.9%
DECEMBER	4,673	73.0%	45,210	28.7%	NA	NA	547,075	63.7%	278,425	74.1%	299,610	74.1%
TOTAL / AVG.	103,262	90.9%	1,101,634	71.4%	186,936	69.0%	962,810	78.6%	3,680,999	96.9%	6,210,570	96.2%

* Uptime totals include downtime as a result of routine scheduled maintenance.

Table 2-2 GWTF Process Sampling Results 2008 DuPont Necco Park Niagara Falls, NY

			B/C INFLUENT			D/E/F INFLUENT			COMBINED EFFLUENT				
Analyte		3/6/08	5/15/08	8/13/08	11/13/08	3/6/08	5/15/08	8/13/08	11/13/08	3/6/08	5/15/08	8/13/08	11/13/08
Field Parameters													
SPECIFIC CONDUCTANCE	umhos/cm	42140	39790	28250	9865	4838	4806	4370	4389	9240	9213	7514	6651
TEMPERATURE	degrees C	10.8	12.5	17.8	13.4	13.2	12.8	14.8	11.5	13.6	13.9	16.2	13.5
COLOR	ns	grey	grey	grey	grey	grey	grey	grey	grey	grey	grey	grey	grey
ODOR	ns	moderate	moderate	moderate	moderate	moderate	moderate	moderate	moderate	slight	slight	slight	moderate
PH	std units	5.63	5.43	5.92	6.57	7.17	7.14	7.61	6.92	7.35	6.99	7.6	6.99
REDOX	mv	-147	-143	-147	-134	-263	-246	-240	-206	-111	-56	-127	-100
TURBIDITY	ntu	50.8	46.2	39.9	120	60.7	62.6	47.1	143	72.3	83.1	107.1	154
Inorganics													
BARIUM DISSOLVED	ug/l	1370000	1230000	934000	33200	110 J	160 J	100 J	100 J	340	700	480	620
BARIUM TOTAL	ug/l	1390000	1040000	991000	109000	92.1	95.1	90.1	91.1	31100	47100	27400	37500
SULFATE	ug/l	1580000	13600 J	1000	9100	1050000	782000	871000	914000	608000	453000	647000	287000
Velatile Organice													
	ug/l	6700	6700	4400 1	1800 1	1500	1700	1400 1	1600 1	1200	1100 1	810 I	1000 1
	ug/i	3400	3100	4400 J	1800 J	1500	2700	1400 J	1000 J	1200	1100 J	810 J	1000 J
	ug/l	2400	2100	1200	550	2700	2700	2400	2900	<0.5	-6.3	-6 3	-7.6
	ug/l	680	400 J	140 J	400	2001	410 J	220 J	220 J	<9.5 54	<0.3 51	<0.5 54	<7.0 60
CARBON TETRACHLORIDE	ug/l	1600	1600	880	1100	1100	1300	1500	1300	-6 5	771	851	29.1
CHLOROFORM	ug/l	13000	12000	5200	13000	4300	4300	4900	5300	270	290	330	370
CIS-1 2-DICHLOROFTHENE	ug/l	17000	18000	9300	4500	12000	13000	11000	12000	600	700	680	260
	ug/l	4100	4300	2300 B	1600.1	5700	5900	4900	3800.1	520	570.1	480	83.1
	ug/l	4200	3300	1500	4300	1600	1400	1600	1900	25.1	25.1	32.1	70
TRANS-1 2-DICHI OROETHENE	ug/l	990	1000	450	280 J	940	960	730	800	16 J	15 J	15 J	<7.6
TRICHLOROETHENE	ug/l	13000	12000	5900	14000	8300	8400	7600	8400	150	180	190	220
VINYL CHLORIDE	ug/l	5600	7300 J	2500	1400	2400	3200 J	2100	2400	<11	11 J	<7.3 UJ	<8.8 UJ
Semivaletile Organice													
		-20	-24	.10	60 I	200	220	070	200	400	220	240 1	470 1
	ug/i	<38	<24	<19	62 J	380	320	270	390	420	220	240 J	170 J
	ug/i	270	<00 200 I	<20 250 J	23 J	190	21 1	130	160	230	F2	120 J	74 J
	ug/i	270 3	320 J	250 J	200	11 J	21 J	<0.75	24 J	17 J	52 J	15 J	10 J
	ug/i	<2.0	< 1.0	<1.5	<1	<0.01	<0.05	<0.00	< I 22 I	<0.05	<0.05	<0.65	12 J 720
	ug/i	900	510	460	390	90 J	30 3	3∠ J	33 J 12 J	5 9	-5 9	70J	110 1
	ug/i	180 J	120 J	460 J	90 J	31J 770	9.0 J	9.9 J	700	< 3.0	< 3.0	5.0 J	280 1
	ug/i	100 J	130 J	150 J	300 J	50 1	60 1	24 1	59 1	040 70 I	420 J	400 J	360 J
	ug/i	200 J	230 J	1100 J	290 4000 I	1700 J	1100 1	34 J 270 J	30 J	1700 J	1500 J	44 J 760 J	1700 J
110-1	ug/i	4200 J	2400 J	1100 J	4000 J	1700 J	1100 J	370 J	8/UJ	1700 J	1900 J	760 J	1700 J
TOTAL VOLATILES	ug/l	69,600	69,340	34,130	46,020	41,100	43,480	38,710	41,000	3,935	3,830	3,450	2,962

G indicates an elevated reporting limit. The sample required dilution for analysis due to matrix interference.

J= Analyte present. Reported value may not be precise.

UJ= Not detected. Reporting limit may not be accurate or precise.

NS= Not sampled

NA= Not applicable

Table 3-1 Hydraulic Monitoring Locations Long-Term Groundwater Monitoring DuPont - Necco Park

		Monitoring			Monitoring			Monitoring
Well ID	Zone	Frequency	Well ID	Zone	Frequency	Well ID	Zone	Frequency
111A	Α	Quarterly	111B	 B	Quarterly	151C	<u> </u>	Quarterly
119A	A	Quarterly	115B	B	Quarterly	160C	ç	Quarterly
123A	A	Quarterly	116B	B	Quarterly	161C	ĉ	Quarterly
129A	A	Quarterly	118B	B	Quarterly	162C	Č	Quarterly
131A	A	Quarterly	119B	B	Quarterly	168C	ĉ	Quarterly
137A	A	Quarterly	120B	B	Quarterly	204C	č	Quarterly
140A	A	Quarterly	129B	В	Quarterly	105D	D	Quarterly
145A	A	Quarterly	130B	В	Quarterly	115D	D	Quarterly
146AR	A	Quarterly	136B	В	Quarterly	123D	D	Quarterly
150A	A	Quarterly	137B	В	Quarterly	129D	D	Quarterly
159A	A	Quarterly	138B	В	Quarterly	130D	D	Quarterly
173A	A	Quarterly	145B	В	Quarterly	136D	D	Quarterly
174A	A	Quarterly	146B	В	Quarterly	139D	D	Quarterly
175A	A	Quarterly	149B	В	Quarterly	145D	D	Quarterly
176A	A	Quarterly	150B	В	Quarterly	148D	D	Quarterly
179A	A	Quarterly	159B	В	Quarterly	149D	D	Quarterly
184A	A	Quarterly	160B	В	Quarterly	159D	D	Quarterly
185A	A	Quarterly	161B	B	Quarterly	163D	D	Quarterly
187A	A	Quarterly	167B	В	Quarterly	164D	D	Quarterly
188A	A	Quarterly	168B	B	Quarterly	202D	D	Quarterly
189A	A	Quarterly	169B	B	Quarterly	203D	D	Quarterly
191A	A	Quarterly	171B	B	Quarterly	RW-8	D/E/F	Quarterly
192A	A	Quarterly	172B	B	Quarterly	129E	E, E, E	Quarterly
193A	A	Quarterly	201B	B	Quarterly	136E	F	Quarterly
194A	A	Quarterly	BZTW-1	B	Quarterly	142E	Ē	Quarterly
D-11	A	Quarterly	B7TW-2	B	Quarterly	145E	F	Quarterly
RDB-3	A	Quarterly	D-23	B	Quarterly	146E	Ē	Quarterly
RDB-5	A	Quarterly	PZ-B	B	Quarterly	163E	E	Quarterly
D-13	A	Quarterly	D-10	B/C	Quarterly	164E	Ē	Quarterly
PZ-A	A	Quarterly	D-14	B/C	Quarterly	165E	F	Quarterly
129AT	AT	Quarterly	RW-10	B/C	Quarterly	203E	F	Quarterly
168A	A	Quarterly	RW-4	B/C	Quarterly	129F	F	Quarterly
184AT	AT	Quarterly	RW-5	B/C	Quarterly	130F	F	Quarterly
185AT	AT	Quarterly	105C	C	Quarterly	145F	F	Quarterly
188AT	AT	Quarterly	112C	Č	Quarterly	146F	F	Quarterly
189AT	AT	Quarterly	115C	Č	Quarterly	148F	F	Quarterly
190AT	AT	Quarterly	123C	C	Quarterly	150F	F	Quarterly
191AT	AT	Quarterly	129C	C	Quarterly	163F	F	Quarterly
192AT	AT	Quarterly	130C	Ċ	Quarterly	164F	F	Quarterly
103AT	ΔΤ	Quarterly	1360	C	Quarterly	165F	F	Quarterly
10071	∧ i ∧ T	Quarterly	1000		Quarterly	2025	י ר	Quarterly
194A I		Quarterly	1370		Quarterly	2026	F	Quarterly
PZ-195AT+	AI	Quarteriy	1380	C	Quarteriy	203F	F	Quarterly
PZ-196AT+	AT	Quarterly	139C	С	Quarterly	130G	G	Quarterly
PZ-197AT+	AT	Quarterly	145C	С	Quarterly	136G	G	Quarterly
MW-198AT+	AT	Quarterly	146C	С	Quarterly	141G	G	Quarterly
PZ-199AT+	AT	Quarterly	149C	С	Quarterly	143G	G	Quarterly
PZ-200AT+	AT	Quarterly						
• = = • •						i		

AT = Top-of-clay

Notes: 1. Well 204C installed in 2008 to replace 112C. Water levels began in 1Q09.

2. Piezometers PZ-A, PZ-B, and 168A installed in 2008.

Table 3-2Select AT-Zone 2008 and 2009 DrawdownsPost HCS StartupDuPont Necco Park

Well	04/05/05	03/17/08	05/15/08	08/13/08	11/13/08	02/19/09
119AT	0.00	3.57	3.38	3.72	3.73	3.43
129AT	0.00	3.55	3.35	3.66	3.81	3.43
180AT	0.00	4.35	5.63	5.86	6.13	3.75
184AT	0.00	3.56	4.35	4.53	5.22	3.99
185AT	0.00	3.66	4.55	4.74	5.31	3.99
186AT	0.00	3.95	4.88	5.10	5.52	4.06
187AT	0.00	4.01	4.96	5.22	5.59	3.93
188AT	0.00	4.48	5.64	5.84	6.25	4.19
189AT	0.00	4.73	5.97	6.20	6.55	4.31
190AT	0.00	4.68	5.97	6.19	6.52	4.21
191AT	0.00	4.60	5.89	6.13	6.40	4.08
192AT	0.00	1.35	1.67	3.07	3.29	0.59
193AT	0.00	0.99	3.71	4.51	5.19	1.61
194AT	0.00	1.96	1.66	2.39	2.89	0.66

Notes:

1) Drawdowns calculated using April 5, 2005, water level event as baseline.

2) Monitoring well hydraulic heads above baseline (negative values) have been shaded.

Well	4/5/05	3/17/08	5/15/08	8/13/08	11/13/08	2/19/09
111A	0.00	4.05	3.81	4.26	4.49	4.77
119A	0.00	2.98	3.35	3.68	3.28	3.62
123A	0.00	2.26	2.06	2.41	2.36	2.03
129A	0.00	3.41	3.40	3.75	3.29	3.37
137A	0.00	2.14	3.17	3.14	3.73	2.74
146AR	0.00	0.64	1.75	1.47	1.86	0.83
150A	0.00	0.03	1.06	1.46	1.43	0.09
159A	0.00	1.38	1.23	1.31	1.33	1.22
163A	0.00	0.10	1.12	1.06	1.23	0.82
173A	0.00	2.46	2.59	2.76	3.72	2.73
174A	0.00	1.75	2.74	2.82	3.43	2.39
175A	0.00	0.75	0.65	1.22	1.39	0.72
176A	0.00	2.68	3.55	3.75	4.56	3.41
178A	0.00	3.19	4.00	4.16	5.00	3.83
179A	0.00	2.52	3.40	3.57	4.38	3.39
184A	0.00	1.73	2.20	2.35	2.68	1.76
185A	0.00	3.66	4.56	4.75	5.30	4.92
186A	0.00	6.16	5.45	5.34	5.17	4.58
187A	0.00	6.81	7.12	7.10	7.10	6.03
188A	0.00	7.37	9.24	8.94	8.80	8.36
189A ⁴	0.00	8.31	8.63	8.09	7.90	7.29
190A	0.00	5.65	6.03	5.56	5.45	5.06
191A	0.00	2.84	3.36	2.85	2.97	1.83
192A	0.00	3.01	3.51	3.04	3.13	0.77
193A	0.00	0.66	0.88	1.05	0.88	0.78
194A	0.00	2.67	3.25	2.70	2.80	2.05
D-11	0.00	3.07	3.95	4.15	5.69	4.31
D-13	0.00	1.31	2.05	2.35	2.38	2.00
D-9	0.00	3.81	3.41	3.66	3.74	3.07
RDB-3	0.00	0.33	1.03	0.93	1.16	0.73
RDB-5	0.00	0.08	1.04	1.13	1.14	0.83

Table 3-3Select A-Zone 2008 and 2009 DrawdownsPost HCS StartupDuPont Necco Park

Notes:

1) Drawdowns calculated using April 5, 2005 water level event as baseline.

2) Monitoring well hydraulic heads above baseline (negative values) have been shaded.

3) NA = not availible.

4) Baseline elevation was recorded on May 5, 2004.

		A	В	С	D	
Well	Pair	2008 Average AT-Zone Head	2008 Average A-Zone Head	AT-Zone Mid-Point of Well Screen	A-Zone Mid-Point of Well Screen	Vertical Gradtient ^{1,2} (B-A) / (C-D)
119AT	119A	572.97	573.42	570.92	564.73	0.03
129AT	129A	573.00	573.16	567.24	563.25	-0.02
184AT	184A	571.52	571.66	570.46	564.65	-0.02
185AT	185A	571.48	571.90	569.24	566.50	0.18
186AT	186A	571.46	566.98	569.58	561.13	-0.84
187AT	187A	571.67	566.73	570.33	561.99	-0.79
188AT	188A	572.15	564.28	570.43	559.21	-0.96
189AT	189A	572.19	565.41	569.76	559.30	-0.92
190AT	190A	572.18	567.41	569.81	558.23	-0.62
191AT	191A	572.27	570.77	569.48	558.20	-0.27
192AT	192A	571.27	570.80	569.82	556.10	-0.17
193AT	193A	576.12	572.24	572.38	559.76	-0.54
194AT	194A	573.98	570.83	571.12	558.80	-0.38

 Table 3-4

 2008 Average AT-Zone to A-Zone Vertical Gradients

 DuPont Necco Park

Note:

1) Unitless (ft/ft).

2) Negative values indicate a downward (from AT-Zone to A-Zone) gradient.

3) Average gradients were used to better reflect typical vertical gradients at the site.

		Α	В	С	D	
Well Pair		2008 Average A-Zone Head	2008 Average B-Zone Head	A-Zone Mid-Point of Well Screen	B-Zone Fracture Elevation ¹	Vertical Gradtient ^{2,3} (B-A) / (C-D)
111A	111B	572.87	571.61	573.94	561.80	-0.10
119A	119B	573.42	570.81	571.63	556.90	-0.18
129A	129B	573.16	570.81	570.10	557.80	-0.19
137A	137B	571.68	571.20	570.10	561.30	-0.05
145A	145B	572.05	569.64	564.19	546.30	-0.13
150A	150B	571.47	570.42	564.69	553.18	-0.09
159A	159B	577.79	574.36	580.62	562.90	-0.19

Table 3-5 2008 Average A-Zone to B-Zone Vertical Gradients DuPont Necco Park

Note:

1) A B-Zone fracture was not observed in the 145B borehole, therefore the midpoint of the open hole was used.

2) Unitless (ft/ft).

3) Negative values indicate a downward (from A-Zone to B-Zone) gradient.

4) Average gradients were used to better reflect typical vertical gradients at the site.

Well ¹	5/4/04	3/17/08	5/15/08	8/13/08	11/13/08	2/19/09
102B	0.00	1.88	1.87	2.24	2.27	1.31
111B	0.00	1.25	1.06	1.74	2.84	3.02
112B	0.00	1.63	2.22	1.99	1.89	10.52
116B	0.00	0.39	0.45	0.49	0.71	0.38
118B	0.00	1.06	1.54	1.47	1.55	0.75
119B	0.00	6.78	6.31	6.33	6.02	5.61
120B	0.00	3.12	2.55	2.65	2.77	2.37
129B	0.00	1.79	1.71	1.77	1.59	1.43
130B	0.00	3.93	3.21	3.30	3.16	2.86
136B	0.00	0.01	0.35	0.31	0.49	0.10
137B	0.00	0.04	0.65	0.40	1.69	1.06
138B	0.00	2.46	1.87	2.44	2.49	1.98
139B	0.00	3.15	3.38	3.11	3.33	3.17
145B	0.00	0.23	0.63	0.53	0.41	0.08
146B	0.00	-0.25	0.28	0.09	0.50	0.03
149B	0.00	-3.65	0.23	0.06	0.48	0.27
150B	0.00	0.11	0.61	0.24	0.99	0.63
151B	0.00	-0.81	-0.60	-0.85	-0.60	-0.88
159B	0.00	0.78	0.80	0.36	1.09	0.76
160B	0.00	1.47	1.54	1.15	1.45	0.18
161B	0.00	2.05	1.84	2.20	2.25	1.14
163B	0.00	-0.57	0.15	0.02	0.31	-0.18
167B	0.00	4.86	3.83	4.62	4.78	3.97
168B	0.00	1.13	0.87	2.36	1.24	0.85
169B	0.00	2.04	1.60	2.01	1.99	1.35
171B	0.00	1.58	1.77	1.21	1.49	0.38
172B	0.00	1.15	1.44	0.82	1.04	0.06
$PZ-B^3$				0.00	0.93	1.62
D-14	0.00	0.94	1.04	-0.51	2.50	1.92
D-23	0.00	7.32	7.97	7.42	7.13	6.69
RW-4	0.00	30.67	26.80	24.42	24.14	22.83
RW-5	0.00	8.19	12.92	12.91	13.04	14.37
RW-10	0.00	9.11	8.78	0.49	3.88	3.39
RW-11³				0.00	0.74	2.78

Table 3-6Select B-Zone 2008 and 2009 DrawdownsPost HCS StartupDuPont Necco Park

Notes:

1) Drawdowns calculated using May 4, 2004 water level event as baseline.

2) Monitoring well hydraulic heads above baseline (negative values) have been shaded.

3) Baseline water elevation collected on August 13, 2008.

Well ¹	5/4/04	3/17/08	5/15/08	8/13/08	11/13/08	2/19/09
105C	0.00	0.37	0.32	-0.20	2.32	2.00
112C	0.00	2.27	0.79	0.69	0.27	-0.67
115C	0.00	1.16	0.96	0.55	2.33	2.13
129C	0.00	3.12	2.87	2.96	3.05	2.75
130C	0.00	-0.03	-1.94	-1.45	2.07	1.39
136C	0.00	-0.13	1.61	0.87	0.68	0.24
137C	0.00	0.04	-2.90	-3.50	1.48	0.91
138C	0.00	-0.19	1.31	-0.20	2.01	1.42
139C	0.00	2.70	-5.61	-6.37	2.24	1.41
145C	0.00	0.64	2.31	1.68	0.62	-0.57
146C	0.00	-0.60	5.19	5.05	-0.13	-0.47
149C	0.00	0.09	-1.46	-1.88	0.44	0.04
150C	0.00	-0.58	-0.69	-1.05	-0.52	0.13
151C	0.00	-0.08	-1.98	-2.38	-0.33	-0.71
159C	0.00	-0.09	6.95	6.51	0.58	0.18
160C	0.00	1.06	-7.00	-7.68	1.08	-0.31
161C	0.00	1.40	-0.01	-0.25	1.56	0.10
162C	0.00	1.95	7.08	6.93	3.08	2.51
168C	0.00	1.79	-1.03	-1.55	1.72	0.84
D-14	0.00	0.62	4.23	-1.51	1.50	0.92
RW-4	0.00	30.67	26.80	24.42	24.14	22.83
RW-5	0.00	8.19	12.92	12.91	13.04	14.37
RW-10	0.00	9.11	8.78	0.49	3.88	3.39
RW-11³				0.00	0.74	3.52

Table 3-7Select C-Zone 2008 and 2009 DrawdownsPost HCS StartupDuPont Necco Park

Notes:

1) Drawdowns calculated using May 4, 2004 water level event as baseline unless otherwise noted.

2) Monitoring well hydraulic heads above baseline (negative values) have been shaded.

3) Baseline water elevation collected on August 13, 2008.

