

The Chemours Company P.O. Box 788 Lewiston, NY 14092 (716) 221-4723 chemours.com

March 31, 2021

Young Chang Western New York Remediation Section New York Remediation Branch Emergency and Remediation Response Division U.S. EPA – Region II 290 Broadway, 20th Floor New York, NY 10007-1866

Dear Young Chang:

NECCO PARK 2020 ANNUAL REPORT

This document is the *Remedial Action Post-Construction Monitoring 2020 Annual Report* for the Chemours Necco Park Hydraulic Controls System (HCS), Groundwater Treatment Facility (GWTF), and landfill cap.

This fifteenth annual report for the Necco Park Remedy has been prepared pursuant to Administrative Order (AO) Index No. II CERCLA-98-0215 dated September 28, 1998, issued by United States Environmental Protection Agency (USEPA). This report describes hydraulic and chemistry monitoring conducted in 2020 as required by the *Long-Term Groundwater Monitoring Plan*, dated April 2005 for the DuPont Necco Park Site located in Niagara Falls, New York, and subsequent revisions (2010 and 2012).

Construction and start-up of the HCS and GWTF was substantially complete on April 5, 2005. Thereafter, the systems have been operated in accordance with the Operations and Maintenance Plan (O&M Plan). HCS operation uptime for 2020 was 90.7%. Excluding scheduled downtime for planned maintenance, HCS uptime for 2020 was 92.8%. The groundwater elevations, geochemical results, and DNAPL monitoring indicate HCS continues to be effective at controlling source area groundwater at the Chemours Necco Park site. Furthermore, the results indicated monitored natural attenuation remains actively degrading the site compounds.

Please call me at (716) 221-4723 if you have any questions or comments regarding this submittal.

Sincerely,

Chemours

Paul F. Mazierski Project Director

Enc. 2020 Annual Report

cc: Stanley Radon/NYSDEC Mary McIntosh/NYSDEC E. Felter/Parsons

Remedial Action Post-Construction Monitoring 2020 Annual Report NECCO Park Niagara Falls, New York

Prepared for:

THE CHEMOURS COMPANY FC LLC CORPORATE REMEDIATION GROUP

P.O. Box 788 Lewiston, NY 14092

Prepared by:

40 La Riviere Drive, Suite 350

Buffalo, NY 14202

Chemours PN 507637 Parsons PN 449124

March 2021

This page intentionally left blank

TABLE OF CONTENTS

1.0	Introd	uction1
	1.1	Site Location1
	1.2	Source Area Remedial Action Documentation and Reporting1
2.0	HCS (Dperations Summary2
	2.1	Operational Summary2
	2.2	GWTF Process Sampling3
	2.3	Sewer Sampling Summary4
	2.4	Recovery Well Rehabilitations and Maintenance4
3.0	HCS I	Performance5
	3.1	Hydraulic Head Monitoring5
	3.2	Hydraulic Control Assessment5
		3.2.1 A-Zone
		3.2.2 B and C Bedrock Water-Bearing Zones
		3.2.3 D, E, and F Bedrock Water-Bearing Zones7
	3.3	Groundwater Chemistry Monitoring7
		3.3.1 Background7
		3.3.2 Sample Collection and Analysis8
		3.3.3 Source Areas Delineation
	3.4	Groundwater Chemistry Results and Trends10
	3.5	Evaluation of New Groundwater Sampling Methods10
	3.6	Monitored Natural Attenuation (MNA) Assessment14
	3.7	DNAPL Monitoring and Recovery14
	3.8	Quality Control/Quality Assurance15
		3.8.1 Sample Collection
4.0	Cap N	laintenance
5.0	Conc	usions and Recommendations19
	5.1	Hydraulic Control Effectiveness19
		5.1.1 Conclusions
		5.1.2 Recommendations
	5.2	Groundwater Chemistry Monitoring19
		5.2.1 Conclusions
		5.2.2 Recommendations

	5.3	MNA	Conclusions and Recommendations	20
	5.4	DNAP	PL Monitoring and Recovery	20
		5.4.1	Conclusions	
		5.4.2	Recommendation	
	5.5	Landf	fill Cap	20
		5.5.1	Conclusions and Recommendations	20
6.0	Refe	rences.		21

TABLES

Table 2-1	HCS Recovery Well Performance Summary - 2020
Table 2-2	GWTF Process Sampling Results - 2020
Table 3-1	Quarterly Hydraulic Monitoring Locations
Table 3-2	2020 Average A-Zone to B-Zone Vertical Gradients
Table 3-3	DNAPL Components and Solubility Criteria Values
Table 3-4	Effective Solubility Concentration Exceedances for DNAPL Compounds – 2005 through 2020 Annual Sampling
Table 3-5	1% of Pure-Phase Solubility Exceedances for DNAPL Compounds – 2005 through 2020 Annual Sampling
Table 3-6	Chemical Monitoring List, Long-Term Groundwater Monitoring
Table 3-7	Indicator Parameter List, Long-Term Groundwater Monitoring
Table 3-8	2020 DNAPL Recovery Summary

FIGURES

Figure 1-1	Site Location Map
Figure 3-1	Well and Piezometer Locations
Figure 3-2	Select A-Zone Monitoring Wells: Groundwater Elevations, 2005 through 2020
Figure 3-3	Select B-Zone Monitoring Wells: Groundwater Elevations, 2005 through 2020
Figure 3-4	Select C-Zone Monitoring Wells: Groundwater Elevations, 2005 through 2020

Figure 3-5	Select D-Zone Monitoring Wells: Groundwater Elevations, 2005 through 2020
Figure 3-6	Select E-Zone Monitoring Wells: Groundwater Elevations, 2005 through 2020
Figure 3-7	Select F-Zone Monitoring Wells: Groundwater Elevations, 2005 through 2020
Figure 3-8	Potentiometric Surface Map: Chemours Necco Park: A-Zone, November 4, 2020
Figure 3-9	Vertical Gradient: A-Zone to B-Zone, November 4, 2020
Figure 3-10	Potentiometric Surface Map: Chemours Necco Park: B-Zone, November 4, 2020
Figure 3-11	Potentiometric Surface Map: Chemours Necco Park: C-Zone, November 4, 2020
Figure 3-12	Potentiometric Surface Map: Chemours Necco Park: D-Zone, November 4, 2020
Figure 3-13	Potentiometric Surface Map: Chemours Necco Park: E-Zone, November 4, 2020
Figure 3-14	Potentiometric Surface Map: Chemours Necco Park: F-Zone, November 4, 2020

APPENDICES

Appendix A	2020 Annual Groundwater Sampling Results
Appendix B	TVOC Trend Plots
Appendix C	Landfill Cap Inspection Results (November 2020)

ACRONYMS

Acronym	Definition / Description					
AOA	Analysis of Alternatives					
BFBT	Blast-fractured bedrock trench					
cis-DCE	cis-1,2-dichloroethene					
CMMP	Cap Maintenance and Monitoring Plan					
CRG	DuPont Corporate Remediation Group					
CVOC	Chlorinated Volatile Organic Compounds					
DDR	Data deliverable review					
DNAPL	Dense non-aqueous phase liquid					
DuPont	E. I. du Pont de Nemours and Company					
gpm	Gallon(s) per minute					
GWTF	Groundwater Treatment Facility					
HCBD	Hexachlorobutadiene					
HCS	Hydraulic controls system					
HDPE	High-density polyethylene					
LCS	Laboratory control sample					
LCSD	Laboratory control sample duplicate					
LTGMP	Long-Term Groundwater Monitoring Plan					
MDL	Method detection limit					
µg/l	Micrograms per liter					
MNA	Monitored natural attenuation					
MS	Matrix spike					
MSD	Matrix spike duplicate					
Necco Park	DuPont Necco Park Site					
NYSDEC	New York State Department of Environmental Conservation					
O&M	Operation and maintenance					
PDI	Pre-design investigation					
POTW	Publicly-owned treatment works					
PQL	Practical quantitation limit					
QA/QC	Quality assurance/quality control					
QAPP	Quality Assurance and Project Plan					
RPD	Relative percent difference					
SAMP	Sampling, Analysis, and Monitoring Plan					
SAR	Source area report					
SFR	Subsurface formation repair					
SIU	Significant Industrial User					
SOW	(Necco Park) Statement of Work					
SVOC	Semi-volatile organic compound					

Acronym	Definition / Description
TCE	Trichloroethene
TIC	Tentatively identified compound
TVOC	Total volatile organic compound
USEPA	United States Environmental Protection Agency
VC	Vinyl chloride
VOC	Volatile organic compound

EXECUTIVE SUMMARY

This Remedial Action Post-Construction Monitoring 2020 Annual Report has been prepared pursuant to Administrative Order Index No. II-CERCLA-98-0215 issued by United States Environmental Protection Agency (USEPA) on September 28, 1998. This is the sixteenth such report and describes hydraulic and chemistry monitoring conducted in 2020 at the Necco Park Site in Niagara Falls, New York. Monitoring activities were conducted in accordance with the agency approved Long-Term Groundwater Monitoring Plan (LTGMP) dated April 2005 (DuPont Corporate Remediation Group [CRG] 2005a), and subsequent agency approved revisions (USEPA, 2011, 2015, and 2016).

The Necco Park Remedial Action consists of an upgraded cap over the landfill and an enhanced groundwater hydraulic control system (HCS) from the previous pumping system which first began operation in the early 1980's. The HCS includes a network of five groundwater recovery wells and a groundwater treatment facility (GWTF). Construction and startup of the HCS and GWTF was substantially complete on April 5, 2005. Thereafter, the systems have been operated in accordance with the Operations and Maintenance Plan (DuPont CRG 2005b). HCS operation uptime for 2020 was 90.7%. Excluding scheduled downtime for planned maintenance, HCS uptime for 2020 was 92.8%. Summaries of system operations and hydraulic head data were previously provided to the USEPA and the NYSDEC in the 2020 Quarterly Data Packages (Parsons 2020a, 2020b, 2020c, and 2021). This Annual Report provides a detailed evaluation of system effectiveness with respect to the performance standards presented in the Necco Park Statement of Work (SOW).

Hydraulic monitoring data from 2020 show that, overall, the HCS has maintained hydraulic control of the source area in the A- through F-Zones. Improved hydraulic control in the upper bedrock in the western portion of the site began in fourth quarter 2008 when a combined B-Zone blast-fractured bedrock trench and a new B/C-Zone recovery well (RW-11) were put into operation. Well RW-11 was installed to replace recovery well RW-10 which exhibited diminished hydraulic efficiency after startup in 2005.

Two recovery well rehabilitation events were completed in B/C-Zone recovery wells during 2020 using high pressure jetting and vacuum technique developed with National Vacuum, Inc. during 2012-2013. The spring well rehabilitation occurred April 20 through 22 and the fall event occurred November 16 through 19. Both events had a typical modest removal of sediments and maintenance of flow rate. The flow at RW-5 remains at an increased rate (approximately 3 - 5 gpm), when compared with the 2005 – 2015 average as the result of more thorough well cleaning in the Fall 2015, thereby demonstrating that the significant improvement on well yield has been maintained.

In accordance with the LTGMP (DuPont CRG 2005a), annual groundwater sampling began in 2008 after three years of biannual sampling had been conducted. In 2010, a revised sampling program was accepted by USEPA to focus on key locations on an annual basis and intermittently (every 5 years) sample the original 2005 program. In 2012, USEPA agreed to removal of AT wells from the program, sampling VOCs only in the treatment process, and other minor program changes (such as the elimination of drawdown maps in annual reports). In 2015, USEPA approved reductions in the DNAPL monitoring program. In 2016, the USEPA approved a request by Chemours CRG to end the requirement of 10% independent data validation of the groundwater data while QA/QC continues to include in-house data review. In 2019, prior to the 2019 annual groundwater sampling event, USEPA approved minor changes to the groundwater sampling methods, specifically the use of peristaltic pump for purging and sample for well

allowable depth to water. The original LTGMP and MNA programs were last completed in 2018 and are scheduled to be completed next in 2023, on the five-year schedule.

The 2020 groundwater sampling results continue to show an overall decrease in concentrations of total volatile organic compounds (TVOCs) for all flow zones compared to historical results, with the exception of 150C (see below). The 2020 results indicate:

- Two of the four A-Zone wells sampled were less than 2 micrograms per liter TVOCs and the other two wells were 194.2 micrograms per liter (137A) and 10.9 micrograms per liter (146AR).
- TVOC concentrations at key source area limit wells in the B and C zones, such as 137B, 150B, 172B, and 145C continue to have stable/decreased concentrations and/or declining trends.
- Decreasing or stable TVOC concentrations are apparent in the D/E/F zones at key source area limit wells such as 136F, 146E, and 146F. One of the three E-zone wells (146E) sampled in 2020 resulted in the lowest TVOC concentration observed at the well location for the second year in a row.
- At well 150C there was a notable increase in TVOC concentrations up to approximately 62,860 µg/l which is higher than the previous peak of 2,352 µg/l in 2014, and slightly higher than the highest historical concentration of 48,687 µg/l in 1990. Past concentrations indicate the TVOC values are highly variable, therefore this 2021 sampling will be reviewed for context of this increase. Additionally, these concentrations are not unprecedented in this area of the B/C zone as 168B (side gradient to 150C) has ranged from 59,248 to 25,020 µg/l in TVOC since 2012.
- Overall, the TVOC concentrations are decreasing for all groundwater flow zones at the outer portions of the source area and in the downgradient far-field. In the few cases where there were increasing TVOC trends, the concentrations were within historical range, near the source area / a recovery well, or represented increases in degradation products.

Based on the 2019 and 2020 analytical results obtained using the USEPA-approved new sampling methods, analytical results compare favorably with the many previous years of existing data. If the new sampling methods has any bias compared to the previous methods, it is for the results to be slightly biased higher. Future groundwater sampling is planned using the same methods employed in 2019 and 2020.

DNAPL was monitored every month throughout 2020. As approved by the USEPA, a reduced list of wells was monitored monthly and semi-annually beginning in June 2015 with the full list of wells to be monitored once every two years (USEPA June 11, 2015 and USEPA August 12, 2015). Measurable DNAPL was observed in RW-4 (0.5 feet) and RW-05 (6.5 feet) in April, RW-4 (3.0 feet) in June, and RW-4 (1.0 feet) and RW-5 (0.2 feet) in December 2020. DNAPL was removed from RW-4 (3.0 gallons) and RW-5 (30 gallons) in April 2020. A total of 8,882 gallons of DNAPL has been removed since initiation of the recovery program in 1989.

The 2020 groundwater elevations, geochemical results and DNAPL monitoring indicated the HCS continues to be effective at controlling source area groundwater at the Chemours Necco Park site through 2020. Groundwater potentiometric contour maps depict a capture zone encompassing the source area in the B-, C-, D-, E- and F-Zones, and vertical gradient downward from the A to the B zone were maintained. Overall, the TVOC concentrations were decreasing for all groundwater flow zones in the source area and far-field. It is recommended that the long-term monitoring program continue in its current form, including the revisions from

approved by the USEPA in 2011 and 2016. Future groundwater sampling at 150C should provide information related to the increase in VOCs observed in 2020.

Data on chlorinated ethenes in Necco Park groundwater is consistent with lines of evidence required for natural attenuation of contaminants (USEPA, Monitored Natural Attenuation Directive, 1999). Analytical results from 2020, such as concentrations of degradation products and geochemical conditions, continue to support the recommendation that MNA assessments be conducted every five years. The next MNA monitoring event is scheduled for 2023 and another full MNA analysis will be completed then.

1.0 INTRODUCTION

1.1 Site Location

The 24-acre Chemours Necco Park inactive industrial waste disposal site is located approximately 1.5 miles north of the Niagara River in a predominantly industrial area of Niagara Falls, New York (**Figure 1-1**).

1.2 Source Area Remedial Action Documentation and Reporting

The approved remedy for the Necco Park Site included construction of the Bedrock and Overburden Source Area Hydraulic Controls System (HCS) and the Landfill Cap Upgrade. Completion of the remedy and compliance with the performance standards described in the Statement of Work (SOW) are documented in the Remedial Action Report (DuPont Corporate Remediation Group [CRG] 2007). This 2020 Annual Report presents hydraulic and chemical monitoring results from the fifteenth year of operation of the hydraulic controls. In addition, this 2020 Annual Report includes historical groundwater chemistry results for assessment of groundwater quality trends.

2.0 HCS OPERATIONS SUMMARY

The Necco Park groundwater Operations and Maintenance (O&M) Plan (DuPont CRG 2005b), in conjunction with vendor O&M Manuals, describes normal operation and shutdown procedures, emergency shutdown procedures, alarm conditions, trouble-shooting, and preventative maintenance procedures for the HCS and the Groundwater Treatment Facility (GWTF). This section of the report summarizes 2020 HCS operations.

2.1 Operational Summary

Operational information for the HCS is provided in the 2020 Quarterly Data Packages (Parsons 2020a, 2020b, 2020c, and 2021) and summarized in the table below.

Period	HCS Uptime (%)	HCS Uptime [excluding scheduled maintenance downtime] (%)	Groundwater Treated (Gallons)	DNAPL ¹ Removed (Gallons)	
1Q20	99.5	99.5	3,168,058	0	
2Q20	95.5	95.5	3,233,933	33.0	
3Q20	92.1	92.1	2,514,280	0	
4Q20	75.5	84.1	2,199,281	0	
2020 Total	90.7	92.8	11,115,552	33.0	

¹DNAPL – dense non-aqueous phase liquid

A summary of monthly groundwater quantities and uptime for each recovery well is provided in Table 2-1.

The HCS remained operational throughout 2020, averaging 90.7% total system uptime through December 31, 2019 with one scheduled maintenance outage and two unscheduled outages described below. Excluding scheduled downtime for planned maintenance, HCS uptime for 2020 was 92.8%. GWTF downtime was minimized by continuously monitoring operating conditions and implementing mechanical and procedural changes to the process equipment and the Honeywell Experion[®] PKS (Process Knowledge System) process control system.

There was one reportable scheduled maintenance activity in 2020. Between October 6 and October 20 all pumping wells were shut down for the annual scheduled maintenance which included cleaning, inspecting, and repairs to the influent and effluent tanks. The wells were down for 336 hours during this scheduled maintenance event. There were three reportable unscheduled down time events in 2020. RW4, RW5, and RW11 were down January 3 through January 5 for 64 hours due to a pH interlock at RW-5, and a pH probe failure at RW4 and RW11. All recovery wells were off between July 4 and July 6 for 60 hours due to a power failure. The second event had wells RW-4, RW-5, RW-8, and RW-11 off between October 23 and October 26 for a total of 64 hours. This unscheduled downtime was also the result of a power failure.

Individual pumping wells were down for greater than 48 hours on eight (8) occasions in 2020. One of the eight individual well downtimes was scheduled. Well RW-5 was down between November 18 and November 20 for pumping well maintenance. The unscheduled individual downtimes were as follows:

- RW-5 was down March 7 to 9 for 72 hours due to pump failure.
- RW-5 was down June 5 to 8 for 57 hours due to pump impeller failure.
- RW-5 was down between July 25 and 27 for 67 hours due to a power failure.
- RW-9 was down August 7 to 9 for 58 hours due to a flow meter malfunction.
- RW-8 was down October 30 and November 2 for 63.5 hours due to a flow meter malfunction.
- RW-4 and RW-11 were down December 13 to 15 for 74 hours due to a pH low-low alarm interlock.
- RW-5 was down December 12-15 for 97 hours due to a pH low-low alarm interlock and pump failure.
- RW-5 was down from December 27 through 29 for 56 hours due to pump failure.

The following table summarizes HCS reportable downtime in 2020 by component malfunction and scheduled maintenance:

Reason	Contributing Downtime %	Comments		
Process component malfunction	6.5%	Unexpected process-related downtime because of alarms and interlocks.		
Scheduled maintenance shutdowns and system upgrades/inspections	4.6%	Routine inspections, interlock verification, preventative maintenance, equipment inspection and mechanical upgrades to process-related infrastructure.		

HCS downtime is considered reportable when any recovery well is not operating for a period of more than 48 consecutive hours (DuPont letter to USEPA, January 27, 2012).

2.2 GWTF Process Sampling

In accordance with the Sampling, Analysis and Monitoring Plan (SAMP), quarterly process sampling is conducted to assess the effectiveness of the treatment system in removing volatile organic compounds (VOCs) from groundwater. Two influent samples are collected, one from the B/C-Zone influent tank and one from the D/E/F-Zone influent

tank. One effluent sample is collected from the combined effluent tank. Beginning in 2012 and as approved by USEPA, these process samples are analyzed for VOCs only. Semi-volatile organic compound (SVOC) monitoring will be conducted as needed if significant changes occur to the hydraulic or chemical load observed during routine process monitoring or if there is a change in an operations condition (e.g. change in pump intake elevation). A summary of results for the process sampling conducted in 2020 is provided in **Table 2-2**.

2.3 Sewer Sampling Summary

Significant Industrial User (SIU) permit #76 with the City of Niagara Falls publicly-owned treatment works (POTW) regulates the treated groundwater effluent discharged from Necco Park. Results from the quarterly sampling conducted at the permitted discharge point (MS#1) are used to determine POTW compliance. There were no exceedances of the permit limits in 2020.