Well ¹	5/4/04	3/17/08	5/15/08	8/13/08	11/13/08	2/19/09
105D	0.00	6.36	5.97	6.15	6.41	6.28
111D	0.00	6.56	6.07	6.24	6.49	6.21
115D	0.00	6.29	5.84	6.01	6.39	6.13
123D	0.00	2.40	2.08	2.05	2.50	1.31
130D	0.00	5.87	5.42	5.59	5.83	5.54
136D	0.00	6.36	5.87	5.92	6.31	6.31
139D	0.00	6.19	0.90	0.74	1.20	0.50
145D	0.00	1.06	1.19	1.05	1.23	0.19
148D	0.00	2.77	4.10	3.47	4.54	2.36
149D	0.00	5.43	4.61	4.44	5.07	4.96
159D	0.00	6.75	6.21	6.42	6.75	6.62
163D	0.00	5.33	5.02	5.20	6.98	5.98
163D	0.00	4.96	5.14	3.91	3.21	4.79
129E	0.00	1.40	1.23	1.17	0.26	0.26
136E	0.00	6.61	6.05	6.19	6.50	6.40
145E	0.00	0.79	0.69	0.52	0.96	-0.55
146E	0.00	6.85	6.36	6.35	6.71	6.79
150E	0.00	4.79	4.23	4.49	4.69	4.08
163E	0.00	7.20	6.67	6.92	7.26	7.13
164E	0.00	7.16	6.66	6.71	6.97	7.00
164E	0.00	6.99	6.69	6.74	6.96	6.96
$112F^{3}$	0.00	0.90	0.95	0.63	1.01	-0.27
129F	0.00	1.40	1.36	1.44	1.65	0.13
130F	0.00	6.39	6.02	6.24	6.47	6.19
136F	0.00	6.91	6.42	6.44	6.74	6.74
145F	0.00	0.82	0.89	0.78	1.04	0.16
146F	0.00	6.49	5.95	5.85	6.28	6.46
148F	0.00	2.80	1.00	0.54	2.00	2.42
150F	0.00	4.40	4.08	4.16	4.49	4.06
163F	0.00	7.00	6.48	6.53	6.81	6.85
164F	0.00	6.95	6.53	6.59	6.85	6.90
164F	0.00	7.34	7.00	7.03	7.19	7.20
RW-8	0.00	8.69	8.01	9.12	9.12	9.12
RW-9	0.00	8.27	8.25	8.21	8.23	8.19

Table 3-8 Select D, E, and F-Zone 2008 and 2009 Drawdowns Post HCS Startup DuPont Necco Park

Note:

1) Drawdowns calculated using May 4, 2004, water level event as baseline.

2) Monitoring well hydraulic heads above baseline (negative values) have been shaded.

3) Baseline water elevation collected on May 8, 2005.

Table 3-9
DNAPL Components and Solubility Criteria Values
DuPont Necco Park

Contaminant	Mole Fraction in DNAPL	Pure-Phase Solubility	One-Percent Pure- Phase solubility	Effective Solubility
	(%)	(ug/l)	(ug/l)	(ug/l)
Hexachlorobutadiene	59	2,000	20	1,180
Hexachloroethane	9	50,000	500	4,500
Hexachlorobenzene	2	11	0.11	0.22
Carbon tetrachloride	5	800,000	8,000	40,000
Chloroform	1	8,000,000	80,000	80,000
Tetrachloroethene	3	150,000	1,500	4,500
1,1,2,2-Tetrachloroethane	5	2,900,000	29,000	145,000
Trichloroethene	4	1,100,000	11,000	44,000

Table 3-10
2005 - 2008 Annual Sampling
Effective Solubility Concentration Exceedances for DNAPL Compounds
DuPont Necco Park

	Flow		Criteria	2	2005	20	006	20	007	2008
Well ID	Zone	Analyte	(ppb)	1st Event	2nd Event	1st Event	2nd Event	1st Event	2nd Event	
		Carbon Tetrachloride	40,000	N/S	N/S	N/S	BC	N/S	BC	BC
		Hexachlorobutadiene	1,180	1,700	BC	N/S	N/S	N/S	N/S	N/S
105C	С	Chloroform	80,000	BC	180,000	N/S	120,000	N/S	90,000	82,000
		Tetrachloroethene	4,500	32,000	35,000	N/S	36,000	N/S	37,000 J	32,000
		Trichloroethene	44,000	280,000	190,000	N/S	190,000	N/S	160,000	140,000
		Carbon Tetrachloride	40,000	150,000	83,000	N/S	170,000	N/S	190,000	BC
105D	D	Chloroform	80,000	98,000	35,000	N/S	80,000	N/S	90,000	96,000
1000		Tetrachloroethene	4,500	12,000	57,000	N/S	11,000	N/S	13,000 J	12,000
		Trichloroethene	44,000	120,000	51,000	N/S	110,000	N/S	120,000	130,000
137C	С	Tetrachloroethene	4,500	8,500	22,000	N/S	7,900	N/S	BC	BC
		Tetrachloroethene	4,500	5,100	4,900	N/S	BC	N/S	7,200	5,300 J
137D	D	Trichloroethene	44,000	64,000	76,000	N/S	BC	N/S	91,000	70,000
		Hexachlorobenzene	0.22	3.0	11.0	N/S	N/S	N/S	N/S	N/S
139D	D	Hexachlorobutadiene	1,180	1,200	BC	N/S	N/S	N/S	N/S	N/S
171B B		Hexachlorobutadiene	1,180	2,100	BC	BC	BC	N/S	BC	BC
		Hexachlorobenzene	0.22	BC	4.0	31 J	3.4 J	N/S	1.4 J	BC

BC: Below Criteria

N/S: Not Sampled

Note: Wells 105C and 105D are located on the landfill and are MNA Source Area wells.

Table 3-112005 - 2008 Annual Sampling1% of Pure-Phase Solubility Concentration Exceedances for DNAPL CompoundsDuPont Necco Park

	Flow		Criteria	20	05	20	06	20	07	2008
Well ID	Zone	Analyte	(ppb)	1st Event	2nd Event	1st Event	2nd Event	1st Event	2nd Event	
		Hexachlorobutadiene	20	1,700	BC	N/S	N/S	N/S	N/S	N/S
		Carbon Tetrachloride	8,000	25,000	BC	N/S	BC	N/S	BC	BC
105C	С	Chloroform	80,000	250,000	180,000	N/S	120,000	N/S	90,000	82,000
		Tetrachloroethene	1,500	32,000	35,000	N/S	36,000	N/S	37,000 J	32,000 J
		Trichloroethene	11,000	280,000	190,000	N/S	190,000	N/S	160,000	140,000
		Hexachlorobutadiene	20	95.0	BC	N/S	N/S	N/S	N/S	N/S
		Carbon Tetrachloride	8,000	150,000	83,000	N/S	170,000	N/S	190,000	190,000
105D	р	Chloroform	80,000	98,000	BC	N/S	80,000	N/S	90,000	96,000
1000	D	Tetrachloroethene	1,500	12,000	5,700	N/S	11,000	N/S	13,000 J	12,000 J
		1,1,2,2-Tetrachlorethane	29,000	N/S	N/S	N/S	88,000	N/S	79,000	76,000
		Trichloroethene	11,000	120,000	51,000	N/S	110,000	N/S	120,000	130,000
136C	С	Tetrachloroethene	1,500	4,100	3,600	3,300	3,100	5,200	3,800	4,800
137C C		Tetrachloroethene	1,500	8,500	22,000	N/S	7,900	N/S	2,200	2,700
10/0	0	Trichloroethene	11,000	BC	19,000	N/S	16,000	N/S	20,000	70,000
137D	D	Tetrachloroethene	1,500	5,100	4,900	N/S	BC	N/S	7,200	5,300
10/12	D	Trichloroethene	11,000	64,000	76,000	N/S	27,000	N/S	91,000	70,000
		Tetrachloroethene	1,500	N/S	N/S	N/S	2000 J	N/S	4,600	3,100
139B	В	Hexachlorobutadiene	20	78	BC	N/S	N/S	N/S	N/S	N/S
		1,1,2,2-Tetrachlorethane	29000	N/S	N/S	N/S	29,000	N/S	BC	BC
139D	П	Hexachlorobenzene	0.11	38.0	11.0	N/S	N/S	N/S	N/S	N/S
1000	D	Tetrachloroethene	1,500	1,900	BC	N/S	BC	N/S	BC	BC
165E	E	Hexachlorobutadiene	20	27.0	BC	32 J	46 J	BC	45 J	91 J
168C	С	Hexachlorobutadiene	20	330	64.0	54 J	N/S	44 J	BC	BC
171B B		Hexachlorobutadiene	20	2,100	130	BC	BC	BC	BC	BC
1710		Hexachlorobenzene	0.11	BC	4.0	3.1 J	3.4 J	BC	1.4 J	BC
172B	В	Hexachlorobutadiene	20	140	89	140 J	110	BC	110	54
1720		Tetrachloroethene	1,500	1,800	BC	BC	BC	BC	BC	BC
D-11	A	Hexachlorobutadiene	20	29	BC	BC	BC	BC	BC	BC

BC: Below Criteria

N/S: Not Sampled

Note: Wells 105C and 105D are located on the landfill and are MNA Source Area wells.

Table 3-12 Chemical Monitoring List Long-Term Monitoring DuPont Necco Park

Curre	ent list of v	wells monitored	
MONITORING	ZONE	MONITORING	ZONE
WELL	LONE	WELL	LONE
D-11	А	105D	D
D-13	А	123D	D
D-9	А	136D	D
137A	А	137D	D
145A	А	145D	D
146AR	А	148D	D
150A	А	139D	D
111B	В	147D	D
136B	В	149D*	D
137B	В	156D	D
139B	В	165D	D
141B	В	136E	E
145B*	B	145E	E
146B	В	146E	E
149B*	В	150E	E
150B	В	156E	E
151B*	В	165E	E
153B	В	136F	F
168B	В	146F	F
1/1B	В	147F	F
172B	B	150F*	F
105C	C	156F	F
136C	C	147G1	GI
13/C	C	14/G2	G2
141C*	C C	14/63	G3
145C*	C		
140C*	C C		
1490	C C		
151C	C C		
1510			
108C	C		
*Well does not mee	t bedrock z	one water bearing o	riteria
$(k < 10^4 \text{ cm/sac})$	A DEMICER Z	one water bearing c	11011a
(K > 10 - CIII/SCC).			
Wells shown in bol	d are used s	solely for the MNA	evaluation

MONITORING	ZONE	ZONE MONITORING										
WELL		WELL										
137A	А	136D	D									
145A	А	137D	D									
146AR	А	145D	D									
150A	А	148D	D									
136B	В	165D	D									
137B	В	146E	Е									
145B*	В	150E	Е									
146B	В	165E	Е									
150B	В	136F	F									
168B	В	146F	F									
171B	В	150F*	F									
172B	В											
137C	С											
145C*	С											
146C*	С											
150C*	С											
168C	С											
*Well does not meet be	drock zone wa	ater bearing criteria										
$(k < 10^{-4} \text{ cm/sec}).$	$(k<10^{-4} \text{ cm/sec}).$											
Wells shown in bold ar	e used solely f	for the MNA evaluat	ion and will									

Proposed list of wells to be monitored

and will not be used for Long-term chemistry monitoring.

Table 3-13 Indicator Parameter List Long-Term Groundwater Monitoring DuPont Necco Park

INORGANIC AND		
GENERAL WATER QUALITY	VOLATILE ORGANIC	SEMIVOLATILE ORGANIC
PARAMETERS	COMPOUNDS	COMPOUNDS
pH*	Vinyl chloride	Hexachloroethane
Specific conductivity*	1,1-dichloroethene	Hexachlorobutadiene
Temperature*	Trans-1,2-dichloroethene	Phenol
Turbidity*	Cis-1,2-dichloroethene	2,4,6-trichlorophenol
Dissolved oxygen *	Chloroform	2,4,5-trichlorophenol
Redox potential*	Carbon tetrachloride	Pentachlorophenol
Chloride	1,2-dichloroethane	Hexachlorobenzene
Dissolved barium	Trichloroethene	4-methlyphenol
	1,1,2-trichloroethane	TIC-1
	Tetrachloroethene	
	1,1,2,2-tetrachloroethane	

*Field parameter

Table 3-14
Monitored Natural Attenuation Parameters
DuPont Necco Park

Field Parameters	Miscellaneous Parameters
Specific Conductance	Alkalinity
Temperature	Chloride
Dissolved Oxygen	Nitrate Nitrogen
pН	Sulfate
Eh (Redox)	Sulfide as S
Gases	Total Organic Carbon
Ethane	
Ethene	
Methane	
Propane	
Dissolved Metals	
Iron	
Manganese	

Table 3-15 MNA B/C Zone Wells DuPont Necco Park

MNA B/C Zone Wells

Well	Location	Last NAPL	Conc. Trend	Dominant CI - Ethene	2008 Ethene Production	2005 Total CI-Ethenes	2006 Total CI-Ethenes (ug/l)	2007 Total CI-Ethenes	2008 Total CI-Ethenes	ORP (my)	Fe (ug/L)	CI (ug/l.)	SO ⁴	S (ug/L)	CH ⁴ (ug/I)	TOC
Wein	Location	observation	2003 - 2000	эрсосэ	Troduction	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(111)	(ug/L)	(ug/L)	(ug/L)	0 (ug/L)	(ug/L)	(ug/L)
141B	Upgradient	NA	Clean	NA	Moderate	0	0	0	0	-436	0	1E+06	689000	7000	1300	14000
141C	Upgradient	NA	Flat	PCE, TCE, VC	Weak	2	1	1	2	-362	0	752000	419000	1300	320	15000
111B	Source Area	NA	Slight Increase	cDCE, VC	Good	758	398	746	1,657	-474	103000	5E+06	69600	0	13000	1E+06
137B	Source Area	NA	Decreasing	TCE, cDCE, VC	Moderate	1,114	664	750	463	-519	0	753000	9300	4800	1700	34000
139B	Source Area	1992	Increasing	PCE, TCE, tDCE, cDCE, VC	Good	1,447	23,800	50,300	41,200	-271	260000	4200	0	1400	9600	160000
105C	Source Area	1992	Slight Decrease	PCE, TCE cDCE, tDCE, 1,1 DCE, VC	Good	260,800	260,800	231,200	202,900	-217	900	7E+06	403000	4600	3000	300000
137C	Source Area	NA	Decreasing	PCE, TCE cDCE, VC	Good	51,200	45,110	38,220	8,760	-454	160	1E+06	54200	3800	4300	63000
145B	Downgradient	NA	Slight Increase	TCE, cDCE, VC	Good	4,400	29,850	30,690	17,350	-422	0	6E+06	707000	5100	5000	21000
145C	Downgradient	NA	Flat	cDCE, VC	Moderate	8,900	7,650	15,560	6,412	-261	825000	5E+07	559000	95000	2700	43000
149C	Downgradient	NA	Flat	cDCE, VC	Weak	10	16	27	12	-270	0	294000	204000	6100	1400	6000
151C	Downgradient	NA	Decreasing	tDCE, VC	Weak	220	12	8	12	-365	200	1E+06	2E+06	52000	3600	7000
151B	Downgradient	NA	Flat	All	Weak	0	2.24	8.36	3.8	-373	0	422000	8000	0	180	2000
153B	Sidegradient	NA	Clean	NA	BDL	0	0	0	0	-142	1200	397000	230000	640	260	4000

NA = Not Applicable

ND= No Data

BDL = Below Detection Limit

ORP = Oxidation/Reduction Potential

Fe = Dissolved Iron

CI = Chloride

SO⁴ = Sulfate

S = Sulfide

 $CH^4 = Methane$

TOC = Total Organic Carbon

(ug/L) = Micrograms per Liter

(mv) = Millivolts

Table 3-16 MNA D/E/F Zone Wells DuPont Necco Park

MNA D/E/F Zone Wells

						2005	2006	2007	2008							
		Last NAPL	Conc. Trend	Dominant CI - Ethene	2008 Ethene	Total CI-Ethenes	Total CI-	Total CI-Ethenes	Total CI-Ethenes	ORP	Fe	CI	SO⁴		CH⁴	тос
Well	Location	Observation	2005 - 2008	Species	Production	(ug/L)	Ethenes (ug/L)	(ug/L)	(ug/L)	(mv)	(ug/L)	(ug/L)	(ug/L)	S (ug/L)	(ug/L)	(ug/L)
				PCE, TCE , cDCE, VC,												
137D	Source Area	NA	Flat	tDCE, 1,1,DCE	Moderate	94,500	35,470	120,700	93,700	-376	310	2E+06	1E+06	7000	1500	270000
139D	Source Area	1992	Decreasing	TCE	Weak	2,690	1,843	1,845	1,219	-349	1100	945000	1E+06	3800	790	3000
165D	Source Area	NA	Decreasing	VC	Moderate	1,102	597	498	23	-307	0	336000	12800	640	200	9000
136D	Downgradient	NA	Flat	TCE, cDCE VC	Good	1,819	1,170	468	950	-378	120	258000	65100	65100	1500	10000
147D	Downgradient	NA	Flat	cDCE, VC	Weak	183	168	164	172	-172	730	33000	1E+06	0	140	1000
148D	Downgradient	NA	Flat	cDCE	Weak	1	1	1	1	-256	0	61800	431000	0	380	4000
156D	Downgradient	NA	Slight Decrease	VC	BDL	5	3	2	2	-223	1100	193000	691000	4400	450	3000
136E	Downgradient	NA	Flat	TCE, cDCE, VC , tDCE	Good	17	16	36	9	-344	120	189000	328000	12000	1000	5000
146E	Downgradient	NA	Increase	cDCE, VC	Good	17,120	15,060	12,020	18,430	-452	0	1E+06	394000	130000	4300	88000
156E	Downgradient	NA	Slight Decrease	cDCE, VC	BDL	3	2	1	1	-318	1700	205000	691000	7000	270	2000
146F	Downgradient	NA	Slight Decrease	cDCE, VC	Moderate	20,470	20,310	22,160	15,720	-353	270	3E+06	889000	5400	3100	80000
149D	Sidegradient	NA	Flat	cDCE, VC	Weak	0	1	2	4	-363	0	313000	942000	6200	3300	7000
145E	Sidegradient	NA	Slight Decrease	cDCE, VC	Good	11,750	3,010	14,760	9,647	-280	10900	4E+06	1E+06	1400	5000	28000
150F	Sidegradient	NA	Slight Decrease	cDCE, VC	Weak	2,755	1,740	1,707	1,220	-345	199000	1E+07	1E+06	21000	6100	210000

NA = Not Applicable ND= No Data BDL = Below Detection Limit ORP = Oxidation/Reduction Potential Fe = Dissolved Iron CI = Chloride SO⁴ = Sulfate S = Sulfide CH⁴ = Methane TOC = Total Organic Carbon (ug/L) = Micrograms per Liter (mv) = Millivolts

Table 3-17 2008 DNAPL Recovery Summary DuPont Necco Park

Woll ID	Frequency	8-J	an	13-1	Feb	9-Mar		12-/	٩pr	18-N	<i>l</i> lay	15-J	lun	20-	Jul	23-/	Aug	28-	Sep	26-0	Oct	26-Nov		18-Dec	
Wenind	requeitcy	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS
RW-1	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
RW-2	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
RW-4	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
RW-5	Monthly	9.0	28.0	4.0	17.0	5.0	20.0	9 to 12	87.0	7 to 15	89.0	7 to 10	103.0	6 to 7	52.0	8.0	29.0	7.0	43.0	3 to 6	44.0	0.0	0.0	0.0	0.0
TRW-6	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
TRW-7	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
D-23	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-117A	Monthly	na		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-123A	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-129A	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-129C	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		TRACE		0.0		0.0		0.0		0.0		0.0	
VH-160B	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-160C	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-161B	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-161C	Monthly	0.0		0.0		TRACE		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-162C	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-190A	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-167B	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-168B	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-168C	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-169B	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-170B	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-171B	Monthly	TRACE		TRACE		TRACE		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-172B	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-131A	Semi-annually	na		na		0.0		0.0		0.0		0.0		na		na		0.0		na		na		na	
VH-139A	Semi-annually	na		na		0.0		0.0		na		0.0		na		na		0.0		na		na		na	
VH-139C	Semi-annually	na		na		0.0		0.0		na		0.0		na		na		0.0		na		na		na	
CECOS52SR	Semi-annually	na		na		0.0		0.0		na		0.0		na		na		0.0		na		na		na	
CECOS18SR	Semi-annually	na		na		0.0		0.0		na		0.0		na		na		0.0		na		na		na	
CECOS-53	Semi-annually	na		na		0.0		0.0		na		0.0		na		na		0.0		na		na		na	

na - not applicable/not taken GALS - gallons purged FIGURES

33.00005\DB\GIS\locations.apr CHEMICAL MONITOF

Figure 3-2 Select AT-Zone Monitoring Wells Groundwater Elevations 1Q05 - 1Q09 DuPont Necco Park

Figure 3-3 Select A-Zone Monitoring Wells Groundwater Elevations 1Q05 - 1Q09 DuPont Necco Park

Figure 3-4 Select B-Zone Monitoring Wells Groundwater Elevations 1Q05 to 1Q09 DuPont Necco Park

2008 of GW Elevation Trends - B Zone DRAFT.xls B-Zone Selected

Figure 3-5 Select C-Zone Monitoring Wells Groundwater Elevations 1Q05 to 1Q09 DuPont Necco Park

Figure 3-6 Select D-Zone Monitoring Wells Groundwater Elevations 1Q05 to 1Q09 DuPont Necco Park

□ 105D □ 111D □ 123D □ 145D □ 149D □ 164D ∞ RW-8 ∞ RW-9

Figure 3-7 Select E-Zone Monitoring Wells Groundwater Elevations 1Q05 to 1Q09 DuPont Necco Park

-**□**-- 136E -**■**-- 145E -**□**-- 150E -**□**-- 164E -**△**-- RW-8 -**▲**-- RW-9

Figure 3-8 Select F-Zone Monitoring Wells Groundwater Elevations 1Q05 to 1Q09 DuPont Necco Park

Figure 3-9 Potentiometric Surface Map DuPont Necco Park: AT-Zone November 13, 2008

Figure 3-10 Potentiometric Surface Map DuPont Necco Park: A-Zone November 13, 2008

Figure 3-12 Drawdown Contour Map DuPont Necco Park: A-Zone April 5, 2005 (Static) to May 15, 2008

Note: Negative values indicate downward gradients.

Figure 3-14 Vertical Gradient: A-Zone to B-Zone DuPont Necco Park November 13, 2008

Figure 3-15 Potentiometric Surface Map DuPont Necco Park: B-Zone November 13, 2008

Figure 3-16 Potentiometric Surface Map DuPont Necco Park: C-Zone November 13, 2008

589	
139D¢ 563.42	

Figure 3-17 Potentiometric Surface Map **DuPont Necco Park: D-Zone** November 13, 2008

Figure 3-18 Potentiometric Surface Map DuPont Necco Park: E-Zone November 13, 2008

	112F¢ 563.24	
)		
		/

Figure 3-19 Potentiometric Surface Map **DuPont Necco Park: F-Zone** November 13, 2008

Figure 3-20 Potentiometric Surface Map DuPont Necco Park: A-Zone February 19, 2009

Figure 3-21 Potentiometric Surface Map DuPont Necco Park: B-Zone February 19, 2009

Figure 3-22 Potentiometric Surface Map DuPont Necco Park: C-Zone February 19, 2009

Figure 3-23 Effect of Different Transmissivities DuPont Necco Park

Effect of different transmissivities on the shape, depth and extent of the cones of depression (pumping rates and other factors are constant). Modified from Driscoll, 1989.

APPENDICES

APPENDIX A 2008 SEMI-ANNUAL GROUNDWATER SAMPLING & RECOVERY WELL RESULTS

Table A-1 Summary of A-Zone Analytical Results 2008 DuPont Necco Park

Britlos Britlos Britlos Britlos Britlos Britlos Britlos Britlos Fied Praneters CCLCRA (LALTATURE (FIELD) NS TAN CLEAR CLEAR <th></th> <th></th> <th>VH-D-9</th> <th>VH-D-11</th> <th>VH-D-13</th> <th>VH-137A</th> <th>VH-145A</th> <th>VH-146AR</th> <th>VH-150A</th>			VH-D-9	VH-D-11	VH-D-13	VH-137A	VH-145A	VH-146AR	VH-150A
Analye Units FS CLEAR COUCR FIELD NS NNN RNN RNNN RNN			6/11/08	6/12/08	6/11/08	6/17/08	6/19/08	6/20/08	6/13/08
Field Parameters U CLEAR	Analyte	Units	FS	FS	FS	FS	FS	FS	FS
COLON CUALITATIVE (FIELD) NS TAN CLEAR CLEAR </td <td>Field Parameters</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Field Parameters								
ODDR (FIELD) NS NONE	COLOR QUALITATIVE (FIELD)	NS	TAN	CLEAR	CLEAR	CLEAR	CLEAR	GREY	CLEAR
PH (FILD) STD UNITS 6.85 12.46 8.68 12.69 6.65 9.48 7.07 SPECINC (PLCD) UMH-OSICM 4060 1860 6540 7420 1810 1870 2000 TURBIDITY GUANTITATIVE (FIELD) DEGREES C 13.1 13.1 13.8 13.2 11.5 14 16.2 TURBIDITY GUANTITATIVE (FIELD) NTU 61.4 1.97 3.74 1.6.3 2.75 13.27 2.55 Value Organics U 1.1.2.7ETRACHLORDETHANE UGA. -0.18 <0.45	ODOR (FIELD)	NS	NONE	NONE	NONE	NONE	NONE	NONE	NONE
FEDDX (FIELD) MV -161 -488 -378 -264 -101 -220 -151 TEMPERATURE (FIELD) DEGREES C 13.1 13.8 13.2 11.5 14 162 TURBIDITY QUANTITATIVE (FIELD) NTU 61.4 1.97 3.74 1.83 2.75 1.32.7 2.55 Valual Organics 1.1,2.7 TICH LOROFTHANE UGL -0.18 <0.27	PH (FIELD)	STD UNITS	6.85	12.16	8.68	12.69	6.65	9.48	7.07
SPECIFIC CONDUCTANCE (FIELD) UMH-OSCM 4960 1850 65.40 7420 1810 1870 2060 TURBIDITY QUANTITATIVE (FIELD) NTU 61.4 1.97 3.74 1.63 2.75 13.27 2.55 Value Organics 1.1,2.7ETRACHLORCETHANE UGA -0.18 -0.45 -0.45 -0.015 -0.27 -0.27 -0.27 -0.27 -0.22 -0.23 -0.13 -0.13 -0.13 -0.16 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.22 1.0 -0.23 J.0 -0.23 J.0 -0.23 J.0 -0.23 J.0 -0.23 J.0 -0.21 -0.25	REDOX (FIELD)	MV	-161	-458	-318	-264	-101	-220	-151
TEMPERATURE (FIELD) DEGREES C 13.1 13.1 13.8 13.2 11.5 14 16.2 Value Organics I 1.2.2 2.55 Value Organics 2.75 13.27 2.55 Value Organics I 1.2.2 CER 0.18 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.018 0.019 0.02 <th0.02< th=""></th0.02<>	SPECIFIC CONDUCTANCE (FIELD)	UMHOS/CM	4060	1850	6540	7420	1810	1870	2060
TUREDITY QUANTITATIVE (FIELD) NTU 614 1.97 3.74 1.83 2.75 13.27 2.55 Value Organics Volatio Organics Volation Organics Volatin Volation Organics <t< td=""><td>TEMPERATURE (FIELD)</td><td>DEGREES C</td><td>13.1</td><td>13.1</td><td>13.8</td><td>13.2</td><td>11.5</td><td>14</td><td>16.2</td></t<>	TEMPERATURE (FIELD)	DEGREES C	13.1	13.1	13.8	13.2	11.5	14	16.2
Volatile Organics	TURBIDITY QUANTITATIVE (FIELD)	NTU	61.4	1.97	3.74	1.63	2.75	13.27	2.55
1.1.2.TETRACHLOROETHANE UGL -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.27 -0.022 -0.013 -0.022 -0.013 -0.022 -0.013 -0.022 -0.013 -0.022 -0.013 -0.014 -0.016 -0.014 -0.016 -0.014 -0.016 -0.014 -0.016 -0.017 -0.018 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.017<	Volatile Organics								
11.2-TRICHLOROETHANE UGL -0.27 -0.045 -0.027 -0.08 -0.27 -0.27 -0.27 1.1-DICHLOROETHANE UGL -0.19 8.9 -0.19 11 -0.19 0.34 J -0.12 CARBON TETRACHLOROETHANE UGL -0.13 -0.22 -0.23 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.416 -0.418 -0.418 -0.418 -0.429 -0.17 <td>1,1,2,2-TETRACHLOROETHANE</td> <td>UG/L</td> <td><0.18</td> <td><0.3 UJ</td> <td><0.18</td> <td><0.45</td> <td><0.18</td> <td><0.18</td> <td><0.18 UJ</td>	1,1,2,2-TETRACHLOROETHANE	UG/L	<0.18	<0.3 UJ	<0.18	<0.45	<0.18	<0.18	<0.18 UJ
1,1-DICHLOROETHENE UGL -0.19 8.9 -0.19 1.1 -0.19 0.34 J -0.19 1,2-DICHLOROETHANE UGL 1.8 1.2 J -0.22 .0.13 -0.22 .0.13 -0.22 .0.13 -0.22 .0.13 -0.22 .0.13 .0.13 .0.13 .0.13 .0.13 .0.13 .0.13 .0.13 .0.13 .0.13 .0.13 .0.13 .0.14 .0.16 .0.61 J .0.17 .0.19 .0.29 J J .0.29 J J .0.29 J J .0.17<	1,1,2-TRICHLOROETHANE	UG/L	<0.27	<0.45	<0.27	<0.68	<0.27	<0.27	<0.27
12-DICHLOROETHANE UGL 1.8 1.2.J -0.22 3.9 -0.22 -0.22 -0.22 CARBON TETRACHLORIDE UGL <0.13	1,1-DICHLOROETHENE	UG/L	<0.19	8.9	<0.19	11	<0.19	0.34 J	<0.19
CARBON TETRACHLORIDE UG/L <0.13 <0.22 <0.13 <0.32 <0.13 <0.13 <0.13 CHLOROFORM UG/L <0.16	1.2-DICHLOROETHANE	UG/L	1.8	1.2 J	<0.22	3.9	<0.22	<0.22	<0.22
CHLOROFORM UGL <0.16 1.4 J <0.16 0.61 J <0.16 <0.16 <0.16 <0.16 <0.16 <0.16 <0.16 <0.16 <0.16 <0.16 <0.16 <0.16 <0.16 <0.16 <0.19 0.3 J 0.49 J TRANELOROETHYLENE UGL <0.19	CARBON TETRACHLORIDE	UG/L	<0.13	<0.22	<0.13	< 0.32	<0.13	<0.13	<0.13
CIS-1,2 DICHLOROETHENE UGL <0.17 11 0.39 J 75 0.29 JJ 0.3 J 0.49 J TETRACHLOROETHYLENE UGL <0.29 UJ	CHLOROFORM	UG/L	<0.16	1.4 J	<0.16	0.61 J	<0.16	<0.16	<0.16
TETRACHLOROETHYLENE UGAL <0.29 UJ 10 <0.29 UJ 50 J <0.29 UJ <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.19 <0.23 UJ <0.23 UJ <0.22 <0.23 UJ <0.20 UJ <	CIS-1,2 DICHLOROETHENE	UG/L	<0.17	11	0.39 J	75	0.29 J	0.3 J	0.49 J
TRANS-1,2-DICHLOROETHENE UG/L <0.19 1.8 0.35 J 5.7 <0.19 <0.19 <0.19 TRICHLOROETHENE UG/L <0.17	TETRACHLOROETHYLENE	UG/L	<0.29 UJ	10	<0.29 UJ	50 J	<0.29 UJ	<0.29 UJ	<0.29 UJ
TRICHLOROETHENE UG/L <0.17 45 1.1 97 <0.17 <0.17 <0.17 <0.17 VINV CHLORIDE UG/L 0.29 J 5.5 0.35 J 57 <0.22	TRANS-1,2-DICHLOROETHENE	UG/L	<0.19	1.8	0.35 J	5.7	<0.19	<0.19	<0.19
VINYL CHLORIDE UG/L 0.29 J 5.5 0.35 J 57 <0.22 1.5 0.23 J Semivolatile Organics 2.4.5.TRICHLOROPHENOL UG/L <0.96 1.1 J <0.96 <3.8 <0.96 8.6 J <0.96 2.4.5.TRICHLOROPHENOL UG/L <1.4	TRICHLOROETHENE	UG/L	<0.17	45	1.1	97	<0.17	<0.17	<0.17
Semivolatile Organics 2.4,5-TRICHLOROPHENOL UG/L <0.96	VINYL CHLORIDE	UG/L	0.29 J	5.5	0.35 J	57	<0.22	1.5	0.23 J
2.4,5-TRICHLOROPHENOL UG/L <0.96	Semivolatile Organics								
LAGE TRAINERIDE UGAL CLUB			<0.96	111	<0.96	~3.8	<0.96	861	~0.96
AND HIGHLOL UGL CLA CLA <thcla< th=""> <thcla< th=""> <thcl< td=""><td></td><td></td><td><0.30</td><td>-1.4</td><td><0.30</td><td><5.6</td><td><0.30</td><td>0.0 J</td><td><0.30</td></thcl<></thcla<></thcla<>			<0.30	-1.4	<0.30	<5.6	<0.30	0.0 J	<0.30
Der ME THENCL OGAL CO.05 CO.065 CO.			<0.75	441	181	29.1	<0.75	<0.75	<0.75
Instruction Lettice UG/L CO.51 CO.50 CO.51 CO.51 </td <td></td> <td></td> <td><0.065</td> <td><0.065</td> <td><0.065</td> <td><0.26</td> <td><0.065</td> <td><0.065</td> <td><0.065</td>			<0.065	<0.065	<0.065	<0.26	<0.065	<0.065	<0.065
Instruction Oole Co.58			<0.000	171	<0.51	<0.20	<0.51	<0.51	<0.000
Individual Oal Could			<0.58	<0.58	<0.51	~2 3	<0.51	<0.51	<0.51
Initial Construction Gold Gold<			<0.48	331	<0.68	<1.0	<0.00	111	<0.00
TICOL UG/L 2.8 J 18 J 7.6 J 41 J <ns j<="" th=""> 0.97 J <ns j<="" th=""> Inorganics BARIUM, DISSOLVED UG/L 97 B 57 B 240 8500 42 B 20 B 50 B IRON, DISSOLVED UG/L NS SULFATE UG/</ns></ns>	PHENOI	UG/L	<0.96	13	20	150	<0.16	<0.96	<0.10
Inorganics BARIUM, DISSOLVED UG/L 97 B 57 B 240 8500 42 B 20 B 50 B IRON, DISSOLVED UG/L NS	TIC01	UG/L	2.8 J	18 J	7.6 J	41 J	<ns j<="" td=""><td>0.97 J</td><td><ns j<="" td=""></ns></td></ns>	0.97 J	<ns j<="" td=""></ns>
Information BARIUM, DISSOLVED UG/L 97 B 57 B 240 8500 42 B 20 B 50 B IRON, DISSOLVED UG/L NS NS <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
BARLOM, DISSOLVED UG/L 97 B 57 B 240 8500 42 B 20 B 50 B IRON, DISSOLVED UG/L NS NS <td< td=""><td>Inorganics</td><td></td><td>07 D</td><td> 5</td><td>0.40</td><td>0500</td><td>10.5</td><td></td><td>50.5</td></td<>	Inorganics		07 D	5	0.40	0500	10.5		50.5
IRON, DISSOLVED UG/L NS NS NS NS NS NS NS NS MANGANESE, DISSOLVED UG/L NS NS NS NS NS NS NS NS NS ALKALINITY, TOTAL UG/L NS NS NS NS NS NS NS NS CHLORIDE UG/L 1180000 213000 B 1120000 596000 B 66600 B 445000 B 113000 B NITRATE/NITRITE NITROGEN UG/L NS NS NS NS NS NS NS SULFATE UG/L NS NS NS NS NS NS NS NS SULFATE UG/L NS NS NS NS NS NS NS NS SULFATE UG/L NS NS NS NS NS NS NS NS SULFATE UG/L NS NS NS NS NS NS NS NS SULFATE UG/L NS NS NS NS NS NS NS Gases ETHANE UG/L NS NS NS NS NS NS	BARIUM, DISSOLVED	UG/L	97 B	57 B	240	8500	42 B	20 B	50 B
MANGANESE, DISSOLVED UG/L NS NS<	IRON, DISSOLVED	UG/L	NS	NS	NS	NS	NS	NS	NS
ALKALINITY, TOTALUG/LNSNSNSNSNSNSNSNSCHLORIDEUG/L1180000213000 B1120000596000 B66600 B445000 B113000 BNITRATE/NITRITE NITROGENUG/LNSNSNSNSNSNSNSNSSULFATEUG/LNSNSNSNSNSNSNSNSSULFIDEUG/LNSNSNSNSNSNSNSTOTAL ORGANIC CARBONUG/LNSNSNSNSNSNSGasesETHANEUG/LNSNSNSNSNSNSETHANEUG/LNSNSNSNSNSNSPROPANEUG/LNSNSNSNSNSNSPERCENT DHCNSNSNSNSNSNSNSPERCENT DHCNSNSNSNSNSNSNSDEHALOCOCCOIDES ENUMERATIONNSNSNSNSNSNSNS	MANGANESE, DISSOLVED	UG/L	NS	NS	NS	NS	NS	NS	NS
CHLORIDEDG/LH80000213000 BH120000S96000 B66600 B444000 BH3000 BNITRATE/NITRITE NITROGENUG/LNSNSNSNSNSNSNSNSSULFATEUG/LNSNSNSNSNSNSNSNSNSSULFIDEUG/LNSNSNSNSNSNSNSNSNSTOTAL ORGANIC CARBONUG/LNSNSNSNSNSNSNSNSGasesETHANEUG/LNSNSNSNSNSNSNSMETHANEUG/LNSNSNSNSNSNSNSPROPANEUG/LNSNSNSNSNSNSNSTotal Volatiles2.184.82.2300.20.32.10.7Jene-Trac Dehalococcoides AssayPERCENT DHCNSNSNSNSNSNSNSDEHALOCOCCOIDES ENUMERATIONNSNSNSNSNSNSNSNS		UG/L	NS	NS 040000 D	NS		NS	NS	NS
NTRATE/NITRITE NTROGENUG/LNSNSNSNSNSNSNSNSNSSULFATEUG/LNSNSNSNSNSNSNSNSNSSULFIDEUG/LNSNSNSNSNSNSNSNSNSTOTAL ORGANIC CARBONUG/LNSNSNSNSNSNSNSNSGasesETHANEUG/LNSNSNSNSNSNSETHENEUG/LNSNSNSNSNSNSNSMETHANEUG/LNSNSNSNSNSNSNSPROPANEUG/LNSNSNSNSNSNSNSNSTotal Volatiles2.184.82.2300.20.32.10.73ene-Trac Dehalococcoides AssayPERCENT DHCNSNSNSNSNSNSNSPERCENT DHCNSNSNSNSNSNSNSNSNSNS		UG/L	1180000	213000 B	1120000	596000 B	66600 B	445000 B	113000 B
SOLFATEOG/LNSNSNSNSNSNSNSNSSULFIDEUG/LNSNSNSNSNSNSNSNSNSTOTAL ORGANIC CARBONUG/LNSNSNSNSNSNSNSNSGasesETHANEUG/LNSNSNSNSNSNSNSNSETHENEUG/LNSNSNSNSNSNSNSMETHANEUG/LNSNSNSNSNSNSNSPROPANEUG/LNSNSNSNSNSNSNSTotal Volatiles2.184.82.2300.20.32.10.7Gene-Trac Dehalococcoides AssayPERCENT DHCNSNSNSNSNSNSNSPERCENT DHCNSNSNSNSNSNSNSNSNSDEHALOCOCCOIDES ENUMERATIONNSNSNSNSNSNSNSNS	NITRATE/NITRITE NITROGEN	UG/L	NS	NS	NS	NS	NS	NS	NS
SOLFIDEUG/LNSNSNSNSNSNSNSNSTOTAL ORGANIC CARBONUG/LNSNSNSNSNSNSNSNSGasesETHANEUG/LNSNSNSNSNSNSNSNSETHENEUG/LNSNSNSNSNSNSNSMETHANEUG/LNSNSNSNSNSNSNSPROPANEUG/LNSNSNSNSNSNSNSTotal Volatiles2.184.82.2300.20.32.10.7Gene-Trac Dehalococcoides AssayPERCENT DHCNSNSNSNSNSNSNSDEHALOCOCCOIDES ENUMERATIONNSNSNSNSNSNSNSNS	SULFATE	UG/L	NS	NS	NS	NS	NS	NS	NS
GasesETHANEUG/LNSNSNSNSNSNSETHANEUG/LNSNSNSNSNSNSNSETHENEUG/LNSNSNSNSNSNSNSNSMETHANEUG/LNSNSNSNSNSNSNSNSPROPANEUG/LNSNSNSNSNSNSNSNSTotal Volatiles2.184.82.2300.20.32.10.7Gene-Trac Dehalococcoides AssayPERCENT DHCNSNSNSNSNSNSNSDEHALOCOCCOIDES ENUMERATIONNSNSNSNSNSNSNSNSNS		UG/L	NS NC	NS	NS	NS NS	NS NC	NS	NS
Gases ETHANE UG/L NS		UG/L	INS	INS I	IN S	INS	NS	INS	N3
ETHANE UG/L NS <	Gases								
ETHENE UG/L NS <	ETHANE	UG/L	NS	NS	NS	NS	NS	NS	NS
METHANEUG/LNSNSNSNSNSNSNSPROPANEUG/LNSNSNSNSNSNSNSNSTotal Volatiles2.184.82.2300.20.32.10.7Gene-Trac Dehalococcoides AssayPERCENT DHCNSNSNSNSNSNSNSDEHALOCOCCOIDES ENUMERATIONNSNSNSNSNSNSNS	ETHENE	UG/L	NS	NS	NS	NS	NS	NS	NS
PROPANEUG/LNSNSNSNSNSNSNSTotal Volatiles2.184.82.2300.20.32.10.7Gene-Trac Dehalococcoides AssayPERCENT DHCNSNSNSNSNSNSDEHALOCOCCOIDES ENUMERATIONNSNSNSNSNSNSNS	METHANE	UG/L	NS	NS	NS	NS	NS	NS	NS
Total Volatiles2.184.82.2300.20.32.10.7Gene-Trac Dehalococcoides AssayPERCENT DHCNSNSNSNSNSNSDEHALOCOCCOIDES ENUMERATIONNSNSNSNSNSNSNS	PROPANE	UG/L	NS	NS	NS	NS	NS	NS	NS
Gene-Trac Dehalococcoides Assay PERCENT DHC NS	Total Volatiles		2.1	84.8	2.2	300.2	0.3	2.1	0.7
PERCENT DHC NS	Gene-Trac Dehalococcoides Assay								
DEHALOGOGGOIDES ENUMERATION NS	PERCENT DHC		NS	NS	NS	NS	NS	NS	NS
	DEMALOCOCCOIDES ENUMERATION		NS	NS	NS	NS	NS	NS	NS

(1)Not applicable- Dehalococcoides not detected

(2) Not detected. Quantiation limit is 4x 10 3 /liter

(3)Sample inhibited testing; may be false positive

(4) Blind sample duplicate submitted for this location

J = Analyte present. Reported value may not be accurate or precise.