2.4 Recovery and Monitoring Well Rehabilitations and Maintenance

Two rehabilitation events were completed in B/C-Zone recovery wells during 2020 using high pressure jetting and vacuum technique developed with National Vacuum Environmental Services Corp. during 2012-2013. This technique allows for safer removal of the sediments, improved pressure control, and allows larger quantities of water to be withdrawn at a high pumping rate (i.e. over-pumping). The spring well rehabilitation occurred April 20 through 22 and the fall event occurred November 16 through 19. Both events had a typical modest removal of sediments and maintenance of flow rate. The flow at RW-5 remains at an increased rate (approximately 3 - 6 gpm), when compared with the 2005 – 2015 average as the result of more thorough well cleaning in the Fall 2015, thereby demonstrating that the significant improvement on well yield has been maintained.

Well painting, labeling and protective casing repairs were performed in 2020 as part of continual site monitoring well maintenance. Two concrete pads around wells were replaced or repaired and 17 well casings were painted and/or re-labeled.

A monitoring well rehabilitation event was completed for select A, B, C, and D zone monitoring wells which had accumulated sediments resulting in a shallower total depth than originally installed, and poor production during annual sampling. Monitoring wells 145B, 145C, 145D, 146AR, 146C, 150C, 150F, 165D, 168B, 168C, and D-10 were redeveloped by National Vacuum Environmental Services Corp using the high jetting and vacuum technique, similar to that used on the recovery wells, but focused on sediment removal and lower pressure jetting at the fracture interval. Monitoring wells 131A and 139B were developed by Parsons using a Waterra pump. A moderate amount of sediment was removed (2 - 10 feet) resulting in greater total depths and improved well yield (as observed during annual sampling).

3.0 HCS PERFORMANCE

3.1 Hydraulic Head Monitoring

Potentiometric surface maps based on water level elevations are the primary evidence of groundwater control. Supporting lines of evidence are well hydrographs and groundwater chemistry changes. Sections 3.1 and 3.2 discuss the results of hydraulic head monitoring and the associated potentiometric maps and hydrographs. Section 3.3 discusses the groundwater chemistry.

Groundwater hydraulic head measurements are used to evaluate control of groundwater in the overburden and bedrock groundwater flow zones by the HCS at Necco Park. Monitoring and recovery well locations are shown in Figure 3-1. Depth-to-water measurements and measuring point elevation data are used to calculate the elevation of groundwater and to generate hydrographs that show groundwater elevation trends in individual monitoring wells (Table 3-1). Hydrographs and potentiometric surface-contour maps included in this report (Figures 3-8 and 3-10 through 3-14) were selected from maps prepared and presented in the 2020 Quarterly Data Packages.

3.2 Hydraulic Control Assessment

Assessment of hydraulic control is described for each relevant bedrock zone in the following sections.

3.2.1 A-Zone

The overburden materials comprising the A-Zone are generally characterized by high clay content and low hydraulic conductivity. Groundwater flow in the A-Zone is primarily downward to the more transmissive fractured bedrock, as expected in this low permeability formation.

The hydrographs in Figure 3-2 demonstrate the long-term drawdown from groundwater extraction in context of the seasonal variability. Decreases in water elevations from prestartup are due to the combined effect of the impermeable landfill cap and continuous downgradient groundwater extraction from the recovery wells. The decreasing hydrographs represent long-term drawdown in an unconfined low-permeability unit and storage depletion. The water content of the unit continued to decrease by reductions in infiltration from the cap and groundwater recovery in the underlining water bearing unit (B-Zone). While there are fluctuations in the hydrographs, the overall trend is a clear decrease in the water elevations compared to pre-startup. In a few cases, there is an increasing trend from the originally large drawdown observed; however, these remain well below static conditions (approximately 2 -3 feet).

Figures 3-8 and 3-9 present A-Zone potentiometric surface contours and vertical gradient maps. The potentiometric map demonstrated that the groundwater flow was toward the capture systems. The cones of depression surrounding recovery wells RW-5 and RW-11 are significant, ranging from 3 to 4 feet of closed contours in the A-Zone (Figure 3-8). The 2020 water levels in the area of RW-11 suggest the well rehabilitations have helped sustain a large cone of depression around this location in the A-Zone.

Vertical gradients were downward (negative) between the A/B-Zones as presented in Table 3-2 (2020 average gradients) and shown in Figure 3-9 (November 4, 2020 gradients). These gradients demonstrate that the predominant flow potential is downward; therefore, the horizontal flow (i.e. to the south) is insignificant.

3.2.2 B and C Bedrock Water-Bearing Zones

Groundwater flow directions in the B-Zone and C-Zone were consistent throughout 2020 (Figure 3-10). Hydraulic controls in the B-Zone and C-Zone were maintained throughout 2020, which is attributable to high recovery well up time and well pumping rates. Additionally, long-term monitoring demonstrates the continuation of capture zone improvements in the area of RW-11. The improvements were the result of installation and maintenance of the hybrid recovery well RW-11 which includes a screened interval within a BFBT in the B-Zone and an open bedrock hole for the C-Zone. Increases in yield at RW-5 during the Fall of 2015 have been maintained as well as the increased capture zone due to continued semiannual rehabilitation events.

B-Zone

Groundwater elevation hydrographs, along with potentiometric surface contour maps, illustrate the hydraulic effects of the HCS in the B-Zone. RW-4, RW-5 and RW-11 have induced inward (toward the recovery wells) hydraulic gradients over a large area (Figures 3-3 and 3-10), capturing site groundwater in the source area. Figure 3-3 is a plot of well hydrographs from B-Zone wells in the area near and surrounding RW-11. This plot demonstrates the improved effectiveness of capturing groundwater from installation of the BFBT and RW-11.

Primary evidence of groundwater control is observed in the potentiometric contour map provided in Figure 3-10. The contour map demonstrates large cones of depression established for each of the recovery wells. As mentioned in the well rehabilitation section above, the Fall 2015 rehabilitation at RW-5 created significant improvements in flow and mass removal and semiannual rehabilitation events continue to maintain these improvements.

C-Zone

Groundwater elevation hydrographs and potentiometric surface-contour maps illustrate the hydraulic effects of the HCS in the C-Zone (Figures 3-4 and 3-11). The C-Zone influence attributed to RW-4, RW-5, and RW-11 extends north to wells 115C, 123C, and 159C, and west to 136C. The southern extent of influence extends to well 137C and is obscured by the CECOS Landfills between the recovery wells and monitoring wells 150C, 160C and 168C. Beginning in 2008, hydraulic control in the C-Zone was improved significantly with the rehabilitation of RW-5 and the start-up of RW-11. The semiannual rehabilitations of these recovery wells, conducted as a preventative action taken which maintains well performance.

After the Fall 2015 rehabilitation at RW-5, significant improvements in flow and mass removal were observed including with a wider cone of depression in the C-zone. This resulted in a less pronounced depression immediately surrounding RW-5 in the C-zone maps (compared with previous years) because of an improved connection to the aquifer (Figure 3-11). However, connectivity analysis conducted in 2016 (Parsons, 2016) demonstrated that a set point ranging from 563 to 565 in RW-5 resulted in drawdown of greater than 5 feet in the recovery well. Similarly, at 162C (approximately 70 feet east of RW-5) greater than 4 feet of drawdown was observed. This verified the large drawdown in the C-Zone as noted in the past reports.

3.2.3 D, E, and F Bedrock Water-Bearing Zones

Groundwater elevation hydrographs and potentiometric surface-contour maps illustrate the effectiveness of the HCS in maintaining hydraulic control in the D-, E-, and F-Zones (Figures 3-5 through 3-7 and 3-12 through 3-14). The hydrographs clearly indicate the initial and sustained drawdown of groundwater elevation in the recovery wells and the surrounding monitoring wells. Potentiometric maps demonstrate the consistent cone of depression and that associated hydraulic gradients were toward the recovery wells throughout 2020, indicating the HCS is effectively controlling groundwater migration. This is further demonstrated in the spatial relationship of the source area depiction and the flow patterns depicted in Figures 3-12 through 3-14.

3.3 Groundwater Chemistry Monitoring

3.3.1 Background

Extensive monitoring has been conducted at Necco Park dating back to the early 1980s. Monitoring includes (but is not limited to) pre-design investigations, remedial investigations, geologic investigation, analysis of remedial alternatives, and source area investigations. Groundwater monitoring continues to meet the following objectives as defined in the SOW:

- Monitor reductions in aqueous chemistry in zone-specific source area wells as a consequence of the hydraulic control from recovery well pumping;
- Monitor the far-field groundwater chemistry to determine if the recovery system is controlling off-site migration of chemical constituents associated with the Necco Park site;
- Monitor for the presence of DNAPL;
- Monitor natural attenuation and intrinsic bioremediation in the source area and far-field; and
- Continue to evaluate the overall effectiveness of the remedial action.

The first annual status report following completion of hydraulic control elements of the Necco Park remedy (2005 Annual Report) included an extensive discussion of the first monitoring results and how these results compared to source area criteria introduced in the 1995 Analysis of Alternatives (AOA) report (DuPont Environmental Remediation Services 1995). This 2020 report provides an update of groundwater chemistry trends in relation to the long-term remedy for groundwater as well as an update of data relevant to the Source Area Criteria. The Source Area Criteria are provided in Table 3-3, with the 2020 results and comparison to criteria provided in Tables 3-4 and 3-5.

Monitoring completed in 2020 represents the sixteenth year of LTGMP performance monitoring and the thirteenth year of annual-only sampling. In accordance with the Long-Term Groundwater Monitoring Plan (LTGMP) (DuPont CRG 2005a), chemical monitoring was conducted on a semi-annual basis during the first three years of system operation. Sampling has been annual since the beginning of the fourth year of system operation, with modifications to the number of wells sampled. In 2010, DuPont proposed to reduce the number of wells monitored annually based on existing data showing either very low concentrations or concentrations decreasing over time. USEPA agreed to the changes in a letter dated July 16, 2010, but required that the full list of wells be sampled on a three- or five-year schedule to monitor source area groundwater chemistry trends.

The full list of wells was last sampled during the 2018 annual sampling event, and the full well list will again be sampled in 2023. The list of wells used for long-term monitoring is included in Table 3-6. Figure 3-1 provides a well location map.

3.3.2 Sample Collection and Analysis

The annual sampling event was completed between September 23 and October 2, 2020. Parsons of Buffalo, New York, completed sampling. Samples and associated quality assurance/quality control (QA/QC) samples were analyzed by TestAmerica Laboratories located in North Canton, Ohio.

As described in the Necco Park SAMP, groundwater sampling was conducted using USEPA low-flow sampling methodology and either a peristaltic pump (approved by USEPA, 2019) or using an air-driven bladder pumps equipped with disposable Teflon[©] bladders. In several cases where wells were unable to maintain low flow yields a low-flow impeller pump was used to purge the well dry and was then sampled with a bladder pump within 24 hours. The pumps were fitted with dedicated HDPE tubing.

Samples were collected at 26 monitoring well locations during the 2020 annual event. The well locations are listed in Table 3-6. Analytical indicator parameters are listed in Table 3-7. Analytical results for the sampling event conducted in 2020 are provided as Appendix A. For reporting purposes, the results are discussed as total VOCs (TVOCs). This is consistent with historic reporting where TVOCs are indicator compounds used to assess groundwater contamination and trends over time. Results for the respective flow zones are discussed below.

3.3.3 Source Areas Delineation

The 2020 groundwater sampling results have been compared to the same historically employed criterion to evaluate source area limits. Consistent with the AOA, any location where DNAPL was observed at least once was included in the source area. Groundwater chemistry data for the 2020 sampling event was also compared to solubility criteria to evaluate source area extent. Consistent with previous assessments, these included effective solubility for a given compound and one percent of a given compound's pure-phase solubility.

Calculated solubility criteria for DNAPL compounds evaluated during this study are presented in Table 3-3. A comparison of 2005 through 2020 data to the effective solubility and one percent of pure-phase solubility criteria are provided in Tables 3-4 and 3-5, respectively. Refinement of the monitoring program reduced the number of well comparisons from 2010 through 2012 in Table 3-4.

A discussion of the source area results by flow zone is provided below. It should be noted that some of the wells which are within the source area are sampled in the 5 year cycle and are not sampled annually.

A-Zone

The A-Zone source area has been defined as the Necco Park property and a limited area south of the property line. The A-Zone source limits have not changed from those provided with the 100% design submittal. The 2020 sample results indicate no exceedance of the solubility criteria. There has been only one exceedance of the solubility criteria since long term monitoring began: the 2005 first round results for well D-11 reported HCBD above the one percent solubility criteria.

Semi-annual DNAPL observations conducted at A-Zone well location 131A in 2020 indicated that no DNAPL was present. The most recent DNAPL observation at an A-Zone well was at well 131A in May 2006. This well is located on the landfill.

Groundwater flow in the A-Zone is predominantly downward to the B-Zone. Therefore, hydraulic control of the upper bedrock groundwater flow will capture flow from the A-Zone. As discussed in Section 3.3, the installation of the BFBT and recovery well RW-11 (November 2008) enhanced the degree of A-Zone hydraulic control. Based on the results of the 2020 source area criteria and DNAPL monitoring, the system is effective in controlling the A-Zone source area.

B/C-Zone

The B/C-Zone source limits have not changed from those provided with the 100% design submittal. The results indicated four wells had exceedances of the solubility criteria in 2020. At well 171B, both hexachlorobutadiene and hexachlorobenzene exceeded the solubility criteria in 2020 but had not exceeded these criterion since 2017. At 168C, hexachlorobenzene exceed the solubility criteria for the first time in 2020. The refined sampling program reduced the frequency of some of the wells that typically exceed the criteria.

Four wells in the B/C-Zone exceeded the more conservative one percent criteria in 2020 (171B, 172B, 150C, and 168C). At 171B hexachlorobutadiene (HCBD) concentration was 2,900 µg/L which is above the 20 µg/L criteria, the hexachlorobenzene concentration was 22 J $\mu q/L$ which is above the 0.11 $\mu q/L$ criteria, and the tetrachloroethene (PCE) concentration was 3,400 μ g/L which is above the 1,500 μ g/L criteria. At 172B, the reported HCBD concentration was 180 µg/L which is above the 20 μ g/L criteria. At 150C, trichloroethene was 12,000 μ g/L which is above the 11,000 μ g/L criteria. At 168C, hexachlorobenzene was 1.5 J μ g/L which is above the 0.11 μ g/L criteria and HCBD was 110 µg/L which is above the 20 µg/L criteria. Exceedances of the one percent solubility criteria at well locations 171B and 172B represent the spatial limit of the B-Zone source area. As discussed in Section 3.5, TVOC concentrations have significantly decreased since 2002 at locations 171B and 172B. While well 136B had exceeded the one percent solubility criteria from 2012 to 2014, the concentrations in 2015 through 2020 were below the criteria. Historic exceedance of the one percent solubility criteria at well location 136B for PCE represents the western edge of the limit of the B-Zone source area. TVOC concentrations have steadily declined to near 1,000 micrograms per liter ($\mu g/l$) from near 3,000 $\mu g/l$ in 2012. Trichloroethene had not previously exceeded criteria at 150C. Well 150C is south of the C-Zone source area limits. Future sampling at this location will determine if the result found in 2020 is an indicator of new concentration levels or an anomaly. Well 168C had not exceeded the one percent criteria for HCBD since 2011 but had exceeded fairly frequently prior to 2011 and hexachlorobenzene had not exceeded in the past but had a detection limit greater than the criteria for each time it was analyzed. Well 168C represents the southern edge of the limit of the C-Zone source area.

The frequency of observed DNAPL in B/C-Zone wells has decreased over the course of the monitoring program. In 2020, measurable DNAPL was observed during monthly or semi-annual DNAPL monitoring in RW-4 and RW-5 in April and December and in RW-4 in June. No DNAPL was observed in 2017 or 2018.

Results of the source area criteria analysis and DNAPL monitoring suggests that operation of recovery wells RW-4, RW-5, and RW-11 has achieved and maintained control of the B/C-Zone.

D/E/F-Zone

None of the 10 wells sampled in 2020 exceeded the effective solubility criteria in the D/E/F wells. One of the 10 wells exceeded the more conservative one percent pure-phase criteria. Well 165E is within the limit of the D/E/F-Zone source area and had exceeded the one percent pure-phase criteria (20 μ g/l) for hexachlorobutadiene since 2007, except for 2016. In 2020, Hexachlorobutadiene was detected at an estimated 85 μ g/L.

Source zone criteria comparison analysis conducted during 2020 confirms that the operation of recovery wells RW-8 and RW-9 has achieved and maintained source control of the D/E/F-Zone.

3.4 Groundwater Chemistry Results and Trends

An analysis of 2020 chemistry results and trends has been completed to assess the effectiveness of the HCS and previous groundwater pumping system in reducing organic compound concentrations in groundwater. TVOC concentrations versus time plots for A-Zone overburden and B- through F-Zone bedrock monitoring wells are presented in Appendix B.

In general, operation of the HCS and the previous groundwater recovery system, combined with the presence of the landfill cap and Subsurface Formation Repair (SFR), have contributed to an overall trend of declining TVOC concentrations in the A-Zone overburden and bedrock fractures zones. TVOC concentration decreases at several near source area and far-field wells are significant and coincide strongly with the onset of HCS operations in April 2005, thereby demonstrating the effectiveness of containments and remediation of site groundwater. Natural attenuation processes are also contributing to the reduction in chemical mass in the bedrock fracture zones.

A-Zone Overburden

Results from the four LTGMP A-Zone wells indicate TVOC concentrations are all 11 μ g/l or less, except for well 137A. Sampling results for well 137A (194.25 μ g/l) represents the location of the highest reported A-Zone TVOCs. Other well locations were significantly lower: 145A (1.22 μ g/L), 146AR (10.79 μ g/L), and 150A (not detected). The 2020 results are consistent with historical results in that they show no significant off-site horizontal chemical migration in the overburden.

Three of the four annual wells used to monitor the A-Zone (145A, 146AR, and 150A) exhibit near consistently low (<5 μ g/l) TVOC concentrations with no true discernable trend. These three wells have been less than 5 μ g/l since 2007 or earlier except for 146AR that had a negligible increase in 2020 to 10.79 μ g/l.

Closer to the landfill, well 137A has shown the greatest decline of the A-Zone wells with concentrations ranging close to 1,200 μ g/l in 2005 to as low as 100.2 μ g/l in 2009. A downward trend between 2005 and 2013 is evident at 137A, has been maintained through 2020 and suggests groundwater extraction in the RW-10/RW-11 area has effectively controlled offsite groundwater flow in this location.

B-Zone

Results from the eight LTGMP B-Zone wells indicate TVOC concentrations were consistent with previous years with decreases in TVOC over time, thereby demonstrating effective groundwater capture by the recovery wells (Appendix B). Results were below 2,000 μ g/l in four of the wells sampled in 2020. Six of the eight wells exhibit large decreases in TVOC over time, thereby demonstrating effective groundwater capture by the recovery wells.

Source area limit wells 171B and 172B show a continued overall TVOC declining trend. Well 171B has decreased 3 orders of magnitude between 2002 and 2018 from over 100,000 μ g/l to 141.47 μ g/l but exhibited an increase in 2019 (9,730 μ g/l) and 2020 (24,363 μ g/l). Well 172B has decreased one order of magnitude to 4,019 μ g/l during a similar timeframe. Additionally, the concentrations suggest that there is an active natural attenuation component to the VOCs, as biogenic degradation compounds including cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) are prevalent compounds in the TVOC results at these well locations. The trend towards increased degradation compounds coupled with an absence of source area constituents is evident at well location 171B based on the 2007 through 2020 VOC results. Additionally, well 145B, just outside the source area in the southeast corner, also provides evidence of hydraulic control as concentrations have decreased significantly. Concentrations were over 30,000 μ g/l in 2006 and have decreased to less than 10,000 since 2010 and as low as 3.12 μ g/l in 2018. In 2020 the TVOC concentration was 7,158 μ g/l which is similar to the range observed over the past 10 years. At 145B, concentrations of DCE and VC are the highest parameters withing the TVOC results.

Far-field wells 146B and 150B also demonstrate the effectiveness of the groundwater control system. Concentrations have decreased by one order of magnitude at both wells since 2000. In 2020, the TVOC concentration at 146B was 40.5 μ g/l and at 150B the TVOC concentration was 148.4 μ g/l.

Three B-Zone wells (136B, 137B, and 168B) have no apparent well-defined decreasing trend but remain within historical ranges. At location 136B, which is at the southwestern edge of the source area, there is a slight overall declining trend in the data and a more robust declining trend in the data between 2012 and 2020. The 2020 result at 136B (1261.7 μ g/l) is up slightly from 2019 which was the lowest since 2005. At well 168B (southern edge of the source area), the TVOC concentrations are within the 2000 through 2012 range, but appeared to be increasing between 2005 and 2012, then decreasing between 2012 and 2020. Since 2012 (59,248 μ g/l) TVOC concentrations have decreased to 25,020 μ g/l, in 2019, and increased slightly in 2020 to 31,860 μ g/l. At well 137B, along the southern source area boundary, there appears to be a slight overall decreasing trend in the data, with the early data to 2010 slightly unstable then from 2011 to 2020 the data is stable with a strong decreasing trend during this time period. TVOC concentrations at 137B have ranged from 271.1 μ g/l to 2,112 μ g/l and were 295.6 μ g/l (average of sample and duplicate sample, 304.71 μ g/l and 286.48 μ g/l) in 2020.