UJ = Not detected. Reporting limit may not be accurate or precise.

Table A-1 Summary of B-Zone Analytical Results 2008 DuPont Necco Park

		VH-111B	VH-136B	VH-137B	VH-139B	VH-141B	VH-145B	VH-146B	VH-149B	VH-150B	VH-151B	VH-153B	VH-168B	VH-171B	VH-172B
		6/18/08	6/18/08	6/17/08	6/19/08	6/13/08	6/19/08	6/20/08	6/16/08	6/13/08	6/11/08	6/17/08	6/17/08	6/18/08	6/12/08
Analyte	Units	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Field Parameters															
COLOR QUALITATIVE (FIELD)	NS	YELLOW	BLACK	CLEAR	GREY	CLEAR	GREY	CLEAR	CLEAR	GREY	CLEAR	ORANGE	GREY	CLEAR	BLACK
ODOR (FIELD)	NS	SLIGHT	NONE	NONE	MODERATE	NONE	SLIGHT	NONE	NONE	SLIGHT	NONE	NONE	SLIGHT	SLIGHT	SLIGHT
PH (FIELD)	STD UNITS	8.04	9.49	12.96	6.77	10.65	10	11.9	10.54	6.94	12.5	7.01	7.32	7.13	7.5
REDOX (FIELD)	MV	-474	-267	-519	-271	-436	-422	-382	-250	-340	-373	-142	-339	-318	-244
SPECIFIC CONDUCTANCE (FIELD)	UMHOS/CM	17000	2000	8540	34800	4420	16100	1481	2690	8660	4670	3560	37800	14640	9200
TEMPERATURE (FIELD)	DEGREES C	18.6	12.4	11.9	13.4	15.9	12.5	12.4	15.4	13	17.1	15.7	12.4	17.7	12.3
TURBIDITY QUANTITATIVE (FIELD)	NTU	9.83	7.71	6.5	3.16	2.9	7.58	4.63	2	6.46	5.95	37.1	10.3	18.04	6.17
Volatile Organics															
1.1.2.2-TETRACHLOROETHANE	UG/L	<22	<9	<0.9	14000	<2.2 UJ	<75	<0.18	<0.18	<0.36 UJ	<0.18	<0.18	<180	<1.4	37 J
1.1.2-TRICHLOROETHANE	UG/L	<34	<14	<1.4	1200	<3.4	160 J	<0.27	< 0.27	< 0.54	<0.27	<0.27	3600	<2.2	<14
1,1-DICHLOROETHENE	UG/L	230	<9.5	19	<130	<2.4	190 J	3.6	0.63 J	< 0.38	0.35 J	<0.19	420 J	<1.5	<9.5
1,2-DICHLOROETHANE	UG/L	270	<11	4.8 J	270 J	<2.8	<92	<0.22	<0.22	<0.44	<0.22	<0.22	850 J	2 J	<11
CARBON TETRACHLORIDE	UG/L	<16	<6.5	<0.65	<87	<1.6	<54	<0.13	<0.13	<0.26 UJ	<0.13	<0.13	<130	<1	<6.5
CHLOROFORM	UG/L	120	<8	1.1 J	5300	<2	240 J	<0.16	<0.16	< 0.32	<0.16	<0.16	550 J	<1.3	17 J
CIS-1,2 DICHLOROETHENE	UG/L	810	560	120 J	20000	<2.1	12000	21	7.7	< 0.34	0.88 J	<0.17	19000	160	1100
TETRACHLOROETHYLENE	UG/L	<36	1500	65 J	3100 J	<3.6 UJ	<120 UJ	<0.29 UJ	<0.29	<0.58 UJ	<0.29 UJ	<0.29 UJ	<290 UJ	<2.3	190 J
TRANS-1.2-DICHLOROETHENE	UG/L	37 J	25 J	9.4	4600	<2.4	960	2	0.81 J	0.4 J	0.93 J	< 0.19	460 J	6.2 J	100
TRICHLOROETHENE	UG/L	110 J	370	130	4600	<2.1	2000	1.3	0.8 J	< 0.34	0.98 J	< 0.17	<170	<1.4	42 J
VINYL CHLORIDE	UG/L	470	32 J	120 J	8900	<2.8	2200	11	8.9	<0.44 UJ	0.66 J	<0.22	11000	250	390
Semivolatile Organice															
	LIG/I	NS	3200	-3.8	NS	NS	-18	36	531	-9.6	<0.96	NS	~18	<18	-1.9
		NS	620 1	<5.6	NS	NS	<7.0	611	-1.4	<3.0	<0.30	NS	<70	<7	< 2.8
3- AND 4- METHYL PHENOL	UG/L	NS	<0.75	28 1	NS	NS	30 1	851	<0.75	17	<0.75	NS	<0.75	<0.75	14
	UG/L	NS	<6.5	<0.26	NS	NS	-0.32	<0.065	<0.065	<0.65	<0.065	NS	<0.75	<0.73	<0.13
	UG/L	NS	<51	<0.20	NS	NS	<2.6	<0.000	<0.000	< 5.1	<0.000	NS	<26	<2.6	54
	UG/L	NS	<58	~2.3	NS	NS	<2.0	<0.51	<0.51	<5.8	<0.51	NS	<20	<2.0	-1.2
	UG/L	NS	7700	<2.5	NS	NS	<2.5	52	<0.30	<4.8	<0.30	NS	<23	<2.9	<0.96
PHENOI	UG/L	NS	<96	110	NS	NS	<4.8	<0.96	<0.96	<9.6	281	NS	200 1	<1.8	221
TIC01	UG/L	NS		NS	NS	NS	840 1	861	491	221	2.0 3	NS	200 3	310 1	42 1
	00/2	110		NO	110	110	040 0	0.00	4.50	2.2.0	110	No		0100	42.0
Inorganics															
BARIUM, DISSOLVED	UG/L	NS	66 B	7600	NS	NS	55 B	22 B	60 B	47600	280	NS	650	200	37 B
IRON, DISSOLVED	UG/L	103000	NS	<81	260000	<81	<81	NS	NS	NS	<81	1200	NS	NS	NS
MANGANESE, DISSOLVED	UG/L	1400	NS	0.73 B	4200	1.3 B	44	NS	NS	NS	0.67 B	230	NS	NS	NS
ALKALINITY, TOTAL	UG/L	770000	NS	1500000 J	180000 B	95000 B	120000 B	NS	NS	NS	840000	120000 B	NS	NS	NS
	UG/L	4820000 B	180000 B	753000 B	12800000 B	1270000 B	6120000	291000 B	561000 B	2830000 B	422000 B	397000 B	15600000 B	5280000 B	2740000 B
NITRATE/NITRITE NITROGEN	UG/L	100	NS	<20	<20	<20 R	<20	NS	NS	NS	200 B	<20	NS	NS	NS
SULFATE	UG/L	69600 B	NS	9300 B	114000 B	689000 B	707000 B	NS	NS	NS	8000 B	230000 B	NS	NS	NS
	UG/L	<380 UJ	NS	4800	1400 B	7000	5100	NS	NS	NS	<380	640 B	NS	NS	NS
TOTAL ORGANIC CARBON	UG/L	1300000	NS	34000	160000	14000	21000	NS	N5	NS	2000	4000	NS	NS	NS
Gases															
ETHANE	UG/L	<0.062	NS	53	150	17	45	NS	NS	NS	2.7	20	NS	NS	NS
ETHENE	UG/L	7500	NS	530	3500	18	1400	NS	NS	NS	1.3	<0.057	NS	NS	NS
METHANE	UG/L	13000	NS	1700	9600	1300	5000	NS	NS	NS	180	260	NS	NS	NS
PROPANE	UG/L	<0.088	NS	2.1	15	4.2	3.2	NS	NS	NS	1.6	0.63	NS	NS	NS
Total Volatiles		2,047	2,487	469.3	61,970	0	17,750	38.9	18.8	0.4	3.8	0	35,880	418.2	1,876
Gene-Trac Dehalococcoides Assay															
PERCENT DHC		0.002-0.006%	NS	NA (1)	NA (1)	NA (1)	NS	NS	NS	NS	NS	NA (1)	NS	NS	NS
DEHALOCOCCOIDES ENUMERATION		5 x 10 [°] /liter	NS	ND (2,3)	ND (2)	ND (2)	NS	NS	NS	NS	NS	ND (2, 3,4)	NS	NS	NS

< and ND = not detected at stated reporting limit. (1)Not applicable- Dehalococcoides not detected

(2) Not detected. Quantiation limit is 4x 10 3 /liter

(2) Not detected. Quantiation limit is 4x 10 5 /lite

(3)Sample inhibited testing; may be false positive

(4) Blind sample duplicate submitted for this location

J = estimated concentration

UJ = Not detected. Reporting limit may not be accurate or precise.

Table A-1 Summary of C-Zone Analytical Results 2008 DuPont Necco Park

	Sample ID	VH-105C	VH-136C	VH-137C	VH-141C	VH-145C	VH-146C	VH-149C	VH-150C	VH-151C	VH-168C
A walk da	Date	6/20/08	6/18/08	6/17/08	6/13/08	6/12/08	6/20/08	6/16/08	6/13/08	6/11/08	6/17/08
Analyte	Units	FS	F5	F5	F5	FS	FS	FS	F5	FS	FS
Field Parameters				0051		0051			0051	0051	D 1 4 014
COLOR QUALITATIVE (FIELD)	NS	YELLOW	CLEAR	GREY	YELLOW	GREY	CLEAR	CLEAR	GREY	GREY	BLACK
ODOR (FIELD)	NS	MODERATE	NONE	SLIGHT	NONE	MODERATE	NONE	NONE	SLIGHT	NONE	SLIGHT
PH (FIELD)	STD UNITS	9.68	12.32	10.44	10.07	6.8	9.69	7.26	8.22	7.26	6.22
REDOX (FIELD)	MV	-217	-171	-454	-362	-261	-308	-270	-429	-365	-408
SPECIFIC CONDUCTANCE (FIELD)	UMHOS/CM	20000	2350	3690	2990	10000	1680	1418	5560	5460	56900
TEMPERATURE (FIELD)	DEGREES C	13.6	13.3	12.1	18.4	20.3	16.3	14.9	15.8	19.5	13.3
TURBIDITY QUANTITATIVE (FIELD)	NTU	20.1	4.35	9.83	17.2	18.1	9.51	8.11	3.69	13.5	10.28
Volatile Organics											
1,1,2,2-TETRACHLOROETHANE	UG/L	<900	<30	29 J	<0.18 UJ	<36 UJ	<0.18	<0.18	<0.18 UJ	<0.18	1500
1,1,2-TRICHLOROETHANE	UG/L	11000	<45	42 J	<0.27	440	<0.27	<0.27	<0.27	<0.27	2200
1,1-DICHLOROETHENE	UG/L	3000 J	<32	140	<0.19	82 J	0.23 J	0.43 J	1.1	<0.19	230
1,2-DICHLOROETHANE	UG/L	1400 J	<37	18 J	<0.22	120 J	<0.22	<0.22	<0.22	<0.22	100 J
CARBON TETRACHLORIDE	UG/L	3800 J	<22	80 J	<0.13	<26	<0.13	<0.13	<0.13	<0.13	460
CHLOROFORM	UG/L	82000	<27	890	<0.16	64 J	<0.16	<0.16	0.33 J	<0.16	1500
CIS-1,2 DICHLOROETHENE	UG/L	20000	72 J	1800	<0.17	4100	2.6	5.2	12	1.9	1500
TETRACHLOROETHYLENE	UG/L	32000 J	4800	2700	0.96 J	<58 UJ	<0.29 UJ	<0.29	0.57 J	<0.29 UJ	320 J
TRANS-1.2-DICHLOROETHENE	UG/L	5300	<32	120	<0.19	150 J	0.26 J	0.62 J	2.6	2.1	330
TRICHLOROETHENE	UG/L	140000	1200	2300	0.34 J	180 J	1	< 0.17	8.9	<0.17	2600
VINYL CHLORIDE	UG/L	2600 J	<37	1700	0.32 J	1900	3.8	6	6.5	7.8	420
Semivelatile Organiza											
	110/1	NO	4000 1		10	10	0.00		0.00	0.00	10
2,4,5-TRICHLOROPHENOL	UG/L	NS	1000 J	NS	NS	<48	<0.96	1 J	<0.96	<0.96	<48
2,4,6-TRICHLOROPHENOL	UG/L	NS	1900 J	NS	NS	<70	<1.4	<1.4	<1.4	<1.4	<70
3- AND 4- METHYLPHENOL	UG/L	NS	<0.75	NS	NS	97 J	<0.75	2.7 J	<0.75	<0.75	<0.75
HEXACHLOROBENZENE	UG/L	NS	<26	NS	NS	<3.2	<0.065	<0.065	<0.065	<0.065	<3.2
HEXACHLOROBUTADIENE	UG/L	NS	<200	NS	NS	<26	0.54 J	<0.51	<0.51	<0.51	<26
HEXACHLOROETHANE	UG/L	NS	<230	NS	NS	<29	<0.58	<0.58	<0.58	<0.58	<29
PENTACHLOROPHENOL	UG/L	NS	31000	NS	NS	<24	0.6 J	<0.48	<0.48	<0.48	<24
PHENOL	UG/L	NS	<380	NS	NS	220 J	<0.96	<0.96	<0.96	<0.96	110 J
TIC01	UG/L	NS	<ns j<="" td=""><td>NS</td><td>NS</td><td>6900 J</td><td>2.6 J</td><td>8.5 J</td><td>16 J</td><td>15 J</td><td></td></ns>	NS	NS	6900 J	2.6 J	8.5 J	16 J	15 J	
Inorganics											
BARIUM, DISSOLVED	UG/L	NS	51 B	NS	NS	960	32 B	45 B	100 B	29 B	340
IRON, DISSOLVED	UG/L	900	NS	160	<81	825000	NS	<81	NS	200	NS
MANGANESE, DISSOLVED	UG/L	28	NS	2.4 B	8.6 B	28300	NS	34	NS	67	NS
ALKALINITY, TOTAL	UG/L	1800000	NS	260000 B	82000 B	340000 B	NS	25000 B	NS	150000 B	NS
CHLORIDE	UG/L	6610000	186000 B	1130000 B	752000 B	52200000 B	274000 B	294000 B	1250000 B	1130000	22500000 B
NITRATE/NITRITE NITROGEN	UG/L	<20	NS	<20	<20 R	<20 R	NS	60 B	NS	<20 R	NS
SULFATE	UG/L	403000 B	NS	54200 B	419000 B	559000 B	NS	204000 B	NS	1590000	NS
SULFIDE	UG/L	4600	NS	3800	1300 B	95000	NS	6100	NS	52000	NS
TOTAL ORGANIC CARBON	UG/L	300000	NS	63000	15000	43000	NS	6000	NS	7000	NS
Gasas											
ETHANE		68	NS	80	33	60	NS	7	NS	57	NS
ETHENE		2000	NG	1100	9.5 8.2	530	NS	66	NS	36	NC
METHANE		2000	NS	4300	320	2700	NS	1400	NS	3600	NS
		10	NC	4300	320	2100	671 NC	0.0	NC	3000	0VIC
	00/L	١Z	GNI	1.7	0.91	0.4	Gri	0.0	GNI	3.0	GNI
Total Volatiles		301,100	6,072	9,819	1.6	7,036	7.9	12.3	32	11.8	11,160
Gene-Trac Dehalococcoides Assay											
PERCENT DHC		0.0008-0.003%	NS	0.7-2%	NA (1)	NS	NS	NS	NS	NS	NS
DEMALOUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU		Z X IU /IIIEI	NS	O X TO /IIIEF	NU (2)	NS	NS	NS	NS	NS	NS

< and ND = not detected at stated reporting limit.

(1)Not applicable- Dehalococcoides not detected

(2) Not detected. Quantiation limit is 4x 10 3 /liter

(3)Sample inhibited testing; may be false positive

(4) Blind sample duplicate submitted for this location

UJ = Not detected. Reporting limit may not be accurate or precise.

Table A-1 Summary of D-Zone Analytical Results 2008 DuPont Necco Park

		VII 405D	VII 400D	VII 420D	VII 426D	VII 427D	V/LL 420D			VII 4 40D	V/LL 4 40D	V/11 450D	
		VH-105D	VH-123D	VH-136D	VH-136D	VH-137D	VH-139D	VH-145D	VH-147D	VH-146D	VH-149D	VH-156D	VH-165D
A washing	11-11-	6/20/08	6/12/06	6/12/06	6/12/06	6/17/06	6/19/06	6/19/08	6/10/08	6/10/08	6/16/06	6/11/08	6/17/08
Analyte	Units	FS	FS	DUP	F5	FS	F5	FS	F5	F5	FS	F5	F5
	NC	ODEV	CLEAD	NC	TAN		ODEV	DI ACK		VELLOW	CLEAD	DLACK	DLACK
COLOR QUALITATIVE (FIELD)	NS NO	GRET	CLEAR	INS NO	TAN	CLEAR	GRET	BLACK	CLEAR	TELLOW	CLEAR	BLACK	BLACK
ODOR (FIELD)	NS OTD UNITO	STRONG	NONE	NS	NONE	SLIGHT	SLIGHT	MODERATE	NONE	NONE	NONE	SLIGHT	SLIGHT
PH (FIELD)	SIDUNIIS	5.82	7.31	NS	7.07	6.55	7.47	6.29	7.15	10.21	7.4	7.15	7.49
REDOX (FIELD)	MV	-29	-432	NS	-378	-376	-349	-406	-172	-256	-363	-223	-307
SPECIFIC CONDUCTANCE (FIELD)	UMHOS/CM	18200	3180	NS	1122	9510	4870	53200	2100	1089	2315	2120	1132
TEMPERATURE (FIELD)	DEGREES C	14.6	13.5	NS	13.5	12.8	13.8	17	13.8	12.5	16	16	12.6
TURBIDITY QUANTITATIVE (FIELD)	NTU	11.81	7.22	NS	10.21	8.75	9.54	11.68	2.85	19	8.7	4.38	7.75
Volatile Organics													
1,1,2,2-TETRACHLOROETHANE	UG/L	76000	<0.36 UJ	<4 UJ	<4.5 UJ	950 J	42	<6	<0.45	<0.18	<0.18	<0.18	<0.18
1,1,2-TRICHLOROETHANE	UG/L	180000	<0.54	13 J	14 J	10000	15 J	56	<0.68	<0.27	<0.27	<0.27	1.7
1,1-DICHLOROETHENE	UG/L	1800 J	<0.38	7.3 J	7.8 J	3000	<6.3	<6.3	<0.48	<0.19	<0.19	<0.19	0.32 J
1,2-DICHLOROETHANE	UG/L	11000	<0.44	18 J	21 J	<550	<7.3	<7.3	<0.55	<0.22	<0.22	<0.22	4
CARBON TETRACHLORIDE	UG/L	190000	<0.26	<2.9	<3.2	<320	<4.3	<4.3	< 0.32	<0.13	<0.13	<0.13	<0.13
CHLOROFORM	UG/L	96000	< 0.32	25	27	74000	57	29 J	<0.4	<0.16	<0.16	<0.16	0.37 J
CIS-1.2 DICHLOROETHENE	UG/L	8800	1.5 J	460	500	11000	32 J	530	92	1.4	0.88 J	0.38 J	1.7
TETRACHLOROETHYLENE	UG/L	12000 J	<0.58 UJ	<6.4 UJ	<7.2 UJ	5300 J	250 J	<9.7 UJ	<0.72 UJ	<0.29	<0.29	<0.29 UJ	<0.29 UJ
TRANS-1.2-DICHLOROETHENE	UG/L	3300 J	< 0.38	18 J	18 J	2800	29 J	77	2.1 J	<0.19	0.25 J	0.24 J	2.6
	UG/I	130000	<0.34	78	84	70000	870	<5.7	<0.42	<0.17	<0.17	<0.17	<0.17
	UG/L	<1600	0.72.1	320	340	1600.1	38	970	78	<0.22	32	1.3	18
	00/2	1000	0.720	020	010	1000 0	00	0.0		10.22	0.2		10
Semivolatile Organics													
2,4,5-TRICHLOROPHENOL	UG/L	NS	<38	17 J	22 J	NS	NS	<24	<0.96	<0.96	<0.96	<0.96	110
2,4,6-TRICHLOROPHENOL	UG/L	NS	<56	<5.6	3.6 J	NS	NS	<35	<1.4	<1.4	<1.4	<1.4	<5.6
3- AND 4- METHYLPHENOL	UG/L	NS	<0.75	3 J	3 J	NS	NS	13 J	<0.75	5.6 J	<0.75	<0.75	6.8 J
HEXACHLOROBENZENE	UG/L	NS	<2.6	<0.26	<0.16	NS	NS	<1.6	<0.065	<0.065	<0.065	<0.065	<0.26
HEXACHLOROBUTADIENE	UG/L	NS	<20	<2	<1.3	NS	NS	<13	<0.51	<0.51	<0.51	<0.51	<2
HEXACHLOROETHANE	UG/L	NS	<23	<2.3	<1.4	NS	NS	<14	<0.58	<0.58	<0.58	<0.58	<2.3
PENTACHLOROPHENOL	UG/L	NS	<19	<1.9	<1.2	NS	NS	<12	<0.48	<0.48	<0.48	<0.48	2.3 J
PHENOL	UG/L	NS	1200	<3.8	<2.4	NS	NS	89 J	<0.96	<0.96	<0.96	<0.96	5.2 J
TIC01	UG/L	NS	<ns j<="" td=""><td>38 J</td><td>34 J</td><td>NS</td><td>NS</td><td>1700 J</td><td><ns j<="" td=""><td><ns j<="" td=""><td>4.4 J</td><td>0.41 J</td><td></td></ns></td></ns></td></ns>	38 J	34 J	NS	NS	1700 J	<ns j<="" td=""><td><ns j<="" td=""><td>4.4 J</td><td>0.41 J</td><td></td></ns></td></ns>	<ns j<="" td=""><td>4.4 J</td><td>0.41 J</td><td></td></ns>	4.4 J	0.41 J	
Inorganics													
BABIUM, DISSOLVED	UG/L	NS	34 B	200	200	NS	NS	670	47 B	36 B	45 B	42 B	24 B
IBON, DISSOLVED	UG/L	18700	NS	140	120	310	1100	NS	730	<81	<81	1100	<81
MANGANESE, DISSOLVED	UG/L	640	NS	210	220	510	270	NS	40	8 B	28	69	31
	UG/I	890000	NS	240000 B	240000 B	710000 B	270000 B	NS	240000 B	24000 B	53000 B	430000 B	59000 B
CHLORIDE	UG/L	6020000 B	193000 B	256000 B	258000 B	1900000 B	945000 B	23500000 B	33000 B	61800 B	313000 B	193000 B	336000 B
NITRATE/NITRITE NITROGEN	UG/I	<20	NS	<20 R	<20 R	<20	<20	NS	<20 R	1500 B	<20 R	<20 R	<20
SULFATE	UG/L	819000 B	NS	331000 B	65100 B	1210000 B	1440000	NS	1160000	431000 B	942000	691000	12800 B
SULFIDE	UG/L	3500	NS	16000	7700	7000	3800 1	NS	<380	<380	6200	4400	640 B
	UG/L	1400000	NS	11000	10000	270000	3000	NS	1000 B	4000	7000	3000	9000
	00/2	1100000		11000	10000	210000	0000	110	1000 B	1000	1000	0000	0000
Gases													
ETHANE	UG/L	5.8	NS	16 J	12 J	11	7	NS	0.28 B	33	19	1.7	2.7
ETHENE	UG/L	260	NS	1400	1700	150	31	NS	3.3	2.8	52	<0.057	200
METHANE	UG/L	1400	NS	1300	1500	1500	790	NS	140	380	3300	450	200
PROPANE	UG/L	1	NS	3.5	3.2	2.5	0.39 J	NS	0.15 J	13	0.74	0.31 J	0.62
Total Volatiles		708,900	2.22	939	1,012	178,650	1,333	1662	172	1.4	4.3	0.6	28.7
Gene-Trac Dehalococcoides Assay													
PERCENT DHC		0.05 - 0.1%	NG	NG	NG	NA (1)	0.002-0.00=0/	NG	NG	NC	NG	NC	NC
DEHALOCOCCOIDES ENUMERATION		1 x 10 ⁶ /liter	NS	NG	NS	ND (2)	3 X 10 ⁴ /liter	, 113 NS	NS	NS	NG	NS	NS
		,	ONI	GNI	UND	ND (2)	5 / 10 / 110	GNI	0 M	001	ONI	ONI	UNO

< and ND = not detected at stated reporting limit.

(1)Not applicable- Dehalococcoides not detected

(2) Not detected. Quantiation limit is 4x 10 3 /liter

(3)Sample inhibited testing; may be false positive

(4) Blind sample duplicate submitted for this location

J = estimated concentration

UJ = Not detected. Reporting limit may not be accurate or precise.

Table A-1 Summary of E-Zone Analytical Results 2008 DuPont Necco Park

		Duron	NCCCO I UN	`				
	Sample ID	VH-136E	VH-136E	VH-145E	VH-146E	VH-150E	VH-156E	VH-165E
	Date	6/18/08	6/18/08	6/19/08	6/12/08	6/13/08	6/11/08	6/17/08
Analyte	Units	FS	DUP	FS	FS	FS	FS	FS
Field Parameters								
COLOR QUALITATIVE (FIELD)	NS	CLEAR	NS	GREY	BLACK	CLEAR	BLACK	BLACK
ODOR (FIELD)	NS	NONE	NS	SLIGHT	MODERATE	MODERATE	SLIGHT	SLIGHT
PH (FIELD)	STD UNITS	8.25	NS	7.47	6.94	6.33	7.72	8.2
REDOX (FIELD)	MV	-385	NS	-280	-452	-427	-318	-270
SPECIFIC CONDUCTANCE (FIELD)	UMHOS/CM	1393	NS	13380	5060	17700	1238	2760
TEMPERATURE (FIELD)	DEGREES C	13.4	NS	11.9	12.8	17.1	14.4	12
TURBIDITY QUANTITATIVE (FIELD)	NTU	11.56	NS	10.73	7.47	8.45	35.9	14
Volatile Organics								
1,1,2,2-TETRACHLOROETHANE	UG/L	<0.18	<0.18	<30	240 J	<1.6 UJ	<0.18	1300
1,1,2-TRICHLOROETHANE	UG/L	<0.27	<0.27	<45	270 J	<2.5	<0.27	1500
1,1-DICHLOROETHENE	UG/L	<0.19	<0.19	<32	190 J	<1.7	<0.19	320 J
1,2-DICHLOROETHANE	UG/L	17	18	<37	230 J	<2	<0.22	340 J
CARBON TETRACHLORIDE	UG/L	<0.13	<0.13	<22	<65	<1.2	<0.13	380 J
CHLOROFORM	UG/L	1.5	1.5	110 J	<80	<1.5	<0.16	1400
CIS-1,2 DICHLOROETHENE	UG/L	0.89 J	0.92 J	4600 J	11000	250	0.24 J	17000
TETRACHLOROETHYLENE	UG/L	<0.29	<0.29	51 J	<140 UJ	<2.6 UJ	<0.29 UJ	930 J
TRANS-1,2-DICHLOROETHENE	UG/L	3.9	3.9	1100	430 J	4.4 J	<0.19	530 J
TRICHLOROETHENE	UG/L	2.1	2.1	86 J	410 J	<1.5	<0.17	5100
VINYL CHLORIDE	UG/L	1.9	1.9	4800	6400 J	360	0.89 J	5300
Semivolatile Organics								
2,4,5-TRICHLOROPHENOL	UG/L	<0.96	<0.96	<1.9	360	<48	<0.96	1100
2,4,6-TRICHLOROPHENOL	UG/L	<1.4	<1.4	<2.8	59 J	<70	<1.4	150 J
3- AND 4- METHYLPHENOL	UG/L	<0.75	<0.75	<0.75	53 J	<0.75	<0.75	47 J
HEXACHLOROBENZENE	UG/L	<0.065	<0.065	<0.13	<0.81	<3.2	<0.065	<2.6
HEXACHLOROBUTADIENE	UG/L	<0.51	<0.51	<1	15 J	<26	<0.51	91 J
HEXACHLOROETHANE	UG/L	<0.58	<0.58	<1.2	<7.2	<29	<0.58	<23
PENTACHLOROPHENOL	UG/L	<0.48	<0.48	<0.96	<6	<24	<0.48	67 J
PHENOL	UG/L	<0.96	<0.96	<1.9	82 J	310 J	<0.96	56 J
TIC01	UG/L	4.3 J	6.7 J	200 J	250 J	500 J	0.98 J	
Inorganics								
BARIUM, DISSOLVED	UG/L	150 J	160 J	49 B	380	100 B	33 B	360
IRON. DISSOLVED	UG/L	120	110	10900	<81	NS	1700	NS
MANGANESE, DISSOLVED	UG/L	190	190	970	130	NS	75	NS
ALKALINITY, TOTAL	UG/L	180000 B	200000 B	370000 B	970000	NS	220000 B	NS
CHLORIDE	UG/L	189000 B	196000 B	4050000 B	1250000	6630000	205000 B	1020000 B
NITRATE/NITRITE NITROGEN	UG/L	<20	<20	<20	<20 R	NS	<20 R	NS
SULFATE	UG/L	328000 B	326000 B	1040000 B	394000 B	NS	691000	NS
SULFIDE	UG/L	12000 J	14000 J	1400 B	130000	NS	7000	NS
TOTAL ORGANIC CARBON	UG/L	5000	6000	28000	88000	NS	2000	NS
Gasos								-
FTHANE		13	12	75	41	NS	27	NS
ETHENE		1100	1200	720	1500	NS	<0.057	NS
METHANE		1000	1100	5000	4300	NS	270	NS
PROPANE	UG/L	3.4	3.4	3.3	1.8	NS	0.5	NS
Total Volatiles		27.3	28.3	10 747	19 170	614.4	1 12	34 100
Gene-Trac Dehalococcoides Assav		21.3	20.0	10,747	13,170	014.4	1.13	57,100
PERCENT DHC		NS	NS	NS	NS	NS	NS	NS
DEHALOCOCCOIDES ENUMERATION		NS	NS	NS	NS	NS	NS	NS

< and ND = not detected at stated reporting limit.

(1)Not applicable- Dehalococcoides not detected

(2) Not detected. Quantiation limit is 4x 10 3 /liter

(3)Sample inhibited testing; may be false positive

(4) Blind sample duplicate submitted for this location

J = estimated concentration

UJ = Not detected. Reporting limit may not be accurate or precise.

Table A-1 Summary of F-Zone Analytical Results 2008 DuPont Necco Park

	Bai ont		<u> </u>			
	Sample ID	VH-136F	VH-146F	VH-147F	VH-150F	VH-156F
	Date	6/18/08	6/20/08	6/10/08	6/13/08	6/11/08
Analyte	Units	FS	FS	FS	FS	FS
Field Parameters						
COLOR QUALITATIVE (FIELD)	NS	CLEAR	GREY	CLEAR	GREY	GREY
ODOR (FIELD)	NS	SLIGHT	SLIGHT	NONE	MODERATE	SLIGHT
PH (FIELD)	STD UNITS	7.92	6.98	7.12	7.07	7.32
REDOX (FIELD)	MV	-402	-353	-183	-345	-292
SPECIFIC CONDUCTANCE (FIELD)	UMHOS/CM	1890	10210	2970	28100	2290
TEMPERATURE (FIELD)	DEGREES C	13.5	14	13.4	16.4	13.7
TURBIDITY QUANTITATIVE (FIELD)	NTU	13.94	9.48	14.6	3.17	8.56
Volatile Organics						
1,1,2,2-TETRACHLOROETHANE	UG/L	<0.6	<90	<0.18	<5.1 UJ	<0.18
1,1,2-TRICHLOROETHANE	UG/L	6.6	170 J	<0.27	<7.7	<0.27
1,1-DICHLOROETHENE	UG/L	0.68 J	490 J	<0.19	<5.4	<0.19
1,2-DICHLOROETHANE	UG/L	24	<110	<0.22	<6.3	1.4
CARBON TETRACHLORIDE	UG/L	<0.43	<65	<0.13	<3.7	<0.13
CHLOROFORM	UG/L	9.4	<80	<0.16	<4.6	0.25 J
CIS-1,2 DICHLOROETHENE	UG/L	21	11000	0.79 J	680	4.1
TETRACHLOROETHYLENE	UG/L	<0.97	<140 UJ	<0.29	<8.3 UJ	<0.29 UJ
TRANS-1,2-DICHLOROETHENE	UG/L	51	600	<0.19	<5.4	2
TRICHLOROETHENE	UG/L	6.4	230 J	<0.17	<4.9	1.4
VINYL CHLORIDE	UG/L	120	3400	1.5	540	16
Semivolatile Organics						
		11.1	88.1	-0.96	-48	17.1
		~1.4	32 1	~1.4	~70	-14
		×1. 1 4.5	32 J 47 I	~0.75	21 1	~
		4.0 0	41 J	-0.065	∠ I J -2 0	<0.75
		<0.000	<1.5	<0.000	<3.2 -26	<0.000
	UG/L	<0.51	<10	<0.51	<20	<u.51< td=""></u.51<>
	UG/L	<0.30	<12	<0.00	<29	<0.00
PENTACHLOROPHENOL	UG/L	<u.4ŏ< td=""><td><9.0</td><td><0.48</td><td><24</td><td><0.48</td></u.4ŏ<>	<9.0	<0.48	<24	<0.48
PHENOL	UG/L	<0.96	250	<0.90	270 J	<0.96
TIC01	UG/L	80 J	1400 J	<n2 1<="" td=""><td>390 J</td><td>2.4 J</td></n2>	390 J	2.4 J
Inorganics						
BARIUM, DISSOLVED	UG/L	140 B	69 B	44 B	130 J	19 B
IRON, DISSOLVED	UG/L	NS	270	NS	199000	NS
MANGANESE, DISSOLVED	UG/L	NS	1100	NS	2500	NS
ALKALINITY, TOTAL	UG/L	NS	670000	NS	460000	NS
CHLORIDE	UG/L	334000 B	3350000 B	149000 B	12900000 B	227000 B
NITRATE/NITRITE NITROGEN	UG/L	NS	<20	NS	<20 R	NS
SULFATE	UG/L	NS	889000 B	NS	1110000 B	NS
SULFIDE	UG/L	NS	5400	NS	21000	NS
TOTAL ORGANIC CARBON	UG/L	NS	80000	NS	210000	NS
Gases						
FTHANE	UG/L	NS	70	NS	160	NS
FTHENE	UG/I	NS	260	NS	.91	NS
METHANE		NS	3100	NS	6100	NS
PROPANE		NS	3.8	NS	1.6	NS
	00/2		45.000	2.0	1.0	05.0
Total Volatiles		239.1	15,890	2.3	1,220	25.2
DERCENT DHC		NS	NS	NS	NS	NS
DEHALOCOCCOIDES ENUMERATION		NS	NS	NS	NS	NS

< and ND = not detected at stated reporting limit.

(1)Not applicable- Dehalococcoides not detected

(2) Not detected. Quantiation limit is 4x 10 3 /liter

(3)Sample inhibited testing; may be false positive

(4) Blind sample duplicate submitted for this location

J = estimated concentration

UJ = Not detected. Reporting limit may not be accurate or precise.

Table A-1 Summary of G-Zone Analytical Results 2008 DuPont Necco Park

	Dui ont Mecco	Taik			
		VH-147G1	VH-147G1	VH-147G2	VH-147G3
		6/10/08	6/10/08	6/10/08	6/10/08
Analyte	Units	FS	DUP	FS	FS
Field Parameters					
COLOR QUALITATIVE (FIELD)	NS	GREY	NS	GREY	GREY
ODOR (FIELD)	NS	SLIGHT	NS	NONE	NONE
PH (FIELD)	STD UNITS	6.85	NS	7.42	6.72
REDOX (FIELD)	MV	-270	NS	-268	-349
SPECIFIC CONDUCTANCE (FIELD)	UMHOS/CM	5870	NS	5840	9590
TEMPERATURE (FIELD)	DEGREES C	14.4	NS	14.9	14.1
TURBIDITY QUANTITATIVE (FIELD)	NTU	7.39	NS	4.24	4.23
Volatile Organics					
1,1,2,2-TETRACHLOROETHANE	UG/L	20 J	22 J	<45	52 J
1,1,2-TRICHLOROETHANE	UG/L	14 J	17 J	<68	42 J
1,1-DICHLOROETHENE	UG/L	<4.8	<4.8	<48	<27
1,2-DICHLOROETHANE	UG/L	59	68	460	87 J
CARBON TETRACHLORIDE	UG/L	<3.2	<3.2	<32	<19
CHLOROFORM	UG/L	12 J	13 J	<40	56 J
CIS-1,2 DICHLOROETHENE	UG/L	150	210	230 J	570
TETRACHLOROETHYLENE	UG/L	<7.2 UJ	<7.2 UJ	<72 UJ	<41 UJ
TRANS-1.2-DICHLOROETHENE	UG/L	300	230	230 J	410
TRICHLOROETHENE	UG/L	8.5 J	8.2 J	<42	<24
VINYL CHLORIDE	UG/L	790 J	870	7300	5800
Semivolatile Organics					
	UG/I	1.1	1.1	49.1	11.1
	UG/L	<14	<14	<14	<14
3- AND 4- METHYLPHENOL	UG/L	<0.75	<0.75	<0.75	<0.75
	UG/L	<0.065	<0.065	<0.065	<0.065
		<0.000	<0.51	<0.000	<0.000
		<0.51	<0.51	<0.51	<0.51
		<0.48	<0.30	<0.50 0.5 J	<0.50 1.2 J
		<0.96	<0.40	<0.06	<0.96
		20.90	21	100 1	120 1
11601	00/L	20 J	21 J	100 J	130 J
Inorganics					
BARIUM, DISSOLVED	UG/L	46 B	47	29 B	38 B
IRON, DISSOLVED	UG/L	NS	NS	NS	NS
MANGANESE, DISSOLVED	UG/L	NS	NS	NS	NS
ALKALINITY, TOTAL	UG/L	NS	NS	NS	NS
CHLORIDE	UG/L	1230000	1220000	1690000	2690000
NITRATE/NITRITE NITROGEN	UG/L	NS	NS	NS	NS
SULFATE	UG/L	NS	NS	NS	NS
SULFIDE	UG/L	NS	NS	NS	NS
TOTAL ORGANIC CARBON	UG/L	NS	NS	NS	NS
Gases					
ETHANE	UG/L	NS	NS	NS	NS
ETHENE	UG/L	NS	NS	NS	NS
METHANE	UG/L	NS	NS	NS	NS
PROPANE	UG/L	NS	NS	NS	NS
Total Volatiles		1,354	1,438	8,220	7,017
Gene-Trac Dehalococcoides Assay					
PERCENT DHC		NS	NS	NS	NS
DEHALOCOCCOIDES ENUMERATION		NS	NS	NS	NS

< and ND = not detected at stated reporting limit.

(1)Not applicable- Dehalococcoides not detected

(2) Not detected. Quantiation limit is 4x 10 3 /liter

(3)Sample inhibited testing; may be false positive

(4) Blind sample duplicate submitted for this location

J = estimated concentration

UJ = Not detected. Reporting limit may not be accurate or precise.

Table A-2 Summary of Analytical Results for Recovery Well Sampling **DuPont Necco Park**

		RW-4	RW-4	RW-5	RW-8	RW-9	TBLK
		8/13/08	8/13/08	8/13/08	8/13/08	8/13/08	8/13/08
Analyte	Units	DUPLICATE	FS	FS	FS	FS	ТВ
Field Parameters							
SPECIFIC CONDUCTANCE (FIELD)	UMHOS/CM	9094	9094	29610	3885	4515	NA
TEMPERATURE (FIELD)	DEGREES C	17.7	17.7	17.4	13.7	13.5	NA
COLOR QUALITATIVE (FIELD)	NS	clear	clear	white tint	clear	clear	NA
PH (FIELD)	STD UNITS	7.04	7.04	6.24	7.75	7.66	NA
REDOX (FIELD)	MV	-281	-281	-187	-295	-293	NA
TURBIDITY QUALITATIVE (FIELD)	NTU	14.5	14.5	38.8	3.97	5.19	NA
DEPTH TO WATER FROM TOC	Feet	33.26	33.26	18.23	31.98	20.93	NA
ODOR (FIELD)		strong	strong	strong	moderate	moderate	NA
Volatile Organics							
1,1,2,2-TETRACHLOROETHANE	UG/L	12000 J	12000 J	4000 J	1300 J	1500 J	<0.18 UJ
1,1,2-TRICHLOROETHANE	UG/L	500	500	1400	2500	2400 J	<0.27
1,1-DICHLOROETHENE	UG/L	<79	<79	300 J	240 J	460 J	<0.19
1,2-DICHLOROETHANE	UG/L	<92	<92	450 J	240 J	210 J	<0.22
CARBON TETRACHLORIDE	UG/L	2200	2600	1400	2900	1200	<0.13
CHLOROFORM	UG/L	5500	5600	6700	9100	2700	<0.16
CIS-1,2 DICHLOROETHENE	UG/L	830	890	13000	7300	13000	<0.17
METHYLENE CHLORIDE	UG/L	790 B	820 B	2700 B	2500 B	6200 J	0.74 J
TETRACHLOROETHYLENE	UG/L	2100	2300	2400	3000	1300	<0.29
TRANS-1,2-DICHLOROETHENE	UG/L	170 J	160 J	740	640	920	<0.19
TRICHLOROETHENE	UG/L	4500	5000	8700	10000	7000	<0.17
VINYL CHLORIDE	UG/L	390 J	410 J	4800	1500	3200 J	<0.22
Semivolatile Organics							
2,4,5-TRICHLOROPHENOL	UG/L	<240	<240	<24	520	180	NS
2,4,6-TRICHLOROPHENOL	UG/L	<350	<350	<35	300	48 J	NS
3- AND 4- METHYLPHENOL	UG/L	<0.75	<0.75	210 J	<0.75	19 J	NS
HEXACHLOROBENZENE	UG/L	<16	<16	<1.6	<1.6	<0.43	NS
HEXACHLOROBUTADIENE	UG/L	5500	5900	660	65 J	12 J	NS
HEXACHLOROETHANE	UG/L	1200 J	1300 J	470 J	18 J	4.7 J	NS
PENTACHLOROPHENOL	UG/L	<120	<120	86 J	1100 J	45 J	NS
PHENOL	UG/L	<240	<240	120 J	<24	61 J	NS
Tentatively Identified Compound 01	UG/L	500 J	570 J	1200 J	<ns j<="" td=""><td>490 J</td><td>NS</td></ns>	490 J	NS
Inorganics							
BARIUM, DISSOLVED	UG/L	390	390	1080000	110 J	200	NS
CHLORIDE	UG/L	3240000	3250000	16600000	771000	1190000	NS
Total Volatiles	UG/L	28,980	30,280	46,590	41,220	40,090	0.74

< and ND = not detected at stated reporting limit. J - Estimated concentration UJ - not detected. Reporting limit may not be accurate or precise. B - not detected substantially above the level reported in the lab or field blanks.