C-Zone

Results from the four C-Zone wells analyzed for long term trends indicate TVOC concentrations are consistent with previous long-term monitoring results and source area is controlled.

Wells 145C and 168C are used to delineate the C-Zone source area limit. These wells had TVOC concentrations in 2020 between 164.9 μ g/l (145C) and 10,952 μ g/l (168C). At 145C concentrations were lowest in the record for the six years in a row between 2013 and 2018, and a decreasing trend is evident, even with a slight TVOC concentration uptick in 2019 to 260.4 μ g/l and 2020 to 164.9 μ g/l, the decreasing trend with time remains evident. Since this is a source area well, it is expected to take an extended period for concentrations to decline. At downgradient well 168C, the concentration initially decreased after 2005 start-up but later increased to the 10,000 to 15,000 μ g/l range. The concentrations have been slightly decreasing again since 2010. In 2018, a significant decline was observed to 216.9 μ g/l, the lowest observed TVOC concentration at 168C to date. However, in 2019 TVOCs increased to 4,412 μ g/l and increased again in 2020 to 10,952 μ g/l which is similar to TVOC concentrations observed between 2011 and 2017.

Wells 146C and 150C are downgradient of the source area under ambient groundwater flow conditions, and therefore they are key locations to understand groundwater flow with respect to plume behavior. TVOC concentrations at 146C were over 20 µg/l prior to 2006; however, the concentrations decreased between 2006 and 2013 to below 15 μ g/l. Concentrations between 2014 and 2017 increased to between 58 μ g/l and 76 μ g/l. In 2018 TVOC concentration dropped to 50.9 μ g/l and fell further in 2019 (25.26 μ g/l) and 2020 (19.57 μ g/l), the lowest in seven years. At location 150C, concentrations had decreased by 94% since sampling began, from near 250 µg/l to below 15 µg/l in 2010 and 2012. However, the TVOC results for 2013 and 2014 show a marked increase to 463.3 μg/l and 2,352 μg/l. Since 2014, TVOC concentrations have decreased each year, with the concentration in 2018 the lowest observed to date (3.74 μ g/l). In 2019 TVOC concentrations increased slightly to 17.25 μ g/l but a significant increase to 62,860 ug/l was observed in 2020. Future sampling will determine if the concentration spike observed in 2020 is the start of an increasing trend or anomalous. It is important to note, as mentioned in Section 2.4, well 150C was redeveloped in 2020 prior to the groundwater sampling event, therefore some of the previous data may be biased low. Most of VOCs at 150C are attributed to DCE and VC. Steep declines in 150C and 146C are readily apparent in the 2005 through 2006 period. This suggests that the groundwater recovery system is capturing the source area plume and reducing downgradient concentrations.

D-Zone

Results from the four D-Zone wells indicate TVOC concentrations are generally low and/or declining over time at these monitoring locations.

Well 165D is within the source area. TVOC concentration here were under 25 μ g/l between 2016 and 2019. Well 165D had TVOC concentrations which have been declining since the peak of approximately 1,600 μ g/l in May 2006. An increase in TVOC concentrations was found in 2020 with a result of 5,734 μ g/l. Future TVOC results will determine if the spike encountered in 2020 is a new trend in TVOC concentrations or is an anomalous result.

TVOC concentrations at far-field wells (136D, 145D, and 148D) ranged from 2.57 μ g/l (148D) to 631 μ g/l (145D). At wells 136D and 145D, the concentrations have continued to decline since the historical concentrations as high as approximately 3,000 μ g/l. In 2020, the TVOC concentrations in wells 136D and 145D have decreases to 49.82 μ g/l

and 631 μ g/l, respectively. The TVOC concentration at 136D in 2019 was the lowest observed at this location and the TVOC result in 2020 was the second lowest. At far field well 148D, the concentrations remained low and have been below 5.3 μ g/l from 1996 to present. At 148D the was a potential declining trend from 2016 to 2020, however, due to the low concentrations (< 5 μ g/l) there is little meaning to the trend.

Consistent with previous long-term monitoring results, biogenic degradation compounds including cis-DCE and VC dominate TVOC results for wells 136D, 145D, 148D, and 165D (see Section 3.5 for more details on MNA). Furthermore monitoring has shown hydraulic control from the HCS extends beyond the D/E/F-Zone source area limits, and concentrations in D-Zone wells demonstrate that the HCS is effectively controlling groundwater flow as designed.

E-Zone

Results from the three E-Zone wells (146E, 150E, and 165E) indicate TVOC concentrations were between 190.3 μ g/l and 19,436 μ g/l. Well 165E (19,436 μ g/l) is within the E-Zone source area and has shown an increasing TVOC trend between 2006 and 2011 however, more recent TVOC results have indicated the beginning of a declining trend. The TVOC concentrations are high (now typically between 26,580 μ g/l and 15.280 μ g/l, 2018 and 2019), therefore the significance of any potential trend is difficult to identify. This well is less than 100 feet up-/side-gradient to RW-9. It is likely that the effectiveness of capture on the E-Zone at RW-5 is related to the increasing concentrations, as expected in this type of capture scenario. The 2020 TVOC concentration at well 146E (190.3 μ g/l) was the lowest observed at this location for the second year in a row. TVOC results for well 146E, located at the edge of the source area limits, have been trending lower, with concentrations typically over 10,000 μ g/l prior to 2009 and between 3,500 and 6,300 μ g/l between 2009 and 2014. In 2015 the TVOC concentration at 146E increased to 11,566 µg/l from 3,531 µg/l in 2014. 2016 TVOC concentrations increased again to 14,169 μ g/l. Even with the TVOC increases observed in the 2015 and 2016 sampling events, the overall trend for TVOCs continues to be declining. Since 2016, concentrations have steadily declined through 2020. Well 150E also located near, but outside the source area limits has maintained initial decreases observed in 1996, with concentrations ranging from 6,590 μ g/l (1996) to 388 μ g/l (2015) and typically between 500 and 1,500 μ g/l in recent years, however in 2019 the TVOC concentration increase to 7,835 µg/l (the highest observed at this location). The 2020 results indicate this increase observed in 2019 was anomalous with TVOC concentrations dropping back down (1,020.1 µg/l), similar, if not slightly lower than results observed between 2016 to 2018 results. All E-Zone groundwater monitoring locations are stable or on a declining trend. Degradation products including cis-DCE and VC dominate TVOC results for all the E-Zone wells. As discussed in Section 3.5, the presence of these degradation compounds is indicative of the occurrence of active natural attenuation processes.

Groundwater concentrations in E-Zone wells demonstrate that the HCS is effectively controlling groundwater flow as designed.

F-Zone

Results from the three F-Zone wells indicate TVOC concentrations ranged from 6.91 μ g/L to 10,746 μ g/l, and all three locations showed decreasing trends. Similar to the

results from the E-Zone wells TVOC, results for all the F-Zone wells are mostly dominated by biogenic degradation compounds cis-DCE and VC.

In 2020 TVOC concentrations at well 146F, at the edge of the F-Zone source area have decreased from a high of 36,700 μ g/l in 2000 to 10,746 μ g/l in 2020. TVOC concentrations at near source well 136F have also steadily declined since HCS startup from 8,348 μ g/l (2005) to 6.91 μ g/l (2020). TVOC concentrations have been below 10 μ g/l for the last 3 years. TVOC concentrations at location 150F have shown a steady trend lower since 1998, with concentrations decreasing from initially over 4,500 μ g/l to 456 μ g/l in 2020.

TVOC concentrations have apparently decreased at these F-Zone locations in response to the startup of the HCS, which indicates that the HCS is effectively controlling groundwater flow as designed.

3.5 Evaluation of New Groundwater Sampling Methods

As approved by the USEPA, groundwater sampling was completed using a low-flow peristaltic pump in wells with depths to water less than approximately 20 feet to improve field efficiency, reduce decontamination, and reduce waste. Analytical results for the different sampling methods can be seen in the plots of the analytical data included in Appendix B.

Based on the 2019 and 2020 analytical results obtained using the USEPA-approved new sampling methods, analytical results compare favorably with the many previous years of existing data. Future groundwater sampling events plan to use the same methods employed in 2019 and 2020.

3.6 Monitored Natural Attenuation (MNA) Assessment

Based on the 2018 MNA sampling results (discussed in the 2018 Annual Report) and USEPA approval (USEPA July 16, 2010), future MNA sampling is currently scheduled to be completed on a five-year schedule. The next MNA sampling is scheduled to be completed in 2023. However, VOC and field parameter concentrations from 2020 generally indicate that MNA remains an active component in the source area and the far-field plume. For example, downgradient constituents are predominately degradation products (DCE and VC) and source area groundwater has remained anaerobic and likely sulfate reducing and or methanogenic.

3.7 DNAPL Monitoring and Recovery

As described in the LTGMP and the DNAPL Monitoring and Recovery Plan, monitoring for the occurrence of DNAPL has been conducted routinely at the Necco Park site since the early 1980s. An active recovery and monitoring program was instituted in 1989 to remove free-phase DNAPL from monitoring and groundwater recovery wells. The historically established monitoring program was modified based on results of the Predesign Investigations. In 2015, the USEPA agreed to a request from Chemours to reduce the number of wells monitored monthly and semi-annually for DNAPL. However, the USEPA requested that once every two years, the full list of DNAPL wells are checked. The revised monitoring schedule began in June 2015. The 2020 monthly DNAPL monitoring results are summarized in Table 3-12.

In 2020, measurable DNAPL was identified during the April, June, and December monitoring. In April, 0.5 feet of DNAPL was observed in RW-4 and 6.5 feet in RW-5. An estimated 3.0 gallons of DNAPL was removed from RW-4 and 30 gallons from RW-5 in April. In June, 3.0 feet of DNAPL was observed in RW-4. In December, 1.0 feet of DNAPL was confirmed in RW-4 and 0.2 feet were observed in RW-5. A total of approximately 8,882 gallons of DNAPL have been recovered since the recovery program was put in place in 1989.

3.8 Quality Control/Quality Assurance

The 2020 annual groundwater samples were submitted to TestAmerica Laboratories in North Canton, Ohio, for all chemical analyses. In accordance with the LTGMP and consistent with previous years, QA/QC procedures included in-house data review. In previous years through 2016, 10% independent validation of the data was completed by Environmental Standards, Inc., of Valley Forge, Pennsylvania. On July 30, 2015, Chemours proposed to eliminate the 10% validation based on 10 years of no instances when significant data qualification or rejection of data occurred as a result of findings from the 10% full validation that wasn't also identified by the 100% CDRP. The USEPA approved the proposed reduction in a letter dated October 19, 2016. All other provisions of the QAPP remain unchanged.

3.8.1 Sample Collection

All samples were collected in accordance with the scope and technical requirements defined in the project Work Plan and Quality Assurance Project Plan (DuPont CRG 2005c) and USEPA approved changes agreed to via email May 30, 2019. May 2019 approved changes allowed for the use of a peristaltic pump or a low flow impeller pump such as the Grundfos Rediflow2 to complete low flow groundwater sampling. Samples were submitted in eight delivery groups received at the laboratories between September 24 and October 3, 2020. Based on laboratory receipt records, all samples were received in satisfactory condition, properly preserved, and within USEPA holding time and temperature requirements. Field QC samples collected during the sampling round included two field duplicate pairs, two daily equipment blank samples, and seven trip blanks (volatile organics).

In-House Data Collection

The quality of the data set was evaluated by the AECOM Analytical Data Quality Management Group using the analytical results provided in hard-copy contract laboratory protocol-type data packages in conjunction with an automated data evaluation of the electronic data deliverables (the Chemours Data Review [DVM] process described below). The laboratory data packages presented a review of the QA/QC procedures conducted by the laboratory and included case narratives identifying any significant issues associated with sample receipt, preparation, and analysis.

The electronic data was processed through an automated program developed by Chemours, referred to as the DVM, where a series of checks were performed on the data, essentially resulting in a summary level validation. The data were evaluated against holding time criteria, checked for laboratory blank, equipment blank, and trip blank contamination, and assessed against the following:

Matrix spike(MS)/matrix spike duplicate (MSD) recoveries

- Relative percent differences (RPDs) between MS/MSD samples
- Laboratory control sample (LCS)/control sample duplicate (LCSD) recoveries
- RPDs between LCS/LCSD
- RPDs between laboratory replicates
- Surrogate spike recoveries
- RPDs between field duplicate samples

The DVM also applied the following data qualifiers to analysis results, as warranted:

Qualifier	Definition				
B Not detected substantially above the level reported in the laboratory or blanks.					
R	Unusable result. Analyte may or may not be present in the sample.				
J	Analyte present. Reported value may not be accurate or precise.				
UJ	Not detected. Reporting limit may not be accurate or precise.				

DEFAULT QUALIFIERS

All volatile organic and semi-volatile organic sample analyses were completed within the USEPA recommended holding times. All organic parameters were reported to the current laboratory method detection limit (MDL). Target compounds detected between the MDL and the reporting limit (PQL/RL) were J qualified as estimated concentrations.

A number of samples required dilutions for analysis of volatiles and semi-volatiles due to the levels of target compounds and/or non-target interferences. As a result, the reporting limits for the affected samples are elevated, and in some cases, the sample surrogate recoveries could not be determined (diluted out) or were recovered outside of the laboratory control window.

Low concentrations of trichloroethene and trans-1,2-dichloroethene were detected in the October 2, 2020 trip blank, and cis-1,2-dichloroethene was detected in the September 25, 2020 equipment blank. Similar detections of these analytes in the associated well samples were B qualified during the data review process. The reported concentrations may not be representative of actual well conditions.

The semi-volatile analysis included a target tentatively identified compound reported as TIC 1. All positive results reported for TIC 1 have been J qualified as estimated concentrations.

The laboratory instrumentation cannot separate 3-methylphenol and 4-methylphenol under the chromatographic conditions used for sample analysis. The results reported represent the combined total of both semi-volatile compounds.

All analyses for organics were completed within the 14-day USEPA holding time guidance for preserved volatiles. The semi-volatiles analyses met the USEPA holding time guidance of 7 days from collection for extraction, and 40 days of collection for analysis for aqueous samples.

The data reports incorrectly included methylene chloride as a target compound. The error was identified during data review, and report revisions were issued.

All inorganics were reported to the current laboratory MDLs. Detections between the MDL and the PQL/RL were J-qualified as estimated concentrations.

A number of samples required dilutions for chloride analysis. As a result, the reporting limits for the affected samples are elevated.

The USEPA holding time guidance for chloride (28 Days from collection) was exceeded in sample GW2020-168C. the result was J qualified due to possible low bias. All other chloride analyses were completed within the holding time.

The USEPA holding time guidance for barium (180 days) was met for all samples in the program.

There was insufficient sample volume available for the laboratory to include projectspecific matrix spikes with all sample prep groups for all analyses. Matrix spikes were prepared and analyzed as available, and laboratory control spikes/spike duplicates were also analyzed with each sample group and used for determining compliance with QC limits.

Evaluation of the Relative Percent Difference (%RPD) between field duplicate pairs is performed via the automated DVM process. The positive analyte detections in the two pairs of blind field duplicates collected for this program compared very well (less than the 30% RPD guideline used for aqueous samples). Several analytes in the well 137B field duplicates exceeded the 30% RPD guideline and were J qualified as estimated concentrations.

All samples were collected in accordance with the scope and technical requirements defined in the project Work Plan and Quality Assurance Project Plan (DuPont CRG 2005c). Samples were submitted in eight delivery groups received at the laboratories between September 24 and October 3, 2020. Based on laboratory receipt records, all samples were properly preserved, and within USEPA holding time and temperature requirements. All samples were received in satisfactory condition.

4.0 CAP MAINTENANCE

The cap was substantially completed in 2005, and all remedial items were completed by August 2006. A lawn maintenance contractor maintains both the landfill cap and ditch vegetation. Landfill cap maintenance activities are conducted in accordance with the Cap Maintenance and Monitoring Plan (CMMP). Results of the landfill cap maintenance inspection conducted on November 11, 2020 are provided in Appendix E. No leachate seeps or settlement was identified, and all aspects of the landfill that were inspected were found acceptable.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Hydraulic Control Effectiveness

5.1.1 Conclusions

The HCS continues to be effective at controlling source area groundwater at the Necco Park site. The following observations support this conclusion:

- Water levels in the A-Zone continue a long-term decreasing trend due to the inplace remedial measures including the impermeable landfill cap and groundwater pumping. The A-Zone is dewatering vertically from the hydraulic depression created by the HCS in the B-Zone. This is evident in vertical gradients, drawdown calculations, and time series plots of water level elevations.
- Groundwater potentiometric contour maps depict a capture zone encompassing the source area in the B-, C-, D-, E- and F-Zones.

The addition of RW-11 continues to be an improvement in A-, B-, and C-Zone hydraulic control in the southwestern part of the site. Furthermore, increases in well yield at RW-5 in Fall 2015 increased capture in the A, B and C-Zone around this well.

5.1.2 Recommendations

Based on the site history, years of monitoring, and observations made in 2020, the following procedures are recommended:

- Continue to rehabilitate RW-4, RW-5, RW-11, semi-annually and/or as necessary.
- Evaluate 2021 concentrations at 150C to determine if the increase in concentrations represents a trend or a short term increase.

5.2 Groundwater Chemistry Monitoring

5.2.1 Conclusions

The 2020 and historical chemistry monitoring results indicate the following:

- Overall, the TVOC concentrations are decreasing for all groundwater flow zones in the source area and far-field. In the very few locations where there were increasing trends of TVOC, the concentrations were within historical range or inside the source area near a recovery well.
- Analytical results for 2020 would not change the A-Zone and B/C-Zone source area limits as delineated in the SAR.
- Analytical results for 2020 (including well 146E) support the 2005 Annual Report conclusion of a reduced source area limit for the D/E/F-Zone as delineated in the SAR based on the analytical results from well 146E.
- Results from groundwater sampling events completed since HCS startup show that the HCS is effectively controlling zone-specific source areas.

5.2.2 Recommendations

The 2020 sampling results represent the 19th groundwater sampling event in the long-term monitoring program. It is recommended that the long-term monitoring program continue in its current form, including the revisions from 2010, 2011, 2016, and 2019.

5.3 MNA Conclusions and Recommendations

The next sampling event for formal MNA monitoring is scheduled to be completed in 2023. However, the analytical results from 2020, such as concentrations of degradation products and geochemical conditions, continue to support the recommendation that MNA assessments be conducted every five years.

5.4 DNAPL Monitoring and Recovery

5.4.1 Conclusions

Results of the 2020 DNAPL monitoring and historical recovery efforts indicate the following:

- Monitoring for the presence of DNAPL was completed monthly during 2020.
- Measurable DNAPL was identified in April, June, and December 2020. In April, 0.5 feet of DNAPL was found in RW-4 and 6.5 feet in RW-5. DNAPL removal was completed in April with an estimated 3.0 gallons removed from RW-4 and 30.0 gallons from RW-5. In June, 3.0 feet of DNAPL was found in RW-4. In December, 1.0 feet was identified in RW-4 and 0.2 feet was identified in RW-5.
- Approximately 8,852 gallons of DNAPL have been recovered since the recovery program was initiated in 1989.
- As approved by the USEPA, a revised list of wells was monitored monthly and semi-annually beginning in June 2015. The full list of well previously checked for DNAPL is monitored once every two years.

5.4.2 Recommendation

Continue DNAPL monitoring as revised and approved by the USEPA in 2015 and recover DNAPL where encountered.

5.5 Landfill Cap

5.5.1 Conclusions and Recommendations

With establishment of a continuous vegetative cover, the landfill cap construction is complete and is maintained in accordance with the CMMP. In 2020, no repairs to the landfill cap were necessary and the cap was appropriately maintained. The landfill cap inspection was completed on November 11, 2020 and will continue in 2021.

6.0 **REFERENCES**

- Cherry, J.A., B.L. Parker, K.R. Bradbury, T.T. Eaton, M.B. Gotkowitz, and D.J. Hart. 2006. *Contaminate Transport Through Aquitards: A State-of –the-Science Review*. AWWA Research Foundation, American Water Works Association, IWA Publishing, Denver CO.
- Cohen, R.M and Mercer, J. W. (1993) DNAPL Site Evaluation, United States Environmental Protection Agency (USEPA), EPA/600/R-93/002, 369 p.
- DuPont CRG. 2001. DuPont Necco Park Source Area Report. Necco Park, Niagara Falls, New York. April 2001.
- _____. 2003. DuPont Necco Park, Final (100%) Design Report. Necco Park, Niagara Falls, New York. December 19, 2003.
- . 2005a. DuPont Necco Park Long Term Groundwater Monitoring Plan. April 2005.
- _____. 2005c. DuPont Necco Park Work Plan and Quality Assurance Project Plan (QAPP). October 2005.
- . 2005b. DuPont Necco Park Operations and Maintenance Plan. November 11, 2005.
- _____. 2007. DuPont Necco Park Remedial Action Report. August 2007.
- _____. 2009. DuPont Necco Park Remedial Action Post-Construction Monitoring 2008 Annual Report. June 19, 2009.
- DuPont Environmental Remediation Services. 1995. Analysis of Alternatives (AOA) Report, Necco Park Site.
- Feenstra, S., D.M. MacKay, and J.A. Cherry. 1991. A method for assessing residual NAPL based on organic chemical concentrations in soil samples, in Groundwater Monitoring Review. Vol. 11, No. 2.
- Lee, M.D., P. F. Mazierski, R.J. Buchanan, D.E. Ellis, L.S. Sehayek, 1993. *Intrinsic In Situ Anaerobic Biodegradation of Chlorinated Solvents at an Industrial Landfill*. Intrinsic Bioremediation.
- Parsons. 2020a. Chemours Necco Park Source Area Hydraulic Control System First Quarter Monitoring Data Package 2020. May 29, 2020.
- _____. 2020b. Chemours Necco Park Source Area Hydraulic Control System Second Quarter Monitoring Data Package 2020. August 28, 2020.
- _____. 2020c. Chemours Necco Park Source Area Hydraulic Control System Third Quarter Monitoring Data Package 2020. November 20, 2020.
- _____. 2020. Chemours Necco Park Source Area Hydraulic Control System Fourth Quarter Monitoring Data Package 2020. February 26, 2021.

United States Environmental Protection Agency, May 30, 2019 Email.

United States Environmental Protection Agency, June 27, 2017 Letter.

United States Environmental Protection Agency, October 19, 2016 Letter.

United States Environmental Protection Agency, June 11, 2015 Letter.

United States Environmental Protection Agency, August 12, 2015 Letter.

United States Environmental Protection Agency, January 27, 2012 Letter.

United States Environmental Protection Agency, July 16, 2010 Letter.

- United States Environmental Protection Agency, September 1998, Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvent in Groundwater. EPA/600/R-98/128.
- United States Environmental Protection Agency, September 2014, Second Five Year Review Report for DuPont Necco Park Landfill Superfund Site, City of Niagara Falls Niagara County, New York.

TABLES

Table 2-1

HCS Recovery Well Performance Summary - 2020

Remedial Action Post-Construction Monitoring - 2020 Annual Report

Chemours Necco Park, Niagara Falls, New York

			B/C-ZONE			D/E/F-ZONE				
	RW-4			RW-5		RW-11		3	RW-9)
	Total Gallons Pumped	Uptime°	Total Gallons Pumped	Uptime°	Total Gallons Pumped	Uptime°	Total Gallons Pumped	Uptime°	Total Gallons Pumped	Uptime°
January	18,740	86.80%	198,341	84.14%	374,396	91.44%	290,606	100.00%	303,209	100.00%
February	17,701	97.21%	196,902	92.96%	264,291	97.21%	263,030	100.00%	278,748	100.00%
March	25,408	98.79%	168,529	86.20%	292,274	97.73%	279,332	99.46%	296,551	99.45%
April	24,041	96.08%	166,173	91.01%	285,862	96.51%	285,693	97.88%	307,638	97.88%
Мау	23,451	94.14%	196,910	88.98%	271,119	94.11%	292,638	93.39%	310,899	93.36%
June	18,920	99.90%	185,329	91.79%	258,833	99.89%	282,886	99.90%	323,541	99.90%
July	12,950	86.88%	150,569	80.71%	221,078	90.20%	239,209	92.10%	216,662	83.60%
August	17,758	92.66%	150,896	92.53%	230,870	92.65%	228,861	92.34%	205,219	80.83%
September	11,519	99.80%	139,895	99.60%	219,898	99.80%	222,898	99.80%	246,515	98.80%
October	7,108	42.86%	54,719	39.66%	112,586	42.80%	125,858	44.80%	163,172	51.70%
November	25,615	96.81%	103,198	87.11%	237,002	96.40%	240,839	87.17%	219,913	94.70%
December	17,738	90.90%	116,574	68.90%	256,280	91.10%	294,492	99.00%	224,187	99.00%
2020 TOTAL / AVG.	220,949	90.2%	1,828,035	83.6%	3,024,489	90.8%	3,046,342	92.2%	3,096,254	91.6%
2019	263,589	90.0%	2,054,652	82.9%	3,077,949	86.6%	3,551,504	93.1%	3,605,878	90.9%
2018	304,833	88.4%	2,146,956	82.1%	3,140,119	87.6%	3,741,978	89.6%	4,215,450	92.1%
2017	187,283	82.1%	2,408,465	74.8%	2,841,144	85.7%	4,198,265	91.8%	4,192,719	91.8%
2016	233,743	83.7%	2,270,861	74.6%	2,422,531	82.1%	4,508,452	87.6%	3,191,504	87.6%
2015	274,254	77.0%	2,000,841	75.1%	1,668,783	77.4%	4,470,155	82.9%	3,563,902	82.8%
2014	290,476	95.7%	1,889,388	88.4%	2,155,520	91.6%	5,653,830	98.0%	4,301,449	98.1%
2013	433,801	92.5%	1,005,124	89.3%	3,367,369	84.4%	5,680,340	94.4%	5,250,524	93.8%
2012	475,401	94.9%	1,221,900	88.8%	3,538,799	85.4%	5,135,229	97.7%	4,774,110	97.7%
2011	115,439	90.7%	1,380,257	84.6%	2,772,890	85.8%	4,587,729	96.7%	4,763,517	97.1%
2010	144,749	90.3%	1,437,736	86.1%	3,327,973	86.0%	4,091,555	90.8%	4,772,745	90.6%
2009	106,849	93.7%	1,447,179	88.7%	5,585,699	90.8%	4,639,060	97.8%	4,397,025	97.6%
2008	103,262	90.9%	1,101,634	71.4%	1,149,746**	69.0%	3,680,999	96.9%	6,210,570	96.2%
2007	109,853	95.1%	1,391,339	83.6%	362,994*	92.6%	3,857,693	96.2%	5,506,023	95.9%
2006	92,358	90.0%	2,184,288	93.9%	701,579*	87.8%	4,581,348	95.0%	5,236,043	94.4%
2005	70,814	94.0%	1,966,338	93.0%	799,663*	95.0%	2,950,786	93.0%	3,881,318	93.0%

°Time taken for routine maintenance was not calculated as down-time

*RW-10

** RW-10 and RW-11 Combination

Table 2-2 GWTF Process Sampling Results - 2020

Remedial Acton Post-Construction Monitoring - 2020 Annual Report

Chemours Necco Park, Niagara Falls, New York

General Water Quality			B/C IN	B/C INFLUENT		D/E/F INFLUENT				COMBINED EFFLUENT			
Analyte		3/3/2020	6/2/2020	8/26/2020	11/4/2020	3/3/2020	6/2/2020	8/26/2020	11/4/2020	3/3/2020	6/2/2020	8/26/2020	11/4/2020
Field Parameters													
SPECIFIC CONDUCTANCE	μmhos/cm	9880	6101	6430	2366	6950	4364	4250	2168	6850	1195	4580	2333
TEMPERATURE	°C	10.2	13.12	17	13.5	11.8	13.08	14.6	12.5	12.2	19.8	19.46	13.7
COLOR	ns	grey	clear	clear	cloudy	clear	clear	clear	clear	grey	clear	clear	cloudy
ODOR	ns	strong	strong	strong	strong	none	none	strong	strong	none	none	none	none
PH	std units	5.72	5.07	4.86	5.74	6.94	5.82	6.46	7.21	7.87	6.23	7.48	7.45
REDOX	mv	-36.1	-117.7	-28.5	-29.2	-191.9	-190.9	-185	-225	-65.2	-28.9	-53	-105.4
TURBIDITY	ntu	38.4	47.7	39.8	53.1	39.7	44.7	61.8	48.5	65.5	7.67	4.02	60.6
Volatile Organics													
1,1,2,2-TETRACHLOROETHANE	μg/l	3700	5500	6000	6800	960 B	1500	1300	1300	960	44	14	150
1,1,2-TRICHLOROETHANE	μg/l	2600	4000	3900	4800	1900	2400	2100	2500	430	17	5	65
1,1-DICHLOROETHENE	μg/l	430	500	380 J	340 J	340 J	360 J	250	220	<3.8	<0.19	<0.46	<0.38
1,2-DICHLOROETHANE	μg/l	520	590	550	580	180 J	210 J	170 J	170 J	34	0.95 J	<0.43	3.2
CARBON TETRACHLORIDE	μg/l	8500	8700	7800	9400	1000	1000	730	670	6.3 J	<0.26	<0.26	0.86 J
CHLOROFORM	μg/l	20000	22000	21000	24000	3000	3000	2300	2700	230	22	17	31
CIS-1,2-DICHLOROETHENE	μg/l	9200	9500	8400	8600	12000	11000	9200	9400	150	4.4	1.6	14
METHYLENE CHLORIDE	μg/l	3100	3200	3000	3300	5500	5200	4400	4400	110	3.7 J	1.4 J	11
TETRACHLOROETHENE	μg/l	11000	12000	10000	14000	750	800	560	540	31	3.6	<0.33	3.6
TRANS-1,2-DICHLOROETHENE	μg/l	400	540	430	440	770	850	620	600	<3.8	<0.19	<0.43	<0.38
TRICHLOROETHENE	μg/l	17000	18000	17000	20000	4400	4300	3100	3600	61	2	0.56 J	6.9
VINYL CHLORIDE	μg/l	3000	2700	2100	1800	2700	2300	1700	1400	<4	<0.2	<0.5	<0.4
TOTAL VOLATILES	μg/l	79,450	87,230	80,560	94,060	32,540	32,920	26,430	27,500	2,012	98	39	286

< and ND = Non detect at stated reporting limit

J= Analyte present. Reported value may not be precise.

TABLE 3-1 Quarterly Hydaulic Monitoring Locations

Remedial Action Post-Construction Monitoring - 2020 Annual Report Chemours Necco Park, Niagara Falls, New York

Well ID	Zone	Well ID	Zone	Well ID	Zone
53	А	159B	В	203D	D
111A	А	160B	В	RW-8	D/E/F
117A	А	161B	В	RW-9	D/E/F
119A	А	163B	В	202D	D
123A	А	167B	В	129E	Е
129A	Α	168B	В	136E	Е
131A	Α	169B	В	142E	Е
137A	А	170B	В	145E	Е
139A	А	171B	В	146E	Е
140A	А	172B	В	150E	E
145A	А	201B	В	163E	Е
146AR	А	BZTW-1	В	164E	E
150A	А	BZTW-2	В	165E	F
159A	А	BZTW-4	В	202E	E
163A	А	D-23	В	203E	F
168A	А	PZ-B	В	112F	F
173A	А	D-10	B/C	123F	F
174A	А	D-14	B/C	129F	F
175A	А	RW-5	B/C	130F	F
176A	А	RW-4	B/C	136F	F
178A	А	RW-11	B/C	145F	F
179A	А	105C	С	146F	F
184A	А	115C	С	148F	F
185A	А	123C	С	150F	F
186A	А	129C	С	163F	F
187A	А	130C	С	164F	F
188A	А	136C	С	165F	F
189A	А	137C	С	202F	F
190A	А	138C	С	203F	F
191A	А	139C	С	136G	G
192A	А	141C	С	TRW-6	B/C
193A	А	145C	С	TRW-7	B/C
194A	А	146C	С	PZ-205B	В
D-9	А	149C	С		
D-11	А	150C	С		
RDB-3	А	151C	С		
RDB-5	А	159C	С		
D-13	А	160C	С		
PZ-A	А	161C	С		
168A	А	162C	С		
102B	В	168C	С		
111B	В	204C	С		
112B	В	105D	D		
116B	В	111D	D		
118B	В	115D	D		
119B	В	123D	D		
120B	В	129D	D		
123B	В	130D	D		
129B	В	136D	D		
130B	В	137D	D		
136B	В	139D	D		
137B	В	145D	D		
138B	В	148D	D		
139B	В	149D	D		
145B	В	158D	D		
146B	В	159D	D		
149B	В	163D	D		
150B	В	164D	D		
151B	В	165D	D	1	

Notes: 1. Well 204C installed in 2008 to replace 112C. Water levels began in 1Q09.

2. Piezometers PZ-A, PZ-B, and 168A installed in 2008.

3. All AT zone wells were eliminated from the hydraulic monitoring program on consent from USEPA

letter dated 01/27/2012.

4. PZ-205B installed in 2015.

Table 3-22020 Average A-Zone to B-Zone Vertical Gradients

Remedial Action Post Construction Monitoring - 2020 Annual report Chemours Necco Park, Niagara Falls, New York

		Α	В	С	D	
Wel	l Pair	2020 Average A-Zone Head	2020 Average B-Zone Head	A-Zone Mid-Point of Well Screen	B-Zone Fracture Elevation ¹	Vertical Gradient ^{2,3} (B-A) / (C-D)
111A	111B	572.64	570.74	573.94	561.80	-0.16
119A	119B	574.08	573.48	571.63	556.90	-0.04
129A	129B	574.03	571.82	570.10	557.80	-0.18
137A	137B	570.79	570.18	570.10	561.30	-0.07
145A	145B	570.24	569.11	564.19	546.30	-0.06
150A	150B	569.94	569.72	564.69	553.18	-0.02
159A	159B	576.79	571.42	580.62	562.90	-0.30
163A	163B	571.97	571.85	572.49	564.96	-0.02
168A	168B	570.48	567.31	555.22	544.90	-0.31

Notes:

1) A B-Zone fracture was not observed in the 145B borehole, therefore the midpoint of the open hole was used.

- 2) Unitless (ft/ft).
- 3) Negative values indicate a downward (from A-Zone to B-Zone) gradient.
- 4) Average gradients were used to better reflect typical vertical gradients at the site.

Table 3-3

DNAPL Components and Solubility Criteria Values

Remedial Action Post-Construction Monitoring - 2020 Annual Report Chemours Necco Park, Niagara Falls, New York

Contaminant	Mole Fraction in DNAPL (%)	Pure-Phase Solubility (μg/l)	One-Percent Pure-Phase Solubility (μg/l)	Effective Solubility (μg/l)
Hexachlorobutadiene	59	2,000	20	1,180
Hexachloroethane	9	50,000	500	4,500
Hexachlorobenzene	2	11	0.11	0.22
Carbon tetrachloride	5	800,000	8,000	40,000
Chloroform	1	8,000,000	80,000	80,000
Tetrachloroethene	3	150,000	1,500	4,500
1,1,2,2-Tetrachloroethane	5	2,900,000	29,000	145,000
Trichloroethene	4	1,100,000	11,000	44,000

Table 3-4 Effective Solubility Concentration Exceedances for DNAPL Compounds - 2005 through 2020 Annual Sampling Remedial Action Post-Construction Monitoring - 2020 Annual Report

Chemours Necco Park, Niagara Falls, New York

				20	005	20	2006 2007			2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Well ID	Flow Zone	Analyte	Criteria (ppb)	1st Event	2nd Event	1st Event	2nd Event	1st Event	2nd Event													
171B	в	Hexachlorobutadiene	1,180	2,100	BC	BC	BC	NS	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	2,900
	_	Hexachlorobenzene	0.22	BC	4.0	31 J	3.4 J	NS	1.4 J	BC	< 0.4	< 2.5	<0.95	BC	BC	< 0.41	< 0.32	< 0.41	0.48 J	BC	<0.39	22 J
		Carbon Tetrachloride	40,000	NS	NS	NS	BC	NS	BC	BC	BC	NS	NS	NS	BC	NS	NS	NS	NS	NS	NS	NS
		Hexachlorobutadiene	1,180	1,700	BC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
105C	С	Chloroform	80,000	BC	180,000	NS	120,000	NS	90,000	82,000	BC	NS	NS	NS	100,000	NS	NS	NS	NS	NS	NS	NS
		Tetrachloroethene	4,500	32,000	35,000	NS	36,000	NS	37,000 J	32,000	13,000	NS	NS	NS	24,000	NS	NS	NS	NS	NS	NS	NS
		Trichloroethene	44,000	280,000	190,000	NS	190,000	NS	160,000	140,000	74,000	NS	NS	NS	190,000	NS	NS	NS	NS	NS	NS	NS
136C	С	Tetrachloroethene	4,500	4,100	3,600	3,300	3,100	5,200	3,800	14,800	5,600	NS	NS	NS	5,300	NS	NS	NS	NS	BC	NS	NS
137C	С	Tetrachloroethene	4,500	8,500	22,000	NS	7,900	NS	BC	BC	BC	NS	NS	NS	BC	NS	NS	NS	NS	BC	NS	NS
168C	С	Hexachlorobenzene	0.22	<0.75	<1.5	<1.3	<1.3	<3.2	<1.3	<3.2	NS	<10	<4.8	<4.8	<1.6	<1.6	<0.81	<0.81	<0.81	<1.6	<3.1	1.5 J
		Carbon Tetrachloride	40,000	150,000	83,000	NS	170,000	NS	190,000	BC	200,000	NS	NS	NS	360,000	NS	NS	NS	NS	45,000	NS	NS
105D	D	Chloroform	80,000	98,000	35,000	NS	80,000	NS	90,000	96,000	120,000	NS	NS	NS	160,000	NS	NS	NS	NS	BC	NS	NS
TOOD	D	Tetrachloroethene	4,500	12,000	57,000	NS	11,000	NS	13,000 J	12,000	16,000	NS	NS	NS	22,000	NS	NS	NS	NS	BC	NS	NS
		Trichloroethene	44,000	120,000	51,000	NS	110,000	NS	120,000	130,000	180,000	NS	NS	NS	250,000	NS	NS	NS	NS	BC	NS	NS
		Tetrachloroethene	4,500	5,100	4,900	NS	BC	NS	7,200	5,300 J	4,700	NS	NS	NS	BC	NS	NS	NS	NS	BC	NS	NS
137D	D	Trichloroethene	44,000	64,000	76,000	NS	BC	NS	91,000	70,000	76,000	NS	NS	NS	BC	NS	NS	NS	NS	65,000	NS	NS
		Hexachlorobenzene	0.22	3.0	11.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
139D	D	Hexachlorobenzene	0.22	38 J	11 J	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.2 J	NS	NS
1090		Hexachlorobutadiene	1,180	1,200	BC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	BC	NS	NS

BC: Below Criteria

NS: Not Sampled

"<" = compound not identified above the detection limit.

Table 3-5
1% of Pure-Phase Solubility Concentration Exceedances for DNAPL Compounds - 2005 through 2020 Annual Sampling
Remedial Action Post Construction Monitoring 2020 Appual Report

Remedial Action Post-Construction Monitoring - 2020 Annual Report Chemours Necco Park, Niagara Falls, New York

				20	005	20	006	2	007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Well ID	Flow	Analyte	Criteria (ppb)		2nd Event		2nd Event		2nd Event													
D-11	A	Hexachlorobutadiene	20	29	BC	BC	BC	BC	BC	BC	BC	NS	NS	NS	BC	NS	NS	NS	NS	BC	NS	NS
136B	В	Tetrachloroethene	1,500	BC	BC	BC	BC	BC	BC	1,500	1,600	BC	BC	2,000	1,500	1,500	BC	BC	BC	BC	BC	BC
		Tetrachloroethene	1,500	NS	NS	NS	2000 J	NS	4,600	3,100	3,200	NS	NS	NS	2,900	NS	NS	NS	NS	BC	NS	NS
139B	В	Hexachlorobutadiene	20	78	BC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
-		1,1,2,2-Tetrachlorethane	29000	NS	NS	NS	29,000	NS	BC	BC	BC	NS	NS	NS	BC	NS	NS	NS	NS	BC	NS	NS
		Hexachlorobutadiene	20	2,100	130	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	55	2,900
171B	В	Hexachlorobenzene	0.11	BC	4.0	3.1 J	3.4 J	BC	1.4 J	BC	< 0.4	< 0.5	<0.95	BC	BC	<0.41	<0.32	<0.41	<0.45	<0.18	<0.39	22 J
		Tetrachloroethene	1,500	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	3,400
172B	в	Hexachlorobutadiene	20	140	89	140 J	110	BC	110	54	170	210	20	130	45	120	53	48	79	63	43	180
1120	5	Tetrachloroethene	1,500	1,800	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC
		Hexachlorobutadiene	20	1,700	BC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		Carbon Tetrachloride	8,000	25,000	BC	NS	BC	NS	BC	BC	BC	NS	NS	NS	BC	NS	NS	NS	NS	NS	NS	NS
105C	С	Chloroform	80,000	250,000	180,000	NS	120,000	NS	90,000	82,000	BC	NS	NS	NS	100,000	NS	NS	NS	NS	NS	NS	NS
		Tetrachloroethene	1,500	32,000	35,000	NS	36,000	NS	37,000 J	32,000 J	13,000	NS	NS	NS	24,000	NS	NS	NS	NS	NS	NS	NS
		Trichloroethene	11,000	280,000	190,000	NS	190,000	NS	160,000	140,000	74,000	NS	NS	NS	190,000	NS	NS	NS	NS	NS	NS	NS
136C	С	Tetrachloroethene	1,500	4,100	3,600	3,300	3,100	5,200	3,800	4,800	5,600	NS	NS	NS	5,300	NS	NS	NS	NS	4,000	NS	NS
137C	С	Tetrachloroethene	1,500	8,500	22,000	NS	7,900	NS	2,200	2,700	BC	NS	NS	NS	BC	NS	NS	NS	NS	BC	NS	NS
13/0	C	Trichloroethene	11,000	BC	19,000	NS	16,000	NS	20,000	70,000	BC	NS	NS	NS	BC	NS	NS	NS	NS	BC	NS	NS
150C	С	Trichloroethene	1,500	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	12,000
168C	С	Hexachlorobutadiene	20	330	64.0	54 J	NS	44 J	BC	BC	NS	<27	21 J	BC	BC	BC	BC	BC	BC	BC	BC	110
1000	C	Hexachlorobenzene	0.11	<0.75	<1.5	<1.3	<1.3	<3.2	<1.3	<3.2	NS	<10	<4.8	<4.8	<1.6	<1.6	<0.81	<0.81	<0.81	<1.6	<3.1	1.5 J
		Hexachlorobutadiene	20	95.0	BC	NS	NS	NS	NS	NS	N/S	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		Carbon Tetrachloride	8,000	150,000	83,000	NS	170,000	NS	190,000	190,000	200,000	NS	NS	NS	360,000	NS	NS	NS	NS	45,000	NS	NS
4050		Chloroform	80,000	98,000	BC	NS	80,000	NS	90,000	96,000	120,000	NS	NS	NS	160,000	NS	NS	NS	NS	BC	NS	NS
105D	D	Tetrachloroethene	1,500	12,000	5,700	NS	11,000	NS	13,000 J	12,000 J	16,000	NS	NS	NS	22,000	NS	NS	NS	NS	4,200	NS	NS
		1,1,2,2-Tetrachlorethane	29,000	NS	NS	NS	88,000	NS	79,000	76,000	79,000	NS	NS	NS	100,000	NS	NS	NS	NS	BC	NS	NS
		Trichloroethene	11,000	120,000	51,000	NS	110,000	NS	120,000	130,000	180,000	NS	NS	NS	250,000	NS	NS	NS	NS	33,000	NS	NS
4075	-	Tetrachloroethene	1,500	5,100	4,900	NS	BC	NS	7,200	5,300	4,700	NS	NS	NS	BC	NS	NS	NS	NS	4,400	NS	NS
137D	D	Trichloroethene	11,000	64,000	76,000	NS	27,000	NS	91,000	70,000	76,000	NS	NS	NS	BC	NS	NS	NS	NS	65,000	NS	NS
1005		Hexachlorobenzene	0.11	38.0	11.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.2 J	NS	NS
139D	D	Tetrachloroethene	1,500	1,900	BC	NS	BC	NS	BC	BC	BC	NS	NS	NS	BC	NS	NS	NS	NS	BC	NS	NS
		Hexachlorobutadiene	20	27.0	BC	32 J	46 J	BC	45 J	91 J	44 J	79 J	26 J	130 J	65 J	130 J	34 J	<5.1	140 J	150 J	38 J	85 J
165E	Е	Tetrachloroethene	1,500	BC	BC	BC	BC	BC	BC	BC	BC	2,000	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC
		Trichloroethene	11,000	BC	BC	BC	BC	BC	BC	BC	BC	11,000	12,000	12,000	BC	BC	BC	BC	BC	BC	BC	BC

BC: Below Criteria

NS: Not "<" = compound not identified above the detection limit.