APPENDIX B

RECOVERY WELL RW-10 REPLACEMENT

1.0 INTRODUCTION

As stated in all previous Necco Park Annual Reports submitted to the USEPA, the hydraulic efficiency of recovery well RW-10 has decreased since startup, thereby reducing the overall effectiveness of the HCS in the B/C-Zone throughout the western portion of the Site. Conventional rehabilitation methods to improve well efficiency had limited success. Steps were then taken to replace recovery well RW-10 with a well installed as a Blast-Fractured Bedrock Trench (BFBT) in the B-Zone as described in the March 14, 2008 *Recovery Well RW-10 Replacement Work Plan* (DuPont CRG 2008c). The Work Plan was approved by USEPA in April 2008.

1.1 Background

As described in the Work Plan, installation of a BFBT creates an interconnected zone of fractures in the shallow bedrock using controlled subsurface detonation of explosives. Groundwater elevations in the overburden and upper bedrock are lowered substantially during pumping from the BFBT by groundwater pumping from a single extraction well in each BFBT. Enhanced hydraulic control by such methods has proven successful at the nearby DuPont Niagara Plant. Hydraulic monitoring completed to date at Necco Park indicates similar results as discussed in Section 3.1.1 of this report.

2.0 IMPLEMENTATION

As described in the Work Plan, a new recovery well (RW-11) screened within a B-Zone BFBT and completed as a bedrock open-hole in the C-Zone was installed. Location of the BFBT and new recovery well RW-11 is shown in Figure B-1.

In accordance with the Blasting Plan prepared for the installation of the BFBT, the following steps were taken before blasting began:

- □ Coordination with the adjacent property owner
- D Physical field mark-out of the BFBT blast holes and adjacent subsurface utilities
- Procurement of permits and notifications to local municipalities by the blasting subcontractor
- □ Pre-blast vibration monitoring to determine background conditions

Implementation was managed by DuPont CRG with project oversight provided by URS Diamond and design and blast vibration loss control support provided by Geomatrix Consultants, Inc. Nothnagle Enterprises conducted the blasting operations and Nothnagle Drilling conduct the drilling and recovery well installation necessary to complete the BFBT. DuPont selected Nothnagle and Geomatrix because of their experience with installing BFBTs at the DuPont Niagara Plant and other groundwater remediation sites. The work was completed in accordance with Heath and Safety Plan Addendum #5 prepared for the project (DuPont CRG June 2008). The work began on July 7th and completed on August 5, 2008 and included installation of the BFBT and the new recovery well.

The BFBT was constructed in accordance with the Blasting Plan provided in the Work Plan. The purpose of the Blasting Plan is to present in detail, procedures to be used to ensure that the blasting program is done safely and effectively. Elements of the Blasting Plan include a description of the proposed methods for BFBT construction, safety protocols including explosives storage, inventory, and control, blast warnings, blast monitoring, and requirements for permits, licensure, and insurance.

The BFBT was constructed along a 170-foot alignment as shown in Figure B-1. Using air-rotary drilling methods, boreholes along the alignment were installed at approximate 5-foot spacing to a depth of five to seven feet below the top of bedrock. Temporary steel casing in the overburden was installed at each boring. Overburden thickness along the trench alignment ranged from 12 to 14.5 feet. Borehole spacing of 3-feet was used in the area where the replacement recovery well was installed to create a highly fractured zone at this location.

Blasting began at the east end of the trench alignment, which is the farthest location from process structures. A 7.5-pound explosive charge was placed at the bottom of each borehole and filled to the surface with an angular stemming stone to direct the blast energy laterally and minimize upward blast forces. The temporary casings were removed before blasting. Heavy rope blast maps were placed over the loaded shot holes to limit the

expulsion of material from the shot holes during detonation. The vibration monitoring results determined the number of holes shot for a particular sequence. A maximum of eight shot holes was detonated in a single shot sequence.

With the BFBT phase of the project complete, installation of recovery well RW-11 and BFBT overburden (PZ-A) and B-Zone (PZ-B) piezometers were installed at the locations in Figure A-1. The BFBT and replacement well was installed 6 feet north of well RW-10 allowing operation of the well using the existing equipment housed in the RW-10 well house. Boring logs and well construction diagrams are provided in Attachment A. As indicated on the soil log for well RW-11, rock cores were collected from the blasted bedrock and the bedrock below the BBFT. Core run # 1 helped determine the filter material for B-Zone well screen and run # 2 determined the depth of the C-Zone fracture.

As indicated on the well construction diagram for recovery well RW-11, a 200 slot (0.20inch opening) well screen with glass bead backfill material was selected based on the brokeness of the blasted bedrock in which the well B-Zone portion of the well was installed. After installation, recovery well RW-11 and the BFBT piezometers were developed as described in the Work Plan. Following completion of well development, groundwater pumping tests to assess the hydraulic performance of the BFBT were completed. To evaluate chemical loading contribution from RW-11, groundwater samples for laboratory analysis were collected during the pumping tests. Results of the pumping tests and groundwater chemical analysis are discussed in Sections 3.1.1 and 3.1.2, respectively.

3.0 BFBT PERFORMANCE TESTING

Testing of RW-11 was conducted in four primary phases:

- □ Single day step test,
- □ Recovery period,
- □ Three day pump test and,
- □ Atmospheric recovery monitoring.

The objectives of the step-test were to evaluate the increase in conductivity of the bedrock across the length of the trench and to select a pumping rate for the 3-day test.

The objective of the 3-day pump was to determine the minimum area of influence exhibited by the new BFBT at the selected pumping rate.

The objectives of the recovery period were to collect sufficient data to evaluate and discern atmospheric influences from pumping influences on selected wells (137B, 150B and 150C).

The single day step-test was conducted on August 18, 2008, and RW-11 was pumped at an average rate of approximately 16-gallons per minute (gpm). Due to limitations of the pump in the well, increases in pumping rates were not available. After an overnight recovery period of no pumping the three day pump test was started on August 19, 2008, and run until August 21, 2008, when the pump in RW-11 was shut down. Due to limited periods of unplanned pump shut-downs, the pumping rate averaged at approximately 14-gpm. The recovery period was conducted until September 2, 2008.

Phase	Duration (HH:MM)	Start	Finish	Flow Rate
Step Test	4:10	8/18 11:20	8/18 15:30	16 gpm
Recovery	17:20	8/18 15:30	8/19 08:50	0 gpm
3-Day Test	55:00	8/19 08:50	8/21 15:50	14 gpm
Monitoring	280:55	8/21 15:55	9/02 8:45	0 gpm

Summary of RW-11 Pump Test Schedule August-September 2008

3.1 Hydraulic Monitoring

Prior to the start of the test, seven In-Situ[®] dataloggers were installed in select wells (RW-11, PZ-A, PZ-B, 130B, 137B, 150B and 150C) to monitor static and pumping inducted water level responses. The dataloggers deployed in RW-11, PZ-A, PZ-B and 130B were removed on August 22, 2008. The dataloggers installed in 137B, 150B and

150C were used for long term atmospheric monitoring and were downloaded on September 2, 2008.

Results

Step Test

For the step test, nearly instantaneous and equal magnitude responses were observed in both trench piezometers (PZ-A and PZ-B), which indicates significantly increased hydraulic conductivity with good continuity throughout the length of the trench (Figure B2). Maximum drawdown in the pumping well was approximately 1.4 feet after 4 hours of pumping. Based on the step test results, the estimated maximum drawdown for the 3-day was determined to be approximately 2.5 feet.

Pumping Test

Pumping in RW-11 started at a rate of approximately 18 gpm. However, the rate fluctuated between 0 and 18 gpm during the test with an average of approximately 14 gpm.

After only 3-days of pumping, A-Zone responses of over 0.5-foot were observed in PZ-1A, D-11, 173A, 176A, 178A and 179A. Drawdown greater than 1-foot were recorded in B, B/C and C-Zone wells PZ-1B, 201B, 111B, D-14, D-10, BZTW-2, TRW-6, TRW-7, 138C and 137C (Table 1 and Figure B3).

Also, datalogger data provided indications of pumping response in 150B (Figure B4).

Discussion

A review of the pumping induced drawdowns indicates that, in general, the BFBT greatly enhances the area of influence in both the B-Zone and C-Zone in the vicinity of former recovery well RW-10. Measurable influence can be observed as far south as 150B and significant drawdowns were observed in wells 137C and 138C. With these results, after less then 60-hours of pumping, it is expected that the BFBT will provide enhanced control of the A-Zone, B-Zone and C-Zone groundwater relative to the control provided by RW-10 and will significantly enhance control in the area between RW-5 and RW-11.

3.1.1 Groundwater Chemistry Monitoring

On two separate occasions (during the first hour of pumping and one hour before pumping is terminated), groundwater samples were collected from RW-11 discharge. URS Diamond personnel conducted the sampling following the procedures of the Necco Park Site Sampling and Analysis Plan for the operation and maintenance of the HCS. Samples and associated quality assurance/quality control (QA/QC) samples were analyzed by TestAmerica located in North Canton, Ohio. Groundwater sample results are presented as Table B-1.

The samples were analyzed for TCL volatile organic compounds (VOCs), TCL semivolatile organic compounds (SVOCs), target analyte list (TAL) metals, total cyanide, and water quality parameters (alkalinity, chloride, nitrate, sulfate, ferrous iron, chemical oxygen demand, and biological oxygen demand). A comparison of the RW-11 sample results to those from former recovery well RW-10 indicates no significant difference in the influent chemistry with one exception. The pH for the initial and final pumping test samples was 10.6 and 11.2 standard units, respectively. As discussed in Section 4.0, pH adjustment is conducted at the recovery well. Like the other recovery wells, groundwater samples will be collected at well RW-11 annually.

4.0 OPERATION AND MAINTENANCE

Following RW-10 well house and acid line modifications, replacement B/C-Zone recovery well RW-11 was put into operation on November 12th 2008. During 4Q08, RW-11 pumped at a rate of 15-18 gpm. The higher well yield required the installation of a 1-1/2 HP 25E8 Grundfos submersible pump. The uptime from startup to December 31st was 78.7 percent.

Groundwater samples collected during the pump test indicated the pH at RW-11 was between 10.6 and 11.2 (standard units). Because of these high pH values, 32% HCL is added to the well at the well pump, prior to mixing in the influent line with groundwater from wells RW-4 and RW-5. Acid is added to recover well RW-11 at rate of approximately 30-gallons per day. There have been a total of six pump changes (two in 2008 and 6 thus far in 2009) at RW-11 due to sediment and fouling since startup in November 2008.

5.0 DEVIATIONS FROM THE WORK PLAN

To increase the degree of bedrock fracturing at the new recovery well location, additional blast holes were completed at the western end of the BFBT. A total of thirty-seven blast holes were completed, five more than the thirty-two blast holes proposed in the Work Plan.

To minimize clogging of the screened portion of recovery well RW-11, ¹/₂-inch diameter clear glass beads were used in place of the washed fine gravel backfill described in the Work Plan.

Piezometers PZ-A and PZ-B, installed in the BFBT, were constructed of 2-inch diameter PVC casing in its place of the 4-inch material described in the Work Plan.

Table B-1 RW-11 Pump Test Results DuPont Necco Park

			RW-11	RW-11	RW-11	RW-11	TBLK
		Total (T)/	8/19/08	8/21/08	11/14/08	1/29/09	8/19/08
Analyte	Units	Diss. (D)	FS	FS			TBLK
Volatile Organics							
1,1,1-TRICHLOROETHANE	UG/L	Т	<110	<110			<0.22
1,1,2,2-TETRACHLOROETHANE	UG/L	Т	1100	1400	1500	1300	<0.18 UJ
1.1.2-TRICHLOROETHANE	UG/L	т	2300	2700	3130	2890	<0.27 UJ
1.1.2-TRICHLOROTRIFLUOROETHANE	UG/L	т	<140	<140			<0.28
1,1-DICHLOROETHANE	UG/L	т	<75	<75			<0.15
1,1-DICHLOROETHENE	UG/L	т	800	650	<36	639	<0.19
1,2-DIBROMO-3-CHLOROPROPANE	UG/L	Т	<340	<340			<0.67
1.2-DIBROMOETHANE (EDB)	UG/L	т	<120	<120			<0.24
1.2-DICHLOROBENZENE	UG/L	т	<65	<65			<0.13
1,2-DICHLOROETHANE	UG/L	т	<110	<110	<68	<500	<0.22
1.2-DICHLOROPROPANE	UG/L	т	<90	<90			<0.18
1,3-DICHLOROBENZENE	UG/L	т	<70	<70			<0.14
1,4-DICHLOROBENZENE	UG/L	Т	<65	<65			<0.13
2-HEXANONE	UG/L	т	<200	<200			<0.41
ACETONE	UG/L	Т	5100	<550			<1.1
BENZENE	UG/L	Т	<65	<65			<0.13
BROMODICHLOROMETHANE	UG/L	т	<75	<75			<0.15
BROMOFORM	UG/L	Т	<320	<320			<0.64
CARBON DISULFIDE	UG/L	т	600	<65			<0.13
CARBON TETRACHLORIDE	UG/L	Т	1500	1400	1370	1400	<0.13
CHLOROBENZENE	UG/L	Т	<75	<75			<0.15
CHLORODIBROMOMETHANE	UG/L	Т	<90	<90			<0.18
CHLOROFORM	UG/L	Т	14000	14000	13900	15400	<0.16
CIS-1,2 DICHLOROETHENE	UG/L	Т	3100	3300	3310	3140	<0.17
CIS-1,3-DICHLOROPROPENE	UG/L	Т	<70	<70			<0.14
CUMENE	UG/L	Т	<65	<65			<0.13
CYCLOHEXANE	UG/L	Т	<60	<60			<0.12
DICHLORODIFLUOROMETHANE	UG/L	Т	<160	<160			<0.31
ETHYL CHLORIDE	UG/L	Т	<140	<140			<0.29
ETHYLBENZENE	UG/L	Т	<85	<85			<0.17
METHYL ACETATE	UG/L	Т	<190	<190			<0.38
METHYL BROMIDE	UG/L	Т	<200	<200			<0.41
METHYL CHLORIDE	UG/L	т	<150	<150			<0.3
METHYL ETHYL KETONE	UG/L	Т	5900	<280			<0.57
METHYL ISOBUTYL KETONE	UG/L	Т	<160	<160			<0.32
METHYL TERTIARY BUTYL ETHER	UG/L	Т	<85	<85			<0.17
METHYLENE CHLORIDE	UG/L	Т	3800	3100	3270	2960	<0.33
STYRENE	UG/L	Т	<55	<55			<0.11
TETRACHLOROETHYLENE	UG/L	Т	5500	5700	5420	5770	<0.29
TOLUENE	UG/L	Т	<65	<65			<0.13
TRANS-1,2-DICHLOROETHENE	UG/L	Т	<95	<95	204	<500	<0.19
TRANS-1,3-DICHLOROPROPENE	UG/L	Т	<95	<95			<0.19
TRICHLOROETHENE	UG/L	Т	15000	14000	13800	13900	<0.17
TRICHLOROFLUOROMETHANE	UG/L	Т	<100	<100			<0.21
	UG/L	T	680	1200	950	964	<0.22
XYLENES	UG/L	T _	<140	<140			<0.28
1,2,4-TRICHLOROBENZENE	UG/L	T 	<75	<75			<0.15
	UG/L	Т	<65	<65			<0.13
Total VOCs			59,380	47,450			

J - Estimated concentration.

R- Unusable result. Analyte may or may not be present in the sample.

UJ - Not detected. Reporting limit may not be accurate or precise.

NS - not sampled.

Table B-1 RW-11 Pump Test Results DuPont Necco Park

			RW-11	RW-11	RW-11	RW-11	TBLK
		Total (T)/	8/19/08	8/21/08	11/14/08	1/29/09	8/19/08
Analyte	Units	Diss. (D)	FS	FS			TBLK
Semivolatile Organics							
	LIG/I	т	<3.8	-3			NS
		, T	<10	<8			NS
		г Т	<10	<8			NS
	UG/L	т	<10	<8			NS
	UG/I	т	<30	<24			NS
		т	<3.4	-27			NS
	UG/L	т	<10	<8			NS
2-CHI OROPHENOI	UG/L	, Т	<3.6	<29			NS
2-METHYI NAPHTHAI ENE	UG/I	т	<12	<1			NS
2-METHYLPHENOL (O-CRESOL)	UG/L	т	<10	<8			NS
2-NITROANII INF	UG/I	т	<10	<8			NS
2-NITROPHENOI	UG/I	т	<3.5	<2.8			NS
3 3'-DICHI OROBENZIDINE	UG/I	T	<4.6	<37			NS
3-NITROANII INF	UG/I	т	<3.5	<2.8			NS
4 6-DINITRO-2-METHYLPHENOL	UG/I	т	<30	<24			NS
4-BROMOPHENYL PHENYL ETHER	UG/I	т	<10	<8			NS
4-CHI ORO-3-METHYI PHENOI	UG/I	т	<10	<8			NS
4-CHI OROANII INF	UG/I	т	<10	<8			NS
4-CHLOROPHENYL PHENYL ETHER	UG/I	т	<3.8	<3			NS
4-METHYLPHENOL (P-CRESOL)	UG/I	т	<10	180			NS
4-NITROANII INF	UG/L	, Т	<10	<8			NS
4-NITROPHENOI	UG/L	т	<30	<24 R			NS
ACENAPHTHENE	UG/I	T	<12	<1			NS
	UG/L	, Т	<1.2	<1			NS
ACETOPHENONE	UG/L	, Т	<4.2	<3.4			NS
ANTHRACENE	UG/I	т	<1.2	<1			NS
BENZAL DEHYDE	UG/I	T	<4.9	<3.9			NS
BENZO(A)ANTHRACENE	UG/L	т	<1.2	<1			NS
BENZO(B)ELUORANTHENE	UG/L	т	<12	<1			NS
BENZO(G H I)PERYLENE	UG/I	т	<12	<1			NS
BENZO(K)ELUORANTHENE	UG/I	T	<12	<1			NS
BENZOIAIPYRENE	UG/I	т	<12	<1			NS
BIPHENYI	UG/I	т	<10	<8			NS
BIS(2-CHLORO-1-METHYLETHYL) ETHER	UG/I	T	<5	<4			NS
BIS(2-CHI OROFTHOXY)METHANE	UG/I	T	<4	<3.2			NS
BIS(2-CHI OROETHYI)FTHER	UG/I	T	<1.2	<1			NS
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	Т	<10	<8			NS
BUTYL BENZYL PHTHALATE	UG/L	Т	<10	<8			NS
CAPROLACTAM	UG/L	T	<10	<8			NS
CARBAZOLE	UG/L	T	<3.5	<2.8			NS
CHRYSENE	UG/I	Т	<1.2	<1			NS
DIBENZ(A.H)ANTHRACENE	UG/L	т	<1.2	<1			NS
DIBENZOFURAN	UG/L	Т	<1.2	<1			NS
DIETHYL PHTHALATE	UG/L	Т	<7.5	<6			NS
	UG/I	Т	<3.6	<2.9			NS
DI-N-BUTYL PHTHALATE	UG/L	T	<8.4	<6.7			NS
FLUORANTHENE	UG/L	Т	<1.2	<1			NS
FLUORENE	UG/L	Т	<1.2	<1			NS

J - Estimated concentration.

R- Unusable result. Analyte may or may not be present in the sample.

UJ - Not detected. Reporting limit may not be accurate or precise.