Table 3-6

Chemical Monitoring List, Long-Term Groundwater Monitoring

Remedial Action Post Construction Monitoring - 2020 Annual Report Chemours Necco Park, Niagara Falls, New York

MONITORING WELL	ZONE	MONITORING WELL	ZONE
137A	A	136D	D
145A	A	145D	D
146AR	А	148D	D
150A	А	165D	D
136B	В	146E	E
137B	В	150E	E
145B*	В	165E	E
146B	В	136F	F
150B	В	146F	F
168B	В	150F*	F
171B	В		
172B	В		
145C*	С		
146C*	С		
150C*	С		
168C	С		

*Well does not meet bedrock zone water bearing criteria $(k<10^{-4} \text{ cm/sec})$.

Table 3-7

Indicator Parameter List, Long-Term Groundwater Monitoring Remedial Action Post Construction Monitoring - 2020 Annual Report

Chemours Necco Park, Niagara Falls, New York

Inorganic and General Water Quality Parameters	Volatile Organic Compounds	Semivolatile Organic Compounds
pH* Specific conductivity* Temperature* Turbidity* Dissolved oxygen * Redox potential* Chloride Dissolved barium	Vinyl chloride 1,1-dichloroethene Trans-1,2-dichloroethene Cis-1,2-dichloroethene Chloroform Carbon tetrachloride 1,2-dichloroethane Trichloroethene 1,1,2-trichloroethane Tetrachloroethene 1,1,2,2-tetrachloroethane	Hexachloroethane Hexachlorobutadiene Phenol 2,4,6-trichlorophenol 2,4,5-trichlorophenol Pentachlorophenol Hexachlorobenzene 4-methlyphenol TIC-1

*Field parameter

Table 3-8 2020 DNAPL Recovery Summary Remedial Action Post-Construction Monitoring - 2020 Annual Report Chemours Necco Park, Niagara Falls, New York

		31-	Jan	28-	-Feb	31-	Mar	20-	Apr	26-	May	30	-Jun	31	-Jul	31-	Aug	30-	Sep	22-	Oct	16-	Nov	30-	-Dec
Well ID	Frequency	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS	FT	GALS										
RW-4	Monthly	0.0		0.0		0.0		0.5	3.0	0.0		3.0		trace		trace		trace		0.0		trace		1.0	
RW-5	Monthly	0.0		0.0		0.0		6.5	30.0	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.2	
RW-11	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
204C	Monthly	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
VH-129C	Semi-annually	na		na		na		na		0.0		na		na		na		na		0.0		na		na	
VH-131A	Semi-annually	na		na		na		na		0.0		na		na		na		na		0.0		na		na	
VH-139C	Semi-annually	na		na		na		na		0.0		na		na		na		na		0.0		na		na	
VH-161B	Semi-annually	na		na		na		na		0.0		na		na		na		na		0.0		na		na	
VH-161C	Semi-annually	na		na		na		na		0.0		na		na		na		na		0.0		na		na	
VH-171B	Semi-annually	na		na		na		na		0.0		na		na		na		na		0.0		na		na	
RW-6	Biennial	na		na		na		na		na		na		na											
RW-7	Biennial	na		na		na		na		na		na		na											
PZ-A	Biennial	na		na		na		na		na		na		na											
VH-117A	Biennial	na		na		na		na		na		na		na											
VH-123A	Biennial	na		na		na		na		na		na		na											
VH-129A	Biennial	na		na		na		na		na		na		na											
VH-190A	Biennial	na		na		na		na		na		na		na	1										
D-23	Biennial	na		na		na		na		na		na		na											
PZ-B	Biennial	na		na		na		na		na		na		na											
VH-160B	Biennial	na		na		na		na		na		na		na											
VH-167B	Biennial	na		na		na		na		na		na		na											
VH-168B	Biennial	na		na		na		na		na		na		na											
VH-169B	Biennial	na		na		na		na		na		na		na											
VH-170B	Biennial	na		na		na		na		na		na		na											
VH-172B	Biennial	na		na		na		na		na		na		na											
VH-160C	Biennial	na		na		na		na		na		na		na											
VH-162C	Biennial	na		na		na		na		na		na		na											
VH-168C	Biennial	na		na		na		na		na		na		na											
VH-139A	Biennial	na		na		na		na		na		na		na											
CECOS52SR	Biennial	na		na		na		na		0.0		na		na											
CECOS18SR	Biennial	na		na		na		na		0.0		na		na											
CECOS-53	Biennial	na		na		na		na		0.0		na		na											

na - not applicable/not taken due to reduction in scope, approved by USEPA (June 11, 2015 and August 12, 2015) GALS - gallons purged

FIGURES

40 La Riviere Dr, Suite 350 Buffalo, NY 14202 (716) 541-0730

Created by: JWS	Date: 03-29-11							
Checked by: RBP	Date: 03-29-11							
Approved by: DDT	Date: 03-29-11							
Project Manager: DDT	Date: 03-29-11							
Job number: 445356.02020								

FIGURE 1-1 SITE LOCATION MAP NECCO PARK NIAGARA FALLS, NY

40 LA RIVIERE DR., SUITE 350 BUFFALO, NY 14202 (716) 541-0752

Created by: EFG	Date: 02-12-2021
Checked by: RBP	Date: 02-12-2021
Project Manager: Eric Felter	Date: 02-12-2021
Project Number: 452448.03000	

LEGEND

- RECOVERY WELLS
- ANNUAL SAMPLING WELLS
- 5 YEAR SAMPLING WELLS
- MONITORING WELL
- HI RAIL ROADS
- GROUT CURTAIN

FIGURE 3-1 WELL AND PIEZOMETER LOCATIONS CHEMOURS NECCO PARK SITE NIAGARA FALLS, NY

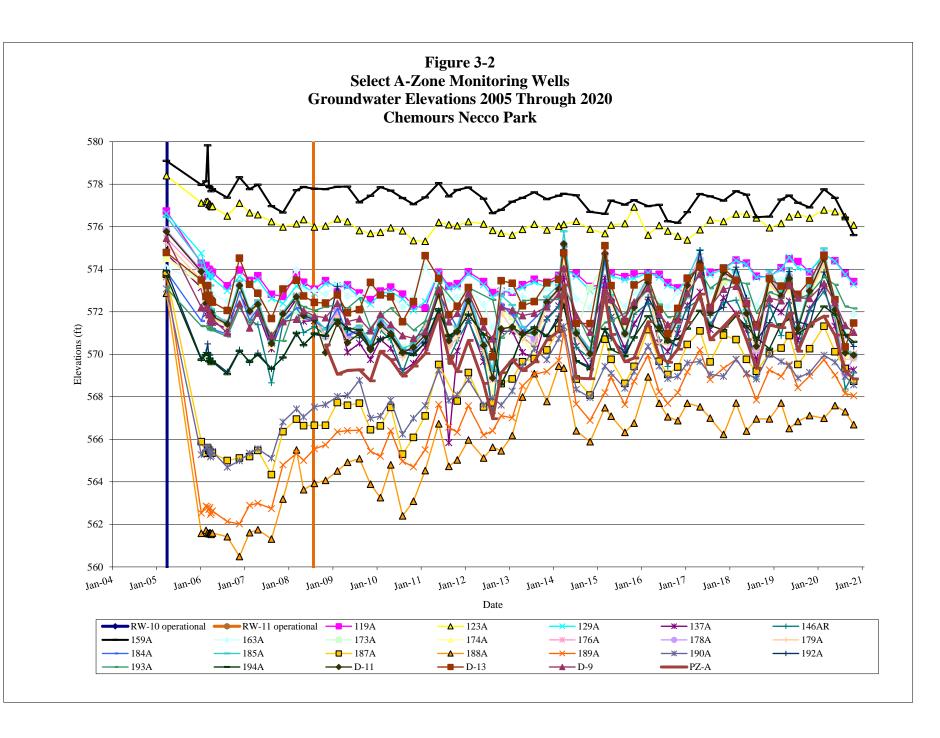
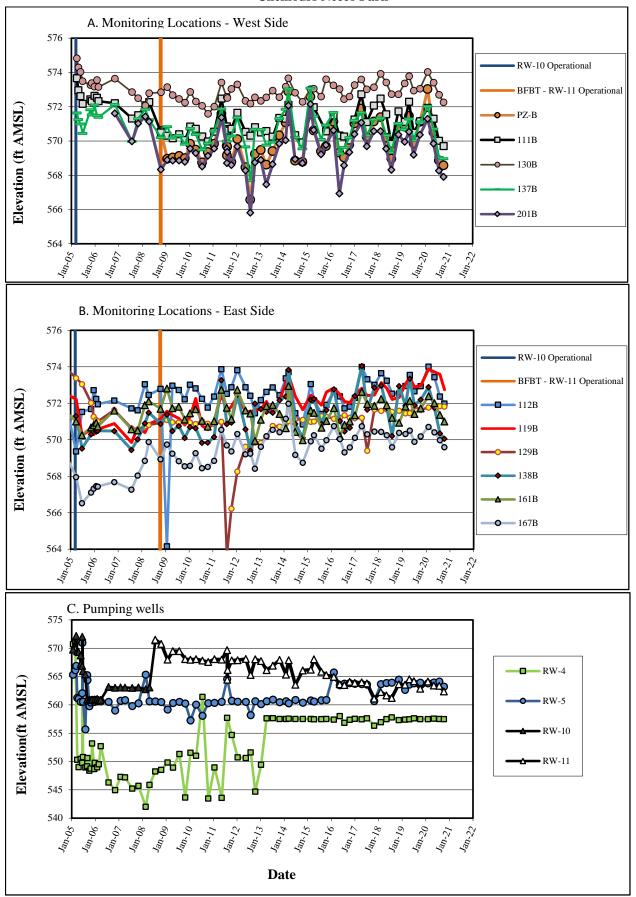



Figure 3-3 Select B-Zone Monitoring Wells Groundwater Elevations 2005 through 2020 Chemours Necco Park

Figure 3-4 Select C-Zone Monitoring Wells Groundwater Elevations 2005 Through 2020 Chemours Necco Park

 Date

 -■-105C
 -■-146C
 -■-160C
 -■-161C
 -■-168C
 -∞-RW-4
 -∞-RW-5
 -∞-RW-10

Note: Well 149D water level was anomalously high in 1Q19 (564.31), in 3Q19 (571.2), and 4Q20 (562.1). These events are not included in

567

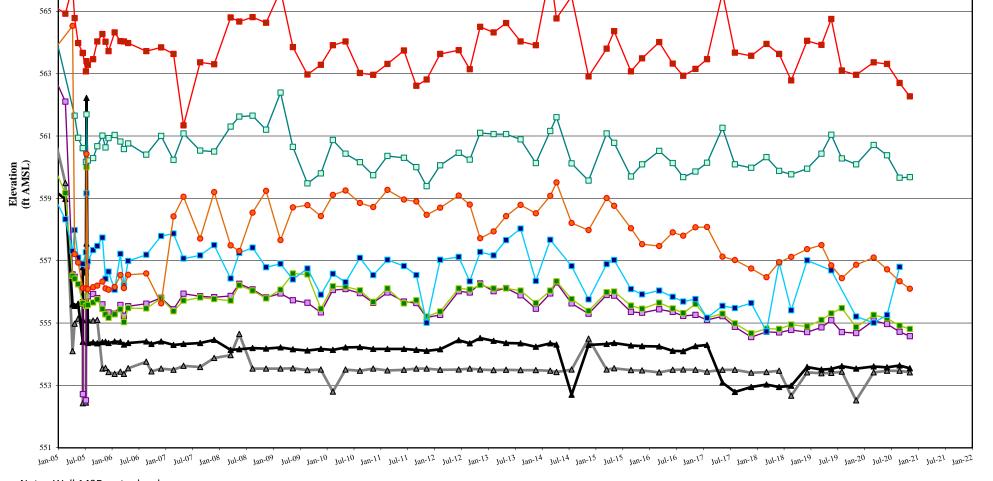
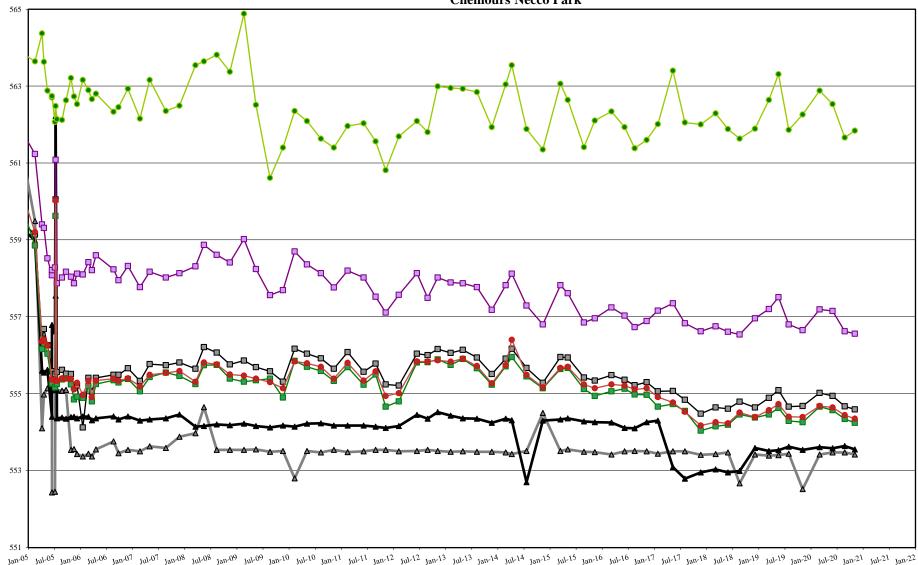
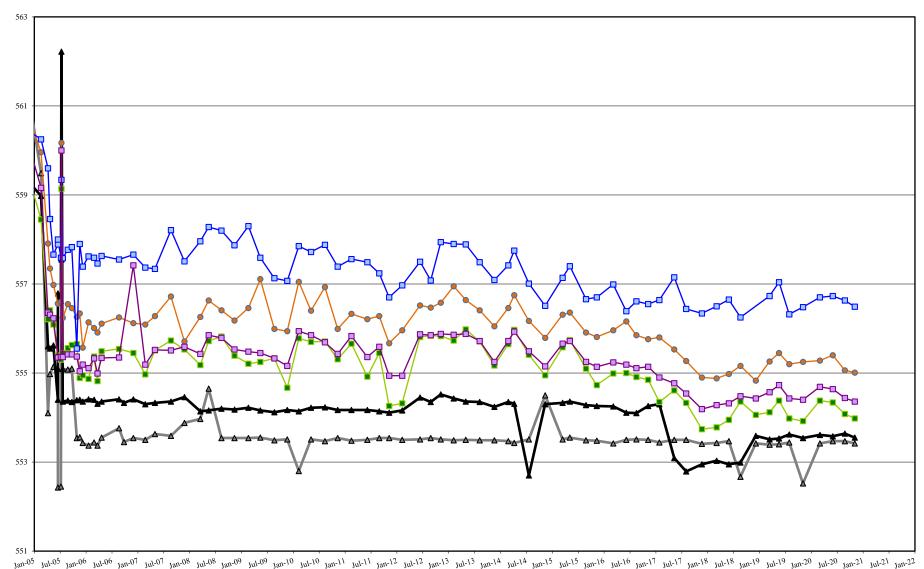



Figure 3-5 Select D-Zone Monitoring Wells Groundwater Elevations 2005 through 2020 Chemours Necco Park


Figure 3-6 Select E-Zone Monitoring Wells Groundwater Elevations 2005 Through 2020 Chemours Necco Park

		Date											
—A—R W-8	——R W-9	—— 136E	—● — 145E	——— 146E	—— 150E	—— 164E							

Necco 2020 E Zone Water Elev Trends.xlsx

Figure 3-7 Select F-Zone Monitoring Wells Groundwater Elevations 2005 Through 2020 Chemours Necco Park

Date

-RW-9

—△ RW-8

→ 130F → 146F → 150F → 164F

Necco 2020 F Zone Water Elev Trends.xlsx

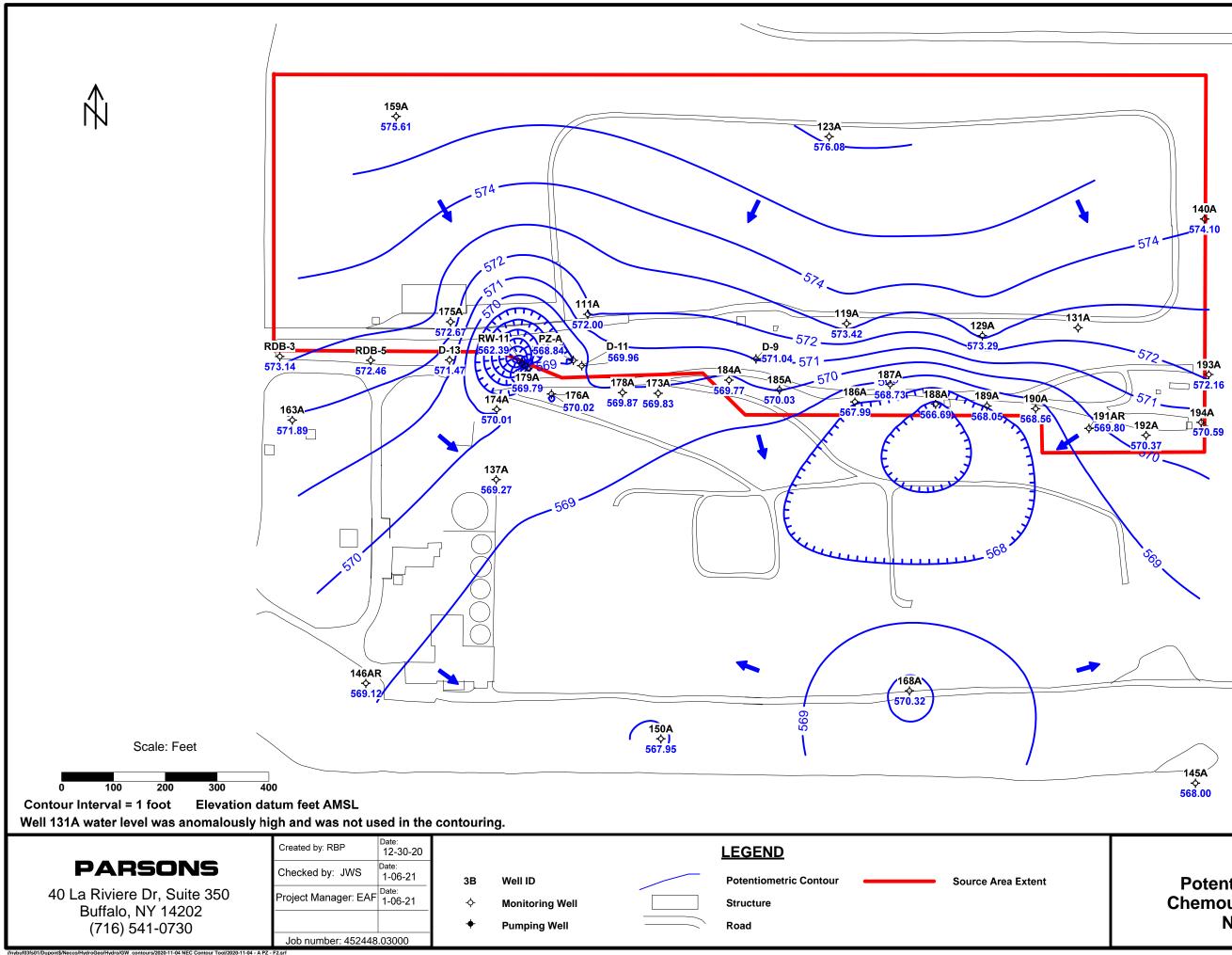
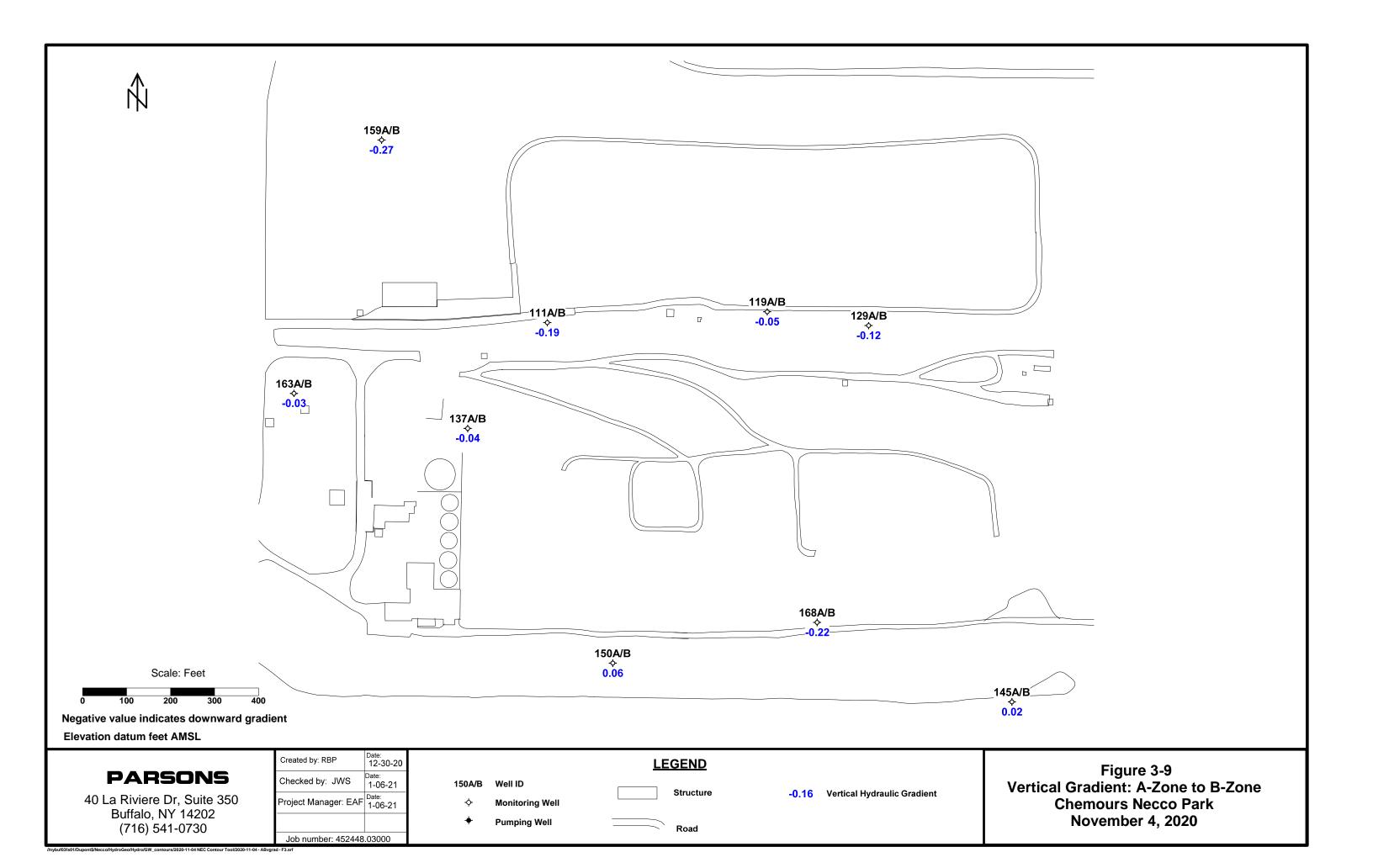
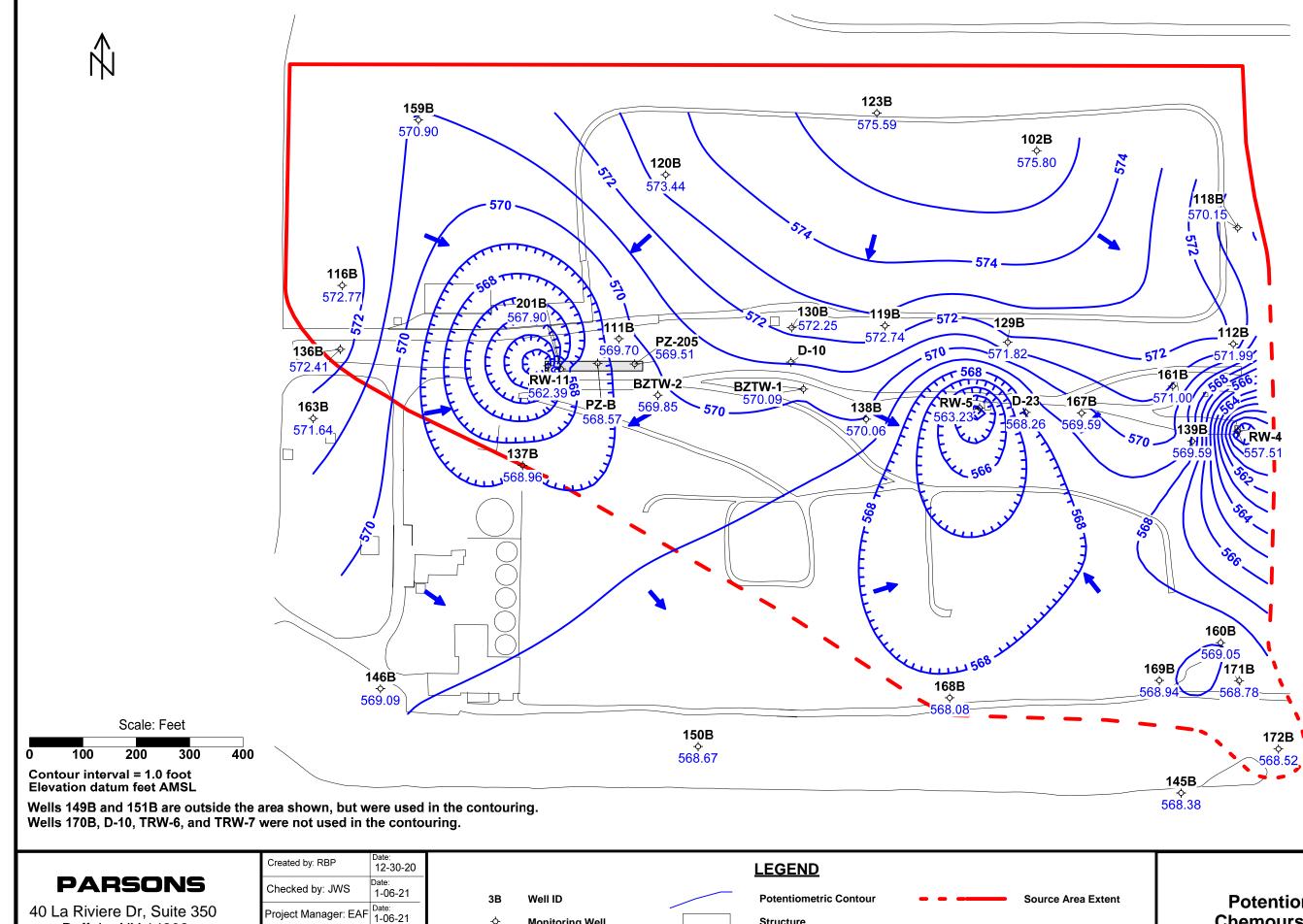




Figure 3-8 Potentiometric Surface Map Chemours Necco Park: A-Zone November 4, 2020

Monitoring Well

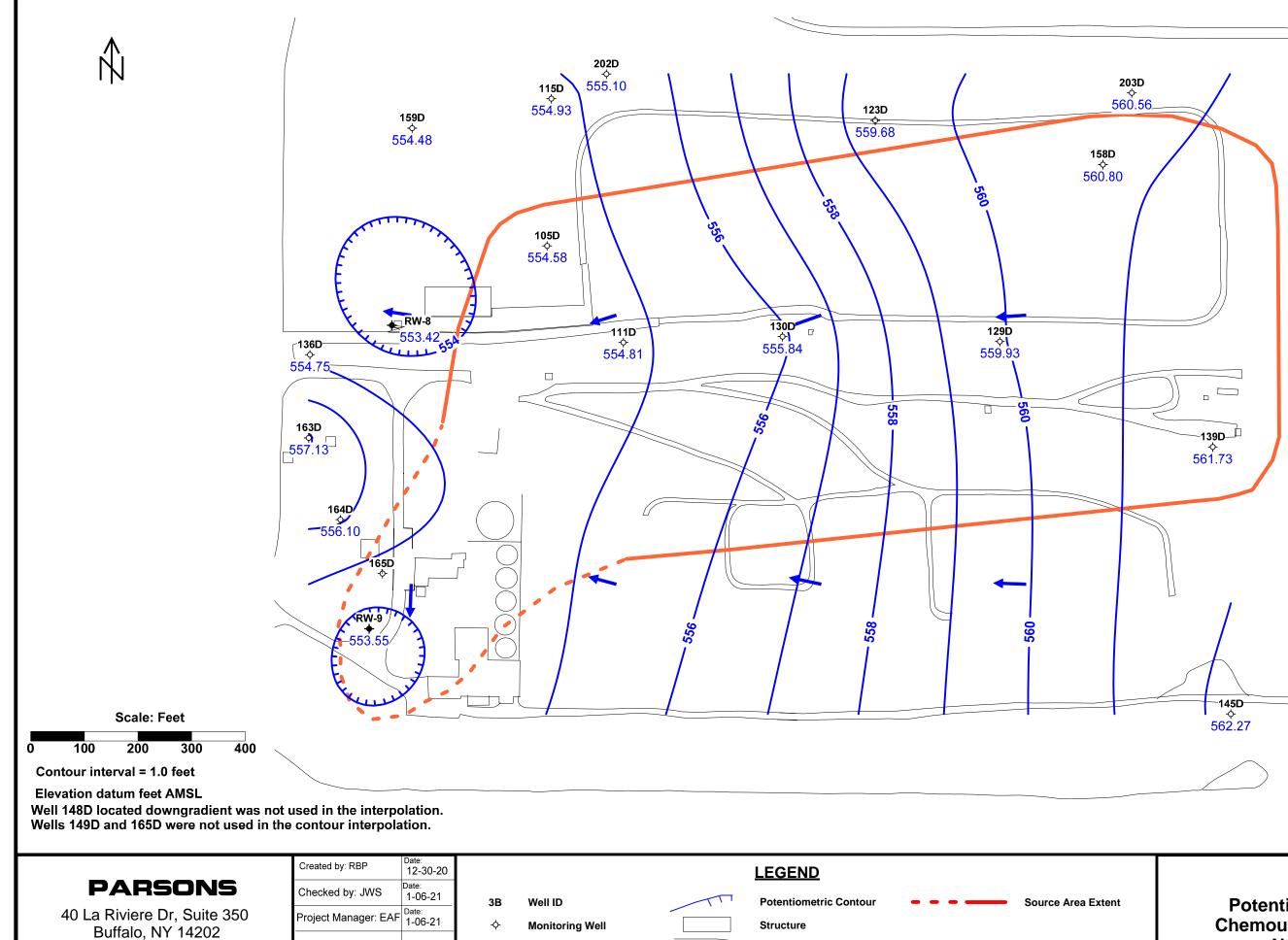
Pumping Well

Structure

Road

Approximate Location of Bedrock Fractured Blast Trench

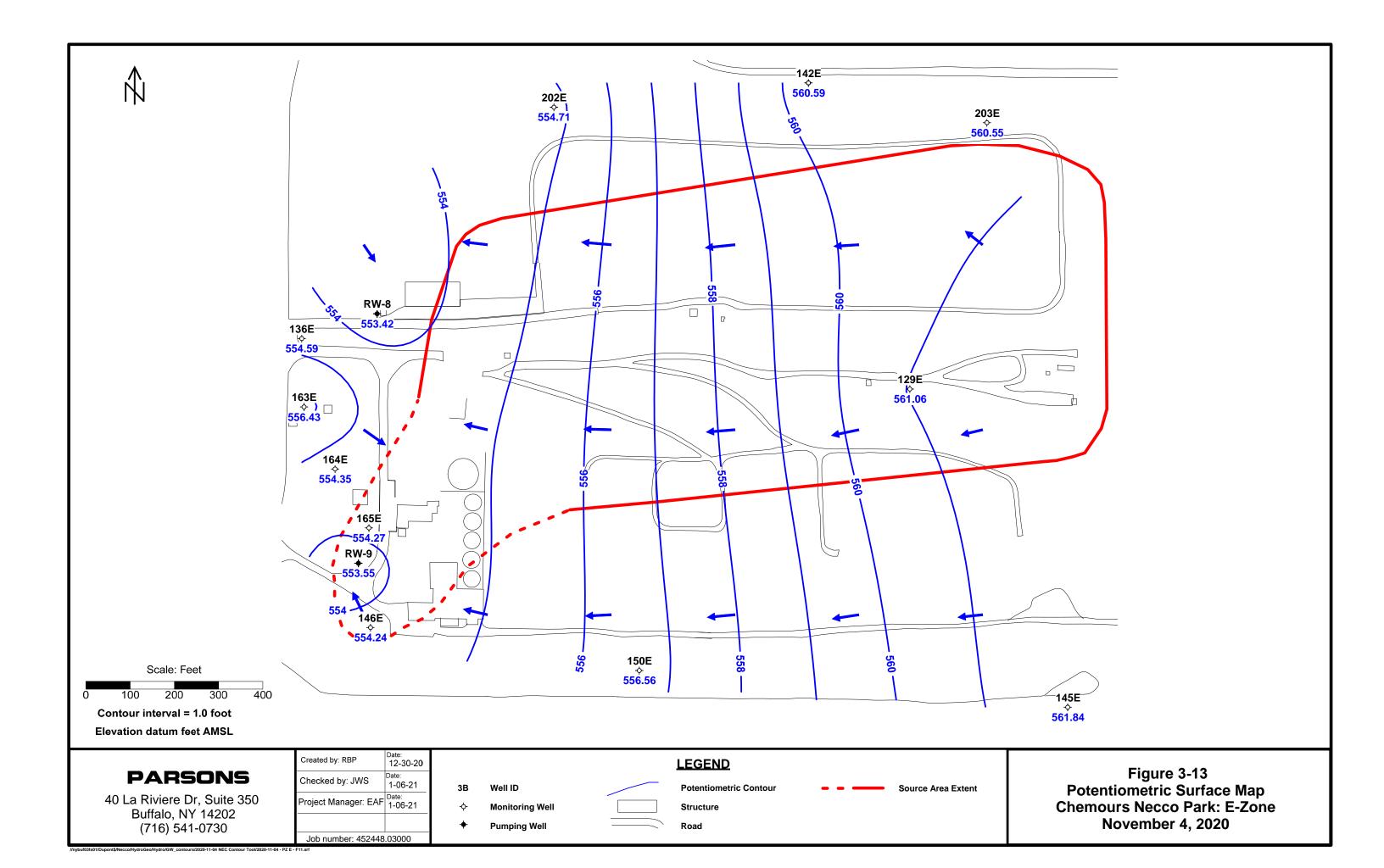
()	Job number: 452448.03000
//m/huf02fc01/Dunont\$/Nesse/HurdroCos/Hurdro/CW/.contours/2020.11.01 NEC Contours Tool/2020	11.04 DZ D EF orf

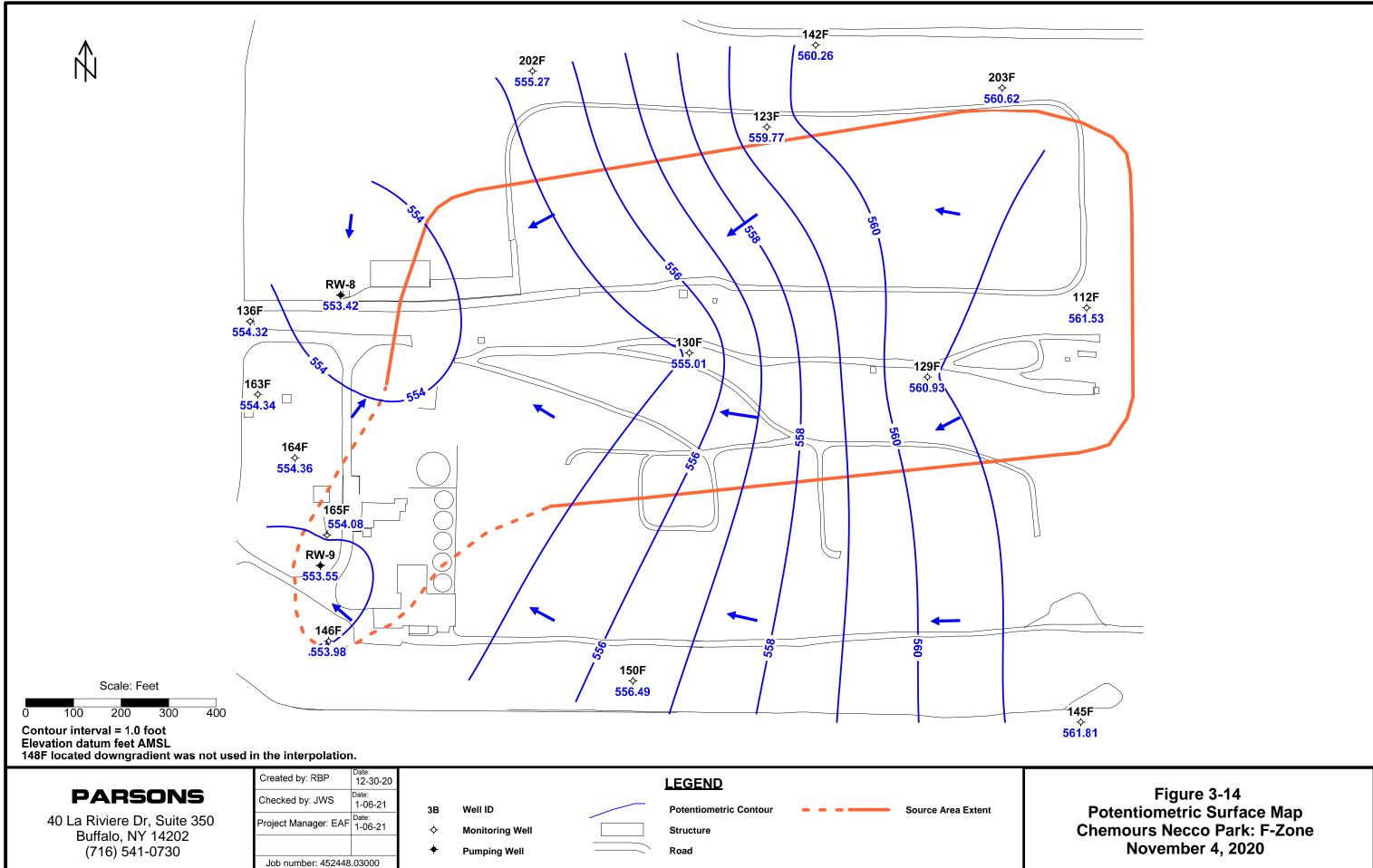

Buffalo, NY 14202

(716) 541-0730

Figure 3-10 **Potentiometric Surface Map Chemours Necco Park: B-Zone** November 4, 2020

Figure 3-11 Potentiometric Surface Map Chemours Necco Park: C-Zone November 4, 2020




Pumping Well

Road

(716) 541-0730 Job number: 452448.03000

Figure 3-12 Potentiometric Surface Map Chemours Necco Park: D-Zone November 4, 2020