NS - not sampled.
Table B-1 RW-11 Pump Test Results DuPont Necco Park

			RW-11	RW-11	RW-11	RW-11	TBLK
		Total (T)/	8/19/08	8/21/08	11/14/08	1/29/09	8/19/08
Analyte	Units	Diss. (D)	FS	FS			TBLK
Semivolatile Organics (Continued)							
HEXACHLOROBENZENE	UG/L	Т	<1.2	<1			NS
HEXACHLOROBUTADIENE	UG/L	т	350	320			NS
HEXACHLOROCYCLOPENTADIENE	UG/L	Т	<10	<8			NS
HEXACHLOROETHANE	UG/L	т	<10	<8			NS
INDENO (1,2,3-CD) PYRENE	UG/L	т	<1.2	<1			NS
ISOPHORONE	UG/L	Т	<3.4	<2.7			NS
NAPHTHALENE	UG/L	т	<1.2	<1			NS
N-DIOCTYL PHTHALATE	UG/L	т	<10	<8			NS
NITROBENZENE	UG/L	т	<0.5	<0.4			NS
N-NITROSODI-N-PROPYLAMINE	UG/L	т	<10	<8 R			NS
N-NITROSODIPHENYLAMINE	UG/L	т	<3.9	<3.1			NS
2-CHLOROPNAPHTHALENE	UG/L	т	<1.2	<1			NS
PENTACHLOROPHENOL	UG/L	т	<30	320			NS
PHENANTHRENE	UG/L	т	<1.2	<1			NS
PHENOL	UG/L	Т	230	260			NS
PYRENE	UG/L	Т	<1.2	<1			NS
ATRAZINE	UG/L	Т	<4.2	<3.4			NS

Table B-1 RW-11 Pump Test Results DuPont Necco Park

			RW-11	RW-11	RW-11	RW-11	TBLK
		Total (T)/	8/19/08	8/21/08	11/14/08	1/29/09	8/19/08
Analvte	Units	Diss. (D)	FS	FS			TBLK
			_	_			
Inorganics			1000	07			
ALUMINUM	UG/L	D	1090	<97			NS
ALUMINUM	UG/L	I	<97	<97			NS
ANTIMONY	UG/L	D	<1.8	<1.8			NS
ANTIMONY	UG/L	Т	<1.8	<1.8			NS
ARSENIC	UG/L	D	15.8	11.7			NS
ARSENIC	UG/L	Т	15.5	<3.2			NS
BARIUM	UG/L	D	7190	9090			NS
BARIUM	UG/L	Т	7380	8390			NS
BERYLLIUM	UG/L	D	<0.46	<0.46			NS
BERYLLIUM	UG/L	Т	<0.46	<0.46			NS
CADMIUM	UG/L	D	<0.66	<0.66			NS
CADMIUM	UG/L	Т	<0.66	<0.66			NS
CALCIUM	UG/L	D	789000	801000			NS
CALCIUM	UG/L	Т	800000	767000			NS
CHROMIUM	UG/L	D	<2.2	<2.2			NS
CHROMIUM	UG/L	Т	<2.2	<2.2			NS
COBALT	UG/L	D	<1.7	<1.7			NS
COBALT	UG/L	Т	<1.7	<1.7			NS
COPPER	UG/L	D	<4.5	<4.5			NS
COPPER	UG/L	т	<4.5	<4.5			NS
FERROUS IRON	UG/L	т	1700	3100			NS
IRON	UG/L	D	11100	9250			NS
IRON	UG/L	т	11100	8710			NS
LEAD	UG/L	D	<1.9	<1.9			NS
LEAD	UG/L	т	<1.9	<1.9			NS
MAGNESIUM	UG/L	D	14600	16400			NS
MAGNESIUM	UG/L	т	15000	15500			NS
MANGANESE	UG/L	D	201	281			NS
MANGANESE	UG/L	т	205	267			NS
MERCURY	UG/L	D	0.23	<0.12			NS
MERCURY	UG/L	т	<0.12	<0.12			NS
NICKEL	UG/L	D	<3.2	<3.2			NS
NICKEL	UG/L	т	<3.2	<3.2			NS
POTASSIUM	UG/L	D	59800	57400			NS
POTASSIUM	UG/I	T	61800	54600			NS
SELENIUM	UG/I	D	5.2	<4.1			NS
SELENIUM	UG/I	- T	<4.1	<4.1			NS
SILVER	UG/I	D	<2.2	<2.2			NS
SILVER	UG/L	T	<2.2	<2.2			NS

NS - not sampled.

UJ - Not detected. Reporting limit may not be accurate or precise.

Table B-1 RW-11 Pump Test Results DuPont Necco Park

			RW-11	RW-11	RW-11	RW-11	TBLK
		Total (T)/	8/19/08	8/21/08	11/14/08	1/29/09	8/19/08
Analyte	Units	Diss. (D)	FS	FS			TBLK
Inorganics (Continued)							
SODIUM	UG/L	D	682000	587000			NS
SODIUM	UG/L	Т	697000	560000			NS
THALLIUM	UG/L	D	<4.7	<4.7			NS
THALLIUM	UG/L	Т	<4.7	<4.7			NS
VANADIUM	UG/L	D	<0.64	<0.64			NS
VANADIUM	UG/L	Т	<0.64	<0.64			NS
ZINC	UG/L	D	44.5	60			NS
ZINC	UG/L	Т	44.7	58.6			NS
ALKALINITY, BICARB. AS CACO3 AT PH 4.5	UG/L	Т	668000	758000 J			NS
BIOCHEMICAL OXYGEN DEMAND (BOD) - 5 [UG/L	Т	620000	540000			NS
CHEMICAL OXYGEN DEMAND (COD)	UG/L	Т	1910000 J	1410000 J			NS
CHLORIDE	UG/L	Т	2200000	1980000			NS
CYANIDE	UG/L	Т	175000	870			NS
NITRATE	UG/L	Т	<23	500			NS
PH	STD UNITS	т а	10.6	11.2			NS
SULFATE	UG/L	Т	107000	97000			NS

Figure B2 Step Test Drawdowns RW-11 Pump Test DuPont Necco Park: 18 August 2008

Figure B3 Selected Datalogger and Manual Water Level Drawdowns RW-11: 3-Day Pump Test **DuPont Necco Park: August 2008**

Figure B4 150B Water Level Response RW-11: 3-Day Pump Test DuPont Necco Park: August 2008

URS Diamond															
PRO IECT: Necco Park Routine Maintence & Well Penlacement									BORING NO: RW-11						
PROJE	CT:	Neco	co Park	, Rout	ine M	aintence	& Well Rep	lacement			SHEET: 1 of 1				
CLIENT: DuPont CRG								JOB NO.:	1898565	51					
BORING CONTRACTOR: Nothnagle Drilling Co.								BORING LOCATION:	N: 11279	951.03	3/E: 1037212.59				
GROUN	DWATER:			1		-	CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION	:		577.42	
DATE	TIME	LE	EVEL	TY	ΈE	TYPE	12 1/4"		NX		DATE STARTED:	07/25	/08		
						DIA.	HSA		2.0" ID		DATE FINISHED:	08/04	/08		
						WT.	-		-		DRILLER:	Steve Lo	orante		
						FALL	-		-		GEOLOGIST:	Scott Mo	Cabe		
						* PO	CKET PENE	ETROMETER	R READ	ING	REVIEWED BY:	Dan She	eldon		
			SAMF	PLE				1	DESCF	RIPTION					
DEPTH				BLC	ows	REC%		CONSIST		Ν	IATERIAL			REMARKS	
FEET	STRATA	NO.	TYPE	PE	R 6"	RQD%	COLOR	HARD		DE	SCRIPTION	USCS	PID		
									See	179A k	oring log for lithologic				
										С	lescription.				
5															
10															
														Auger refusal @ 12 0'	
							Drk Brwn/	Hard/	Lockno	rt Grour				core #1 took 12.0 min	
						58%	Drk Gro Brwo	Mod Hard	LOCKPC	fino to r	, adjum grained			water losses at	
15		2				1/1%				dolosto	neulum graineu			12-15', 17', & 19-20'	
13		# ur				1470				10105101				12 10, 17, 0 10 20	
		e Ru	NX							vugs, s	ome with calcite				
		Core								broken	to very broken 4"-1/2"				
		0								pieces.	Void 19-20 bgs,				
						-				broken	coral 12-15 bgs				
20							V								
					I—	070/	Drk Brwn/			pitting a	nd vugs 1/4-3/4"			core #2 took 7.0 min.	
						87%	Drk Grey			diamete	er with some calcite			unable to determine	
		~				75%				filling,.	/ery broken 21-21.3',			water loss, no return	
		u #								21.6-22	', 22.4-22.5' (weath.				
25		Ru	NX							fracture	s),23.4', 23.6'bgs.				
		ore		<u> </u>	1					solid 23	.6-28.5'bgs. Fine				
		0		<u> </u>	1					styolitic	partings throughout				
						-				core, tra	ace coral.				
										Broken	to massive.				
30								•		C-Zone	22.5'				
									B	oring co	mpleted at 30.0' bgs				
35															
Comme	nts:	Borir	ng advar	nced w	vith tru	ick-moun	ted CME-85	drill rig using							
12 1/4"	D HSA to	12.0'.	Reame	d with	Rolle	r Bit 20.0'	to 30.0'.				PROJECT NO.	1898565	51		
NX core	e 12.0'-30.0)'.									BORING NO.	RW-11			

		٦						
Geologist	S SUMMAR I	Top of Casing	Flevation	578 78			Stick-up Protective C	asing
Scott McC	 Cabe	Top of oasing	Licvation	0/0./0			and Lockable Cap	asing
Drilling Co	ompany:							
Nothnagle	e Drilling Co.	Ground Ele	evation	577.42				Ground Level
Driller:								
Steve Lor	ante						16	AUGERHOLE
Rig Make	/Model:	Depth in Feet Be	elow Grade					
Date:		-						
7/25-8/4/0	08							
GEOLO	GIC LOG							
Depth(ft.)	Description*	-	Top of Seal	10				
0.0-12.0'	See 179A boring log	1						Carbon Steel
10.0.00.01	for lithologic description			10.0				Riser
12.0-30.0	Lockport Group	Top of Bedro	ck Blasted Zone	12.0				10.0 inch dia.
	fine to medium grained	Тор	of Glass Beads	13				<u>10.4</u> leetlength
	dolostone. Numerous		Top of Screen	14	8	Q		Stainless 304 Steel
	vugs and pitting. Some				8	ŏ		Screen
	calcite deposits in vugs.							<u>10.0</u> inch dia.
	Broken to very broken				<u>کم</u>	$ \overset{\circ}{\circ}$		5.0 feet length
	coral throughout core. Fine				þ	<u></u> 6		
	styolitic partings from	Top of Seal/E	Bottom of screen	19		õ		
	20-30'bgs	Top of Comp	entent Bedrock	20.0			20	Bottom Rock Socket
		Bottom of 0	Open Rock Hole	28			9 7/8" Diameter	OPEN ROCK HOLE
		Bot	tom of Borehole	30.0				
WELL C	DESIGN							Not to Scale
	CASING MATERIA			SCREEN MAT	FRIAI		FII TER MAT	ΓΕΡΙΔΙ
Surface:	10-inch steel stick-up	12	Туре:	Screened (B-Zo	one)		Type: Glass Beads	Setting: 13-19'
	10 inch ID contract	I	Tunci	Open Destall			SEAL MATERIAL	0.00
vveii:	10-Inch ID carbon steel	I	Type:	Open Rock Hol	ie (C-Zor	ie)	Type: Bentonite Chips	Setting: 28-30' 10-13'
Monitor: Screened/open rock hole			Slot Size:	200 Slot				
COMMENTS:			ROCK COR	ING				LEGEND
			Cored Interve	al:	12.0-30	0.0'		Cement/Bentonite Grout
			Core Diamet	er:	3"		00 00 00 00	Bentonite Seal 1/2" Diameter Glass Beads
			Rock Hole D	iameter:	9 7/8"			
Client:	DuPont CRG		Location:	Necco Park			Project No.:	18985651
	URS Diamon	d	BEDROC		IG WELL		Well Number	RW-11
		CONS	TRUCTION DE	TAILS				

DRILI	LING SUMMARY					F	579.53 Locking Protective Casing			
Coologist		Tan of Cooling	- Flouration	570.06		Ť	(Outer Casing Elevation)			
Geologist:		I op of Casing (Measuri	pa Pt)	579.06	<u> </u>					
Drilling Cor	npany:	(เพียสรีนก	ng r t.)							
Nothnagle D	Drilling Co.	Ground El	levation	577.08			Ground Level			
Steve Loran	te									
Rig Make/M	lodel:	-			1	1				
CME-85		Depth in Feet E	Below Grade	9						
Date:				-						
7/30/2008										
GE	OLOGIC LOG						PVC Casing			
Depth(ft.)	Description	-					9.98 feet length			
0.0-0.2'	Coarse Gravel	1								
0.2-4.0'	Silty Clay, trace to some									
	fine to coarse sand (FILL)									
							Borehole Diameter			
4.0-7.0'	Slag, with gravel and some						8inch dia.			
	fine sand (FILL)	- ,	~ .	0						
7.0.12.5	CLAX, trace to some silt	I op of	Seal	2						
7.0-13.5	grading to trace rounded									
	gravel and fine to med. sand	Top of Sar	nd Pack	6						
13.5'	Refusal, top of rock	Top of S	creen	8						
	* Overburden description						PVC Screen			
	based on BZTW-3 log.						<u> </u>			
							5 feet length			
					l —	_				
						_				
						_				
					–	-				
						-				
						-				
		Bottom of	Screen/							
		Top of	Seal	13		-				
w	ELL DESIGN	Bottom of E	Borehole	13.5	1	_	Not to Scale			
		(Top of Bedrock)			100000000000000000000000000000000000000					
	CASING MATERIAL		S	CREEN MATE	RIAL		FILTER MATERIAL			
Currée e e e	Ctool protoctive cover (Ctick Lin)	Tuna			T	ype: #2 NSF Silica Sand			
Surface:	Steel protective cover (Slick Up)	Type:	Schedule 40 PVC	j	5	setting: 13.5-6.0°			
							SEAL MATERIAL			
Monitor:	PVC		Slot Size:	0.020"		Т	vpe 1: 3/8" Bentonite Chips			
						S	Setting: 6.0-2.0'			
COMMENT	ç,						I EGEND			
COMMENT	0.					-	LEGEND			
							Cement Grout			
							Bentonite Seal			
							Sand Pack			
Client: DuP	ont CRG		Location:	Necco Park		Р	Project No.: 18985651			
			OVERE	BURDEN PIE	ZOMET	ER V	Vell Number: PZ- A			
	UKS Diamond		CONS	TRUCTION	DETAIL	S				

DRILI	LING SUMMARY					579 65	5 Locking Prote	ctive Casing	
Coologist		Tan of Casin	a Flouction	570 47		010.00	Outer Casin	n Elevation)	
Geologist:	ha	I op of Casin	ig Elevation	579.47	<u> </u>			g Llevation)	
Drilling Cor	npany:	เพียสอนไ	ing r t.)						
Nothnagle D	Ground E	levation	577.24	-		Gro	ound Level		
Driller:	40								
Steve Loran		-				1			
CME-85	iodei:	Depth in Feet F	Below Grade						
Date:									
7/30/2008		-							
GE	OLOGIC LOG						_ PVC Casin	ng 2 inch dia.	
Depth(ft.)	Description							17.23 feet leng	th
0.0-0.2'	Coarse Gravel								
0.2-4.0'	Silty Clay, trace to some						_Borehole D	Diameter	
	fine to coarse sand (FILL)	Top of Seal		12.5				8 inch dia.	
4.0-7.0'	Slag, with gravel and some	Top of Bedrock B	Blasted Zone	14					
		Top of Gravel		14 5					
7.0-13.5'	CLAY, trace to some silt				0 0	0 0			
	grading to trace rounded	Top of Screen		15	00	0 0			
	gravel and fine to med. sand				0 0	0 0			
14.0-20.0'	Lockport Group								
	Oak Orchard Member						PVC Scree	n	
	thick bedded, fine to medium							2 inch dia.	
	grained, dolostone							5 feet leng	th
	End of boring at 20.0' bgs								
	* Overhunden description								
	based on BZTW-3 log.					5 0			
					0 0	0 0			
					0 0	0 0			
		Top of Competen	t Bedrock	19	0 0	0 0			
		Bottom of	f Screen/			0 0			
		Top of	Seal	20	0 0	0 0			
w	ELL DESIGN	Bottom of	Borehole	20		0 0	No	ot to Scale	
	CASING MATERIAL		S	CREEN MATE	ERIAL		FILTER I	MATERIAL	
Surface:	Steel protective cover (Stick Up)	Туре:	Schedule 40 PV	/C	Type: Setting:	3/8" Gravel 20.0-14.5'		
							SEAL M	IATERIAL	
Monitor:	PVC		Slot Size:	0.020"		Type 1:	3/8" Bentonite	Chips	
						Setting:	14.5-12.5'		
COMMENT	S:		-				LEG	GEND	
							C	ement Grout	
							В	entonite Seal	
						0	0 00 3/8	" Gravel	
Client: DuP	ont CRG		Location:	Necco Park		Project No.: 18985651			
			BFD		OMETER	Well N	umber:	PZ- B	
	URS Diamond		CONS	TRUCTION	DETAILS				

APPENDIX C

DATA VALIDATION SUMMARY LABORATORY REPORTS

- Provided on CD only - no Hardcopy attached -

APPENDIX D

TVOC TREND PLOTS

APPENDIX E

CHLORINATED ETHENES & ETHENE

Appendix E: Chlorinated Ethenes and Ethene B/C - Zone Wells **DuPont Necco Park**

WELL 137B

WELL 111B

WELL 139B

Source area

PCE

TCE

VC

1,1-DCE

TOTAL

Appendix E: Chlorinated Ethenes and Ethene B/C - Zone Wells **DuPont Necco Park WELL 141B**

Monitoring Well Summary Down gradient Well Slight increase in Total Chlorinated Ethenes 2005-2008 Mostly TCE, cDCE, VC Not sampled for DHE in 2008 Good Ethene production 2008 Sample Results (ppb) <120 UJ PCE TCE 2,000 Cis-1,2 DCE 12,000 VC 2,200 Trans-1,2 DCE 960 1,1-DCE 190 TOTAL 17,350

WELL 145B

WELL 151B

PCE

TCE

VC

1,1-DCE
Appendix E: Chlorinated Ethenes and Ethene B/C - Zone Wells DuPont Necco Park WELL 153B

WELL 105C

Appendix E: Chlorinated Ethenes and Ethene C/D - Zone Wells Necco Park

WELL: 137C

Monitoring We	ell Summary							
 Upgradient 								
· Low conc. of VC, TCE, F	СЕ							
· Weak ethene production								
 Flat Total Chlorinated Ethenes 2005-2008 								
 No DHEs were detected in 2008 								
2008 Sample Results	(ppb)							
PCE	0.96							
TCE	0.34							
Cis- 1,2 DCE	< 0.17							
VC	0.32							
Trans-1,2 DCE	<0.19							
1,1-DCE	<019							
TOTAL	2							

Monitoring Well Summary Downgradient Near Source Boundary Flat Total Chlorinated Ethenes 2005-2008 Mostly cDCE and VC Moderate ethene production Not sampled for DHE in 2008 2008 Sample Results (ppb) <58 UJ PCE TCE 180 Cis-1,2 DCE 4,100 VC 1,900 Trans-1,2 DCE 150 1,1-DCE 82 TOTAL 6,412

Appendix E: Chlorinated Ethenes and Ethene C/D - Zone Wells Necco Park

Monitoring W	ell Summary							
 Near downgradient well 								
Flat Total Chlorinated								
Ethenes 2005-2008								
• Mostly TCE, cDCE, VC								
 Good ethene production 								
 Not sampled for DHE in 	• Not sampled for DHE in 2008							
2008 Sample Results	(ppb)							
PCE	<7.2 UI							
	<7.2 UJ							
TCE	84							
TCE Cis- 1,2 DCE	84 500							
TCE Cis- 1,2 DCE VC	84 500 340							
TCE Cis- 1,2 DCE VC Trans-1,2 DCE	84 500 340 18							
TCE Cis- 1,2 DCE VC Trans-1,2 DCE 1,1-DCE	84 500 340 18 7.8							

Appendix E: Chlorinated Ethenes and Ethene C/D - Zone Wells **Necco Park** WELL: 137D

Appendix E: Chlorinated Ethenes and Ethene D/E - Zone Wells Necco Park

WELL: 139D

WELL: 147D

WELL: 148D

	<0.42
Cis- 1,2 DCE	92
VC	78
Trans-1,2 DCE	2.1
1,1-DCE	< 0.48
TOTAL	172

Monitoring Well Summary

(ppb)

<0.72 UJ

Far downgradient

Mostly cDCE, VC

Not sampled for DHE in 2008

Weak ethene production

2008 Sample Results

PCE

Downgradient

Mostly cDCE

PCE

TCE

VC

Cis-1,2 DCE

Trans-1,2 DCE

1,1-DCE

TOTAL

Jan-09

Appendix E: Chlorinated Ethenes and Ethene D/E - Zone Wells Necco Park

WELL: 149D

WELL: 156D

WELL: 165D

2.6

0.32

22.6

Far downgradient

2008 Sample Results

2005-2008

Mostly VC

PCE

TCE

VC

Cis-1,2 DCE

Trans-1,2 DCE

1,1-DCE

TOTAL

Trans-1,2 DCE

1,1-DCE

TOTAL

Appendix E: Chlorinated Ethenes and Ethene D/E - Zone Wells Necco Park

WELL: 136E

WELL: 145E

Appendix E: Chlorinated Ethene and Ethene E/F - Zone Wells Necco Park

WELL: 146E

Monitoring Well Summary Downgradient Near source boundary Slight decrease in Total Chlorinated Ethenes 2005-2008 Primarily cDCE, VC Moderate Ethene production Not sampled for DHE in 2008 2008 Sample Results (ppb) PCE <140 TCE 230 Cis-1,2 DCE 11,000 VC 3.400 Trans-1,2 DCE 600 490 1,1-DCE TOTAL 15,720