APPENDIX A 2020 ANNUAL GROUNDWATER SAMPLING RESULTS

		Location Date	136B 09/24/2020	136D 09/24/2020	136D 09/24/2020	136F 09/24/2020	137A 09/30/2020	137B 09/30/2020	137B 09/30/2020	145A 09/25/2020	145B 09/29/2020	145C 09/29/2020	145D 09/29/2020
Method	Parameter Name	Units	FS	FS	DUP	FS	FS	FS	DUP	FS	FS	FS	FS
	Field Parameters												
	COLOR	NONE	None	None	None	None	None			Cloudy	None	None	None
	DEPTH TO WATER	Feet	10.91	25.85	25.85	25.98	9.56	9.95	9.95	14.28	14.16	9.65	18.55
	DISSOLVED OXYGEN	MG/L	0.5	0.96	0.96	0.41	0.81	0.85	0.85	0.47	1.31	0.92	3.2
	ODOR	NONE	Slight	None	None	None	Slight			Slight	Strong	None	None
	OXIDATION REDUCTION POTENTIAL	MV	-256	-264	-264	-220	-387	-316	-316	-277	-289	-251	-202
	РН	STD UNITS	10.66	7.71	7.71	8.06	12.89	6.45	6.45	8.19	9.23	7.4	9.77
	SPECIFIC CONDUCTANCE	UMHOS/CM	1990	1290	1290	1220	6830	7310	7310	7640	16700	2650	19800
		DEGREES C	15.76	14.87	14.87	18.08	16.46	14.49	14.49	15.76	13.22	16.2	14.89
	TURBIDITY QUANTITATIVE	NTU	2.88	7.33	7.33	6.04	5.43	0	0	25.6	12	16.2	6.37
	Volatile Organics	-						-					
	1,1,2,2-Tetrachloroethane	UG/L	<1.3	<0.13	<0.13	<0.13	<0.13	<0.52	<0.43	<0.13	19 J	<0.52	<1.6
8260C	1.1.2-Trichloroethane	UG/L	<0.9	0.23 J	0.3 J	<0.09	<0.10	< 0.36	< 0.3	<0.10	<9	2.3 J	18
	1,1-Dichloroethene	UG/L	3.6 J	0.45 J	0.64 J	<0.00	9.9	11	10 J	<0.19	<19	1.2 J	10 11 J
8260C	1.2-Dichloroethane	UG/L	<2.1	0.43 J	0.64 J	4.2	2.7	3.4 J	3.5 J	<0.13	<21	<0.84	<2.6
8260C	Carbon Tetrachloride	UG/L	<2.6	<0.26	<0.26	<0.26	<0.26	<1	<0.87	<0.21	<26	<0.04	<3.3
8260C	Chloroform	UG/L	<1.3	0.32 J	0.55 J	< 0.13	0.25 J	0.97 J	0.88 J	<0.13	130	1.2 J	57
	cis-1,2 Dichloroethene	UG/L	430	15	19	0.87 J	46	90	87 J	0.46 B	3600	71	280
8260C	Tetrachloroethene	UG/L	650	<0.15	<0.15	<0.15	38	54	48 J	<0.15	<15	<0.6	<1.9
8260C	trans-1,2-Dichloroethene	UG/L	5.1 J	0.88 J	1	0.23 J	4.4	6.4	6.1 J	0.43 J	720	11	71
8260C	Trichloroethene	UG/L	150	2.1	2.9	0.31 J	60	90	83 J	0.17 J	89 J	4.2	14
	Vinyl Chloride	UG/L	23	25	30	1.3	33	52	48 J	0.62 J	2600	74	180
	Total VOCs	UG/L	1261.7	44.61	55.03	6.91	194.25	304.71	286.48	1.22	7158	164.9	631
	Semi-Volatile Organics												
	2,4,5-Trichlorophenol	UG/L	780	<1.9	<1.9	<1.9	<3.9	10	6.9 J	<1.9	<1.9	<1.9	<1.9
	2,4,6-Trichlorophenol	UG/L	140 J	<1.7	<1.7	<1.7	<3.6	1.9 J	<3.4	<1.7	<1.8	<1.7	<1.8
8270D	3- And 4- Methylphenol	UG/L	<9.4	<0.19	<0.18	<0.18	12 J	19	14 J	<0.18	2.9 J	0.38 J	<0.19
8270D	Hexachlorobenzene	UG/L	<7.9	<0.16	<0.15	<0.15	<0.32	<0.16	<0.31	<0.15	<0.16	<0.16	<0.16
8270D	Hexachlorobutadiene	UG/L	<27	<0.53	<0.52	<0.52	2 J	2.5 J	1.9 J	<0.52	<0.53	<0.53	1.1 J
8270D	Hexachloroethane	UG/L	<19	<0.38	<0.38	<0.38	<0.78	<0.38	<0.75	<0.38	<0.39	<0.38	<0.39
8270D	Pentachlorophenol	UG/L	2000 J	<3	<3	<3	<6.1	4.3 J	<5.9	<3	<3	<3	<3
8270D	Phenol	UG/L	<6.3	<0.12	<0.12	<0.12	55	42 J	44	<0.12	2 J	0.37 J	6.6 J
8270D	Tentativley Identified Compound	UG/L					36 J	27 J	34 J	2 J	430 J	23 J	170 J
	Inorganics												
	Chloride, total	UG/L	160000	200000	190000	180000	540000	580000	580000	2100000	5500000	590000	6900000
6010C	Barium, filtered	UG/L	62 J	36 J	37 J	30 J	3800	3600	3800	66 J	37 J	41 J	48 J

< Non detect at stated reporting limit. J Estimated concentration. B Not detected substantially above the level reported in the laboratory or field blanks.

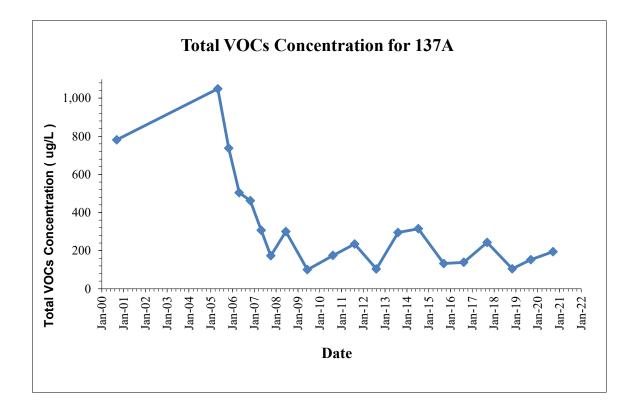
UJ Undetected-estimated reporting

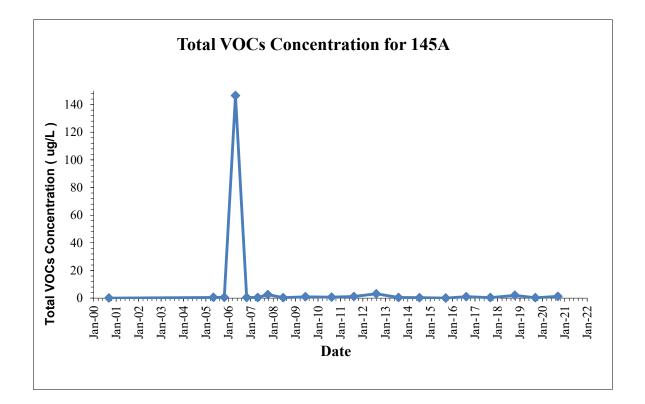
		Location Date	146AR 09/24/2020	146B 09/23/2020	146C 09/24/2020	146E 09/23/2020	146F 09/23/2020	148D 10/02/2020	150A 09/25/2020	150B 09/28/2020	150C 10/02/2020	150E 10/01/2020	150F 10/02/2020
Method	Parameter Name	Units	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
	Field Parameters												
	COLOR	NONE	Brown	None	Black	None	Black						
	DEPTH TO WATER	Feet	10.11	8.33	20.88	21.74	22.05	12.48	10.19	7.8	12.8	21.65	68.49
	DISSOLVED OXYGEN	MG/L	2.75	0.34	2.77	1.06	1.49	0.95	0.88	0.61	1.89	0.89	1.46
	ODOR	NONE	None	-318	Strong	None	Slight	None	None	Slight	Strong	Strong	Strong
	OXIDATION REDUCTION POTENTIAL	MV	-28	-318	-142	-357	-357	-376	-75	-372	-337	-360	-303
	РН	STD UNITS	7.97	12.96	8.14	7.76	6.84	10.54	6.52	10.62	6.59	6.52	7.14
	SPECIFIC CONDUCTANCE	UMHOS/CM	1320	857	1980	1930	14400	1650	2180	2510	24700	19500	19300
	TEMPERATURE	DEGREES C	17.87	17.73	16.86	17.87	14.33	14.48	15.58	14.36	12.87	17.6	15.89
	TURBIDITY QUANTITATIVE	NTU	91.7	5	30.8	1.23	1.18	0.59	7.3	0.06	8.79	5.75	7.18
	Volatile Organics												
	1,1,2,2-Tetrachloroethane	UG/L	<0.13	<0.13	<0.13	7.4	<26	<0.13	<0.13	<0.52	320 J	<2.6	<1.3
8260C	1.1.2-Trichloroethane	UG/L	< 0.09	< 0.09	< 0.09	7.9	24 J	< 0.09	< 0.09	< 0.36	740	<1.8	<0.9
	1,1-Dichloroethene	UG/L	0.66 J	6.3	0.34 J	6.8	330	<0.19	<0.19	4.3	1500	7.6 J	24
8260C	1,2-Dichloroethane	UG/L	<0.21	<0.21	<0.21	6.9	<42	<0.21	<0.21	<0.84	380 J	<4.2	<2.1
8260C	Carbon Tetrachloride	UG/L	<0.26	<0.26	<0.26	<1	<52	<0.26	<0.26	<1	<100	<5.2	<2.6
8260C	Chloroform	UG/L	1	< 0.13	< 0.13	8	92 J	< 0.13	< 0.13	< 0.52	3300	4.1 J	12
	cis-1,2 Dichloroethene	UG/L	0.83 J	20	4.5	29	7600	1.6	0.23 B	92	23000	530	340
8260C	Tetrachloroethene	UG/L	<0.15	<0.15	<0.15	2.3 J	<30	0.97 J	<0.15	6.9	120 J	<3	<1.5
8260C	trans-1,2-Dichloroethene	UG/L	<0.19	1.9	0.4 J	21	520	0.37 B	<0.19	4.2	2500	12 J	22
8260C	Trichloroethene	UG/L	<0.1	3.1	0.33 J	14	180 J	1.6 B	<0.1	11	12000	6.4 J	9.1 B
8260C	Vinyl Chloride	UG/L	8.3	9.2	14	87	2000	<0.2	<0.2	30	19000	460	58
	Total VOCs	UG/L	10.79	40.5	19.57	190.3	10746	2.57	0	148.4	62860	1020.1	456
	Semi-Volatile Organics												
	2,4,5-Trichlorophenol	UG/L	<1.9	3.5 J	<2	<2	130	<1.9	<1.9	21	<49	<8.2	<19
	2,4,6-Trichlorophenol	UG/L	<1.7	2 J	<1.8	<1.8	37 J	<1.7	<1.8	3.5 J	<44	<7.4	<17
8270D	3- And 4- Methylphenol	UG/L	<0.19	3 J	<0.19	2.3 J	40 J	27	<0.19	9.8 J	140 J	19 J	14 J
8270D	Hexachlorobenzene	UG/L	<0.16	<0.16	<0.16	<0.16	<0.78	<0.16	<0.16	<0.16	<3.9	<0.66	<1.5
8270D	Hexachlorobutadiene	UG/L	<0.53	<0.53	<0.54	<0.54	<2.6	<0.53	<0.53	<0.54	<13	<2.2	<5.2
8270D	Hexachloroethane	UG/L	<0.38	<0.38	<0.39	<0.39	<1.9	<0.38	<0.39	<0.39	<9.7	<1.6	<3.8
8270D	Pentachlorophenol	UG/L	<3	9.7 J	<3.1	<3.1	<15	<3	<3	16 J	<76	<13	<30
8270D	Phenol	UG/L	<0.12	<0.12	<0.13	<0.13	94	3.6 J	<0.13	36	210 J	98	55 J
8270D	Tentativley Identified Compound	UG/L		2.4 J			1100 J			13 J	4500 J	1400 J	1300 J
	Inorganics												
300	Chloride, total	UG/L	280000	170000	160000	320000	3800000	420000	130000	480000	10000000	5200000	7100000
6010C	Barium, filtered	UG/L	44 J	14 J	24 J	48 J	32 J	39 J	53 J	300	1700	56 J	62 J

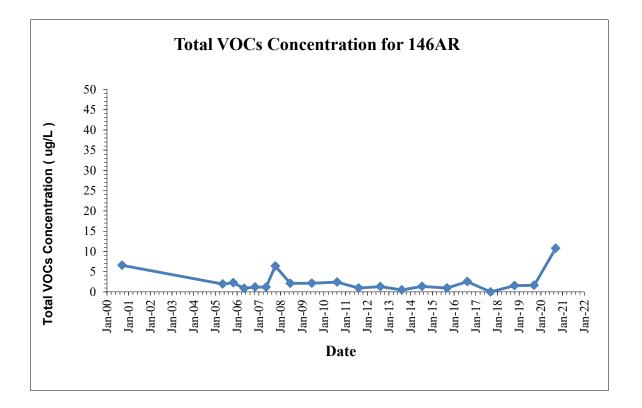
< Non detect at stated reporting limit. J Estimated concentration. B Not detected substantially above the level reported in the laboratory or field blanks.

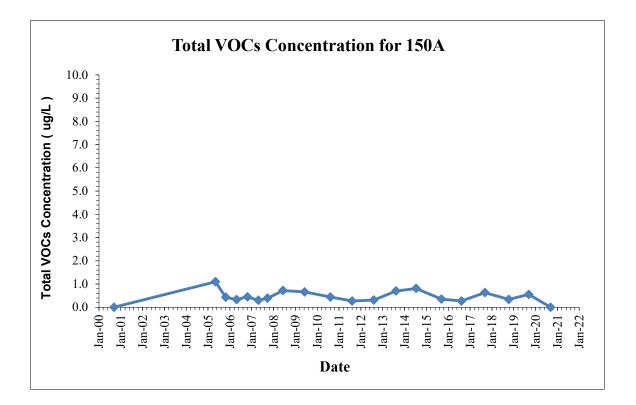
UJ Undetected-estimated reporting

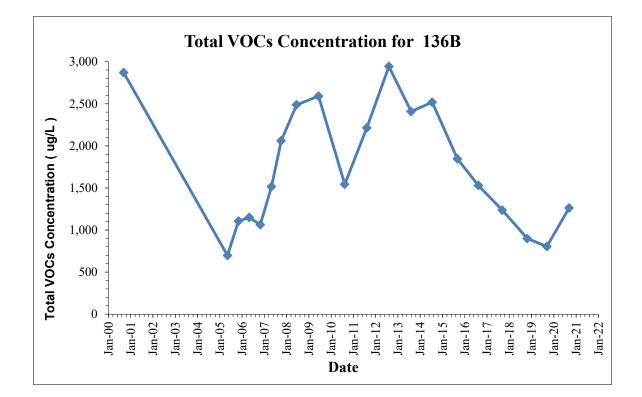
		Location Date	165D 09/25/2020	165E 09/24/2020	168B 09/30/2020	168C 09/30/2020	171B 09/28/2020	172B 09/25/2020	EB 09/25/2020	EB 10/02/2020	TB 09/23/2020	TB 09/25/2020
Method	Parameter Name	Units	FS	FS	FS	FS	FS	FS	EB	EB	ТВ	TB
	Field Parameters											
	COLOR	NONE	Black	None	Black	Black	None	None				
	DEPTH TO WATER	Feet	21.82	23.16	10.91	18.13	11.67	13.51				
	DISSOLVED OXYGEN	MG/L	1.91	0.36	1.58	2.37	0.52	0.82				
	ODOR	NONE	Strong	Slight	Strong	Strong	Strong	Strong				
	ODOR	NONE	Strong	Sign	Strong	Strong	Strong	Strong				
	OXIDATION REDUCTION POTENTIAL	MV	-231	-347	-343	-256	-409	-311				
	РН	STD UNITS	7.85	8.15	7.76	6.3	9.6	6.3				
	SPECIFIC CONDUCTANCE	UMHOS/CM	2130	2430	32800	39500	13800	9970				
	TEMPERATURE	DEGREES C	16.09	15.84	13.97	13.95	15.89	15.23				
	TURBIDITY QUANTITATIVE	NTU	6.66	3.68	1000	1000	1.82	2.49				
	Volatile Organics											
8260C	1,1,2,2-Tetrachloroethane	UG/L	180	770	<52	1400	8500	1300	<0.13	<0.13	<0.13	<0.13
8260C	1,1,2-Trichloroethane	UG/L	100	780	390 J	1400	220	50	<0.09	<0.09	<0.09	<0.09
8260C	1,1-Dichloroethene	UG/L	80	220 J	290 J	110	43 J	9.1 J	<0.19	<0.19	<0.19	<0.19
8260C	1,2-Dichloroethane	UG/L	<11	130 J	<84	27 J	<42	<8.4	<0.21	<0.21	<0.21	<0.21
8260C	Carbon Tetrachloride	UG/L	24 J	190 J	<100	1700	1600	120	<0.26	<0.26	<0.26	<0.26
8260C	Chloroform	UG/L	380	480	210 J	2200	1200	230	<0.13	<0.13	<0.13	<0.13
8260C	cis-1,2 Dichloroethene	UG/L	2800	12000	18000	340	2100	940	0.27 J	<0.16	<0.16	<0.16
8260C	Tetrachloroethene	UG/L	23 J	76 J	<60	410	3400	430	<0.15	<0.15	<0.15	<0.15
8260C	trans-1,2-Dichloroethene	UG/L	77	380 J	1300	93	450	110	<0.19	<0.19	<0.19	<0.19
8260C	Trichloroethene	UG/L	970	810	670	3200	6300	670	<0.1	<0.1	<0.1	<0.1
8260C	Vinyl Chloride	UG/L	1100	3600	11000	72	550	160	<0.2	<0.2	<0.2	<0.2
	Total VOCs	UG/L	5734	19436	31860	10952	24363	4019.1	0.27	0	0	0
	Semi-Volatile Organics											
8270D	2,4,5-Trichlorophenol	UG/L	270	890	<9.8	<7.9	<120	<13	<2	<2		
8270D	2,4,6-Trichlorophenol	UG/L	31 J	<72	<8.9	<7.2	<110	<12	<1.8	<1.8		
8270D	3- And 4- Methylphenol	UG/L	5.3 J	8.1 J	110	2.4 J	<12	<1.2	<0.19	<0.19		
8270D	Hexachlorobenzene	UG/L	<1	<6.4	<0.8	1.5 J	22 J	<1	<0.16	<0.16		
8270D	Hexachlorobutadiene	UG/L	6.7 J	85 J	<2.7	110	2900	180	<0.54	<0.55		
8270D	Hexachloroethane	UG/L	<2.5	<16	<2	23 J	500 J	58 J	<0.39	<0.4		
8270D	Pentachlorophenol	UG/L	48 J	<120	<15	<12	<190	<20	<3.1	<3.2		
8270D	Phenol	UG/L	1.4 J	<5.1	51	8.1 J	<7.8	<0.83	<0.13	<0.13		
8270D	Tentativley Identified Compound	UG/L	61 J	120 J	2200 J	1100 J	300 J	27 J				
	Inorganics											
300	Chloride, total	UG/L	270000	450000	14000000	12000000 J	4100000	2600000	<280	<280		
	Barium, filtered	UG/L	28 J	59 J	1500	110 J	22 J	18 J	<1.3	<1.3		

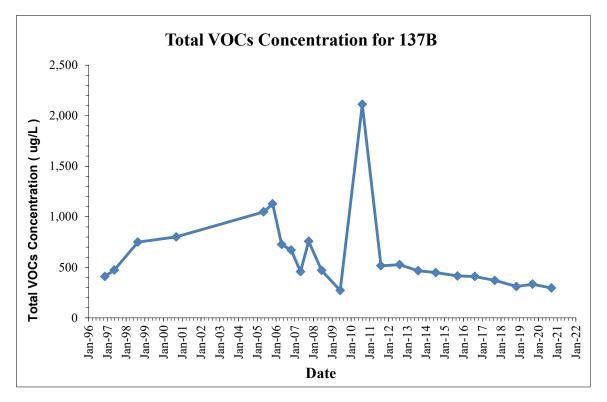

< Non detect at stated reporting limit. J Estimated concentration. B Not detected substantially above the level reported in the laboratory or field blanks. UJ Undetected-estimated reporting

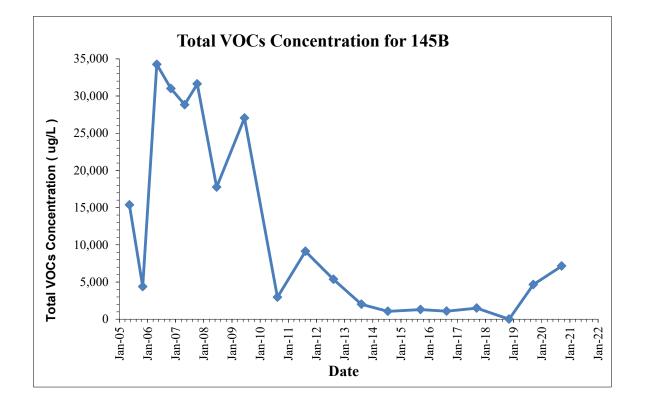

		Location Date	TB 09/28/2020	TB 09/29/2020	TB 09/30/2020	TB 10/01/2020	TB 10/02/2020
Method	Parameter Name	Units	тв	ТВ	ТВ	тв	тв
	Field Parameters						
	COLOR	NONE					
	DEPTH TO WATER	Feet					
	DISSOLVED OXYGEN	MG/L					
	ODOR	NONE					
	OXIDATION REDUCTION POTENTIAL	MV					
	РН	STD UNITS					
	SPECIFIC CONDUCTANCE	UMHOS/CM					
	TEMPERATURE	DEGREES C					
	TURBIDITY QUANTITATIVE	NTU					
	Volatile Organics						
8260C	1,1,2,2-Tetrachloroethane	UG/L	<0.13	<0.13	<0.13	<0.13	<0.13
	1,1,2-Trichloroethane	UG/L	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
	1,1-Dichloroethene	UG/L	<0.19	< 0.19	<0.19	<0.19	< 0.19
	1,2-Dichloroethane	UG/L	<0.21	<0.21	<0.21	<0.21	<0.21
	Carbon Tetrachloride	UG/L	<0.26	<0.26	<0.26	<0.26	<0.26
8260C	Chloroform	UG/L	< 0.13	< 0.13	< 0.13	< 0.13	<0.13
8260C	cis-1,2 Dichloroethene	UG/L	<0.16	<0.16	<0.16	<0.16	
8260C	Tetrachloroethene	UG/L	<0.15	<0.15	<0.15	<0.15	<0.15
8260C	trans-1,2-Dichloroethene	UG/L	<0.19	<0.19	<0.19	<0.19	0.19 J
8260C	Trichloroethene	UG/L	<0.1	<0.1	<0.1	<0.1	0.61 J
	Vinyl Chloride	UG/L	<0.2	<0.2	<0.2	<0.2	0.6 J
	Total VOCs	UG/L	0	0	0	0	1.4
	Semi-Volatile Organics						
8270D	2,4,5-Trichlorophenol	UG/L					
	2,4,6-Trichlorophenol	UG/L					
	3- And 4- Methylphenol	UG/L					
	Hexachlorobenzene	UG/L					
	Hexachlorobutadiene	UG/L					
	Hexachloroethane	UG/L					
	Pentachlorophenol	UG/L					
8270D	Phenol	UG/L					
8270D	Tentativley Identified Compound	UG/L					
	Inorganics						
300	Chloride, total	UG/L					
6010C	Barium, filtered	UG/L					

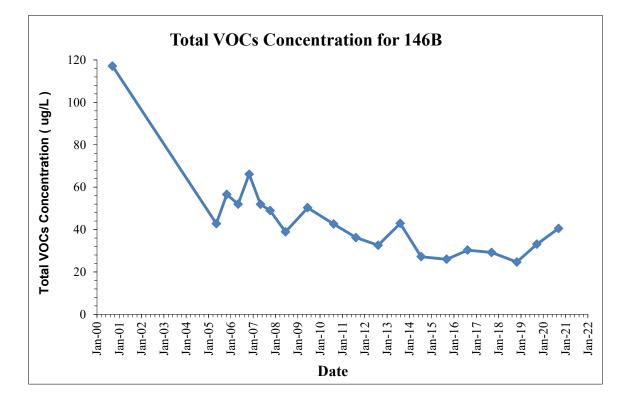

< Non detect at stated reporting limit. J Estimated concentration. B Not detected substantially above the level reported in the laboratory or field blanks. UJ Undetected-estimated reporting

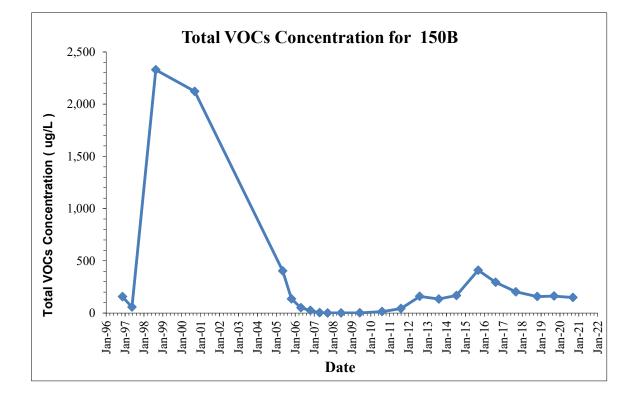

APPENDIX B TVOC TREND PLOTS

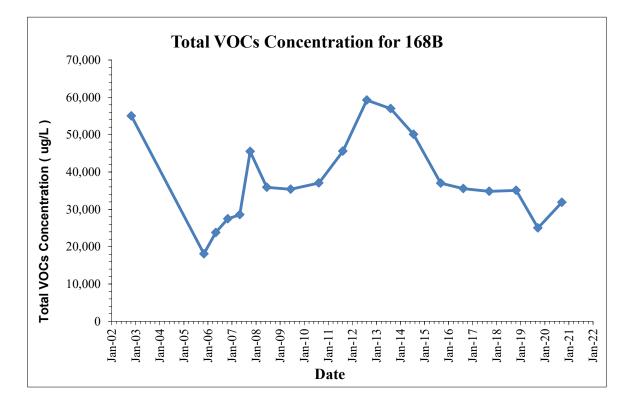


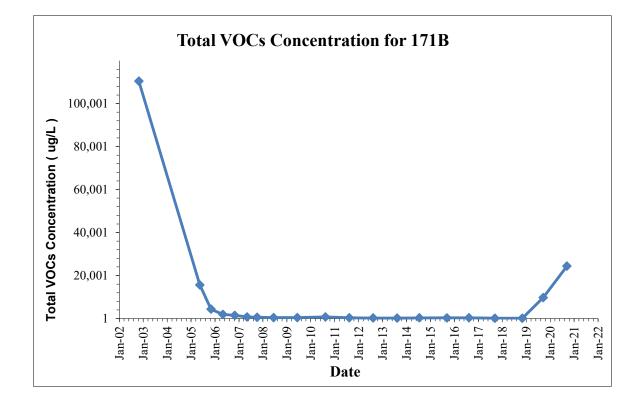


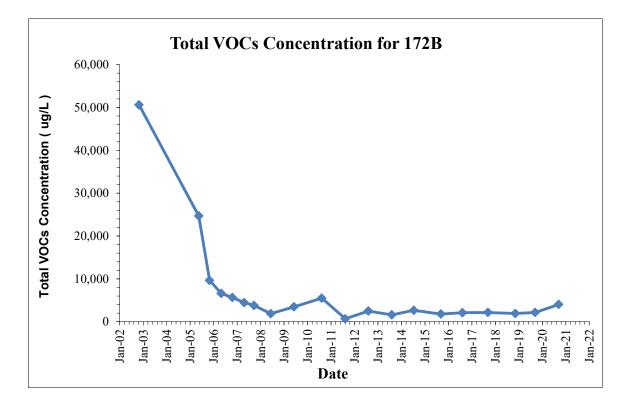


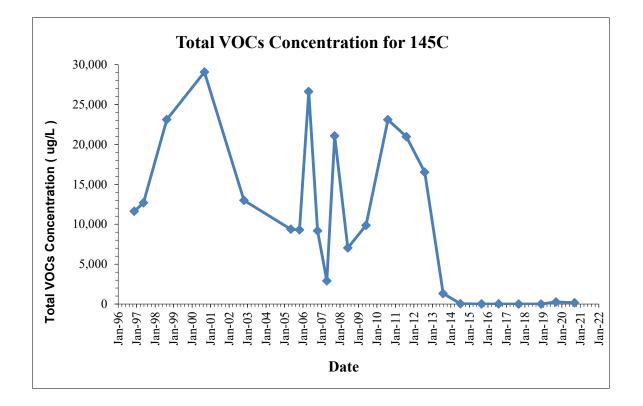


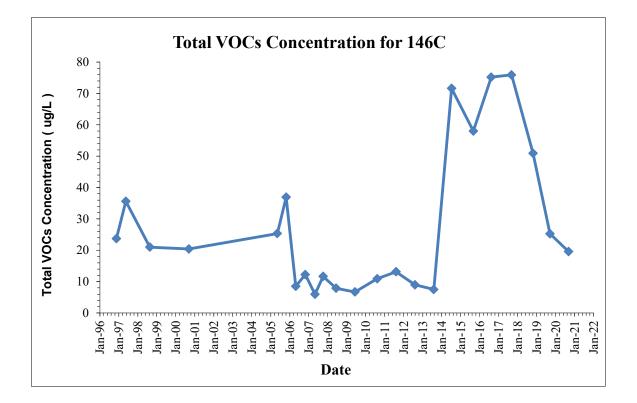


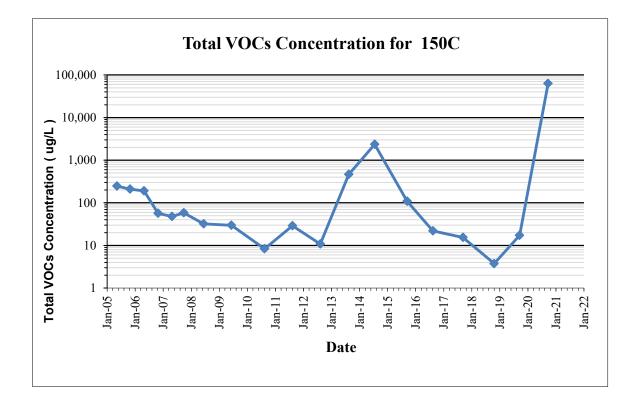


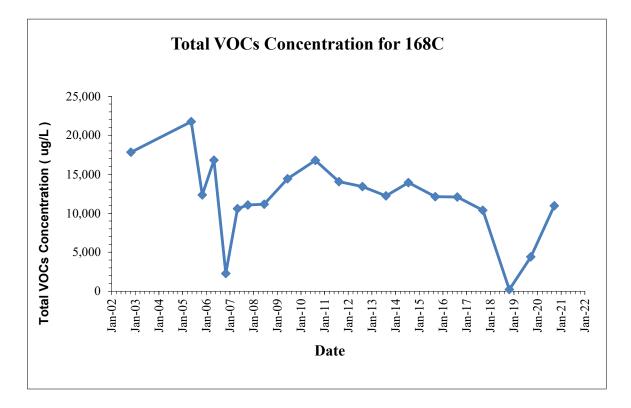


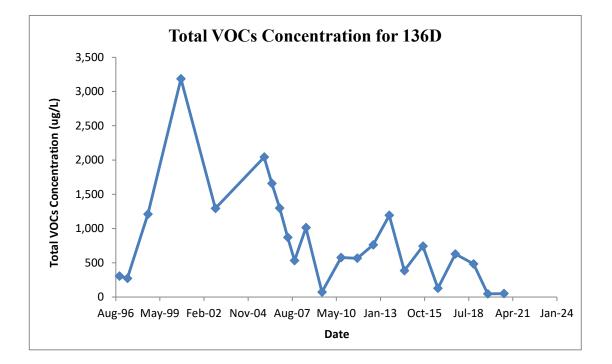


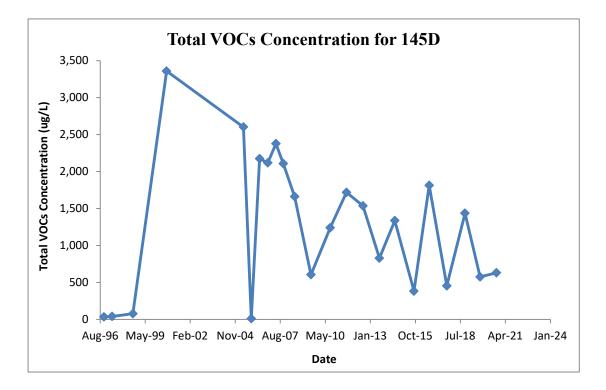


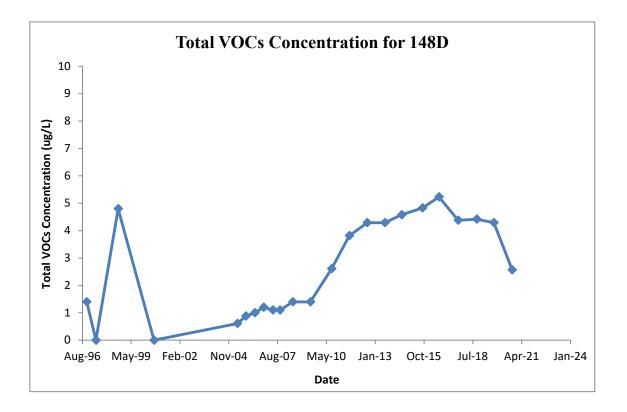


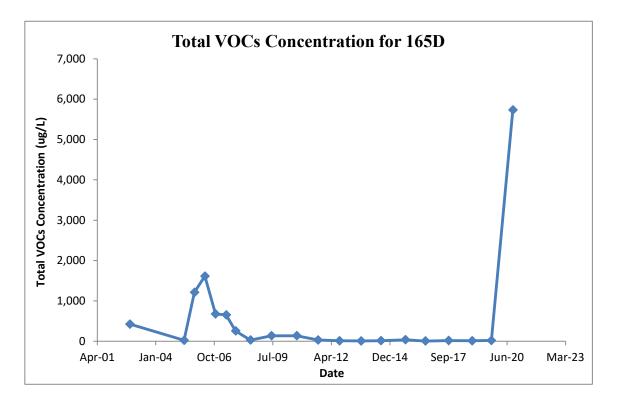


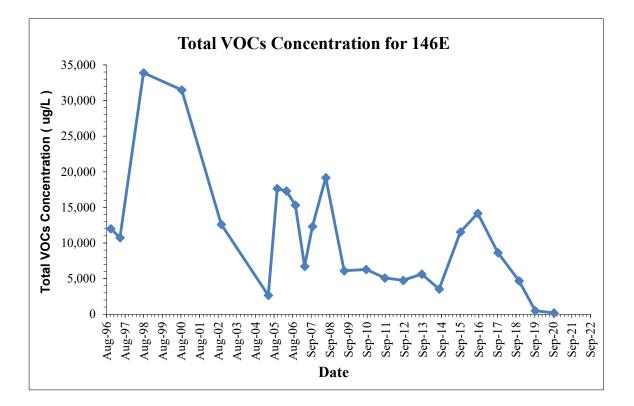


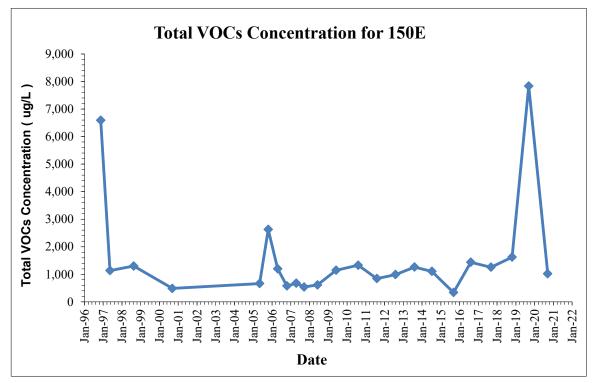


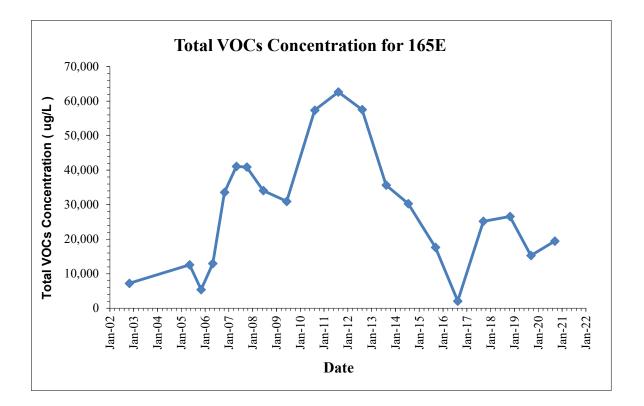


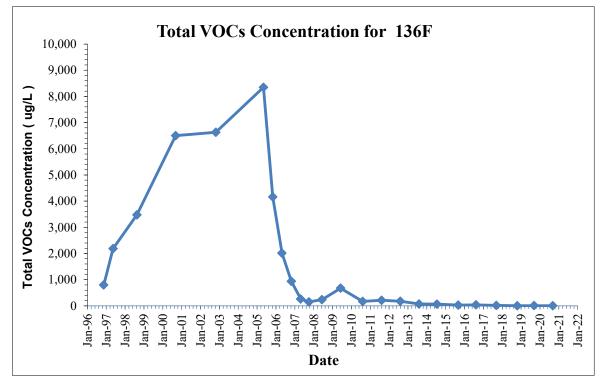


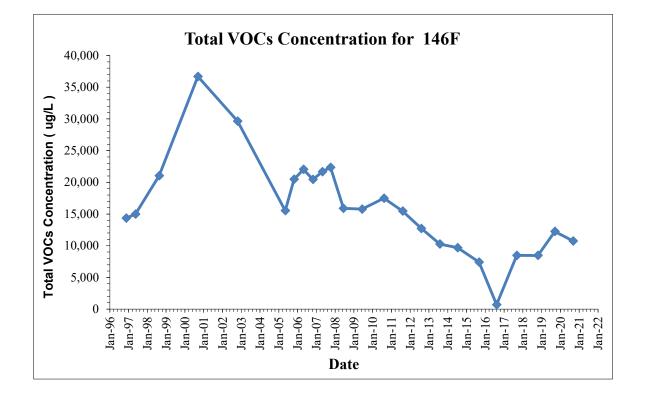


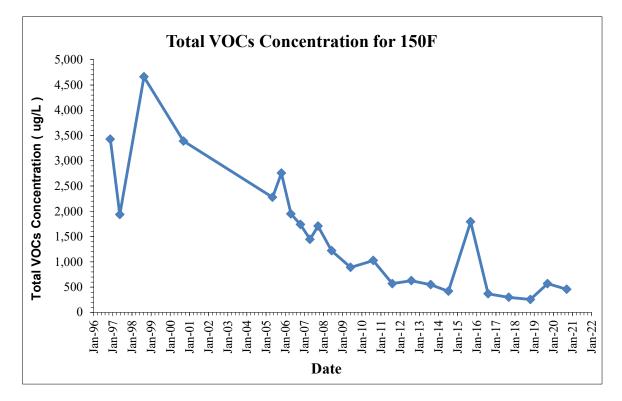












APPENDIX C LANDFILL CAP INSPECTION RESULTS (NOVEMBER 2020)

EXHIBIT A CAP AND SURFACE WATER DRAINAGE INSPECTION CHECKLIST NECCO PARK

NS	TE: <u>11-11-202</u> PECTOR: <u>Gerald St</u> INESSES: <u>Not Regu</u>	hep.Ard				- 570-6	Timothy Pez 846
1)	Vegetative Cover, Ditches, Culverts		N: (Check) Not Acceptable		ble or Not Pres Not <u>Present</u>	ent require comr <u>Remarks</u>	nents below)
	 a) Sediment Build-Up/Debris b) Pooling or Ponding c) Slope Integrity d) Overall Adequacy e) Culvert Condition 	X X X X X					
2)	Access Roads	_×					
3)	 Landfill Cover System a) Erosion Damage b) Leachate Seeps c) Settlement d) Stone Aprons e) Vegetation f) Animal Burrows 	X 			<u>×</u> ×		
4)	Slope Stability a) Landfill Top Soil b) Landfill Side Slope	X					
5) 5)	Gas Vents Monitoring Wells	X					
DE	MMENTS: SCRIPTION OF CONDITION De Settling on La E) very small mice	3B) No Lo and Fill + mole	erchate or Sid Burrow	Seep e Slo Sonla	s Press pes ndfill c	ap And.	Side Slopes
	SCRIPTION OF CONCERN:					•	/
F	SCRIPTION OF REMEDY:						

UN Alter

EXHIBIT B CAP AND SURFACE WATER DRAINAGE MAINTENANCE CHECKLIST NECCO PARK

DATE: INSPECTOR: WITNESSES:

11-11-2020
GERALD SLEPARD
Not Required

EMERGENCY CONTACT: TIMOTHY PEZZING

Phone # 716-570-6846

Maintenance <u>Performed</u> (Check)	Iter	<u>n</u>	Performed by:	<u>Remarks</u>
	1)	 Vegetative Cover: a) Seeding b) Fertilizing c) Topsoil Replaced d) Removal of Undesirable Vegetation 		
	2)	 Drainage Ditches a) Sediment Removal b) Fill c) Regrading d) Stone Apron Repair e) Vegetative Cover Placement f) Liner Replacement 		
	3)	 Access Road a) Excavation b) Fill c) Grading d) Stone Paving 		
	4)	 Landfill Cap a) Excavation b) Cover Materials topsoil barrier protection layer drainage composite geomembrane geotextile c) Testing d) Barrier Protection Layer e) Vegetative Cover 	Contractor Mowcord	Aug 2020
	5)	Gas Vents - Pipes - Bedding and Adjacent Media		
	6)	Other		

CAP, Side Slopes, And Ditch August - 2020

Continued to next page

Land Fill