Far downgradient

Not sampled for DHE in 2008

2008 Sample Results

2007-2008

PCE

TCE

VC

Cis-1,2 DCE

Trans-1,2 DCE

1,1-DCE

TOTAL

Appendix E: Chlorinated Ethene and Ethene E/F - Zone Wells Necco Park WELL: 150F

APPENDIX F

2008 WELL INSTALLATION AND CLOSURE LOGS

WELL DECOMMISSIONING RECORD

Site Name: DuPaui - WELLO PARKE	Well I.D.: $R_{\omega} - I$
Site Location: N/ 16 and Falls NY	Driller: STEUR LORGINIA
Drilling Co.: Alocherica Drug Co.	Inspector: Scot MClahe.
	Date: 7/31/08

	WELL S	CHEMATIC*
DECOMMISSIONING DATA	Depth	
(Fill in all that apply)	(feet)	
OVERDRILLING		Average(s), (1) / 2
Interval Drilled		JA CASING
Drilling Method(s).		JT BENNY TO 13.7
Borehole Dia. (in.).	Lene	52/1
Temporary Casing Installed? (y/n)		
Depth temporary casing installed	10	
Casing type/dia. (in.).	- 13	7 TOP OF OF WILL
Method of installing		$T \equiv T \otimes T \equiv T \equiv T$
CASING PULLING		
Method employed	20	urvart X
Casing retrieved (feet).	- 30	Chills / VX
Casing type/dia. (in)	· · · · · · · · · · · · · · · · · · ·	
CARDIC DEDECT ATTNIC		\otimes
CASING PERFORATING		\otimes
Equipment used		\otimes
Number of perforations		\mathbf{X}
Internal perforated		N ABN
		Webell
GROUTING	40	Hour 20
Interval grouted (FBLS)		13.7-
# of batches prepared .	42.0' Botto	n of 🔀
For each batch record:	OPIEN	1 HOLPE
Quantity of water used (gal.)		
Quantity of cement used (lbs.)	50	
Cement type.		
Quantity of bentonite used (lbs.).		
Quantity of calcium chloride used (lbs.)		
Volume of grout prepared (gal.)		
Volume of grout used (gal.)	┨	
		and the second sec
COMMENTS: SEALED OPEN HOLD INTERVAL USING	•Sketch in all relevant d	commissioning usit, including,
3/8 BINDING Chips SEALAN TOP 13 DE STERL	interval overdrilled, inte	rval grouted, casing left in hole,
CASING WITH COMBAT BENTONITY GRAVE.	well stickup, etc.	
CASIN'S CUT OFF AT GROUND SURFACTE.	<u> </u>	
* 2.6 Race		
Drilling Contractor	Department Represent	ative

WELL DECOMMISSIONING RECORD

Ţ

Site Name: Deport - NECCO Park	Well I.D.: Rw-Z
Site Location: Nicagara Falls, NY	Driller: STEVE LORMWTR
Drilling Co.: Northnagle DRILLING Co.	Inspector: Scorr My Caby
	Date; 7/24/08

	WEI	L SCHEMA	TIC*
DECOMMISSIONING DATA	Depth		
(Fill in all that apply)	(feet)	-	
OVERDRILLING			
Interval Drilled		, 7	The wave casimy
Drilling Method(s).		CEMENT /	N.0 7.9
Borehole Dia. (in.).		GRANT	
Temporary Casing Installed? (y/n).			
Depth temporary casing installed .	10	k	\times
Casing type/dia. (in.).		K	X
Method of installing.		K	X
			X Top OF
CASING PULLING		17.9	Reck.
Method employed .	20		$\sum \vec{z} \leq \vec{z} $
Casing retrieved (feet)			\Diamond
Casing type/dia. (in)		3/2 BENTOUTE K	\diamond
	_	CHIPS	
CASING PERFORATING			
Equipment used	30	>	
Number of perforations/foot	7711 -	20 10	VI We 334
Size of perforations .	22.4	Donan of	
Interval perforated		per mer	
GROUTING	40	ł	
Interval grouted (FBLS).			
# of batches prepared			
For each batch record:			
Quantity of water used (gal.)			
Quantity of cement used (lbs.).			
Cement type,			
Quantity of bentonite used (lbs.)			
Quantity of calcium chloride used (lbs.)			
Volume of grout prepared (gal.)			
Volume of grout used (gal.)		L	
COMMENTS: SKALAD open hole where and we	*Sketch in all relev	ant decommissionin	g data, including:
who steel casing to 80 bis using	interval overdrilled	, interval grouted, ca	asing left in hole,
319" headite chips" Scaled too 8 using comment	well stickup, etc.		
Braditle and CASING OUTDER AT COUNCIL SUPERIE	-		
Very the August Color in the color of the	<u> </u>		

<u>Trilling Contractor</u>

Department Representative

DRILLING	SUMMARY	Top of Casing	Flevation	581 77		Stick-up Protectiv	e Casing
Craig Tayl	lor / Gary Britt	Top of basing	Lievation	001.11		and Lockable Ca	D
Drilling Co	ompany:						
Nothnagle	Drilling Co.	Ground Ele	evation				Ground Level
Steve Lora	ante						AUGERHOLE
Rig Make/	Model:						_
Date:							
11/5/2008							
GEOLO	GIC LOG	D					
Depth(ft.)	Description*	E					
0.0-2.0'	Medium brown, stiff, silty	P					CARBON STEEL
2.0-10.0'	Medium brown, very stiff Silty CLAY with trace	т	TOP OF BEDROCK	25.2			4.0 inch dia. 29.5 feet length
10.0-16.0'	Black and gray/green, stiff, clayey SILT	н					BOTTOM ROCK SOCKET
16.0-25.2'	Red/brown, very stiff clayey SILT *Overburden description based on 193A log	(ft)					<u>26.2</u> feet
25.2-50.0'	Lockport Group Guelph Dolomite thick bedded, fine to medium grained, dolostone End of boring at 50.0' bgs						
							OPEN ROCK HOLE
				50.0			
WELL D	ESIGN						Not to Scale
	CASING MATERIA	L		SCREEN MA	TERIAL	FILTER N	IATERIAL
Surface:	4-inch steel stick-up		Туре:	Open Rock H	ole	Type. None	Setting. NA
Well:	4-inch ID carbon steel					SEAL MATERIA Type: Grout	AL Setting: NA
Monitor:	open rock hole						
COMMEN	ITS:		ROCK COR	ING			LEGEND
			Cored Interv	al:	25.2-50.0		Cement/Bentonite Grout
			Core Diame	ter:	3"		
			Rock Hole D	Diameter:	3"		
Client:	DuPont CRG		Location:	Necco Park		Project No.:	18985651
	URS Diamon	BEDROC	CK MONITORI	NG WELL ETAILS	Well Number:	204 C	

DRILI	LING SUMMARY						Lashing Destantion Operation	_
		-						
Geologist:		Top of Casing	g Elevation	578.72			(Outer Casing Elevation)	
Drilling Cor	mpany:	(Measuri	ng Pt.)					
Nothnagle D	Drilling Co.	Ground El	levation				Ground Level	_
Driller:								
Steve Loran	te	-						
	lodel:	Dopth in East	Polow Crode					
CIVIE-00		Deptin in Feet b	Selow Glade	2				
7/23/2008		-						
GE	OLOGIC LOG						_ PVC Casing	inch dia.
Depth(ft.)	Description						22.3	feet length
0.0-0.5'	Topsoil							-
0.5-14.0'	Slag, some ciders, trace							
	gravel and asphalt (FILL)						Parahala Diamatar	
14.0.22.0'	SILTY CLAY, thinnly							inch dia
14.0 22.0	laminated, few silt lenses							
		Top of	Seal	14				
22.0-24.0'	SANDY CLAY, trace to							
	some gravel.							
		Top of Sar	nd Pack	17				
24.0'	Refusal, top of rock	Top of S	creen	19				
	based on 168C log.						_PVC Screen	in the slip
	Ŭ						5	feet length
							5	leerlengin
		Bottom of	Screen/	24				
1.07			Jedi Devek ele	24			Not to Soal	•
		(Top of Bedrock)	Borenole	24			NOL LO SCAL	e
	CASING MATERIAL		S	CREEN MATE	RIAL		FILTER MATERIA	L
						Туре:	#2 NSF Silica Sand	
Surface:	Steel protective cover (Stick Up)	Туре:	Schedule 40 PV	С	Setting:	24.0-17.0'	
Monitor	PVC		Slot Size	0.020"		Type 1:	3/8" Bentonite Chins	
	110		0.010.201	0.020		Setting:	17.0-14.0'	
COMMENT	ç,					_	LEGEND	
COMMENT	0.						LEGEND	
							Cement Grou	t
							Bentonite Sea	al
							Sand Pack	
			Location	Nocco Bark			4 No. 40005054	
Client: DuP	ont CRG					Projec	t No.: 18985651	
	URS Diamond		OVERE	BURDEN PI	ZOMETE	R Well N	lumber: 168 A	
			CONS	TRUCTION	DETAILS			

				URS	Diamo	nd					IG LO	G	
			Deale				•				2040		-
PROJE	<u>: :</u>	Necc	:0 Park,	, Routine I	Maintence	& Well Re	placement			SHEET:	1		2
			DIT CRO	j Nathran		<u></u>				JUB NU.:	1898565	21	
BURING	J CONTRA	1010	R:	Nothnay	e Drilling					BORING LUCATION:	_		
GROUN	DWATER:					CA5.	SAMPLER	CURE	TUBE	GROUND ELEVATION	:	10.0	
DATE	TIME		IVEL	TYPE	TYPE	6 1/4"	+	HQ	┣───	DATE STARTED:	11/04	/08	
	⊢−−−−]	⊢		───	DIA.	HSA	 	2.5" ID		DATE FINISHED:	11/05	i/08	
	└─── ┤	_		───	WT.	-	 	-	<u> </u>	DRILLER:	Steve Lo	orante	
	└─── ┤	_		───	FALL	-		-		GEOLOGIST:	Craigla	aylor /	Gary Britt
	لــــــا	<u> </u>		<u> </u>	* PO		EIROMEIE	R REA	DING		Dan She	aldon	
		—	SAMP			 		DESC	RIPTIO	N	т	──	
DEPTH		1		BLOWS	REC%		CONSIST						REMARKS
FEEI	STRAIA	NO.	TYPE	PER 6	RQD%	COLOR	HARD	0-0.1(USCS	PID	
	i I	1 1			_			descrir	J3A DUN htion	ng log for lithologic			
	t l	1 1	i '	\vdash	_			40001. _r					
	t l	1 1	1 '	\vdash	_								
	t l	1 1	1 '		'								
5	↓				_								
	↓ I				_								
	↓ I	1 1			_								0 PID readings in
	t I	1 1	i '										overburden.
	i I	1 1	1 '										
10	<u>ı</u>	1 1	1 '										
	1 I	1 1	1 '		'								
	i				7								
	i	1 1											
	i	1 1	1 1		٦ '								
15	i				٦ '								
	i	1 1	1 1		1 '								
	i	1 1											
	i	1 1											
	i	1 1											
20	i	1 1											
	i	1 1											
	i I	1 1	1 1		1 '								
	i	1 1	1 '										
	i l	1 1	1 '		-								
25	i		1 '		_								Auger refusal @ 25.2
		$ \square$	[]		-	arev	hard	Lockpo	ort Grour	n	1		core #1 took 5.0 min.
	<u>神田田</u>		1 1		-	9.0,			Guelph	Dolomite			lost ~20 gallons
		Ĕ	1		93%				thick be	added fine to medium			PID=5-19 ppm
		Rur	NX		82%	1			arained	dolostone			in water tub.
-30		ore		├── ╏ ──				-B 7(one 29.0	-29 <u>3</u> '			
		ŭ		├── ╏ ──	- '				JIIO 20.0	-23.0			
		1 1		┝──┣──	- '								
		8	'	┝╼╋╴	'								
		# 	1 '		07%								
35		المرا	NX	┝──╋──	02%								No water loss observed
- 30		Sore	1 '		- 92 %								In Core Run #2
0	<u></u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>					L	
Comme	nts:	Borin	ig advar	iced with t	ruck-mount	ted CME-85	o drill rig usir	ıg			4000501	- 4	
6 1/4" IL	HSA to 25	5.2°. F	coller Bi	to 32.5 a	nd set casi	ng.				PROJECT NO.	1898565	51	
NX COre	25.2-50.0	<u>r.</u>								BORING NO.	2040		

BORING NO: 204C PROJECT: DuPont CRG JOB NO: 19885651.00 DEPTH SAMPLE DESCRIPTION ISSEED DEPTH SAMPLE DESCRIPTION USCS FEET STRATA NO. TYPE PER 6* CONSIST MATERIAL USCS PID 40 Stratz NO. TYPE PER 6* RCM, COLOR HARD DESCRIPTION USCS PID 40 Stratz NO. TYPE PER 6* RCM, COLOR HARD DESCRIPTION USCS PID 40 Stratz 97% 97% 97% PID DESCRIPTION USCS PID 40 Stratz 97% 97% 97% PID DESCRIPTION USCS PID 45 Stratz 97% 97% 97% PID DESCRIPTION USCS PID 66 Stratz 97% 97% PID DESCRIPTION ISS ISS 70 Stra					URS D	iamor	nd			TEST BORIN	G LO	G	
PROJECT: Necco Park, Routine Maintence & Well Replacement SHEET: 2 d / 2 CLIENT: DuPont CR0 19886561 19886561 19886561 DEPTN STRATA NO. TYPE BLOWS REC4/2 DESCRIPTION REMARKS DEPTN STRATA NO. TYPE BLOWS REC4/2 CONSIST MATERIAL USCS PID 400 STRATA NO. TYPE BLOWS REC4/2 CONSIST MATERIAL USCS PID 400 STRATA NO. TYPE BLOWS REC4/2 CONSIST MATERIAL USCS PID 400 Strata										BORING NO:	204C		
CLIENT: DuPort CRG JOB NO: 18885651.00 DEFOR SAMUE DESCRIPTION USCS PID FEET STRATA NO TYPE PER 6* RC0% COLOR HARD DESCRIPTION USCS PID FEET STRATA NO TYPE PER 6* RC0% COLOR HARD DESCRIPTION USCS PID G 97% 97% 97% 141 Coxport Grap Couleph Dolonite thick backed, fine to medium grained, dolostone 46 97%	PROJEC	CT:	Neco	o Park,	Routine Ma	intence &	& Well Re	placement		SHEET:	2 of 2		
Operating SAMPLE CONSIST MATERIAL USCS PID FEET STRATA No. TYPE BLOWS REC/K CONSIST DESCRIPTION USCS PID 40 Strata No. TYPE PR 4* RD/K COLOR PARD Lockpant Group Gueph Dolomite thick bedded, fine to medium ISCS PID 40 Strata NX 97% 97% Strata No. No. No. 41 Strata NX 97% 97% Strata No. No. No. 42 Strata NX 97% 97% Strata No. No. No. 43 Strata Strata Strata Strata Strata No. No. No. 44 Strata Strata Strata Strata Strata Strata No. No. 55 Strata Strata Strata Strata Strata Strata No. 56 Strata Strata Strata Strata Strata Strata Strata 60 Strata Strata Strata Strata Strata Strata Strata	CLIENT	:	DuP	ont CRG	i		-			JOB NO.:	189856	51.00	
DEPTH INA TYPE BLOWS REC% CONSIST MATERIAL USCS PID FEET STRATA NO. TYPE PER 6' R00% COLOR HAD DESCRIPTION USCS PID 40 PR 6' R00% COLOR HAD DESCRIPTION USCS PID 40 PR 6' R00% COLOR HAD DeSCRIPTION USCS PID 40 PR 6' R00% Q2% PID PID PID PID 40 PR 6' R00% Q2% PID				SAMP	PLE	1			DESCRIPTIO	N	1		
Pres Site in No. No. Pres Rubs (couch random Dask Priority 40 75 92 NX 97% 97% 97% 0000 Cuehp Dolonite No water loss observe in Core Run R3 40 92 NX 97% 97% 97% No water loss observe in Core Run R3 41 92 97% 97% 97% No water loss observe in Core Run R3 45 92 NX 97% 97% No water loss observe in Core Run R3 45 97% 97% 97% 97% No water loss observe in Core Run R3 50 NX 97% 97% 97% No water loss observe in Core Run R3 50 NX 97% 97% 97% No water loss observe in Core Run R3 50 NX 97% 97% 97% No water loss observe in Core Run R3 60 0 0 0 0 0 0 61 0 0 0 0 0 0 0	DEPTH	OTDATA		TYPE	BLOWS	REC%		CONSIST			11000		REMARKS
40 97% 100 Coleph Doomie 40 97% 92% 100 Subph Doomie 40 98% 92% 99% Nx 45 98% 97% 99% Nx 45 99% 97% 99% Nx 50 99% 97% 99% Nx 50 99% 97% 99% Nx 55 99% 97% 99% Nx 60 99% 97% 99% Nx 60 99% 97% 99% Nx 70 99% 97% 99% Nx 70 99% 97% 99% Nx 60 90% 97% 99% Nx 60 97% 99% 97% 99% 61 99% 97% 99% Nx 70 100 100 100 70 100 100 100 70 100 100 100 77 100 100 100 77 100 100 100 78 100 100 100 78 100 100 100 <	FEEI		NU.	TIPE	PERO	KQD%	COLOR	hard	Lockport Group	SCRIPTION	0303	FID	
46 92 NX 98% 97% 50 97% Boring completed at 50.0° bgs In Core Run #3 55 60 60 60 60 60 60 60 60 60 60 60 60 70 60	40		Core Run #2	NX		<u>97%</u> 92%			Guelph thick be grained	Dolomite dded, fine to medium , dolostone			
Boring completed at 50.0' bgs Boring completed at 50.0' bgs	45		Core Run #3	NX		<u>98%</u> 97%	•	•	_				No water loss observed in Core Run #3
6 1/4" ID HSA to 25.2'. Roller Bit to 32.5' and set casing. PROJECT NO. 18985651 NX core 25.2'-50.0'. 204C	55 60 65 70 75 75	nte:	Borin				d CME-8		Boring co	mpleted at 50.0' bgs			
NX core 25.2'-50.0'. 204C	Comme 6 1/4" ID	nts: HSA to 25	Borin .2'. R	ng advan oller Bit t	ced with true o 32.5' and	k-mounte set casing	ed CME-8	5 drill rig usin	g	PROJECT NO.	189856	51	
	NX core	25.2'-50.0								BORING NO.	204C		

APPENDIX G

LANDFILL CAP INSPECTION RESULTS

EXHIBIT A NECCO PARK LANDFILL CAP AND SURFACE WATER DRAINAGE INSPECTION CHECKLIST

DATE: ./O INSPECTOR: Jan WITNESSES: BA	-3-08 rx Sh-pard ry Br.1#	EMERGENCY CONTACT: GERALD SHEPARD 716.278.5149					
	CONDITIC) <u>N: (Check) (</u> Not	Not Acceptab	ole or Not Prese Not	ni require comments below)		
	<u>Acceptable</u>	Acceptable	<u>Present</u>	Present	Remarks		
 Vegetative Cover, Ditches, Culverts a) Sediment Build b) Pooling or Por c) Slope Integrity d) Overall Adequ e) Culvert Conditional 	-Up/Debris nding nacy X tion X			<u>X</u> <u>×</u>			
2) Access Roads	N. A. a		^. 				
 3) Landfill Cover Sys a) Erosion Dama b) Leachate Seep c) Settlement d) Stone Aprons e) Vegetation f) Animal Burror 	tem ge s X ws		_X	×	MINO: Ruts South Slope		
 4) Slope Stability a) Landfill Top S b) Landfill Side S 5) Gas Vents 6) Monitoring Wells 	Soil X Slope X X						
COMMENTS:							
X CAP and J X Ditch - g	DegetAtion A DegetAtion A Deget Ation A	accepta)	ole - 3 c.ptab	ood <u>Ca</u>	ndition		
DESCRIPTION OF CO	DNCERN:						
					······································		
DESCRIPTION OF RJ	EMEDY:						
			,,,				

Í

.

•

į

.

.

EXHIBIT B NECCO PARK LANDFILL CAP AND SURFACE WATER DRAINAGE MAINTENANCE CHECKLIST

DATE: INSPECTOR: WITNESSES:

÷

10-3-08 Shepanerry GANY Brut

EMERGENCY CONTACT: GERALD SHEPARD 716.278.5149

Maintenance <u>Performed</u> (Check)	ltem	Performed by:	<u>Remarks</u>
	 Vegetative Cover: a) Seeding b) Fertilizing c) Topsoil Replaced d) Removal of Undesirable Vegetation 	JS/6B	sut legitar we y
	 2) Drainage Ditches a) Sediment Removal b) Fill c) Regrading d) Stone Apron Repair e) Vegetative Cover Placement f) Liner Replacement 	.JTS./GB	9/30
	 3) Access Road a) Excavation b) Fill c) Grading, d) Stone Paving 	<u></u>	
	 4) Landfill Cap a) Excavation b) Cover Materials topsoil barrier protection layer drainage composite geomembrane geotextile c) Testing d) Barrier Protection Layer e) Vegetative Cover 	JS/GB	M. wad 9/30
and a second data and	 5) Gas Vents Pipes Bedding and Adjacent Media 		
- <u></u>	6) Other		
DESCRIPTION OF MAINTENANCE ACTIVITIES:			